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SUP&RSUNMC7RIC GAUGE THEORIES AND THEIR SUPERCURRENTS

by A. W. Fisher

ABSTRACT

Using the method of dimensional reduction of N=1
supersymmetric Yang-Mills theories from higher dimensions
down to four dimenéions, all possible supersymmetric
Yang-Mills theories in four dimensions are obtained.

The conserved currents associated ﬁith the symmetries
- of these models are then developed using Noether's theorem
in ordinary space-time. By the variation of these conserved
currents under supersymmetry transformations the supercurrent
multiﬁlets for the different models are obtained.

Supersymmetric.gauge theories are then discussed in
superspace where differential geometry can be ‘used to
obtain Bianchi identities for the supersymmetfic field
strengths. The constraints on.the field strengths that
give rise to of f-shell representations for each .of the
"different supersymmetric gauge theories are then obtained
and off-shell Lagrangians written down. The connection
with supersymmetric gauge theories in ordinary space-time
is made.

The supercurrents'in superspace are then derived

'using the generalization of Noether's theorem to superspace.
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CHAPTER I INTRODUCTION

The idea of a symmetry relating bosonic and
_fermibnic particles 1s an appealing one in any process
of unifying particle interactions. The first discussion
of such a symmetry arose in dual resonance models
formﬁlated as 2 dimensional field theories [1]| . The
first model in 4 dimensions that related bosons and
‘fermions by supersymmetry was proposed in [27] and
comprised of a Majorana fermion togéther with scalar and
pseudoscalar bosons (althopgh there had already been
previQus papers [ 3] on similar ideas) .

Supersymmetric theories with higher spins were
obtained later - the supersymmetric gauge theory by
4, 5] and supergravity by [ 6] . The amount of
supérs&mmetry can also be increased so -that there are
N supersymmetry generators instead of just 1 [7] .

" Also, supersymmetry gives rise to a non-trivial
éxtension of the Poincare group as the supersymmetry
aléebra [[87] provides an extention of the Poincare
algebra, so avoiding the no-go theorems of [9] . This means
that for extended supergravity theories the Poincare and
internal symmetries are unified into a single symmetry.

The second great attraction of supersymmetric

theories is the improved ultraviolet behaviour that

results from the supersymmetry. This appears in the
form of the non-appearance of infinities that naively

should arise. For some N=2 theories[ 10 Jand for the N=4

&




supersymmetric gaﬁge theory [11,12], the supersymmetry
restricts the theory so much that they are in fact
completeiy.finite to all orders in perturbation theory
( although see [13] ).

As the supersymmetry algebfa is a non-trivial
eitension»of the Poincare algebra, one can represent
supersymmetry multiplets over the extension of normal
space-time to superspace [ 14| which includes fermionic
coordinates._ Writing multiplets in terms of superfields
‘over superspace results in a great.simplification of the
'hbthéory‘and allows calculations to be performed far
more.simply.A In fact, for the finite theories it is by
"power counting arguments using superfield perturbation
theory that the finiteness is ?rbven [127].

The. finiteness properties of supersymmetric theories
are inﬁimately connected with the supermultiplet of
conserved currents associated with the supersymmetry Ell] .
The COnsérved spindr current that arises as a Noether
- current from the supersymmetry falls into a supermultiplet
with the energy-momentum tensor, the other conserved
"currents for the theory and for extended supersymmetry
other auxiliary quantities. |

In this work I will discuss in detail supersymmetric
gaﬁge theories and their: supercurrents in ordinary space-
time and also in superspace. This process is started in
chapter 2 where the N=1, 2 and 4 supersymmetric gauge

‘theories in ordinary space-time are obtained by the




dimensional reduction technique of [15] . The N=2 theory
is obtained by the reduction of the 6 dimensional N=1
supersymmetric gauge theory while the N=4 théory is obtained
by reduction from 10 dimensions. .

Following the normal procedure one now uses Noether's
theorem in ordinary space-time to derive the cohserved
currents for these theories and this is done in chapter 3.
The conseved currents are then modified in the standard
fashion - the énergyémomentum tensor is modified so as to
be symmetric and as the theory is conformal, traceless.

The spinor supersymmetry current is also modified so as

to be pure spin 3 [16 ] , this being because of the
supérconformal nature of supersymmetric gauge theories.
There are also conserved U(N) ( SU(4) for N=4 ) currents
ass@ciated with the U(N) ( SU(4) ) symmetries of the theories.

Using the supersymmetry transfomations obtained in
chapter 2, these conserved currents are varied so as fo
- form a complete supersymmetry multiplet. For the N=1
theory, the conserved currents form a closed multiplet
under supersymmetry without the need for additional
quantities ( for a superconformal theory ), but for the
ﬁ=2 and N=/ theories additional auxiliary quantities are
required to complete the multiplet. These auxiliary
quantities appear to have no known geometrical significance.

In chapter 4 supersymmetric gauge theories are
discussed in superspace. This is done by developing
differential geometry in superspace [ 17 | and then

imposing constraints on the field strengths developed.




The content of the remaining field strengths are then
studied by means of the Bianchi identities. For N=1 and
N=2 supersymmetry the constraints imposed upon the field
strengths [17 ,18] arise as integfability conditions for
coupling lower spin supermultiplets to the supersymmetric
gauge theories [197] . For the N=4 theory, using the

same constraints as for the N=2 theory [187] leads to the
equations of motion [20,217] . These constraints can
'hdweVer be relaxed as there are now no lower spin theories
than the N=4 supersymmetric gauge “theory. itself. 1In 4
dimensions.thefe are two minimal relaxations and both

lead to the physical fields being off-shell. The relations
resulting from the Bianchi identities are worked outvin
detail for one of these minimal -relaxations and are shown
to result in on-shell conditions for the auxiliary fields.
So one.is led to consider the non-minimal case when only
the conventional constraint is applied. Here the self
duality condition may'be imposed without implying field
eduations ( unlike the case of the minimal constraints where
the sélf'duality condition leads immediately to field
equations ) .

In this case it is possible to use a Lagrange
multiplier method to write down a Lagrangian which
propagates the physical fields. However such a method
involves other fields propagating,so avoiding the counting
arguments of [22 ] which exclude an off-shell representation
of this form with just one set of physical fields. As in

CP models and the action I, of [237] , some of the




propagating fields have kinetic terms of the wrong sign.
These fields must be eliminated by a set of constraints
in order that only the physical fields which have the
correct sign for the kinetic term actually propagate.

The constraint used in this case is a non-linear Lagrange
multiplier term as suggested by [24 |..

Also in this chapter, the connection between the
formulation in'superspace and the ordinary space-time
formulation is made. The independent superfields in
superspace have as their 6 =9 =0 components the space-time
fields of the theory. For the N=1 and abelian N=2 models,
unconstrained formulations in superspace are also.
discussed as this is necessary in deriving the supercurrents
in superspace by the generalization of Noether's theorem
toAéuperspace.

- In chapter‘5 the supercurrent multiplet in superspace
is discussed. A superfield that contains all the .components
of the supercurrent multiplet is easily written down by

~taking the superfield whose 8 =8 =0 component is the

member of the multiplet with.lowest dimension. -For the

N=1 theory this leads. to a vector indexed ‘supercurrent [ 16]
with a clear geometrical interpretation, but for the N=2
theories the superfields are scalars [ 25, 26 | and have

no immediate geometrical interpretation.:

For a geometrical interpretation one turns to Noether's
theorem in superspace. For the N=1. theory this leads

[[27 , 287] to a derivation of the vector indexed supercurrent




6.

of [[167] . For the N=2 and N=4 theories, Noether's

theorem in superspace again leads to a vector-indexed
supercurrent with a clear geometrical interpretation [29j .
The vecfor-indexed supercurrents obtained in this way are

simply related to the scalar supercurrents of [25 ,26] .




CHAPTER 2 SUPERSYMAMETRIC GAUGE THEORIES

As supersymmetric gauge theories are massless
rebresentations of supersymmetry with maximum spin 1, the
number of supersymmetry generators must be less than or
equal'fo 4L [30] otﬁerwise higher spin particles arise.
Also;, the particle content of the N=3 ‘theory is identical
to the particle content of the CPT -self-conjugate N=4
multiplét. So in 4 dimensions, the only pure supersymmetric
gauge theories are those with N=1,2 and 4 supersymmetries.

Of these, the supersymmetric gauge theory first
constructed was the supersymmetric extension of the
abelian gauge theory with N=1 supersymmetry [4_], this
later being extended to the non-abelian case by [5].

For the case of extended supersymmetry, the N=2
supersymmetric gauge ﬁheory without auxiliary fields
was constructed in [31 ] and with the auxiliary fields
by [18]. Finally, the N=4 supersymmetric gaugé theory
without auxiliary fields was obtained from the 10

dimensional supersymmetric string theory by [32].

2.1 Obtaining Supensymmetnic Gauge Theonies Bu

Dimensional Reduction

K L A e A R e S

Using the dimensional reduction technique of [327]
-if is possible to obtaiﬁ all the extended supersymmetric
gauge theories by the dimensional.reducfion of unextended
supersymmetric géuge theories from various higher |
dimensions [15:].' The N=2 supersymmetriec gauge theory in

4 dimensions is obtained by the dimensional reduction of




the 6 dimensional N=1 theory and the N=4 theory in 4
dimensions by the dimensional reduction of the 10
dimensional N=l.theory.

It is this method that will be followed here in
order to set up the models to be studied. In D dimensions
the N=1 Lagrangian is

_ 1 uv i,
L= tr | - AFU\)‘F ST D (2.1.1)

" where the metric in D dimensions is

gu\) = diag( -l'+l| o o o ,+l) (2.1.2)

and_Pu are the D dimensional gamma matrices.
Both fields are in the adjoint representation of an

arbitary gaﬁge group. The field strength and covariant

derivative are given by

A

F v

i BUAV - a\)Au +1|:AU,A

D X
y

3 A +i[ A ,A7] (2.1.3)
u — M
The fields are Lie algebra valued

a4 pa _ ,8 a4
Fuv = FuvT , A= A"T (2.1.4)

where T are the generators of the gauge group and

" satisfy

b .
Cr®, 17 =if,,,1° (2.1.5)

The structure constants fabc are real.

For later use, the equations of motion that result

from this Lagrangian are

PMF. o= {Xx,T 2}

v v

Fr«Dx=20




For the theory to be supersymmetric thére must be
the same number of degrees of freedom on-shell for the
bosonic and fermionic fields. 1In D dimensions the gauge
field Au has D-2 degrees of freedom whilst a Dirac spinor

(D-1)/2 yen D is odd. As

has 2D/2 when D is even and 2
these two numbers are not equal for any D, there must be
a restriction on the spinors that reduces the number of
fermionic degrees of freedom.

The possible restrictions that can be imposed are

a Majorana condition

A = C. L (2.1.7)

which is possible when D is 2 or 4 modulo 8, and a Weyl
condition

A "(2.1.8)

which is possible for any even D. Here CD is the charge

conjugation matrix and

_ 0.l D
I-‘D+1 - r I-| o & o F v (201.9)

It is also possible to impose both the above conditions
when D is 2 modulo 8.

S0 in the cases of interest, in D=4 either the
Majorana or Weyl condition can be chosen,. for D=6
the Weyl condition must be imposed and in D=10 both the
Majorané and Weyl conditions must be imposed.

It can now be checked that under the supersymmetry

transformations
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A =i(al X - 2T a)
H ] H

F Vg (2.1.10)

§ A L

where "V =3[ 1", V7], the Lagrangian (2.1.1) transforms
by a total derivative ( so leaving the action invariant )
for the cases of D=4, 6 and 10 only [15].

The D=6 and D=10 theories can now be dimensionally
reduced to D=4 whereupon they become N=2 and N=4 theories
respectively. The reduction is the trivial one obtained

by eliminating all dependence of the fields on any but

the first four space-time components.

2.2 The N=1 Theory

For later purposes it will be convenient to write
the,Ngl theory using two component notation for the spinors.
The Lagrangian is

- 1 w _is cdagu
L=tr|-7F F 5% 9, D Ay (2.2.1)

where the SL (2, C ) indices a, & take the values 1, 2.
The convention for raising and lowering SL(2,C).
findices is
a _» af - B
S T MR (2.2.2)

12 . 21
where € = 621 = - = -812

1 ( and similarly for

dotted indices ) .

The supersymmetry transformations are

_ .= =ba - —Ga
(SAu—l(EdOu Ny = R4 O, £y )
Shg = Foy otV P £ (2.2.3)
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v B
[6)

—vé —ué
where © =i(ogdo\)8-0(\x)d0“8).

The equations of motion that result from (2.2.1) are
ME = TR, A )

BV v a a

EB‘“D“A =0 (2.2.4)

2.3 The N=2 Theory

In 6 dimensions the Lagrangian is

- 1 LA o
L=tr | -7F F ST DA (2.3.1)

The -spinor satisfies the Weyl condition

A =T, | | (2.3.2)

where the positivé sign has been chosen for definiteness.
Also, the following representation is chosen for the 6

dimensional gamma matrices

f,YU 0

I‘u:YUXIz: u » u=0,1,2,3
L0y )
[0 iy,

r* = ygxiot = 5
kiY5 O J
(O -y

I =y xic® = 2
kY5 0 Y,

and so
ro = 0riefrlrér?
= 'Y5 X 03

0
= [ '5 ] - (2.3.3)
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The condition (2.3.2) implies that A has the structure

) Ly
A =

Rx

(2.3.4)

where L =3 (1-+Y5 ), R=32(1 - Vs )and x is a 4 dimensional
Dirac spinor.

Now, defining the fields

A=A ,u=0,1,2,3

H ]
A, =P
Ay = -s (2.3.5)

gives the Lagrangian in 4 dimensions upon performing a
dimensional reduction as
i

= 1 v 1 Hp o 1 Hg _io .
L=tr|-7F F 50, PDYP - 5D 50" -5y Dy

F1Rvs2 0+ X8, + 3 0p, 5T, 57 |
- (2.3.6)

The supersymmetry transformations now become

(SAu = 1(OL‘YUX - XYU(I)

P

-(av5x - XYSOL)

5 = i(T x - x o)

SX - =(Fuv(5u\) +iY-.DPY5 + Y-‘DS-[P,S:IYS)ow
(2.3.7)

where the supersymmetry transformation parameter a is a

4 dimensional Dirac spinor.

The theory can now be written in 2 component notation
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as this will be more useful later on by using SU(2)
doublets of Weyl spinors instead of Dirac spinors.

Taking a Weyl representation of the gamma matrices

st o
1 0
. 0O
Y5 = 1Y Y1Y2Y3 = [ ]
0 -1
where
O“:(l’o)'gu:(l’_g) (2-3-8)

1 0
, o0 =
0 -1

1 0 i 0
(2.3.9)
Now redefining the fields by
x = Aal
1 302
_ 1 .
C = 5-(8 -iP) (2.3.10)

gives a Lagrangian that has an SU(R) symmetry in the

indices 1 and 2

L = tr -leF“V-zz)uc*D“c-iKiB"“"‘D"“>\ .

% 276 Tu ai

pigt? oA S Al -ig,0{T,, X

-2[c*,c][c*, Cc] | C(2.3.11)
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Defining

. |
@ = [ 33’"2] (2.3.12)
ig

gives the supersymmetry transformations as

_ ., +i—ba —i—da

GAU =i 3 o, Aai = Ay o, i )
_ e i

0C = g5 2 &y

i _ uv B8 .1 . u =&i . i
§ry = F 0 Eg=R1gy50,4 D CE "+ 2i[ C¥, cg;

(2.3.13)
The convention for raising and lowering SU(2) indices is

b= gy, = gl 0 (2.3.14)

where g = €.

With this convention and (2.2.2) for ‘the spinor

indices, .

(o) =g, (gt e  (2.3.15)
and so

(g19)" =gy = - &' (2.3.16)

From this it can be seen that the factors of gl2

and-g12 above are necessary in order to ensure that the
relevant pieces of L are real. Under infinitesimal SU(R)
transformations these factors are invariant.

It is possible to absorb the factors of g,, and g12

into the fields C, C* in the above expressions. This

gives rise to the Lagrangian
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= 1 v % pMo _ivig6oHu
L = tr [ -7 P, BV 20 cx p¥e -5 %5 ﬁ’xai

s asfa® 411 g =Gi
+iC {xi,xa}-lc{xéi,x }

-2[c*,c][c*, c] ' (2.3.17)
and the_supersymmetry transformations
Sh, = 1 (Egou gy, - Ty )
6¢ = AT el

i_ pv B i .o w =41, i
8hg = F 0 4 Bg-RioygD CE 21 [C*, ]k

(2.3.18)
However, one should note that when the factors of
g1 and g12 are absorbed into C and C* in this way then
the sign of the free Lagrangian density for the field C
has the opposite sign to normal.

For later reference, the equations of motion that

arise from the Lagrangian (2.3.17) are

H _ . —Ga ;1
D Fuv--zl[c*,ﬁ’vc]mv {X5 02y}
A _ 1 o i s
DUDC—-Z-{Ai,xa}+2[c,[c,c*]:|
—&0 Ay i ~4&i
o, DA =-2 [C, A 7] (2.3.19)

2.4 The N=4 Theory

in 10 dimensions the. Lagrangian is taken to be

~ 1 MV _igon,
L=tr|-7F  F 7 AT B\ (2.4.1)

with the supersymmetry transformations
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SA =dioal A
u u

sx =TF MV . (2.4.2)

The spinors satisfy Majorana-Weyl conditions in 10

dimensions

A : (2.4.3)

where the positive sign in the Weyl condition has again

been chosen for definiteness.

The following representation is chosen for the 10

dimensiondl gamma matrices

Fu‘ =Yux18 u=0,1,2,3
i3 _ Li4, 1 jk _
. Rit6 _ Li4 1 jk _
il =T _§€i4jkr i=1,2,3
where
0 pij
I‘l'] =Y5X[ ] lDJ=1I213
0
. 0. .
1J
and
1J
(o779 Dy = 6510850 =655 85y
_ 1 | mn
( Pij e = Z€i5m (P kg
T Eiike
Also
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(2.4.4)

where C4 is the 4 dimensional charge conjugation matrix.
The Majorana-Weyl condition (2.4.3) now means that

A has the structure

Rx
Rx

~ w0 T

A = X (2.4.5)

where

~ -7 ’
Xy = C4 X3 (2.4.6)
xi transform as a 4 of SU(4) and ii as a 4% .

Now defining the fields

A = A U:0!192,3

- H

b, = -2 (Ay o tih,, )

i 2 i+3 i+é

. | }

o3 = 5By = (o) (2.4.7)

‘and performing the dimensional reduction to 4 dimensions

gives the Lagrangian as

_ 1 pv 1 uij'_’_i_
L = tr -AFU\)F 20U¢ija¢ 5 X3

+{$’(1’RXJ}¢ij'{§ivLij}¢lJ

1 ij kA -
i BTN NN (2.4.8)
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The supersymmetry transformations now read

.= R i
(SAu 1(oziyqu —xiyuRa )

s q= ~ ~k o g
S§b:. = 1(0L|:iij:| €5 jkg & RY™ )

i_ pv o i IS e ik i
SRy Fly 0 Re™+2y- D7 L, +,21E¢ ,¢kija
(2.4.9)

"The equations of motion that result from the

Lagrangian (2.4.8) are

D“Fuv ::1r—¢ij' DV¢lJ—]+ {Xl’ Yval}
U = . 1 Tk % %)
ye Dyt =-2i[ 19, ijj : (2.4.10)

Again, it will be convenient for later purposes to
write down this theory in an explicit 2 component
formulatibn. In this case the answer is simply obtained

by defining the Weyl spinor P by’
i 0
Rx' = | _gs (2.4.11)

Also, the Weyl representation (2.3.8) of the 4 dimensional
gamma matrices 1s taken. TIn this representation, the
charge conjugation matrix C4 is

_ EaB 0
C4 = ['O EdB (2.4.12)

'So rewriting the Lagrangian (2.4.8) above in 2 component

notation gives




190

(2.4.13)
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CCHAPTER 3 THE SUPERMULTIPTET OF CURRENTS

3,1 Woathea'A Theorem and Conserved Currenits

As well as the conserved energy-momentum tensor, the
theories derived from the Lagrangian (2.1.1) have
various other conserved currents obtained from Noether's
theorem that are associated with their symmetries. For
the N=1 theory, as well as the energy-momentum tensor
@uv there is a conserved spinor current Ju associated
with the supersymmetry and aiso an axial current j(g)
associated with the U(l) invariance under chiral
transformations of the spinors. As the theory is
supergohformally invariant, the currents can be improved
sd that the energy-momentum tensor is traceless, OulJ =0,
and the spinor current‘Ju»contains only a spin 3
compbnent, y+J=0.

The currents for the superconformal and also for the
non-supefconformal cases were first studied in [167] .
‘They found that the above currents transformed into each
other under supersymmetry transformations to form a
‘supérsymmetry multiplet. In the noen-superconformal case
there are also auxiliary quantities that ére necessary
to form a multiplet.

A For N=2 supersymmetry, the conserved currents again
form a multiplet under supersymmetry. This supercurrent
was first obtained by [ 25 | for the non-superconformal
case. Again, auxiliary quantities are required to form

the multiplet in addition to the conserved currents, but
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in this case they are also required for the superconformal
multiplef.

The situation for the case of N=4 supersymmetry is
similar, but here the multiplet is automatically
superconformal as the theory involved is the N=4
supersymmetric gauge theory which is finite and so
superconformally invariant to all orders in perturbation
theory[ 11,127]. The multiplet of currents for this theory
was first obtained by [337] .

In this chapter the conserved currents for the
N=1,2 and 4 supersymmetric gauge theories of chapter 2
‘will be derived from Noether's theorem and by studying
their transformations under éupersymmetry, the full
supercurrent multiplets'will be obtained for the
supgrconformal case,

Asséciated with the Lagrangian (2.1.1) is a conserved,
gauge-invariant and symmetric energy-momentum tensor euv
that is obtained by adding improvement terms to the
energy-momentum tensor Guv derived from Noether's theoren.

3 As'the close similarity of Noether's theorem in
supefspace and Noether's theorem in ordinary space will
" be exhibited laﬂer, it will bé convenient to derive
Noether's theorem here.

If we consider a symmetry under which the fields

transform as

§6 = 8¢ OSw? (3.1.1)
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then the transformation of a Lagrangian L that depends
only on the fields ¢ and their derivatives 3u¢ can be
calculated in two ways.

In the first the equations of motion

o 3L =L (3.1.2)
a( 3% ) 3¢

are used.

§L

3LSG+ 3L &Yy
3¢ a(aMe )

e [ 3L 80 ] Sw® - (3.1.3)
s a%o 6uw®

using (3.1.2) .
But the transformation of L can also be performed

directly

§L = 6L Sw? (3.1.4)

Gma
So Noether's theorem states that the current

IR WAN X (3.1.5)
3 (3,4) Sw?

has the divergence

o
‘ Sw
For example, this can now be applied to the
translational invariance of a Lagrangian. Under a

translation x* » x" + a! the field ¢(x) transforms as

S6(x) = a“3L1¢(x) (3.1.7)
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and similarly
8L(x) = 2" L(x) (3.1.8)
So the energy-momentum tensor

guv = 3L 3,0 - ng (3.1.9)
3 (a%e)

is conserved by Noether's theorem when the equations of

motion are used.

3.2 The Enengy-Mlomentum Tenson and Spinor Supersymmetnry

Curnent in D Dimensions

When (3.1.9) is applied to the Lagrangian (2.1.1)

above, a non-gauge invariant, non-symmetric Guv is

obtained
= - (Y PA _ixr ¥
Gu\) = tr Fup BvA +4gqup>\F 2)\1‘u v)\
i _
- Se Al D (3.2.1)

However, this energy-momentum tensor Guv can be modified

1
[JRY

The additional term Aeuv that cancels the gauge dependence

to give a gauge-invariant energy-momentum tensor 0O

of Guv is

= p .
AOU\) d tr(FupAv) (3.2.2)

This automatically satisfies

I . .
RGN 0 (3.2.3)

and also

(.3 _ _
Jd x80g, = 0 : (3.2.4).
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"which means that the generators of 4-momentum
pH :‘JdBXOOu (3.2.5)

are unaltered by the change Guv > Ouv = éuv + Aeuv.

By using the equations of motion the term Aeuv

can be rewritten as

)]
AQ ! = Y + 3 p + )
A0y, = tr | F 3" A, 1Fup[A v A, ] AFu[AV,A:IJ
(3.2.6)
Now
1 = '
0ly = 8, t a0l
= e +_]; p)\_._j;_
67 | Fup Ot Ty Fon Zxruﬁ’vx
i _
t5g AT DA (3.2.7)

This is now gauge-invariant and the part of the
energy-momentum tensor for the gauge field is also
symmetric. However, the part of the energy-momentum
tensor for the spinof field is not symﬁetric. The
antisymmetric part of TFU§:A can now be cancelled using
the equations of motion by adding on a term that is

automatically conserved.
- '§+ ]
tr AFEU _A

P 1 : X
=0 *“fr[T“—jTFD- T Suvpdgdyecadp 5 DHL

-2 tr [DA-I‘Zuv) + AZqu . DX ] (3.2.8)

which makes use of the following identities for gamma

matrices in D dimensions ( D even )
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ghPrY - gVPH - L opPgHY
1 HVPA- A .. A
+W€ 172 D-3FD+1F>\ P)\ ...F}\
1 72 D-3
gVPTH - gHP DV o oMV P
1 HVPAS AL ee A
+ D-3 T € 1 2 D-3 FD+1FA I‘A lool—‘)\
.( ) 1 2 D-3
(3.2.9)

So the final form of the energy-momentum tensor becomes

0, = tr |[F F° 4+ g FF 4”(;15:))*

(3.2.10)
This is conserved using the equations of motion,
gauge-invariant and symmetric.
The Lagrangian (2.1.1) also has an invariance
under supersymmetry which gives rise via Noether's theorem
to a conserved spinor current.
For supersymmetry transformations

SL 5 ¥ (3.2.11)
6wa H

and so the current J" =ju+1\u is conserved,
auJ“= 0 | (3.2.12)

In the case in hand,

NI 3 L o)
T 0) &
T U
THoo. 3L S0 (3.2.13)
3(8,6) da

and
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SL = 3, Moo+ aau AM (3.2.14)

 From the Lagrangian (2.1.1), calculating (3.2.13)
‘gives

L. tr[iFquvA+%vavaFu)\ (3.2.15)

and upon applying a supersymmetry transformation to L

uo_ i Vo pu
A tr'[ P2 T A

Evpu>\1>\2...xD"3r r F oc.I‘)\
2 D-3

+
D+1 Al

F A

of e

1
vp (D-3)7

(3.2.16)

Combining these gives the conserved spinor

supersymmetry current as

g4 = tp iva-va TH A (3.2.17)

3.3 The N=1 Supercurrent flultiplel

For the N=1 model when D=4 for the Lagrangian (2.1.1),

“the energy-momentum tensor OUV(3.2.10) reads

- P41 pA _ i~ ]
O T W [ BTy e o F AAY(uﬁ)}‘

(3.3.1)
This is conserved, gauge- invariant and symmetric. As the
theory is a conformal one it can be adjusted by the °

addition of terms which vanish by the equations of motion

to give a traceless energy-momentum tensor

= PP+ 2
Ouv = ¥ B ¥y T e T




217.

The conserved spinor supersymmetry current from

(3.2.17) is

T =t [1F, VP yH (3.3.3)
This automatically contains only the spin 3 part

y+J =0 (3.3.4)

as is required for a superconformal theory [16] . In
~this case no improvement term is needed.
The Lagrangian also has a U(l) invariance under a

“chiral transformation of the spinors in the infinitesimal

form

63 = 1BYs ) (3.3.5)
This results in the conserved current

(5) _ [.— ]

I s tr 1>\YUY5>\ (3.3.6)

Under supersymmetry transformations these conserved

(5)

u
other to form the supercurrent multiplet. In this case

are transformed into each

currents euv ,Ju and j

no auxiliary quantities are necessary in order to

complete the'multiplet for the superconformal case.
(5) . 53
5.].1—] = 20LY5Ju

(5)

U

. .V i . i \Y p.(5)k
- + = . -
SJU (-21iv @UV 5 Y 3Y5J AEUVDAY 9" j ) a

:_.l e + o Y
69uv< 5 (o oupa Jv (xovp 9 Ju ) (3.3.7)

When this is extended to the non-superconformal

case, in addition to the above currents which now no
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longer satisfy Ouu =yed =20 -j(5) = 0, auxiliary
quantities become necessary in order to form a multiplet

- under supersymmetry.

3.4 The N=2 Supencurrent Mubtiplel

The energy-momentum tensor (3.2.10) in 6 dimensions

can be reduced to 4 dimensions to give

= Y +l Y -
Gpv tr FUQF v 4gu\)Fka

+2D, C* - D c* DPC + * #*

(3'4-1)
where the field definitions (2.3.4) , (2.3.5) and (2.3.10)
have been used.

This can be rewritten using the eQuations of motion

as

v P41 pA _i+i= da
ol, = tr [ F F° +7g F\F T X 9, AL

i =i =to p %
+ 58,0 Xg Oy DPryy +2D(,C*D 0
- D c*DPc+L(cxD DPc+cD DPox
gy (2D,C¥D7C+5(C*¥D DTC+CDDTC*) )
(3.4.2)
This energy-momentum tensor is not yet traceless.

However, a term

_ (AW aV _ UV P
8o, = (3% 98" -¢g 3,3 )tr (C*¥C)  (3.4.3)

which is automatically conserved can be added on to this
without altering P" (3.2.5).
] . ' ' .
Computing the trace of Ouv_+<xAOUv gives a zero

answer for a =-2/3, so the conserved, gauge-invariant,




29.

‘symmetric and traceless energy-momentum tensor is

= P41 gPr _lzig dap
O = {F Tyt 78 Foa 7% % 2v) e

i yictaso A
* 58y g Og D Ay +50(,0* D0

(cxd,D,C+0CD D, C*)-¢g (-%DOC*DDC

oﬂw uﬂw

(C%DQDQC+CDDDPWé)) (3.4.4)

- Similarly, reducing (3.2.17) from 6 dimensions to

4 dimensions gives the spinor supersymmetry current

TR . GVP B oM <61 _ x vV —uép i
J o tr 1va a de 2DvC 0,4 O KB_
-2, oo, 3] (3.4.5)

 The last term can be rewritten using the equations of

motion (2.3.19) to give

uit _ . VP B u <41 x VvV —pép .1
J = tr|1i va o %84 AT =2 DVC 0u8 O AB
x H —=VGB i
+C* 040 D AB (3.4.6)
This does not satisfy OSQJ qa - 0 as requires by

superconformal invariance. However, to (3.4.6) can be
added

pi _ uv B i
AJVS = 07 T, tr (C* AB) (3.4.7)

which is automatically conserved and leaves the generator

of supersymmetry transformations,

Qi ='J d3xJ0@ (3.4.8)

unchanged.

Computing Od Julfor J“i = Ju; 1-aAJu gives zero
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for a=-8/3, so giving the spinor supersymmetry current as
Coopi . VP B xdi _ M GHaB i
7y tr 1va o de ZD C¥ oY ad O 8
% M GVaB 8 uv B M.
tC¥ 0y O D AB 30 D, (C Ag )

(3.4.9)
The Lagrangian (2.3.17) also has U(1l) and SU(2)
invariances which lead to conserved currents via Noether's
theorem.‘ The U(1l) invariance is under a simultaneous
chiral transformation of Ai and phase transformation of

C which reads in infinitesimal form

8C = 1iaC

6)\; %a x; (3.4.10)

This gives rise to the conserved current

j(fl) = -tr (210* ‘D"c+2 41 od"‘Aa) (3.4.11)

The SU(2) transformations in infinitesimal form are

i, iy
Ay iegy 1, j Ay (3.4.12)

where T, are the Pauli matrices (2.3.9).
This invariance gives rise to the conserved current

T = g (T, T8 ks 5Ky

ui &i "u a 2 °1i"&k "u o (3.4.13)

Under supersymmetry transformations these conserved

currents do not form a closed multiplet. The additional

auxiliary quantities

D tr (C*C )

1

i o i
X1g tr (C Aa)
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i B

A LS LD (3.4.14)

v a
are required to form a multiplet under supersymmetry with
the following transformations under supersymmetry

=41 vl i

-£

0Dy =-Xye1® i X1a

_ i _ Bei_1ow .(5)g0i 1. 1gu 74j

5X10 = t1a &3 2%ed 1 & "3 Tus Oaa©
+1i aaa Dy E

B _1i 'Bu—di = =GB _ui
5t =5 (J 3 - €41 %y Ja).

1& ul ad
1(% dBaqué_aquf oha T )
aa-.('ﬁ’ SOEREE LVEMEE TEERAN
% E “uv Ba —Bl
67,0 =13, Fel iy T vged (1o pel- 1T, TF)
* % 1 F’-Oit OuvaB 9 Xi%.'%i N X141 OuvaB g%
312" % 143 9, égé - 51Ty, ouvdé'avi:%j
GJui ='210\)0LdtE V'A(a\)tl ° UVBYv % uvaBa t’lBY)‘E
+%(o“"mB 00y - 3050 “\’Bd)g"‘J(-ala 3(5)+2a TJ )
soMV -% ‘i‘(o“pas 3, JV%+ o\’paB apJ“é')
+ %Edi (EUQG‘é api\’éi + Evpd‘é ap?“éi ) (3.4.15)
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3.5 The N=4 Supercurrnent Mulbtiplet

Similarly to the above cases, one can obtain a
conser?ed, gauge-invariant, symmetric and traceless
energy-momentum tensor by reducing (3.2.10) from 10 to
4 dimensions, adding on terms that are automatically
conserved and then using the equations of motion to

rewrite it. The answer is

. = o p +£ p>\ __i__
O = M [P Fut 78w Fon F AXiY(uﬁv
i - . i 2 ij, 1 ij
tF 8y Xy Y DRy 32)¢ . D0 3¢>1D D,
1 pPeid _ 1 a0 i
(3.5.1)

Similarly, the spinor supersymmetry current is
obtained by reducing (3.2.17) from 10 to 4 dimensions,
adding on improvement terms that are automatically

conserved and then using the equations of motion to

" rewrite it.

JHL = ¢p iF\)po\)p “RX t21D,¢ ‘]Y Y“L)“('j

S1 et Yy LxJ+%1o“VDv(¢ijL§Zj)
(3.5.2)
This is conserved using the equations of motion
and satisfied vV 7t= o,
The Lagrangian (2.4.8) also has an SU(4) invariance
which gives rise to the conserved currents
Tuij = tr X ia Rx '%5']ka RX —i 5*11 kj

(3.5.3)
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For this theory there is however no U(1l) invariance

of the Lagrangian.
Again auxiliary quantities are required to form a

multiplet under supersymmetry, these being
iy 1y L sligidy mn
e R AUVEE i) e M

ij  _ 1 ijm - .
XYy T3E tr (0 IXy + 0y DX )

t‘i?]) = 7 (10, (F“\)+%r_“\)p>‘Fp>\ ) +%; o L¥; )

ey; = tr (X LRy -505, 6™, 0.0 )

Ay =tr(Fuvo“vL§i+21¢ij[¢jk,L)'Zk:] )

c = tr(%Fw(F“"'-%e“"p*FpA)u%[ij,¢>ijj
300550 0 d0 0N, o) (3.5.4)

Under supersymmetry transformations these quantities

together with the conserved currents transform into each

other as
ddl']kz =%1EE{X1‘]Q -1 dl[_iamxm‘ﬂﬂ +h.c
oxH, =-2ietMo. 18 -%ia[li{—o tJ]lL&'Q
+%i tidm g | Ld -21Y°Tkl—lRa‘]]
-%'i 6[ly . Tg'j]RaQ' 33dlj.k2 R;x'q’
delJ =—E(1>\j) 3€k2m(1~k5x2mj)
étsj]) —-21€ljkl~kypoquﬁ+a OUVAJ—I
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(3.5.5)
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CHAPTER &  SUPERSYMMETRIC GAUGE THEORIES IN. SUPERSPACE

The idea of defining supersymmetric theories over
superspace instead of ordinary space-time, and the great
simplification of the theory that results, was originated
by [14].. This was qpplied to the unextended supersymmetric
gauge theory by [5] . [17] used differential geometry in
Spperspace to reach a better understanding of supersymmetric
gauge theories in superspace, and using these techniques
the of f-shell N=2 supersymmetric gauge theory was first
»derived}in superspace by [ 187].

The extension of these methods to find the off-shell
N=4 supersymmetric gauge theory was attempted by [20 ,21]
but the constraints considered there were found to put
the theory on-shell automatically.

In this chapter differential geometry in superspace
will be reviewed and the resulting independent Bianchi
identities will be written down EZOJ. Constraints will
then.be presented for the N=1 and N=2 cases thaf give
rise to the off-shell N=1 and N=2 supersymmeﬁric gauge
theories,. For the N=4 case the relaxation of the constraints
of [20, 21] will be considered and the resulting theories

studied.

4.1 .DLZZeaentiaé Geomelnry in Supenspace

- Superspace consists of ordinary space-time with

coordinates x" and the 4N anticommuting coordinates eg ’§d3
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where a , & are 2 component spinor indices and
i,j=1l,.+...,N are SU(N) indices.
The algebra of N-extended supersymmetry ( with no

central charges ) is

(ol 0f} = {3y, » T, =Cp, 2, 0=[0} 2 T[Ty, » 2, Jx0

N P
QB 1= 2650447, (4.1.1)

This is represented in superspace by the differential

- operators
P =19
H H
i _ 3 . U =61
i .
Tes =--2,. +16%0", 3 (4.1.2)
&i 8§d1 i a& u t

A superfield transforms under supersymmetry

transformations as
A B a~ i, = =4i, ,
50 = (e5Ql+ T, T 0 (4.1.3)
The 'covariant' spinor derivatives in superspace

must anticommute with the supersymmetry generators

{03 8t =105+ Qyy} = {Bgy » @} = {By; +Tp ) = 0

(4.1.4)
They are représented by

i - . =61
pr =& 4+ 10", B

@ ae? ad u

i

5 - __0 . a0 U '
Dgi =-~=q1 - 10850443, (4.1.5)
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and so satisfy

i = B A T :
{DOL,D&J.} = '2153'%& 3, (4.1.6)

Under a gauge transformation a covariant superfield
transforms as
o » othg e th (4.1.7)
where the gauge parameter A is Lie algebra valued

A=T*2%(x,0,9) (4.1.8)

ATa being the generators of the gauge group.
As usual, gauge potentials Au',A; ’Zdi are introduced

which transform under gauge transformations as

A > e;A A e-iA -i.elA ] e-iA

H H H

PERRNRINE VN0 B U WS VR e

a a a

zdi > elAZdi e_l/\-iel/\ﬁd‘i e-lA (4.1.9)

These transformations are chosen so that, introducing the
. . . i
gauge covariant derivatives Z)u » D ’gdi
.Du¢ = 3,0 ..+i['4u’¢j
i i . i
D ¢ =D ¢ +1[Aa,¢:|

D

g1® = Dgy¢ +il Ay, 0] - (4.1.10)
Then under a gauge transformation

i A il
h) 14 p
ucb > e ud) e

D§¢ > elA D;¢ e-lA

Dy.b > ei"Zfdid) e~1h (4.1.11)
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The graded commutator of two gauge covariant

derivatives give field strengths in the usual fashion

oo sar

{Dgs D5 b =17g54;

{Dg,vdj} -ﬁidj-ziogdai.au

[Du,Dij =1Fu§

EDU’Daij =i 41

Co,,0,0 =ifF, (4.1.12)

These are again Lie algebra valued superfields

73% =D§A%+D£A§+i{4§,4g}

Taigy = Dai Tyt Dy Aas t1{Fgy » A5 1

Thyy = DiT # Ty ke i {4l Ty F 2ol ela
Fui =au/zi-ni,4u+i[,4u,4§j

Frar = 9% ~Dgs A til A, » Ay

Fuy =0 A -0 A HilA L AT (4.1.13)

They are gauge covariant superfields and transform under
gauge transformations according to (4.1.7).
By-means of generalized Jacobi identities, the

folloﬁing Bianchi identities may be obtained
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U.jk j rk 2K 7] . M o jr k RN S
leBYJrDB FYdLiJr Ydei+2-lOBdL6 /uy+210yd6ifu8 0
pir, 4T, Fi w7, Fi, i oM. 517 S
Do a5yt 285 ot T2k TaB; TR 1 00p 85 Fuqi 21 0gy Sy Flpy = O
p i _piy J _piri.
paB o uB B ua 0
D Fo.»o.-D,.F s.-Ds.F =
Pulaipy a1 ugy Y85 Tuas T O
D Fiy _piF . Dy Fl_ooioV,elF -
wiaBy " Y "uBs TV85 Tue T2 %0 uv = O
p Fiop siipiy -
U ova Vo oua a uv
Du dei - D\)fu&iJrvdi Tu\) =0
F_+D F_+D =
Du Fvp T 9 Tou oruv 0 (4.1.14)
However, not all of these Bianchi identities are independent
and in [20:] the independent identities are obtained for
the N=1, 2 and 4 theories.
4.2 The N=1 SuneaAummetaip Gauge Theory in_Superspace
For the N=1 theory, the independent Bianchi identities
are
D D + 0 =
o BY+ BTYOL v FaB 0
D, Fa, +Da 7, +D, Fos=0
P Tay * D8 7ya * Oy Tas
. B, — \B AN —88
. = + + .
81fua+21(ouo ) va (Uou) faB (OUD) Foa Daou /‘BB
. C T e '—\) é - ﬁ_ B" + - é"’ .+ _éB" .
817Ud+21f\)8(0 ou) 8 ( Ou) fB& (OUD) de 'ﬁdcu fBB
Du fOLB-DOquB__DBTUOL:O
® - T ._H.’- :O
DurdB deuB B8 e




To simplify t

are imposed.
for coupling

and (4.2.2b)

40,

E%Q(DY—J Faé'DaF\i_é'vérv_a)
TR RN S T (4.2.1)
he theory the constraints
Fag = Fap = O (4.2.2a)
Faé =0 (4.2.2Db)

(4L.2.2a) arise as integrability conditions
chiral matter superfields to the theory [[19]|

is a conventional constraint that allows

one to solve for A in terms of AT and 4,.
. : u o &i

o+-:[—)o

A gt D3

u

=%6‘ﬁ0‘(pa}2{ Ayt i{4A, ,Wé}) (4.2.3)

The Bianchi identities now read

. . vy B _
817ua+21(0uo )a f\)B-O
. NN
83_Tud+-23_fv8( o 0u ) " =1 0
DafuB*'DBfua =0
vd’ué*ﬁvérud = 0
~ éa L ] [ ]
81 UV_OD’ (DGFQB+HBFU](X)
—Uéa o + .« 7 - R
o (DOL,LuB 758 fua) 0 (4L.2.4)
The first two of these identities have the solution
. 1 LB
Pua ~ "gouaBU
Fooo=-%0 . 0P (4.2.5)
ud 8 “uRéd M

The remaining identities now take the form
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p 7P =0 =7, 4P

a &

D W+D, 7% =0

a &
_i o0 B - &, R

Fu\) --6(D Ou\)a &/B-ﬂd OU\) BU ) (4.2.6)
Using the Bianchi identities, the theory can now be

written completely in terms of the superfields Ua, Daw“ R

F*V and covariant space-time derivatives of these

spperfields.

B_1lBpy ,Y_gs MY B
D&/—zéaD&/ 8io aruv

@ Y

B_ ., .U ]
| DaDB&/ -21oadDUZ¢7

B_,. U Q
_ _1 ’ 4]
Taking
_ 1 pv .1 0 & 1 a S
L = tr[-‘zi"u\)?’ -5 U Oy D, T 4 535 D, W D
(4L.2.8)
one finds that DaL is a total derivative
_ 1 Luv & i _uvpi, ]
DL = au tr ['1'67 ovadU -35 € ’L\)p omaU
o, i B u 6 | |
tozp Do U 04 U ] (4.2.9)

So taking the 6 =6 =0 component of (4L.2.8) gives a
supersymmetric Lagrangian as

% £|e=5=0" Lo £|6-7-0 (4.2.10)

With the field definitions
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uv _ uv
P =m0 = F
1 o _
55 D U |e=6=0‘ D (4.2.11)
this gives the Lagrangian
_ 1 pv 1.0 u =, 1.2
L= tr|-7F FV -5 oadﬁ’ux +5D (L.2.12)

However, in superspace one wishes a local Lagrangian
deﬁsity, at least over some subspace of superspace [34] .
For this theory, the Lagrangian can be written as an integral
over the chiral subspace of- superspace of the chiral

superfield tr ( W W, )

1 Jd/*xdze tr (U%0)

'sz'xDaDa tr (waB)

o[ a4 o, B 8 o
2Jd xtr (D D W &/B+Da&/ D &/B)

4 1 pv i e u &
f512Jd X tr [-err - 155" 0pe 0, T

"

1 a B ]
+_5ﬁaaw DBw (4.2.13)

using (4.2.7) above.

The constraints (4.2.2a) have the solution

Aa =~-ie Da e

A, =-ie'Dye” C (4.2.14)

where U, V are arbitary superfields. Under gauge

transformations these transform as

e e eV o1k (4.2.15a)

e U 5 g T Uit (4.2.15b)
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where. S, T are chiral superfields
T (4.2.16)
Under the gauge transformations (4.2.15) the gauge

potentials transform in the usual fashion (4.1.9).

~To further restrict the theory the gauge potentials

Au ’Aa ’zd are restricted to be real up to gauge
transformations
R +
(AT)d=—ieV T)_de-v
_ X -X X= -X
= e ‘ﬁd e " -1ie"Dye
_ . X U= -U -X X= -X
= -ie e Dd e e ~-ie Dd e
= -ie eUﬁd( —Ue_x)
| t t
‘ + _ . =U U
(A )a = -jie D,e
t + t t
- & 4 e-X -j.eX D e-X
a
t t
= -1 eV (') (4.2.17)

Now, using (4.2.3) and (4.2.17), the condition that Au
is real up to a gauge transformation is that X+==X
.and so

AZ = X4 e ¥-iefp ek (4.2.18)

where

eV e-U=eX=e_U oV (4.2.19)

Now consider the transformation of the two.

expressions (4.2.19) using (4.2.15)
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t ST S .
-U v iA -U -T eS V -ih (4.2.20)

leads one to the conclusion e>e ' = 1 and so S=T.

One can further restrict the theory by making the
gauge choice U=0. This has the restricted gauge
invariance from (4.2.15b) of T=-iA. This means that
V transforms as:

oV » o1AV o-1h (4.2.21)

and A satisfies

ﬁ& A =0 (4.2.22)
In this gauge (4.2.19) gives VI = V.
This gauge choice is called the chiral representation

of the theory. In this gauge the gauge potentials are

I v
Aa = -ie Dae
'ﬂd =0
_l-fac, -V, V :
A = 7o, DB (e”™"D e ) (4.2.23)

]
=
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_ _zaudae VD A'I'eV
4 "
= eVp%p (D%e’ eV ) e’
= e Vwt Y | (4.2.24)
ﬁherg
wd oo (wh)e (4.2.25)

The transformation (4.2.21) can be written as

1. - 1 —
sV -§1LV(A+A+coth§LV(A-A))‘

1 (W-0)-21[V, T+ +0(v?)(4.2.26)

where

L. X=[V,X] (4.2.27)

The superfield V can be expanded as

_ . _ 1,2, 1427 _ a g =0
V=0+i8"v, 1ew+2eH 506" H-26"0_,6 Au
_ 3 FR a0 i u 2 <6 , i-da . p
i98°6 (2>\ +20da Wytie 6, (22 t50,9 v, )
1,252 1 :
+2628% (20 -%[Jc) (4.2.28)
and the gauge parameter superfield A as
M= ohg (y, )+ 0%a, (y, ) #5050, (y,) (4.2.29)
where
yosxM e ie%a!, B¢  (4.2.30)

Under the gauge transformation (4.2.26) the component

fields as defined by (4.2.28) transform as

8¢ =i (Ry=-hy)+0(V)

1

Sy .

. -A&+0(V,)
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8Ty = -y + 0 (V)

6H =—A2+O(V)

§H = -T,+0 (V)

§A = -3 (At )-Era , A+ ] +0(V?)

u 2 H 0O 0 2-"u* 0 0
1 ~ 2

5xq= -51 Ay » Ag+ gt 0 (V7))

< 1. = - |

6Ty = -1 [ X, Mg+ T+ 0 (V°)

60 = -Li[D, A +T, ] +0(V?) (4.2.31)
7LD Rg ¥ Ay

So one can make a gauge transformation to the Wess-Zumino
gauge where C =1, =P, =H =H=0. This is preserved by

gaugg transformations with A=A, 1e.AO= AO’ Aa==Aa==A2 A2- 0.
So in this gauge V takes the form

v=-20%0", 8% ~218%6% A, +210°0, T +6°5°D
(4.2.32)

This gauge choice is not preserved by a supersymmetry
transformation, but it can be restored if.a compensating
gauge transformation is applied after the supersymmetry
tranéforﬁation. The resulting transformation is the
covariant supersymmetry transformation for the fields in
(4.2.32).

Under a supersymmetry transformation V transforms as

8V =(g°‘qa+zda“")v (4.2.33)

This gives rise to components that depend only upon g or 6.

The terms that depend only upon 9 are

(£%0,+ 54 T0) V|5-0 (4.2.34)
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These can be removed by a gauge transformation with

- parameter

iE(x)=- (EaQa-+§d§d ) V]g=0

(4.2.35)

So the covariant supersymmetry transformation is

SV = (EQ+EQ)V+i(E(y_)-E(y,))

ALV, E(y )4y, )] . (4.2.36)
For the components defined in (4.2.32) this gives
' u . a u =6 a y =G
SAM = 1 (€705, X - A 0L E )

. uv B .
_ﬁla _FU\)O o £B+1D€a

_ o _u ~@& o u b
D = - (& oadDux +Du>‘ Ty & ) (4.2.37)
The expansion of W® can be obtained directly from
(4.2.24). However, it is more useful to obtain it using

the expressions (4.2.7) and also the equations

oY - Lo Uy =4y
DaDBU = 21€OLBD l:ldo]J

p 0.0 wl=o0 (4.2.38)

a By
‘which are simply derived from them.

In the gauge U =0 one has
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v )eV

e
(o]
1l

Dy Dg Y = e py Dg (WY e

S2iey, DdeEde (4.2.39)

"When V is in the Wess-Zumino gauge (4.2.32) one has,

taking the 8 =0 =0 components and using the field definitions

(4.2.11)
| W |g-g=0 = 81N
3 W g0 = - 8 SS'D SRR
3 96 W [6<5-0 = - 16€,50" Xy 50" (4.2.40)

which gives the expansion of w* as

2 = =4
y+) + < DM )\d(y+) OIJ

Lu®=12%y,) -D(y,) 0% -10° "V 0 R

. (4.2.41)
"Finally, from (4.2.13) it is easy to derive the equations

of motion in superspace [ 35 ]

I =Jd’+xd29tr(w°‘wa) '

=Jd4x 4?0 a5 tr (e’ D® evwa) (4.2.42)

Taking the variation of this gives

0=6I=2 J a%x 426 d*8 tr (se VD% eV W+ e~V p® GeVWa )

-2 J dbx a0 a®B tr (6e' eV D (VU eV ))
(4.2.43)
This implies the equations of motion are
p* (' eV ) =0 (4.2.44)
Note that (4.2.42) is real, as can be shown using the

Bianchi identity (4.2.6b) which reads in the gauge U =0
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D% (e'w eV )-e' D, ( eVt V) eV - o  (4.2.45)

4.3 7ﬁe Nz? Supensymmetaric Gauge Theory in Superspace

For the N=2 theory, the independent Bianchi identities

are [ 207]

173k, pi pki, pkpij _
D Fis+ D FIl+ DUFA = 0

Tas Fagvet P85 Fywes * Py Taigy = O
léifui+21 ( oua"A)mB Fvé
124 F g t23F &, (Bvcnl)éd
-(7,5,)°7 Bal’r(,guﬂj)é7diéj+ﬂaiBEBFgéj

(e 0y )7 Pas 7+ 9% Py + 23 s |

=15 (e, )7 (D [ a8 "’ék) + 0$) 7as * 2y Fggm ]
(oyye )89 [Di a3 * D83 Tark * Dbk Mo ]

=36 (5,07 (0] Fag s+ The Fann) * Ty o)
1617, - -6[5"‘(0@ Fags - %6 Flps - Pas e

(4.3.1)

.The constraints used to restrict the theory are [:18:]

"'(ij) - = F .
t aB =0 = /‘d(lBJ) (4.3.23.)
i, = 0 (4.3.2b)
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The first two constraints (4.3.2a) and the traceless
part of (4.3.2b) arise as integrability conditions for
coupling the theory to N=2 matter superfields whilst the
remaining part of (4.3.2b) is the coﬁventional constraint

that allows one to solve for Au in terms of A; and Zdi

_ i-ba i = i, .0 41 .
A =30, (Daﬂdi+D&iAa+1{Aa,ﬂdi}) (4L.3.3)
The remaining Bianchi identities can now be written down

in terms of the superfields # , ¥ defined by

ij ij
F(Y.B = 1€aBg W
FaiB; = 1€aB gijw . (4.3.4)
They. are
plw=-0-7,.w
“a i
i _ 1 &i
Fua —-ZOUQ&H W
_ 1 o
Fudi = "7 %as Dlw
. i, aa B i — &, =Bi
7uv = - (Diouva DBM'FHdiouv BD 7 )
p*1 i)y - pligti)y ' (4.3.5)

Using these Bianchi identities, the theory can be
written completely in terms of the superfields ¥ ,D;a/,
Da(l'Dg)U ’Fuv and covariant space-time derivatives of

these'superfields
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ipB(j pk . i(] &k k
pt 0Pl w=y1gt ol 0 2 T2t T, 2% 0]

i 1 di
Daruv —Z [OL(SL \)—]U U (4.3-6)

Using these, one finds that DéL is a total derivative
where
L=tr|-27 Vi ip, 7% FVYoiusln WM
| ARTAY 327617 T a” 87

1 o B(iAj) 1 &i
10240(1%3)“/0 Del’j*a”{ﬂaiv'zj 7}

1 a i 1
tgg 0050, D 0} - 5g CUWCT 0]

(4.3.7)
So again, the 6 =0 =0 component of this equation
gives'a supersymmetfic Lagrangian as

i i
Q £]g=8=0 = Pa £]0=8-0 (4.3.8)

With the field definitions

Sl

D
H
D
1
o
|
|
[N
(@]
*x

&~ =

e Ll s L S |
=
QK —
@
[
|
1]
o
|
=
(e}

¥+
Q

|
1

= F . (4.3.9)

this gives the Lagrangian

L= tr| -7 FV+ix ‘d“ﬁ“x +20 0% 2YC + Dy pid
FARR TRV 2 741 Tn 1j

. -~ <Gi . a i
-1 0{ Xy » A +acx{a{, A } - 2[fo*, cJ[c*, C]

(4.3.10)
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This is the Lagrangian given in (2.3.17) above.
The Lagrangian can be written as an integral over
‘the chiral subspace of superspace of the chiral superfield

| tr~(&/le/)
Jd‘*xd‘*etr(&/&/)

@ jnBnl
J xDiDaDjD

Btr((t/w)

4 o i AB Hi _p%pd piy pB ani Bl
2Jd Xtr(DiDaDjDB&/U DiDOL B&/Dj&/+DiDaDjUDBU

i B oty 0%0B ptwpdwyn®0Buw ot pdw
o j B i i"j B Ta i7j TaB

s %0t wpd DBy %0l woP ol
i B o ia” 7§78

A A 1 uv |, i —Ga € iy
—768Jd x tr [-err 3227(& vo g 5

1 u 1 a B(inj)
+§DUUD W - 10240( D .)&/D D W

1 &3 1 o i
+a&/{27aiz7,27 w}+BZD{DiM’DaU}

___1.8.[— W w, ¥ ] | (4.3.11)
The constraints (4.3.2a) have the solution
i _ i -U,is= U ., Ui U
Aoz =5e GaWe -ie Due
_ i -V vV . V= Vv
where .
i _ _

The solutions (4.3.12) then give # , ¥ as

U = e—UWeU

W=e"We ‘ (4.3.14)
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If one chooses the gauge parameter to be A instead of
A, so that
. -3
6 > ethope? (4.3.15)
- for covariant superfields, then the superfields U,V

transform under gauge transformations according to

U T

] -ik
e > e e e

AN e—iﬂ (4.3.16)

Under a gauge transformation W and W transform as

W > eSWe—S
t_ ot |
W el Wel (4.3.17)
where
Dy;S=0 =Dl (4.3.18)

Again, as in the case of unextended supersymmetry,
the theory is restricted by the condition that the gauge
potentials Au ,A; ’Zdi are restricted to be real up to

gauge transformations

ot t t t
('41- )di = --%eU B‘diw Ul ﬁdi e U
= exzdi e"X-ieXﬁai e~ X
= -%exe-vgdiWe e T -1ie e-vl_jdi eve-x)
- Lt + t t
(7{1- ); = %ev oiweV —ieY D; eV
t t b ot
X i =X . X i =X
= e Aa -ie Da e
C oot o t t t
=—§—ex -UG;WeU 'k e-UDl(eUe-X )

(4.3.19)
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The condition .that Au is real up to a gauge
transformation is again that X+ =X. This then gives

t_ X, X . X. =X
Au = e Aue ie aue (4.3.20)

Also, using X! =X and (4.3.19), one finds that

t t
¥ V= et = oY U (4.3.21)

These again lead one to the'expression
S =T (4.3.22)

As in the unextended case, the gauge choice U=0-
‘can be made. This restricts the gauge group to T=1iAh.
This gives the gauge transformations of the fields as

5>

V in vV _-ik
e e e e

W - 1I\we-il\
W o> ethye it (4.3.23)
where
D;K=o (4+3.24)
In this gauge V==V~r and the gauge potentials are
i iic |
Aa = ifhxw
N e V . V= .V
ndi = -5e GdiWe -ie Ddie (4.3.25)
From-these one has
v =W
W=0ec"wel (4+3.26)

.The gauge transformation (4.3.23a) for V means that

a gauge transformation to the Wess-Zumino gauge can be
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performed so that its expansion in 6 , ® has no terms where

only 6's or 8's occur.

- However, unlike the unextended case, the superfield

V is not unconstrained [ 36 ]. Fronm Tiéj 0 the following

constraint arises

0z +lial) vigat 2k} <0 (43.27)
In the gauge U =0 thié reads
et oM B) ) e pl (Ledd W)
+i{deliw, ~1eVswel - 1e7VD)) &V} - 0(4.3.28)

For V in:the Wess-Zumino gauge, this reads at the §=9=0

levei as
2230 V|20 = 0 (4-3.29)
"It is now easy to obﬁain the component expansion of
W when V is in a Wess-Zuﬁino gauge in the same way as
the components of Wa were obtained in the unextended case.
Taking the 6 =6 =0 components of (4.3.26b) and using
(4.3.9) gives
Wg=g=0 =41C (4.+3.30)

Using (4.3.25) one has

Py-ze LW, e we' T (4.3.31)

|

i, _4Ai -V
Daw'"Du( e We
Taking 6 =6 = 0 components and using (4.3.9) gives
i _ .41
aawle;é:o"‘*“a (4.3.32)
Again, using (4.3.25) and (4.3.6a)

iy 21 y(i,3) . i o mv
DOLDBM ZEQBD ‘DY W+ 4ig (o E)GB.FU\)
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a 2
+ 26l 0d[W, LW, e e ] (4.3.33)

Taking 6 =8 = 0 components and using (4.3.9) gives

iaj _ _ g ij ij uv
aaan|e=9=O.~8_1saBD thigd (o e)gF
(4+43.34)
Using (4.3.6) and (4.3.25)
iaiaoky s :L(J oV 4k) 7 _ . _jk &i
R L R N e 7-iglke o (g O0ya 2, 7T
rgtle, [0, 0507
_nilnd nk -V v 1l jk T ol v v
=D DBDY(e We -58 EBY[W,Da(e We' )]
1l ik~ = j -V V
Ere gaY[w,D%( We' )]
1 T k -V v
'EglJEaB[w’Dy(e We ):]
+ higher order terms in © (4.3.35)

Taking © =6 =0 components and using (4.3.9) gives

=6&i

j i(j oM k) jk
aaaw'eeo AEBg adeA thett ey g Y)dax

-4gt0 egy L0 AT+ 4 g3 ea (gl 0" *i) ]

(4.3.36)
Lastly,'using (4.3.9) and (4.3.25)
i kK%, _, ij k& i(k 2)j
Dy Dy DS DU = (g e ey )8~ Coptya € € )

W _lp= dm
><(2DUD W Z{pdmw,n 7})
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1 i jk
-3cpcys€ & L¥,LT, 0]

1 jk e(i L)
+48(138ng [U,D D€ &/j

. 1) k&
t2igidg (Ouve)aBeYéEU,T

]

v

k2 ( O,U\)

o gl
2t ey o[ 7,

_ripinkn® -V Vy 1 kR - i3, V.V
DaDBDYDé(e We')-5g EYGEW,DaDé(e We' )]
1 3% = ik, -
t5g7 g LW, DEDE (eVue' )]

-%gl'q' EaGEW’DJ Dk(e-VW e’ ) ]

J
B8
1 ij = nknl o -V, V
S8 aas[w,DYD(S(e We )]

~+

]
R LR S | ST S [
oq
'_J
e
oq
[}
b
™M
[=]
<
™M
™w
O
1
=|
T
=|
@
]
<
=
(0]
<
1
_1

+ higher order terms in (4.3.37)
i,jaka2 L i(k )3 ij k&
% %3 0y s W]e3=0" (Cagtys 8 & T @B £y(yE4)p)
><(siauD”c*-A{-de,’xdm}-8i[C*,[c*,c]] )
(4.3.38)

Taking (4.3.30) , (4.3.32) , (4.3.34) , (4.3.36) and (4.3.38)

together gives
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1 . AN | . A0 ij
ZW(y’r) =iC(y,)-16; Ayly,) -i 6, eaj D™ (y,)

i.,0 puv B L1 o u =41
2059 o OgFuury) - 2xg (oge 0 M (yy)

a B Tuv u

+[___C_*(y+) ’ Ai()ﬁ.)j ) +u( AiDuDu C*(y+) :

-2 { Ty (r) 5 Y - 4204, L [0% () 4 0,00 T)

(4.3.39)
Here, the products of 8's are [ 37 ]
xi = Biu
_ a0=1 1 2,2
u = ei=l 626]_92
and so
— 3
X - il
4i aedl
u =-§ll§12§21§22 (4.3.40)

‘This gives
1 R L 1 uv iy —=ta<ey,i u
gy b (W )Iu—tr(-AFqu +5 %44 9, ‘D’xa+2auc*ac
1§, s asf @ iy L s af —6i
+DijD +1c{xi,xa} 1c{xdi,x }

=2[cx,c][c*,c]) (4.3.41)
The superfield W transforms under supersymmetry transformations
as,

ewly,) = (e Sy v 21 0f 0 g2 )uly,) (4.3.42)

However, the supersymmetry transformations destroy
the Wess-Zumino gauge for V, as in the unextended case.
Similarly to before, the transformation law (4.3.42) has

to be modified by a gauge transformation in order to give
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the covariant supersymmetry transformations.

When this is done one finds

5 ='A§£§

§>\§ =2Dijgmj M Felr - 2105(&2‘“0“0-21[0*
SFHY = 1 (gl or"aﬂ“"l D'_“Ai ‘ZI g4

spid - _%(ga(l de )I\dJ)JrD }\(1(1 u gd.]))

ca (e Gex ) 3-2l e, 3M) T (1a3043)

These transformation laws can alsoc be obtained in their

exact form from

a a oi 4i
= (850484307 ) 0gop- (4.3.44)

“when ¢ is the 6=6=0 component of the-superfieids W,
pry, v, peld DJ)w
a .

For the abellan theory the constraints on W read

i__ o=
D W =0=Dy W
. I
D“lngw = DED I : (4.3.45)

These can be solved in terms of a real superfield

v, symmetric in its SU(2) indices [387]

b p%ipd '
W D DaVlJ (4e3.46)
where
Du = 1 (4.3.47)

The superfield Vij has the gauge invariance

» C]

i
ga
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_ ak =Gk —

where X is totally.symmetric in ijk . This gauge

aijk
invariance can be used to transform V;J to the form

vH o= g suudt(x) - 250y 0 + 21030 ()
-3l or 3 () -%3 6% 0 ¢ (x) +3uTy 5% c*(x)
= - AquDij(y+) -%igxa(i )\g)(er) +%iu§(éia3)(y+)

. —& . . .
_%X(X(l O(‘iax J) Au(er) _%P—eal egc(y+)

+3uB T on(y,) (4.3.49)

It is now easy to see that using

Dy. = - —,.
dl a—e—dl
pt =3 4ai4¢ 382 (4.3.50)
o ad u
a6 3y;
and so
a N s & | v, 5 =t 2
Dil)mj—aiamj 216_(3‘(10u aaj)(ay+) AGdiej(aer)
(4.3.51)

that W as calculated from (4.3.46) is the same as given

in (4.3.39).

It is possible to extend the unconstrained formulation
"to the non-abelian case as is done by [ 397, but the
solution in ordinary superspace is not an explicit one

and has no geometrical interpretation. However, it is
possible to formulate the theory inAN=2 harmonic superspace,

and there the unconstrained formulation and its geometric

interpretation are very simple [ 407].
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44 The N=4 Supensymmetric Gauge Theoary in Supenspace

For the N=4 theory, the independent Bianchi identities

are [ 20]

piFiky pl gkijpk £1j _
Coa By BYozYocB 0

Do Fagic* P8y Fyrai * 3 Taipy = O

i . B
2017ua+21(0u0 ) 7\)8

- (75, )8713+(o pd )7l 40l 538 7i,

&j uBRj

205_7uai+-2j_7véi (BV(ﬂJ)Bd

=(Dj8u)87gdi+(3uﬂj)é'TaiéJ‘LEal—EB g1y
(equ‘v)BY[Dd T%IY{"LDkF%d + 03 Flgd ]

:%a(i(sow)m[ 82 ”’ék) DIY{) Jém“‘)zrlégm]
<6uv € )éi[ Di Fasvx +Déj atvk Hjék ay] ]

=%6(3 (EU\)E )é {Da Fggyk) éSL F&Yk)+nék) Fi‘YQJ
eBY[Udi Fhy 0y Fles - 03 7§di]

-3 613 (7, 75 4 08 eas - o
1 2} ka??’gj Far T

=%5§€éy["’§ Fsuvl! Tn Fagi Do) Pain |

. - _éa . -~ i
321/'11\) = OEJ \)_] G-Bl a \')—IBl UBif\_)Ja (4’4'1)
' The same constraints as in the N=2 theory (4.3.2) can

now be imposed. However it should be noted that as there
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are no matter multiplets to couple the gauge theory to,
they are not necessary as integrability conditions.

(4.3.2) have the solution

ij _ . ij ij _ _7ii
F(IB = lEOLBU , W = T
fdiéj = i'Edéwij R Uij = - Uji (4ed.2)

The Bianchi identities can now be written down in terms

of the superfields il , W.. as

ij

pligilk. o - Ty(1 V)i

e =%§owav§‘ml

FlLai =—11§Ou.adz D% Yig

Daimk=%él‘—£vaz 7*H

i =9% ( 0% owas D% U5 -Tys Bw"‘é v? 7t ) (44.3)
The additional constraint

A C (hehad)

can be imposed, this restricting the multiplet to be CPT

self conjugate.
Using the Bianchi identities, the theory can now be

written completely in terms of the superfields Uij’ Dgwji,

Fuv and covariant space-time derivatives of these superfields

ia%, S R 1Y s _3 i%
DaDBij-lzlaj(o e)anW 2ea8[v ,a/“:]

i . Q'j— . 9 uo ij
DQDBQ,U —-610aBDUU

ig0v_ 1 [oav]H¢7ii
D F =55 0.3 0D ZIjZJ
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i _]. 1
Daw.]k—-B_ D R,k_l
i jk____:_l__ ijkf ;m
DU =5em D Uy (4.4.5)

As in the previous cases, it is again possible to.

~write down an L for which.DlL is a total derivative

1. uv i Jk—dB HAk
-7Tuw - 788 043 7 Vg uy

1 ik 1 ki 8L
BZDua}jkDU 75l 5 Dy T TR0 }

OJ

1 )
1o Wy 0 0y, JOTH L T ] (4.4.6)

So, the 8 =8 =0 component of this equation gives a
supersymmetric Lagrangian.

" With the field definitions

Fliv = 7uv|6=§=0
T = 157437 em-0
Aai T TT2 Dg Uj1'e=e=o
¢ij =71+_w1.]|6=-6—=0
o = 27 g5 (4okh.7)
(4.4.6) gives the Lagrangian derived before
L = tr['%FUVF“V_%TéﬁgaﬁﬂAal-—DU¢lJ ¢ij

(4.4.8)
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Again, the above Lagrangian can be written as an

integral over a subspace of superspace [ 34 ]

I ;JdAXDE'ﬂ’B'Q:—] KD-.ﬂ’Ed] (4.4.9)

where

' 1 mn
K, o] = % (Y% - 12850 Y%m @ )

p B, ke _ DF q [k ’g oy (BS (4.4.10)

Once again, one can derive the supersymmetry
transformations from the Bianchi identities (4.4.3)

Thése.give

. a =&k =%
8055 =1 (e A - €55 & Aa)

_ uv B _ o o=4j . jk
SAgi = Fuv O o gy "R 0 b v D05 21004, 00 g,

MV _ s 20 [von]sei Hfu,e V] gad
COFTY = i (B 0 DX X DY N o BT (4.4.11)
The constraints (4.3.2a) can be solved similarly to

the N=1 and N=2 cases. For a particular solution one can
try
i_ i 7ij
Aa = 2eajw (hoedol2)

where the superfield W'J satisfies

D(iwi)k= 0 (4.4.13)
Using this one finds
ij _ ij .1,y =jk 1 .Y =ik =il
FB 1sB(w +ZekDYw 869erw , W)
8 ( k B)Rrwlk ,W']R'—] (4-4.14)

So, unlike the N=2 case, (4.4.12) goes wrong at the 6%

. i
level., -However, one can 1mprove.Aa by a 63 term, so as
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to give 7;% of the right form at the 82 level. When one

tries

i_ i, wij,iaB8 ik wig
Aa _Eeajw +8ej egk eag[w L , W] (4.4.15)

then now one finds

ij o w13, LaYpigik 1,y
FaB 1€a8(w +26kDyw 26k8Y2

+ higher order terms in 6 (4.4.16)

This process can be continued to higher orders to
find. the complete solution. One can then obtain the
general ‘solution to the constraints from this. particular
solution by a gauge transformation. When a Wess-Zumino
gauge is chosen for.the gauge transformation superfield
"V (again one. can chose the gauge U =0 ) then it.would be
possible to find the expansions of AR and.ll/ij order by
order ‘in 6 , 8 . However, for later purposes, only the
expansion for the abelian case is considered, where the

calculation is far simpler.

S R S RS TV
aaaswkz|e=e=o 415@6,9;'(0 e)aBFW

_ '—. _ = _ . ] —=uv R
941 085 Wiep =m0 = A1 Eigu (€0 g Ty

i= o, . f1 . i u
3y adj wk2|e=520-415j %0 3y ¢k2+816,}oa& 3, "’9,‘_],]'

i.3.k
3,33 o, W

59y Wem|o=p=0= 0
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_26[_1{ OL(GL *¢)mnp BB)a o9, ¢

[1 5 ]v
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From these, one can calculate that to Ath order in 6, 8

that Wij_has the expansion

1. _ . k dSL o _uv B
Zwij.-¢ij+lelj—)\aﬂ+ lel de (.eio a ij
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L+ +
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D

+ higher order terms in 6, 8 (4.4.18)

However, this formulation of the N=4 theory in
superspace suffers from the drawback that the constraints
(4.3.2) imply the field equations for the theory [ 20, 217].
This is easiest to see in the abelian case where the Bianchi

identities (4.4.3) can be used to obtain the field equations

‘ u —d ji: —ij = “ =
Out Oy DjW o, [Jw 0,3°F,,=0 (4.4.19)

However, as the constraints (4.3.2) are not forced
upon the theory in order to be able to coupie it to lower
spin matter theories ( the N¥4 supersymmetric gauge theory
being the theory with the minimum spin for N=4 ), it is
possible fo consider weakening them in order to produce

an off-shell theory.
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There are two minimal relaxations of these constraints.
The first is to relax the constraint (4.3.2b). The

constraints then read

’ ()_ o .
(1) | 7 ;% =0 = Fyaidy)

Fl =0 (4.4.20)
The second constraint still allows one to solve for
A, in terms of Ai and A,. , but the traceless part of Fiaj
is no longer constrained.
Thé second minimal possibility of taking the N=4
theory off-shell is to relax the constraint (4.3.2a) so

that

i
(11) Faaj =0 (h.4.21)
Finally, one can consider relaxing both constraints

(4.3.2) so that now only

(I11) Frgs = O (4oh.22)

One could also have considered relaxing the conventional
constraint (4.4.22) but the resulting superfield can be

absorbed into Au.

Cases I, II and III will now be studied in detail
Case 1

The Bianchi identities can now be written down in
terms of the superfields Uij , 73 and Uulj where

T ij i . pd
FaB —J.aaBU y W W

a . = j

6iBj ~ T EapYiy 0 Yy; 51
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i _ s M i i _
Faaj _]‘Oaawu j Uu i~ 0 (4.4.23)
The Bianchi identities (4.4.1) now read as

(L1gidk_ 4 -
D;UJ =0 2)(1 ik

Fi_oLls plgii_ 1 [(o ¥ -3°3 )D]Jul
1 u u @ v oj

aj _ 1 _ j

uei ~12 %paa 2 ¥y 66[77( 30,0 )]aJ vii

O}J\))_ﬁw& iy ¥) _1_(5 .] (5P o ”V)"‘O‘.D’é&/pk)z

1 —=pGa i Aj
=230 Suvpr O L 2g s Dgs 07

rp Doty 00,0 (404.24)
Here the additional constraint (4.4.4) cannot be
imposed as the Bianchi identities then give rise to
equations of motion.

The Bianchi identities (4.4.24) can now be used to

derive the relations

ipjk_1 _ijke
DU =3¢ A2l
_ 1 J k&
where >‘20Li -5 1Jk2,D 1
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'Di Klg =-6iol, D, 7 - 5 aa[’wu K ? &/k']:l-—o ]_ldu']k , 751
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where G, = T3 ( ijke " "uvaB %ym He Das Ouy 8553 Vg )
pixd=-31ct %ol o uyy + L el ol T vy T
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(—6 E)dBU 7). (7€Jk2m—Y i_2€1k2m—Y j)

i
o f v ' v Bk X1A%m X1a%m

1920
(4.4.25)
From these identities it follows that the component
fiela content of the theory can be expressed as the 6 =6=0

- . i
components of the superfields ¥ ,wij » Mai * Mogi ’Fuv

4

G , W i. , covariant spinor derivatives of ¥ 1. and covariant
uv oJ v .
space-time derivatives of these superfields.
To find the component field content of the superfield
wulj it is easiest to study the abelian case with the aid
of the tableaux calculus developed by [34]. Acting on
the superfield wulj with the covariant spinor. derivative,

one can split the result up into the irreducible representations

of'SU(A) as follows

Diwujk %le;zijrlAS kX2ugL ‘lﬁ‘sixzui+%x3uaijk
(4e4h.26)
where
Xlualjk_Dr%quIlc'%é[licDiwﬁﬂz
X2ua"DgwuiJ
1j _pliy d) _1s(ipty J) (4.4.27)

X3ua k ao'u k 5 k- a'u 2

(4eh.26) is representéd by the tableaux equation

] x [T = + | + =1 (4.4.28)

From the Bianchi identity (4.4.24d), the last of these

terms must be put equal to zero. One might also consider
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restricting wulj further by imposing the constraint

Jy i =
Dy Wy 0 (4.4.29)

However, this constraint again leads to equations of
motion using the resulting Bianchi identities. One has

from (4.4.26) and (4.4.25) that

ig wkio_gio" s wiis 3 gt pkpBEy O
Dy Do W =-6i0yy8 WtFop, DD =w Ly
- _ 4 oM 1]
= 6lowauw (4.4.30)

One can now derive the following chain of equations

-21 ogd auﬁl‘i‘_ki = {‘Di , %j}_Eij
- D, Di'ﬁﬁwkj
=-6id", 3 DLl
=0 (4.4.31)
as D, D‘E W< = 0.

' This is however the field equation for the spinor
field DIW., .
Ji .
As the first part of (4.4.26) cannot be put to

zero- without decoupling the superfields W9 and wij from
i

b one is led to the unique constraint -

|

R N RS+ R AP SV D UPY B
Do W'k 3 X1pa “x T8 Sk Xopud ~ 15 Sk Xope  (4-4.32)

which is represented in tableaux form by

2] x ] = + ] (4.4.33)
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One can now calculate the components of the superfield

w T, subject to this constraint using the tableaux calculus.

Hd

The result is obtained in table 1 of [ 34| except for the

additional space~-time index and is

SU(4)

SL(2,C)

Field Representation Representation Tableaux Components

W i
HoJ

1]

Xlua k

X2ua

A 1uapi;

2uaf-
3u

AAua&

: Aﬁuad J

15

20 + 20%

44'4*

10+ 10%

6+6

6+6

15

(%,3)x(0,0) 1
(%.%)X[(%,O)+(O.%)]
(%.%)x[(%.0)+(0,%)] ]
(é,é)X[(l.0)+(0.l)]
(%.é)x[(1.0)+(o,1)]’
1,3)x(0,0) ]
(3,3)x(3,3)

(3,3)x(3,3) <]

15 x4

80 x 4

16 x 4

60 x 4

36 x 4

12 x 4

(4-1) x 4

(60-15) x 4




T4.

(80-20) x 4

32 x4

16 x 4

x| (48-16) x 4

x| (240-80) x 4

x] (96-36) x 4

x] (9-4) x 4

SU(4) S£(2,C)
field Representation Representation Tableaux Componenitas
Moot S 20" (3,3)x(3,)
Vlaapyi T4 (BA)x[(2,004(0,8)]
boyar At (Bx[(4,004(0,8)]
i | |

Vaags AP AY (B x[(Lb+(3,1)
Vipase T 207200 (3,0)x[(1,1)+(3,1)]
Bles 1t (Lx[@0)+0,1)
Boyasyd 616 (hi)x[(2,0)+(3,)

*® -L .
Byopas L (3,4)%(1,1)

i » 11 .
BAUQBGB j- 15 (2,2)x(l’l)

X

x] (135-60) x 4
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Su(s ) SL(2,C)
Field Representation Representation Tableaux Componenis
?uasya]é' At ax () ((3,04(1,8) | [TTXIX] (96-48) x 4
X | e
MBI
. i 3 -
CUGBY(&BY 1 : (é’2)x(%’2) = : >.( (16 9) XA
X x][e
XIx x|
(4.4.34)

From the constraint (4.4.32) it follows that the

fields with mixed indices are conserved

—véa _
o] avA4uad =0

—véa i
o avA5uaa j© 0

vda ij _
9 Aéuad kL

VB i
073, V3488 = O

va B ij _
O 9, ¥, 088 ‘k = O

vdy ij _
avBZuasyd =0

8\)88 9

(@]

v B3uagag *

—=vBB Ao
o avBAuaBdB 3 0

VBYa £ =0

i
uaBydp

SVVY _
avcwswBY = 0 (4ede35)

~The fields in (4.4.34) can be expressed in terms of

w'lj as follows
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VBlUOLB 131{2 OLD%D DYwU m

B

ij _ _ 2
2uaBYa - (uD%rDY)’ al]wu k
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k ) i
AuaBdB i =[D ﬁ(ak———”——-DB) ! Hé)ﬂjwulj
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) D(l[p% —”_DY)’ Dayed¥, "k

: i
guaBYdB

= k — [}
Cyasvai * ¢+ D(asd00 Dy IC D%y + Dy, TW, Yy (424.36)
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From these superfields the supersymmetry transformations
of the component fields can be calculated by the usual
method of acting on the above by D; and ﬁdi . One finds

in the abelian case

Diwjkz%eijkl -
Diwjkz%ééxlalﬂ % ‘éaflﬁ;,ki
Diwujkz %Xlua.j ¥ 45 6 qug IIE‘SIJ{ qui
D2 A18j=1216§( Ve ) g Py 51562%11(%(6“5')“8)
":/LI 5uad j(° e )&B"L%Aﬁuﬁdij (5% )d“
+i (o"o )aBqu 31(o“oe)Ba uwvi;,
Diilg =-61i0h,3, wid 4 éA2uaB (‘eo )Ba"%%ij oty
D} hpgy =121 61 (6" e)yg Gy
Dy%,4=-34 I ohy 0 e % (o )ozé I1uc&éij
P2t Bt b e Bk, AR
D, Xlusjkz - - getinm A paBnt '% (8 Azugls{ t %‘ ‘5“—% Azugjs-i )
2, (sla0ks %aDA ki
Diiiudjkg '%Aéuadigj % * 760

i i
6DA5uad l{] -BGDASUOLGL 15__]
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. i i
- 2185054 0,W, g 15r %aa 2y "y 5]
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L
24

N . j - _l 1
Das Cnapyay 83 Chagyapy 31

. ° j 2.8 > s,
P10 0800 (g (aRsuy)g) s T BYO T YOB) + BTG+ 7aB

6 o
“Tita(b e Pusyy)sly t ot Va8

1 j o C
+1216 Ed(Bza B3UBYY)5+BYOL+YOLB
t25eq (3B (a" Bp)q) Rauyd’y * BV ¥ 108
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Fea(p 1P (a Poyy) Myuyd F BV T YOB

i
Da Cupysapy = 101 Pag UBY<5BY + B8+ yab

~ 31 (Bgq € pay * YOB+ 8BY ) + Byd + v

+96 (84 zB(é wBuYG%) +ySB + 8By ) + BY4 + V4B
-2 (A (g(a #y)) Vausay * YO8+ 88Y) + Bra+ 7ad
2241 (B (gq #y)8) Bog Xapa T YOB + 68y ) + Bya + 74

- 6085 (Boq B g3 8y)1) Xoug + YO8 + 68y ) + BYa + yab
(4.4.37)

These fields are however not all independent but must
satisfy certain identities. At lowest order the first

constraint could c¢ome from
[P R 7 R | —k |
{Da,de}w —-2163. °aa 8, W (4.4.38)

but using (4.4.37) above, this is found to be an automatic

identity.

The. first constraints arise at the next order where

j . . .l
Gi ( zad B3UBYB? +Byat+yaB )+BY&+V4&B
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i % -k _ N Y ~ k
{D] ,de} xlé = -216850443, % : (4ede39)
gives the identities
u ‘—di___i_—udB i,law, 1_6 _uv B i
%4 %u? 77309 Y3uaga TEY Xoua 39 o 9y Xaug
(4.4.40)
—néB ij _ T 1] RRTIVN: ij
o wAUOLBd k—-818 X1pa k+1610 N auxlvB
(4edo41)
while
i = +~ k _ S R 1 v k
| {Da,de } Aog = -2163. Oas 3 XoB (4ehod?)
gives
o, =6i _ i y —4i
a6 %y 22" T 30 %4 Yau (4.4.43)

At the next order one can derive constraints by
acting on (4.4.40), (4.4.41) and (4.4.43) with spinor

derivatives and using (4.4.37). This gives the constraints

COwH = -2i (e d™)%a a, e ziatagll ()

5 u “2vaB 3u
By erd =641 0" (Yo n, o3 -804 0" 421]338'
+161 ( o?vs)aBBQABij | (4uodod5)
%aa @ Fyy = - 3870 oHbe B3uagad “TE0C . Opod _.5%8 9o Ainph
| (4e4.46)
—“éBBAUaBdélj:"8€uvpxoum&6ésapA5ABéij"64°5a[]wuij
+128 0%, 3 'a\’wvij (hohoh)

(e )3 0 | (4.4.48)

uAlvaBij=
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—véa ij _ :
au o Aévad kz"o (4.4.49)
VA oM 1 U8
( . )(!d u \))\ "(%‘6(60 ) dBanB (4~4-50)
At this order the constraints
{(ol,7..}c  =-2i6t6 0,0c
a aj uv j ad A uv
i = _ i A
{Da,de}Fw = -216J oada)\Fuv (4.4.51)

give.nothing new.

'The remaining constraints can now be obtained by
acting on (4.4.44)‘to (4.4.50) with spinor derivatives.

Di (4.4.4L) gives

2 (e )PV v oo =a™ Ba oy (4.4.52)
u “lvaByi a u "2vBi

while ﬁai(A.A.AA)gives

u— gHV aB i 2.1 vV oi
Dxld_Tﬁ( )79 l])3\)01601 5°aaaua X2\)

5 ohe %50 | (4.4.53)
However, from (4.4.40) one finds
_ i v yoB 2 .U v _ai
'—“\ & =70 ( e oV ) a ll’3\)043@ 5 %a au_a X2v
+20k, Ohon (hoh.54)

Comparing thses one finds an 'on-shell' type condition

ohg Oxgp = 0 (4.4.55)
5di(4.4,44)also gives

(ea"¥)*®o v =0 (4.4.56)

i]
u AV&BQ k™~
However, from (4.4.41) one has

B ij . M i 5
(e Ouv) Y 1JvaBYd13k::4J'oad []Xlﬁle (4.4.57)
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and so
ohg I xqndp=0 (4.4.58)
D (4 4.45) gives (4.4.52) while D (4 bek5) gives
ohadX1,8) 5 = 0 (4+4.59)

after using (4.4.41), and also

uBY s oM Y ‘ i
F’uaBYdB - 3613 Y3, aBd+48lo (@ %u¥3v8)ya

. =UVPR Wi U i
mR4lo 9 V3y0p8 +640(adD.X2uB)

' v u i TRV A i
" 38400469y Xgup) t 38407y s)a A 9 Xavy
(4.4.60)
From’Di (4L.4.46) one finds (4.4.53) and
O (aadXz,p) = 0 (4.4.61)

using (4.4.60).
The identities obtained from (4.4.47) to (4.4.50)

are all implied by those alfeady obtained and so summarizing, -

we have at this order

v B v

. uv By _u
2 (e-o ) ) wlvasyi“o o au ouBi

L uv yaB ij
pe c" )" 9 wAvaBa k= =0

. i’ _
X0 9 =0

| '
D X2ua =0
—ufy JiI o . AH Hv oy i
Y LT S L TN B LE AR -
. —UVB . u i
- Rh10T T8y lj’3\)@68 384°(ad 9y 9" XauB)

uv oy A i
+3340 (e %8)4 322, X2vy (4.h.62)
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At the next order the identities obtained from these

are

u 1
" [w, ;=0
Uy o . - . uv‘ Y
T Capyagy =561 0 (4 3, Byiay g~ 4053 By a0s
—uvy A u v .
tAB 0T 6 O(aB) A ARy RO T 0(au? Auup)E)

(4.4.63)
The higher order constraints are that box acting on

the components v, B, & and C of wulj gives zero.

So from these relations we can see that the physical
fields contained in W, and W) are now off-shell, but
the auxiliary fields in wulj appear to satisfy on-shell
type constraints.
~ Case II

The Bianchi identities may now be written down in

. 1] ij - . .

terms of the superfields Uij y W ’XaB and XdBij defined by

I R 5 BT &
F le, W + lX&B

(4.4.64)




where
W, = - 0., pii - _pit
ij ji °
1) - it - i
XaB XuB XBa
Xaify = 0jbi = Thiaj

The Bianchi identities read as

cpligd)k _ pBk yij
vl . Ra

(1 ik, 2(G yk)i, ok yi)]
D aXBY +D aXBY +D aXBY =0

pe T I2 ;
uot 715 Oae 2 &/ji A 0iaex .
Dys leé = %_ s 7, Xfllé)
% Tabsi =585 %0 Fador)

(0% Bply

cais (T, )0 pdy

uva B i T “ai %uv B

v atepiy

0

78 i )
J

£ 0
(13Y

)07
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(4L.4.65)

& i
a1 05 X5} )

(4.4.66)

Again, the self-duality constraint (4.4.4) on the

field strengths Mij and ¥ cannot be imposed as this

would decouple the &/'s from the X's and so lead to
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equations of motion.
To study the component content of the theory the
abelain gauge theory is again considered for simplicity.

From the Bianchi identities (4.4.66) one can derive the

relations
pl ik =33L-eijkl Mg -%DBB xggj
Dg Wik =%.6[§ Max]
Dy gy =121 65 (Ve ) F | -2 6] Dy, Ty 10
Dai Maj =~ 61 % 3, W;; - %05 5? Xiaix '%Dgﬁié X303k
Dy Apgs =121 67 (*Ve) b '%Eak%m D DY x5y
t2e., DEDY Xé$
Dot A2aj =~ 31 €555 % auwk2+%eijk2 Dyn D" Xgu
DIF,, =']_.]:2_O__|__10tdc 23] it +§168"[‘:S 257 Da; X2
Di Gy = 15 %a Euvdé axxgi 'Zgﬁ (eo, )EY ¢ Ej,kzmbg Dlé p® lefrg
-2¢ 0, 0} Dl;‘ po¥ X0 -‘-4—%5 (T, )88 (1jks Dy D™ —f{ Xobom
(4o4.67)

So again, the component field content of the.theory
can'be.expressed as the 6 =0=0 components of the superfields

W

=1ij ij : s
13 , W ’Alai ’A2ai ’Fuv ’Guv ’XaB » Spinor derivatives
- of X;% and space-time derivatives of these superfields.

To find the component content of the superfield Xé%
the tableaux calculus of [ 34 |"is again .used. Acting on

superfield Xig by the spinor derivative, one can split the
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result up into the irreducible representations of SU(4)

as follows

1. ijk

iydk 1 i(3K), 1
DaXBY 3X1aBY +3X3aBY
where
ijk _ 3k
X1aBy = o *By

i3k _ nigdk, nd vki, nkyij
X3aBy = Do Xgy + D Xgy * Dg Xg3

and
Pas K3 =569 %agas Xia08"
where - .
;2&0‘%' = Dy ng
| .Ymaﬁijk = Dy o - 5 G(iﬁaz Xﬁ%)

(4o4.68)

(4.4.69)

(4.4.70)

(4.4.71)

These are represented by the tableaux equations

r_'—JXIJJ'=. P L Te]
><l||=)< l'+x X1
| =

respectively.

From the Bianchi identities,

(44a72)

the last tableaux of

each of these equations must be put -equal to zero. So

the constraint equations read

(4eh.73)




which are represented by the

respectively.

1= [T

]

B
X
1}

X
BEE
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tableaux equations

(hehoTd)

One can now calculate the components of this superfield

subject to these constraints using the tableaux calculus.

The result is

Field Repnrnesentation Representation Talbleaux Components

i
Xoh

ijk
XlaBY

_ i
X248y

ijke
laB

AZaByd j

) ij
A3068Y

SU(4) SL(2,C)
10 (1, 0)x (0
20 (1,0).x (3
4 (1,0)x(0
201 (1,0)x (0
15 (1,0) % (1
6 (1,0)x (3

0)

0)

2)

0)

0)

N
~—

]

BEE

|X|X X

10x 3

40 x 3

20 x 3

45 %3

(24 -6) x3
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SU(4) SL(2,C)
Tield Repnresentation Representation 7ableaux Components
A jaB 1 @, 0x(0,0 [T 1x3
X [ x
XX
' ij ' 1
wlOﬁBY k 20 (l,O)X(g,O) - 40)(3
| ] .
i .
Vougyse 4 (1, 0x(3,0 [  16x3
Viegayss A (1, 0)x(1,8) [T (24-8)x3
. -
B
B i1 6 (1,0)x(1,0) 18 x 3
208Y8 ’ ’ -
BBQBYdGG 1 (l,O)X(%,%) : —1 (8‘3))(3
. =
X e
E.aaB.Yi 4* (l,O)x(%,O) —t— 8)(3
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Su(4) SL(2,C) .
Field Representation Representation Tableagux Components

C‘aB, 1 (1,0)x(0,0) 1x3

(4.4.75)
In addition to these fields there are of course the
conjugate fields to these.

The fields with mixed indices are again conserved

gHee g a, i

U 3adBY
—udB _
09 Y34g4vsi = O
Sudy = |
o auBBaBydés' =0 (4.4.76)

The fields in (4.4.75) can be expressed in terms of

le as follows

aB
X1§g$ = D[% X T{
Yzaag - ﬁ&j Xg%
At =7t Dr—g ng
i ok bz i

Bragys i~ fikam e U8 Ay

Ba_aéy =D Dax Xy
e =Tg; _ﬁ? Xié |
ll):LOLBijk‘ = €xomn D E D% Dg: XEQ - trace
i_ Dj Dk DSL Xmi

w2dBY5€ _Ejkim a By “6e




- J
Y3ag6v61 = €1jke Pa P8 Panm

B1aBij

B

B3agyvase ~ €ijx2

1j
2aBY6
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k= mi
XY5

Dyk ph D(SIL pP x0a

“ fikem Ejnpq Y § TaB

€i k(& M nj
8kﬁlmnD De Doc DB Xya

k= ml

ipd
D, D D Dy Xge

pl de ph Dek pP XILq

.gasyinz Eijk}L €mnpq o é € " BY
= ' Yimn6jnnekpLg ' : ;
Cog €5 3ke mnpg D Dy D " Dg D DgXyg (4.4.77)

_ From these superfields the supersymmetry transformations

of the component fields can be calculated by acting on

the above with Dé and ﬁ&i . The fields will also satisfy

~identities similar to the previous case.

Cagse TII

The Bianchi identities may now be written down in

' i N AR S S W
terms of the superfields UlJ S xR ’XﬁBlg and ¥~

defined by
ij _ . ij VR
FOLB 1€0LBU + IXGB
Faigy = Leag¥iy + 1 %8sy
i _ 1 M i 4
where
W.. = - , il 7t
ij ji

ll} i. = 0 (404.79)
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The Bianchi identities now read as

p{1gi)k _ pBk 4]
" Ba

(1 yjk) _
DY, Xgy =0

a(lxéhk) =0
i_ 1 Gpji, 1 =0B yij 1 v ipi
Fuo_z T12 ouadvj 7o+ 20 Dy % 'XoaB -%—0-[(0“0 - 30 ou)D] Yy j
ol g%y, 41 pighe .1l R
Fudzl T 12 OUOL@D le t 30 g L XaBlJ Bﬁ[v(o Oy = 30,9 )Jd_jw\) i

140 8y k), L A, k)
_36 i(eouv) ( QQXBY +D8 YQU)\ 52,)
- BY , o1y, LA i
(O 87 OO0 Fagsi * P85 %t a1 )

BY %y N
€ )7 ( 2y Regaw) * 08g %ag Y3 1) )

1
5

o, wik.lslg el _Lon (peliy Kl 140y K
371 2 “ab uw i 371 u

ai B hi —~ &, B8]
(D % va DBwij-Hdicu\) Bij )

=pda 51 Aj i i j
N P L I

i, = &R Hai ,j . aB & yij
-—((Ou\)e.) D DaydBij—(eou\)) Uaiﬁj)(as)

(4.4.80)
. The self-duality constraint (4.4.4) can now be imposed
‘without implying equations of motion. It now only relates

3 wlb
XaB and u o3 y




%%.

1800 pilk _
32) XBa

1 132m u
757 %a (7

¢, n
k7t
o250 30 % )
(4.4.81)
The Bianchi identities can be used to express the

w1

theory in terms of the superfields wij » Agi ,Fuv BT

Xt and covariant spinor derivatives of fhe superfields

af

W 1. and XlJ
1V ap *

as it satisfies the constraint

The component content of X;% is as in case II

(1 i)k, 7(5 yk)1 | 5(kyi)j _
D alXBY + 0 XBY + D XBY--—O (4L.4.82)

while the following combination can be expressed in terms

.of spinor derlvatlves acting on UUIJ

ik _145(] Lk) _ 1 (j k) _1.(j% k)
Da1 %8 =58 3 Dan Xap = -5 %aa (2 3) ¥, "5 -58'] 050, )

(4e4.83)

The superfield wulj in-.this case is unconstrained.

From the expansion of the superfields wulj and

'Xig given by (4.4.34) and. (4.4.75), we can see that no
quadratic Lagrangian is possible even for the.minimal
relaxations I and II, as fields with dimension up to 4
appear. However one could consider. the L&grangian where
a Lagrange multiplier superfield is used to put

wulj‘or X;% equal to zero in one of the minimal cases,

so implying the equations of motion fer the physical
fields contained in.WiJ and W J
The highest dimension components of Wulj and X;%

in the minimal formulations are C -and CaB respectively.

ueBY&Ry
A Lagrange multiplier method would be to take a dimension

zero superfield D or-D_, ‘and then by making it

naBY&RY aB
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satisfy certain constraints, obtain a 'contragradient!

superfield [237] to wulj or X;é . This would contain the

- same components as Wulj or Xé% but in the reverse order

and with dimension 0 to 3. For example, the superfield
DuaBYdéY would have to satisfy the constraint
BY (44.84)

One

PeiDuagyBed ™ Cad Suapyyds T VOB Y
so that part of the variation under ﬁdi of

naBydh !
4 i EUQBYQBI (4.4.85)

cancels the relevant part of the variation of

pHeBYEBY (4.4.86)

naByaRy
In the non-minimal case III, the situation is far
simpler. Here the superfield x;g still satisfies the

same constraints, but now wulj is totally unconstrained.

For an unconstrained superfield the Lagrange multiplier

method 1s now Straightforward as an -unconstrained Lagrange

multiplier can be used to put it equal to zero. This
can be seen as follows.- the unconstrained superfield wulj

has the components

G i _pSp8y 1,
b b

i 1j _niy 3 i p7 58y
W, $"%Xua "k Dawu k' 8001k DysD W

while the unconstrained dimension -5 Lagrange multiplier

superfield Dulj has the components

i ij _nip i n7 w8n i _8=8_ i
D5+ ¥ua Tk Paly ke - 18 yai ksl Py xoB, 7D DD, ;

So thé supersymmetric Lagrangian is

otk 4oL gy 3ogue ko p i oou)
j k i v oj i

(L.4.87)

- 1 M J
L=B "Wt 01k ; uo
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where the numerical factors multiplying each of the terms
have beenAsupbressed.

For this to imply the field equations the self-duality
constraint (4.4.4) must be used so that (4.4.81) may be
used to express the components of Xig.that'occur in terms
of components of wuij‘ Expliecitly, in the abelian case

one finds

i= =kj Wil 4 3 k  Bij
Dy Dy W9 = - 61 4y W3+ F5005 Dy X177y
p L titmgu 5 2Bk (4.4.88)

70°€ af Yax X1uem

where as before

xlua “k D awu k .3(S kDawﬁ 2 (4.4.89)
So .now

- 1oaaaDw {D }Dw
_ =6 i< =kj
——Dj DaDakw
_ ! =0 =ki Bij
—-610aa3uDk‘W D (10 BaDaxl K

9 ijim _u B k

70 ¢ %8 Dax Xypgn ) (4-4.90)

So we can see that the equations of motion for the
physical fields contained in wij hold when.wuij is zero.

Therefore the Lagrangian (4.4.87) propagates the
physical fields in wij' However, it also propagates
other fields, for example, in the abelian case it also
propagates another set of the physical fields. This is
because thelterms BY ,Wg and Mij in the Lagrahge multiplier
~6i

superfield that multiply the components a”E‘ ,oadau A
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and E]wij of Wuij ( see (4.4.40) and (4.4.46) aboveT) also
propagate with the field equations'au( BUBV-av Bu) =0,
3, 4§ ok = 0 and [Ju™ - 0.

It is this increase in the number of propagating fields
that avoids the arguments of [ 227] which ruled out an off-
shell representafion with just 1 spin 1, 4 spin 3 and 6
spin O fields propagating for a quadratic Lagrangian.
However, as in the case of -the relaxed hypermultiplet when
only the action I, of [237] is considered, some of the
pfopagating fields ha&e kinetic terms with the wrong sign.

For example, for the term in the Lagrangian (4.4.87)

uv C .
G"UF | (4eobo91)
where
Fuv = auAv"avAu
Gy = 9, B,-3,B, (44.92)

the following redefinition of fields may be made

Fuv - Fluv-FF2uv

Gy = Fruy = Fapy (4.4.93)

TWhen the superfield wulj is unconstrained it contains a

component Nu with the tableaux

adij

Now EydaN appears on the right hand side of (4.4.44)

padij
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So in the Lagrangian we have

FlquEv"F2qugv (4.4.94)

Thé problem of kinetic terms in the Lagrangian
with the wrong sign can be solved by the introduction
of éonstraints using a non-linear-Lagrange multiplier,
as in the case of CP  models. For the case of (4.4.91)

one takes

MV E %xum (cMV o FYV ) (gPr o FPAY  (4.4.95)

where Auvpkz kpxuv

This gives. the field equations

gHY = pHV

\ U PA _pPAyy

3 (Fuv-+xuvpx (GM"-F"")) =0

3" (G = Ayppy (61 -FPR)) =0 (4.4.96)

- The supersymmetrization of the second part of
(4.4.95) now has to be obtained.. The components and
supersymmetry transformations. of the supersymmetry

multiplet which contains A will be determined by

uvpa

the supersymmetry transformations of Gﬁv and Fuv in

order that the non-linear Lagrange multiplier term of

the Lagrangian is invariant under supersymmetry.
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CHAPTER 5 THE SUPERCURRENT IN SUPERSPACE

The supercurrent multiplet of conserved currents
and auxiliary quantities are the components of a
supercurrent‘superfield. For unextended supersymmetry,
the supercurrent superfield is a vector indexed object
I with the axial current j(s) as its 6 =6 =0 component,
this being the member of the supercurrent muitiplet of
iowest'dimension [16] . |

Fér extended supersymmetry, the N=2 non- superconformal
supercurrent multiplet was first obtained by [25], and
again these.fit into a superfield J'( this ‘time a scalar
sﬁperfield ) which has the lowest dimensionacomponent of
"the supercurrent multiplet as its 8 =0=0 component.

For the supérsymmetric N=2 gauge theory the_superburrent
superfield J was written down by [267]. In the case of
N=4 supersymmetry one has a superconformal supercurrent
nultiplet [ 337] and one can again fit the components into
a scalar superfield Jij,kl which has as its 6=0=0.
component the member of the supercurrent multiplet of
lowest dimension [26].

However, the supercurrents Ju » J and Jij,kl appear
somewhat arbitary and one can envisage other superfields,
satisfying different constraints, but containing the
same supercurrent components. One would like a clear

geometrical interpretation of the supercurrent superfield,

and to obtain this one turns to Noether's theorem in

superspace.
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For unextended supersymmetry, Noether's theorem in
superspace can be used to obtain a geometrical derivation
of the supercurrent Ju [27 , 28] . However, for extended
‘supersymmetry, one finds that Noether's theorem in
superspace does'not give rise to the scalar supercurrent
supgrfields J and Jij,kl . As for the unextended
supersymmetry, Noether's theorem in superspace gives rise
to vector indexed superéurrent superfields Juij with a |
clear geometrical interpretation [297] . These supercurrent
supeffields Juijlare simply related.to the scalar

" supercurrent superfields J and Jij kg @ and of course have
. . ’

-the same component content.

5.1 The N=I Supeacusrnent in Superspace

-For the N=1 superconformal supercurrent multiplet,
thellowesf dimension component is the axial vector current
’j(ﬁ). Ohe then looks for the gauge invariant superfield
constructed from #  and Ud that has this as the 6=9=0

component. This is

J

od tr (Uavd)

tr(Wa e-VWd ev) (5.1.1)

-where fhe“second form is in the gauge where U =0,
From (4.2.41) and (4.2,32) one can write down the

expansion of Jad with V in the Wess-Zumino gauge as

J =387

H H (1(!.
_ A5) , . L0 2 @ v =G
=64 (-] . +i6 Jua-16d7u+2e oade Ouv

@V g apj’(s)M%eZE Sie gV g

L .
_'Zeu\)pke %ad & v pa
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s T DD ) )

" where the currents are

3(3) =tr ( Adﬁi‘“ Ay )

4 str(10% Bl TtE )

oMY =+tr (F¥PrF v+i qupprx'%Xaa(uaaﬁv))‘a
+%g““7¢5§‘°‘5’“a ) (5.1.3)

From the equations of motion
2w =0-=7, 7" (5.1.4)
a d * LJ

and the Bianchi identities (4.2.6) , the superconformal

supercurrent satisfies

o A =0
Jua =0=D"J 4 (5.1.5)

D ad

The geometrical interpretation of this superfield

is obvious. It satisfies

a“Ju(z) =0 (5.1.6)
and so the supercharge

Q= JdB:?JO (5.1.7)

contains the charges for the theory

'Q=64’(-Q(5)+'ie°‘Qa-i§d6 +20 o“dﬁaP )(5.1.8)

However, the supercurrent Ju has not been obtained
directly from the superconformal symmetry of the theory.
To do this one uses the generalization of Noether's
theorem to superépace [27 , 28]

Noether's.theorem in superspace is obtained by

equating the variation of the local Lagrangian density
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in superspace obtained in two different ways. The first
variation is obtained by using the symmetry transformations
of the;superfields that make up L, and then using the
equations of motion to write this in the form

&

_ ) y . B
§. L= auu +D u +D (5.1.9)

1 aﬁ'
The second variation is the transformation of L

itself. For most symmetries this will be zero, but it

mgy‘aiso4be the equivalent of a total derivative in

superspace

- u a = =G
62L—-8 vu—D va-de

(5.1.10)

So equating these two forms of the variation one
obtains Noether's theorem in superspace which says that
the eurrent (ju v Iy ,jd ) satisfies the generalized

conservation equation

=4

gd =0 (5.1.11)

. H a . oy
3“3 +D Ja-FD

using the equations of motion, where

Ju Tty
Jg = Uy + vy
¢ gy (5.1.12)

To .see how this works for a specific example, consider
the N=1 supersymmetric abelian gauge theory under a
superconformal transformation. The local Lagrangian

density in superspace is from (4.2.42)

where
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1 La -
L) = gag W, 6(F)
L. = LT (5.1.13)
, = L1 1.

The delta function over the ® variables is normalized
.so.tﬁat

2

§(8) =8 (5.1.14)

The field strength W, is now expressed in terms of the

unconstrained superfield V
W =D°D Vv (5.1.15)

" One can now write down the variation of L using the
variation of the superfield V under a superconformal

transformation

1 o=
8L = TE—MI D

2Da6V6(§)+h.c. (5.1.16)

The equations of metion (5.1.4) and the Bianchi
identities.(4.2.6) can now be used to express the variation

in the desired form

8L, = Daua+§aﬁd (5.1.17)
where
-4 _ 1 o =68 = a =& =4
u —-m(w D Dacva(e)+2w Dad,ve + LW 8V )

(5.1.18)
From appendix B, the variation 8V under a superconformal

transformation for the dimension zero superfield V is

_given by

sV(z) = £%(2) 3, V(2) + £%(2) D, V(2) + E4(2) D V(2)

(5.1.19)
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where the superconformal parameters are discussed in
.~ appendix A.

For the second form of the variation, the explicit
transformation of the superfield L under the superconformal

group from appendik B is used
SL(z) = 3% (£, (2) L(3) ) +D% (£ (2) L (2) ) +D, (E4(2) 1,(2) )

a~'ﬁ<ﬁd (5.1.20)

n

'
e
<

v =21 eM2) T (a) + T (a) (Lz) +1)(2) )(5.1.21)
In obtaining this, the properties of the superconformal

parameters (A.7) and (A.9) have been used..

Equating the two forms of the variation, Noether's

theorem states that the. current (j& » 34 ;ja') where
iy =0
Ja 7 Uyt Yy
T8 oo gh oy g (5.1.22)

satisfies the generalized conservation equation .

a“jl'i+D°‘j&+'ﬁa'j""= (5.1.23)

~As in the case of ordinary gauge theories, the current
j& obtained by Noether's theorem is gauge dependent and
needs to be modified to give a gauge invariant current
ja which contains as components the modified currents of
the theory, ie. a gauge invariant, symmetric and traceless
energy-momentum tensor, a pure spin 3 spinor supersymmetry

current and a conserved axial current.
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Unfortunately finding the correct improvement term
is not at all obvious, unlike ordinary gauge theories.
Here it is far easier to find a gauge invariant current

jq of the right form which satisfies
o . = @
D +D, 3 =0 | - (5.1.24)

when the equations of motion are used. Once this has
been obtained, showing that.j&_becomes Jo Wwhen the
currents are improved becomes straightforward.

One takes as ja a combination of terms of the form

superconformal powers of supercurrent
= X
parameter 6,06 Jad

(5.1.25)

that are of the correct dimension.

=& 2 =6 =2 B =6
£ 6 +_CJad€ §) +DJ0¢(&E 686

(5.1.26)

485 4By

ja:zAJ- B ad

ad
where the index o must be on- the supercurrent Jad in

order to use the equations of motion in:the form (5.1.5).

.Imposing the conservation equation (5.1.24) leads to

_ ) ' =& . a da a,.B . =64
O—(21A-2B)Jad€ 87 -AJ 4 f +DJ _,D € eBe

oo =& '
+DJ 4 8 +h.c. (5.1.27)

using the identities (A.7) for the superconformal

parameters and (5.1.5).
- So

+Db=0 , A+A¥=0 , 1iA-B=0 (5.1.28)

One can now write (5.1.26) as
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=AJad(faBG +1T4 %) (5.1.29)

Iy 8
The connection with the currents in ordinary space-

time . is as follows. Defining

3y (%) 5Jd6 a6 3, (z) (5.1.30)

where
> N . RN} =& . w =Go .
Ju(Z) = JU(Z) +i8°0 14 (z) +i8, o, i (2z) (5.1.31)
Then
a“ju(x):o (5.1.32)
follows from
2" §,(2) + D% j,(2) + T, T4(2) = 0 (5.1.33)
Using the expansions of the superconformal. parameters
(A.3) and (5.1.2) gives |
Ju(x)=641ih (a j(ﬁ) FET(x) Tt E () T - V) e )
(5.1.34)
To see that the change from j& to ja corresponds to
improving the currents then,theucdmponent content of the
~ conservation equations must be compared. For j& the

conservation equation is

o —’_dl

D 6 d

A 1 '
.]&+D :--EDuwa GV (501.35)

where the Bianchi identity (4.2.6b) has been used.
From (5.1.19) this has at the 68 level the gauge

dependent term

L9%6Y, 54 pPw

u
50 044 £ aLxAv (5.1..36)

8

Now looking at the conservation equation for Iy
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=4
& d

Q

D ja+'T5 4 6°)

3 a = &8 .

=AD Wa.Wd(f 98+1E_. 6

- (8, p4B 5P 62)wB ] (5.1.37)
this has at the 88 level the component

M (5.1.38)

& B
6° D WB "

. a v
81A6 Oy
So for A ="€%'( cf. (5.1.34) ) then we can see that
modifying j& gives j, in the same way that for an ordinary

gauge theory where

1 = o p+:_L_ D)\
'y Flodu A  + 78, F o F
Oy = Fup Pyt 78 o F (5.1.39)

then the conservation equations for the two energy-momentum

tensors are

Hgr = _ M o
BOU\) FupavA

aHr FP (5.1.40)

u
a" 0
1AY up v

1]

5.2 The N=2 Supencurnent in Supenspace

for the N=2 superconformal supercurrent multiplet,
the lowest dimension component is the auxiliary quantity
Dl (3.4+14). Again, one then looks for the gauge invariant
superfield constructed from # and ¥ that has this as

=9 =0 component. This is

J = tr (WW)

tr (o™ X uiy) " wey ) ) (5.2.0)

where the second form is in the gauge U=0. Again, choosing

a Wess-Zumino gauge for V, the expansion of J is
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T (D) - 0Y gl Xy T - 05 1,0 0 -394 T3 s
26l ol 7 '(3) +20f ol 54 It
+20f o, 541 08 ( Jug -—%OUVBY 3V Xlij( )
P35 ol T (T 1407y 7,, ) O
‘+%e‘; ot 7 eg? ogéﬁéi (0, -3(3,3,-g,,[01)D;)
_%g“\"‘” 80,00 0" e? ovBBEBk 35 Tydy
PG e, b, o B a6 oy o, TG
+ higher order terms in. 6,6 ) (5.2.2)
from.(£,3.39) and
v=26fc", 74 A, +ie] ot 7% e? 5,88 S o} o¥, 7% A? 5,83 58]
- 03 0!, 7 e? OuBé-ééj [c*,c] +4 Xz oy T4 0 cx
FhXgs 000 M0 (5.2.3)

using the expansion

tr(e-VWeVW)=tr(WW)-tr-([V,W]W)

-%tr([V,Wj[V,W]) -%tr([v,wj[v N D

(5.2.4)
For the N=2 theory the equations of motion are
0" pdw=0-7;0%7 (5.2.5)
and so the supercurrent J satisfies
p*pd 5=0=D30% (5.2.6)

. using the Bianchi identities (4.3.5).
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HdweVer, in this'case, the geometrical interpretation
of the superfield J is not obvious. This is because the
supercurrent J has not been obtained by a geometrical
method. To do this, one again turns- to Noether's theorem
in superspace.

. For simplicity, the abelian theory is considered.

The local Lagrangian in superspace is

L = L1 + L2
where 3
_ 1 2=
L1 = jzr-w §(6)
2 1 e

The delta function over the ® variables has been normalized
so that

§5(8)=u (5.2.8)

The field strength W can now be expressed in terms
of. an-unconstrained-prepotential for the abelian theory
as in (4.3.46). |

The variation of L can now be expressed in terms of
the variation'of the superfieldVij under a superconformal

transformation

N A =
L-—G—ZWD D™ Dy avija(e) + h.c. (5.2.9)

Again, the Bianchi identities (4.3.5) and the equations

of- motion (5.2.5) can be used to express this variation
in the form

5L=Dg‘ui-ﬁ&iﬁdi |  (5.2.10)




110.

where
ul ='6111 &, 0Pt b} 55 3% v, u+ L WA Dy 5y o™ Vg X
- 15 WDy Dy 0% s,y 6% 0, + 2WDL D svy 0]
+W D} <svij - pdw avij " (5.2.11)

Here the variation Gvij is more complicated than the
N=1 case as Vij is not dimensionless and also has SU(2)
indices. It can be worked out from the variation of a
generalvéxtended superfield under a superconformal
transformation as given in appendix B. However, all that

is necessary here is that it contains the term
= pH

as before.
For the second form of the variation, the explicit

transformation of the superfield L under the superconformal

group is
“6L(2) =3Y (£(2) L(z) ) - Df (&3(2) Ly(a) ) + Ty, (E*(2) Ly(2) )
=-D‘:.’L‘y§+'ﬁdini' (5.2.13)
where
ve=Tr D L-gl (Lr1,) (5.2.14)

~using the properties (A.11) and (A.12) of the superconformal
parameters.
So equating these two forms of the variation leads

to the current (j& ,j;' ,?dl') where
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iy =0
I i i
J(!' - u(Y, * V(I
-j—al,= Edl + -\;al (5.2.15)

that satisfies the generalized conservation equation

a”ju'+D‘.i‘j;' -ﬁdij"‘l'= (5.2.16)
- The current (jﬂ ,jz' ,Fal') obtained from Noether's

theorem in this way is gauge-dependent as before and
needs to be modified to give a gauge-invariant current
'(j.u ,ji ,Edi) which contains as components the modified
currents of the thebry and also the auxiliary quantities
which»are also contained in the supercurrent multiplet.
As before, it is easiest to find a gauge-invariant

curfent ji of the right form which satisfies
p¥ji_p, 7% -0 (5.2.17)
i‘a &i
when the equationslof motioh are used.
As the equations. of motion (5.2.5) are second order
in spinor derivatives, then taking a ji of the form

superconformal powers of supercurrent
parameter 8

(5.2.18)
will obviously not be sufficient as 1t will not be possible
to use (5.2.6).

So consider the supercurrent

i _pniog ‘
Tog j = [Dy .dej J (5.2.19)
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. which satisfies the simple equation

@5 ] 7 4 8d % 7. p%pd
DiJOLd.k Zgikxd+6kxdi+2deDiDaJ (5.2.20)
where Yd —-210§d8uD§J

so allowing use of the'equations of motion in a similar
fashion to the unextended case.

Now take a linear combination of terms of the form

[superconformal] . [powers ofJ [supercurrent]
x x

parameter 6,80 Jadij
(5.2.21)
of the correct dimension.
Ja=hy (Taa'y *Taay ) £ kg 5, 5"
Fhy (T4t 70’ ) 2% x5 B, gt
Ry 700 2P g B, i
R, 06" 2% x93, ghi
+ Bl (JaaiJ + Jadjl )_é'dk eék féB xg
+B,To4d. 8K T,, £B8 X3
4 6, ( Jaaij *Toay" )fakuﬁékEE‘j
4 Cy (Tt * Tgar’ )Eakuﬁéj 81
C3 Taa’y E 55 5Pk
;+CAJaakkEa llgéjéél
+Dg (JadiJ-FJadjl )ﬁdkﬁéktlféJ
+D, 7 5 7 gy N (5.2.22)
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Now imposing (5.2.17) leads to the conditions

3A1-A2+A3-2A4=0

3B, -2B,=0

301-C2+03-204=0

3Dl-2D2=O

B R P R

-Bl= A1+A2+A3

Cl+4iA2=O

Cz+41A =0

1
Cy+4ihy=0
C -4hih, =0

Dl-AiB1=O

Dy+4iBy=0 (5.2.23)

using the identities (A.1l) for the superconformal
parameters and (5.2.20). |
These simplify to

A, =A_ -A - (5.2.24)
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So

=4 (J 1y 48 geékﬁéj

+B (4" adkj)dexlsc 5 'éél

-(A+B)J, jkfdsxgﬁéjﬁék

+(A-B)J fd‘"BxgeékEéi

-4LiB(J +Jadjl)€aku§ék§éj

WY WE NS )Ed‘ku'ééj g1

+4i(A+B)J 0l k'&’diuﬁéj‘e'ék

+-4i (A-B )Jadkkidjllﬁéjééi | | " (5.2.25)
where

-(A-B)* = (A-B) | (5.2.26)

The connection with the ordinary space-time currents

is as before. Defining

5,00 = [ 40 483, (=) (5.2.27)
where |
3,(2) =3,(2) #1065 0,0, T (2) - 18y, 0% 52(a)
| (5.2.28)
~Then
| uj‘u(x)=0 | (5.2.29)
fbllQWS from
oM j (2) 4 (z) 4 3 (z) =0 (5.2.30)
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USing the expansions (A.10) for the superconformal

parameters and the expansion of Jadlj as obtained from

(5.2.2)

i A1 L(5) 1Lk NI |
= - .+ . - : s
16 (-27T 3 26J 2lGJekJua+2163Jua

i, Bav'k 16iea0 B

+ ==
Hva

8. SV, i
34 % "k uve ° X187 73 X18

detk Ou\) é 9

6. .v= = 4, =fi i v bk o
0 -AG.GkO(me Ou\)+49j0

—8i
B~ (3 av-gw_['_])nl-zewpleioaa

4% 0 LAk . a0 vV F0i k
uvod Ok %aa 9 g t218,0,,8 avTU

v =48

. 0 v =0k i . A0 Y o1
-2183.0 6 3. T k-416j0 o avtB )

ad "u Y

’—a. —éa v 'éYi

B k .=
0.t 98+416 tBOu OOLY

6j %y
i 6. =Bk, .. , —
+21i 6,]' Gak But 5 8" + higher order terms in 6 ,6 )
(5.2.31)
Then calculating (5.2.27)

Y o aeR NC) I TR B i
Ju(x)=9.16% (A-B)i(&gj"  +& Tuj+€i(X)Jua

()T - eV ()0, ) (5.2.32)

.Note -that there is no dependence on the arbitary complex

constant (A +B) from (5.2.25) and so it can be put equal

to zero.’

idia\)— — 6 zBk

@ v 50i apj(5)>\
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The superfield Julj has a clear geometrical interpretation
in that

"] (5.2.33)

and so the supercharge

i [43. .4
. = d7xd,T. 2
oty = [ @xagt (5.2.34)
contains the charges for the'theory

i i (5) i ced a0 K n . aQ i, o~ cie =Gk
Qj-lé(zéjQ -2Tj-21<SjGkQa+216an+216dek6

- 21Ty, ot _ 453% 6" ogdé‘dkpu+4e§‘ cgd_e_leu)

(5.2.35)

A,To see that the supercurrent ji above does result
from improving ji' obtained from Noether's theorem, the

combonents of the conservation equations must be compared.

1 . . c o
For Ja' the conservation equation is

(!.i, Ry '.'di' l

- =1 p%ipl '
S ibt Ty T = g0 0w ev (5.2.36)
This has at the 6° 8 level the term

-9%{; o(‘;di‘;‘nsibgwg” 3,4, (5.2.37)

using (5.2.12) and (4.3.49).

.1 . . .
For j, the conservation equation is

@, L, i = oG, —4i
_ Di (Ja-Fwa) -D&i (7774w )

~=-2_(A-B)'D‘deDg‘Dgw(fdsxé+4i€diu)§éj6ék
-%(A-B)ﬁ&jWD(ingw(faBXg+4iEdku)§ék§éi
'-%-(A‘-B)WD?Dgw[(-81&?X1§+41ﬁaj€dku)§ék§éi
+ (£%P x:é +-Ai“€_diu )U&j] + n.c. (5.2.38)
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where

—G ] k+ dk

i_2 ey w i &g - = =B8]
W 3(A BA)WDjDaw(f Xgt 41t u)eBke

(5.2.39)

which vanishes on-shell.

At the 628 level this has the component

-,2.4(A-B)ixgo;’dy‘g‘nsingwg“bﬂw (5.2.40)

Comparing (5.2.37) with (5.2.40), one sees that with

24(A -B )i.=§%-(cf. (5.2.32) ) that improving the current

j;' leads to‘ji.

5.3 The N=4 Suganpuaneni in Supenspace

For the N=4 supercurrent multiplet, the lowest
k&
‘ J

The gauge invariant superfield constructed from wij and

dimension component is the auxiliary quantity d,

il that has this as 6 =6 =0 component is

Jijkl = tr (wijvk“ -4 5[11‘ ngwmnvmn)
(5.3.1)
Again this superfield has no clear geometrical
interpretation. Although Noether's theorem for N=4

supersymmetry would need an off-shell treatment of the

: N=4 supersymmetric gauge theory, it is possible by

. generalizing the N=2 result to write down a vector indexed

superfield that can be used in forming a conserved current

jai
~So consider the.vector indexed superfield

(3.5.4).
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= [y » By 19, (5.3.2)

Jad

This has the following expansion

i _=ta i
Ju j ou Jad 3
64 i, 64 a . i 1l ijaq k 64 = =Gi
= e 3 I A -8 - :
16 3 TUJ 3 (6 Jua 463 ekJua ) 3 i (Judae
1. .1i= =Gk 128 o v =i 1.i,0 v =
-z(SjJuake )+—3——(9j ade —ZGJ Bkoadﬁ
+ derivative terms | - (5.3.3)
It satisfies
i
I =0 (5.3.4)
Mo i _ '
aquj 0 (5.3.5)
and so .the supercharge
Qt, =Jd3xJ 1 | (5.3.6)
SN 0]
contains the charges for the theory
i _ 64 64 k di
Q ; .16 [ =3 TJ 51 (93 Qa 4‘6 o) - 1 (QdJ
1.1+ 128 =Gi 1 .i oM =6k
'Zédek ky 4428 (e oade 46‘]61{ Oug O )P
(5.3.7)
Jaaij also satisfies the simple relations
ai b -
D Jad i 0
p¢iy 3) -0 (5.3.8)
ad k o
as ¢an be shown as follows
ai - J __; AM al ij = ai n2 jm
D™ Jg k= 41053, D Ty T MR D, DD T
(5.3.9)

where
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ai 2 jm _ 4 ol i=jm
D™D Iy —§D W, DLW (5.3.10)

using the Bianchi identities (4.4.3). As (5.3.10) is

antisymmetric in i, j and traceless in i, k from

Diwjm%—eijm’nngwpn (5.3.11)

then both terms on the right hand side of (5.3.9) satisfy
(533'8)ﬂ

So again taking a linear combination of terms of the

form
superconformal powers of supercurrent
parameter ] [ 9,06 ] X [ Jadij ]
(5.3.12)
of the correct dimension
| 48 k j 8B _k

R ;
Jai 81906 1 T X Byt A2 das kT Xg By
© 3 a8, BB K . j g0k
B Jaa i A gt Xt 01 das 1 B Bk

u

+0.J 9 FhK i a6, FBk
_+02Jad k'F’ -BjijquDlJad i-é Bjkg u (5.3.13)

i where the products of 8's used here are

11,1 .1 2.2 .2 .2
u = 87 85 630, 65 07 65 07

& = ok
&, _ = b,

A Bij ~ -ar__i'aﬁ,ﬂ u

B.. =7,.3%y : | (5.3.14)
Bij T %4198 =4

Now imposing the conservation equation
ai . = —'dl_
D* jy * D3 =0 (5.3.15)

requires
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By = 0
D, =0

8iA; -C, = 0
8iA,-Cy =0
Ay -A, +BY = 0

(A1+A2)+(A1+A2

B

YE= 0

(5.3.16)

using the identities (A.14) satisfied by the superconformal

parameters and (5.3.8).

Simplifying gives

Al = A2 = A
Cl = 02 = 8iA
A+ A% =0 (5.3.17)
and so (5.3.13) can be written as
s - N J p0B Kk j 6B Kk j =6k
-3ai_A(Jadif BB +Jadkf BB +81J&l£ ugjk
j <6k
+817 .9, ¢ u_lgij) (5.3.18)
Again, defining
Ju'(x) = J de do .]U(Z) (5.3.19)
where_
1, (z)=.] () -1TEt  eiTiie L (5.3.20)

gives the ordinary space-time currents as before.

satisfies

It
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a“ju(x) =0 | (5.3.21)
~due to the conservation equation
T ai | P N

) Ju(x)-+D Jai(z).FDdi i (z)=0 (5.3.22)

From the expansion (5.3.3) and the expressions (A.13)
for the superconformal parameters one finds for (5.3.19)

that

i a i - =i V
3 +gi(x)J“a+JudiE (x) - £7(x) 0,

ey 15 j
Ju(x)-B c277 1A ( £y Tu v)

(5.3.23)
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CHAPTER 6 DISCUSSION

The first main result of this work is the extension
of theAmethods of [2fj‘used to derive the N=1 supercurrent
to the case of extended supersymmetry. Again one finds
vector indexed supercurrents arise with obvious geometrical
interpfetations. These superfields make a clear distinction
between the conserved currents which give rise to the
invariant charges upon integration over 3-space and the
auxiliafy quantities which occur only as derivatives and
not directly. When the 3-space integration is performed
to obtain the supercharge, the auxiliary quantities drop
out altogether. This has to be compared to the scalar
'supérfield where all the components, auxiliary as well as
. conserved currents, appear directly in the © , 0 expansion
on an equal footing.

o The second main result of this work is the study
ofAthe'off-shell constraints for N=4 supersymmetric
Yang-Mills theory. Here it is found that the two minimal
relaxations of the constraints of [20, 21]-give rise to
off-shell physical fields but it is shown for one of these
minimal relaxations that the auxiliary fields now satisfy
on-sheli type constraints. This leads one to consider
relaxing all the constraints except the conveﬁtional'
constraint. Here .the self-duality condition can be
applied énd when it is we can write down a Lagrangian
using a 1inear'Lagfange multiplier method.

This Lagrangian propagates fields other than those

of the physical multiplet (1 spin 1, 4 spin % and 6 spin 0)
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and so aVbids the counting arguments of [22] which ruled
out a quadratic Lagrangian for an off-shell representation
of.subersymmetry which propagates only the physical fields.
As in the case of CP_ models and the action I, of the
reléxedlhypermultiplet [23] » some of the propagating
fields have kinetic terms of the wrong sign. This is a
signal that they have to be eliminated by constraints.
In the .case of the relaxed hypermultiplet the addition
of a linear Lagrange muitiplier term 12 eliminates the
unwanfed fields. However, for the C?n model and also for
the caSe.of the N=/ supersymmetric gauge theory, the
additiénal fields have to be eliminated by a non-linear
Lagrahgelmultiplier, as suggested in [24].'
iHoﬁ such a non-linear Lagrange multiplier -can
eliminaté the unwanted fields from the Lagrangian is
shown in section 4.4 . From the components and supersymmetry
‘ ‘ , i.
and-Dﬁlj the components and supersymmetry transformations

transformations of the off-shell superfields wij » W

X33
of the non-linear Lagrange multiplier multiplet can be
obtained as the non-linear Lagrange multiplier part of
the action has to be invariant under supersymmetry.

A défailed analysis of the Lagrangian now needs to
be carried out to find out whether the fields propagated
by this Lagrangian are the physical fields alone. The
supersymmetrization of the non-linear Lagrange multiplier
term ofjthe Lagrangién also has to be studied further to

ascertain whether the Lagrange multiplier multiplet is a

"representation of supersymmetry.
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'Agﬁthe impossibility of finding an off-shell
representation whose Lagrangian is quadratic also applies
to other N> 3.supersymﬁetric theories [41], non-linear
Lagfange'multiplier terms may also be involved in the

.resolution of these problems.
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APPENDIX A  TRANSFORMATIONS IN SUPERSPACE

The infinitesimal superconformal transformations

" o= M- eH(g)
O _ a0 a
G'i = Gi - Ei(z)
i o gl _ g, (A.1)

can‘be obtained from the representation of the superconformal
‘algebra [ 42]. Defining

IR VRN . .a W o=6i . .0 u =i :
theﬁ”for N=1 supersymmetry the superconformal parameters

can be expanded as

u~. _ FU . L0 U =4 N TR a p =4
£(2) =€ (x) -21 8 (x) 0,48 +210 0,8 (x)+206 0,,8

1 _uvpA o =4

€’°‘~(v'>z.')' = £%(x) + 8 (%a“ £ (x) +ia) -%68 o“"s" FMCIE I
(A.3)

where

E‘W(X) =9, £,(x) -3, «Eu(,X) (A.4)

. "The infinitesimal transformations of the conformal

. group are

i}

o ‘ v 2
, + + ta x° - . .
E;_u(x.)‘ oyt X tex, ta, x 2(a x)xu (A.5)

uv
thgiadditional infinitesimal transformations

with w = m Wy whilst the superconformal group has

£%x) = g% - xV (no, )° (A.6)

where the parameters c ,3W,€E,a,£&,n and a correspond
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to the generators P,M,D,K,Q, S and Q(5) of the
superconformal group.

The superconformal parameters satisfy the identities

p* £4B - % aBp 0y

Do; fda=Aifd

pgd-o (A.7)
where |

g4 ='-—§-Eﬁ‘°‘ P (A.8)

From these one can derive the additional identities

@ = =¢ 1.
_D €a+Da€ ———53 fu

A e T LS

» 1 B —da_
au.g 43\)5 Ba =0 . (A.9)

For N=2 supersymmetry the superconformal parameters

can be expanded as
f”(z)=£“(x)-Aig.(x)o“ae"‘l+4lelo 74 (x)

o U &j i 1 uvpk a =&i
t36;0 557 ¢ 85 Ouaa 8

ad £+ 96 o] de

EpA(X)

G,y . b J43ie6i4 956 d
«.Ei(z.).—ci. x)+6 —68 u(x)6i+41€61+41€i

1 B GgHV @
—-g B u\)(x) + « o 0 ! (A'lo)
Now. the Superconformal parameters satisfy

ai dB 1 aBD fdy

D =5
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(A.11)

(e
|_l.
wy -
1
o

and so .

Dagi-U..E&i:l

H g
i~a ai 70 fu

a“f\’+a"f“-%g“\’apfp=o

a e] Grda 58 Enalel (A.12)

b % u
For‘NﬁA-supersymmetfy the superconformal parameters
'?PQ
P T _ M _ g g0 nogGi Loy <6i
fH(2) = gM(x) - 8i g (x) 0y T 48105 00,8 (x)

=i, ] ~
-306,] aone &5 “ZE 1 9yad @

el = g0 -l ed e et ot e (0 - ol ot (o
P o i (A.13)
.andgsaiisfy the identities
L Dai f&B =%€a8 Di fdy

D £0¢ =161

Diféj =0 | S (A.14)

-From”these, the following identities may be derived

9 EFHT g8 Opg O =0 | (A.15)
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APPENDIX B TRANSFORMATION PROPERTIES OF SUPERFIELDS

:_vlThé transformation behaviour of superfields under
the~suberconformal group can be expressed in terms of the
parémetersvof the superconformal group.

| qu an N=1 superfield that is a finite dimensional
repreéehtation and is also an irreducible representation

in its Lorentz indices

sv(z) = [ £4(2) D, -1a (DY £,(2) ) -5 (DE(x) -DE(2) )

iouv’ L .
+ > - - .
72 (Bufv(z) avfu(z)) V(z) - (B.1)
whefe*‘

| A _ aM ) = =4
£f°D, = f au+g D, +EyD
A, _ W == _1.u
DYy =03 f +De+DE=50" ¢ (B.2)

Ifldiis the scale dimension in momentum spacé then A=1id.
' Théjinteger p is the Y5 weight and MY is the representation
of‘the Lorentz generators that acts on the Lorentz indices
of V.

For a vector superfield ( without external indices )
tﬁen

s = p =0 (B.3)

. For. a superfield with external spinor index o or &
~ then

G L CAP N G LD L AP LN(: Y

R

"For a vector index

(")

=-i(6hey-e56r) (B.5)

pA
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For chiral superfields that satisfy DV=0or DV =0 then

"V self-dual ,A+2ip=0

- =" antiself-dual ,A-2ip=0 (B.6)

-For an_N=2 supeffield that is a finite dimensional
‘representation and is an irreducible representation in
"~ its Lorentz indices

5(s) = £4(2) Dy =30 (D £,(2) ) -3 (DE+DE)

1.3 o j__—- =i
-5b; (Dj £y Dajg ) | V(z) (B.7)
- where now
| A 01 = =0i
£°D, =f au+€i,Da—€aiD
AL, o au @i, = 243
D" f, =3 fu-Di£a+Dai£ (B.8)

"and.bij is the representation of the su(2) generators
that acts on the SU(R) indices of V. 1In the case of V
._being'é'Biof SU(2) (as in the prepotential (4.3.49) )

| then:(‘bA)BC is prOportional to €ABC where the indices

: 'A},B.,C =1, 2,3 and so that part of &V becpmes'

SR | N
8V, = -39 €)pg (D1g&-D1gkt ) Ve (B.9)

';wheréltA are the Pauli matrices.
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