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ABSTRACT 

Colliery tailings are laminated sediments which vary from coal-rich 

horizons of coarse sand size, to fine silt horizons composed mainly of quartz, 

illite and kaolinite. The proportion of finer laminae increases away from 

the inlet of the containing lagoon, although both fine and coarse bands are 

found everywhere in the lagoon. Coal itself has a low specific gravity and 

high friction coefficient, The density -increases and the shear strength 

decreases away from the inlet, Both the average coal content (47%) and 

friction angle (35°) are higher for tailings than for coarse colliery discard 

(14% and 31° respectively). 

The permeability of the contrasting laminae differs greatly, and 

consolidation and drainage in lagoons is therefore dominated by the 

horizontally laminated structure, Much of the water in lagoons drains 

laterally to the embankments. This water contains dissolved solids which 

reflect the groundwater chemistry of the Coal Measures at depth, being both 

saline and rich in sulphates. 

Overtipping lagoons with coarse discard is being used increasingly for 

waste disposal purposes. It is possible to overtip with a 1.5m high layer of 

discard using a D6 vehicle at a sediment shear strength of 3 KN/m
2

• However, 

2 
to include a safety margin, 4.5 KN/m should be the lower bound. An 

effective stress stability study of overtipping indicates that a desiccated 

surface is necessary; the operation cannot progress where supernatant water 

remains on the lagoon. In terms of liquefaction hazards, vehicle vibration 

levels are not high enough to be of concern. Similarly, measured gro~nd 

vibrations produced by explosives did not liquefy a lagoon being overtipped. 

It :Ls suggested that a 200-year return period earthquake will not cause 

problems in this respect. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The operation involved in winning coal generates a considerable 

amount of waste. Much of the waste from development roads in modern 

pits is segregated and taken out of the mine separately. The remainder 

is conveyed with the coal and is known as 'run of mine'. Prior to the 

Second World War the quantity of waste material in the run of mine was 

small, because the coal was sorted efficiently by hand at the face. 

In 1930, 200M tonnes of coal were produced with 7M tonnes of waste. 

Modern, mechanised mining techniques have produced a great increase 

in the output of waste. In 1966/67, 107M tonnes of coal were produced, 

with 50M tonnes of waste, of which 5M tonnes were fine discard. (Fine 

discard is described in the following paragraphs.) 

Probably the most common treatment for separating the coal is the 

jig washer, as shown schematically in Fig.l.l. The raw product is first 

separated on screens at 125mm; the material coarser than 125mm is crushed. 

Some fine coal is usually extracted from the -125mm fraction as a dry 

product for blending later. The -125mm run of mine is customarily 

treated in Baum jigs which separate coal from discard according to their 

relative densities. Clean coal from the jigs is separated from the process 

water by vibrating screens and de-watered in dryers. 

Small coal may be separated by froth flotation. The slurry of sand, 

silt and clay sized materials (- 0.5mm) remaining after the coal is skimmed 

off is known as tailings. 

The coarse discard from the jigs is separated from process water by 

draining in perforated bucket elevators and high speed vibrating screens. 

The coarse discard is then delivered to the tip at about 10 per cent 

moisture content. Dirty discard de-watering process 



Fig.1.1 Idealised flow chart of the production 
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and the tailings are treated with flocculents. Settlement in thickeners 

produces clean water for re-use and a thick, concentrated tailings pulp. 

Depending on whether there is a froth flotation plant in operation this 

is termed tailings or slurry, or collectively, fine discard. 

At this stage the fine discard has a moisture content of several tens 

to a few hundred per cent, depending on the details of the process. This 

fine discard may be disposed of in several ways (Fig.l.l). Quantitatively 

the most important is disposal by pumping into impoundments referred to 

as lagoons. This is the cheapest method of disposal; comparative costs 

are given in Fig.l.2. Alternatively, the slurry or tailings may be 

filtered under pressure, either direct or vacuum, to produce a product 

dry enough for direct placement on the tip (c.20 per cent moisture content). 

The material may be mixed with coarse discard for direct placement on the 

tip, which can have the advantage of improving the grading characteristics 

of the coarse discard. Cement stabilisation for direct placement on the 

tip is not quantitatively important at the present time. 

Lagoons themselves are composed of two parts. Firstly, there is the 

fine discard to be disposed of ; secondly, the floor and embankments 

required to impound the fine discard. The floor and the embankments 

may be composed of various materials depending on local circumstances. 

The lagoon may be excavated into the local country rock, thus having 

nat~ral materials for both the walls and the floor (see Fig~l.3.a). 

Alternatively, it may be formed in a valley with part man-made embankments, 

or on flat land with wholly artificially constructed-containing embankments 

(Figs. 1.3. b~d). Finally it may be formed on the tip, this having both 

walls and floor of coarse discard, commonly with a view to over-tipping 

to produce a composite structure (Fig.l.3.e). 

1.2 Previous work 

Since the Aberfan disaster in 1966, there has been considerable 
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Fig.1.3 Methods of lagoon construction. 5 
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research into the behaviour of tips and lagoons, MecKechnie Thomson and Rodin, 

(1972); National Coal Board ('Red Book', 1972). Work on lagoons has 

boncentrated on the geotechnical parameters. Lagoon sediments·were found 

to vary from highly stratified to relatively homogenous deposits. The 

grain size of the material ranges from coarse sand to clay, generally with 

a fairly high coal content and therefore low specific gravity. Taylor and 

Cobb (1977) give the average organic carbon content of lagoons as 38.24 

per cent. Lagoon sediments exist in a loose state, with high void ratios. 

National Coal Board (1972), Cobb (1977) and Taylor and Morrell (1978) quote 

void ratios from 0.4 to 1.4, with many values in the upper part of the range. 

In-situ vane shear tests (NCB, 1972; Cobb, 1977) have proved the deposits 

to possess variable but generally low undrained shear strengths. The 

vane shear strength is often below 40kN/m
2

J one lagoon.at Williamthorpe 

colliery possesses no material stronger than 1.5 kN/m2 in the top 8m of 

the deposit (NCB, 1972). Cobb (1977) showed that despite the variability 

of the in-situ shear strengths, much useful information may be extracted 

by comparing the results with various shear strength versus depth 

relationships. Laboratory shear strength tests indicate that the material 

has effective friction angles ranging from 22 to 40 degrees, with most 

values between 30 and 35 degrees. It is known that the coal content 

influences the. friction angle of coarse discard (Taylor, 1974); this 

effect may be present in fine discard also (Cobb, 1977). 

From oedometer tests, McKechnie Thomson and Rodin ~1972) found that 

lagoon material generally has very low coefficients of consolidation, in 

2 the range 2 to 30 m /yr. Cobb (1977) found that with the Rowe cell 

2 
values of up to 400 m /yr are measured. Tailings are g·enerally 

incompressible, compression indices ranging from 0,02 to 0.27 (NCB, 1972). 

Cobb (1977) also found that the compressibility of lagoon sediments remained 
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fairly constant across a lagoon. 

Few in-situ permeability measurements have been reported for lagoon 

deposits, despite a generally expressed preference for in-situ rather 

than laboratory measurements of this parameter. NCB (1972) find that 

-5 -8 
the in-situ permeability values range from 10 to 10 m/sec, but fail 

to find a correlation with the type of deposit. 

Previous work on the mineralogy and chemistry of colliery tailings 

has shown that the sediments consist of (in approximate order of abundance): 

days (fflite and kaolinite, the proportion of the latter increasing in the 

Northern coalfields, see Taylor and Spears, 1970), organic carbon, quartz, 

carbonates, pyrite and minor amounts of other constituents. The organic 

carbon is frequently the principal constituent, on occasion comprising up 

to 88 per cent by weight of the sample (Taylor and Morrell, 1979). 

1.3 Aims of the Current Investigation 

One of the maDor aims of this project has been to relate the shear 

strength and consolidation characteristics to the structure of lagoon 

deposits. In this respect a theoretical investigation of vane shear 

tests in layered media is outlined in Chapter 2. Ccne penetration 

tests are considered as an alternative tool for measuring strengths 

in-situ in Chapter 3. Chapter 4 is concerned with the fundament~! 

controls on the characteristics of lagoon sediments, namely the 

sedimentology, chemistry and mineralogy. The relationship of these 

fundamental controls to shear strength and consolidation parameters is 

investigated in Chapters 5 and 6. The in-situ permeability of lagoons 

is also investigated in Chapter 6 and the results used to investigate 

the drainage characteristics. 

Finally, overtipping is a practice that will logically be used O!l 

an increasing scale as planning pressures on tipping sites continue to 



increase. The bearing capacity of lagoon sediments and their behaviour 

with respect to liquefaction and drainage when overtipped is investigated 

in Chapter 7. Previous work has shown that fine colliery discard 

consists of the full range from sediments that liquefy readily to those 

that are very resistant to collapse under laboratory conditions (Kennedy, 

1971:; Taylor et al., 1978 Taylor and Morrell, 1979). This phenomenon 

is investigated in the field as well as in the laboratory in Chapter 7. 

1.4 Field Work Site Descriptions 

Laboratory and field studies have mainly concentrated on lagoons at 

8 

East Hetton Colliery (Northeastern Area, National Coal Board), Maltby (South 

Yorkshire), Peckfield (North Yorkshire) and Silverhill ("North Nottinghamshire). 

Minor parts of the work involve lagoons at Gedling (South Nottinghamshire), 

Oakdale (South Wales) and Orgreave (South Yorkshire). The locations of 

these collieries are shown in Fig.l.4. The four main sites are described 

below. 

1. East Hetton 

The lagoons at Easi Hetton are situated in a steep-sided, flat­

bottomed valley which was originally formed as a glacial overflow channel 

(see Fig.l.5). Superficial deposits are generally thin along the valley 

sides) a thin layer of recent alluvial material covers the valley floor. 

A drain allows the Kelloe Beck to run beneath the lagoons and its flow 

is supplemented by waste from the overflow towers in the lagoons. Lagoon 

109C was in use from 1950 onwards; in 1956/7 an embankment was constructed 

across the centre and the eastern wall raised to form lagoon 109B (see 

Fig 1.6). This continued to receive material until 1966 when lagoon 109A 

came into operation. In May 1977 repairs to the eastern bank of 109A 

3 
necessitated a temporary excavation in 109B which removed some 6500 m 

of material to a depth of 4m. This temporarily received material in the 



Fig.1.4 Location of fieldwork sites. 
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Fig.1.5 The lagoons at East Hetton. 
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summer of 1977, and subsequently was overtipped with coarse discard 

(Fig. 1.5). 

2. Maltby 

Lagoon No.6 at Maltby was chosen as the site for the overtipping 

operation described in Chapter 7. The lagoons are formed by building 

embankments from coarse discard both on top of the existing tip and 

abutting against its sides (see Figs. 1.7 and 1.8). The floor of lagoon 

6 is Lower·Magnesian Limestone covered with a red clay (varying from 0 to 

700mm in thickness). The lagoon is approximately 12m deep and was filled 

from October 1967 to late 1969, and again for aperiod of a year in 1971-72. 

The lagoon now receives the overflow of lagoon No.5. The small embankments 

in the lagoon were emplaced by Wimpeys Ltd. for site access for testing and 

sampling and are approximately 300mm deep. 

3. Peckfield 

Peckfield colliery works the Beeston seam, but also disposes of waste 

from Ledston huck colliery, which works theFlocktonThin and Middleton Little 

seams. The coal rank ranges from 702 to 802. Lagoons 6, 7 and 8 (see 

Fig.l.9) were dug into the local Lower Magnesian Limestone, the excavated 

material being heaped up to form embankments. The lagoons are 6m deep. 

They were filled with slurry from 1971 onwards; pumping continued 

intermittently until the summer of 1976, though by that time the lagoons 

were only receiving the overflow from lagoon 12. 

4. Silverhill 

Lagoon 16 at Silverhill is a cross valley type that abuts onto the 

tip of the shallow(~p stream) end. (see Figs. 1.10 and 1.11). It 

incorporates an older lagoon (No.l6A). On the north side of the valley 

the floor is a clay soil; on the south side the floor is a Coal Measures 

sandstone. The downstream embankment incorporates some internal drainage. 
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Fig.1.7 Sketch of the lagoons at Maltby. 
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Fig.1.9 The lagoons at Peckfield. 
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The lagoon was filled between April 1969 and September 1978, the maximum 

depth being 22.7m. The supernatant water is drawn off periodically into 

the overflow tower which connects with a culvert running beneath the lagoon. 

1.5 Methods of Testing 

1. Soils Tests 

The methods of testing standard soil mechanics parameters follow 

BS1377 (1975). The Casagrande apparatus was used for the liquid limit 

test; particle size determination in the silt size range was by the 

pipette method. 

Shear-box tests were performed using a Wykeham-Farrance 60 x 60mm 

shear-box. The choice of testing rates is described in the appropriate 

sections of chapter 5. 

Triaxial tests were performed using Wykeham-Farrance 5 ton triaxial 

equipment. Pore pressure measurement was by ~Blechromechanisms pressure 

transducers (model P721-0002), which were calibrated against a Budenberg 

Standard Test Gauge. Initially the pressure system (cell and pore) 

was a standard mercury pot system as described by Bishop. and Henkel (1962). 

Most tests, however, were performed with a compressed ai~ system which 

supplied pressure to the cell and pore water. In the case of the pore 

water, an interface was required to maintain the integrity of the de-aired 

water. Pressure regulation was accomplished with Norgren valves, type 

11-918-110. Volume change measurements were accomplished using a 

Wykeham Farrance volume change indicator (model 17083M). K0 tests (see 

Bishop and Henkel, p.l40) were performed with calipers about the centre 

of the sample; an Elechromechanisms a.c. L.V.D.T. gave a null indication 

of caliper movement (see Fig.l.l2). Resolution of this null indicator 

was approximately O.OOlmm. As a change of cell pressure during the test 

is required, the thrust on the proving ring was measured and allowed for· 
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(see Bishop and Henkel, p.l44). In all tests, the standard rubber membrane 

correction was applied (Bishop and Henkel, p.l67). 

Field vane shear tests were performed using a Farnell torsion head, 

and a rotation rate of 6 degrees per minute. 

discussed in chapter 2. 

The method of analysis is 

Consolidation tests were performed using either Clockhouse type J 50mm 

oedometers or Armfield 6 or 10 inch Ro~e cells with a mercury pot pressure 

system. 

2. X-Ray Chemical and Mineralogical Tests 

The equipment and methods employed are described in the appropriate 

sections of Chapter 4. 

1.6 Statistical Treatment of Results 

Statistical techniques have been used in this work where they are 

applicable. Most of the statistics ('t' tests, correlation coefficient, 

regression analysis) are described in Davies (1973). The linear regression 

technique used is the Reduced Major Axis method, in which both variables 

are assumed to be independent. The Fisher Least Significant Difference 

(LSD) Test is described by Till (1974) and is used as an alternative to 

the 't' test when the latter is not applicable. This condition arises if 

a variance ratio test (F test) indicates that the sample distributions are 

not from the same population. The Wilcoxon Matched Pairs Signed Ranks 

test, described by Siegel (1956), is applicable to paired data. It is 

used in Table 5 for strength data referring to matched depths in two 

separate profiles from the same lagoon. Significance levels for the 

various statisticswereevaluated by the standard methods described in the 

above references, except for the significance level of the correlation 

coefficient which is taken from Table VI. of Fisher and Yates (1948). The 

statistics were evaluated by hand on a Hewlett Packard model 10 programmable 
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calculator, or by FORTRAN programs developed by the writer. 

method was determined by the size of the data set. 

The choice of 

The multiple regression techniques referred to in Chapter 4 involved a 

17 

pre-written suite of FORTRAN programs, the Statistical Package for the Social 

Sciences (SPSS) which is described by Nie et al. (1975). 

1.7 Published Material 

Some of the work relating to overtipping (Chapter 7) has already been 

published as "An Investigation of Overtipping a Colliery Lagoon" by Taylor R.K., 

Kirby J.M. and Lucas J.M. in the International Conference on Engineering 

for Protection from Natural Disasters, Asian Institute of Technology, 

Bangkok, Jan.l980 pp.629-642; Eds. Balasubramanian A.S., Karasudhi P.and 

Kanok-Nukulchai W. 
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CHAPTER 2 THE USE OF THE FIELD VANE SHEAR TEST IN COLLIERY LAGOONS 

2,1 Introduction 

The vane shear test was first used between the wars, and gained widespread 

acceptance in the 1940's and 1950's. The test involves measuring the torque 

required to rotate a set of blades in the soil (see Fig.2.1); the torque 

is evidently directly proportional to the strength of the soil. The test 

is widely ,regarded as one of the best indicators of the in-situ strength 

properties of soils (particularly cohesive types). Use of the test in 

conjunction with laboratory testing programmes has led to considerable 

advances in the understanding of sampling procedures. 

these points is given by Cox (1965). 

A good review of 

The test was originally devised to measure the strength of soft, 

sensitive clays, and therefore is a measure of the undrained strength of 

a soil. Extension of the test method in frictional soils, i.e. the use 

in soils that will drain during the test, is fraught with difficulties in 

interpretation. Many authorities therefore regard the test as being 

useful only in clays (e.g. Cox, op.cit). However, Blight (1965) has 

demonstrated that the test can be used to give drained strengths of 

frictional soils. Aas (1965) pointed out that the use of at least two 

vanes of different shapes allows an interpretation of the shear strengths 

of a soil on a vertical and horizontal· plane~ Hence, interpretation of 

this apparently simple test becomes a complex affair. 

The loose and sensitive nature of colliery lagoon sediments makes 

them difficult to sample, and renders the samples obtained of dubious 

quality. It is quite easy, for instance, to liquefy a sample in a UlOO 

at any one of several sampling and handling stages. Use of an in-situ 

shear strength test is therefore an attractive proposition. The vane test 

is that which has in the last 14 years been used by the National Coal 
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Fig. 2.1 The vane. 
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Fig. 2.2 Possible stress distributions around a vane. 

a. Uniform b. Parabolic c. •rr ian gular 



Board. Although regarded as useful, the results from many tests carried 

out for the Board show a great deal of variation, and some difficulty has 

been experienced in extracting useful information (NCB,l972; Hughes and 

Windle, 1976). A previous attempt to clarify the position of the test 

placed much emphasis on varying degrees of consolidation to explain the 

variability of the results (Cobb, 1976). Increasing pressure to overtip 

lagoons makes proper interpretation of the test of great concern. In 

Chapter 7, all aspects of overtipping practice, including the use of vane 

tests, are investigated. The purpose of the present chapter is to 

outline some fundamental theoretical considerations. 

2.2 Theoretical Considerations 

Cadling and Odenstad (1950) showed that the soil fails as a cylinder 

around the vane, and analyses are universally based on this type of failure 

surface. Other possibilities may exist (Cox, 1965) but are not usually 

considered. The rate of shear affects the test, but a rate of 6 degrees 

rotation per minute is fairly generally accepted, and has been adopted 

throughout the present field testing programmes. Four points are dealt 

with here in greater detail. In order they are: 

l. The stress distribution around the vane; 

2. The use of paired tests to define anisotropy; 

3. Effect of drainage during the test; 

4. The effect of layering within the sediment(structural anisotropy). 

l. The stress distribution around the vane 

The simplestassumption is that the stresses at peak torqt~ are 

uniformly distributed around the vane blades (see Fig. 2.2.a). From 

consideration of shear-force/displacement graphs it is clear that 

the distribution of stresses at the ends of the vane will more closely 

resemple that shown in Fig. 2.2.b. The triangular stress distribution 
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(Fig.2.2.c) also appears frequently in the literature (e.g. Donald et al, 

1977). For vanes with a large height to diameter ratio the difference 
.f; ~t. 

between the/two assumptions, in terms of the (vertical) strength calculated 

from the torque, is small. However, fo·r vanes with a small height to 

diameter ratio the difference is critical. The assumptions of a curved 

or triangular stress distribution can be shown to give values of strength 

respectively ll% and.33% greater than the assumption of a uniform stress 

distribution along the horizontal edges of the vane (see for instance Aas, 

1967; Menzies and Mailey, 1976). Donald et al.,(l977$ show empirically 

that the curved stress distribution is the best answer. This may be 

readily verified by simple numerical integration of a shear-force/ 

displacement graph for various rotations until a maximum is obtained, 

as showri in Appendix 2.1. All results quoted herein assume this stress 

distribution unless otherwise stated. 

One question that remains largely unanswered in the literature is 

the state of in-situ stresses in the ground after emplacement but prior 

to shear. From:~ests carried out by the present writer it is believed 

that the average value of K for most lagoons is about 0.5 (Chapter 5.10). 
0 

Aas (1967) has shown that the value of K is indeed important. 
0 

However, 

the state of stress in the soil is altered by emplacing the vane (Hansen and 

Gibson, 1949) and the ratio of the horizontal and vertical stresses may no 

longer be K • 
0 

Since the amount by which the stresses in the soil are 

altered from the K condition is unknown, and may vary from soil to soil, 
0 

the vane must remain an empirical tool, useful on a relative basis. 

Absolute values of strength can be obtained only by comparing the test 

with undisturbed samples, or by back analysing failures. Bjerrum (1972) 

qompared the strengths derived by back analysis of failures in embankments, 

and showed that an empirical correction factor may be applied to the values 
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of strength from vane tests. This correction factor was derived for clay 

soils and becomes most significant in clays of high plasticity index. 

As will be shown in Chapters 4 and 5, lagoons contain a mixture of non-

plastic, sand-sized material, and silts and silty clays of low plasticity 

index. Consequently, this correction factor has not been applied to the 

results reported herein. 

2. The use of paired vane tests to define anisotropy 

Two or more vanes of different shape will have different combinations 

of torque from horizontal and vertical, or inclined, shear surfaces. This 

fact has been used to measure the anisotropy of soil by conducting vane 

shear tests with different vanes in the same soil horizon. Thus a set of 

simultaneous equations of torque are generated, which may be solved to 

give the strength of the soil on both vertical and horizontal surfaces. 

The method most commonly used is a graphical one originally devised by Aas 

(1965). The method was extended by Wiesel (1972) to cover the (usual) 

case of peak torque occurring on horizontal and vertical surfaces at 

different rotations. However, since readings have not been taken of 

torque vs rotation, this type of analysis has not been attempted here. 

A slightly different method developed by Blight (1972) explicitly 

solves the simultaneous equations. This approach has been used here, and 

a computer program written to accept field torque readings and print out 

both the vertical and horizontal strengths, and the ratio of the vertical 

to the horizontal strength. This ratio, which Blight called R, is the 

inverse of the ratio usually quoted for a Wiesel-Aas analysis. However, 

should be noted 
Sv 

R is directly proportional to K and is to it that - = , 
sh 0 

sh 1 a 1 
be preferred to the ratio = -

sv R K 
0 

Vane tests have been conducted in pairs in the present work at 
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several locations, the combinations used being shown in Fig. 2.3. Also 

shown in Fig. 2. 3 is a comb.ina tion never used in the field; the reason 

for its inclusion will be explained later. The equations used to analyse 

the vane tests are developed in Appendix A.~.~.The relative merits of the 

combinations will be discussed later in the chapter. 

3. The effect of drainage during the test 

The test was originally designed to be used in sediments of low 

permeability. No drainage would occur during the shear stage of the test, 

which is therefore a test for undrained strength. Pore pressures generated 

"""'~ by emplacement of the vane are assumed to have dissipated byjallowed a 

reasonable period to elapse before commencement of rotation. Furthermore, 

lack of a reasonable theory to account for the vane test in frictional 

soils (see Cox, 1965) retarded the extension of the test into such soils. 

However, as Blight (1965) pointed out, there is no reason why the test 

should not yield fully drained strengths of such soils. He therefore 

presents a method for estimating the degree of drainage during the test, 

However, because of the uncertainties of the stresses around the vane 

after emplacement, it cannot be assumed that the slope of a vane strength 

versus depth graph gives an angle of friction for the soil, in the 

conventional manner of Fig.2.4. 

It will be shown that lagoon sediments are a mixture of clays, 

silts and sands. The value of c·v for a "type" clay typically would be 

2 2 . 2 -
10-30m IYF.· (see Chapter 6), a silt l00-300m /y~,and ~ sand >1000m /yr 

Three diameters of vane have been used in the field, these being 75mm 

lOOmm and 150mm. Taking typical time intervals to failure as being 

between 5 and 10 minutes, degrees of drainage can be estimated from 

Fig. 3 of Blight's (1965) paper. Table 2.1 shows the degree of drainage 

for the vanes used herein, for the c values indicated above. 
v 

It can be 



Fig. 2.3 The palrs of vanes. 

a. Pair 1 , used ~n the field 

with D=75mm. 

c. Pair 3, not used in the field. 
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b. Pair 2, used in the field 

with D=75, 100, 150mm. 

d. Pair 4, used in the field 

with D=75mm (H=2D), 

D 100, 1~)0mm (rUamond). 



Table 2.1 Degree of consolidation ( U ) for vane tests, taking 
c 

time to failure as 10 minutes. 

2 u% c (m /yr) 
v c 

Diameter of vane 

75 mm 10 5 
30 25 

100 67 
1000 100 

100 mm 10 4 
30 15 

100 46 
1000 99 

1~0 mm 10 0 
30 6 

100 19 
1000 95 

Fig. 2.4 Strength -depth relationships from vane tests. 

Depth 
0 

c Shear strength, T 

Note. c,~ parameters cannot 

be derived thus. 

25 



seen that the test is carried out under the full range of conditions from 

fully drained to completely undrained. However, as any field failure of 

the soil would probably occur under a similar range of conditions this is 

not necessarily unrealistic. In any event, since the c of a thin 
v 

stratification or layer is not known in advance, it is not feasible to 

preselect the rate of shear as suggested by Blight (op.cit). 

4, The effect of layering within the sediment 

The following distinction is necessary: 

a) Structural anisotropy is the presence of layers within the soil 

which can be differentiated from one another on any given criterion (e.g. 

grading, permeability, etc.). 

b) Strength anisotropy is the property of an individual layer 

having different strengths on planes of differen.t orientations. 

The fact that many colliery lagoons are layered is well known (Hughes 

and Windle, 1972; McKecknie Thompson and Rodin, 1972; Taylor and Cobb, 

1977). Figure 2.5 shows the layering found at East Hetton colliery, one 

of the lagoons studied by the writer. Since even a vane of small height 

will probably affect more than one layer in many of the tests conducted, 

the effect of layers must be taken into account. 

In lagoon number 7 at Peckfield Colliery, 81 paired vane tests were 

carried out using vanes of the combination shown in Fig.2.3.a, with the 

diameter being75mm for each vane. This pair; was chosen following 

Blight (1972). However, R values derived from the equations of torque 

outlined in Appendix 2.2 were extremely variable and were often negative 

(see Fig.5.8). UlOO samples from this site taken during the early stages 

of testing revealed the fine nature of the layering and it was 

consequently decided to use vanes of similar heights because it was 

believed that these might produce "better" R values. The pair chosen 
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Fig.2.5 The layering in a U100 sample taken from lagoon 109B, 

East Hetton. 
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is shown in Fig.2.3.b., the diameter being 150mm. The R values were 

almost as variable as before (see Fig.5.8). 

In the light of these results a computer simulation model was devised, 

with the intention of deciding the optimum vane pair for testing highly 

la~ered sediments. The model simulates paired vane shear tests conducted 

in soils of specified strength properties. The torques of the vanes are 

calculated according to equations 17 and 18 in Appendix 2.2. These torque 

values are then substituted in the equations for determing R (equations 19 -

22). This R value can then be compared to the SvfSn ratio of the soil as 

defined at the outset. A flow chart of the program is shown in Fig.2.6. 

It is seen that in a structurally isotropic soil, the strength properties 

calculated will be the same as those defined (i.e. R = R . ). 
calc def1ned 

However, when a soil boundary is introduced this is not necessarily so. 

Fig.2.7 shows that the H=2D vane would have a very high torque when 

compared to the II= D/3 vane, thus the parameterX(equation 5, Appendix 2.2) 

will be large, and hence R from equation 19 will be large (in fact it is 

17.7 for the case considered). However, each individual layer actually 

has a value of R=l. Referring again to Fig.2.6, it can be seen that the 

computer program is an extension of this simple exercise to cover many 

combinations of vanes and soils, with soil boundaries placed in many 

positions with respect to the vanes. The vane combinations are those 

shown in Fig.2.3; vane pairs 1 and 2 had already been used in the field 

vane pairs 3 and 4 were under consideration for future use. Pair 3 

would shearon nearly ·similar surfaces, while pair 4 consists of one vane 

measuring nearly vertical strength and the other measuring nearly 

horizontal strength. Shown in Fig.2.8 are the positions with respect 

to the vanes at which it was considered that there might be a soil 

boundary. As a further variation the possibility of vanes being 

emplaced at slightly different depths was also considered (see Fig.2.9). 



Fig.2.6 Flow chart of the vane simulation program. 
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l Start j 

1 
Define arrays 

Set population counters to 0 

Define Sh and s values 
v 

,y 

For each vane: 

1 Determine the- amount of the vane in each layer 

2 Calculate torque contribution of each layer 

' 3 Hence calculate total torque and place answer in 

array element for each vane 

4 Increment element counter 

l 
Change boundary position 

...__ 
11 possibilties 11 

L l 
Change value of S v 

9 possibilities 99 

1 
Offset vanes 

,___ 
3 possibilities 297 

L 
_l 

1 layer boundary / 2 layer boundary 

2 possibilities 594 

L t 
Change Sh 

3 possibilities 1782 
J 
.L 

For each layer 

1 Calculate torque ratios (values of X) 

2 Hence calculate R values 

' 3 Increment appropriate range of R population 

frequency by 1 

J 1782 possibilities ..J, 
Print frequency distribution 

l 
l Stop J 



Fig. 2.7 A vane test in different layers. 

·A 

. . s =2 • v . 

s =1 -
B - h -

- -I S~o:-
A 

.. 

2 3 
T= nD H.S + nD.Sh 

-2- v 7 
2 3 

T= nD H.S + nD.Sh 
-2-.- v 7 

Eliminate n for convenience, and let H of D/3 vane be of unit 

length, i.e. D=3, Hof H=2D vane is 6. 

T= 27.2 + 27.1 + 27.2 
2 2 7 

or, T::-: a + b + c 

where a-is the vertical streneth of layer A 

b is the vertical strength of layer B 

T= 9.1 + 27.1 
2 7 

T= b + c 

c is the horizontal strength at the top and bottom edges 

T= 48.2 

Hence, from equation 5,Appendix 2.2, X=5-77 

From equation 19, Appendix 2.2, R=17.7 



Fig. 2.8 Soil boundary positions. 

a. two layer case 

b. three layer case 

Fig.2.9 The offsetting of vanes. 

- - - -- -

11---

10--
9--
8--
7-

positions of a 
soil boundary 

·6 
1 

~-11r-.--- plane of ------------

A 

B 

A 

B 

A 

- - - -. 

symmetry 

mirror image of 
above 

-

Taking the height of the H=D/3 vane as a unit length, the 

offsets are 0.2 and 0.4 unit lengths. With a vane of D=7.5rnm this 

i.Es equivalent to 5mm and 10rnm respectively. 
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Shown in Fig.2.10 are all the possib·le ·soils used in the model. The 

nine soils depicted in Fig.2.10 were put through all the possible 

combinations of AB and ABA layer cases shown in Fig.2.8, except that 

·for each AB pair, one of the soils always had S =1. 
h 

a total of 1782 possibilities (see Fig.2.6). 

There are thus 

The population of R values that is calculated from this exercise, 

compared to the population that was specified at the outset should given 

an indication of the ability of each vane pair to define the strengths 

of structurally anisotropic soils. The frequency distribution of both 

the input population of R values, and the calculated values are shown in 

Fig. 2 .ll. a-d. The following points arise: 

a) Pair l There are a large number of values outside the range 

0.0-7.0, which reflects instability in the analytical equations. In 

this simple exercise the probability of such a value is approximately 20%, 

which ties in with the field evidence. 

b) Pair 2 This pair apparently reflects the input population 

very well, and seems to be the best pair within the limits of the model. 

c) Pair 3 This pair reflects the input population very faithfully 

indeed, except for the high ~roportion of spurious values (approximately 

25% of all values). Close inspection of specific cases reveals that 

this occurs when the vanes are offset (i.e. not exactly in the same 

layer in equal proportion). 

d) Pair 4 This pair is moderately successful, with no wild values, 

but there is a spread around the true values. 

On the basis of this model, pair 2 is the best choice, followed by 

pair 4. 

A slightly different light is shed on these results if the strength 

ratio is considered rather than the torque ratio (i.e. X in equation 5, 
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Fig.2.10 The nine soil types, schematic representation. 
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Fig. 2.11 Frequency distributions of R ( input and output ) from the vane simulation program. 
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Appendix 2. 2). Thus, for the parabolic stress distribution, for the 

H = 2D vane Save 
7 l 

= - s +- s l 8 v 8 h 

2s 
6 . 

+- s 2 13 v 13 h 
H = d/3 save· 

dividing 
s 
. ·ave 2D 

sa.ve D/3 

7 l 
= y =- s +- s 3 8 v 8 h 

7 l 
l3sv + 13 s h 

substituting R S = S , and solving for R 
h v 

R 
.§.y_.!. 

= 13 8 
Pair l 

4 
7 :f. 

8 13 

similarly for pairs 2-4 

2 
cos a.- 6Y 

R 13 Pair 2 5 
7Y - sin2 a. 
13 

6 .!.Y 
R 13 13 

= 
9Y 7 

Pair 3 6 
-

13 13 

2 l 
cos a. y 

8 
R = 7 2 - sin a. Y 

8 

Pair 4 7 

Equations 4-7 are plotted in Figs.2.12a-l2d. Had these equations 

been used in the simulation, the results would have been the same, of 

course. However, inspection of Fig.2.12 shows that Pair 4 should be the 

best combination for resolving strength components. With the other three 

pairs a small error inY (e.g. produced by operator error, or emplacement 

of the vanes to different depths), produces a very large error in R. 

However, for pair 4, the slope of the graph approaches an ideal l:l slope, 

and the results are thus insensitive to operator error, etc. 

This approach, combined with the computer simulation, leads to the 
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following conclusion. From the field results, pairs 1 and 2 are known 

to yield variable results, and from Fig.2.12 can be seen to be very sensitive 

to small errors in reading; the simulation also showed pair 1 to yield 

variable results. Pair 3 also yields very variable results in the 

simulation, mainly because it is very sensitive to the exact relative 

emplacement depth of the two vanes. From Fig.2.12.c it would be 

expected to be very sensitive to operator error; no field tests were 

ever carried out with this pair. Pair 4 gives fairly variable answers 

in the simulation, but Fig.2.12.d suggests that it should perform better 

than the others. 

No field tests had been performed with this pair specifically, however, 

the tests with pairs 1 and 2 at Peckfield had been carried out at coincident 

depths, although separated in time. As no great fluctuations of the water 

table were observed in piezometers monitored over this period, it is 

considered reasonable to combine the results of the H=2D vane and diamond 

vane. Values of R calculated for this pair show none of the extreme 

variability associated with pairs 1 and 2 (see Fig.5.9, Chapter 5). The 

vertical strength measured by this pair is that across layers, while the 

horizontal strength is the strength in a single layer, which accords with 

expected failure modes in a layered material. For these reasons, pair 4 

was generally adopted for later work involving paired tests. 

While installing a piezometer at the outlet end of lagoon No.6 at 

Peckfield, a particularly hard layer had been noticed at a depth of 880mm 

in a region where the sediments were generally very weak. A small series 

of vane tests was conducted in this layer in an attempt to produce 

experimental verification of the computer simulation model. It was 

intended to use the H=2D, H=D/3 and diamond vanes, but the H=2D vane in 

this layer exceeded the capacity of the torsion head. Only the two smaller 

vanes could therefore be used. There were 11 individual tests in this 



series, and in each case the depth to the hard layer was measured. The 

contoured map is shown in Fig.2.13. The steep gradient of the layer 

(approximately l in 3) is obviously related to the greater consolidation 

settlement of the deeper layers away from the side of the lagoon, The 

exact profile of the hard layer was established from UlOO samples, and is 

shown in Fig.2.14, along with the various parameters established in the 

laboratory. The grading curves are shown in Fig.2.15. Each layer 

vas intrinsically nearly isotropic (R=l) from the shear-box tests. 

The vane tests were conducted at various depths of penetration 

into the hard layer itself, as shown schematically in Fig.2.16. Also 

shown on the figure are the R values obtained from the field tests and 

by calculation using the strength parameters shown in Fig.2.13~ The 

match of the two sets of R values is not good, mostly due to the presence 

of the small upper hard layer. This was not noticed at the time of the 

field tests. Bearing in mind how critical the exact placement depth is, 

tests l, 3, 4 and 6 show reasonable agreement of the measured and 

calculated values. This short experiment does not directly verify the 

computer simulation model, but it shows very reasonably how important 

layering is when conducting paired vane tests, even under carefully 

monitored conditions. 

2.3 Conclusions 

The nature of lagoon sediments renders the vane shear test a very 

useful empirical tool in site investigations. Theoretical uncertainties 

about the state of stress around the vane produce difficulties in 

relating the vane test to standard strength (c,¢) parameters in colliery 

lagoons, .The vane test will take place under the full range of conditions 

from drained to undrained, but this will also be true of any failures 

.:~ 



Fig. 2.13 Depths to the hard layer in lagoon 6 at Peckfield. 
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Fig. 2.14 The hard layer. 
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Fig.2.15 Coarse and fine samples from the outlet of lagoon 6, Peckfield. 
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Fig.2.16 Vane tests in the hard layer of lagoon 6, Peckfield. 
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(e.g. standing excavated faces or embankments). 

The layered nature of lagoon sediments also makes for further 

difficulties in resolving vertical and horizontal strengths by the 

paired vanetest technique. In conjunction with field testing programme, 

the computer model which was devised allows a rational choice of the 

optimum vane pair for testing this type of sediment. The H=2D vane and 

a diamond vane with H=iD were found to be well suited to this task. 

Although it is difficult to relate vane shear strengths to c,~ 

parameters on a theoretical basis, it is possible to establish empirical 

relationships. These will be considered in Chapter 5. 
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CHAPTER 3 THE USE OF CONE PENETRATION TESTS IN COLLIERY LAGOONS 

~l Introduction 

The limitations of vane shear tests in colliery lagoons (to whit, 

uncertainties concerning drainage, state of stress and the number of 

layers being sheared) led to the idea that a penetration test might be 

more useful in assessing the strength of these deposits. 

Penetration testing is of two main types, dynamic or static, The 

former involves driving a penetration device by means of hammer blows 

for example. This type of test was discounted as being unsuitable for 

layered media with large variations in shear strength. Static penetration 

testing involves measuring the force required to advance the penetrometer 

at a constant rate. The test is usually performed with a 60 degree cone 

2 with a base area of lOOmm , although there is a lack of standardisation 

in cone testing (Begemann, 1974; Holden, 1974; Zweck, 1974). 

3.2 Field Testing Rig (Mark l) 

The requirements for a cone penetrometer for use in colliery lagoons 

are as follows:-

1. It should be lightweight, due to the difficulty of movement on soft 

sediments. 

2. It should generate only a small penetration resistance, as a great 

surface reaction (weight) cannot be supplied. In other words the cone 

tip and rods must be of small diameter. 

3. Since, in general, commercial devices do not fulfil the first two 

criteria, it was decided to manufacture at Durham a device to assess the 

possibilities of penetration tests. Cheapness and ease of manufacture 

were also important for the preliminary device. 

It was further decided to use two cones with different tip angles 

to assess the effect of this parameter. Accordingly a 60 degree cone 
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was not used initially, but one of 30 degrees and one of 9-0 degrees. 

A suitable platform on which to stand any device existed at Durham 

in the form of the field vane platform. It was further decided to use 

the_torsion head and tripod as the driving mechanism for cone penetration. 

With reference to Fig.3.l the vane torsion head twists a dummy vane rod 

"' which draws in the pull wire. This in turn pulls dow~rds on the top 

of the proving ring, which then registers the force required to cause 

downward displacement of the rods and cone. The guide rails ensure a 

correct line of penetration, and are bolted to the vane tripod platform. 

The cone extension rods themselves are of l6mm stainless steel, this 

being a suitable commercially available size. The extension rods provide 

a penetration capability of up to 6m. A wire supports a weight from 

the top of the guide rail gantry, which counter-balances the weight of 

the proving ring plus extension rods. Thus there is no net downward 

force on the cone tip other than that registered by the proving ring. 

The complete device is shown in Fig.3.2. 

Downward penetration resistance as measured by the proving ring in 

fact consists of two parts. Firstly there is the actual resistance at 

the cone tip, and secondly there is the resistance due to skin friction 

along the extension rods. The value of the skin friction was measured 

upon retraction of the rods (the proving ring being calibrated in tension 

for this purpose). It is assumed that the skin friction is a remoulded 

value on both insertion and retraction, and therefore the resistance to 

retraction is subtracted from the total penetration resistance to derive 

the net cone resistance. This assumption was considered adequate for the 

feasibility trials. 

The penetration rate that was adopted for all trials was 40mm/minute. 
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Fig.3.1 Schematic diagram of the cone penetration apparatus. Essential parts only are shown; not to scale. 
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Fig.3.2 The penetrometer rig, mark 1. 
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Faster rates were difficult to achieve, and at this rate readings 

could be taken manually at lOmm intervals. The resolution of the stress/ 

strain readings was thus very good, but in view of the assumption stated 

above the graphs derived from work with this device should not be viewed 

as reflecting the same degree of accuracy as the precision with which 

they are drawn. 

3.3 Field Penetration Results 

With this penetrometer tests were performed in lagoon 109B at East 

Hetton Colliery (North East Area, NCB) and Lagoon 6 at Maltby Colliery 

(South Yorkshire Area, NCB); Taylor, Kirby and Lucas, 1980. The former 

was a straightforward feasibility study, the latter was linked to the 

overtipping exercise described in chapter 7. 

The location of the tests at East Hetton are shown in Fig.3.3. 

Cone pentration tests and vane shear tests were performed at each location. 

Logs were also obtained, based on UlOO's recovered at each location. 

Figures 3.4, 3.5 and 3.6 show the profiles so obtained. It can be seen 

that the penetration resistance per unit area (curved surface area of the 

cone tip) is generally greater for the 90 degree cone, though the actual 

resistance load of the 30 degree cone is the greater. The 90 degree cone 

is apparently the more sensitive to fluctuations in resistance to 

penetration. It can further be seen that the lagoon is more layered 

with respect to penetration resistance at the inlet (location A, Fig.3.4) 

than it is nearer to the outlet (location B, Fig.3.5). This feature is 

probably linked to the more plastic, clay-rich nature of the sediments 

nearer to the outlet, which is reflected in the logs. Table 3.1 shows 

that there are considerably more fine grained layers at location B than 

there are at either of locations A or c. The lagoon sediments are 

extremely layered, stratifications being no thicker than 40mm on avera~~. 
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Explanation of symbols used in Figs.3.4-3.6. 
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Scale A- load per curved surface area of the cones. This scale 

is not standard, as resistance is usually quoted in 

terms of the base area of the cone. However, this· 

scale has been shown in order to compare the two cones 

and also for comparison wi.th Vesic 's( 1972) theory of 

cavity expansion (see sectio~s 3.5 and 3.6). 

Scale B- load per base area of the 90 degree cone. 

Scale C- load per base area of the 30 degree cone. 
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Fig.3.4 Penetration resistance at location A, East Hetton. 
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Fig.3.5 Penetration resistance at location B, East Hetton. 
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Tabl~ ·3~·1. Eq~t. Hetton lagoon 109B, borehole logs. 

Location 

A 

B 

c 

Borehole 
depth m 

2.60 

1.44 

2.93 

·Recovered· -
ler{g-th: 'irt: ... 

1.55 

1.29 

1.79 

Percentage 
.recovery 

59. 
'-.:. 

89 

61 

Disturbed 
length m 

0.24 

· .. 

0.16 

0.0 

Total undisturbed 
recovery m 

1.31 

1.13 

1. 79 

•••••• of which 

Fine =28% 
Medium Fine =19% 

Medium =14% 
Fine/med/coarse =10% 

Med coarse =10% 
Coarse =19% 

Fine =59% 
Med fine =15% 

Med =10% 
Med coars~ .=8% 

Coarse =8% 

Fine =22% 
Med fine =38% 

Med =23% 
Med coarse =2% 

Coarse =15% 

N.B. Fine, medium and coarse represent a visual log. Fine approximately represents a silty-clay, 

medium represents a medium to coarse. silt, coarse represents a medium to coarse sand. 

average no of 
units per m(all 

types) 
22 

(NB many 
contained 
further 
subdivisions) 

22 

17 

\J1 
1\) 
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This :feature precludes sensible correlations with the penetration resistance 

profiles. The problem is exacerbated by the tendency of the cone rods 

to deviate from a vertical line. This tendency is seen in the profile 

for location C (Fig.3.6) where the 90 degree cone and 30 degree cone 

record "apparent" depths 80mm apart for a hard band just below 3m depth. 

The finely layered nature of the lagoon also causes the correlation between 

the shear strength as measured by the field vane and penetration resistance 

to be very low. The correlation coefficients are given in Table 3.2. 

The testing programme at Maltby also involved the same penetration 

device being used in conjunction with vane shear tests. Time permitted 

only one cone to be used; the 30 degree cone was adopted because it was 

felt that it would enable gross changes to be more readily assessed. 

The cone pentration resistance and vane shear strength profiles are given 

in Fig. 3.7. It is apparent that over the depths of interest the sediments 

at Maltby are far weaker to both shear strength and penetration resistance 

than those at East Hetton. However, the increase in strength with depth 

at Maltby is more pronounced than at East Hetton. The greater depth 

of testing, and consequently greater importance of overburden effects 

probably accounts for the higher correlations between vane and cone tests 

at Maltby (see Table 3.2). 

3.4 Field Testing Rig (Mark 2) 

The results discussed above were of a preliminary nature, but were 

felt to be sufficiently encoura.ging to undertake a second phase of study 

with an improved penetrometer. The details of design are explained by 

Peace (1980); it is sufficient to note here-·that the tnajor difference~ are:­

a) the resistance to penetration is measured at the cone tip by an 

electrical load cell. This is both more accurate and eliminates the 

problem of measuring the skin friction. 



Fig.3.7 Vane shear strength and cone penetration resistance, lagoon 6, Maltby colliery. 

a. Profile 2 

Vane shear strength kN/m2 

0 40 

4( 

• )( 

1 
•J( 

•k 

2 •x 
__3( .. )C. 

«. 
3 . .(. 

X• 

4~ » 

5 

6 

)(• 

X • 

)( . 
e)( 

~ 

X 

• 

Depth m 

• 

1C H=2D vane , peak 

Cone resistance kN/m2 

0 800 

• Diamond vane, peak 

·b.Profile 1 

2 Vane shear strength kN/m 
0 40 

·X. 

1J t( 

)t y -)(. . 
2~ 

• X 

•X. 

31 • X 

.)( 

• X. 
4~ 

• )t 

. )( 
51 ,. 

J( • 

• .. 6i 
• )( 

Depth m 

30 degree cone 

Cone resistance kN/m2 

0 800 

':C-

-+Rod change on cone 



b) the size of the load cell necessitated rods of 25mm diameter being 

used. 

c) although the same guide rails were used as on the previous rig, the 

va1e apparatus was replaced by a hand winch, as the driving mechanism. 
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This enabled much faster penetration rates to be achieved. The penetration 

rate varied from 0.6 to 4cm/sec., compared to 4cm/min. in the previous trials. 

With this improved cone penetrometer, Peace (op.cit) conducted a 

series of tests in East Hetton lagoon 109B. Three tests were conducted 

in a first series of trials, andnine in a second series, spaced at 1.6m 

intervals in the directions indicated by Fig.3.3. It is apparent from 

Fig.3.8 that a much higher resolution of resistance is obtained by the 

improved penetrometer, compared to the original design. Correlations 

between the two are poor, but it should be pointed out that a full year 

had elapsed between the twq sets of trials. A major difference between 

the profiles produced by the two types of rig in the base penetration 

lin~ which shows very little variation with depth in the case of the 

improved rig. This casts doubt on the assumption mentioned previously 

with regard to skin friction; to whit, that it was equal upon insertion 

and retraction. 

The second series of trials by Peace {op.cit.) are reproduced in 

yig.3.9., which shows a traverse from mid-lagoon (profile 1) towards 

the outlet (profile 9). It can be seen that the material is becoming 

weaker, and more homogenous with respect to strength. It is reasonable 

to assume that this is due to an increase in the proportion of clay 

towards the outlet. It can also be seen that layers are not continuous. 

The clearest example of this (though many exist) is found at a depth of 

3 .Om. Profiles 3 and 4 display a very strong layer at this depth, which 

is weaker in profiles 1,2,6 and 9 and is absent altogether from profiles 

5,7 and 8. Only three factors could account for this; either a change 
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Table 3.2 Correlation coefficients for vane shear tests and 

cone penetration tests. 

East Hetton 1 
Maltby2 

Vane 
Cone 

Diamond H=D/3 H=2D Diamond H=2D 

30 degree tip 0.006 0.382 0.622 0.486 0.440 

90 degree 

(99-9) (95) (95) 

tip 0.227 -0.097 0.242 

Upper figures are product moment-correlation coefficients. 

Figures in brackets are significance levels. 

1 East Hetton based on 21 tests for aech value. 

2 Maltby based on 26 tests for each value. 

Table 3.3 .Correction factors from the field cone penetration 

and vane shear test results. 

C t . . f t cone resistance*- depth x density orrec 10n ac or= h - -vane s ear strength 

(After Lunne et. al., 1976) 

East Hetton 1 Maltby2 

Vane 
Cone 

Diamond H=D/3 H=2D Diamond H=2D 

30 degree tip 87 (mean) 70 52 132 119 
43 (a) 32 19 48 53 

90 degree tip 50 44 35 
17 23 13 

*·In common with usual practice the resistance is taken as 

the load per unit base area. 

1,2 As for Table 3.2 above. 



in density (possibly due to desiccation); secondly, a change in the 

grading and material type within a layer; or thirdly, the layer might 

pinch out altogether towards the outlet. The first possibility is 

unlikely, as desiccation tends to affect large areas of a lagoon for 

similar time periods, and certainly there would not be another strong 

layer nearer to the outlet in profile 9. It is possible that the 

placement density could vary, but this is unlikely to produce a change 

in penetration resistance of a factor of ten between profiles 4 and 5. 

The second possibility not feasible in terms of sedimentary processes. 

The most likely alternative is that the layer dies out. 

numr~ rous examples of this happening in the nine profiles. 

3.5 Interpretation of Static Cone Penetration Tests 

There are 

In the previous section, penetration profiles from colliery lagoons 

were briefly analysed on a~qualitative basis. This section reviews the 

possibilities for more thorough interpretation of the test. 

There are many methods of interpreting the results from static cone 

tests. A commonly sought parameter is a compressibility modulus, to 

be used in the computation of immediate settlements in sandy soils. 

Bachelier and Parez (1965), De Beer and Martens (1957) and Schultze 

and Metzer (1965) are amongst those who present methods for determining 

immediate settlements of foundations from cone test data. These are 
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all for frictional (i.e. c=o) soils, and as such are not readily applicable 

to lagoon,deposits. 

any case. 

Immediate settlements are not of much interest in 

Shear strength parameters have been derived from cone penetration 

tests by a number of authors. De Beer (1948) derives a method for 

estimating c and¢ values. Begemann (1969), based on De Beer's method, 

shows that for clay soils (¢=o): 

shear strength - cone resistance/14. 



Begemann (1965) also presents a method whereby measurement of the 

skin friction developed allows classification of soil types to be 
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performed in-situ, and c,~ values obtained. Durgonoglu (1972) utilises 

bearing capacity factors to derive c,~ values, but states that the method 

is not valid for compressible soils, although an approximate correction 

is outlined. Durgonoglu (op.cit.) shows that it is possible to use 

results from two tests with different cones to derive c,~ parameters. 

Application of the method to the East Hetton results does not yield 

sensible answers (cohesionis often negative). 

All these approaches are based on bearing capacity factors derived 

theoretically from observed failure surfaces beneath model wedges or 

strip footings (see Fig.3.10). No failure surfaces have been observed 

for cones (see Durgonoglu, .. op.cit.·; and Durgonoglu and Mitchell, .. l975). 

The extension of the theory to cone tests is justified by the use of 

empirical shape factors according to some authors (e.g. Durgonoglu and 

Mitchell op.cit.). 

A different type of approach to that outlined above considers empirical 

methods. Plantema (1957) showed that density is an important factor 

influencing the results. 

clays: 

Lunne et.al. (1976) show that, for Norwegian 

vane shear strength ~ cone resistance /17 

This is based on a large number of field tests (cf. a factor of 14 

from Begemann, 1969 ). Calculation of this factor for the East Hetton 

and Maltby data yields the results shown in Table 3.3. The high standard 

· deviations reflect the fact that the correlation between the vane shear 

strength and the cone penetration resistance is poor. Tne values of 17 

(Lunne et.al.) and 14 (Begemann) assume a 60 degree cone, and a vane of 

H=2D shape (Lunne et.al.), and refer to soils unlike the sediments found 
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in colliery tailings lagoons, so direct correspondence with Table 3.3. 

is not expected, Indeed, the values calculated in Table 3.3. are 

markedly higher than these calculated by Lunne et.al. It is significant 

that the values in Table 3.3. are different for the Maltby results, when 

compared to East Hetton, and it must be concluded that this empirical 

approach is not reliable when applied to colliery lagoons. The 

unreliability of the approach in general was pointed out by Billam (1977). 

A different approach is adopted by Vesic (1972) in a theoretical 

study of the stresses around a cavity expanding into a soil that is 

@verned by a limiting equilibrium. The case of expansion of a cylindrical 

cavity is applicable to conepenetration tests. No discrete failure surface 

is assumed, rather a plastic zone at limiting equilibrium within a zone 

of elastic deformation, Fig.3.ll. The extent of the plastic zone, 

stresses within the body and pore water pressures can all be derived 

depending on the assumptions. 

Basing his arguments on a Mohr-Coulomb equation for the plastic zone, 

and elastic behaviour in the elastic zone, Vesic (op,cit.) obtains the 

following equations: 

P = c.F + q.F ' u c q 

p 
u 

is the pressure at the edge of the cavity; in 
other words, penetration resistance. 

ll 

c is the cohesion 

q is the overburden pressure 0 .e. ~h. h = depth) 

F ' F ' are theoretical factors, the values of which 
c q 

are given graphically by vesic (op.cit.). 

The values depend on the values of ¢, I where: 
rr 

I = I ~ , and: 
rr r v 

3.1 

3.2 



I 
r 

~v 

= E/2(l+v) (c + q tan¢) = G/(c+q tan¢) 

is a correction factor for I and has. a .finite value ~1, r• 

depending on 6. , the volumetric strain. 

graphically in Fig.4 of vesic (op.cit.) 

Values are given 

F , Y , G are the Young's modulus, Poisson's ratio and shear c 

modulus of the material. 

The radius of the plastic zone is found from 

where R 
u 

= j I' sec¢ 
rr 

is the radius of the cavity 

R is the radius of theplastic zone 
p 

Thus this method incorporates terms which include, or are dependent 

3.3 

on, a large number offactors such as shear strength, density and compressibility 

all of which have been shown to influence the test results by the authors 

mentioned previously. 

3.6 An Investigation into the Applicability of Vesic's Model to Cone 
Penetration Tests 

The values of G,¢ and c for various values of q (i.e. normal stress) 

can be found from shear-box data. In order to eliminate any rate effects, 

the values of G have been computed from shear box tests run at a rate of 

strain comparable to that in the soil during penetration by the cone. 

At a penetration rate of 40mm/min the 90 degree cone passes any point 

in 12 seconds. A pa~ticle of soil in the centre therefore moves outwards 

Bmm inl2 seconds, which is a strain rate of 40mm/min. Similarly, for the 

30 degree cone the strain rate is llmm/min. In fact shear takes place 
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in a zone, not on a discrete plane; furthermore, the path followed by 

any particle is not necessarily in a straight line from the centre of 

the outside, but probably curves downwards then outwards. These effects 

have been neglected. A number of shear-box tests have been conducted 

on undisturbed samples at comparable rates of shear, tnough it was 

necessary to hand-wind the shear-box. For the two rates of strain (i.e. 

40mm/min andllmm/min), the samples of each of the following East Hetton 

materials have been tested: a sandy layer; a silty layer; an over-

consolidated clay; and a normally consolidated clay. Each of these 

materials has been sheared at three different normal stress levels, 

comparable to the levels of overburden stress that exist in the top few 

metres of a lagoon. The stress/time plots for the faster tests are 

shown in Fig.3.12, and for the slower tests in Fig.3.13. From these 

graphs the values of the shear modulus, G, have been calculated (taken 

as the secant modulus to 50% of peak shear stress). From the values of 

G, the values of Ir can be calculated according to equation 3.3. The value 

of (c+q tan~) in this equation has been taken as "f' the failure shear stress 

for each individual test, in order to eliminate differences between samples. 

The values of I and G are given in Table 3.4. for all the tests. It can 

be seen clearly in Fig.3.14 that these values I do not show any reasonable 
r 

trends with soil type, or overburden pressure. The variation of values is 

too great for such trends to emerge.In contrast Vesic (1972) states that 

the magnitude of I should be inversely proportional to the square root 
r 

of the confining pressure, though this was based on tests with up to 

104 kN/m2 confining pressure. The lack of trends in the data presented 

here is probably due to the low confining pressures under consideration. 

Furthermore, there is no difference between the two rates of strain. 

The measured values of I therefore lie approximately between 20 and 40, 
r 
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Fig.3.12 Stress-time curves for East Hetton material at approximately 

50nrr)ffrrin rate of displplacement. Terminal strain is 10.8mm in 

each case. Numbers refer to entries in Table 3.3. 
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Table 3.4 Shear box test data from East Hetton material. 

Sample Rate of 0 't"f cf tf 1"1 c1 G1 I 
shear kN/m2 kN/m2 kN/m2 kN/m2 

kNfm
2 kNfm2 kNfm2 r 

. mrn/rtt1_b. 

S1 13 13.6 9.1 0.089 24 4.5 0.027 169 18.6 
S2 11 27.2 19.4 0.085 28 9-7 0.023 425 21.9 
S3 11 40.9 30.7 0.180 57 15.4 0.019 808 26.3 
S4 15 13.6 12.0 0.058 14 6.0 0.010 598 49.8 
S5 15 27.2 19.0 0.128 32 9-5 0-030 316 16.6 
s6 15 27.2 13.9 0.090 22 7.0 0.016 427 30.7 
S7 16 40.9 33-7 0.095 22 20.5 0.020 1035 30.7 
s8 9 13.6 18.1 0.075 30 9.0 0.017 529 29.2 
S9 9 7.2 27.2 0~075 28 13.6 . 0.023 580 21.3 
S10 17 27.2 24.1 0.110 24 12.1 0.022 548 22.7 
S11 9 40.9 41.2 0.101 36 20.6 0.025 832 20.2 
S12 12 13.6 3.4 0.065 20 1.7 0.010 163 47.9 
S13 12 27.2 9-5 0.050 . 19 4.8 0.010 458 48.2 
S14 12 40.9 15.9 0.112 33 7-9 0.017 471 29.6 
S15 13 13.6 15.7 0.053 15 2.9 0.011 255 44.8 
S16 17 27.2 15.9 0.149 31 8.0 0.017 467 29.4 
S17 11 40.9 7.0 0.180 58 3-5 0.015 233 33-3 F1 55 13.6 10.5 0.180 11 5-7 0.014 414 39.4 
F2 54 27.2 19.0 0.135 9 9-5 0.015 633 33-3 
F3 53 40.9 27.9 0.099 7 14.0 0.016 860 30.8 
F4 . 59 13.6 12.7 0.171 11 6.4 0.016 393 30.9 
F5 56 27.2 .21.1 0.078 5 10.6 0.012 849 40.0 
F6 59 27.2 . 21.2 0.072 4.4 10.6 0.021 497 23.4 
F7 55 40.9 27.6 0.180 12 13.6 .0.014 988 35.8 
F8 59 13.6 17.4 0.056 3.4 8.:(' 0.013 665 38.2 
F9 59 27.2 29.5 0.096 4.3 14.8 0.019 771 26.1 
F10 59 27.2 28.2 0.139 8.5 13.6 0.030 461 16.3 
F11 59 40.9 44.6 0.096 6 22.3 0.026 871 19.5 F12 47 13.6 2.9 0.061 5 1.5 0.013 115 39-7 F13 46 27.2 5.1 0.076 6 2.5 0.019 131 25.7 F14 46 40.9 9-3 0.060 5 4.6 0.009 509 54.7 
F15 57 13.6 5.8 0.089 6 2.9 0.024 122 21.0 

~ F16 51 27.2 14.1. 0.110 8 7.1 0.032 219 15.5 -..,J 

F17 54 40.9 10.8 0.080 6 5.4 0.012 450 41.6 
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Fig.3.14 The variation of I with normal stress. 
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and these may be taken as lower and upper bounds. 

The next step is to evaluate I' from equation 3.2. 
rr In order to 

do this the value of A(volumetric strain) has to be assumed from Table 

3.5. 
. 2 

It can be seen that clays (cv = 20m /yr) will behave essentially 

in an undrained fashion during penetration of the cone, while siltsbehave 

in a partially drained fashion and sands will be fully drained. Hence, 

the value of 6 will be 0% for clays; 5% is a reasonable minimum estimate 

for a sand, and the value of tv is not sensitive to the variation of 

above 5% (see Fig.4, Vesic, 1972). 

It is now possible to construct Table 3.6. Values of the pressure 

at the edge of the cavity (i.e. P ) are presented in the table based on u . 

both the upper and lower bound estimates of I . 
r 

The values of p 
·u are, furthermore, given for depths of lm and 3m, 

which spans the range tested at East Hetton. The Tab],e shows that at 

any depth a sandy horizon should give a greater resistance to penetration 

than a normally consolidated clay, since even the lower estimate for 

sands exceeds the upper estimate for clays. In contrast the overconsolidated 

clay is more resistant than the sands at depths of a metre, but is less 

resistant at ·a depth of three metres. 

The theoretical cavity pressures thus accord on a relative basis 

with normal expectations. Comparing the absolute values with the 

penetration resistance values (which are now taken as the resistance peT 

curved surface area) measured by the first field device (see Figs.3.4 

and 3.6) shows that the measured values exceed those given in Table 3.6 by 

factors of two or more. However, inspection of the resistance measured 

by the second device (Peace, 1980; and Figs.3.8 and 3.9) shows that the 

theoretical cavity pressures are of the same order. The agreement between 

the two for the measured "baseline" values of 50-100 kN/m
2 

and the cavity 
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Table 3.5 Drainage of lagoon material during cone penetration tests. 

t 

45 

12 

2 

45 
12 
2 

45 
12 
2 

45 
12 

2 

45 
12 

2 

45 
12 

2 

45 
12 
2 

2 

2 
T C .t * C = T.d hence 

r t = a:z-

(sees) 2 u (%) c (m /yr) T 
.v 

(i.e. 30 5 0.012 15 
degree cone) 

(i.e. 90 
degree cone) 0.003 5 

(60 degree 
cone, Peace, 1072) 0.0002 0 

10 0.023 22 
0.006 10. 
0.0004 0 

20 0.046 35 
0.012 15 
0.0008 0 

·40 0.092 56 
0.024 23 
0.0016 1 

:100 0.23 85 
0.06 43 
o.oo4 6 

·2oo 0.46 95+ 
0.12 65 

'· ' . 0~008 12 

400 0.91 95+ 
·.· 0.24 86 

0.017 18 

....... ' 1000 0.04. 33 

... 

*Note Based on d=25mm, where d is the drainage path length. 
--.:~ 

;., 

_'~. Ve.sic ( 1972) shows that: 
... · .. 

ou= ( 0.817 af + 2 ln Rp/r ) c 

where af= 0.707 ( 3Af - 1 ) 

Af= Skemptons pore pressure parameter 

R = the radius of the plastic zone 
p . . 

r= the rad1us at which the value of ou 

is required 

c= the cohesion 

Thus the excess pore pressure falls logarithmically with 

distnnce from the cavity, and may be neglected beyond the plastic 

ZOllO. 
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Table 3.6 The evaluation of cavity pressures for cone penetration tests in East Hetton lagoon sediments. 

;':aterial c* ~ I 
r 

~ ,+ 
v 

I' rr F' 
c 

F' P at 1mt P at 3mt 
u R p 

SEL-~d 

Clay 

kNjm
2 

0 

(0.58 x o') 
v 

35 

0 

10 

13 
20 

q u 

kN/m
2 

4 4 52 

5 5 70 
4 0 32 

0 37 

kN/m
2 

156 

210 

mm 

Overconsol. 18 + (0.36 0 

20 

40 
20 

40 
20 

40 
20 

40 

0.5 

0.3 
1.0 

1.0 

1.0 

1.0 

0.2 

0.1 

40 
20 

40 

4.5 
4 0 92 

97 

110 

132 

149 

28 

32 

36 
51 

36 
51 

17 

17 

clay 

Clay 

(drained) 

0 

x o') 
v 

30 4 

4 

4.5 
2.5 

2.5 

0 104 

2.5 35 

2.5 35 

. 105 

105 

~Clays assumed undrained (~=0), but their value of cohesion will depend on the effective stress 

during consolidation. 

+ ~=5% for sands, 0% for undrained clays, 15% for drained clays; based on Vesic's (1972) chart for 

t Yb taken as 14 kN/m3 . 
v 

--.:] 
-' 
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pressures of a normally consolidated clay is good. The values of the 

peaks in the resistance graphs do not correspond so well to the calculated 

pressures for the overconsolidated clays or sands, but three points must 

be remembered. Firstly equation 3.1 shows that the calculated cavity 

pressure.depends on the value of cohesion in a clay, and this may not be. 

the same as that which was assumed in Table 3.6. Secondly, the effect 

of layering is unknown; and thirdly, vesic's theory refers to a cylinder 

of infinite vertical extent. Since fine layers are the major conSituent 

of the sediment near the outlet (see Table 3.1), these would be expected 

to give the best correspondence in any case. 

The radius of the plastic zone has also been calculated in Table 3.6. 

In order to check this directly in the field, a trench was dug in the 

sediment at the location shown in Fig.3.3, this area being dry enough to 

support a free face. A sheet of perspex was pushed hard against a flat 

vertical face of sediment. D section (half section) cones with 30 degree 

and 90 degree tips (these were readily available) were pushed vertically 

downwards by hand, flush with the perspex. The resulting deformation 

was photographed. It can be seen from Fig .3~1~. that the edge of 

the plastic zone is fairly sharp and is between 17 and 25mm away from 

the centre line of the cone. No discrete failure.surfaces are seen at 

all. Du~ing this exercise it could also be observed directly that sands 

were more resistant to penetration than the soft clays. 

This observed radius for the plastic zone is comparable to that 

calculated in Table 3.6 for the sands, but not for the clays (the calculated 

value being too large). However, the known radius can be used to back-

calculate. other values. Thus taking R as 17mm, I I must be 4; 
p rr 

for I I to be 20, ~ must therefore be 0.2 and for I I to be 40, t must 
r r 

be 0.1. Each of these two cases gives a value of 6 (volumetric change) 



Fig. 3.15. Deformation in East Hetton tailings caused by passage 

of the cones. 

a. 30 degree cone. 

b. 90 degree cone. 
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of 15%, based on Fig.4 of vesic (1972), which implies a degree of drainage 

for the clays. P is found as before, but does not change greatly with 
u 

this change in assumption (see Table 3.6). 

In section 3.3. it was shown that the more resistant penetration 

profiles correlated with those parts of the lagoon which contained coarser 

sediments. vesic's (1972) model supports this conclusion with a 

theoretical treatment, although certain assumptions have had to be made 

in the application of the model to penetration tests in lagoons. It is 

therefore reasonable to conclude that layers that show little resistance 

to penetration consist of normally consolidated, fine, clay-rich sediments; 

on the other hand, a resistant stratum indicates a sandy horizon, or 

near the surface the stratum could consist of overconsolidated clay. 

Thus, in a general way the shear-strength properties associated with the 

various types of layer may be assigned to various portions of the 

resistance penetration log. Of particular interest will be the relative 

proportions of each type of layer at any location, as this will govern 

the behaviour of that location. For instance the stability of an over-

tipping operation will depend on whether free draining sandy horizons, 

or impermeable clays are being overtipped (see chapter 7). The drainage 

properties at any location will also be linked to the distribution of 

the layers. In this context it is worth recalling that in Fig.3.9 many 

sandy horizons were observed to die out over short distances (i.e. there 

is evidence that layers are discontinuous). 

3.7 Conclusions 

A preliminary series of trials with a cheap, lightweight rig showed 

that cone penetration resistance could be used as a profiling tool for 

lagoons. However, the use of paired cone tests using two cones with 

different tip angles was found to offer no advantages over the use of a 

single cone. 



A more sophisticated rig, using a load cell and a single 60 degree 

cone has been shown to produce a highly detailed picture of a lagoon 

very rapidly. It has been shown by comparison with known properties of 

the lagoon,by direct observation with hand pushed cones,and in a 

theoretical study, that horizons of different properties can be readily 

correlated against the profiles obtained from this field rig. 

This is currently the "state of the art" with this rig. Possible 

future improvements could include a better guide rail system; more 

importantly a pore pressure transducer at the tip of the core would be 

a significant advance. Furthermore, it would be useful to correlate 

the cone resistance values obtained from such a device against some 

yardstick, say field vane tests, or better, bearing capacity observations 

from an overtipping exercise. Such a device could then be a very powerful 

field investigation tool for colliery lagoons. 
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CHAPTER 4. THE GEOCHEMISTRY AND SEDIMENTOLOGY OF COLLIERY LAGOONS 

4.1 Introduction 

The importance of the geochemistry and sedimentology is threefold: 

1. To understand the fundamental controls on shear strength and 

consolidation parameters. 

2. To elucidate the controls on lagoon composition (e.g. type 

re. 
of washe~ and th~ore arrive at general models. 

3. To assess the constraints on alternative uses or alternative 

methods of disposal. 

Consequently, the coal contents, mineralogy and major element 

geochemistry has been determined for a number of samples as follows:-

1. Peckfield lagoon 7 (series denoted as PL7 ... ) 17 undisturbed 
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samples from two vertical boreholes, split into <90 )1 and > 90 p fractions. 

2. Peckfield lagoon 6 (PL6, .. ) 7 bulk samples from a depth of lm 

taken at intervals from the inlet to the outlet, split into several fractions. 

3. East Hetton lagoon 109B (EH •••• ) 10 samples from three boreholes 

(locations A, Band C), representative layer types being taken at each 

location. 

4. Maltby lagoon 6 (MA •..• ) 6 samples from two boreholes, representative 

layer being taken. Also one coarse discard sample. 

5. Oakdale Washery (OW .... ) 5 samples run as part of leaching 

experiments. 

6. Silverhill lagoon 16 (SI •••. ) Two representative layer types 

taken, mineralogy only being determined for these samples. 

4.2 The Determination of Mineralogy 

The mineralogy of the above specimens was analysed using a Phillips 

PW 1130 X-ray diffractometer. Cobalt K radiation was used, this being 
ex. 

preferred for samples with a high iron content (Taylor, 1977, pers. comm.). 
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The ?9 scans were measured with a CORIDA polar planimeter and interpreted 

according to the method and calibrations of Smith (1978) with a 10% 

boehmite internal standard. The mixed-layer clay content of the illite 

fraction was determined by adding ethylene glycol to the sample and 

. 0 
warming at 50 C for a 24 hour period. Mixed-layer clay was taken as 

the difference in the area of the 10~ illite peak before and after this 

treatment. 

The samples under consideration are generally of a high organic 

carbon content. This may be taken as the coal content to a first 

approximation. High organic carbon produces a great deal of background 

scatter during X-ray diffraction (XRD) and interpretation of the scan is 

difficult. This can be seen from Fig.4.1. which shows the 29 traces 

of a coal~rich s~mple. The interpr~tion of the mixed-layer clay fraction 

is impossible in.this case. All the values of mineral weight-percent 

content reported herein must therefore be regarded as only semi-quantitative, 

the mixed-layer clay value being the least reliable parameter. Indeed it 

was found that the mixed-layer clay content was so difficult to determine 

that it was abandoned altogether after the Peckfield samples had been 

analysed. The accuracy of determinations decreases with increasing 

coal content. 

The full results are-reported in Appendix A4.1, and are discussed 

along with ~he chemistry in section 4.6. 

4.3 The Determination of Chemistry 

NichoUs(l962) and Taylor (197l.a) have pointed out that the 

. imprecise nature of X-ray diffraction wor~ renders a chemical anlysis 

desirable in addition. This is particularly true for the high carbon· 

samples considered herein. Consequently major-element chemistry has 

been analysed for all samples (excepting two from Silverhill colliery) by 
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X-ray fliJO.rescence (XRF). A pertinent example is given by the XRD 

analysis of sample 210C from Maltby lagoon No.6. There is no trace 

of pyrite or any other sulphur containing mineral, yet the chemistry 

of this sample revealed 49% by weight of sulphur, which is almost 

certainly in pyrite. 

The chemistry was analysed using fully automatic prototype Phillips 

PW1400 X-ray flUOrescence machine. The usual method was employed of 

running standards of known composition to obtain calibrations from which 

the sample compositions could be determined. The mass absorption 

correction procedure (Holland and Brindle ,· 1966) is customarily used at 

Durham but was considered inappropriate here for the following reason. 

The mass absorption correction depends on an accurate determination of 

all the major constituents incl~ding free carbon, co
2 

and H
2
0+. As will 

be explained, accurate determinations of very high free carbon percentages 

are difficult to obtain. 

Use was made instead of a non-linear, multiple regression model 

which does not require determination of all the constituents. The mass 

absorption correction is implied in the statistical relationships of the 

regression coefficients. The coefficients were determined using the 

procedure known as REGRESSION in the computer package "Statistical package 

for the social sciences" (Nie et.al. ,1975) 

The regression equations used are given in Appendix A4.2 along 

with the "raw" plots of counts vs composition for the standards. 

Comparison of these equations with the mass absorption correction procedure 

is possible by considering the correlation coefficients produced by 

comparing the observed (i.e. actual) with expected (i.e. recomputed using 

the procedure adopted) chemistry for the standards. Table 4.1 indicates 

that the regression method is in fact superior for the standards considered 



Table 4.1 Correlations of observed with expected chemistry of the 

standards used in the XRF analysis. 

XRFPL1
1 SPSS2 

R3 SEE4 
R 

Si02 
0.980 Not quoted 0.997 

Al20
3 

0.994 0.997 

Fe2o3 
0.997 0.997 

MgO 0.984 0.993 

CaO 

' 
0.847 0.994 

Na
2
o 0.921 0.997 

KlJ 0.993 0.995 

Ti02 0.995 0.995 

s 0.968 0.992 

P205 0.976 0.979 

1 Program based on Holland and Brindle (1966). 

2 Regression model used in this work. 

3 Correlation coefficient. 

4 Standard error of the estimate 

~( obs - expected )2 
SEE = N-1 

The standard error of the total is 

= 2.285 

Table 4.2 Composition of the secondary standards. 

SU1A = 2/3 SU1 + 1/3 NBS88A 

SU2A = 7/8 SU1 ·+ 1/8 NBS88A 

Si0
2 

Al2o
3 

Fe2o
3 

MgO CaO Na2o K20 Ti02 

SU1A 23.41 6.37 21.88 9-72 12.67 0.69 0.46 0.55 

SU2A 30.35 8.30 28.62 6.10 7-23 0.90 0.57 0.71 

SEE 

1.607 

0.778 

0.586 

0.546 

1.078 

0.153 

0.184 

0.069 

0.406 

0.044 

s 

8.03 

10.54 

80 

P205 

0.07 

0.09 
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by the writer. 

The pyrite-rich uature of the lagoon samples dictated that the 

standards should have a wide range of sulphur. compsitions. This 

necessitated the making up of two secondary standards, the compositions 

of which are given in Table 4.2. 

The XRF equipment was new at the time of use, and because it was 

a prototype there were teething problems. To check both these problems 

and the repeatability of the counts a number of checks were run. The 

details of these checks are given in Appendix A4.3. Bearing in mind 

the limitations to the accuracy of the analyses shown in Appendix A4.3 

and Table 4.1 the results, which are given in detail in Appendix A4.4, 

can now be discussed. 

4. 4 The ID se of Burnt Samples for Analysis 

In a trial run on a few samples it had been noticed that the sum 

of the elements and element oxides plus the coal content (as.determined 

by thermal oxidation at 350°C) consistently exceeded 100% by a considerable 

margin. The cause of this was unclear and was investigated as follows. 

For 41 samples of lagoon material, duplicate subsamples were taken, making 

82 subsamples. 
0 

One of each pair was oxidised at 350 C, the carbon content 

being determined (and reported in the mineralogy, Table A.4.l.l). The 41 

non-oxidised and the 41 oxidised samples were then made up into XRF pellets 

a~d analysedalong with further non-oxidised samples as described above. 

The 41 non-oxidised samples are those from Peckfield lagoon 7, and from 

Maltby Colliery. They are denoted by the suffix "U" in Appendix A.4.4. 

The duplicate burnt samples are denoted by the suffix "B". 

The chemistry analysed does not include free carbon, co
2 

or H
2
0+, 

and hence in the case of the non-oxidised samples the sum of the components 

subtracted from 100% can to a first approximation be taken as the organic 



carbon content; co
2 

and H20+ are. much less significant. The sums of the 

components are given in the final column ("TOTAL") of Table A.4.4.1. Thus 

for the 41 non-oxidised samples (100-TOTAL) may be plotted against the carbon 

content determined by oxidised. It can be seen from Fig.4.2 that the 
h 

fermal oxidation method gives a significantly higher estimate of free 

carbon than the XRF difference method. Although there is no statistical 

difference to separate the goodness of fit of ~he two regression lines in 

the figure, the curved fit is intuitively more realistic because:-

a) At 100% free carbon both methods should agree on a value of 

100% The curved fit extrapolated gives closer agreement. The 10% 

residium on the XRF method may be due to background, but more likely it 

represents an amount. of true ash in the coal. 

b) At·O% free carbon there is still some chemistry unaccounted 

for by XRF analysis, i.e. co
2 

and H
2
0+. The curved regression line 

'extrapolated suggests that this is of the order of 5%. 

Keeling (1962) found that thermal oxidation at 375°C over-estimated 

carbon contents of up to 20% by as much as xl.5, a value which agrees with 

Fig.4.2. He attributed this mainly to loss of bonded water from gypsum and 

siderite. This mechanism cannot fully explain Fig.4.2, especially at the 

medium to high carbon contents. 

Turning to the burnt samples, the sum of the chemistry in the 

TOTAL column again does not come to 100%, but rather to between 90 and 

95%, generally. ThermogY)avimetric analysis to 1000°C (Zussman, 1967) 

was performed on two samples to determine the co
2 

and H
2
0+ content. In 

the case of 1)90B these two results in 9.62%, and for 2)90B they result 

in 12.88% by weight. Adding these to the total value gives a grand 

total of 98.12% and 103.15% respectively, which are within the margin of 

error of the XRF analysis. Thus (100-TOTAL)% for the burnt samples is 
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Fig.4.2 Comparison of organic carbon contents as determined by 

XRF and thermal oxidation at 350°C. 
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equivalent to the co
2 

and H20+, bearing in mind the errors of the analysis. 

Inspection of Table A.4.2.1 reveals that upon burning the weight 

percentage of sulphur has fallen drastically. Since it is suspected 

that most of the sulphur is in pyrite, it is sensible to compare the iron: 

sulphur ratios before and after burning. Fig.4.3 shows that this ratio has 

risen from between about 1.0 and 3.0, to between about 2.5 and 7.5. In 

other words, the ratio has risen from a little above the theoretical ratio 

required for pyrite composition (Fe
2
o

3
: S is 1.25:1) to a ratio that 

reflects a much lower relative sulphur content. 

The disappearence of the sulphur is in fact due to the oxidation 

of pyrite at the elevated temperature. That this can occur was checked 

0 
by placing some pure iron pyrite in a furnace at 350 c for two days. 

On removal, the product was red, and an XRD determination proved it to 

be nearly pure haematite. The 41 ashed samples were also all red, 

and a quick XRD scan of the haematite 2.69R and 25~ peaks proved their 

presence in the following samples: 11 90B, 1 90B and 16 90B from Peckfield 

lagoon 7; 210CB and 25CB from Maltby lagoon 6. No pyrite was present 

in any of these samples. The change from pyrite to haematite does involve 

a weight loss, but not enough to account for the full difference between 

the XRF and the thermal oxidation estimates of carbon content. The rest 

0 could be due to the. loss of water from ilite between 100 and 350 C (see 

Zussman, 1967). 

It is therefore considered that the discrepancy in the estimates 

of free carbon by the oxidation method and the XRF difference method is 

due to material other than organic carbon being lost on oxidation at 350°C. 

It follows that the XRF difference method produces a somewhat more accurate 

estimation of free carbon, although the estimate will include co
2 

and H
2
0+. 

It also follows that the non-oxidised pellets are to be preferred for 



elucidating the chemistry of this type of sample, and attention is hereafter 

confined to non-oxidised specimens. However, unless otherwise stated, 

organic carbon values are taken as the estimate by thermal oxidation as 

this is the usual method employed. 

4. 5 -~~£< e~~_lcula t_ion of Mineralogy from C hem is try 

The minerals are of principal interest rather than the chemistry; 
~ 

the chemical a~ysis is performed because of its greater accuracy. It is 

possible to recalculate mineralogy from the chemistry, though as Nicholls 

(1962) points out the presence of some chemical species in several different 

minerals renders the problem insoluble unless certain simplifying assumptions 

are made. This is particularly true of clays which can have extremely 

variable chemical compositions, and a uniquely correct mineralogical 

recalculation would require an exact determination of the chemical make-up 

of each species of clay present. 

The assumptions made here are a simplification of Nicholl's (1962) 

scheme, which requires a fuller chemical analysis than that presented in 

Appendix A.4.4; principally FeO and Fe
2
o

3
, S and so

3 
must be reported 

separately and H
2

0+, H
2
0- and co

2 
must also be determined in order to 

apply Nicholl's scheme, The assumptions and procedure adopted are as 

follows: the calculation of EHCCL is provided in full as an example in 

Table 4.3. 

1. The weight percentages of the chemical species are divided by their 

molecular weights to give molecular proportions, except for CaO, MgO and 

2. Since sulphates were found in very few XRD analyses, it is assumed 

The molecular that all the sulphur is in the form of pyrite (FeS
2

). 

proportionofsulphur is divided by 2 and multiplied by 120 (the molecular 

weight of FeS
2

) to give the weight percentage of pyrites. For every 4 of S, 



Table 4.3 The recalculation of mineralogy for sample EHCCL. 

Step Chemical species Si02 Al
2
o

3 
Fe

2
o

3 
MgO CaO Na

2
o K20 Ti0

2 
s P205 

XRF results 41.725 22.200 3-435 2.097 2.957 0.218 3.025 0.947 1.643 0.072 
Molecular weight 60 102 160 40 56 62 94 80 32 142 

1 Molecular proportion 0.695 0.218 0.0215 0.00352 0.0322 0.0118 0.0513 

2 

3 

4 

5 

6 

7 

Pyrite=3.08% I I 0.0128 in FeS
2 

0'.00868 left 
I I 

Paragonite=2.68% 0.021 0.011 
I I 

x764=2.68% 
0.674 left 0.207 left 

Muscovite=25.6~~ 0.193 0.097 x796=25.6Z% 
0.481 left 0.110 left 

I 
Illite=2.68+25.62 

:28.30% 
of which paragonite 

=9.49% 

Kaolinite=28.52% 0.220 x516.;.2=28.52% 

0.261 left 

Quartz=15.61% x60=15.61% 

N.B. The accuracy with which the arithmetic is quoted leads to 'apparent' small rounding errors 

in this table. 

+2=0.02565 

x120=2·08% 

ffi 



2 of Fe and therefore 1 of Fe 0 are required, and the molecular proportion 
2 3 . 

of Fe
2
o

3 
is adjusted accordingly. 

3, S~nce the exact nature of the clays is unknown two theoretical end-

member illites have been recalculated. Firstly all the Na
2
o is assigned 

to paragonite, which has a composition of Na
2 

Al
4 

(Si
6
Al

2
)o

20
(0H)

4
. The 

weight percentage of paragonite is (mol prop Na
2
0)x 764. 

4. Secondly the other end member is taken as or.uscovi te, and all the K
2

o 

is assigned to K2Al4 (Si~l2 )o20 (0H) 4 • 

is (mol prop K o) x 796. 

The weight percentage of muscovite 

2 

5. Illite is taken to be the sum of the end members, ·paragoniteand m u·scovite, 

The paragonite content is expressed as a percentage for comparison. In 

2+ 
reality a considerable amount of Fe and Mg can substitute for aluminium. 

6. Remaining Al
2
o

3 
after steps 5 and 6 is assigned to koalinite, which 

has a formula of Al
4 

Si
4 

o
10

(0H)
8

; the weight percentage is (remaining 

If chlorite is present this is an over-estimate; 

however chlorite was found but infrequently in the XRD work. 

7. Remaining Si0
2 

is multiplied by 60 to give the weight percentage of 

free silica (quartz). 

8, No rec.alcuiation is performed for P 0 because the mineral involved 
. 2 5 

is not known and therefore no extra comparisons are possible than with 

the "raw" X'·RF results. No recalculation is performed for CaO, MgO or 

further recalculation for Fe
2
o

3 
because the extent to which these chemical 

species are distributed between the carbonate mineral and the clays is not 

known, 

The full results of this scheme are quoted in Appendix A,4,5, It is 

not sugg~sted that recalculated mineralogy reflects the true chemical 

make-up of the minerals present in the samples; the least likely chemical 

constitutions are probably those of paragoniteand muscovite. However, 

at the least, these recalculated mineral components should provide an 
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internally consistent method of comparing the chemistry of the various 

samples. For some recalculated minerals the comparison with real 

minerals should be reasonable, the best probably being pyrite, followed 

by free silica (quartz) and kaolinite. 

The results of this procedure are discussed in the next section. 

4. 6 The Chemistry and Mineralogy_ of C·olliery T.ailings Lagoons 

1. Grading 

Chemical and mineralogical analyses have been performed on material 

from four lagoons, i.e. Lagoons 6 and 7 at Peckfield Colliezy, N.Yorkshire 

Area; lagoon 109B at East Hetton Colliery, N.East Area and lagoon 6 at 

Maltby Colliery, S.Yorkshire Area. The locations of the samples in each 

lagoon are sketched in Figs.4.4a-c. The grading curves of the samples 

are given in Figs.4.5a-d, except in the case of the 17 samples from 

Peckfield lagoon 7 (Fig.4.5.b) where log (median size in microns) has been 

plotted for reasons of clarity. 

The samples from Peckfield lagoon 6 (Figs.4.4.a and 4.5.a) were all 

bulk samples taken from lm depth. It can be seen that the samples are 

finer and more plastic towards the outlet. The samples from lagoon 6 at 

Peckfield are plotted were simply in terms of a sample number vs log median 

size, as shown in Fig.4.5.b. East Hetton lagoon 109B demonstrates again 

fining towards the outlet (Fig.4.5.c), though the samples here are 

representative of "type" layers. _The samples from Maltby lagoon 6 (Fig. 

4.5d) are too close in terms of the size of the lagoon, and too few in 

number to discern any trends across the lagoon; again "type" layers have 

been chosen. 

2. Organic Carbon content 

0 
The organic carbon content (oxidation at 350 C) has been determined 

on all samples. Those from Peckfield lagoon 6 were split into different 
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Fig.4.4 Sample l~cations. 

a. Peckfield lagoons 6 and 7 (series PL6 and PL7) 

b. East Hetton lagoon 109B (EH series) 

c. Maltby lagoon 6 (MA series) 

Outlet 

0 

0 

.In).et 
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sieve sizes and the content determined for each sieve size. Fig.4.6a 

shows that in each sample there is an increase in coal with grade. 

Generally the samples further from the inlet are richer in coal in any 

given size range, except that the mid-lagoon samples are richest in big 

coal particles. The gross coal content of each whole sample increases 

towards the middle of the lagoon and then drops to the outlet. This is 

because, although sample 7 has a higher coal content in many size ranges, 

91 

the bulk sample consists of the finer, coal-lean size ranges. The coal 

particles are carrying beyond the inlet, but the larger coal particles then 

settle out in the middle of the lagoon. Finer particles, especially of 

fine-sand size and below, settle generally over the whole lagoon. 

The coal content of lagoon PL7 has been split into above and below. 

90 microns size fractions, Fig.4.6.b shows that the coal oontent increases 

with grade, and it will be shown in chapter 5 that it is correlated to 

the overall size of each sample.Fig.4.6.c. shows that the coal content 

increases with size, and further is generally higher nearer the outlet 

in any size range. In chapter 3(Table 3.1) it was shown that at the 

outlet there is an increase in the finer coal-lean type of samples. 

Again the large coal particles are settling rapidly in the middle of the 

lagoon, but finer coal particles are being carried further. The Maltby 

samples again show an increase in coal content with size (Fig.4.6.d). 

3. Quartz content 

Quartz contents, both from the XRD and from the XRF mineralogical 

recalculation are plotted in Figs.4.7a-d for each sample. Fig.4.7a shows 

a decrease in quartz with grade, a reflection of the increase in coal 

content. The recalculated quartz content is higher than that determined 

from XRD analysis, !Jut there is a much clearer trend of lower quartz 

away from. the inlet in all size ranges. Fig.4.7b again shows that there 
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is a decreasing quartz content with grade; again the recalculated 

determination gives a higher content and less random trends. Fig.4.7c 

again shows - less quartz with grade, less quartz away from the inlet and 

a steadier trend with the XRF recalculated analysis. Sample EHCMS is 

non-typical - with low coal and higher quartz. Excepting the trend with 

position in the lagoon, the same features found at Peckfield and East 

Hetton are repeated at Maltby (Fig.4.7d) 

4. Illite 

9.4 

The illite fraction is the total illite plus mixed layer clay in the XRD 

analysis, and . muscovite plus parago.ni te theoretical .'end member in the XRF 

recalculation. 

(Figs.4.8a-d). 

The trends of illite content are fairlydear in both cases 

There is a decrease with increasing size, and a decrease 

away from the inlet in any one size range. Again, because there is more 

fine-grained material near the outlet the gross illite content is greater 

there. There is little difference between the two methods of determination: 

the recalculation method gives a lower illite content in the finer grades, 

but a higher one in the coarser grades. 

Turning to the illite composition, mixed-layer clay was analysed in 

all the Peckfield samples. As has been stated, the analysis is of 

dubious quality, and Figs.4.9a and 4.9b show that the greater the coal 

content, the more random is the nature of the determination. 

abandoned after these samples were analysed. 

It was 

The paragonite percentage of the recalculated illite shows the relative 

importance of sodium to potassium. Fig.4.9a shows that in Peckfield 

lagoon 6 it generally lies between 10 and 20% in the near-inlet samples, 

but increases in the mid-lagoon and outlet samples, particularly in the 

coarser fractions. In lagoon 7 the paragonite content is always greater 

in the coarser grades, and the difference generally increases with samples 
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that are coarser-grained overall (cf median sizes in Fig.4.5b). At East 

Hetton (Fig.4.9.c) the paragonite content is very significantly lower than 

in the more southerly samples: this difference is not due to the dilution 

effect of the coal, and is therefore a real regional cnange. There is 

again an increase with grade, and possibly a slight decrease away from the 

inlet (cf an increase in the case of Peckfield lagoon 6), although the 

difference is very slight. The Maltby samples show no trend with grade; 

in composition they compare to the Peckfield samples. 

5. Kaolinite 

The kaolinite content of the samples generally decreases with increasing 

grade (Figs.4.10a~d), because of the diluting effect of the coal. In the 

case of Peckfield lagoon 6 (Fig.4.10a) there is a trend for decreasing 

kaolinite content with distance from the inlet, which is reflected much 

more strongly in the recalculated mineralogy; nevertheless the trend is 

discernible in the XRD mineralogy.From Fig.4.10b it can be seen that 

kaolinite is more abundant in the finer material both within individual 

samples and between samples (cf mediansample size, Fig.4.5.b). At East 

Hetton, the kaolinite content again decreases with grade and away from 

the inlet; the Maltby material follows suit. In general the recalculated 

kaolinite contents are higher than the XRD determined values. This may 

be due to more Al
2
o

3 
being in illite, or possibly, a small chlorite content 

which has not been allowed for. 

The inverse relationship between coal and quartz, illite and kaolinite 

causes the latter three mineral species to have very similar trends, and 

obscures differences between them.To highlight differences the ratios of 

quartz/illite and kaolinite/illite have been calculated both for the 

XRD data and the XRF recalculated data. The quartz/illite ratio is 

plotted in Figs.4.lla-d, which as expected show greater clarity in the 
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XRF recalculated graphs. At Peckfield (Figs.4.lla and 4.llb) and to 

some extent Maltby (Fig.4.lld) there is relatively more quartz in the 

finer size ranges. At East Hetton (Fig.4.llc) the amounts are approximately 

equal among sizes, though possibly there is a slightly greater abundance 

in the middle size ranges. Trends with position in the lagoon are not 

shown at East Hetton, and in Peckfield lagoon 6 they are only shown by 

the XRF recalculated data. It can be seen (Fig.4.lla) that the relative 

abundance of quartz decreases across the lagoon. This is most clear in 

the coarse sand size range, and with sample 7 (nearest to the outlet). 

Since the distance from inlet to sample 7 is much greater than the distances 

involved in the case of the East Hetton samples, it is possible that the 

trend had not devloped in the latter lagoon. 

Turning to the kaolinite/illite ratio, Figs.4.12a-d show that no 

relationships exist with size etc. as far as the XRD data ll~ concerned. 

The random nature of the XRD data for both quartz and kaolinite ratios 

is probably due to the relative uncertainity of the illite determination 

against a high coal background. However, the XRF recalculated data 

display. some very clear relationships. Firstly, there is always more 

kaolinite in the finer size fractions. The relative kaolinite 

abundance decreases sharply across the lagoon, particularly at Peckfield 

(Figs 4.12aand4.12c). 

sand-sized fractions. 

This decrease is more strongly displayed in the 
centc:Ui\C, -1 siN:>La pa.rh"cl.:z s 

The larger kaolinite; are settling out faster than 

the smaller kaolinites, leaving an apparent dominance of kaolinites in the 

finer fractions. It should also be noted that the kaolinite/illite ratio 

is approximately twice as high at East Hetton as elsewhere; i.e. kaolinite 

is relatively more abundant in the North East area. This conclusion was 

reached by Taylor and Spears (1970) who considered the mineralogy of 

tailings and slurries across the country. 
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6. Pyrite 

There is a large and consistent discrepancy between the recalculated 

pyrite content and the XRD determined content, the latter.being the 

smaller. From Fig.4.12a-d it can be seen that there is a clear trend to 

increased abundance of pyrite with increase in grain size for the 

recalculated mineral. This trend is discernible in the case of the XRD 

mineralogy for the Peckfield samples (Figs.4.13a an~ 4.13b) but is not 

shown for the East Hetton and Maltby samples (Figs.4.13c and 4.13d). It 

was pointed out in section 4.3 that the difference in the two methods of 

determination may be due to a high background of radiation from coal 

,obscuring the pyrite peak in the XRD analysis. It is well known that 

pyrite occurs in close association with coal, Bray (1941) ,and this 

explains the close correlation of the two constituents with the greatest 

difference in specific gravity. (Though Bray (op.cit.) points out that 

the intricate association of interspersed pyrite and carbanaceous matter 

can cause the "apparent" S.G. of pyrite to be much lower thim the value 

of 4.5 associated with massive forms of this mineral.) 

7. Ankerite 

Ankerite or dolomite are the major carbonates found in the cleat of 

coal (Bray, 1941). No clear trenqs are shown by the XRD mineralogical 

data; frequently the mineral was not identified in the analysis (see Figs. 

4.14.c-d). At East Hetton (Fig.4.14c) it is more abundant near the inlet. 

Generally the mineral is more abundant at East Hetton than in the other 

lagoons, possibly because sediment is washed onto the lagoon from the 

surrounding fields which overly limestone. 

8. The Phosphatic mineral 
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From Figs.4.15a-d it can be seen that this mineral occurs preferentially 

in the finer grain sizes. (The actual mineral is unknown, hence only the 
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weight percentage of P
2
o

5 
is reported.) The East Hetton samples (Fig. 

4.15.c) suggest that there is a preferential settling of larger grains 

near the inlet, while smaller grains occur in equal abundance everywhere. 

No trend with distance from the inlet can be discerned at Peckfield, 

however (Fig.4.15.a). The lagoon at Maltby possesses some of the highest 

abundances of this mineral, (Fig.4.15.d), d~spite the fact that the 

sample locations are far from the inlet. The lack of correlation with 
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coal suggests that the phosphate is not due to phosphatic "bony" rna terial. 

An apatite mineral is therefore a possibility; this supports the view of 

Taylor (1971. b). 

9. Other Minerals 

Minerals other than those reported above were found in many of the 

XRD analyses. Chlorite was found in six samples from Peckfield lagoon 

6 (Table A.4.l), followed in terms of the number of identifications by 

mlcite (three times), geothite (twice) and siderite (once). The 

abundances were always less than one per cent, except for the 2 per cent 

calcite abundance in sample 4710. There is no trend to any of these 

minerals in terms of grain size or distance from the inlet. 

Calcite was identified five times (all at the l per cent level) 

in the 34 samples from Peckfield lagoon 7, and chlorite once (less than 

l per cent). Calcite was also present six of the ten East Hetton samples; 

chlorite in four, and jarosite was identified as being-possibly present 

in one case, and definitely present once. Of the six Maltby lagoon 

samples, two contain chlorite, and three contain jarosite. Again none 

of these three lagoons display any trends with size or distance from 

beach as far as these minerals are concerned. 

10. The chemistry and mineralogy of beach samples 

Kennedy (1977) analysed the chemistry and mineralogy of two samples 
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representative of the inlet or "beach" area of lagoons. One of these 

samples was from Peckfield lagoon 6, the other from a lagoon at Abernant 

colliery. The chemistry, mineralogy and recalculated mineralogy of 

these samples is given in Table 4.4, and the grading curves are given 

in Fig.4.16. It is clear that these beach samples are different from 

samples representingthe main body of the lagoon. Large particles, 

presumably of shale or siltstone are settling out near the inlet while 

coal and clay particles are swept furthur out. 

of these two samples are particularly low. 

The organic carbon contents 

ll. The mineralogy of a clay layer from lagoon 16 at Silverhill Colliery 

During the investigation into overtipping (see chapter 7) at Silverhill 

Colliery, N.Notts.Area, a particularly plastic layer of brown clay was 

noticed. The colour and extent of the layer was most unusual, in cont~ast 

to surrounding material which,was visually similar to that found in other 

lagoons. The mineralogy of these layers are given in Appendix A.4.l (no 

chemical determination is available). The layer has an extremely low 

organic carbon content (9%), but very high quartz,illite and kaolinite 

contents (22, 53 and 15% respectively). This is a most unusual association, 

yet the layer immediately below, with a coal content of 80% and very low 

abundances of anything else, is much more typical in comparison with the 

Peckfield, East Hetton and Maltby samples. Since the clay layer is 

extremely fine-grained (see grading curve Fig.4.l7), this unusual mineralogy 

is not attributable to a "surge" of beach type sediment during a period of 

high flow. Rather .it indicates a period of little or no sedimentation. 

4.7 The Sedimentology of Colliery Lagoons 

The data presented in the previous section can be used to construqt 

a general model of the structure of a lagoon. The sediment imput into 

a lagoon can be divided into four main particle groups:-

,C:' 



Table 4.4 Beach samples from lagoons at Peckfield and .Abernant. Analyses from Kennedy (1977). 

Chemistry 

Peck field 

Abernant 

Recalculated 

mineralogy 

Peck field 

Abernant 

XRD 

!Ilineralogy 

Peckfield 

Abernant 

Si0
2 

44.50 

46.19 

Quartz 

16.73 

10.86 

Quartz 

12 

5 

Al
2
o

3 
28.60 

29.91 

Illite 

41.29 

47.33 

Illite 

58 

58 

Fe
2
o

3 
MgO 

5.15 1.58 

3-85 1.28 

Paragonite 

10.75 

21.30 

Kaolinite 

15 

8 

CaO Na2o 

1.85 0.36 

1.10 0.82 

K
2

0 

4.35 

4.40 

Kaolinite Pyrite 

19.38 3.38 

29.15 1.03 

Chlorite Ankerite 

Trace 7 

- -

Ti02 S 

0.90 1.80 

1.04 0.55 

P205 

0.08 

0.14 

Organic carbon (thermal oxidation) 

16.13 

10.71 

~ 

0 
Cfj 
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Fig.4.16 Grading curves of the beach material 

from Kennedy(1978). 
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1. Large (sand-sized) rock particles composed mainly of quartz, illite 

and kaolinite which settle out quickly to form a grey-brown beach area. 

This beach is often raised above the rest of the lagoon. 

2. Coal and included pyrite in all sizes from fine silt to coarse sand. 

The highest coal contents are found in the centre of the lagoon, but 

relatively speaking the larger particles~ttle out more quickly than the 

finer particles. 

3. The quartz, illite and kaolinite particles. Again these occur in 

all s~ze ranges; kaolinite and quartz settle out at an earlier stage than 

illite. All are more abundant near to the outlet. 
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4. Other minerals including carbonates and a phosphate. The abundance 

of these minerals in different size ranges and in different parts of the 

lagoon remains much more constant than with the other three groups. 

Although differences with size and position in the lagoon do exist, they·are 

clearly not related to the sedi.mentologies of the other types. 

Thus a constant input in terms of flow and composition will produce 

relatively coal-free beach of sand-sized shale particles, which will 

grade into a zone of coarse sediments with an abundance of coarse coal 

particles. Progressive fining towards the outlet sees a shift towards 

the clays and quartz, though fine coal particles remain a major constituent. 

However, neither the flow nor the sediment composition of the input into 

a lagoon is constant. The ~bove model, with relatively low proportions 

of "beach" material and coarse coaly particles would reflect optimum 

operating conditions at the washery. However, there are frequent 

deviations from this optimum condition, and the effect is clearly seen 

in the lagoon sediments as a highly layered structure with frequent 

bands of coarse coaly material, present everywhere in the lagoon 

including the outlet. Thus in chapter 3 it was shown (Table 3.1) that 



both coarse and fine layers were to be found at all three locations (i.e. 

A, B and C) but that the proportion of ~ine layers increased towards the 
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outlet. In the previous section of this chapter it was shown that samples 

of all size ranges could be found in samples retrieved from any location 

from Peckfield lagoon 7 and Maltby lagoon 6. 

There is considerable evidence to suggest that frequently any 

individ~al layer is not found everywhere in the lagoon. The cone penetration 

resistance profiles (Figs. 3.8 and 3.9, Chapter 3) demonstrated that many 

layers die-out over very short distances. It can be seen in Figs.4.18 and 

4.19 that layers pinch out, and also that certain sedimentary features 

characteristic of braided streams are found. Braided streams are frequently 

observed near to the inlet: Figs.4.18 and 4.19 are from the inlet end of 

lagoon l09A at East Hetton. Layers dying out, and curious sedimentary 

features can again be observed at Peckfield, see Fig.4.20. The clay 

layer from Silverhill lagoon 16 which was mentioned in the preceding 

section was traced in a series of final pits, over all accessible parts 

of the lagoon (see Fig.4.2l). In places it was split up by coarser 

laminae, but in no two trial pits were the coarse laminae quite the same 

(see Figs.~2.a-d). Evidently individual coarse laminae must die-out 

over short distances. This is a most unusual association, as the clay 

layer is evidence for a long slow settling period - perhaps an annual 

colliery holiday - while the coarser bands reflect periods of higher 

sediment input. Lensoid layers and sedimentary features indicative of 

deltaic environments have been noticed before by Cobb,(l977, p.l74). 

This sedimentoldgically complex, layered structure seems to be 

the rule as far as colliery lagoons are concerned. It is found in all 

the lagoons reported herein, with one exception. The lagoons at Gedling 

Colliery (S.Notts.Area, N.C.B.) are generally visually homogenous, though 



Fig.4.18 Fine laminations wedging out at the beach of lagoon 109A, 

East Hetton • 
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. F'ig.lt.l<j lk<Jided otreum depo:;i L al t.he be:Jch ol' IH1~oon 1U9A Eaut.. llett.on • 
.. ('l'he formation mnr·ked wi.th the arrow i1; r:hnruct.eri:-;Lit: of 11 

stream that is continually .shifting its .location, .i.e. a 

braided stream.) 
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Fig.4.20 Sedimentary feature at the excavated face of lagoon 7 , Peckfielc 

Note that the fine lamination wedge<> out by the bunch of keys, 

as marked with the arrow . 

Fig.4.21 Lagoon 16 at Silverhill, showing the locations of the trial 

pits. Numbered pits refer to the photograph locations of 

Figs.4.22.a-d. 
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Fig.4.22 The fine lamination exposed in trial pits. For locat ions of the 

tr i al pits refer to Fig .4.21. 

a. Trial pit 1 

b . Trial pit 2 • Note that the fine lamina is interleaved with coarser 

mater i al. 
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c . 'I'ri al pit 3 . Note the distribution of the coarsf:r material. 

d . Trial pit lt. Note the distribution of the coarser material. 
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slightly coarser beach areas do exist, Gedling is a particularly large 

colliery with an efficient washery, and the ability to maintain a 

steady input (both in amount and composition) to the lagoons probably 

accounts for the structure of the lagoons. Apparently this was not 

always so, as National Coal Board (1972) considered it to be a layered 

lagoon, They also point out that homogenous lagoons do exist. 

Nevertheless, the layered type of lagoon seems numerically to be the 

more important. 

Amongst the analyses on samples presented in section 4.6, three stand 

out as being very different from all the others. One is the clay layer 

at Silverhill, the other two are beach samples, which were taken from 

Kennedy (1977). Furthermore, amongst all the other samples it can be 

seen that the chemistry, in particular the carbon content; is highly 

dependent upon the grading characteristics of the layer being analysed, 

It is therefore important to sample the lagoon adequa~ely. In 

particular the temptation to sample only the beach area, which is elevated 

and therefore firm and dry, must be avoided. It is therefore recommended 

that the following procedure be adopted wherever possible:-

1) In addition to a beach samples (which are easy to collect) other 

parts of the lagoon must be sampled. 

2) At each location a vertical section be inspected, either in the 
of 

field or in the laboratory, and samples/representative layersofdifferent 

characteristics should be taken for testing. 

3) At each location the gross make-up of the lagoon in terms of 

the proportion of each representative layer type should be obtained. 

This procedure will yield a highly accurate p.·icture of the surface 

of the lagoon '':in .. a minimum of time, Only two further items of 
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information are required: firstly, are the layers laterally extensive, 

and secondly, does this picture hold at greater depths? The first 

point can be answered by trial pitting at the surface, without the need 

for frequent samples. The second point can be answered by some deep 

sounding technique, either sampling or in-situ testing (say, vane shear 

tests or cone penetration tests). If there is reason to suspect that 

the character of the lagoon has changed based on in-situ tests, samples 

should be obtained in any case. 

4.9 The Relationship Between the Organic Carbon Content and the Specific Gravity 

Coal has a specific gravity of about 1.3, depending on the ash content; 

quartz and the clay minerals have specific gravities of about 2.65. 

Therefore a mixture of the two groups will result in a material having 

an intermediate specific gravity. The correlation between the specific 

gravity and coal content of fine colliery discard is thus expected to be very 

high, and ·a linear regression line fitted through the points on a graph will 

naturally be highly significant statistically. Taylor and Cobb (1977) 

show such a relationship. Now, the total specific gravity (SGT) will be:-

SG 
c 

or 

and 

also 

hence 

= 

= 

Vc 

Vo 

Mass 
Volume 

= 
Me + Mo 
Vc + Vo 

where rlic, Vc are the mass and volume of the coal 

Mo,Vo are the mass and volume of all other 

constituents 

Me 
Vc 

= 

= 

Me 
SGc 

Mo 
2.65 

Me 0.769 Me = 1.3 

= 0.377Mo 

Me + Mo = l 

l l 
SGT = 0.769Mc + 0.377Mo 0.769Mc + 0. 377( 1-Mc) 

= l 
0.392Mc + 0.377 



This is not the equation of a straight line, The implication of 

the linear statistical regression technique, that there is a linear 

relationship between the organic carbon content and the specific gravity 

is therefore not correct, The curve represented by this equation is 

shown as curve A in Fig.4.23, together with all the points of specific 

gravity and organic carbon content presented herein, In the case of 

the samples from Peckfield lagoons 6 and 7, the aggregate (i.e, whole 

sample) organic carbon contents are plotted, not the carbon contents of 

the individual size ranges, Also plotted are 17 points from Cobb (1977), 

Chapter 4, and 7 points from Taylor et al. (1978). 

However, it was shown above (section 4.6) that a significant amount 

of pyrite is associated with the coal. If all the coal contained about 

15 per cent by weight of pyrite, which is an approximate upper limit for 

very coal-rich samples (see Fig.4.13.a-d), then the specific gravity of 

the coal would be 1.45. The equation for SG becomes: 
T 

SG 
T = 

1 
0.312Mc+0.377 

which is:shown as curve Bon Fig.4.23. Curves C and D represent the 

best fi~ linear regression line and the best fit curved regressi9n line. 

The curve is marginally better fit to the data, but the difference is 

not significant in a statistical sense. The curved fit also agrees 

closely with the theoretical curve B and gives a better estimate of the 

specific gravity at zero carbon content. In a physical sense, therefore, 

the curved fit is to be preferred. The average organic carbon content 

calculated from these analyses is 46.5. 

4.10 On the Difference .Between Tailings and Slurry Lagoons 

The fines from the washery are either pumped straight into the lagoon 
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in the form of a slurry, or further treated by froth flotation, the rejects 

from this process being termed tailings. Reject wet fines is a slurry 
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Fig.4.23 Variation of specific gravity with organic carbon. 
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that has a very low coal content and is therefore often classed with 

tailings. Theoretically, the most coal-rich. type of fines should be 

slurry, followed by reject wet fines, with tailings being relatively 

coal free, In practice there is no significant difference between the 

processes, as is shown quite c.learly by Table 4. 5. It should be noted 

that in nearly all cases where only one sample has been taken, the coal 

content is very low. In some of these cases the sample is known to be 

from the beach, and again the possibility of sampling bias must be 

considered. 

This lack of a difference between slurry and tailings may be partly 

explained by the nature of the fine discard. Coal particles occur in 

all size ranges, though they are more abundant in the coarser fractions. 

Thus, despite a large difference in specific gravity between coal and 

* other particles , they are difficult to separate in a fluid medium. In 

terms of· settling velocity (Stokes Law), a large coal particle is equivalent 

to a small clay particle. Although many. washeries could probably be more 

efficient than they are, total separation of coal from clay particles 

cannot be achieved. 

In view of the close association of coal with the grading characteristics 

of the sediment shown in section 4.6. purely mechanical size separation would 

yield very coal-rich products in the upper size ranges. It can be seen 

from Figs.4,6a-d that a separation at the 200 micron size (i.e. medium sand 

and above) would produce a product with about 70% coal. Taking the grading 

curves and the volume of lagoon to which each grading curve refers into 

consideration, it may be calculated that for both East Hetton lagoon 109B 

and Peckfield lagoon 6, approximately 25% of the material in the lagoon lies. 

*Footnote 
Tho S.<;. of coal is approximately 1.3; that o.f clays varies from about 2.4 to 2.7 
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Table 4.5 Organic carbon contents reported for various lagoons. 

Lagoon No. of Range of Source of data 

samples determinations 

Slurry 

Peckfield* 24 31 - 62 Current work 
II 1 18 GWK 

Cresswell 10 34 - 73 NCB report 

Blidworth 5 38 54 1f II 

Ollerton 1 50 II II 

Silverhill 2 9,80 Current work 

Slurry/tailings, or reject wet fines 

Orgreave 5 5 - 50 NCB report 

Gedling 7 48 - 62 " II 

II 3 30 - 38 T+M(1), AEC(2) 

Tailings 

Maltby 6 51 - 81 Current work 

" 1 23 T+M 

Abernant 1 11 GWK 

. Elsecar 1 22 T+M 

Cortonwood 1 20 AF 

Manvers (ex washery) 1 38 AEC 

Morrison Busty 

(ex washery) 1 18 AEC 

Oakdale (ex washery) 2 22,22 Current work 

Cadeby 33 26 - 76 AEC 

East Hetton 10 14 - 83 Current work 

* The Peckfield samples are aggregate coal contents, i.e. not 

the individual size fractions. 

Sources of data: AEC, Cobb (1977); AF, Fletcher (1976); 

GWK, Kennedy (1977); T+M, Taylor and Morrell (1979); NCB reports, 

Wimpeys (1969), Gedling, Ollerton, Blidworth, Cresswell; Wimpeys 

(1977b), Orgreave. 



above this size. Similarly a separation at the coarse sand size (600 

microns) would yield a product with about 85% coal, and remove about 

10% of the material in the lagoon. Unfortunately this type of 

separation is probably not feasible in terms of washeryprocesses, as 

the mesh sizes are too fine for a large throughput of material. 

4.11 Comparison ~f Lagoon and Tip Geochemistry 

The major difference between the geochemistry of lagoons and tips 

is the coal content. It is very significantly higher in the case of 

lagoons, a point noted by Taylor and Cobb (1977). 

pyrite which is closely associated with the coal. 

This is also true of 

Of the remaining constituents in tips, illite is the most important, 

followed by quartz and kaolinite, Taylor (1975). However, kaolinite is 
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relatively more dominant in Northern coalfields, i.e. Scotland, Northumberland 

and Durham; Taylor and Spears (1970); Taylor (1974); Collins (1976). 

In section 4.6 the same was shown to be true in lagoons. 

Taylor (1974) proposed that the coal and clay associated formed 

two of three major groups for coarse discard. The third major group consisted o 

the carbonates, and this forms a separate group in the geochemistry of lagoons. 

Phosphatic material also belongs to this group, which accords with the 

findings of Taylor (op.cit.) for English spoil heaps. 

The depositional environment of lagoons, i.e. in moving water, 

complicates the picture by the effects of sorting, but nevertheless 

the three groups of Taylor (op.cit.) are readily discernible in the 

geochemistry of lagoons. It would have been surprising were this not 

so. 

4.12 The Stabilisation of Fine Colliery Discard with Cement 

Cement stabilisation of fine colliery discard has been used as a 

disposal method obviating the need for lagoons, both in the U.S.A., Snyder 
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et al., (1977), and in South Wales (Halcrow, 1977). The material is 

placed directly on the tip after a curing period to allow it to develop 

adequate handling properties. It is well known that the presence of 

( 

pyrite and its oxidation is det~imental to the action of cement (see 

Grattan-Bellew and Eden, 1975; Sherwood and Ryley, 1970). 

In view of the high sulphur contents reported in Section 4.6, the 

advisability of such a practice must be questione~. 

A short investigation was therefore carried out on material from the 

washery at Oakdale Colliery (S,Wales Area, N.C.B.). .Two series of tests 

were carried out; the first being a leachi'ng experiment on cement 

stabilised tailings; the second set of tests investigated the effect of 

remouldin~ and pyrite concentration on the strength of the material. For 

the leading experiment, the procedure was as follows: 

1. Two samples of Oakdale washe~tailings were received at 24% moisture 

content. Dried samples were analysed by XRF, the results being reported 

-in Table A.4.4.d (samples OWl and OW2). The moisture content to which 

the samples were made up for testing was 90%. 

2. Ordinary Portland Cement (O.P.C.) was added at a concentration of 4% 

ne~ weight. After thoroughly mixing the stabilised discard was allowed 

to stand for 24 hours. A sub-sample was taken for XRF analysis (sample 

OWOPC, Table A.4.4.d). 

3, At the end of 24 hours the sample was placed in a steel permeameter 

which had been adapted for constant head conditions (see Fig.4.24). A 

laboratory vane test (peak and remoulded) was conducted at this stage. 

By ·interpolation a sample of rainwater thought to be typical of South 

Wales was made up following the tables given by Stevenson (1968), see 

Table 4.6. The sample was left under a 300mm head for 20 days. 

4. For the period 10-20 days, the permeability was determined. At the 
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Fig.4.24 Permeability apparatus for the leaching experiment. 

Gauze filter 

Sample 

Gauze filter 

Constant head of 
30 mm 



Table 4.6 Water composition for the leaching experiment. 

(Concentrations in mg/1) 

Cl s Na K Ca N (as nitrate) N (as NH4) 

5.0 3.0 3.1 0.6 1.0 0.7 1.4 

(After Stevenson, 1968) 

Table 4.7 Results of the vane test, permeability and density 

determinations of the leaching experiment. 

After 24 hours 

1 Lab vane 

a. Average peak shear 12 kN/m2 

strength (3 tests) 

b. Average remoulded 5 
strength (3 tests) 

2 Permeability 

a. Flow rate over 10 days 

b. Permeability 

3 Density 

a. Bulk 

b. Dry 

1.435 

20 days 30 days 

42.5 49 

9 7 

0.1322 1/day 0.1225 
6.8 x 10-8 m/s 6.3 x 10-8 

1.418 

0.776 * 

pH 

5.0 

* N.B. This corresponds to a moisture content of 82.7%, compared 

to an initial moisture content of 90%. The cement takes ~p water 

on curing. 

,. 

12.5 
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end of 20 days a further vane test was carried out. 

5. A further 10 day leaching period was allowed, from which another 

permeability measurement was made. At the end of this period a final 

vanetest was carried out, and the bulk density found. Samples were 

taken from the base and top of the permeameter for XRF analysis (samples 

OWB and OWT, Table A.4.4.d). 

The vane test and permeability results are shown in Table 4.7. The 

bulk density over the thirty day period had decreased by 1.18% and indeed 

there ·seems to be a slight loss of clay mineral elements (SiO , Al 0 K 0 
2 2 3, 2:.:. 

and Na20) from the bottom of the permeameter (compare sample OWB with OWT 

and OWOPC, Table A.4.4.d). Importantly, there is a significant loss of 

CaO, the principal component of cement, from the top of thepermeameter and 

a concentration at the base. The increases in Fe
2
o

3 
and MgO in sample OWT 

are probably due to contamination from the permeability apparatus. The 

leaching period is probably equivalent to 6 months percolation in S.Wales, 

assuming no run-off. 

The results of the vane tests will be discussed with those from the 

remoulding experiment, the procedure for which was as follows: 

l) Oakdale washery fine discard was made up to a moisture content of 75%. 

2) Ordinary Portland Cement was added to this fine discard at a 

concentration of 4% wet weight. The sample was thoroughly mixed. 

3) Six 1.5 inch tubes were filled with this mix and are referred to 

as sample nos.l to 6 respectively. 

4) The remainder of the mix was divided equally into two. To one 

half was added 4% dry weight of finely divided iron pyrite; to 

the other 2%, and emplaced in l.5inch tubes. The former is 

referred to as Sample No.7; the latter as Sample No.8. 

5) The tubes were stood in shallow trays, and placed in sealed polythene 



bags with a little water inside. 

access to water vapour. 

12? 

The samples were thus allowed free 

6) Samples l to 5 were opened at intervals and tested using a laboratory 

vane apparatus (see Table 4.8). Peak and remoulded strengths were 

measured. Each sample was then physically remoulded with a rod, 

and tested again with the vane. The sample was then lightly remoulded 

once more to remove the effects of the vane test. 

7) One week after the addition of the cement all samples were subjected 

to one vane test only in the top half of the sample. The bottom half 

of each tube was left undisturbed for further tests. 

The laboratory vane test results were crudely obtained and are regarded 

as preliminary findings only. 

believed to be valid. 

However, a comparison between samples is 

The peak strengths and the remoulded strengths before physical 

remoulding are shown in Table 4.9 and Fig.4.25. The results of the leaching 

experiment are shown, and the strengths of the samples after physical remoulding 

were obtained, are also entered in Table 4.9. 

Table 4.10 and Fig.4.25 show the peak and remoulded strengths recorded 

for the vane tests conducted at the end of one week on the physically 

remoulded samples (l to 5), and the control (6). 

Although a comparison is not strictly valid, because of water 

availability and the possible effects of container size, it seems fair 

to state that after one week a sample stabilised at an initial moisture 

content of 75% is considerably stronger than one at an initial moisture 

content of 90%. The implications for 'quality control' at the washery 

are obviously important. It should be noted that the 4inch sample in 

the leaching experiment is stronger after 24 hours than the l.5inch sample. 
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Table 4.8 Timetable of events in the leaching experiment. 

Sample Time of Vane tests 

remoulding At time of remoulding After 1 week 

1 3 hrs y y 

2 7 hrs y y 

3 24 hrs y y 

4 48 hrs y y 

5 1 week y y 

6 (control) " J 

7 (4% pyrite) y 

8 ( C!l;6 pyrite) y 

y, test performed - no test 

Table 4.9 Vane test shear strengths. 

Time after Vane shear strength in kN/m2 

cement addition Peak · Remoulded Physically remoulded 

3 hrs 0.7 0.3 

7 hrs 2 1 
24 hrs 10 4.5 2.5 
48 hrs 20 6.5 3 
1 week (E;ample 6) 47 9-5 6 

1 week (sample 7) 31 7 
1 week (sample 8) 36 8 
:Leaching experiment results 

24 hrs 12 5 
20 days 42.5 9 
30 days 49 7 

Table 4.10 Strengths of remoulded samples after 1 week. 

Sample Vane shear strengths in kN/m
2 

Peak Remoulded 

1 48 10.5 
2 47 10 

::, 18.~-; 5 
4 ._, 

3-5 u 

5 7-5 6 

6 (control) 46 8 



Fig.4.25 Cement stabilised Oakdale tailings, vane shear strength 

before remoulding. 
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Fig.4.26 Vane shear strength of remoulded Oakdale tailings (cement 

stabilised) tested at the end of one week. 

_50 i.strength kN/m2 

. ~ . 
40 

30 

20 

10 

0 

\ 
\ 

\ 

\ 
\ 

+ 

' ....._ 

• 
\ 

'\. 
........... • Peak 

• 
+- -- -+ 

+ Remoulded 

1 2 3 4 5 6 7 
Time of remoulding (in days) after the additi.on of cement 



130 

This could be due to faster curing of the cement in the higher temperatures 

generated in the larger sample, caused by the exothermic reaction of the 

cement itself. 

It should be noted also that the leaching of cement has not in fact 

caused any reduction in strength. Any such trend is obscured by the 

general increase in strength caused by the curing of the cement. 

A third point of interest is the behaviour of samples 7 and 8 with, 

respectively 4% and 2% dry weight of pyrite added. At the end of one week 

these samples show reduced strength compared to sample 6 (no remoulding, 

no pyrite). This is due to the action on the cement of sulphuric acid 

which is an oxidation product of pyrite (Grattan-Bellew and Eden, 1975). 

From Table A.4.4.d it can be seen that the Oakdale fine discard has a very 

low sulphur (and therefore pyrite) content. These vane tests are 

therefore of no immediate relevance to the situation at Oakdale, but where 

a high pyrite content is suspected it should be re·alised that cement 

addition may not yield the expected increase in strength. 

Referring to Fig.4.26, it can be seen that early remoulding leads to 

a higher final strength, while progressively later remoulding leads to a 

progressively lower final strength. From the point of view of handleability 

a long standing time may be desirable, but the penalty is a lower final 

strength. The earlier the material can be handled the stronger the final 

product is, providing that no further remoulding occurs after emplacement 

on the tip. Two points should be emphasised, however. The first is 

that the physical remoulding carried out in the laboratory was very thorough, 

and represents a "worst case". Thus material handled after, say, 48 hours, 

may not be as weak as indicated by Fig.4.26, but will certainly be weaker than 

material handled immedl.ately. Secondly, the sensitivity is much higher in 

the case of the early handled material; and could lead to a false sense of 

security. 



4.13 The Groundwater Chemistry of Tailings Lagoons 

While much is known about acid mine drainage (Down and Stocks, 

1977), relatively little work has been published on the groundwater 

chemistry of colliery tailings lagoons in the U.K. A considerable 

volume of water flows over or through lagoons, and often discharge is 

into a main drainage network; for instance lagoons 109A,B and C at 

East Hetton drain into the Kelloe Beck which ultimately discharges into 

the River Wear~ Desiccation at the surface of lagoons raises the 

possibility that lagoon effluent could be highly acidic and rich with 
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sulphates, due to the oxidation of the pyrite. Coal contains significant 

traces of heavy metals (Chaterjee and Pooley, 1977) and again these could 

be released into the groundwaters. Since the solid matter in lagoons is 

largely of very fine particle zies, these processes will be enhanced, as 

they are related to the surface area of the particles. 

A reconnaissance survey of the water chemistry of lagoons was therefore 

undertaken, Sixteen samples were gathered from three collieries (East 

Hetton, Gedling and Silverhill), the source of each sample being shown 

in Table. 4.11. Each of the samples was analysed for pH and carbonates 

in the field, and for four trace metal cations (Cu, Ni, Co, Pb), four 

major cation (Na, K, Ca, Mg) and three anions (S0
4

, CL, N0
3

) in the 

laborato~y. The methods employed and full results are outlined in 

Appendix A.4.6. It should be noted from the Appendix that the carbonate 

result {expressed a tofal alkali) is suspect, particularly for the samples 

from Silverhill colliery. The results are expressed graphically in Fig. 

4.27. 

It is clear that the waters ar~ not acid from tip (sample SS), lagoons 

or drainage outlets (Kelloe Beck, sample EH4). The lowest pH is 6.05 

(sample G3); in contrast acid mine drainage often has a pH as low as 



132 

Table 4.11 The sources from which the groundwater samples were taken. 

Sample Description of source 

Gedling 

1 

2 

3 

Surface water,disused lagoon (no. 12) 

Inlet water, active lagoon 

Outlet water, active lagoon 

East Hetton, lagoon 109B 

1 

2 

3 
4 

5 
6 

7 

Inlet water 

Outlet water 

Piezometer, tip at 6m depth 

Kelloe Beck, which runs in a culvert beneath 

the lagoon 

Hole, dug into surface to a depth of 300mm 

Supernatant water. 

Inlet, taken 1 hour after sample 1 

Siverhill, lagoon 16 

1 Surface water / overtip seepage 

2 Piezometer, tip at 3m depth 

3 Outlet water 

4 Surface water 

5 Seepage from tip, discharge onto lagoon 

6 Hole, dug into lagoon surface to a depth of 300mm 



Fig.4.27 Groundwater chemistry of tailings lagoons. 
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2.0 (Down and Stocks, op.cit.,p.lll). This could be due to the buffering * 

capacity of the carbonate/bicarbonate system; sample G3 has the lowest 

total alkali (i.e, carbonate/bicarbonate) concentration and also has the 

lowest pH; sample EH4 from Kelloe Beck has a slightly lower pH than 

other East Hetton samples, which could be due to a reduction in buffering· 

capacity caused by dilution. However, it is also possible that anaerobic 

conditions in the lagoon prevents oxidation of the pyrite. The high levels 

of sulphate suggest that pyrite is in fact being oxidised in surface zones 

of the lagoon. 

The three samples of supernatant water (Gl, EH6 and S4) clearly are 

not like rainwater in composition (see Stevenson, 1968). In general 

their compositions are similar to the other samples, and for reconnaissance 

work samples of supernatant water may be adequate. Certainly, samples 

from seepage into shallow pits (EH5 and S6) would be adequate for 

reconnaissance. 

The trace elements are present in very small amounts. However, 

each of the four elements is relatively abundant in a different East Hetton 

sample i.e. C.u in sample EH2, Ni and Co in EH5, ~nd Pb in EH4. The 

reason for this is not known. Generally, however, the concentrations of 

copper and lead conform to the standards laid down by the World Health 

Organisation (Down and Stocks, 1977; cobalt and nickel are not quoted). 

The major cations show more than the traces. The concentration of 

sodium is particularly high, being mostly 500 to 1000 mg/1; in the case 

of S2 it is as high as 3133 mg/1. Nicholls (1972) found concentrations 

of 1100-1300 mg/1 in a lagoon at Markham Main colliery near Bolsover, 

Derbyshire, and between 1750 and 3400 mg/1 in samples from the tip. 

* Footnote: A buffer is a chemical species that prevents a significant 
change in pH due to the addition of acid. The carbonate/bicarbonate 
system is such a species. 



Except in the case of potassium, and also ignoring the Kelloe Beck sample 

(EH4) the major. cations increase in concentration from East Hetton to 

Gedling, and Gedling to Silverhill. The waters of Kelloe Beck are 
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different, probably because the beck is running through Magnesian Limestone 

country which has increased the calcium and magnesium concentration (the 

Magnesian Limestone contains much dolomite), It is interes'ting to note 

that potassium, unlike the other major cations, is as abundant at East 

Hetton as at Gedling and Silverhill. It will be recalled from section 4.6 

that the potassium/sodium ratio, as determined by XRF analysis of the 

solid matter, was higher in the East Hetton samples than the Yorkshire and 

Nottinghamshire samples. Possibly, there is a casual relationship. 

Turning to the anions, the sulphate concentrations are very high at 

East Hetton and Silverhill (about lOOOmg/1), and lower at Gedling though 

still l60-510mg/l. Nicholls (1972) measured sulphate concentrations of 

380-580 mg/1 in the lagoon, but 2600-5500 mg/1 on the tip, While the 

seepage from the tip at Silverhill (sample 55) did not have this concentration 

of sulphate, nevertheless it had the highest concentration (together with 

EH5) of any sample in the present suite. This might be eviqence for 

more complete oxidation of the pyrite on the tip. The concentration in 

nearly all samples is above the acceptable level for drinking water (250mg/l, 

U.S.A. standard, Walton, 1970, p.457). 

The chloride concentration is correlated to the sodium concentration, 

and is higher at Gedling and Silverhill. At these collieries the levels 

of up to 570 mg/1 are above permissible levels (also 250 mg/1 in the U.S.A.) 

Nicholls (1972) reports values of 2350-2750 mg/1 in the lagoon and 1300-

3000 mg/1 in the tip at Markham Main colliery. Nicholls attributes drainage 

from this .tip as being the cause of the pollution of Sandnall Beat public 

supply well by chlorides and increased hardness, which caused abandonment of 



the well in 1932. 

The nitrate concentration is again lower at East Hetton, and is near 

or above the.permissible (U.S.A.) level of 45 mg/1. As explained in 

the Appendix A.4.6, the total alkali results are somewhat .dubious. 

The composition of these lagoon waters requires explanation. The 

high level of sulphates can reasonably be attributed to pyrite oxidation 

at the surface of the lagoon. The calcium, magnesium and total alkali 

(carbonate/bicarbonate) levels could result from the solution of ankerite 

which is a fairly abundant mineral (see section 4.6). The levels of 

sodium, potassium and chloride are not so readily explained, as leaching 

or breakdown of the minerals present is unlikely to lead to such high 

concentrations of these ions. (Except, in the case of potassium, a 

possible casual relationship of this type has been noted.) 

Spears et al.(l970) have suggested that high concentrations of these 

ions in tips is due to the release of connate waters from the rocks when 

broken down at the surface. It is known that groundwaters in Coal 

Measures rocks are frequently highly saline, i.e. contain sodium, potassium 

and chloride ions (Downing and Howitt, 1969; Downing et al. 1970; Tate 

and Robertson, 1971). Frequently, they also contain high levels of 

sulphate (Downing et al.,l970), though this is proportionately less 

significant than the salinity. It is also known that deep mine waters 

may be saline with appreciable sulphate contents (Glover, 1973; Cairney 

and Frost, 1975). Minewaters are usually neutral in this country 

(Glover,l973), acidity being more of a problem in the U.S.A. Glover also 

shows that acid minewaters are rich in sulphate from pyrite oxidation, 

but are not highly saline. As evidence for the connate origin of the 

groundwater chemistry of tips, Spears et al.(l970) compare the relative 

al>unda11ce o.f Na, K, Ca and Mg in their analysis to those presented by 

1}5 



Downing and Howitt (1969) for East Midlands Coal Measures sandstones. 

Table 4.12 compares the relative proportions of these ions in the present 

suite of samples with the same data from Spears et al. and Downing and 

Howitt. Despite being more dilute than the tip water, which itself is 
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more dilute than the connate groundwater, the proportions of these cations 

is similar for all three sets of samples. 

4.12 ignores between sample variation.) 

(It should be noted that Table 

That tip water, and more 

especially lagoon water, would be more dilute than the original groundwater 

is to be expected. The explanation that the chemistry derives from the 

groundwater is clearly plausible. 

A further point of interest arises. The salinity of the lagoon 

waters incredses from East Hetton via Gedling to Silverhill. The level 

of salinity in the lagoon at Markham Main Colliery is similar to that at 

Silverhill, which is close geographically. Downing and Howitt (1969) 

show that the groundwater salinity increases from the Nottingham area towards 

Doncaster, i.e. in the direction from Gedling to Silverhill. A 1 though the 

salinity of the lagoon waters could be an accident of dilution at the 

washery, it is interesting to speculate that a regional trend in the 

groundwater has been preserved at the surface. Tip material has less 

contact with water at the surface than lagoon material and would thus be 

more likely to preserve regional groundwater trends. Again salinity 

increases from the tip at Silverhill (sample S5) to Yorkshire Main near 

Doncaster (Spears et al., 1970; see Table 4.12) which is again in the 

same sense as the regional groundwater trend. 

Although this is only a preliminary survey, it is possible to draw 

a few conclusions. Acidity does not present a pollution problem, 

rather the salinity and sulphate rich nature of the waters is of concern. 

Rae (1977) also lists iron as an additional possible pollutant from minewaters 



Table 4.12 Proportions of major cations by weight in the groundwaters 

of lagoons, tips and Coal Measures sandstones. 

Ca 

Mg 

Na 

K 

Total Ca, 

mg/1 

Lagoons 
1 

Tips 2 
Tips3 Coal Measures 

sandstones 
4 

13 20 19 17 

4 4 12 3 
81 74 68 79 

2 2 1 1 

Mg, Na, K by weight 

1386 1962 3479 32086 

1 Except EH4 (Kelloe Beck) and S5 (Siverhill tip). 

2 ss. 
3 Spears et al. (1970). 

4 Spears et al. (1970), calculated from data in 

Downing and Howitt (1969). 



in the Yorkshire region. In order to counter the pollution problem, 

dilution of these waters is necessary, and therefore it would be 

advantageous to discharge lagoon overflow waters into a river with as 

high a discharge as is possible in any locality. (Much lagoon water 

is in fact recycled to the washery, and is not a problem.) 

Finally, it should be noted that further work on thi~ aspect of 

lagoons would benefit from determining the total suspended solids 

concentration of surface or overflow waters, which is limited to 30 mg/1 

in Britain (Down and Stocks, 1977). The iron concentration and redox 

potential (Eh) should also be determined as these two have a bearing on 

pollution. The limited number of trace element determinations reported 

here are insufficient for positive conclusions to be drawn, though the 

concentrations measured are not of concern. There is much scope for 

extending the list of metals analysed, and relating the measurements to 

the metals in coal or the other minerals. These comments apply equally 

to lagoons, tips, minewaters or coal measures groundwaters. 

4.14 Conclusions 

Colliery lagoons are layered sedimentary bodies. A beach area, 

with a low coal content but many rock fragments exists near the inlet. 

Away from the inlet layers vary from coarse-sands to silty-clays, and are 

fairly rich in coal. The proportion of finer-grained layers increases 

with distance from the inlet. In contrast, some lagoons are visually 

homogenous, notably those at Gedling colliery, 

The high coal content renders XRD analysis, especially of the mixed­

layer clay portion of illite, particularly difficult • Thermal oxidation 

at 350°C overestimates the organic carbon content, by driving off constituents 

other than carbon. XRF analysis of unburnt speciments is therefore strongly 

preferred and yields a more accurate estimation of organic carbon than does 

burning off organic carbon. 
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Three major geochemical groups are found, corresponding to those 

of Taylor (1974). The coal group, which includes pyrite is found more 

predominantly in the coarser grain sizes, though it occurs in finer-

grained layers as well. The clay group includes illite, kaolinite and 

quartz; illite is most abundant, but kaolinite has a greater relative 

importance in northern coalfields. The illite composition is more sodic 

in the Yorkshire/Notts. coalfield than in the Northeast. The proportion 

of this group is inversely related to grain size and the abundance of the 

first group. Somewhat less abundant than the other two groups is the 

carbonate group, whihc includes a phosphatic mineral, possibly hydroxyapatite. 

This group is independent of grain size, and shows much less sorting than 

the other two groups. 

The layered nature of lagoon~, and the strong correlation of chemistry 

with grain size necessitates care when sampling to avoid bias. The 

distribution of grain types within the various size ranges also mitigates 

against efficient sorting at the washery. Consequently there is no 

difference in the structure or composition of lagoons fed by different 

types of washery. However, the size of the washery and volume of material 

handled may be more important (hence the uniform, non-layered lagoon at 

Gedling). 

The high pyrite content of lagoon sediments could cause~oblems when 

cement stabilisation is undertaken, though more work is required to 

investiage this thoroughly. There could also be a problem with sulphur 

dioxide emission should fine discard ever be reclaimed on a large scale 

as a low grade fuel. However, this is likely to become more common with 

the advent of fluidised bed combustion, and sulphur emission is not a 

problem with this type of plant (Piper, 1977). 

The pyrite content of lagoons does not lead to acid groundwaters draining 
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from the lagoon, though this could be due to buffering by the carbonate/ 

bicarbonate system. Rather, the salinity and sulphate and nitrate 

concentrations are likely to be the main sources of pollution from lagoons. 

For reconnaissance studies, the supernatant waters, or just subsurface 

seepage water from lagoons provide adequate samples in terms of the general 

chemistry of lagoon waters. The sulphate content is likely to be due to 

pyrite oxidation, but the salinity may well be due to the original 

groundwater in the rock. It is possible that lagoon and tip waters 

reflect regional trends in the original groundwater. 



CHAPTER 5 THE SHEAR STRENGTH OF COLLIERY LAGOONS 

5.1 Introduction 

In chapters 3 and 4 it was concluded that lagoons are highly layered 

sedimentary bodies, in which the proportion of fines increases away from a 

beach area, and which contain a very high coal content. It is therefore 

to be expected that a marked anisotropy with respect to strength will be 

displayed. Furthermore it is known (Taylor, 1974) that the coal content 

of coarse colliery discard exercises a fundament~! control on the angle of 

shearing resistance. In view of the high coal contents found in lagoons 

(chapter 4) this parameter is expected to be of importance. 

In order to investigate the shear strength of lagoons with particular 

reference to the anisotropy, a study with field vanes and laboratory tests 
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was carried out on Peckfield lagoon number 7. East Hetton lagoon 109B was 

similarly investigated but with the objective of assessing the performance 

of the cone penetration devices. .Maltby lagoon 6 and Silverhill lagoon 16 

were the sites chosen to study the performance of overtipping operations; 

again field and laboratory shear strengths were investigated. Finally a few 

reconnaissance tests were carried out on lagoon 6 at O.rgreave Colliery;. 

these are reported in Chapter 7.1. 

5.2 A Note on Stress Paths 

All the triaxial tests presented herein are shown in terms of the stress 

paths. The idea of stress paths arises from the desire to plot on one 

diagram a large number of Mohr circles, which would be somewhat confusing. 

With reference to fig.5.1 it can be seen that the top point of a Mohr circle 

carries all the information that is contained in the complete circle, and 

it is therefore necessary to plot only this one point. However, it can 

also be seen that the axes of the diagram are redefined from the original 

cr ,T axes to new p,q axes (where p = (cr1 + cr3 )/2 and q = ( cr1- cr3)/2). 
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Fig.5.1 Definition of p,q point and the relation to c and~-
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Furthermore, the derivation of c and ~ have also changed slightly because 

of the redefined axes. 

Plotting thus each Mohr circle as a single point allows the state of 

stress through which a sample passed at all stages of its history to be 

plotted in a very compact form. The curve joining all the p,q points 

that represent the history of a sample is known as a stress path. Both 

total and effective stresses may be plotted as stress paths. Figure 5.2 

gives an example of the stress path for total stresses of a normal triaxial 

compression test (~ 3 = const). 

PI 

i.e. PI = p 

ql ~1 I 
I - ~3 = 

2 

i.e. ql = q 

- u 

I 

In terms of effective stresses:-

= 0" 1 - u + 0" 3- u 

2 

= <Jl - u- 0'"3 + u 

2 2 

= (j 1 + <53 - u 

2 

Effective stress paths are thus rapidly .~otted by taking the magnitude 

of the pore-water pressure away from the total stress path, while keeping 

the value of q the same. This is shown in Fig.5.2. When the data for 

typical consolidated-undrained triaxial tests on loose- and dense-sands, 

or normally- and over-consolidated clays are plotted as effective stress 

paths, the difference between loose and dense states can be readily 

appreciated, as shown in Fig.5.3.a, b. 

versus strain and pore pressure versus strain are shown for typical loose 

and dense materials, together with the form of the stress paths for 

each case. Loose sands can produce effective stress paths very similar 

to those of normally-consolidated clays, though they have to be very 

loose to do this. 
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Interpretation of the angle of friction and hence cohesion on a total 

stress basis can be very difficult. Consider Fig.5.2l.c which shows three 

stress paths on some fine material from East Hetton. Tests 2 and 3 failed 

at very similar effective stress values, but the failure points in terms 

of total stresses are very far removed from each other. It is not possible 

to plot a line through both of these points. This contradiction frequently 

occurs when both overconsolidated material and normally consolidated material 

is plotted on the same p,q graph. When there is a significant discrepancy, 

the failure envelope has been taken through the total stress failure 

points of the normally-consolidated materials only. In the case referred 

to above, the discrepancy was produced artificially, because the sample in 

test 2 was deliberately overconsolidated in the laboratory. 

5.3 The Comparison of Field Vane Test Data and Laboratory Shear-Strength 
Envelopes 

It was pointed out in Chapter 2.2.iii that a lack of knowledge 

concerning the exact state of in-situ stresses around the vane causes 

difficulties when relating vane-test data to laboratory shear strengths. 

However, on an empirical basis there is reason to believe that this may 

be possible. Cobb (1977) showed that the peak shear strength of colliery 

tailings frequently obeys the following relationship:-

c 
u 

p' = 0.3 (c is the undrain~d vane shear strength, 
u 

p' is the effective overburden pressure) 

While the remoulded strength obeys:-

c 
u· 

p' 
= 0,11 + 0.0037 PI (PI is the plasticity index) 

The former relationship was originally proposed by Terzaghi and Pe·ck 

Cl948), the latter by Skempton (1957). 

Furthermore, it is possible that a relationship of the type: 

may be obeyed. 

c 
.....!!. 
p' 

tan f6 

In order to evaluate whether or not vane test data obeys 



these laws in the field it is only necessary to draw lines corresponding 

to these relationships on the depth versus vane shear strength plqtand 

compare the two. However, certain complications arise. Over-or under-

consolidated laminae within the sediment may obscure any trends, though it 

has been shown by Cobb that under favourable conditions these cases may 

be diagnosed. Furthermore, as was shown in Chapter 2.2.iii, and will 

be demonstrated again later in this chapter (section 5.4) coarse layers 

fail under effective stress conditions. 

cd_ 
p' 

c 
....u_:: 
p' = 

tan¢', and 

tan ¢. 

Thus it is necessary to plot both: 

Where cd is the drained vane shear strength. There is apparently 

a contradiction in referring both the drained and the undrained strength 

to the effective overburden pressure. However, these relationships are 

empirical only, and the original definition was in terms of undrained 

strength and effective pressure (Skempton, l948.a). 

In order to assess the value of these relationships,four lines have 

been plotted on all the depth versus vane shear strength plots presented 

here_in. 

l. 

2. 

3. 

4. 

They are:-

= .11 + .0037PI, where PI = 0 (much fine colliery 
p' discard is non-plastic) 

c 

c 
p' 

c 
p' 

c, 
'P 

= 

= 

0.11 + 0.0037PI where PI = 15, a value which is 
towards the upper limit of PI for lagoon 
sediments. 

0.3 0.3 is also the tangent of 17 degrees, which 
is a reasonable though low value of friction 
(total stresses), hence this value will serve 
for both. the second and third relationships. 

1 i.e. tan 45 degrees. This is towards the upper 
limit of the effective friction angle for 
colliery discard · 
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The values of theplasticity index, and friction angles are based on the 

various tests presented throughout the rest of this chapter. The overburden 

3 . 
pressure is based on a bulk density of 1. 5 ·A~g/m , again based on data from 

the rest of this chapter. When the position of the water table is known, 

the effective density is 0.5 Mg/m3 . 

5.4 The Investigation at Peckfield Colliery 

The initial and most detailed investigation wal:? carried out at 

Peckfield colliery. This site was chosen because lagoon no.7 was to be 

excavated in September 1977, and it was hoped to· observe the structure of 

the lagoon directly. Unfortunately, field circumstances mitigated against 

this; the weak nature of the deposits precluded monitoring of free-

standing faces. 

The investigation into lagoon 7 involved both field vane tests ·and 

sampling for laboratory testing. . The H = 2D and H = D/3 vane combination 

was chosen to investigate the shear strength anisotropy because of its 

previous use for this purpose by Blight,(l971} Initially, tests were 

performed at the six locations shown in Fig.5.4. The variability of the 

sediments is apparent from the results, tabulated in Appendix A.5.1 and 

shown in F~g.5.5. Generally, the strength decreases into the lagoon 

(e.g. trend 1 - 4 and 5 - 4) and increases with depth. It is possible 

that the occasional very strong layers in profiles 1,2 and 5 are desiccation 

surfaces,_ and these are more frequent near to the beach. The R values* 

shown in Fig.5.5.c show very little except the variation in the original 

data. 

In order to obtain a more detailed picture, further tests were carried 

out at locations 1 and 4, and called lA and 2A for distinction. At each 

Sv * Note: R = Sh • 
in Appendix 2.2. 

The method of computing R from vane data is outlined 
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a. H=2D vane tests 
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site, profiles were established using the same vanes. As described 

in chapter 2, inspection of the R values for these profiles led to a 

further series of tests being conducted at these two locations using 

vanes of similar heights. A vane with H = D/3 and a diamond vane were 

used with D = l50mm, the diameter being changed from consideration of 

the sensitivity of the torsion head. It can be seen from Figs.5.6 and 

5.7 (see also Table A.5.l) that the shear strength in each profile is 

extremely variable. Beneath a desiccated crust is a very weak layer. 

This in turn overlies a much stronger layer at between 1.5 and 3'metres 

depth, this layer being thicker in profile lA. The material is then 

much weaker again. Profiles lA was stopped at just over 4m depth 

as the sediments were too strong to penetrate; profile 2A was continued 

to the base of the lagoon. The sediments at location lA are both 

stronger and more variable than those at 2A, confirming the earlier 

series of tests. 

The c/p' relationships are shown by lines l to 4 on Figs 5.5, 5.6 

and 5. 7. Trends are much more clearlydepicted by the more detailed 

profiles at locations lA and 2A (Figs.5.6 and 5.7) and it can be seen 

that the strdnger material at 1.5 to 3 metres d~pth conforms approximately 

to the drained strength relationship, while the weaker layers above and 

below are better explained in terms of the undrained strength law (i.e. 

c ,. 
p = tan 17 degrees). In the case of the weaker layers the 

remoulded strength is close to relationships l and 2 (representing 

plasticity indices of 0 and 15 respectively). However, the variation 

in the data is such that it cannot be stated that either one of these 

lines is a better fit. In contrast, it is clear that the stronger 

sediments at 1.5 to 3 metres depth display remoulded strength~ well 

above either of these lines. In both profiles the desiccated crust 

does not conform to any trend; it is not expected that· it should. 

The R values for these two profiles are shown in Fig. 5.8. As 



Fig~5.6 Vane shear tests at location 1A, lagoon?, Pecl<field. 
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' Fig.5.7 Vane shear tests at location 2A, lagoon 7, Peckfield. 
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Fig.5.8 R values at locations 1A and 2A, lagoon 7, Peckfield. 
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described in chapter 2, the profiles from the first two pairs are extremely 
-'/1 

variaqle, but when combined for pair 4 the profiles can be explained. 

The average R value is l. 56 for the two profiles, and this reflects a 

slightly greater strength in a vertical direction (across laminae) compared 

to a horizontal direction (along laminae). The particularly high R 

values at 2.76 min each profile are due to a weak layer being sheared 

by the diamond vane while the H=2D vane was affected by the stronger 

sediments above and below • This high R value (~ 4) reflects the state 

.. 
of the deposit as a whole at this depth: i.e. it is very much weaker 

along a horizontal plane than in a vertical direction. 

tf, 

UlOO samples were recovered at these -two locations from most of the 

depths for which the vane shear strength is known. On cutting, these 

samples revealed a highly layered structure. This layered structure 

was also revealed by excavation (see Fig.4.20, chapter 4). Quick shear-

box tests were performed on samples out from the UlOO's in both a 

vertical and horizontal orientation with respect to the original ground 

surface. A few tests were also conducted at 14 degrees to compare with 

the diamond vane. The tests were carried out with porous stones (i.e. 

drainage permitted) but at a strain rate equivalent to that of the 

field, .. vane tests, the object being to model the field condition. The 
'"':! 

fastest available strain rate on the shear boxes was l.22mm/min; which 

is a little under a half that of the smallest diameter vane turning at 

6 degrees/minute. Hence this rate was adopted throughout. Average 

degrees of consolidation at failure can be deduced using the relationship 

-of Gibson and Henkel (1954):-

u 
c = l 

t .c 
f v 

where U is the average degree of consolidation at failure 
c 

h is the drainage path length 

tf is the time to failure 

c is the coefficient of consolidation 
v 
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From Table 5.1 it can be seen that a truly undrained condition 

was not achieved. In constrast. it was shown in chapter 2 (Table 2.1) 

that in the finer material with a low cv, very l_i ttledrainage would 

? 
occur, though for the coarser material conditions should be similar 

(i.e. both tests are drained). These tests were carried out by Van der 

Merwe (1977, Tables 7.1 and 7.2). He showed that very low angles 

of friction were recorded for some layers, indicating undrained conditions, 

while other layers show friction angles as high as 48 degrees, indicating 

that drainage is taking place. It is clear, therefore, that the vane 

shear test is measuring the drained strength_of the coarser material, 

but the undrained strength of the finer material. Taylor and Cobb (1977), 

drew attention to this point. 

Based on this argument, the shear strength of the sediment at various 

depths within the lagoon has been calculated according to: 

either s = c + cr tan~ if PI ~ 9 (i.e. an undrained 

strength based on total stresses). 

or s = C I + (5 1 tan~~ if non-plastic (i.e. a 

drained strength based on effective stresses). 

The various parameters were derived from the laboratory shear strength 

tests, and density measurements and index tests which are discussed below 

(see Table 5.3.). The laboratory shear strength has been calculated both 

for the horizontal and vertical mode. The strength profiles so obtained 

for locations lA and 2A look very like the vane test profiles as a 

comparison of Fig.5.9 with Figs.5.6 and 5.7 shows. However, the 

correlation between the field vane shear strength profiles and the 

laboratory calculated shear strength profiles is only significant (at 

the 95% confidence level) for the H=2D and H=D/3(D=75mm) vanes. In 

other words the profiles in Figs.5.6.a and 5.7.a correlate with those 

in Fig.5.9.a and 6, while the profiles in Figs.5.6.b ap.d 5.7.b do not. 



Table 5.1 Degree of consolidation during shear box testing. 

Values of u for shear box tests calculated from: 
c 

u = 1 
h2 

(Gibson and Henkel, 1954) 
c - tf"cv 

c t • u 
v f c 

6 7-5 (fast) 0.416 

6 70 (slow) 0.937 

2000 7-5 0.99+ 

2000 70 0.99+ 

• values of tf are average values based on observations 

during the testing programme. 

15"8 
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The shear-box test results from the two different orientations can 

be utilised to derive R values by: 

appropriate). 

R = 
c + a tan ~ (vertical cut) 
c+ a tan ~ (horizontal cut) 

(using total or effective stress parameters as 

The R values so obtained have been superimposed on Fig. 

5.8, and fall in a similar range to the R values obtained from the pair 

16() 

4 combination of vanes. The average of these R values is 1.20 compared' 

to the average of the vane R values (combination 4) of 1.56. The shear-

box tests thus confirm that the strength of lagoon sediments is a little 

greater across laminae than it is along the laminae. 

In addition to the laboratory shear strength tests, various other 

parameters were determined. It can be seen from Fig.5.10 that the 

Peckfield sediments vary from clayey-silts to silty-sands. Figures 5 .. 1~ 

and 5.12 show that the natural moisture content is nearly always higher 

than the liquid limit and is highest below the perched or natural water 

tables. The moisture content, plasticity index and bulk density are 

highest in those layers that gave low vane shear strengths, and fall in 

the strong layer at 2 to 3 metres depth. The organic carbon content 

and mediam sediment size show the inverse of this relationship. It was 

shown in C.ha.pter 4 (Figs.4.5b and 4.6.b) that the organic carbon content 

and grading of lagoon sediments are interdependent. 

The values obtained from all the field and laboratory tests are 
; ~ 

grouped together in Table 5.2, which forms the raw data for a correlation 

program. Due to the presence of empty spaces in the table, a correlation 

program was used that gave both the coefficient and the number'of pairs 
m.e. . 

The output of the~ogra~is shown in Table 5.3. in the coirelation. 

The following statistically significant correlations may be drawn from 

the table, (these repeat some of the visual observations outlined above 
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Fi5. 5.11 Index parameters, profile 1A, Peckfield lagoon 7. 
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Fig. 5.12 Index parameters, profile 2, Peckfield lagoon 7. 
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EXPLANATION OF SYMBOLS USED IN TABLES 5o 2 AI\D 5.s3 
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Table 5.2 Physical and chemical data correlated in Table 5.3 
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E PH IE LL ·so! RD3 PL P1 SEN2 SEN3 

1 1o 002 4 o. o·oo 37oO'lO 12o585 Oo806 2o730 2o 000 
2 1oll30 40oiJOO 4Jo00·J 3o512 Oo918 16o 000 27o000 2o270 2o200 
3 lo098 15o<JOO 2o 71 0 2o330 
4 io206 Bo 000 4 3o 00 0 4o273 1o368 30o 000 13o000 Jo 100 2o200 
5 1o 179 21o000 2of.70 lo7eo 
6 Oo949 35oaoo 41)o 000 .14ol65 Oe869 2o 350 2ol~O 

·7 1o 031 39oJOO 33o 000 2o300 1. tle.o 
·a 1o 020 42o000 ---- C:Oo018 1o792 2o430 2olll0. 
9 Oo912 42o000 32o000 2o 150 1o.'HI) 

10 22.242 loBO.'~ 2o 600 2o0~0 
11 Oo995 49o000 35o000 2o350 lo770 
12 Oo823 46o000 11o 531 6~981 ;. 470 lo770 
13 --.·"1- z.; 31 o lo570 
14 ----· 4·2.000 6. 32 2 Zo313 26o 000 17o000 ~. ?.20 2o ~ 3U 
15 2o 060 lo:!20 
16 39o000 13o 170 lo 4 75 27o000 120o000 3ol90 1o2"0 
17 ---- 1o 440 ?.of· t 0 
18 lo410 39o000 37o 000 31o 315 -0.189 2o<>30 1 c~'?O 
19 lo045 44o000 25o000 
20. 10 530 J3o.JOO 
21 ... 1o·295 2 §• 00 0 ·45o000 . ----. '31o01)0 14o000 

. 2'-f: Oo'970 3 • 0'0 0 40o000 12o585 4o962 28o00() 12o000 z~ eoo 2o000 
23 1 3o 0 00 4o165 2o969 lo920 1o291) 
24' 11o529 9o l'00 44o000 3o68!'l lo'!?8 29o000 16o000 3o330 lo940 
25 lo448 7o 000 7o024 Oo940 2o 520 2o41:0 
26 I o 098 1 Oo 000 42oOOJ. 3o980 4o03"l 2-T;.o.>o 14o000 2o 290 2o310 
27 .1 0 282 1 6o ·JOO 40o000 1 4o 1 6 5 Oo 1 d6 30~ 000 lOoOOO 2o560 2o080 
28 Oo892 45o000 3/;o 000 32o 4 '.!5 lol22 2o 12 0 lo 7 I 0 
29 Oo852 53oel00 20o019 lo 525 Zo690 toe~o 

30 31 o OJO 22. 65.~ Oo303 2o 12 0 lo53C 
31 Oo865 43o000 34o0:JO l4o 39.; 3o536 2o500 2o::!!;O 
32 Oo948 43o000 6o9b5 3o5S6· ?.o 3'50 3o100 
46 29o000 6e32~ 1o597 2o 120 lo670 
33 l2o 11 6 Oo421 3o330 2o2SO 
34 Oo 921 :~s.oco 37o OO:J 12o 23 3 •• Oo 16'.! 2do000 9o000 2o 700 1o970 
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42 9o 190 · 3o 729 . .,....;...... .... ?o 270 2o0{10 
43 9o482 2o456 10 71 0 ··~·70 
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45 20o311 Oo443 loOOO 2o(':E0 
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Table 5.2 cont 

i 
ILL KAO PYR . DOL 51 AL FE MG CA 

1 30o000 12o .l·oa 2o00J lo 000 30o000 1 5o 000 5o000 Oo 9!30 1o50 
2 3t3o 000 1lo000 lo 00•) 36o000 19o 000 4o400 1o1?.o 1o30 
3 
4 48o000 9o000 39o000 20o000 3o900 1o 210 1oOO 
5 ... 
6 32o000 6o.000 3o 000 26o000 12o000 7o400 Oo74'0 loJO 

-···· .7 33o000 5o 000 4o 000 4o 000 27o000 1 3o 000 Bo900 Oo 930 2o60 
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.., _ _.. .. 
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OEP 520 SD/3 'R23 SG so RHCO PHC~ ~ 

OEP .loOOO 46 o.o-;9 43 Ool94 43 -oOJ2 42 -o377 2J -. 211 21 - • .;e1•2~ -.6~3•26 -.~6<;+~'· 

520 Oo 0 0 loOOO 43 bo751•43 Oo~80 42 ••o70;sal-:l ••o 33R I 8 ~.!:9':023· -o771•23 -ot:7le:!~ 

SD/3 Oo 0 0 Oo a 0 Ia OOa 43 a. Jod+42 -oo9J01€l -o290 I 8 -.574023 -o6'37a2J -.~!>~0'2"1 

R23 Oo 0 0 OoO 0 o.a 0 loOOO 42 -o328 17 -.177 17 -o0'!2 2<'; -.-:!~7 2.? -o41" ~-:: 

SG OoO 0 Oo a 0 oc. o 0 Oo 0 0 1o000 20 Oo 074 20 ao63'::+1 5 o. 7~·--0J ~ Oo541:: +i •i 
50 o.o 0 o. 0 0 o. 0 0 Oo 0 0 o. a 0 laOOO 21 ao ')67 16 Oo 2 "" 16 o. c ~F. l:j 

RHOD Oo 0 0 Oo a 0 Oo a 0 o. 0 0 Oo 0 () Oo 0 0 lo JOO 26 Oo8"l7•26 Oe!'O~O~r: 

RHOW OoO 0 Oo 0 0 o. 0 0 o.o 0 OoO 0 Oo 0 0 Oo 0 0 I o 000 26 Oo 8~'?•:?~ 

M o. 0 0 · Oo 0 0 Oo a 0 Oo 0 0 o. 0 0 Oo 0 0 Oo 0 0 OoO 0 lo 00 C 26 
r:: o.o 0 OoO 0 o. 0 0 o. 0 0 o. 0 0 Oo 0 0 o. 0 0 o.o 0 o.o J 

PHI£ Oo 0 0 Oo 0 0 Oo 0 0 OoO 0 PoO 0 Oo 0 0 o. 0 0 o.o 0 o. 0 0 
LL o.o 0 Oo 0 0 Co a 0 Oo 0 0 aoO i) Oo 0 0 Oo 0 0 o. 0 0 Oo 0 0 

SOI OoO 0 Oo 0 0 Oo 0 0 o. 0 0 OoO 0 o.o 0 Oo 0 0 o.o 0 Oo 0 a 
RD3 OoO 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 Oo 0 0 o. 0 0 o. 0 0 o. 0 0 

PL OoO 0 OoO 0 Oo 0 0 o.o 0 o. 0 0 Oo 0 0 o. 0 0 OoO 0 o.o 0 
PI OoO 0 Oo 0 0 OoO 0 OoO 0 Oo 0 0 OoO 0 o. 0 0 o. 0 0 Oo 0 0 

SEN2 o.o 0 Oo 0 0 OoO 0 Oo 0 0 o. 0 0 Oo 0 0 o. 0 0 OoO 0 OoO 0 

SEN3 OoO 0 OoO 0 OoO 0 o.o 0 o. 0 0 Oo 0 0 Oo 0 0 o. a 0 o. 0 0 

SEND OoO 0 Oo 0 0 OoO 0 Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 OoO 0 Oo 0 0 

SENJ OoO 0 Oo 0 0 OoO 0 OoO 0 ')oO 0 Oo 0 0 a. 0 0 Oo 0 0 OoO 0 

C<90 OoO 0 o. a 0 o. 0 0 o.a 0 Oo 0 0 o.o 0 ao 0 0 Oo 0 0 Oo a :) 

C>90 Oo 0 0 Oo a 0 Oo a 0 Oo 0 0 Oo 0 0 o. 0 0 o. 0 0 o.o 0 Oo 0 a 

S0/3 OoO 0 OoO 0 OoO 0 o. 0 0 o.o 0 o. 0 0 Oo 0 0 Oo 0 0 OoO 0 

L050 Oo 0 0 Oo 0 0 o. 0 0 OoO 0 OoO 0 Oo 0 0 a. o 0 Oo 0 0 Oo 0 0 

LI o.o 0 Oo 0 0 o. a 0 Oo 0 (). Oo 0 0 o. 0 0 o. 0 0 OoO 0 OoO 0 

R20 OoO 0 o. 0 0 o.o 0 o. 0 0 o.o 0 o. 0 0 o. 0 0 o. 0 0 o. 0 0 

OTZ ·Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 OoO 0 o. 0 0 Oo 0 0 Oo 0 0 

ILL Oo 0 0 o. 0 0 Oo 0 0 Oo 0 0 o. 0 0 Oo 0 0 o.o 0 Oo 0 0 OoO 0' 

KAO Oo 0 0 Oo 0 0 o. 0 0 o. 0 0 o. 0 0 Oo 0 0 o. 0 0 Oo 0 0 Oo 0 0 

PYR Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 Oo 0 0 OoO 0 

DOL OoO 0 Oo 0 0 o.o 0 o. 0 0 Oo 0 0 Oo 0 0 o. 0 0 Oo 0 0 o.o 0 

51 OoO 0 Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 o. 0 0 Oo 0 0 Oo 0 0 

AL Oo 0 0 Oo 0 0 OoO 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 OoO 0 OoO 0 

FE OoO 0 Oo 0 0 Oo 0 0 , Oo 0 0 Oo 0 0 Oo 0 0 o. 0 0 o. 0 0 Oo 0 0 

MG OoO 0 Oo 0 0 o. c 0 o. 0 0 Oo 0 0 Oo a 0 o. 0 0 o.o 0 o. 0 0 

CA Oo 0 0 o.o 0 OoO ·o , Oo 0 0 o. 0 0 o. 0 0 o. 0 0 o.o 0 OoO 0 

NA Oo 0 0 Oo 0 0 o. 0 0 o. 0 0 o. 0 0 Oo 0 0 o.o 0 Oo 0 0 Oo 0 

K OoO 0 Oo 0 0 o. a 0 o.o 0 ao 0 0 Oo 0 0 OoO 0 OoO 0 OoO 

TI o.o 0 ao 0 0 o.o 0 OoO 0 ao 0 0 o. 0 0 o. 0 0 Oo 0 0 o. 0 

s OoO 0 Oo 0 0 Oo a 0 Oo 0 0 Oo 0 '0 o. 0 0 ao 0 0 o. 0 0 Oo 0 
·.p. OoO '0 o·. a a Oo a :o Oo 0 0 o. 0 0 o. 0 0 o.o ·0 o. 0 0 Oo 0 

Table 5·3 Correlation of the physical and·chemical data from Lagoon 7 at Peck field. 

Sig~ificance l~vels • 99-9% 0 99% +95% 
" 

First number represents product moment correlation coefficient, second number represents the 

number of pairs of data correlated. 

~ P"iiE LL SO I RD3 PL PI SEN2 SE"3 

DEP Oo 197 26 Oo .'368 27 -o28~ 21 •)o 11 9 35 -.118 35 Oo 312 10 ao :!19 10 -o4?.~043 -oOFII 43 

520 -ol6a 23 aot>'ifla24 -.543+19 Oo737•3'5 Oo044 35 Oo 212 9 o. 64(: 9 -o024 4'3 • 0 2.5a 43 

SD/3 •• 0 1 97 23 Oo 626024 --o48n+1Q Oo590•3S Oo 0').>3 JS Oo 4SO 9' Oo 346 q -.2'56 4:0 Oo o.<~:: 4.'3 

R23 -.o·H ~2 Oo ~·1 ".l 23 -o4e(·+l fl Oo28~ '34 ao 003 34 -oo26 9 ao45a 9 o. a70 42 aoO~': 4?. 

SG Oo4 01 15 -o1D?a16 ao6e3o19 ··o'>29H5 Oo395 15 ~. 231 e Oo 05o 8 Oo 05<! 1 5 Oo Of-.9 Iii 

so o.o~o 16 •·o 053 17 ao042 19 -o05'3 IS ao435 IS Oo 0~1 8 -o 261 8 Oe253 1H Oo a61 l'i 

RHOD Ool 19 26 -.303 26 Oo292 1 7 -.,,77+18 ao279 10 -o264 8 a. o.Jo 8 Oo 022 2:'- Oo 2) 1 2'3 

flHOW o.;1o2 26 -.5740?6 Ool:52017 "o634ol'l Oo279 I :! Oo 3tl4 8 ... 421 8 ao420+,'?3 o.:n f:. 2 

M -· 0 32 26 -.702•26 Oo76S•17 -o40J 18 o. 039 ld Oo qo3 o 6 -.631 8 Oof-"'>8•.?.3 Oo :-2 '! 

E loOOO 26 ao 0 ·~5 26 Oo .l35 17 -o192 lo'l -oilS 1~ Oo 141 8 o. 12 7 8 -· 231 2.1 Oo 00.! 

PHI[ Oo 0 0 I o 000 27 -.f:>.'3Jol7 Jo552+1") Oo 09·"1 19 -o560 8 Oo::IOa 8 -· 3:06 24 -o1~6 24 

LL, OoO 0 aoO 0 loaOO 21 -o466 16 Oo 1 Go 16 -o \)4.3 10 -o2fl0 10 Oo53-5+1Q Oo55:?+l. 

SDI OoO 0 o. a 0 Oo a 0 1. 000 35 ~.290 35 Oo 370 9 Oo 302 9 -o OQ4 35 •o239"3-

RD3· OoO 0 OoO 0 ao 0 0 Oo 0 0 lo 000 3S Oo O'J7 9 -oOQO 9 -o027 35 • Oo 090 ~ 

PL OoO 0 a. o 0 aoO 0 Oo 0 0 Oe 0 0 loOOO 1 a -o14~ 10 Oo 516 c; -· 164 

PI OoO 0 Oo a 0 Oo 0 0 Oo a 0 Oo 0 0 Oo 0 a lo 000 10 Oo 371 9 -.es1o 

SEN2 OoO o· Oo 0 0 ao 0 0 Oo 0 0 OoO 0 Jo 0 0 o. 0 0 loOJO 43 Oo042 4 

SEN3 Oo 0 0 Oo 0 0 OoO 0 OoO 0 OoO 0 o. 0 0 .o.o 0 Oo a 0 looaa 

SEND OoO 0 Oo 0 0 ao a 0 Oo 0· 0 ao 0 0 Oo 0 0 o. 0 0 Oo a 0 Oo 0 

SEN3 o.o· Q.'. o. 0 0 OoO 0 Oo a ') OoO. 0· Oo 0 0. o. 0 0 Oo a ·0 OoO' 

C<90 OoO '0 • Oo a 0 Oo C 0 o. 0 0 OoO ·a OoO 0 OoO. 0 OoO 0 Oo 0 

C>90 OoO 0 ao a 0 o. 0 0 Oo 0 0 Oo 0 0 Oo 0 0 Oo 0 0 OoO 0 OoO 

SD/3 OoO 0 Oo 0 0 Oo a 0 OoO 0 aoO 0 Oo 0 0 ao a 0 o. 0 0 OoO 

LDSO Oo 0 0 Oo 0 0 OoO 0 OoO 0 ao 0 0 Oo.O 0 o;. o 0 Oo 0 0 Oo 0 

· LI OoO 0 Oo 0 .0 OoO 0 Oo 0 0 Oo 0 0 OoO 0 Oo 0 0 Oo 0 0 Oo 0 

R2D Oo 0 0 ao 0 0 Oo a 0 o. a 0 Oo 0 0 o. 0 0 Oo 0 0 o.o 0 OoO 

OTZ OoO 0 OoO 0 Ooa 0 o.o 0 Oo 0 0 Oo 0 0 a. 0 0 Oo a 0 ao 0 

ILL OoO 0 Oo 0 0 0~0 0 o. 0 0 o.o 0· o. 0 0 o. 0 0 Oo 0 0 Oo 0 

KAO OoO 0 Oo 0 0 Oo 0 0 Oo a 0 Oo 0 0 Oo 0 0 o. 0 0 OoO 0 Oo 0 

PYR OoO 0 OoO 0 o.o 0 OoO 0 OoO 0 Oo 0 0 Oo 0 0 Oo 0 0 o. 0 

DOL OoO 0 Oo 0 0 o. 0 0 Oo 0 0 o. 0 0 Oo 0 0 OoO " Oo 0 0 Oo 0 
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and also those in chapter 4, ·section 4.6). 

1. The organic carbon content (coal content to a first approximation) 

correlates with the grain size (log o
50

), friction angle and depth. 

2. The specific gravity, bulk and dry densities, moisture content 

and liquid limit all correlate negatively with the coal content etc. 

The finer sediments thus contain less coal, and are wetter. 

3. The field vane shear strengths all correlate one with another, 

and are also correlated with the coal content etc. 

4. As was shown in Chapter 4 (section 4.6), the pyrite and hence 

iron and sulphur contents are c~rrelated with coal, and hence with field 

vane shear strength etc. The clay group of minerals and chemicals show 

the inverse of this relationship. 

All these correlations are explained in terms of the sedimentary 

model outlined in Chapter 4 (section 4.7) by the additional postulate 

that the friction angle is dependent on the coal content. Thus coarse 

layers are coal and pyrites rich, and have high friction angles and low 

bulk densities. Finer layers on the other hand are denser, wetter and 

show up as weak layers. Thus it can be seen that the field vane she~r 

test is behaving in the same sense as the cone penetration test; i.e. 

the stronger or more resistant layers are coarse, coaly layers. The 

relationship between shear strength and coal content has been noted 

before (Taylor, 1974). 

Other correlations exist in the data tP,at are not so readily 

explained.in terms of this model. 

contradictory. 

Some of these correlations are 

5. The sensitivies of the vanes correlate with bulk density, liquid 

limit, depth and moisture content, and negatively with median size and 

plasticity index. Not all the vane sensitivies are thus correlated, 
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which explains the contradiction of correlations in opposite senses to depth 

and median size which are themselves positively related; it is from 

different vanes that the two correlations come. These relationships 

suggest that it is the wetter, more plastic layers that are the more 

sensitive. This is of course not an unexpected relationship. 

6. Of all the R values, there are only three significant correlations; 

with the strength of one of the vanes used in the determination of the R 

value in question, with another R value, and negatively with the liquid 

limit. Since no other parameter in the data is related to the anisotropy 

of the sediments, the lack of correlation with anything else is probably 

a more significant conclusion. 

7. The void ratio correlates with no other property, unless the 

90% significance level is included when one vane sensitivity and the 

organic carbon content (negatively) may be mentioned. 

8. The Trask sorting coefficient (So) correlates negatively with 

the median size; i.e. the coarser sediments are more uniformly graded. 

Numerical comparisons may be drawn from these data on the differences 

between the material at locations lA (near the beach) and 2A (further 

into the lagoon). ·The strength and moisture content data have been 

compared using a Wilcoxon Matched Pairs Signed Ranks Test, which compares 

data in individual pairs. This is possible for those parameters for 

which data are available from many similar depths in the two profiles. 

For the other data, a Students "t" test or Fishers L.S.D. test are used 

where appropriate, these tests compare overall populations of data which 

is more appropriate when data from coincident depths are not available. 

The results are presented in Table 5.4 and it can be. seen that 

passage into the lagoon marks a_transition from stronger to weaker 

sediments, looser to denser, coarser to finer and drier to wetter. This 



Table 5.4 Comparison of physical data from locations 1A and 2A, 

lagoon 7, Peckfield. 

Parameter 

Strength 

a. Shear box 

b. H=2D vane 

c. H=D/3 vane 

(75mm) 

d. H=D/3 vane 

(150mm) 

e. Diamond vane 

Voids ratio 

Bulk density 

Log D50 
S (Trask's 

0 

Test 

1 

1 

1 

1 

1 

2 

3 
2 

3 
sorting coeff.) 

Moisture content 

PL 

LL 

1 

3 
2 

2 Organic carbon 

content 

Specific gravity 2 

Result 

Material stronger at 1A 

Stronger at 1A 
II· II t1 

II U 

" " " 
Higher at 1A 

Higher at 2A 

Larger at 1A 

Larger at 2A 

Higher at 2A 

Higher at 2A 

Higher at 1A 

Higher at 1A 

Higher at 2A 

n.s. Not significant i.e. less than 95% 

Significance 

level 

n.s. 

99-5% 
99-5% 

n.s. 

n.s. 

n.s. 

95% 
95% 
n.s. 

99% 
n.s. 

n.s. 

n.s. 

n.s. 

Test 1 Wilcoxon Matched Pairs Signed Ranks Test 

2 Student's t test 

3 Fisher's L.S.D. tes~ (i.e. F test ·is +ve ~ 
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is consistent with the sedimentological model proposed in chapter 4 

(section 4.7). Although the other parameters are not significantly 

different between the two locations, it should be noted that they too 

are all consistent with the model with the exception of the liquid limit. 

Consequently it seems reasonable to suppose that the coal content 

decreases away from the lagoon inlet, as does the voids ratio though this 

parameter is not accounted for by the model. On the other hand, the 

density and the sorting coefficient increase away from the inlet. For 

consistency, the liquid limit should increase away from the inlet, but 

this is not so. 

should be used. 

This underlines the caution with which statistics 

In addition to the U.lOO samples, four undisturbed box samples were 

taken from the face of the excavation into lagoon No.7. The locations 

are shown in Fig.5.4. Figure 5.13 shows that the material fines with 

distance from the inlet. It can also be seen from Fig.5.13 that the 

organic· carbon content, specific gravity and index properties conform to 

the trends mentioned above. Consolidated - undrained triaxial tests 

were performed on box samples 1 and 2, and from Figs.5.14 a and b it can 

be seen that the material has high effective friction angles, as expected 

from the high coal content. The angle of friction on a total stress 

basis is about 23 degrees in each case; this is higher than t.he shear­

box test results because these samples were consolidated before shear, 

rather than being sheared on an immediate basis. Samples 3 and 4 were 

subjected to drained tests, see Figs.5.15a and b. Again the effective 

angle of friction is high, particularly for the coarse, coal-rich sample 

No.4 (at 43 degrees). Both these samples show high values of cohesion. 

While a true effective cohesion intercept is possible for sample 3 

(Fig.5.15a), which has a clay content of about 34%, it is highly unlikely 



Fig.5.15 Grading cu1·ves for samples PL71-4, lagoon 
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Fig. 5.14 Consolidated undrained triaxial tests on Peckfield lagoon 7. 

a. Sample PL71 

c e E p' q' S.G.=1.890 Organic carbon=47% 
v s ~ ~f 2 f 2 

m2 /yr . kN/mK.N/m kN/m 
1 -- 2800 141 78 
2 - -- 3000 119 87 
3 - - 3800 149 992 
4 - - 12000 249 .182 . 

100 200 300 

b. Sample PL72 

400 500 
2 

p,p' kN/m 

·c e E p' q' .S.G.=1.900 Organiccarbon=52% 
2 v s 2 f 2 f 2 

m /yr - kN/ml<N/m kN/m . 
1 - 3400 168 92 
2 9.6 - 7600 305 169 

2 
p,p'kN/m 
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Fig. 5.15 Drained triaxial tests on Peckfield lagoon 7. 11".6 

a. Sample PL73 

c e E p' q 
2 v 2 t 2 t 2 m ./yr kNJm kN;m kN;m 
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that the very coarse sample 4 has true effective cohesion. In view of 

the high test pressures involved compared to the in-situ effective 

stresses, the answer probably lies in a curved failure envelope. It 

is usually considered that coarse discard is cohesionless on an effective 

stress basis, and curved envelopes are usually postulated for the more 

plastic discards (Taylor and Cobb, 1977). 

Two samples of material from the outlet end of lagoon No.6 at 

Peckfield were tested in the shear-box as described in Chapter 2.2.iv, 

Figures 2.14 and 2.15 show that the behaviour is essentially the same as 

that shown by material in lagoon 7. It is !nteresting to note the 

coarseness of the coaly layer at the outlet. A consolidated-undrained 

triaxial test was performed on the finer material from this location. 

The stress paths, Fig.5.l6, show some interesting features. Sample 2 

was deliberately overconsolidated in the triaxial cell to an effective 

2 cell pressure of 600kN/m , and then unloaded to the test pressure. 

It exhibits a behaviour typical of ove:neon-solidated-· material (see section 

5.2). Sample 3 on the other hand is normally consolidated, and behaves 

as such. Sample 1, at a very low test pressure exhibits slightly 

overconsolidated behaviour, and high shearing resistance at failure. 

This material was evidently overconsolidated to a stress of above 

2 
40kN/m • The effective cohesion intercept of this material is therefore 

almost certainly a true feature indicative of its ove_rconsolidated state, 

in contrast to the two samples from lagoon 7 where the cohesion intercept 
• 

may be an artefact of the test pressures involved (particularly in the 

case of sample 4).- It will be recalled from Fig.2.15 that the fine 

material from lagoon 6 has a clay content in excess of 30%. The 

effective angle of friction is 25 degrees; shear-box tests gave an angle 

of 26 degrees (see Fig.2.14). The friction angle in terms of total 

~ress is low, at 15 degrees. 
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Fig. 5.16 Consolidated undrained tests on Peckfield lagoon 6. 
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'l. 5. 5 East Hetton 

The lagoons at East Hetton were chosen as the site for testing the 
e 

use of cone pe~rometers in colliery lagoons. A preliminary series of 

vane tests were conducted with the H=2D vane only at the locations 

marked, 1 2 and 3 in Fig.5.17. Location 1 represents material that 

was pumped into a temporary exavation (see Chapter 1.4). which is 

obviously much weaker than the original material at location 2, see 

Fig.5.18 (and Table A.5.1). Lagoon 109C was less suitable for the 

penetrometer study in terms of access, and the profile at location 3 

represents the only vane tests conducted there. In view of the fact 

that the embankment of lagoon 109B is founded on these deposits, the 

strength below the cru~t is low. 

1·79 

The main investigation was concerned with lagoon 109B only. Testing 

was conducted at three locations (A, Band C, Fig.5.17); these locations 

involved the original lagoon material only. Vane tests at these three 

locations reveal a lagoon with a moderate strength at the inlet, 

decreasing towards the outlet (trend A - C - B in Fig.5.19, see also 

Table A.5.1), thus repeating the pattern found at Peckfield. 

The strength versus depth relationships, depicted by the lines 

labelled 1 to 4 on Fig.5.19, show that the peak strength generally 

cecreases from a.drained strength relationship near to the inlet (location 

A), to an undrained strength relationship near to the outlet. However, 

as at Peckfield there is a great deal of variability in the results, 

which probably arises from the highly layered nature of the lagoon 

sediments. The remoulded shear strengths are close to relationships 

1 and 2, though the variation in the strength is too great to state 

which relationship is the better (or indeed, if another would be more 

sui table). As at Peckfield, when the peak strength is nearer to the 



Fig.5.17 Test locations in t;he lagoons at East Hetton. 
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Fig. 5.18 Preliminary vane survey, East Hetton. 
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Fig. 5.19 Vane tests in lagoon 109b, East Hetton. 
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drained strength relationship the remoulded strength tends to lie above 

. the lines defining relationships 1 and 2. The change in strength from 

an effective stress to ·.:total stress relationship may be explained in 

terms of the increasing proportion of fine grained layers with distance 

from the inlet (see Table 3.1). 

Since the vane tests have been carried out with vanes with H=2D, 

H=D/3 and diamond shapes, it is possible to compare directly the R 
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values o.btained from combinations 1, 2 and 4 (as defined in chapter 2.2.iii, 

and Fig.2.3). From Fig.5.20 it can be seen that combination 4 gives the 

most consistent results, cqnfirming the Peckfield findings {previous 

section). However, the results, are more variable than those at Peckfield, 

and the R value is higher on average. The average R value (combination 4) 

is 1.56 at Peckfield, compared to 2.17 at East Hatton, the standard 

deviations being 0.766 and 1.164 respectively. The high degree of 

variability of the data from East Hatton- is probably due to the highly 

layered nature of the sediments (as was shown by the cone penetration 

tests, Figs.3.4 to 3.6, and the borehole logs Table 3.1). As at Peckfield, 

the sediments possess greater shear strength across.the laminae (i.e. in a 

vertical orientation) than along the laminae. 

UlOO samples were obtained from all three locations. 

of these samples have already been described (Table 3.1). 

The logs 

For further 

analysis typical samples were taken to represent one coarse, one medium 

and one fine grained layer at each location, with an additional medium-

fine sand at location C, (i.e. 10 specimens). The grading curves of 

these samples, as discussed in chapter 4, section 4.6, together with the 

logs, show an increase in the proportion of fines with distance from t~e 

inlet. Since the finer layers have the lowest organic carbon content 

(Fig.4.6.c), the proportion of coal generally decreases with distance 



Fig. 5.20 R values, East Hetton lagoon 109 B. 184 
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from the inlet. Hence the decrease in strength across the lagoon can 

again be explained in terms of the dependence of shear strength on the 

coal content, as at Peckfield. 

Shear-box tests carried out on these samples show that the coarse, 

sand-sized.material has effective friction angles of about 35 degrees (see 

Table 5.5). The. effective friction angles of finer material is about 

30 degrees as would be expected in consideration of the proportion of 

coal in the finer layers. The angle of friction in terms of total 

stresses is lower at 20 degrees. The cohesion intercept reflects the 

degree of consolidation, and as at Peckfield it seems probable that the 

finest material has a true· effective cohesion .intercept. 

Triaxial tests were also conducted on material from East Hetton. 

However, the finely layered nature of the lagoon produced some difficulty 

in selecting only one type of material for each test. In order to 

obtain a sample containing only one coarse layer, a sample was taken 

from the beach area of lagoon l09A (the beach in lagoon l09B was obscured 

by overtipped material). This sample has a low coal content (9%), and 

as can be seen from Fig.5.2l.a, it behaves as a dense material at low 

pressures, yet has no effective cohesion intercept. This is expected 

of a coarse material; the effective friction angle is 35 degrees. The 

friction angle in terms of total stresses is 16 degrees., 

being 2lkN/m2 on this basis. 

:the cohesion 

A layered sample from location B, containing coarse, medium and fine 

' layers exhibits the behaviour of overconsolidated material, and has an 

effective cohesion intercept of 7kN/m
2

, and an effective friction angle 

of 30.5 degrees see Fig.5.2l.b. The sample was from very near the 

surface, and was dry at the time of sampling:therefore it was almost 

certainly overconsolidated by desiccation. However, the form of the 



Table 5.5 East Hetton physical parameters. 

Sample Specific Organic carbon ~,~· c,c' From shear box 'test of type: 

gravity %. 
0 

kN/m
2 

A Coarse 1.43 88 35 0 Drained 

Hedium 2.35 18 28 9 Drained 

Fine 2.06 35 29 5 Consolidated undrained* 

Fine 2.06 35 29 18 Consolidated undrained, desiccated sample* 

B Coarse 1.44 83 36 1 Drained 

Medium 1.64 69 30 0 Drained 

Fine 1.90 43 19 0 Consolidated undrained 

c Coarse 1.44 79 35 1 Drained 

Coarse 1.44 79 35 0 Drained 

Medium coarse2.38 14 

Medium 1.83 49 18 12 Undrained 

Fine 2.13 26 21 7 Consolidated undrained 

*Note. While these two samples were tested on a consolidated undrained basis, they were very dry 

when loaded. Insufficient time was allowed for complete saturation, and the strengths probably there-

fore reflect effective stress conditions. 
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Fig. 5.21 Consolidated_ undrained tests on East Hetton lagoon 109B. 187 
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q 

KN/m 

200 

100 

0 

c e Es pf qf 

m
2 
;;r kN/m2 kN/m2 kN/m2 

1 650 0.788 7300 118 68 
2 650 0.703 14900 235 136 
3 644 0.647 21800 332 196 

100 200 300 

b. Laminated sample,generally silt. 

1 
2 
3 -

2 
q kN/m 

300 

200 

100 

0 

Es Pr qr 
kN/m2 kN/m2 kN/m2 

3000 162 90 
1600 252 132 
4900 589 3 •1() 

C'=0 ¢'=35 
2 0 C=21 kN/m ¢=16 

400 

2 c'=7 kN/m 

C=? 

0 

500 600 p' ,p 

kN/m2 

¢'=30.5 
0 

¢=? 

6 0 
2 

p' ,p kN/m 



Fig. 5.21.c. Clay sample, outlet end, lagoon 109 B. 
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stress paths may be partly due to the layered nature of the sediments. 

In order to obtain a layer of fine material thick enough to test, 

it was necessary to take a sample from very near the outlet. As can be 

seen in Fig.5:2l.c, the sample behaves in a normally consolidated fashion. 

Test No.2 was deliberately overconsolidated in the triaxial cell to a 

2 
pressure of 600kN/m before being unloaded to the test pressure. The 

effective angle of friction is 40.5 degrees, while in terms of total 

stresses it is about. 19 degrees. The cohesion intercept is zero in 

terms of effective stresses, but 10kN/m2 in terms of total stresses. 

5.6 Maltby 

In-situ testing was carried out at Maltby lagoon No.6 using both 

the field vane apparatus and the first field penetrometer device. The 

results from the latter tests were discussed in Chapter 3.3 (Table 3.2., 

Fig.3.7). They show a layered lagoon with a desiccation crust at 

location 2 (see Fig.4.4c. for the locations). The vane tests involved 

the H=2D vane and the diamond vane (i.e. combination 4). The results 

show a lagoon that is fairly weak near the surface, particularly at location 

1 which is nearer to the supernatant water of the lagoon. 

The strength versus depth relationships show that peak strengths 

are generally following the undrained strength law, while the remoulded 

strengths generally follow the lines corresponding to relationships 1 

and 2. The reason for the particularly weak remoulded strengths 

measured by the H=2D vane at about 5m depth in profile 2 is not known. 

From Fig.5.23 it can be seen that the R values generally indicate 

a deposit which is stronger across the laminations (i.e. on a vertical 

plane) than along (i.e. on a horizontal plane). The average R value 

is 1.321 (with a standard aviation of 0.748), and is thus lower than at 

Peckfield or East Hetton. In the profile at location 2, Fig.5.23.a, the 



Fig. 5.22 Vane shear strength profiles, Maltby lagoon 6. 
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Fig.5.23 Rvalues Maltby lagoon 6. 
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R value is consistently very low at depths of greater than 3.5m. The 

reason for this is not known, though it may indicate that the H=2D vane 

was shearing both relatively strong and weak layers, while the diamond 

vane was situated mainly in the stronger layer. 

This lagoon was the site of an overtipping trial (Chapter 7.2); 

samples were obtained both before and after tipping. Tests performed 

on samples obtained before tipping show that the finer material is 

behaving in a normally consolidated fashion (Fig.5.24.a) while the coarse 

material is showing a fairly loose behaviour (Fig.5.24.b). The effective 

cohesion intercept is zero in both cases. One sample indicated that 

there may be effective cohesion in some layers (Fig.5.24.c). However, 

this sample was composed of several layers of different characteristics 

and furthermore was extremely weak so consequently was heavily disturbed 

.while being set up in the triaxial cell; this may explain the curious 

stress paths and apparent cohesion. 

The emplacement of the embankment to a depth of 3.5 to 4 metres 

had the effect of increasing the overburden pressure at the sampling 

~ocations. In addition it was possible to obtain samples from great 

depths in the lagoon by using a shell-and-auger rig on the embankment. 

One consolidated-undrained triaxial test on a sample froml3.5m depth 

indicates that these deposits are indeed overconsolidated in terms of 

the stress path, and show effective cohesion; however, only one test 

was carried out on this material and the exact value of the cohesion is 

a little subjective (Fig.5.25.a). A coarser sample from 11.5 depth 

also exhibits fairly dense behaviour, though as expected the effective 

cohesion intercept is zero (Fig.5.25.b). The consolidating effect of 

the embankment is shown in Fig.5.25.c. This sample is from about 1 

metre below the bottom of the embankment at location 1, and in the low 



Fig.5.24 Consolidated undrained triaxial tests on Maltby samples, prior 

to the overtipping of the lagoon. 
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Fig.5.24.c Location 1, sample depth,0.93m 
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1Qr-. Fig.5.25 Consolidated undrained triaxaial tests dn Maltby samples, /~ 

exhibiting the dense behaviour due to overburden or overtipping. 

a. Location 2, sample depth,13.5m. 
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pressure tests exhibits overconsolidated behaviour and hence an effective 

2 cohesion of 16kN/m . 

5. 7 Silverhill 

Vane shear strength tests were carried out at Silverhill Colliery, 

lagoon No.l6, while an overtipping operation was in progress (see Chapter 

7.3). It is known that excess pore pressures existed widely over the 

lagoon at the time of this operation (Table 7.3). From Fig.5.26 it can 

be seen that in no case does the peak vane shear strength lie below the 

line representing relationship 2.Cobb (1977) however showed that this 

situation indicates excess pore pressures, and described a lagoon in 

which the minimum excess pore pressures are of the order of 2 metres 

head of water. Generally, the strengths at Silverhill are very weak; 

further discussion in the context of overtipping operations will be 

presented in chapter 7.3. 

During the course of this investigation samples of a particularly 

fine-grained layer were obtained, toge·ther with coarser material 

immediately below. As was shown in Chapter 4 the fine grained material 

has a low organic carbon content (9%), whereas the coarser material 

is a coal-rich sediment (organic carbon is 83%) more typical of lagoon 

deposits. Consoiidated undrained triaxial tests, Fig.5.27.a, show 

that the fine material has a very low effective angle of friction (22 

degrees), but no cohesion as is expected from the normally-consolidated 

type of stress path. The angle of friction in terms of total stresses 

is also low at 14 degrees; again there is no conesion. On the other 

hand, the coarser, coal-rich sediment exhibits stress paths indicative 

of a dense material, particularly at low cell pressures (Fig.5.27.b). 

As expected, the material is cohesionless and has a fairly high effective 

.fr:letion angle. 



Fig.5.26 Van~ shear tests in Silverhill lagoon 16. 
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Fig.5~27 Consolidated undrained triaxial tests on Slverhill samples. 
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5.8 The Comparison of the Shear Strength of Coarse and Fine Discard 

The effective stress failure points (i.e. p' ,q) taken from all 

200 

the triaxial tests presented herein are plotted together in Fig.5.28. 

All the points are bounded by envelopes equivalent to effective friction 

angles of 22 degrees and 49 degrees (lines A and B in Fig.5.28). There 

is, however, a suggestion that the top failure envelope is curved (line C). 

Curvature has been suggested for the less brittle coarse colliery discard 

shear strength envelopes, Taylor and Cobb (1977). Lines D and E represent 

the best fit regression lines (reduced major axis) for the coarser, coaly 

samples and the finer, less coaly samples respectively. The slopes of 

the two lines are different at the 99.9a% significance level, the 

coarser material being the more frictional. However, both lines have 

negative intercepts, probably because the p' ,q points are derived from 

different samples; therefore the statistical inference must be treated 

with caution. Both lines represent friction angles higher than the ·mean 

angle for coarse colliery discard, which is 32 .• 4(Taylor and Cobb, 1977). 

This possibility has been noted before (McKecknie Thom;son and Rodin, 1972), 

and is probably due to the higher coal content of fine colliery discard 

(see chapter 4.11) • McKecknie Thomson. and Rodin also pointed out 

that the effective friction angle of tailings and slurry is inversely 

related to the proportion of fines in the sample. The coal content 

is also inversely proportional to the fines content (see chapter 4.6.), and 

hence the same conclusion is reached: i.e. that coaly tailings are more 

frictional than ron-coaly tailings and both are generally a little more 

frictional than coarse discard. This supports the conclusions of 

Taylor (1974) that the coal content exerts a fundamental influence on 

the effective friction angle. However, it should be emphasised that 

for both coarse and fine discard there is a significant spread of the 
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effective friction angles, from about 22 degrees to 45+ degrees (the 

upper limit is'difficult to define due to the curvature of failure 

envelopes). 

Coarse colliery discard is almost universally accepted as a 

cohesionless material (see the various contributions to the discussion 

of McKecknie Thomson . and Rodin, 1972). However, several fine-grained 

samples tested from lagoons have shown the effective cohesion, combined 

with stress paths typical of overconsolidated, clay-rich material. 

The clearest example is that of the clay from lagoon 6 at Peckfield, 

Fig.5.16~ More work is required on this subject to establish the 

nature and extent of .the effect·,· in particular low-pressure, consolidated-

undrained triaxial tests should be undertaken. However, it seems 

reasonable to suppose that it is the clay content that is producing 

the effect when the material is buried at depth or alternatively desiccated· 

at the surface. 

5.9 A Note on the Young's Modulus of Fine CollieryDiscard 

The Young's modulus (E ) has been taken as the secant modulus to 
s 

half peak deviator stress (i.e. !C~ -~ ) ). 
l 3.f 

All the values, which 

are tabulated on each of the figures referring to triaxial tests, have 

been plotted on Fig.5.29. 

Peele. , lqtt-s) 
E. 
~ 

= 

Scheidig (1931) showed that lsee. Terzo..sh;_ ct.rocl 

where Ei is the initial tangent modulus. 

In other words, the Young's modulus of the material is directly 

proportional to the effective cell pressure. For loose material the value 

of C is approximately 100; for coarse discard from an ancient spoil 

heap Taylor (197la) showed this value to be 95.4. Taylor further showed 

that E = 0.6 x E. at the 99.9% significance level; or in other words that 
s ~ 

for the secant modulus the value of C is 60. This relationship has. been 

plotted as line A in Fig.29. It can be seen that in general the values 
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Fig.5.29, Young's Modulus from triaxial tests on lagoon 
sediments. 
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increase with the applied cell pressure, but fall well below this line. 

However, in the case of dense or overconsolidated materials the values 

are nearer to the line, and often above. Thus the low value of Young's 

modulus of normally consolidated lagoon sediments may be due to the very 

loose nature of the deposits. 

5.10 The Coefficient of Earth Pressure at Rest (K ) 
o-

Figures 5.30.a-d show the results of a number of K tests plotted 
0 

From this limited number of tests, 

no difference can be discerned between lagoons, or between materials 

within any one lagoon. Taken as a whole, the tests indicate a mean K 
0 

value of 0.533, with a standard deviation of 0.080. The value of K is 
0 

significant in triaxial, cyclic loading liquifaction studies, because 

the value of a correction factor for the triaxial stress ratio is 

dependent upon the value of K . 
0 

Taylor et al. (1978.) assumed a value 

of 0.4 to 0.5 for the K
0 

of colliery tailings lagoons, which compares 

with the values reported herein. 

5.11 Conclusions 

In chapters 3 and 4 it was shown that colliery waste lagoons are 

layered sedimentary bodies in which there is a general trend for coarser 

particles to settle out near to the inlet. In chapter 4.7 it was shown 

that the sediments are composed of three groups of minerals; firstly, 

coal with pyrite; secondly, quartz, kaolinite and illite; thirdly, 

other minerals, the main one being anker.i te. It was further shown 

that the coal content is related to the grain size of the sediments, 

coarser laminae being richer in coal. The third group of minerals is 

q~antitatively less important than the first two. 

In this chapter it has been shown that the coal content is pos"itively 

correlated to the effective friction angle. Coal has a low specific 

gravity (about 1.3), while the clay group has a specific gravity of about 
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2.65. Thus ·it has been found that the coarser, more coaly layers are the 

more frictional and less dense materials. Finer-grained laminae exhibit 

lower effective angles of friction, and have higher bulk and dry densities; 

furthermore, they show higher natural moisture contents and liquid limits 

due to the higher clay contents. 

The coal content of lagoon sediments is generally higher than is 

found in coarse discards and the effective friction angle is· found to be 

higher, particularly in the case of the coarser, more coaly laminae from 

lagoons. However, some laminae with low coal contents display effective 

friction angles of as low as 22 degrees. In contrast to· coarse colliery 

discard which is a cohesionless material, overconsolidated or desiccated 

lagoon sediments with an appreciable clay content may display true effective 

cohesion.· More low pressure consolidated - undrained triaxial tests 

are required to define the extent of this effect. 

The field vane shear test has been shown to measure the drained 

strength of the coarser laminae, but in finer-grained laminae the 

undrained strength is being measured. Since the coarser laminae are 

the more frictional, and the proportion of coarse laminae falls with 

distance from the inlet, there is a general fall in vane shear strength 

across a lagoon. 

Cobb (1977) showed that the remoulded vane shear strength of lagoon 

sediments is related to the plasticity index by:-

or 

c 
p' 

= 0.11 + 0.0037 PI 

Furthermore, the peak shear strength will be defined by:-

c tan $3 p' = 

c 
tan $3' p' = 

depending on whether the undrained strength of a fine-grained lamin~tion, 



~8 

or the drained strength of a coarse-grained lamination is being measured. 

If the vane is partly shearing two laminae of different drainage 

characteristics the measured shear strengh will be intermediate between 

the two. These three relationships can be used to extract useful 

information concerning the deposits in a lagoon. If the peak shear 

strength lies below the remoulded strength relationship, then excess 

pore pressures are suspected but by no means certain; piezometers 

should be installed to confirm such a diagnosis. Should the peak 

shear strength conform to either the second or third relationships 

consistently into depth, then a deposit dominant in fine-grained or 

coarse grained laminae may be expected. In the case of Peckfield lagoon 

7, it .was possible to correlate both relationships to finer and coarser 

laminae within the deposit. However, values of shear strength intermediate 

to the two relationships are more usually found, in which case no positive 

diagnosis is possible. 

It has been shown that the use of paired vane tests allows the 

shear strength anisotropy to be measured. A vane of H=2D shape and a 

diamond vane with H = 0.25D are well suited to this task in layered media. 

Both in the field and in the laboratory it has been found that lagoon 

sediments.are generally stronger when sheared across the laminae than 

along them, by a factor of between 1.2 and 2.2. very high or low values 

of R indicate laminae of markedly different properties are in juxtaposition. 

Finally, it has been shown that the coefficient of earth pressure at 

rest is about 0.5 for lagoon deposits. 
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CHAPTER 6 THE CONSOLIDATION AND DRAINAGE OF COLLIERY TAILINGS LAGOONS 

6.1 Introduction 

The consolidation and drainage characteristics of a lagoon will 

exert a controlling influence on the sediments in the lagoon. If_a 

lagoon drains freely it will gain strength and increase in resistance 

to liquefaction; it will be easier to excavate or overtip; it will 

re more marketable if it is to be sold as a low-grade fuel source. Two 

main factors can influence the consolidation and drainage characteristics 

of a lagoon. These are firstly, the consolidation characteristics of the 

sediments in the lagoon; and secondly, the permeability of the floor and 

embankments of the lagoon. This work concentrates on the former, but the 

effects of the latter are considered. 

It was shown in chapters 3.4, 4.6, 4.7 and 5.4 that lagoons are 

layered sedimentary bodies, in which the layers may vary from silty 

clays to coarse sands. The fine layers can be expected to be relatively 

impermeable, while the coarser layers will be relatively permeable. 

Therefore, it will be the distribution of the laminations and in 

particular the lateral extent of individual laminae that will govern 

the drainage of the lagoon. It has been shown (chapters 3.4 and 4.7) 

that individual laminations are not necessarily extensive laterally, 

and may well wedge out. 

Previous work on the consolidation and drainage of lagoons has 

·stressed both the importance, and the lack of, in-situ permeabilities 

(National Coal Board, 1972). In-situ permeabilities ranging from 3.6 x 10-
5 

-8 to 1.0 x 10 m/s are reported. The superiority of in-situ test results 

over permeability measurements from laboratory tests has been noted by 

Murray and Symons, 1974. National Coal Board, 1972, also report 
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results of oedometer tests in which the c of lagoon sediments was 
v 

2 found to vary from. 2 to 27 m /yr. It was also shown that, although 

older, loose-tipped coarse discard embankments are relatively permeable, 

modern thin-layer compaction techniques produce embankments with 

b ·l·t· · f 3 1 10-4 t.o 9.5 x l0-9m/s. permea ~ ~ ~es rang~ng rom . x 

Cobb (l977)concludes that c decreases from the inlet to the outlet 
V. 

of lagoons, whereas m remains fairly constant. 
v 

It was also found that 

embankment interfaces could be highly impermeable (10-
12m!s), pre.sumably 

due to entrainment of fines from the lagoon. Cobb (1977) further concludes 

that the large Rowe cell is to be preferred to the oedometer for 

consolidation tests due to the fact that the latter contains a sample 

thinner than the average thickness of laminations within the lagoon, and 

the tendency therefore to give low values of c . 
v 

This effect has been 

noted before by Rowe and Barden (1966). 

6.2 Theoretical Considerations 

The consolidation of layered media has received attention from a 

number of authors. Schiffman and Stein (1970) show that one-dimensional 

consolidation is given by:-

u = c (t) 

cr 

where u is the degree of consolidation 

~·c(t), the consolidation settlement is given by 
n 1 · hl 1 q(t)\ mv l hl- \.n mv u (z,t)dz 

~l =l L_ 1~1 
~cr is a reference settlement and is given 

by m l 
v 

and q(t) is the load at time t 

q is a reference load 

m 1 is the coefficient of volume compressibility of layer 1 

LY is the height (thickness) of layer 1. 

tf·(z,t) is the excess pore pressure of layer 1, at height 

z and time t 
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Essentially, therefore, the overall one-dimensional consolidation 

of the system is a series summation of the settlement characteristics of 
n 

each layer ( ~.~l mv 1 hl), the time aspects of which are governed by 

the pore pressure dissipation of the layer (ul(z,t)). The laminae with 

the lowest coefficients of consolidation will therefore control the overall 

rate of pore pressure dissipation. 
e e. 

Horne (1964) devftopf solutions for the consolidation of soil consisting 

of horizontal layers of low permeability interspersed by thin layers of 

high permeability, for the case of horizontal drainage. He shows that 

when 
K 

Zl 
k. 

x2 

is above a value of 1, then the rate of dissipation of pore pressure is 

increased by 

where 

k H 
xl 1 

L = horizontal drainage path length 

H H are the laminae thicknesses (H >/H ) 
1 2 l 2 

k k 
xl' x2 

are the horizontal permeabilities. 

kzl is the vertical permeability of the less permeable laminae. 

It will be seen in the following sections k of this chapter that ~ 

-5 is of the order of 10 . 
L2 

However, even for a narrow lagoon H H 
1 2 

kxl 
will be 

5 
10 or greater. For example, a lagoon 60m wide (i.e. L = 30in), with 

L2 
H1 = O.lm and H

2 
= O.Olm (in order that H1 ~ H2) 'HH 

. 1 2 
is 10

6
· , the increase 

in the rate of dissipation of pore pressure is approximately 10000 times. 

Were the layers of more equal thickness (H
1
e H

2
) as would be expected in 

lagoons the rate of increase in dissipation would be·greater, but the 

solution would no longer apply. Nevertheless, it is clear from Hor~e-~s 

work that consolidation in layered lagoon sediments is controlled by the 
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characteristics of the most permeable layers, providing that horizontal 

drainage can occur. Thus lateral continuity of the laminae is 

assumed. Rowe (1959) also demonstrates the importance of highly 

permeable laminae in controlling the consolidation of stratified soils. 

The conclusion that impermeab..le laminae control vertical drainage 

and permeable laminae control horizontal drainage ~s also reached when 

considering the permeabilities of layered media. ·In this case the 

standard series and parallel res~ance laws apply (see Terzaghi and Peck, 

1948). In the case of the permeability measured in a vertical direction:-

H 

k 
. ·h h 

= _! .d v + 
kl k: 

=i 

k is the total vertical permeability 
v 

k
1

k
2 

are the permeabilities of individual laminae 

h
1

h
2 

are the thicknesses of the laminae 

H is the overall thickness of the system. 

In other words, the overall vertical permeability is a series summation 

of the permeabilities of the laminae. If the permeability contrast is 

very·great, the overall permeability is governed by the least permeable 

laminae. In the case of permeability measured in a horizontal direction:-

k 
h = 

1 
( h k 

H 1 1 
+ h k 

2 2 
-----) 

k is the overall horizontal permeability. 
h 

The overall horizontal permeability is between the extremes of 

permeability of the individual laminae. However, when the permeability 

contrast is great, the overall permeability is governed by the more 

permeable laminae. This again refers to laminae that are continuous 

in a horizontal direction. 

The problem of consolidation and drainage of colliery lagoons is 

therefore dependent upon the di~tribution of the laminae within it. 
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Consequently, it is necessary to measure the characteristics of individual 

laminae. Providing that the distribution. of all the laminae are known 

in three dimensions, the overall characteristics of the lagoon can be 

assessed. 

The ty.pe of consolidation that is outlined above applies when a 

superincumbent load is placed on the consolidating material. In terms 

of colliery lagoons this might be analogous to overtipping. However, 

during the active period of a lagoon, and subsequently until the lagoon 

is overtipped or excavated, this is not the process that is operating. 

Gibson (1958) presents a solution for one-dimensional consolidation of 

an accumulating deposit. The deposit consolidates under its own weight 

while it remains submerged, and actually becomes less consolidated with 

the progress of time. ( This is because upon the settling of the first 

grain no water need escape and the deposit is thus 100 per cent consolidated, 

As sedimentation continues, a gradient of pore water pressure is establishe~ 

throughout the deposit, and the material is thus less than 100 per cent 

consolidated). Upon cessation of sedimentation the excess pore water 

pressures can be quite considerable, and their decay can take a long 

time. Higher excess pore water pressures are generated by faster 

sedimentation rates, lower coefficients of consolidation and deeper lagoons. 

The magnitude of the excess pore water pressures and the time required 

for dissipation can be read from graphs presented by Gibson (1958). &Uttal 

and Morgenstern (1976) present data from metal mine slimes ponds to prove 

the presence of these excess pore water pressures. However, these occur 

in lagoons that,are some hundreds of metres in diameter, between 30 and 

50 metres deep accummulating at 6 to 9 metres per year, and with 

2 coefficients of consolidation of between 3 and 16 m /yr. British colliery 

tailings lagoons are in general smaller, shallower, accummulated more 
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slowly and due to the presence of more permeable layers, have higher values 

of c . 
v 

In contrast to Gibson's model, Krizek and Casteliero (1977) show that 

traditional consolidation models severely underestimate the settlement 

and consolidation in lagoons due to the effect of desiccation at the 

surface. This effect is of greater importance than the permeability 

of the floor; for instance they demonstrate that a small increase in 

the evapotranspiration potential can increase settlement b~ up to 30 per 

cent, whereas the change from an impermeable to a permeable floor 

increases the settlement by only 3 per cent. This process certainly 

affects much of the area of many of the lagoons in this country, although 

permanent free standing water exists over most of the area of active 

lagoons. Inactive lagoons often dry out completely, at least over the 

summer months. 

6.3 The Measurement of Consolidation Parameters 

In chapters 3, 4 and 5 it was shown that there exis~within most 

lagoons a large number of laminations with widely· differing properties. 

In the previous section it was pointed out that the consolidation and 

drainage characteristics of the whole lagoon will depend on the properties 

of the individual laminae in the lagoon. Therefo~e it is logical to 

test the consolidation parameters of individual laminae, and attempt to 

assess the distribution of the laminae in the lagoon. Since many 

laminae are very thin, this usually necessitates the use of the oedometer. 

This is in direct contrast to the recommendations of Cobb (1977), who 

preferred to use a large Rowe cell. However, the Rowe cell will give 

consolidation parameters representative of the lagoon only if the laminae 

in the Rowe cell are present in the same proportions as in the field. 

It is the writer's opinion here that such an occurrence would be somewhat 
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fortuitous. 

Rowe (1959) showed that the variation in c over a large number of 
v 

tests is quite high. In order to check the variation of c and c 
v r 

(vertical and radial coefficients of consolidation), a number of tests 

were carried out on some material from the lagoon on the west tip at 

Gedling Colliery, South Nottinghamshire Area, NCB. The materials from 

this lagoon is a visually homogenous, clayey silty sand; the grading 

curve is given in Fig.6.1. 

The full results of the consolidation tests are given in Appendix 6.1, 

the c values being summarised in Table 6.1. 
v 

From the table it can be 

seen that there is a variation in c from 8.8 to 31.8. 
v 

The average values 

show that there is an increase in the measured c from the oedometer via the 
v 

6 inch Rowe cell to the 10 inch Rowe cell. However, a close inspection 

of the results of the oedometer tests show that this variation is due, at 

least in part, to variations in the tailings. The greater thickness of 

material being tested by the larger Rowe cells has increased the likelihood 

of a more permeable layer being tested, hence the higher average c . 
v 

However, the difference between the average c as measured by the 10 
v 

·inch Rowe cell and the oedometer is less than the variation within the 

material. The oedometer is to be preferred for measuring this variation 

in finely layered media. 

The consolidation tests with drainage to a peripheral radi ·al well also 

show g~eat variation in the measured consolidation coefficient. Again 

there is a suggestion that this may be due to variation within the tailings 

itself. The variation in the values of c is greater than any difference 
r 

between the rates of consolidation in the two different directions. It 

is therefore more useful to measure only the vertical consolidation 

parameters of different layers than it is to measure the vertical and 
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Table 6.1 Coefficients of consolidation for Gedling • 

Sample Cell c (m2/yr) Comments 
v 

a. Vertical drainage 

X1 

PR1 

JMK3 

JMK7 

JMK19 

PR2 

JMK4 

JMK8 

JMK20 

JMK9 

JMK10 

JMK13 

JMK14 

JMK17 

JMK18 

b. Radial drainage 

PR3 

JMK11 

PR4 

JMK12 

6 inch Rowe 
II 

II 

tl 

" 
10 inch Rowe 

" 
50mm oedometer 

II 

11 

II 

" 
II 

6 inch Rowe 

" 
10 inch Rowe 

II 

22.0 

18.7 

12.0 

22.5 

30.0 

20.9 

31.8 

26.0 

22.0 

20.5 

19.1. 

8.8 

9.0 

21.9 
22.6 

14.6 

28.2 

14.1 

28.6 

Average = 21.0 

Average = 25.2 

Average = 17.0 

Each of these pairs 

of samples were tested 

together'· each pair 

coming from the same 

horizon. 

PR3 and PR4 are one pair, 

JMK11 and JMK12 are 

one pair. 
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radial consolidation parameters of individual laminae. 

6.4 The Measurement of Permeability In-situ 

Measurement of the permeability in-situ is usually considered to 

yield more accurate results than measurement in the laboratory (e.g. 

Al-Dahir and Morgernstern, 1969; Murray and Symons, 1974). The 

measurement of permeability in.,..situ involves monitoring the flo.w 

rates or water levels in one or more observation wells. The observation 

wells may be auger or other boreholes, lined or unlined, or more 

commonly in soils, piezometers are employed. The use of only one 

observation piezometer has obvious advantages in terms of time and labour 

and for this reason has been adopted here. 

Permeability tests fall into two types, either constant head or 

variable head (falling or rising). Although the test may be performed 

a hove the water table (Schmid, 1967), this introduces extra difficulties; 

in particular the degree of saturation of the soil must be known. 

Correct interpretation of these types of tests have not been attempted, 

but rather they have been treated as tests below the water table. 

Sufficient time was allowed for a saturated zone to develop·around the 

piezometer, and it is not expected that very large errors result. This 

procedure was adopted by Mittal and Morgenstern (1975). 

The basic formula for the constant head test is (see e.g. Al-Dhahir and 

Morgenstern, 1969):-

k = _g_ 
S,H 

For a variable head test the basic formula is: 

k = 

where k is the permeability 

Q is the rate of flow 

H is the constant head 
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H is the variable head at zero time 
0 

H is the variable 
t 

head at time t 

t is the time taken for the water level to change 

from H to H 
0 t 

S is the shape (or intake) facto;r. This factor 

has the dimensions of length. 

These formulae assume that the soil is incompressible and saturated, 

and that there is no volume change or hydraulic loss in the measuring 

system. The shape factor varies according to the shape of the piezometer. 

tip (or.the borehole shape) and the permeability characteristics of the 

soil (including anisotropy, inhomogeneity and the presence of impermeable 

boundaries) . Shape factors have been derived by many authors using a 

variety o1 methods. Hvorsle:1V, (1951) empirically derived shape factors 

for a variety of borehole shapes and soil conditions. For a well 

point filter in a homogenous body of soil he gives the shape factor as:-

2L 

s 
L 
D 

Luthin and Kirkham (1949) and Donnan and Aravonici (1963) use an 

electric analogue method to derive shape factors. However, only 

Donnan and Aravonici include llie case of a piezometer with closed ends, 

which is·the result of interest here. Schmid (1967), Smiles a,nd Yo~ngs 

(1965) and Al-Dhahir and Morgenstern (1969) show that the above-mentioned 

authors underestimate the shape factors. Al-Dhahir and Morgenstern show 

that their finite-element method is in very close agreement with the 

electrical analogue study of Smiles and .Youngs (s~e Fig.6.2). · They present 

shape factors for the case of a piezometer with closed ends. The.shape 

factors used herein are after Al-Dhahir and Morgenstern. 
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Fig.6.2 Shape factors (intake factors), after A+-Dahir and 

Morgenstern (1969). 
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However, the soil is not incompressible as these methods assume, and 

consolidation (or swell) occurs during the course of the test. Gibson 

(1963) presents a method of estimating both the permeability (k) and the 

coefficient of consolidation or swelling (c) from one piezometer 

permeability test. However, Gibson (1970) shows that unless the correct 

assumptions are made concerning the properties of the soil, the estimate 

of c can be seriously in error. The constant head test for a piezometer 

with a spherical tip is described by (Gibson, 1963):-

= 4 1ta. k llu 
yw 

where Q(t) is the volumetric flow for time t 

a is the radius of the spherical tip 

y is the density of water 
w 

k is the permeability of the soi~ 

Au is the constant head 

ct 
T is the time factor, and equals~ where c is the 

a 
coefficient of consolidation or swelling. 

For a cylindrical piezometer the formula can ~e used by taking a as the 

radius of a sphere with the same surface area as the piezometer filter 

(Parry, 1971). 

The equation is of the form 

Q ( t) = c
1 

k ( l + c 2 t -! ) 

where Q(t) and k are as above. 

t is the elapsed time 

cl and c2 are constants. c
2 

is dependent on c (as above) 

Therefore a plot of Q versus t-! can yield the values of k and c: from 

the intercept and slope respectively. 

A great number of factors affect the results of this type of test. 
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Wilkinson (1968) shows that it is necessary to adopt non~linear permeability 

and consolidation versus stress relationships in the use of a Gibson type 

of analysis. Bjerrum et al. (1972·) and Wilkes (1974) show that hydro-fracturing i~ 

'" possible when the excess head approaches 80% o.f the overburden pressure·, thoug~ 

certain cases the head may be as low as 20 per cent of the effective 

pressure. Hydrofracturing is characterised by a sudden increase in the 

permeability of 1000 times. Wilkes develops a method of estimating ~ 
0 

based on an estimate of the onset of hydrofracturing. Gibson (1967) and 

Wilkinson (1968) show that the effect of smear at the edge of the well 

greatly affects the measured permeability value. 

Most of the above formulae apply ·to homogenous media, although 

anisotropy may be incorporated (e.g. Hvorslev's shape factor). The 

interpretation of the test in non-homogenous media with highly variable 

permeabilities is difficult. For instance, if the piezometer is seated 

in a coarse-grained, highly permeable lamination which is sandwiched 

between two relativelyimpermeable laminae,then the permeability of the 

coarser lamina is under-estimated, This is because a much smaller 

volume of soil is contributing to the flow than is allowed for by the 

shape factors. Where the piezometer is next to an impermeable boundary 

most authors quote a smaller shape factor (resulting in a higher permeability) 

as a consequence (e.g. Hvorslev, 1951; Luthin and Kirkham,l949). The 

degree of underestimation can be guaged by substituting a very large 

ratio of kh to kv into the Hvorsle:v shape factor formula. 

4 

A ratio of 

10 ~oduces a decrease in the shape factor of 5 times; thus the 

permeability of the coarser lamina is underestimated by a· factor of 5. 

However, the degree of underestimation depends on the exact geometry and 

permeability contrast of the laminae. 

In contrast, the permeability of a fine-grained layer between two 
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coarser layers will if anything, be overestimated. This is due to the 

proximity of the more permeable laminae, which will contribute to the 

flow. Furthermore, if there is any hydrofracturing or other leakage 

through the fine grained layer, then the measured permeability will be 

a gross overestimate. Such a situation might be characterised by a steady 

increase in the flow rate during constant head test, rather than the 

expected decrease due to· consolidation. 

Finally, the piezometer tip may be seated at a layer boundary, in 

which case the permeability measured·will be that of the more permeable 

layer reduced in proportion to the length of the tip in that layer. 

Since, in general, none of these factors can be known in detail, no 

corrections have been made to the results. However, it should be borne 

in mind that the highest permeabilities quoted are likely to be under­

estimates by factors of half an order of magnitude, or exceptionally more. 

The lowest values quoted are likely to be slight overestimates, though the 

error is probrably less significant than for the former case. 

The piezometers used in this study were simple, "home-made", push-in 

piezometers based .loosely on the design of Parry (1971). The object 

was to provide a small infiltration area so that the permeability of 

individual laminae could be measured. The piezometer had to be of the 

push-in variety as it is impossible to auger a hole to any depth in very 

soft lagoon deposits. Furthermore, the design should be such that it 

minimised smearing during installation, and that the tip was at least 

ten times more permeable than any formation likely to be tested. 

The ciesign of the piezometer is shown in Figs.6 .. 3 and 6.4. The first 

design using a geophone tip was discarded due to the possibility of water 

migrating around the upper sleeves and thence to the annulus left around 

the piezometer during installation. The second design was therefore 
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Fig . 6.4 Piezometer tips and elements of construction . 
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produced, but it suffered from the problem that it required a greater 
h 

installation and retraction force, Wfch sometimes caused distortio~ of 

the mesh and chain. It is expected that the very so.ft lagoon deposits 

being tested collapsed into the mesh; were this not so the shape factors 

would require correction, The shape factor for a 30mm long and lOmm 

diameter tip is l50mm (after Al-Dhabir and Morgernstern,l969; see Fig. 

6.2). The radius of a sphere with the same surface area is l2.2mm (this is 

required for the Gibson (1963) formula). Inward collapse of the material 

would also alleviate smear effects. 

The constant head apparatus isshown.~nFigs.6.5 and 6.6.rhe fluctuation 

in head caused by breaking the vacuum and recharge from the upper bottle 

was only 2 to 3 mm, which is negligible. The piezometer tubing used 

was standard 26mm O.D. (20mm I.D.). P.V.C. tubing supplied in 3m lengths 

by Soil Instru·ments Ltd. The standard connectors supplied were not 

robust enough for the desired purpose; thereforem alternative connector 

was made by enlarging one end of each tube (gently heated) on a steel 

mandril to form a 26mm I.D. female end. These connectors were extremely 

strong. 

6.5 The Consolidation and Drainage of Lagoon l09B at East Hetton Colliery 

This lagoon is deep compared to its width. Two sides of the lagoon 

are limestone, while the floor is clay (chapter 1.4). It was shown in 

chapters· 3, 4 and 5 that this lagoon is finely laminated, with both 

coarse and fine grained laminae found in all parts of the lagoon. It 

was further shown that many of the laminae are not continuous laterally. 

It is therefore to be expected that drainage in this lagoon would be 

predominantly in a horizontal direction, but that some vertical movement · 

of water could take place. Some water could escape beneath the south-

western embankment into lagoon l09A (see Fig.l.6). 
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Fig.6.6 Constant head permeability test set up. 
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Laboratory copsolidation tests were carried out on East Hetton material 

from the locations sketched in Fig.6.7. The beach samples were taken 

from lagoon l09A because the beach of l09B was covered by a layer of overtipped 

material, as described in chapter 1. The results are given in Appendix 

6.1, and are summarised in Fig.6.8 and Table 6.2. The following points 

should be noted. 

l. The fine lamina at the beach is as impermeable as any in the lagoon. 

Conversely the coarse lamina at the outlet is as permeable as any other 

(in faqt it is more permeable). 

2. 2 The actual range of measured c 's is very large, from 2.87 to 1432 m /yr. 
v 

3. The calculated permeabilities a~e very low, the highest being 7.82 x 

-8 
.10 m/s. 

4. The void ratios are very high, being between 0.75 and 1.35. 

5. Generally the material is relatively incompressible, compression 

indices being below 0.25.for most samples. However, some of the samples 

with a low coal content (evidenced by a higher specific gravity) have 

higher compressibilities. There is no significant trend of compressibility 

across the lagoon. 

Preliminary observations in the summer of 1978 suggested that the 

water table was some 2! m below the surface even near the overflow tower 

near the south-western embankment, see Fig.s 3.4, 3.5 and 3.6. During the 

$Ummer. 1 of 1979 the number of observations was considerably extended 

and in addition, in-situ permeability tests were carried out. The full 

results are contained in Appendix 6.2, Tables A.6.2.l and A.6.2.2. The 

data were collected by Henderson (1979), but the current writer's interpretation 

differs slightly from that of Henderson, as explained in the Appendices. 

The results are summarised in Fig.6.9. It is apparent that most of the 

in-situ permeability measurements have yielded values several orders of 
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Fig.6.8 Void ratio - log pressure curves for East Hetton samples. 

void ratio 
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Table.6.2 

Sample 

(Oedometer) 
Beach,fine 

coarse 
C, fine 

coarse 
B,fine 

medium 
Outlet,fine 

coa.rse 

(Triaxial) 
Beach,coarse 
Outlet, f·ine 

10 
Effective pressure 

100 
kN/m

2 

Consolidation data, East Hetton. 

2 K(m/s)• · c (m /yr) • c 
v (x10-) c 

3.61 6.42 -10 0.329 
536 3.68 -8 0.238 

9.24 6.07 -10 0.161 
<)0.7 5.62 -8 0.149 
10.5 9~48 -10 0.217 

245 1.47 -8 . 0.205 
2.87 9.41 -10 0.284 

1432 7.82 -8 0.115 

648 
52.0 

* averaged over linear section 

c S.G. 
r 

0.037 2.546 
0.010 2.551 
0.036 2.124 
0.010 1.390 
0.023 1.900. 
0.026 1.64o 
0.025 2.093 
0.011 1.787 

2.551 
2.093 

1000 
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Fig.6.9 In-situ permeability, lagoon 109B, 

East Hetton. 
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magnitude higher than those derived from the oedometer tests. It is 

also clear that there is a considerable variation of permeability at 

any one location. 
"' 

However, there is a general trend to lower permeability 

. -8 
values with distance from the inlet, values lower than 10 m/s being 

found only at distances greater than 80 m from the inlet. This contradicts 

the results of the oedometer tests and other observations, which suggests· 

that the finer material at the outlet is not less permeable than fine 

laminae anywhere in the lagoon, and similarly with coarser laminae. 

However, it is possible that at the outlet there is an increased probability 

of the piezometer being seated well in the centre of a thick fine-grained 

lamination, such that the nearest permeable layer has no influence on the 

measured value of permeability. (It will be recalled from chapter 3.3 

that fine-grained laminae were thicker near the outlet,. and from chapter 

5.3 that only at the outlet could a fine-grained layer thick enough. for 

a.triaxial test be found.) 
-8 -9 

Thus a value of 10 to 10 m/s is probably 

a··.reasonable e·stimate for the permeability of all the fine-grained horizons. 

The in-situ c values (Table A.6.2.2) a'tso show considerable variation 
v 

across the lagoon, see Fig.6.10. Again it should be noted that the 

very low values occur only near the outlet, for the reason explained above. 

The general range of values is somewhat lower than found in the oedometer, 

2 
being from 0.055 to 364, compared to 2.87 to 1432 m /yr. As with the 

oedometer values, widely different c 's can be found in the sediments at 
v 

one location. 

The piezometric head is fairly complex, as can be seen in Fig.6.ll. 

In general the deeper levels in the lagoon have lower piezometric surfaces than 

levels above. It is suggested that surface recharge (via the stream, 

rainfall and probably also run-off from the tip and neighbouring fields) 

creates a perched water table near the surface. The less permeable layers 
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Fig.6.11 Piezometric head variation in lagoon 109B, East Hetton~ ~ Piezometer tip (dry) 
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in the lagoon serve as aquitards, and the poor supply to layers beneath 

is rapidly drained to the sides of the lagoon thus causing the lower 

piezometric head. The lowering of the piezometric head with deeper 

levels in the lagoon has been noted before (NCB, 1972). 

The general form of the water table shows a lowering towards the 

inlet, more dry layers being found here. There will. be fewer aquitards 

in this region,. and a generally more permeable deposit obviously enhances 

drainage. At the other end of the lagoon, piezometers 27 and 60 (Fig.6.lla) 

and 65, 66 and 67 (Fig.6.llb) are nearest to the _limestone walls and show 

evidence of enhanced drainage. Piezometers 64 and 18 (Fig.6.llb) are 

the nearest to the stream, and the elevated heads suggest recharge in 

these regions. However, piezometers close to the stream of the inlet 

end of the lagoon do not show this, perhaps because of m·ore rapid drainage. 

6.6 The Consolidation and Drainage of Lagoon 16 at Silverhill Colliery 

Observations of the level of tie·wa·ter table and in-situ permeability in 

this lagoon were carried out at the same time as the lagoon was being 

overtipped. Observations and conclusions pertinent to the overtipping 

operation are confined to chapter 7. 
Two oedometer tests were carried out, on specime_ns of the .f'ine-grained 

layer and underlying coarser band that have been described in chapter 4.6. 

From Fig. 6 ;.12 and Table 6. 3 it can be seen that the fi,ne-grained material 

has a very low coefficient of consolidation, while the coarse materials as 

expected, consolidate very rapidly. The finer material is highly 

compressible compare~ to other lagoon sediments; it will be recalled 

from chapter 4.6 that this material has a very low organic carbon content 

but is rich in illite and kaolinite~ The coarser sample is very 

incompr~ssible. 

Permeability tests have been carried out in-situ in this lagoon, and 

are summarised in Fig. 6J.3 from the data in Appendix 6. 3. Table A. 6. 3 .1. 



Fig.6.12 Void ratio-log pressure curves for Silyerhill samples. 
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Fig.6.13 Piezometer locations, lagoon 16, Silverhill 
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From the figure, no systematic trends emerge; however it is a large 

lagoon and too few tests have been performed for this purpose. 

Furthermore,the location of the inlet has been moved throughout the 

history of this lagoon, thus making it less likely that any trends 

exist across the lagoon. The range of measured permeabilities is 

higher than at East Hetton, and is characterised by fewer mid-range values 

and more high permeability values (see Fig.6.14). However, there are 

too few tests at Silverhill in particular to compare the distributions 

accurately, nor have similar areas of each lagoon been sampled. Since 

the contrast between the most permeable and least permeable layers at 

Silverhill is five orders of magnitude, drainage will be almost entirely 

in a horizontal direction unless there is vertical interconnection 

between the more permeable lay~rs. However, it is known (chapter 4.6) 

that at least one of the less permeable bands is continuous across the 

entire lagoon. 

During one visit to this lagoon, a particularly heavy thunderstorm 

occurred. It was noticed that run-off drained onto the lagoon from 

an area of tip that was almost twice the area of the lagoon itself. 

Run-off was almost total on some of the compacted tip haulage roads, 

but in other less well compacted areas there was a great deal of 

infiltration. Seepage from the tip onto the lagoon in fact occurs at 

several places along the southern side of the lagoon, along the line 

of an old berm. One stream was estimated to flow continuously at 

5m3/day, even in very dry weather. Three piezometers placed in the 

tip at the location shown in Fig.6.13 show that a flow net transfers 

water to the southern part of the lagooh, see Fig.6.15. Thus, although 

it is now inactive, this lagoon receives a considerable recharge of 

water throughout the year. Discharge can only take place through the 
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Fig.6.14 Distribution of measured permeability values. 
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overflow tower, or through the permeable western half of the floor. 

However, because of the extensive, impermeable layers the latter mode 

of discharge is probably not quantitatively significant. A small 

volume of water seeps through the face of the southern embankment. 

Whether this reflects a general flow net or the position of an older 

berm is not known. Piezometers were installed by the National Coal 

Board during constr~ction of this embankment, but subsequent monitoring 

revealed no water; they are now blocked. The means of discharge of 

vater from a lagoon is important in the context of overtipping operations. 

This will be discussed further in Chapter 7. 

Measurements of the coefficient of consolidation in-situ were not 

obtained at many points (Table A.6.3.2). The available values are 

shown in Fig.6.16. The range of values is very great being from 0,879 

2 
to 18900 m /yr. 

6.7 A Note on Gibson~s Consolidation Model for an Accreting Deposit 

It was mentioned in Section 6.2 that Gibson's (1958) model does not 

account for all the factors operating in a lagoon. However, in view 

of the fact that it predicts the existence of excess pore pressures in 

such a deposit, which have been shown to exist in the field (Mittal and 

Morgernstern,l976), the applicability of the model is worth investigating. 

The lagoon at East Hetton contains many very permeable layers, and 

has comparatively short drainage paths to permeable sides. It is not 

expected that excess pore pressures of any magnitude ever existed within 

this ~agoon. In contrast, the lagoon at Silverhill Colliery is much 

larger, and though very permeable in a lateral direction much of the 

embankment in particular and floor is relatively impermeable. From 

data supplied by the Area Civil Engineers for the North East and North 

Nottinghamshire Areas (written communications) the average pumping rate 
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Fig.6.16 In-situ coefficients of consolidation (Gibson method) • 
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3 3 
at East Hetton was 4600 m /yr, compared to 59000 m /yr at Silverhill.This repre-

sents rates of accummula tion of· ·approx. 0. 7m/yr apd 1. 7m/yr r-espectively: the 
former rate 
at East Hetton is roughly constant with time, while the latter rate refers 

to later life only of the Silverhill lagoon. The rate of accummulation 

varies at Silverhill because of the shape of the lagoon; it is much 

wider at the present surface of the deposit. 

The rate of accummulation :at Silverhill is given in Fig.6.17, from 

which it can be seen to decr~ase with time until the summer of 1970 

after which it is nearly constant. Gibson's model requires that the 

rate shall fit either a constant or square-root versus time law, neither 

of which it does particular~y well. Therefore the value of the constant 

~ate in later life is issumed. The coefficient of consolidation of 

the lagoon in a vertical direction is also required. Since a layered 

structure will consolidate essentially at the speed of the least permeable 

layers, the lagoon can be-considered to behave as :if it were shallower, 

but with one low value qf c . 
v 

From the data @n in-situ permeabilities 

and in-situ coefficienti of consolidation (Figs.6.14 and 6.16), it can be 

seen. that approximately one-third of the layers are of very low permeability 

and c . 
v 

-Therefore_,· :an equivalent lagoon 7m deep, accummulating at 
. . 

approximately o·. 5 fil(yr is assumed, with a c 
v 

2 of 2.33 m /year (from the 

oedomet~,r test. o~.':·the fine layer). If the base was impermeable,and 
' . . . 

all flow of water was in a vertical direction, the maximum excess pore 

pressure would,_.pe approximately 2.2m head of water in the deepest part 
· . .: ' 

of 'tlie lagoo:n '(read from Fig.3. of Gibson, 1958), at the cessation of 

pumping. .:This would have dissipated almost completely by the summer of 

1979 (Fig) 5; Gibson, 1958). 

For .this calculation, no evaporation is assumed, which has been shown 

to play ·an important effect (Krizek and Casteiliero, 1977). Furthermore, 

some of the floor is probably permeable. Lateral flow will take place 

to ·this and other parts of the embankment, through which some water is 

-
known to be discharged (see previous section). Therefore, the values 
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Fig.6.17 Level of the deposits in lagoon 16, Silverhill. 

Data from the Area Civil Engineer (written communication). 
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of excess head calculated are probably gross overestimates, and refer 

to the deepest part of the lagoon. Excess pore pressures in all 

other. parts of the lagoon will be negligible. Given also that this 

is a fairly large lagoon in terms of British collieries, then this effect 

can be neglected in most cases, particularly thosewith permeable sides. 

However, some.excess pore pressures could exist at the cessation of· 

pumping in any lagoon that has uniform, impermeable deposits, with a 

large input of sediments. 

6.8 The Comparison of In-situ Measured Permeability Values for East Hetton 
and Silverhill Lagoons 

The measurement of permeability in-situ has been accomplished by two 

distinct types of method. Firstly methods which assume the soil skeleton 

to be incompressible and secondly methods which assume consoilldation to 

take place (see Section 6.4). All the permeability values quoted in 

Sections 6.5 and 6.6 are those from the former method (both constant 

and variable head types). For some of the constant head tests sufficient 

data were gathered for the second (Gibson) type of analysis, which also 

yielded the c values quoted in Sections 6.5 and 6.6. 
v 

The full results 

are quoted in Tables A.6.2.2 and A.6.3.2. From Fig.6.18 it can be seen 

that the two methods compare very closely indeed, the greatest deviation 

being about half an order of magnitude. Considering the known errors 

introduced by applying these methods to layered media (see Section 6.4), 

there is no significant difference between the results of the methods. 

This fact adds a measure of confidence as to the accuracy of the 

determinations. 

6.9 The Consolidation and Drainage of Lagoons 6 arid 7 at Peckfield Colliery 

Six-inch Rowe cell tests were conducted on the four box samples 

described in Chapter 5. The Rowe Cell was used in this case because 

in each sample the thickness of the lamina under test was sufficient for 
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this apparatus. The voids ratio versus log pressure curves are shown 

in Fig.6.19 together with the summary consolidation data in Table 6.4. 

As expected from the grading curves (Fig.5.13), sampe PL74 has a 

relatively high c , whilst the other three samples are much less 
v 

permeable, The void-ratios of the samples are very high, refl.ecting 

the loose nature of the deposits. The compressibility of all four 

samples is very similar, despite the much greater proportion of fines 

in samples l to 3. The permeabilities of all samples are very low. 

No in-situ permeability measurements were undertaken in these lagoons, 

but from sections 6.5 and 6.6 it is suspected that the true permeabilities 

are much higher than those indicated in Table 6.4. 

The results of the consolidation tests indicate that in lagoon 7 

at least, drainage will take place in a horizontal direction along the 

coarser-grained laminae. vertical movement of water will take place 

only where clay laminae wedge out (see Fig.4.20). Since these lagoons 

are relatively narrow, and the sides are formed of limestone (either in-situ 

rock, or in embankments, see chapter 1.), much drainage will therefore be 

through the sides. 

A general sketch of the lagoons and the piezometer locations is given 

in Fig.6.20. In chapter 5 it was shown that lagoon 7 possesses a weak 

layer of fine material to approximately l to l.5m depth, above a layer 

of much coarser; sand-sized material. The water levels shown in Fig. 

6.21 indicate that a perched water table of some 200-300mm exists within 

the top, fine-grained layer. Once the existence of this water table 

was e~tablished, the piezometers were emplaced at deeper levels in the 

lagoon, and a second water table was discovered at approximately 4m depth. 

However, while the upper water table has an approximately constant level 

everywhere, the lower water table is found at greater depths away from 
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Fig.6.19 Void ratio-log pressure curves for Peckfield lagoon 7 samples. 

void ratio 

1 10 

Effective pressure kN/m2 

Table 6.4 Consolidation data, Peckfield. 

Sample c Cm2/yr)• K(m/s)• 
v (x10-) 

(611 Rowe 
PL71 
PL72 
PL73 
PL74 

cell) 

(Triaxial) 

25.3 3.80 -9 
6.81 1.25 -9 

22.4 5.45 -9 
2258 2.29 -7 

PL72 9.6 
PL6 (lagoon 6,fine material 6.3 

see Fig.2.15) 

(Shear box) 
PL6 

100 

c c 

0.189 
0.229 
0.148 
0.165 

• averaged over the linear section 

1000 

c s.u. 
l' 

0.029 1.890 
0.033 1.900 
0.024 1.886 
0.026 1.526 

1.900 
2.171 

2.171 
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Fig.6.20 Piezometer locations at Peckfield showing the cross sections 
in Fi~s.6.21 and 22. 
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Fig.6.21 Cross-section of Peckfield lagoon 7. 

B ----...... Area of supernatant water Piezometer locations 
" 1 4 3 2 1 --- • !;: ,-B 1 " . . 

2 ? - ~ 
1 Fine layer with perched water table. in this layer water presumably seeped 

to layer 2, but much also seems to flow to the sides. 
2 Coarser layer, much flow through base see section C C below. 
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the western wall (dividing this lagoon from lagoon 8), and no water 

table exists some 25 m away from this wall. The form of the water 

table suggests that water is entering the lagoon through the western 

wall, presumably from lagoon 8, and is seeping away through the 

limestone floor. Further evidence was provided for this hypothesis 

when lagoon No.7 was excavated. The floor of the lagoon was always 

very wet during this operation, and the water levels in lagoons 6 and 

8 lowered dramatically. 

Lagoon 6 contrasts with lagoon 7 in that there was no large scale 

lamination, though small scale features were in evidence. The water 

levels recorded in the piezometers suggest that perched water tables are 

not generally present, rather that water seeps away through the floor as 

shown by Fig.6.22. However, a very wet layer was encountered at 3m· 

depth while augering for the piezometer holes (push in piezometers were not 

used here). Piezometer 4 was emplaced in this layer but remained dry 

for most of the time. However, this layer probably represents a water 

table supported by an aquiclude. This ~.ypothesis is supported by the 

fact that the water level rose in this piezometer after a period of 

heavy rain. 

Observations of the piezometers in lagoon 6 continued throughout the 

summer of 1977, while lagoon 7 was being excavated. From the levels 

recorded in these piezometers, together with the rainfall data presented 

in Table 6.5 and Fig.6.23, it can be seen that the water-levels responded 

to periods of heavy rain, but generally fell when excavation of lagoon 7 

started. The areas of supernatant water in lagoons 6 and 8 receo ded 

over this period by about 5m horizontal distance from each edge. 

these lagoons seemed to be supplying water to lagoon 7. 

Thus 
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Fig.6.22 Cross-section of lagoon 6 at Peckfield. 
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Piezometer locations 
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.1 Site of coarse layer, see Fig.2.13. 
2 Wet layer observed during the augering of piezometer holes 4 and 5. This is1transmitting water 

to the sides of the lagoon. Generally at the inlet end of the lagoon flow is through the floor, 
but at the outlet end short flow paths exist to the sides of the lagoon and much flow will be 
via the sides. This is shown by the fact that the excavation of lagoon 6 de-watered both 
lagoons 6 and 8. · 
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Table 6.5 Piezometer-readings in lagoon 7, Peckfield, and rainfall data. 

a. Piezometer readings 

Piezometer July August September 
1 9 18 23 29 8 15 2 13 24 

1 0.34 0.33 0.42 0.68 0.69 0.80 0.66 0.89 0.92 
2 1.80 1.55 1.70 - 1.83 1.90 2.08 - 2;1(9 
4 .d d d d d d 3.04 2-93 3100 
5 d w d d d w d d d 
7 2,at00 1.94 1.93 1.87 1.90 1.96 '1-9'? 1~97 2.00 

b. Rainfall data, average for the period preceeding the date shown,mm 

3.00 0 0.57 0.6~ 2.16 0.59 0.81 3-19 1.45 0.19 

Fig.6.23 Piezometer readings and rainfall dat~_,lagoon 7, Peckfield. 
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rainfall 

mm 

0 ~--~J_u~ly~,·----~~A_u~gu~s_t __ --~S-ep~t_e_m_b_e_r __ ~-

1 

.. . """-. .... - ........ _...__.. ___ .... 
.. ~-... ·--"'1 

Piezometer 
~-·- .... _ ... _ .... ,. ... - ..._- :t 7 •. . . . 2 2 

3 - .. ... 4 

4 

5 

6 
........ -5 

Dep_ th of· 
water Onset of excavation 

reading 

.. ~ . ' ' '. . ' 'A.:',,·>' 

. . I 



254 

6.10 ~he·Consolidation and Drainage of ~agoon 6 at Maltby Colliery 

The water levels in this lagoon were measured only in the vicinity 

of the embankment b'ut as part of the overtipping experiment described 

in chapter 7. They were everywhere about 2-2! m from the surface, 

rising towards the area of supernatant water. Four samples of 

material were taken from the two locations sampled in the lagoon (see 

.Fig.4.4.c). It can be seen from Fig.6.24 and Table 6.6 that values of 

2 
c range from approximately 2 to 2000 m /yr, as determined both by 

v 

oedometer and triaxial tests. The material is generally incompressible, 

though one sample with a relatively low carbon content (as evidenced by 
~~ 

a specific gravity of 2.309) proved to be highly compressible. 

There is insufficient data on the distribution of the laminae in ,, 

this lagoon to comment on the pattern of drainage. However, in view 

of the range of permeabiiities of the various laminae, flow of water 

in a horizontal direction will certainly be of considerable importance. 

6.11 The Compressibility of Colliery Lagoon Sediments 

In the preceding sections it .has been shown that while most samples 

tested in the oedometer were relatively incompressible, a few had much 

higher compressibilities. Figure 6.25 shows the compression and swell 

;~t~ 
indic~s plotted against the specific gravity: It is apparent that 

'the more compressible material (C >. 25 and C. > .03) is always low in 
c s 

coal (as evidenced by the higher specific gravities) and impermeable 

(i.e. ~ine-grained). Coarser~grained material is less compressible, 

and carbon (coal) rich material is less compressible whether it be 

90arse or fine-grained. 

Other authors have also reported low compression indices for coal-

rich lagoon sediments. N.C.B, 1972 report values of between 0.02 and 

0.27, all on materials with low values of c 
v 

Cobb (1977) reports 
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Void ratio 
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Void ratio-log pressure curves 

for Maltby samples. 

Location 
Fine, ·1. 

1,1.6m 
fine 

~-------------=::::::::::::...~:::::::::::::::::::.. 2, 13. 5m 
0.5 medium 

1 

Location 
and sample 

1 coarse 
2 medium 
1 fine 
1 fine 

(Triaxial) 
1 fine 
2 medium 
1 .fine 
2 coarse 
2 coarse 
11t.' fine 

Depth 

1. 1 
13.5 
1. 2 
1. 6 

1.2 
13.5 
1. 6 
1.6 

11.7 
4.0 

10 
2 Effective pressure kN/m 

2 
c (m /yr) • 

v 

1065 
92.5 
8.56 
3.58 

38.5 
119 

1.97 
2252 
1230 

66.4 

k(m/s)* 
(x10-) 

1.14 -7 
4.74 -9 
2.33 -9 
1. 77 -9 

* Averaged over the linear section 

c 
c 

100 

c 
r. 

S.G. . 

0.172 0.016 2.329 
0.117 0.016 1.661 
0.178 0.015 1.927 
0.438 0.082 2.309 

1.927· 
1.661 
2.309 
1.907 
1.579 

2, 1. 1m 
coars~ 

1000 
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Fig.6.25 Compression characteristics of tailings. 
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values between 0.160 (SG = 1.99, c = 45.1) and 0.246 (SG = 2.10,c = 408). 
v v 

Holube-,c ( 1976) reports C c values of 0. 20 to 0. 30 for Appalachian colliery 

tailings da.rns, while Busoh et al. (1974) and Busch et al. (1975) report 

tests from which values of 0.080 to 0.312 may be calculated with one high 

value of 0.568; no c values are reported for this material. 
v 

The compressibility of lagoon sediments is therefore controlled both 

by the coal content and the grain size. In chapter 4.6 it was shown 

that the finer-grained sediments contain the least coal, and in chapter 

3.3. and 3.4 it was shown that the proportion of finer grained laminae 

increases away from the inlet. Thus it is to be expected that the 

overall compressibility will increase away from the inlet. 
-s~ 

However it 

is difficult to estimate the extent of the effect unless the compressibility 

of every layer at any location is known. Referring to the borehole logs 

of East Hetton (Table 3.1), it can be assumed that all the fine-grained 

layers have an average compression index of 0.277 (which.is the average 

of the oedometer values for East Hetton, Table 6.2, leaving out the 

anomalous value from one overconsolidated sample) while the other layers 

have an average C· of 0.177. 
c 

For location A, with 28 per cent fine 

laminae, the gross C becomes 0.205 (i.e. 0.28 x 0.277 + 0.78 x 0.177); 
c 

that of location B is 0.236 and location C is 0.199. Thus the gross 

compre'ssibili ty of· the lagoon is increasing slightly away from the inlet. 

However, this is based on assumptions rather than facts and the effect is 

not great. For most practical purposes the compressibility can reasonably 

be assumed to be constant across a lagoon. This conclusion was reached 

by Cobb (1977). 

6.12 The Drainage of Colliery Lagoons· 

The manner in which water flows through colliery lagoons will depend 

on a variety of factors, which will include the following:-



1. The permeability of the base and embankments that contain the lagoon. 

Lagoon embankments are frequently built from coarse colliery discard. 

According to N.C.B. (1972) spoil placed in an uncompacted fashion leads 

. -4 -6 
to permeabilities rang1ng from 10 m/s to 10 m/s (as determined by 

in-situ tests). However, modern, thin-layer compaction techniques 

-8 
reduce the permeability of coarse discard to as low as 10 m/s, though several 

~ -7 -5 
values around 10 and one as high as 10 m/s are reported. 

The base of the lagoon on the other hand depends on the choice 

of Site for the lagoon. Some lagoons are placed on coarse discard, 

in which case the above values will apply. Some lagoons (such as those 

at Peckfield) have floors of a permeable rock (in the case of Peckfield 

the rock is Lower Magnesian limestone). Other.s ~gain have floors of 

impermeable clays, for instance the lagoons at East Hetton are situated 

in a valley with a floor of alluvial clay. 

2. The relative importance of horizontal and vertical permeabilities 

in the~agoon sediment. The layered nature of colliery lagoons necessitates 

application of the series and parallel resistance formulae (see section 6.2). 

Based on the borehole logs at East Hetton given in Table 3.1, a reasonable 

approximation of hovizontal and vertical permeabilities may be made as 

shown in Table 6.7. Although the values are approximations, Table 6.7 

does show that the horizontal and vertical permeabilities do not vary 

as much across the lagoon as would be suggested by the relative 

proportions of coarse and fine layer~. However Table 6.7 does not take 

into account the effect of discontinuities in the layers, which will 

enhance vertical drainage. It is therefore reasonable to assume that 

-9 . 
2 x 10 m/s is an approximate lower bound to the vertical permeability. 

3. The extent of the supernatant water. When the supernatant water 

is very close to the embankment the proportion of flow through the 
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Table 6.7 Horizontal and vertical permeabilities in East Hetton lagoon 

109B. Based on the logs in Table 3.1. 

N.B. 

Location A 

·l<. k -h-

Location B 

k = h 

Location C 

28% medium fine to fine, say k= 

43% medium, mixed 

29% medium coarse to coarse 

-6 -9 2.94 x 10 m/s k = 3.52 x 10 m/s v 

59% medium fine to fine, say k= 

25% medium mixed 

16% medium coarse to coarse 

-6 1.68 x 10-9 m/s 1.63 x 10 m/s k = v 

22% medium fine to fine, say k= 

61% medium, mixed 

17% medium coarse to coarse 

6 -6 k = 4.42 x 10-9 m/s k = 1.7 x 10 m/s 
h v 

kh/kv = 835 

-9 10 m/s 

10-7 

10-5 

kh/kv = 970 

10-9 m/s 

10-7 

10-5 

kh/kv = 398 

Note. The assignment of permeability values to the various 

layers is based on the ranges of values obtained from the in-situ 

tests. Although this approach leaves something to be desired, it 

allows for changes in the sediment in a consistent fashion. 
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embankment will be relatively high. The presence of supernatant water 

implies extensive layers of relatively low permeability. For instance, 

the lagoons at Peckfield receive about lm of water per year in rainfall; 

taking run-off into account this is equivalent to about 2m per year 

over the area of supernatant water. However, allowing for evaporation, 

the input is approximately lm per year over the area of superntant water. 

This area forms a constant head boundary, where the.head is approximately 

300mm. Assuming that this head is dissipated through a layer l50mm 

thick, then the permeability of the layer would be:-

k .JL 
i.A 

1.0 
= 

2.1. 1.365. 24.60.60 

-8 
= 1.6 x 10 m/s 

m/s 

Although all the values have been assumed, they are all reasonable, 

and the value of permeability is therefore a reasonable assumption also. 

Furthermore, the order of magnitude calculated for the permeability is 

insensitive to changes in the assumed parameters. 

Flow through lagoons is a complex problem in detail, involving many 

boundary conditions, perched water tables, overflow towers and a varying 

sedimentology within the lagoon itself. An accurate assessment of the 

flow in a lagoon would therefore require a complex three-dimensional 

analysis (say by finite-element analysis) which in turn would require 

very detailed and accurate knowledge of the relevant parameters. very 

seldom will these be available, and in any event the results would be 

useful only on an individual lagoon basis. It was therefore thought 

desirable to analyse the flow in a simplified manner which, with 

reasonable judgement, could be applied to a wide variety of lagoons 

without the necessity for expensive and difficult computations. For 

this reason an electrical analogue using "Teledeltos" paper and a 
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field plotter were chosen for the analysis. 

The main parameter of interest is the relative proportion of flow 

that iS. to be expected through the base and the sides. Any action that 

could be taken in terms of lagoon design would be related to 

controlling flow through one or the other. It is possible to determine 

the relative proportions quickly and directly with the analogue by 

reversing the boundary conditions and determining the .equi potential 

at the junction of the floor and sides. This is explained diagrammatically 

in Fig.6.26, from which it can be seen that a direct read-out from a one 

point determination gives the required information. 

The electrical analogue is isotropic with respect to electrical 

flow whereas it is required to model an anisotropic water flow condition. 

This is accomplished in seepage and flow net analysis by transforming the 

horizontal scale of the analogue after Samsioe (see Craig, 1974, p.46):-

X 
t = X. 

k z 
k 

X 

where x is a natural length 

xt is the transformed scale length 

kx, kz are the permeabilities in the x 

z directions 

The equivalent isotropic permeability, k', given by: 

k' 

Therefore, any geometrical shape analysed by this analogue method 

can be regarded as several combinations of geometric shapes and permeabilty 

ratios. It is useful to define a flow shape as:-

F.S. 
L/D 

fk/kv 
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Fig.6.26 Analogue set-up for·lagoon flow analysis. 

a. Normal boundary condition 

Potential 
difference 
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Plotter to determine 
equipotentials 

supernatant 
water 

r - of symmetry 
Embankment 

Flow 

Floor 

b. Reversed boundary conditions, as used in the analysis. 

---

/ 

/ 

Potential 
difference 

..,:::...._ ___________________________ _ 
A 

supernatant 
water 

The equipotential AB is equivalent to a flow line with the normal 

boundary condition. Therefore determining the potential at A as a 

percentage of the potential difference automatically g.ives the pro­

portion of the flow at the divide between Lhc~ fJ.oor H.rtd l.hr~ •1rnba.nk­

ment. The field plotter used wa.s ca.libral.ecJ in percr;nLJ~~eL. 



where F.S. is the flow shape, is the shape of the 

analogue section. 
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L is the length of the lagoon section being 

analysed 

D is the depth 

kh,k are the horizontal and vertical permeabilities 
v 

Thus an analogue shape of 10 long to l deep could represent a lagoon 

section 10 long to l deep with istotropic permeability, or one of 100 long 

to l deep with a permeability ratio (horizontal to vertical) of 100 to 1. 

In the analysis, rectangular shapes only were analysed as shown in 

Fig.6.26.b. There are two sources of error introduced by this simplificati~n. 

The first is that while many lagoons have a fairly flat floor, most have 

sloping embankments. In fact, due to the transformation of horizontal 

scale mentioned above, the slope ·in the analogue is frequently nearly 

vertical. The second source of error is that the phreatic surface is 

not incorporated correctly. The error is not serious when the supernatant 

water is close to the embankment in relation to the depth of the lagoon, 

because the p.hreatic surface will be close to the actual lagoon surface. 

Nor is the error serious when the flow shape number is high (i.e. a very 

wide, shallow lagoon) because very little water flows through the sides 

in this case. The error is only noticeable when the flow shape number 

is small and the supernatant water is far from the sides, in which case 

the proportion of flow through the sides is overestimated. 

Bearing these simplifications in mind, Fig.6.27 shows the variation 

in the proportion of flow through the sides of the lagoon for different 

flow shapes and degrees of supernatant water cover. It can be seen 

~hat very little water flows through the sides for l~goons with a large 

flow n~mber unless the lagoon is almost completely covered by supernatant 
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Fig.6.27 The proprtion of flow through the sides of a lagoon with equally 

permeable sides a~d base. 

%flow through sides 
100 

50 

D 

y X 

L 

x is the supernatant 
water cover 

~ % is the value 
X+y 

contoured 

----

0 0.5 1.0 2.0 4.0 6.0 8.0 

Flow shape=~ 
h v 
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water. Thus designing efficient filters for the embankments of such a 

lagoon to encourage rapid drainage through the sides would not be an 

economic measure. 

Peckfield lagoons 6 and 7 can be modelled with Fig.6.27. Lagoon 6 

in half cross section has a length to depth ratio of about 5, and 

supernatant water cover of about 75 per cent (see Figs.6.20and 6.22). 

The ratio of horizontal to vertical permeability is not known; however 

the existence of the supernatant water implies extensive low permeability 

zones, while coarse permeable laminae are known to exist (see Fig.2.13). 

Assuming that the permeability ratio is on the order of 100, the flow 

shape is 

F. S. 
5 

= )wo = 0.5 

which, from Fig.5.26 gives the flow to the sides as being about 95 per 

cent. However, in the region of the lagoon inlet the general form of 

the phreatic surface (Fig.6.22) suggests that most of the flow is through 

the floor, although the picture is complicated by a perched water table. 

Thus overall, probably some 80 per cent of the flow is through the sides. 

The actual amount of flow can be assessed from an estimate of the inflow 

3 
into the lagoon in terms of run-off and rainfall, and is about 1 m /yr 

2 3 
per m of supernatant water or about 3500 m per year. 

In contrast, lagoon 7 possesses an upper layer with a perched water 

table, which must be treated separately. In half-section this layer is 21m 

wide and 1.5 m deep, a length to depth ratio of 14. The area of 

supernatant water and the presence of a perched water table implies 

both impermeable laminae and a high permeability ratio. Assuming 

therefore that the permeability ratio is again 100, the flow shape is 

F. S. 
14 

= J!O(j = 1.4 
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and the supernatant water cover is about 70 per cent. From Fig. 6.27, 

the flow to the sides is about 45 per cent, despite the thin nature of the 

layers. 3 2 
The total volume of flow at lm /yr per m of supernatant water 

3 
is about 2000 m /yr. 

However, not all lagoons have sides of equal permeability. The 

electrical analogue can be used to analyse approximately the case of a 

lagoon with an impermeable base, as is shown in Fig.6.28. This introduces 

the limitation that the permeability ratio (i.e. k /k ) should be the 
h ·" 

same in the lagoon and the base, but nevertheless it gives a measure of 

the effect of an impermeable base. Only the case in which the flow path 

is as long through the base as it is vertically through the lagoon has 
• 

been analysed, simulating a thin layer of relatively impermeable clay. 

Thicker layers of impermeable clay would require additional analyses. 

The resulting variation of flow through the sides versus flow shape is 

shown in Fig.6.29. A comparison with Fig.6.27 shows that, as expected, 

very much more water flows through the sides. 

The lagoons at East Hetton have limestone sides (presumed to be 

permeable) and a base of lm of alluvial clay (presumed to be relatively 

impermeable). Lagoon 109B is about 70m wide, i.e. 35m wide from the 

centre line to the edge. It is 13m deep but the water table is 3m 

down and hence it can be treated as being 10m deep. The permeability 

ratio is as high as 1000 (see Table 6.7), but may be lower. The flow 

shape is therefore: 

F.S. L/D 
= )1000 = 

35/10 
)looo = 0.11 

Figure 6.29 shows that virtually all the water flows through the 

sides, irrespective of the area covered by the. supernatant water. 

Even if the permeability ratio is as low as 25, which gives a flow shape 

of 0.70, the flow through the sides will still be in excess of 90 per cent. 
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Fig. 6. 28 Analysis of flow in a lagoon with an impermeable base. 

a. Analogue. The potential at _point A is measured as a percentage. 

b. The lagoon 

L 

Lagoon 

Potential 
difference 

l 
D 

A 1 
RARf> 

In this case the flow path through the base is as long 

as a vertical flow path in the lagoon. For instance, this. 

could be a layer of clay 1/10th as thick as the lagoon, but 

with a permeability of 1/10th that of the lagoon sediments. 

Strictly speaking this only applies if the flow lines 

are noDmal to the boundary between the two materials. 
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Fig.6.29 The proportion of flow to the sides of a lagoon with a less 

permeable base. 
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Furthermore, Fig.6.27 shows that even if the base of the lagoon were 

permeable, virtually all the water would nevertheless flow through the 

sides. Thus if it had been felt necessary to prevent water flowing into 

the limestone walls, little would have been achieved by laying a permeable 

blanket on the floor of the lagoon. Rather, the limestone walls of the 

lagoon would have to be lined with an impermeable material. 

Using similar reasoning to the above, the case of a lagoon with an 

impermeable embankment can be analysed. The analogue model is shown in 

Fig.6.~0, and the resulting variation in flow through the sides with flow 

shape is shown in .Fig.6.31. It can be seen that only in a lagoon with 

a very low flow shape number is there any appreciable flow through the 

sides. In applying this model, it should be remembered that the 

effective isotropic permeability of the lagoon in transformed section 

·is not kh, but ~ · 
h' v' 

-8 
this will be of the order of 10 m/s for 

most lagoons. Therefore a coarse collier,ydiscard embankment built by 

thin layer compaction techniques will usually not be less permeable than 

the lagoon in transformed section, despite the fact that the horizontal 

permeability of the lagoon greatly exceeds that of the embankment. No 

case corresponding to this condition is known to the writer. However 

Cobb (1977) ~oduces evidence for very impermeable lagoon embankment 

interfaces, which Fig.6.31 could be used .to analyse. 

The method outlined could easily be extended to more cases, such 

as lagoons with a different cross-sectional form. It is a quick 

method which requires very little computation. The method is not highly 

accurate, because of some of the simplifying assumptions. However, it 

is doubtful whether a more rigorous method would greatly improve the 

position unless ~ery accurate data concerning the permeabilities of the 

floor and embankments are available. Even then the occurrenco of 
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Fig.-6.30 Analysis of flow in a lagoon with impermeable sides.-

a. Analogue. The potential at A is measured as a percentage. 

Potential 

~renee 

A 

b. The lagoon 

L 

Impermeable 
embankment 

Lagoon 

In this case the flow path through the embankment is three times the 

length of a horizontal flow path in the lagoon. For instance, this could 

1 
D 

1 

be an embankment as wide as the transformed lagoon, but with a permeability 

of only 1/3rd that of the lagoon. 

Strictly E;peaking this only applies if the flow lines are normal to 

the material boundary. 
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Fig.6.31 The proportion of flow to the sides of a lagoon with less 

permeable sides. 
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perched water tables, and the complexity of the sedimentology in the 

lagoon would be difficult to model accurately. Therefore it is felt 

that the ~ethod outlined is accurate enough for a rapid assessment of 

flow through a lagoon. 

6.13 Conclusions 

Colliery lagoons consist of thin laminae with widely varying 

consolidation and permeability parameters. It has been shown that 

recognition of this fact has implications both for measuring the 

characteristics of the sediment and for determining overall patterns 

of drainage of the lagoon. 

In the laboratory, oedometer tests have been used to determine 

the consolidation parameters. This method is preferred to the use of 

Rowe cells, in contrast to usual practice, because the parameters of 

individual laminae can be tested in the smaller oedometer. It has 

been shown that for any particular type of lamination the consolidation 

parameters do not vary across the lagoon. Thus a fine grained layer 

will have a similar coefficient of consolidation and compression index 

everywhere it occurs. Hence, in terms of time and effort, it is 

efficient to test the consolidation parameters of characteristic horizons, 

and to assess the contribution of each type of sediment by trial pitting 

or borehole logging in several parts of the lagoon. With experience, 

it is probable that this could be applied from lagoon to lagoon as well. 

The coefficient of consolidation has been shown to vary from about 

2 
2 m /yr for fine-grained laminae to 2000 + 

2 
m /yr for coarser horizons. 

In this type of sediment the consolidation will take place by horizontal 

drainage via the more permeable horizons, and the effective coefficient 

of consolidation will tend towards that of the more permeable sediments, 

as has been shown by Rowe (1959) and Horn~(l964). 

The compression index is generally fairly low, and is dependent 
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on two features of the lamination under test. Firstly all carbon (coal)-

rich laminae have compression indices of about 0.2. Secondly, of carbon 

(coal)-lean samples, the fine-grained examples have higher compression 

indices of up to 0.54. However, coarse-grained, coal-lean samples also 

have low compression indices. The compression index is therefore 

controlled both by the carbon (coal) content and by the sediment size. 

In-situ piezometer tests have been used for determination of 

permeabilities. A simple home-made, push-in piezometer of cheap and easy 

construction has been shown to perform very well for this type of test. 

The permeability values so obtained have been found to be consistently 

similar by two methods of interpretation. Furthermore, the values are 

consistently two orders of magnitude or more higher than the values 

determined from oedometer tests, which are generally considered to be 

inferior for measuring this property of soils. The permeability of 

-9 -4 . 
lagoon sediments varies from 10 m/s to 10 m/s, and at East Hetton and 

Silverhill the full spectrum from permeable to relatively impermeable 

sediments is found. Although the in-situ permeability measurements have 

not been directly correlated with particular laminae within the lagoons, 

it is suggested that with reasonable judgement the overall permeability 

of the lagoon can be assessed from borehole logs or trial pits. This 

is based on the assumption that the range of permeabilities measured is 

directly correlated to the range of different laminae found within the 

lagoon, which is of course to be expected. 

The piezometric head has been studied in four lagoons. At Silverhill 

the position is complicated by an overtipping operation, and this is 

discussed in the following chapter. The other three lagoons (East Hetton, 

109B; Peckfield, 6 and 7) all show the presence of perched water tables. 

This is clearly a consequence of the layered structure of lagoon sbdimonts 
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where there is an alternative of coarse and fine (i.e. permeable and 

impermeable)laminae. 

The analysis of flow through a lagoon is a complex problem, because 

of the variety of shapes and boundary conditions, perched water tables 

and complex sedimentology. A simple approach has been outlined which 

allows a v:ery rapid approximate assessment of the p.-oportion of flow 

through the floor and embankments of the lagoon. Using this approach 

the importance of the layering in the sediments in controlling the flow 

of water is underlined. In the case of East Hetton virtually all the 

water flows through the sides, and the permeability of the floor is 

virtually irrelevant because of the layering. Lagoon 6 at Peckfield 

also discharges much of the water to the embankments, despite having a 

permeable floor. Even the upper, 1.5 metre thick, weak layer in lagoon 

7 at Peckfield discharges half of its flow to the embankment. It is 

possible using this approach to analyse the effect of a less permeable 

base or embankment to the lagoon in a very quick and simple fashion, 

though the answers are approximate. The method used does not involve 

drawing a complete flow net, and therefore quantities of flow cannot be 

computed. However, these can be assessed from rainfall, inflow and 

draw-off rates, making an allowance for evaporation. Thus it is 

possible to decide whether it is necessary to~ke action to control the 

flow through the lagoon and how best to approach the design of any 

control measures. 
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CHAPTER 7 THE OVERTIPPING OF COLLIERY LAGOONS 

7.1 Introduction 

Ultimately a lagoon must either be excavated for re-use or 

overtipped. The latter practice is attractive because it both 

increases the volume of waste that can be disposed of in a given area, 

and disguises an unsightly hazard, permitting easier landscaping. 

The dangers and uncertainties inherent in the practice have dictated caution. 

Current National Coal Board recommendations (N.C.B., 1970) limit the maximum 

depth of overtip to three_ metres. 

The possible sources of danger in an overtipping operation fall 

into four categori~s:-

a) 'Static short-term' 

being overtipped. 

b) 

tip heap. 

c) 

'Static long-term' 

'Dynamic short-term' 

bearing capacity failure of the sediment 

slope failure of the final composite 

local liquefaction; collapse and 

failure due to vehicle (plant) vibrations. 

d) 'Dynamic long-term' general failure of the final tip complex 

due to mobility of the embodied lagoon during earth tremors. 

While procedures exist for calculating bearing capacities, these 

cannot confidently be applied to the extremely soft, compressive 

sediments found in lagoons without a field trial. Furthermore, laboratory 

liquefaction work should always be checked against field data (Peck, 1979). 

The pore pressures generated by overtipping and their subsequent 

dissipation would need to be monitored in order to arrive at Codes of 

Practice. As lagoon sediments in general have higher angles of friction 

than coarse discard, the long term stability will be ensured if the 

lagoon drains adequately. Adequate drainage will also ensure against 
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liquefaction to a degree. 

The problems of overtipping are highlighted by a few instances that 

have come to the writer's attention. At Gedling Colliery there exists 

within the tip heap a lagoon which was successfully overtipped and is 

now completely enclosed. On the other hand, at the same colliery an 

embankment built into another lagoon displaced material to a depth of 

12 m before it was stable. At Bilsthorpe Colliery (North Nottinghamshire 

region, N.C.B.) the writer has observed a small lagoon that was overtipped 

on all sides. Material was displaced towards the centre, where it 

welled up and now exists in a semi-liquid state. 

The lack of knowledge about pore pressure behaviour during 

overtipping came _to light during a series of vane tests carried out 

during a reconnaissance of lagoon No.7 at Orgreave Colliery (S.Yorkshire 

Area, N.C. B. ) . At the time of these tests part of the perimeter was 
I 

being overtipped by a D6 and a DB caterpillar vehicle. The line of 

overtip and the position of the vane tests is shown in Fig.7.l. At p~ition 

A, near the outlet, the sediment failed and heaved at the toe of the 

overtip under the weight of a D6 vehicle (see Fig.7.2).From cracks in this 

heaved material water seeped out onto the lagoon surface. At B however, 

even the DB vehicle was able to overtip s~fely (see F{g.7.3). While the 

vehicles were active the H=D/3 vane profile in ·Fig;7.4was put down, 

the vehicles had moved to another part of the tip several hundred yards 

away. The second profile is obviously very much stronger. Without 

adequate instrumentation the reason for this can only be assumed, but 

the possiblity of high pore pressures caused by vehicle activity cannot 

be ruled out. 

~Th~-~-a~~~ Overtipping Trial 

1. Introduction 

In view of these findings a full-scale field overtipping trial was 



Fig.7.1 Sketch of the outlet end of lagoon 6, Orgreave. 
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Fig.7.3 Overtipping a t B by a D6 and a DB; note that there is 

no cr acking of the surface of the lagoon. 

Fig.7.4 Vane tests in l agoon 6 at Orgreave. 
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conducted (Taylor, Kirby and Lucas, 1980). The aims of this trial were 

to investigate the effect of overtipping on:-

a) the shear strength of the lagoon sediments 

b) the pore pressures within the lagoon 

c) the liquefaction susceptibiltiy of the lagoon sediments. 

Previous work (Taylor et al., 1978; Taylor and Morrell, 1978) using a 

laboratory triaxial cyclic loading apparatus indicates that whereas 

undisturbed (in-situ) lagoon sediments generally show fair resistance to 

cyclic mobility, remoulded samples (i.e. laboratory fabricated) tend to 

have a much lower resistance (at the same void ratio). Kennedy (1977) 

showed the same to be true under monotonic loading conditions. The 

possib~lity that remoulding due to overtipping might decrease liquefaction 

resistance could not be ruled out. 

In addition the susceptibility of the sediments to earth tremors 

(simulated by explosives) could be monitored directly in the field. In 

conjunction with laboratory triaxial cyclic loading tests, the conflict 

of "in-situ versus remoulded" samples (Yoshimi, 1977) might be resolved. 

Finally it was hoped that positive recommendations of methods of 

overtipping, factors of safety etc. might emerge from .such a trial. 

The lagoon chosen for this study was lagoon no.6 at Maltby Colliery, 

South Yorkshire Area, NCB. Earlier field vane testing in this lagoon 

by the writer and by Messrs.Wimpey had revealed a high average sensitivity 

(4.2). It was thought that this might indicate a high suscepibility 

to liquefaction. In addition triaxial cyclic loading tests by Taylor 

et al., (1978) had indicated a fairly high degree of susceptibility to 

liquefaction. Site access was also suitable. 

2 Pre-Construction Phase 

The trial centred around the construction of an embankment of fresh 
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colliery discard 3m high, 10m wide and 50 m long across part of the 12m 

deep lagoon, as shown in Fig.7.5. (The depth of the lagoon was known 

from the Wimpey site investigation report, Wimpey 1977a). It was 

decided to use a caterpillar D6 earth-moving vehicle for the project, 

because plant of this size had previously been shown to be operationally 

effective, while at the same time keeping sediment disturbance within 

tolerable limits. The original proposal was to construct a 3m high 

embankment in three layers, each nominally of lm thickness (see Fig.7.6). 

From the proposed orientation (Fig.7.5) it was expected that a transition 

would be encompassed from a safe operation at the e~ge of the lagoon, 

to one of marginal safety in the wetter material adjacent to the supernatant 

water. 

A grid of pegs was set out on the lagoon surface, and levelled to 

enable monitoring of the surface settlements. Settlements underneath 

the embankment were to be estimated from lateral extension wires strung 

across the centreline of the embankment and covered by three sections 

of the filter fabric "Terra:· m" as shown in Fig. 7. 5 and 7. 6. 

shortening of the wires was monitored during construction. 

Apparent 

For measuring pore water pressure changes, 15 piezometers were 

installed: 5 pneumatic piezometers being placed 4m deep below the 

centre line of the embankment. Five Casagrande type piezometers, 

together with five drive-in type were installed around the periphery 

of the proposed embankment as indicated in Fig.7.5. Two vibrating wire 

piezometers were also installed later for the blasting trials. 

In Fig.7.5, positions l.and 2 represent locations where in-situ 

vane shear and static cone penetrometer tests were conducted. The 

fourth vane pair combination was used in these tests. From Figs.3.7a 

and 3.7b it can be seen that the vane shear strengths were approximately 
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Fig. 7.6 Construction of the embankment at Maltby. 

Note "Terram", and minor shear failures. 
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the same at both locations although at 2 the sediments were weaker with 

depth. The average sensitivity for both locations was 4.9. 

The cone pentrometer was also used at these two locations, though 

time permitted only the 30 degree cone to be used. The two profiles 

shown in Figs. 3.7a and 3.7b demonstrate that the relative changes with 

depth are not dissimilar to the vane profiles. However, at 2 there 

exists a zone of desiccation to 0.7m which cannot be so readily defined 

at l. It was therefore expected that the factor of safety against 

bearing capacity failure would be higher at 2. 

At locations 1 and 2, UlOO undisturbed samples were taken to be 

water table, the depth of which is shown in Figs.3.7a and 3.7b. On 

cutting, the U!OO samples showed a very laminated structure; individual 

layers ranged from plastic, clayey silts to medium-to-coarse coaly material. 

Triaxial tests showed the variation in the sediment type (see Figs.5.24 and 

5.25), though K tests showed a variation of K from 0.39 to 0.70 irrespective 
0 0 

of sediment type. 

Triaxial cyclic loading tests were carried out on a number of 

undisturbed samples (Table 7.1). Test conditions were standardised to 

t,'I\TV 2 an initial effective stress of 115 ~·~m and a triaxial stress ratio of 

O.l5'(peak acceleration = 0.08~). The triaxial stress ratio was 

derived from relationships of acceptable accuracy used by other (e.g. 

Seed, 1977). Fifteen cycles at the prescribed stress ratio were consiaered 

by Taylor et al.(l978) to be a satisfactory model for a British earthquake 

of MMS Inte'nst.ty · VI on a 200-year return period prediction. The 

effective confining stress used is that which would be expected at 12m 

depth in the lagoon, following an oyertip of 3m of coarse discard, with 

the water table at the original lagoon surface. The test results given 

in Table 7.1 show a very large variability in the susceptibility to cyclic 



Table 7.1 Triaxial cyclic loading test results. 

Position Depth m Void ratio Specific Cycles to Sample description 

post consol. gravity 5%c 

Before overtipping 

2 0.7 0.67 1.67 150 

2 2.4 0.40 1.91 33 
2 2.4 0.49 1.91 30 
1 0.2 0.72 1.75 29 
1 0.7 0.65 1.67 113 
1 0.7 0.63 1.67 92 
1 2.2 0.43 1.79 76 
1 2.2 0.38 1.79 19 
1 2.2 0.54 1.79 27 

After overtipping 
2 2.7 0.56 1-.56 70 
2 2.7 0.45 1.56 66 

1 0.8 0.56 1.75 22 

1 2.8 0.49 1.80 63 
1 2.8 0.60 1.80 231 
1 2.8 0.52 1.80 130 

Table 7.2 Vibration measurements. 

Source Wht. explosive. Max. acceleration 
kg RMS 

D6 vehicle - 0.006g 
D8 vehicle - 0.03g 
4-2-1* 1.23 0.033g 
.- ~· 1.84 0.04g o-3-1 
3-6-2 2.81 0.16g 

30* 5-27 0.25g 

10%c 

160 Coaly specimen 
41 Mixed coal and ely 
38 Mixed coal and clay 
48 Laminated coal and clay 

122 Coaly specimen 
107 Coaly specimen 

99 Laminated coal and clay 
26 Laminated coal and clay 
35 Laminated coal and clay 

87 Clayey with coaly bands 
77 Clayey with coaly bands 
57 Laminated coal and clay 
83 Coaly with pure clay band 

260 Coaly with pure clay band 
145 Coaly with pure clay band 

No. of significant Observed rise in pore 
cycles 

16 
11 
2+ 
+ 

pressure m 
0.3 
N.D. 
o.o 
0.0 
o.o 
1.5-1.8 

• no. of sticks of gelegnite + incomplete record N.D. not determined 
~ 
+ 



mobility, but none of the specimens exhibit significant shear strains 

Cd within the prescribed 15 cycles. 

3 The Construction Phase 

The embankment was in fact largely constructed of two layers each 

of which, because of settlement, was nominally of 1.5 m thickness 

decreasing to 1 at the distal end. Settlement, which to a large 

extent was conditioned by passage of the contruction vehicle,resulted in 

an additional lm thick layer being emplaced over the distal 20m of the 

Embankment. The vtal thickness of the discard varied from 3.96m at 2 to 

3.40m at location 1. The measured embankment bulk density was 2.01 Mg/M3 

at a moisture content of 10 per cent. 

a) Ground movements 

Throughout the construction phase the ground movements were 

monitored. No general failure was observed, although minor local shear 

failure was recorded on the wetter side of the embankment (Fig.7.6). 

Similarly, no major movement of the lagoon surface was measured, the 

maximum heave around the embankment periphery being O.l3m (c.f. Orgreave, 

where heave of up to lm was noticed, Fig.7.2). Heave and local shear 

failure occurred only when the D6 vehicle was progressively placing spoil. 

Relevelling of the survey grid, after construction, demonstrated that 

only the pegs close to the embankment had moved at all (Fig.7.5). Movement 

of the lateral extension wires showed that considerable settlement had 

occurred under the embankment. After the first lift, the near, middle 

and far wires respectively showed that 0.63, 1.19 and l.l5m of settlement 

had taken place under the centreline of the embankment. After the 

second lift the settlements were calculated to be 0.94, 1.23 and 1.23 m 

respectively. Most of the settlement thus appears to have occurred on 

the first lift, except at the near end where extra passage of the vehicle 

may have caused extra settlement. Post-construction boreholes through 
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the embankment showed 1.09 m at location 1, confirming the result of the 

wire measurements. However, at 2 the borehole indicated 1.66 m of 

settlement which is far more than exhibited by the wire. 

b) Piezometric measurements 

The results of the rapid acting pneumatic piezometers are typified 

by the record of Pl, which is displayed in Fig. 7. 7 (see Fig·. 7. 5 for 

location). It can be seen that the maximum piezometric head changes 

occurred whilst the piezometer was being overtipped. Only small changes 

were recorded prior to and after this event. Head rises were consistent 

with the excess pore pressures generated by the weight of material being 

overtipped, taking account of the pressure bulb effect at 4 m depth. 

A piezometric head rise of 0. 30 m was recorded in Pl when the D6 was 

stationary with the engine revving close to location 2. This rise, shown 

in Fig.7.7 can reasonably be attributed to the weight of the vehicle and 

induced ground vibrations. When stationary close to location 1 however, 

the D6 appeared to produce a change in head over a wider area, with 

0.10 to 0,15 m being measured at distances of over 10m (see Fig, 7.7 

piezometers 3 and 5). 

vibrations. 

This effect may have been larg~ly due to vehicle 

The stand-pipe piezometers did not react so quickly as the pneumatic 

type, due to the time required for infiltration of the water. The 

final piezometric head changes recorded by these were, however, similar 

to those recorded by the pneumatic type. The drive in piezometers seem 

to offer no advantages over the Casagrande type; reaction times were no 

faster, as shown by Fig.7.8. 

Following the overtipping of a layer, pore pressures fell and full 

equilibrium was attained after 3 days, though only small excess pore 

pressures persisted after twenty-four hours. 
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c) Field shear strength determinations during construction 

During construction of the first 1.5m layer, the operation was 

stopped just before position 2 was reached in order to conduct repeat 

vane tests. The D6 remained on the end of the embankment with its 

engine rev~ing. From Fig.7.9 it can be seen that a general rise in 

strength was recorded at this location. 

Construction was also halted at position 1 and in this case a 

general fall in strength was recorded. Previous lagoon investigations 

and the work of others imply that this is the· expected result where pore 

pressure increases are registered. Also at 1 a repeat penetration test 

shows a small drop in cone resistance, especially at 5m depth (see Fig. 

7.10). The increase in strength at location 2 is somewhat enigmatic, 

but it is believed that it may be due to consolidation involving collapse 

of the sediments' metastable fabric. Over the same range of depths the_ 

~nsitivity does·decrease (3.2 in retest, compared with 4.1 in initial test). 

Moreover, the pore water pressure did not necessarily change at 2. 

Although piezometer Pl showed a rise of 0.3m as mentioned previously, 

no pore pressure change was recorded in P2 whilst the D6 was at 2. 

d) Vibration measurements 

Vehicle vibrations were measured from the output of an array of 

velocity sensitive geophones situated lm from the edge of the embankment 

and buried to a depth of 0.30m. One orthogonal array and 3 vertical 

geophones were used. From the output of the orthogonal array the 

maximum veolocity vector was calculated and this was used to give an 

estimate of accelerations produced. 

From Table 7.2 it can be seen that the maximum acceleration cycle 

recorded for the Caterpillar D6 vehicle had an R.M.S. value of 0.006g. 

After completion of the overtip operation a Caterpillar D8 was driven 



Fig.7.9 Repeated vane shear tests at 

location 1 , Maltby. 
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onto the embankment for a short time. The vibration levels recorded 

for this larger machine were considerably greater, with a maximum single 

cycle R.M.S. value of 0.03g. This is much less however, than the level 

allowed for in the model earthquake (0.08g). 

4. Post-Construction Blasting Trials 

These tests took place 1 month after completion of the embankment. 

Just prior to the trials 2 vibrating wire piezometers with a readout time 

of approximately 10 seconds were installed (Fig.7.5). Four series of 

explosions were used to simulate increasingly intense ground shaking 

events. The first three each consisted of detonating 3 charges 

separated by 5 second delays in order to produce a total ground shaking 

episode of.about 13 seconds. 

The first series comprised 4, 2 and 1 sticks of Special Gelignite 80, 

the second of 6, 3 and 1! and the third of 8, 6 and 2 sticks. Each stick 

contained 0.176kg of explosive. These were all detonated at a distance 

of 20 to 30m from the embankment. A fourth explosion was detonated in 

a bor~hole which had been put down at location 1 (Fig.7.5) and which 

penetrated the floor of the lagoon. 

The observed vibration levels are given in Table 7.2. The number 

of significant cycles was taken as the number having an amplitude 60$ of 

the maximum recorded for each series. Because the records for the third 

series and the fourth blast were incomplete, the number of significant 

cycles are unknown for these cases. It would be expected that for the 

third series, however, this would be 10-15. Importantly, no pore water 

pressure changes were detected in any piezometer as a result of the first 

three series of ground shaking events. The fourth explosion produced an 

increase in piezometric head of l.8m in P5 and 1.5m in the distal 

vibrating wire piezometer founded at 3.6m depth. Piezometers within 
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15m of location B showed some rise in pore pressure (e.g. O.Gm in P3). 

Despite the fact that acceleration levels were at least 0.25g, the pore 

pressure response was essentially local. 

During the blasting trials no surface manifestations of any lique-

faction phenomena were observed and there was no major disruption of the 

embankment. The embankment lifted slightly during the fourth explosion 

and afterwards the distal end was found to have cracked and settled by 

0.5m. 

5. Post-Construction Cyclic Loading Tests 

Prior to the blasting trials 2 boreholes were put down through the 

embankment at A and B to obtain further, relatively undisturbed UlOO 

samples of the underlying lagoon materials. 

Both standard triaxial tests and cyclic loading tests similar to 

those carried out prior to construction were conducted, The estimated 

additional consolidation stress that the post-construction samples had 

experienced were estimated to be 75 kN/m
2

. From Table 7.1 it will be 

observed that there is no discernible difference between samples tested 

before or after construction. The inherent sedimentological variation 

between samples is almost certainly greater than any effect produced by 

consolidation and remoulding due to embankment construction. In the 

case of the standard triaxial tests, it was shown (Chapter 5.5) that 

1he compacting effect of the embankment produced a small cohesion intercept 

in the case of fine-grained laminae at shallow depth. The K values 
0 

proved to be too variable to discern any differences before and after 

construction • 

It was shown in chapters 4 and 6 that lagoon no.l6 at Silverhill 

possesses extensive layers of weak clay. The permeability of all 
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sediments ranges from 10 to 10 m/s. When tbis site was first 

vistied on 10 May 1979 overtipping was already in progress, a covering 

of 1 to 1.5mhaving been placed in the western and northern parts of the 

lagoon (see Fig.7.11). The lagoon had failed over a long perimeter 

beneath the overtip, though the failures comprised only small slips, 

(see Figs.7.12 and 7.13), with some heave at the toe. Considerable 

cracking of the. lagoon surface occurred at the toe, and water was seeping 

continuously from the cracks on to the lagoon surface. 

At the failure marked as "failure 1" (Fig. 7.11) two vane profiles were 

put down at locations A and B. With reference to the more detailed sketch 

in Fig.7.14, profile A was just beyond the zone of disturbance by heave, 

and profile B was sited just at the limit of visible cracking at the 

surface (presumably the factor of safety against failure was approximately 1). 

A further profile was put down at location C; the three profiles are shown 

in Fig.5.26.a-c. The weakness of the deposits, particularly at location 

C should be noted. 

The progress of the overtipping operation and response of the pore-

wate~ pressure was monitored throughout the summer of 1979. The piezometer 

locations and movement of the overtipping front is shown in Fig.7.15. The 

water levels in p~ezometers is shown in Table 7.3. Piezometers 1 to 6 

were installed in a line from the zone of greatest overtipping activity. 

Concern at the excess pore pressures found caused operations to be halted 

until 27 June. Thesesix piezometers were moved before full permeability 

tests could be conducted, in order that the extent of excess pore water 

pressure in the lagoon could be investigated. Permeability tests were 

conducted at all other locations though some were abandoned due to lack 

of response in the time available. 

Table 7.3. indicates that excess pore water pressures existed over wide 
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Fig.7.11 Location of failures in the overt ip embankment at Silverhill 
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Fig.7.13 Failure 2. 

Fig.7.14 Sketch of failure 1. 
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Fig.7.15 Piezometer locations and overtipping progress at Silverhill. 
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Iable 7.3 Piezometer observations in lagoon 16 at Silverhill. 
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areas of the lagoon, furthermore pore pressures were influenced by the. over 

tipping operation. For instance, piezometer 16 had an excess head of 200mm 

on 20 June, which fell to 60mm excess by the 27 June: this piezometer was 

80m from the nearest overtipping. On 28 June overtipping 85m away 

produced a small rise in head, while further reaction occurred at this 

location between 5 July and 9 July when a rise of 133mm was recorded; the 

nearest overtipping was then 80m away. Piezometers at a similar depth 

show decreasing excess head away from the overtip; e.g. H9 and P8 on 7 June 

were 13 and 83m respectively from the overtip, their placement depths 

were 4.58 and 4.62m, P9 showed an excess head of 960mm, while P8 showed 

an excess head of 960mm, while P8 showed 670mm. (With. permeabili ties 

-5 . -6 ot 2.82 ~ 10 and 7.63 x 10 m/s respectively, they appear to be in 

the same or similar layers.) The general trend in all piezometers is 

for decreasing head with distance from the overtip; were these observations 

referenced to a horizontal datum the difference would be exaggerated 

because the ground slopes away (perhaps by 1 in 100) from the overtip. 

The reactions of piezometers 36 and 38 during this period are 

interesting. These two piezometers were placed on 26 June some 5m away 

from the limit of overtipping, in the northwest corner of the lagoon. By 

19 July overtipping had advanced nearly to the two piezometers, P36 (in 

material with k = 7.74xl0-
4 

m/s) had a head of +340mm at this stage, 

having risen before P38. P38 on the other hand (in material with k=2.14xl0;9 
' 

m/s) reacted more slowly but by 9 July had reached +1058mm. By 27 July 

overtipping had progressed some 5m beyond the two piezometers, P36 recorded 

a high of +760mm, while P38 was at +2000mm. This approaches the 2 .. 3m 

equivalent head of the estimated l.Sm of discard, which had a bulk density 

-3 
measured at 1.53 Mg/m when first placed, 

The effect of pressure relief by seepage to the surface was also recorded 
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in P36. Nearby piezometer 34 was removed on 27 July, and on the 28 July 

se~page was noticed from the hole. On the 29th the hole was plugged, and 

the seepage stopped; the water level in P36 rose 60mm in four hours, 

despite the fact that the only overtipping that took place that day was 

in a far corner of the lagoon. 

Overtipping continued throughout the summer and autumn of 1979; 

By October the limit of advance had nearly reached piezometer 16. To 

the south of that piezometer the operation was generally successful. 

To the north the operation had been held up by many minor failures; the 

estimated 1.5m of overtip in fact only projected a few centimetres above 

the lagoon surface. Two hand vane profiles were put down at this time 

at the position marked D and Eon Fig.7.15. At D there was general 

failure and at E failure and considerable settlement. From the vane 

profiles (Fig.7.16) it can be seen that the sediment is weak at D and 

very week indeed at E. Comparing these two profiles with those at A, B 

and C (Fig.5.30), it would seem that a vane shear strength of 3kN/m 2 

2 
marks the reasonable limit of advance, while strengths greater than 5kN/m 

will allow rapid progress without even minor failures (providing that the 

depth of overtip is l. 5m or less). 

7.4 The Bearing Capacity of Lagoon Sediments 

Any lagoon to be overtipped must be capable of carrying the load 

placed upon it by the overtipping operation. The most dangerous period 

for stability is just as the vehicle being used for spreading reaches the 

limit of advance of the embankment. The weights and track dimensions of 

some vehicles are shown in Table 7.4. Assuming that the material used 

3 
for overtipping has a bulk density of 2.0 Mg/m and that there is a 2~1 

spread of the vehicle ground pressure through the embankment, then the· 

pressure exerted in the surface of the lagoon is as shown in f'i.~.7.17. 



~'ig. 7.16 Hand vane shear tests at Silverhill. 
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Table 7.4 Weights of vehicles used for overtippng. 

Shipping weight Track length Width of each Overall width Area of tracks 
0 

2 
+fuel kg m track m m m 

D6 13700 2.37 0.455 2.36 2.17 

D6 (wide tracks)13700 2.37 0.510 2.99 2.41 

D8 28200 2.90 0.560 2.70 2.41 

~ _. 
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Fig.7.17 Bearing pressure on a lagoon surface. 
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These are the loads that the lagoon must accommodate. 

Many options are available for assessing the bearing capaci of 

embankments on soft sediment. Davis and Booker (1973) suggest that a 

Prandtl type bearing capacity analysis is applicable to soils with 

various types of strength vs depth profile. The equation 

q = ( 1t +2 ) cmin 

gives the bearing capacity at the limit of advance (q ) in terms of the 

minimum undrained shear strength in the profile. Rearranging -

c . . = q I < n+ 2) 
m~o 

However, the embankment can be expected to supply some resistance 

to failure, and therefore 

is more applicable. 

tan ¢' where ¢ ' 

and the vehicle. 

c . mln = q -(resistance due to 

spread area unrler 

embankmen_:: /, 

vehicle)/ ( 1t + 2 ) 

The resistance due to the embankment is taken as 

0 
= 30 and cr is due to the self weight of the discard 

The necessary C . at limiting equilibrium (F=l) is 
m~n 

plotted in Fig.7.18, taking q values from Fig.7.17. For a given 

depth of overtip and type of vehicle the necessary minimum undrained 

strength can be found from Fig.7.18. The figure also shows the 

importance of allowing pore pressure dissipation, as the minimum strength 

must increase before more material is emplaced. 

The experience at Maltby and Silverhill suggests that while one 

metre of material exerts the minimum pressure on the ground, drivers 

nevertheless prefer (or the height of the blade dictates) to place 1.5m 

lr• I lr<> r l r · ~ I I I I" I • 

lowttr strenglh:> lhan indiGated L1y J<' ig.7.18 can be safely overtipped 

providing care is exercised, and minor failures are tolerated. 
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Lambe and Whitman (1969) suggest that a moment arm slope stability 

analysis is applicable for total stress analyses of the bearing capacity 

of layered soils. 

F = 

The factor of safety is given by 

(resisting strengths) x radius of circle 
Embankment load x moment arm 

This method is applicable only to circular failures in which the 

centre of the circle is near ground level. Menzies and Simons (1976) 

suggest that both circular and non-circular methods of slic.es may be used 

for this problem, for both total and effective stress analyses. The 

factors of safety are as follows: 

Shape of 
failure arc 

Circular 

\ 

Non-circular 

in which 

s 

w is 

0:. is 

is 
u 

c is 

16' is 

u is 

b is 

Method 

Bishop 
Simplified 

Janbu 

Simplified 

the weight of 

Total 
Stress 

F = (S b/coso:.) u. 
(W sino:. ) 

2 
fo. (S b/COSO:. ) 

(W tano:.) 

slice 

the slope at mid point of base of 

the undrained strength 

the chohesion 

the friction angle 

the pore water pressure 

the width of slice 

Effective 
Stress 

F = c'b +(W-ub)tanP'/M~ 
(W sino:.) 

Mo:.-= cosa (l+tanatanP') 
F 

fo J!I:>+:.{W-u. b) tanP •}(-nq. 

(W tano:.) 

2 
n.a. = cosa (l+tanatan~') 

F 

slice 

These equations have been applied to the overtipping operation 

depicted in Fig. 7.19: The problem involves a l or 1.5m embankment 

being placed by a D6 vehicle on the soil profile shown. The layers 
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Fig.?.19 Hypothetical lagoon used for bearing capacity (slip circle) analysis. 

a. Distribution of layers and shear strength assumed 

Vehicle load for D6 

Depth m 
c'=O, 

0 
Surface Upper bound Lower bound Undrained strength kn/m 
layer rJ'=300 2 rJ'=23° Profile 1 2" 3 

c'=7kN/m • C 1 =0 s 7 7 7 u 

1 Coarse rJ'=38 c'=O rJ' c,3Q c'=O 3 5 5 
Fine ¢'=300 9?' ::23° 
layer c'=O C I ::0 3 3 5 

Coarse As above As above 3 3 5 

2-
Fine As above As above 3 3 :; 

- layer 

• In the overconsolidated state, i.e. not with the embankment load 

b. Pore pressure distribution for a 1m embankment 

0 

Static 
- w.t. 0.75m 

Beneath embankment 
___ good drainage 

Beyond embankment 

1-

2-

3-

drainage 

\ 

0 50 
2 P.ore pressure kN/rn 

\ 

' \ 

0 40 
Pore pressure kN/m2 



306 

of sediment are arbitrarily assigned approximate upper or lower band c' 0' 
.. ;· 

values from the range found in Chapter 5 for the effective stress analysis. 

·The pore water pressure distribution used to calculate the effective 

stresses is based on the behaviour at Maltby and Silverhill; impermeable 

layers exhibit an excess pore water pressure equivalent to the applied 

load (if any); permeable layers drain well, and the pore water pressure 

is everywhere l/3 of the applied load (as observed at Silverhill; see 

previous section). As a worst case, the problem was also considered with 

the excess pore water pressure of the free draining layer as 2/3 of the 

applied load, which might correspond to the situation when an embankment 

is being approached and the water is confined in the free draining layer. 

The total stress analysis assumed the vane profiles outlined in Fig. 

7..19. These correspond to the safer and marginal (F=l) profiles found 

at Silverhill. 

1 ) Bishop analysis 

Trial surfaces 1 and 2 shown in Fig.7.20 were analysed, and the 

factors of safety are shown in Table 7.5, from which it can be seen that:-

a) There is a large difference between the total and effective 

stress analyses, the former giving a lower factor of safety in all cases. 

This is because ~tan~' is greater than S for most slices, especially 
u 

in. the free draining layers. 

b) The total stress analysis for profile 3 with.a lm embankment 

gives F= 1 for both the shallow and the deeper circle. The minimum 

2 2· 
strength in this profile is 5kN/m , which is close to the 4.6kN/m 

obtained from the Prandtl analysis. 

c) The total stress analysis suggests that the d_eeper circle is 

the more critical; the effective stress analysis contradicts this. 

\ 
d) The problem of negative CW- ub) terms (which are set to zero) 



307 . 

Fig.7.20 Trial failure surfaces for Bishop Simplified Method of Slices, 

to estimate embankment stability. 
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Fig.7.21 Sketch of three-dimensional failure involving surfaces 

2 and 2A in Fig.7.20 above. 
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Table 7.5 Overtipping factors of safety (Bishop). (Refer to figs.7.21 and 

7.22) 

Trial Stress 1 metre fill height 1.5 metre fill height 
surface analysis 

1 Total Profile 1 2 3 1 2 3 
F 0.86 0.91 1.10 0.62 0.66 0.79 

Effective 

a. good /; 1 ,C I =7 /;
1 ,c 1 =0 /;

1 
l C I =0 /; 1 l C I =0 /;

1 C 1 -7 /Ji,c 1 =0 
drainage u u l u . l' -

l F 1.93 1.68 1.26 1.34 1.22 1.01 

b. poor I /; 1 ,C I =0 Problems with high pore l drainage F 1.08 pressure terms 

1 Clay Total As for above As for above 

(unlaminated) 

Effective /; 1 l C I =7 l 
/; 1 ,c·1 =0 

l /;
1 

l C I =7 l /;
1 ,c 1 =0 l 

F 1.45 1.19 1.21 0.97 

2 Total Profile 3 Profile 3 

F 0.97 0.74 

Effective 

a. good ¢_1 l C I =7 /;~, c 1 =0 /J{,c 1 =0 ¢.~ ,cl=7 /;~, c 1 =0 u u drainage F 2.31 2.08 1.53 1.94 1.75 I 

b. poor I /; 1 l C I =0 Problems with high pore l drainage F 1.21 pressure terms 

2A Total Profile 3 

F 1.56 

Effective 

a. good /;
1 ,c 1 =7 

drainage u 

I 
F 2.22 

N.B. Not all permutations were considered necessary. 

Note /;_I refers to the upper bound effective angle of friction. u 
y{l 

l 
refers to the lower bound effective angle of friction, 

see Fig.7.21 for definition of upper and lower bounds. 

c 1 in kN/m2• 
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because of high pore water pressures means that many of the values in the 

"poor drainage" boxes are suspect. By extrapolation from other cases, 

however, they seem to be not unreasonable. This is true also of the 

Janbu analysis (see below). 

e) Generally results have been calculated for the lower bound 

effective strength assumptions. An indication of the upper bound assumptions 

is included for completeness. 

The small trial surface 2A was analysed for two conditions only to 

assess the end effect.This surface is the mid-point surface for the ends 

(see Fig.7.21). Lambe and Whitman (1969) suggest that the overall 

factor of safety 

F 

which leads 

F 

F 

is given by:-

= 

to:-

= 

FlAl + F2 A2 

Al + A2 

109 X 63 + l. 56 X 23 
63 + 23 

1.93 X 63 + 2.22 X 23 

63 + 23 

(the areas are in arbitrary units). 

(A
1 

,A 2 are the areas of 

circles 1 and 2) 

= 1.22 (total stress) 

= 2.01 (effective stress) 

These factors of safety are 11% (total stress) and 4% (effective 

stress) greater than the two dimensional values. This slight conservatism 

is desirable, and hence end effects have been ignored for all other cases. 

2. Consideration of the distribution of sediments within the model 

suggests that a non-circular failure arc is more likely. The failure 

surfaces shown in Fig.7.22 have therefore been analysed according to the 

Janbu method, on the same basis as before, and are shown in Table 7.6. 

The same comments regarding total vs effective stress results, negative 

(w- u.b) terms, etc., apply as for the Bishop analysis. However, in 

this case the effective stress analysis also suggests that the deeper 
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Fig.7.22 Trial surfaces for Janbu Simplified Method of Slices, 

to estimate embankment stability. 
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. Table 7.6 Overtipping factors of safety (Janbu). (Refer to Figs. 7.21 

and 7.22) 

Trial Stress 1 metre fill height 1.5 metre fill height 
surface analysis 

1 Total Profile 1 3 

tF 1.56 1.76 

Effective 

a. good ¢' c'-7 ¢' ,c'=O 
drainage 

l' - l 
F 2.97 2.61 

2A Total !Profile 1 3 1 3 
F 1.33' 1.56 0.88 1.03 

Effective 

a.good ¢' ,c'=7 ¢' ,c'=O ¢' ,c'=7 ¢' ,c'=O 
drainage l l l l 

~, F 2.44 2.12 1.77 1.54 

b. poor I ¢' ,c'=7 ¢]_,c'=0 Results invalid due to l drainage F 2.29 1.96 high pore pressures 

2B Total ~Profile 1 3 1 3 

w 1.47 1.70 0.93 1.10 

Effective 

a. good ¢]_,c'=7 ¢' ,c'=O ¢' ,c'=7 ¢\,c'=O 
drainage l l 

F 2.58 2.24 1.90 1.65 I 

b. poor J ¢' c'-7 ¢]_,c'=0 Results invalid due to l' -
drainage F 2.15 1.78 high pore pressures 

2C Total !Profile 1 3 1 3 

F 1.41 1.64 0.79 0.92 

Effective. 

. a.good ¢:l_,c'=7 ¢]_,c'=0 ¢' c'-7 ~· c'=O 
drainage 

l' - l' 
.T F 2.15 1.96 . 1.4~ 1.31 

b. poor I ¢' c'-7 ¢}_,c'=0 Results invalid due to l, -
drainage F 1.99 1.80 high pore pressures 

3 Total Profile 1 3 1 3 
F 0.95 1.22 0.60 0.78 

Effective 

a. good ¢' ,c'=7 ¢' c'-0 ¢' ,c '=7 ¢' ,c '=0 
drainage l l, - l l 

-, F 1.52 1.29 1.03 0.85 

b. poor j ¢' ,o'=7 ¢' c'-0 Results invalid due to l l' -
drainage 

F 1.12 0.84 high pore pressures 

3 Clay Total· !As for above (3) As· for above (3) 

(unlaminated) 

Effective ¢' c'-7 l' - ¢]_,c'=0 ¢' c'-7 l' - ¢]_,c'=0 

F 1.39 1.16 0.98 0.81 

(See notes for Table 7.5) 
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failure surface is the more critical (in contrast to the previous calculations). 

In both the Bishop and Janbu analyses the most critical surface was 

re-analysed assuming the lagoon to be a homogenous clay with a lower 

bound~' value (23°), and with or without a desiccated crust (i.e.c'=O or 

2 
7kN/m ). 

With reference to the most critical surfaces from both the Bishop 

(surface 1, Table 7.5) and Ja~bu methods (surface 3, Table 7.6), the 

following conclusions can be drawn concerning the bearing capacity of 

lagoon sediments:-

1. The use of a total stress analysis with strengths obtained from the 

field vane is very conservative. The method of slices and bearing 

capacity approaches suggest that a minimum strength of 4.6kN/m
2 

is 

required for the lagoon sediments. It is known from field evidence that 

the limit of overtipping advance will occur when the minimum strength 

is nearer to 3kN/m2 • 

2. Based on the results of an effective stress analysis using the 

method of slices, overtipping with lm of coarse discard should be 

relatively straightforward in all parts of the lagoon that have a firm 

crust. 

3. The tendency for vehicle drivers to put down 1.5m of discard means 

that in addition to a firm crust good drainage is required (see surface 3, 

Table 7.6; F = 1.03 where a crust exists and there is good drainage 

beneath 1.5m of fill). 

4. Where the water table is at less than 0.75 m depth, the operation 

will become very difficult for 1.5m lifts, although lm lifts should be 

possible to nearer to the supernatant water. 

5. When the far side of the lagoon is reached (from the start of 

operations), the confinement of the water in coarse layers will lead to 
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problems with excess pore pressures. 

It is therefore suggested that overtipping only be attempted using 

D6 vehicles putting down 1 to 1.5 lifts. A firm crust is required for 

adequate safety of tht operation aud time wu.st be allowed <turing the 

op9I.9.ti_r_,n .ir• orflfH' t.o ~..l.tow t.hA <lU;stpat.i.on of ex,;es.o:; pors water pressures. 

In terms of vane shear strengths, a factor of safety of 1.5 leads to a 

2 
figure of 4.5kN/m as the minimum strength for any layer that can be 

overtipped. It is emphasised that these recommendations are for 

careful, controlled overtipping. 

So far no consideration has been given to settlement. This will 

consist of two parts; consolidation settlment, and settlment due to 

soft material being displaced ahead of the overtipping operation. 

Consolidation can be determined from the data in Chapter 6. The compression 

index is usually about 0.20 (see chapter 6.11); the load caused by l.5m 

of discard (density, 2.0 Mg/m
3

) is 30kN/m
2 

(the vehicle weight is removed 

quickly in terms of consolidation). The total consolidation settlement 

caused by this load will thus be about 0.27m for a 5m deep lagoon, 0.43m 

for a 10m deep lagoon and 0.63m for a 20m deep lagoon. In the firmer 

parts of the lagoon, settlement will be of this order. However, in weaker 

parts the settlement will be much greater due to forward displacement of 

the lagoon sediments, as observed at Silverhill and Orgreave (see Fig.7.2). 

This effect will tend to decrease the stability of an overtipping 

operation, and reaffirms the general conclusion that overtipping will 

only be successful where the lagoon has a firm crust. 

7.5 The Stability of an Excavated Face in a Lagoon 

In general, there is no danger to life or property on excavation 

by draglino. llowov~r-, 1 .1' a. VfJII i c; lo i.~ to work thu l'uc.:H I' rum lh~ f' lour 

of the lagoon, there could be considerable danger, nul lo mtH•tioll eostly 
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delay, if conditions are adverse. In particular, it is important to 

know the horizontal strength of weak laminae as this will control failure 

modes. The diamond vane with H=0.25D is suitable for this purpose. 

In the short-term an excavated face will behave ~n an undrained 

fashion, and the depth to which a free standing vertical cut can be made 

will be defined by:-

z 2c . 
= m1n 

y 

0.13 c 
min 

where z is the depth of the free vertical face 
c 

min is the minimum strength (vane) 
. 3 

Y is the bulk density (15kN/m is a reasonable figure, 

see chapter 5) • 

However, below the vertical face will be a zone in which the face 

grades from horizontal to vertical (see Fig.7.23). 

is (Schofield and Wroth, 1968, p.282):-

1t c 
z• = min 

y 

Thus the total limiting depth of cut is:-

z = 
(n+2)c. 

m1n 

y 

c . 
m1n 

3 

The limit~ng depth 

These relationships have been found to roughly predict the depth 

of cut in two cases. Cobb (1977) reports vane tests in Cadeby lagoon 9, 
3 . 

which show a strength of 20kN/m at a depth of 5m. The lagoon sediment 

would thus be expected to stand up approximately 7m in total for a short 

period, which was found to be the case. At Peckfield lagoon 7, the weak 

. 2 
layer near the surface exhibited strengths as low as 3kN/m (as measured 

by the vane, see chapter 5.4). Thus, it would not be expected that a 

cut of any depth cquld be made in this material. In fact, this layer 

did continually slump towards the floor of the lagoon maintaining a 

VOJ'.Y Hhtl.l I <.IW 1~adior•l. u.rid 1.:1LUHinv, t~om•.J prold.ornn ft.H' l.ho fnr.:o Rhovot. 
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Even below this layer, the sediments were too weak to support a free-face 

until the inlet was nearly reached, as would be predicted from the vane 

profiles (Figs.5.6 and 5.7). 

7.6 Conclusions 

An embankment was built at Maltby in a region of the lagoon where the 

2 
vane shear strengths were generally not less than 7 kN/m . The 

embankment was found to be stable in a static sense although minor shear 

failures occurred around the periphery. No general settlement of the 

lagoon surface occurred, but considerable compaction and consolidation 

took place immediately below the embankment. The induced pore pressures 

conformed with the embankment loading. Although full dissipation took 

3 days, pore pressure equilibrium was practically re-established in 24 

hours. 

Machine vibrations, although sustained, produced little change in 

pore pressures and no adverse change in strength. Significantly, 

vibrations were well below the levels considered applicable to a British 

200-year return period earthquake. Furthermore, stability during such 

an earthquake does not appear to pose a problem; induced shocks well 

in excess of the o.os~~accelerations representing such an earthquake 

produced no liquefaction in the lagoon. The largest explosion produced 

rises in pore pressure of 1.5 to 1.8 m, but these only occurred within 

a distance of 15m and no liquefaction effects were .observed. 

-Laboratory cyclic loading tests showed that no discernible change in 

the cyclic mobility potential of the sediments was produced by the 

overtipping operation. The tests showed the sediments to be generally 

resistant to liquefaction, which confirms the field observations. 
~ 

0 
At Silverhill it was observed that overtipping was possible where the 

2 
minimum vane shear strength in the sediments was as low as 3kN/m , although 
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care was necessary to maintain progress. Where the minimum strength 

was as high as 5kN/m
2 

overtipping was relatively easy. The overtipping 

operation produced pore pressure increases in the sediments. The effects 

of these increases were trai15mitted along free-draining layers and could 

be observed at distances of 80m from the area of overtipping. Due to 

this drainage, permeable horizons never attained the increase expected 

from the load imposed by the em b ankmen t. In contrast, impermeable 

horizons only displayed pore pressure increases when overtipped, and the 

amount of the increase conformed to the embankment loading. 

An analysis of overtipping using a bearing capacity and a method of 

slices approach suggests that vane shear strengths produce very conservative 

estimates of the bearing capacity of lagoon sediments. In contrast, an 

effective stress method of slices approach suggests that the overtipping 

of lagoon sediments is possible where there is a firm crust of limited 

depth providing that the depth of overtip is not more than l.5m. Also, 

where there are free-draining horizons, the excess pore pressures transmitted 

ahead of the embankment should not be excessive, as will probably be the 

case when the layer is confined ag~inst a nearby lagoon embankment. In 
I 

this situation, overtipping is unlikely to progress in a controlled 

fashion; embankments with drainage facilities would render the operation 

more successful, but may be uneconomic on other grounds. 

Finally, lagoons that are to be excavated using a face shovel will 

require an investigation of the sediment shear strength using in-situ 

vane tests. The maximum depth of cut is approximately c . /3, which seems 
ml.n 

to confirm the very limited amount of field evidence available. 

Overtippitlg and excavation operations will continue to be used for some 

time. The experience gained to date, especially for overtipping operations, 

provides a reasonable basis for predicting how and where successful! progress 
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may be expected. However, it is probable that continued experience and 

records will allow refinement of the predictions outlined in this chapter, 

and it is recommended that such records be kept and analysed. 
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CHAPTER 8 CONCLUSIONS 

The behaviour of lagoons is explained by their mineralogical 

composition and sedimentological structure. Therefore a considerable 

portion of this work has concentrated on these aspects of lagoons. It 

is difficult to elucidate the mineralogy of coal-rich sediments by XRD 

techniques, and therefore the major element chemistry has also been 

studied using XRF equipment. The more quantitative nature of the 

latter method allows sedimentological trends to be measured. Using 

this method it has been found that thermal oxidation of coal-rich 

sediments at 350°C overestimates the organic carbon content, and unless 

it is determined by wet chemistry the indirect XRF determination yields 

a better estimate. Pyrite is also oxidised at the temperature necessary 

to remove coal, and the sulphur driven. off. Therefore, the XRF 

determinations were ~erformed using un-oxidised specimens. It should 

be mentioned that for coarse discards wet chemical analyses of organic 

carbon have shown good agreement with oxidation. Coal contents are 

generally lower, however. 

Coal has a much lower specific gravity than the other minerals in 

lagoon sediments, and therefore the overall specific gravity of .any 

sample is directly related to the coal content. This has been noted 

before by Taylor and Cobb, U977. However, this previous interpretation 

is apparently in error, because it implies a linear relationship between 

the specific gravity and the coal content. While the error is not 

significant in a statistical sense, the current writer shows that the 

true relationship is a curve, and develops a theoretical and a statistical 

expression for the curve in chapter 4. 

Based on studies of the chemistry and mineralogy of lagoons, a model 

is proposed which accounts for the structure and can therefore be used 

1 
;. 

J 

"l 
r 



319 

to explain and predict the behaviour of lagoons. The model postulates 

that the flow into lagoons can be divided into two different regimes. 

The first regime, presumably the normal condition at the washery, 

is a period of steadyflow with a suspended load of fine~rained particles. 

The sediment mainly consists of silt and clay-sized particles with a 

fairly low coal content. (The actual coal content will vary from washery 

to washery.) On discharge at the inlet of the lagoon the water flows as 

a stream to the supernatant water area. Little of the sediment is lost 

1
from this stream which is energetic enough to retain all the fine grained 

particles. When the stream reaches the supernatant water it loses energy 

and progressively deposits particles of similar Stokesian settling 

,velocities. Thus at first only the coarse silt quartz and clay particles 

will be deposited, followed by finer silt quartz and clays, together with 

coarse silt-sized coal particles. Progressive fining away from the 

inlet yields sediments which are always coal-rich in their coarser fractions. 

It is observed that the sediment as a whole becomes more coal-rich into 

the lagoon, due to the early depletion of non-coal particles. 

The second regime is presumed to result from an abnormal condition 

at the washery, such as starting up following the weekend break, overloading 

or breakdown of the plant. This results in a flush of water and coarse 

particles which are predominantly coal. Although this condition is 

transient, the actual volume of sediment released into the lagoon is of 

the same order as the long, steady, normal periods between. This 

sediment undergoes the same type of changes as did the finer sediment. 

That is, the sediment fin~ away from the inlet and is more coal-rich 

in the coarser fractions, and becoming more coal-rich overall. 

The two regimes alternate on a short-torm llasis, perhaps daU.y or 

weekly (not necessarily in a regular fashion). The resultant lagoon is 
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therefore highly laminated, with an alternation of coarse and fine 

laminae. The proportion of coarse laminae decreases away from the 

inlet because the particles are deposited very rapidly from the water, 

whereas the finer-grained particles of the normal washery regime are 

dispersed more evenly throughout the lagoon. Therefore, while individual 

layers are becoming more coal-rich away from the inlet, the lagoon as a 

whole is becoming less coal-rich. This is really a delta formation with 

low-angle forese't beds. With this model the observed characteristics 

of lagoons with respect to many properties are readily explained. The 

model is obviously a gross over-simplification, in particular the 

sediment input will not be either one type or the other, but will vary 

between them. Furthermore the exact distribution curves of particle 

size and composition are not known exactly· and will vary from washery to 

washery. 

Coal is a material of low specific gravity, thus, the coarse coaly 
-~ ... 

layers are less dense than the finer layers. Pyrite is associated with 

the coal, at least in those areas studied in this thesis, and there is 

therefore more pyrite in the coarse sediments. Coal is a highly frictional 

material (Taylor, 1974) and therefore the coarse laminae have higher 

effective friction angles than the finer laminae, The friction angle of 

lagoon sediments is also higher than that of many coarse colliery discards 

because of the higher coal content of the former. The average coal 

contents for lagoons is 46.5 per cent (range 9-81) compared to 13.5 per 

cent for coarse discards (range 0-40, see Taylor, 1979). In this context 

it is interesting to note the following statistics extracted from various 

site investigation and research reports to the NCB for a computer database 

system being established at Durham University, (D.J.Kirby, written 

communication). A plot of 142 p' ,q points (effective stresses) gave a 
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cohesion of zero, and a friction angle of 35.3 degrees; the correlation 

coefficient was 0.988, which is significant at the 99.9 per cent level. 

A similar plot for coarse discard based on 422 points gave an effective 

2 
cohesion of 2lkN/M , a friction angle of. 31.4 degrees; the correlation 

coefficient and significance level were 0,976 and 99.9 per cent 

respectively. The cohesion intercept of the coarse discard is due to 

the curved nature of the envelope (Taylor and Cobb, 1977). The difference 

in friction angle is highly significant, .however, and can be attributed 

to the difference in coal content. The same data set reveals that. fine 

discard has an average ash content of 51 per cent (86 points), while for 

coarse discard it is 72 per cent (90 points). It should be noted that 

ash contents are not available for all the samples of the p',q points. 

In lagoons it is observed that the in-situ shear strength decreases 

away from the inlet, due to the decrease in the proportion of coarse, 

frictional laminae. A decrease in the number of desiccated surfaces 

might also be expected, and would have the same effect. The vane shear 

test has proved useful in the measurement of the in-situ shear strength. 

It is shown in chapter 2 that paired vane tests can be used to measure 

the shear strength on horizontal and vertical surfaces within :.the lagoon. 

It is further shown from field evidence and a theoretical study that a 
. - .----

vane of H=2D shape and a vane of diamond shape with H=D/4 are suited to 

this purpose in laminated sediments. From field trials with this 

combination and also a laboratory study it is found ~hat lagoon sediments 

are stronger on a vertical plane than on a horizontal plane,and it is 

therefore expected that failures in overtip embankments or excavated faces 

would be controlled by horizontal planes of weakness. It is further s~own, 

following Blight (1967) that the vane shear test can be used to determine the 

drained strength in more permeable horizons. Consequently it is expected 

that the drained strength is measured for the coarser laminae within lagoons; 
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this is justified because. this would be the failure mode in the field. 

The coefficient of consolidation is high for the coarser laminae, 

2000 m
2
/yr or more being measured for some very coarse bands. Values 

2 
of as low as 2m /yr are measured for the finest laminae. It is expected 

that the horizontal laminations in most lagoons will cause consolidation 

by predominantly horizontal drainage. However, lagoons that are very 

wide compared to their depth will consolidate partially by vertical 

drainage. It is shown that excess pore pressures generated by sedimentation 

(Gibson, 1958; Mittal and Morgenstern, 1976) will not b~ significant in 

most British colliery tailings lagoons. In terms of compressibility it 

is found that only fine-grained, coal-free laminations are compressible. 

Coarser laminae (including the coal-free beach area) or coal-rich laminae 

(in this respect, more than about 30 per cent coal) have compression 

indices of 0.20-0.25; for the finest grained,coal-free laminae the index 

may be as high as 0.50. It is suggested that this fact is due to the 

natural habit and a low compressibility of the coal particles themselves. 

Being of equant habit, particle reorientation due to an imposed load may 

be negligible, and bending and cracking of these relatively brittle 

particles may require heavy loads. It is speculated that this accounts 

for the high curvature of the voids ratio versus log (pressure) graphs 

of these sediments. This is one area that may repay further study. 

Estimates of permeability have been obtained both from laboratory 

(consolidation) tests and in-situ permeability tests. Following the 

recommendations of various authorities, greater reliance is placed on 

the in-situ measurement despite the known errors that can arise from 

the estimation of this property in layered media. The in-situ tests 

give higher values of permeability and a greater range of values than the 
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-4 -9 -7 -10 
consolidation tests (10 to 10 m/s compared to 10 to 10 m/s for 

the consolidation tests). A lightweight, plastic piezometer,not 

dissimilar to the Cambridge push-in has proved most useful for work in 

colliery lagoons. It has both a weight and a cost advantage (being 

"home-produced") over the Cambridge piezometer. 
•) 

In layered media the 

horizontal permeability is expected to be several orders of magnitude 

higher than the vertical permeability. For many lagoons this means that 

the embankments are considerably more important in draining the lagoon 

than is the floor. However, for wide, shallow lagoons, or lagoons 

with homogenous deposits, or lagoons with extensive interlinking of the 

coarser laminations by vertical drainage paths the floor of the lagoon 

will assume greater importance. Currently there is a lack of data 

concerning the permeabilities of the materials that form the walls and 

floor of lagoons, and the way in which the entrainment of fines will 

affect these permeabilities. 

The problem of the behaviour of any particular lagoon in respect of 

the properties outlined above is thus resolved by estimating the distribution 

of the laminations within it, and the permeability of the walls and floor 

of the lagoon. In general it would not be necessary to test more than a 

few samples in the laboratory; coal content and particle size analysis 

would serve as useful indicators of most other parameters. In the field 

it would be necessary to estimate the degree of layering of the lagoon in 

various places and the proportions of the various types of layer present. 

This might be accomplished by observations in trial pits, which enables 

information to be gathered very quickly. In particular, it is easy to 

trace the lateral extent of individual laminations. However, no information 

is gained concerning the structure at depth. 

For deep sounding, a lightweight cone penetrometer has been developed 
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which has great potential (Peace, 1980). It provides a continuous record 

of all laminations penetrated, based on an electrical load cell system 

at the tip. Attempts to interpret penetration records by conventional 

foundation failure type theories proved to be unsuccessful. However, 

Vesic's (1972) theory of expanding cavities, together with both direct 

and indirect observational evidence suggests that it is possible to 

interpret a penetration profile in terms of coarse. and fine laminae. It 

is not possible to derive directly soil mechanics parameters, but the 

knowledge of the structure allows prediction of the behaviour of the lagoon. 

Inclusion of a pore pressure transducer at the tip will allow the penetration 

records to be interpreted with greater confidence, and will allow the 

identification of overconsolidated laminations, which is not possible at 

present. 

The information gathered to date concerning the detailed structure 

of lagoons is somewhat incomplete and equivocal. On the one hand it is 

known that many lagoons are highly laminated. However, some lagoons are 

more homogenous in appearance; lagoon 12 at Gedling colliery is one 

example, but there is some suggestion (chapter 6.3) that even this lagoon 

is laminated to an extent. This generally homogenous character may be 

due to the size and tailings output of this large ~ine. 

Concerning laminated lagoons themselves, there is evidence both to 

show that individual laminae may be continuous, and again that they may 

not be. The brown clay layer at Silverhill. is a particularly good 

example of a very continuous layer, while being fairly thin and on occasion 

interleaved with other laminae. The perched water table in the upper 

zone of lagoon 7 at Peckfield implies that at least one fine-grained 

lamina is fairly continuous. The existence of supernatant water over 

parts of most lagoons implies extensive, low permeability horizons. 
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Against this, layers that are not continuous have been noted at East 

Hetton in trial pits in lagoon 109A (Figs.4.18 and 4.19), and by deep 

sounding by cone penetration (Fig.3.9). Cobb (1977) also describes 

large and small scale deformations which have dislocated laminations. 

The inter-leaved sediments in the clay band at Silverhill are clearly 

not continuous; a clay band was noted to wedge out in the excavated 

face of lagoon 7 at Peckfield (Fig.4.20). The beach area of most 

lagoons is a braided stream deposit, and it is expected that laminae 

would be discontinuous due to continual shifting of the stream; erosion 

and deposition would occur contemporaneously along the stream. In the 

supernatant water region of the lagoon, it would normally be expected 

that the more even depositional environment would allow the slow formation 

of fine-grained laminations. Coarser laminae in this region reflect a 

sudden flush of energetic water. 

A preliminary study has been made of the chemistry of the pore water 

of lagoon sediments. In view of the high pyrite contents of many lagoons, 

it was expected that acid waters would be encountered, but this is not so. 

The waters were always neutral or slightly basic. The major cation is 

sodium, of the anions chloride and sulphate are significant. While 

the le~els of these chemical species were too high in the lagoons studied 

for direct use, dilution alone would be sufficient to improve the quality 

of the water .. Provided that discharge were after dilution, pollution by 

lagoon waters should not cause a hazard. However, it is emphasised that 

this is only a preliminary study which did not involve many chemical 

species. This is a topic for further work, which would attempt to 

relat~ the groundwater chemistry to the resultant lagoon and tip water 

chemistry. 

The problem of overtipping colliery lagoons has been investigated, 
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mainly in the field but also with a theoretical •tability study. In 

the field, observations have shown that it is possible to overtip to an 

in-situ shear strength limit of 3kN/m
2

, as measured by the field vane 

test. This is the lowest strength of any lamination to a depth of 5m 

that can be overtipped. To include a margin for safety however, a lower 

2 
limit of 4.5kN/m would be advisable. A theoretical study using a 

method of slices approach to embankment stability has shown that a total 

stress analysis does not yield sensible answers when compared to known 

field performance. This approach would suggest that an undrained shear 

2 
strength of about 5kN/m is the limiting condition. In contrast the 

effective stress approach suggests that overtipping with lm of coarse 

discard is possible where a firm crust exists and the water table is 0.75m 

or more below the surface. Overtipping with l.5m of discard further 

requires that the coarser layers are able to drain the area of overtipping. 

The need for a firm crust agrees with field observations. Obviously 

it is also necessary for pore pressures to dissipate between lifts. 

This study suggests that it would be extremely difficult, if not 

impossible, to overtip across a lagoon with supernatant water. Certainly, 

an adequate factor of safety could not be maintained. It would, of course, 

be possible to constrain tipping to one area of the lagoon, and displace 

the sediments in front of the overtipped coarse discard. There are 

two objections to this. Firstly, although coarse discard is disposed 

of, the displaced fine discard becomes a more pressing problem, being 

soft and "mobile". Secondly, the fine discard is remoulded and therefore 

weaker (the sensi ti vi ty as measured in-situ is usually 2 or more). In 

order to cover ~ lagoon with a layer of coarse discard it is therefore 

necessary to remove the supernatant water and allow the surface of the 

·lagoon to desiccate in fine weather. Bearing in mindthe vagaries of 
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the British weather, the best timing ~or the operation would be to draw­

off the supernatant water in the early spring in anticipation of 

overtipping in the summer and autumn. 

several seasons. 

The operation might require 

The final stages o'f overtipping present further problems. 

Consolidation beneath the overtip embankment will displace water, mainly 

into the looser sediments yet to be overtipped. In the end, the water 

will have nowhere to escape and the pore water pressure will rise. 

There are three ways in which this problem could be countered. Firstly, 

lagoons could be designed and managed such that short drainage paths 

exist to free-draining embankments. In most lagoons the short drainage 

paths exist in the form of the coarse laminations. Secondly, the practice 

of drawing-off water and allowing desiccation will create an unsaturated 

zone at the surface into which the displaced water could flow. Thirdly, 

since an unsaturated zone usually exists at the beach end of lagoons, 

it would be ~dvantageous to progress towards this area; the natural 

tendency is to start in this area because it is safer and often nearer 

to colliery haul roads. This practice would have the effect of delaying 

the start of overtippin~ until the wetter end of a lagoon had dried out; 

Liquefaction of these sediments is a potential danger that has been 

studied by Kennedy (1977) and Taylor et al.(l978). This danger is a 

serious concern during overtipping operations due to plant vibrations, or 

subsequently should an earth tremor mobilise an overtipped lagoon to 

cause collapse of a composite tip structure. This study suggests that 

Further-plant vibrations are not of a sufficient level to be a concern. 

more, large-scale tremors produced by explosives failed to cause 

liquefaction, despite vibration levels that would greatly exceed all 

experience of earthquakes in the U.K. Therefore, liquefaction dotls not 



seem to be a problem from the field evidence. Nevertheless, laboratory 

tests (Taylor et al.,l978) suggest that mobility could occur in some 

lagoon sediments, and caution should be observed. The minimum freeboard 

of lm around the lagoon would mitigate against disaster during the 

operation itself. The final tip profile would be stable so long as 

the lagoon was drained within the composite tip. 

Overtipping is a practicalproblem, and solutions will come through 

the continued refinement of techniques. It is therefore important 

that records of overtipping operations be kept, ideally in the form of 

a short report indicating the state and strength of the lagoon, piezometer 

observations, and the timing and level of success of the operation. It 

is interesting to note that fGllowing the Maltby exercise and the early 

part of the Silverhill overtipping operation, the writer was of the 

2 
opinion that a vane shear strength of 5kN/m was the limiting value. 

Later experience at Silverhill allowed this to be refined to 3kN/m
2

• 

It is apparent from the preceding discussion that a critical feature 

of lagoons is their ability to drain rapidly. The free-draining lagoon 

will be (relatively) strong, easy to overtip, and stable in terms of the 

final tip profile. Producing a free draining lagoon involves two 

processes. The first is the actual lagoon itself; can the free-draining 

laminae be encouraged, or distributed better throughout the lagoon by 

changing washery and pumping practices? The second process involves the 

design and construction of free-draining floors and embankments. While 

designs involving materials with the correct filter properties could 

almost certainly be produced, it is questionable whether it would be 

economic to do so. However, can the usual embankment material (coarse 

discard) be used .more efficiently in this respect? For instance, would 

an uncompacted zone lining the embankment on the upstream side produce a 



329 

cheap permeable filter? (This would require some sort of drain through 

the embankment as well.) This again raises the problem of the lack of 

data on this aspect of lagoons and design studies would necessarily start 

with the collection of more permeability data from embankments. 

Finally, it should be noted tha,t a great deal of data exists on 

various aspects of coarse and fine discard. This is contained in research 

and site investigation reports held by various branches of the National 

Coal Board, and research reports and theses from Durham University and 

elsewhere (including Cambridge, Leeds, Strathclyde and Surreyuniversities). 

Each report or thesis is concerned with a particular lagoon (or tip) or 

topic. The information has never been gathered together and viewed as 

a whole. This is now being undertaken at Durham University, where the 

information is being stored in a central data bank on the Northumbrian 

Universities Multiple Access IBM 360/70 Computer. The system is 

amenable to data retrieval for statistical analysis. The successful 

completion of this data bank, and analysis of the information for design 

studies or specification of testing in future site investigations, is, 

in the opinion of the writer, the single most useful and cost effective 

topic which merits further attention. 
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APPENDIX 2.1 THE STRESS DISTRIBUTION AT THE ENDS OF A VANE 

In order to assess the stress distribution at the ends of the vane the 

following procedure was adopted: 

a) A shear force vs displacement graph is assumed. 

b) For any angular rotation, the displacement of any point along 

the top or side edge is calculated. This is then translated into a shear 

force by reading the value from the shear force vs displacement graph. 

c) For the point, the contribution to the torque mobilised by the 

vane is· calculated by the shear force multiplied by the moment arm. 

d) The total torque is calculated as the integral of all such points. 

e) For all rotations, a maximum torque is found. It is the 

stress distribution that procudes this peak torque that is of interest. 

The scheme is represented in Fig. A.2.l. 

The shear force vs displacement graph can be assumed from shear box 

tests. Unfortunately the limited displacement precludes the full development 

of residual strength in most cases, though sample Fll in Fig.3.12 (Chaper 3) 

shows some fall to residual. For calculation purposes this curve has been 

described approximately by a straight line protion followed by a sine wave, 

as shown in Fig. A.2.2. 

at peak torque. 

Also shown are the resultant stress distributions 

It can be seen that the stress distribution along the top and bottom 

edges is curved, and that the form of the curve is the same as the assumed 

failure curve (this can also be seen by inspection of Fig. A.2.l). It can 

also be seen that the po~ition of peak stress shifts towards the axis of 

rotation (i.e. the vane shaft) in the decreasing height of the vane (i.e. 

less shear on a vertical surface). Since a real shear force versus 

displacement graph is curved rather than straight over the initial portion 

(compare Fig. A.2.2. with sample Fll, Fig.3.12) then the actual stress 

distribution will be curved upwards slightly more than those shown in 

Fig.A.2.2. A representative curve is sketched in Fig. A.2.3. It is 
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Fig. A.2.1 Shear stress distribution around a rectangular vane. 
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from failure curve of sample F11, Fig. 3.12. 
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further apparent that the exact state of in-situ stress has very little 

effect on the form of the failure stress distribution. Critical examination 

of Fig.A.2.2. shows that the stress curves shift slightly towards the axis 

of rotation with decreasing value of K , though the difference is negligible. 
0 

Now for a rectangular vane, the equation of torque generated along 

the top and botto~ edges of the vanes is equivalent to the shear stress 

multiplied by the movement of the solidus of revolution of the stress 

distribution.ror a uniform stress distribution this is:-

T = D
3 

rt c. 
6 

T = torque along top and bottom edge 

D diameter of vane 

c shear stress (strength) 

For a triangular stress distribution:-

T = D
3 

~ c. 
8 

For the curved stress distribution the equation will depend on 

the exact form of the shear force displacement graph. It will also 
( 

vary slightly from vane to vane, as shown in Fig. A.2.2. However, the 

exact form of the stress at failure is not known because many of the 

field vane measurements presented herein refer to tests in layered media. 

More than one layer will frequently be sheared, with the consequent 

superposition of two different shear stress versus displacement curves. 

Consequently the following equation has been adopted for all measurements: 

T = n. c. D3 

7 

which is the value suggested by Donald ~.(1977). Donald et al. (op cit) 

also suggest that a curved stress distribution is to be expected in strain 

softening (e.g. normally consolidated) soils. They further suggest that 

the stress distribution along the vertical edges of a rectangular vane is not 

quite uniform, but the effect is neglected as being small. 
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APPENDIX 2.2 EQUATIONS OF TORQUE FOR VANES 

(See Fig.2.3 for definition of combination of pairs of vanes.) 

l. Uniform Stress Distribution 

For a rectangular vane T = 
·3 

+ n .D sh ••••.•.. 
6 

2 

For a diamond vane T 
3 

= .'Jt...D • s. sec a. 
6 

Where T is the torque 

a. is the inclination of the vane edge to the horizontal 

D is the diameter of the vane 

H is the height 

sh is the shear strength in a horizontal plane 

S is the shear strength on a vertical plane 
v 

s is the average shear strength 

l 

2 

Several authors (Menzies and Mailey, 1976; Casagrande and Carillo, 1944) 

have suggested that: 

s S + (S - S) cos2 (90-t:Q 
h v h 

3 

hence sec a. [sh + (S v - Sh) cos
2 

(90 -ex>} 4 

Thus for vane pair combination l :-

. 3 l 

X 
TC _D (S +6 Sh) = v 

3 
+ Sh) TC .• D (S 

6 v 
5 

T 
2D 

TD/3 

= 6 s + sh v 
6 

s + sh v 

putting R = s ~.e. s = R.Sb and solving for R:-
v v 

s 
h 

R = x- l 7 

6 - X 



The substitution S = R Sh is now made into equation l, and hence 
v 

S and S found. 
v h 

/ 

For pair combination 2:-
T 

X = D·i and as above 

For 

For 

T ·-
D/3 

2 
R = cos a .sec a - X 

x - sin2a .sec a 

pair combination 3:-

T -x = D/3 
' 

and 

TD/2 

R = 27 -x 
12( -27 

pair combination 4:-

X = T2D ' 
and 

TDi 

2 
R = sec a. cos a.X -

6 - seca. sin2U .X 
l 

For the triangular stress distribution, the equation of torque for 

a rectangular vane is:-

T s 
v 

and for a diamond vane:-

T 
3 

= . n D • sedl 
8 

Equations 8-10 become:-

R = 

R = 

3 

4 

sec a. 

X - l 
6 -X 

2 
cos a -

+ 

X 
4 2 
3 x- seen. sin a 

3 
TI. D S 
-- b 

8 

8 

9 

lO 

ll 

12 

13 

14 



R = 27 - 8.X ...... 
16X -32 

R 
2 

= sec ex.. cos ex. -X 

8 - . 2 X seca..sl.n ex.· ...... 

3. For a parabolic stress distribution, the equation of torque for a 

rectangular vane is (see Appendix A.2.1):-

T 
2 

= n;_D H • S 
2 v 

and for a diamond vane: 

T = 11;_03 rseccx. S --t h 
7 

Equations 8-10 become:-

R = X - 1 

7 
7 

X 
6 

. 2 
R = seccx. .coscx. - X 

7 
. 2 X seccx..sl.n ex. 

6 

R = 54 - 16X 
28.x - 63 

R 
2 

= seccx..coscx. .X - 1 
7 . 2 - seccx..s1.n CX.·X 
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15 

16 

17 

18. 

19 

20 

21 

22 

The results reported in this thesis, unless otherwise stated, are in 

terms of the parabolic stress assumption. The equations for all three are 

quoted to give the reader an appreciation of the differences caused by a 

change in assumption. In this context it is worth noting that the horizontal 

shear strength calculated from field torque readings will vary considerably 

according to the assumption. 
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Table A.4.1.1 
I T l ILL K .ll C oyp A.NK OTHER CGAL TOTAL 

1<90 11 47 8 l;. 1 CHL X - 35 106 
190 1 18 5 4 X CHL X •... 76 104 
1710 X 3 6 GOE X - 8'.1 98 
2<90 12 35 11 1 - cc X 36 95 
290 1 28 6 3 3 55 96 
2710 5 2 4 91 102 
3<90 10 5i:. 6 3 2 31 106 
390 3 25 8 3 7 47 93 
37iO X 24 4 4 2 GOE X - 76 110 
4<90 9 64 8 22 103 
490 1 37 :.:l 3 3 44 -;16 
4150 3 35 7 3 2 44 94 
4.!12 ·"3 26 5 5 1 CHL X - 51 91 
4300 6 27 5 5 5 4c; 97 
4710 6 22 5 5 X cc 2 CHL X 67 107 
41o4 X ? 5 7 X CHL X - 81 93 
5<90 12 54 1 0 5 2 CHL X S 1 f) X 27 108 
590 5 36 f: 6 4 43 100 
5150 4 37 7 3 3 43 97 
5710 2 32 ·e 6 X 45 93 
6<90 11 34 9 X X 38 92 
690 X 27 6 2 4 68 107 
6710 X 3 3 .93 99 
7<90 9 53 7 X 3 cc X 33 105 
790 X 8 2 3 1 85 99 
7500 X 10 2 3 81 96 

I)TZ 1LL KAC oyR ANK CTHER COAL TOTAL. 
PL71<90 5 48 12 1 - cc 1 38 105 
PL72<9v 6 54 14 31 :..~5 

PL73<90 5 38 14 1 ._, CHL X ~ 41 99 
PL74<90 5 53 1 0 4 34 106 
PL75<90 10 25 14 3 - cc 1 44 95 
PL76<:9v 2 42 7 2 44 97 
PL77<90 8 28 11 3 47 97 
PL78<90 2 3A 14 2 3<:1 95 
PL79<90 ., 40 12 1 38 96 
PL71•J<90 5 48 9 33 95 
PL711<90 5 38 s 5 50 107 
PL712<:90 10 33 15 3 45 106 
PL713<90 5 39 8 2 1 41 96 
PL714<:90 12 35 7 4 1 44 103 
PL715<90 5 56 9 2 41 103 
PL716<90 9 27 14 2 5 48 105 
PL717<90 5 33 10 4 2 47 101 
PL71>90 1 36 1 0 1 - cc 1 46 95 
PL72>90 8 40 6 X 40 94 
PL73>90 1 0 40 9 1 • 34 94 
PL74>90 5 24 7 1 58 95 
PL75.>90 3 18 6 5 6 58 96 
PL76>90 4 28 5 2 64 103 
PL77>90 3 36' 6 2 1 59 106 
PL78.>90 3 .2.2 <;; 2 1 57 ~4 

PL79>90 2 30 7 1 cc 1 57 98 
PL710>90 5 43 12 X cc 1 34 95 
PL711>90 2 26 ~ 2 1 71 105 
PL712>90 5 34 4 4 6 57 107 
PL713>90 1 37 4 3 X 63 108 
PL714>90 1 35 6 2 67 105 
PL715>90 2 24 7 1 61 95 
PL716>90 1 22 3 3 5 70 104 
PL717>90 1 42 6 1 48 98 

:JT l ILL K.4C DYR 4NI( CTH!::t:! COAL TOTAL 
EHCCL 15 30 lS 3 5 JAR X 26 '~8 

EHCM5 NOT DETERMl:-.J=O 
EHCSI 9 18 1 0 4 lO cc 1 4':1 101 
EHCS4 2 13 5 2 2 7C, 103 
EHBCL 6 37 e 1 2 cc 1 43 98 
EHBSI 3 13 5 1 4 CHL ? - 6<:1 95 
EHBSA .X X· 1 X X JAR ?CHL ? 83 84 

EHACL 2 41 12 1 8 cc X 35 101 
EHASI 8 35 14 2 20 cc X 1 e 93 
EHASA 1 X 5 2 4 cc X CHL X 88 100 

Mt\l/5F 6 45 9 2 CHL X - 51 113 
MA1/5C 1 32 6 2 3 CHL X ~ 61 105 
MA2/10C X 5? 5 81 91 
MA2/5F 4 32 8 2 JAR X 54 100 
M.~2/5M 5 32 6 3 X JAR X 53 ::19 
MA2/:5C 2 16 5 1 JAR X - 6<:1 93 

MACOAP.SE 15 60 6 ? CHL 4JAR X 12 97 

SILCL 22 53 15 2 ? SID XCHL ? 9 101 
SILSA 3 X 3 1 519 X ~ 80 89 
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APPENDIX A.4.2 STANDARDS CALIBRATIONS AND THE REGRESSION EQUATIONS USED 
TO DETERMINE THE COMPOSITIONS OF THE SAMPLES 

Figure A.4.2.l.a-j represents the "raw counts" plotted against the 

composition for 33 standards. Based on these results a stepwise multiple 

regression model available in the Statistical Package for the Social Sciences 

(Nie et al., 1975) was used to obtain the following regression equations. 

Composition, weight percent = counts 7 100 x regression coefficient 

(NB counts were divided by 100, so that the last two digits were 

ignored. Otherwise greater precision is implied in the.XRF analysis than 

is possible.) 

2 -7 
- (Si0

2
) X 3.57 X 10 - 0.0139 

-3 -3 2 -8 
Fe

2
o

3 
= Fe

2
o

3
x 459 X 10 + P

2
05 X 1.52 X 10 + (Fe203 ) X 7.11 X 10 

4 -17 
~ (Fe

2
0

3
) X 5.09 X 10 + 0.457 

MgO + MgO + 6.78 x 10-
3 

+ 0.018 

CaO CaO x 0.00250 - (Mg0) 2 x 5.97 x 10-7 - (Ca0) 2 
x 2.64x 10-

8 

+ 0.318 

Na
2

0 Na
2

0 + 0.00433 + (Na
2
0) 3 x 2.64 x 10-lO + 0.049 

= K
2

0 X 9.18 X 10-
4 

-CaO X 3.48 X 10
15 -5 

-Ti0
2 

X 1.41 X 10 + 

2 -8 2] 
( MgO) x 4 . 55 x 10 ( K2 0) '"X 

. -8 
1.49 X 10 - 0.008 

T"O 10- 4 
= ~ 

2
x l. 70x 

-3 -9 
+ P

2
0

5 
X 1.92 X 10 -(Al

2
0J) X 6.84 X 10 

+(S) 2 
X 8.69 X 10-l6 - (Ti0

2
)4. X 3.18 X l0-l8 - 0.008 

s -4 -5 -4 = S X 3.23 X 10 + A1
2

0
3 

X 9.63 X 10 + Na20 X 3.22 X 10 

2 -8 
+ (~gOJ X 3.84 X 10 - 0.590 
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Fig.A.4.2.1 Calibration charts for the XRF analysis. (N.B. 'raw' data, 

i.e. not corrected for mass absorption.) 
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-3 2 -7 4 -12 
P

2
0

5
x 1.22 X 10 - (P

2
0

5
) X 9.3 X 10 + (P

2
0

5
) X 3.26 X 10 

+ 0.003 

The criterion for the number of coefficients to include in the regression 

was semi-subjective, but based on the prin.ciple that improvement in the 

correlation coefficient was negligible when further regression terms were 

added. 
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APPENDIX A4.3: THE REPEATABILITY OF COUNTS OBTAINED FROM THE XRF EQUIPMENT 

One major problem encounteredduringoperation of this prototype 

equipment was the maintenance of a good vacuum. The pressure obtained 

when running samples was approximately 20 N/m2 , (or .002 atmospheres), 

which was greater than the machine specifications, which was as low as 

2 
4 N/m or better. This pressure was insufficient to trigger the "VACUUM 

ERROR"warning, though subsequent to the analysis presented here the vacuum 

. 2 
deteriorated to 50N/m or worse, and the "VACUUM ERROR" warning was obtained. 

In order to check the effects of the poor vacuum, one standard (BRl) was 

repeatedly run as a monitor. The variation of counts with the state of 

the vacuum is shown in Fig .A •. 5. 3. 1 I from which it can be seen t!ta t only 

sodium and magnesium counts were affected greatly. 

However, all the standards and samples were run under the same conditions 

2 with a vacuum of about 20 N/m , and it is therefore believed that internal 

consistency has been maintained. The chemistries should therefore be 

reliable, with the possible exception of MgO and Na2o. 

A further check on repeatability was obtained by repeating the analysis 

of samples MA15 CU and MA15 CB (high and low carbon respectively) twelve times. 

The range of counts so obtained is shown in Table A.5.3.1. It can be 

seen that the reproducibility is poor for MgO, Na 0 and P 0 in particular, 
2 2 5 

though only Fe
2
o

3 
and Ti0

2 
are repeated to better than 0.5% in both samples. 

The sample with the higher coal content (MA15·C~ has the poorer results, 

probably because all the determinations are nearer to the sensitivity 

threshold. 



Fig.A.4.3.1 The effect of the vacuum on 

XRF counts 
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Table A.4.3.1 Variability of counts of one coal rich and one coal free 

sample. 

Note 12 repeat determinations on each sample, all run 

under 'poor vacuum' conditions of approximately 20 N/m
2

• 

Sample MA15CU MA15CB 

Upper and Range% Upper and Range% 
lower limit lower limit 

Si02 
194500 0.7 387510 0.5 
193200 385480 

Al2o
3 

241950 1.1 554290 0.6 
239430 551230 

Fe2o
3 

695600 0.4 849270 0.3 
692800 846740 

MgO 10260 3.4 23610 2.5 
10120 23040 

CaO 43400 1.6 63060 1.2 
42700 59640 

'Na
2
o 5830 7.4 13810 3.0 

5430 13490 

K
2
0 30230 0.8 50170 0.6 

30000 49890 

Ti02 
43880 0.4 63500 0.4 
43610 63220. 

s 117200 0.4 37800 0.8 
116700 37510 

P205 92110 3.8 202760 1.9 
88710 198900 

' 



Table A.4.4.1 Peckfield lagoon 6. 

SI02 AL203 FE203 MGO CAO 
1 <9 0 J!:lo 451 17o741::3 4o204- 10 13 1 1o07:3 
190 1.'3o749 9o?.67 6o469 Oo642 lo 654 
1>71J 4o856 2o '.:lq 5 eo893 Ool/'31 Oof3,J9 
2<90 3 9o 07 8 1Ao'3t:-4 4o 191 1ol64 10 Qt~ 0 
290 33o380 17o56'3 5o3ll] 1o307 2o 4.::!2 
2710 4o B27 3o 17 7 10o70f3 dol71-l- Oo .9''L3 
3<'?0 4 3o 566 21o901 3o481 lo300 10 Q/-i-3 
3>90 30o368 16o 154 5o763 10 ;.~ 32 2o7!8 
3710 12o 751 7o 308 <;o004 Oo 391 Oo 964-
4<90 45o"JS5 22ol133 .Jo072 10 361 Oo 947 
490 3lo312 16o59.~ 5o335 1.:~ 232 2o417 
4150 :30o570 16o35'3 5o257 lo 21? 2o .'3R6 
4212 27o 321 14o'335 5o 8]7 1o 083 2 o::; ·:1 e 
4300 25o:172 l.Jo "99 5o ·71~ 1 •)o ')51~ 2o 005 
4710 113o87C 1 Oo 2 3 6 7o982 Oo {, 1 5 lo 253 
4>lo4 11o8R2 6o490 10o576 Oo3.37 Oo 9 :~ 2 
5<90 4'5o692 22o 786 3o307 1o368 lo~~12 

590 33olqQ 17o')50 5o 512 lo 300 2o 750 
5150 31o660 16o(.>RO "So 614 10 266 2o988 
5710 26o135 1 3o 954 .5o.'339 Jo 900 10 6'~8 
6<90 4-1o280 19o ':;l34 3o 776 lo 22 6 0oY39 
690 22o007 10o764 6o 164 Oo778 2o 05 ~:; 
6710 3o 614 2o605 1 Oo 516 Oo 127 Oo 13<11 
7<90 37o226 17o745 3o437 2o474 4o 721 
790 5o835 3o 244 8o680 Oo 24 ') 10 4<)2 
7150 4o172 2o540 1 Oo 520 Oo 167 1o 211 

APPENDIX A.4.4 CHEMISTRY DE'rERMINED BY X-RAY FLOURESCENCE. 

NA2(1 K20 TI02 
Oo4~6 3o 442 Oo~:J4 

Co 18 :3 2o080 Co 731 
Ool7<:; oo 565 · Oo 451 
Oo 707 3 o to ·7:.; Oo;3i:P 
:)o ?.f: <; :3o25c Oo?gs 
'Jolf37 Oo538 Oo487 
Oo5014 ."3o 939 Co 912 
Oo 218 2o99~ Oo 771 
Oo 170 lo436 Oo 653 
Oo439 4o 050 Oo 926 
Oo 2.31 3o 151 Oo 809 
·Oo22(~ .Jo 0 1 7 0.:~779 

Oo 20•;' 2o752 Oo7'56 
Oo20'5 2o 566 Oo 7:")] 
Oo 196 2o064 Oo74f3 
Oo 1 t f.: 1 o 4 oe Co 62 0 
Oo.30:; 3o 925 Co936 
Oo2r:t:? 3o273 Oo821 
Jo 2 2 5 .3o12:3 Oo 801 
Oo 231 2o 74 7 Co 7'~?.. 
Oo 504 3o 693 Oo •:)06 
Oo1')2 2o37S Oo 745 
Oo 1 1!.4 Oo '+0 8 Oo 1+56 
Oo R4 2 .lo 31 e Co 75 8· 
Oo 174 Oo 725 Oo 520 
Oo 1 (.- 6 Oo504 Oo ~~ 31 
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2oH04 Oo 0 7?. 
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7o6~)(- Oo 074 

TOT<\L 
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25o 62 1 
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\.}I 
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SI02 AL203 FE203 ~~ (j (J CJ\Cl 
1 <<? ou 37o097 18o 932 3o822 lo 158 10 11 2 
2<90\J 43o955 210 <J53 2o 888 lo246 Oo f)Q 9 
3<90U 4-Jo 722 22o 174 2o741 10 2 39 Oo 96 i3 
4 <<;• O'.J Jf,o 22 2 17 0 088 5o239 1 0 07 ·'J Oo 867 
5<90U 3l~o 009 15o 954 7o694 lol5d lo 871 
r:;,<90U 35o67f3 17ol03 6o.140 lo070 10 ~ 19 
7<90U 35o035 1 6o 11 4 t'lo093 10 15.1 lo 536 
B<90lJ 3 4o 07 8 17o238 4o365 1o110 1o245 
9<90U 37o175 19o 048 4o263 10 17 1 lo226 
10<91J 3Bo611 19o592 3o894 10 212 Oo gr.:, 7 
11<9U 3.3o181 14o'J71 6o726 Oo913 10 ~)7 ~ 
l.:.!<OU 33o 83 0 15o 797 7o053 lo049 lo 674 
13 <9;J 34o51~2 15o 65 2 7o377 loll? 1 0 ~J~1 0 
14<9U .34o032 15o253 6o657 lol24 10 8;) 6 
15<9U 36o694 16o628 5o 5 t; 0 lo36>3 2o ?. 1 9 
16<9U .3 2o 814 15o668 £o017 lo117 1o648 
17<9U 32o 769 15o 990 5o148 1o232 lo5·)9 
1>90U "l2o253 16,,1 21 3o996 Oo98i3 lo 236 
2>901J .""3c;o481 18o577 3o 355 10 015 lo5·)9 

. 3>C::•O:J 30o552 13o976 5o620 Jo o?.3 Oo 911 
4>90U 3 Oo 459 14o291 5o 601 Oo •-;127 Oo878 
5> q QIJ 24o224 10o:333 9o702 Oo791 2o 301 
6><;'0'J 2 3o 02 0 1 Oo 41.3 P-o 174 0o 71 7 J 0 li13 
7>90U 27o090 12oc:l07 7o 119 Oo 900 lo 50 0 
8>90;) 25o7e5 12o'+07 5o49B Oof352 lo 701 
9>90d .3 2o 679 15o 871 4o787 )o 96 :-~ 10 <=_; 19 
'- u>9u 39o251 \ 8o 748 · :!o 25•; 1 0 () '• ;~ lol>30 
11 > 9'J 22o340 10o034 7o907 Oo 62 ·:J 1 0 3 7 -., 
1 2> <;l J 2t;o180 1lo612 9o48'"3 ·)o 8B (, 3o 1 4 5 
1 J>9U 2lo556 9o575 9o946 :Jo 703 2o 63 3 
14>9U 20o ']85 9o 016 9o ~54 OoC62 ~o oao 
1 '3) 91) 26ol~6 Uo 096 6o747 Oo 920 ,2g 3':3 2 
1 6> 9-J 17o254 1o 767 7o040 1Jo581 10 830 
17>9U 29o205 13o(>52 f:o ";07 1" 00'3 2o455 

/Cont. Peckfield lagoon 7. 

NA?O K20 TI02 
Oo3?.6 3o 758 Oo 9 ;~ 0 
Oo371~ 3o858 Oo919 
Oo lt 0 '' 3o 941 Oo 930 
Oo 3<: 2 3o .33 8 ·oo 63 7 
Oo 274 3o02c Oo 7 31 
Oo 274 3o262 Oo 771 
Oo27B 3o 182 Oo772 
Oo 270 3o46(: Oo907 
Oo270 3o !'l94 Co 900 
Oo330 3o7132 Co 91 0 
Oo301.1 3o O'• 5 Oo 77 3 
Oo ~10 0 3o077 Co 7r56 
Oo 304' 3o 065 Oo Bi) 1 
Oo2.71~ .3o033 Oo767 
Oo ?.91 :3o305 Oo 316 
Oo 296 3o 109 Oo!306 
Oo 30.0 =~0 3 0 5 Co7'J2 
Oo41!-7 3o 453 Oo 865 
Oo 66 ~-~ 3o 707 Oo 8')0 
Oo 5~.>6 2o 95 E Co 800 
Oo 590 2oe07 Oo769 
Oo 413 2o433 Co 697 
Oo '~4 7 2o 35 7 Cu691 
Oo42l 2o 670 Oo 7 3-:'> 
Oo39~"} 2o R71 Oo 8:'16 
Oo 491 3o 454 Oo-976 
Oo 556 :Jo 71 3 Co'J29 
Oo 37 tl 2<> 1 35 Co 659 
Oo 361 2o 544 Oo6<35 
Oo 34."3 2o 258 Oo677 
Oo296 2o 1P.6 Oo687 
Oo404 2.o700 Oo767 
Oo391 10 965 Co 6 7 <; 
Oc426 3o 133 Oo7F31 

s P2Q5 
2oO::o Oo\JC.:jQ 
lo342 Oo076 
1 o·4 9 4 Oo OBO 
?.oS99 Oo 11 6 
lto16C Oo 11 1 
3o 35.3 Oo 131 
3o:?Oe Oo 11 ~ 
t?o 19.4 Co 090 
2o 10? Oo 091 
1o77e Oo 'J87 
3o3H4 Oo l 0 A 
:::-:> A4 1 Oo 120 
:o 9!:·5 Oo 1? 3 
3o t.:4 4 Oo 1 ~ ~! 
r!o561 Oo 144 
3o01L5 Oo 141 
?.o51S Oo 12 3 
2o 6'';1 Oo0f31 
3o007 uo074 
3o 3:) e Oo 11 !:;i 
3o 4 75 Oo 1 0 t:; 
5o927 Oo102 
~)o ::12 8 Oo 112 
4o~82 Oo 11 3 
3oc:;7c; Oo \) 7 c 
3o 615 Oo OR 1 
2o2.4t~ Oo.")81) 
5o ;>~)0 Oo 091• 
5os(~ Oo 11 0 
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APPENDIX 4.6: ANALYSIS AND RESULTS OF THE WATER CHEMISTRY OF LAGOONS 

All sampling bottles (which were polythene) and other apparatus used 

in this exercise were washed in 0.1 molar hydrochloric acid, and thoroughly 

rinsed in double-distilled water. Each sample was collected in one clean 

polythene bottle, and then filtered through Whatmans No.4 filter paper into 

a second clean bottle. About l50-200ml. was collected for. each sample. 

A 50ml portion of this was extracted, the temperature and pH were taken. 

A titration was then performed using 0.1 or 0.01 molar H
2
so

4 
to a pH of 

4.5, then to pH 4.2. The total alkali was expressed as caco
3 

in mg/1 and 

is equal to 

(2C - D) x N X 50000 
vol sample 

where N = normality of acid 

C = titre to pH = 4.5 

D = titre to pH = 4.2 

These titrations were performed as far as possible at the point of 

sampling; however, at Gedling colliery samples G2 and G3 were transported 

a short distance involving an elapse of about five minutes. All the 

samples at Silverhill lagoon were transported from the tip to the car 

p·ark, involving elapses of up to half-an-hour between sampling and 

titration. This elapse of time could allow a change in the carbonate/ 

bicarbonate balance due to solution of carbon dioxide from the atmosphere. 

Furthermore, O.lM acid was used as the titre in some cases and the very 

small amounts involved could lead to large errors in the estimate of 

total alkali. The use of O.OlM acid in all cases would have been more 

accurate. Therefore the total alkali results are somewhat dubious, those 

at East Hetton lagoon probably being the most reliab·le; they were all 



done at the time of sampling. 

The samples were then delivered to Dr.D.A.Spears at the Geology 

Department of Sheffield University, who very kindly analysed for the 

following chemical species: 

Trace metals; Cu, Ni, Co, Pb, by atomic absorption with a heated 

graphite atomiser. 

Major elements; Na, K, Ca, Mg, by fla~e atomic absorption. 

Sulphate by atomic absorption. 

Chloride by a colorimetric method using a thiocyanate complex. 

Nitrate by ion-selective electrode. 
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The results are reported in Table 4. 6.1. The final column of the 

table indicates the balance between the anions and cations analysed, in 

meq/1 (i.e. the value in mg/1 divided by the atomic weight of the species 

in question). The results for Gedling and more particularly Silverhill 

indicate a considerable imbalance (cation excess, usually). 

probably due to the poor total alkali results. 

This is 



" 

Table A.4.6.1 The chemistry of lagoon waters. Samples collected jointly with Mr. J.F.Bell; analysis (except total alkali,pH 

and temperature) by Dr.D.A.Spears, Sheffield University. 

Sample TL:ace elements mg/1 Major elements mg/1 Anions mg/1 Total pH Temp. Cation excess 

Cu. Ni Co Pb Na K Ca Mg so4 Cl N0
3 

alkali mg/1 oc meq/1 

G1 0.002 0.013 0.004 0.002 277 13-5 134 34.8 510 126 15.4 888 7.6 8.5 -22.0 

G2 0.023 o.oo8 0.007 " 1136 30.8 165 45.4 400 375 61.2 336 7-45 14' 31.1 

G3 0.003 0.033 0.011 " 857 24.1 157 40.1 160 312 40.4 16 6.05 11 35.8 

EH1 0.014 0.011 0.007 0.022 614 18.9 76 22.8 1040 84 46.5 360 7.6 7-5 ·-4.0 

EH2 0.106 0.023 0.006 0.024 637 20.5 39 24.3 1000 85 44.4 536 8.2 10 -9.6 

EH3 0.032 0.015 0.003 0.164 667 25.6 19 22.0 930 91 19.3 500 8.5 11 -6.6 

EH4 0.064 0.061 0.017 0.002 416 43.7 310 193.6 1500 90 21.8 560 7-3 8.5 -2.1 

EH5 0.043 0.223 0.153 " 1115 45.4 176 98.3 1550 120 14.2 504 7.4 8 13.9 

EH6 0.010 0.020 0.007 " 389 15.6 47 21.2 800 60 13.5 286 8.15 8 -6.8 

EH7 0.003 0.013 0.007 " 624 18.6 45 21.0 1020 81 52.4 360 7.6 7-5 -4.8 

S1 0.002 0.042 0.021 " 1606 32.9 203 57.0 900 516 46.2 114 6.9 8 48.0 

S2 " 0.043 0.017 " 3133 40.3 297 •130.3 860 570 67.2 342 7.4 8 116.5 

S3 " 0.040 0.011 " 1333 26.5 251 65.0 1120 510 50.0 1060 7-7 8 2.7 

s4 " 0.055 0.015 It 2248 48.1 502 136.7 1440 515 53-5 19.0 7.6 8 83.5 

S5 0.003 0.046 0.024 tl 1452 44.8 382 83.2 1550 492 58.3 146 7-25 8 38.0 \.N 

s6 0.006 0.014 0.010 " 1528 28.9 254 93.4 "" 52 444 43.5 394 7.0 8 60.1 -' 
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APPENDIX A.5.1 In-situ vane test shear strength data. 

PECKFIELD LAGOON NOo 7o VAN!: TF.STS 

1stPA I R VANF. TESTS, !.14YI977o J~K J vo ,. 
ALL STRE~~GTHS IN KN/M**2 ...... 

PARABOLIC STRESS r>ISTRIH•JTION 

TEST DEPTH PEAK STqENGHi RF.M .STRF.NGTH 5FN51TIVITY 
H=20 H=l/30 tt=?.D H= I/."~() H=?.O H=l/30 HORIZ 1/EPTICAL R(=S\1/ 

1. 000 2o310 33.179 I !i, 'll3 ·-~-57~ 3.7~7 2.444 5.000 .,-],1177 3!:1.4 '14 -·~. 0?.5 
1o 000 2.760 64. c!49 43.656 27,141'> ?.2.'719 ;>.J'I'I I ,'122 'lo 722 77. 74 J 7. 4 'i?. 
1.ooo 3o210 I I, K'l4 ?.0.4'12 4. 162 15. 169 2. f~S5 1 • .133 34. 263 H,l)fll) o.2s" 
t.ooo 3.660 16. I h7 30.?.92 fl. 14 4 2f!o956 t.-.liS 1.046 5?..11'11 10.'122 0.?06 
t.ooo 4, 1 I 0 ?.0. >"II 2 I 4, 70 I 11.573 3.'564 loSJJ 4. I ?.5 4. ,,, 4 2.3. O!l•J 4. ')'1'1 

I • 000 4.330 22 • .J:?O S5.?.39 1 1. 4h2 4 l. 4.14 I, '.14 7 I .2 72 I07,<JOH 10.091\ 0,094 
2.000 .,. 310 5?..724 30.515 22.320 17. 151 2.362 I ,·779 -5.~45 60.<J'IS -1?.09(') 
2o000 2o7b0 30.~64· l7otll9 I l, ?.71 · 11·, 241 2.;>95 . 2. 11)2" -2.42fl 35.173 -14 o4'>)~ 
2.000 3.210 .\1. 9 7 ;> 2 :), ~~~" II, 160 6.682 2. •l65 4.?33 22.3113 33.1411 I, 490 
2o000 ),660 10.~36 ·~ • 57 R 5,007 '5.56A 2o0H4 t. 7?0 8.?01 I 0, 75 7 1. 312 
2.000 4, I I 0 I 5 .1'1."1 24.501 ''· 350 l'>o705 I. (•45 I ,46 7 39.0~1'1 llo'JqH o. l(l7 

·2,000 4.560 3'1.0)5 3<;,6)H I 7 .t Q.1 26.7?11 2 • 21 I I .333 3 I • ~14 I 31'1,(1'12 1. 2?1 
3oO:lO 2.310 22. '·"0 12.:.!51 9.954 2.227 2.2112 s.500 -3.1172 26.070 -o. 7""! 
),000 7. 76 0 24, I 10 27. '<J1 10.2S5 16.037 2.353 t.70fl 3?. 61 9 2,•, 9? I o.7nJ 
3.000 3.210 1 l. 4(12 tH.042 .~.I 97 I 4, 0 32 1,5135 I • 28'> 28.561\ 9. 0 I Q. Odl'> 
3.000 3.o'>O 1'1.701 I lo 5!12 7,541 6.237 ?o4MO t. R 1j7 0,1!'!5 21.:152 .1 I <;,611.~ 
3.ooo 4, I I 0 10.~5~ 13.810 4ol62 '3.464 2.464 lof>32 19.495 'io9J6 Oo45':1 
3.ooo 4o'i'>O 43.?.5] 51.?.?.9 15,911'> 2J.3fl7 ?..706 2o\90 6],<)84 4 n. ?. 1)7 0. (o.)(l 

4o000 2.310 111.399 !1,464 0. 937 4o677 2.652 I ,11·1 0 -7.444 72. Qt.,·.~ -;t,lHt~ 

4o000 2.760 I I, 76.1 7, I ~6 <,,01)7 3. Ill\ 2, 3?. I 2o?'36 -0.2'15 IJ,4<}0 -45. 7.":14 

4.000 3o210 15.202 H,</09 5.-912 4,009 2.571 2.?.22 -I. 166 1 '. ~; 4 ~) -15.0~3 

4 .-ooo 3o6b0 lt.l63 14.032 4,524 I),QQ!) 2oh00 2o0]2 17, o61 10.472 O,l)t'l 
4 .-ooo 4.110 Ho'>26 14.471\ ],f,l~ 1),?]7 7, 3fJ."S 2.3:>1 23. 'J1'l tJ. (J 54 o. ?.71 
4.000 4.~;(,0 79,559 '1.!, 414 6.937 I] • '564 14 • ?.6 1 3~250 b5.o2'' 24o40<l 0. 3'12 
4.000 s.oto tl.i\d4 2bo 72'1 4,22j ?? • 2 74 2oHI4 1.200 50.479 t•. 371 0. 1 ?fl 

s.ooo ?.oliO 15. t'")Q] ~.<JO'I '),0()7 6.014 ~.096 I o <PJ I -I. 64 9 t 7. '159 -10.11'~4 

s.ooo 2o760 7,!142 10.02.'3 ) • 740 J •. ~41 2.097 J,OOO 13.511 7. 0."13 ').!3:!1 

s.ooo 3.210 24. 7 J J 30.51!'- 7. '2.".19 I 1, I 37 ],417 2. 74 0 39,761 22.5!1"1 I). "lbf~ 

s.ooo 3.660 24.1.10 20.046 H, JQfl I I, 'J05 ?,d]7 lol'><l'\ 1:1.505 25.1'>5:1 I.QI)') 

s.ooo 4. I I 0 40.4\ 7 34. ~)24 1 ~"'!, 6H4 12.'2">1 2.577 2, F' I'' ?S.OR3 42.617 1 e 6tJIJ 

s.ooo 4.!)60 st.B79 4 o. 7o 1 I 7, 191 ?.3.31\7 :1,018 I , 7'1 .I 22.'154, ~.o. 0:.'4 ."?, 4-\ I 

s.ooo !,. 0 10 20.209 44.547 I I, 7'>:1 ~3 •. 1'17 I. liB 1.905 !13.41\8 I I. I 70 o. 134 

s.ooo ~:;.2~0 JQ, 21 I 57.912 16.1)'11 24.~01 ?.:121 2 •. 364 87.':127 32.?70 0.]67 

6o000 2.310 3.310 ~;. )46 I o/:11 0 J, I 1-'1 I , 15 3 3 I, 71 4 8,5QO 2.565 0.299 
6.000 2.7()0 7 .• ?3'l ~.(,OQ 3,.11fi 4,455 2 • I H2 ?.oOOO I lo 5131 6.'>;>0 o. !;7?. 

6o000 3.?10 15of>d4 28o'l5'> t..756 I.'), 705 2.321 1.71] 50.1'39 10.756 Q,;"t4 

6,000 3.660 34. 0':1.1 33,41 I I 4 • I 76 I 7, 'll 9 ?o404 lo87'l 32.325 311. 341 I • '1b2 

6o000 4, II 0 21. 2~!:"l 43. 41<\ o,lo9 .?6. f21:1 ?..322 I, 625 7R,tl55 13.071 O. I(.!> 

1 .·, 00 0,100 I 5. 02 I 1~.48.~ s. 4 90 ~.?41 2. 7]6 2.000 18.~18 14 .41H 0.770 

1 • I 00 0.550 5.490 4,900 7. 41 I 2.227 ? • ? 75 .?.200 3. 95tJ 5.710 1.'1~3 

I • I 00 0,770 5.731 6.237 2, II I 2.673 ;:>.714 2.333 7.045 s.S44 0. 7:l7 

lo 100 0.9'10 5.429 12.?51 I • 749 5.56'3 3, I 03 2.200 23.164 ;>,1:1'16 0.1?5 
I, I 00 1 .-21 o 7.239 7, I ?'3 2o7)5 4oO'l9 ?.f,67 1.77~ 6.941\ 7.:?q?. 1.04'3 

.. lolOO lo410 32.575 J2.2Q7 1.3 ,·H75 .. 14. Q;"] :!.348 "2 ·1 tl4 31.843 .. )?.6>36 1.02" 

1 • I 0 0 1. 630 .!1.972 J5e6).~ 1.1.1:175 l"i:lo 4]."3 ~. 104 •• 1:182 41.4<}7 .30.'616 o•7J~ 

1.100 I. fJoO 37.1'>43 26. 7? ... 15.503 12.251 2.4211 2ol'3~ 9.251 4 I, 709 4. ~;o --i 

1, I 00 2.070 31. 73 ,, 21 • :Hl3 14.7'10 15.5.,2 ?. o\4 1 1.371 4.:31.3 35.505 7 •. l•l4 

I • 100 2. 310. 37.!>4.1 ]H,97Q 14o47fl 19.710 2.600: ; .?.01.\3 41, I 0!3 .\7. 154 0.90t, 

lo 100 2o530 51.!:179 43.434 ;>:>.OIA 24.501 2.356 .... I, 773 29.905 55o0:10 I • (l'l 0 

I • I 00 2.760 3o.9t<J ?4.501 14.'161 1 l, R I 0 2o4M\ I, 774 4.6111 4 I , 54 4 8-.Q97 

lo I 00 2. ··170 3:1.4 ':10 36.752 14,47H 2 ' •. 1':17 2o.H 2· I ,571 4lo'l79 3'2. ?71 o.76<} 

I, I 00 3o210 14.4 711 IH,710 6.515 8.019 2.2?.2 2,3)3 25.479 t.>.<JOII 0.507 

lo I 00 3.430 18.6'10 12.?.51 9.049 10.023 2.060 I • 222 2o019 21.020 10.411 

1 • I 00 3.660 20.209 I 9, 3 75 6. 3)4 15.14b 3.190 1 .27(l 18.044 70.5?.~ 1.1~7 

I • I 00 3.070 l4ol76 ?0.715 q. 9 3.1 7. 7 1)0 lo442 2.657 31. 174 II .74<1 o. 377 

I • I 00 4 • I I 0 34o6d7 21.11)0 13.211 13.364 ~.626 lo5B3 -0.4'19 3<-~.725 -7'l,670 

2.100 OolOO B;.445 1 o. qz,~ 3.016 He464 ;:>,i\00 2o000 30.499 '5o29'; 0. I 74 

2ol00 0~550 4.524 7,79~ 2o.l53 6.014 I. 9?3 1.?.96 13.030 3. 310 0. ,,'54 

2 • I 0.0 0.770 6. 0 32 6.905 lo810 J.564 3.333 lo93fl 8.299 ~- 70'-J Oo68'l 

2.100 0.940 6.6Y6 l6oO.P 2.654 6o4':\9 ?.S!!3 ;>. 481 30.9!12 3.227 0, I 0 .. 

?..too lo210 6.h.36 &,f.-3? 2. ~"-)(., 2,1:1"'16 2.792 2.308 6.755 o.620 O,QIIO 

2.100 I, 410 16 • .148 t6.70S 6. 3'14 'i,OIQ <?.557 2 • Ofl.J 17.273 lo.?J9 o. 9.l~ 
?..too 1.630 34. •')1)6 31.183 16.21:1!3 1'.1.264 2 • II 'I I • 707 25.857 35. 74 '.1 I • J>' J 

2 • I 00 I • ljb 0 ?0oJ71 l7ol51 7.661 q.J?!l 2.61:15 1 .1133 t t.672 ?.I. ·346 1. ;t7? 

2.!00 2o070 24,31 I 21 • 1 !10 II • 462 I J • 'I 11 2. l ~ 1 l. 5:l~ 16.112 25o4R7 t,-3::\? 

2.100 2.310 I '1, 0•17 3\l. 069 7. ?J•J t 2. ':)~)t) 2.!.>00 2.36':1 49.2?.3 t]. 6~)2 0.277 

2.100 2. 5.i0 14.176 .i4. ').?4 f,. Llll I I • I 17 ;>. 3~)0 3,100 67.0:!0 (-,, fd 9 (l. 0Cjt) 

2. 100 :~. 7h0 I 7, 4 ~4 IJo164 J_\. 2hlli d.Ot'l ;>,II 7 1 ,66 7 6.750 19.03:\ 2 • ~.~n 

2ol00 2e970 14. ·l "Ill IDo0J7 4.3~.3 7 • 1 ~M ~.;\J) 2.?.~0 18.529 I :1. <10 I o.75('1 

2. I 00 3. ;~I 0 H, I 44 I 4, t1 _7t-.\ ~. 01 t, 7.]50 :~. 70 0 t,<l70 24.61~ !_:. 7.:;l2 n. "J'' 

2.100 3. 4 ~t1 9. _,so I 0. 1);'3 4.:-»?J 4.9ll0 2.214 2o04 5 1 I , O•lt< •l, 1 o:> f'J. ~;-!\1 

2 ~I 00 -'· (l(,Q ~3. 5.~7 I b. ~l ·17 "· 04·~ "· ;>] 7 2.600 ~.571 4,044 26.~17 6. !>('17 

,>,I 00 J,(\70 ?2,JIH 1 (,, 0 37 7. ~)4 t A,4h4 2. '120 t.WJ5 6,4-:)Q 24.::47 J.7•..;:. 

;>,too 4. II 0 (2.167 1 ?. •.) 1'9 5. 1 <?:1 6.6rl2 :'!.412 loQ3J 13.799 I~ • I t-.4 0. ~'-1 \ 

2.100 4o .l.lO I I • I (>0 lt-.1:17 J.·H\1 5. ~·,f\ :? , tiO] z.ooo I I, 0'17 I I, 171 t.:-tn7 

12.0?5 1 (). 7-15 h. 0."'? I I, I 37 2.000 ),SilO ?4o l.~d 10 • .34:-\ () . " :-~ . ) I 

2.100 4.~;(,0 

2oiO'l 4 • .1 JO 13. ,,32 21. 160 6.03? ')• S7H ~.?I 0 2.209 33.6:14 10. 42!') o • .JI() 

2,100 5o 0 I 0 '1. 74!l 20.71S 710 -~,.,? tO.O:>J ?.2~Q 2. 0(l7 25.J~I l (·,. 7' ~, 0 • r,CO\·» 

2 • I 00 5. , .... 70 12."367 t2.2Sl 7. ~3'' 7. 7"~(J ),708 le!"i7l 12.06;> 1 2. -l\ ;) 1 ,0:-:'·l 

? • I O() 5. '\(•0 14.59<> 31. ll:l3 9. ;~ ~0 16.705 lo571 t.l-\~~7 57, TIH ilo 4.1'> ~. '4~ 

2, I 00 5. () 7 0 so.:~5s 3 I, I 8] 10.255 IJ,RIO t.ooo :~. ?t.l~ 6,.,..,.,1:\ 2. 4 !~? (I. 0 '·' 



I"FCI<.FIELD LhGlJON .. a. 7 

?.ND PAIR VANE TESTS. J'J"lE 1977eJ'41( J VD ... 
ALL STRF.NGTtlS IN I(N/M•oz 

PARABOLIC STRESS DISTRiniJTION 

TEST DEPTH PEAt< ST~ENGTH Rf:>l STRENGTH SENSITIVITY 
DIA'40'1D H=D/3 DIA>IOND tl=D/3 DIAMliN::> H=D/3 

l • I 00 0.300 IEl•"''i:HI 11).705 !4.3QQ II • 415 !. 280 I • 46 3 
1.100 o.sso 3.512 3 .• 202 I • 9~2 1. 16~ I .1:118 :?.738 
lo100 0.9"10 4.273 5.012 lo?.l9 ?..??7 1.327 2.250 
1 • I 00 1.410 26.457 24.71\0 20.018 I 3. 504 1.322 'I. 8.35 
I • I 00 I .H60 23 • I 79 31.601 15.921 16.21i8 lo456 1.940 
1 •. I 00 2.310 22.242 30.487 1 2. 64 l 19.7'-Jf) I • 759 lo 54 0 
1o I 00 2. 760 llo531 35.777 7.024 24 • 50 I 1.642 le460 
I • I 00 3.?.10 6. 322 10.02:1 4.:190 5.996 1.440 I .674 
1 • I 00 3.660 13.170 16.09] 7.551 6.353 lo 744 I • 92 7 
I • 100 4. 1 I 0 31.315 I 2 • I I I 21 • I H9 6.459 1o478 lo875 
2.100 0.300 12.5'35 32.019 9.111 24.1'>40 1.378 1.2Q9 
2.100 o.sso 4.156 7.517 I.A7~ 4.232 2.219 1.776 
2el00 0.770 3 • 6>3A ~. 151 1.815 2.645 ?..032 I. 94 7 
2.100 0.990 7.0~4 6.821 3.629 .3.090 I .935 2.207 
2;,100 1.?.10 3o9>i0 'io910 2.400 5.012 lo659 lo778 
2.100 1.410 I 4 o 165 B.J51 6.740 4.?.32 2.0A6 lo974 
2 • I 00 lo630 32 • 4 H6 34.3A5 I 8. 789 27.285 1. 729 lo260 
2.100 1. 060 20.0itl 24.919 12.29;> l4o060 I. 629 1.772 
2 • I 00 2. 070 22.652 14.756 1 4. 692 9.077 I • 54?. 1.626 
2.100 2.310 14.399 2~.476 I 0. 770 12.390 1.337 2o056 
2.100 2o530 6. '165 14.478 5. 151 6.~61 1."352 2o080 
2.100 2. 760 6o.i22 Ao074 :loBO'; 2o645 I .662 Jo053 
2.100 2.970 12.! I 6 a. 6.31 5 •. 1:>6 4. 316 2o<!75 2o000 
2ol00 3.210 l2o2:lJ 4eA72 5.151 J • 34 I ?..375 lo45A 
2ol00 3.430 6.322 6.543 3.219 3.341 lo964 1. 958 
2.100 3.660 13.5?.1 I I • 694 7.(:>68 7.100 I. 763 I o 64 7 
2.100 3.1\70 12.526 15.731 6-. ~65 6o543 lo 798 ;!.404\ 
2el00 4. I I 0 8o019 do492 4 •. 390 3.7'59 I o A:>7 2.259 
·2. 1 oo 4.330 O·.a3A 10.859 5.970 4o733 lo4AO ?..294 
2el00 4.'560 11.531 10.46<) 5oA5J 4.176 1.970 2.507 
2.100 4.770 9.951 12.?.51 5.09?. 6.1349 1.954 I • 789 
2el 00 5.010 9o 1·10 19.573 4.~66 8.353 2.013 2.343 

__ 2.100 5.2:>0 9.4;!2 15.59;> 4.?.14. 7. 517 2.?.50 2.074 
2.100 5. 460 I 0 • 94 6 15.592 5.3115 7.155 2 .0.~3 2.179 
~··I 00 5o670 20 • 3 II 14.751> 15.453 4.622 loJI4 3.193 

•· 
EAST HETTON LAGOONS 1099e109A 
H=?.D VANE TEST So OCT 1977 

ALL STRENGTHS IN KN/to12 

TEST DEPTH PEAK REI\! SENS 
1 Oo33 15o 0 Sol. 2o97 
1 Oo77 18o 5 1Jo2 12o63 
1 1o 41 5o3 1lo 9 12o 02 
1 1o 63 12o J 14o4 12o 81 
2 Oo33 24o2 19o0 12o68 
2 Oo77 25o6 16o'i 13o72 
2 I o 41 27o9 1 ~0 1 13o12 I 

2 1 o63 29o9 13o6 12o 19 
.. 

3 ·oo33 1 7o 4 14. e 13o64 
3 Oo 77 1 Oo 7 13o6 12o95 
3 1o41 7o8 13o 4 12o30 

EAST HFTTONe VANE TESTSo AP4.-M4Y 197d 

2ND PAIR VANE TE~TSo LOCATION A=leA=2eC=3 

ALL STRENG~HS IN I(N/M**? 

P4R4BOLIC STRESS OISTqlnUTION 

TEST DEPTH PE'It< STQF.NGTH PE•A STQF:~GTH SE"'SITIVITY 
DIAMOND H=D/~ 014M0Nf) H=l)/3 OI11'4!1ND H=f)/1 

1.000 I • 000 9o6 1:h) ;>t,. 245 4o.l46 I 7 o .lR5 2.?.?.7 lo395 
1 • 000. 2·. ooo I 7 • 7 79 17.761 11 • 4 ~J·~ 7.~1~. I ;,'552' 2 • .3');> 

·' lo 000 .'I. 000 10.668 l9o I 70 ~ ·• 44c; '3o 8.1] .. 1. 2S6 2.170 
loOOO 4.000 9.4'1? 2~.0F33 6.32?. ~.551 1.5oo 2.5'12 
I • 000 s.ooo I 3.6\1 24.:>45 7.309 'i ... ~2 7 I •. '165 2. 71t> 
l. 000· 6.000 17.5'12' 29.225 8.495 ?.0?1 ?..070 ·I. 3o?4~ 

leOOJ 7. 000' no 4·)':> 3~.702 ;>. ·~63 ·"1 • .:-\(, 7 z. 1367:. Jo]l4 
t.ooo a.ooo IOo':l6':i 15.505 4o!':>44 .., • '}60 ? • 191 ; 2.2-.o 
2.000 I. 000 17.779 16.727 .... 0.77 7o 14;> 1. o.oo·: 2e342 
2o000 2o000 15. -l04 13.720 7. 704 4. ~2.1 2 o O'i I' 3.174 
2.000 3.000 9o2-l5 12.91',8 5. ') 11 2o255 I. '>79 5.7SO 
2.01)0 4.000 9.~~5 >io/333 2.761> j o I 0 I 3.357 2o-'i-'l'l 
2.000 s.ooo I 0. :>72 11·5~Q 6. 71 7 2o537 lo5?.<J 4.<;51> 
2.000 6.000 12 o .'J~ I 1?.404 7. 1 1 ;> 3.477 I •. '106 l.,, q 

2o000 7.000 16,0 J I 12.404 FJ • 1 2~ 4. 041 2.613 :~.1) 7 0 
2.000 '3.000 11.063 15."317 7. 704 5.1'>311 le4]f) 2. 71 7 
3.0!)0 loOOO l2o(>4.l I'.J.734 6.717 7o51A loll'l2 2.~25 

3.000 ?oOOO 14.026 14.096 Oo ''114 J. •35:1 ?o029 3.6'59 
3o000 3.ooo 1 4 • r')l R l'lo">OS '}• l\'i2 4. 7•) J l • S4 2 1. 2 3'") 
3.00t) 4.000 ':I.H4'l I4.Q4:? 4. 14 ~ 6. l~!l 2. 14 J 2. JJ·) 
3.000 5o000 12. -14 I ":f.C:L~5 s.q2'> 2o1JI9 ;> • I o 7 ~ .4 00 
3.000 6.000 16. ·JtJ<j 19 • .]5•1 >lo OQ9 o.J9o ?.o09B J.O?'> 
3e000 7.000 I:? .• ·J41 20. 2'-l.O. 4. 14q 7.424 3.(}45 ? • 7 i4 
3.000 o.ooo 13.?..l6 12.49'1 7.112- 6.014 I ··1361 2 .0.78 

363 

HORIZ VE~TICAL P(=SV 
18~6'52 !5.037 ·) • flO.; 
J.·sso 2e90:1 O.RI~ 
4.1'34 5.7?1 I • 3'>'1 

26.666 23. I 6:1 O.IJI'>~ 
22ol57 39.696 I. 7'12 
21.242 3~.41?. I • !\Od 

8.578 59.092 f>e8F19 
5.872 13.582 2. 31l 

12.816 10.901 I • 4 75 
:!3.654 -6.354 -o. 1'19 
I0.21H 50.705 4.96? 
3. 74 7 I o • 749 2.<'169 
3.510 6e557 loiH)8 
7.050 6.621', 0.940 
3eJ!IO IJe649 4o038 

14oli75 2.762 O.IHI) 
32.260 36.207 I • I ?2 
19.425 29.628 I • 52<; 
23.617 7. 162 o.JoJ 
13.052 36.1<:5 2.76~ 
6.051 ? J • 70 I Jo5rlf> 
6.109 4.759 I o597 

12.543 5.278 0.4?1 
13 o I 30 -2.206 -o. 16~ 
6. 2'~6 6.755 1.073 

13.746 9.935 0.723 
1?..138 18.81 I 'I. 550 

7.963 8o945 I o 12 I 
8.594 12.800 I o 4A·J 

11.662 9o446 0.810 
9.672 l4e461 lo49'; 
7.926 29.557 3o7?.9 
8.740 21.465 ?..45f> 

10.31'12 20.058 I .9 3? 
20.991, 9.413 0.448 

. :~· .' 

HORIZ VERTIC4L P(::S 
7.907 Jdo249 4e!il 

17.7'16 -1 7. 73<"1 n • tl·"l 
9.')34 ?.7.344 2. ;n 
7. :j~ 9 .~4. 190 4 • JO .. 

12.141 34 o 44 H 2. 7 .,, 
16o I -;7 40o4IA ?.'>0 
s.:l46 55.97'1 1,.,. \'1'-)l": 

10.:112 19.965 I o -~ I 
I 7 o 'I I I 15.71? o.n7 
16.061 I I • 71 3 0. 7?' 
8.-n~ l6o50A t • HI,. 
9.342 8e.l9A o.H.,.., 

10. 118 l2o79J 1.?1)4 
12.!!•7 I I .Qfl? 0. '1?\ 
16.44] H. 94 3 0. 544 
10.547 JCJ.40h ...... 4 
I I • 7'<2 ?t>.<;50 ~. :?5 
14 • ()?I I A o 160 I.() I 0 
14.514 I o • 3">5 I. I? 7 

'lo I 54 :?0. 7')Q ? • 54,.) 
IJo240 6.453 Oo-'1'17 
16. 7!14 :! 1 .6]J 1.29'1 
II. ~35 27.466 ?. o iO I 
I 3 o ];>q I I o 787 0. f!'l~ 



.:· 

EAST H~lT~No VA~~ T~ST5 o APQ - ~AY 1973 

4TH PAl>' \/ANt: TF:STS, LOCATIO>~ A~t, ~=2o C=J 

ALL STRENGTH:; IN KN/1.1C<*2 

PARAdOLIC STRESS DISTRIBUTION 

TEST DEPTH PEAK STRENGTH 
DI.II"'OND H:,?[} 

REM S TREilG TH 'iFNS! Till.\ TV 
OIA"10Nf) ·H=?.D Ol A"'IHW H=20 

loOOO loOOO 
1,000 2o000 
1o000 3o000 
1o000 4o000 
loOOO 5o000 
loOOO 6o000 
t.ooo 7.ooo 
1.ooo 8.ooo 
2o000 loOOO 
2o000 2o000 
2.000 3.000 
:>.ooo 4.ooo 
2,0():) 5ofl00 
?..ooo 6.ooo 
z.ooo 7.000 
2 • 0 () 0 :l. 0 0 0 
J.ono t.'loo 
3oO'lO 2oOO'l 
3.000 3.000 
:~.ooo 4.ooo 
3o000 SoOOO 
.l. 000 6, 000 
3o000 1o000 
3.000 s.ooo 

9,1)HO 21,415 4,346 Do274 2.:?27 3.413 
17.719 20 • .329 
\0.66:=\ 22.07fJ 
'l,4B2 24.411 

13.6:11 29.680 
I 7. 5 'l2 3 n, I "<5 

il,4<15 37,'l44 
\0,470 ?O,f,CJ\ 
\7,779 20.87? 
ts. ei04 t o.d';H 
9,2'!5 20.•13.1 
9.~tl5 12.301:> 

10 • .:'72 tA.?7tt 
1.~. ~41 l t .'1~4 
lb.Q.Jl :!?.31'1 
1 1 • •) r, '1 2 ..... .,,. ~( 
~~~.#l,.'l) ?~·'"'1'\ 
14.0?.6 20.9\;> 
14.~\~l 2;"1.~01 

/:l,'l'IO 20,450 
\?,'141 l<l,nOS 
16.9.'l9 24,)1\ 
l?.o/341 29.o7r, 
1:1.236 1v.oo2 

1!,458 5.128 
8.4CJ, o.:lCJ4 
1'..32?. 7,179 
7,.109 1',,937 
8,49<; 7,360 
2.9bJ tJ.506 
4,\4H 6,8\7 
9,?.77 7,541 
7,704 9o04q 
·5,511 I0.7<Jtl 
2o7n6 •),50'• 
(>,717 \1,'>4] 
1.112 q.e4:.. 
1Jel.!4 lleloO 
7.704 .~.;)f,C, 

(J. 71 7 Q. 4 71 
F,,'l\4 '),912 
'l.4d;> 7. 420 
4,14'! 5.067 
5,"1;>6 4o147 
<\,QQ9 4,524 
4, \4tl s. 309 
7,\12 5.490 

1.5">2 3,96') 
1.256 3,453 
1.5'10 .1.401 
1.:31'.':> 4.278 
2,070 4,'1\'l 
2o867 4,461 
2,S24 3,035 
\,1:100 2. 76'1 
2,051 lo200 
\ofd'l \ 0 93'1 
3,357 lo44l 
I.'::>;>'> I .s 70 
1 • --i')() 1.) ') 7 
~. :• 1 J 
1 • 4 1 ,, 
I • 'l'l2 
?. • 02') 
t.542 
2. \4 J 
2.\ f>7 
?o09>3 

.3.095 
t.q.;l 

,:'!.''OS 
I ,'170 
2.707 
3.520 
] • 0.3 ~ 
4,036 
3oCI6~ 
So:l7l 
5.477 
)o462 

MALTBY LAGOON·~ OVERTIPPING PROJECl 13,9,78 
4TH PAIR VANE TESTS, POSITIONS AB tOE 

SILVERHILL LAAGOCN NCo 16 
H=2D VANE TESTS, ~AY 1979 

~ . . _ 

ALL STRENGTHS IN KN/~**2 

PARABOLIC STRESS OISTRieUTlON 
rEST DEPTH PEAK STRENGTH REM STRENGTH 

1. 100 
1o 100 
lolOO 
lolOO 
lolOO 
lolOO 
lol JO 
2. 100 
2o100 
2o100 
2olJO 
2o100 
2o 100 
3o1 OJ 
3o 100 
3ol )U 
3o 100 
3o100 
3o100 
3o100 
~. 100 
3o 100 
3o 100 

Oo40 
1o 33 
2oG6 
3o 19 
4o12. 
5o 07 
6., 00 
Oo 4 0 
1. 33 
2o~6 
3o 1 'l 
4o 1 c! 
5o07 
o. 1 f.l 
1'o 10 
2o 02 
2o51 
2·94 
:Oo 22 
J~ss 
.lo 112 
4o 70 
5~ 62 

H=2D H=20 
8o083 lo508 
5o067 2o051 
3o921 2o8~5 
5o610 2ol11 
5o731 3o49~ 
5o791 lo:-27 

10o79B 6o274 
7o118 2o654 
4o 1)64 2o051 
5o48~ 2o946 
9o109 2o473 

14o3S7 7o7?1 
14o5J6 4o826 
lloU23 3o559 

3o6':l0 2o0<;1 
7o 601 3o9el 
7 o .3 2 -~ · 3o 4 ~ 9 
3oH~1 2ee:5 
-7o32; 4o223 
4o464 2o635 
4o223 ~.1~7 
bo9'~7 4o964 
13.3!:15 5o8Sl 

SENSITIVITY 
H=20 
5o360 
2o471. 
1o438 
2o657 
1o638 
4o364 
1o721 
2o6112 
2e412 
1o8'57 
3o663 
1o959 
3o013 
3o322 
lo794 
1o909 
2o 069 
1o362 
1o7\4 
1o574 
1·321 
1o415 
lo433 

HORIZ 
doR40 

17.598 
9. '151. 
Ro4\2 

\2o4~2 

16.2">0 
6.1~0:, 
Q,719 

17.<;f,Q 
If> ,·1 f.>O 

6o451 
9.069 
9. 700 

12.915 
15.546 
1 O, I 53 
II, 713 
13.541 
14.055. 
8.062 

12.357 
!6.466 
11.679 
12.~24 

VfRTICAL 
23.?12 
20.720 
?3.'126 
2' .. 7?0 
3?, I 11', 
3'1.'.)44 
42.453 
2.~ o?.5(> 
?1.346 
10.101 
22.716 
12.769 
19.504 
t l. fl~A 
2.1. 357 
?">.713 
27.'>27 
21 .:351 
2:lo7!lP 
2?.2?f) 
;>0,641 
2So43\ 
31.56?. 
19.!3'15 

364 

nc:-;v/~ 
2.~;>!) 
I, 177 
2o4IQ 
~. 1 711", 
'2.~7c; 

?..403 
6 .(,1'\(1 
;>.;>~') 
1.?\(> 
0.625 
2.<,R'I 
1.41"1 
;> .o II 
O.'.'l> 
t.t;O? 
~. !.i:'."! 
2. ~5-~ 
1.614 
l • r,R7 
?. • 1St. 
I , "> 70 
1. "44 
? , 7.0 I 
'I. 551 



ABPET!DIX A.6.1 Laboratory _consolidation data. 

G~OLING TAILINGS LAGOO~ 12/8, SA~PLE XI 

VERTICAL, HIGHER PRESSYRE, 6" CELL 

ANALYSIS OF CONSOLIOATIO~ DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL ·u•JLK IJE.r•S ITY= 
NATURAL DRY DENSITY= 
FINAL UULK DENSITY= 
FjNAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
(KN/"1**2) 

37o5 
75o 0 

150o 0 
300o 0 
600o0 

1200o 0 
120o 0 

12o 0 
OoO 

VOIDS 
RATiiJ 

Oo 863 
Oo '154 
Oo778 
Oo 712 
o. 658 
Oo 601 
Oo628 
Oo670 
Oo 707 

46o604 
31 o 4 Oil 

Oo933 
1o518 
lo 036 
1o541 
1o173 
2o 002 

STPAIN 
PERCENT 

-3o 619 
-4o081 
-8.025 

-11o405 
-14o242 
~17o187 
-15o785 
-13o 584 
-l1o704 

r 

cv 
I "'**2/YR) 

1 2o 591 
1 ... ~74 
16o·ns 
30o 764 
16o033 
24o .319 

o. 000 
OoOOO 
OoOOO 

MV 
(M**2/MN) 

o. 965 
Oo12 8 
Oo 548 
Oo 24 5 
Oo 10 7 
Oo 057 
o. 016 
Oo 242 
1e 81 3 

........ : 

cc 
o.ooo 

-o. o3o 
-o. 253 
-Oo217 
-Oo 192 
~o. 189 
-0.027 
-o. 043 

o. 000 

GEDLING 12/8 TAILINGS LAGOON SAMPLE PRJ JANUARY 1977 

VERTI-CAL ·DRAINAGE.,. 6 INCH ROWE CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY~ 
NATURAL ORY DENSITY= 
FINAL OULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
( K"/'~**2 I 

1 o. 0 
20o 0 
40o 0 
!IOoO 

160o 0 
320o 0 
11 o. 0 
40o0 

Oo 0 

VOIDS 
RATIO 

Oo 954 
Oo 797. 
Oo 749 
Oo692 
Oo649 
Oo 597 
o. 603 
Oo 615 
Oo649 

4 7. 777 
31o573 

Oo956 
lo512 
1o0?.3 
1o597 
lo 214 
2o002 

STRAIN 
PERCE 'IT 

-s. 21 4 
-a. 166 

- 1 o. 621 
-13o499 
-15o 728 
-18o 34 7 
~.18o067 
-·t7o467 
-·~5o707 

cv 
( "'**2/YR I 

1 3o 21 5 
30o 351 
14o 41 3 
1So721 
1 7o 126 
12o903 

OoOOO 
Oo 000 
o. 000 

MV 
(1•1**2/MN) 

5o 214 
3o 11 ~ 
lo 337 
o. eos 
o. 322 
Oo 194 
Oo01(: 
Oo105 
Oo 533 

cc 
o.ooo 

-c. 192 
-o. 1 <>o 
-Ool !~7 
• Oo 145 
-Oo110 
-Oo012 
-o. 021 

Oo 000 

GEDLIHG 12/8 TAILINGS LAGOON SA~PLE PR2 JANUARY 1977 

VERTICAL DRAINAGE 10 INCH CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CCNTSNT= 
~INAL MOISTURE CC,...TE~T 
·INITIAL VOIDS ~ATIC 
NATURAL AULK OENSITY= 
NATURAL Dqy DENSITY= 
FINAL BULK DENSITY= 
FINAL QRY DENSITY= 
SPECJFIC GRAVITY= 

LOAO 
.. NOo 

1 

PRESSURE 
(KN/'4**21 

1 Oo 0 
40o0 
8o.o 

·vaios 

3 
4 
5 
6 
7 
8 
9 

1f>Oo 0 
320o0 
11 Oo 0 

40o0 
o.o 

RATIO 
Oo 999 
Oo876 
o. 841 
Oo 78< 
Oo 727 
Oo737 
Oo752 
o. 775 

52e458 
·3:!e854 

lo050 
lo489 
Oe976 
lo510 
1e 12.8 
2o002 

STRAIN 
PE~CENT 

-2.546 
-So 50 3 

-10o204 
-12o750 
-15o790 
-15o244 
-14o5:?3 
-13o420 

cv·. 
(!oio*2.IYR) 

1 So 2.)4 
19o951 
zc;.5S5 
1 7o 51 6 
1C:o673 

Oo 000 
Co 000 
Oo 000 

MV · 
'"'**2"""'' 

2o ~4 (: 
2. 03 = 

-(·Oo465 
.. o. 354 

Oo?. 1 7 
Oo 0:10 
Oo 122 
Oo 32 3 

cc 
o. 000 

-0.203 
~-Oo116 
-Oo I 73 
-0.206 
- Oo 024 
- o. 034 

o. 000 

GEDLING 12/8 TAILINGS LAGOON SA~PLE PRJ FEBRUARY 1977 

RADIAL DRAINAGE 6 INCH ROWE CELL 

ANALYSIS OF CONSOLIOATJON DATA 

INITIAL MOISTURE CGNTE,...T= 
FINAL MOISTURE CGNTENT 
INITI~L VOIDS RATIC 
NATURAL HULK DENSITY= 
NATURAL D~Y-DENSITY= 
FINAL BULK. DENSITY~ 
FINAL DRY DENSITY=· 
SPECIFIC GRAVITY= 

LOI\0 
NOo 

1 
2 
3 
4 
5 
b 
7 
(I 

9 

PPESSURE 
( KN/'"1**2) 

1 Oo 0 
2 Oo 0 
->Co 0 
:'\OoO 

1 bOo 0 
:POoO 
II o. 0 
40~0 

o.o 

vo:ns 
I< AT 10 

Oo l",t)6 

Oo665 
Oo635 
Oo60:l 
Oo 544 
Co 4Rl 
Oo 491 
Vo ~ ... l u 
Oo 597 

4lo104 
34o603 

Oo835 
lo562 
lo107 
1. 712 
1o272 
2o031 

STRA pj 
PERC;--'tll 

- '3o 12 0 
-<;.~42 

-10oC:O'i 
-l::?aH.-::!0 
..... 1 7o ·~':.>5 
-l..:fo .292 
-1 1.:: 0 754 
-17o35'1 
•·l2e~5·~ 

cv 
( ~-1**2/Yr1) 

1AOo677 
1 3o Q<;4 
l6oR10 
1 :!o J·3&J 
1 ?.o ,:,') 0 
lt:.(341 

Oo .).)Q 

Co JO (J 
OoOJO 

~v 

( .. **2/Mt-;) 
8ol:.:'O 
lo 221 
Oo ':il 9 
o. 5Jfo 
Oo 4:17 
U-..:-''55 
0o •) ~ t! 
Cc .~4 e 
lo J~() 

cc 
o. 000 

• Co 06 a 
-o~1oJ2 
-Ool.1~ 
• Oo 1 :'16 
-Oo2J9 
- o. 0.:! 1 
-Oo05~ 

Oo O·JO 

K 
M/SEC 
3o 7 7E-09 
7o97F.-1 0 
2eP.9E-0'> 
2o 34E-0'> 
5oJOE-10 
4o31E••I 0 
Oo00£:4-0(1 
OoOOE+OO 
OoOOE+OO 

K 
"'/SEC 
2o14E-013 

· 2e93£;-oe 
5o97F..-09 
4o67tc-09 
1o71f.··OG 
7o77E-l0 
OeOOE.+OO 
OoOOE+OO 
OoOOE+OO 

K 
"/SEC . 
le20E--O'l 
1 o26E-OP. 
4 o 2f:EooOc; 
1o92E-.)'> 
1 o I 2E- 0 ; 
Oo·)0£+00 
OeOOC+OO 
Oo OOE+OO 

K 
"'/SEC 
4o04o'-·)7 
4 0 QtJf_•·VC: 
4o 7t:r-~,l::l 
2·17::'-;)'j 
le72f-~,)\: 

lo~'tf.-·)1'1 
o.oot.+::'O 
Oo ::lO'.+")v 
0o )0-"+)1~ 

-. -··· .,-,_ ........... . 



GEDLING 12/8 TAILINGS LAGOON SAMPLE PR 4 FEBRUAQY 1977 

RADIAL ~RAINAGE 10 INCH ROWE CELL 

ANALYSIS OF CONSOLIDAriON DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RAllC 
NATURAL BULK DENSITY= 
NATURAL DRY DENSITY= 
FINAL HULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURe 
( KN/t~**2) 

1 Oo 0 
20o 0 
40o0 
80o0 

'160o 0 
32 Oo o· 
11 o. 0 
40o0 

o. 0 

VOIDS 
RAT 10 

1o 079 
o. 918 
Oo830 
o. 792 
Oo 732 
Oo674 
Oo686 
Oo61l9 
Oo689 

58o885 
32o570 

1o179 
1o460 
Oo919 
1o 571 
1o185 
2o 002 

STRAIN 
PERCENT 

•'4o 56 0 
-11o985 
-16o 01 8 
~17.76) 

-20o 522 
-23o146 
-22o6JO 
-22o492 
-22o48'; 

/ 

cv 
CM**2/YRI 

485o 3·'l9 
5;o923 
l3o 4'31 

'13o728 
13o007 
1 to 116 

Oo )00 
· Co 000 
o. 000 

GEOLJNG LAGOON 12/8, J~K3 

VERTICAL DRAINAG~, 6~.RO~E CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL MOISTURE CGNTENT= 
FINAL MOISTUnE CONTENT = 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITy= 
NAT.URAL [lPY'DENSITY= 
FINAL ~ULK OENSI.TY= 
FINAL DRY DENSITY= 
SPECJr-IC GRAVITY= 

LOAD 
NOo 

l 
2· 
3 
4 
5 
6 
7 
8 
9 

10 

PRESSURE 
(KN/~**2) 

1 o. 0 
20o 0 

·40. Q. 
80o o 

160o0 
320o0 
ll o. 0 

'40o 0 
lOoO 
o. 0 

VOIDS 
RATIO 

Oo 813 
Oo794 
Oo767 
Oo 728 
o. 684 
Oo627 
Oo642 
Oo644 
Oo665 
Oo 700 

410 91 0 
34o535 
Ooll3'~ 
lo 545 
1o 088. 
1o584 
1o 178 
2o 002 

STRAIN 
PERCENT 

-1oA13 
-2o457 
-3.90 9 
-6. 03 1 
-8o410 

-llo495 
-IOo701 
~.to. 594 

-Go4l'l 
••7o579 

cv 
(~*"'2/Y'l) 

205o791 
13o 22 5 
27o513 
23o829 
1 2o 2?. 7 
1'2o 035 

o. 000 
Oo 000 
c. 0)0 
o. 000 

GEDLING LAGOON 12/3o JNK4 

VERTICAL DRAINAGE, 10" ROWE CELL 

ANALYSIS OF CONSOLIDATIO~ DATA 

INITIAL MOISTURE CCNTENT= 
FINAL MOISTUR~ CONTENT 
INITIAL VUIDS RATIC 
NATUPAL RULK DENSITY: 
NATURAL DRY D~NSITY= 

'FINAL OULK DENSITY= 
FINAL ORY DENSITY= 
SPECIFIC GRAVITY= 

. LOAD 
NO'o 

1 
2 
3 
4 
5 
6 
7 
a 
9 

PRESSURE 
( KN/~**2) · 

1 Oo 0 
20o 0 
4 o. 0 

.80o0 
160o 0 
320.0 
11 Oo 0 

40o 0 
1 o. 0 

VOIDS 
I< AT IO 

Oo d96 
Oo ')54 
Oo 936 
Oo804 
Oo762 
Oo 703 
Oo 710 
Oo 729 
Oe736 

45o106 
33o'693 

Oo903 
1e526 
1o 052 
1e519 
lo13o 
2o002 

STRAIN 
PERCENT·· 
' -Oo379 

-2o549 
- 3o 52 2 
-5.204 
•-7o 41 ~ 

-10o521 
-lOo116 
-9.136 
-8.748 

cv 
( .. **2/YR) 

'7Jo221 
47o111 
7lo2'31 
85o906 
32o204 
3lo769 

Co 000 
Oo 000 
o.ooo 

MV 
(M$$2/~NI 

4o560 
7o 779 
2o291 
Oo 51 c; 
Oo419 
o. 206 
o. 032 
o. 02f: 
Oo 001 

......... 

~v 
(M**2/MN) 

1o 41 3 
lo 059 
Oo 744 
o. 552 
Oo 31 7 
Oo 21 0 
Oo 04 2 
o. 018 
Oo 4 ~I 
2o054 

~v 

(~*"'2/ .. N) 
Oo J79 
2o 179 
Oo 499 

·· .. o. 4] t 
.: .. o. 29 2 

Oo209 
o. 022 
Oo156 
Oo142 

GEDLING TAILINGS LAGCON 12/So JMK 7 

VERTICAL LONG TERM, f:" ~OWE CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL MOISTURE CC~TENT= 
FINAL MOISTURE CONTENT 
INITIAL VOIDS RATIC 
NATURAL OULK DE~SITY= 
NATURAL DRY DENSITY= 
FINAL HULK D~~SITY= 
FINAL DRY Ot~SITY= 
SPECIF.IC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PR!:SSURE 
(1<'4/'1•~2) 

1 Oo 0 
. ~Oo 0 
40o0 
80o 0 

160o0 
3?.0o 0 
11 o. 0 

40o i) 
1 Oo 0 

OoO 

vo lf') s 
~ATI:J 

Oo ~2J 
o •. '321 
o~~~" 
Oo •JO:? 
Oo 77'3 
Oo 73 ~ 
Oo 74 S 
Oo7':57 
o. 76 .J 
0 0 779 

4lo357 
33. 4!11 

Oo829 
1o 54 8 
lo 095 
1oS02 
1o125 
2o002 

STQA!'I 
'?ERCE'lT 

-oc.~4·\ 
- •.)o .14 7 
- OD "lu-1 
-1o•lOJ 
- 2o ol<>S 
•· 4o 3~ ~ 
- 4o 4 7 7 
- 3o 9 J J 
·- Jo :"! v.~ 
-2o ':)':35 

.CII 
c·~••2.1vq1 

469~(\ l)~.l 
141~o>ltl 

102rtl45 
77o 1 i "3 
24o2]3 
22o4 76 

Oo OJ 0 
Co0)0 
Oo J )0 
Oo OJO 

MV 
(M**2/M~) 

Oo ~!1.4 
Oo 10 3 
o. ~t 0 
o. 162 
Co 1 ~H' 
o. 12 7 
Co 020 
Oo Oi!6 
Oo 24 2 
Oo ':.~ 4 

cc 
OoOOO 

-Oo537 
-0.2;12 
•· Oo 126 
-o. 2:>0 
- o. 1 90 
-Oo024 
-o. O'l7 

Oo 000 

cc 
o. 000 

-o. 01)4 
-o. os9 
.. o. 13 0 
-0.14!; 
-Oo1 '3 "! 
-0.031 
-o.oo5 
-Oo03'5 

Oo 000 

cc 
o. 000 

.. o. 1 3 7 
-Oo061 
-o. 1 .J6 -c. 14 0 
-o. 1 )f. 
- o. 01 7 
-o. 042 

c. 000 

cc 
Oo ::lJO 

-OoJ06 
··0· 0:?5 
-0.039 
-OoJ90 .. o., 20 
-Oov15 
-Oo024 
-Co 0.!1 

Oo 000 

K 
11./SEC . 
6o86E-07 
lo30E-o7 
9o5ef::-09 
2o21!:.-0G 
Io6<;E-09 
1oOJE .. 09 
OoOOE+OO 
OoOOE+OO 
Oo OOE+OO 

I( 

II/SEC 
9o 02E~os 
4o34E-o<; 
t;o35E-09 
4o 08~-oc; 
1 o20E-09 
7o85E-1 0 
OoOOE+OO 
OoOOE~OO 
OoOOE+·)O 
Oo OOE+OO 

I( . 
M.ISEC 
8.sc;E-09 
3al EE~oe 
lo10E-08 
lo16E-08 
2o'l1E-1)9 
2o06E-09 
o.ooc:+oo 
OoOOE+OO 
OoOOE+OO 

I( 

'-'/SEC 
.Jo 5~~-01 1 

4o51C:·•Od 
6o6€!!:'••0'< 
3o 8tl:--o·~ 
1.4~=-\,).; 
e. 'I~F··1 'J 
OoJc;·+vO 
OoOv:'+OO' 
·1· J')~ +00 
Jo :).)'. +J•J 

.... ~-- ........ ~ --;·:--· .. -- ........... _. __ ,... .. - ,._,,,... .. --------



GEDLING TAILINGS LAGOON 12/8, jMK 8 

VERTICAL LONG TER~, 10~ RUWE CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL MOISTURE CCNTENT= 
FINAL MOISTURE CGNTENT 
INITIAL VOIDS RATIC 
NATURAL 8ULK DENSITY= 
NATURAL DRY DENSITY= 
FINAL BULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD. 
NOo 

1 
2 
3 
'4 
5 
6 
7 
8 
9 

10 

PRESSURE 
(KN/>4**2) 

1 Oo 0 
20.0 
40o 0 
80o·O 

160o 0 
320o0 
11 o. 0 

40o 0 
1 Oo u 
o. 0 

VOIDS 
RATIO 

o. 929 
Oo 922 
Oo906 
Oo873 
Oo 825 
Oo 722 
Oo729 
Oo 743 
Oo 755 
Oo768 

46o248 
33oo31 

Oo926 
1o520 
1o 0:39 
1o 54 7 
1o158 
2c. 002 

STRAIN 
PERCENT 

Oo164 
-oo 169 
-lo 03'~ 
- 2o 750 
-5.232 

-10o596 
-10o232 
-9o5 )J. 
-8oA49 
-a. 179 
,/ 

cv 
(~**2/YRI 

OoOOO 
30o697 
3lo580 
27o318 
30o075 
26o032 

Co 000 
OoOOO 
Oo 000 
OoOOO 

GEDLING TAILINGS LAGOON 12/8, 

VERTICAL, OEDOMETER 

ANALYSIS OF CON50LIDATION DATA 

INITIAL .MOl STURE CCNTENT= 48o941 
FINAL MO.I ST'J~E CONTENT 34o 31 .3 
INITIAL VOIDS RAT I C Oo960 
NATURAL BULK DENSITY= 1o506 
NltTUI<AL DqY r.ENS IT Y= 1o () 1 1 
FINAL hULK DCP..SITY= 1o471 
.FiliAL DRY Df:NSITY= 1o095 
SPECIFIC GRAVITY= 2o002 

LOAD PRESSURE VOIDS STRAIN cv 
NOo ( KIU~**2) RATIO PERCeNT (M$$2/YRI 

1 
"· 8 

Oo 969 -o. 57f:! 1 6ol) 3 
2 1 9o 6 Oo953 -1.3'35 1 eo 045 
3 39o2 Oo927 -2.61!0 39o436 
4 78o5 Oo 885 -4.71)3 19o169 
5 1se.o OoA24 -7.851 1 !:. 091 
6 31 9o 7 Oo 752 •· 1 I o 4 7 8 25o953 
7 93o2 Oo 765 -10.863 o.ooo 
8 39o2 Oo778 .710o181 o.oao 
9 9o 8 Oo800 . :-9. 0'54 o. 000 

10 OoO Oo628 ~7o662 Co 000 

MV 
( M**Z/MN) 

-Oo164 
o. 332 
Oo431!> 
o. 43 2 
Oo 319 
Oo.354 
o. 01 c; 
Oo 11 7 
o. 24 0 
Oo 735 

JMK 9 

MY 
( M$*2/~.N) 

o. 59'i 
Oo 777 
o. 695 
Oo551 
Oo 405 
Oo 243 
Oo 031 
Oo 142 
Oo 42 3 
10 572 

GeOLING TAILINGS LAGCOP.. 12/f.l, JMK 10 

VERTICAL• OEDOMETER 

ANALYSIS OF CONSOLIDATIOP.. DATA 

INITIAL MOISTURE CCNTENT= 
FINAL ~OISTURE CGNTENT 
INITIAL VOIDS RATIC = 
NATU~AL HULK DENSITY~ 
NATU~AL DRY OCNSITY= 
FINAL OUL~ OEP..SilY= 
FINAL DPY DEN~ITY= 
SPECIFIC GRAVITY= 

LOAD-
NOo 

1 
2 
3 
4 
5 
6 
7 
6 
9 

10 

PRE.SSUPC 
(KN/"1**2) 

9o 8 
1 ... 6 
39o2 
78o5 

159o <;; 
319o7 

93o2 
3So 2 

9oA 
OoO 

VOIDS 
RATIO 

Oo820 
o. fl04 
Oo ?83 
Oo 749 
Oo 699 
Oo640 
Oo 652 
·o. 663 
Oo681 
Oo 700 

42o34'l 
32·. 62!! 

Oo84il 
10 542 
'· 063 1o564 
1o177 
2o 002 

STRA If~ 
·PEflCSNT· 

- 1 o Sill· 
- 2o 3.3 7 
-3o469 
-So 356 
-Bo015 

-11o217 
-10o601 
-10o012 

-9o000 
••7o 978 

CV 
04**2/Yq I 

1 ~. 'J:-!7 
22e5JO 
2 ~. 31 8 
1 e. 7:-16 
20o370 
1 "• 11 0 

OoOOO. 
Co 000 
OoOOO 
Oo 000 

MV 
( ~oo~·•o2/MNI 

1. 54 e 
o. '348 
o. 591 

•1: • Oo 49 € 
·- Oo 345 

Oo 21 e 
Oo 031 
Oo122 
Oo382 
lo 145 

GEDLING TAILINGS LAGOON 12/8o SAMPLE J~K 11 

RADIAL. DRAINAGE, LONG TER~, 6" ROWE CELL 

ANALYSIS OF CONSOLIOATIO~ DATA 

INITIAL MOISTURE CCNT~NT= 
FINAL MOISTURE CCNTENT = 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY= 
NATURAL DRY DENSITY= 
FINAL UULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LCAO 
N!JG 

1 
2 
3 
4 
5 
6 
7 
0 
7 

1J 

I"' RES SURE 
(KN/'-1*02) 

1 o. 0 
~o• o 
40o 0 
BOo 0 

160o0 
320o J 
11 Oo 0 

40o'O 
1 Oo 0 

Oo o 

voins. 
RATIO 

Oo <195 
Oo 929 
Oo 'W2 
o. ·132 
0 0 770 
Oo">94 
o. 7 01 
Oo 712 
Oo 73'::> 
Oo 751 

49o760 
35o784 

Oo996 
lo 502 
1o00) 
1o552 
1o 143 
2o002 

STRHN 
PEP CENT 

-Oo0'\2 
- .1o 362 
-5 0 704 
-3o 237 

-11o 307 
•-- 1 !:o 125 
-14o7'l5 
-14.~''3 
-13o ;)'}5 

-l2e262 

. cv 
IM**2/YRI 

964o\92 
1 Oo•'ll2 
38o569 
3!:o658 
27o 937 
27o·'3'37 

Oo OJO 
Co :>00 
Oc •JJO 
Ce'JJO 

~v 
(M*•'>.IIo\N) 

Oo 042 
3o 321 
lo ?.I 2 
Oo 671 
Oo 41 F. 
Oo 26~ 
Oo019 
Oo 0..;4 
Oo442 
a. 95e 

cc 

o. 000 
~ o. 021 
-o. os6 
-Oo109 
•· Oo 159 
-Oo343 
-o.o15 
-o. 032 
-Oo021 

Oo 000 

cc 

Oo 000 
-o.o5o 
-o. oea 
-Oo138 
-o.2oo 
~o. 2.1s 
-Oo023 
... o. 036 
-Oo037 ··! 

o.ooo 

cc 

o. ooo 
-o.oso 
-o. J:>9 
- Oo 116 
-o. 159 
-o. 1 .. 1 
-Oo021 
-o. J29 
-Oo031 

Oo 000 

cc 
o. 000 

-Oo220 
-oo I '>5 
-o~l">9 
-o.2J4 
···Oo 2">3 
-Oo014 
··OoJ26 
-o.o:l':l 

Oo OJO 

367 

I( 

M/SEC 
OoOO!:+I)'O 
3o16E·~:>9. 
4o27E-O<;; 
3o66E-09 
2o97r-:-o9 
2o"!F.E-09 
OoOOE+·)O 
OoOOE+Oo 
OoOOE+OO 
Oo OOE+OO 

K 
Ill/SEC 
2o 95F.•• :J<) 
3o62:0-0'i 
-'!oS0::-09 
3o27E··O·i 
1 o90c-09 
1o'l6~-09 
OoOOE+OO 
OoOOF.+OO 
Oo )0!::+00 
OoOOf:+OO 

K . 
.M/SEC· 
8ol2E-09 
So'llf:-09 
4o64E-oc; 
2o :;or:··-oc; 
2o1P.;o-or, 
lo2oE-O':• 
OoOOE+uO 
o.oot:+Ou 
OoOOE+Ou 
OoOOE:+OO 

I( 

t~/S!=C 
1o~6·:.-on 
1.1?.10-0f! 
1o4fE···Of. 
7o4~·r:-o'-3 
3o 6:?f:-\).; 1 

,2 .... ,~':'-(P~ 
o.ooc+<JO 
o.Jo:•JC 
OoO:J:'+OI) 
o.uoc+<'O 

'I 
I I 

I 



... 

GEDLING TAILINGS LAGOO~ 12/8e SA~PLE JWK 12 

RADIAL DRAINAGE. LONG TER~e 10" ~O•E CELL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTU~E CONTENT= 
FINAL MOISTURE CONTENT 
INITIAL VOtnS RATIC 
NATURAL 81)LK OF.NS ITY= 
NATURAL O~Y DENSITY= 
FINAL OULK O~NSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PRESSURE 
(KN/'1**2) 

1 Oo 0 
20.0 
40o 0 
80o0 

160o 0 
320o0 
11 Oo 0 

40o 0 
1 o. 0 

o. 0 

VOIDS 
RATIO 

1o 160 
1o012. 
Oo976 
Oo932 
o. 867 
Oo 78'> 
Oo796 
Oo 814 
Oo 833 
Oo852 

57o 94!' 
36o11 0 

I o 16 0 
1o464 
Oo927 
1o4 71 
lo081 
2o002 

STRAIN 
PERCENT 

Oo 000 
-6oa27 
-a. s2 ~ 

-10o566 
•·1 3o 5 76 
-17ol61 
-16o861 
-15o 9">!! 
-15o134 
-14o269 

cv MV 
( M**2/YR I (MoOo*2/MNI 

Oo OJO Oo 000 
49o172 6o a27 
62o212 Oo 912 
a1o 222 Oo 557 
37o198 Oo421 
20o 09a Oo25'i 
.o.ooo Oo 017 
o. 000 Oo 14a 
Oo 000 Oo34 3 
OoOJO 10 020 

/ 

GEDLING iAI~INGS LAGOON 12/Be SA~Pl~·JMK 13 

VERTICAL DRAINAGE. LONG TERMe OEDOMETER .I 

ANALYSIS OF CONSOLIDATION DATA 

~NITIAL WO!STURE CONTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL eULK DENSITY= 
NATURAL ORY D~NSITY= 
FINAL UULK DENSITY= 
FINAL DRY DENSITY= 
~PECIFIC G~AV~TY: ,. 

LiJAD PRESSURE VOIDS 
NOo (KN/'1o+21 RATIO 

1 So 8 o. •731 
2 19o6 Oo899 
3 39.2 Oo a59 
4 7aoS Oo301 
5 156o9 Oo765 
6 31 a. 1 Oo 702 
7 109o8 Oo 709 
e 39o2 Oo721 
9 o. 0 Oo 767 

49o 24 0 
34o577 

Oo986 
1o504 
1oOOa 
1o 525 
\o 13 3 
2o002 

STRAIN 
PERCENT 

•·2o747 
-4o 344 
-6o361 
-9.291 

-11oOY8 
-14o301 
-13o927 
-13o343 
-11.016 

:/ 

cv MV 
(M**2/YRI (lo4**2/M~) 

11o803 2. ao 1 
7o364 lo 675 

1 Co 3 70 1o 075 
... 39 3 Oo 798 
9o71!6 o. 254 
7o080 Oo 223 
o.ooo o. 021 
OoOOO o. 096 
o.ooo Oo685 

GEOLING TAILINGS LAGOON 12/aeSA~PLE jMK 14 

VERTICAL DRAINAG~. LONG TER~. OECO~ETER 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL MOISTURE CONTENT 
INITIAL VOIDS RATlC 
NATURAL OULK DE~SITY= 
NATURAL D~Y DENSITY= 
FINAL BULK DENSITY= 
FINAL DRY DENSITY= 

·sPECIFIC GRAVITY= 

LOAD 
NOo 
.1 
2. 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
(KN/Mo$2) 

9oa 
1 9o 6 
39o2 
7ao5 

156o9 
31 a. 7 
109o 8 

39o2 
Oo 0 

VOIDS 
RAT ILl 

Oo992 
Oo944 
Oo 900 
Oo1'!55 
Oo797 
Oo 727 
Oo 737 
Oo 750 
OoaOO 

5 3o 80 0 
35o 300 

1o077 
1o482 
1Jo964 
lo505 
lo 1 I 2 
2o002 

STRAIN 
PERCENT 

-4o 099 
. ~6o41~ 

-a.524 
-10o706 
-13o453 
••16o842 
-16o 31!0 
-15o730 
-13o351 

cv 
( M**2/YR I 

4e152 
7o493-

. 9o 046 
6o3"1 

11o194 
1 Oo954 

OoOOO 
Oo OJO 
o. 000 

MV 
(M*o~/ ... N) 

4o1aO 
2o 466 
·1. 14 1 
Oot08 
o. 392 

. Oo 24 2 
. ·•. ·o.o27 
; :. · · Ooll 0 

.: - Oo720 

GEOLING TAILINGS LAGOON. 12/8e 5AMP.LE JMK 17 

VERTICAL • OEDOMETERe HIGH PRESSURE 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL MOISTURE CONTENT= 
FINAL MOISTUR[ CONTENT = 
INITIAL VOIDS RATIC 
NATURAL HULK DENSITY= 
NATURAL DRY DENSITY= 
FI~AL HULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
'5 
6 
7 
13 
9 

10 
11 

PRESSURE 
(Ktl/'1•·+21 

I Oo 0 
2 5 .• 0 
4 C:o 0 
9flo0 

19to0 
392. 0 
7,14o 0 

1 56 c;. 0 
392o 0 

9aoO 
Oo 0 

VO I o·i 
JJAT 1'1 

Oo ·)4 6 
Oo •1'"1 I 
Oo H51 
o~ d03 
Oo 750 
Ou !~ 91 
On (~2·"} 
Oo 51\4 
Oo ~:, 7 9 
Oo600 
Oo662 

54o283 
28o496 

1o087 
1o480 
Oo959 
1· 54 8 
1o204 
2o002 

STRAIN 
l>fr>Cf:IIT 

-t)o 7A!i 
-'l 0 l7'l 

~1lo:''10 
-13o~-~'Si.t 
- lf>o I 1 6 
- 1 9o ·>J ·o 
-.21o•115 
-2So'J::":d 
- 2''o 306 
-2!o 303 
•·• 20o 35'3 

cv 
(M**2/Y~) 

7.~55 
1 to II I 
1'>o :195 
I f:o J<.l<l 
.J7o00~) 
14o !..>]~) 
1 'Jo 94 6 
I (> 0 07;.) 

Oo o·>o 
Co OJO 
Oo JJJ 

MV 
(M$.2/MNI 

6o745 
lo 88 ~ 
Oo 079 
o. 52~ 
0 0 2G<; 
Oo 17 2 
Oo094 
Oo 05 o· 
o.ooe 
o. 045 
o. 392 

cc 
o.ooo 

-Oo490 
-0.122 
-Oo1.46 
-o. 216 
-o. 257 
-o. 01 4 
-0.042 
- Oo 031 

Oo OJO 

cc 
o. 0')0 

-Oo 1 OS 
r·Oo 1l3 
-0.193 
-Oo 11 9 
.. o. 207 
- Oo 016 
-Oo026 

Oo 01>0 

cc 
·Oo JOO 

.-Oo160 
•·Oo145 
-o. 1s1 
-c. 1 ~0 
~o.229 
-Oo021 -o. o3o 
• Oo 01)0 

cc 
OoOOO 

- Oo 13A 
.. o.l-'6 
-Oo 159 
-o. 175 
•· Oo 1 l5 
-Oo2i>t\ 
-o.~14 
-Oo025 
-o.oJs 

Oo 0')0 

., 

36.8 

K 
II/SEC 
OoOOE+OO 
1o04E-07 
lo 7":£'-01! 
1o40E••08 
4o85E-o:;· 
1o62E-OS 
Oo OOE+OO 
OoOOE+OO 
Oo OOE+OO 
OoOOE+OO 

K 
Mts·rc 
lo02f-Oa 
3o82E-O'i 
3o4f[·•Q<; 
2o32E-Q9 
7e7.:l::'-10 
4•A9E-1 0 
o.oo=:+oo 
OoOOE+OO 
Oo OOE+OO 

K 
~/SEC 
5o3!'~-o9 
5o 73E-09 
3o22f .. Q<; 
1e20E-O'i 
1o36E-OS 
8o22E-1 0 
OoOO~+OO 
o.ooE+OO 
o.oof+OO 

K 
"/SEC 
1o54~-0I1 
9e4llf.-O;l 
s. ;:!P.t-: .. 09 
?o6t'[-O'l, 
3.4 !r:· .. J~ 
7o7..11·-10 
5 0 ~4<:-10 
2 0 '::1!··1 0 
o.oor.+<liJ 
o.oor.+oO 
Oo O()f: • :JI) 



~. 

Gf.OLING TAILINGS LAGOON, 12/Ro SA~PLE J~K 18 

VEnTICAL o CEOO~CTCR, ~IGH PRESSURE 

.ANALYSIS OF CONSOLIDATION OATA 

INITIAL MOIS~URE CC~TENT= 
FINAL MOISTURC CONTENT 
INITIAL VOIDS RATIC 
NATURAL AULK D!:r-.:SITY= 
NATURAL CRY QE"SITY= 
FINAL BULK nENSITY= 
FINAL DRY DENSIT'= 
SPECIFIC GRAVITY= 

LOAO 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

PRESSURE 
( KN/M**2) 

1 Oo 0 
25o 0 
49o0 
98o0 

196o0 
392o 0 
7B4o a 

156<;oO 
392o 0 

98o 0 
Oo 0 

voms 
RATIO 

la 102 
1o 044 
Oo 998 
Oa 935 
Oo 869 
Oo 81 0 
Oo 740 
Oa667 
Oo 682 
Oa 7 01 
Oo 745 

60a954 
28o604 

1o22 0 
lo'451 
Oa902 
1o'• 75 
1o14 7 
2a002 

STRAIN 
PERCENT 

~s. 336 
-7o926 

-10o011 
••12o857 
-15o819 
-1 do 4 74 
-2la627 
-24o903 
••24a216 
-2Jo3f)4 
-21o 403 

cv 
(M**2/YQ) 

12.o195 
19o642 
21o078 
l!lo 761 
21o237 
19o 867 
21o236 
31o688 

Oo 000 
Oo OJO 
Oo 000 

MV 
(M**2/MN) 

!"o ::33~ 
1o 824 
Oo 943 
Oo 645 
Oo 34 7 
Oo161 
Oo 09'0 
Oo OS~ 
Oo 008 
a. o3e 
Oo 261. 

GEOLING TAILINGS LAGCON 12/Bo SA~PLF. JMK 19 
., 

VERTICAL, LONG TERM, 6" CELL 

ANALYSIS OF CONSOLIDATIO" DATA 

INiTIAL ~OISTURE CCNT~NT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL BULK D~NSITY= 
NATURAL DRY DENSITY= 
FltiAL ElULI< DCNSITY= 
FINAL ORY DENSITY= 
SPECIFIC C.R,\VITY=· 

LOAO 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 

PRC:SSURE 
(KN/M**2) 

1 Oo 0 
20o 0 
40o 0 
BOo 0 

160o 0 
.320a 0 
11 Oa 0 · 

40o0 
1 Oo 0 

OoO 

VOIDS 
RATIO 

1-o 1 65 
1o 090 
1o 032 
Oo 9513 
Oo '357 
Oo 767 
Oo777 
Oo d07 
Oo '15:3 
Oo896 

69a155 
33o793 

1o 3K4 
lo420 
Oo840 
1o412 
1oOS6 
z. 002, 

STRAIN 
PERCENT 

-9o 1 88 
-12a345 
••14o767 
-17ol:l84 
-22ol22 
-2~o901 
-2~o469 
••24o18'' 
-22o 2'J9 
~20o465 

:( 

do~ .. ~~YR) 
::l0o659 
54o249 
39ob36 
1 9o 1 61 
23o727 
1 3o 094 

Oo 000 
OoOOO 
Oo 000 
OoOOO 

MV 
0<~**2/.~N) 

... 188 
~. 47~ 
1o. ]IJ 2 
a. 914 
Oo 1045 
Oo 303 
o. 02 e 
Oo 245 
llo 831 
2o J'jQ 

GEOLING TAILINGS LAGCO" 12/8• SAMPLE J~K 20 

VERTICAL, LCNG TERM.10" CELL 

ANALYSIS CF CONSCLIOAT10~ DATA 

INITIAL ~OlSTURE CCNTENT= 
FINAL MOISTURE CO~lENT 
INITIAL VOIDS RATIC 
NATURAL OULK DE"SilY= 
NATURAL D~Y DENSITY= 
FINAL HULK DENSITY= 
FINAL DAY DENSITY= 

·SPECIFIC r,r{AVITY= 

LOAD 
NOo 

1 
.2 

3 
4 
5 
6 
7 
8 
9 

10 
11 

PR:::SSURE 
( t<N/1~\'<*2) 

10 0 
1 Oo 0 
20o 0 
40o0 
BOo 0 

J60o 0 
320o0 
11 Oo 0 

40o 0 
1 Oo 0 

o. 0 

VOIDS 
RATIO 

1o 04 7 
Oo 989 
Oo 907 
Oo tl65 
Oa 817 
Oo 710 3 
Oo 691 
Oo 703 
Oo 719 
Oo7213 
Oo 737 

57o722 
33o545 

lo155 
1o465 
Oo929 
1o 5'39 
lo152 
2o002 

STRAIN 
PERCENT 

-So041 
~7o73.5 

_.11o510 
-1::!o4"12 
••1So6<:12 
-11'lo199 
-21o 537 
~21o 005 
-20o22'5 
-19o8J2 
-19o405 

cv 
(M**2/YR) 

2<;70a756 
390o134· 

6o 077 
2 Oo 906 
310 565 
27o226 
23a)78 

Oo 000 
Oo 000 
Co 000 
o. 01)0 

MV 
(~**2/MN) 

so. 411 
.3. 152 
4o 092 
1o120 
Oo636 

·l'0.~72 
· Oo25';; 
... o.oJ2 

Oo141 
Oo165 
Oo533 

cc 
o. 0')0 

-0.144 
- Oo 1 58 
-o. 21 o 
-Oo218 
•·· Oo 196 
-o. 232 
- Oo 241 -o. o2s 
-o. o 31 

Oo 000 

cc 
OollOO 

-Oo250 
-0.192 
-Oo247 
-Oo336 
-Oo?.99 
-Oo022 
-o. o69 
-Oo075 

o. 000 

cc 
Oo 000 

. -o. os8 
-Oo270 
- o. 142 
-oo157 
-Oo1SO 
-0.239 
•· Oo 025 
-OoOJA 
-o. 014 

o. 000 

I( 

M/SEC 
2o02E••08 
lo111:-0il 
6o1!':!:-0G 
3o 75E-09 
2o2f!E-09 
9o91::; .. 1 0 
6o4<;E-1 0 
So23E-IO 
OeOO!:'+OO 
OoO~E+OO 
Oo~OE+OO 

I( 

~r.;Ec 
s. 1 :!=.-o 8 
So34!0-06 
1o 70!':-0'3 
5o4'?0:::-0'l 
4o7"!':••09 
1.2~~·-o9 I 
OoOOf.+)l) 
OoOOF+:>O 
Oo00"'+00 
OoOOE+OO 

I( 

M/SEC 
4o64E-05 
3o ~ 1~·· 07 
·7o'7H'-09 
7o210E··O<; 
6o22E-09 
3o14C-O<; 
1o91.lE-J'Y 
o. 00'::+:>0 
Oo\10".+00 
Oo OOE:+Oa 
OoOOE+OO 



. --· 

EAST HElTON LAGOON 109~,8~ACH FINE 

VERTICAL, OEDONETER 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CCNT~NT= 
FINAL MOISTUHE CC~TENT 
INITIAL VIJIDS RATIC 
NATURAL B•JL K DENSITY= 
NATURAL ORY DENSITY= 
FINAL ~ULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD PRESSURE 
NOo (KN/'1*>1<21 

1 9o 8 
2 19o 6 
3 49o 0 
4 98o0 
5 196o 0 
6 392o0 
7 19Bo0 
6 9o 8 
9 OoO 

VOIOS 
RATIO 

lo 083 
1o 034 
Oo943 
Oo 'l55 
Oo 756 
Oo o45 
Oo 651 
Oo 724 
Oo 771 

4 3o 95 3 
30o302 

10 11 9 
10 730 
1o201 
1oiH3 
1 o437 
2o 546 

STRAIN 
PERCEtH 

-1o709 
--~o994 
-8o323 

-12o447 
~t7o129 
-22o 341! 
-22o107 
-113o633 
--16o404 

cv 
I M* •2/YR I 

!:o642 
5o417 
2o579 
3o2J1 
3o663 
3o957 
OoOJO 
Oo 0')0 
OoOOO 

r.cv 
IM**2/MNl 

1o 744 
2o 372 
1o 534 
Oo 91 e 
Oo 546 
Oo 321 
Oo 016 
Oo 237 
2o 796 

....... 

EAST HElTON LAGOON 109~, ~EACH CO~E 

VERTICAL OEOOMETER. 

ANALYSIS GF CQNSOLIOATIO~ DATA 

INITIAL ~OlSTURE CCNTENT= 
FINAL NOISTUgE CONTENT 
HHTI·AL· V·JIDS RATIC 
NATURAL BULK DENSlT~= 
NATURAL ORY OEN~ITY= 
FINAL HULK DE~SJTY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
(KN/M**21 

9o8 
1 9o 6 
49o 0 
9flo0 

196o 0 
392o0 

9Bo 0 
9o R 
OoO 

vot'os 
RATIO 

Oo762 
Oo 745 
Co 719 
Oo -s86 
Oo 653 
Oo 581 
Oo 587 
Oo 5<;7. 
Oo 614 

30o450 
22o 821 

Oo 777 
lo 871 
1 o436 
lo 942 
1o581 
2o 551 

STRAIN 
PERCE~T 

-Oofl58 
··1 0 766 
-3.229 
-5o096 -6· 9o3 

-t'Oo999 
-10o69~ 
-10o091 

_-'9o 11:13 

cv 
( M**2/YR I 

423o803• 
41CJo321 
40t:o:'l77 
594o7.32 
571o78e 
53t:o433 

Co DOO 
Oo 000 
Oo DDO 

EAST HElTON ,LOCATIO~ C ,FINC 

VERTICAL~ OEDOMETER 

ANALYSIS OF CONSOLlDATIO~ DATA 

INITIAL ~OISTURF CCNT~NT= 
FINAL ~OISTUAE CC~lENT 
INITIAL VOIDS RATIC 
NATURAL OULK DENSITY= 
NATURAL CRY DENSITY= 
FINAL HULK DENSITY= 
FINAL. DRY O~NSITY= 
SP~CIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
6 

PRCSSURE 
(KN/M**2·l 

9ol'l 
1 ... 6 
49o0 
96o0 

196o D 
392o0 

9o 8 
o. 0 

VOIDS 
'RATIO 

Oo 774 
Oo 762 
Oo 7 33 
Oo702 
Oo659 
Oo605 
Oo663 
Oo692 

37oD36 
32o928 

Oo 7>37 
·1 o62'1 
1o18'l 
1o669 
1o255 
2o 124• 

STRAIN 
PEHCeH 

- Oo 71 D 
~ 1o 37 3 
-2o933 
-4.735 
• 7o }51) 

-1Do1'3'J 
-6.913 
-~. 303 

cv 
(M**2/Y~I 

fo295 
8o450 
7o 610 
9oD75 
9oD85 
9o402 
Co DDD 

- Oo ODO 

EAST HElTON LOCATION 

VERTICALoCEDO~ETER 

ANALYSIS OF CONSOLIOATION DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL MOISTURE CONTENT 
INITIAL VO!OS RATIC 
N~TURAL HULK DENSITY= 

. NATURAL DRY D[:NS!TY= 
FINAL OULK O~NS!lY= 
FINAL ORY DENSITY= 
SPECIFIC GGAV!TY= 

LOAD PRF.SSURE VOIDS 
Nuo (KN/M**21 RATIO 

1 9o.9 Oo7fl0 
2 19o (J Oo75!5 
3 49o0 Do 72~ 
4 9Ao0 o.r,q~ 

5 1 96o 0 Oo 657 
6 392o 0 Oo 60'3 
7 9o 9 Oo625 
6 DoD Oo 63J 

!"7o452 
48.971 

Oo799 
1o217 
Oo773 
!o ~70 
Do -'353 
lo::l9D 

S TR At N 
P!:RCENT 

-lo054 
.-2o 3fl0 
- 3o Q32 
-5e">0') 
... 7~'399 

-1Doc;Qs 
-Cjo t-:;66 
··9.34-; 

cv 
( M**-~/Y'? I 

1'>~Co0)9 
1034o':'91 
10J4od->6 

971oS78 
'l31o536 
!ld2o YJ2 

Oo OJIJ 
Oo D'>O 

... v 
IM**2/.,.NI 

Co tl75 
o. 935 
OoS07 
Oo 394 
Oo201 
Oo 221 
Do D1 2 
Oo 077 
1o D31 

MV 
(M$~2/MN) 
. ' o. 72 5 

· .. o. t:e1 
. Oo 555 
o. 36'> 
Oo 259 
Oo 167 
Oo 095 
1o7b5 

MV 
01**2/M~) 

!. D75 
10 367 
Oo 5q 1 
Oo:!56 
o,., ?4 7 
01', 1·4 g 
o~ o2 1 
o.,.Jse 

cc 
o.ooD­

~ o. 11) 1 
-Oo230 
- Oo 290 
-Oo33D 
-D.Jo7 
- o. D1 7 
-o.o56 

o.ooo 

cc 
Oo ODO 

•. o. 054 
-o.D65 
- o. 110 
-c. 110 
-Oo238 
-Do009 
.;. Oo 0 1 1 

Oo ODO 

cc 
OoOOO 

-c.cJ'l 
-Oo072 
- Oo 104 
-Oo143 
-Col80 
-Oo036 

OoOOO 

cc 
OoOOO 

-Oo079 
-o. D7o 
- Oo 1 00 
•· Oo 1 37 

.-Oo161 
-OolllO 

OoOOO 

370 

K 
M/Sr:C 
3oO':'E-09 
3o9eF.··O<; 
1o23E-09 
9ol1E-1u 
6o 2CF: .. l D 
3o94(;-10 
Oo DDE+DO 
OoJ0£+0D 
OoODt:+DO 

K 
!o!/SFC 
1e1!:E-07 
1o21L:--07 
6o3CE-.Je 
7o 2f£-Oc 
3o5(;S.,-08 
3o6t!F.-Otl 
OoDDF;+OO 
o.ooc+oo 
OoOOE+OO 

K 
M/SEC 
lo41F:-cc; 
lo7PE~09 
1o31[-ll'l 
1o O<oE-O<; 
7o28E-1 0 
4o'35E-1C 
OovOF.+OO' 
o.ooE+vO, 

I 

K 
!o!/S~C . 
'3e!'~f.-07 
4o)<;F-07 
lof>UF-07 
1o 0 ·rr-o 7 
7o1'5f-·•O>l 
4o D<;f,-J'l 
Oo ODi' +D1tl 
OoOO!:+OO 



EAST HETTON, LOCATION B , TINE 

VERTICAL DRAINAGE, OE~O~ETER 

ANALYSIS OF CONSOLIDATIO~ DATA 

INITIAL ~OISTURE CCNT~NT= 
FINAL ~OISTURE CONTENT 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY= 
NATURAL DRY DCNSITY= 
FINAL BULK DENSITY= 
FINAL DPY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
a 
9 

PRESSURE 
(KN/..,**21 

9o8 
1 ~. 6 
98o0 

196o0 
392o 0 
7134o 0 

98o 0 
9o 8 
OoO 

VOIDS 
RAT I') 

1o325 
1o301· 
1o164 
1o113 
1o 038 
Oo 962 
Oo985 
lo 006 
1o026 

71 0 851 
38oCI97 

1o365 
1o381 
Oo803 
1o:lo~ 
Oo936 
1o900 

STRAIN 
PERCENT 

-1.714 
- 2o 71 '5 
-8o489 

-10o642 
-13o831 
-17o039 
~16o 081 
-15o202 
-1/fp324 

cv 
(M**2/YR) 

8o393 
e. 16S 
8o230 
8o 1 "16 

r3o722 
16o124 

Oo OJO. 
o. 000 
o. 000 

· EAST HETTONo LOCATION B , COARSE 

VERTICAL DRAINAGEi. OEDC~ETER 

ANALYSIS OF CONSOLIDATlO~ DATA 

INITIAL MOISTURE CCNTENT= 
tJNAL M~ISTURE CCNTENT 
INITIAL VOIDS .<lATIC 
NA.1'URAL. BULK DENSITY= 
NATUR~L DRY DENSITY~ 
FINAL BULK ~ENSITY= 
FINAL DRY DE~SITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PRESSURE 
(KN/"1**21 

9o8 
1 9o 6 
49o0 
98o 0 

196o 0 
392o 0 
784o 0 

96o0 
· 9o 8 

Oo 0 

VOIDS 
RATIO 

1o 133 
1 • 11 4 
1o076 
•• 039 
Oo968 
Oo928 
Oo 0'53 
Oo 875 
Oo 903 
Oo 933 

70o27-7 
410 949 

1ol53 
lo297 
Oo762 
1o224 
Oo862 
lo640 

STRAIN 
PERCENT 

- o. 897 
-1.768 
-3o51SJ 
-5.285 
-7o624 

-10o434 
-1.'3.897 
-l'2o909 
-11o6l) 
-.1 Oo 19~ 

CV 
(~**2/YRI 

149o3'J4 
260o737 
321o141 
198o170 
387o427 
179o533 
167.366 

o. 000 
Oo 000 
Oo 000 

EAST HElTON OUTLET, FlhE 

VERTICAL. OEDO.,ETER 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CCNTENT= 
FINAL M015TURF. CCNTENT 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY= 
NATU~AL DRY DENSITY= 
FINAL BULK Dt~SITY= 
FINAL DRY O~NSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

·PRESSURE 
(KN/M**21 

9oS 
.19o 6 
68o6 

11 7o 7 
196o 0 
392o0 

98o0 
9o8 
o. 0 

VOIDS 
RATIO' 

1o 014 
Oo 944 
Oo 84 7 
Oo 766 
o. 679 
Oo 598 
Oo 603 
Oo 643 
Oo674 

51o3RI: 
3lo300 

1o 0715 
lo527 
lo008 
lo 641 

'1o 250 
2o093 

ST~IIlN 
PERC':: NT 

-2.975 
-6o 3·53 

-llo011 
--14o934 
-19o 119 
-23o021 
-22o 749 
-20.84 3 
-19o331 

·CV. 
(M**2/YR) 

1o222 
2o 058 
2o072 
2o372 
3o588 
3o 746 
Oo OJO 
Oo OJO 
o.ooo 

EAST HETTON CUTLETe COIIR3E 

VE~TlCALo OEOO~ET[R 

ANALYSIS OF CONSOL1DAT10~ DATA 

INITIAL VOISTURE CCNTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL UUL~ DENSITY= 
NATURAL ORY DENSITY= 
FINAL OULK DENSITY= 
FINAL DRY OE~SITY= 
SPECIFIC GRAVITY= 

LOAD 
NOe> 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRf::SSI.:RE 
(KN/M**21 

... 8. 
19o 6 
68o 6. 

11 7o 7 
196o 0 
3''12o 0 

'l8o0 
9o8 
OoO 

1111 I D 3 
RATIO 

Oo "!62 
o. '34::1 
Oo 815 
Oo 793 
Oo 76!3 
Oo 726 
0 0 7 32 
o. 744 
Oo7'>1 

49o253 
35o 715 

Oo/:!80 
1o419 

. Oo 950 
1. 385 
t. 020 
1o 76 7 

STRAIN 
PERCENT 

-o.9S7 
•· lo 71'2 
-~o474 
-4o613 
-s. ·~4 2 
-8o20!'3 
-7od55 
-7. :>51 
-bo 134 8 

cv 
(.,**2/YR) 

13~:!. 506 
1 320o494 
12.~7.013 
124eo715 
154Co024 
1492~443 

Co ·J()() 

Oo ;)tJQ 

Oo O:>J 

MV 
(M*'~<2/MNI 

lo 749 
1o 040 
Oo 757 
Oo 240 
o. 182 
Oo 095 
Oo 017 
Oo119 

.1 o_05 7 

MV 
0 .. **2/MN) 

Oo 916 
o. e96 
Oo 622 
o. 364 
Oo 252 
o. 155 
Oo 09<i 

· Oo 017 
o. 169 
1o 633 

...v 
(M>fo*2/MN) 

Jo 03!: 
::lo 55.3 

.;' 1o 01 5 
Oo S9e 

. o. 62 8 
Oo 246 

. Oo 0 I 2 
· Oo 2130 

1o 950 

"'V 
( !-~**2/ ... N) 

o. 976 
i)o 77 8 
Co 366 
Oo ?.44 
Oo 175 
o. 12 3. 
o. 01:! 
Oo 074 
Oo 44 3 

cc 
o. 000 

~o. o79 
-Oo195 
- Oo 1 oc; 
-Oo251 
-0.252 
r·Oo025 
-0.021 

Oo 000 

cc 
OoOOO 

-o. 052 
~ Oo 07 7 
-0.123 
-o. 167 
-0.201 
-Oo248 
•· Oo 024 
-Oo02S 

o. 000 

cc 
Oo 000 

-0.233 
-Oo178 
-Oo347 
-0.392 
-Oo269 
-o. oo9 
-0.040 

o. 000 

·cc 
o. 000 

- Oo 04 7 
-o. 061 
•• Oo 0:; 3 
- Oo 111 
-o. 1 •12 
- Oo 011 
-o. o 1 1 

Oo OJO 

................. -.. ~. 

37.1 

K 
r.I/SEC 
4o5!5E-09 
2o63E-09' 
1o93E-09 
6o10E~to 
7o75E-10 
4o75E-1 0: 
Oo OOE+OO 
OoOOE+OO' 
OoOOE+OO 

K 
loi/SEC 
4o24E-08 
7o24E-OH 
6o 1 'lF.:~oH: 
2Q24E-09, 
3o03F.-OE 
8o64f:""0"i 
5o12E-oc; 
Oo OO"'+:l 0 
OoOOE+OO 
OoOOE+OO, 

.K 
".I SeC 
1o15E' .. 09 
2o27E-oc; 
6o52E-IO 
7o99E-10 
6o9~E-10 
2o !!I:E-1 .:l 
OoJOF.+J,O 
OoOOE+OO 
OoOOE+O,.:J 

K 
IUSF.C 
4o 07F-:17 
.lo I <;[--()7 
lo4<-f-07 
9 0 4(·~··0P. 
a. 3 7F-'J ~ 
5ol!>5f.-Oi' 
OoJOf+-?0 
OoOOf' + . .J·J 
ooo"~··ro 



SILVERHILL LAGOON 16o FINE 

VERTiyALo OEDOMETER 

ANALYSIS OF CONSOLIDATIO~ DATA 

INITIAL ~OJSTURE CCNTEN~= 
FINAL ~OISTURE CONTENT -
INITIAL VOI~S PATIC 
NATURAL AULK O~NSITY= 
NATUkAL D~Y DENSITY= 
FINAL ~ULK DCNSITY= 
FINAL DRY DCNSITY= 
SPECIFIC GRAVITY= 

LOAD 
NDo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PllESSU'<E 
(KI</"1">1<2) 

9o8 
l9o 6 
49o0 
98o0 

196o 0 
3'J2o 0 
98o0 

"• 8 Oo 0 

I/O IDS 
RATIO 

lo233 
1o110 
Oo 912 
Oo 744 

· Oo 598 
o. 370 
Oo406 
Oo 515 
Oo 580 

55o!'31 
23o42.3 

1o380 
1o620 
10 04 0 
1o9 34 
1o567 
2o 476 

STRAIN 
PERC<::-H 

-6o 164 
-1 t .. 331 
-1-\lo 664 
-26o712 
-32o84.l 
-42o437 
-40o910 
-36o351 
-33o607 

CV 
(M**2/YR) 

2o 034 
1o531 
10 800 
2o235 
.3o709 
2o676 
o.ooo 
OoOOO 
o. 000 

SJLVERH!LL LAGOON 16o CO.RSE 

VERTICAL, OEDOMETER 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OJSTURE CCNTENT= 
FINAL MOISTURE CC~TENT 
INITIAL VOIDS RATIC 
NATURAL OULK DENSITY= 
NATURAL DRY DENSITY= 
FINAL OULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY~ 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
(KN/M>1<>1<2) 

9o8 
1 9o 6 
4<;o 0 
98o0 

196o0 
392.0 
98o0 

9o 8 
o. 0 

VOIDS 
RATIO 

10 041 
1o021 
Oo992 
Oo954 
Oo 911 
Oo850 
Oo858 
Oo 878 
Oo894 

63o817 
48o978 

1o 06<S 
1o325 
Oo809 
1o 314 
Oo982 
10 "'71 

STRAIN 
PERCENT 

-1.206 
-2.21·~ 
~.J. 618 
-5o 451 
-7.525 

-10o46d 
-10o092 

-9o 11 7 
-a. 346 

cv 
(M**2/YRI 

461o'l93 
451o 717 
667o598 
64!:o557 
61<;o405 
58t:o 61 9 

OoOJO 
OoOOO 
o. 000 

MV 
(M**2/'I"'I 

6o 289 
5o 619 

-3o.196 
lo791 
Ool:"54 
Oo 72<; 
Oo 090 
Oo 875 
4o400 

.MV 
cr.c••2/~Nl 

~: ~~·~ 
Oo487 
Oo 388 
Oo 224 
o. 162 
Oo 015 
Oo122 
Oo867 

.. (-

3?2 

cc 
OoOOO 

·-o. 409 
- Oo 498 
-o. 557 
-0.495 
-Oo75'3 
-o. o.so 
--co 1 J9 
. o.o~o 

cc 
o.ooo 

-Oo070 
-Oo073 
-o. 126 
•· Oo 14 2 
-o.zoz 
-o. o1·3 
-Oo020 

o.ooo 

I( • 
M/SF.C 
3o97E-09 
2o67E-O<; 
1o 7P.rJ-oc; 
1o24£:-09 
9o81E~1o 
6o0'5fl-1 0 
OoOO!'+OO 
OoOOE+OO 
OoOOt:+OO 

I( 

"'/SC:C' 
1o76E-'-07 
1o47E-07 
1o01E.l.o7 
7o77F""08 
4o30E••08 
2oQ!:E70F. 
OoOOE+OO 
OoOOO::+OO 
o.ooEtoo 



•. 

PECKFIELC L4G08N 7 0 $A~PL5 

VERTICAL DRAI~~GE 6" CELL 

ANALYSii UF CQ~SOLIOATIO~ DATA 

INITIAL ~OISTURE C~~T~NT= 
FINAL t101ST\J~C CCNTCr>T 
INITIAL VOIDS RATIC 
NATURAL BULK OEr>~ITY= 
NATURAL CAY DENSITY= 
FINAL BULK OE~SITY= 
FINAL DRY DE~SITY= 
SPECif-IC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 

PRESSUPE 
(K"'/"1**21 

2C.c 
4 Co C 
SCoC 

16Ce C 
32CoC 
11 Co C 

1 Oo C 
c.c 

VO IOS 
J<ATIO 

t. 164 
lo 127 
1o C74 
10 C2C 
Co 956 
Co 969 ' 
loCC1 
lo C31 

62o7114 
2to'l04 

lo1d'5 
1e4 07 
c. 865 
IolBl 
Co931 
lo890 

STRA !'-4 
PEf<Cf.;rn 

-Oo9q8 
-2~7C8 
-~o I I 8 
~7.571 

-10e50':l 
-9o929 
-8o469 
•·7o OBJ 

cv 
( M$$2/YR I 

1 "• 2 71 
16o372 
28e834 
37o423 
34e4J1 

c. oco 
CoCOC 
c. 000 

PECKFIELD LAGOON 7o SA~PLE 2 

VERTICALo 6" ROWE CELL. 

ANALYSIS OF CONSOLIOATIO~ DATA 

INITIAL MOISTURE CCNTENT= 
FINAL MOISTURE CCNTE~T 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY= 
NATURAL Dqy DENSITY= 
FINAL BULK DEr>SITY= 
Flt4AL DRY· DENSITY= 
~PECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5. 
6 
7 
8 
9 

PRESSURE 
(KN/'~**2) 

1 Oo C 
2Ce 0 
40o p 
8Co C 

160o 0 
32CoC 
11 Co 0 

1 Oo 0 
Co 0 

VOIDS 
RATIO 

lo 242 
1.; 212 
lo161 
1o 072 
10 c 1.8 
Co 936 
Ce949 
o. 988 
•• 064 

~6ol56 
2Bo645 

· ... 10 257 
1e399 
c. 1:!42 
lo 184 
Co921 
1o 900 

STRAIN 
PERCENT 
-Co~46 
-1.974 
-4o23) 
u·8o209 

-1C .. 597' 
-14e201 
-13o65) 
-llo920 
~e. 553 

. CV 
( '!*·*2/YR I 

5e552 
·~.443 
5e24 7 
5o529 
7o902 
7oC32 
Oo 000 
OoOOO 
c. coo 

PECKFIELD LAGOON 7o SA~PLE 3 

VERTICAL DRAINAGE 6" CELL 
: ~ 

ANALYSIS OF. CONSOLIOATIO~ DATA 

INITIAL MOISTURE CONTENT= 
FINAL MOI3TURE CCNTEr>T 
INITIAL VOIDS ~ATIC 
NATURAL BULK OE~5TTY= 
NATURAL C~Y OCNSITY= 
FINAL OUL~ DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD Pfi!OSSIJRE 
NOo (KNIM**2) 

1 1 Oo 0 
2 20o 0 
3 4Co0 
4 ecoo 
5 160o 0 
6 320e 0 
7 16Co 0 
C. 40oC 
9 1 Oo 0 

1C o. 0 

VOIDS 
RATIO 

Ce766 
Co715 
Co678 
Oo 635 
Oo 587 
Oo 544 
OoS49 
Co565 
O.r583 
Co618 

' ! 

42.928 
2'1o848 

Oo810 
1o49C 
lo 042 
le455 
1o166 
lo 88(: 

STRAIN 
PERCENT 

-2o384 
-5o231 
-7.290 
•·9o6f>4 

,-12o278 
-14o671 
~l'lo465 
-13o 539 
-12o512 
-10o60C 

cv 
(!.1**2/YRI 

780o570 
14o528 
l4o377 
2?.o656 
27o438 
3?.. 901 

Co 000 
OoOOO 
Co COO. 
Oo OOC 

PECKFIELD LAGOON 7o SA~PLE 4 

VERTICAL DRAINAGE 6" C~LL 

ANALYSIS OF CONSOLIDATION DATA 

INITIAL ~OISTURE CC~TENT= 
FINAL MOISTURE CONTENT 
INITIAL VOIDS RATIC 
NATURAL BULK CENSITY= 
NATURAL DRY DENSITY= 
FINAL OULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 

PR~SSURE 
( K -.11~ *'*2 I 

20.0 
4Co 0 
'10 .. 0 

1 &Oo C 
320o 0 
160o C 

40o.O 
CoO 

VOIDS 
flATIO 

lo06F.! 
1o 04~ 
lo 009 
Ooq57' 
Oo 90C 
Co 'JC5 
Co 024 
Oo 945 

74o267 
22o934 

lo 133 
1o247 
c. 715 
Oe964 
Oe784 
1e 526 

ST«AIN 
PE JK,:NT 

- 3o 047 
-3o 11')3 
··~JO ·9) 4 
- Uo 2 71 

cv 
(~*•21YRI 

24J3o'IJ~ 
23:JAo !70 
224~ ... ~jJ<) 

-1 Oo •J4 7 "' 
211do':l"'1 
2 ~·no ':l'>] 

-1 ~. 6>i4 
-9o7'i4 
- 9o a 1 8 

Oo ')00 
Oo0)0 
Co OCO 

MV 
(M**21MNI 

Co499 
o. 863 
Oo t'-19 
o. 323 
Oo 199 
c. C31 
Co 162 
1o 514 

""'·••..: 

MV 
(M**21 ... NI 

Co (:410 

'· 33 7 1e 152 
lo 038 
Co32~ 
Oo252 
OeC30 
o. 201 
3o823 

·MV 
(M**2/ri.N) 

2o 3~4 
~. 917 
1o0tl6 
Oo €4 0 
Co 362 
Oo 171 
Co C15 
Ce090 
Ce39€ 
2e185 

"'v 
(M'fc.2/MNI 

1 o·!'?. 3 
Oo '•iJ 7 
Oo '•S34 
Oo ~.~1] 
Co11J2 
o. 0\"' 
Co Oli J 
Oo27.1 

cc 
o. 000 

-o. 124 
-o. 175 
• Oo 178 
-Oo213 
-o. 021 
-c. o 31 

Co 000 

cc 
OoOOO 

-o. 1 oo 
- o. 169 
-o. 298 
-Oo179 
~ o. 27C 
- Oo 02 7 
-Co038 

o.coc 

cc 
Oo 000 

-oo 111 
-o. 124 
•· Oo I '13 
-c.t57 
- Oo 144 
-c. 012 
-Oo028 
- Oo C31 

OoOOO 

cc 
OoOOO 

-c. 0''4 
-Ooll?. 
-Oo174 
•·Oo I ?0 
- Oo 0 I? 
-u.o~2 

Oo OCO 

3'73 

K 
,./SEC 
2o9eF.~09 
4e 3P.F-09 
5e54r.-t'9 
3o 7~~- 09 
2o12F.-O'ii 
OoOOE+OC 
OoOOE+OC 
CeOOE+CO 

K 
M/SEC 
1o11E-oq 
2e?.EE-09 
1o67E-09 
lo 7Er.:-cc; 
7o')7fr-1'0 
5o4SJ:••l C 
CoCO!:+OO 
OoOOE+OC 
OoOOC+OO 

K 
M/SEC 
5o77[•·0 
lo31t'-C 
4ofl4E-O 
4oSC!:~O 
3oOeF.-C 
1e7.~F.-C 
CoOOE+C 
O.')O[+O 

· CoO'.lE•I) 
CoCOE•C 

Ki 
..,,src 
1.1~"-0f. 
:!. 'l!;{ -'l 7 
1 •• -,7~·-')7 
?. • I I ... - ~) I 
1 o -~ • ,• • ·U 7 
:lo'~ :)•· +(} 
Oo•OO;.:• .J 
o.'oct: +U 
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II.ALT'lY WC. 1 , 1.111·• CC~'l3E 

v=RTICAL CEJ0~0.T~P 

A~ALVSIS CF CONSOLIDATIO~ DATA 

INITIAL ~UISTURE CCNTENT= 
FINAL MOISTURE CCNTENT 
INITIAL VOIDS RATIC 
NATURAL BULK DENSITY= 
NATURAL D~Y DENSITY= 
FINAL BULK DENSITY= 
FINAL DRY DENSITY= 
SPECIFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
1 

·8 
9 

PRESSURE 
(KN/M**21 

9o 8 
1 9o 6 
49o0 
98o 0 

196o 0 
392o 0 

98o 0 
9o8 
OoO 

VOIDS 
RATIO 

Oo63~ 
Oo 622 · 
Oo595 
Oo 559 
Oo 51 2 
Oo439 
Oo448 
Oo465 
Oo478 

27o974 
21o424 

Oo652 
1o'l0'5 
1o410 
1o 914 
1o576 

. 2o3"29 

STRAIN 
PERCENT 

-1io00·) 
-1. 7R9 
- 3o 421 
-5o632 
-8o474 

-12.842 
••12o316 
-11.316 
-10o527 

·-= 

. cv 
( M*•2/YIH 

1229o 1.i5 
1207ol21:l 
1177~671 
1131oo71 
1072o573 

9?0o979 
o.ooo 
OoOOO 
Oo 000 

MV 
( '1**2/114~1 

1o 13!: 
o. 814 
o;.-565 
Oo467 
Oo 307 
Oo 24 4· 
Oo 021 
Oo129 
Oo 908 

MALTBY LCCt<TION 2, l}o5M, l1o11o78 

VERTICAL, OEDO~ETER 

ANALYSIS OF CONS0LIDATIO~ DATA 

INITIAL "'OISTURE CCNTENT= 
FINAL MOISTU4E CCNTE~T 
INITIAL VOIDS.PATIC 
NATURAL BULK DENSITY= 
NATURAL CRY DENSITY= 
FINAL BULK DENSITY= 
FINAL DRY DENSITY= 

----~PEClFIC GRAVITY= 

LOAD 
NOo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

PRESSURE 
( KN/~1"'*2) 

9o8 
1 9o 6 
49o0 
9'3o 0 

196o 0· 
392o0 

98o0 
9o 8 
Oo 0 

VOIDS 
RATIO 

Oo687 
o. 671 
Oo636 
Oo 61 3 
Oo 57·a 
Oo 543 
Oo 551 
Oo567 
Oo 582 

112o799 
2'Jo712 
.. o. 711 
1o386 
Oo971 
1o '362 
1o050 
1o 661 

STRAIN 
PERCENT 

-1. '3 75 
-2.304 
-4o371 
•· So 72 7 
-7. 75':.' 
-9o84l 
~9.330 
-8.401 
-7o557 

cv 
! 114**2/YR) 

9<;o798 
24o374 

128o633 
1 78 .. soo 
'a8.002 
97o6iH 

Oo ()()t) 

OoOOO 
Oo 000 

MV 
( "'**2/'-11\j) 

1o 403 
Oo 961 
Oo 72 C 
Oo 28'7 
Oo 220 
Oo 11 E 
Oo 019 
o. 116 
Oo940 

MALTVY LOCATION 1o 1o2Mo11o11o78 
I 

VERTICAL OEDO~ETER 

ANALYSIS OF ~ONSnLIOATIO~ DATA 

.JNITI.t.L p.IQ I.S TURE CCNTEr.T= 62o479 
FINAL MOISTURE CCNTENT 28o10'3 
INITIAL VOIDS RATIC 1o204 
I~ATURAL BULK tJENSITY= 1o 421 
NATURAL DRY D~NSITY= Oo874 
FINAL OULK DE~SITY= 1o 261 
FINAL ORY DENSITY= Oe984 
SPECIFIC GRAVITY= 1o927 

LOAD PRESSURE VOIDS STRAfN cv. !>IV 

NOo (t<N/'1**2) RATIO PERCENT !~>~••2/YR) (!>!**2/'1N) 

1 9o 8 1o154 • 2o 2 713 4o540 2o:l24 

2 1 ... 6 1o 093 -Eo 018 6o 'l17 .2. 883 

3 4·9. 0 1o028 -7o 9Fl1 eo 148 lo 054 

4 <l8o0 Oo Q70 ..... J Oo ?#jH 1 Oo USS Oo507 

5 196o0 Oo930 -12o427 eo719 Oo 246 

6 392o 0 Oo 870 -15o142 1 3o 013 Oo 15€ 

.7 98o0 Oo 876 -14ofl60 OoOOO Oo 01 I 

8 9o8 OoR95 ,--·14oOJ·J Oo 000 -o. 11 3 

9 o. 0 Oo 958 -11ol70 o.oeo 3o 373 

' :-:.\~:__: 
}.~·-

/ 
... 

MALTBY o1e &-1 o 9to4o • FINE 

VERTICAL OEDO~ETER 

ANALYSIS CF CONSOLIDATIOro. DATA 

INITIAL "''JISTURE CENT!:NT= 72o"'98 
FINAL MOISTURE CONTENT 48o759 
INITIAL VOIDS RATIC 1o672 
NATURAL BULK DENS! TV= 1o490 
NATURAL DQY Df:NSIT'r= Oo864 
FINAL OULK Oi:~S IT Y= 10 779 
FINAL DRY DEN51TY= lol96 
SI'ECIFIC GRAVITY= 2o J09 

LOAD PRESSURE IIOIOS STRAIN cv '1Y 
NOo (KN/~*t<2) R .~ T 10 PERC[NT' (M**21Y41 (M**2/114ro.l 

1 ... ~ lo 4011 -'lo :\t>l Je269 1 Oo 062 
2 1 Go 6 10] 1 () ·-1 Jo .1~:.1 Jo OJ 1 Jo916 
3 49o0 10 142 -1Got~i:'3 3o ();?~ 2o !;53 
4 <llloO Oo 9Q7 -25o2A5 :!o019 1o 390 
5 196o0 Oo 137 0 - 20o q~·~s 4o 73>:! Oo e48 
6 3~2.0 Oo 70::3 -.~6o.OB7 4o055 Oo 444 
7 98o0 Oo 745 ~ J4o (ll}) Co '1•)0 "• 074 
8 9eA o. 34:5 - .:'0..?'724 Oo 000 Oo!:54 
9 Oo 0 Oo 931 -27o "!~3 Oo 'lOO ... 728 

cc 
OoOOO 

-o.043 
-o. o6e 
-Oo121. 
-Oo156 
-0.240 
-o. o14 
-Oo 017 

OoOOO 

cc 

Co 000 
-Oo053 
-Oo0tl9 
~oo 011 
-Oo 115 
- Oo 119 
-o. o1s 
-o. o1 6 

Oo 000 

cc 
o. 000 

-o. 202 
- Oo 1 '> l 
- Oo I 6 7 
- o. 1 58 
•. o. 1.;9 
~o.o1o 
-Oo019 

o. 000 

cc 

o. 000 
-Oo3J7 
-oo 437 
-·Oo49l 
-0.422 
-Oo54l 
... o. or;2 
-Ool 01 

OoJOO 

37_4 

I( 

II/SEC 
4o3:!E-07 
3o OEE-07 
2o0ff.-07 
1o64f.n07 
1oO?E-07 
7o48E-O~ 
OoOOE+OO 
OeOOE+OO 
CfoOOE+OO 

K 
M/Sf:C 
4e 34E••O'l 
7.2-;f.-09 
?o97r--o~ 
1 o6 OL··O~ 
Soq-;:•Olj 
3o4<;t;:-0~ 
Oo'JO!:O+•JO 
OoOOE+OO 
Oo:>OE+OO 

I( 

M/SL:C 
Jo l. 7[ .. ()<; 
6o 11•:-•J'J 
2. '>lr-o<J 
le5'.~F-Ot) 
6o64(-10 
6o 3Gf:•·l 0 
OoOOf:+OO 
OoOOf.+OO 
o.ooE+OO 

1<: 
M/SF.C 
1o 0.2F.-Ml 
Jo64F-O'> 
.2oiiOf;.-09 
1o~2E·-O<; 
9.5,":.:-1 0 
s. 58£.-1 •> 
o.oo:-•-.>o 
OoOOC+O'l 
o.oor+oo 

I I 
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APPENDIX A. 6. 2 IN-SITU PERMEABILITY DETERMINATION 

The data for in-situ permeability determinations were collected by 

Mr.M.J.Henderson, with some assistance from the current writer. The 

complete data and results are presented by Henderson (1979). However, 

the interpretation of the data is apparently in error, and consequently 

so too are the permeability values quoted by Henderson. Therefore 

amended va~ues are quoted herein. In the case of the constant and falling, 

head tests, the shape factor used by Henderson is after Donnan and 

Aravonici (1961) and has a value of 130mm, As shown in chapter 6.3. 

Al-Dahir and Morgenstern(l969) and others show that the·work of Donnan 

and Aravanici is in error, and the shape factor used herein is 150mm 

after Al-Dahir and Morgenstern. Therefore the in-situ permeability 

values in Tables A.6.2.1 and A.6.3.1 differ from those of Henderson by 

a constant factor of 130/150, 

In the case of the interpretation after Gibson (1963), Henderson 

(1979) uses as the radius of the piezometer a value of lOmm, which is 

the radius of the cylindrical piezometer. However, the radius used 

should be that of a sphere with the same infiltration surface area, which 

gives a value of 12mm. This difference is more serious than the error 
r..,.. 
f ·\' 

invol·ved in the constant and falling head tests, because the radius.: .. ~ppears 

to the power of four in the calculation of the in-situ coefficient of 

consolidation. The results in Tables A.6.2.2. and A.6.3.2 therefore 

also differ from those quoted by Henderson by a constant factor. 

I 
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Table A.6.2.1 Constant head in-situ permeability deter~inations, lagoon· 109B 

East Betton. 

Lac- Permeability Lac- Permeability Lac- Permeability 

at ion m/s X 10- at ion m/s X 10- at ion m/s X 10-

1 8.57 -6 23 8.93 -7 45 1.28 -6 
2 6.99 -6 24 4.55 -7 46 6.26 -7 
3 1.53 -5 25 1.72 -7 47 1.76 -6 
4 1.10 ,..5 26 5.14 -7 48 4.18 -7 
5 9.71 -6 27 5.36 -8 49 1.17 -6 
6 1.40 -7 28 9.36 -5 50 1.01 -6 
7 2'.70 -6 29 4.00 -7 51 5.48 -7 
8 1.59 -5 30 1.31 -7 52 5.88 -7 
9 7.76 -7 31 1.49 -5 53 3-93 -7 
10 1.98 -5 32 1.96 -7 54 3.18 -7 
11 1.88 -6 33 2.03 -7 55 2.08 -6 
12 4.71 -6 34 2.94 -6 56 5.10 -7 
13 2.01 -6 35 5.01 -6 57 2.46 -6 
14 8.67 -7 36 6.20 -6 58 3.66 -6 
15 1.92 -6 37 1.46 -7 59 2.36 -6 
16 5.48 -7 38 1.27 -5 60 2.96 -8 
17 3.94 -7 39 4.50 -7 61 8.75 -7 
18 8.75 -6 40 2.11 -6 62 8.84 -7 
19 2.34 -7 41 1.37 -6 63 8.42 -8 
20 1.53 -5 42 5.05 -6 65 7-57 -6 
21 2.86 -6 43 5.62 -7 65 7.07 -9 
22 9.19 -7 44 1.59 -6 66 - no flow -

67 5-36 -9 

Table A.6.2.2 In-situ permeability and coefficient of consolidation, 

. after Gibson( 1963). 

Lac- Permeability c Lac- Permeability c 

m/s - 2 v 
m/s 

- 2 v 
at ion X 10 m /yr ation X 10 m /yr 

3 1.41 -5 278 47 2.74 -6 23.3 
7 8.85 -7 0.200 47* 1.48 -6 17.9 
9 .1.16 -6 21.7 48 3-29 -7 3.41 
15 1.23 -6 1.62 49. 1.11 -6 255 
17 3.46 -7 4.22 50 9.92 -7 288 
21 2.79 -6 52 6.99 -7 5.68 
23 8.69 -7 54 3-09 -7 
35 4.06 -6 19.8 55 2.03 -6 
37 1.27 -7 4.50 57 2.23 -6 364 
39 4.04 -7 4.23 58 4.02 -6 77-9 
39* 4.49 -7 9.28 59 2.34 -6 
40 1.70 -6 14.2 61 6.97 -7 7.20 
41 9.34 -7 3-39 63 7.84 -8 27.0 
44 1.48 -6 27.2 64 4.55 -6 2.19 
45 1.01 -6 3.11 65 6.54 -9 0.659 
46 3.88 -7 1.47 67 6.30 .:..9 0.0547 

* Two interpretations possible, the former is referred to in the·text. 



APPENDIX A.6.3 IN-SITU PERMEABILITY MEASUREMENTS, SILVERHILL. 

Table A.6.3.1 Constant and variable head test results. 

a. Constant head. 

Loc- Permeability 
at ion m/s X 10-:' 

8 6.61 -6 
9 2.44 -5 
10 5.25 -4 
11 3.07 -6 
12 7.15 -4 
13 4.00 -4 
14 4.69 -7 
14* 1.53 -7 
16 4.11 -4 
17 9.96 -6 
17* 3-73 -6 
18 4.90 -7 

·.:Retests carried out at 

16* 5-50 -4 
16* 5.38 -4 
16* 1.29 -3 

b. Variable head tests. 

15 
19 
25 
25* 

1.87 -8 
1.19 -8 
1.97 -9 
1.33 -9 

Loc-
at ion 

21 
22 
23 
26 
26* 
29 
31 
35 
36 
37 
39 

later dates. 

36* 

27 
31 
3.8 

Permeability 
m/s X 10-

5-07 -4 
1.34 -6 
1.76 -6 
3.10 -7 
7-71 -8 
1.66 -4 
8.05 -4 
6.71 -4 
5.09 -4 
1.55 -8 
8.65 -8 

2.32 -5 

8.41 -9 
2.56 -8 
1.85 -9 

* Where more than one interpretation is possible, or there has been 
a retest, the first value is that referred to in the text. 

Table A.6.3.2.In-situ permeability and coefficient of consolidation, 

after Gibson (1963). 

Loc- Permeability c 
at ion m/s X 10 m2/§r. 

8 6.47 -6 
9 2.30 -5 480 
14 3.08 -7 0.879 
17 9.67 -6 18900 
18 3-99 -7 1.80 
22 1.30 -6 
23 1.61 -6 139 
26 2.97 -7 7.22 
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