
Durham E-Theses

The design and implementation of the Durham

university seismic processing system

Poulter, Michael John

How to cite:

Poulter, Michael John (1982) The design and implementation of the Durham university seismic processing

system, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/7778/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7778/
 http://etheses.dur.ac.uk/7778/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

The Design and Implementation

of the Durham University

Seismic Processing System

By

Michael John Poulter

A thesis submitted for the Degree of

Doctor of Philosophy at the University of Durham

Graduate Society March 1982

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Abstract

A NERC Research Grant, in late 1978 permitted the Department

of Geological Sciences, at the University of Durham, to purchase a

pdp 11/34 minicomputer system. Together with a pdp 8/e, already

possessed by the Department, this system was intended to fulfill

two roles; provide a computer tool for research work into seismic

reflection methods and provide a system for production processing

of seismic reflection data acquired by the Department, mainly as a

result of marine geophysical investigations.

This thesis describes the design of Systems level software,

and its implementation, to allow the computer systems to be easily

used as a general research tool, and the design and implementation

of a suite of programs, to provide the basic facilities of a

seismic reflection processing system. At the end of this work it

was possible to reach a number of conclusions on how both the

hardware and software could be developed to provide a more

powerful system for the future.

Acknowledgments

I would like to thank the NERC for funding this project and

Professor Batt for providing me with the opportunity of carrying

out this work in the Department of Geological Sciences at the

University of Durham. I would also like to thank the members of

staff of the Department, especially Neil Goulty and my supervisor

Harry Peacock for all their help. In a technical project, such as

this, one is always at the mercy of the equipment and so I would

like to extend many thanks to the technical staff of the

Department, in particular George Ruth and Dave Asberfy, for

helping me to keep it all working.

In difficult times, one is always lucky to be surrounded by

friends and so I extend my thanks to the many fellow students who

provided me with help and advice, with a special mention for Alan

Nunns and Tom Armstrong, whose example helped me to complete this

work.

A special vote of thanks is due to my employers, British

Petroleum Ltd, for allowing me to use their facilities in

producing the text and diagrams in the thesis.

Finally the most important thank you must go to my Wife,

Anne, without whose patience and loyal support none of this would

have been possible.

Contents

Chapter 1: Introduction

Introduction To Hardware

Project Aims 2

Scope of the Work 4

Chapter 2: Seismic Reflection Principles 6

Data Acquisition 7

Recording 9

Processing 11

Summary 18

Chapter 3: Hardware and Systems Software 20

Hardware 20

Systems Software 23

Linking the Two Minicomputers 26

RT-11 to OS/8 Transfer 27

Floating Point Transfer 28

Tape Handling 29

Tape Archiving 32

Processing System Tape Subroutines 33

Memory Management 35

Virtual Memory Input/Output 38

Plotting Software 42

Contouring 43

Seismic Displays 44

IBM Software 46

Summary 47

Chapter 4: Seismic Processing Software 48

Overview 48

Overall Design Considerations 49

Data Format 50

Data Input and Output 53

Seismic Processing System 54

Synthetics 55

Demultiplex 57

Sort 63

Pre-Stack Data Analysis 65

Pre-Stack Processing 67

Edit 68

Polarity Reversal 69

Gain Application 69

Muting 71

Frequency Filtering 72

Bandpass Filtering 73

Bandreject Filtering 73

Deconvolution 74

Wiener Spiking Deconvolution 75

Prediction Error Deconvolution 80

Trace Normalisation 82

Pre-Stack Processing Summary 83

Velocity Analysis and Stacking 84

Coherence Velocity Analysis 87

Velocity Analysis Display 89

NMO corrected gathers 90

Standalone Interpolation 93

CMP Stacking 94

Post-Stack Processing 96

Edit 96

Gain Ramps 97

Mute 97

Deconvolution 97

Frequency Filtering 98

Normalisation 99

Post-Stack Program:- Summary 99

Post-Stack Mix 100

Stacked Section Plotting 101

Header Interrogation 102

Migration 103

Kirchhoff Migration 104

Finite Difference Migration 112

Summary 119

Chapter 5: Using The System 120

Data Flow 121

Jan Mayen Data Processing 122

Jan Mayen Processing 125

Caribbean Arc 1980 126

Caribbean Processing Parameters 131

Summary 132

Chapter 6: Conclusions 133

Future Software Development 133

Demultiplex 134

Data Exchange Format 135

Land Data 136

Other Possible Software Additions 138

Vibroseis 138

Improved Filtering 139

Amplitudes 141

Summary 141

Hardware Evolution 142

Future Evolution Path 147

Summary 149

References 151

Appendix 1 162

Demultiplex:- MPDMXA 163

Sort :- MPSORT 167

Pre-Stack Processing :- MPPRST 170

Interactive Spectral Analysis Program :- MPFANL 176

Velocity Analysis :- MPVEL 177

NMO corrected gathers :- MPCDP 179

CMP Stacking :- MPSTAK 181

Post-Stack Processing :- MPPOST 185

Post-Stack Trace Mix :- MPTMIX 191

Trace Sequential - Time Slice .- MPSLIC 193

Time Slice to Trace Sequential :- MPUSLC 194

Finite Difference Migration :- MPFD15 and MPFD45 195

Kirchhoff Migration Operator Design :- MPOGEN 197

Kirchhoff Migration :- MPKMIG 199

Stand Alone Interpolation :- ANINT 201

Internal Header Interrogation :- MPHIST 202

Synthetic CMP Gathers .- ANSEI 203

Synthetic Sections :- MPSYNS 205

Velocity Analysis Display :- MPVCON 208

Section Plotting :- MPSPLT 209

Section Plot Background :- MPPBLK 211

Section Plotting Merge and Post Process :- MPMERG 214

Gather Plotting(Small Trace separation) :- MPSPLI 216

Gather Plotting(Large Separation) :- MPGPLI 217

Quick Raster Plot Processor :- MPPROC 218

General Purpose Raster Merge and Output :- MPMERP 219

Appendix 2: 221

Tape Subroutine Descriptions 222

Floating Point Transfers 226

Extended Memory Input/Output Routines 228

Microcode Routines 230

Plotting Subroutines 233

Utilities 235

IBM NUMAC MTS Software 238

Chapter 1

Introduction

Introduction to Hardware

The Multichannel Seismic Reflection technique is probably the

most important single geophysical exploration tool in full time

use. However, in exploiting the method fully vast quantities of

digitally recorded data are produced. The basic aim of the method

is to produce a display from this mass of data which will enable a

geological interpretation. In order to produce a final section

from which geological information may be derived, several quite

sophisticated processing techniques are applied to the data, using

powerful computer systems.

The Department of Geological Sciences of the University of

Durham has interests in two aspects of the multichannel seismic

reflection technique. First, with an established program of

marine geophysical investigation, which in the past had utilised

single channel seismic reflection, it was only natural that the

department would want to employ the multichannel seismic

reflection method as a tool in its geophysical investigations.

Secondly, research into seismic acquisition and processing methods

had been undertaken in an attempt to improve the techniques

employed within the seismic reflection method.

Page 2

Prior to October 1978 research projects investigating

multichannel seismic methods have been undertaken using limited

amounts of synthetic data on the NUMAC IBM 370. Also small

qmounts of m~rine d~t~ had been p uceo:.~t:d u.::~ h1g tbt: fa~..; l ll tl.es of

the departmental seismic refraction laboratory. However these

computer systems were not capable of handling large quantities of

seismic reflection data.

Some data had been processed by geophysical companies, but it

was fairly obvious that a specialist computer system was necessary

to allow seismic reflection data to be handled in the department.

The computer hardware forming the building blocks for this

system was provided by a NERC grant in October 1978. The

equipment purchased with this grant was a Digital Equipment

Corporation pdp 11/34, a FPS AP120B array processor, a Pertec 20

Megabyte disc drive and a Versatec printer/plotter. Together with

a DEC pdp 8/e and three tape transports already owned by the

department, this equipment was assembled into the hardware

configuration shown in Fig 1.1.

Project Aims

The software available with the two minicomputers consisted

primarily of the operating systems, Assemblers, Fortran compilers

and editing and file handling utilities, as would be expected with

most minicomputer systems.

Versatec e I ectr-ostot ~ c p-- 1 nter-/ pI ot. -t.Er"-

T w, n Cal cc:np Fl q::p<d d, sk c:::r--1 o....-es

CRll/L/M

pep 11 2SB<b rnem:::::r-:::l l.------1 F'*Be 24kw ~

Partee CG-rb 01 sc:: D- 1 o....-e

C, p-.er ffX) bp 'I T c:pe D=cks

~·_Q

Corrp..Jter- corotrol I ec::l

ul tr-asc::n 1 c tc:rk.

RT -11::0 5.::Jst.em Cc:r-rso I e) ClS-8 ~tern Ccr-=ol e

W-la::B 8kw rrer"CII :d

F 1 g 1 • 1 : 1----b---c:L..ce cc:::r-r-f 1 g-rc:Jt 1 c:::r~ o-F t.l--e [:Lr+--c:m I..J---i 1 ~s: 'i i:J.d s:e 'i s:rn 1 c ~ 1 'B ~t:.ern

Page 3

The main purpose of this project was to provide the basic

software for processing seismic reflection data. This software

package was to contain most of the basic techniques which would be

available on the commercial systems used in industry, so that it

would be capable of producing a geologically interpretable, final

section from field tapes. Most systems utilised by industrial

concerns employ considerably more powerful computers, and those

that are based on minicomputers, such as the TIMAP systems,

provide a very specialised operating environment, orientated

almost solely around seismic data processing.In this respect a

different set of design criteria had to be adopted from those

which would have been applied in developing a commercial seismic

processing system.

It was important that this system should retain much of the

flexibility of a general purpose computing system as well as being

capable of providing a reasonable data throughput when processing

seismic data.

As can be seen from Fig 1.1 an ultrasonic tank for producing

synthetic data is attached to the system, via an interface with

the pdp 8/e. It was envisaged that this and the other specialised

peripherals on the system, such as the Array Processor(AP) and the

electrostatic plotter, should be available as easily used tools,

to aid research work dealing with seismic reflection methods.

Therefore, once the computer hardware had been installed,

software was developed which would allow reasonably rapid

processing of seismic reflection data, while at the same time,

retaining all the flexibility and power provided by the basic

Page 4

minicomputer system. A final constraint on the design of the

software was that it had to be easily updated. The hardware in

existence is envisaged as only the starting point for what should

be a continually evolving system. !~nee the software design had

to take account of the desirability of minim~ing software

modifications in the event of any hardware upgrades. It was

anticipated that the design of the software, on completion would

help indicate the areas where hardware upgrades could bring about

increase in speed and flexibility, with a minimum of software

effort.

Given the constraints mentioned above, it was obvious from

the outset that it was necessary to produce software of two quite

different types: systems level software and utilities to enable

efficient use to be made of all the peripherals attached to the

system and allow data transfers between the two minicomputers, and

software concerned solely with the processing of seismic data.

Although it was necessary for some of the systems level software

to be machine specific, the remaining software was designed to be

as machine independent as possible.

Scope of the work

This thesis documents the design and implementation of the

software which was developed for the minicomputer system as

described above. A brief description of the principles of seismic

reflection processing is given in chapter 2, in order to provide a

basic introduction to the techniques necessary in a seismic

processing system. Chapters 3 and 4 contain descriptions of the

Page 5

systems level and seismic software, respectively. A brief

description of how it is envisaged that the system should be used,

together with a description of two test runs is given in chapter

5. An objective appraisal of the system,as developed, with

suggestions for improvements and a possible evolution path for

both the software and the hardware is given in chapter 6.

Listings of the software, together with desaiptions of their input

parameters, are provided in the appendices.

Page 6

Chapter 2

Seismic Reflection Principles

The seismic reflection method is probably the most widely

used geophysical

quantities of data.

tool, and certainly produces the largest

As warrants such an important technique the

principles behind it are well explained in standard texts (Waters,

1978; Dobrin, 1977) and review papers (O'Brien, 1977). However,

it is well worth a brief consideration of some of the principles

of acquiring and processing modern seismic reflection data, in

order to introduce some of the considerations involved in

designing a basic processing system. Therefore a descriptive

account of seismic methods is given in this chapter and the theory

of the methods applied is given in chapter 4.

Although more and more data is being acquired using three

dimensional techniques, the vast majority of seismic reflection

data is still acquired in the form of two dimensional profiles,

and this is the type of data which will be considered in this

thesis.

Page 7

Data Acquisition

The advent of quick and flexible digital computers in the mid

1960's was probably the main driving force behind the almost

universal acceptance of the Common Mid Point(CMP) method (less

accurately often referred to as Common Depth Point ,(CDP) method)

of seismic data acquisition.

The basic principle of the method is shown in Fig 2.1. In a

horizontally stratified medium, shots and receivers can be

arranged on the surface such that the seismic ray paths from the

shots to the receivers, have impinged on the same subsurface

point, below a common midpoint on the surface. After suitable

adjustment to take into account the different travel times of

primary reflections for different shot-receiver offsets(NMO

correction), the seismic traces can be added together(stacked) to

produce a trace with improved signal-to-noise ratio, the primary

events having been reinforced relative to the noise. This stacked

trace can be displayed as a single trace at the Common Mid-Point.

The random noise on the traces, when summed over N traces

gives a reduction in amplitude of N**0.5, while the primary events

linearly reinforce. Therefore there is a resultant increase in

the signal to noise ratio of N/(N**0.5) (Meyerhoff, 1966). An

added bonus of the method is that secondary reflections(Multiples)

are not aligned by the NMO correction used to align the primaries

and so they also tend to be reduced in amplitude by stacking.

CMP Pos1t1on

5 5 5 5 5 R R R R R

F1g 2. 1 Common M1d-Po1nt Geometr~

Ol
E

,.....
f--

O-f-fset

\
Pr~mor~

\ Mult'lple

F'ig 2.2 Travel t1me relot1on in CMP geometr~

Page 8

This method had been applied, to a limited extent, with the

manual manipulation of analogue recordings during the early

1960's, but with the introduction and acceptance of digital

recording and processing techniques, the full potential of the

method was realised and it has since gained almost universal

acceptance.

The field acquisition layouts for the CMP method are

relatively straightfoward and really quite ingenious, especially

at sea(Figs 2.3,2.4). On land, a recording truck is linked to a

transmission cable which is made up from several shorter segments.

Arrays of geophones are attached to this cable at regular

intervals along the surface, each array providing one seismic

channel for recording. At the beginning of a line the source is

located off the end of the line and the recording equipment is

connected up to the channels at the beginning of the cable. With

subsequent shots the source is moved forward to occupy previous

receiver positions, with the receiver nearest the shot being

disconnected and a new one being connected at the other end of the

line, usually by means of a "Roll Along" switch. This means that

the correct geometry for CMP acquisition can be easily maintained

and the recording truck only has to be moved when the "Roll Along"

switch reaches the end of its range. The segmented transmission

h
cable means that once the channels atta¥ced to a certain portion

A
of the cable are no longer required for recording, this segment

can be disconnected and taken to the end of the cable, for

reconnection, enabling data acquisition to be reasonably

continuous.

F1g 2.3 Mor1ne ocqu1s1t1on con~1gurot1on

F1g 2-4 Land acqu1s1t1on con~'lguratlon

Page 9

In the marine environment the acquisition of data in a CMP

geometry is even easier to arrange than on land. The usual marine

acquisition configuration is to have both source and receiver

being towed behind the boat(fig 2.4). The receiver streamer

consists of "live" sections of hydrophones, each of which forms

one data channel, separated by inactive sections, hence providing

a means of keeping a constant receiver separation. CMP coverage

is obtained by steaming at a constant speed and synchronising this

with the firing rate, so that the source is activated at the point

when the streamer has moved forward to provide a new CMP position,

by occupying a previous shot position. That is the speed of the

boat for full coverage is given by:-

dV = 0.5dX/dS where

dV is the ship's speed

dX is the receiver spacing

dS is the shot repetition time interval

Recording

The signals from the hydrophone or geophone arrays are

recorded by a digital acquisition system. The basic principle of

such a system is shown in Fig 2.5. The signal from each data

channel is amplified and then fed into an analogue multiplexer.

The multiplexing of the seismic channels in this way means that

only one Analogue to Digital (A-D) converter is needed in the

system. The output from the A-D converter is usually a 14 to 16

l
-+) Q)
,,... +)

:S l q Q)

~ ;Jl.
u 0

d u
Q_
IJJ ([

,,...

"' 0 0

.j..l
,,...
c

:::)

-
0
l

.j..l
(
0

0

l
Q)
+l
(/)
0
I:

I

(/)

-
Q)
[
[
0
L
0
J)
L L
0 (])

- ,, -
- <t 0
,, " L
X - .j..l +)

J Q_ c ,-

([E 0 [
IT 0 :::)

+)
,-

1
_j

Q)

~
I-

-
0

+) l
J +) +)

, 0.. [,-
c 0 [
HU:::)

l
Q)
+)
l
Q)
)
(
0
0

0

"' ([

l
0
X
Q)

-
Q_

,,...
.j..l
-
J

L:

(/)
L
Q)
,,
<t

+'5
,,.-

-
0 Q_

1) E
IT

+l

fl

-
0
L

-+)
c
0
0

[
,,...

0
(.!)

I

E
Q)

-+)
(/)
J)
(/)

c
0

,,...
(/)

,,...

J
(f
0
0

0
+l
0

-o
0 ,,...
E
(/)
,
Q)
(/)

0

<t
0

b
~
0
,
1)

:1.

8
-co

ln .
ru
m
,
LL

Page 10

bit integer value with an associated 4 bits of gain information,

although instantaneous floating point values are generated by some

systems. This output is written to 9 track digital tape in a

multiplexed order. The format used to write the data to tape

usually adheres to one of the accepted tape formats specified by

the Society of Exploration Geophysicists (Barry et al, 1975;

Meiners et al, 1972), SEG-A, SEG-B, SEG-C or SEG-D, although there

are several accepted versions of each general format. Hence each
r-ec.ord
~·~ on tape represents the multiplexed data for all the receiver

channels for a particular source position. These field tapes,

together with the positional and other survey information are the

raw material from which a processing system has to produce a final

section which can be interpreted geologically.

Common Processing Techniques and their Aims

Demultiplex •••...••.•• Get data in trace-sequential form

Amplitude recovery .••• Correct for geometric spreading

Sort •.••••...•••..••.. Order into CMP gathers

Edit ...••••.•.•.••.••. Keep only good data-correct polarity

Deconvolution •.••...•• Remove source signature

Filter .•••••..•••..••• Remove noise frequencies

Statics •..•...•...•.•. Correct to datum

Velocity analysis

NMO correction

Stack •••••.....•••.... Improve SIN

Residual statics

Deconvolul:.lo!'\

Time varying filtering

Sample 1 Sample 2

Ch 1 Ch 2 Ch 2 Ch 4 ···· ···· Ch N Ch 1 Ch 2 Ch 3

Channel. 1 Channel 2 Channel N

51 • Sn S1 Sn S1 Sn

Trace Sequent1ol ~ormat

F1g 2.6 Data organ1sot1ons

Page 11

Migration ••.••••••••.• Image data to correct location

Processing

When field tapes are received at a processing centre the

first process applied to the data is demultiplex; that is the

data are taken from the SEG multiplexed format and rearranged into

a trace-sequential format. The trace-sequential format can be

SEG-Y , although this is mostly used for data exchange, or some

internal format designed for use only at the processing centre.

At the same time as demultiplexing of the data is taking place the

samples are formatted into a floating point format compatible with

their subsequent digital processing.

Once the data are in a trace-sequential format subsequent

operations are much more straightforward and it is usual at this

stage to apply a time-varying scale factor to the data, to correct

for the geometric divergence of the source energy and transmission

losses in the Earth, which result in a reduction in energy with

time, in each trace. Therefore amplitude corrections at this

point attempt to bring reflections at later arrival times up to a

strength comparable with those near the beginning of the trace.

The type of function applied is either one calculated to be

approximately correct for the losses the data has experienced, or

an empirical function which has has been found to work well in

practice.

t'lme

Data ampl 'itude

OJ
J

I -a :.:.t
)

c t
tr

a
(j

t'ime
Rmpl 'itude Recover~ curves

F'ig 2.7 Data ompl itude deco~ and recover~

Page 12

At this point in a processing stream the data can be plotted

to make an examination of data quality and to look out for

acquisition errors, like channels with the incorrect polarity or

"dead" channels. This allows data editing to be performed, so

that bad traces can be zeroed or omitted and all the traces are

given the correct polarity.

In land data, differing station heights or the varying

thickness of a low velocity weathered layer can introduce time

delays which vary from trace to trace, and may pose a major

obstacle to successful processing by severely degrading reflector

continuity. It is therefore necessary to apply static corrections

to the data. These are time shifts calculated from survey

information to correct the traces so they appear as though they

were recorded on a common datum. There are usually residual

static errors, and sometimes these sufficiently degrade the data

as to require an automatic residual statics procedure to be run.

This package attempts to improve the continuity of an event by

applying small time shifts to the data, on the assumption that

these small time shifts are the errors left behind in the

evaluation of the static corrections.

Although static corrections are of major importance in

processing land data, they are of only minimal importance in

processing marine data. With the data having been recorded close

to the surface of a uniform layer of water, the only static

corrections which are usually applied are those ne~essary to

correct for the fact that the source and receivers are at a finite

depth and not sea level; although if the target is reasonably

deep these effects are negligible.

F'ig 2-8

S'ignal
Frequenc'ies

No'ise
Frequenc'les

Frequenc~

Be~ore F11ter1ng

"'
I '\

I

(I

I I

\
\

Frequenc~

R-fter F'ilter1ng

Example o-f Fre~uenc~ F11 ter'ing

Page 13

After demultiplex the data is in shot order in Common Shot

gathers. However, before stacking is attempted the data have to

be reordered into CMP order in CMP gathers. This sort operation

is purely a reordering of the data based on the original

acquisition geometry, in order to get the data into the correct

configuration for CMP processing.

Once the data have been sorted into CMP gathers it is likely

that filters will be applied to increase the signal-to-noise

ratio, by eliminating noise in unwanted frequencies. From an

inspection of the data and its power spectrum, the frequency

characteristics

determined. If

of both

the two

the signal

occur at

and the noise can be

separate frequencies then

Bandpass or Bandreject filtering can be used to remove the

unwanted effects of the noise frequencies. The filters used in

this type of filtering operation are usually designed to be zero

phase filters so as not to introduce time delays to the reflection

events. In this country it is quite usual to use this type of

filtering to remove the noise introduced by pickup of 50 Hz mains

electricity noise, which is usually at a higher frequency than the

source wavelet.

According to the convolutional model of the reflection

trace,(Fig 2.9) the seismic trace is composed of the reflection

coefficients of the geological horizons convolved with the source

wavelet and contaminated by additive noise. Hence, in order to

arrive at a trace which consists of just the reflection

coefficients it is necessary to remove the effects of the source

wavelet. The application of a filter to the data which compresses

the source wavelet into a spike, equivalent to the reflection

Se1sm1c exper1ment

5e1sm1c Wavelet

Earth response Se'ism'ic trace

F~g 2.9 Convolut~onol model o~ the se~sm~c trace

Page 14

coefficient, is known as deconvolution. If the source wavelet has

been recorded, or if the wavelet is deduced by averaging over many

traces, then an inverse filter can be designed to remove the

effect of the waveform from the trace. This ability to reduce the

effect of a known wavelet down to a pulse is one of the key

principles of the vibroseis method of data acquisition. At sea,

it is desirable to measure the far field signatures of airgun

arrays, if the water depth permits.

However, in the vast majority of cases the source wavelet is

unknown and so an attempt to remove its effect is usually made by

attempting to find an estimate of the wavelet from the statistics

of the trace(Robinson and Treitel, 1967). These methods are based

on the premise that as the primary reflection sequence and the

noise are essentially random, the autocorrelation function of the

trace is equivalent to the autocorrelation function of the source

wavelet. This information and the assumption that the wavelet is

minimum phase, which may or may not be true, is used to design a

Wiener spiking filter. This filter is the least squares

approximation to the filter which would exactly deconvolve the

source wavelet into a spike.

The spiking filter is a special case of a range of filters,

known as prediction error filters, which can be derived from the

statistics of the data. These filters record the error in a

prediction of the trace a certain distance ahead from the

statistics of the trace. This leads to predictable, events such

as multiples and airgun bubble pulse trains, giving small

prediction errors, wheras random events such as primary seismic

arrivals give high errors. The spiking filter is a prediction

Page 15

error filter with a prediction distance of 1(Peacock and Treitel,

1969), but these filters can be used with different prediction

distances to remove other unwanted effects.(Fig 2.10)

If the prediction distance is set up to be the same as the

period of a long period multiple, then the prediction error filter

can be used to dereverberate the trace. Also it can be used to

compress an airgun wavelet, to improve resolution, by having a

prediction distance just less than one wavelength of the bubble

and filter of about the same size. When applied this would tend

to leave just the initial pulse and so later events would not be

obscured by the bubble pulse train. A compressed pulse so

generated could be further compressed using spike deconvolution.

By this stage in a processing sequence there should be an

improvement in both resolution and signal to noise ratio and the

data would be ready for stacking. However, before the NMO

correction can be applied to the data an estimate of the velocity

structure has to be made by performing velocity analyses (Taner

and Koehler, 1969).

One method of finding the stacking velocities is to produce a

range of constant velocity stacks for a portion of the data. It

is then possible to find the velocities which produced the best

stacks for different events down the trace, and hence derive a

stacking velocity function for that region of the data. Another

method is to make measures of coherency along hyperbolic scans in

a CMP gather, each hyperbola corresponding to a particular

velocity for that zero offset travel-time. By repeating this

procedure down the traces it is possible to display the coherency

BEFORE ----------------~

AFTER

Sp1k1ng Oeconvolut1on

BEFORE r\to ~~
STRGE 1

LRG
FILTER

LRG FILTER

STAGE 2 ~
Pred1ct1ve Deconvolut1on

F1 g 2. 10 Example o~ the oct1on o~ Oeconvolut1on

Page 16

values as a function of velocity and time. Peaks in this

coherency function occur at positions where that particular

velocity would result in a good stack at that time, after

performing the NMO correction.

These velocity analyses are repeated at regular intervals

along the seismic profile so that a set of velocity functions are

defined for the entire data set. Using these velocity functions

the Normal Moveout correction are applied to the data which are

then stacked to produce a CMP stacked section.

The application of the NMO corrections and the stacking

procedure are non-linear and produce some undesirfable filtering

effects, tending to result in a broadening of the primary pulse.

Therefore it is usually necessary to apply spiking deconvolution

after stack. Also, because of the high levels of broadband noise

which are usually present on the pre-stack traces, deconvolution

before stack tends to be only partially effective. However, the

improved signal-to-noise ratio of the post-stack data provides an

opportunity to improve pulse compression.

The stacking process and deconvolution tend to change the

noise spectrum and so bandpass filtering of the post-stack data,

possibly time and space variant, is necesary to remove unwanted

frequencies.

In the case of simple geological structures, where the

horizons are near horizontally layered, the processed CMP stacked

section is adequate for a geological interpretation. However, if

the data are more complicated, a final procedure, migration, is

neces~ry to produce an interpretable section.
~

rage 17

Migration is an attempt to image the reflection events on the

CMP section back to their correct spatial locations. A CMP

section is displayed as though each event recorded on a particular

trace was produced by a reflector perpendicularly below the

surface,at the Common Mid-point. It can be

that this assumption is untrue, for

shown quite easily

anything other than

horizontally layered horizons. Therefore it is important to apply

migration in order to display the horizons in their correct

spatial locations.

For the purpose of migration the CMP traces are considered as

being the recording of the wave field produced with a coincident

shot and receiver. In this mode of data collection, upward and

downward paths are coincident and so the recording is the same as

would be obtained by having a source at the reflector point in a

medium with half the true velocity.

Therefore, the CMP section can be regarded as being the

recording,at the surface, of the simultaneous initiation of

sources, with strength proportional to the reflector strength, at

every point in the medium, with the medium having half its true

velocity. Mathematical reconstruction of the source strength at

every point in space can be obtained by calculating the wavefield

at time zero for the entire medium from the wavefield recorded at

the surface at later times. Hence the geological structure would

be delineated.

This mathematical reconstruction is performed by solving

approximations to the acoustic wave equation. There are three

methods of approach which are most frequently used; Kirchhoff

S-R S-R S-R

Hor'izontol Beds:

S-R S-R S-R

01pp1ng Beds:

S-R 5-R 5-R

O'i~~roct'ing Po'int

' '
' ' '

True Pos'it'ion

'

Pos'it'ion

F1g 2.11 O'iogrom to show m1s-pos1t1on'ing o~ se'ism1c events

Page 18

integral, Finite difference and Frequency wavenumber (F-K)

migration, each with its own difficulties. The F-K method of

migration provides an accurate solution to the wave equation for

all dips of the events in the data, but it is not easy to

incorporate anything other than a constant velocity structure.

Velocity variation can be accounted for to a certain extent in

Kirchhoff migration, and events of quite high dips are migrated

accurately, but this method tends to organise the noise in the

data into broad "smiles". The finite difference method is the one

in which it is easiest to incorporate velocity variations, but it

cannot easily be made to cope with events dipping at angles

greater than about 45 degrees. The single most important problem

with obtaining an accurate result from migration, is in defining

an accurate velocity model for it to use. However, if a

reasonably accurate model of the velocity structure is available,

modern migration methods do produce a reasonable approximation to

the geological structure, and enable a reasonably confident

interpretation to be made.

Summary

From the description of the seismic reflection method given

in this chapter, it is fairly obvious that most of the techniques

employed in a routine processing sequence would not be possible

without modern computing facilities. Sowe processes, such as

migration, still take a few hours of processing time even with

Page 19

modern hardware. Also the amounts of data handled in producing a

final section are enormous and can only be processed in a

reasonable length of time by specialised systems.

Page 20

Chapter 3

Hardware and Systems Software

Hardware

A brief description of the hardware configuration(fig 1.1)

has already been given. This chapter gives a more detailed

description of the hardware and the Systems software provided with

it.

The hub of the system is the Digital Equipment Corporation

pdp 11/34. This is a 16 bit word length minicomputer with

256Kilobytes (1kbyte = 1024 8 bit units), of MOS memory and an

integral memory management unit. Due to the 16 bit wordlength,

the processor has an address limit of 64Kbytes, and therefore the

full 256 Kbytes cannot be accessed directly. The UNIBUS on which

the pdp 11 series is based has an 18 bit addressing capability

which allows a full 256 Kbytes to be attached to the processor.

However, the memory mapping unit has to be used to access more

than 64 Kbytes of memory. Also the architecture of the processor

is such that the highest 8 Kbyte addresses are reserved for the

input/output page, and so addresses in this range 56 to 64 Kbyte

always refer to these registers, which are used in accessing the

peripheral devices. The central processing unit of the 11/34 has

a full range of integer arithmetic instructions which take a few

mi8roseconds to execute, but floating point arithmetic is

performed at a higher level, and so is much more time consuming.

Page 21

The main peripheral attached to the pdp 11 is the Floating

Point Systems AP120B floating point array processor. This is a

very fast floating point arithmetic processor, with a parallel

pipeline architecture, which allows vector operations to be

overlapped and hence completed very quickly. This processor has a

separate program source memory and data memory, and also has a ROM

table memory containing cosine coefficients for FFT's and other

useful constants. The particular AP bought for this system has 8

Kwords of 38bit data memory and a floating point add, subtract or

multiply can be initiated every 167 nanoseconds, making this a

very powerful processor of floating point data. The AP is

connected to the pdp 11 by a Direct Memory Access (DMA) interface.

This allows direct transfers of data from the pdp 11 memory to the

AP's main data memory without processor intervention, once it has

been initiated by software. The conversion from pdp 11, 16 bit

integers or 32 bit floating point format to the 38 bit floating

point format in the AP is achieved by the interface hardware "on

the fly", as the data passes through.

The main storage unit on the system is the Pertec 20

megabyte, moving head disc drive. This consists of 3 fixed

platters and a removable cartridge, and therefore has 8 read/write

heads. It is interfaced to the pdp 11 through a RK11 compatible

DMA interface, so that the drive emulates 8 RK05 disc drives, and

the removable cartridge is RK05 compatible. This configuration

means that effectively the disc storage is split into 8, units of

2.5 megabytes .

rage 22

The Versatec electrostatic printer/plotter is 11 inches wide,

has 2112 nibs at a density of 200 nibs per inch and serves in the

dual roles of system line printer and high quality plotter, being

able to use fanfold paper for printing, and roll paper for

plotting, as well as film for final good copies of plots. In

print mode it is driven by passing it ASCII characters, and in

plot mode 128 word wide rasterised data are used to drive the

plotter.

The final peripheral attached to the pdp 11 is a VDU which is

set up as the system console, and all interaction with the system

is made through this device.

The secondary computer in the system is a DEC pdp 8/e. This

is a 12 bit word minicomputer with 16 Kword of core memory, which

was originally purchased by the department because its relatively

simple architecture allows interfaces to other equipment to be

designed and constructed fairly easily. An example of this is the

ultrasonic acquisition system, designed and built by Mr J H

Peacock, used in producing simulations of seismic reflection data,

which is interfaced to the pdp 8/e and runs under its control.

The system storage on this machine is provided by twin

Calcomp floppy disc drives, built to a format developed in the

department. Other peripherals include a 30 channel analogue to

digital converter, a Tektronix graphics screen, a fast paper tape

reader and a Teletype which is used as the system console.

Page 23

The most important of all the peripherals attached to the pdp

8, however, are the 3 Cipher 800 bpi tape decks. These are

interfaced to the pdp 8 through a DMA interface which has access

to 4 Kbytes of semiconductor memory, which acts as a buffer to
lo1}_- record

allow it to read ~gapped tlata formats from tape.
A.

These two computer systems are linked by a DR11/L/M 16 bit

parallel interface, which allows data transfers between the two

machines under program control. Unfortunately, because the pdp

8/e is a 12 bit computer, unlike the pdp 11 with its 16 bit

architecture, the interface had to be set up to work on a common

data item. Consequently transfers take place 1 byte at a time,

with the other 4 bits in the pdp 8/e being used to control the

data transfer handshake.

The hardware is set up with the pdp 11/34 as the main

controlling computer. The pdp 8/e acts solely as an intelligent

peripheral controller when the tape decks are in use. The AP120B

is used as a very fast floating point "number cruncher"

Systems Software

A comprehensive package of systems level software was

purchased with the hardware, and this is briefly described in this

section.

The pdp 11/34 utilises the RT-11 version 3B operating system

(Digital Equipment Corporation, 1978d). This is a disc based

single user operating system and a side of one of the disc drive

platters is used as the Systems Disc. This operating system

Page 24

provides a full suite of utilities, such as an Editor, Librarian,

Linker and file handling utilities, as well as a Macro-11

assembler and a Fortran compiler. The system console is the main

means of communicating with RT-11 and apart from command files all

operating system commands are entered from this terminal. This

operating system provides standard device drivers for the discs,

terminal and line printer on the system, but the other interfaces

are non-standard.

Communications with the AP1208 are via the AP

executive(APEX). This software provides a means of transferring

data and microcode to and from the AP and monitoring the execution

of AP microcode, in order to return error conditions and check for

microcode termination. A full library of microcode

routines(Floating Point Systems Inc, 1977) was provided with the

machine. These routines have a Fortran callable interface which

links into APEX to achieve transfer of the microcode to the AP.

This library provides a comprehensive suite of routines for vector

operations and it is rare to find an operation which cannot be

performed by using a combination of these routines. However

should the user find an application he wishes to perform, which

cannot be achieved using existing routines, a new microcode

routine can easily be developed using the software development

tools available for the AP, an assembler (APAL), linker (APLINK),

simulator(APSIM) and debugger(APDBUG). A full suite of diagnostic

programs were also provided with the AP.

Page 25

In order to drive the electrostatic printer/plotter as a

plotter, the Versaplot library(Versatec, 1978) of plotting

routines was purchased. This library provides a suite of Fortran

callable subroutines which emulate the standard Calcomp graphics

subroutines. They are used at a high level to produce vector type

plots, such as graphs and annotation. Also provided, as part of

the library, are programs to perform vector to raster conversion,

and an input/output package which takes the rasters produced and

outputs them to the plotter.

From this description it can be seen that all the peripherals

attached to the pdp 11, except the DH11 link to the pdp 8, had

systems software of some kind available from the outset.

The systems console on the pdp 8/e is linked into OS/8. This

is a reasonably powerful disc based operating system developed for

the pdp 8 series of computers. Although it has a rather

rudimentary keyboard command language, it does provide a useful

suite of utility programs for file and peripheral manipulation.

It also provides facilities for program development in pdp 8

assembler PAL-8, and Fortran IV, with a multiple pass Fortran

compiler. This compiler converts the Fortran into a

pseudo-assembly language HALF, and the HALF assembler is then run

to produce an object module. All the peripherals on the pdp 8/e,

such as the tape decks and the video screen have OS/8 compatible

device drivers and so can be manipulated by the standard

utilities.

Page 26

The hardware link between the pdp 11 and the pdp 8 was the

only data pathway for which there was no controlling software once

the system was fully configured. All the other peripherals could

be manipulated, to a greater or lesser extent using the

facilities of the two operating systems and the additional

software provided by the AP microcode library, APEX and the

Versaplot library.

Linking the Two Minicomputers

Before any attempt could be made to start planning the

seismic software, it was important that the systems software,

which it was based on, provided all the utilities necessary for

program development and operation.

The obvious starting point in the Software development was

therefore to establish a software link between the two

minicomputers, as without such a link there was no means of access

to the tape decks from the pdp 11.

A need for software links between the two machines was

recognised as existing in three different applications. The first

objective was to establish device drivers compatible with the

operating systems on both machines which would allow files to be

passed between them, thus allowing the resources of the two

machines to be shared. Secondly, it was most important that

software be provided which would allow programs running on the pdp

11 to perform input/output to the tapes as though they were

attached to the pdp 11. This would make the pdp 8 act as an

Page 27

intelligent tape controller for the pdp 11, and in this capacity
lo~-recc~

be able to handle the s~l9s~ tape format produced by seismic
~

field recording equipment.

Finally, there was also a need to enable programs running on

the two machines to transfer floating point numbers across the

interface, with the conversion between the two floating point

formats being performed during the transfer. This was necessary

to allow data acquired on the ultrasonic tank, in pdp 8 floating

point format, to be used on the pdp11 for display and processing

as necessary.

RT-11 to OS/8 transfer

The link between the two operating systems was achieved by

installing new device drivers into them which could control the

interface between the two machines.

On the pdp 8 two new device drivers, PIN:, to take the data

from the pdp 11, and POUT:, to send data to the pdp 11, were

written by Mr J H Peacock in PAL-8 assembler and built into the

working version of OS/8. These drivers expect transmissions, of

unspecified numbers of bytes, to continue until terminated by a

CONTROL Z or another recognised file terminator.

Under RT-11 the author constructed a bidirectional driver DR

in Macro-11, which is interrupt driven and follows all the RT-11

Version 3B standards for device drivers. This driver was not

built into the Monitor but installed into one of the free device

slots originally built into the Monitor. This installation is

Page 28

performed in the startup command file which is executed when the

system is bootstrapped, and so is transparent to the general user.

This procedure allows the driver to be updated, without having to

reassemble or relink the Monitor.

Having developed these device drivers it was then possible to

transfer files between the two machines using keyboard commands,

although one drawback is that commands have to be issued at each

machine's console to initiate the transfers.e.g.

RT-11 to OS/8

RT-11 ••..•••••• COPY DK1:MPDMXA.FOR DR:*.*

OS/8 ••••••••••• R PIP

•.•••••••••.• *MTAO:<PIN:/A

OS/8 to RT-11

OS/8 •••.•••••.• R PIP

•...••••..... *POUT:<DD01:SDS10.FT/A

RT-11 .•..•••••• COPY DR:*.* LP:*.*

This software link allows files to be written to tape, in 512

byte blocks, using the standard OS/8 magnetic tape drivers for

data transfers to other machines, as above.

Floating Point Transfer

The data acquired on the ultasonic tank are written to tape

in pdp8 floating point format, which consists 3 words, or 36 bits

per floating point value. However, in order to use the facilities

Page 29

on the pdp 11 to handle this data, it is necessary to transfer it

and simultaneously convert it to the 32 bit floating point

representation used on the pdp11.

Therefore two subroutines IN11 and OUT11 were written in pdp8

assembler, which accept numbers in pdp11 format and convert to

pdp8 format and vice versa. These two routines were used in a

program MPTP11, written in Fortran on the pdp8; which reads

ultrasonic data from a tape and then passes it to the pdp11 via

these subroutines. Three Macro-11 routines GETNO, GETDAT and

SENDAT were written for the pdp11 to take Floating Point numbers

from the interface and put them into a memory array and vice

versa. One use of these routines was in the program MPUSTR, which

reads ultrasonic data from the pdp8, demultiplexes it and writes

it to a sequence of disc files in the internal seismic processing

data format. However, the assembler subroutines written for both

machines allow the transfer of Floating Point data between any two

programs running simultaneously on both machines.

Tape Handling

The most important part of the link between the two machines

was in providing access to the tape drives for programs running on

the pdp11.It was decided that, in order to provide the response

required, the pdp8 would have to be dedicated to tape handling

when any programs requiring tape usage were being run on the

pdp11. The pdp8 would, therefore, become an intelligent tape

controller when seismic processing programs were in operation.

When design work was begun on this handler, it was realised quite

Page 30

quickly that there would only be memory space available for one

type of tape handling by the program. That is the tapes could

either be driven in gapless or a blocked format but not both. As

it is essential to be able to operate in gapless mode to be able

to read the field tapes, this capability had to be present.

Therefore it was decided that

produced and it would work in

just one tape drive handler would be
lo~-record

the sapl&ss format.
A

As a result of these decisions a standalone tape system

monitor, SDS10, was written in pdp8 assembler by Mr J H Peacock.

It provided a set of tape manipulations commands, which can be

issued from the pdp11 and are then executed by the pdp8. This

software also decodes the tape status conditions and returns a

status byte to the pdp11 on completion of the tape function.

With the data being read from tape in a gapless format, it

streams off tape constantly at whatever tape speed is in operation

until end of file is reached. This means that the data has to be

moved to its destination at least as quickly as it comes off tape,

or data will be lost.

The system is set up on the pdp8 so that, when a read is

initiated, data from the tape is transferred by a DMA process into

a 4 Kbyte memory buffer. The transfer routine has to be able to

pass this data to the pdp11 fast enough to prevent data from the

tape overwriting data previously written into the buffer before it

has been transferred. There is a similar problem in reverse when

writing to the tapes in this mode. Here data must be in place in

the buffer before it is required by the tape for writing out.

Page 31

The software in the pdp11 has to be able to keep up with the

tape transfer rate. However, experiments with the interface

device driver being used to control the transfers showed that the

system overhead was too large, and so the tape buffer was being

overwritten during large file transfers. Hence it was decided

that specialist low level routines would have to be written to

control the data transfers to and from tape.

It was realised that in most circumstances the volumes of

data being transfered to and from tape would be too large to fit

into the pdp11's lower memory area, meaning that disc files would

have to be used as temporary storage. Therefore the transfer

routine would have to be responsible for transfers to and from

disc during interface transfers. However, there are situations,

such as when handling seismic data post-stack, when there is only

a small amount of data and it will easily fit into the pdp11

memory. Hence it was also decided to provide a set of routines

which could transfer data to and from buffers in pdp11 memory.

The first routine SDS10 was written in Macro-11 and provides

the basis for the tape handling. Besides incorporating the

capability to read from tape to disc and write from disc to tape,

it also passes other commands to the tape handler to allow rewinds

and file skipping commands to be executed. The transfers are

accomplished in blocks of 2048 bytes, which are buffered in memory

before being written to disk, or to the pdp8. This was done to

allow the 4096 byte buffer in the pdp8 to be used as though a

double buffered transfer were in operation.

Page 32

To supplement this general purpose routine, two other

subroutines, TREAD and TWRIT were written, in Macro-11, to allow

transfers to and from memory buffers in the pdp 11, with the tape

handler.

The first program to utilise these routines was an

interactive program written to allow easy manipulation of the

tapes, MPTAPH. This gives the user the capability of extracting

files from the tapes and putting them onto the disk and vice

versa. This can be particularly useful when test data for filter

tests or velocity analyses is being selected and put onto disc.

This program also allows the tape to be spooled forwards and

backwards, to enable a file to be located on the tape, before it

is written to disc and then the tape can be rewound, all through a

series of keyboard commands.

Tape Archiving

After an early hardware failure on the disc drive, during

which some programs were lost, the importance of a reasonable

archive system became apparent. Although, using the removable

cartridge, copies of programs and data can be put onto a separate

disk for archiving, a problem can arise when the disc drive

read/write heads are realigned, after a service or repair. Under

these conditions it is possible that a realignment of the heads

after the backup copies had been made would render these copies

unreadable. Therefore it is very important that there should be a

capability of archiving programs to tape for later recovery.

Page 33

It was decided to use the tape handling routines previously

described as the basis for a tape backup/restore program. The

program which was written MPTPSV, allows files to be written to

tape, and in doing so keeps a header block describing the name of

the file, its size, the date it was archived and its version

number. The version number allows an updated copy of a file to be

put onto tape with the same name as a file already present, while

preserving the ability to restore it by specifying the higher

version number. The program can provide a directory of the tape

by reading through the file headers, so the contents of the tape

can be easily verified.

In order to recover a tape file, just the name of the file

and its version number need to be specified. If the file is

already in the program's internal directory, it implies that the

tape is already past this file on the tape. Therefore this

request is queued until later. Otherwise it searches forward and

locates the file to be restored. At the end of a run any restore

requests in the queue are executed before the job is terminated.

This program is fully interactive and provides a very flexible and

easily used system of archiving files on tape for later recovery.

Processing System Tape Subroutines

It was realised that the programs in the processing stream

would need to have a tape handling capability and that this

capability would have to be consistent, from process to process,

in its treatment of errors and other processing conditions.

Therefore it was decided to produce two Fortran subroutines TAPRED

Page 34

and TAPSUB to handle the tape programs for the processing

routines. TAPRED assumes that the transfers are going to and from

the disc and TAPSUB to and from memory buffers.

These subroutines also provide all the error condition

handling from the tape drives. This ensures that a particular

error condition is treat constistently by each of the processing

programs(Fig 3.1). These routines provide the programs with 3

commands: read, write, and wind forward, to allow the end of file

record to be skipped when reading. The error handling is based on

the expected data sequence being as shown in Fig 3.1.

All the functions necessary to manipulate the tape drives in

a seismic processing program are provided by these two routines,

and one of the two is used in any application which needs a tape

handling capability. Therefore, applications programs which need

access to the tape drives can be written without the programmer

having to understand how the drives are controlled, by calling one

of these two subroutines. Also, the only error handling which

need concern the applications programmer is how to treat the fatal

errors returned by the routines after retries on read and write

have failed. The usual course of action at this point is to close

down the job so that it can be restarted with a new tape. End of

tape errors are also returned to the user program for handling, so

that any special functions which are deemed necessary on an end of

tape can be executed.

Therefore these two Fortran subroutines, together with the

Fortran callable assembly language routines in the pdp11 and the

tape monitor in the pdp8, provide a comprehensive tape

SHORT SHORT SHORT SHORT
RCCORD RECORD t::..CUt--;:LJ Kt:.CUr<U

EJDEJDEJ DEJD
Tape Data Format

5TAT!l5 ACTION

BOT

BUSY

OFFLINE

EDT

RFAO FRROR5

NORMRL
SHORT RECORD

PRRITY

WRTTF FRROR5
NORMRL

PRRITY/SHORT RECORD

WINO FRROR5
PRRITY/SHORT RECORD

NORMRL

Ignore

Loop unt'il not bus~ then cont'inue

Write a message to the console
Loop until online then cont~nue

Wr~te a message to the console
Set status = -1 and return

Return
Read next record

W~nd back one record and retr~
Retr~ 3 times and then return
w1th status set i~ stilI in error

Return
Wind back one record-
rewrite record with 8 sets o~
alI bits set ~n header and then
rewr~te the record. Per~orm this
retr~ 3 times and then return
w1th status set i~ st11 I in error

Expected so Return
Wind back 1 ~~le and return

Rl I errors are logged 1n the ~11e on Fortran unit 2

F'i g 3. 1 Tape Data Format and Error Hondl 'ing

------- - ------------

Page 35

manipulation service, which should provide a user transparent

means of handling the tape drives and their error recovery.

Memory Management

The pdp11/34 is a 16 bit

unit is the byte (8-bits).

minicomputer whose basic address
~h,..,.r I' cai.

This means that the v~e~~l address

capability of the processor is 64 Kbytes. As has been previously

mentioned, the UNIBUS has an 18 bit addressing capability which

allows up to 256 Kbytes to be accessed. In order to use this

t\.
capability, a memory ma~a,gement unit between the CPU and the

" UNIBUS translates virtual addresses into physical addresses by

using the relocation information contained in the 8 page address

registers inside the unit. Each process's virtual address space

is broken up into ~ 4-Kbyte pages, each of which are relocated

into physical addresses by one of the page address

registers.(Digital Equipment Corporation, 1978)

There are two sets of memory mapping registers. One applies

to programs running in KERNEL mode, such as the operating system

and device drivers, and the other for programs running in USER

mode. This allows the operating systems relocation information to

be kept separate from the user's program.

It had been intended originally to operate the pdp11/34 under

the Extended Memory Monitor version of RT-11. Fortran programs

running under RT-11 are allowed to define a set of variables as

virtual. This implies that they are stored in memory other than

that directly addressable using the 16 bit word. This allows the

Page 36

full memory capability of the pdp11/34 to be used from a single

program. The Extended Memory Monitor is designed so that two

words of address information are passed to the device drivers in

order to make up an -i8 bit address, so that DMA devices can put

their data straight into Virtual memory at the correct address.

However, it was discovered that in order to implement this

extended virtual address capability, the high 8 Kbyte addresses

which are usually mapped into the I/0 page are relocated elsewhere

in User mode and are only accessible to the system device drivers,

running in KERNEL mode. This seemingly minor problem has

important side effects. All the non-standard device handlers,

such as APEX, the pdp8 transfer routines and the plotter driver,

use the I/0 page addresses in user mode in order to access their

respective devices. This meant that when virtual arrays were in

use in Fortran programs under the Extended Memory Monitor,

communications with the AP, plotter and the pdp8 were lost.

As virtual arrays are also supported in the less

sophisticated Single Job (SJ) Monitor of RT-11, this monitor was

investigated. Under this monitor the relocation of the high

addresses to the I/0 page is unaffected by the virtual arrays

option being present, and so this problem is immediately overcome
l

in this environment. Additionaly this monitor is much less
~

sophisticated and so has the advantage of occupying much less

space in memory than the Extended Memory Monitor. However on

further investigation major disadvantages were found in its

implementation of the virtual arrays principle.

64Kb

56Kb

48Kb

OKb

I/0 Page

RT-11 OS

User Space

Normal Usage

\

\

\
\

.---------------------~ 256Kb

J
I /0 Page 1 248Kb

V~rtuol memor~

~--------------------~ 56Kb

RT-11 OS
48K

User Space

~--------------------~ OK

Mopped Usage

F~g 3.2 Memor~ con~~gurot~on o~ the pdp 11/34

Page 37

The Fortran compiler generates a reference to a set of

utility subroutines every time a virtual array element is

referenced in a Fortran program. These subroutines are given the

offset of the start of the virtual array from address 1600

octal(56Kbyte) in 64 Kbyte blocks, and the number of the array

element referenced. By dumping the machine code from memory when

such an operation was in progress, it was possible to decode the

method used to access the data at this extended address.

In normal running under the SJ monitor, the KT-11 memory

mapping unit is switched off and the virtual addresses up to

56Kbytes refer to the first 56Kbytes of physical memory. The high

8Kbytes are then mapped into the I/0 page which is at addresses

248 to 256 Kbytes in physical memory. In accessing a normal

Fortran array element, the address is found by calculating the

byte offset from the array's base storage address.

method is used in refering to a virtual array element.

A similar

As described above, a special subroutine is passed the base

address and element number of an array element on the stack when a

virtual array is referenced. However, this base address is an

offset, in 64 byte blocks, from 1600(0ctal) the 56 Kbyte limit of

normal addressing. The subroutine manipulates the two values to

generate a byte offset between 0 and 4Kbyte as an element address,

while putting the rest of the address into the USER mode page

address register 0, which is the register referred to in

relocating addresses between 0 and 4 Kbytes. At this point the

KT-11 memory mapping unit is switch~d on, and a special

instruction used to fetch the data element from the relocated

address and put it onto the stack. When this has been completed

Page 38

the memory management unit is switched off again, and the

subroutine returns to the mainline code which picks up the

required value from the stack.

From the example in Fig 3.3 it can be seen that this is a

very longwinded~ process and so there is quite a large time

penalty incurred when using virtual arrays in calculations.

However, potentially more important than this was that

Input/Output with virtual arrays could only be performed via

buffers in the lower address memory. This problem is caused by

the fact that the device drivers in the SJ monitor are only passed

a single word memory address, and so even DMA transfers have to be

made into the lower 56 Kbytes of memory. The time penalty

involved in transferring data from I/0 buffers into data areas in

Extended memory would have been intolerably large in a seismic

system, where such large quantities of data are handled.

Therefore it was decided at this point that some solution to this

problem had to be found, whereby DMA transfers between virtual

arrays and the disc and AP would be possible

Virtual Memory Input/Output

A small test program using virtual arrays was single stepped

in execution and areas of memory dumped after each step. From

this it was possible to determine that immediately after a

reference to a virtual array element, the page address register

and register 1 still contain the components of the full 18 bits

address. Therefore a Macro-11 routine would be able to access

these registers and save the 18 bit address of a virtual array

j
Enter Subrout'ine ~rom User Program

_./" -----
~~~WM ~ .. ~tE;-r- RO 

Start o~ v~rtual memor~ 

arra~ as an o~~set 

~ij~ ~L9t6r R 1 
Number o~ orr~ element 

to access 
-From 1600 octo I 

1 j 
Add 1600 octal to o~-Fset Get element o~~set 

~~ 
0~~set OS mult'iple 
o~ 4k b~tes 

Remo'inder between 
0 and 4k b~te 

~ 
Page address o~ 

V~rtual memor~ element 
Address o-F element 
~ns'lde a page 

~~ 
Sw'ltch on Mapp'lng 

l 
Get data -From address CR1J 
'ins'ide the page 

l 
Turn o-F-F the Mopp'lng 

1 
Return to User 

t 
U5RO and Rl st'll I conto'ln V'irtuol Address 

F'lg 3-3 V'lrtuol Memor~ access 'ln RT-11 Fortran 



Page 39 

element. 

The technique used to get a desired 18 bit address was to 

explicitly reference the particular an•ay element cequi-r'ed in a 

Fortran function call. It was found that this caused the Fortran 

compiler to generate code which moved this element from virtual 

memory into local storage. The function which was called was in 

fact a Macro-11 routine and so at its entry point as the virtual 

array element had just been referenced the users page address 0 

and register still contained the components of the 18 bit 

address. These two values could be accessed and put into 

temporary storage within the routine as well as being put into 

registers 0 and 1 before exiting. These registers are the ones 

which take the result when a floating point function is called in 

a Fortran program. Therefore this returned result can be put into 

a local variable for storage. 

This capability of being able to "steal" the 18 bit address 

from the Fortran system was a very important step foward, as it 

meant that in principle the full 18 bit address could be given to 

a DMA peripheral when initiating a data transfer. It had been 

decided that the two areas where this capability had to be applied 

to the task of actually transferring data, by DMA transfers, to 

and from virtual arrays, were the discs and the AP. 

The first one to be tackled was the AP as the transfers were 

already under the control of a non-standard device driver. In 

initiating data transfers to and from the AP, interface registers 

were given a 16 bit memory address for the memory buffer. However 

a further two bits in a different register were used to give the 



Page 40 

full 18 bit address. In the standard DMA handler these two bits 

were just ignored. A Macro-11 function was written to extract the 

full 18 bit address of the virtual array buffer required and put 

it into the correct format for the interface registers, before 

returning it to the calling routine for storage. The standard 

APEX was then altered so that it always cleared the 2 extended 

memory bits before it initiated a DMA transfer, so that transfers 

using the standard routines would always go to lower memory 

addresses. This allowed a new transfer routine to be written, 

which expects a full 18 bit extended address as a two word 

argument for use in intiating transfers to and from the AP. These 

routines provide a full extended memory DMA transfer capability 

for the AP. 

Solving the same problem with respect to the disc drive was 

more difficult, because the operating system is based on this 

device and so it uses the disc driver itself for transferring 

operating system information in and out of memory. In the SJ 

monitor disc device driver the two extended memory bits in the 

interface register are cleared every time a transfer is initiated. 

The first step was to stop these two bits being cleared by 

the device driver by masking them off in the driver code. It was 

considered necessary still to use the standard driver for 

initiating the transfers, as the operating system was still in 

charge of the file structure on the disc. Therefore the operating 

system was relinked 11ith the altered driver, and as the extended 

memory bits are not set by any other routine in the system it was 

considered reasonably safe not clearing them. Also error 

conditions in the SJ monitor result in a reset instruction being 



Page 41 

issued which clears all the device interface registers. 

Therefore a Macro-11 function was also written to get the 18 

bit address in the correct format for the disc interface and 

return it as the result of the function for storage. Read and 

write routines were written which make calls to the system I/0 

routines giving the low 16 bits as the supposed memory address. 

However, just before these system calls are made the two extended 

bits in the interface register are set. On completion of the 

transfer a completion routine, stated in the transfer call, is 

executed and this then clears the two extended memory bits in the 

interface. This call to the completion routine is completely 

transparent to the user of the routine, which allows the data 

transfers to be overlapped with program execution in the same way 

as other DMA routines. Because they manipulate the interface 

directly, these routines have to wait for all other disc transfers 

to terminate before they can be initiated, which is not usually a 

major constraint on their use. 

Care has to be taken in the use of these disc transfer 

routines with respect to the operating system. Usually only the 

core of the operating system is resident in memory and it reads in 

its service routines from disc as required. Obviously in this 

case if the extended memory bits were set it could have disastrous 

consequences. Therefore, when a program which uses these routines 

is compiled, a switch has to be specified to the compiler which 

causes the U3er Service Routines (USR) to be locked into memory. 

This causes more space than usual to be taken up by the operating 

system, but it does mean that besides having a disc DMA capability 

into virtual memory, there is also a saving of time which would 



Page 42 

have been spent reading the USR in from disc. A similar problem 

occurs with programs which are overlaid. However at least in this 

case it is known that the overlay handler is not executed until a 

certain subroutine call is made. Therefore the user has to ensure 

that all DMA transfers using these routines have finished before 

making a call to an overlaid routine. 

In tests using these routines it was shown that the AP 

routines work just as well as the normal APEX transfer routines 

and are not constrained any more than the normal routines. Also 

it was found that as long as the constraints mentioned above were 

adhered to, the disc transfer routines ran faultlessly. Therefore 

this piece of systems programming provided the machine with a 

great deal more flexibility than it had previously, in allowing 

DMA transfers to be made from the disc and AP to and from the full 

248 Kbytes of useable memory. Also following the principles laid 

down in writing these two sets of routines it would be possible to 

provide this capability for any other DMA peripheral devices which 

might be added to the system. 

Plotting Software 

The Versaplot software purchased with the electrostatic 

plotter provides a set of Calcomp compatible graphical subroutines 

and also some specifically electrostatic routines, which provide 

the ca~ability to produce shading and patterned lines. This 

software produces a vector file which has to be processed by 

vector to raster conversion software before being output to the 

plotter. This rasterising software and the plotter driver are 



Page 43 

also supplied with the Versaplot package. This package is quite 

sufficient for producing graph type displays and annotation, but 

does have its drawbacks. It does not provide any high level 

graphic capabilities, such as contouring, and because of the huge 

amount of data produced is totally incapable of producing seismic 

wiggle trace or variable area type displays, the amount of machine 

time used to display even one or two seismic traces being 

prohibitively high. Therefore it was decided that more software 

would have to be developed to complement and add to the Versaplot 

routines. 

Contouring 

A contouring package CONSYS, which was developed at the 

University of Michigan, and is considered as being in the public 
(Nort(...,Mb.;o.. ()..w~bU" ' MM-(.;f,~ ~i {];.,..~) 

domain, was available on the NUMAC IBM 370/168. Although written 
1-

in Fortran it was not easily transferable to the pdp11 as, besides 

using several constructs unique to IBM Fortran it also used 

operating system calls to allocate dynamic memory for its work 

space during execution. On the other hand the package produces 

good quality contours and uses a reasonably time efficient 

algorithm. Therefore it was decided to convert this package to 

run on the pdp11. The dynamic memory allocation was rewritten to 

use static work arrays passed to it by the calling program, in 

virtual memory. Once this had been accomplished and other parts 

had been rewritten in standard Fortran it was linked into the 

Versaplot package for drawing the contour lines. This package 

provides a full contouring capability, which can easily be used by 



Page 44 

any display program which requires contouring. 

Seismic Displays 

The production of seismic trace plots using normal graphic 

subroutines is a very time consuming process. Each trace is made 

up of about 2000~ points and there may well be a few hundred 

traces in a section. All these vectors would have to be produced, 

sorted, and then rasterised by the normal graphical subroutines, 

producing a very large intermediate plot file. 

However, a seismic display is really a quite well ordered 

dataset, and if the overlap between traces is restricted the 

possible range of a single trace on the paper can be quite well 

defined. Therefore it was decided to develop programs which would 

produce seismic displays by going straight from the input data to 

a raster output file. 

The maximum swing of a trace was limited to plus or minus 

twice the trace spacing and the maximum trace spacing was limited 

to 0.1 inches, so that the rasterising buffer would easily fit 

into memory. Also if the display is longer than 10.24 inches the 

software produces a second strip later which corresponds to the 

data off the sheet of paper. 

In order to develop the software an interactive section 

plotting routine was produced, which expected its input to be on 

the disc and writes the raster output file back to disc. However 

once developed this algorithm was incorporated into a full section 

plotting program for the processing system. 



,..~ ... 
!-

io-
,..~ 

·~ !-
~ ... ~ 

~~ 
lc~~ 

= .... 
...... 

ioo~ 
~ 

~ ... 
~ ;.. 

~ 
.... 

... ... ;. 

~ .... .. ... 
~ 

~ ...... ~ ... 
--~ ..... ~ .... 

·~ loo:;.. ... 
~ ..:~ 

": ~~ 
.... 

~ :.;.. ;..~ ...... 
~ 

... ~ 

,_ 



Page 45 

It was realised that once a file of rasters have been 

produced, other plots could be merged with the seismic display, 

before the rasters are transferred to the plotter, as long as the 

other plot is also in raster form. 

One of the drawbacks of the Versaplot system is that the plot 

programs produce vector output in particular named output files on 

the systems disc, and these are then rasterised and put out to the 

plotter in one run. It would be much more convenient, in case a 

plot is to be replotted, to store a file of rasters for later 

retransmission to the plotter. Also, this would allow the 

Versaplot routines to be used to provide annotation and axes for 

the seismic displays, which could be rasterised, saved and then 

merged with the seismic raster file on output. Therefore a set of 

subroutines were written which emulated the plotter handler 

routines, but instead of putting the raster output to the plotter, 

they are transfered to a specified disc file. When linked with a 

modified version of the vector to raster conversion program 

MPRASM, it became possible to store the raster images of vector 

plots. 

The next logical step was to develop a post processor which 

took the raster input from up to 8 files and merges them according 

to offsets and ranges specified by the user, and even reverses the 

contrast if required, before using the plotter driver software to 

put the final rasters onto the plotter. This software allows the 

seismic image produced by the special display software ,to be 

merged with axes, time scales and annotation which is produced by 

a program using Versaplot routines, and so allows each approach to 

be used solely in the mode in which it is most efficient. 



Page 46 

IBM Software 

It was found that, in general, the inexper~enced user found 

more difficulty developing programs on the pdp11, with its limited 

software development tools, than on the NUMAC IBM 370 under MTS. 

Also a large modelling and synthetic seismogram package, AIMS, 

~ 
which was acuired in order to provide an interpretation aid for 

~ 

seismic reflection data, as well as high quality synthetic data 

for research work, was much too large to fit onto the pdp11, and 

so had to be installed on the IBM. Examples of the ouput from 

AIMS are shown in Fig 3.5 and instructions on how to run it are 

given in Appendix 2. 

The installation of the package was reasonably straightfoward 

as it is written in standard Fortran. The only alterations 

necessary were to change the inputJ' output unit usage to be 

compatible with MTS usage and to alter the plotting calls so as to 

fit in with the *PLOTSYS system on MTS. This package provides a 

very powerful raytrace modelling and synthetic seismogram tool for 

use in conjunction with the seismic processing system. 

As has already been explained, some users find the limited 

program debugging facilities available with the RT-11 Fortran 

extremely difficult after having become accustomed to more 

powerful facilities on large mainframes such as the NUMAC IBM 370. 

Hence program development could tend to take longer than usual at 

first. With the pdp11 being run as a single user system it means 

that while program development is taking place it cannot be used 

for processing and vice versa. Therefore it was decided to 



;:;r,!-: 
c_ '..)•.) ·J. 

-~ ,..,,- r 
-.) !j -· J. 

;.~ 1-.; .. -
.:_ .. _. J 

--:: r ~- :
/ :_· ._: :J. 

. -· -· ._ ._ .. 

PLOT OF NRVE T~EORY RRYS TO ONE SHOT POINT 
KNEE MODEL PH~NTOM CIFF9 FEEl 

·)rnn 
-~~I. 

;:.::.r""':-:r 
- - -· ·r-

i"--------------i--~----"'--'------------'-~--"----'--~~----t 

-1 - i 
-----------------------~--

-------------------------------------
' 

- - - - - - - ~ - - - - - - - - ----------1 

-~- ---- -- ----- --------·'---·--------------------- ------ _______________ ! 



SECflCN FOR KNEE MCCEL WIT~ 0H~NT C!FFR 

II I II I' I I I I I i I ! I! I' I I I I I I I ! ! i 
I I i i ! I I I I I ! I I I I I 

~,-+1-r~~,-~1-rl ~~~~-+!~~+-+-~~-+~~+-+-~~-+-+-~ 

I I \ I I I I \ I I 
~L . -t---+----;--------J--t----+--1 --t-----t--t--j -+--; -+1-+--;---t--+--+---+---+---t--t----r----+--+-----+--t------t--- -1-1 
--7-1---+-+-1 -+-___,'--+! --+-1--r--1: -':--! --+1---+-1 -+----1'~'---+----+-! _.j_ll -+-~! ---+-1-+--+-! -+1--+-+---+-! -+i- j 

\ 'I ! l I i : I I I i i ! Ill II ii ! ! 

L~--r--r--r! --~i --r--r--r-~! --~~· --~-r--~1 --r--r--r--r--r--r--~;--r!--r-l-r--r!--~, __ rl' __ ~L__J 
I i i I I I i I : I I I I I I I I 

rl!--+1 --~i ~~--~;-n~--+~--~~~--~~~~[--+--~~+1 --r!! ~--+-~-+--~~ ~--+-~,~+~--~~~--T~-rli---~ 

,_: ___ 

1 

--~~ --i-::--~! ____.]--~___,_1 ~1--.J.-i __.: __ +-i __ 1'----+--+---li -t--+1_
1

..____,____+---il -'--! --+1-+-1 + Lf_Lf 
II I ! i i I ' i i I I I I : I 1 ! I I I i 

I ' I : ~ ! l i ! I ! 1 ! I ! i ! i 

1--:-1 __ ;__--:--11 -------,-------__:_~ --,-i --'---, --,-; -----+-! --t-~~-+-i --'---! -+-~~ --+-~ -+-1, -+-J -c~-_.;_'; i i ! : 

I : i ' I ! ; i i I ; J i I : l i 

1-, .,., 

·j .. J 

G .2:J 

·J. _J·,_; 

·~. / j 

' : I 

! I . 

' 
i 

i I ( .,------r---t·- --- -----------· 

I 
I 
I 

'---,----'-----~--1 

I 
'I 

) 
_ _____L__c'__~--'---"------"---·~--~ 



Page 47 

provide development facilities on the NUMAC IBM so that the basic 

algorithm of a new program could be developed offline from the 

pdp11 and transferred to it, at a later date, for interfacing to 

th~ processing system. 

At this time FPS, the suppliers of the AP had a Fortran 

simulator of their mathematics library under development. A copy 

was acquired and developed to run on the IBM 370, while still 

looking to the user as though it was running on the pdp11. By 
( ,., ~., c.lr"'J:s:. Fo~Tfi?..ftN M) 

writing programs in as near standard FortranAasApossible and using 

this simulator, a program can be developed on the IBM which is 

easily transferable to the pdp11 when complete. At this point 

only the disc input/output needs to be changed and the tape access 

software added to the program, before final tests can be run. In 

e 
practice this has proved to be an extremly valuable tool, having 

A 

allowed MSc students to develop algorithms on the IBM, while the 

pdp11 is in use, transfer the programs to the pdp11 and then run 

them on the pdp11 on large datasets, which could not be handled in 

a reasonable time on the multiuser general purpose IBM system. 

Summary 

Quite a large proportion of the total development time of the 

seismic processing system had to be spent designing, programming, 

and testing the systems utility routines described in this 

chapter. However these routines provided a solid base from which 

the system could be developed, and without which the processing 

system would not have been feasible. 



Page 48 

Chapter 4 

Seismic Processing Software 

Overview 

In a research project of this type it is important to realise 

that the targets set for the project have to be accomplished in a 

limited period of time. Also it is more useful to set realistic, 

attainable goals than to overreach and leave an unfinished 

shambles. 

Once the systems software had been established, providing the 

necessary tools for applications programming, the aims of the 

project, from the seismic processing viewpoint, could be 

realistically assessed. It was decided that a suite of programs 

representing a complete seismic processing stream should be 

attempted. Although this might seem quite ambitious, it was felt 

necessary to establish software at all stages of the seismic 

processing stream in order to establish the conventions and 

standards for the data handling and processing throughout the 

sequence. 

Obviously, for there to be any chance of this grand hope 

being accomplished, there had to be certain limitations and 

compromises made in planning the details of the software. As the 

University of Durham's interests in seismic reflection work had 

been almost entirely marine, then this original software suite was 

based on the needs of processing marine data. Also as ct~ta 

acquisition with different equipment and data exchange from 



Page 49 

outside was considered unlikely at this time, the input field data 

was considered as being solely derived from the department's SDS 

10/10 digital acquisition system, and· no attempt was made to 

produce the final data ln SEG-Y format for data exchange. Given 

these relatively minor restrictions, the brief was to produce a 

full and complete seismic processing system. 

Overall Design Considerations 

Most commercially available seismic processing systems have a 

seismic monitor, which is responsible for taking menu type input 

for a particular job, structuring the modules required into a run 

stream and controlling the data flow through the system. This 

possibility was considered for controlling the operation of the 

Durham seismic procesing system, and a small amount of development 

work was carried out to evaluate a rudimentary system, based on 

the RT-11 batch stream monitor. However, after experimentation 

this idea was rejected, for several reasons. Possibly the most 

important reason is that on a small 16 bit minicomputer, such as 

the pdp11, dynamic memory is one of the most important of the 

limited resources. Once the space taken up by the operating 

system and input/output system has been taken into account, only 

about 24 Kbytes of memory are left for program storage, as 

instructions have to remain in the directly addressable portion of 

memory, under RT-11. If a monitor system was developed it would 

leave even less memory for the seismic programs and the lower 

memory buffers they use. It was also felt that such a high level 

of control on program execution would incur an unacceptably large 



Page 50 

time penalty and increase the complexity of the software 

unnecessarily, with the treatment of error conditions in seveal 

different types of program being a particularly difficult problem. 

It is quite usual for large jobs such as demultiplex and migration 

to be run as the only program in the processing stream, even in 

commercial systems, and it was felt that those processes which 

normally run together could still be arranged in· this way using 

standalone programs. Finally, the type of user expected to be 

using the system is more likely to be at home running a stand 

alone program with a given function than attempting to construct 

the menu type of input under a seismic monitor, which usually 

involves quite complicated training courses to master. Therefore, 

bearing in mind all these considerations, it was decided to build 

the system as a suite of standalone programs. 

Data Format 

One of the first considerations in designing the processing 

system was to decide on the internal format of the data. In this 

case one constraint was placed on the design from the outset. The 

tape control program running on the pdp8 has to be constantly 

resident to be ready to answer any tape command which is issued by 

the pdp11. However because of the size of the program, there is 

not enough available memory to allow two types of driver for the 

tapes. When reading field tapes it is necessary to be able to 

read a gapless format, and so the software for this format has to 

be used. As the blocked format driver cannot be resident at the 

same time, any data written back to tape has to use the gapless 



Page 51 

format. Therefore it was decided to keep the data flow as simple 
~~-~~~ 

as possible and adopt theA·gapless format as being part of the 

internal data format for tapes. 

The data in disc files under RT-11 are stored in sequential 

files, each comprising a sequence of 512 byte blocks. The data 

exchange with the disc is most efficient when carried out in 

multiples of 512 bytes, or 128 samples. Therefore it seemed 

fairly logical always to keep the amount of data being processed 

as an integer multiple of 128 samples, which is just over half a 

second of data at 4ms sampling rate. This is relatively easy to 

achieve in the present system because the SDS 10/10 always 

digitises its data so that the number of samples in second is 

always a power of 2. Hence this fits in well with the disc file 

organisation. 

1 SDS second at 4ms .•. 256 samples .•• 1.024 seconds 

As a further aid to simplifying data transfers it was decided 

to make the header block, containing information on the data, 

consist of one 512 byte block, which would be written to block 0 

in a disc file. It was felt that 512 bytes would provide adequate 

space for all present, and any foreseeable future, usage of the 

header block, for storing data information. 

It was decided that in order to keep the structure of the 

data as simple and straightf~ward as possible, logical units of 

data would be separated by file marks on tape and put into 

separate files on disc. Hence, before stack, common shot gathers 

or CMP gathers would be contained in separate files and after 

stack each trace is put into a separate file. This structure 



Page 52 

enables the header block to be kept quite brief as the channels 

inside the gathers are stored sequentially in order of increasing 

offset. Hence as long as the number of channels, the length of 

the data in each trace and the acquisition geometry are recorded 

there is no need for more than one header block per file. 

The structure of the file format is shown in Fig 4.1 and it 

can be seen that the header block is occupied from bytes 0 to 50, 

with quantities describing the data and aquisition geometry. 

Bytes 50 to 256 are used to store information provided by the 

user, as an identifier or comment on the data. The second half of 

the header block is used to keep a brief account of the processing 

carried out on the data, by entering a set of predetermined 

values, which uniquely identify each process. This can be 

valuable for data which has been archived for a long time, with 

the original notes on its processing having been lost. This set 

of header entries identify each process applied and the order in 

which they were applied for a particular data file. 

The header is also used to indicate a bad area on tape. When 

a parity or CRC error is detected during a write, the tape program 

backs up the tape and then writes 8 bytes with all bits set, 

followed by upto 32760 padding zeros. During a file read, if this 

sequence is found the file is assumed dead and the read routine 

moves on to the next file for the data. 

It is felt that 512 bytes should prove quite adequate for 

future header block usage, but the possibility of changes in the 

future to increase this amount was considered in programming the 

system. Therefore the data references were structured, as much as 



FILE HERDER 
MARK BLOCK 

FILE 
MARK 

=>re-Stock []I~ --~--T_R_R_c_E __ ~_T_R_R_c_E __ ~_T_R_R_c_E __ ~T_R_R __ c_E~~ [] 

=>ost-Stock [] IL---L---TRR___,CE I []I c.___ ,______TRR___,CE I [] 
FILE HERDER 
MRRK BLOCK 

FILE HERDER 
MRRK BLOCK 

FILE 
MARK 

Rute pn:s~t]nn 

!=~ 
6~~ 

9 
10 
11 
12 
13-14 
15-16 
17-18 
19 

20 
21-24 
25-28 
29-32 
33-36 
37-40 
41-44 
45-46 

47-48 
49-50 
51-254 
255-256 
257-512 

F1 g 4. 1 

Header Block Format 

Ft JDCt ]on 

ASCII values ~rom ~'leld tope header block 

Sompl 1ng 'Interval in msecsC~rom ~ield tope) 
Equipment serial number(~rom ~ield tope) 
Recorded data length 
Number o~ channels recorded 
Number o~ channels 1n the ~11e 
Starting position o~ ~1rst data sample 
Ending position o~ lost data sample 
Gather code: 0-common shot/reciever-
1-GMP- 2-Stocked trace- 3-S1n91e trace
Units code: 1-metric- 2-Imperial 
Shot to 1st Reciever o~~set 
Rec~ver spac'ln9 
Shot spac'ln9 
Shot 'Interval in secondsCMorine) 
Source depth 
Rec~ver Rrro~ depth 
Source code: 0-Rirgun. 1-Explosive. 
2-Vibrose'ls. 3-Weights. 
Next useable address in process header 
Del 1m1ter w1th ol I bits setC%0177777) 
User comments inserted at DEMUX t1me 
Del im1ter w1th ol I b1ts setC%0177777) 
Process Header ~ R process histor~ 
inserted 'Into Header at the next ~ree 
slot b~ each process 

Processing S~stem Data Format 



Page 53 

possible, so as to allow the header block to be enlarged with only 

minimal software changes, to data offsets in disc files, and 

equivalence positions in memory references. 

Data Input and Output 

In order to keep the input to the processing programs orderly 

and straightf~ward, it was decided that each program would expect 

its input parameters in a particular named disc file. This allows 

the average user to input data to the system without having to 

understand how to assign logical I/0 units in RT-11. It was also 

decided that each user of the system should keep their files 

separate by prefixing each filename by a two letter unique 

identifier. Therefore a user's input parameter files would be 

created under his own identifier, and then copied across to the 

correct input file name before the program is run. This has the 

added advantage that each user has a copy of the job input 

parameters under his own identifier. 

If seismic data files are written to disc, the user is 

allowed to specify the file names, so allowing these files to be 

collected under the users identifier. This is obviously 

especially useful if several users are running data tests on data 

stored on disc. 

It had been intended originally to keep the programs as 

portable as possible by using Fortran, unformatted direct access 

I/0 for manipulating the data traces. However this was found to 

be much too slow and unwieldy, and so RT-11 DMA transfer routines 



Page 54 

were used, which access the data in block mode from the disc. 

Although this means that this aspect of the system is operating 

system dependent, it would be relatively easy to convert the 

programs to run under a different operating system, by just 

replacing the RT-11 routine calls with their analogues in the 

other operating system. One advantage of using these RT-11 

routines is that once they have been initiated the CPU can 

continue execution while the data transfer is completed by DMA 

operations. 

Seismic Processing System 

Once the basic principles of the system, as described above, 

had been decided upon it was necessary to identify the programs 

which would be needed to produce the complete seismic processing 

system. The suite of programs which, it was decided, would 

fulfill the stated re~rements of the system is shown below. 

Synthetic Seismogram Package 

Demultiplex 

Sort 

General Pre-Stack Processing 

Fourier Data Analysis 

Velocity Analysis 

Gather Plotting 

CMP Stack 

General Post-Stack Processing 

Post-Stack Mix 

Section Plotting 



Header Block Analysis 

Migration 

Page 55 

It was felt that major processes such as Demultiplex, Sort 

and Stack should be separate, as they form a natural break in the 

data processing. However, whenever possible, it is desirable to 

minimise data transfers by amalgamating functions into a single 

program. Therefore it was decided that the general processing, 

such as filtering and deconvolution, should be applied inside one 

program, so that once the parameters had been decided they could 

be applied to the data, in order, in one run, before being written 

back to tape. Therefore these functions are bound into just two 

programs, one for Pre-Stack application and one Post-Stack. 

Synthetics 

When implementing a new suite of programs it is essential to 

have access to reliable synthetic data, which can be used to test 

and evaluate the processes. Also it is useful to have the 

capability to produce synthetic data so that new applications 

programs can be easily tested. 

It is hoped that eventually the ultrasonic tank, developed by 

Mr J H Peacock, could be used for the routine production of 

synthetic seismic reflection data for various acquisition 

situations. However at the time of this project the tank itself 

was also being assembled, and so data derived from it could not be 

used reliably. Therefore one of the first tasks was to generate 



SEISMIC TEST PLOT b . 0 

~'"" 
""" • 

~ 

~-~to: ~ 
~~ )-. 
~~ 
': ... I-... 

· ~ .. 
~""" ... '"" 1 . 0 
·~ ~ .. ... 

.. """ .. 
'"" ~ 

~ .. .. .. .. 
.... ~ 

'"" ... ~ 

'"" .. ~ ...... .. -
-~ ~.-: ~ 

-.:..., ....:-" 
~ ·:: 

"'"" p . 0 

1 . 0 

"">-~-:: .. ~ ... I-

~ ..... 

-.: ... 

Ll . 0 

\1~ 4 .2: A S1o\b~\.\c.. c..m p o<&.ec ~M2.ru\ec\ \,~ ANS€.1 



Page 56 

programs capable of producing syntetic data. 

It was decided that two small programs would provide an 

adequate source of synthetic data, one to be used to produce 

simulated CMP gathers and the other synthetic CMP 

sections. 

The CMP gather generator ANSEI was developed 

stacked 

with A 

Nunns(Nunns, 1980) and it generates a set of traces, each 

displaying a specified number of primary reflections. Each 

reflection is defined by an arrival time on a zero offset trace 

and a stacking velocity, which is used to calculate the hyperbolic 

trajectory of the seismic arrivals. No allowance is made for 

inversion or transmission energy loss effects, so the seismic 

pulses are always positive and of the same amplitude. A Ricker 

wavelet(Ricker, 1953), with a specified frequency, represents the 

seismic wavelet and band limited random noise is added to all the 

traces. This noise is generated in the frequency domain by 

constructing a unit amplitude with random phase, upto the cutoff 

frequency. A fourier transform then yields a random noise trace 

which can be added into the seismic trace. This program provides 

a simple but effective method of producing pre-stack synthetic 

data. 

A more sophisticated program was required for producing 

synthetic stacked sections, as these would be used as test data 

for processes such as Migration where amplitude variations are 

important. Therefore a program developed by C Godbold(Godbold, 

1980), for use on the NUMAC IBM370 as a tool in investigating 

Kirchhoff migration, was converted to run on the pdp11 and produce 



I II 

I . I 
' 

I I ' ' I ! . I 

I 
I . I ' I 

I 
. I 

. I I 

I 

I 
I I 

I 

I 

I I ' I ! 

ill II 
I II 

I I 

I I i 
I I I I 

I II II 
I I I i 

I ! I 
I I 

I I 
! I 

I I ' 

I I i i 

[

1

1' II 

,I 
, I 
I 1 

II 
I I 
I II 

f 

, I 
I I 1 

I I h l 
I l 
I \ 

. ' ' 

' ' ' 



Page 57 

output compatible with the seismic processing system. 

This program allows plane dipping layers and point reflectors 

to be specified with a vertical variation of velocity with depth. 

It uses a simple ray tracing technique to evaluate the travel 

times, ignoring multiples and refracted events, and calculates the 

appropriate impulse response using an approximate wave equation 

method. The synthetic is completed by convolving a Ricker wavelet 

with the calculated impule response to give the seismic waveform 

for each arrival and random noise is added using the same method 

as described above. 

These two simple programs are extremely useful in producing 

different types of synthetic data for program testing and 

evaluation. 

Demultiplex 

The demultiplex program was designed principally to handle 

the SEG-A format produced by the departmental SDS 10/10 

acquisition system. However the main data flow of the program, 

and its general logical sequence was designed so that a new 

version, to handle SEG-B or SEG-C, could be written, using it as a 

template, around which to build the specific routines. 

Demultiplex is fairly obviously a tape to tape process, and 

so it utilises a modified version of TAPRED to handle the tape 

input/output. This routine had to be modified slightly because it 

is necessary to send a byte swap command to the pdp8, to swap the 

bytes in every 16 bit word, when transmitting the multiplexed 



Page 58 

data. This is because data on the tape are written out conforming 

to IBM data standards, and in the IBM architecture the low address 

byte is the most significant byte in a word, which is exactly the 

opposite to the architecture on the pdp11. By getting the byte 

swap performed by the tape handler in the pdp8 during data 

transmission, no overhead is incurred in subsequent processing in 

the pdp11. 

Although the demultiplex program is basically designed for 

tape to tape operations, it is also possible to leave files on 

disc, as well as putting them out to tape, if required for quality 

control plots and data tests, and input can also be taken from the 

disc if required. 

The program was designed to operate in two modes; fast with 

only minimal error checking, and slow with full error checking and 

attempted error recovery capabilities. Either of the two modes 

can be selected at the start of a demultiplex run and, if the fast 

mode has been selected, another option is available which allows 

the user to specify that it should revert to the slow mode if an 

error is detected in fast mode. 

As the demultiplex is the first program in the processing 

stream, it is responsible for initialising the file header block 

for each of the output files it generates. Some of the parameters 

are extracted from the field tape header, but the geometry values 

have to be entered by the user and are stored into each file 

header by the program. 



Page 59 

With all the reordering of the data which is taking place 

during demultiplex, it is a natural point at which to reorder the 

traces in the output files into ascending order of shot-receiver 

offset. Therefore the user specifies, in order, the channels on 

the field tape which correspond to an increasing offset of the 

receivers, to allow the program to sort the channels into this 

order. Usually the channels are written out into a common shot 

point gather, and in fact this is probably the most desirable form 

for the data to be written back to tape, as these raw demultiplex 

tapes can be easily used as the starting point for later 

reprocessing runs if required. However a sorting ability was 

incorporated(see Sort), so that small datasets could be 

demultiplexed directly into CMP gathers, to save time and the 

amount of tape handling required. It was envisaged that this 

option would be used to select records from the tape for data 

quality examination and filter tests before the whole of the line 

had been demultiplexed. 

One option in the program which was added in the light of 

experience at Durham occurs when a change of tape is requested. 

The SDS 10/10 has twin tape decks so that when one tape is 

finished the system can switch to use the second drive without any 

data being lost. However if one tape deck is inoperative it is 

possible that data will be lost during the tape changeover. 

Therefore when a new tape is requested, the operator is asked if 

blank files are required. By this means zeroed channels can be 

written out to tape and it provides a simple way of padding the 

data out to the correct lateral scale, from the start of the 

processing. These zeroed trace would then be sorted into CMP 



Page 60 

gathers with "live" traces during the sort. 

The basic design principle behind the operation of the 

demultiplex programs operation, is to demultiplex enough samples 

in one pass to produce one disc block, 128 samples, of trace 

sequential data for each trace. In this format 128 scans is 

equivalent to 4 Kwords of multiplexed data, which is half of the 

AP's main data memory. Fortunately after demultiplexing this 

reduces down to slightly less, and so there is also room available 

for the gain codes. As it is possible to just fit one block per 

trace of multiplexed data into the AP and demultiplex it, a 

microcode routine was written for the AP to perform the 

demultiplexing and the reformatting of the data into floating 

point numbers from the 15 bit integers and their associated 4 bit 

gain codes. While performing this operation the microcode routine 

only checks the start of scan code and the submultiplexed gain 

information for errors. However if an error is detected, the 

routine exits and sets an error flag which can be picked up by the 

main program. When the main program detects the error flag, it 

can, if the option is set to allow it, restart demultiplexing the 

file in slow mode in an attempt to overcome the error. 

In conjunction with this fast microcode mode of operation all 

the input and output operations are performed in a double buffered 

manner, so that the disc and AP transfers are fully overlapped 

with computations. Once a block of data has been demultiplexed it 

is written out to its correct place in a disc file, used as 

temporary storage. If the field data is error free this mode of 

demultiplex allows the operation to be performed very quickly. 



Page 61 

However, there are occasions, when the field data contain 

many errors, such as data lost or corrupted. In the university 

environment it is important to use as much of the data as 

possible. Therefore a lot of effort was put into a slow mode for 

the demultiplex program which allows a significant amount of error 

recovery, even from poorly recorded data. In this mode no attempt 

is made to perform the operation very quickly; rather every piece 

of information in the multiplexed format, such as the time code 

and the submultiplexed gains, are checked to ensure no errors have 

occurred. If an error condition is detected the demultiplex is 

continued in an attempt to use the redundancy checks so that an 

output trace may still be produced when a serious error has 

occured. The number of errors and lost samples which the user is 

prepared to tolerate in a trace, before it is declared "dead", is 

an input parameter to the program. If the number of errors 

exceeds these limits, or data recovery is not enabled in fast 

mode, the traces for that shot are zeroed before they are written 

out to disc. 

While the error checking is being carried out in slow mode, 

the data are also being put into trace sequential order. 

Therefore when a block has been completed, all that remains is to 

reformat the data. This operation is carried out in the array 

processor. The data are transferred as integers and then 

converted to a floating point integer representation in the AP. A 

microcoded routine is then used to apply the gain factors to each 

sample in turn to complete the reformatting. The data are then 

retrieved from the AP and written to the temporary disc file. Log 

files of any errors detected are also produced for each shot file. 



Page 62 

Once an entire field tape file has been demultiplexed, or as 

much of it as has been requested, the temporary file is closed and 

the data is written to tape, a copy being left on the disc for 

later use, if requested. 

The demultiplex program is responsible for producing the data 

in the form in which they will be used during the remainder of the 

processing. Therefore a great deal of effort was put into its 

design and implementation~ to provide the program with as much 

flexibilty as seemed desirable. Also in implementing the fast 

mode, the program was made to be as fast as data transfers would 

allow, so that if the data was known to be virtually error free, 

from preliminary tests, large quantities of data can be 

demultiplexed very quickly. On the other hand, it is hoped that 

the sophistication of the error recovery capability in the slow 

mode will allow data of a reasonable quality to be produced even 

when acquisition malfunctions have gone unnoticed. 

In designing the system it was considered that the sorting 

capability in the demultiplex program should only really be used 

in producing test CMP gathers on small data sets. When large 

datasets are being demultiplexed, it is best to produce tapes of 

common shot gathers so that the demultiplexed data correspond 

closely to the field tapes. This is more convenient for referring 

to the data at a later date. 



Shot Number 

5 

5 

s R 
/ 

/ 
/ 

/ 
/ 

s R' R 
/ 

/ 
/ 

/ 
/ 

Comma;:, O-F-Fset 

F'ig 4.6 

Stot'ion 

s 

s 

I oc::at'i on 

Common Rec::e1ver 5tat1on .,. 

/ 
/ 

/ 
/ 

s 

R 

/ 
/ 

/ 
/ 

,R 
/ I 

/ I 
/ 

/ 

R R / 

R R 
/ I 

R R R 

R R R 

R R 

R 

_ .R ___ R ___ R ___ -f! ___ R _, Common Shot 
/ 

/ ', 

/ 

R 

R 

/ 
/ 

/ 

' ' 

R 

'R 
' ' ' ' ' R 

R 

R 

'R 
' ' ' 

R 

R 

R 

Common~M~d-po~nt 

CMP Ac~u'is'it'ion Geometr~ 



Page 63 

Sort 

It was decided that during demultiplex all the data on the 

field tape should be demutliplexed and written to tape as common 

shot gathers, as mentioned previously, so that once it has been 

completed the field tapes would not have to be refered to again. 

Therefore, in order to select the segment of the data required and 

reorder it into CMP gathers, a sort facility is required. 

The main consideration in designing the sort program was to 

be able to produce CMP gathers from common shot gathers easily, as 

this is likely to be the most common sort operation performed. 

However, it was realised that future work might require the data 

in different configurations, such as common receiver gathers, and 

that especially in the marine case, where accurate positioning and 

speed over the ground can be difficult to control, the acquisition 

geometry might be less than ideal, such that the shot spacing 

would not give a true CMP configuration. For example, if the 

speed over the ground at sea has been too fast or slow, instead of 

being able to get a CMP gather by sorting as shown in Fig 4.6, a 

smear, or footprint of midpoints is generated. In this case a 

different sort procedure than is usual must be adopted in order to 

minimise the size of the CMP footprint, so as to reduce the 

distortion of the velocities and structures that would otherwise 

result. 

Therefore the sort program was designed to allow the 

reordering of the data to be totally user specified. As is shown 

in Fig 4.8 the repositioning of the input data into output files 



s s s R R R 

\\ \ \ 7 I 7 

Correct CMP pos1t1on1ng 

s s s R R R 

CMP Smear 

Incorrect CMP pos1t1on1ng 

F1g 4.7 The Smear E~~ect o~ Incorrect CMP pos1t1on1ng 



IPO 

l 

Increas1n 
CMP 

Number 

5 

9 

Rn example w,th CMP gathers as 1nput ~11es 

ICHRN -

~ 
I"" 

Common 
O+fset 
Gather 

CMP 
Gat. her 

Common 
Shot 

Gather 

Generot1ng D1++erent Trace Gathers us1ng SORT 



Page 64 

is specified by a coordinate pair for each input channel. At the 

same time a starting and ending value for the data can be 

specified, so that the amount of data in each trace can be reduced 

while the sort is being carried out. As can be seen from the 

example, almost any new data configuration can be generated, 

entirely under the user's control. 

The input to the program is usually read from tape into a 

temporary file on the disc, although input directly from disc is 

possible. At the start of a run, a set of temporary sort files 

are created on the disc to collect the output gathers. If a 12 

fold CMP gather was being generated from common shot gathers, then 

12 temporary files would be required to hold the gathers until all 

the necessary data had been read in. The part of the data 

required is then transferred from the input file to its correct 

position in the correct output file. Once all the output channels 

have been transferred, at least one of the gather files will be 

complete, and so can be written to tape or to another disc file 

for later use. This file is then deleted and another one created 

in its place, and the process is repeated for the next input file. 

It is possible that tape problems may cause the program to 

close down. If this occurs, the last line in the Log file for the 

job contains an index to the order of the temporary files which it 

has written out before terminating. If the program is restarted 

this can be input, along with the restart, flag and the job will 

continue from the point in the sort at which it was interrupted, 

so that the whole job does not have to be resubmitted. 



Page 65 

The major features of the sort algorithm were included in the 

demultiplex program so that reordering into CMP gathers, for test 

purposes, can be accomplished straight from the field tapes. 

It was felt that this sort program provides sufficient 

flexibility to allow marine data and most land data to be 

reordered into any configuration desired. The only situation 

which would be difficult for it to cope with would be in the 

crooked line sorting of land data, where the optimum sort 

configuration for CMP gathers, is contantly changing. This type 

of data would probably prove very tedious to sort as it would need 

to be performed in short segments, with constant operator 

intervention. However apart from this, always complicated 

situation, it should be possible to handle all the data 

configurations likely to be encountered. 

The sort program sets the header entries of the items it 

affects, such as the gather type, number of channels, and data 

start and end positions, so that the header block still carries up 

to date information on the data. 

Pre-Stack Data Analysis 

It seems reasonable that once the data has been sorted into 

the required configuration the user is going to want to examine 

the gathers, in order to check data quality and determine data 

characteristics, such as frequency content. 



1 

fij1- · 9: bmrn~\e o~ do,\:g. ?\o\ted u:;,\\ o.\<M-\~xro.c.e 
~C\(\Q 



Page 66 

Therefore a suite of interactive display programs was 

developed in order to facilitate data examination. Two 

interactive trace plotting programs were developed, using the 

raster plotting algorithm, to display gathers. One produces plots 

with the traces spaced at a maximum of 0.1 inch and with a maximum 

deflection of 0.2 inch, so that reflection events can be picked 

out by their continuity from trace to trace. The second module, 

spaces the traces so that each individual trace can be amplified, 

without overlapping other traces, so that the wavelet 

characteristics and data quality can be examined more closely. 

These programs are fully interactive and expect the input 

data to be in disc files. They both produce raster output which 

can be put out to the plotter using one of the postprocessor 

programs, MPMERP with a merged timing line background, or MPPROC 

with no merged in background. This also provides the user with a 

quick method of examining the effect of different processes on the 

data, by allowing displays on the data after filter tests and 

other processes. 

The other interactive display package is one which produces 

spectral plots of data traces. This program MPFANL allows several 

traces within a gather to be spectrally analysed, and a power and 

phase spectrum to be displayed for each. The spectra are derived 

by padding the data to a power of two in the AP and performing a 

Fourier transform. The phase and amplitude spectra can then be 

calculated from the real and imaginary parts of the transform. 

This information is used to produce a vector plot using Versaplot 

routines and once the program has been terminated the plot can be 

displayed on the electrostatic plotter using the Versaplot post 



(\J 2:: 
:::::) 

a: 
1-
u 
w .J 
0.... 'l cr c.n 

~ 
>-- 11 
t..::) j) 

cc 1 w 
z 
w cv 

~ 
(\J e 

0 ..J> 

....----; J -
::K € 
>- ~ 

a> 
(_j J) 
z 

~ 
Ll.J i/1 .. 
=:) 0 

0 ~ 

w d 
(j o6 
LL 

1 
i 

=>' 
V) 

' ~ 0 
..-< ~ 
% ~ 

:::t' tJ 
II 

0:: 0 0 -f-
u ~ 
CI -r LL 

('J 
U-

z 
>--< 
_j 

cr: 
u 
en 



Page 67 

processing routine RASM. 

This Fourier analysis package together with the gather 

displays, alJowR the frequency characteristics of the signal and 

noise to be determined, which can be very useful, in later 

processing, in allowing filters to be designed more easily. 

Pre-Stack Processing 

It was decided that all the processes usually applied to the 

data before stack should be included in a single program, with 

general subroutines being developed for the filter routines, so 

that they could also be used in Post-Stack processing. The idea 

behind this decision was that, once a trace from a gather had been 

transferred to the AP, for a certain process to be applied, it is 

more efficient to apply all the other processes to it before 

returning it to the pdp11, than to have several programs each 

dedicated to one technique each putting the data in and out of the 

AP. Similarly this approach cuts down the number of tape 

transfers needed to carry out Pre-Stack processing. 

Another important factor in designing this program was that 

it must be able to accept input data from either the tape or the 

disc, so that tests could be easily carried out on data files on 

disc. 

The processes which were included tn the Pre-Stack processing 

package are shown below:-

Edit 



Polarity reversal 

Gain application 

Muting 

Bandpass filtering 

Bandreject filtering 

Spike deconvolution 

Prediction error deconvolution 

Trace normalisation 

Page 68 

These processes can be selected as required and applied in 

any order, with even the capability of a process being applied 

more than once if required. The program was designed to be as 

modular as possible so that other processes which may be required 

at a later date can be easily slotted into the program. However 

if many more processes were added, it would probably be necessary 

to use overlays to provide sufficient room for the executable 

image in lower memory. 

Edit 

The data editing capability is used to zero very noisy 

traces, or ones with spikes, which cannot be made useable by 

further processing. Once a trace has been zeroed by the Edit 

option it is not passed through the rest of the selected options, 

and so this is normally the first option applied to the data. If 

a data trace is known to have been zeroed by the demultiplex 

program, then this option can be selected for these traces to 

prevent them passing unnecessarily through the rest of the 



Page 69 

processes. This option is most likely to be used to kill traces 

containing bursts of high energy noise at about the same frequency 

as the source signal which precludes filtering to remove it. If 

these traces were left in for further processing they would 

contaminate the stacked results and so it is best to remove their 

effect by editing them out at this stage in the processing. 

Polarity Reversal 

It is not unusual for a data channel to be connected into the 

acquisition system with a different polarity to the other 

channels. If this situation was not altered it would lead to the 

stacked results being degraded. This option can be used to allow 

data traces with the incorrect polarity to be reversed before 

further processing. 

Gain Application 

Due to the spherical spreading of the source energy and 

transmission losses on passage through the Earth, the amplitudes 

of seismic arrivals decrease with increasing travel time. 

Therefore it is necessary to make some correction to counter this 

effect, so that reflection events at low travel times can be 

compared with those further down the trace, and the same event on 

traces with a greater offset. 



Page 70 

As spherical spreading occurs in a predictable 3-d 

environment, it can be calculated. However the effect of 

attenuation losses can only be estimated. If 3-d spreading is 

considered then the decay is directly proportional to the travel 
tift c.. hoMo?...,oo w· Me ciA ~A...,, 

time~ and so a function which is just a linear ramp in time can be 

used to correct for this effect. 

exponential decay functions of 
e:xp ( o.:t) 

Attenuation factors are usually 
Wxl~{-&t) 

the type ~~· Therefore the 

inverse function ~ can be applied. 
A. 

In seismic studies a value 

of 0.2 has been found empirically to be quite a good approximation 

for marine data. Therefore two of the gain functions in the 

program are of the form given below. It is relatively simple to 

adapt these routines to change the value for the absorption 

factor, and to apply only a T ramp if required. 

e,(o·2t) ~+0.2~ 

t e>t(o ·L-t). J;e+O. 2+:. •.• one usually applied 

A third function of the type TV**2 is also available and this 

has been shown to give good results for near vertical data 

(Newman, 1973) • Therefore this function can be used if an 

approximate velocity structure is already known. 

Gain functions such as these have to be applied before such 

operations as deconvolution, so that the energy of the wavelet 

remains approximately constant down the record, in order to 

preserve the assumption of stationarity of the trace statistics 

with time. 

In experiments with real data it was felt that the function 
t f:JJ<p(O· 2t-) 
Aae•0,2t gave the best results, of the ones available, in producing 

equalisation of amplitudes down the trace. It was also felt that 



Page 71 

these deterministic methods are preferable to AGC functions at 

this stage in the processing because their effects can be easily 

removed, which is not possible with AGC. In fact one of the 

options in the program is to be able to remove one of the 

specified functions, perhaps to replace it with an alternative, or 

to remove the ramp after deconvolution. 

The ramps are generated by subroutines at the beginning of 

the run and are then stored in virtual memory, from where they are 

transferred into the AP to be applied, or removed. 

Muting 

Often the direct arrivals from the shot and the refracted 

arrivals from near surface events are so large that they tend to 

swamp the early reflection events. Therefore it is desirable to 

remove the effect of these unwanted events. This is accomplished 

by arbitrarily zeroing the traces down to a predetermined level to 

remove them. This is known as muting and is accompanied, in the 

algorithm developed, by a tapering of the data from the point of 

the last zero sample into the "live" data. 

At the point where the mute ends there could be a large 

sudden increase in amplitude, which is equivalent to introducing 

high frequencies at this point. Therefore a cosine taper, of a 

user specified length, is applied to the data at the end of the 

mute zone, to smooth the transition from zero to live data. 



Be-Fore Mute 

R+ter Mute 

F1g4.11 Example o+ Mut1ng a CMP gather 



Page 72 

The capability of applying a mute to the end of the data is 

also available in the program. This is done so that a small 

cosine taper can be applied at the end of the data, to remove the 

effect of the implied high frequencies generated by the sudden 

cutoff in the data. 

The range of the mute can be specified for each channel, but 

the length of the taper is kept constant for all the channels. A 

subroutine designs the cosine tapers and stores them in virtual 

memory at the beginning of the run, and they are transferred into 

the AP to be applied when needed. 

Frequency Filtering 

Although it is desirable to leave as high a frequency content 

as possible in the data, quite often the data are dominated by 

noise, which may well be at a different frequency from the source 

wavelet. It is quite common for low frequency noise, such as 

ground roll, or streamer snatch at sea, to swamp the data, and 

probably the most common source of noise in this country is the 

50Hz pickup from electrical supplies, which can completely corrupt 

the data in some cases ( e . ~. {i~ . 4. 10) . 

Therefore it was considered necessary to have both Bandpass 

and Bandreject filters available in this Pre-Stack processing 

program. 



Page 73 

Bandpass Filter 

The bandpass filter used in the program is a zero phase 

filter with tapered ends to the pass region as shown in Fig 4.12. 

It is specified by giving the ends of the all pass region and the 

frequency range over which the end taper is to be applied. A 

cosine taper is used at each end. It is important that a zero 

phase filter should be used so that reflection events are not time 

shifted, by delays introduced into the phase spectrum. -Also th:i::s 

ensnre:s tAat tee IiJRase eem~es9Rts ef tae ee1alPee waoelet sl.<lettl6 Het 

&9 affeetee se tl.<lat tl.<le ass~m~tieR ef misimYm ~Rase is set 

The filter is designed in the frequency domain at the start 

of the run, and stored in virtual memory, and it is then applied 

in the frequency domain in the AP for each trace. The input 

traces are padded out to twice their original length before 

transforming, so as to avoid the possibility of cyclical 

convolution. Care should be taken not to design too narrow a pass 

region, or too short an end taper, as these tend to lead to 

instabilities in the filter( Onevt~et;.. c~d ~cf4u, l~7S'). 

Bandreject Filter 

The type of zero phase bandreject filter which is available 

in this program is shown in Fig 4.13. The user specifies the two 

points at which the reject region begins and a sine taper is 

designed between the two points, falling to zero midway between 

these two points. Therefore only one frequency component is made 



Rmpl itude 

Fig 4-12 

Rmpl 1tude 

Fig 4-13 

Fl Fu 

Fi = Lower Limit o~ 
Bandpass reg'lon 

Fu = Upper Limit o~ 
Bandpass region 

Ft = Cosine Taper Length 

Ft Ft Frequenc~ 

Bandpass Filter Representation 

Fl - Lower L1m1t o-F 
Re_Ject. reg1on 

Fu - Upper L1m'lt 0~ 
Re_Ject region 

Fl Fu 

Frequenc~ 

Bandre_Ject Filter Representation 



Page 74 

identically equal to zero. 

This filter is designed and applied in the frequency domain 

by the same method as described for the bandpass filter. However, 

when specifying a bandreject filter, which by its nature has a 

long time-domain representation, the user must be careful not to 

specify too narrow a bandreject region, as this would tend to 

produce the equivalent of an infinite filter and so cyclical 

convolution may be unavoidable. 

In the case of both filters described, tapers are used at the 

ends of the pass regions in order to avoid ringing at the cutoff 

frequency being generated. The filter is applied in the frequency 

domain, because with the speed of FFT's in the AP the 

multiplication to apply the filter is much faster than the 

convolution in the time domain, and it makes the process much more 

understandable to the user. 

Deconvolution 

Two types of deconvolution were included in this program, 

Wiener spiking deconvolution and Prediction error deconvolution. 

Both have the aim of compressing the source wavelet to improve the 

resolution of the data. 



Page 75 

Wiener Spiking Deconvolution 

The aim of spiking deconvolution is to design a filter which 

when convolved with the source wavelet produces a spike output on 

the seismic trace. In order to do this exactly an infinite length 

filter would be required, and so an approximate truncated filter 

has to be designed using Wiener's least mean square energy 

criteria (Robinson and Treitel, 1967). 

Consider the problem of designing a filter Ft such that when 

it is convolved with an input wavelet Bt, it produces an output 

Ct, which is an approximation to a desired output Dt. 

M 

eqn 1 ct : L F; ·\St-S 
S::o 

and the error energy is given by:-

eqn 2 I 

The error energy is at a minimum when the partial derivatives 

with respect to the filter coefficients are equal to zero. 

Therefore:-

eqn 3 

and this reduces to 

Mrl'l 

eqn 4 
- '\ \2 ~ 
\-s L bt-<- u, __ . 

t ,J v ~ 

~o 



Page 76 

now 

eqn 5 
:: 

This is the autocorrelation function of the input 

wavelet 

eqn 6 

This is the crosscorre¢lation function of the input 

wavelet with the desired output. Therefore the equations can be 

specified in matrix form as (s&/ (Or ew..wyJ-fl-., Robt,tscn-. o ... /. Tr~itt::( t"t£,7) ~-

eqn 7 

This set of equations can be solved using the Levinson 

recursion as [ q>J is a T6'eplitz matrix 

In order to apply this to a seismic trace several assumptions 
-tit is 

have to be made. The purpose of deconvolution is to remove the 
~ 

wavelet and leave behind just a spike at the time of the onset of 

the wavelet. The assumptions which are made to allow this are: 

1 .• The impulse response of the earth is assumed to be 

white, stationary and random, as is the noise content. 

2 •• The seismic wavelet is assumed to be minimum phase. 

-- :J(_( t) Slt) * r(t) t- (\ \t) 
8 \-RAC.f_ 

-eqn ~ -

i;,hert:J c; [t) ' fiG Se.tSi'VlAt LJ&t1i1i eJ: ~~ I 

f- [t) ~~ tiW_ lt\t f""/t~(L_ !"lf:./)o , s.e 1 ?(;_ ea_rt( 
I 

n(t) ' r£e noiSe covd~, ~~ 

tVtd 1k as'f6t-r'sk c&~ote:> Cu t1 v--o ~tr <-YI . 



Page 77 

The first assumption is necessary to allow us to assume that 
I~ ~ l'C4{Ar "-</b'/o/~ of 

the autocorrelation of the source wavelet eaA se ee~aiAedlfro~ the 

autocorrelation of the trace,. Mcc.ept ~ tfllL .JC..""TJ-~ CPt((io-'ent:. 

From this assumption it follows that the autocorrelation 

values of the noise and reflection impulses can be considered to 

be zero after the zero lag value, and the crosscorrelation of the 

noise with the wavelet can be considered to be 

negligible 1 (Robinson and Treitel, 1967). Therefore the 

autocorrelation function of the trace, after the spherical 

divergence correction has been made, can be assumed to be the 

autocorrelation function of the source wavelet. 

The other assumption was that the wavelet was minimum phase. 

This is because the spiking filter will do the best job on the 

minimum phase wavelet, of all the wavelets with the same 

autocorrelation function. 

\ - L Co 

0•N 

·-r 2_ LL 
\:_ 

c.:..o 

,.... ..... ">) 

eqn 1 OCI. 
\ 2 )S~ ~0 t- 2:_ Ct'-

c .. ~. 

Because of the minimum error energy criteria, F must be 

minimum phase, as any other filter with the same autocorrelation 

function would have a smaller value for F0 which would increase 

the error energy, ~C~ being a constant for B convolved with any 



Page 78 

(J 

filter having the same autocrrelation function. 
A 

In a seismic application the filter is derived as follows:-

[_ G6Ax] is the autocorrelation of the seismic trace for lags 

0-M. 

L_Fl(J is the desired filter of length M+1. 

the cro~orrelation 
!1(t) 

which is the desired output, and 
1\ 

function between a spike 
se ~ MllC tn: c .z 

the S&Yree wavelet. 
1\ 

at T:O 

As the spike series can be represented by 1,0,o,o,o, ••• o the 

crosscorrelation can be seen to be A,o,o,o,o, •.. o and so 

1,0,0,0, •. o can be used and still be correct to within the scale 

factor A. 

In the processing system a subroutine SPIKE was written to 

design and apply a spiking deconvolution filter for a particular 

data trace. The method used was to first find the autocorrelation 

function of the data trace. This was performed by padding the 

trace to double its length with zeros, to avoid cyclical 

correlation, and then Fourier transforming. The autocorrelation 
l;,v"r-se. 

function can then be calculated as the A transform of the power 

spectrum. 



Page 79 

A user-specified whitenf~ing factor is added to the zero lag 
(ot11rtJ{ 'lClJe ""'~A·~t.·CJvt J a.-r.l it ..._.,,tl 44-u 

value of the autocorrelation function to stabilise the solution of 
1\ 

the equations. This is equivalent to adding a small value to each 

of the frequency components in case any of them are zero. 

The crosscorrelation function is generated as a spike at 

position 0 followed by M zero values. This, together with the 

first M+1 lags of the autocorrelation function, are input to the 

Levinson recursion routine which produces the M+1 length desired 

filter. This filter is transformed into the frequency domain 

where it is multiplied with the transformed version of the trace. 

The resultant is then transformed back into the time domain to 

give the resultant deconvolved trace which can be used in further 

processing. This procedure is repeated for each trace and the 

user has the choice of giving the filter unit energy, keeping the 

input and output trace energies the same or applying no scaling at 

all. 

QAe -ei;l'!el" tt"eful iAJ9Ut ~aPamet er te t;!,e dec on o ol a tion, is the 

po~itieR ef tb& spik@ Although a: miAiiBI.liR 19Aase \#avelet is tb~ 

only one ubiea ae:a a tee:liaable invetae if efie af)ike f'OaitioA is 

a-t- T-D, eauee:l filtet s ean be designed if tao eeel.lPP&Ree ef tae 

s19ik& ie delayed from '1'=0. The approximate sl'ilee 19roal.lG@Q ay ehis 

method has a tail a:Rg a 19reettrseP fl"OIB TI!IQ to T-t, ~hete t ia the 

spike posjtio:R, a:Rd of COI.lP~Q tbi~ resnJts iR tae I'Cak of tne 

outpnt compressed \JaV8f9PIR heil:lg delayed by t 



Page 80 

Prediction Error Deconvolution 

A ~econd deconvolution method hased on the statistics of the 

seismic trace is prediction error deconvolution. The basis of 

this method is the ability to predict the values of the trace at a 

future position t+~ from the values at the present position t. 

The error in the prediction between the actual value and the 

predicted value is then recorded. 

In principle random events, such as reflection series, should 

record high prediction errors, while multiples or bubble pulses 

which are predictable should produce a low prediction error, if 

the prediction distance is set to the period of the effect. 

The prediction error filter can be derived from the 

prediction filter, and this is the filter which when convolved 

with the data predicts the data at a future time. 

eqn 1 
r;:) 

J r \. . 
'--~ t.. -s 

Once again the Wiener least squares criteria can be used to 

minimise the error energy between the predicted and the actual 

values. Therefore following the derivations of the previous 

section the following equation can be derived which has to be 

solved for Pm, the prediction filter. 

eqn 2 



Page 81 

~ ~:} is the autocorrelation of the input trace 

[_ y)~~~ is the crosscorrelation between the input and the 

desired output. This represents just the alpha lag value of the 

autocorrelation f'.lilction, for a prediction distance of alpha. 

eqn 3 

Therefore the prediction filter coefficients can be derived 

using the Levinson recursion method. Once the prediction filter 

has been derived the prediction error filter can be formed. 

eqn 4 prediction filter= PO,P1,P2 ••• Pm 

eqn 5 prediction error filter= 1,0,0 •.•• -PO,-P1,-P2, ••• -Pm 

where there are alpha-1 zeros for a lag of alpha. 

It can be shown (Peacock and Treitel, 1969) that when the 

prediction distance is 1, that the prediction error filter 

corresponds to the Wiener spiking filter, except for a constant 

scale factor. Therefore the Wiener spiking filter is a special 

case of the more general prediction error filter. H. J!:la~ been 

s-Rctm tl:lat the f)teelietiea filter will be minimt:tm f'hase fer aH 

1a.gs 7 a~ leag ae l;f!e inf'ttt ~eties i~ minim't:IHI f)ha~e, which i~ not 

kRCHR a flrieri, bttt 3he1::lla ee tPl::le fer the mat ine case-. 

The design of the filter in this program follows similar 

lines to the spiking filter. The routine written, PRDICT, 

generates the autocorrelation function from the transform of the 



Page 82 

power spectrum. The lag value and the length of the filter are 

specified by the user, and from this the input to the Levinson 

recursion routine is the autocorrelation function from 0 to M and 

the autocorrelation function from t to t+M, for a filter lag of t. 

The prediction filter so formed is turned into a prediction error 

filter by negating the coefficients and inserting the correct 

number of zeros between the value of and the negated 

coefficients. This filter is then transformed into the frequency 

domain and applied to the input trace. The result is then 

transformed back into the time domain and scaled if required. 

The prediction error filter is likely to be used before 

stack, to compress the source wavelet, if a spiking filter cannot 

be used successfully because the input wavelet is not minimum 

phase, as in the case of a single airgun source. If the filter 

length and filter lag are well chosen this method can be used to 

reduce the bubble pulse effect of an airgun and so compress the 

wavelet. 

Trace Normalisation 

The facility was provided for the data to be normalised to 

unit energy or unit maximum amplitude so that all the traces in a 

gather would be at about the same energy. This option would not 

normally be used, as it tends to obscure amplitude variations. 

However, if such variations have occurred for some reason during 

acquisition, this option can be used to remove that effect by 

allowing each trace to have unit energy. 



Page 83 

Pre-Stack processing - Summary 

Any of the processes previously described can be a~plled to 

pre-stack data in any order specified by the user, and processes 

can be repeated if required. For example bandpass filtering could 

be applied both before and after deconvolution if specified by the 

user. 

The program reads data from tape to a temporary disc file, or 

straight from a disc file, for tests, and reads in and operates on 

one trace at a time from the gather. Once the trace has ben 

passed to the AP by a process, a flag is set to show other 

processes that the trace is in the AP, so each process then acts 

on the data in the AP. When the last process has been applied the 

trace is retrieved from the AP and put into another temporary disc 

file. When a complete gather has been processed it is written 

back to tape using TAPRED, or left on disc if necessary. 

A complete record of each process being applied is recorded 

in the header block for each gather, so that the processing 

carried out on the data can be deduced from the data, without the 

need of independent records. 

The filter, ramp and taper generators were all written as 

general purpose subroutines so that they could be used in a 

Post-Stack program too without having to make any changes. 



Page 84 

Velocity analysis and Stacking 

Possibly the most important step in producing a CMP stacked 

section is the determination of stacking velocities. If this is 

not performed correctly then the resultant stack will be poor and 

all the other processing will have been wasted. 

The basic principle of CMP stacking is that a set of 

reflection traces derived with different shot-receiver offsets, 

but with a common mid point, also have a common reflection point 

on horizontal subsurface horizons. It is trivial to show that for 

a single, homogeneous, horizontal layer the trajectory of a 

primary reflection across the CMP gather traces is given by:-

eqn 1 

.~ 
\:J(... is the observed time on the trace 

/, 
\0 is the arrival time on a common shot receiver trace 

"! is the shot-receiver offset 

v is the stacking velocity of the event 

In the case of horizontal reflectors overlain by beds of 

differing velocities the stacking velocity approximates to the RMS 

velocity(Dix, 1955), and so is often referred to by this name. 

The difference in the onset time on a particular trace with 

respect to the zero offset trace is known as the normal moveout. 



Page 85 

eqn 2 Normal Moveout =~T 

Therefore if the stacking velocity is knm.m or can be 

determined, the normal moveout can be calculated and the normal 

moveout correction applied to the traces in a gather. This leads 

to a reflection event occurring at the same time on all the traces 

in a gather. If this is repeated for all the primary relections 

in a gather and the traces are then summed (stacked) to give a 

single output trace, the multiple reflections should be attenuated 

and the primary reflections enhanced with respect to the 

background noise. However for this to be achieved the value of 

the stacking velocity for each event on the trace has to be 

determined. This information is usually derived from the trace 

itself by velocity analysis. There are three common methods of 

velocity analysis, constant velocity stack panels, constant 

velocity gather panels and coherence scan analysis. 

In the constant velocity stack method of analysis, several 

CMP gathers centered on the point of interest are taken, a stack 

is produced for each gather for a particular constant stacking 

velocity, and the resultant panel of about 20 stacked traces is 

displayed. This is then repeated for a range of different 

constant velocities. The intention is that when a primary 

reflection is stacked at its correct stacking velocity, it will 

show up most clearly on the stack panels. Therefore a time 

velocity function is picked by finding the stacking velocities at 

which the reflection events give the largest stacked amplitude. 



Page 86 

A similar approach is used with constant velocity gathers. 

In this case a single gather is displayed after the NMO correction 

has been applied for a particular constant velocity. This is 

again - repeated for a range of velocities to produce a range of 

gathers all with NMO corrections corresponding to different 

velocities. When the correct stacking velocity for a primary 

reflection is reached, the event should appear horizontal after 

NMO correction. Therefore a time velocity function can be derived 

by picking the velocities at which the relection events appear 

horizontal on the NMO corrected gathers. 

The methods described above rely on the primary reflections 

being clearly recognisable, and the correct velocity being one of 

the ones chosen for the panels. A method which produces a map of 

goodness of stack for a range of velocities and times would 

obviously be desirable, and this is what the coherence methods of 

velocity analysis attempt to do (Taner and Koehler, 1969). At all 

times down the section a scan along the stacking hyperbolae 

corresponding to a predetermined range of velocities is made.A 

measure of the success of stacking along these trajectories is 

calculated, and can be displayed as function of velocity and time, 

allowing the stacking velocity function to be picked at the points 

where this measure is a maximum. 

It was decided that the capability of using all three of the 

methods described should be developed for use within the 

processing system, for determining stacking velocities. 



Page 87 

Coherence Velocity Analysis 

In the velocity analysls program deslgned for use in the 

processing system it was decided to use semblance as the measure 

of stacking coherency. It is computed by calculating the moveout 

trajectory over the CMP gather at a particular velocity V for each 

~at the centre of an N+1 point gate. Therefore an N+1 point gate 

is derived for each of the M traces, of amplitude A, in the 

gather, from which a value of the semblance S(v,t) for that time 

and velocity can be calculated. 

eqn 1 S(v,t)= 

W'~- ("" \L btL ~ AL .. ,j! 

The semblance is a measure of the ratio of energy after 

stacking to the total signal energy prior to stacking, normalised 

in the range 0 to 1. These principles are implemented in the 

program written for the system MPVEL. 

This program expects its input, a CMP gather, to be resident 

on disc, and it produces an unformatted Fortran output file 

containing the results of the semblance calculation for later 

display. The user specifies the gate width and gate step size to 

be used in the semblance calculation, as well as the time and 

velocity ranges over which the analysis is to be performed. These 

parameters are checked in the first part of the program for 

consistency and modified, if necessary, to prevent things like the 

moveout trajectory going off the end of the data at later analysis 



Page 88 

times. 

The obvious way to calculate semblance is to perform the 

calculation for a full range of velocities at a given zero offset 

time, and then to move to the next time gate position and repeat 

the procedure. However it was found that due to the limited pdp11 

and AP memory, this algorithm was not possible without placing 

undue restrictions on the number of channels which could be used 

in an analysis. Therefore a slightly reworked algorithm had to be 

used. 

In the method adopted all the data required from a particular 

channel for the full range of velocities specified is read into 

pdp11 memory from the disc, and then put into the AP in a double 

buffered scheme allowing calculations and data transfers to be 

overlapped. The partial semblance contributions, from this 

channel are then calculated for each velocity. This is repeated 

for all the channels, and when all the partial semblance 

contributions are complete, the final semblance S(t,v) vector for 

the range of specified velocities can be calculated in the AP. 

These can then be written out to disc, and the time gate moved to 

the next zero offset time for the procedure to be repeated. All 

the indices to AP positions, disc positions and data sizes for 

transfer are calculated in the AP at the beginning of a new time 

gate, and are used from storage in the pdp11 memory for the rest 

of the calculation. 

The double buffered data transfers allow the program to run 

at a reasonably quick rate. However the method used means that 

data is often read in from disc and transferred to the AP more 



Page 89 

than once during the analysis. On the other hand no constraints 

are placed on the number of traces in the analysis using this 

algorithm. With a larger AP data memory the algorithm could be 

largely restructured so that each point in trace would only be 

read in once, by allowing the partial semblance calculations to be 

carried out on larger segments of the data at once. 

Velocity Analysis Display 

The output from the velocity analysis program is in 

unformatted standard Fortran output and is used as the input to 

the display program MPVCON, which gets all its input from this 

file. All the control parameters needed by MPVCON are written out 

to the front of the unformatted output file by MPVEL before the 

initiation of the semblance calculation, so that the display 

program can be run without any need for user input. 

MPVCON is written using the Versaplot graphical subroutines, 

and the CONSYS contouring package to produce a vector plot file. 

This file can be displayed on the plotter using the Versaplot post 

processor RASM or it can be converted to rasters and stored for 

later replotting, by using the vector to raster intercept routine 

MPRASM. 

The program produces a contoured display of semblance on a 

grid of time against velocity, and it also marks the position of 

the maximum semblance for each time gate with a small square. 

Annotation at the side of the display shows all the parameteru 

used in the velocity analysis program to produce the results, so 



. . . 

VEL~CITY ANALYSIS CaNTOURS 
. . . . ' . . . . . . : : : : : . . . . . . ... ·······-~----~---- ---~---- ····:···-~---· ·--~---- -· -~----:----~----~----~---- ...... . . . ' . ' . . . : : : . ' . ' . . . . . . . . . . 

... • • ......... - ••••••• 0 

• . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . 
••.••. ~-- .. ~-·· ·~- ... ~- --- ~-.- .• ·-· !• ... ~- .•..•.. !• -·· .. --~---. ~- .. ·!• ... ~- ... !· .......... . 

. . . . . . . . . . ' . . . . . . . 
~~- .. '1'". :· ·1·-- ~----:-- .. --·r--1"· ... 1' .... ·:--·:--- ; ... ; .. --;- ......... . 
·- .•.. , •.•. ; .. 11.~----.: .... , .••. ----~----; ..•. ----~---- ----~----; ...• ~-- .; .... ~---- .•..•.•. 

: 0 ; : : : 

. . . . . . . . . . . . . . . . . . . ' . . ' 
...... : .... 9 .... : .... : .... : ........ : .... : ........ : ........ : .... : .... : .... : .... : .... ...... .. 

' . . . . . . . . . . . ' . . . . ' . . . . . . . . . . .......... :"" :·--· ... :-- ...... :" --:-- ...... :·--· .... :· ... :-- . :-- .. :-- .. : .......... . . . . . 
.Pi .. . . . . 

• • • l •• • - ••••• : •••• ~ •••• :. - •. ~. . .• •.••• • • • • • ••• 

. . . . . . . . . 
-- ; .... : ..... : .... ; .. --~-- .. ~-- ·- ~-- .... --~-- ...... ~ .... : .... : .. --~-- --~---· ···-~·-·· . . . . . . . . . . . . . . . . . . . . . . ~.. . . . .................. '. . . . . . . . . . ....... . . . . . . . . . . . . 

-~-- ·-~-- .. ~-- .. ~- ....... ~-- --~- ... ~-- .. ~- ... ~-- .. ;; .... ~- ... ~----\·-·-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . .......................... ,. ........................................... . 
. . . . . . . . . . . . 

. . . . . . . . . . . . 
...................................................... -..................... . 

' . . . . . . . . . . . . . . . . . . . . . . . . ... ···'····'·············· .................................................. . 

. . . . . . . . . ~ .... ~ .... -:· ... : ... 

. : : : : . . : . : : : : : . : : : : . . : : : : : : : . . . . . ' . . 
•.. .; . . . -: .... i . ... -:- .•. ·> ... ~- ... .: .... ; .. -. ~ .... 

. . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . .. - .. ~ .... ' .... ' .......... ' ... . . . . . ' . . 
' . . ' . ' . . . . . . . . . . . . . . . . 
. . . . . . . . . . . ' . 

• • ' I, . • • I. • • • .I • • • • I • '• • I. • • I • • • ' ~ • . •' .1. • • • lo • • . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . ' . . . 
. . . ~ .... -: .... \ .... -: .... i . ... ~ .... ~ .... i . .•. ; •... . . . . . . ' . . . . . . . . . 

. . . . . 
.. . ~--·· ~- ... ~- ... ~- ... ~- ... ~- ... ~- ... ~- ... ~- ... 

. . . ' . . . ' ' . . . ' ................................. 

. . ... ' .... ~ .... ' . . . . . ... ~ .... ~ .... -: .... ~ .... ~ .... ~ .... -: .... ~ .... ~ .... 
. . . ' . . . . . . . . . . 

. . : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . ... ' .... ' .... ~ .... -......... ~.- . . . . . . . ........ . . . . ' . . . . . . . . . . ' ' . . ' . . 
. . . . ' . . . ' . . . . . . . . 

. . . . . . .... , .... , .... , .. '\'''''''''",'''''''''\''''\'''' 

. . . ' . . . . . . . ' . . ' 
................... ················································· 

. . . ' . . . . ' ' . . . ' . . . 
. . : .... ! . . . . . ... ~ .... : .... ~ .... ! .... : .... : .... : .... ! .... : .... . . . . ' . . . . . . . . . . . ' ' 

PR~CFSSING PARAMETERS 

N~. OF CHANNELS ; 24 
SAMPLES PEA CHANNEL = 2048 
SAMPLE DELAY = 0 
LEVEL aF INTERPOLATION = 

CHANNEL 1 ~FFSET = 260.0 
CHANNEL SPACING = 100.0 
SAMPLING INTERVAL MS = Y 
STAAT OF ANALYSIS MS = 88 
END OF ANALYSIS MS = 4096 
TIME STEP MS = 24 
~PEART~~ GATEWIDTH MS =168 
STAAT VELOCITY KM/S = 1.00 
END VELOCITY KM/S = 3.00 
VELaCITI STEP KM/S = 0.05 



Page 90 

that the plot is self documenting. 

NMO corrected gathers 

A program MPCDP was written to produce NMO corrected gathers 

for use in constant velocity gather production and to examine the 

quality of stack produced by a particular velocity function. It 

~ 
expects its input to be an N channel CMP gather and it ouputs N 

A 

moveout corrected channels, using a user specified velocity 

function and the resultant stack channel, so that in total N+1 

trace are output from the program. 

The seismic trace is composed of~ suite of samples with a 

sample interval DT such that:-

Ti = (i-1)DT for i=1 ••• length of trace 

The moveout corrected trace is generated by removing the 

moveout delay on a trace of a particular offset, due to a 

particular velocity. Therefore for a time Tj on a moveout 

corrected trace, the data sample to be placed at this point comes 

from a position in the original trace defined by the moveout 

trajectory. 

Therefore for a sample Tj on NMO corrected trace, 

sample on original trace is Ti where i i3 given by:-



Page 91 

i = 1 + INT(SQRT(Tj**2 + Xk**2/Vj**2)/DT) 

That is, the nearest saillple tu the moveout hyperbola 

intersection is used to represent the new sample on the NMO 

corrected trace. Once the NMO correction has been performed for 

all traces the stack is simply obtained by summing all the traces 

and scaling them. 

eqn 1 stacked value 

eqn 2 for constant energy stack C· ~ j 

eqn 3 for diversity stack 

The problem with this approach is that the removal of the NMO 

delay 

tends 

,as described, is a time varying non-linear process and it 
(c :f. ~tAfl.iu~ e: ... r}._ L~v-ivt, 1'11.3). F~VV~Pre~ 

to distort the trace,Aas the correction can only be made to 

the nearest sample; u;~ can be shown that the moveout corrected 

signal suffers a power loss which varies with frequency, given 

by:-

1 - (sin~Fdt)/~Fdt)**2 

The lost power, from all frequencies, is distributed 

throughout the spectrum as white noise. With a 4 ms sampling rate 

the cutoff of the acquisition systems anti-aliasing filters is set 

at 62.5Hz and the power loss calculated for this frequency can 

amount to about 20%. 



----------------------------- ·---

Page 92 

A solution to this problem is to increase the sampling rate 

prior to applying the NMO correction by resampling the data using 

interpolation. It can be shown that if the sampling rate is 

increased to 1ms the loss of energy at 62.5Hz is reduced to only 

1.3%, and if the resampling is taken to 0.25ms it is reduced to a 

negligible 0.1%. 

Therefore an interpolation, resampling technique, based on 

the approach of Lu and Gupta(1978), was implemented as a part of 

the NMO correction algorithm. This interpolation is performed in 

the frequency domain, and allows the original trace to be 

resampled at an arbitrary rate without altering the frequency 

content of the trace. This is accomplished by Fourier 

transforming the original trace and multiplying by the factor 
ex~(- 2:rr F Jt) 

J.fi ~at, where dt= DT/2 is the time shift needed to generate 

another sample half way between two previous samples. If this is 

transformed back into the time domain and merged with the original 

data a trace with twice the origianal sampling rate will be 

produced. This can be continued to higher levels in a 
....... 

straightfoward manner. If the rate is to be increased by a factor 
II. ~p(- 2TiF:bTAi) 

of N the transformed trace is multiplied by the factor A & i: ;Fl!l!/ M. 

The resulting trace can be transformed back into the time domain 

and the process repeated N-2 times with the resulting traces being 

merged to give the data with the increased sampling rate. 

In this program, therefore, the first step is to set up the 

complex interpolation array in the AP, to allow the interpolation 

specified by the user, up to 16 times, to be repeatedly applied to 

the data. Each trace is read from disc into pdp11 memory, and an 

index array of samples required after interpolation from the 



Set up Exponent1al sh1~t 

ramps ~n RP memor~ 

Trace ~n POP Memor~ 

Rppl~ Forward FFT 

Rppl~ Exponent'ial Ramp 

N Trace 

Segments ._I ________ _J 

Trans~er to PDP 

ort the Trace segments 

New Interpolated Trace 

Repeat 
N t~mes 

F'ig 4-15 Flow o~ the Interpolat1on Rlgor'ithm 



Page 93 

uncorrected trace, to form the NMO corrected trace, is computed in 

the AP from the velocity information supplied. The trace is then 

transferred to the AP where it is scaled, muted if required, and 

has its mean level removed, before it is interpolated. The 

interpolated portions are returned to the pdp11 memory and the NMO 

corrected trace is then composed, using the index array previously 

calculated. This NMO corrected trace is both written out to disc 

and put into the AP, where it is added into the running stack 

which is permanently resident in the AP. When all N traces have 

been NMO corrected the stack trace is returned from the AP and is 

also written to the output file as the M+1th trace. 

These traces can be displayed by using one of the gather 

plotting programs, allowing the NMO correction and stack quality 

to be examined. If this is performed for several consecutive 

gathers, with different constant velocities, the stacked traces 

can be selected for use in constant velocity stack panels, while 

the gathers are used in constant velocity gather analysis. 

Standalone Interpolation 

A program ANINT was written to apply the interpolation 

algorithm, described in the previous section, in a standalone 

mode, so that data can be interpolated to a higher rate, 

independent of the stacking programs. It takes its input from a 

disc file one channel at a time, produces the interpolated traces, 

using the AP as described previously, and then writes them out to 

a user specified output file. 



Page 94 

This program can be used to interpolate the data to a higher 

rate before the semblance velocity analysis is performed. However 

it was found that the improvements in the semblance output 

produced are only marginal. The reason for this is probably that, 

in the velocity analysis, rounding the moveout trajectory to the 

nearest sample causes the semblance gates to be misaligned by upto 

one sample, but this tends to occur on a random basis from trace 

to trace. This effect is then averaged out in the semblance 

calculation and so the improvement to be derived from resampling 

is only small. However the program provides the user with a 

resampling tool if required, for this and other processes. 

The basic algorithms for the Velocity analysis, interpolation 

and NMO correction program were developed in conjunction with A. 

Nunns (Nunns, 1980). 

CMP Stacking 

Once the Pre-Stack processing has been carried out and the 

velocity functions have been determined, the data on the line is 

ready for stacking. The main stacking program, MPSTAK, was 

developed from the algorithms described in the previous section, 

and it allows an entire line to be processed in one run. 

The important capability of the stacking program is that it 

can interpolate velocity functions between points at which they 

are defined. Velocity analysis produces velocity functions at 

intervals of 20 to 50 CMP positions along the line. At a point in 

between two defined functions the velocity function has to be 



Page 95 

interpolated using the values on either side. The user defines 

velocity functions at a set of CMP positions along the line, and 

the program interpolates the time and velocity of a particular 

event from those on either side, by linear interpolation. 

Therefore adjacent velocity functions must have the same number of 

layers defined. However if another layer has to be introduced at 

some point this can be accommodated by having two functions at 

consecutive CMP positions, as interpolation is not performed in 

this case and the program will continue after the second function 

with the new set of layers. The interpolation of velocities can 

be turned off if required, 
9 

when the proram continues to use the 
~ 

last defined value until an update position is reached. This can 

be useful in producing a brute stacked section, using some 

approximate velocity function for the whole line. 

The program was designed as a tape to tape operation, but 

input and ouput to disc was also provided so that test stack 

panels could be easily produced without having to continually read 

the tapes. Data is read from tape to disc using TAPRED and then 

each trace in the gather is read into the pdp11 one trace at a 

time. The NMO correction is applied as in the NMO gather program, 

except that the NMO corrected traces are only added onto the 

running stack and are not written out. Once a stacked trace has 

been accumulated it is written to a temporary file on disc and 

then transferred back to tape as a single trace and a header block 

in the internal Post-stack format. The header block is updated by 

the program to indicate that the file now only contains 1 CMP 

stacked trace, and to record some of the stacking parameters, such 

as the number of input channels and the level of interpolation 



Page 96 

used. 

Therefore once the velocity analyses have determined a suite 

of velocity functions for the line, this program can be run to 

produce the stack for the whole line in just one process. 

Post-Stack Processing 

A Post-Stack processing program capable of applying several 

different processing options to the post-stack data was designed 

along similar lines to the Pre-Stack processing program, with the 

user again having complete flexibility in the choice of processes 

and the order in which to apply them. The processes decided upon 

for this package were:-

Edit 

1 •• Edit 

2 •• Gain Ramp Application 

3 •• Mute 

4 •• Spike deconvolution 

5 •• Prediction error deconvolution 

6 .. Bandpass filtering 

7 •• Normalisation 

It may have been that on displaying the CMP stacked section, 

that various traces were seen to be very noisy, and to interfere 

with events on either side to such an extent as to degrade an 

interpretation. Therefore this option allows the user to zero 



Page 97 

selected traces, and having done so they are not passed through 

the remaining processes selected. 

Gain Ramps 

The same range of gain functions which were available in the 

Pre-Stack program are also included in this program. Therefore if 

desired the function applied before stack can be removed and 

another one, which is considered to be more suitable, applied. 

Therefore the type of gain function required and whether it is to 

be applied or removed, can be selected by the user. 

Mute 

In this post stack phase, a space variant early mute can be 

specified by the user, along with the length of a fixed length 

cosine taper. This can be useful with marine data, allowing any 

noise before the sea bottom to be muted out and the front of the 

data tapered. This should reduce the effects of any noise 

introduced during stacking, if the mute was not applied low enough 

prior to stacking. 

Deconvolution 

Stacking is a non-linear process, and as such leads to a 

distortion of the frequency spectrum of the data, which in turn 

can lead to a broadening of the seismic pulses forming the 



Page 98 

reflection events. Therefore spiking deconvolution is usually 

applied to the data after stack in order to reduce the pulse width 

as much as possible. This type of deconvolution may also be more 

successful after stack because of the improvement in the signal to 

noise ratio brought about by the stack. If multiples are present 

·in the post-stack data it may be possible to attenuate them using 

a prediction error filter, with a suitable gap and length. Also 

if the source pulses have been broadened and do not respond to 

spike deconvolution, it may be that a suitable prediction error 

filter can be found to compress the wavelet, and often this 

followed by a spike deconvolution produces better results. 

Frequency Filtering 

It is usual to perform as little frequency filtering as 

possible before stack so as to leave the data with as broad a band 

of frequencies as possible. As the stack process distorts the 

frequency content of the data it is possible that noise will be 

put into frequencies previously filtered, and increase the noise 

levels in unwanted frequency components. Therefore the unwanted 

frequencies are usually removed by bandpass filtering after stack, 

although care must be taken not to remove too much energy by 

filtering or the resolution of the primary wavelet can be reduced. 



Page 99 

Normalisation 

If amplitude variations across the section are such that the 

events are difficult to follow, and the absolute amplitudes are 

not considered important, or the variation is known to be caused 

by some acquisition malfunction, then it can be useful to 

normalise each of the post stack traces to unit energy. This will 

tend to minimise amplitude variations across the section making it 

easier to follow events laterally. Of course this must not be 

applied if the data is to be migrated. 

Post-Stack program:- Summary 

The post-stack processing program MPPOST uses the subroutines 

for frequency filter design, gain ramp design, and deconvolution 

design and application, which were designed for the pre-stack 

program. It also uses a similar type of data flow with only the 

tape transfers being really different. 

As the post-stack data comprises only one trace per CMP 

position, with less than 2048 samples, it can be read straight 

into the pdp 11 memory using TAPSUB, with no need to use temporary 

disc files. Input and Output to the disc is designed into the 

program as well, to allow processing tests to be carried out on 

data on disc. 



Page 100 

Once the data has been read into memory, its header block is 

updated to give a record of the processes which are to be applied. 

The trace is then passed to the first process, which puts it into 

the AP, and all subsequent processes check and find that the data 

is in the AP, and so operate on it in place in the AP, as in the 

pre-stack program. This procedure cuts data transfers to a 

minimum, as only when all the processes have been applied is the 

trace retrieved from the AP. The processed trace, together with 

its updated header block are written back to tape using TAPSUB, or 

put on disc if required. The use of tape to memory transfers and 

the absence of disc reads in a production run, means that the 

post-stack program processes data at about the maximum throughput 

rate of the system, with the tape transfer times being the 

dominant factor. 

Post-Stack Mix 

A program MPTMIX was developed to provide a simple spatial 

filtering capability, in order to clean up sections for 

interpretation if migration was not going to be performed. 

The design of the program is quite straightfoward, in that it 

brings data into memory from disc, or tape, using TAPSUB, and 

mixes three input traces in the ratio 1 to 2 to 1, to produce a 

single output trace, which is then written back to tape or disc. 

This procedure tends to reinforce horizontal events while limiting 

steeply dipping events, such as refractions and diffractions, and 

so produces a more easily interpretable section with greater event 

continuity. 



Page 101 

It was envisaged that this program could be easily upgraded 

to apply more complicated spatial filters if they are required. 

However in most cases of sub horizontal primary horizons and 

steeply dipping noise, even this simple process can produce a 

significant improvement in data quality. 

Stacked Section Plotting 

The interactive program MPSPLI can be used to plot sections, 

if the data are collected into one large gather type file on disc, 

and this is often a useful way of producing quick plots of small 

parts of a section when processing tests are being performed. 

However for producing the final section plot a more general 

package had to be designed. 

The program MPSPLT was developed using the raster plotting 

algorithm to produce raster images of the final stacked section, 

from data on tape. The traces are read from tape using TAPSUB, 

into pdp11 memory and buffers of rasters, containing the seismic 

plot, are written back to tape. The program allows the time scale 

to be such that two strips of paper are needed to form the plot. 

This is accomplished by writing the rasters for the two portions 

of the plot to different tape drives. These can then be combined 

~ 
later or left on sep¢rate tapes for later processing. 

~ 

The background grid for the section plot is produced by a 

program MPPLBK, which runs interactively, to get the parameters 

controlling the formation of the grid, and reads annotation and 

velocity functions from a disc file if they are required. The 



Page 102 

plot output is generated using Versaplot routines, and this can be 

written either to disc or tape as rasters using MPRASM. 

The raster images produced by MPSPLT and MPPLBK can be merged 

and put out to the plotter, from disc or tape, using the post 

processor MPMERG which expects just one background and one seismic 

plot as its input. 

Header Interrogation 

All the main processing stream programs, besides updating the 

fixed header values to reflect the changing state of the data, 

also put a set of codes into the free part of the header block, 

showing the type of processes which have been applied to the data, 

and the order in which they were applied. In order to convert 

these codes into an understandable format it was necessary to 

write a program to interrogate the header block and translate the 

processing codes. 

The program MPHIST is run interactively, and expects its 

input to come from a disc file, whose name is specified by the 

user. The header block is read from the file and decoded. The 

program then produces an output listing giving all the acquisition 

parameters, as put into the header block by demultiplex, and all 

the processes applied to the data during the processing run.(Fig 

4. 16) 



ENTER NAME OF FILE TO BE EXAMINED: 
FILE DK3TSTPRSDAT TO BE ANALYSED, LENGTH= 145 BLOCKS 
FILE N0:484 TAPE NO:Z22H2 
SAMPLING INTERVAL SET AT 4 MSEC 
AND RECORDING LASTED 12 SECS 
ON 12 ACTIVE CHANNELS 
THE FILE CONTAINS A COMMON MIDPOINT GATHER 
CONSISTING 12 CHANNELS,STARTING AT SAMPLE NO: 
AND ENDING WITH SAMPLE NO: 1536 
TYPE OF SOURCE= AIRGUNS 
AND THE UNITS OF LENGTH USED= METRES 
RECIEVER DEPTH= 1H.7Z 
SOURCE DEPTH= 7.3Z 
SOURC~-RECIEVER OFFSET= 297.ZZ 
RECIE'/ER SPP,CING= IZIJ.ZfJ 
SHOT SPACING= SZ.H!J 
SHOT ?,EPITITION RATE= 2Z.ZZ SECS 
USER INFO PUT INTO HEADER BLOCK 
I S G I V E N B EL 0\.J 
DURHAM UNIVERSITY 1988 CARRIBBEAN CRUISE LAST LINE 

THIS IS A PIECE OF DATA DEMULTIPLEXED FOR A TEST 
AIRGUN SOURCE 12 CHANNEL RECIEVER 

THE FOLLOWING PROCESSES HAVE BEEN PERFORMED ON THE DATA 

PRE-STACK PROCESSING CONSISTING OF 
8 OPERATIONS IN THE FOLLOWING ORDER 

TRACE EDITING 
TftE~PI9.2Tl AMP RECOVERY 
\~UTI NG 
BANDPASS FIL ERING 
AMPLITUDE/2N RGV NORMALISATION 
PREO!C710~ E RO~ DECONVOLUTION 



Page 103 

Migration 

In most cases where the reflecting horizons are relatively 

horizontal, and there is little faulting or folding to produce 
f 

difractions, a stacked section is usually of a good enough quality 
h 

to be used for interpretation. However if there are dipping beds, 

faults and other disturbances producing diffraction events, then 

it is probably necessary to migrate the final section, in order to 

collapse the diffraction patterns and image the dipping events to 

their correct spatial locations. 

The aim of migration is to produce a display corresponding to 

the subsurface geology from the seismic reflection data. The most 

useful model on which to base the migration process is that put 
~ 

foward by Loewenthal (Loewenthal et al, 1976). It is assumed that 
~ 

the CMP stacked traces represent coincident shot-receiver 

recordings and that reflection coefficients are small enough for 

multiple events to be neglected. The recorded traces can then be 

considered to be the same as those which would be recorded if a 

series of shots were simultaneously exploded, with strengths equal 

to the respective reflection coefficients, at every subsurface 

point, with the medium having half its true velocity. Hence a 

reconstruction of the wavefield for all depths at time zero, the 

shot instant, would give the geological structure. 

If the two dimensional wavefield produced by the experiment 

described is represented by U(x,z,t) where x is the horizontal 

location, z is the depth and t is the time from the shot instant, 

then the seismic trace can be considered to be, U(x,O,t), the 



Page 104 

recording of the wavefield at the surface z=O for all time. The 

migrated section can therefore be considered as U(x,z,O), the 

wavefield at all depths at the time t=O. 

In all modern applications it is considered that the 

wavefield U(x,z,t) satisfies the scalar wave equation, given by:-

+ 
eqn 1 

\ 
~ --v''L 

The task of migration is to obtain the values U(x,z,O) from 

the recorded values of U(x,O,t) by solving the acoustic wave 

equation. 

It was decided to design algorithms for and implement 

migration for two different approaches to the problem, Kirchhoff 

summation, and Finite Difference Migration. These methods use 

solutions to the wave equation to perform migration, but approach 

this solution from two different viewpoints. 

Kirchhoff Migration 

Starting from the scalar wave equation it is possible to 

develop the mathematics from several approaches. It is 

instructive to first consider the development of a solution to the 

problem in the Fourier domain. Theref0re if we consider 
;lit 

U'(Kx,t,Wt) to be the Fourier counterpart of U(x,z,t), then the 

scalar wave equation can be written as:-



Page 105 

eqn 1 

This can be solved in the case of upgoing waves to give the 

solutions in equation 2. The second of the two solutions is for 

evanescent waves, and as can be seen this is an exponential 

function which would tend to blow up under downward continuation. 

eJ. 
Therefore the evanescent energy has to be treat as noise and just 

A 

the first equation used for the wave energy. This equation is in 

fact the basis of F-K migration. 

eqn 2 

Now if one considers the solution to the wave equation from 

the integral approach, the starting point is Kirchhorrs integral 

solution to the scalar wave equation. It can be shown from this 

equation that the solution for U(x,z,t) is given, in integral 

formulation by (Godbold, 1980):-

U( :t, C,t}, i ~ U ((x-x), 0, (H'l)M~(=,~) d-,_',it.' 

eqn 3 

H l(;) 

-a -S' 

0 

l::-/0 

t L 0 

( it. J'-)'IL. 
\.._ 'JC. t L 



Page 106 

It is interesting to transform the operator Mz into the 

Fourier domain and examine its counterpart M'z, which is given 

below. 

eqn 4 

It is interesting to note that this operator now has the same 

form as the phase shift operators used in the F-K solution to the 

wave equation. Therefore the Kirchhoff approach can be seen to be 

providing the same type of solution to the wave equation, but is 

expressing it in the time distance domain rather than in the F-K 

domain. The Kirchhoff representation can be developed to allow 

s. 
the wavefield to be downward continued, to recontruct the wave 

" 
values in the earth at time T=O, which according to our model 

should provide an illumination of the geological structure. 

eqn 5 ::. 

o J( LA ( \l'-" l, 0, ('/-t)) 1'-'\, <),cc) l 

-8 -.8 

I 0 l \-\ l\::
1 

t b) J 
~ 0i (e-- tdYh 
{ 

lo 1 /v 

It is usual not to actually migrate from time into depth 

coordinates, but rather to use a migrated two-way travel time 

coordinate, so that errors in velocity estimation do not result in 
Oil'! e.. 

too large a distortion in the migrated data. Therefore a ~way 

travel time "r is defined as "t"=z/v and so the migration equations 
4) 



Page 107 

can be couched in terms of x and 't" rather than x and z. 

~~ U ( ,,,,..), o, t:) Mt O:x' d~ 
~ .-;3 

eqn 6 

In practice, of course, the data is not continuous in time 

and space, but defined over a grid of surface and time positions. 

Therefore the integral formulation of the equations has to be 

replaced by finite sums and the operator Mt must also be 

digitised. In order to derive a digital representation of the 

operator it has to be expressed in terms other than the ones shown 

above in order to avoid the singularity inherent in the 

expression. This reevaluation of the operator can be performed 

following the treatment by Berryhill (Berryhill, 1979), as 

follows. 

eqn 7 

' ' 
0 

l ( ~\., __ ,\ 'IL 

\ tc. I .J 



Page 108 

this gives the alternative 

cl -aC 

using the standard central difference notation this allows it 

to be expressed in discrete terms by :-

eqn 8 ( 
,_( \J ( J . - (j) ) 't6 

1 f\ 1<. - l () K -• \ f\, K..-, ~Vi'i-
' nco~ 

Hence the discrete expression for the Kirchhoff migration 

expression is given by:-

eqn 9 ~ 2_ u(uHJo.,., o, h.'t:.t) MoK· 
~ :-f'l tt'~o 

The above equation was used as the basis for an 

implementation of Kirchhoff migration for the processing system, 

and it was implemented as two separate routines. One program 

MPOGEN is responsible for generating a series of migration 

operators, for a particular migration model, according to the 

definitions in eqns7 and 8, and the second program MPKMIG uses the 

operators generated by the previous program to perform the 

migration, as defined in eqn 9 on the data. 

In designing the implementation of this procedure for the 

processing system, the results of work performed by C 

Godbold(Godbold, 1980), on the effect of approximating the 

operators used in the migration, was used to allow realistic 

limits to be placed on some of the migration parameters, so that 

the programs could be designed to run within the limited memory 



Page 109 

and disc resources of the pdp11. As a result of this work it was 

decided to limit the operator to 5 samples, as this had been shown 

to provide quite adequate accuracy in the migrated output. It was 

also decided to use the operator upgrade criteria in order to 

limit the number of operator values which have tob~calculated. 

This basically works out the positions at which the previously 

defined operator is no longer a reasonable approximation to the 

actual operator at a particular point, given a certain acceptable 

percentage error in the operator evaluation. It was found that 

with a specified acceptable error of about 1% quite reasonable 

results were obtained and the number of calculated operators was 

quite drastically reduced. If a new operator had to be calculated 

at each sample position, then for an 8 second record the operator 

would have to be recalculated 2000 times, whereas with only 0.5% 

allowable error this number is reduced to about 350, which is 

obviously a considerable saving. However the update has to be 

faster at low travel times than at later ones, and so with deep 

marine data with the water bottom a few seconds deep even larger 

savings can be made with only about 50 operator calculations being 

necessary. 

The constraints on the migration parameters were determined 

from the amount of available disc space and AP memory • The 

operator values obviously have to be written out to a disc file 

once they have been calculated, and this file is limited in size 

by the storage available on a single disc platter. Also from an 

evaluation of how the algorithm could be programmed to use the AP, 

it was decided that in order to fit into the AP memory the 

half-width of the operators, assuming a 5 sample operator, would 



Page 110 

have to be limited to 512 traces. A suitable value for the 

operator halfwidth can be calculated from an estimate of the dip 

of the events at the deeper part of the section, or even at 

shallower positions if the dips are larger, using the relation 

given below:-

migration aperture = X = Ztan¢ where z=depth, ~= angle of dip 

Obviously for a particular application the half-width may well be 

less than the maximum value and the number of operators which can 

be calculated will be a function of the halfwidth, so that it will 

fit in the available disc space. If a reasonably large half-width 

is specified for the operator, then a full trace migration would 

be limited to about 1% error in the operator update calculation. 

However the top and bottom of the data could be migrated 

separately in two passes so that the operators were calculated at 

separate times, if a greater degree of accuracy were required. 

The user inputs the operator half-width, its time range for 

application, and a velocity model of RMS velocity against two-way 

travel time to the operator generation program. Given the 

percentage acceptable operator error, the program evaluates the 

operator update positions necessary for this degree of error 

inside the specified migration time range. The progam uses this 

information to evaluate the 5 point migration operator at each of 

the update positions, over the specified half-width. This is 

written out, with its associated positioning information to the 

user specified disc file in the format shown in Fig 4.17. 



NOPI NRRNGE 
( ~ 

NLERD OPVRL 
( ~ 

Each d1~~erent set o~ values starts on a d1sc block boundar~ 

NOP = Number o~ operators to be appl 1ed 

NRRNGE =Range o~ val 1d1t~ o~ the operator as a sample value 
on the central trace:- Number o~ values= Number o~ Operators 

NLERD Start1ng pos1t1on +or each operator on each trace 
Number o+ values= Operator hal+w1dth *Number o+ operators 

OPVRL Operator values:- Number o~ values= Number o~ operators* 
Operat:.or Length * Operator Ha I ~w 'i dth 

F1g 4.17: K'irchho~~ M1grat'ion Operator storage 



Page 111 

The operator data can then be used to migrate any data with 

this particular structure. By giving the migration program MPKMIG 

the data files and the operator file, the operator can be 

convolved with the input data one trace at a time, in the AP, 

across the full width of the operator to produce an output trace, 

fully migrated in the specified time range, which is written out 

to another disc file. 

The input data are expected to be in a trace sequential form 

in a single disc file and are put back to another disc file in the 

same form. These files can be easily generated by reading data 

onto disc using MPTPDK and MPSORT can be used to put the data back 

to tape. The number of traces which can be handled in one pass is 

dependent only on the number of traces which can be put into a 

single file. If it was necessary to migrate a long line, this 

would have to be performed in short sections as a roll on roll off 

type of sequence, with enough traces at each side of the active 

block to accommodate the half-width of the operator. 

This type of migration is very useful, as its range of 

application can be easily limited, allowing it to be applied only 

in regions of interest, rather than over the entire section. If 

the dips of events on the section can be estimated the aperture of 

the operator can often be limited as well, again reducing the 

number of calculations to be performed. Therefore these programs 

allow the user to tailor the migration to his own particular 

needs. 



I 
I I I . 

I 
I I 

I I 

I , I , . 
I 

I 
I i )I . 

I i 

I I 
I I 

I I II 
I I I 
I 
! 
I . 

II 
i 
I 

I 
I I 
I 1 I I' . 

I 

I: II 

1 I 
II i 

ill ' I I 

I
. i I . 

I I ', 



Page 112 

Kirchhoff migration has been shown to be often quicker than 

the finite difference approach and it tends to migrate even high 

dips relatively accurately. However, on the other hand it does 

tend to produce organised noise, which in areas of low signal to 

noise ratio can make interpretation after Kirchhoff migration 

quite difficult. 

Finite Difference Migration 

The finite difference approach to migration, first 

popularised by Claerbout (Claerbout and Johnson, 1971), is the one 

undergoing the most research at the present. 

eqn 1 

This method is also based on the scalar wave equation, but 

here the aim is to represent the equation by a finite difference 

formulation to allow the wavefield to be downward continued. For 

computational purposes, to keep the wavefield on the computational 

grid, it is usual to express the equation in terms of a retarded 

time system as shown below:-

eqn 2 
'2__ CJLL..t 
- =---. 
V 2r-c6~ 



Page 113 

For small dips it is possible to neglect the terms in 

C,Z.u. I o:c 2 and so we are left with the well known 15 degree 

approximation to the wave equation. 

eqn 3 0 

If there are larger dips in the data than about 15 degrees 

then this approximation is too severe and a less limited 

approximation must be developed. Therefore by differentiating eqn 

2/ with respect to z and substituting for ()'-u;()c_'~- we can derive: 

eqn 4 

Again a further approximation can be made by dropping the 

term in '2::}'-A; () i: to give the following:-

0 
eqn 5 

This is known as the 45 degree approximation to the scalar 

wave equation. Once again, as the migration in z depends on 

knowing the velocity model reasonably accurately, is is better to 

use a migrated two-way travel time ~ which is not so susceptible 

to errors in the velocity specification. Hence the equations 

below can be formed. 



Page 114 

15 degree equation 

45 degree equation 

These equations can be used to derive the finite difference 

representations which will allow the wavefield to be downward 

continued. 

For 15 degree given the following:-

* A-:.. O-S\<6\?Dici:/t ~ 
\b 6x1.. 

~ 
~)L'- (:C.+ hi J 

0 ---c)t 

0 0 

I , 1 , 

Y :: v/z... 

L -=- (\ b.t 

t: :. \"_ D.'t 
:X...~_) ~X 

[
. -] (\ -[ib·A)- r]L\'"1 

+ G'oct-A)I-t rk .. ( __ rl'o-A)i+T]l/'~ 
'b A)·· + L I \" . - ' ~ I t- ·- :J K,J ~ Y, ,.J 
\ - I v\.,.t,r K.-I,J 

* c.-f. ~e.rk'id (tti7~) 

t c. f. lO@t.lb1 t('~ ~ cJ. . (rq 7 6 ) 



Page 115 

It can be seen that this equation is a tridiagonal matrix 
(\ 

equation in which the solution for t r - can be found if the 
V\<;;-11 -l 

right hand side is known. The right hand side can be determined 

by specifying boundary conditions, that the wavefield is zero at 

all poin~outside the recorded data area. 

Similarly for the 45 degree equation:-

The difference operators: 

2/---o~l. 
0 -at-

,z._ ~ A= o-2=fq v 6t 
4- /::;;:x-'1... 

D :: y , L t:::,t t:,.t_ 

2>"L6..x'-

l.tc:.. 
-=- 6xt.{;:bTx) 

-:. 
1._ ( ll-t-I\) 
6t U::1:...-I) 

al.. 

/_61.. 

~ 
46.-xL 

y Li::;,t/:::/C 
.:....---
1-~Xt. 

:: \ t -- -~t}-oi:.L 

~ - _L ( ~l- ~t') - -ot '2c.t: 

The centering of the time time difference operator is 

different in this case to provide stability in the solution of the 

equations. Using the above difference operators it is possible to 

derive the following for the 45 degree equation:-

45 degree finite difference expression 

[I+ (h -~)1"-1 £-'t ~t';;: l:i:. ~ (b-&)Tx.1Et - [r + (b.~) lx JE-tE~; -\:_ '- t- (Lb+A )rx] 

r- \_-z. +- (1-o-.A)rAJ E.i= + LJ:~ (G+'o)Txj t{;-l 

0 II> 



Page 116 

Once again given the boundary conditions the factors on the 

right hand side of the equation can be evaluated and so we are 

left with an tridiagonal matrix equation with the vector in x 
,'\-\ 

U as the unknown. 
~<;ti,T 

From the equations it can be seen that the downward 

continuation formula is expressed in terms of vectors in the x 

plane. Therefore before finite difference migration can be 

performed the data must be multiplexed into x vectors, or "time 

sliced". Two programs, MPSLIC and MPUSLC, were written to perform 

the "time slicing" and trace sequential sorting respectively. So 

as to keep the data in integer numbers of disc blocks the traces 

are padded, equally on either side, with zero traces to make an 

integer number of 128 traces. This has an added advantage of 

providing a zone at the edge of the real data for the edge effects 

of the migration operation to be dispersed into, tending to 

prevent reflections from the side of the computational grid. The 

trace sequential resorting program assumes the number of traces 

specified will be padded on either side by zero traces so that 
• 
this is all transparent to the user. 

Once a time sliced data file has been produced this can be 

used as the input to one of the two finite difference programs. 

Both the 15 and 45 degree algorithms were implemented because, for 

shallow dips the 15 degree algorithm works quite adequately and 

takes about half the time to run as the 45 degree approximation. 

On the other hand when large dips are present in the data the 45 

degree algorithm has to be used if a reasonable result is to be 

produced. 



Page 117 

In order to fit the algorithms into the AP, it was decided to 

limit the number of traces which can be migrated in one run to 

1024. An LU factorisation method was used to solve the 

tridiagonal matrix equation. This is a two pass algorithm which 

factorises the left hand side coefficient matrix in the first pass 

before using the factorised results to solve the equation in the 

second pass. This algorithm has distinct advantages over the 

method proposed by Claerbout (lqfb). 

If we have an N length vector 

Claerbout approach ••• 3N mult, 2N div, 3N add/subtract 

LU factorisation step 1 ••• N mult, N div, N sub 

step 2 ••• 2N mult, N div, 2N add/sub 

Total ••• 3N mult,2N div, 3N add/subtract 

It can be seen that the two methods involve the same number 

of calculations in solving for one vector. However in the case of 

downward continuation the left hand side coefficient matrix 

remains constant for a particular6~ step and so the factorisation 

need be performed only once, for each downward step. This results 

in a considerable saving over the other method which has to 

perform the complete solution at each step. Therefore the LU 

factorisation algorithm was microcoded for the AP into two Fortran 

callable subroutines to provide a quick solution of the equations 

at each step. 



II 



I 
I 

I II 

I 

Ill I I. I. :I "II, i,: II tl:: : 11 ,\ :\;,.,! r, 1. 

£~4-·W·. TNc. \J,~(rO( ~ & ~,~~3 ~~r 
l\SO £<U\e. 1')\~ex.e, \1\\~'rof\ hS\'ib l'!\~~ 

I' 



Page 118 

A velocity model can be input to the programs, which can vary 

in velocity with two-way travel time, and small lateral variations 

are also allowed, but these must be made to be gradual in their 

nature or else the solution to the equations can become unstable. 

The functions can be defined at different trace positions and are 

then interpolated in a similar way to the stack program. The 

depth variation is not constrained in the same way, although 

velocity variations, greater than one downwards step are averaged 

out by the program. 

The user has to specify the downward continuation step size 

~~ and also how many downward steps to perform. The program 

converts the velocity functions, which are input as RMS 

velocities, into interval velocities for each depth step 

internally. The program then downward continues the entire 

dataset one AJt step at a time to determine the values of 

U(x,n6L,O) for each value of n down the section. The downward 

continued x vectors are written back to the input file so that at 

any stage this file contains a mix of fully migrated data and that 

which has been downward continued to poition nb~. 
f\ 

This method of migration is very time consuming as the 

remaining non-migrated data is handled for every downwards step, 

although, of course the number of remaining non-migrated data 

samples is reduced at each C:.:t: step by M, where M is given by 

M:6"t/6t-, as the step 6-'t can be larger than.6.c • 

The two algorithms give good results, although neither can 

migrate data containing large dips as well as the Kirchhoff 

algorithm. On the other hand the finite difference approach tends 



Page 119 

to cause noise to be dissipated rather than organised, so that the 

results are often clearer, with less background noise than a 

comparable Kirchhoff output. The choice of migration approach has 

to be based on several criteria, dips, signal to noise and run 

time. The Kirchhoff program takes less time to execute than the 

45 degree finite difference algorithm but is slower then the 15 

degree method and so for simple low dip structures the 15 degree 

finite difference algorithm is probably the best choice. 

Summary 

With the descriptions in this chapter it has been shown, that 

a full suite of seismic processing programs have been developed, 

fulfilling the original aims. Also, perhaps more importantly, a 

working data structure has been developed, which makes the system 

more than just a collection of programs. In addition the basis 

behind the entire structure has been to provide a template for 

future development, a foundation on which further procedures can 

be built. Although there are, no doubt, some areas where 

improvements could be made, a working, complete seismic processing 

system has been designed and implemented, fulfilling the original 

design aims. 



Chapter 5 

Using The System 

Page 120 

In order to assess the system and to show others how it was 

intended that it should be used, two pieces of real data were 

processed by the Author. The first line from the Norwegian 

Sea-Jan Mayen area was acquired with the departments SDS10/10 

system in SEG-A format in 1977, and consists of 11 channel, 7 

second data recorded at 4 milliseconds sample interval. This line 

was processed when the system was partially complete in order to 

fully test those components thought to be working and to indicate 

any shortcomings in the system at that stage. The second line was 

from the 1980 Caribbean experiment, and was also recorded using 

the SDS10/10. This line was processed when the system was 

virtually complete. Unfortunately, the migration programs were 

still undergoing their final development at this time, and could 

not therefore be included in the trial. The processing of this 

line, besides acting as a thorough test for the system, was 

basically designed as a demonstration for future users of the 

capabilities of the system, and how it should be used. 

A brief description of the processing of these two pieces of 

data is included, in order to illustrate the data flow through the 

system, as well as the geophysical factors which have to be 

considered when processing seismic reflection data. 



Page 121 

Data Flow 

The programs within the processing system are basically set 

up for tape to tape processing operations. That is data is read 

from tape, processed, perhaps using temporary files on the disc, 

and the final product is written back to tape for storage. 

However, all of the programs allow data input and output to be 

directed to the disc, so that small amounts of data, such as those 

being used in filter tests or velocity analyses, can be easily 

accessed without having to use the tapes all the time. Data can 

be extracted from the tapes and put onto the disc by utility 

programs, such as MPTAPH (see Appendix 2), for use in this mode. 

It was envisaged that the data flow through the system would 

be very much like that shown in Fig 5.1, and this was in fact 

confirmed by the experience gained in processing the two test 

lines. After Demultiplex and Sort, which are both definitely tape 

to tape processes, data are frequently dumped to disc to allow 

data tests to be performed before the next tape to tape process is 

initiated, using the parameters decided upon during the tests. It 

is important to realise that a lot of time must be spent 

performing thorough tests on a wide range of data segments along 

each line, if the best possible final section is to be produced. 

When the input parameters have been determined for a particular 

process, they can be put into its input file, and once it is 

started the only interaction with the operator will be for tape 

changing and error reports. 



F'leld 
Tapes 

Common 
Shot 

Gathers 

CMP 
Gathers 

Processed 
CMP 

Gathers 

Stacked 
5ect1on 

Post-Stac 
Processed 
Sect'lon 

M1grated 
Sect'ion 

(\ 

F1g 5. 1 

OEMUX 

SORT 

PRE-STACK 
PROCESSING 

STACK 

SECTION 
PLOT 

~--------~~--~ 

POST-STACK 
PROCESSING 

SECTION 
PLOT 

PRE-STACK 

VELOCITY 
ANALYSIS 

Plot Tope 

POST-STACK 
TESTS 

MIGRATION 

Plot Tope 

Process1ng S~stem data ~low 



Page 122 

Jan Mayen Data Processing 

The Jan Mayen data were recorded with an 11-ohannel streamer, 

each channel separated by 100m and with a 228m offset from the 

seismic source. The source was composed of three airguns, two of 

160cuin, and one 300 cuin. Data records of 7 seconds in length 

with a sampling rate of 4 milliseconds were recorded, with a 62.5 

Hz antialiassing filter applied before digitising. These data 

were recorded in SEG-A on 9 track magnetic tape using the 

SDS10/10. 

As it was a test run, the data were demultiplexed and sorted 

at the same time, so that CMP gathers were written back to tape. 

The fast mode of the demultiplex program was used, as earlier 

tests had shown that there were no obvious problems with the field 

tapes. About 600 shot points were demultiplexed, although only 

the first 300 or so CMP points were intended for the final 

display, this being the most interesting portion of the line on 

the monitor displays. However, it was decided to put the whole 

dataset into the processing system, to see how well it stood up to 

handling large quantities of data. 

Data were chosen for tests and velocity analyses and brought 

down onto disc from the CMP gather tapes. These were spaced at 

about every 40 CMP positions over the first part of the line and 

then about every 100 over the area of lesser interest at the end 

of the line. When these gathers were displayed it was found that 

channel 9 was dead on some of the records, presumably due to some 

acquisition fault, and channel 10 had been recorded with the wrong 



~----------------------_nR.O 

ti;3 S.1.Q. ·. £\(\bsa.C!\~\e_ o~ ~:SCM\ ti\~,J\ ~'nC>t JLe.c.o~ 



Page 123 

polarity with respect to the rest of the data. On the whole, the 

data quality was quite reasonable with only minimal 

corruption. 

noise 

The gathers on disc were used as the input to the pre-stack 

processing program, and different filter and deconvolution 

parameters were tried out until the best results were obtained. 

Velocity analysis was then performed on each of these gathers, 

after the pre-stack processing had been applied. These analyses 

allowed the velocity functions to be determined at every 40th CMP 

point along the zone of interest. 

At this point, a stream of processing was set up which 

attempted to minimise the amount of tape access. The pre-stack 

processing was performed on short segments of data read from tape, 

and its output was written to the disc. These pre-stack processed 

gathers were then used as the input to the stack program, whose 

output was written back to tape. Although this was quite quick in 

terms of processing time, in comparison with two tape to tape 

operations, it required much more operator intervention, and it 

cannot be recommended as a viable method for anything other than 

small datasets. 

After the stack was complete, a display of the stacked 

section was produced. The section was reasonably good and had a 

high signal to noise ratio, with very good suppression of 

multiples. However, the bubble pulse of the airguns was still 

present as two distinct pulses, and this was hindering the 

resolution of the structure. Therefore, prediction error 

deconvolution was applied to the data followed by a bandpass 



Page 124 

filter to produce the final display seen in Fig 5.2b. It can be 

seen that the post-stack deconvolution has improved the resolution 

of the data, and the bandpass filter has helped to keep the signal 

to noise ratio at reasonable levels. 

The processing of this line showed that single tape to tape 

operations are far easier than complicated sequences which use the 

disc as temporary storage between different modules. It also 

indicated the need for the spectral analysis program which was not 

available at the time, and without which bandpass 

difficult to setup. However, the system in 

filtering was 

its then still 

rudimentary form coped relatively easily with the processing of 

this dataset and produced a reasonably high quality final section. 



60 70 80 90 100 110 120 130 1140 150 160 170 l 60 190 200 210 220 230 2140 



Jan-Mayen Processing Details 

1 ••• Demultiplex and Sort into 11 channel CMP gathers 

2 ••• Amplitude correction- te**0.2t 

3 ••• Polarity reversal channel 10 

4 ••• 150ms Spike Deconvolution, 5% prewhitening 

5 ••• Bandpass filter 5-10/40-45 Hz 

6 ••• Velocity analysis, every 40th CMP 

7 ••• NMO correction with 8 fold interpolation 

8 ••• Stack, 11 fold CMP 

9 ..• Prediction error deconvolution, 100ms gap, 

100ms filter 5% prewhitening 

10 •• Bandpass filtering 5-10/40-45 

Page 125 



Page 126 

Caribbean Arc 1980 

The data from the Caribbean r0gion were acquired aboard RRS 

Discovery on cruise 109 during April 1980. The seismic reflection 

data were acquired using a 12-channel streamer with a 3-airgun 

array composed of two 160cuin and one 300cuin guns, used as the 

seismic source. The data were recorded in SEG-A using the 

departmental SDS10/10 recording system, and over the area in 

question 12 seconds of data was recorded, due to the fact that 

there was over 6 seconds of recording before the water bottom 

arrival was received. 

As well as acting as a demonstration of the syste~s 

capabilities, the processing of this line was a very good test for 

the system in its nearly-finished form. Only the migration 

algorithms in their final stages of testing could not be applied 

to this data. 

As the data were recorded in such deep water, it was decided 

to setup the demultiplex to only keep the last 6 seconds of data. 

Therefore, 460 shot points were demultiplexed into 12-channel 

common shot point gathers and written back to tape. The first 

field tape was processed with the demultiplex in the fast mode, 

but it became apparent that the program was frequently switching 

to the slow mode because of inconsistencies in the redundanfcy 

checks. Therefore, the remainder of the line was demultiplexed in 

the slow mode, with very lenient error allowances. Even so 

several files were declared dead, and zeroed by the program when 

it was unable to recover from serious data errors. An analysis of 



Page 127 

the detected errors indicated that a malfunction in the timing 

code generator probably caused by dropping a bit, was the cause of 

most of the problems. The files where several errors occurred 

also had parity errors recorded even after three retries, so these 

were most likely caused by a bad piece of tape. 

From the monitor record it could be seen that the sea bed was 

quite undulating, and so it was decided that velocity analyses 

would be carried out every 20 CMP positions in order to give as 

good a stack as possible. Therefore the data were sorted into CMP 

gathers in a tape to tape operation, and then every 20th file was 

brought down to disc for data tests and velocity analyses. On 

examining the CMP records, the data were seen to be of a very poor 

quality. All the channels were contaminated by high frequency 

noise, with channel 7 being completely immersed. Also on some 

records several of the channels contained quite large amounts of 

low frequency noise, especially channel 2. On the other hand the 

two noisy channels, 2 and 7, were the ones with the most recorded 

energy, implying that the pre-amplifier gains on the recording 

system had not been set correctly. Also, on further examination 

it was possible to see that on the remaining channels the waveform 

had a clipped appearance, which was presumably caused by a fault 

in the acquisition system's gain ranging logic. 

Spectral analysis plots showed quite clearly that the high 

frequency noise was at 50Hz, presumably due to pick up from the 

ship's electrical supply. The low frequency noise was centered on 

about 11Hz, and may have been due to the ships propellers or cable 

snatch on the streamer. The clipped data showed the presence of 

energy in the traces well above the 62.5HLcutoff of the 



f 

1 



X 



Page 128 

antialiasing filter, indicating that the clipping of the data and 

the high frequencies it produces in the data were introduced 

during digitising. In order to analyse this problem, sample shot 

points were completely demultiplexed and displayed. The high 

amplitude first break events were correctly digitised, implying 

that the low amplitude response of the acquisition system was at 

fault or that the A-D converter was losing gain information. 

From this preliminary analysis of the data it was fairly 

obvious that bandpass filtering had to be applied before any other 

processes, because in its raw state the signal to noise ratio of 

the data was so poor. The filter chosen was one with a complete 

cut below 10Hz and above 45Hz, with a 5Hz taper at each end. This 

filter succeeded in diminishing both major sources of noise. 

Because of the wide range of amplitudes across the channels it was 

decided to normalise the traces to unit energy after applying the 

exponential gain recovery curve. At this point, there was just 

sufficient detail to allow deconvolution tests to begin. However 

with the distortion of the waveform on most channels and the quite 

heavy filtering which had been applied, little hope was held for 

good results from the deconvolution. After many trials it was 

felt that the best results were given by a 200ms spike 

deconvolution with 5% prewhitening, which seemed to sharpen up the 

waveform to an acceptable level. 

Once decided upon, this suite of pre-stack parameters was 

applied to the test gathers on disc and then to the data on tape, 

in one tape to tape operation. The results of this processing 

were seen by sorting out channel 2 for a single channel display of 

the pre-stack data. 



' 

~ 
iji Lt 

~~ ~ 
~~ 

~ 5 ~ . 
! ~ r~ ~ ~ ~~~ ru ~ 4~ ~ ~ " II~ ~ ~~ ~~ 
~ 

' ~~ 1.! ~ ,. 
"J. 

~11 
I~ I·• f"l' 

~ ~ ~ > 
~11 1'~ ~ ~ ):l. ' r ;r om~.~.~ ~ ~ ~ t>i~ 

~ 

~ ~J ~ ~~~ 

~ ~~~ ~J· ~ ~ ~ t~ ~ 

~ ~ ~ ~ ft ~ ~ ~~ ~ : 
~)}~-.· ~ , ~ 

I .til ~~ ~ ~ bi 

IHI -~;:z, ~~ 

E ~ ~ ~~ ~ ~~ 5ii{ 
~ljii ::'".I. 

~ ~ 
~ ~ 

::!i'io ir.tj ~ 
~~ ~ p ~ ~_f; ~ ~ ~ 

~ ~ ~(' ["\ i1: :Jii ll ;:J. r6 ~'l1 F.tJ § ,. 
·v ~~ ~ ~ ?. ~ ~ ~ u ~'!l'r; ~ ;~ I\. ~ ~"i ".hi .-

bl ~ ~~~ ~~ ~~ ~" 
~ t:t ~ 5 ~~ ~i ~ ~ ~ ~ i t:i !(i ~ &~ ' # ~ "•"" ~~ ~ ' 
! .&~ ]>' ~ a "' "~ ~ ~ ~ ~ ~ ~ 
~ :1 t:J~ ~ ~ Bu. ~ ~ ·~ ~ 

~,~~p ~ ?t> .~· ~ 1!! ~ ), :~~ ; ~~~~ ) ~ ~ ·~~~] ~ ~~J ~·if: '• ffl n ~n~ ~-1~i~ 

£~~S·S: ~ S\t\~{L. dw.,1\~3::>\s\?\o.::S & o.. ~o~,C)t\, ~ 
~g C<a.,·~\oeo"' \"\s-..e. &~'«'Xte-S)ak. 7wess\»~ 



Page 129 

The velocity analyses were carried out on the data on disc to 

produce a contour plot for each test point. Using these displays 

and the single channel section it was possible to pick a set of 

velocity functions for the line. In performing the velocity 

analyses several different gate widths were tried in order to give 

as clear a contour display as possible. In the end a reasonably 

large gate of 184ms was used, which was very similar to the length 

of the deconvolution filter, suggesting that this was the 

effective length of the airgun waveform. 

The set of picked velocity functions were put into the stack 

program and the data for the whole line was stacked in one tape to 

tape operation. 

display, which 

The stack tape was then used to produce a 

was also saved to tape. A segment of the stacked 

data was put onto the disc from the tape to enable testing of 

post-stack processing parameters. It was found difficult, even 

after a full range of tests to find a deconvolution operator~nich 

would adequately improve the data. In the end a short spiking 

deconvolution operator was used in an attempt to increase the 

resolution of the data as much as possible. A bandpass filter 

with the same cutoff as in the pre-stack processing was applied 

after deconvolution to provide an improvement in the signal to 

noise ratio in the post-stack data. Once again, these parameters 

were entered into the program and the entire line was post-stack 

processed in one tape to tape operation. 

Due to the large number of diffractions on this line it would 

normally have been desirable to perform migration, and probably 

because of the depth of the data, Kirchhoff migration applied over 

the 7 to 9 seconds range of the traces with an aperture of about 



250 260 270 260 290 300 31 J 320 330 31!0 350 360 370 380 390 



Page 130 

50 traces would have sufficed with very few operator updates being 

required. Probably about 40 operators would be required and the 

limited time range would allow it to be applied quite quickly. 

However, the migration programs were not available and so a 

three-trace mix was run, again tape to tape, in order to clear up 

some of the diffractions and reinforce the subhorizontal events in 

order to aid interpretation. In fact, the two major dipping 

events were rendered much clearer by this process and a major part 

of the diffraction energy was removed, making the display much 

clearer than before. 

The final sections present a very clear picture of oceanic 

crust dipping under an acretionary prism, and considering the 

original data quality the final results are very pleasing. It was 

felt that the ability to process data to this standard indicated 

the flexibility and capability of the processing system, and, 

apart from the migration programs not being available, there was 

probably no other process which could have been applied to 

significantly improve the data quality of the final sections. 



250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 



Caribbean Processing Parameters 

Shot-receiver spacing 

Channel spacing 

Array Depth 

Source Depth 

304m/297m 

100m 

10.7m 

7.3m 

1 ••• Demultiplex SEG-A to 12 channel 6-12 seconds 

common shot gathers for 460 shots. 

2 ••• Sort, common shot to CMP gathers 

3 ••• Amplitude correction tE0.2t 

4 ••• Mute 200ms with 80ms cosine taper 

5 ••• Bandpass filter 10/15-40/45 Hz 

Page 131 

6 ••• Spiking deconvolution, 240ms operator, 5% prewhitening 

7 ••• Velocity analysis, every 20 

8 ••• NMO correction with 8 level interpolation 

9 ••• CMP stack 

10 •• Spike deconvolution, 72ms, 5% prewhitening 

11 •• Bandpass filtering 10/15-40/45 Hz 

12 •• Three trace mix 



Page 132 

Summary 

From the experience gained processing these two test lines, 

one method of use of the system can be recommended as the easiest 

and most flexible. It was found that by far the most 

straightforward method of working was to carry out all major 

processing runs as tape to tape operations, and only to use the 

disks as temporary storage for test data. It is also fairly 

obvious that this means a reasonable amount of time has to be spent 

running tests on the data before embarking on a major processing 

run. It is advisable to pick representative data from many 

positions on a line, and if the parameters required to process 

them are very different, to break the tape runs at certain points 

to enter a new set of parameters, rather than trying to process 

the entire dataset with the same average values. 

In its present state of development, the processing system 

should allow the routine processing of marine seismic reflection 

data without any further additions to the software suite. 

However, further developments might be necessary to accommodate 

other types of data. At the time of writing, the system is in 

routine use for the processing of the main bulk of the Caribbean 

seismic data. 



Cpapter 6 

Conclusions 

Page 133 

As this project was the first one involved with the 

development of the Durham University Seismic Processing System, it 

was very important that, while the basic system was under 

development, the possibilities for future improvement, in both 

hardware and software, should be critically assessed. Also the 

software was developed throughout with the concepts of flexibility 

and portability uppermost, so that if the operating hardware of 

the system should change, the number of software changes required 

would be small, and those that were necessary would be 

straightforward to make, which should also allow new programs to 

be added to the system fairly easily. The first part of this 

chapter is an attempt to evaluate those software elements which 

could be added to the processing system in order to complete it in 

its present configuration, and the second part is an evaluation of 

the hardware upgrades considered necessary to improve the system. 

Future Software Developments 

Due to the project being constrained by a time limit, several 

restrictions were placed on the aims of the system at its 

conception. The system as designed and implemented was intended 

for processing marine data acquired in SEG-A using the 

departmental acquisition system, and be able to handle data in the 

processing stream's internal format. However, it was always 

envisaged that these restrictions would be purely temporary, and 

would be removed by the addition of further software to the system 



Page 134 

by other projects in the future. Therefore, in designing the 

system this was taken into account so that the addition of further 

modules, allowing the above limitations to be removed, should be 

relatively easy. Also as the structure of the system, its data 

format and data handling conventions are well established, the 

development of newer and possibly more sophisticated techniques 

for inclusion in the system should be relatively straightfoward. 

New techniques could be developed on the NUMAC IBM 370, while the 

system is being used for processing, and, once tested and refined, 

tied into the processing system using the data handling 

subroutines already present, and following the conventions used by 

the other modules already in the system. 

Demultiplex 

In any future project one of the first items which should be 

considered is the development of a demultiplexing capability for 

SEG-B and SEG-C. The existing demultiplex program for SEG-A could 

be easily used as the basis for two new programs, one for each 

format, as the basic pattern of data flow should be the same. The 

header blocks of the 3 formats are virtually identical, as 

according to the format specifications the first 16 bytes for each 

format should be the same, and this would contain all the 

information that would need to be transferred into the internal 

format trace header, as is done for the present SEG-A demultiplex. 

All three formats are based on 30 channel recording blocks which 

should also simplify the conversion. 



Page 135 

SEG-C would probably be the easier to produce a new program 

for, as the data is in 4 byte IBM floating point format. As one 

of the capabilities of the AP is to convert IBM floating point 

numbers into its own internal format "on the fly" through the 

interface, the data conversion would be straightfoward once the 

demultiplex had been performed. Most of this logic would also be 

shared with the SEG-A program, as the two share the same 3 byte 

start of scan code. 

SEG-B Ls a slightly more co~icated format, but the samples 

are in the same representation of a 15 bit mantissa and a 4 bit 

gain code as SEG-A, and so the same data conversion routines could 

be utilised. 

It should be realised that even if these two routines were 

produced, it may be necessary to produce slightly altered versions 

from time to time to suit the exact format of any data received, 

because most recording equipment, though remaining close to the 

standard, usually uses a variation on one of the three standards. 

Data Exchange Format 

Another drawback of the system is that, at the present, there 

is no capability for reading or writing data in SEG-Y, which is 

the accepted data exchange format. However one problem with SEG-Y 

is that it is a gapped format, having inter-record gaps between 

traces on tape. With the present hardware configuration it would 

be a quite longwinded process to read or write SEG-Y tapes. The 

method employed would basically have to be a two pass method, 



Page 136 

involving storage of quite large quantities of data on disc 

between the passes. 

It t-Tould be possible to produce a program to Pun on the pdp 

8/e under OS/8, which would transfer data to and from the tape 

drives, from and to the pdp11 respectively, in a gapped format. A 

program of this type is already in existence to allow blocked 

transfers of ultrasonic tank data. However this program could not 

run at the same time as the gapless read/write program, used for 

the seismic systems internal format, because of memory 

limitations, as previously mentioned. Therefore two programs 

would be needed. In the case of producing SEG-Y tapes from 

internal format tapes, data would have to be transferred from tape 

into a program for converting to SEG-Y, and written to disc. On 

filling the disc, a gapped tape write program could be run on the 

pdp8 to allow the data to transferred to tape in the correct 

format. Obviously the procedure could be reversed for reading 

SEG-Y tapes. However it is clear that this slower procedure is a 

consequence of hardware limitations. 

Land Data 

Although the system was designed with marine processing as 

the primary target, a conscious effort was made not to exclude the 

possibility of processing land seismic data. It would be quite 

feasible to process land data on the system, especially if the one 

glaring omission from the normal suite of land processing 

techniques were added to the system. This is, of course, the 

capability to handle static corrections. 



Page 137 

In processing marine data, the importance of static effects 

is negligible, However, in order to successfully process land data 

the ability to apply static corrections to the data is of 

paramount importance, if a section of interpretable quality is to 

be produced. 

The writing of a static correction module should not prove 

too difficult if a need to process land data arises. The basic 

principle of static corrections is to apply a time shift to 

each trace, so that the revised start-time is that which would 

have been observed had source and receiver both been on a chosen 

datum, assuming that the seismic velocity in the region below the 

datum is the elevation velocity. The implementation of a static 

correction module would not be too different from the application 

of the NMO correction, except that the time shift is constant for 

the entire trace. As in the NMO cor~tion, the data should be 

interpolated up to a higher sampling rate, using the same routine, 

and then once the time shift has been converted to a sample shift 

at this new rate, the correct samples can be extracted, to reduce 

the trace back to the original sample rate, with the static shift 

applied. 

Also useful in the processing of land data would be a 

residual statics package. However, the problem of determining 

residual statics is probably a large enough problem to be dealt 

with as a full project in its own right. 



Page 138 

Other Possible Software Additions 

The improvements in the system proposed in the previous 

sections, especially the improved demultiplex and statics 

capability, are necessary to complete the all round capabilities 

of the system. However, as well as these it is possible to 

identify several techniques which could be added to the system in 

its present form, and so increase the range of possible techniques 

in the system available for processing data. 

Vibroseis 

Vibroseis is of increasing importance in the acquisition of 

land data. After the data has been demultiplexed the Vibroseis 

sweep has to be removed by performing a correlation between the 

recorded sweep and the data trace, which can be up to 30 seconds 

in length if a long source sweep has been used. At present a 

Vibroseis correlation capabilty is not available within the 

system. However research work into Vibroseis sweeps has been 

carried out within the department, and so it may become desirable 

to design a tape to tape process to perform Vibroseis correlation 

on the data after demultiplex. 



Page 139 

Improved Filtering 

The application and design of filters within the system is an 

area where greater flexibilty could be provided, both in 

deconvolution and frequency filtering. 

Due to the selective attenuation of high frequencies in the 

source wavelet on its passage through the earth, the frequency 

spectrum of the trace at longer travel times tends to have less 

high frequency components than the earlier arrivals, and because 

of this the source wavelet is usually a slightly different shape. 

This effect is clearly seen in land data where the change in 

frequency charcteristics down the record can be quite marked. 

As a result of this phenomenon, a band-pass filter designed 

for the trace as a whole tends not to remove enough of the high 

frequency noise at longer travel times, while leaving unwanted low 

frequency effects in the trace at early arrival times. One way to 

get round this problem would be to enable time variant band- pass 

filtering to be applied. This could be done , in the system, by 

allowing, say, 3 different bandpass gates to be specified which 

relate to 3 different areas down the trace. The actual 

application of the 3 different filters could be performed in 

either the frequency or time domain, but the method basically 

consists of applying the filters separately and merging the 

resultant, filtered traces with appropriate scale factors, to give 

the final resultant time variant filtered trace.(Fig 6.1) 



F1 Iter 
We1ght 

1 

F'i g 6~ 1 

Data 
Ampl 1tude 

Data 
Ampl '!tude 

A-Fter 
AGC 

F1g 6~2 

FILTER FILTER FILTER FILTER 

t 'r f3 t 

Rl F12 F13 R4 

T1me 

Appl 'icat'ion o~ T'ime Var'iant F'ilters 

T1me 

T'lme 

Example o-F AGC ~or Trace seal 1ng 



Page 140 

A similar effect is evident in the effectiveness of 

deconvolution operators if designed on the trace as a whole, and a 

better result may be obtained if deconvolution operators are 

designed over different time gates, to allow for the differing 

characteristics of the source waveform down the trace. The 

resulting filters could then be applied in the same manner as 

described above for the time-variant bandpass filters. 

The successful deconvolution of seismic data, to remove the 

effects of the source wavelet, is always a problem because the 

assumption of a minimum phase waveform for the source wavelet is 

often not valid in practice, especially in the case of reverbatory 

sources, such as maxipulse or airguns. This is the reason why 

attempts to remove the source wavelet due to airguns are often 

unsuccessful, and why so much effort is expended on the design of 

airguns and airgun arrays, in order to try to produce an impulsive 

minimum phase waveform. 

Therefore, a particularly useful addition to the Durham 

system, as it is biased towards marine work with only small airgun 

arrays, would be a wavelet estimation package, to allow 

deterministic signature deconvolution. The ability to perform 

signature deconvolution would also be useful in experiments where 

the far field source signature was actually recorded. 

One method of wavelet estimation, homomorphic deconvolution, 

has in fact been investigated by MSc research projects in the 

department and so could probably be implemented reasonably easily. 

However, reasonable success at wavelet estimation is possible by 

simple methods, such as stacking together time gates, identified 



Page 141 

as containing the wavelet, such as the sea bed arrival on a marine 

seismic record(Stone, 1979). Once the wavelet is known, the 

wiener shaping filter can be designed to turn the source wavelet 

into a spike, as both the source autocorrelation function and 

source/desired output cross correlation function can be directly 

calculated. If the source wavelet is estimated for different time 

gates down the trace the method can be applied as for the time 

variant bandpass filter. 

Amplitudes 

Although it is desirable to display the seismic section with 

a minimum of amplitude manipulation, other than the application of 

a spherical divergence correction, so as to allow comparisons in 

the amplitude of various events down the trace, this can lead to 

small, low-amplitude events being missed. Therefore it is 

probably desirable to have the capability to apply some form of 

AGC (Automatic Gain Control) to the data before display, in order 

to produce a more even amplitude down the trace so that even small 

events can be easily detected. 

Summary 

The Software improvements described above fall into two 

categories, those which are necessary in order for the system to 

be viewed as complete, and those latter suggestions which, based 

on the experience gained in processing the test lines, it would 

have been desirable to add to the system in order to improve its 



Page 142 

performance. It is felt that these are software improvements 

which could readily be included in the present system with the 

present hardware configuration. 

Hardware Evolution 

During the course of the project the possibility of futujre 

hardware upgrades was continually assessed. Three reasons for 

hardware changes were identified. 

1) •• Necessity- Some hardware changes were viewed as 

necessary for the future development of the system to remain 

viable, in terms of the volume of data processed. 

2) •• Desirability- Some hardware changes would allow 

algorithms already produced to run more efficiently, with 

restructuring where necessary. Other algorithms could then be be 

performed on larger quantities of data, and some algorithms which 

are not realistic at the present time could become possible with 

future hardware upgrades. 

3) •• Long Term Evolution- Developments in electronics are 

continually bringing more sophisticated pieces of equipment within 

the budget range even of bodies such as Universities, and at the 

same time older equipment becomes obsolete and difficult to 

maintain. Therefore a long term hardware evolution path has to be 

identified and updated in the light of new product announcements. 

At all times, however, hardware upgrading must be considered only 

in the light of software compatibility. 



Page 143 

The hardware evolution of the system which was envisaged as 

being the best compromise between necessity, software 

compatibility and cost is shown in Fig 6.3. It can be seen from 

this diagram that the provision of a tape subsystem attached 

directly to the pdp11 is the most important hardware upgrade, and 

is probably the only one which could be described as being 

absolutely necessary. 

The total reliance on the pdp8 for access to the tape drives 

makes the reliability of the system wholly dependent on the pdp8, 

which is the oldest and least reliable component in the system. 

Also, the passage of data to and from the two processors to the 

tape drives places two major constraints on the system. Firstly, 

as the transfer is performed under processor control, the tape 

read/write time is the limiting factor on how fast any processing 

module can execute, because computations cannot be overlapped with 

the data transfers. Secondly the implementation, of the tape 

read/write program on the pdp8 dictates that the tape format is 
loJ-record 

alwaystg lees, which prevents SEG-Y being generated easily and 

prevents the data being input to general purpose computer systems, 

such as the NUMAC IBM370. 

lo"\5- t-e co.-d 
Ideally, a tape subsystem which allowsfsapl9ee reads should 

be purchased to allow field tapes to be read, using these drives, 

so that the pdp8 would no longer need to be an integral part of 

the processing system. However, if this solution proved to be 

initially too expensive, the drives and formatter of a system, 

which could later have the gapless facility added, could be 

purchased. This would allow the drives on the pdp8 to be used 

solely for reading the field tapes, all subsequent tape 



3 

4 

5 

Present s~stem 

Add standard Tape 
Or'ives to POP 

Upgrade Tape Controller 
to read F'ield Tapes 
wh'ich ends rei 1ance 

on POP 8 

Attach a 36 Inch 
Electrostat1c Plotter 

1 
Upgrade AP120b to 

32 Kwords o~ Data Memor~ 

Attach a larger capac'it~ 
O'isc un'it 

l 
VAX 5~stem 

Env1saged S~stem upgrade path 



Page 144 

manipulation being performed on the drives interfaced to the 

pdp11. 

The ;jofLware changes needed to accommodate such a change 

would be small, assuming the device driver for the tapes was 

provided by the vendor. If a gapless read facility was provided, 

the transfers would still be performed much as they are at 

present, with the transfers being to and from disc and tape. 

Hence this tape routine would be modified to accept data from the 

tape interface and put it to disc, rather than from the pdp8 

interface. 

The main software difference would be that the internal 

format would be changed to be the same as the format on disc. 

That is, the contents of the format would remain the same, but the 

files written to tape would be in blocks of 512 bytes, just like 

the disc files. The tape handling routines would then be changed 

to perform the skipping and error checking functions for the new 

interface directly, while the read and write functions in the 

subroutines would be performed using the tape read/write functions 

in RT-11, allowing the data transfers and computations to be 

ovelapped, as is done in accessing disc files, resulting in a 

massive reduction in processing time. 

A secondary gain from this upgrade would be that a more 

flexible file transfer capability in RT-11 and other standard 

formats would be possible, and the tape backup/restore facilty 

would be much simpler to use. 



Page 145 

This improvement in the system is possibly more important 

than any other foreseeable update, and any resources available to 

the system should really be used to get the system to stage z in 

Fig 6.3 before further upgrades are considered. 

Once the system is fully independent of the pdp8, with its 

own tape subsystem, the next most important upgrade would be to 

the plotting hardware. The final output of all the time and 

effort spent in a processing system is always a plotted section 

used for visual interpretation, and so it is only sensible to 

produce plotted output of as high a quality as possible. In the 

present system the plotter is only 11 inches wide, and so a 

stripping algorithm has to be used to display most sections at a 

reasonable scale. It is therefore proposed that a 36 inch, 200 

dots/inch electrostatic plotter be added to the system, which 

would be used to produce final sections which would not have to be 

stuck together. The 11 inch printer/plotter would still be used 

as the line printer and for small plots, and the 36 inch plotter 

need not have a printer capability. 

The only changes needed to the software would be to make the 

number of dots at which stripping is to occur an input parameter 

to the section plotting program, to allow plotting on both 

devices. As stripping involves the use of more than one output 

tape drive, this would also reduce the number of tape drives 

needed This upgrade would produc~ vast 

increase i~he quality of final plots, and make the management of 

in plotting operations. 

plot tapes much easier, with very little alteration to the 

software already present. 



Page 146 

An upgrade which is desirable rather than necessary, and 

would not effect the system configuration, would be to add more 

Main Data Memory to the AP to bring it upto 32 Kwords, with a 

corresponding upgrade in the Table Memory to allow bigger FFT's. 

This would involve no immediate software changes, but it would 

remove the 2048 sample data length restriction for single channel 

filtering operations. However, by increasing the amount of data 

which can be held in the AP at any one time, programs can be 

restructured so that the number of data transfers in programs such 

as demultiplex, velocity analysis and Finite Difference Migration 

could be drastically reduced. 

The most important gain derived from this upgrade would be 

that the algorithms used by processes such as velocity analysis 

stack, and migration are based on the assumption that only 8 

Kwords of memory are available. This makes the method used a 

little convoluted and long winded, with many data transfers to and 

from the AP. With a larger AP memory the algorithms could be 

rewritten to use the AP more efficiently, and would probably make 

it worthwhile for more algorithms to be microcoded to run almost 

entirely in the AP, which would result in a vast improvement in 

data throughput 

The final upgrade envisaged, of equal merit to the increase 

in the AP memory, is to attach a bigger disc system to the pdp11. 

The limiting factor on processes such as finite difference 

migration is the size of the largest disc file it can create. 

Therefore if a disc system with more overall storage, and more 

importantly a bigger maximum file size, could be added to the 

system, it would enable processes such as finite difference 



Page 147 

migration to be applied to bigger working sets. Also it would 

enable the processing of larger pieces of data to be carried out 

from disc for filter tests, and perhaps allow small lines to be 

processed almost entirely from disc. The present disc drive would 

be retained for data file and program storage, and for such things 

as velocity analysis files. The software changes would only 

involve altering the disc driver and producing virtual memory 

read/write routines as was done for the present disc drive. The 

actual total size of this disc subsystem need not be enormous as 

long as the maximum file size is appreciably larger than the 

present system's disc, although a very large disc would obviously 

vastly increase the flexibility of the system. 

Future Evolution path 

The upgrades described above are about as far as it is 

reasonable to go while retaining the basic configuration of the 

system. Once the system reaches the stage of advancement 

described, it is no longer the peripherals which are the limiting 

factor but the controlling processor, the pdp11. 

Fortunately, recent developments in computing hardware 

provide the logical upgrade from the pdp11 at a comparatively low 

cost, as shown in Fig 6.4. The obvious development is to replace 

the pdp11 with a VAX system. The VAX is manufactured by DEC and 

is fully compatible with the pdp11. In fact VAX-11 is an acronym 

for Virtual Address eXtension to the pdp11. 



Console 

VAX CPU 

300 Mb 
RP-120b ~-----i 

O'iscs 

I 36 'in 

I PI otter I 

11 1 n 

Pr'inter 

Plotter 

F1g 6.4 

-

DZll 

I 
Term'inols 

Tope decks w'ith gopless 
Tope controller 

Suggested Future Computer 5~stem 



Page 148 

The VAX is a 32-bit word computer and, depending on model, 

has 4 Megabytes of physical memory. However, the virtual 

address limit is that provided by the 32 bit word; which is about 

~Gigabytes, and is unlikely to be exceeded by present data 

processing requirements. One of the great advantages of the VAX 

is that it uses the same peripheral buses as the pdp11 family, and 

so the peripherals on the pdp11 could be put straight onto the 

VAX. Also pdp11 Fortran is compatible with VAX Fortran and even 

Macro-11 instructions can be executed in compatibility mode, 

although the native mode Macro-32 is similar enough for 

conversions to be trivial, with the VAX using the same conventions 

for its data types. Hence the processing software would require 

no conversion, other than to replace the RT-11 system calls with 

their VAX/VMS analogues, which should be reasonably easy. Device 

drivers for the peripherals to allow them to run on the VAX should 

be available from the original suppliers. 

The Virtual memory system on the VAX means that there are no 

realistic limits to data length or number of channels per gather, 

or window width for migration, due to the main processor, although 

these things would still be regulated by the AP limitations. With 

the purchase of a machine as powerful as the VAX, it would be 

sensible to provide a reasonable amount of disc space to allow 

full use of its facilities to be made by processes such as 

migration. 

As the VAX is a multi-user machine, several terminals could 

be attached to it to allow it to perform an educational function 

as well as seismic processing. So, although it may seem to be a 

rather extravagant upward step, a machine such as this could 



Page 149 

easily provide a service for the whole department as well as 

performing seismic processing. Program development could also 

take place at the same time as processing in this sort of 

environment. 

At present there are two machines in the VAX family. The 

VAX11/780, which is the most powerful and expensive, is probably 

out of reach economically and unnecessary from a power point of 

view. Therefore the VAX 11/750 would seem to be the one to 

choose. However, a smaller VAX 11/730 is about to be released 

which would have adequate performance for this application. 

Summary 

In summary, it is felt that this project has provided a 

working system which forms an easily useable tool for the 
c. 

processing of seismic refletion data. Also, with the simulator 

" capabilities on the NUMAC IBM, along with the capability of AIMS 

in providing synthetic data, program development for the system 
~ 

should be reasonably straightfoward. 
A 

An assessment of the system has shown those areas where 

future work could be usefully directed, and from the experience 

gained working on the project a critical assessment is given of 

the evolution of the system considered most apt for the future. 

With more development the system should be able to provide an 

even better educfational service, by producing demonstrations of 

data processing techniques in action, and form a starting point 

for future research projects. Hopefully, if the work begun in 



Page 150 

this project is continued, the department can continue to be at 

the forefront of seismic reflection experience in Universities. 



References 

Barry K M, Cavers D A, and Kneale C W 1975 

Recommended standards for digital tape formats 

Geophysics 40 344-352 

Bergland G D 1969 

A guided tour of the Fast Fourier Transform 

IEEE Spectrum ~ 41-52 

Berkhout A J 1977 

Least squares inverse filtering and wavelet deconvolution 

Geophysics 42 1369-1383 

Berkhout A J 1979 

Steep dip finite difference migration 

Geophysical Prospecting 27 196-213 

Berkhout A J and Wulfften Palthe D W van 1979 

Migration in terms of spatial deconvolution 

Geophysical Prospecting 27 261-291 

Berryhill J R 1979 

Wave equation datuming 

Geophysics 44 1329-1344 

Page 151 



Page 152 

Bolondi G, Rocca F and Savelli S 

A frequency domain approach to two-dimensional migration 

Geophysical Prospecting 26 750-772 

Claerbout J F 

Coarse grid calculations of waves in inhomogeneous media with 

application to delineation of complicated seismic structure 

Geophysics 35 407-418 

Claerbout J F 

Toward a unified theory of reflector mapping 

Geophysics 36 467-481 

Claerbout J F 

Fundamentals of geophysical data procesing with applications to 

petroleum prospecting 

New York McGraw-Hill 

Claerbout J F and Doherty S M 

Downward continuation of moveout corrected seismograms 

Geophysics 37 741-768 

Claerbout J F and Johnson A G 

Extrapolation of time dependant waveforms along their path of 

propogation 

Geophys J R astr Soc 26 285-293 



Digital Equipment Corporation 1974 

OS/8 Handbook 

Maynard Ivlass 

Digital Equipment Corporation 1977 

PDP11 FORTRAN -Language reference manual 

Maynard Mass 

Digital Equipment Corporation 1978 

PDP11/34 Processor Handbook 

Maynard Mass 

Digital Equipment Corporation 

PDP11 Peripherals Handbook 

Maynard Mass 

Digital Equipment Corporation 

RT-11 Advanced Programmers Manual 

Maynard Mass 

Digital Equipment Corporation 

RT-11 System users guide 

Maynard Mass 

Digital Equipment Corporation 1978e 

RT-11/RSTS/E FORTRAN IV Users guide 

Maynard Mass 

Page 153 



Dix C H 1955 

Seismic velocities from surface measurements 

Geophysics 20 68-86 

Dobrin M B 1977 

Geophysical Prospecting 

3rd Edition New York McGraw-Hill 

Dunkin J W and Levin F K 1973 

Effect of normal moveout on a seismic pulse 

Geophysics 38 635-642 

Embree P, Burg J P and Backus M M 1973 

Wide band v~locity filtering - The pie-slice process 

Geophysics 28 948-974 

Floating Point Systems Inc 1977 

AP-120B Math Library Parts 1 and 2 

Beaverton Oregon 

Floating Point Systems Inc 

AP-120B Processor Handbook 

Beaverton Oregon 

Floating Point Systems Inc 

AP-120B Software Development Package 

Beaverton Oregon 

Page 154 



French W S 1975 

Computer migration of oblique seismic reflection profiles 

Go=ophyo;;l.t..:::~ 40 96i-980 

Gardner G H F, French W S and Matzuk T 1974 

Elements of migration and velocity analysis 

Geophysics 39 811-825 

Gazdag J 1978 

Wave equation migration with the phase shift method 

Geophysics 43 1342-1351 

Godbold C C 1980 

Convolutional Migration of Seismic Reflection Data 

MSc Thesis University of Durham 

Hagedoorn J G 1954 

A process of seismic reflection interpretation 

Geophysical Prospecting 2 85-127 

Hood P 1978 

Finite difference and wave number migration 

Geophysical Prospecting 26 773-789 

Levin F K 1971 

Apparent velocity from dipping interface relations 

Geophysics 36 510-516 

Page 155 



Page 156 

Loewenthal D, Lu L, Roberson R and Sherwood J 1976 

The wave equation applied to migration 

Geophysical Prospecting 24 380-399 

Lu C Hand Gupta S C 1978 

A multirate digital filtering approach 

Application to common depth point stacking 

Geophysics 43 877-885 

Mayne W H 1962 

to interpolation-

Common reflection point horizontal data stacking techniques 

Geophysics 27 927-938 

Mayne W H 1967 

Practical considerations in the use of common reflection point 

techniques 

Geophysics 32 225-229 

Meiners E P, Lenz L L, Dalby A E and Hornby J M 1972 

Recommended standard for digital tape formats(Digital format C) 

Geophysics 37 45-58 

Meyerhoff H J 1966 

Horizontal stacking and multichannel filtering 

Geophysical Prospecting 14 441-454 



Page 157 

Neidell N S and Taner M T 1971 

Semblance and other coherency measures for multichannel data 

Geophysics 36 482-497 

Newman P 1973 

Divergence effects in a layered Earth 

Geophysics 38 481-488 

Northwood E J, Weisinger R C and Bradley J J 1967 

Recommended standards for digital tape formats 

Geophysics 32 1073-1084 

Nunns A G 1980 

Marine Geophysical Investigations in the Norwegian-Greenland Sea 

between the latitudes of 62 N and 74 N 

PhD Thesis University of Durham 

O'Brien P N S 1977 

New techniques in seismic exploration for oil 

Sci Prog Oxf 64 487-519 

Oppenheim A V and Schafer R W 1975 

Digital Signal Processing 

Engelwood Cliffs New Jersey, Prentice Hall 

Otnes R K and Enoch$en L 1972 

Digital time series analysis 

New York Wiley 



Pann K, Shin Y and Eisner E 

A collocation formulation of wave equation migration 

Geophysics 44 '112-'1~1 

Peacock K L and Treitel S 

Predictive deconvolution - Theory and Practice 

Geophysics 34 155-169 

Ricker N 

Page 158 

Wavelet contraction, wavelet expansion and the control of seismic 

resolution 

Geophysics lQ 769-792 

Robinson E A 

Statistical communication and detection with special reference to 

digital processing of Radar and Seismic signals 

London Griffin 

Robinson E A 

Predictive decomposition of time series with application to 

seismic exploration 

Geophysics 32 418-484 

Robinson E A and Treitel S 

Principles of digital Wiener filtering 

Geophysical Prospecting 12 310-333 



Page 159 

Schneider W A 

Integral formulation for migration in two and three dimens~ons 

Geophysics 43 49-76 

Sheriff R E 

Encyclopaedic dictionary of exploration geophysics 

Society of Exploration Geophysicists Tulsa Ok USA 

Stone D G 

Pulse shaping methods 

Developments in geophysical exploration methods 

London Applied Science Publishers 239-270 

Stolt R H 

Migration by fourier transform 

Geophysics 43 23-48 

Taner M T, Cook E E and Neidell N S 

Limitation of the reflection seismic method 

computer simulations 

Geophysics 35 551-573 

Taner M T and Koehler F 

lessons from 

Velocity spectra - Digital computer derivation and applications of 

velocity functions 

Geophysics 1i 859-881 



Page 160 

Telford N M, Geldart L B, Sheriff R E and Key S D A 

Applied Geophysics 

Carub.r•l.dge University Press 

Treitel S and Robinson E A 

Optimum digital filters for signal to noise ratio enhancement 

Geophysical Prospecting 11 248-288 

Treitel S, Shanks J L and Frasier C W 

Some aspects of fan filtering 

Geophysics 32 789-800 

Tribolet J M 

Seismic applications of Homomorphic signal processing 

Engelwood Cliffs New Jersey Prentice Hall 

Versatec 

Versaplot graphics programming manual 

Santa Clara California 

Waters K H 

Reflection Seismology - A tool for energy resource exploration 

New York Wiley 

Wiggins R A, Larner K L and Wisecup R D 

Residual statics analysis as a general linear inverse problem 

Geophysics ~ 922-938 



Wood L C and Treitel S 1975 

Seismic Signal Processing 

Proc IEEE 63 649-661 

Wood L C, Heiser R C, Treitel S and Riley P L 1978 

The debubbling of marine source signatures 

Geophysics 43 715-729 

Page 161 



Page 162 

Appendix 

This appendix contains the description of the input 

parameters, and the source listings for each of the main 

processing programs. 



Page 163 

Demultiplex:- MPDMXA 

Input file .•.•.... DK1:MPDMXD.SPF 

Log file •.••....•• DK1:MPDMXD.LOG 

Input Parameters 

READ(1,1001)NCHAN,NFILES,ITSIZ,IHSTRT,NROW,TPDRR,TPDRW,VELNUM 

1001 FORMAT(12I5) 

NCHAN ••.. Number of channels to demultiplex 

NFILES .•• Number of input files to demultiplex 

ITSIZ •••. Last half second to be demultiplexed 

IHSTRT ... First half second to be demultiplexed 

NROW ..... Number of rows in sort matrix .. at least 

TPDRR •••. Input tape drive number 

TPDRW .... Output tape drive number 

VELNUM ••• Number of files to save on disc 

READ(1,1001)USEFLG,OUTFLG,INFLG,IERFLG,NRECOV,NUERR,NALOW 

USEFLG •.• New start/Restart flag 

0- new job 

1- restart of old job with old sort files 

OUTFLG •.• Output flag 

0 - output to tape 

- output to disc 



INFLG •••• Input flag 

0 - input from tape 

- input from disc 

IERFLG ••• Demultiplex mode switching flag 

0 - fast mode demultiplex 

- slow mode demultiplex 

Page 164 

NUERR •••• Number of different logged demultiplex errors allowed 

before a file is declared dead 

NALOW •••• Number of consecutive frames in error allowed before 

a file is declared dead 

READ(1,1000) FNBUF 

1000 FORMAT(3A4) 

FNBUF ••.• Input file name 

If INFLG:O •••.. Temporary file for tape read 

If INFLG:1 .•... NFILES input files to demultiplex 

READ(1,1001)(INDEX(I),I=1,NROW) 

INDEX •••• Sequence of sort buffer files 

If USEFLG=1 .•.. Input sequence from last line of 

previous log file 

If USEFLG=O •.•• Input sequence, 1 •.•• NROW 

READ(1,1001)(ICHAN(I),I=1,NCHAN) 

ICHAN •.•. Position of output channels in order of increasing 



Page 165 

offset, on input to demultiplex 

READ(1,1001)(FPOS(I),I:1,NCHAN) 

FPOS •••.• Output sort position for each input channel 

READ(1,1001)(VELAN(I),I=1,VELNUM) 

VELAN ••.• File numbers to be saved on disc 

READ(1,1000)(FNBUF(I),I:1,NROW) 

FNBUF •••• File names for sort file buffers, always at least 1 

READ(1,1000)(VELNAM(I),I=1,VELNUM) 

VELNAM ••• File names for files to be saved on disc 

READ(1,1001)NOCHAN,IGCODE,IUNITS,ISCODE 

NOCHAN ••• Number of active channels recorded in field data 

IGCODE .•• Output gather code 

0 - Common shot gather 

- CMP gather 

2 - Single channel stacked 

3 - Single channel unstacked 

IUNITS .•. Units of measurement 

- Metres 

2 - Feet 



ISCODE ••• Acquisition source code 

0 - Airgun 

- Explosives 

2 - Vibroseis 

3 - Weight drop/Hammer 

READ(1,1003)SROFF,RSPAC,SLSPAC,STSPAC,SDEPT,RDEPT 

1003 FORMAT(6F10.0) 

SROFF •••• Shot to channel 1 offset 

RSPAC •••. Receiver spacing 

SLSPAC ••• Shot spacing(distance) 

STSPAC ••• Shot spacing(Time at sea) 

SDEPT ••.. Shot depth 

RDEPT ••.• Receiver depth 

READ(1,1000)(HSBLK(I),I=51,254) 

Page 166 

HSBLK(51) •..• HSBLK(254) •••. Free area of header block, used for 

user comments 



F ORTF'.Arl 1 V VfJ2.fJ4 THU ZS-JAN-81 RJRJ:41:42 PAGE H/81 

FJRJfJ 1 
:?iJ£12 
iiffJfJ3 
fJJJZ4 

3F:J.JS 

Z/J.'J7 

,0ric:lq 

.";.015 

:y 'J ! ! 

1.9' 1 :; 
.c_;g! /} 

C DtMULTIPLEX PROGRAM 
c 
C THIS PROGRAM TAKES DATA OFF TAPEIVIA PDP-8), 0~ DISC 
C IN THE MULTIPLEXED FORMAT USED AT DURAM UNIV 
C ;l.ND DEMUL TIPLEXES THE CHANNELS AND REFORf·1ATS THE DATA 
C VALUES. THESE ARE THEN ~RITTEN TO DISC FOR STORAGE 
C BEFORE BEING ASSEMBLED INTO A STACK POINT GATHER. 
C THEY ARE THEN EITHER LEFT ON DISC FOR A VELOCITY ANALYSIS 
C OR ~RITTEN <VIA THE PDP-8> TO TAPE FOR STORAGE. 

c 
c 
c 
c 

c 

DATA STORAGE DECLARATIONS. 

VIRTUAL BUFFI8448l,FNAMESI3HI,VELNAMC6fJJ,RTNAMI6HI 
REAL*B FNAMR,FNAMES,VELNAM,DBLKI21,FMBUF,RTNAM 
REAL*4 DEVNAM,BUFOUTI2561,FNBUFI31 
INTEGER*2 FNUM,CHOFFI3HI,FPOSI3BI,NBLKOFI3BJ,IBLKOFI3HJ,INDEX(31J, 

%USEFLG,QNUM,VNUM,BLK,BSST,EGAINS13fJJ,GCNT, 
%SPOS,FST,BSST1,BLST,OLAP,RST,ICHANI3ZI, 
%GSAVEI3BI,EOFFLG,MASK,SVNC,BUFF,HSBLKWI9l,VELANI6RJJ,GAINSI384ZJ, 
%0UTFLG,INFLG,FLEN,VELNUM 

LOGICAL*1 STATUS,RC,ITLEN,IGCODE,IUNITS,NOCHAN, 
%TLEN,TPDRR,TPDRW,HSBLKI2561 

COMMON /SUBS/GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR,IERR, 
;; IE R FL G, S POS, RC 

COMMON /OECOM/BUFOUT,CHOFF,ICHAN,FPOS,NCHAN,NBLKOF,INDEX,GCNT, 
i;IHSTRT, IHSEC 

COMMON /BUFCOM/FBSST1,FBLST,F256,F256D,FBSST,F1,F4Z97, 
~BSSTl,BLST,OLAP,RST,BLK 

COMMON/BUFS/NUERR,NALOW,ITIC 
EQU ! 1/ALENCEI HSBLK'.il 1 I, HSBLK< 1 I I, I SROFF ,HSBLKI 21 I I, 

XISLSPAC,HSBLK!29Jl,ISTSPAC,HSBLK1331J,ISDEPT,HSBLKI3711, 
::1 RDEPT. HSBLKI 41 I I,< NOCHAN, HSBLK< 12 J I, I IGCODE, HSBLKI 19 J I, 
;~ { I U n I T S , H S B L K < 2.0' I I , I I S C 0 DE , H S B Li( I 4 5 l l , < I B F R E E , H S B l K < 4 7 l l , 
:; ( RSPAC, HSBLK< 25) I 

DATA DEVNAM/3RDK I 
DATA CHOFFt4352,44DB,4GBB,4736,4S64,4992, 

~5128,5248,5376,55fJ4,5632,57G0,5838,6S!6,6144,6272, 
:; 5 t! 0 0 , 6 5 2 8 , 6 6 5 G , 6 7 8 4 , 6 9 1 2 , 7 JH fJ , 7 1 6 8 , 7 2 96 • 7 4 2 4 • 7 5 5 2 , 
~7680,78S8,7935,8064/ 

DATA MASK,SVNC/"17,"177777/ 
DATA HSBLKI491/"377/,HSBLK<50l/"377/,HSBLK<255l/"377/, 

#HSBLKI256l/"377/ 

C CONSTANTS USED IN PROGRAM 
c 

J015 IPADNO=B 
0516 !EOTR=B 
JB!7 IEOTV=B 
~013 BSST=4896+256 
.iDlS I3IAS=l5 
0~29 FNUM=1 
0S2A IAD=BSST+l 



FORTRAN IV 

0'!3'22 
JJ!J23 
.0'.0'24 
Jfl2S 
.:rJJ26 
0!J27 

c 

V!J2.Z4 THU ZS-JAN-81 ZZ:41:42 

VNUM=1 
Fl=ADGET<BUFF<1JJ 
F4.0'97=ADGET<BUFF<4Z97ll 
FBSST=ADGET< BUFF< !AD l l 
F256D=ADGET<BUFF<257ll 
F256=APGAD<BUFF(257ll 

C SET UP THE RT-11 INPUT-OUTPUT PROCEDURES 
c 

PAGE ZZ2 

.'J;J28 IF(!CDFN<S.t:P.NE • .(J'JSTOP'INSUFFUCIENT CHANNEL FREE SPACE' 
C INITIALIZE THE AP 
c 

233g CALL APINIT 

0.0'31 
.0'.0'32 
.0'.0'33 
tiff3 4 
0.0'35 
.CJ:J3 6 
.0'.0'38 
D'.•iJ3 9 
_:-:J§J4.U 
0':041 
;';'0'42 
.0'.0'43 
.0.0' 4 4 
JJ".•:f C\ 0 

r:w 4 7 

'J:"J5:21 

~;'J5 1 
.:~:X52 

.:.JfJS 7 

.•'J.IJ58 
0!JS:J 

C READ IN THE NECESSARY INPUT DATA 
c 

c 

CALL ASSIGN< 1, 'DKl:MPDMXD.SPF' ,141 
CALL ASSIGN< 2, 'DK1 :MPD~IXD. LOG', 14 l 
READ<1,1.0'.0'1JNCHAN,NFILES,ITSIZ,IHSTRT,NROW,TPDRR,TPORW,VELNUM 

1.0'.el'l FOR~1AT<12!5l 
READ< 1,1.0'.0'1 lUSEFLG,OUTFLG, INFLG, IERFLG,NRECOV,NUERR,NALOW 
IF< INFLG.NE .ZJGOTO 1 
READ< 1, 1.0'.0'2 JFNBUF 

l.ffD'2 FORMAT< 3A4 J 
CALL IRAD5.0'<12,FNBUF,FNAMR> 
GOTO 2 
DO 3 IRD=l,NFILES 
READ< 1, lfJfJ2 JFNBUF 
CALL IRAD5fJ( 12, FNBUF, FMBUF l 
RTNAM<IRDJ=F~BUF 

3 CONTiiJUE 
"' CONTINUE 

READ< l , i kl'D' 1 l < INDEX< I J , I= 1 , N ROW l 
READ< 1,1f.J.0'1 J< ICHAN< I>, !=1 ,NCHANl 
READ< 1 , 11J.0' 1 J < F P OS< I >, I= 1 • NC HAN l 
READ< l , 1.0'.0 1 ) < '/E LMH I l , I= 1 , VEL N UM J 
DO 5 IPL=l,NR0\1 
READ( 1. llJ.0'2 JFNBUF 
C.\LL !RAD5.0'( 12,FtiBUF ,Ft-IBUF) 

o ;:: l At-1::: S ( ! P L > = F i•l B U F 
DO 6 ILP=l ,VI::LNUt·1 
~EADI1,1B.0'21FNBUF 
CALL IRADSB< l2,FNBUF,Ft4BUFJ 

5 VELNAMIILPI=FMBUF 

C REA~ IN HEADER INFO 
c 

JJ!J60 READ< 1, H'W1 i NOCHAN, I GCODE, I UN ITS, I SCODE 
.. :fr,::.:s! ftEAD I 1, lBB3 l SROFF, RSPAC, SLSPAC, STSPAC, SDEPT, RDEPT 
~J62 !!JJ3 FORMAT<6F1B.BI 
:!233 ~EADI1,1SD'4l<HSBLK<Ii,I=51,254l 
0~6J !J04 FORMAT<D!JAll 
9Z65 HSBLKWI71=NCHAN 
OZ6G HSBLKWIBI=IHSTRT*128-128 
'J'J67 HSBLIC\JI9l=ITSIZ*l28 



VfiJ2 . .0'4 THU fiJB-JAN-81 fiJfiJ:41:42 PAGE fiJfiJ3 

c 
C SET UP CONSTANTS AND REST OF RT-11 
C INPUT OUTPUT ROUTINES. 

g&68 ITSIZO=ITSIZ-IHSTRT+l 
.0.0'69 IBLKOF< 1 l=l 
ZB7B DO 18 J=2,NCHAN 
.'(JFIJ71 l!J IBLKOF<J l=IBLKOF<J-1 l+ITSIZO 
0072 LSTBLK=<ITSIZO*NCHANl 
J073 IFSIZ=LSTBLK+l 
BfiJ74 ITLEN=ITSIZ0/2 
0575 QNUM=NCHAN+2 
~D76 IFIIQSET<ONUMl.NE.fiJISTOP'QSET ERROR' 
0078 IFET=!FETCHIDEVNAMI 
JJ!J79 IF<IFET.NE.fiJ>TVPE 1BfiJ9,IFET 
3.0'31 1.0.0'9 FORt•1AT< I FETCH RETURN= I ,12} 
fJfiJ32 IF< IFET.NE • .0'1STOP ' BAD HANDLER FETCH' 

c 
c STACK FILE ORGANISATION 
c 

.0'.0'8 4 IF<USEFLG.NE.fiJlGOTO 2Z 

.CJliJG 6 DO 15 JJ=l,NRO\.f 
fJliJ87 Fi~BUF=FnM1ES< JJ I 
.0'.0'83 
ff09.GJ 
f:.!'7J92 

IFIIENTER<22+JJ,FMBUF,IFSIZI.LT.~ISTOP' ENTER ERROR' 
IF<IWRITWI256,BUFOUT,LSTBLK,22+~JI.LT.fiJISTOP'WRITE ERROR' 
CALL CLOSECI22+JJl 

9J.rJ9S 
J3IJ9 4 
J!J95 
.i~="33S 

c 
c 
c 

.0.1JSG 
:}:3'90 
:J!!J2 

c 
r: 
c. 

15 CONTINUE 
2D DO 3/iJ L=l,NROW 

Fi~BUF=FNM1ES< L I 
25 IFILOOKUPI22+L,FMBUFl.LT.fiJJSTOP'LOOKUP ERROR' 

START OF THE MAIN DEMULTIPLEX LOOP 

DO 999 I=l,NFILES 
!i::Rfl.=.cf 
i;: i·J Ui\1= I 

~ILE ORGANISATION ON A NORMAL RUN 

5101 00 35 M=l,NCHAN 
0!02 33 MBLKOF<Ml=IBLKOFCMI 
Ci l fJ 3 I N D E :« N R 0\.J + 1 l = I N DE X ( 1 l 
0!04 DO 48 MM=l,NROW 
0155 45 INDEM<MMI=INDEX<MM+ll 

.·J 103 
DlB2 

c 
C SEE !c ~ILES TO BE ZEROED 

c 
c 

IF<!PADNO.GT.D'IGOTO l.fffJ 
IF< INFLG.r!E.lJlGOTO 45 

!F THE DATA IS TO BE READ FROM TAPE THE ROUTINE TAPRED 
IS USED IN ORDER TO COMMUNICATE WITH THE PDP-8 AND ALSO 
T~ DO A FAST FIL~ TRANSFER BOTH 8->11 AND 11->8. 
i:IE ROUTINE ALSO RETURNS THE STATUS BYTE FOR ERROR 



V.fJ2 JJ 4 PAGE H!i'f4 

c ANALYSIS BY THE ROUTINE TAPRED. 
c 
c 
c OPEN FILE ON CH2.0' FOR SDSlkT 
c 

ZllfJ IN=IENTER<2B,FNAMR,-ll 
GJ' 1 1 1 IF ( IN. LT • .0' JWR ITE < 7, *lIN 
;; 1 1 J IFIIN.LT.ZlSTOP'FNAMR ENTER ERROR' ,.. 

" c CHECK ARNT AT EOT 
c 

<1'115 iF I IEOTR.GE . .0'JGOTO 43 
~117 VRITEI7,1.0'6.0'1TPDRR,IFNUM 
9118 1D6B FORMAT!' EOT ENCOUNTERED ON DRIVE:',I2,' FILE NO:',I4l 
JJ119 \.JRITE17,1.0'6ll 
.'3'12.6' 1£151 FORf..JATI' ENTER NEW READ DRIVE NO:' ,Sl 
&121 READ<5,1.0'62lTPDRR 
:>1! 22 1.0'62 FORMAT< I 1 l 
Zl23 IEOTR=B 
Sl24 IFITPDRR.GT.2JGOTO 265 

c 
C CHECK IF ZERO FILES TO BE ADDED AT END OF TAPE 
c 

.0'126 WR!TEI7,1.0'63l 
0'127 l.IJG3 FORi·t!l.TI' ENTER NO OF ZEO FILES TO B.E ADDED< !2):' ,$) 
Dl28 READ{5,1.0'64liPADNO 
9120 1054 FORMATII2l 
.013.0 IF<IPADNO.GT.ZlGOTO 1.0'.0' 

c 
C iJO A READ 

Jl32 43 CALL TAPREDI-l,TPDRR,STATUS,TLEN,FLEN,IFNUM~fEOTRl 
0133 IF<STATUS.LT.kTlWRITEI2,1.0'SkT>IFNUM 
.'Ji:35 l!J5JJ FORi·lATI' I.JARN!NG FILE flO ',!4,' RETRIES FAILED' l 

.J13:S 
J133 

DO A \.JIIJD 

IFIIEOTR.LT . .0'lGOTO 46 
CALL TAPREDID,TPDRR,STATUS, , ,IFNUM,IEOTR> 

START OF MAIM BUSINESS 

0139 46 CALL IWAITI2.0'l 
0140 CALL CLOSECI2Dl 
0141 45 BLK=Z 
0142 GCIJT=Z 
01~~ !HSEC=O 
0144 EOFFLG=Z 
~!(3 RC=.FALSE. 
3145 IFIIIJFLG.EO.SliOPEN=LOOKUP<2S,FNAMRl 
'Jl ·l :: IF ( IN F L G. N E • B l F f~B U F =RTNAf.H F NUt~ l 
:Zfl5£i IFI INFLG.NE.B'liOPEN=LOOI<UP<2fJ,H1BUFl 
H l 5 2 :i F i ! 0 p E N • L T • 0 } \·1 K I T E ( 7 I .. } I 0 p E N 
Jl54 !FIIOPEN.LT.SISTOP'FNAMR LOOI<UP ERROR' 



FORTRAN IV VfJ? !J4 PAGE fJfJS 

2'156 
.Jl 5 8 
.{J! 6.0' 
.3161 
.0'163 

.0' 16 4 

.0'165 
JJ166 
.0' 16 7 
0'163 
0'159 
.0'1 7.'1 
,(i 1 7 1 
.0172 
.J173 
;J 1 7 ·1 
.0'175 
'Jl7S 
fj 1 77 
.0'178 

,., .. r"'t"'V 
. ) !. 'J , ~' 

J!a: 
J :. :32 
'1 ......... 

... ~t;;)..;. 

C/1 :.:; ~ 

f1 185 
:n 3 3 
.8'188 

D' 1 9.()' 
IJ 1 ~ l 

JJ192 
;; 19:; 
.(f !94 

c 
c 
c 
c 

c 
c 
c 
c 

c 

c 

c 
.~ 

-v -~ 

c 
r:: 
c 

c 

READ IN FIRST DATA BLOCK FROM DISC AND EXTRACT THE 
HEADER INFORMATION 

IF<IREADA<2.0',BSST,BLK,F1l.LT • .G'lSTOP' READ ERROR' 
IF< I\·JAIT< 2f!l. L T . .0'lSTOP' \.JAIT ERROR' 
BLK=BLK+l7 
IF<IREADA<2.0',4.G'96,BLK,FBSSTl.LT.f!lSTOP 'READX ERROR' 
BLK=BLK+l6 

END OF INITIAL READS 
BEGINNING OF HEADER BLOCK SCANS 

DO S.CJ LL=1, 4 
Sf! HSBLK\.J( LL l= I SWAP< BUFF< LL l l .OR." 3.0'.0'6.0' 

HSBLKW<S>=IS\JAP<BUFF<Sll 
HSBLK< 11 l=TLEN 
!TIC=2'''HSBLK< 9 l 
IGJL=l 
DO 6.0' JL=1,3fJ 
EGAINS<JLl=BUFF<S+JLl.AND.MASK 
GSAVE<JLl=EGAINS<JLl+IBIAS 
GAINS< IGJL l=GSAVE<JL l 
IGJL=IGJL+128 

6.0' CONTINUE 
SPOS=35 

7.0' SPOS=SPOS+1 
IF <BUFF<SPOSl.EQ.fJlGO TO 7fJ 

3UFFER CONSTANTS SET UP AFTER END OF HEADER BLOCK IS LOCATED 

FST=SPOS 
i3SSTl =4.0'96+FST 
BLST=8192+FST 
OLAf1 =257-FST 
RST=4JJ96-0LAP 

CHEC K SYNC WORDS FOR ERRORS AND EXTRACT THE GAINS READY 
FOR USE AS INTEGERS. 

I~DIR =!D!RG{BUFF<SPOS+1ll 
Ii< !ERFLG.NE.D.OR.IERR.NE.B>CALL BUFSCN<BUFF,f!,IFNUMl 
!F( IERR .LT. ElG OTO 1JJ.0' 

PUT FIRST BUFFER INTO AP 

F=APGAD{BUFF<FSTll 
CALL APPUT~<S,4896,1l 

- FIND ADDRESS PAIRS FOR XM OPERATIONS 
c 

FBSSTl =i\PGAD< BUFF< BSSTl l l 
FCL ST=APGADCBUFF<BLSTll 
IF< IERFLG.riE.!J.OR. IERR.NE . .0'lGOTO 22f! 



FORTRAN IV V02.184 THU 188-JAN-81 BB:41:42 PAGE B/66 

c -----------------------------------------------------------
c MAIN DEMUX LOOP FOR A SINGLE FILE 
c 
c -----------------------------------------------------------------
c 
C COME HERE IF WANT TO DEMUX ALL THE FILE 
C ~ITHOUT FULL ERROR CHECKING SWITCHED ON? 

0196 210 CONTINUE 
8197 IHStC=IHSEC+l 
8198 CALL DMX 
8199 IF< IERR.NE .18>GOTO 215 
82S1 IF(IHSEC.GE.ITSIZ>GOTO 2318 
8283 IFCEOFFLG.EQ.Z)GO TO 238 
0205 CALL DBLBUF<BUFF> 
182186 GO TO 210 
0287 215 CALL IWAITC218> 
0208 WRITEC2,103B>IFNUM 
0209 1B3.0' FORMAT<' ERROR ON FILE: 1

, 14, 1 FOUND GOING INTO RECOVERY MODE') 
.0'21.0' IF<NRECOV.EQ . .0')GOTO 10B 
0212 DO 216 LLZ=l,NCHAN 
02f3 ~16 NBLKOFCLLZ>=IBLKOFCLLZ> 
18214 GOTO 46 

c 
C COME HERE IF WANT TO DEMUX ALL THE FILE 
C WITH FULL ERROR CHECKING SWITCHED ON 
c 

0215 220 CONTINUE 
0216 IHSEC=IHSEC+l 
18217 IF <IHSEC.GE.IHSTRT>CALL DEMUX 
0219 IF<IHSEC.GE.ITSIZ>GOTO 230 
18221 IFCEOFFLG.EQ.2)GOTO 230 
0223 CALL BUFSCNCBUFF,l,IFNUM> 
0224 IFCIERR.GE.0)GOTO 22.0' 

c- ------------------------------------------------------------
c END OF MAIN DEMUX LOOP 
c---------------------------------------------------------------
c 
C BLANK PARTS OF FILES WITH FATAL ERRORS 

18226 1018 CALL VCLR{0,1,12B> 
8227 CALL APWR 
18228 CALL APGET!BUFOUT,I8,12B,2> 
0229 WRITEC2,11820>IFNUM 
023/i1 1B2/i1 FORMAT<' FILE NUMBER ',14,' DELETED'> 
0231 CALL APWD 
0232 DO 125 JZ=l,NCHAN 
0233 NCH=INDEXCFPOS<JZ>> 
18234 IBLK=IBLKOFCJZ> 
0235 DO 125 LZ=l,ITSIZO 
.0'236 IF<IWRITW<256,BUFOUT,IBLK,22+NCH>~LT.B>STOP'C1EAR ERR' 
18238 IBLK=IBLK+l 
0239 125 CONTINUE 
1824fi1 IPADNO=IPADN0-1 

c 
C WRITE OUT HEADER BLOCK AND CLOSE DOWN COMPLTED GATHER FILE 



FIJR.TRAN IV VfJ2 . .0'4 THU fJ8-JAN-Bl fJ.0':41:42 PAGE fJfJ7 

c 
fJ241 23a FMBUF=FNAMESCINDEXClll 
0242 IFIIWRITE1128,HSBLK,fJ,22+INDEXCNROWll.LT . .0'lSTOP'HSBLK ERROR' 
8244 IFCUSEFLG.EQ.fJ.AND.FNUM.LT.NROWlGO TO 998 
fJ246 CALL CLOSECI22+1NDEXI1ll 
.0'247 IFCOUTFLG.NE.fJJGOTO 24fJ 

!;)'249 
.'J25B 
0'252 
.0"253 
.0'254 
2J256 
.0'257 
.0'258 
.0'259 
ff?.6ff 
fi26l 
0262 
026 '1 
.0'?.6i.i 
0"267 
.?1263 
.0'269 

fJ271 
0'27~ 
0273 
.)275 
.0276 
;._rzt::: 
.0'23.'J' 
,J:.:: >} 1 
fi282 

PJ 8 '~ 
.~:; 85 
/5 8.5 
fi.J n -, 

0 ! 

c) 8J 
_t;_j 89 
D 3.1 
.. , 9 ' 

c 
C WRITE OUT GATHER FILE TO TAPE 
c 

r" 
'-

c 
c 

c 

FLEN=LOOKUPI21,FMBUF> 
IFIFLEN.LT.fJ>STOP' FMBUF LOOKUP ERR' 
CALL TAPREDI!,TPDRW,STATUS,TLEN,FLEN,IFNUM,IEOTWl 
CALL CLOSECI21l 
IFCIEOTW.GE.fJ>GOTO 235 
WRITE<7,lfJ8fJlTPDRW,IFNUM 

HJ'3.0' FORt·1ATI' EOT ON DRIVE:',I2,' FILE NO:',I4l 
\.JRITE< 7 ,1.0'81 l 

1.0'81 FORMAT<' ENTER NO OF NEW WRITE DRIVE:',$) 
READI5,1.0'62lTPDRW 
I EOT\~=.0' 
IFITPDRW.GT.2lGOTO 265 

235 IF<STATUS.GE.ZlGOTO 24.0' 
WRITE<2,1B7ZliFNUM 

1B7H FORt~AT<' WRITE ON FILE ', 14,' FATAL ERROR' l 
GOTO 265 

24Z IFCFNUM.NE.VELANCVNUMllGOTO 25Z 

SET UP A VELOCITY ANALYSIS FILE 

DBLl({ 1 >=n1BUF 
DBLKIZI=VE(NAMIVNUM> 
IF\! RENAtH 2!, DBLK l .GT. 0' >STOP 'RENAME ERROR' 
Vi'lUt·I=\INUf·1+ 1 
IFCIENTERI22+!NDEJ((1l,FMBUF,IFSIZl.LT . .0'lSTOP'ENTER ERROR' 
IF< !WRITE<256,BUFOUT,LSTBLK,22+INDEXI1Jl.LT.BJSTOP'WRITE ERROR' 
C.1. L L C L 0 S E C < 2 2 + I N D E )(( 1 l J 

250 CONTINUE 
IFILOOKUPI22+INDEX<l>,FMBUF>.LT.HlSTOP'LOOKUP IND ERROR' 

C CLOSE DOWN FILE zg AND GO TO NEXT INPUT FILE IF REQU'O 
c 

998 r ~IUH=Fi'1Ut<1+ 1 
,:.;,~.LL CLOSEC(2.0'} 

99 COfJTINUE 
65 DO 2GB LL=1,NROW 
Sa CALL CLOSEC<22+LLJ 

\.JR ITE I 2, 1 JiJ'.O' 1 l { HJ DE X< I ) , ! = 1 , NRCW > 
STOP'NORMAL TERMINATION' 
r::rw 



FORTi<.AN IV V!J2 . .0'4 THU .0'8-JAN-81 .0'!J:43:.0'4 PAGE .0'.0'1 

SffSl SUBROUTINE DEMUX 
.0'.0'.0'2 INTEGER*Z CHOFFI3.0'l,GANAOO,FPOSC3Zl,NBLKOF(3.0'l, 

%EOFFLG,GAINSI384.0'l,ICHAN<3Zl,GSAVEC3Zl,INDEX<3ll,GCNT 
gzz3 REAL*4 BUFOUTI256l 
0.0'34 LOGICAL*l RC 
8085 COMMON /SUBS/GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR,IERR, 

%IERFLG,ISPOS,RC 
BB06 COMMON /DECOM/BUFOUT,CHOFF,ICHAN,FPOS,NCHAN,NBLKOF,INDEX,GCNT, 

:3007 
fff.fiJB 
ZffZ9 
ffff 11 
ffZ12 
f.fff 14 
,':ffll5 
'J.'iJ 16 
fl'.<Jl 7 

#IHSTRT,IHSEC 
c 
C DO DEMUX AND BRING IN THE SAVED GAINS 
c 

c 
c 
c 
c 
c 

NCH=Z 
~JIN=l28 
IFIEOFFLG.EQ.2JNIN=NSMPIN 
NOUT=Z''NIN 
IFCNOUT.EQ.B}RETURN 
CALL APWD 
CALL VFLTC4352,1,4352,1,384BJ 
CALL AP\·/R 
CALL APPUTCGA!NS,B,384B,ll 

FORM THE DEMUKED NOS INTO R*4 RERPRESENTAT!ON 
FOR EACH CHANNEL IN TURN AND THEN WRITE THEM 
OUT TO DISC. THIS IS DONE FOR 128 SAMPLES OF 
EACH CHANNEL WHICH ARE EXPECTED TO BE IN THE A~P. 

ffB13 C: .. LL AP~/D 
8819 DO lB NJ=1,NCHAN 
.'1132.'1 tiCHADD=CHOFF I !CHAN< NJ > > 
5921 GANADD=NCHADD-4352 
SS22 CALL VBINSCCNCHADD,l,NCHAOD,l,GANADD,l,NIN> 
Z.0'23 CALL APWR 
.0'.0'24 CALL IWAITI22+NCHl 
8~2~ MCH=!~DEXIFPOSINJ)) 

~J2E CALL APGETIBUFOUT,NCHADD,NIN,2l 
cy027 CALL APWD 
J323 IFIIWRITEINOUT,BUFOUT,NBLKOFINJl,22+NCHl.LT . .0'lSTOP'DEMUX ERROR' 
JJ33 NBLKOFINJ>=NBLKOFCNJ>+l 
.J fJ 3 .. 1 Z C 0 NT I flUE 
5032 CALL !WAITI22+NCHl 
H!J32 
fJ{J34 

R.ETURN 
END 



FORTR.A.N IV V/02./04 THU 108-JAN-81 !0/0:43:24 PAGE /6/01 

!OffZl SUBROUTINE DMX 
B0fl2 INTEGER*2 CHOFFI3JOI,FPOSI3BI,NBLKOFI3JOJ,GCNT,EOFFLG, 

%GAINSI384/0l,ICHANC3/0l,GSAVE<3Bl,INDEX<3ll 
HJOE3 REAL*4 BUFOUTI256l 
0!084 LOGICAL*! RC 
0SS5 COMMON /SUBS/ GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR,IERR, 

~iiERFLG, ISPOS,RC 
.0.0JJJ".- C014MON /DEC0t4/BUFOUT,CHOFF, ICHAN,FPOS,NCHAN,NBLKOF, INDEX,GCNT, 

iJJ:i.r:J7 
(J.r:Jff8 
.c'Jff!J9 
£1D'll 
.0'f.l' 12 
.?ffJ 1 1 

i3'Qi' 15 
/J015 
J)J."Jl 7 
.0'.0'18 
JJS19 
FJ[J2.J 
.JJ2~ 

JJIJ23 
S.rzi25 
.5!]27 

.~!.'!133 
cj[J2 ~ 

;;:!J32 
jJ.033 
~J.i]3-+ 

.:':.i.CJ3 6 
!1037 
!?.Jf1~3 
BB3:J 
').') ~.i) 

H04l 
GJH2 
r_' H ~t ~~ 
.0~~· 4 5 
i7W46 
G!J47 
:::.;; 4 3 
Cj.) 4 9 
D.fJ5d 
UD51 
.0IJ53 

#IHSTRT,IHSEC 
c 
C DO DEMUX AND BINARY SCALING 
c 

NCH=.0' 
N!N=128 
IFCEOFFLG.EQ.2)NIN=NSMPIN 
NOUT=2*NIN 
IF<NOUT.EQ.JOJRETURN 
CALL AP\-/D 
CALL APPUTCGSAVE,4Z96,3Z,l> 
CALL APWD 
CALL DMXAI4/096,4352,128,GCNT,IFDIR,NIN> 
CALL AP\·/R 
CALL APGSP<IERR,l5l 
!rl IERR.NE • .0'liERR=l 
iF< IERR.NE.!OlRETURN 
CALL APGSP<GCNT,3l 
CALL APGSPIIFDIR,41 
CALL APGET<GSAVE,4/096,3.0',ll 
C.U.LL n/A IT< 2£1 l 
IF I I HSEC. LT. I HSTRT JGOTO 3Z 
NCHADD=CHOFF< !CHAN( 1 l) 
CALL ;~PG:::T(BUFOUT< 1 l,NCHADD,NIN,2l 
IIN,l29 
IOUT=1 
1 F ( NCHAil. EO. 1 lGOTO 2fJ 

EXTRACT EACH WANTED CHANNEL AND PUT ON DISC 

DO lD' NJ=2, llCHAN 
ilJ 1 = r~J- 1 
NCHADD=CHOFFIICHAM<NJ}l 
CALL IWAITI22+NCHJ 
ULL A?G:::TIBUFOUT< IINJ,NCHADD,NIN,2l 
NCH=INDEXIFPOSINJlll 
IF<IWRITEINOUT,BUFOUT(IOUTl,NBLKOF<NJ1>,22+NCH>.LT.B>STOP'DMX' 
r J 3 L l< 0 F ( N J 1 l = N B LIC 0 F I N J 1 ) + 1 
IT=! IN 
IIN=IOUT 
lOUT= IT 

!JJ CONT HJUE 
23 NCH=INDEXIFPOSINCHANll 

C.~L L /l.?\10 
IFI!WRITEINOUT,BUFOUT<IOUTJ,NBLKOFINCHANI,22+NCHJ.LT.ZJSTOP'DMX' 
NBL !CO:= I NCHAN l =NBL KOF I NCHMJ l + 1 

FO?.TRAN IV Vf3.2.Z4 THU .0'8-JAN-81 Bff:43:24 PAGE B/02 

.!JDF_, Z!J RC =. N 01. RC 
005 CALL IWAITI22+NCHJ 
005 RETURN 
0r::5 END 



FORTRAN IV VZ2.Z4 THU ZB-JAN-81 ZZ:43:51 PAGE 1/JBl 

ZZSl SUBROUTINE DBLBUF<BUFFl 
ZBB2 VIRTUAL BUFFIB448l 
BBB3 !NTEGER*2 BUFF,EOFFLG,BSST,BLST,SPOS,BSSTl, 

%RST,SYNC,OLAP,BLK,GSAVEI3Zl,GAINS(384Bl 
8804 LOGICAL*l RC 
g005 COMMON /SUBS/GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR.IERR, 

%IERFLG,ISPOS,RC 
0886 COMMON /BUFCOM/FBSST1,FBLST,F256,F256D,FBSST,Fl,F4Z97, 

%BSST1,BLST,OLAP,RST,BLK 
083 7 DATA SYNC /"177777/ 

c 
c 
c 
r-... 

THIS ROUTINE CONTROLS THE DOUBLE BUFFERING SCHEME USED 
TO TAKE DATA FROM DISC AND PUT IT IN TO THE AP 
VHEN IT IS NEEDED. IT IS ALSO RESPONSLBLE FOR CHECKING 

c THE SYNC WORDS AND EXTRACTING THE GAINS AS INTEGERS FOR USE 
c 
c 
:-
~ SET UP THE START OF THE BUFFER 
c 

.\:J!JfJS S?OS=BSSTl 
fJ!JfJ9 IF( .NOT.RClSPOS=BLST 

c 
c 
c 

(iff! 1 1 

DO A BUFFER SCAN WHEN THE INPUT PROCEDURE HAS NOTIFIED EOF 

IFIEOFFLG.LE.ZlGOTO SZ 
Zff13 
.0'XJ 1 4 
.0'.0'15 
}!Jf! 1 s 
,f)'{f 1 8 
flfJl9 
.7f?i2 1 
FJF.f2 2 
.CW23 
;].0'24 
!J'325 

:JfJ26 
S.c:J2 ~:1 
.JfJ3;J 

:j':?J28 
'J::..; ~~ .. } 
S:Zi41 

f1/3 4 ~ 
fJZ 4 i' 
.0'B49 
0'.051 
.0853 
IJFJS5 
rm'S 3 

c 

!SMPIN=B 
!POS=SPOS 
DO 4.0' L=1 ,NSt-1PIN 
IFISUFF< IPOS>.NE.SYNClGO TO 6Z 
I POS= I POS+32 
!F<IPOS.GT.8448liPOS=IPOS-8192 
I S~1P IN= I SNP IN+ 1 

4Z CONTINUE 
GOTO 5.0' 

60 NSt~PIN=ISMPIN 
5ff CONTINUE 

C. PUT A BUFFER INTO THE A.P. AND START THE READ TO FILL 
C THE SECOND BUFFER FOR USE NEXT TIME 
c 

c 
c 

c 

IF<RClCALL APPUTAIB,4.0'96,l,FBSST1l 
IF( .NOT.RC )CALL APPUTA(ff,OLAP .1 ,FBLST> 
!c( .tJOT.RClCALL APPUTA<OLAP,RST,l,F25Gl 
IF<EOFFLG.GT.BlEOFrLG=2 
IFIEOFFLG.GT.fflRETURN 
IF<EOFFLG.LT.ZlEOFFLG=1 
IFIEOFFLG.GT.BlRETURN 
F IrJP=F256D 
IF< .NOT.R.ClFINP=FBSST 
IIN=IREADAI2B,4B96,BLK,FINPl 
3 L !( = B L I(+ 1 6 

CHECK !NFO RETURNED FROM INPUT ROUTINE 
FOR ERRORS AND AM EOF SITUATION 

Vr:J2 . .0'4 THU 88-JAN-81 .0'8:43:51 

IF<IIN.E0.4Z96lRETURN 
IF<IIN.GT.RSTJGOTO 148 
IF< I IN • E Q. - 1 l I IN =Z 
IF<IIN.LT.H>WRITE<7,*>IIN,BLK 
!F<IIN.LT . .0'lSTOP'READ ERROR' 
C:OFFLG=.:l 
~SMPIN=<OLAP+IINl/32 
!~E TIJ RN 

09SG l~Z ~OFFLG=-1 
.c:r.crs:; IIN=!HI-RST 
0ZGG NSNPIN=IIN/32 

RETURii 
Ei'ID 

PAGE ZB2 



FORTRAN IV VfJ2.!iJ4 THU fifS-JAN-81 !iJD:44:17 

SUBROUTINE BUFSCNISUFF,ICODE,FDONEJ 
VIRTUAL BUFFI8448l 

PAGE !iJ!61 

Jifif!Jl 
fif.C.W'::. 
:JfJZ2 INTEGER*2 BUFF,GAINSI384Bl,GSAVEI3Bl,SPOS,EO~FLG,DMXBUFI384fi1), 

%FRAMEI33l,FDONE 
,(J.f3 fJ ;\ 
.'iJiJ:JG 

fJfifJF: 

:Ji:JrJ7 
J.'J.fJ8 
!Ji!fJ9 
,:} JJ 1 :J 
•.i.J'lZ 
.0.'Jl3 
Z£114 
J21':J15 
£1!]'1 6 
::ff117 
§J.fl 1 :J 
0::119 
7ff12.1 
.I!JJ2 l 

c 

LOGICAL*l RC,IFI2l,IBVTI2l,IBVTEI2),FRAMEBI66J,IBSVNC 
EQUIVALENCE (!\./ORO, IFI 1 l l, I I\JORDF, IBVTC 1 J l, I I\JOROB, IBVTEI 1 J J, 

%1FRAr~E< 1 J,FRAMEBI 1 J l 
COMMON /SUBS/GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR,IERR, 

iUE RF LG, SPOS, RC 
COMMON/BUFS/NUERR,NALOW,ITIC 
DATA ISVNC/"177777/,IBIAS/15/ 
DATA IBSYNC/"377/ 
IF<ICODE.GT.fJlGOTO 
ICHCK=1 
ICD=Z 
LPINT=.0' 
FRAMEI33J=BUFFISPOS+ll 
SPOS=SPOS+2 
ITBIAS=BUFFISPOS+24l/2*2 
ITCONT=Z 
NERR=B 
GSAVEI3Bl=3B 
CALL FRAMFLIBUFF,FRAME,1,33,-1J 

- DATA CHECK AND GAIN PREPARATION SUBROUTINE 
c 

5Z22 IGSCHK=GSAVEIICHCKl 
~023 LDONE=B 
~024 5 LDONE=LDONE+l 
Z.0'25 IF<LPHlT.GT • .Q'JGOTO lfiffJ 
r:J.:r27 FRAt-lEI 1 J=FRAf.lEI 33 l 
0328 CALL F~AMFLIBUFF,FRAME,2,33,ICDJ 

,;:; :J 
•YJ " 

,c;,'} 
.0:)' 
rr rr 
,..,.; 

D:J 

c 
C SYNC TEST 

iF\EOFFLG.EQ.2JGOTO 9ff 
S IF<FRAME132l.NE.ISVNClGOTO 2fiJ 

~F<FRAMEBI66J.EO.IBSYNCJGOTO 38 
WR!TEI2,1D1BlFDONE 

l!Jl:J FORt1ATI' FILE NO:',I4,' ERROR DETECTED'> 
c: 
~ TEST FOR TYPE OF DATA CORRUPTION 
c 

c 

2B !FILDONE.E0.128lGOTO 9ff 
IFINERR.GT.NUERRlGOTO 160 
~·I E R R = N S R R + 1 
NFER=0 

23 DO 40 !=1,32 
!\·/ORDB=FRANr::< I l 
IF<IWORDB.NE.!SVNClGOTO SB 
J\./ORD8o=FRAi1E< I+l l 
IFIIBVTE<2l.NE.ISSVNClGOTO 5.0" 

C DETECT PATTERN OF BYTES LOST 



FORTRAN !V V!J2.KJ4 THU ZS-JAN-81 ZZ:44:17 

c 
0S5J IND=l 
Sm51 DO 6B L=I+l,33 
0852 FRAMECINDl=FRAMEILl 
0053 IND=IND+l 
0854 6B CONTINUE 
0~55 IF<ICD.EQ.3JGOTO 86 
~H57 65 CALL FRAMFL<BUFF,FRAME,IND,33,ICDl 
0858 ICD=flJ 
0059 IFIEOFFLG.EQ.ZlGOTO 9flJ 
ZB5l GOTO 6 
0062 53 IFCIBVTECll.NE.IBSVNClGOTO 7Z 
0854 IWORDF=FRAMEII+ll 
0863 IF!IWORDF.NE.ISVNCJGOTO 7flJ 

c 
C ODD BYTE LOSS OR GAIN DETECTED 
c 

3g57 IND=l 
8068 IF<I.EQ.32JGOTO 85 
3878 DO BB L=I+2,33 
0071 IWORDB=FRAMECLl 
9072 IFC2l=IBVTill 
;:rc;;;:; IFill=IBVTEIZl 
0074 FRAME<INDl=IWORD 
BZ75 !WORDF=IWORDB 
S076 IND=IND+l 
0077 BB CONTINUE 
!J07J <l5 IFIICD.E0.3JICD=l 
.}J:3:J IF{ ICD.EQ.l JGOTO 65 
~032 85 CALL FRAMFL<BUFF,FRAME,IND,33,2l 
ZliJ: ICD=3 
0~SJ IFIEOFFLG.E0.2lGOTO 9B 
DZ86 GOTO 6 
'u087 7J IF<IBVTE<ZLNE.IBSVNCJGOTO 4B 
'389 IWORDF=FRAME<I+l l 
·:292 Ir<ISVTill.NE.IBSVNClGOTO 4B 

COMMUN!CATION ERR POSSIBLE 

~3S2 WR!TE{2,1B2B>FDONE 
D0?3 1920 FORMAT<' POSSIBLE COMMUNICATION LOSS FILE NO:',I4l 

c 
C CHECK TO SEE IF OK TO SEARCH FURTHER 
" ·-
C AHEAD IN ATTENPTING TO REESTABLISH CONTACT 
c 

309J 49 CONTINUE 
~~93 I~!NFER.GT.NALOWlGOTO 16B 
~097 NFER=NFER+l 
;J'098 FRAt·IE< 1 l=FRAt~E< 33 l 
~3S? CALL FRAMFL!BUFF,FRAME,2,33,Bl 
·J~:J.·:> IF(EOFFLG.EQ.ZlGOTO 15.9' 
~102 GOTO 25 

c 

PAGE flJZ2 



FORTRAN IV VZ2.fJ4 

C TIME CHECK SECTION 
c 

THU ZB-JAN-81 .0'.0':44:17 

fJlZ3 3fJ ITN=FRAMEI26)/2*2 
Zl fl~ ITP=ITCONT.OR.ITBIAS 
~ 1~~ IF<ITN.EQ.ITP>GOTO 9.0' 
•1a, TCI~ED P GT NUERRl rnTn 15~ 

0 189 WRITEI2,1fJ3B>FDONE 
SllB 1838 FORMAT<' TIME CHECK ERROR ON FILE NO: ' ,I4} 
~ 1 11 NERR=NERR+1 
.0'112 INTVAL=I ITN-ITP l/ITIC 
f111 3 IF<INTVAL.LT • .t:Y>GOTO lfJS 
S 11 5 LPINT=INTVAL 
€11 16 lZZ !GPOS=LDONE 
.'1 11 7 DO 11.0' IVI=l,29 
.0' 11 0 Dt1XBUFIIGPOS>=1 
CJ119 GAINS< !GPOS >=GSAVEI IVI) 
J !2D IGPOS=IGPOS+128 
G121 !10 CONTINUE 
.J1 22 GAINS< IGPOS >=3/J 
0 123 LDONE=LDONE+l 
'1 124 LPINT=LPIN T-1 
0 125 ITCONT=ITCONT+ITIC 
J126 ICHCK=ICHCK+1 
£J12 7 IFIICHCI<.GT.3fJ)ICHCK=1 
0 !29 !FILDONE.GE.12B>GOTO 15fJ 
lil 31 IFILPINT.GT . .t:YlGOTO lfJ/J 
0 133 !BS CONTINUE 
.J134 9fJ ITCONT=ITCONT+ITIC 

c 
C GAINS CORRECTION 
c 

7 l 3 5 I G SAVE = I G C H 1<1 F RAM E < 1 ) , I 0 I R ) + I B I AS 
f/1. 36 IF<IGSAVE.EQ. IGSCHK>GOTO 12f1 
fl ! 3G WRITE12.lfl4f1>FDONE 
0 139 !3( D FORMAT<' GAIN CHECK ERROR FILE NO: ',I4> 
Gl 43 I~INERR.GT.NUERRlGOTO 16fJ 
5 1<!2 fiERR=NERR+1 
J14 3 GSAVEI!CHCK>=IGSAVE 

.'1 .!.! 12.0 IF< IFDIR.EQ. IDIR>GOTO 13.0' 
7 1 4E WRITE12,1B5fJlFDONE 
.J'.l. - ::J5:J FOR~1ATI' GAIN DIRECTION ERROR FILE N0:',!4} 
0:48 IF< NERR . GT . NUERR>GOTO 16fJ 
~: 5S ~ ERR=NERR+l 

J!5! IFD!R=!DIR 

r :W !(M,/1, !.. \/ORK 
c 

Jl52 !3.0 ICHC K=!CHCK+1 
..:' 1 53 IF< ICHCI<.GT.3!Jl!CHCK=1 
C13~ !G PO S=LDONE 
~ !SE DO 148 L=1,29 
lJ'. 5 I Dt-IX B U F I I G P OS >=I GA IrH F RAf-1E < L + 1 > , G SAVE< L > , IF D I R) 
.'Jl5 2 GA!riS< IGPOS >==GSAVEI L > 
g 15 ~ IGPOS=IGPOS+128 

;]'. ,=;:; 
B161 
f/1162 
.0'163 
f/116 11 
filS 
'115' 

1 5.'J 

16.0 
1.8'3.7 

VfJ2.fJ4 THU f/18-JAN-81 fJf/1:44:17 

CONTINUE 
GAINSIIGPOS):o3fJ 
IGSCHKaGSAVE<ICHCK> 
IFDIR=-IFDIR 
IF<LDONE.LT.l2R.A ND.EOFFLG.NE.2lGOTO 5 
i iS ~I P I i J = L D 0 N E 
CALL APPUTIDMXBUF,4352,384D , 1> 
RET URN 
\.JRIIE {2,1 .0'6D'l FDOtiE 
FOR t1ATI ' FILE NO ' ,!4, ' DECLARED DEAD ' ) 
IER R=- 1 
RETU RN 
EN D 

PAGE .0'f/1'3 

PAGE fJf/14 



FORHAN IV VfJ2.fJ4 THU ZS-JAN-81 ZZ:45:Z2 

SUBROUTINE FRAMFU BUFF, FRAME, IST, IFIN, ICODE > 
VIRTUAL BUFF<8448l 

PAGE Zf/Jl 

f:JfffiJl 
fJ!iJ!iJZ 
fi1flf!i13 INTEGER*2 FRAMEI331,SPOS,BUFEND,EOF,BUFF,GAINS<384f:JJ,GSAVE<3f:J), 

%EOFFLG,BSST1,BLST,OLAP,RST 
LOGICAL*l RC,IF<2l,IBYT(2l,IBYTE<2> ff!J!l14 

.Uffff5 
JJJff6 

EQUIVALENCE < 1\.JORD, IF< 1 l l, ( IWORDB, !BYTE( 1 I I, ( IWORDF, IBYT< 1 >I 
COMMON /SUBS/GAINS,GSAVE,NSMPIN,EOFFLG,IFDIR,IERR, 

:n ERFLG, SPOS, RC: 
COMMON/BUFCOM/FBSSTl,FBLST,F256,F256D,FBSST,Fl,F4f:J97, 

.0.'iJ03 

.r:.JrJ ur 
iiff 11 
0'!J12 
0013 

%BSST1,BLST,OLAP,RST,IBLK 
IF<ICODE.GE.ZlGOTO 1 
BUFEND=8449 
IBEG=4.0'97 
EOF=Z 
RETURN 

c 
C F!!..L FRAt-1E IN NORMAL CIRCUMSTANCES 
c 

ZB14 IFIEOFFLG.EQ.2lRETURN 
.rrcl6 IF< ICODE.GT .1 lGOTO 1.0' 
00!3 IFC!CODE.EO.llFRAME<ISTl=IWORDF 
i1!32U IF< ICODE.EQ.l liST=IST+l 
ff02Z DO 2fJ I=IST,IFIN 
0fJ23 FRAME<II=BUFFCSPOSl 
0024 SPOS=SPOS+l 
f1fJ25 IFCSPOS.LT.BUFENDlGOTO 2f:J 
fJ!lJ27 IF<EOF.GT.ZlGOTO SfJ 
0329 IBEG=4.0'96-IBEG+2 
gqJff FINP=F1 
fJIJ31 IF< IBEG.EQ.4JJ97lFINP=F4.0'97 
3033 IN=IREADA<2Z,4JJ96,IBLK,FINPl 
0'0'34 CALL I\.JA!T( 2fJl 
0.035 IBLK=IBLK+16 
0036 SPOS=IBEG 
8037 BUFEND=SPOS+IN 
0028 EOF=B 
C03? IF<IN.EQ.4B961GOTO 2B 
004! IO=IN+l 
:;,r::;:,z .Ii=<I~LLT.BlSTOP'READ ERR' 
0041 EOF=l 
~045 23 CONTINUE 
0045 RETURN 

c 
C BYTE LOST PATTERN FRAME FILL 
c 

0'Jt\7 l.J IF< ICODE.EQ.2}!\./0RDF=FRAt~E<33l 
~545 DO 48 I=IST,IFIN 
9553 IWORDB=BUFFISPOSl 
.~·.c·3! F'( 2 l=IB'IT< 1 l 
t;-:;5 2 IF { l ) =I B VTE ( 2 l 
•.:r::;~ '3 :: RAr'IE ( I l = I\JORD 
093~ IWORDF=IWORDB 
5~S~ SPOS=S?OS+l 
~!]~5 !F!SPOS.LT.BUFENDlGOTO 40 

;J05:3 
Jj:J".ji.f 
C:-'(:,'5 1 
.'J.CS 2 
0.004 
rJ!JLi S 

iHJ6 7 

.[!!]6 '] 

;Jfihi 
JJ/!72 
JJ/!7'2 
grns 

·}fJ 3 
;:ss "' 
')''' :)' 

4.9' 

c 
(' ::oF ·-r: 

:s_g 

VJJ2 • .J4 THU 0'8-JAN-81 BIJ:45:1J2 

IFCEOF.GT.nlGOTO 50 
I3EG=4.8'96-IBEG+2 
FINP=Fl 
IF< I BEG. E 0. 4JJ9 7 l FIN P = F 489 7 
IN=IREADA<2B,4D96,IBLK,FINPl 
CALL n/AIT<2Bl 
IBLI<=IBLK+16 
SPOS=IBEG 
SUr!:rJD=SPOS+IN 
EOF =iJ 
IF< IN.EQ.4.0'96lGOTO 4.0' 
IN=IN+l 
IFIIN.LT.J!lSTOP' READ ERRW' 
EOF=l 
CCNTINUE 
RETURN 

RETURN 

OFFLG=2 
ETURN 
~JD 

PAGE f:JIJ2 



FORTRAN IV V/32.!34 THU !38-JAN-81 !3!3:45:28 PAGE !3!31 

.JfH11 SUBROUTINE TAPRED<ICOM,IDRV,ISTAT,ITLEN,ILEN,IFNUM,IEOT> 
c 
C TA?E HANDLING SUBROUTINE 
C ICOM IS THE COMMAND SIGNAL 
S -1 !SA READ,/3 IS A WIND,1 IS AWRITE 
C IDRV IS THE DRIVE BEING USED 
C !STAT IS THE STATUS ON RETURN 
- ITLEN IS THE TIME LENGT~ OF A FILE READ 
C ILEN iS THE BLOCK LENGTH OF A FILE READ OR WRITTEN 
c 

.'JIJ;J!. INTEGER"'2 MASKI8l,ESTATI 
fJ!JS3 LOGICAL''! IST.'l.T,Cot~l4l,SDSCOM18l,IDRV,ITLEN,ECOMI4l, 

%IFLEN,ESTAT,ERRSI8l 
!JJJJ .; D:.. T A t·1A SKI " 1 , " 2 , "4 , " l.ff, "2.ff, "4.ff, " 1 !JJ.iJ, "2!3/.iJ I 
BS05 DATA SDSCOM/"!3,"1,"2,"3,"4,"5,"6,"7/ 
ZDDE DATA ERRS/"377,"377,"377,"377,"377,•377,"377,"377/ 
fHJff7 ITRV=.0' 
fJIJ!J8 IF I !COM l 1/.iJ, 3.0', 2.0' 

c 
: SECTION CONTROLLING A READ 
c 
c 
~ CH~CK THAT ONLV A FEW RETRIES ARE ATTEMPTED 

,:r:;r.c;g 12' ITRV=ITRV+l 

!J:J 1 !J 
J 'J!. ~ 

.:!.J12 

fHJ! ,; 
.::n=: 

.'J/J~ 7 

.'J.r;} 9 

.c:ifJ g 
f}.'J 

.-, 

0'] ~ 

:J!] 7 

(J):f ? 
TJCJ .r; 

c 
C SET UP COMMAND FOR READ 

COM( 1 l=SDSCOt~l 4l 
COI-1< 2l=IJ 
COIH 3 l= I DRV 
C Oi·H 4 l = - 1 
CALL SDSlSICOM,!STAT,ITLEN,ILEN> 
IFIISTAT.EQ.SlRETURN 

~ Z1~0R DETECTED ON ~EAD 

c 

ISTATI=ISTAT 
GOTO ~.!J 

- "' SHORT RECORD FOUND REREAD TAPE 
c 

50 !TMP=ISTATI.AND.MASKI6l 
IFI ITt,lP.NE.fJ)GOTO UJ' 
ITMP=ISTAT!.AND.MASKI2) 
IFCITMP.EO.!JlRETURN 

C IF CRC E~ROR FOUND REWIND TAPE AND RETRY 
c 

Wa!TE 2,2B1Bl!FNUM 
2JJ1.8' FOR~·1A I' FiLE ~10 ',14,' CRC ERROR REI,./INOING'l 

Ii0 ( IT 'f.GE.2lGOTO 13/.iJ 
~CO~( l=SDSCOM16l 
ECO!·f( l=1 



FORTRAN IV VfiJ2.24 

ECot-11 3 l=IDRV 
ECOM(4J=IJ 

THU HS-JAN-81 HH:45:28 

fHJ3! 
ff!J32 
iJfJ33 
£Tff34 

CALL SDSlfJIECOM,ESTAT, , J 
GOTO 10' 

c 
C WRITE SECTION 
c 

IJZ35 2fJ ITRV=ITRY+l 
ZS3G IFIITRY.GT.3JGOTO 132 
fJ03G COMtlJ=SDSCOMC71 
ZfJ3S !FLEN=< ILEN-!-3 J/4 
DS40 COMIZJ=IFLEN 
3£4! CONI3J=IDRV 
~g42 COMI4J=l 
ffD43 CALL SDSlfJICOM,ISTAT, , l 
fJIJ44 IFIISTAT.EQ.fJlRETURN 

c 
C W~ITE ERROR DETECTED 
c 

BB4E !STAT!=ISTAT 
~047 GOTO 4Z 
0048 7S ITMP=ISTATI.AND.MASK{6J 
0049 ITMPI=!STATI.AND.MASKI2J 
~85Z IFIITMP.EQ.fiJ.AND.ITMPI.EQ.SJRETURN 

c 
C REPORT AND RETRY 
c 

PAGE 2952 

0'.:.'5 
.')!15 
[1_:?}5 

DE~ 

!10''3 
r;.~:o 

.':~1 .0'5 

!].'J5 
.r!.J .':•' ~j 

2.J2rJ 
WRITEC2,2D2SJIFNUM 
FORt·lATI' FILE NO ', 14,' 
ECOlH 1 l=SDSCOf•H 6 l 

\oJR ITE CRC ERR RETRY PROPOSED' l 

;J;j.,j 

.rJ:36 

.r;~·c 

,.J.(f;j 

:?JYJG 
!;TJ!J;; 

tJfJ6 

(.1' ,.~7 
.'J.-J' 

c 

t: c Oi•l( 2 ) = 2 
E C C ~H 3 l = I DR V 
::co:u 4 > =r:J 
CALL SDSlSIECOM,ESTAT, 
~!BU:~ =8 
IFLENE=lG 
!PM=3276.Q' 

' ' I 

C.'l. L L T\.fR IT I ERRS , N B U F , E STAT, I P A 0 , IF LEN E , I 0 R V l 
GOTO ZJJ 

C WIND FOWARD ONE FILE 
c 

c 

30 COMI!l=SDSCOMCSI 
CQr.1C 2 l = 1 
COHI31=IDRV 
c 01·1< 4 ) =rJ 
CALL SDS!BICOM,ISTAT, , l 

C CLEAR IRRELEVANT BITS FROM ERROR BYTE 
c 

!STAT=ISTAT.AND .• NOT.MASK16l 
IF< ISTAT.E0.2lRETURr1 
ISTATI=ISTAT 
IFIISTAT.ME.BlGOTO 4Z 



FORTRAN IV VRJ2.f14 THU RJB-JAN-81 RJRJ: 45:28 

c 
c IF ISTAT=fl' REWIND AND SET UP FOR NEXT READ 
c 
c .o..s THIS \.JAS A DATA FILE NOT A SHORT RECORD 
c 

fHJ75 ECQr.H 1 J=SDSCOM< 6 l 
.'Jff7 6 ECOM<2l=l 
Y..:£7~: ECOIH 3 l= I DRV 
.GJfJ78 ECOt"l( 4 l=fJ 
0!J79 CALL SDS1ff(ECOM,ESTAT, 

' 
) 

ZfJSFJ 35 RETURN 
c 
C IN THIS SECTION THE MAIN TAPE ERRORS ARE 
C H/l,nDLED SUCH AS:= TAPE BUSY, TAPE OFFLINE 
C BOT,EOT 
c 
C TAPE BUSY SECTION •.• AFTER CLEARING BOT FLAG 

0'Z81 4.7 WRITE(2,1.0'lfJJISTATI,IFNUM 
0ff82 1.0'1.J FORNAT<' STATUS=' ,!3,' FILE NO=' ,I4l 
~083 ISTATI=ISTATI.AND .• NOT.MASK(4l 
0.J84 ITMP=ISTATI.AND.MASK(5l 
Zi35 IF<ITMP.EQ.RJlGOTO BRJ 
fJff87 99 ECOM<1l=SDSCOM<ll 
0888 ECOM<2l=Z 
~B39 ECOM<3J=IDRV 
0.0'90 EC0~<4l=S 
.0'091 CALL SDS1B<ECOM,ESTAT, , l 

58'92 
.tr3:J3 
.0'.0'94 
.CJ!J9 0 

c 
C HAVING EXAMINED STATUS IF TAPE STILL 
C BUSY, LOOP AGAIN,IF NOT TRY COMMAND AGAIN 
c 

c 

ESTATI=ESTAT 
!TMP=ESTATI.AND.MASK<Sl 
IF<ITMP.NE.BIGOTO 98 
IF ( I C0~1l 1.0', 3.0', 2JJ 

C TA"E OFFLINE 

iJZ97 80 ITM?=ISTATI.AND.MASK(l) 
z;;::JS IF<!THP.EQ .. tJJGOTO lf1.0' 
0!9~ TYPE 1EZ1,IDRV 
'ZfLi. 1.001 FORtl.O..T<' TAPE DRIVE ',I 1,' OFFLINE' l 

c 
: ~AVING ANNOUNCED ERROR SKIP UNTIL CORRECTED 

~: -~ :7: : _ .J E C C ~.1( 1 I = S D S C ot'l < 1 l 
/!~3 ECON{2l=B 
1!0~ ~COMI31=IDRV 

ECOi·H 4 l =!J .JlSiJ 
.fJlD':i 

r! 1 r"V-: 
.'J.:. ;:; ::.: 

CALL SDSlZ<ECOM,ESTAT, • 
ESTAT!=ESTAT 
ITHP=ESTATI.AND.MASK<II 
IF< IHlP.r!E . .Q'lGOTO 11.0' 

FORTRAN IV VJJ2.!34 THU RJB-JAN-81 Z/J:45:28 

IF{!COMl lB,3fJ,2Z 

C EOT 
c 

8112 lZ!J ITMP=ISTATI.AND.MASK<31 
011J IF<ITMP.EQ.8lGOTO 12RJ 
8115 TYPE lllJ!lJ2,IORV 
8116 1.0'82 FORMAT<' EOT ON DRIVE ',Il> 
8117 I~OT=-1 
~llG ~ETURN 
fJ!lS: l2.J !F<ICiJr·1) 5/J,35,7.0' 

0 
;( 
•; 

s 

.. , 

2 

~~RO~ E~IT RETURN 

l2iJ' ISTATI=-1 . 
f~C:TURN 
t:rJD 

PAGE llJ/63 

PAGE llJ/14 



. TITLE !SWAP 

.GLOBL ISWAP,IGCHK,IGAIN,IDIRG 
I S\.J/: ~ : [··10V @2 < RS}, R.0' 

S\·/AB R.0' 
RTS PC 

! GCf- f(: rlOV 02< RS i, R.0' 
TSTB fUJ 
BPL. 1"" _.., 

V)V #l,@4<R5l 
:3R ?<' 

~.., 

1"'• - ..,. HO'J t>'-1.,@4(R5l 
2"· .,. 3IC #l7776fi1, Rfil 

RTS PC 

IrlH.G: TST 02<RSl 
BPL 3$ 
i·10V # 1 , R.Cf 
ns PC ..,;;:". 

v.; • i'10V #-1. ,R.0' 
RTS PC 

iGAIN: MOV @2!R5l,R.0' 
ASR R.0' 
BCC 4$ 
ADD @6{ RS l ,IH< RS > 

'~ . .. ..,. TST R.0' 
3?L 53 
.0;i:'i) ;-,; 1 , Rfif 

... ·-·. .!\SL. fl./J 
:~JS PC 

. ,:'10 



Sort :- MPSORT 

Input file ••.••• DK1:MPSORT.DAT 

Log file •...••.. Dk1:MPSORT.LOG 

Input Parameters 

READ(1,1000)NFILES,NCHANI,NCHANO,NROW,TPDRR,TPDRW 

1000 FORMAT(12I5) 

NFILES .•. Number of input files for sorting 

NCHANI ••• Number of channels in input files 

NCHANO ••• Number of channels to be output 

NROW ••..• Number of rows in sort matrix 

TPDRR •.•• Input tape drive 

TPDRW ••.. Qutput tape drive 

Page 167 

READ(1,1000)ISECIN,ISBLKO,IFBLKO,USEFLG,INFLG,OUTFLG,IGCODE 

data 

ISECIN •.. Number of half second(128 sample) blocks in input 

ISBLKQ ••. First half second block to output 

IFBLKO ••• Last half second block to output 

USEFLG •.. New run, restart flag 

0 - New run 

- restart of previous run using old temporary sort 

files 



INFLG •.•• Input flag 

0 - Input from tape 

- input from disc 

OUTFLG ... Output flag 

0 - output to tape 

- output to disc 

Page 168 

IGCODE ••. Gather code for type of gather formed by this sort 

run 

READ(1,1000)(INDEX(I),I=1,NROW) 

INDEX •.•• Sort file sequence 

If USEFLG = 0 input sequence 1 ••• NROW 

If USEFLG = Input sequence from last line of 

previous log file 

READ(1,1000)(ICHANO(I),I:1,NCHANO) 

ICHANO ... Input channels which are to correspond to the output 

channels 1 to NCHANO in order. 

READ(1,1000)(IPOS(I),I=1,NCHANO) 

IPOS •...• Sort position of each of the output files 

Can take values from 1 to NROW 

READ(1,1001)FBUF 

1001 FORMAT(3A4) 



Page 169 

FBUF ••••• If INFLG = 0 Temporary file for tape input 

INFLG = Input files from 1 to NFILES 

READ(1,1001)FBUF 

FBUF ••.•• If OUTFLG = 0 Not present 

OUTFLG = Output files from 1 to NFILES 

READ(1,1001)(TPNAM(I),I=1,NROW) 

TPNAM •••• Temporary files for sort 



FORTRAN IV VflJ2.Z4 THU ZS-JAN-81 flJflJ:4flJ:39 

c 
C M J POULTER OCT SZ 
C MPSORT.FOR •.. THIS IS A 
C GENERAL PURPOSE SORTING PROGRAM FOR 
C SEISMIC DATA FILES 
c 

3ZZ2 VIRTUAL RDNAM<2flJZl,WRTNAM<2ZZl,TPNAM<24> 
!3IJ!32 REAL *8 FSPECR, FSPECW, FMBUF, RDNAM,WRTNAM, TPNAM 
8003 REAL*4 DEV,FNBUF<31,SEIS<2Z481 
!32B4 INTEGER*2 IHBLKI256l,IBLK0<24l,IBLKI<24l,ICHAN0<241, 

~IPOSI24l,USEFLG,INFLG,OUTFLG,INDEX<25l,FLEN 
!3Z!J5 LOGICAL*! ISTAT,TLEN,TPDRR,TPDRW,LBLK<512J,IGCODE 
:'JifiJS EQUIVALENCE <LBLK<ll,IHBLK(lll 
!3Zfl7 DATA DEV/3RRK I 

fffff18 
;J!Jl :?f 
0'.0' 1 2 
fJ.0'13 
:3:] 1 4 
.0:3' 1 5 
f].(J 15 
.<if!J 1 i 

c 
C SET UP I /0 
c 

c 

IF<ICDFN<5flJl.NE.flJISTOP' CHANNEL SET ERROR' 
IF<IFETCH<DEV>.NE.flJlSTOP'FETCH ERROR' 
CALL ASSIGN< 1, 'DK2:MPSORT.DAT' ,141 
CALL ASSIGN<2, 'DK2:MPSORT.LOG' ,14> 
IRD=2flJ 
I1dRT=21 
IEOTR=flJ 
IEOT\-/=flJ 

C READ INPUT DATA 
c 

051 J R.EAD < 1. 1.0'.0'.0' lNF IL ES, NCHAfJI, NCHANO, NROW, TPDRR, T?ORW 
!"1'1 1 9 l:J.'JfJ F 0Rt·1A T ( 12 I 5 I 

PAGE flJZl 

::! fJ 2 .'J READ < 1 , 1 ff fiJ fJ l I SEC I N , I S B L I( 0 , I F a L K 0 , U S E F L G , I NFL G , 0 U Tf L G , I GC 0 0 E 
JHJ 2 1 READ < 1 , 1 !3 f1 flf > < I N DE X ( I l , I = 1 , N ROW l 
ff:?i22. READ< 1, lfi.Jfi.J!J)( ICHMlO< I>, I=l,NCH.~NOl 
r;;J22 READ< 1,lfff!JJI< IPOS< I>, I=l ,tlCHANOI 

i'J:J24 
-~~- ,'J"" J 

.':::]2 7 
:.j'f!2 3 
;;gz s 
.0/J3.'J 
fJJ?J3 1 
rt("r""'., 
.::::;;J.].;;(.. 

[}':13 3 
_t~i.'J3 -1. 
.C.J35 
003 7 
0::133 
/J.'J39 
::~;] 4.3' 
S.'J 4 l 

c 

READ FIL:: S?ECS 

~:1.01 

!.0" 

2.'J 
1 5 

35 

IF< I NFLG. t-IE .. a IGOTO lkT 
READ ( 1. liJ!Jl lFtlBUF 
FORt·1AT< 3A4 l 
CALL IRAD5!J{ 12,FNBUF ,FSPECrU 
GOTO 15 
DO 2!J J=l,NFILES 
READ< 1, 1DJJ1 lFilBUF 
CALL I RAD5.0'( 12, FNBUF, FI1BUF l 
RDt!At'1< J l=Ft-JSUF 
CONTINUE 
IF<OUTFLG.E0 • .0'lGOTO 3.0' 
DO 35 J=l,NFILES 
R.EAD< 1,1.0'.0'1 IFNBUF 
CALL IRAD5.0<12,FriBUF,Ft-1BUFl 
\IR.TNAH( J l=FHBUF 
CONTINUE 



VZ2.iJ~ THU .0'8-JAN-81 fJfJ:4fJ:39 

C READ ARRAY SORT FILE SPECS 
c 

8342 38 DO 48 J=l,NROW 
8843 READI1,188llFNBUF 
8844 CALL !RAD5.G'I 12,FNBUF ,FMBUF l 
8545 TPNAMIJl=FMBUF 
0045 4B CONTI~UE 

f'1J!J47 
0'843 
f!ff 4 ·; 
JJJJS.v 
.C.J851 
ffff52 
.:;qs 3 
fJ.'J54 

c 
C SET UP DATA CONSTANTS 
c 

c 

ISV=.0' 
NBLKR=INCHANI*ISEC!Nl+9 
NBLKW=IFBLKO-ISBLKO+l 
IFSIZO=< NBLK\.l*NCHANOl+l 
LSTBLI<=IFSIZ0-1 
NSAMPW=NBLKW*256 
NBEG=I ISBLK0-1 l*128 
NFIN=CIFBLKO*l28l 

C SET UP BLOCK POSITIONS IN FILES 
c 

ng55 DO 45 J=l,NCHANO 
CJ.tJ5:5 45 IBLKIIJl=IICHANOIJl-ll*ISECIN+ISBLKO 
73 57 I B L ICO I 1 l = 1 
735J DO SS J=2,NCHANO 
i5Ho9 SZ IBLKO(J)=IBLKOIJ-ll+NBLKW 

c 
C SET UP ARRAY SORT FILES 
c 

IFIUSEFLG.NE.SlGOTO 68 
DO 65 L=l,NROW 
Ft~BUF=TPNAt·H L l 

PAGE Zili2. 

;)'.0 65 
fifJ62 
0063 
!JE54 
[JFJ60 
.'J!'JG 7 
_!J:J59 
'J!J7!] 

ITCH=22+L 
IFIIENTER<ITCl1,Fr1BUF,IFS!ZOLLT.fJlSTOP'!:.NTER ERR' 
IFIIWR!TWI25G,IHBLK,LSTBLK,!TCH).LT.ZlSTOP'WRITE ERR' 
CALL CLOSEC< iTCH l 

• 1~~:3 7 .~ 
3.073 
];]7:.) 

::r.0?6 
c 

65 CONTINUE 
59 DO ?S L=l,NROW 

ITCH=22+L 
Fr·lBUF=TPtJAt·ll L J 
!FILOOKUPIITCH,FMBUFl.LT.SlSTOP'LOOKUP ERR' 

7:'3 CotlTiNUE 

C START OF MAIN WORK LOOP 

3~77 DO 999 !F!L=l,NFILES 
DD78 IFNUM=IFIL 
ff'J79 !NOEl{( NROW+l >=INDEX< 1} 
0S8B DO !.0'Z J=l,NROW 
!J.'J'8" lD.J IND:O:«J >=HlOE)((J+l l 
'";782 iF\ IrJFL.G.t1i:.DlGOTO lkl'5 

c 
C TAPE READ CO~TROL 
c 



\/~2 (14 THU fi'R- ,"JAN-81 .0'.0':4.0':39 

IF <IENT ER<I RD,F SPECR,NBLKRl.LT • .0'lSTOP'ENTER ERR' 
ITRV=1 

c 
C EOT CONTROL 
c 

0.0'87 120 IFIITRV.GT.3lGOtO 125 
£~a: IFIIEOTR.GE.SlGOTO 11.0' 
Ja9! 125 WRITEI7,1.0'1DlTPDRR,IFNUM 
f!Jf1 92 l.a1.0' FORt•IATI' EOT ON READ DRIVE:',I2,' FILE NO:',!Sl 
g~g: WRITE<7,1.0'2ffl 
DZ 9 4 l[J2r.J FOfH1AT< I ENTER NE\o/ READ TAPE DRIVE:'' s} 

DS95 aEADI5,1B3BlTPDRR 
0096 1033 FORMATII1 l 
r.J9 97 IEOTR=B 
0J98 IFITPDRR.GT.2lSTOP'EOTR TERMINATE' 

c 
C TAPE READ 
c 

.Jl;JFJ 1!0' CALL TAPREDI-l,TPDRR,ISTAT,TLEN,FLEN,IFNUM,IcOTR> 
:1L11 IF! ISTAT.LT . .I3'l\.JRITEI2, 1.1J'7.0'>IFNUM 
ff l lJ 3 W7fJ FOR~1ATI' \/ARNING RETRY FAILED FOR FILE:' ,IS> 
.!J lif ,t IFIIEOTR.LT.fJ'lGOTO 115 
Jl36 CALL TAPREDifl',TPDRR,ISTAT, , ,IFNUM,IEOTR> 

c 
C CHECK lF READ A BAD FILE 
c 

'J!.iJ7 115 CALL 1\./AITIIRDl 
q~gs IERR=B 
~!!J9 ITR~=ITRV+1 

•J:l.•J IFIIREADWil,IERR,.O',IRDl.LT.fJ'lSTOP'ERR READ ERR' 
•J:l 2 IFIIERR.EQ."177777lGOTO 12.13' 
0!14 CALL CLOSECIIRDl 

c 
C OP~N UP INPUT FILE FOR USE 

J ll5 105 FMBUF=FSPECR 
.Jil 3 :r-<:NFLG.NE.fl'l Ft~BUF=RDNAf.11IFNUMl 
~! 13 !FILOOI< UP<IRD,FMBUFl.LT.DlSTOP'LOOKUP ERR' 

7!2!] 
.J! 2! 
J1?'"'! 

0' l 2 ~ 

'J:25 
'J:. 2 6 
)12 7 

D'! 9 
CJI 

., 
"' ~~· ~ 

c 
C :EADER BLOCK t•tArfiPULAT!ON 

c 

ITCH=22+INDCKINROWl 
IF< IR.~AD\-11256, IHBL !(,il', IRDl.LT • .cJlSTOP 'READ ERR' 
L B L l( ( 1 9 l = I G C 0 DE 
! HBL l(( 7 l =NCHANO 
IHBL I< I3l=IHBLK<Bl+NBEG 
IHBLKI9l=IHBLKI9l+NFI~ 

!FI!WaiTWI256,IHBLI<,.0',ITCHl.LT.SlSTOP'WRITE ERR' 

C MAI~ TRANSFER LOO? 

DO 200 ICH=l,NCHANO 
IT C :·1 = 2 2 + I N D S :( I I P 0 S I I C H } l 
ITi3Li<I=IBLK! < ICH l 

PAGE 16.13'3 



· VfJ2.1J4 THU IJB-JAN-81 81J:4Z:39 PAGE IJIJ4 

~132 ITBLKO=IBLKO<ICHl 
0133 IF(IREADWCNSANPW,SEIS,ITBLKI,IRDl.LT.BJSTOP'READ ERR' 
.·n 35 IF ( IWR IT\o/{ NSA~IPW, SE IS, ITBLKO, ITCH l. L T .8lSTOP 'WRITE ERR' 
3!37 2BD CONTINUE 
3!38 IFIUSEFLG.EQ.8.AND.IFNUM.LT.NRO\o/lGOTO 21/J 
i:Jl4D' ITCH=INDEXI 1 l+22 
Ci: 4 1 F 1·1 B U F = T P NAt·H I N DE)(( 1 l l 
0!42 IFIOUTFLG.NE.IJIGOTO 22/J 

,(.1! 45 
;J l 4 6 
.Gl48 
.0'149 
:'J 1 5fJ 

c 
C TAPE OUTPUT 
c 

c 

CALL CLOSECIITCHl 
IFLEN=LOOKUPC!WRT,FMBUFI 
lei IFLEN.LT.81STOP'FMBUF LOOKUP ERR' 
CALL TAP RED< 1, TPDRW, !STAT, TLEN, IFLEN, IFNUM, IEOnt> 
CALL CLOSEC<IWRTl 
IF<LOOKUPIITCH,FMBUFI.LT.B>STOP'LOOKUP ERR' 

C EOT DETECTJON 
c 

0152 IFCIEOTW.GE.SlGOTO 238 
8154 WRITEC7,184fJlTPDRW,IFNUM 
!Jl55 1.0'4.0' FOR1~AT<' EOT ON WRITE DRIVE:',I2,' FILE NO:',ISJ 
0156 WRITE17,1B5Dl 
.Jl57 lD'Sfl' FORt·IAT<' ENTER NE\.J \.JR!TE DRIVE NO:' ,Sl 
Sl58 READC5,183fJJTPDRW 
0159 IEOTW=fJ 
3~60 IFCTPDRW.GT.2lSTOP'EOTW TERMINATION' 
ff!62 23B IFC !STAT.GE.8lGOTO 218 
H164 WRITECZ,lB6Bl!FNUM 
.Cl'l65 lD6.0' FORHATC' FATAL \.JRITE ERROR ON FILE:',!Sl 
0!65 STOP'WR!TE ERROR TERMINATION' 

: STORAGE ON DISC 

ISV=ISV+l 
~SPECW=WRTMAMCISVl 
! F (I ENTER< 1',./RT, FSPECW, I FS!ZO l. L T . .0'JSTOP 'ENTER ERROR' 
IFIIREADWIZ56,IHBLK,B,ITCHl.LT.BlSTOP'TR READ ERR' 
lFI!WRITWI256,IHBLK,B,IWRT}.LT.fJlSTOP'TR WRIT ERR' 
DO 24D J=l,NCHANO 

)'. 6<1 
.. · ~' 7 ! 
-Jl?'J 
.•)1 7:; 
~·j l i' 6 
0177 
2 ~. 7 -~! 
318! 
.0182 

24.0' 

iT3Lf<O=IBLI(O:J l 
IFIIREADWINSAMPW,SEIS,ITBLKO,~TCHI.LT.BlSTOP'TR READ ERR' 
IFIIWR!TWCNSAMPW,SEIS,ITBLKO,IWRTI.LT.BISTOP'TR WRIT ERR' 
CONTINUE 
CALL CLOSECI!WRTI 

c 
~ END OF MAIN LOOP 
c 

.8'182 2L'J' C;'l.LL CLOSECI IRDl 
;1~~ 993 CONTINUE 

C CLOSE DOWN CODE 

V.'JZ . .!J4 THU BB-JAN-81 IJS:4S:39 PAGE SSS 

• ~ no ZSB J=l,NROW 
0 8 25D CALL CLOSECIZ2+Jl 
iJ 8 \JRiiE( 2, l!JFJ!J)( INDEX< I) I !=1 ,NRO'..Jl 
C S STOP' NORMAL TERMINATION' 

c E r:o 



Pre-Stack Processing :- MPPRST 

Input File .•••• DK2:MPPRST.DAT 

Log File ••••••• DK2:MPPRST.LOG 

Input Parameters 

READ(1,1000)NFILES,NCHAN,NSAMP,NSTART,INFLG,OUTFLG 

1000 FORMAT(12I5) 

NFILES ••• Number of files to process 

NCHAN •••• Number of channels per file 

NSAMP •••• Number of samples per channel 

NSTART •.• Starting sample number, from time 0 

INFLG •••• Input flag 

0 - Tape input 

- Disc input 

OUTFLG •.• Output flag 

0 - Tape output 

- disc output 

READ(1,1000)TPDRR,TPDRW 

TPDRR •••• Input tape drive 

TPDRW •••• Output tape ~rive 

READ(1,1100)FSAMP 

1100 FORMAT(F10.0) 

Page 170 



FSAMP •••• Sampling frequency, samples per millisecond 

READ(1,1200)FBUF 

1200 FORMAT(3A4) 

FBUF ..••. If INFLG = O, Temporary file for tape read 

INFLG = 1, Input files, from 1 to NFILES 

READ(1,1200)FBUF 

FBUF •••• If OUTFLG = 0, Temporary file for tape write 

OUTFLG = 1, Output files, from 1 to NFILES 

READ(1,1000)NPROC 

Page 171 

NPROC •••• Number of processes to be applied. 

process applied twice. 

Including any 

READ(1,1000)(UTLFLG(I),I=1,NUTIL) 

UTLFLG ••• On/Off flag for each process 

- Process is to be applied 

0 - process not to be applied 

READ(1,1000)(IORD(I),I=1,NPROC) 

IORD •.•.• Order in which processes to be applied 

Input code number for process in position in which it 

is wished to apply it 



Page 172 

For each of the processes which is to be applied, the 

specific input is input next, in the UTLFLG bit set order. 

1 ••.• Trace Edit 

READ(1,1000)NFILED 

READ(1,1000)(IFILED(I),ICHAND(I),I=1,NFILED) 

NFILED ••• Number of channels to be edited out 

IFILED ••• edit channel file number 

ICHAND ••• edit channel, channel number in above file 

2 •••• Polarity Reversal 

READ(1,1000)NCHANP 

READ(1,1000)(ICHANP(I),I=1,NCHANP) 

NCHANP •.• Number of channels in each gather with incorrect 

polarity 

ICHANP •.• Number of channel with incorrect polarity 

3 •••• Gain Ramps 

e0.2t Ramp 

READ(1,1000)IAPLX 

IAPLX •••• Application flag 

0 - apply ramp 

- remove ramp 



te0.2t Ramp 

READ(1,1000)IAPLTX 

IAPLTX •.. Application flag 

0 - apply ramp 

- remove ramp 

TV**2 Ramp 

READ(1,1000)IAPLTV,NLYR 

READ(1,1100)(TOLYR(I),VLYR(I),I=1,NLYR) 

IAPLTV ••• Application flag 

0 - apply ramp 

- remove ramp 

NLYR •••.• Number of time/velocity pairs 

TOLYR •••. Zero offset two-way travel time 

VLYR ••••. RMS velocity at above time 

4 ••.• Mute 

READ(1,1000)NTAP 

READ(1,1000)(MUTE(I),I=1,NCHAN) 

READ(1,1000)(MUTET(I),I=1,NCHAN) 

NTAP ••.•. Number of points in cosine taper 

Page 173 

MUTE •...• Sample value at which to end mute, for early mute. 

MUTET ••.. Sample value to mute from, for late mute 

5 •••. Spiking Deconvolution 



READ(1,1000)NFILT,ISPIKE,INORM 

READ(1,1100)WHITE 

NFILT .•.• Number of samples in the filter 

ISPIKE ••• Spike position 

INORM •••• Normalisation flag 

0 - no normalisation 

- Filter unit energy 

2 - constant input/output energy 

WHITE ••.. Fractional pre-whitening 

6 •..• Bandpass Filtering 

READ(1,1100)FL,FU 

READ(1,1100)FTPR1,FTPR2 

Page 174 

FL ••••••• Starting frequency for lower cutoff position Hz 

FU ••••.•• Starting frequency for upper cutoff position Hz 

FTPR1 •••• Length of lower cosine taper Hz 

FTPR2 •.•. Length of upper cosine taper Hz 

7 •••• Bandreject filtering 

READ(1 7 1100)FLR,FUR 

FLR ••.••. Lower frequency cutoff position Hz 

FUR ••.•.. Upper frequency cutoff position Hz 

8 ••.. Prediction Error Deconvolution 



READ(1,1000)NPFILT,NLAG,IPNORM 

READ(1,1100)PRWHIT 

NPFILT ••• Filter Length in samples 

NLAG •..•• Prediction distance, samples 

IPNORM ••• Normalisation flag 

0 - no normalisation 

- Filter normalised to unit energy 

2 - Constant input/output energy 

PRWHIT ••• Fractional prewhitening 

9 •... Normalisation 

READ(1,1000)NRMFLG 

NRMFLG ••• Normalisation flag 

0 - normalise to unit energy 

normalise to unit maximum amplitude 

Page 175 



Vfi2 .!64 THU 88-JAN-81 88:23:54 

C P~E STACK UTILITY PROGRAM 
C THIS INVOLVES THE FOLLOWING 
C ;:EDIT 
C 2:POLARITY REVERSAL 
C 3:EXP<B.2Tl AMP RECOVERY 
C 4:T*EXP<.0'.2Tl AMP RECOVERY 
C 5:TV**2 AMP RECOVERY 
c 5:MUTING 
C 7~DECONVOLUTION 
- 3:BANDPASS FILTERING 
C 9:BANDREJECT FILTERING 
c ~Z:PREOICTION ERROR FILTERING 
r ll:NORMALISATION TO UNIT ENERGY OR AMPLITUDE 

30BI REAL*8 FSPECR,FSPECW,FNAMR,FNAMO 

PAG.E 16161 

if''!XJ2 VIRTUAL F NAMR< 1.0'.0' l, F NAMO< US l, EXPT< 2.0"48 >, TEXPT( 2.0"48 >, 
XTVSQ(2848l,TAPER<Sl2l,BPASS<2.0'49>,BRJCT(2.0'49> 

~BB~ REAL*4 FBUFC3l,TBLYR<2.0"l,VLYR!2.0"J,CONST<3>,SEISM<2.0"48) 
'MJJ' INTEGER*Z lORD< 11 l,UTLFLG< 11 l,IFILED< 1.0'BJ,ICHAND< lBBJ, 

%ICHANP<24l,MUTE<24l,MUTET<24l,IHBLKC256J,OUTFLG 
B05~ LOGICAL*! TPDRR,TPDRW,ISTAT,ITLEN 
rT.0.E DATA DEV/3RRK I 

SE7 UP VIRTUAL ADDRESSES 

Z£.~7 IEOTR=B 
~U2~ IEOTW=S 
·J.~fJ? ATAP=APGAD< TAPER< 1 l l 
00!: ATBP=APGAD<BPASSClll 
~0! · ATVSQ=APGAD<TVSQClll 
E~l2 ATEXPT=APGAD<TEXPT(l)J 
G.J l, AEXPT=APGAD< EXPT< 1 J l 
'IJl<l ATBR=APGAD<BRJCT<lll 

SET UP I/0 CHANNELS AND READ IN CONTROL DATA 

zz:~ IF<ICDFN<2Sl.NE . .0"lSTOP'CHANNEL OVERFLOW' 
.!J!Jl~ CALL ASSIGN<l,'DK2:MPPRST.DAT',l41 
t1 J1.c; CALL ASSIGN<2, 'DK2:MPPRST.LOG' ,14l 
~01~ IDCH=2.0' 
~~~. IDCH1=21 
.0."'?. ~ READ< 1 , UTBB > NF I L E S, NCHAN, NSAMP, NSTART, I NFLG, OUTFLG
::.;;:: 1/JZZ FORMAT<l2ISI
~(0:.2: READ< 1, 18.0'.0' >TPDRR, TPDRW
ijE~~ READ<1,118B>FSAMP
,:,._;:2.· 1!..0'.0' FOR~~AT<2FHl'..0'J

~EAD IN FILE SPECS FOR INPUT

':':".'?." IF<INFLG.NE.BJGOTO 1.0'
y:·2:0' READ< 1, 12.0'.0"JFBUF
132~ 12BS ~ORMAT(3A41
f~J~ CALL IRADSB<l2,FBUF,FSPECR>

-J.H -~. N :'/ VJJ2.JJ4 THU JJS-JAN-81 JJJJ:23=S4

.3'.031 GOTO 2Z
0'~~''32 lZ DO 3/J I=l,NFILES
.J,0'3 3 READ< 1, 12/JJJ >FBUF
~fJ31 CALL IRAD5JJI12,FBUF,FSPECR>
,t./:':-;'35 FNAMR< I l=FSPECR
i?W36 3.0' C.ONTINUE

•:
c READ IN FILE SPECS FOR OUTPUT
~

~

~£3; 21 IFIOUTFLG.NE.JJlGOTO 4Z
::-:;:3'~ READ< 1,12/JJJlFBUF
Zj4i CALL IRAD5JJ<12,FBUF,FSPECW>
~241 GOTO 58
354: 48 DO 6/J I=l,NFILES
fiJJ4J READ< 1,12/JJJlFBUF
8~44 CALL IRAD5JJI12,FBUF,FSPECWl
~045 FNAMO<Il=FSPECW
004f 68 CONTINUE

C READ IN JOB SPECIFIC DATA AND SET UP
C THE FILTERS TO BE USED
c

ZfJ47 50 NUTTL=ll
JJ~42 ITX=JJ
ZZ4~ CONST(li=FLOAT<NSTARTl
~~5? CONST<2l=JJ.2
&0'51 CONST< 3 >= 1 .JJ/1 lfJ!JfJ .JJ*FSAMP >
~052 CALL APINIT
r~s~ NSAMP2=2
J~S~ S! IFINSAMP2.GE.NSAMPlGOTO 52
53~ NSAMP2=NSAMP2*2
~5~~ GOTO 51
~Z38 52 CONTINUE

£1';76
<:' ~,, 6

~ ~EAD IN FLAGS FOR PROCESSES AND EXECUTI~N ORDER
c

R~ADC 1,1/JJJJJlNPROC
READ(l,lfJJJJJ>< UTLFLG< I I, I=l, NUTIL)
READ< 1, lfJJJJJ}{ IORDI I l, I=l, NPROC >

~ TRACE EDIT DATA

c

IF<UTLFLG< 1 l.EQ.JJlGOTO 65
READ< 1 ,l!JJJJJ>NF !LED
READ< 1, lfJJJJJl{ !FILED< I l, !CHAND< I>, I=l,NFILED>

~ ?OLARITV REVERSAL DATA
c

55 IF<UTLFLG{2l.EQ.JJ)GOTO 7JJ
READ< l,lfJJJJJlNCHANP
READ< l,HHJJJ>< ICHANPI I l, I=l,NCHANP >

EXPIB.2T> RAMP DATA

P.i\GE !9!!2

V/iJ2./iJ4 THU liJB-JAN-81 fiJ/iJ:23:54 PAGE S/63

z~70 73 IFCUTLFLG(3J.EQ.IiJJGOTO 8S
vJ.CJ 7 (_ R E .11. D (1 , 1.0'HH J I A P LX
f.1J!f72 CALL TEl{RMP<EXPT,IiJ,ITX,NSAMP,CONST,AEXPT>
BB?d ITX=1

c
C T*EXP<IiJ.2TJ RAMP DATA

ZS75 SB IF<UTLFLG(4J.EQ.HJGOTO 9S
Zli177 READ<l,lliJHiiJ>IAPLTX
~li172 CALL TEXRMP<TEXPT,1,ITX,NSAMP,CONST,ATEXPT>
SH7~ ITX=l

c

308~ 93 IF<UTLFLG<S>.EC.IiJJGOTO lHH
.0'£'8<.. READ<1,lliJHH>IAPLTV,NLVR
ii!•() 8 3 READ < 1 , 1 1 HH)(T liJL V R < I > , V LV R < I > , I = 1 , N LV R >
.6~84 CALL TVRMP<TVSQ,THLVR,VLVR,NLVR,IT)(,NSAMP,NSTART,CONST,

XFSAMP ,ATVSQ)
c
\: MUTE DATA
c

ZB85 ~~~ IF<UTLFLG<6J.EQ.HJGOTO llliJ
3~8~ READ<l,lHHH>NTAP
J.':18" READ< 1, lliJHHHMUTE< I>, I=l ,NCHAN >
.JZ8~· READ< 1, 1.0'HHHMUTET< I>, I=1 ,NCHAN>
fJ€19;: CALL COTAP <TAPER, NTAP ,ATAP}

!:ECON I ~lPUT

~791 llS IF<UTLFLG{7J.EQ.IiJ)GOTO 12H
G~FJ:O READ< 1, 1.0'1iJiiJ JNF I L T, I SPIKE, I NORM
:r;:g:.: READ< l,llliJiiJlWHITE

SANOPASS FILTER

zqgs :zz IF<UTLFLG<SJ.EQ.IiJlGOTO 131iJ
r::n:- READ<l,llliJZJFL,FU
_;)'.0'92 READ< 1,11.0'.0'JFTPR1 ,FTPR2
z.r:ns DF I =FLOAT< NSAMP2/2+1 > /(FSAMP*5.0'.0' • .0')
013~ FL1=FL-FTPR1
€11.0'1 FU4=FU+FTPR2
ZIG: CALL BANDPSIATBP,BPASS,FLl,FL,FU,FU4,DFI,NSAMP2>
0!33 NTRANF=2*NSAMP2
~10~ NBFILT=NSAMP2+1
JlS: NBEXP=<2*NSAMP2>+2-NSAMP

iJ fJ Cc•

iJ .~
.) 'j

·) _j-~

.J .. ::~·

J l

BAMOREJECT FILTER

:3Z IF<UTLFLGI9J.EQ • .0'JGOTO 14.0'
READ< 1,11.0'/iJJFLR,FUR
DFI=FLOATINSAMP2/2+1J/{FSAMP*5.0'1iJ • .0'J
NTRANF=2*NSAMP2
NRFILT=NSAMP2+1

'

.0'i L
2111?

¥.0'2 • .0'4 THU .0'8-JAN-81 .0'.0':23:54

NBEXP=<2*NSAMP2l+2-NSAMP
CALL BANDRJ<ATBR,BRJCT,FLR,FUR,DFI,NSAMP2l

c
C PREDICTION ERROR FILTER
c

0:14 14.0' IFCUTLFLG<l.0'>.E0 • .0'lGOTO 15.0'
iJ116 READ< 1, 1.0'.0'.0'lNPF IL T, NLAG, IPNORM
.z: 17 READ< 1, 11.0'.0'lPR\JHIT

C TRACE NORMALISATION
c

0'.lf 15.0' IF<UTLFLG(ll>.E0 • .0'lGOTO 16.0'
Z'. 2::0 READ< 1, 1.0'.0'.0' >NRMFLG

.0'12:

.0' l 2 2
~.!.~..}
....,, ,., .·
~-! ~

C BLOCKING PARAMETERS

c

l6;J CONTINUE
IFED= 1
NBLK\J=NSAMP/128*NCHAN+1
NBLKR=NBLK\./+5
NBLKTR=NSAMP/128

~ s~ART OF LOOP ON DIFFERENT FILES

.0'12ti DO 2.0'.0' IFNUM=l,NFILES
H127 IFIL=IFNUM
(123 IF<INFLG.NE • .0'lGOTO 21.0'

c
C ~APE INPUT HANDLING

tl'13f' IF< !ENTER< IDCH,FSPECR,NBLKR>.LT • .0')STOP'ENTER ~RROR'
~132 lTRV=l

~ 3S
0 3:

~ 30
fJ ~~

;; 4 .
:;_; 4)

.~; 4 ·-·
•,; 4 J

·~ C:GT CHECK
c

c

225

227
1 ?.0J

13.0'2

IF<ITRV.GT.3>GOTO 227
IF<IEOTR.GE.ZJGOTO 22.0'

\.JR I TE < 7, 1 8.0'.0' l TP ORR, IF I L
FOR~-1AT<' EOT ON DRIVE:',I2,' FILE NQ:',I4l
\.JR I TE < 7 , 1 8.0' 1 l
FCRt-1AT<' ENTER NE\.1 READ DRIVE NO:' ,Sl
READ<5,18.0'2>TPDRR
FORf"lAT< I 1 l
IEOTR=.0'
IF<TPDRR.GT.2lSTOP' EOT TERMINATION'

.~ P-U,D FROM TAPE
c

C.!I.LL TAPRED<-l,TPDRR,ISTAT,ITLEN,IFLEN,IFIL,lEOTR>
! F (I STAT. L T • .0'l\·/RITE< 2, 15Z.0'l IFIL
FORt-1AT<' RETRIES ON READ FAILED ON FILE' ,I5l
lF<IEOTR.LT.Z>GOTO 23.0'

L WiND OVER EOF MARK

VZ2./84 THU /88-JAN-81 /80:23:54

J15Z CALL TAPREDC/8,TPDRR,ISTAT, , ,IFIL,IEOTRl
8153 232 CALL IWAIT<IDCHl
/8154 IERR=/8
0155 ITRV=ITRV+l
.2f l56 IF< I READW< 1, I ERR ,11, I DCH >. L T .18 >STOP' ERR READ, ERR'
~158 IF<IERR.EQ."l77777lGOTO 225
~16B CALL CLOSEC<IDCHl

c
C OPEN UP READING FILES
c

~!5! 21/8 IFCINFLG.NE.ZlFSPECR=FNAMR<IFNUM>
G!6S IFCLOOKUPCIDCH,FSPECRl.LT./8lSTOP'LOOKUP ERR'

~;:;_ 6E·
.if l 6 7

!;!} 1 6 9

0'~71
.0172
,j j 7 3
)fl 7 4
.0! 75
ij: 76

.:~; i (;
0'179
·1' ~ 8.0

c
~ O?EN UP OUTPUT FILES
r:

IFCOUTFLG.NE./8lFSPECW=FNAMO<IFNUMl
IFCIENTER<IDCHl,FSPECW,NBLKW>.LT.Z)STOP'ENTER ERR2'

C HEADER BLOCK MANAGEMENT

IFCIREADWC256,IHBLK,f8,IDCH>.LT.f8lSTOP'READW ERR'

r ?UT IN CORRECT ORDER OF PROCESSING

c

2 ·~ l:::

IBFREE=IHBLKC24l
IH3LI<C 129+IBFREEl=1
IBFREE=IBFREE+l
IHBLKC 129+IBFREE l=NPROC ·
IBFREE=IBFREE+1
DO 215 J=l,NPROC
!HBLKC 129+IBFREE l=IORDCJ l
IBFREE=IBFREE+l
CONTINUE
IHBLK<24l=IBFREE

: VRtTE OUT UPDATED HEADER

J' ~ . IF< IWR I TWC 256, I HB L K, 18, I DCH 1) • L T .18 l STOP 'WR ITW ERR'
J:3J JBLK=l
.n:.; DO 3f.i!Z ICHNUM=l,NCHAN

PAGE 11115

S!a~ IF<IREADWC2*NSAMP,SEISM,JBLK,IDCHl.LT./8lSTOP'READW ERR2'
3~8~ CALL APPUTCSEISM,f8,NSAMP,2>
3!15 CALL APWD
~!~9 DO 48/8 IPCNUM=l,NPROC
;1s~ GOT0<419,42S,43Z,44H,45Z,468,47H,48~,

Y.49/8,5Z/8,51ZliORD<IPCNUMl

PROCESS EDIT COMMANDS

;'19 ~10' IF< IFED.GT.NFILEDlGOTO 41818
. ' J IF< IF I LED< IF ED) . N E . IF I L l GOTO 4/88
•a1 IF<ICHAND<IFEDl.NE.ICHNUM>GOTO 48Z
_g IFED=IFED+l

FCRT:::).N IV

tJ-i 98

V/12.84 THU /JS-JAN-81 /J/1:23:54
- -

CALL VCLR<8,l,NSAMPl
CALL APWR .0'199

J2ff0
fi2.Ji.
~z.~:

<;r2;0'3
:'!2/J.!
]C:.Jf
<l.2fi57
"'J'<-;'. ,y,-..
·.· '-·'J ~

.... ,, t;

-.) '- .:. ;;J

CALL APGET<SE1SM,IJ,NSAMP,2}
CALL APWD
GOTO 31.0

C POLARITY REVERSAL
c

c

42Z DO 421 IP=1,NCHANP
IF; ICHANP< IPl.EQ.ICHNUM)(;QTO 425

~21 CONTINUE
GOTO 4/18

~25 CALL VNEG<fJ,1,fJ,1,NSAMP>
CALL APWR
GOTO 408

C AMP RECOVERY FILTERS APPLICATION AND REMOVAL
1-
;~._.

C EXP(f1.2T> FILTER
c

3211 438 IAPL=IAPLX
!~12 CALL APPUTA<NSAMP,NSAMP,2,AEXPT>
£21~ GOTO 455

C ~*EXP<S.2Tl FILTER
,,_

721~ J~fl IAPL=IAPLTX
Z:l5 CALL APPUTA<NSAMP,NSAMP,2,ATEXPT>
~ lr GOTO 455

c
' Ti ** 2 F I L TE R

--17 458 IAPL=IAPLTV
z:lP CALL APPUTA<NSAMP,NSAMP,2,ATVSQl

:'.?5 CALL APW'D
IF< IAPL. EO.S>CALL VMUL<.0', 1, NSAMP, 1,.0', 1, NSAMP l
iF(IAPL.NE.fJlCALL VDIV<NSAMP,l,fJ,1,.0',l,NSAMPl
CALL APW'R
GOTO 4!3!0

- i1'JTE APPL !CATION

~6S CALL APPUTA<NSAMP,NTAP,2,ATAPl
CALL APWD
LMUT=MUTE<ICHNUM>
CALL VCLR<8,1,LMUTl
CALL VMUL<LMUT,1,NSAMP,l,LMUT,1,NTAPl
CALL APWR
LMUT=MUTET<ICHNUMl
IF<LMUT.GE.NSAMP>GOTO 488

PAGE 8/16

FORT ~.N TV VS2.144 THU SS-JAN-81 SS:23:54

~23; NMUT=NSAMP-LMUT
0236 CALL VCLR<NSAMP-1,-l,NMUTJ
3237 CALL VMUL<LMUT,-1,NSAMP,1,LMUT,-l,NTAP>
Z23C CALL APWR
823S GOTO 4!4!4

,c
c
c

0'2 4£·
.e·z 4 : :c

·C
c

14242
8243
8244
3'2 4 s
Jil24o
024 7
Z2~C

224':'
·~~ 2 SXI
2ZI5'.
.J25<:.

c
·-c

.0'253

.0254
JZSS
.<1'256
-~:z s 7
";: 5 a
o:s~
l20~

.02 5 ~-

.J '":"J .- ~.,
c.. 0 ~~

~~52

-
'-· ,,
._

DE CON

~- 7/iJ CALL
GOTO

BANDPASS

48{1 CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
GOTO

SPIKE<NSAMP,NSAMPZ,NFILT,WHITE,INORM,IS~IKE>
488

FILTER

APPUTA<411414,NBFILT,2,ATBP>
APWD
VCLR<NSAMP,1,NBEXP>
RFFT<I4,NTRANF,+l >
RFFTSC<8,NTRANF,3,1)
VMUL<8,Z,4188,1,14,2,NBFILT>
VMUL< 1, 2, 41814, 1, 1, 2, NBF I L T)
RFFTSC(8,NTRANF,-3,14>
RFFT<8,NTRANF,-l >
APWR
41414

BANDREJECT FILTER

49£ CALL APPUTA<4188,NRFILT,2,ATBR>
CALL APWD
CALL VCLR<NSAMP,1,NBEXP>
CALL RFFT<8,NTRANF,1>
CALL RFFTSC<I4,NTRANF,3,1>
CALL VMUL<S,2,41!4!4,1,!4,2,NRFILT>
CALL VMUL< 1,2,4188,1,1,2,NRFIL T>
CALL RFFTSC{8,NTRANF,-3,Sl
CALL RFFT<S,NTRANF,-1>
CALL .O.PWR
GOTO 4!4!4

P"'..i::D!CTION ERROR FILTER

'5:'54 5ffiif C.O.LL PRO ICT< NSAMP, NSAMPZ, NPF I L T, PRWHIT, IPNORM, NLAG}
~:~= GOTO 4!48

'IORMAL !SAT ION

4 66 510 IF<NRMFLG.EQ.f4JGOTO 515
1 68 CALL MAXMGVIS,1,2!458,NSAMPJ
~ 5 8 GOTO 516
0 7 515 CALL SVESQ(S,1,2!45!4,NSAMP>
0 J CALL VSQRTI2!458,1,2!45!4,1,ll
~ ~ 515 CALL VDIVI285!4,S,S,l,f4,1,NSAMP>
~ 7 CALL APWR
IJ 7 GOTO 4/iJS

PAGE 11117

F OR7k)."~ IV V162./14 THU 168-JAN-81 16.0':23:54
...

fi127'3. 4.0'.0' CONTINUE
c
c ~NO OF PROCESS LOOP
c

£1'276 CALL APWAIT
fi1277 CALL APGET<SEISM,I6,.NSAMP,2>
,0'278 CALL APWD
0279 31.0' IF< IWR ITW< 2*NSAMP, SE ISM, JBLK, I DCH 1 J. L T .16)STOP 'WRITW
.0'28! JBLK=JBLK+NBLKTR
na::: 3k:J.0' CONTINUE

c
,- END OF CHANNEL LOOP
c

.0283 CALL CLOSEC<IDCH>

.0'284 CALL CLOSEC<IDCHl>
c
c CIJTPUT TO TAPE
c

.n8S IF<OUTFLG.NE.I6>GOTO 21616
Z287 IFLEN=LOOKUP<IDCH1,FSPECW)
9'288 IF<IFLEN.LT.16JSTOP'LOOKUP ERR3'
1'29.3 CALL TAP RED< 1, TPDRW, I STAT, ITLEN, IFLEN, IFIL, I£"0111>
Z291 CALL CLOSEC<IDCHl>

.13'Z 92
£1'294
::zgs
-~296

0'Z97
JZ98
fi1299
1131618
83/12

.'J::J.:
'J':.:J7
.: : r:•s
?.~.Js

fL ;.~
·(r·~ 1 1.

c
C CHECK FOR ERRORS

IF<IEOTW.GE • .0'JGOTO 2516
WRITE(7,161616>TPDRW,IFIL

l6Z2f FORNAT<' EOT ON DRIVE:',I2,' FILE NO:',I4J
\JR IT E { 7 , 1 6161 >

~. i:iZl i-ORMAT< ' ENTER DRIVE NO FOR NEW WRITE TAPE:',$>
READ<5,18/82JTPDRW
IEOTW•B
IF<TPDRW.GT.2JSTOP ' EOT WRIT£ TERMINATION'

2516 IF<ISTAT.GE.BJGOTO 2/8B
WRITE<2, 171616) IFIL

liilZ FORMAT<' FATAL ERROR ON WRITE FILE NO',I5>
STOP' WRITE ERROR'

224 CONTINUE
CALL CLOSEC<IDCHJ
CALL CLOSEC< IDCHl J
STOP'NORMAL TERMINATION'
END

PAG! 11118

ERR2'

VI!J2.!64 THU llJB-JAN-81 11JI1J:25:28 PAGE llJ/61

SUBROUTINE TEXRMP<FILT,IFTVP,IFLG,NSAMP,CONST,AFlLT,FS>

C IF ITVP=IlJ THIS ROUTINE PRODUCES AN EXP(f1J.2T> ARRAY

#•(-•?.!':::

$HJW..:
~13Zii

tHJ.rJr:
JIHF
'~1 .'D.((S

~J.fffi.i~

..zzu

C NSAMP LONG IN FILT
C IF ITVP=l T*EXPII1J.2T>PRODUCED

~ CONST<l>=NSART
C CONST<2>=11J.2
C CONST<3l=l.f1J/(111Jf1J11J.I1J*FSAMP>
c

c

VIRTUAL FILT<211J48>
DIMENSION CONST<3>
IF<IFLG.NE.IlJ>GOTO lllJ

- FORM THE T RAMP
c

c

CALL APWAIT
CALL APPUT<CONST,8189,3,2l
CALL APWD
CALL VCLR(IlJ,l,NSAMPl
CALL VRAMP<8189,8191,11J,l,NSAMPl

r:: fORM EXP<I1J.2Tl
c

~Wl: CALL VSMUL(I1J,l,81911J,NSAMP,l,NSAMPJ
4~12 CALL VEXP<NSAMP,l,NSAMP,l,NSAMP>
11JI1Jl3 tF<IFTVP.EQ.IlJJGOTO 211J

~ FORM T*EXP(I!J.2Tl

~1~ lZ CALL VMUL<NSAMP,l,I!J,l,NSAMP,l,NSAMP>
:J:S 211J CALL APWR
~17 CALL APGETA<NSAMP,NSAMP,2,AFILT>

7 Jla RETURN
,:lo END

V/62.11J4 THU I!JB-JAN-81 11JI1J:26:11

SUBROUTINE COTAP<TAPER,NTAP,ATAPl

~ THIS ROUTINE PRODUCES A COSINE TAPER NTAP
C SAi•1PLES LONG
c

;:.r;,;;~ VIRTUAL TAPER<512>
"f''~~ CALL APWAIT
~~Sj CALL APPUTil.llJ/FLOAT<NTAPl,llJ,l,2>
JS~S CALL VCLR(l,l,NTAPl
ZdflJ(CALL VTSADD<l,l,2311J6,1,1,1>
JZI1J7 CALL VTSMUL(f1J,1,2311J6,11J,l,ll
11J~~8 CALL VRAMP<l,llJ,IlJ,l,NTAPl
~~~~ CALL VCOS(I!J,l,I!J,l,NTAP> 
Z~lZ CALL VTSADDIB,l,2B49,11J,l,NTAPJ 
ii:'i; CALL VTSMUL<B,l,2327,11J,l,NTAPl 
~01Z CALL APWR 
J0l: CALL APGETA<B,NTAP,2,ATAP> 
.: ~t_r I ' CALL AP\ID 
3Sl~ RETURN 
Jf"li: END 

PAGE 16161 



Vl62.164 THU 168-JAN-81 1616:25:516 PAGE 16161 

;:(3'f}' 1 . SUBROUTINE TVRMPCFILT,TSLVR,VLVR,NLVR,IFLG,NSAMP,NSTART, 
%CONST,FSAMP,AFILT> 

c 
C THIS ROUTINE PRODUCES A TV••z RAMP 
C FROM VELOCITY INFO IN THLVR,VLVR 
c 

~0~~ VIRTUAL FILTC21648) 
~Z~3 DIME~SION TZLVRC216>,VLVRC2H>,CONSTC3> 

c 
C CH~CK IF T RAMP ALREADY FORMED 
c 

l~H4 IF<IFLG.NE.Z>GOTO 116 
!f".•J6 CALL APWA IT 
;Jf67 CALL APPUT<CONST,8189,3,2) 
e~B2 CALL APWD 
~029 CALL VCLRCI6,l,NSAMP> 
~0\0 CALL VRAMPC8189,8191,16,l,NSAMP> 

.(! !3 1 1 
Jif!:' 
}J"f11 ::. 
•. ff 1 4 
·:.<J 1 5 

iJ.~~ 1 ~ 
Z.il'l8 
'": 1 s 
.... :·fi2 .;. 

j; :~ . 

~: ~"?.:: 

JiJ.f:'.c' 
.HJ?.'.:c· 
0'.l12 '~· 
0'0'27 
J.;;·:!s 

-L'J3 ]_ 

c 
C FORM VELOCITY RAMP IN FILT 
c 

c 

10' N1=1 
N2=IFIXCFSAMP*TZLVR<l>J-NSTART 
Vl=VLVR< 1 > 
DO 15 I=Nl,N2 

15 FILT<I>=Vl 
IFCNLYR.EQ.l >GOTO 416 
DO 2S J=2,NLVR 
Nl=N2+1 
N2=IFIXCFSAMP*T16LVRCJ)J-NSTART 
DELV=CVLVRCJl-VLVR<J-1>>1<N2-Nl+2J 
V=VLYR<J-1) 
DO 316 I=N1,N2 
F!LT<I>=V 
V=V+DELV 

3;-J CONTINUE 
2!iJ CONTINUE 
..i.J N 1 =N2+ 1 

N2=NSAMP 
VN=VLVR<NLVRl 
DOSS I=Nl,N2 

5.~ F!LT<I>=VN 

C FUT V RAMP IN AP AND FORM TV**2 
c 

J233 CALL APWAIT 
~J34 CALL APPUTACNSAMP,NSAMP,2,AFILT> 
~J~~ CALL APWD 
!~J CALL VSQCNSAMP,l,NSAMP,l,NSAMPJ 
:~J CALL VMUL<Z,l,NSAMP,l,NSAMP,l,NSAMP> 
JD2 CALL APWR 
~~3 CALL APGETA<NSAMP,NSAMP,2,AFILTJ 
~~4 CALL APWD 

i RETURN 
d END 



"GR-. "'N IV VB2.1ll4 THU !88-JAN-81 BB:26:31 

SUBROUTINE BANOPS<ATBP,BPASS,Fl,F2,F3,F4,0FI,NSA~~) 
c 
C SUBROUTINE WHICH CREATES A BANDPASS FILTER 
C Fl=BOTTOM CUT OFF FREQUENCY 
C F2=START OF FULL PASS 
C F3=ENO OF FULL PASS 
C F4=TOP CUT OFF FREQUENCY 
c 
C BETWEEN Fl,F2 AND F3,F4 A COSINE TAPER IS APPLIED 
c 

VIRTUAL BPASSC21ll49l 
c 
C SET UP CONSTANTS 
c 

0.::'.42 N1=2*Fl*DFI 
8~ZJ N2=2*F2*DFI 
I~S~ N3=2*F3*DFI 
qB86 N4=2*F4*DFI 
l.qm; NFILT=NSAMP+l 
B03E NTP1=N2-Nl 
~zgs NTP2=N4-N3 
BZlB NOK=N3-N2 
~811 CALL APWAIT 

c 
C SET UP THE FILTER IN THE AP 

sgrz oo 18 I=1,2 
~~1: NTAP=NTPl 
;.1.314 IF< I .EQ.2JNTAP=NTP2 
Z016 RNTAP=l.B/FLOAT<NTAP> 
J~l7 CALL APPUTCRNTAP,B,l,2} 
301! CALL VCLR<l,l,NTAP> 
881° CALL VTSADD<I,l,2386,1,1,1J 
~~2~ CALL VTSMULCB,l,231ll6,1ll,l,l> 
~qz CALL VRAMPCI,B,!ll,l,NTAP> 
302~ CALL VCOSIB,l,B,l,NTAP> 
q~2~ CALL VTSADDC!ll,1,21ll49,1ll,l,NTAP> 
1B2~ CALL VTSMULC!ll,1,2327,1ll,l,NTAP> 

z;.<-rz:; !Fti.EQ.llCALL VMOVCB,l,21ll51i!,l,NTAP> 
~E2~ IF<I.EQ.2JCALL VMOV<B,l,41SB,l,NTAP> 
BW2S liT CONTINUE 

c 
C NOW HAVE TAPERS FORM REST OF FILTER 
c 

JB3f CALL VCLR<!ll,l,NFILT> 
ZJ31 CALL VADD<Nl,l,21li5B,l,Nl,l,NTP1> 
8~3~ CALL VADD<N4,-1,41BB,l,N4,-l,NTP2) 
8IT3c CALL VTSADDCN2,1,21li49,N2,1,NOK> 
ZZ34 CALL APWR 
~Z35 CALL APGETAI!li,NFILT,2,ATBP> 
~~3S CALL APWD 
3~3- RETURN 
- ;,3c: END 

PAGE !6111 



i'OR"7<,.N IV VBZ.B4 THU BS-JAN-81 BB:26:52 

fJJD!Jj SUBROUTINE BANDRJ(ATBR,BRJCT,Fl,F2,DFI,NSAMP> 
c 
C SUBROUTINE TO CREATE A BANDREJECT FILTER 
c 
C Fl=LOWER CUTOFF POSITION 
~ F2=UPPER CUTOFF POSITION 

c 
c 
c 
c 

c 

THE FILTER TAKES THE FORM OF 
A SINE BELL CENTERED ON THE FREQUENCY TO 
BE REMOVED COMPLETELY 

VIRTUAL BRJCT<2B49> 

C SET UP CONSTANTS 
c 

IJDZ2 N1=2./J*Fl*DFI 
~zg~ N2=2./J*F2*DFI 
Hfr.CJS NTAP=N2-Nl 
Zrr:J:. CALL APWA IT 

C SET UP FILTER IN AP 
c 

~~IJ7 CALL VCLR(IJ,l,NTAP> 
J~ZP NFILT=NSAMP+l 
~~Z? FTAP=l.Z/FLOAT<NTAP> 
JBll CALL APPUT<FTAP,l,l,Z} 
ZZll CALL APWD 
3Zl2 CALL VTSMUL(l,l,2317,1,1,1> 
~&1: CALL VRAMPCZ,l,IJ,l,NTAP> 
~~~~ CALL VCOSCIJ,l,Z,l,NTAP> 
.J.B'l':: CALL VTSADD<Z,l,2Z49,IJ,l,NTAP>
0 JF CALL VTSMUL< Z, 1, 2327 ,B, 1, NTAP}
9~17 CALL VMOV<IJ,l,4B96,l,NTAP>

c
C SET UP FULL FILTER NOW TAPER FINISHED
c

~z1: CALL VCLRCB,l,NFILT>
~~19 CALL VTSAOOIZ,l,2/D49,B,l,NFILT>
DS2~ CALL VMUL<Nl,l,4B96,l,Nl,l,NTAP>
3BZ1 CALL APWR
J32~ CALL APGETACB,NFILT,2,ATBR>
"S23 CALL APWD
tJ24 RETURN
:JJ25 END

PAGE IJB1

VJ62.!64 THU !68-JAN-81 !6!6:Z7:1!6 PAGE !6!61
-- ·-

~rrrrl SUBROUTINE SPIKE<NSAMP,NSAMP2,ILENTH,WHITE,IFLAG,ISPIKE>
c
C WIENER SPIKING FILTER ROUTINE
C NSAMP=DATA LENGTH

c
c
c
c
c
c

NSAMP2=NEAREST POWER OF 2 TO NSAMP
ILENTH=FILTER LENGTH
IFLAG=TRACE NORMALISATION FLAG

!6 NO NORMALISATION
1 FILTER UNIT ENERGY
2 EQUAL INPUT-OUTPUT ENERGY

!SPIKE SPIKE POSITION

i.!12 NTRAN=2*NSAMP2
0.0.r: NCLR=NTRAN-NSAMP
BJJ6~ NFCLR=NTRAN-ILENTH
Z0SE NTRAN2=NTRAN+2
ZJS~ NM1=NSAMP2-l
C2B~ I6=NTRAN+ILENTH
~A3S I7=I6+ILENTH
~~89 I8=I7+ILENTH
,~1.0' ISP=I6+ISPIKE

c
C HAVING SET UP CONSTANTS GET INPUT TRACE
C ENERGY IF REQD FOR NORMALISATION
c

Jgll IF<IFLAG.NE.2JGOTO 1!6
BBl: CALL SVESQ(J6,1,8191,NSAMP>
~114 CALL VSQRTI8191,1,8191,1,1l
ZZ1S CALL APWR
~Jl6 CALL APGETIEN,8191,1,2l
J0:7 CALL APWD

C GET AUTOCORRELATION FUNCTION

Z~13 lB CALL VCLRINSAMP,l,NCLR>
19!9 CALL RFFTIB,NTRAN,ll
0Y'"ZD CALL VMOV I !6, 1 , NT RAN, 1 , NT RAN>
·.JZ: CALL VMUL I NTRAN, 1, NTRAN, 1, NTRAN, 1, 2 >
]~ZZ CALL CVMAGSINTRAN2,2,NTRAN2,2,NM1l
:J2~ CALL VCLRINTRAN+3,2,NM1l
092! CALL RFFTSC<NTRAN,NTRAN,-1,-1>
.J.'J2'J CALL RFFTCNTRAN,NTRAN,-1)

w AUTO FUNCTION NOW 2N LONG FROM NTRAN
w ORIGINAL FUNCTION TRANSFORMED !6-NTRAN

C NOw I..JHITEN
c

J7 ~ CALL APWR
~~ 7 CALL APPUTIWHITE,8191,1,2}
SZ 8 CALL VSMAINTRAN,1,8191,NTRAN,l,NTRAN,l,ll

~ SET UP SPIKE CC FUNCTION

·o~::_AN IV V/62.114 THU 118-JAN-81 1111:27:1/6

0'0'29
0'0'3£

.0'.03:
~iff~ Z'
~£132
;)fff3 s

CALL VCLR<I6,l,ILENTH>
CALL VTSADD(ISP ,1, 2.0'49, ISP ,1, 1 l

,C SOLVE EONS
c

c

CALL WIENER<ILENTH,NTRAN,I6,I7,I8,1>
CALL APCHK<IER>
IF<IER.NE • .0'>STOP'LEVINSON FAILURE'
CALL VMOVII7,1,NTRAN,1,ILENTH>

~ NORMALISE FILTER IF ASKED FOR

xnc IFIIFLAG.NE.l>GOTO 2.0'
fi~J~ CALL SVESQ<NTRAN,l,I6,ILENTH>
.'!.0'.39 CALL VSORT<I6,1,I6,1,1>
Bf~~ CALL VDIV<I6,.0',NTRAN,l,NTRAN,l,ILENTH>

z ... 41
.ZZ42
3043
J.tl4."
30' 4:,
.• -? 4 6 "

C APPL'I FILTER
c

c

23 CALL VCLR<I6,1,NFCLR>
CALL RFFT<NTRAN,NTRAN.l>
CALL VMUL(.0',1,NTRAN,l,.0',1,2>
CALL CVMUL<2,2,NTRAN2,2,2,2,NM1,1>
CALL RFFTSC!.0',NTRAN,.0',-l}
CALL RFFT!.0',NTRAN,-l>

C DO SCALING IF REOD
c

8!147 IF<IrLAG.NE.2>GOTO 3.0'
£~4~ CALL SVESQC.0',1,8191,NSAMP>
3.0'5~ CALL VSQRT<B191,1,Bl91,1,1>
~J5l CALL APWR
~JSZ CALL APPUTIEN,819.0',1,2>
J~~: CALL APWD
~~54 CALL VDIVI8191,1,819.0',1,819.0',1,1J
3DS~ CALL VSMULI.0',1,819.0',.0',l,NSAMP>
~JISF 3.0' CALL APWR
:Js~ RETURN

.J ~S:? END

PAGE 16162

'OR-:-RAN IV VBZ.B4 THU BB-JAN-81 BB:Z7:38 PAGE BBl

Zf!iJl ... SUBROUTINE. PRDICTC NSAMP, NSAMP2, ILENTH ,WHITE, IFLAG,NLAG >

'Jii11i1Z
SJZ!i13
ggJi14
'AjiJfi1f:

ffVJ!J6
~fi1Ji17
J£/i18
.~;7fi19

!'.'J l.f'.
ff.t;f 1 2
; :J I ..

S;:-' j;l

;xt l ·:

ZZl ~
0 iJ 1..,

:·Jl':?
C!l!JZZ
'7~:!'2!

.z,·yz::.
]523

.. :;.zt '
-

:~::r
~
[.

... -
.,...•.J

.. · .J

c
C THIS ROUTINE DESIGNS AND APPLIES
C A PREDICTION ERROR FILTER
C NSAMP=DATA LENGTH
C NSAMP2=NEAREST POWER OF 2 TO NSAMP

iLENTH=FILTER LENGTH c .
·~

c
c
c

c
c
c

c ,..
y

·~

~

c

c

\JH I TE =FRACTION P REWH ITE N I NG
IFLAG=Ji1 NO NORMALISATION

=1 FILTER UNIT ENERGY
=2 INPUT/OUTPUT TRACE ENERGY

NLAG= LAG OFFSET OF PREDICTION

GET

GET

ur

NTRAN=2*NSAMP2
NCLR=NTRAN-NSAMP
NM1=NSAMP2-1
NTRAN2=NTRAN+2
NLG=NTRAN+NLAG
NFILT=ILENTH+NLAG
17=NLG+ILENTH
I8=I7+ILENTH

INPUT TRACE ENERV

IF<IFLAG.NE.2lGOTO 11i1
CALL SVESQ(1i1,1,8191,NSAMP>
CALL VSQR T< 8 1 91 , 1 , 8191 , 1 , 1 >
CALL APGETCEN,8191,1,2)
CALL APWD

AUTOCORRELATION FUNCTION

CALL VCLR<NSAMP,l,NCLR>
CALL RFFT< Ji1, NT RAN, 1 >
CALL VMOV<Z,l,NTRAN,l,NTRANl

consTANT

CALL VMUL<NTRAN,l,NTRAN,1,NTRAN,1,2l
CALL CVMAGS<NTRAN2,2,NTRAN2,2,NM1>
CALL VCLR<NTRAN+3,2,NM1>
CALL RFFTSC<NTRAN,NTRAN,-1,-1>
CALL RFFT<NTRAN,NTRAN,-1}

NO'w WHlTEN IT

CALL APWR
CALL APPUT(WHITE,8191,1,2>
CALL VSMA<NTRAN,l,8191,NTRAN,l,NTRAN,l,l>

C .•lOw SOLVE EONS

CALL WIENER<ILENTH,NTRAN,NLG,I7,I8,1>
CALL APCHK<IER>
IF< IER.NE.Ji1>STOP'LEVINSON FAILURE'
IF<IFLAG.NE.llGOTO 211
CALL SVESQ< 17 ,1, IS, ILENTH)

THU HB-JAN-81 ZH:27r3e

;J.B'3.i CALL VSQR T< I 8, 1 , I 8, 1 , 1 }
.0'83~ CALL VDIV< 18,.0', 17,1,17, 1, ILENTH >

~

c APPLY FILTER
-

.r;JfJ3 ~ 21! CALL VCLR<NTRAN,1,NFILT>
•Hl37 CALL VTSADD<NTRAN,l,2.0'49,NTRAN,l,ll
3.0'3f: CALL VSUB<I7,l,NLG,l,NLG,l,ILENTH>
.JE?39 CALL VCLR<I7,l,NTRAN-NFILT>
'fff4J3 CALL RFFT<NTRAN,NTRAN,1>
;;Jf.4; CALL VMUL{.0',1,NTRAN,1,.0',1,2l
'Zi.'O 4:: CALL CVMUL(2,2,NTRAN2,2,2,2,NMl,ll
fJ04:C CALL RFFTSC{.0',NTRAN,.0',-1>
HJ4•i CALL RFFT< S, NT RAN, -1 l

c
c DO SCALING
.:

.0'.9"45 1F<IFLAG.NE.2>GOTO 316
J!li147 CALL SVESQ(/6,1,819l,NSAMP>
SB4S CALL VSQRT(8191,1,8191,1,1>
.J.'if4 s CALL APWR
!3050 CALL APPUT<EN,819.0',1,2l
0.0'5! CALL APWD
Z0'52 CALL VDIV<8191,1,819.0',1,819.0',1,1l
.~·.t';53 CALL VSMUL<S,1,819.0',.0',1,NSAMP>
2\'I':S~ 30 CALL APWR
.J.B'55 RETURN
'Jfi55 END

VSZ.S4 THU 88-JAN-81 SB:28:B9 PAG"E 0'B1

SUBROUTINE TAP RED< ICOM, I DRV, I STAT, ITLEN, ILEN, I FNUM, I EOT >

·-C TAPE HANDLING SUBROUTINE
C ICOM IS THE COMMAND SIGNAL
~ -1 IS A READ,S IS A WIND,l IS AWRITE
C !DRV IS THE DRIVE BEING USED
C ISTAT IS THE STATUS ON RETURN
C ITLEN IS THE TIME LENGTH OF A FILE READ
C ILEN IS THE BLOCK LENGTH OF A FILE READ OR WRITTEN
c

C~~2 INTEGER*2 MASKCBJ,ESTATI
:.::.J.'T:.' LOGICAL*! ISTAT,COM<4>,SDSCOM,IDRV,ITLEN,E.COM<4>,

%IFLEN,ESTAT,ERRSCB>
fJflJZJ.. DATA MASK/"!, "2, "4, "lS, "2S, "4S, "ISS, "2JIJBI
ZBBS DATA SDSCOM/"8,"1,"2,"3,"4,"5,"6,"7/
i11f:J6 DATA ERRS/"377,"377,"377,"377,"377,"377,"377,"377/
JtfJ7 ITRV=S
PJ02'0 IF (I COM> lS, 3S, 2S

c
c SECTION CONTROLLING A READ
c .-
C CHECK THAT ONLY A FEW RETRIES ARE ATTEMPTED
c

ZflZ9 lS ITRV=ITRV+l
c
C SET UP COMMAND FOR READ
c

fJfJIB COM<l>=SDSCOM<4>
J~l; COM<2>=1
~312 COMC31=IDRV
J01: COMC41=-1
ZXJH CALL SDS1.0'CCOM,ISTAT,ITLEN,ILEN>
~Zl~ IFCISTAT.E0 . .0'>RETURN

ZCYl-:
J5;: s

c
C 2qROR DETECTED ON READ
c

c

ISTATI=ISTAT
GOTO 4S

- I~ SHORT RECORD FOUND REREAD TAPE
c

g019 SfJ ITMP•ISTATI.AND.MASKC6J
i~~2 IF<ITMP.NE . .0'JGOTO lS
z•z~ ITMP=ISTATI.AND.MASK(2)
:·,n:; IF< ITMP .EO.ZJRETURN

J.J2

,.,.,... .. .,
A· -

J.\]2
r.a-3

c
C IF CRC ERROR FOUND REWIND TAPE AND RETRY
c

WRITE<2,2SlSJIFNUM
2.3'1.0' FORtMT<' FILE NO ',14,' CRC ERROR REWINDING'>

IF<ITRV.GE.2JGOTO 13Z
ECOM< 1 J=SDSCOt-1< 6 l
ECOI4(21=1

'ORii'\AN iV VJJ2.Rf4 THU RJS-JAN-81 0~:?8:JJ9 PAGE !8S2

liRf31 ECOM<3l=IDRV
HRJ3? ECOM<4l=Rf
BS32 CALL SDSlJJCECOM,ESTAT, , l
~834 GOTO lJJ

c
C \.!RITE SECTION

sg35 2B ITRV=ITRV+l
E~3~ IF<ITRV.GT.3lGOTO 13JJ
.0.03'3 COM< 1 l=SDSCOM< 7)
(l::T'3" IFLEN=< ILEN+3 l/4
.JZ4Z COM(2l=IFLEN
884! COMC3l=IDRV
~842 COM<4l=l
J.048 CALL SDS1.0'!COM, I STAT, , >
3844 IF<ISTAT.EQ.BlRETURN

c
~ W~!TE ERROR DETECTED

~846 ISTATI=ISTAT
~84~ GOTO 4B
iE48 78 ITMP=ISTATI.AND.MASK<6>
8949 ITMPI=ISTATI.AND.MASKC~>
~fJSS IF<ITMP.EQ.B.AND.ITMPI.EQ.BlRETURN

c
:{~PORT AND RETRY

c
8.052 WRITE<2,2B2BliFNUM
?".US.' ZfJ2f1 FORMAT< 1 FILE NO 1

, 14,' WRITE CRC E'RR RETRY P"ROPOS~D')
J05~ ECOMCll=SDSCOM<6l
8~55 ECOM<2>=2
S05G ECOM!3l=IDRV
3J5~ ECOM<4l=S
0358 CALL SDSlB<ECOM,ESTAT,
8959 NBUF=S
JZ6"f IFLENE=l6
8061 IPAD=32768
.0fJ6Z CALL TWRIT<ERRS,NBUF,ESTAT,IPAD,IFLENE,IDRV>
~~o2 GOTO 2f1

C WIND FOWARD ONE FILE
{'

W<:j.: 3Z Cot·H 1 l=SDSCOt-H 5)
00S5 COM<Zl=l
035S COMI3l=IDRV
~~~~ COM141=Z 
D~6J CALL SDSlZ<COM,ISTAT, , l .-

: CLEAR IRRELEVANT BITS FROM ERROR BYTE 

ISTAT=ISTAT.AND .. NOT.MASK<6l 
IF<ISTAT.EQ.2lRETURN 
ISTATI=ISTAT 
IF< ISTAT.NE.ZlGOTO 4Z 



FORT•cAN IV VflJ2.fiJ4 THU .fiJS-JAN-81 .fiJ.fiJ: 28 :.fiJ9 
,, 

c I;: ISTAT=Z REWIND AND SET ur FOR NEXT READ 
c 
c AS THIS WAS A DATA FILE NOT A SHORT RECORD 

.0.<:."'75 
h~-:·-; : 

~1 f5? ·.:· 
'JB7r: 
·''en r:o 
l'L0'f:F 

fiJJJ81 
.0'£3 z 
·"t'Nr.,,... 
JlJA.'Cl" 

0'.0'':3 i 
0.0'35 
.J:'"JfJ? 
.JJSC. 
f!!!8'; 
Cl:J9£f 
:.'J 9 1 

c 

c 
c 
c 
c 
~ -c 

c 

ECOM< 1 >=SDSCOM< 6 l 
ECOM<2>=1 
ECOMC3l=IDRV 
ECOM<4>=fll 
CALL SDS1.fiJ{ECOM,ESTAT, , ) 

35 RETURN 

IN THIS SECTION THE MAIN TAPE ERRORS ARE 
nANDLED SUCH AS:= TAPE BUSY,TAPE OFFLINE 
30T, EOT 

TAPE BUSY SECTION ••• AFTER CLEARING BOT FLAG 

49 WRITE<2,1.fiJl.fiJJISTATI,IFNUM 
1.0'1/iJ FORMAT<' STATUS=' ,13,' FILE NO=',I4} 

ISTATI=ISTATI.AND •• NOT.MASK(4l 
ITMP=ISTATI.AND.MASK(5) 
IF<ITMP.EQ • .fiJ)GOTO BflJ 

9.0' ECOM< 1 l=SDSCOM< 1 l 
ECOM<2l=fiJ 
ECOMf3l=IORV 
ECOM<4>=fll 
CALL SDSlflJCECOM,ESTAT, , ) 

C iiAVING EXAMINED STATUS IF TAPE STILL 
C 8USV, LOOP AGAIN,IF NOT TRY COMMAND AGAIN 
c 

z~g~ ESTATI=ESTAT 
0MS~ ITMP=ESTATI.AND.MASK<S> 
,;'·;rg.; IF< ITMP.NE.flJJGOTO 9flJ 
TQ\St IF< ICOMl 1fiJ,3fiJ,2flJ 

c 
- "7,:\,PE OFFLINE 

~gg7 3~ ITMP=ISTATI.AND.MASKClJ 
,1.J98 IF ( ITNP. EQ .flJ JGOTO lflJ!lJ 
:rl.fJ'.3 T'IPE lllJ!lJl, IDRV 

'.:;: ~.2'.Jl FOR~1AT< I TAPE DRIVE I. I 1'' OFFLINE I) 

r:: '~AVING ANNOUNCED ERROR SKIP UNTIL CORRECTED 

i\.0'~ l !Z ECOM< 1 l=SDSCOM< 1 l 
01z: ~COMI2l=B 
~19' ECOM<3l=IDRV 
BiZS ECOM{4l=flJ 
~lB~ CALL SDSlflJ{ECOM,ESTAT, I 

G!S7 ESTATI=ESTAT 
~l~B ITMP=ESTATI.AND.MASKill 

'J9 IF<ITMP.NE.flJlGOTO 11flJ 

ORT:•.;N 

~1 1 1 

:iJJ l.:. 

~1 13 
.0'1 15 
.lfl l c 
0'1 17 
~' ~::· 

,-. 1s: 

!I/ 

::eT 

'· !:Y'J 

1fl1.0'2 

l2S 

VflJ2.fiJ4 THU 88-JAN-81 8fl1:28:89 

IFCICOMl lflJ,30,2fiJ 

ITMP=ISTATI.AND.MASK<3J 
IF<ITMP.EQ.HlGOTO 12.0' 
TYPE 1.0'82, IDRV 
FORMAT<' EOT ON DRIVE ',Ill 
IEOTa-1 
RETURN 
IF< !COM) 5.0',35,7flJ 

~~~OR EXIT RETURN 

13f1 ISTATI=-1
RETURN
END

PAGE .fiJ.fiJ3

PAGE fl184

Page 176

Interactive Spectral Analysis Program .- MPFANL

MPFANL is totally interactive, and it expects the input data

to be in a disc file in the processing system internal format.

Plots are produced on the electrostatic plotter by running

RASM after this program terminates.

Input Parameters

NSAMP(I4) ••• Number of samples/trace

NCHAN(I2) ••• Number of channels to analyse

ICHAN(I),I=1,NCHAN(I3) ••• Channel numbers of those

analysed

TSEC(F10.0) ••• Sampling period of data in seconds.

to be

FNAMR(3A4) ••.. Name of data file containing the data to be

analysed

Vii2.Z4 THU SS~JAN-81 ZfJ;lJ;ZS

REAL*S FSPECR !HHP
O'C:JJ'2
.~!JJlJ2
;),!(!f(J_

REALW4 SEIS<2B6Z>,FNAMR(3)
INTEGER•2 ICHAN<24>
DATA DEV/3RRK I

T:·:rS IS A SPECTRAL ANALYSIS PROGRAM

f6!''JS WRITEI7,U!BZl
.-~u":J,~ lJJJi15 FORt1ATI' ENTER NO OF SAMPLES< I4);' ,$)
~'l'0'7 READ< 5, lZZl JNSAMP
zz~r 19Bl FORMATII4>
.'2ft; '../RITE< 7, 1 f!Z2 l
<?fl i . .'J 1\3'.0'2 FORMAT<' ENTER NO OF CHANNELS< 12):', $}
4.-.· '.: READ< 5, 1ZZ7 l NCHAN
~~12 !ZB7 FORMATII2>
0·:"1? I.JRITE17,1ZB8l

PAGE ZI?Jl

":Z'.-. l.0'B8 FORMAT<' ENTER CHANNELS REQD IN ORDER(12I3)',/,' >',$)
fT~~ ;.r::. READ< 5, 1ZZ9 > (I CHAN< I > , I= 1 , NC HAN>
Z01~ l~J3 FORMAT<l213)
.-7".0'1; WRITE< 7 ,1ZB3 l
<i.JlL l'iJf!'3 FORMAT<' ENTER SAMPLING PERIOD<FIZ.ZJ: ',$)
z:ns READI5,1ZZ4lTSEC
Z~Z~ IZS4 FORMATIFlZ.Zl
J•?Z '· \./RITE I 7, 1B.0'5}
.8'.0'2;:. 1.GJ5 FORMAT<. ENTER FILE NAME: I,$)
~~2? READI5,18B6>FNAMR
~zz~ IBJS FORMATI3A4>
~~:: CALL IRAD5B(l2,FNAMR,FSPECRJ

'X .'Y'"") ;
OX.'-.

.JfJ'?.?

.~:.<!3 0

.<'-U?
¥10'?\.{

St:T !JP READ IN

ICHR.=IGETC< >
IF< IFETCH<DEV>.NE.Z>STOP' F'ETCH ERR'
IFILOOKUPIICHR,FSPECR>.LT.ZJSTOP'LOOKUP ERR'
;~WiJ S = 2 * N SAI•1P
NBLKS=NSAMP/128

~ P~OCESS FIRST CHANNEL

~13LKST=I !CHAN{ 1 l-1 l*NBLKS+l
I:: I I READ'..JI NWDS, SE IS, NBLKST, ICHR >. L T .B lSTOP 'READ ERR'
Ic~AG=+l

CALL SPECISEIS,NSAMP,IFLAG,TSEC,ICHANil>>
IFINCHAN.EO.l lGOTO 1.0'

DC MOST OF CHANNELS

J0~0 DO 28 J=2,NCHAN
::.1 i·IBLKST=< ICHANIJ >-1 >*NBLKS+l
z•~: IF<IREADW<NWDS,SEIS,NBLKST,ICHR>.LT.ZJSTOP'READW ERR'
"0! IFLAG=-1
~04~ CALL SPEC<SEIS,NSAMP,IFLAG,TSEC,ICHAN(J))
ZJJ[28 CONTINUE
~D4~ 1g !FLAG=Z

- :::;~ ·-·

Z.CJ :~

V.0'234 THU ZS-JAN-81 88:13:29

~LL SPEC(SEIS,NSAMP,IFLAG,TSEC,ICHAN<l>>
TOP' NORMAL TERMINATION'
:w

PAGE 16162

,. 'JR

~:1 .·~.:J ·,
}Jz;;r,;_
.J.iiff!~'

VZZ.Z4 THU Z8-JAN~81 ZZ:l3:59

SUBROUTINE SPEC<AVAL,INUM,IPLOT,TSEC,ICHAN>
DIMENSION AVAL<1>
DATA MASK/01£1421£1/

C**~**
c "',., * ... ,. ** * •• *** ** * ****. ***"'****** **** *""'****"' ********

c

AVAL=SOURCE DATA TO BE PADDED TO NEAREST 2**N
INUM=DIMENSION AVAL
IPLOT=DISPLAY CONTROL

TSEC=SAMPLE PERIOD

IPLOT>£1
IPLOT<£1
IPLOT=£1

NEW OR FIRST PLOT
SUBSIDIARY PLOT
TERMINATE PLOT

c ICHAN=CHANNEL NO BEING ANALYSED
G THIS PROGRAM USES PEPLIB AND FPSLIB.
C THE DISPLAY OF AMPLITUDE SPECTRUM IS NORMALISED
C TO UNITY WITH THE INDICATED SCALING FACTOR.
C PHASE SPECTRUM STILL CONTAINS THA SAMPLING RAMP
cxx~xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
C EXPAND INUM TO 2**N
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

iffi1fi1.~ IF<IPLOT.EQ.ZJGOTO 999

,-,-:·.'.-.·
.._,'K.,:.:,.

•!fBG
~J.'J'..

.::! ~i 1 ~
;)jJ 1 ~

J:;:·l-

"!fl: ·.

}.:r•."t ~ . • ~.

[J.e:: 1 2

.'.t...

,' j

c

N=2
ICNTRL=£1

lZ£1 CONTINUE
IF<N.GE.INUMJ GOTO 99
N=N*2
GOTO lZfiJ
M~LOWEST 2**N GT INUM

99 IF<N.GT.4fi196J STOP'AP OVERFLOW ON SPECTRUM'
THIS FOR AP'S SAKE
DELF=l.£1/(N*TSECJ
DEL' IS RETURNED TRANSFORM FREQUENCY
?AD OUT AVAL WITH ZEROS
IF<H1Uf\1.EQ.NJ GOTO 1.0'11
ISTART=!NUM+l

:t:J:
i .3' l 1

c

DO 101 I=ISTART,N
AV;l,L(I >=Z • .0'
;:-;_ I~l=Z. S*DELF*N
FLIM=MAX TRANSFORM FREQUENCY
SE~K FREQUENCY DECADE OF PLOT
rBASE=.0'.1

c

IBASE=-1
C:ONTINUE
1F<FLIM.LE.FBASEJ GOTO 1.0'3
FBASE=FBASE*l.0'.
IBASE==IBASE+l
GOTO 1.0'2
FBASE=FBASE*.0'.1
IBASE=IBASE-1
F:·:A:<=FL IN/FBASE
I ::t~AX =IF I X (Fi4AX >
! Ft•lA::= I FMAX+ 1
FMAX=FLOATIIFMAX>

FMAX=NEXT HIGHEST INTEGER DECADE=! TO 9

PAGE JOflil

fl;: :; "
":;:;J::;
0'"\' ~.r
0'.fH 1
!!£"l;:
.c':,J d,.;
.: ~1' 4::
;;,(J 4 ·:'
C:1·,: ~·

''.0'59
.7.')52
.0'~.15 3
f'J'!'i!i
("[J50
{;.\');'

kJ!<f?:3

i(J6 .·.
ti.,.VO ~~
iF '52
.r.f06 ;I_

~;!::'S ~

c:-:v ~ ·~

zr: ·:; r
en·.
J)?l
fJ:J7:::.
,'Jfi:' .

~-. ~~ <:] :_,

.i) :..J:.; .

.t) '"j ·.

FORM PLOTTING MASK
V~IZE=9 • .0'
ASPECT=!l!. 75
XSIZE=VSIZE*ASPECT
XOFST=XSIZE/2.0' • .0'
VOFST=VSIZE/2!l! • .0'
CSIZE=VSIZE/8!l! • .0'
DELX=XSIZE/1.0".0' • .0'
!F'ICNTRL.NE.!l!l DELX=XSIZE/36 • .0'
'i =FMAX* 1.0' .!l!
IV=IFIX<V>
DELY=VSIZE/IV
IF<IPLOT.GT • .0'l CALL PLOTS<!lJ,!lJ,!lJ)
IF<IPLOT.LE.!l!> CALL PLOT(.0'.,.0'.,-999)
CALL SETMSG<!l!>
N X= 1.0'.0'
IF(!CNTRL.NE • .0'l NX=36
CALL GRID<XOFST,VOFST,NX,DELX,IV,DELV,MASK>
CALL PLOT<XOFST,VOFST,3}
CALL NEWPEN<3>
X=XOFST+XSIZE
V=YOFST+VSIZE
CALL PLOT(X,VOFST,2l
CALL PLOT<X,V,2>
CALL PLOT<XOFST,V,2l
CALL PLOT<XOFST,VOFST,2)
CALL NE\.JPEN< 1)
CALL PLOT<X,VOFST,-3)
~E-ORlGIN THE PLOT
X!NC=~SIZE/1.0' . .0'
IF<ICNTRL.NE.!l!l XINC=XSIZE/36.!l!
XNUM=Qf.!lJ
IF<!CNTRL.NE • .0'> XNUM=-18!l! • .0'
V:-CSIZE
!~<ICNTRL.NE.Zl V=-4 • .0'*CSIZE
':'ELX=l • .0'
lr\ ICNTRL.NE • .0'l DELX=1.0'.!l!
;'lX"' 1.0'
IF<!CNTRL.NE . .0'l NX=37
)\=iii. fJ
DO 1.0' 4 I= 1 , N X
lrCICNTRL.NE • .0'l GOTO 1.0'41
CA~L PLOT<X,.0'.,3)
CALL PLOT<X,VSIZE,2l

lqll CALL NUMBER<X,V,CSIZE,XNUM,9.0'.B,-ll
XNUI"'=XNUM+DELX

l8~ ~(=~~-XINC
I'·!=IY*!3.1
'/:NC='!SIZE/IV
IV=IV+l
VNUt-1=.0' . .0'
'f=Z.!l!
::1=1.5"CSIZE
)\! I'! C =-)(S I Z E

PAGE !l!!l!2

fJ.0'9 .:_
fJ!iJ9S
0 l.fJrr
Zlli'f·,
z: .. ~.fZ:
.J' :':~
·:-f:, .ff ,_;
_::: '.J!S
.' 1 FJO
.a lXJ~i
.0!Z~
.'if·, 5-

f' 11 1
z! ~- 2
,'.~. i ~
:..: : l -·
"-' 1 1 ~
Vf 1 1. l

J l : s
.?T ~ 2.':·

:r. 21
(-f1 """'!....,
)l) -~ ..:. '-

--~- ~ 2 :'

-~~-: ~ E .·., ., -:"
.. -I

-:·, ·"""'!.•
~-· ~ ·-·

l"o"• , • ...,

.:.· ~ ,;; ::

"?"! l:

c

VZ2.04 THU ZB-JAN-81 {50:13:59

uO US !=1, IV
CALL PLOTCS.H,Y,3)
CALL PLOT<XINC,V,2>
CALL NUMBER<X,V,CSIZE,VNUM,9H.S,-l)
YNUM=VNUM+l

125 Y=Y+VINC
SSIZE=CSIZE*l.S
::(=X+2 . .IJ*SS IZE
V=VSIZE*Z.5-7.H*SS1ZE
CALL SVMBOL<X,V,SSIZE,l2HFREQUENCV*1S,9H.H,12>
V=V+l2.Z*SSIZE
X=X-SSIZE
DELX=FLOAT<IBASE>
CALL NUMBER<X,V,CSIZE,DELX,9H.H,-1)
V=0.65*VSIZE
X=X+SSIZE
SSIZE=SSIZE*1.33
CALL NEWPENC4l

PAGE 0f/J3

IF< ICNTRL.EQ.B) CALL SVMBOL<X,V,SSIZE,lSHENERGV SPECTRUM,9.0'.B,l5>
IFCICNTRL.NE.H> CALL SVMBOLCX,V,SSlZE,.lSHPHASE SPECTRUM,9H.H,l5)
FEND=FMAX*FBASE
DFPLOT=VSlZE*DELF/FEND
IF<ICNTRL.NE.B> GOTO 1051
OFPLOT=PLOT UNITS PER FREQUENCY SAMPLE

PROCESS TIME SERIES
~ 1C X** 1t * * * -:t 'A: '1: ** *** *********'It************ *"*WW·*W* ****"****

AVAL< N+l >=-XSIZE
AVAL<N+2l=-XSIZE*7.B/44.B
AVALCN+3l=-8.5*XSIZE
NX=N+3
E:<PAND AVAL TO CONTAIN DISPLAY CONSTANTS
DO AP PROCESSING
MN=N+2
NN=~1N/2
LN=~1N+l
NNN=NN-1
C.~L!.. APCLR
CALL APPUTCAVAL,Z,NX,2l
CALL APWD
CALL VMOVCN,l,8189,1,3)
HOLD DISPLAY CONSTANTS IN HIGH MEMORY
U\L L RF F T< .0', N, 1 l
CALL RFFTSCC.0',N,3,1)
NN=COMPLEX TRANSFORM LENGTH
CALL POLARC0,2,H,2,NNl
CALL MAXV<B,2,MN,NN>
NORMALISE AMPLITUDE SPECTRUM
CALL VFILLIMN,LN,l,NNN>
CALL VDIVIMN,1,Z,2,B,2,NN>
SCALE SPECTRUM FOR PLOTTING
CALL VSMULCZ,2,8189,0,2,NNI

SCALE PHASE FOR PLOTTING
CALL VSMULI1,2,8198,1,2,NN>

!3'14...!
.0':F
Z14E ,.. . .~ ..

:0142
l'j ~ _:. s
:::.r:. Sit
.. J 1 5 ~

11157:
~:: l :, (
JJlSE
:'lc:!E

J: s::.
.0' ~ s ~~
:J l S-
(fl :,~
.':!! s-:'
9' 1 5 ·:·
:'17-

·4

':I 7£·
i"l :):

r 1 '3.0
·
1 1 3 3

c

, 'l'-
J.Y.10

c

22'6

207

V~2.RJ4 THU RJ8-JAN-81 RJRJ:13:59

CALL VSAD0<1,2,8191,1,2,NN>
CALL AP\./R
CALL APGET<AVAL,B,LN,2>
CALL APlt/0
AVAL<l,MN>=AMPLITUOE:PHASE
AVAL<LN>=SCALING FACTOR FOR AMPLITUDE
PLOT AMPLITUDE SPECTRUM
CALL PLOT\.0'.,Z.,3)
CALL NE\./PEN<3>
V=Z.H
ISTART=l
IF< ICNTRL.NE..0'> ISTART=2
DO 1Z6 I=ISTART,MN,2
CALL PLOT<AVAL<I>,V,2>
V=Y+DFPLOT
IF< ICNTRL.NE.Z> GOTO 2.0'8
MARK IN SCALING FACTOR
CALL NE\./PENCll
X=4.5*CSIZE
'i=Z.
FLOAT SCALING FOR DISPLAY
ASCALE=l.Z
BSCALE=Z •
8INDEX=Z.
IF<AVAL<LN>.LT.l • .0') ASCALE=1.0' • .0'
IF<AVAL<LN>.GT.l.Z> ASCALE=.0'.1
IF<ASCALE.EQ.1.0'.Z> BINDEX=-1.9
IF<ASCALE.EQ.Z.l> BINDEX=l.H
CONTINUE
!F<AVAL<LNl.GE.l.Z.AND.AVAL<LN>.LT.1.0' • .0')
AVAL<LN>=AVAL<LN>*ASCALE
BSC~LE=BSCALE+BINDEX
GOTO 2Z6
CALL SYMBOL(X,V,CSIZE,21HSCALING FACTOR=
Y=V+lS.Z*CSIZE
CALL NUMBER<X,V,CSIZE,AVAL<LN>,9H.Z,lJ
Y=Y+6.Z*CSIZE
DEU<=~. S*CS IZE

~18- X=X-DELX
0\2- CALL NUMBER<X,V,DELX,BSCALE,9Z • .0',-l)
'' ;<-. ICNTRL=l
dl81 CALL PLOT<B.,B.,-999)
~:'38 GOTO 1B31
J.as 2.0'S X=4.5*CSIZE
~·~~ V=.0' • .0'

GOTO 2.0'7

1 !? CALL SVMBOL<X,V,CSIZE,'CHANNEL NUMBER= ',9B.B,17>
r· ·~.' V=V+I6.Z*CSIZE

RC~~N=FLOAT<ICHAN>
_, CALL NUMBER<X,V,CSIZE,RCHAN,9.0' . .0',-l>

ICNTRL=Z
'?99 F<IPLOT.EQ . .0'l CALL PLOT(Z.,.0'.,999l

J\ RETURN
?. ~ID

PAGE BB4

Velocity Analysis :- MPVEL

Input file ••••• DK2:ANINV.DAT

Output file •..• DK2:ANOUTV.DAT

Input Parameters

READ(1,1000)L,NCHAN,NSTART,M

1000 FORMAT(I5)

L •••••••• Number of Samples per trace

NCHAN •••• Number of Channels in gather

NSTART ••• Starting sample number, from time zero

M ••.....• Level of interpolation carried out on data

READ(1,1200)FBUF

1200 FORMAT(12X,3A4)

FBUF ••..• Input data file name

READ(1,1100)XSTART,XSTEP,FSAMP

1100 FORMAT(6F10.0)

XSTART .•• Shot/First receiver offset

XSTEP ..•. Receiver spacing

FSAMP Sampling frequency, samples/millisecond

Page 177

READ(1,1100)T01,T02,TOSTEP,TGATE

T01 •••••• Start time for analysis, milliseconds

T02 •••..• End time for analysis, milliseconds

TOSTEP ••• Gate step size, milliseconds

TGATE •••• Semblance calculation gate size, milliseconds

READ(1,1100)VSTEP,V1,V2MIN,V2MAX,VICPT,VGRAD

VSTEP •••. Velocity step in semblance calculation

V1 ••••••• Start velocity in analysis

V2MIN •••• Minimum value of end velocity

V2MAX •••• Maximum value of end elocity

Page 178

VICPT •••• Intercept on V-axis of line joining V2MIN and V2MAX

VGRAD ..•• Gradient of line joining V2MIN and V2MAX

- .J ~r:
_'.J !;.

'.'.11
... ,l}''
~i_L~: -~

•. f-'5 1._
. .' _,f: :c
;. '1 "

.',...., ~-. · .

. ·J<-' ~....--

'~ ·.

VSZ.B4 THU SB-JAN-81 SS:S1:38 PAGE !6/61

DIMENSION NMOFSC4/696l.TI6SQC512l,NVC512>,VINSQ<1716l,SMBLCE<1716),
1S0(lf624>,S1<11624l,XSQC24>,
ZJSTCHC24>,JST<24>,NWDSC24l,NELC24>,JBLKC24>,CONSTC7l,FBUF<3>

LOGICAL*! SW
REAL*S FSPEC
D.li.TA K1, K2, KNCH IN, KBL:K, KBLKI N, KADD2, KADD 1, KHF, KFS, NBUF

l/1,2,8185,8186,8187,8188,8189,819/6,8191,11624/
DATA DEV/3RDK I

~ ASSIGN INPUT AND OUTPUT CHANNELS
CALL ASSIGN<1,'DK2:ANINV.DAT',13l
CALL ASSIGN<2,'DK2:ANOUTV.DAT',l4l
IF<IFETCH<DEV>.NE.I6>STOP'FETCH ERROR'
IDCH=IGETC< >

C REAO IN REQUIRED INPUT PARAMETERS
READ<1,1161616l L,NCHAN,NSTART,M

;ZZ~ FORMAT<4I5>
READ< 1,121616) FBUF
READ<l,llf616) XSTART,XSTEP,FSAMP

:lBB FORMATC116F116.16l
READ< 1,111616) Tl6l,TI62,TI6STEP,TGATE
READC1,11f616) VSTEP,V1,V2MIN,V2MAX,VICPT,VGRAD

:2HZ FORMATC12X,3A4>
~ VALIDATE DATA AND CALCULATE REQUIRED ARRAYS AND CONSTANTS.
~ FORM ARRAY JSTCH CORRESPONDING TO THE BEGINNING BLOCK
·' ~i'.it-1BERS FOR EACH TRACE ON DISK.
- ~• SAME TIME FORM ARRAY XSQ OF SQUARED SHOT RECEIVER SEPARATlONS

JSTCH<l>=l
NREAD=L*M/128
X=XSTART
XSQ(1 l=X**2
DO 116 JCHAN=2,NCHAN
JSTCH!JCHAN>=JSTCHCJCHAN-l)+NREAD
X=X·•XSTEP
XSQ(JCHAN>=X**2

I .1 c 0 NT I N u E:
- ~A~CULATE FSAMPM,THE SAMPLING FREQUENCY AFTER INTERPOLATION

FSAMPM=FLOATCMl*FSAMP
:ALCULATE TSAMP THE SAMPLE INTERVAL

TSt>.!'1P=l.Z/FSAtv1P
- ~A~C~LAT~ TSTART,THE BEGINNING TIME

TSTART=NSTART•TSAMP
~ ~~~CULATE NSTM THE INITIAL SAMPLE NUMBER AFTER INTERPOLATION.

i'l S Hl =1·1 * N START
,-~JNCATE TBSTEP TO BE INTEGRAL MULTIPLE OF TSAMP

TBSTEP=TSAMP*IFIX<TBSTEP*FSAMP>
~ ~JUND TGATE TO BE EVEN INTEGRAL MULTIPLE OF TSAMP

IGAT~ IS THE NUMBER OF ELEMENTS IN GATE<BEFORE INTERPOLATION>
. GTMZ IS THE NUMBER IN HALF OF GATE,AFTER INTERPOLATION.

NGATE=IFIXCTGATE*FSAMP+l.f6)/2*2
TGATE=FLOATCNGATE>*TSAMP
!~GATE =NGATE + 1
NGTM2=H*CNGATE/2)

o'<SURE PlAT TB1 IS A LEAST TSTART+TGATE/2

~, . _, .-.
'L)•'-

; ,·, :~

'.l:

(-~.

_-r·,_1,
_~-;; ~--· 4

.......
'Yr: ::j ,.;.r. ~
:·;>f"3 ~
.'~ -.:~:

_.,.;:)

-,_!C;-

'-'·' -. -

~·. ·.

----- - -----------

V.02.!64 THU !68-JAM-81 SB:Sl:38

Tf61=AMAX1CT!6l,TSTART+f6.5RTGATEJ
t_ .~,,J:.it;O TSl UP TO BE INTEGRAL MULTIPLE OF TSAMP

TB1=TSAMP*<IFIX<Tf61RFSAMPl+l}
c T~JNCATE Tf62 IF NECESSARY SO THAT THERE IS SUFFICIENT
r DATA TO DO VELOCITY ANALYSIS AT Tf62

TS2MAX=SQRT<<TSTART+<L-1 >*TSAMP-!6.5*TGATE>**2-
!XSQ(NCHAN>IV1**2J
TB2=AMIN1CT!62,Tf62MAX>

CA~CULATE NT!6,THE NUMBER OF TWO WAY TIMES CONSIDERED
NT8=IFIX<<TB2-TB1l/Tf6STEP>+l
TB2=T8l+CNT8-1J*Tf6STEP
IF<NTS.LE.SJSTOP'NT!6 NOT POSITIVE'

- :"·J?.ii ARRAYS Tf6SQ {SQUARED TWO '.JAY TIME> AND NV <NUMBER
c tJr Vc:LOCITV POINTS AT EACH TWO WAY TIME)

TZJ=Tf61
DO 2!6 JHJ'= 1, NT!6
T.0SQ{JT!6J=Tf6J**2
V2=VICPT+VGRAD*Tf6J
V2=AMAX1CV2MIN,V2J
VZ=AMIN1CV2,V2MAX>
NVCJT8J=IFIX<<V2-VlJ/VSTEP>+l
T.0'J=T.0'J+Tf6STEP

'-..J CONTINUE
VINSQ IS THE ARRAY OF INVERSE SQUARED VELOCITIES

NVMX=NVCNT!6J
IF<NVMX.GT.l7!6JSTOP'NVMX GT 17!6'
V=Vl
DO 3.0' JV=l,NVMX
V!NSQCJV>=l.f6/V**2
V=V+VSTEP

"?-:'! CONTINUE
. .: 'JO'.J C.'l.LCULATE NWMX ,AN UPPER BOUND ON THE SIZE OF THE

)A-rA WINDOW.IF THIS EXCEEDS NBUF PROGRAM STOPS.

PAGE f!IS"l.

NWM~=IF!XCFSAMPM*SQRTCTBSQClJ+XSQCNCHANJ*VINSQ(l)J+S.SJ
:-IFI:<<FSAMPM*SQRT<TBSO<l l+XSOCNCHAN>*VINSO<NVMXJJ+S.SJ+2*NGTM2+1

IF<NWMX.GT.NBUF-127>STOP'NWMX TOO LARGE'
- ~O~ST IS ARRAY OF CONSTANTS USED IN AP

CONST!ll=1.8/FLOATINCHANI
•:ONST:ZI=-128.
C0NST<31=1.8/128.
CCNST!~I=FLOATINGTM2-NSTM+ll
CONST{51=-FLOATINGTM2+NSTMI
CONST{ 6 1=.0'. 5
CONST(7 I=FSAr.,PM

J:\ITIAL.ISE AP AND PLACE CONSTANTS IN TOP 7 LOCATIONS
C:;\L L API NIT
CALL AP'WR
CALL APPUTICONST,KNCHIN,7,K2>

S~~CULAT THOSE ADDRESSES WHICH ARE CONSTANT IN NMO
.:~) SEMd ANCE COMPUTATIONS.

IV!N Q=NCHAN+l
r ssn :1WMX
I i:N= S.SQ+ 1

~ ~J0KU? F LE TO BE READ FROM

VIJ2.IJ4 THU IJB-JAN-81 IJS:IJ1:38 PAGE f4B3

'~7 · CALL IRADSB<12,FBUF,FSPEC>
;.·~.:' 7 ' IF<LOOKUPIIDCH,FSPEC>.LT.BISTOP'LOOKUP ERROR'
~~3. ~RITE<2> L,NCHAN,NSTART,M
0~8~ WRITE<2> XSTART,XSTEP,FSAMP
~~1 WRITEI2J TBl,TB2,TBSTEP,TGATE
d~~ WRITEI2J VSTEP,Vl,V2MIN,V2MAX
~~1~ WRITEI2l NTB

I
1 1- ..

1"'_-
_.;F;:
:• J?.
. '1~
f

~~1:

;: j ;.

']"l'"
. q:;.·

·. i:.: ..
; .

i
·L--. , .. :J._~
;

::::: =.:: = = = ~ =:::;. = ;":';=-= = = == = = = == = = = = = = ==·= = = = = === = === =·=== ====== ==== = = =============
DO 5/iHJ J HJ= 1 , NTB
NVD=N'/IJTBl

~ THE PURPOSE OF NMO IS TO CALCULATE ALL THE NORMAL MOVEOUTS AND
: ;JXILIARV INFORMATION NECESSARY TO CALCULATE THE SEMBLANCE FOR
.. THE REQUIRED RANGE OF VELOCITIES AT A GIVEN VERTICAL INCIDENCE
.:_: T I i1E.
:~--- ---
C OUTPUT ARGUMENTS AND METHOD OF COMPUTATION
~--- ~IMOFS IS ARRAY CONTAINING ALL THE REQUIRED NORMAL MOVEOUT OFFSETS.
-ALTHOUGH IT IS A LINEAR ARRAY IT IS USED IN A 'TWO DIMENSIONAL'
- r1ANNER TO STORE ALL THE OFFSETS AS A FUNCTION OF BOTH SEISMIC
~ CHANNEL NUMBER AND VELOCITY.THUS THE FIRST NVD VALUES ARE
C THE OFFSETS FOR CHANNEL l,IN ORDER OF INCREASING VELOCITV,THE NEXT
~ riVD ~~LUES THE OFFSETS FOR CHANNEL 2 AND SO ON.THE OFFSETS
CARE ROUNDED TO THE NEAREST !INTERPOLATED> SAMPLE AND,FOR A GIVEN
C SEISMIC CHANNEL,ARE RELATIVE TO THE BEGINNING OF THE DATA W.INDOW
- THAT IS TO BE TAKEN INTO THE AP TO DO THE PARTIAL SEMBLANCE
. :ALCULAT!ONS FOR THAT CHANNEL,AT TIME JT9.

, . ..C..T A TIME JTB,AND FOR A CHANNEL JCHAN THE DATA WINDOW THAT IS
. TAKEN INTO THE AP liN ROUTINE SEMB> MUST COVER ALL TIMES FROM
- TH:O CROSSING OF THE SHALLOWEST ARRIVAL TRAJECTORY !VELOCITY OF

v:MVD ITO THE CROSSING OF THE STEEPEST ARRIVAL TRAJECTORY
~ :VELOCITY OF V<NVI lll.IN ADDITION A HALF GATEWIDTH OF DATA IS
C ~E0U!RED AT EITHER END.

C SET UP INITIAL ADDRESSES
'WNC=NVD*NCHAN
~TOT=NVNC+4*NCHAN
l~t~C=IVINSQ+NVD
I 1 ~I Ni-10+ NVNC
I2=Il+NCHAN
13=I2+NCHMI
i4=I3+NCHAN
IS=I4+1lCHAN
IADD=I5+NCHAN

7RANSFER T~SQ TO H
CALL APPUTITBSQIJT8l,H,Kl,K2l

,- -:'R,c,NS:=ER XSQ TO ll,NCHAN>
CAlL APPUTIXSQ,l,NCHAN,K2>

'::::::.;l~FE?. V!rlSQ TO IIVINSQ,NVDI
CALL APPUT<VINSQ,IVINSQ,NVD,K2>

~ET UP INITIAL ADDRESSES FOR RESULTS

v. -:-··' ,·,
G(. ~;

.} .. 2
;J 'jj ..

.·_y • .0 ~
.•if ;;c

j'

0' !

VflJ.Z.IlJ4 ·THU· llJS-JAN-81 !i!lll~!i!1:38

IRES=INMO
IRNVl=IRES+NVD-1
IlJ=Il
I2J=I2
CALL APWD

ITERATE THROUGH CHANNELS
DO 4Z JCHAN=l,NCHAN

C :oRM XSQIJCHANI*VINSQCJVI+T!i!SQCJTilJ> IN <RES,NVD>
CALL VSMSA<IVINSQ,Kl,JCHAN,IlJ,IRES,Kl,NVD>

~ ?ORM SQRT:RES,NVD>
C.!I.LL VSQRT< IRES,Kl,IRES,Kl,NVD>

PAGE !i!!i!4

~ ?C~M INTIFSAMPM*SORTCTflJ.SQCJT!i!J+XSQ(JCHAN>•VINSQCJV>>+!i!.5} USING FSAMPM
IN KFS AND !i!.S IN KHF

CAL~ VSMSA<IRES,Kl,KFS,KHF,IRES,Kl,NVD>
CALL VINTIIRES,Kl,IRES,Kl,NVD>

- f~LL !ADD WITH VALUE FROM IRNVl AND NEGATE IT
CALL VFILL< IRNVl, IADD,Kl,Kl >
CALL VNEGIIADD,Kl,IADD,Kl,Kl >

C FILL IlJ WITH VALUE FROM IRNVl <VELOCITY V2>
~ ~~D 72J WITH VALUE FROM IRES <VELOCITY Vl>

Ci1.LL VFILL<IRNVl,IlJ,Kl,Kl}
':ALL VFILL<IRES,I2J,Kl,Kl>

~ ~80 VAL~E IN IADD TO IIRES,NVD>,I.E. SUBTRACT MOVEOUT FOR VELOCITY VZ
~ !v GIVE NMOFS

CALL VSADDIIRES,Kl,IADD,IRES,Kl,NVDI
- ~EDEFINE ADDRESSES SO THAT RESULTS FOR NEXT CHANNEl FOLLOW ON

IRES,IRES+NVD
IRNVl=IRNVl+NVD
IlJ=IlJ+l
I2J==I2J+l

Hj CONTINUE
-ADD -NSTM-NGTM2 TO IIl,NCHAN> USING VALUE IN KADDl

CALL VSADD< I 1, t:l. KADD 1, I 1, Kl, NCHAN)
•: :\DD -NSTM+NGTM2+1 TO <I2,NCHAN> USING VALUE IN KADD2

CALL V3ADDII2,Kl,KADD2,I2,Kl,NCHAN>
C ~~3TRACT IIl,NCHANI FROM II2,NCHAN> TO FORM 113,NCHAN>

~ALL VSUB<Il,Kl,I2,Kl,I3,Kl,NCHAN>
C ~JL~IPLV <ll,NCHANI BV l.!i!/NSBLK FROM KBLKIN TO FORM II4,NCHANJ

CALL VSMULIIl.Kl,KBLKIN,I4,Kl,NCHAN>
- 7~UNCAT~ !!4,NCHAN> TO INTEGER VALUES

CALL VINT<I4,Kl,I4,Kl,NCHAN>
- 'l'l'_".IPLY \II\,NCHAN> BY -NSBLK FROM KBLK TO FORM IIS,NCHAN>

CALL VSMUL<I4,Kl,KBLK,I5,Kl,NCHANJ
... :,Q D \ I 5, NCi-iAN > TO < I 1, NCHAN >

GALL VADDIIl,Kl,IS,Kl,Il,Kl,NCHAN>
- \DD l.!i! FRot-1 TM TO <Il,NCHAN>

CALL VTSADD<Il,Kl,2.0'49,Il,Kl,NCHAN>
ADD <I5,NCHAN> TO <I2,NCHAN> AND MULTIPLY BY 2.Z FROM TM

CALL VADDII2,Kl,I5,Kl,I2,Kl,NCHAN>
c~.-..,_ VTSNUL< I 2, Kl, 2f15!i!, 12, Kl, NCHAN >

;~~ ~LL VALUES FROM INMO TO IS PREPARATORY T
~ 7R~NSFER TO HOST

CALL VFIX<INMO,Kl,INMO,Kl,NTOT)
-~~NSFER TO HOST ARRAYS

? '•
,, .

.; "

}~'! ~-
-> 3 : .. .
ft. J -
if 1 3 c

i'Jl 3 -
' 3!• ' ..

.. 3 ·-
It -:~

~ 4
; ,_

:3 - 1
ill 4
:,£; ;~ "

.J l 4:.

21 4 ~-

j- / '-~

;. ~-..

._r. S ..

. '1.

-- ~ 7.

--·-·----------- ----------------

TNU .a'S~AN·-9 l .a'fiJ;XJl: 3S PAGE iJPJ5

. ~ -

c
c

c
-c

c

C.l\L L A?WR
CALL APGET<NMOFS,INMO,NVNC,Kl>
CALL APGET<JST,I1,NCHAN,K1>
CALL APGET<NWOS,I2,NCHAN,K1>
CALL APGET<NEL,I3,NCHAN~K1J
CALL APGET<JBLK,I4,NCHAN,Kl)

~ET UP INITIAL ADDRESSES FOR SEMBLANCE CALCULATIONS
ISHlB=IEN+NVD
ISEMBl=ISEMB-1
iSMAX=ISEMB+NVD
I SM.t>.X 1 =I SMAX+ 1
ISH=ISMAX+2
CALL APWD

CLEAR SECTIONS OF AP MEMORY THAT WILL HAVE DATA ADDEO •
CALL VCLR<IEN,K1,NVOJ
NVNG=NVO*NGATE
CALL VCLR<ISTK,Kl,NVNG>

FILL 2UFFER SJJ WITH DATA WINDOW FOR CHANNEL 1
IF< IREAD<NWDS< 1 J,SJJ(1 >,JBLK< 1 l+1,IDCH>.LT • .0'>STOP'READ ERROR'

DSFINE INITIAL VALUE OF BUFFER SWITCH;
SW=.TRUE.,READ FROM SJJ,INTO Sl
SW=.FALSE.,READ FROM S1,INTO SfiJ.

SW=.TRUE.

C ~TERATE THROUGH CHANNELS
JNt•IO= 1
DO 2ZfiJ JCHAN=1,NCHAN
.JCHAN 1 =JCHAN+ 1

C TRANSFER DATA FROM BUFFER TO AP
C1-'\LL APWR
Cf.·.LL l'..JAIT<IDCHJ
lF(SW> CALL APPUT<S.0'<JST<JCHAN>>,.0',NEL<JCHANJ,K2>
IF< .NOT.SWJ CALL APPUT<S1(JST<JCHANJ),JJ,NEL<JCHAN>,K2>
IF(JCHANl.GT.NCHANlGOT05.0'

r -?ANSFER NEW DATA FROM DISK TO BUFFERS
T F < SW >IE RR= I READ< NI,/DS < JC HAN 1 > , S 1 < 1) , J STCH < JCHAN 1 J +JB L K(JCHAN 1) ,

IIDCHl
IF< . NOT. S\.J> IE RR= I READ< NWD S (J CHAN 1) , SfiJ(1 >, J STCH < JCHAN 1 J +

i·J8LKi JCHAN1 >, IDCH l
IFIIERR.LT.fiJ>STOP'READ ERROR'
S\·i=. NOT. S\.f

~ ~OW DO SEMBLANCE CALCULATIONS ON DATA WITHIN AP
:.;; SAL L ,!\PWD

JO ::'iHJ JV= 1, NVD
C ~D0 APPROPRIATELY MOVED OUT GATE ONTO STACK USING ONLY EVERY MTH
': •)."-.-·A POINT

CALL VADD<ISTK,K1,NMOFS<JNMO>,M,ISTK,Kl,NGATEl
7 0RM SUM OF SQUARES OF ELEMENTS ADDED ONTO STACK

CALL SVESQCNMOFSIJNMOl,M,ISSQ,NGATE>
:ENJ=ISSQ+JV
CAJ. 1_ VADDCIENJ,Kl,ISSQ,Kl,!ENJ,Kl,Kl>

~~OE~IN~ ISTK SO THAT NEXT STACK FOLLO\.fS ON
ISTK=!STK+NGATE

iHU za-JAN-81 zz:zt:3a PAGE RJR/6

..;'l"?<'
,;J1 7 ':: :. i5f•

V.'JZ .Z4

JNMO=JNHO+l
COi'IT I NUE
£STK=ISMAX+2
CONTINUE

.trl 7
J 1 7- ' fJf;'

3 ' 7 ':

,, 7·.

'X-, .-.

,; . 3··

z1 at.
.. na.

.~.·- s·

.(; - 3;.

C MO~ ACCUMULATE SEMBLANCE
DO 3fJ!iJ JV=l,NVD

r ~;No MEAN SUM OF SQUARES FOR EACH STACK
CALL SVESQ(!STK,Kl,!SEMBl+JV,NGATEl
ISTK=ISTK+NGATE

''i5fx CONTINUE
~ DIVIDE MEAN STACK ENERGIES BV SUMMED ENERGY

CALL VDIV<IEN,Kl,ISEMB,Kl,ISEMB,Kl,NVD>
c FIND MAXIMUM VALUE OF SEMBLANCE

CALL MAXV<ISEMB,Kl,ISMAX,NVD>
c ~!VIDE BV NCHAN TO NORMALISE SEMBLANCE AND ITS MAX VALUE

NVl=NVD+l
CALL VSMULIISEMB,Kl,KNCHIN,ISEMB,Kl,NVlJ

: YRITE OUT SEMBLANCE AND ITS MAXIMUM VALUE TO SMBLCE
CALL APWR
CALL APGET<SM8LCE,ISEMB,NV1,k2)

c WRITE OUT ADDRESS OF MAXIMUM VALUE TO IMAX
CALL APGET<IMAX,ISMAXl,Kl,Kl>

'- C.t\~CUL;lTE JVSMX, VALUE OF JV FOR WHICH SEMBLANCE IS MAXIMUM
JVSMX=IMAX-ISEMBl

~ ~RITE OUT SEMBLANCE TO OUTPUT DEVICE 2
WRITEI21 NVO,JVSMX,lSMBLCE<JVl,JV=l,NVDJ

5fd.0 CONTINUE
CALL CLOSECIIDCHI
STOP
E:ND

NMO corrected gathers :- MPCDP

Input F~le •.•...• DK2.ANCDP.DAT

Input Parameters

READ(1,1000)L,NCHAN,NSTART,NLYR,M

1000 FORMAT(12I5)

L •••••••• Number of samples per trace

NCHAN •••• Number of channels per gather

NSTART ••. Sample number of start of trace

NLYR •.... Number of time/velocity pairs

M ••.•.•.. Level of interpolation

READ(1,1100)XSTART,XSTEP,FSAMP

1100 FORMAT(6F10.0)

XSTART ... Shot-First receiver offset

XSTEP ..•• Receiver spacing

FSAMP .••• Sampling rate in samples/millisecond

READ(1,1200)(TOLYR(I),VLYR(I),I=1,NLYR)

1200 FORMAT(2F10.0)

TOLYR .•.. Two-way travel time mil:iseconds

VLYR •••.. RMS velocity down to this two-way travel time

Page 179

READ(1,1000)INDEN,INDMUT

INDEN .••• Scaling flag

<0 - no scaling

:0 - Unit RMS energy

>O - Inverse energy scaling, diversity stack

INDMUT ••• Mute flag

>O - apply mute

<O - no mute

If INMUT is set for a mute option then read the following

READ(1,1000)(MUTE(I),I:1,NCHAN)

Page 180

MUTE ••••• Sample position to mute down to for each channel

READ(1,1300)FSPECR

1300 FORMAT(3A4)

FSPECR ••• File containing data for input

READ(1,1300)FSPECW

FSPECW ••• Output file, to contain NCHAN NMO corrected channels

and 1 stacked trace

VJ6Z.J64 THU !68-JAN-81 16!6:164:12 PAGE Bill

::__ =~::: = ~ = = = = = = = = == ==== == = = =:== =·== =~======= ===--=--=-==-= = ===-====-=--=-= ==-=·==
C f1A ~ N PROGRAM
c---

:' ~:;,';
r:'"'fr:::
[.'~Yi'J'

f,.1i).J -~

--: J1 :::
fHJD

:'=(~t'). :.

'31
':) ~~· 1. ;
(!' 1 --;
.:. ·:J..

l]ii 1 ~
.e :r 1 :.
.f7~.6
,-, :: l -

.:: ?Z
'.t} 2 L

i'Jl:rZ ::
)!_,.:; 2 .;
!,!'('2:.-:

JZ2:-

.-: -~13.~·:
c'J31
:: ~"1:::
"''~'3 ..
. :r:

3b
"':n :·
J;JJ[

REAL*S FSPECR,FSPECW
VIRTUAL TBSQC2!648l,VlNSQC2!648)
DIMENSION MUTEC24>,XSQ(24l,FBUF<3>
COMMON /LAVER/TBLVRC99l,VLVRC99)
DATA DEV/3RRK I
CALL ASSIGN< 1, 'DKl :ANCDP. OAT' ,13 l
IF<IFETCH<DEV>.NE.B>STOP'FETCH ERROR'
IDC!-I=IGETCC >
IDCHl=IGETC<)
READ<l,lBBB}L,NCHAN,NSTART,NLVR,M

Wf1.'6 FORMAT< 1215 >
READ<l,llBB>XSTART,XSTEP,FSAMP

l:BfJ FORMATC3FlB.J6)
READ<l,l2BB><TBLVR<I>,VLVR<I>,I=l,NLVRl

12fff1 FORMATC2FlB.B>
READCl,lBBB>INDEN,INDMUT
IFCINDMUT.GE.fJ>READ<l,lBBBl(MUTE<I>,I=l,NCHAN>
READ<l,l3BS>FBUF

i'JDfi.f FORMATC3A4>
CALL IRAOSSC12,FBUF,FSPECR>
READC1,13BBlFBUF
CALL IRADSSC12,FBUF,FSPECW>
IF<LOOKUPCIDCH,FSPECR>.LT.B>STOP'LOOKUP ERROR'
NBLKS=L*CNCHAN+l)/128+1
IF<IENTER<IDCHl,FSPECW,NBLKS>.LT.B>STOP'ENTER ERROR'
L2INT=2
DO 5 K=l, lBBS
IF<L2INT.GE.Ll GOTO lS
L2INT=2*L2INT

" CONTINUE
':.?! ~<=XSTART

DO 2S JCHAN=l,NCHAN
XSQ(JCHAN)=X**2

.:;_;·J(:
;v4f 221
>.·ij 4 .!

Z842
fJZ4'3

X=){+XSTEP
CONTINUE
TSAMP=l./FSAMP
T2=NSTART*TSAMP
DO 3/J JT.0'= 1, L
T~SQ(,JTIO=TS**2
H)'=HJ+TSAt-IP
CONTINUE

J.0'44
.':' :1 £1 •;

CALL SETAP<L2INT,M>
CALL INVSQ(FSAMP,NSTART,NLVR,L,VINSQl
CALL CDP<L,L2INT,NCHAN,M,NSTART,FSAMP,MUTE,

liNDEN,INDMUT,IDCH,IDCHl,TBSQ,VINSQ,XSQ)
STOP
END

V.0'2./64 THU 168-JAN-81 SB:/64:53 PAGE 16!61

r· ~ = = = = == = = = = = = = = == = === = = = = = == =:== = = = = == = =====:=======-=-= ==-=======-====== ===
'.··::,J:: BLOCK DATA

c----- --
1~rr~ IMPLICIT INTEGER*2<I-Nl
~~J' COMMON /KONST/ KlM,KS,Kl,K2,K3.K4,KS,K6,K7,K8,K9,KIS,

:: ; /Y,. I B, I C, I D, !TOP
·~1· DATA KlM,KB,Kl,K2,K3,K4,KS,K6,K7,K8,K9,KlS,IA,IB,lC,ID,ITOP

l/-1,8,1,2,3,4,5,6,7,8,9,1S,S,2.0'48,4B96,6144,8191/
::;, -: END

Vf82.f/J4 THU BB-JAN-81 BB:B4:38 PAGE· BBl - - ~--~-

:: = ~ = = :: = = = = = = === = == ==== = = == = = == == = === == = ==-====:=-=== =~=:z:s:=a:::.::=a=r.:tum mmm.e:a

SU3ROUTINE INVSQ<FSAMP,NSTART,NLYR,L,VINSQ>
~~--

USES INPUT DATA TO GENERATE ARRAY OF INVERSE SQUARED VELOCITIES
~ V~LOCITIES ARE CONSTANT UP TO FIRST REFLECTOR AND BEYOND

ff'JfJ:'
.~f!!iJ~'
fJ':<(].~

~ .0·;.r·
JJ.JB:

.i5.c' 11::
9'•"'1 z
i!Zil :~
;'!J:fl4
':1.>:15
·'A' Ir·

£l',O'lk
.0.0'19
.4.3~)3

.[Jt/21

[;".32':
~.:J2J.
dt~.--~s
_·:):)~1.)

;:_. ·. -~ .

C LAST AND ARE LINEARLY INTERPOLATED IN BETWEEN.
VIRTUAL VINSQ(2.0'48}
COMMON /LAVER/Tf/JLYR<99>,VLYR<99>
Nl=l
N2=IFIX<FSAMP*T.0'LVRC1>>-NSTART
VINSQ1=1 . .0'/VLYR<l>**2
DO 1.0' I=Nl,N2
VINSQ(I >=VINSQl

:JiJ CONTINUE
IF<NLYR.EO.l> GOTO 4.0'
DO 3B J=2,NLYR
Nl=N2+1 .
N2=IFIX<FSAMP*TBLVR<J>>-NSTART
DELV=<VLYR<J >-VLVR<J-1))/(N2-N1+2)
V=VLVR<J-1>
DO 2.0' I=Nl,N2
VINSQ(I >=1 . .0'/V**2
V=V+OELV

216 CONTINUE
3.0' CONTINUE
4.0' Nl=N2+1

fl2=L
VINSQN=l.B/VLVR<NLVR>**2
DO 516 I=Nl,N2
VINSQ(I >=VINSQN

5.0' CONTINUE
RETURN
END

VB2.B4 THU BB-JAN-81 BB:f/J5:12 PAGI! Jlfll

.: =;.;-.====a :1 ======:arm a=====a:= ======:a==========-=~:====-====.:======-:.=======
SUBROUTINE SETAP<L2INT,M>

·~~ --
~ 2~TS UP COMPLEX EXPONENTIAL TABLE IN D+l
L A~O PUTS 1.8 I~ ID

~~: COMMON /KONST/ KlM,K8,Kl,K2,K3,K4,KS,K6,K7,KS,K9,KlB,
liA,IB,!C,ID,ITOP

,- INITIALISE AP
'.C CALL APINIT

C ~ET UP REQUIRED STARTING ADDRESSES AND CONSTANTS.
~&A~ !Dl=ID+l
"~F I 02= I D+2

:;-_;;_,}: L2!2l=L21NT/2-l
~ TRANSFER l.BI<L2INT*Ml TO KB AND MULTIPLY BY 2PI FROM TM.

8~07 CONST=l.8/FLOAT<L2INT*M>
/.c.n: CALL AP\JR
0Jq~ CALL APPUT<CONST,KB,Kl,K2>
.0'81£ CALL APWD

~ FORM VECTOR RAMP AND TAKE SIN AND COS OF IT
i3 CALL VTSMUL<K.0',Kl,2317,KB,Kl,Kl>

J CALL VRAMP<KB,KB,IB,Kl,L2I21)
':1 C,t~.LL VCOS<IB,Kl,IDl,K2,L2I2ll
·f CALL VSIN<IB,Kl,ID2,K2,L2I21)

'iJf 1.iJ IN IO
cr0 _ CALL VCLR<ID,Kl,Kl}
JiJ' :i CALL VTSADD<ID,K1,2849,ID,Kl,Kl}
~1.7 RE--TURN
: ~-· E NO

THU ~8-JAN-81 ~g:s5:35 PAGE Rlf/11

''.'!J SUBROUTINE COP (L, L 2 I NT, NCHAN, M, NSTART, FSAMP, MUTE,
liNDEN,lNDMUT,IDCH,IDCHl,TBSQ,VINSO,XSO>

BBa? VIRTUAL SEISM<32767>,TBSQC2B48>,VINS0<2B48)
fJfr,L DIMENSION INDEX<2B48>,MUTE<24l,STACK<2B48>,

1DUMC1Bl,CONSTC1Bl,FSTAP<2Bl,XS0<24>
1: .. :}:· COMMON /KONST/ KlM,KB,Kl,K2,K3,K4,K5,K6,K7,K8,K9,.Kl.0',

liA,IB,IC,ID,ITOP

C SET UP REQUIRED STARTING ADDRESSES AND CONSTANTS
'~'.;T: !Bl=IB+l
:zJ~ ICl=IC+l
~l0~ IC2•IC+2
~~1~ IDl=ID+l
~~J~ Ll•L+l
~l~ L212l=L2INT/2-l

a21 CONSTC2>=M*FSAMP
~g~· CONSTC3>=B.S
561~ CONSTC4>=-M*NSTART
J~l~ CONST<S>=B.B
YBl' CONST<6>•L*M
~~l0 CONST<7>=L+l
~01~ CONST<S>=l.B
~J12 CONSTC9>=1.B/M
fJ'F. '? CONST< H1>=(L+ 1 >*M-1
~u: JBLK=l
~12: NBLKTR=L/128
J~ 7 ~ FSTD=ADGET<SEISMCl>>
0~2? FT8SQ=APGADCTBSQ(l))
' .. r:.~ FVINSQ=APGAD<VINSO<l>>
~:-:r'Z~ 1 START= 1
~~~0 DO Sf! K=l,M 
.J.<. :: c F STAP < K > =APGAD < SE ISM( I START>> 
~'2- ISTART=ISTART+Ll 
ff?~~ 58 CONTINUE 

C ~E7 S~tSMCL+ll TO B.B TO COPE VITH TIME OVERFLOW AND CLEAR A IN AP 
0V3~ SEISMCLll=8.8 
: ·3, CALL VCLRIIA,Kl,L> 

C ZTERATE THROUGH CHANNELS 
.,-,,~3° DO 5f18 JCHAN=l ,NCHAN 

C ~EAO IN TRACE SEISM FROM UNIT 2 
3~3~ CALL IWAIT<IDCHll 
J~1- IFIIREADA<IDCH,2*L,JBLK,FSTD>.LT.B>STOP'READA ERROR' 
~~- CALL IWAITCIDCHl 

: COMPUTE INDEX ARRAY 
Jf''J- COiiST< 1 l=XSO< JCHAN) 
~~3~ CALL APWR 

-R.MISFER CKl,KlB> TO HOST DUMMV ARRAY DUM AND REPLACE BV CONST 
0IT3' CALL APGETCDUM,Kl,K1Z,K2> 
~~1; CALL APPUTCCONST,Kl,KlB,K21 

TRAN~~ER TBSQ TO B AND VINSQ TO ICl 
2!1 CALL APPUTAIIC,L,K2,FTBSQl 
J'~4 CALL APPUTACICI,L,K2,FVINSQI 
.. ,.,, .l ·#_.:l.L L AP'WD 

~O~M XSQCJCHANl*VINSQ IN Cl 

-



Vfif2.fif4 THU fifB-JAN-81 fifB:B5:35 PAGE !KS2 

~~44 CALL VSMULCICl,Kl,Kl,ICl,Kl,L> 
C FORM SQRTCT!ifSQ+XSQCJCHANl*VINSQ> IN B 

ZH4~ CALL VADD<IB,Kl,ICl,Kl,IB,Kl,Ll 
if~~ CALL VSQRT<IB,Kl,IB,Kl,Ll 

C FORM IFIXCFSAMP*M*SQRT<TfKSQ+XSQCJCHANl*VINSQ)+fif,5>-NSTART*M IN 8 
;<u4: CALL VSMSACIB,Kl,K2,K3,IB,Kl,Ll 
J/•5 CALL VINT<IB,Kl,IB,Kl,Ll 
0£4~ CALL VSAODCIB,Kl,K4,IB,Kl,Ll 

C CLIP B BETWEEN !if.fif AND L*M 
ZYS~ CALL VCLIPCIB,Kl,K5,K6,IB,Kl,Ll 

~MULTIPLY B BY L+l ,ADD l.fif AND PLACE RESULT IN Cl 
.i"f:'5; CALL VSMSA< IB,Kl ,K7 ,KS, ICl ,Kl ,L) 

C MULTIPLY B BY l.fif/M AND TAKE INTEGER PART 
S~5~ CALL VSMUL<IB,Kl,K9,IB,Kl,Ll 
ZfJS:: CALL VINT<IB,Kl,IB,Kl,L> 

~MULTIPLY B BY CL+ll*M-1 
8~54 CALL VSMULCIB,Kl,Klfif,IB,Kl,LJ 

C SUBTRACT B FROM Cl AND PUT RESULT IN B 
.0i'f5 CALL VSUB<IB,Kl,ICl,Kl,I.B,Kl,L> 

C FIX B AND TRANSFER BACK AS HOST ARRAY INDEX 
~q5b CALL VFIXCIB,Kl,IB,Kl,L) 
J£S; CALL APWR 
'~EE CALL APGET<INDEX,IB,L,Kll 

C IRANSFER DUM BACK TO Kl 
~~Sc CALL APPUTCDUM,Kl,Klfif,K2> 
w~5~ CALL APWD 

":~· 5 .'"' 
'·'6-
:. ·"5. 

.!;; 5 ~ 
1_;f:37 

h:-·7 ~

~·;iii~-

J:J73 
J!J7t: 

.~fT7 ~ ..... ..,..., 
'_',I)/ 

C H::.VING COMPUTED INDEX ARRAV NOW START INTERPOLATION OF TRACE 
c 
C CLEAR B IN AP 

CALL VCLRCIB,Kl,LZINT> 
C ~R~NSFER TRACE TO B 

CALL APWR 
CALL APPUTA<IB,L,KZ,FSTAP<l>> 
CALL APWD 

~FINO ME.<1.N VALUE OF TRACE AND PLACE IN APCITOP> 
CALL MEANV<IB,Kl,ITOP,L> 

~ SUBTRACT MEAN FROM TRACE 
CALL VNEGIITOP,Kl,ITOP,Kl,Kll 
CALL VSADIH IB,Kl, !TOP, IB,Kl ,L l 

C :F INDEN IS NEGATIVE,NO SCALING OF TRACE 
C IF INDEN IS ZERO SCALE TO UNIT R.M.S VALUE 
: IF INDEN IS POSITIVE,USE INVERSE ENERGY SCALING <DIVERSITY STACK> 

IF< INDEN.LT.fif> GOTO lfiffif 
CALL RMSQVIIB,Kl,ITOP,Ll 
IF<INDEN.GT.!ifl CALL VSQCITOP,Kl,ITOP,Kl,Kll 

- USE l.fJ RESIDING IN ID I FROM SETAP > 
CALL VDIVCITOP,Kl,ID,Kl,ITOP,Kl,Kll 
CALL VSMUL< I B, K 1, ITOP, I B, Kl, L l 

C IF INDMUT IS NEGATIVE USE NO MUTING 
J..:"12f IF< IriDMUT. L T . .0' l GOTO 2fJ!if 

CALL VCLRIIB,Kl,MUTE<ICHAN>> 
S TRANSrER MODIFIED TRACE BACK TO SEISM 
2!J.'cl CALL APWR 



THU 08-JAN-Gl 00:05:35 

r: 1 T; 

. : .. :::,·:. ~ J COT') 3Uf 
. ' ' .. clinl C'i' T!!.f\C'C: J:'.ND PUT 1! 1 C. 

:'l'l'lfl( il~. {<~:.L(~IriT,I\J} 
_., i !-·.!r·,·;;C< IC,L2ilH,IC.0,1<l) 

·,: C L L { I C , l( ! , !< ;~ / 
r \()i·-~ ~:~ TO [·-1 

::::"i· i :... "2 'i''i 
l~ f~ANSFURM GV CO~PLEX EXPONENTIAL ARRAY 

' .:., L I. C VI· I \II. < I C 2 , !c. 2 , 1 D J. , I< 2 , I C 2 , I( 2 , !. 2 I 2 1 , 10 ) 
J ~ ·: 0 [; .\ N !J T/\ I( [ I U 11 Lf\C E IFF T 

:.. . ··fi. HJ'/ ( I C . I~ ! , ! e , I( l , L 2 I NT ) 
· :\ l. r.. :'. ;·. :: ·r· I I ll , L 2 ! ill , I( l r-1 ) 

:i. o!iiF"IED TR/\CE 8/o,CI( TO :~E!S[·1 

· '· ;_ .\1'\.JR 
l. '· /'.. i' ·~; [ T f\ ( I 8 ' L ' I( 2 ' F s T I~ p ( I( ) ) 

!:C·:u~;·.Lci) i:l.Ei'·lEfHS OUT OF SEISt:i AND PLACE IN STACK 
-. ") i :: r_; ·~ :~ . .i ::r L = 1 , l_ 

:::I' IV~ I<\ I ) ~ S E I Si··H IN DE)( ( I l ) 
-~ coi,rr 1 ;·.:ut: 

·.\W; U: :.:·:',\•::1< !liTO Bl /\ND /\DD TO STACK IN A 

,·: •. ; i_ /\ !" P U T ( S TJ:\ C i< , I B 1 , L , K 2 ) 

PAGE IJfJ3 

.f. !. : '· ! •. i :'. :. n: < 2 " L , s T A c rc • J s L r< , r D cr11 > • L T • 0 > sToP I w R IT E E R R oR I 

~~L~~~SLK+N8LKTR 

.'.!.' .. ··•.:\DC!( li\.,1::1, lS1 ,1~1, IA,I<1 ,!_ l 

<:•,•J.i !~'/ 1 .. 0/NCII/IN 
: !•i.: '· f·J··io' 1 • f:.i /NC HAN 
0''.1: . ' .... :~ '. /\~'UR 
;.':\',_ 1_ !'.':· e l.iT < ::· NC: 1 NV, I TOP ,I( 1, K2 l 

•.i l ,1; CALL APWD 
... w- CALL VSMUL<IA,Kl,ITOP,IA,Kl;Ll 

fRANSFER SCALED STACK BACK TO STACK 
· , I 1: CA.!. I. API·IR 

;\i) (; t: 'T ~ s·,-.'\C !~, L\ ~ L, 1~2} 
,.:·,[1\.JD 

2' [_ 'ST/\U: '.JOt. I< I IDOl I.}. L T .fiJ )STOP '\·/RITE ERROR 2' 
< I DC 1-11 l 



Page 181 

CMP Stacking :- MPSTAK 

Tnput r11e DK1•MPST~K AT 

Log file •••••••••• DK1:MPSTAK.LOG 

Input Parameters 

READ(1,1000)NFILES,NVEL,L,NCHAN,NSTART,N2LYR,M 

1000 FORMAT(12I5) 

NFILES ••• Number of files to be stacked 

NVEL ••••• Number of velocity functions to be used in stack 

L •••••••• Number of samples per channel 

NCHAN •••• Number of channels per gather 

NSTART ••• Starting sample number 

N2LYR •••• Number of Time/Velocity pairs in first velocity 

function 

M •••••••• Level of interpolation 

READ(1,1000)TPDRR,TPDRW,INTSW 

TPDRR •••• Input tape drive 

TPDRW •••• Output tape drive 

INTSW •••• Interpolation switch 

0 - no velocity function interpolation 

- l~near interpolation between velocity functions 



Page 182 

READ(1,1000)(IVELAN(I),I=1,NVEL) 

IVELAN ••• File positions at which velocity functions are 

defined 

READ(1,1100)XSTART,XSTEP,FSAMP 

1100 FORMAT(3F10.0) 

XSTART ••• Shot/First receiver offset 

XSTEP •••• Receiver spacing 

FSAMP •••• Sampling rate in samples per millisecond 

READ(1,1200)(T02LYR(I),V2LYR(I),I=1,N2LYR) 

1200 FORMAT(2F10.0) 

T02LYR ••• Two-way travel time in milliseconds 

V2LYR •••• RMS velocity at the above two-way travel time 

READ(1,1000)INDEN,INDMUT,INFLG,OUTFLG 

INDEN •••• Scaling flag 

<O - no scaling 

=0 - Unit RMS energy scaling 

>O - Inverse energy scaling:- Diversity stack 

INDMUT ••• Mute flag 

>O apply mute 

<O no mute applied 

INFLG •••• Input flag 



0 - Input from tape 

- Input from disc 

OUTFLG ••• Output flag 

0 - Output to tape 

- Output to disc 

IF(INDMUT.GE.O)READ(1,1000)(MUTE(I),I=1,NCHAN) 

Page 183 

MUTE ••••• Sample position to mute down to for each channel 

READ(1,1300)FSPECR 

1300 FORMAT(3A4) 

FSPECR ••• If INFLG = 0 Temporary file for tape read 

INFLG = Input files •• 1 to NFILES 

READ(1,1300)FSPECW 

FSPECW ••• If OUTFLG = 0 Temporary file for tape write 

OUTFLG = Output files •• 1 to NFILES 

There are then NVEL velocity functions in the following format:-

READ(1,1000)N2LYR 

READ(1,1200)(T02LYR(I),V2LYR(I),I:1,N2LYR) 

N2LYR •••• Number of pairs in following analysis 

T02LYR ••• Two-way travel time in milliseconds 



Page 184 

V2LYR •••• RMS velocity at the above two-way travel time 



FORTRAN IV THU HB-JAN-81 .0'.0':29:43 PAGE .0'.0'1 

C = ::s = a::.::s: === = ===:::::::a: ===-=1:11 .:= ca·= =t==-==·==== === =-===-=~=ro:re==:=-:z::r=::rtt:r.=::== 
C MAIN PROGRAM 
c 
C THIS IS A STACK PROGRAM CAPABLE OF VEi..OCITV INTERPOLATION 
c c---------------------------------------------------------

.<rf!JJ: REAL*S FSPECR,FSPECW.FNAMR,FNAMO 
f!f!Z'Z. VIRTUAL T.0'SQC 2.0'48 l, VI NSQ( 2.0'48 >, FNAMR< 1.0'.0'), FNAMOU.0'.0' >, 

XT.0'LVR(2.0'l,VLVR<2.0'l,T.0'INT<2.0'l,VINT<2.0'l,IVELAN(1.0'.0'>, 
XT.0'2LVR<2Wl,V2LVR<2JJl 

Zf!Z? DIMENSION MUTE<24l,XS0<24l,FBUF<3l,IHBLKC256l 
gqza INTEGER*2 OUTFLG 
J::!JCJf. LOGICAL*l TPDRR,TPDRW,STATUS,ITLEN,LBLK<512) 
KY.0'.0E EQUIVALENCE ( IHBLK( 1 l, LBLK( 1 l l 
!JfiZ7 COMMON/STK/ L,L2INT,NCHAN,M,NSTART,FSAMP,MUTE,INDEN, 

XINDMUT,IDCH,IDCHl,XSa 
~.0'.0'8 DATA DEV/3RRK I 

c 
C SET UP I/0 CHANNELS AND READ IN CONTROL DATA 
c 

~fJ.'~9 IFCICDFN<25l.NE • .0'lSTOP'CHANNELS FULL' 
a'.011 CALL ASSIGN{1,'DKl:MPSTAK.OAT',14l 
fJ.0'12 CALL ASSIGNC2,'DK1:MPSTAK.LOG',l4l 
.0'.0'13 IF<IFETCH<DEV>.NE • .0'lSTOP'FETCH ERROR' 
~.0'15 IEOTR=.0' 
J81c IEOTW=.0' 
g,0'17 IDCH=2.0' 
.0'.0'18 IDCH1=21 
.0'.0'19 READC1,1.0'.0'.0'lNFILES,NVEL,L,NCHAN,NSTART,N2LVR,M 
!?10213 U£1.0' FORMAT< 12I5 l 
ZB21 READ<l,l.0'W.0'lTPDRR,TPORW,INTSW 
0Z22 READ<l,1.0'.0'.0'l<IVELAN<I>,I=1,NVEL> 
il.022 READ<l,l1.0'.0'lXSTART,XSTEP,FSAMP 
GJf52;, 11.0'.13' FORMAT< 3F 1.0' • .0') 
~.0'25 READ< 1, 12.0'.0')(T.0'2LVR< I l ,V2LVR< I>, I=l ,N2LVR> 
ggz6 12.0'.0' FORMAT<2F1.0' • .0'l 
::5Z27 READ< 1, 1.0'.0'.0' >I NOEN. I NDMUT, I NF LG, OUTFLG 
.0'028 IF< I NDMUT. GE • .0') REAO ( 1, !.IJ.0'.0' )(MUTE (I>, I= 1, NCHAN > 

:Jf03Z 
Z.0'32 
0'JJ'33 
;.J.J3 t. 
.'3.0'35 
-~.'?3 t 
2'iJ37 
.0'.0'38 
.(f.0'3? 
i1 fO 4;.} 

c 

READ IN FILESPECS FOR INPUT DEPENDING ON 
!F IT IS FROM TAPE OF DISC 

I~<INFLG.NE • .0'>GOTO 40 
READ< 1, 1300lFBUF 

13/0Z FORMAT<3A4l 
CALL IRADSBC12,FBUF,FSPECRl 
GOTO 5.0' 

4!0 DO 6.0' I=l,NFILES 
READ<l,l:?XiBlFBUF 
CALL IRAD5.0'<12,FBUF,FSPECRl 
FNAMR<I>=FSPECR 

6!0 CONTINUE 

C P-~AD IN OUTPUT FILE SPECS AGAIN THIS 



VS2 • .0'4 THU .0'8-JAN-81 .0'.0':29:43 

c IS DEPENDANT ON IF IT GOES TO TAPE OR STAVS 
c 

5.0' IFCOUTFLG.NE.S>GOTO 7.0' 
REA0(1,13.0'.0'JFBUF 

.0'.0'41 

.0'.0"4: 

.0'f14•\ 

.rrrr 4 s 
3.0'46 
:.JiJ 4 7 
IW4~ 

0'Z49 
(J .'Y5ff 

CALL IRAD5.0'<12,FBUF,FSPECW) 
GOTO 8.0' 

7PJ DO 9.0' I=1 ,NFILES 
READ<l,l3.0'.0'JFBUF 
CALL IRA05.0'(12,FBUF,FSPECW) 
FNAI'-10< I J=FSPEC\.1 

9!'3 CONTINUE 
c 
c SET UP CONSTANTS ARRAYS 
c 

.0'951 8.0' L2INT=2 

.0'.0'52 DO 5 K=l,l.0'f1.0' 

.0'.0'53 IF<L2INT.GE.L> GOTO 1.0' 
3.0'55 L2INT=2*L2INT 
!'3.0'56 5 CONTINUE 
.0'.0'57 !B X=XSTART 
8858 DO 2.0' JCHAN=1,NCHAN 
2959 XSQ<JCHAN)uX**2 
.0'Si5J.J X=X+XSTEP 
.0'861 2Z CONTINUE 
.0'062 TSAMP=1./FSAMP 
0".0'6::- T.0'=NSTART*TSAMP 
~.0'6~ DO 3.0' JT.0'=l,L 
~f!J6~ 1'.0'SQ<JT.0'J=T.0'**2 
f1f15S T.0'=T.0'+TSAMP 
.0'.0'67 3ff CONTINUE 

c 
C SET UP AP CONSTANTS AND COP SUBROUTINE 
C OUTSIDE OF LOOP 
c 

.JB5B CALL SETAP<L2INT,MJ 
3ffE~ CALL CDP(T.0'SQ,VINSQ,.0') 
307~ IVEL=1 
~971 NBLKR=L*NCHAN/128+6 
H07Z NBLK\./=L/128+1 

iJZ72 
fJfJ7~ 

.JffE 

c 
C START OF MAIN PROCESSING LOOP 

c 

DO 999 IFNUM=1,NFILES 
IFIL=lFNUM 
IF<INFLG.NE • .0'JGOTO 1.0'.0' 

C COME HERE IF INPUT FROM TAPE 
c 

ON DISC. 

'3!J77 IF<IENTER<IDCH,FSPECR,NBLKR>.LT • .0'>STOP'ENTER ERR' 
c 
C EOT CHECK 

GB7~ ITRV=l 
JBBE 288 !FIITRV.GT.3JGOTO 21.0' 

PAGE 16112 



FORTKAN rv VB2.164 THU BS-JAN-81 .1.0':29:43 

0'.08;: IF<IEOTR.GE.B>GOTO 1!65 
0'.0'84 21!6 ~RITE<7,18H.0'lTPDRR,IFIL 
0'.0'85 18.0'.0' FORMAT< ' EOT ON DRIVE:',I2,' FILE NO: I' !4) 
~.'J86 ~RITE< 7, 18.0'1 > 
HJ87 18.0"1 FORMAT< ' ENTER NE~ READ DRIVE NUMBER: I • $) 

JZ98 
fl"XJ89 
iJJ09Z 
.JJ091 

READ(5,18H2>TPDRR 
18.0'2 FORMAT< Ill 

IEOTR=0' 
IF<TPDRR.GT.2lSTOP' 

c 
C DO A TAPE READ 
c 

EOT READ TERMINATE' 

.\JZ93 1!65 CALL TAPRED<-1,TPDRR,STATUS,ITLEN,IFLEN,IFIL,l.EOTR> 
c 
C FATAL ERROR DETECTION 
c 

~.0'94 IF< STATUS.LT .B}~RITE< 2, 15B.0'>IFNUM 
.VJf496 15.0'10 FORMAT<' ~ARNING FILE ', 13,' RETRIE-s FAILED') 
Df4S7 IF<IEOTR.LT . .0'>GOTO 1!66 

c 
C WIND OVER EOF MARK 
c 

.3'f499 CALL TAPRED<B,TPDRR,STATUS, , ,IFIL,IEOTR) 
Z1ZZ 1!66 CALL I~AIT<IDCHl 
161.0': IERR=H 
.0'1~2 ITRV=ITRV+l 
0'1Z3 IF<IREADW<l,IERR,B,IDCHl.LT.HlSTOP' ERR READ ERR' 
0';kJ5 IF(IERR.EO."l77777>GOTO zgg 
0'1Z7 CALL CLOSEC<IDCH> 

C OPEN UP FILES FOR READING IN 
c 

JL0'8 1.0'!J IF< INFLG.NE.H>FSPECR=FNAMR< IFNUM> 
z:l.? IF<LOOKUP<IDCH,FSPECRl.LT . .0'lSTOP'LOOKUP ERR' 

u 1 l = 

.'"" 1 1 a 
J119 
.0"12.0 
.JlZl 
.0'12~ 
0123 
.·Jl2 4 
.312': 

c 
C OPEN UP OUTPUT FILES 
c 

IF<OUTFLG.NE.HlFSPECW=FNAMR<IFNUM> 
IF< !ENTER< IDCHl,FSPEC\o/,NBLKW>.LT.H>STOP'ENiER ERR' 

c 
C HEADER BLOCK MANAGEMENT 
c 

IF<IREAD~<256,IHBLK,B,IDCH>.LT.S>STOP'HBLK ERR' 

C UPDATE HEADER 
c 

IBFREE=IHBLK<24> 
IHBLK<7>=1 
LBLK(19l=3 
IHBLK<129+IBFREE>=2 
IBFREE=IBFREE+l 
!HBLK<l29+IBFREE>=NCHAN 
iBFREE=IBFREE+l 
IHBLK<129+IBFREE>=NVEL 

PAGE .1.13 



FORTRAN IV 

0126 
.0'127 
~128 
0129 
~13.0 
.J!3: 
.0'132 
~133 

c 

V02.B4 THU .I!JS-JAN-81 .I!J.I!J:Z9:43 

IBFREE=IBFREE+l 
IHBLK<129+IBFREE>=N2LVR 
IBFREE=IBFREE+l 
IHBLK<129+IBFREE>=M 
IBFREE=lBFREE+l 
IHBLK<129+IBFREE>=INTSW 
IBFREE.,IBFREE+1 
IHBLK<24>=1BFREE 

C WRITE OUT BLOCK 

.0'1 31: IF<IWRITW<256,IHBLK,B,lDCHl>.LT.B>STOP'HBLKW 
r: 
c SEE lF NEW VELOCITY ANALYSIS REQUIRED 
c 

.0'135 IF<lVELAN<IVELl.NE.IFNUM>GOTO l.I!JS 

.3'138 IVEL=IVEL+l 

.0'13S NLVR=NZLVR 

.0'11.0 DO 11.0' l=l,NLVR 
0'141 T0LVR<I>=TB2LVR<I> 
>~'14Z VL VR< I >=V2L VR( I> 
.0143 11.0' CONTINUE 

c 
c SET UP NEW VINSQ TABLE 
c 

ERR' 

.0'144 

.'Jl45 

.J147 

CALL INVSQ<FSAMP,NSTART~NLVR,L,VINSQ,T.I!JLYR,VLVR> 
IF<NVEL.LT.IVEL>INTSW=B 
IF<NVEL.LT.IVELlGOTO 12B 

c 
C READ IN NEXT ANALYSIS AND SET UP INTER~OLATION 
c 

0'149 READ<l,lBBB>NZLVR 
Zl3Z READ<l,l2.0'B><T02LVR<I>,V2LVR<I>,I=l,N2LVR> 
3131 IF<INTSW.EO.B>GOTO 12B 
.Jl53 INT=IVELAN< IVEL >-IVELAN< IVEL-1 l 
ZlSJ IF<INT.LE.1lGOTO 128 
.0'1SE RINT=FLOAT<INTl 
Zl57 DO 130 I=l,NLVR 
Jl56 T.0'IIH< I >=<TB2LVR< I >-TBLVR< I) l/RINT 
(115'? VINT< I l=<V2LVR< I >-VLVR< I> l/RINT 
~160 138 CONTINUE 
Jl62 GOTO 128 

c 
C COME HERE WHEN NOT A NEW ANALYSIS 
c 

Zl52 188 IF<INTSW.EQ.8lGOTO 128 
c 
C ADD ON INTERPOLATING PARAMETERS 
c 

z:s DO 148 I=l,NLVR 
c)l'i T.0'LVR<I>=T.0'LVR<I>+T0INTCI> 
.'3'16 VLVR( I >=VLVR< I l+VINT< I l 
.0'16 14~ CONTINUE 

c 

PAGE: .I!J.I!J4 



VBZ.f64 THU BS-JAN-81 BB:Z9:43 

C SET UP VINSQ TABLE AND THEN DO STACK 
c 

.0'168 CALL INVSQ<FSAMP,NSTART,NLVR,L,VINSQ,TBlVR,VLVR> 

.0'169 123 CALL CDP<T8SO,VINSQ,ll 
Hl7~ CALL CLOSEC<IOCH> 
fll7~ CALL CLOSEC<IDCHl> 
~172 IF<OUTFLG.NE.8>GOTO 999 

Jl75 

c 
C COME HERE IF OUTPUT TO GO TO TAPE 
c 

c 

IFLEN=LOOKUP<!DCHl,FSPECW> 
IF<IFLEN.LT.8>STOP'LOOKUP ERR' 

C DO A TAPE WRITE 

H! 77 CALL TAP RED< 1, TPDRW, STATUS, ITLEN, IFL.EN, IF IL, U:OT\1> 
.0'178 CALL CLOSEC<IDCH1> 
Hl79 IF<IEOTW.GE.8>GOTO 158 
.0'.31 WRITE<7,16BB>TPDRV,IFIL 
.0'18: 168.0' FORMAT<' EDT ON WRITE DRIVE:',IZ,' FILE NO:',I4} 
818~ WRITE<7,1681) 
.0'184 1681 FORMAT<' ENTER NUMBER OF NEW DRIVE:',$) 
Hl8S READ<5,18BZ>TPDRW 
Jl8f IEOTW~B 
.0'187 IF<TPDRW.GT.2>STOP'WR1TE EOT TERMINATE' 
8'189 15.0' IF<STATUS.GE.BlGOTO 16.0' 
8191 WRITEC2,17BB)IFNUM 
Hl92 178.0' FORMAT<' FATAL ERROR ON WRITE FILE ',13) 
.0'133 STOP' FATAL ERR' 
PlJ4 168 CONTINUE 
3195 999 CONT!NUE 
.0'196 CALL CLOSEC<IDCH> 
8197 CALL CLOSEC<IDCH1) 
Z13E STOP' NORMAL TERMINATION' 
.0'19° END 

PAG! fiBS 



°CRTRAN IV VB2.!lJ4 THU !lJS-JAN-81 !lJ!lJ:3/lJ:45 PAGE 1/J/lJl 

·Jf!:J;' 
"r.'J.IJJ 
0.CJ.C'54 
l:H:f.0'S 
GJiJ.'Jb 
!5fJ.q7 
··u.J>J 
fH(I?J9 
iJ •> 1 i 
C) :_Tl:: 

lfiJ13 
I 0' 1 4 
'"".7.1 ~ 
iiJfii 16 
iHl'l 7 
.0'.0'18 
.1?.0'19 
a·!lJ2xl 
£'9'21 
·~rl'!z:: 

'.0'2::) 
;]ft524 
rJ:rJ2 5 
Z:J25 
]02/' 
1 :!22 

C = == = == == = = == = == ======= ==·-== ===:~ .. :====·== === =-= :m·===== ===~=-=::===='C'::==--=-====::== 
SUBROUTINE INVSO<FSAMP,NSTART,NLVR,L,VINSQ,TZLVR,VLYR> 

c------------ ---------------------------------------------------------------
C uSES INPUT DATA TO GENERATE ARRAY OF INVERSE SQUARED VELOCITIES 
C VELOCITIES ARE CONSTANT UP TO FIRST REFLECTOR AND BEYOND 
C LAST AND ARE LINEARLY INTERPOLATED IN BET~EEN. 

VIRTUAL VINSQC2.0'48>,TZLVR<2.0'>,VLYR<2Bl 
Nl=l 
N2aiFIX<FSAMP*T.0'LVR<1>>-NSTART 
VI NSQl = 1 . .0'/VL VR< 1 >**2 
DO 1/lJ I=Nl ,N2 
VINSQ( I l=VINSQ1 

1.!:.1' CO~TI NUE 
IF<NLVR.EO.l> GOTO 4B 
DO 36 J=2,NLVR 
Nl=N2+1 
N2=IFIX<FSAMP*TBLVRtJ>>-NSTART 
DELV=<VLVR<Jl-VLVR<J-llli<N2-Nl+2> 
V=VLVR<J-1 l 
DO 2B I=Nl,N2 
VINSO< I l=l.!lJ/V**2 
V=V+DELV 

2!J CONTINUE 
3~ CONTINUE 
4.0' Nl=N2+1 

N2=L 
VINSQN=l.fiJ/VLVR<NLVRl**2 
DO Sfl' I=Nl,N2 
VINSQ( I >=VINSON 

5.0' CONTINUE 
RETURN 
END 

·-·•JR~ · ·!,;·; zv VB2.!lJ4 THU !lJS-JAN-81 fiJ!lJ:31:/lJ9 PAGE !lJI/Jl 

c = = = = == == === =:=-= ========= =·===== =-=====·=== ==-~ ~-==-==-= ====--====-=--====-==:.==-::.~ ==== 
~08l BLOCK DATA 

c----------------------------------------·----------------------
~0~2 IMPLICIT INTEGER*2<I-N> 
J~03 COMMON /KONST/ KlM,KB,Kl,K2,K3,K4,K5,K6,K7,K8,K9,Kl!lJ, 

llA,IB,IC,ID,ITOP 
~D.Ji DATA KlM,KB,Kl,K2,K3,K4,K5,K6,K7,K8,K9,KlfiJ,IA,lB,IC,ID,ITOP 

l/-l,g.l,2,3,4,5,6,7,a,s,lm,B,2fl'4B,4fl'96,6144,Bl91/ 
::.'iJCJ'S EN 0 



FOR-1RAN IV VB2.fl/4 TiiU BS-JAN-81 llih31 :29 ... PAGE B/11 

f11BSJ1 SUBROUTINE SETAP<LZINT,M> 
c------------------------------------------- ----------c 
C SETS UP COMPLEX EXPONENTIAL TABLE IN D+l 
C AND PUTS l.fll IN ID 

2.~112 COMMON IKON ST I K 1M, KB, K 1 , K2, K3, K4, KS, K6 , K7, KS ,.K9 , K lfl/, 
llA, I B, I C, I D, ITOP 

C INITIALISE AP 
gggz CALL APINIT 

C SET UP REQUIRED STARTING ADDR.ESSES AND CON.STANTS. 
fllfllfll~ IDl=ID+l 
J6/8fll5 !D2=ID+2 
fllfllfiiE L212l=L2INTI2-l 

C TRANSFER 1..0'1<L2INT*M> TO Kll AND MULTIPLY BY 2PI FROM TM • 
.0'.0'/87 CONST=l.fi/IFLOAT<L21NT*M> 
fi/Z/8~ CALL APWR 
n·gs; CALL APPUT< CONST, KB ,Kl ,K2 > 
Jfl/1.0' CALL APWD 

C FORM VECTOR RAMP AND TAKE SIN AND COS OF IT 
fllfllll CALL VTSMULCK/8,Kl,2317,KB,Kl,Kl> 
fl//812 CALL VRAMPCKfi/,Kfi/,IB,KI,L2121> 
fl/fl/12 CALL VCOSCIB,Kl,IDl,K2,L2121> 
fl/fl/14 CALL VSIN<IB,Kl,ID2,K2,L2121) 

C PUT l.fll IN ID 
fl/fl/15 CALL VCLRCID,Kl,Kl> 
fllfl/1~ CALL VTSADD<ID,Kl,2fi/49,IO,Kl,Kl> 
fl/1117 RETURN 
fi/J:l'l8 END 



."0RTI~AH IV V/62./64 THU /68-JAN-81 /6/6:31:52 PAG.E 16161 

c ========= =:===-======:=·=·======:::=== 
.~/6!1J] SUBROUTINE CDPCT/6SQ,VINSQ,ICODE> 

c 
C MAIN STACKING SUBROUTINE 
C ======= ==·===·= =~= ======•=========·=cuca.aaa 

J1JDJ1J2 VIRTUAL SEISM<32767l,T/6SQ(2/648>,VINSQ(2/648> 
af1JJ1J2 DIMENSION INDEX(2/648l,MUTEC24l,STACKC2/648), 

1DUM(lf1Jl,CONSTC1!1Jl,FSTAP<2Z>,XSC<24) 
J1JJ1JJ1J4 COMMON/STK/L,L2INT,NCHAN,M,NSTART,FSAMP,MUT£,INDEN, 

XINDMUT,IDCH,IDCHl,XSQ 
J1JJ1JJ1JS COMMON /KONST/ K1M,KI6,Kl,K2,K3,K4,K5,K6,K7,K8,K9,K1/6, 

liA,IB,IC,ID,ITOP 
c 
C SET UP REQUIRED STARTING ADDRESSES AND CONSTANTS 
c 

J1JJ1JZ6 IF<ICODE.GT.J1J>GOTO 2/6 
R~J1J3 IBl=IB+l 
J1Jf1JJ1J9 ICl=IC+l 
J1JJ1Jlf1J IC2=IC+2 
J1J/611 IDl=ID+l 
/6/612 Ll=L+l 
J1JJ1Jl: L2I21=L2INT/2-1 
J1JJ1Jl4 CONST<2>=M*FSAMP 
J1JJ1J15 CONSTC3l=/6.5 
J1JJ1J1E CONSTC4l=-M*NSTART 
J1J/617 CONSTCS>~S./6 
J1JJ1J18 CONSTC6>=L*M 
ZJ1J19 CDNST<7>=L+l 
J1JJ1JZZ CONSTCS>=l./6 
J1J221 CONSTC9>=1./6/M 
iJ!iJ22 CONST< 1/6)=( L+l l*M-1 
~sz: NBLKTR=L/128 
J1JJ1J2~ FSTD=ADGET<SEISMCl)l 
J1JJ1J25 FTJ1JSQ=APGAD<TSSQClll 
J1Jf1J2f FVINSQ=APGAD<VINSC<l>> 
J1JJ1J2~ ISTART=l 
H~2c DO 5J1J K=l,M 
zr.r~.:; FSTAP<Kl=APGAO<SEISM<ISTART>> 
~~30 ISTART=ISTART+Ll 
3Z3" 5J1J CONTINUE 
gz32 RETURN 

C SET SEISMCL+ll TO Z./6 TO COPE WITH TIME OVERFLOW AND CLEAR A IN AP 
ZJ1J33 2!1J JBLK=l 
J1J~34 IBLK=l 
~03S SEISM<Lll=/6.!1J 
8836 CALL VCLR<IA,Kl,L> 

C ITERATE THROUGH CHANNELS 
JlJ£37 DO 51616 JCHAN=l,NCHAN 

C READ IN TRACE SEISM FROM UNIT 2 
3&3? IF<IREADACIDCH,2*L,JBLK,FSTDl.LT.S>STOP'REAOA ERROR' 
J1J040 JBLK=JBLK+NBLKTR 
3.0'41 CALL IWAIT<IDCH> 

C COMPUTE INDE~ ARRAY 
Jf42 CONST(lJaXSQCJCHANI 



FORT P.:l.rl IV VS2 • .0'4 THU mB-JAN-81 .0'.0':31:52 PAGE f/1.0'2 

8.0'42 

8.0'44 
.0'f'45 

.0'846 
8.0'47 
.()'848 

f!.0'49 

.0.2"5,0 
~BSl 

885Z 
.0'B53 
BB54 

3.ff55 

H.0'56 

BR57 
.0'852 

8859 

.0'.0'6/iJ 

.0'.0'61 
liJfi/62 
liJ863 

.0'.0'64 

.0'.0'65 

J/U66 

'J.0'67 
kHY68 
iJ.0'69 

8/U7ff 

.0'.071 
:J.0'72 

.0'.0'7'3 
>HJ75 

CALL APWR 
C TRANSFER <Kl,K1B} TO HOST DUMMY ARRAY DUM AND REP'LACE BV CONST 

CALL APGETCDUM,Kl,Kl.0',K2> 
CALL APPUT<CONST,K1,K1B,K2> 

C TRANSFER T.0'SQ TO B AND VINSQ TO ICl 
CALL APPUTA<IB,L,K2,FT.0'SQ) 
CALL APPUTA<IC1,L,K2,FVINSQ) 
CALL APWD 

C FORM XSQ(JCHAN>aVINSQ IN Cl 
CALL VSMUL< lCl, K1, Kl, ICl, Kl, L> 

C FORM SQRTCTSSQ+XSQCJCHAN>*VINSQ) IN B 
CALL VADDCIB,Kl,ICl,Kl,IB,Kl,L> 
CALL VSQRTCIB,Kl,IB,K1,L> 

C FORM IF IX< FSAMP*M*SQRT< T.0'SQ+XSQ( JCHAN >,.VINSQ )+.0' .. s:>-NSTART*M IN B 
CALL VSMSACIB,Kl,K2,K3,IB,Kl,L} 
CALL VINTCIB,Kl,IB,Kl,L> 
CALL VSADD<IB,Kl,K4,IB,Kl,Ll 

C CLIP B BETWEEN 16 • .0' AND L*M 
CALL VCLIP<IB,Kl,K5,K6,IB,Kl,L> 

C MULTIPLY B BY L+l ,ADD 1 • .0' AND PLACE RESULT IN Cl 
CALL VSMSA<IB,Kl,K7,KB,IC1,K1,L> 

C MULTIPLY B BY 1 • .0'/M AND TAKE INTEGER PART 
CALL VSMU L < I B , K 1 , K9 , I B , K 1 , L > 
CALL VINT<IB,K1,IB,Kl,L> 

C MULTIPLY B BY CL+ll*M-1 
CALL VSMUL< I B, K 1, K 1.0', I B, K 1, L > 

C SUBTRACT B FROM Cl AND PUT RESULT IN B 
CALL VSUBCIB,K1,ICl,Kl,IB,K1,Ll 

C FIX B AND TRANSFER BACK AS HOST ARRAY INDEX 
CALL VFIXCIB,K1,IB,Kl,L> 
CALL APWR 
CALL APGETCINDEX,IB,L,Kl) 

C TRANSFER DUM BACK TO Kl 

c 
CALL APPUT<DUM,K1,Kl.0',K2> 
CALL APWD 

C HAVING COMPUTED INDEX ARRAY NOW START INTERPOLATION OF TRACE 
c 
C CLEAR B IN AP 

CALL VCLR<IB,K1,L2INT> 
C T~ANSFER TRACE TO B 

CALL APWR 
CALL APPUTACIB,L,KZ,FSTAP<l>> 
CALL J!,PWD 

C FINO MEAN VALUE OF TRACE AND PLACE IN APCITOP> 
CALL MEANVCIB,Kl,ITOP,L> 

C SUBTRACT MEAN FROM TRACE 
CALL VNEGCITOP,Kl,ITOP,Kl,Kll 
CALL VSADD< IB,Kl,1TOP, IB,Kl,L > 

C IF INDEN IS NEGATIVE,NO SCALING OF TRACE 
C IF INDEN IS ZERO SCALE TO UNIT R.M.S VALUE 
C IF INDEN IS POSITIVE,USE INVERSE ENERGY SCALING <DIVERSITY STACK) 

IF< INDEN.LT./Ul GOTO 1/U.0' 
CALL RMSQVC IB, Kl, !TOP, L > 



,.... 

FORTRAN IV vrn .l64 THU ms-JAN-91 ml6:11:~? P E 0163 

iU76 

161678 
161679 

166816 
S/682 

/6/683 
16/684 
/6.1J8S 
/J/68 G 

/J.0'88 
/J/68 '; 
16H9 f: 

szgz 

.0'/695 
/JI69£ 
16IJ9 7 
161698 

IJ/699 
161Z:iJ 
.0'1Zl 

161.0'2 
zu:. 
.0' 1.0'4 
!3'1.0'~ 
.0'1/J6 

161167 
/61168 
.0'1169 
/611£' 
.0' 1 1 1 

.0"112 

.\3'1 13 

.0' 1 1 4 

.J 1 1 5 
_g 1 1 7 
0' 1 1 8 

IF<INOE N. GT.B> CALL VSQCITOP,Kl,ITOP,Kl,Kl> 
C USE 1.16 RESIDING I N ID <FROM SETAP> 

CALL VDIV<ITOP,Kl,ID,Kl,ITOP,Kl ,Kl> 
CALL VSMUL<IB,Kl,ITOP,IB,Kl,L> 

C IF I NDMUT IS NEGATIVE USE NO MUTING 
11616 IF<INDMUT.LT./6> GOTO 21616 

CALL VCLR\IB,Kl,MU1E<ICHANl> 
C TRANSFER MODIFIED TRACE BACK TO SEISM 
216.0' CALL APWR 

CALL APGETA<IB,L,K2,FSTAP<lll 
CALL APWD 
IF<M.EQ.l l GOTO 35.0' 

C TAKE TRANSFORM OF TRACE AND PUT IN C 
CALL RFFTB<IB,IC,L2INT,Kl> 
CALL RFFTSC(lC,L2INT,KI6~Kl> 
CALL VCLR<IC,K1,K2l 

C ITERATE FROM 2 TO M 
DO 3Z.0' K•2,M 

C MULTIPLY TRANSFORM BV COMPLEX EXPONENTIAL ARRAY 
CALL CVMUL<IC2,K2,IDl,K2,IC2,K2,L212l,Kl) 

C MOVE C TO B AND TAKE IN PLACE IFFT 
CALL VMOV<IC ,Kl,IB,Kl,L2INT> 
CALL RFFT<IB,L2INT,KlM> 

C TRANSFER SHIFTED TRACE BACK TO SEISM 
CALL APWR 
CALL APGETA<IB,L,K2,FSTAP<K>> 
CALL APWD 

31616 CONTI NUE 
C PICK REQUIRED ELEMENTS OUT OF SElSM AND PLACE IN STACK 
3516 DO 4.0'.0' I=l,L 

STACK< I l=SEISM( INDEX< Ill 
4ZI6 CONTINUE 
C TRANSFER STACK INTO Bl AND ADD TO STACK IN A 

CALL APWR 
CALL APPUTCSTACK ,I B1 ,L, K2> 
CALL APWD 
CALL VADDCIA,Kl,IB1,Kl,IA,Kl,Ll 

5.0'16 CONTI NUE 
C SCALE STACK BY 1.16/NCHAN 

FNCINV•l . .0'/NCHAN 
CALL APWR 
CALL APPUT<FNCINV ,ITOP,Kl,K2l 
CALL APWD 
CALL VSMUL<IA,K1,ITOP,IA,Kl,Ll 

C TRANSFER SCALED STACK BACK TO STACK 
CALL APWR 
CALL APGET<STACK,IA,L,K2l 
CALL APWD 
IFCIWRITW(2*L , STACK , IBLK,IDCH1l.LT.I6>STOP'WRITE ERROR 2' 
RETURN 
END 



,._.. ··- '·---cv: .... •·· 

VS2.RJ4 iHU ZS-JAN-Sl ZZ:3Z:3S PAGE Ul!ll 

c 
c 

SUBROUTINE TAP RED ( ICOM, I DRV ,1 STAT, IT LEN ,I LEN, IFNUM, IEOT) 

TAPE HANDLING SUBROUTINE 
c 
c 
c 
c 
c 
c 
c 

91!682 
21~!63 

0!U4 
BfiZS 
J6JQJ66 
!JDJ67 
!6f6!68 

c 
c 
c 
c 
c 
c 

ICOM IS THE COMMAND SIGNAL 
-1 IS A READ,8 IS A WIND,l IS AWRITE 
IDRV IS THE DRIVE BEING USED 
lSTAT IS THE STATUS ON RETURN 
ITLEN IS THE TIME LENGTH OF A FILE READ 
ILEN !S THE BLOCK LENGTH OF A FILE READ OR WRITTEN 

INTEGER*2 MASK<Bl,ESTATl 
LOGICAL*1 I STAT, COM< 4 l, SDSCOM< 8 l ,lDRV, IT.LEN, E.COM< 4 ), 

%IFLEN,ESTAT,ERRS<Bl 
DATA MASK/ "1, "2, "4, "UJ, "2!6, "4/iJ," 1!6fll, "Zfllfl/1 
DATA SDSCOM/".0',"1,"2,"3,"4,"5,"6,"7/ 
DATA ERRS/"377,"377,"377,"377,"377,"377,"377,"377/ 
ITRV=.0' 
IF<ICOM> 18,3!6,2fl/ 

SECTION CONTROLLING A R£AD 

CHECK THAT ONLV A FEW RETRIES ARE ATTEMPTED 

BB~9 1.0' ITRV=ITRV+l 
c 
C SET UP COMMAND FOR READ 
c 

!6Hl~ C0~(1JmSDSCOMC4l 
BZll COM<2l=l 
BJ612 COM<3l=IDRV 
3813 COMC4l=-l 
89114 CALL SDSlfli<COM,ISTAT,ITLEN,ILENl 
91!615 IFCISTAT.EQ.fl/lRETURN 

c 
C ERROR DETECTED ON READ 
c 

!6!617 ISTATI=ISTAT 
!6818 GOTO 4.0' 

c 
C IF SHORT RECORD FOUND REREAD TAPE 
c 

2!619 58 ITMP=ISTATI.AND.MASKC6l 
~!62£ IFCITMP.NE.!6lGOTO 1.0' 
!6!622 ITMP=ISTATI.AND.MASKC2} 
21!623 IF<ITMP.EQ.fl/lRETURN 

c 
C IF CRC ERROR FOUND REWIND TAPE AND RETRY 
c 

JJ625 WRITE<2,2fl/191liFNUM 
_;HJ26 2911-J FORMAT<' FILE NO ',14,' CRC ERROR REWINDING') 
!6!627 IF<ITRV.GE.2>GOTO 1391 
~!629 ECOMC1l=SDSCOM<6l 
383C ECOM<2l=l 



.....,. ~- ___ .._- ~- ·~-- ··-~ -· ...• ·~~;....:.l._._._-- ···-· -~--

FORTR.Il.N IV V/62.JIJ4 THU JIJB-JAN-81 JIJJIJ:32:38 

BB31 ECOMC3l=IDRV 
BB32 ECOMC4l=/6 
.8/633 CALL SOS1.0'<ECOM,ESTAT, , > 
B/634 GOTO lB 

c 
C \.JUTE SECTION 
c 

HB35 2JIJ ITRV=ITRV+l 
BB36 IF<ITRV.GT.31GOTO 13JIJ 
SB38 COM(ll=SDSCOM<7l 
BB39 IFLEN=<ILEN+3l/4 
JB4B COM<2>=IFLEN 
J/641 COMC3l=IDRV 
JIJ/642 COMC4l=l 
BB43 CALL SDS1/6(COM,ISTAT, , > 
B/644 IF<ISTAT.EC.I6>RETURN 

c 
C WRITE ERROR DETECTED 
c 

BS46 ISTATI=ISTAT 
SS47 GOTO 4/6 
16164? 716 ITMP=ISTATI.ANO.MASK<6> 
Z/64£ ITMPI=ISTATI.AND.MASKC2> 
~BS£ IF<ITMP.EQ.JIJ.AND.ITMPI.EC.B>RETURN 

c 
C REPORT AND RETRY 
c 

.3'.0'52 WRITE< 2,2B2JIJJIFNUM 

PAG"E flJ!lJ2 

3/653 2B2Z FORMAT<' FILE NO ',14,' WRITE CRC ERR RETRY FROPOSED'> 
Z/651 ECOM<l>=SDSCOM<6> 
.0'/655 ECOM< 2 l=2 
Z/656 ECOM<3>=IDRV 
0057 ECOM<4>=16 
~~56 CALL SDSlB<ECOM,ESTAT, , > 
?/659 NBUF=B 
H/66.0' IPAD=<IFLEN*2B4Sl-NBUF 
.<T0'61 CALL T\JRIT<ERRS,NBUF,ESTAT,IPAD,IFLEN,IDRV> 
BS5Z GOTO 216 

c 
c WIND FOWARD ONE FILE 
c 

.1'!'.0'63 310 COM< 1 l=SOSCOM< 5 > 

.0'0'6" COM<2>=1 

.0'.0'65 COMC3l=IDRV 
0'/666 COMC4l=B 
fJB6i' CALL SDSlB<COM,ISTAT, ' 

} 

c 
c CLEAR IRRELEVANT BITS FROM ERROR BYTE 
c 

0'.0'5 8 ISTAT=ISTAT.AND .• NOT.MASKC6l 
1}.0'69 IF<ISTAT.EQ.2JRETURN 
BZ71 ISTATI=ISTAT 
BB72. IF<ISTAT.NE.BJGOTO 4B 

c 



FORHAN IV V/62.!64 THU 168-JAN-81 1616:32:38 

C IF ISTAT:o.IJ REWIND AND SET UP FOR NEXT READ 
c 
C AS THIS WAS A DATA FILE NOT A SHORT RECORD 
c 

0.1J74 ECOM<l>=SDSCOMC6> 
.IJS75 ECOM<Z>=l 
ZB76 ECOMC3l=IDRV 
161671 ECOMC4}=.1J 
16167C CALL SDSl.IJCECOM,ESTAT, , ) 
B.IJ79 35 RETURN 

c 
C IN THIS SECTION THE MAIN TAPE ERRORS ARE 
C HANDLED SUCH AS:= TAPE BUSV,TAPE OFFLINE 
C BOT,EOT 
c 
C TAPE BUSY SECTION •.• AFTER CLEARING BOT FLAG 
c 

1616816 4.1J WRITE<2,1161.1JliSTATI,IFNUM 
BB81 1.0'116 FORMAT{' STATUS=',I3,' FILE NO=',I4> 
BB82 ISTATI=ISTATI.AND •• NOT.MASK<4> 
16/683 ITMP=ISTATI.AND.MASK<S> 
BM94 IF<ITMP.EQ.I6>GOTO 8/6 
161636 916 ECOM(ll=SDSCOM<l> 
161687 ECOM<Z>=.IJ 
01688 ECOM<J>=IDRV 
B/689 ECOMl4l=.IJ 
~169~ CALL SDSli6<ECOM,ESTAT, , > 

c 
C HAVING EXAMINED STATUS IF TAPE STILL 
C BUSV, LOOP AGAIN,IF NOT TRV COMMAND AGAIN 
c 

B/691 ESTATI=ESTAT 
.0'/632 ITMP=ESTATI.AND.MASK<S> 
0892 IFCITMP.NE./6JGOTO 916 
.0'095 IF<ICOM> Ul',3.0',2.1J 

c 
C TAPE OFFLINE 

.IJ/696 S.IJ ITMP=ISTATI.AND.MASK<l> 

.0'H97 IF<ITMP.EQ • .IJ)GOTO 1.1J.IJ 
~/699 TYPE l/6.1J1,IDRV 
161JJI6 l.iOD'l FORMAT<' TAPE DRIVE ',Il,' OFFLINE'> 

0' 1.0' l 
.0'12'2 
.0'123 
.0'1/6L 
.0'12'5 
0lfJ6 
.0'U7 
01.0'8 
0' 1 1.0' 

c 
C HAVING ANNOUNCED ERROR SKIP UNTIL CORRECTED 
c 

1116 ECOMC1>=SDSCOMC1 > 
ECOM<2>=.0' 
ECOM<3>=IDRV 
ECOMC4l=ff 
CALL SDS1.1JCECOM,ESTAT, , 
ESTATI=ESTAT 
ITMP=ESTATI.AND.MASK<l> 
IF<ITMP.NE • .IJ>GOTO 11.0' 
IF<ICOM> l.IJ,3.1J,2.0' 

FORTRAN IV V.0'2.!64 THU 168-JAN-81 /6!6:32:38 

c 
C EOT 
c 

011~ 11616 ITMP=ISTATI.AND.MASKC3) 
16112 IF<ITMP.EQ.BlGOTO 1216 
8\14 TYPE 116162,IDRV 
16115 116162 FORMAT<' EOT ON DRIVE ',11> 
16116 IEOT=-1 
~117 RETURN 
.€1118 12Z IF<ICOMl SB,35,7.1J 

C ERROR EXIT RETURN 
c 

0'119 1316 ISTATI=-1 
z:2~ RETURN 
3'12! END 

PAGE 16163 

PAGE 16!64 



Post-Stack Processing :- MPPOST 

Input file ...... DK2:MPPOST.DAT 

Log file ••••••.• DK2:MPPOST.LOG 

Input Parameters 

READ(1,1000)NFILES,NSAMP,NSTART,INFLG,OUTFLG 

1000 FORMAT(12I5) 

NFILES ••• Number of files to process 

NSAMP •••• Number of samples per trace 

NSTART ••• Starting sample number of trace 

INFLG •••• Input flag 

0 - Input from tape 

- Input from disc 

OUTFLG •.• Output flag 

0 - Output to tape 

- Output to disc 

READ(1,1000)TPDRR,TPDRW 

TPDRR •.•. Input Tape drive 

TPDRW .... Output tape drive 

READ(1,1100)FSAMP 

1100 FORMAT(2F10.0) 

Page 185 



FSAMP •••• Sampling rate in samples/millisecond 

If INFLG = READ(1,1300)FSPECR 

1300 FORMAT ( 3A4) 

FSPECR ••• NFILES input files 

If OUTFLG = 1 READ(1,1300)FSPECW 

FSPECW •.• NFILES Output files 

READ(1,1000)NPROC 

NPROC •••• Number of processes to be applied 

READ(1,1000)(UTLFLG(I),I:1,NUTIL) 

UTLFLG ••• Flag showing if each process is to be applied 

0 - Do not apply 

- do apply 

READ(1,1000)(IORD(I),I=1,NPROC) 

IORD ••••• Process numbers in order of application 

Page 186 

This is then followed by input data to each chosen process, in the 

UTLFLG order 

1 •••• Edit 

READ(1,1000)NFILED 



Page 187 

READ(1,1000)(IFILED(I),I=1,NFILED) 

NFILED ••• Number of stacked traces to edit 

IFILED ••• Trace numbers of traces to be edited, in ascending 

order. 

2 ••.• Gain Ramps 

e0.2t Ramp 

READ(1,1000)IAPLX 

IAPLX •••• Application flag 

0 - apply 

- remove 

te0.2t Ramp 

READ(1,1000)IAPLTX 

IAPLTX •.• Application flag 

0 - apply 

- remove 

TV**2 Ramp 

READ(1,1000)IAPLTV,NLYR 

READ(1,1000)(TOLYR(I),VLYR(I),I=1,NLYR) 

IAPLTV .•. Application flag 



0 - apply 

- remove 

NLYR •.••• Number of Time/Velocity pairs to be entered 

TOLYR .••• Two-way travel time in milliseconds 

VLYR ••••• RMS Velocity down to specified time 

3 •••• Mute 

READ(1,1000)NTAP,NMPTS 

READ(1,1000)(MNPOS(I),MSAMP(I),I=1,NMPTS) 

NTAP .•••• Number of points in the cosine taper 

NMPTS •••• Number of defined mute positions 

MNPOS •••• File number of defined mute 

MSAMP •••• Sample number to mute down to 

4 •••• Spiking Deconvolution 

READ(1,1000)NFILT,IDUM,ISPIKE,INORM 

READ(1,1100)WHITE 

NFILT •••• Number of filter points 

ISPIKE ••• Spike position 

INORM •••. Scaling flag 

0 - no scaling 

- unit filter energy 

2 - equal input/output energy 

WHITE •••. Fractional pre-whitening 

Page 188 



5 •••• Bandpass Filtering 

READ(1,1100)FL,FU 

READ(1,1100)FTPR1,FTPR2 

FL ••••••• Lower cutoff frequency Hz 

FU ••.•••• Upper cutoff frequency Hz 

FTPR1 •••• Length of lower cutoff taper Hz 

FTPR2 •••• Length of upper cutoff taper Hz 

6 •••• Bandreject Filtering 

READ(1,1100)FLR,FUR 

FLR •••.•• Lower cutoff frequency Hz 

FUR •.•.•• Upper cutoff frequency Hz 

? •••• Prediction Error Deconvolution 

READ(1,1000)NPFILT,NLAG,IPNORM 

READ(1,1100)PRWHIT 

NPFILT .•. Number of samples in filter 

NLAG ••.•• Prediction distance, in samples 

IPNORM .•. Scaling flag 

0 - no scaling 

- Filter unit energy 

2 - equal input/output energy 

PRWHIT •.• Fractional prewhitening 

Page 189 



Page 190 

8 •••• Trace Normalisation 

READ(1,1000)NRMFLG 

NRMFLG ••• Normalisation flag 

0 - normalise to unit energy 

- normalise to unit maximum amplitude 



V!62./64 THU /68-JAN-81 !68:17:19 

c 
C ?~ST STACK UTILITY PROGRAM 
C THIS INVOLVES THE FOLLOWING 
C l:EDIT 
~ 2:EXPCB.2T> AMP RECOVERY 
C 3:T*EXP<B.2Tl AMP RECOVERY 
C 4:TV**2 AMP RECOVERY 
C !:i :MUTING 
C 6:DECONVOLUTION 
C ?:BANDPASS FILTERING 
C 8:BANOREJECT FILTERING 
C 9:PREDICTION ERROR FILTERING 
C !ff:NORMALISATION TO UNIT ENERGY/AMPLITUDE 
c 

~H~! REAL*S FSPECR,FSPECW,FNAMR,FNAMO 

PAGE /6/11 

ff0.'E VIRTUAL FNAMR< 1/6!6 >, FNAMOC 1/6/6 >, EXPTC 2!648 l, TEXPT< 2/648}, 
XTVSQC 2!648 >,TAPER< 512), BPASS< 2!649 >, BRJCT< Z/649), MUTE< 2/6/6/6) 

ffkf:J': REAL* 4 F BUF ( 3), TZL VR< 2/6 >, VL VRC 2!6 l, CONST< 3 l, SE:I SMC 2/648 > 
JHJfJ4 INTEGER*2 IORDC8l,UTLFLG£8l,IFILED< l/6/6l,DBUFC435.2), 

XIHBLK<256l,OUTFLG,MNPOS!3/6l,MSAMP<3.0'l,MtNCC3!6> 
B.crz<:: LOGICAL*! TPDRR, TPDRW, I STAT 
~s~~ EQUIVALENCE !IHBLK!ll,DBUFClll,CSEISM<l>,DBUFC257>> 
8337 DATA DEV/3RRK I 

c 
c SET UP VIRTUAL ADDRESS.ES 
c 

'JtJ:Jf: IEOTR=f! 
16!Jfi19 IEOTW=!6 
fJfY' . 
~ ·~ ATAP~APGAD<TAPERClll 

£10"11 ATBP=APGAD( BPASSC 1 > > 
~ .~J l ;-~ ATBR=APGADCBRJCTCll> 
J.Z 1:: ATVSQ=APGADCTVSOC1ll 
·'J:.:Y 1 ,, ATEXPT=APGADCTEXPTCl)) 
'J.F :. ~ AEXPT=APGADCEXPTC 1 > > ,.. -,... 

S~'"..,. UP I/0 CHANNELS AND READ IN CONTROL DATA '- ~· c 
.rsf!;.E IF{ ICDFNC25l.NE.!6lSTOP'CHANNEL OVERFLOW' 
,..-;qt CALL ASSIGN< l,'DK2:MPPOST.DAT' ,14) 
0'.1~IC· CALL ASSIGN<2,'DK2:MPPOST.LOG',14> 
~mz£ IDCH=216 
ti>JZ' IDCH1~21 

J.V2~- READ< 1 , 1/6/6/6} NF I LE S, NSAMP, NSTART, I NFLG, OUTFLG 
~J~2 lvBZ FORMAT<12I5> 
.<13'2~ READ< l,lBBB>TPDRR, TPDRW 
IYZ25 READ< 1,11.0'f!lFSAMP 
CfiJ2~ llBB FORMAT<2FlB.Bl 

c 
C READ IN FILE SPECS FOR INPUT 
c 

ZD?.- 12.'H FORMAT< 3A4 > 
182 · IFCINFLG.EO.BlGOTO 2!6 
£!'3.-. DO 38 I=1 ,NFILES 
.?.,J2\ HEAD<l,l28BlFBUF 



lf.J2 . !J4 THU .0'8 - JAN - 81 ZZ : 17 : 19 

f' ?i'3~ CALL. IRAD5.0'<12,FBUF,FSPECR> 
~~3~ FNAMR <I>=FS PECR 
.0'~34 3.0' CONTINUE 

c 
C READ IN FILE SPECS FOR OUTPUT 
c 

0W3 ~ 2.0' IF<OUTFLG.EQ,g)GOTO 5.0' 
~~17 DO 6.0' I=l,NFILES 
_,Jg ~· e READ< 1,12.0'/J)FBUF 
"S:S CALL IRAD5.0'<12,FBUF,FSPECW> 
y~4£ FNAMO<I>=FSPECW 
rz 41 6.0' CONTINUE 

c 
~ REA D IN JOB SPECIFIC DATA AND SET UP 
C THE FILTERS TO BE USED 

~.4Z 58 NUTIL=lD 
• B4 8 ITX=Z 
0'.0'4 ,, CONST< 1 >=FLOAT< NSTART> 
J.0'4~ CONST{2l 2 .0'.2 
v~4 6 CONST<3>=1 . .0'/(1.0'.0'.0' • .0'*FSAMP> 
~ ~47 CALL APINIT 
,j kJ :.,"! NSAMP2=2 
RB 4~ 5 1 IF<NSAMP2.GE.NSAMP>GOTO 52 
£Z5~ NSAMP2= NSAMP2*2 
~.0'S2 GOTO 51 
~B5- 52 CONTINUE 

'JZ5.:. 
,J.0'5::1 
i'£'1G 

l.'J57 
dZS~ 
1:1 .0'6k 

: 'J 5:: 
0iL)L 
0'£' 5 5 

- ~E A D IN FLAGS FOR PROCESSES AND EXECUTION ORDER 

REA0{1,1.0'ZBlNPROC 
READl1,1.0'.0'Bl(UTLFLG<I>,I=1,NUTILl 
RC:AD < 1 , 1 IJBB )( I ORO ( I l, I= 1 , N P ROC l 

- - RACE EDIT DATA 

c 

IF<UTLFLG{1).EQ . .0'lGOTO 7.0' 
READ<l,1BBB>NFILED 
READ< 1, !eBB>< IF ILED< I>, I•l,NFILED l 

~ EXP<.0'.2T> RAMP DATA 

c 

7.0' IF<~TLFLG(2l.EO.B>GOTO BB 
RE AD<1,1.0'BBliAPLX 
CAL L TEXRMP<EXPT ,B,ITX, NSAMP,CONST,AEXPT> 
ITX= 1 

C T*EXP<Z.Z T> RAMP DATA 
c 

i ~6~ 8.0' IF<UTLFLG(3l.EO.B>GOTO gg 
JB 5f READ < 1, lBBBliAPL TX 
JZ5- CALL TEXRMP<TEXPT,l,ITX,NSAMP,CONST,ATEXPT> 
'07, ITX=l 

c 

PAGE Bf42 



"ORT ' AN TV VGJ? . P/4 THLI .0'8 - JAN - !P .9'.0'"17"19 PAGE: /1.0'3 

C TV ** 2 RAMP 
c 

ZZ7 1 9.0' IF<UTLFLGC4l.EQ • .0'JGOTO 1.0'.0' 
~~7 ~ REAO<l,l.0'.0'.0'>IAPLTV,NLVR 
~~74 RF.AO<l,ll.0'HlCT.0'LVR<Il,VlVRCI>,Ial,NLVR> 
»~7 5 CALL TVRMP<TVSQ,T.0'LVR,VLVR,NLVR,ITX,NSAMP,NSTART,CONST, 

XFSAMP ,ATVSQ > 
c 
C MUTE DATA 
c 

B.0'7: 1&3 IF<UTLFLGC5l.EQ • .0'}GOTO 11.0' 
:~ 78 READ<l,l.0'.0'.0'lNTAP,NMPTS 
JJ87': READ< 1 , 1.0'.0'.0' i< MN POS < I l , MSAMP < I >, I= 1 , NMPTS > 
.dB 3e CALL COTAP<TAPER,NTAP,ATAP} 
fl'HB .' DO 1.0'1 J=2, NMPTS 
~.0'82 1.0'1 MINC<J>=<MSAMP<J>-MSAMP(J-1 ll/CMNPOS<J>-MNPOSCJ-1)) 
8883 MUTE !l l=MSAMP<1l 
a-.:!8 4 I POS:.:2 
f•Es DO 1M2 J=2,NFILES 
~~q6 IFIJ.LT.MNPOS<IPOSllGOTO 1.0'3 
~d& ~ MUTEIJl=MSAMP<IPOSl 
4fl~r: IPOS=IPOS+l 
gqg~ GOTO 1.0'2 
2391 183 MUTE<Jl=MUTE<J-ll+MINC{IPOS> 
~9'92 1.0'2 CONTINUE 

c 
C DEC ON INPUT 
c 

~Z 3 2 11.0' IF<UTLFLGC6l.EQ • .0'lGOTO 12.0' 
zzgr READ<1, 1.0'.0'.0'lNFILT,ICONT,ISPIKE,INORM 
2 .0'9•: READ<l,ll.0'.0'lWHITE 

c 
C SANDPASS FILTER 
c 

~25 ; 12B IF<UTLFLG<7l.E0 • .0'lGOTO 13.0' 
~Z3S READ<l,llHH>FL,FU 
318~ READ<l,ll .0'.0'1FTPR1,FTPR2 
•J! .e' : OF I =FL OAT< NSAMP2/2+ l }/( FSAMP*5.0'.0'.) 
JLJ~ F L1 =FL -FTP R 1 
~:~3 FU4=FU+ FTPR2 
~.z~ CALL BANDPS<ATBP , BPASS,FL1,FL ,F U, FU4,DFI,NSAMP2> 
JJ3~ NTRANF =2*NSAMP2 
S1B6 NBFI L~=NSAMP2+l 
Bl1 7 NBEX P= <2 *NSAMP2l+2-NSAMP 

~ 5AN DREJECT FILTER 
c 

Zl¥-c 13H IFCUTLFLG<Bl.EQ . .0'lGOTO 14.0' 
~; lf READ< 1, 11.0'.0'lFLR,FUR 
.0':.! : OF I =FLOAT I NSAMP212 + 1 )/( FSAMP*5.0'.0'. > 
~ l l" NTRANF=2*N SAMP2 
1f ll tiRFILT=NSAMP2+1 
B!l NB EXP=<2*NSAMf2)+2-NSAMP 
i ll CALL BANDRJ<ATBR,BRJCT,FLR,FUR,DFI,NSAMP2} 



Fan . ·· IV VSZ.B4 THU BS-JAN-81 BB:t7:19 

c 
c PREDICTIVE DECONVOLUTION 
c 

D llf 148 IFIUTLFLGC9J.EQ.S>GOTO 15.\J 
.0' 11 t READC1,1.0'SB>NPFILT,NLAG,IPNORM 
0119 

.3' 1 ::.0 
Z'L2 

!HZ~ 
.1Jl2i. 
Zl2t: 
.0'126 
IJ !2:-
0'12E 

.1HZ~ 

.0'13.1:' 
£13: 

READ<l,llBS>PRWHIT 

r TRAGE NORMALISATION 

150' IFIUTLFLG<lB>~EO.SJGOTO 
READ<1,1.0'.0'BJNRMFLG 

,.. BLOCKING PARAMETERS "' c. 
15.8' CONTINUE 

IFED=l 
NBLKTR=NSAMP/128 
NBLKW=NBLKTR+l 
NBVTR=NBLKW*512 
N\JDR=NBVTR/2 

c 
c START OF LOOP ON DIFFER~NT 
c 

DO 2.0'B IFNUM=1,NFILES 
IF IL =I FNUM 
IF<INFLG.NE.S>GOTO 

c 
C TAPE INPUT HANDLING 
c 
c 
C EOT CHECK 
c 

21.0' 

~13: ITRV=l 
Jl34 211 IFIITRV.GT.3JGOTO 212 
~13~ IFIIEOTR.GE.B>GOTO 22.0' 
n2s 212 WRITE:7,1UB>TPDRR,IFIL 

16.0' 

FILES 

:r: 3:2 t.uJs FORMAT<· EOT oN READ DRIVE:·. 12. • nLE No:· ,14 > 
g14£ WRITEI7,14.0"1> 
<!' L 14.0'1 FORMAT< I ENTER NEW DRIVE NO: I,$} 

~~·~ READ<S,l4.0'2JTPDRR 
=t!: 1482 FORMAT<Ill 
2!4~ IEOTR=B 
~145 IFITPDRR.GT.2>STOP' EOT TERMINATION' 

c 
C READ FROM TAPE TO MEMORY 
c 

PAG.E filii. 

~147 228 CALL TAPSUB<-l,TPDRR,ISTAT,IFLEN,IFIL,DBUF,NBVTR,IEOTR> 
J' 48 IF C I STAT. LT • .0' >WRITE I 2, 15.0'.0' >IF I L 
315~ l~DB FORMAT<' RETRIES ON READ FAILED ON FILE',IS> 
.llSi IF<IEOTR.LT . .0'JGOTO 23.0' 

~IND OVER EOF MARK 

ql52 CALL TAPSUB<.0',TPDRR,ISTAT, ,IFIL, , ,IEOTR> 



~ ~- ~. ~- -------- ---· -- ----- -.--.-.....---~ -.-----·-----.--. ~ ----~-- .----.,--- --------- ---

''FOK!·;.;.i'f IV VB2.84 THU BB-JAN-81 .0'8:17:19 

Hl54 23.0' ITRY=ITRV+l 
iJ155 IF {I HBLK< 1 >. EQ. "177777 >GOTO 2.11 
3157 GOTO 289 

,'}'1 :58 
.0'15~ 

C OPEN UP READING FILES 
c 

21B FSPECR=FNAMRCIFNUM> 
CALL CLOSEC<IDCH> 

.0'16.0 
xll5t: 
0'!5" 2S0' 

IF< LOOKUP< I DCH, FSPECR >. L T .S >STOP' LOOKUP ERR'' 
IF<lREADWCNWOR,DBUF,B.IDCHl.LT.S>STOP'READW E~R' 
CONTINUE 

;Jl6~ 

.0'16~ 

.0'16~ 

.9'16t 

.0'!69 

.0'17~1 

.!Jl71 

.9'172 
~173 
J 1':' j 

c 
C HEADER BLOCK MANAGEMENT 
c 

IBFREE=IHBLK(24> 
IHBLKC12~+IBFREEl=3 
IBFREE=IBFREE+1 
IHBLKC129+IBFREEJ=NPROC 
IBFREE=IBFREE+l 
CO 215 J=l,NPROC 
IHBLK<l29+IBFREE>=IQRDCJ> 
IBFREE=IBFREE+l 

215 CONTINUE 
IHBLKC24>=IBFREE 

c 
C OPEN UP OUTPUT FILES 
c 

.0'171:: IF< OUTFLG. Ea.S>GOTO 3BJ1J 

.0'17~ FSPECV=FNAMOCIFNUM> 
Zl/0, IFCIENTER<IDCHl,FSPECW,NBLKW>.LT.BJSTOP'ENTER ERRZ' 
.0'18!1 IF<IWRITWC256,IHBLK,J1J,IDCH1>.LT.BJSTOP'WRIT\I ERR' 
71q: JBLK=l 
J1 132 3~i! CALL APPUT<SEISfo!,iJ,NSAMP,2> 
~1q4 CALL APVD 
2185 DO 488 IPCNUM=l,NPROC 
~186 GOTOC418,43.0',448,45!1J,46!1J,47!1J,48!1J, 

X498,588,518JIORD<IPCNUM> 
c 
c PROCESS EDIT COMMANDS ,.. ... 

J'1R7 .1HJ' IFCIFED.GT.NFILED>GOTO 488 
;J;g~ IF { IF I LED C I FED l . NE . IF I UGOTO 488 
:·: 91 IFED=IFED+l 
·~~ 9 z CALL VCLRC8,l,NSAMP l 
J193 CALL APWR 
"ii~4 CALL APGETCSEISM,8,NSAMP,2} 
'~, 9 '5 CALL APWD 
} '. gr: GOTO 318 

c 
c AMP RECOVERY FILTERS APPL !CATION AND REMOVAL 
c 
c 
c EXPUJ. 2Tl FILTER 
c 

PAGE !J!65 



FOR1 ·AN IV V/62./64 THU /68-JAN-81 /6/6:17:19 PAGE !1!!66 

~19i 43/6 IAPL=IAPLX 
/619~ CALL APPUTACNSAMP,NSAMP,2,AEXPT> 
~199 GOTO 455 

c 
C T*EXP{/6.2T> FILTER 
c 

Rf2irf.~ 4<l.0' IAPL=IAPLTX 
/62/61 CALL APPUTA<NSAMP,NSAMP,2,ATtXPT> 
~2~2 GOTO 455 

c 
- TV**2 FILTER 
c 

~282 LSS IAPL=IAPLTV 
ZZBJ CALL APPUTA<NSAMP,NSAMP;2,ATVSQ) 

c 
C .:aMMON CODE 

2 2flS 455 CALL APWD 
~2Zf IFCIAPL.EQ.HJCALL VMULCH,l,NSAMP,l,H.l,NSAMP> 
~2S~ IFCIAPL.NE.H>CALL VDIV<NSAMP,l,H,l,H,l,NSAMP> 
A21! CALL APWR 
~21! GOTO 4/6/6 

C MUTE APPLICATION 
c 

Z:2L 458 CALL APPUTA<NSAMP,NTAP,2,ATAP> 
.0'21~ CALL APWD 
~214 MNCLR=MUTE<IFIL> 
~215 CALL VCLR<H,l,MNCLR> 
.0216 CALL VMUL< MNCLR ,1, NSAMP, 1, MNCLR ,1, NTAP) 
Z217 CALL APWR 
~2iG GOTO 48/6 

c 
C SP!I<E DECON 
c 

.0219 47C CALL SPIKE<NSAMP,NSAMP2,NFILT,WHITE,INORM,IS~IKt> 

.0'22£ GOTO 416£1 
c 
c t;ANDPASS FILTER 
c 

.0'22t 4<1Cl' CALL APPUTAC41HS,NBFILT,2,ATBP> 
J222 CALL APWD 
;;zz:: CALL VCLR<NSAMP,l,NBEXPJ 
3224 CALL RFFT<S, NTRANF ,1 > -·~ ., ,... 
.d c.'"' CALL RFFTSCCB,NTRANF,3,ll 
.... ~ ,, ;::, 

~; !_ :~ w CALL VMUL(B,2,41SB,l,H,2,NBFILTJ 
J''227 CALL VMUL< 1, 2, 41SH, 1, 1, 2, NBF IL T l 
.0'228 CALL RFFTSC<S,l,NTRANF,-3,/6) 
J~~ '2::. CALL RFFT<S,NTRANF,-ll 
~23;:;· CALL APWR 
.-1'231 GOTO 4S!J 

c 
c 3ANDR.EJECT FILTER 
c 



f"CR T ' .. ~ N IV Vll2.!14 THU BB-JAN-81 BB:17:19 

i/2'32 49~ CALL APPUTAC41BB,NRFILT,2,ATBR> 
3233 CALL APWD 
11234 CALL VCLR<NSAMP,l,NBEXP> 
Z235 CALL RFFTC8,NTRANF,l~ 
4236 CALL RFFTSC<B,NTRANF,3,1) 
8237 CALL VMULC8,2,4188,1,8,2,NRFILT> 
Z23~l CALL VMUL<l,2,4188,1,1,2,NRFI.LT> 
3239 CALL RFFTSC{8,NTRANF,-3,B> . 
824~ CALL RFFTC8,NTRANF,-1> 
0241 CALL APWR 
3242 GOTO 488 

C PR.EDICT liECON 
c 

.0'24::: 5RJII CALL PRO ICT< NSAMP, NSAMP2, NPF I L T, PRVHIT, IPNORM,NLAG> 
ii2 4l GOTO 411fll 

c 
c NORMALISATION 
c 

·n4:-, 5111 IFINRMFLG.E0.8>GOTO 515 
0'24 CALL MAXMGV<fli,1,2858,NSAMP> 
:!'!. 4 ':: GOTO 516 
.0'7:49 515 CALL SVESQC8,1,2858,NSAMP> 
.0'25£' CALL VSQRTC2858,1,2B5fll,l,l) 
3251 516 CALL VDIV<285B,8,8,l,B,1,NSAMP> 
Cf252 CALL APWR 
.~~ ':J':' 48.0' CONTI NU:; 

c 
c: END OF PROCESS LOOP 
c 

32SA CALL APWAIT 
~~SS CALL APGET<SEISM,8,NSAMP,2> 
~256 CALL APWD 
~257 31$ IFCOUTFLG.EQ.8)GOTO 328 

PAG.E B167 

.';: 5? IF< IWR ITW< 2*NSAMP, SE ISM, JBLK, I DCH 1 >. L T.8>STOP 'WRIT\1 ERR2' 
226' CALL CLOSECIIDCHl> 
0262 GOTO 2118 

c 
•' OUTPUT TO TAPE 
c 

.'1262 32Z IFLEN=NBLKW 

.0'26'" CALL TAPSUB\l,TPDRW,ISTAT,IFLEN,IFIL,DBUF,NBVTR,IEOT\1) 
c 
C CHECK FOR ERRORS 

~265 IFI!EOTW.GE.8>GOTO 258 
'126: WRITEC7,16BB>TPDRW,IFIL 
.J~5c 168.0' FORMAT!' EOT ON DRIVE:',I2,' FILE NO:',I4) 
~26~ WRITEI7,16S1l 
g: 7.G 15.0"1 FORMAT< I ENTER NEW WRITE DRIVE NO: I'$) 
~27! READC5,14&2>TPDRW 
327~ IEOTW=II 
~272 IF<TPDRW.GT.Z>STOP'EOT TERMINATE' 
;o275 25.0" IF<ISTAT.GE.8lGOTO 2111/J 

(l]27~ 

!J':.78 
e-2 7 s; 
0':'8£ 
.:12 :3 ~ 

.·::'33 
0'28<\ 

V/12.114 THU BB-JAN-81 llllJ,17:19 

WRITECZ,1788> IFIL 
17~~ FORMAT<' FATAL ERROR ON WRITE FILE NO',I5) 

STOP' WRITE ERROR' 
2.'Jff CONTINUE 

CALL CLOSEC<IDCH> 
CALL CLOSEC<IOCHl) 
STOP'NORMAL TERMINATION' 
END 

PAGE 11118 



V/62.114 THU BS-JAN-81 Bf6:18:Sl PAGE 16f1I 

SUBROUTINE TEXRMP<FILT,IrTVP,IFLG,NSAMP,CONST;AFTLT,FS, 

C IF ITVP=II THIS ROUTINE PRODUCES AN EXP<II.2TJ ARRAY 
C NSAMP LONG IN FILT 
C !F ITVP=l T*EXPCII.2TJPRODUCED 
c 
c 
c 
c 

CONSTC 1 J=NSART 
CONST<2J=II.2 
CONST(3J=l.II/Clllllg.II*FSAMP> 

01111~ VIRTUAL FILTC21148J 
~Z02 DIMENSION CONSTC3J 
P9Z4 IF<IFLG.NE.IIJGOTO 111 

C FORM THE T RAMP 
c 

&11116 CALL APWAIT 
~1187 CALL APPUTCCONST,8189,3;2J 
~11118 CALL APWD 
fiZIIS CALL VCLR<II,l,NSAMP> 
BB1B CALL VRAMP<8189,8191,11,1,NSAMP> 

c 
C FORM EXPC.0'.2T> 
c 

gs11 CALL VSMUL<II,l,81916,NSAMP,l,NSAMP> 
E~lZ CALL VEXP<NSAMP,l,NSAMP,l,NSAMPJ 
~813 IF<IFTVP.EQ.f6JGOTO 211 

c 
C FORM T*EXPCI6.2TJ 
c ./ 

0015 111 CALL VMUL<NSAMP,l,.0',l,NSAMP,t,NSAMP> 
~016 211 CALL APWR 
JB17 CALL APGETACNSAMP,NSAMP,2,AFILTJ 
SSlS RETURN 
kJffl9 END 



(. . 

VBZ.B4 THU 188-JAN-Bl BS:t9:13 PAGE !6!111 

BB~l SUBROUTINE TVRMP<FILT,TBLVR,VLVR,NLVR,IFLG.NSAMP,NSTART, 
%CCNST,FSAMP,AFILT> 

c 
C THIS ROUTINE PRODUCES A TV~~2 RAMP 
C FROM VELOCITY INFO IN TBLVR,VLVR 
c 

ggg7. VIRTUAL FILTC2B4Bl 
fdSft)'~ DIMENSION TSLYRC2Sl,VLVRC2.0'),CONST<3l 

c 
C CHECK IF T RAMP ALREADY FORMED 
c 

I5.iiH~4 IF< JFLG.NE..0'>GOTO 1.0' 
11!4/JE CALL AP\riA IT 
&~Z7 CALL APPUTCCONST,8189,3,2> 
96Se CALL AP\riD 
.0'.0'89 CALL VCLR(S,l,NSAMP) 
BBl2 CALL VRAMPC8189,8191,.0',l,NSAMP> 

c 
C FORM VELOCITY RAMP IN FJLT 
c 

F0'11 10'Nl=l 
.0'.n:: N2= IF I X< FSAMP"'T.0'L YR< 1 > >-NSTART 
BZl~ Vl=VLYRCl) 
~HJ'l-1 DO 15 I=Nl,N2 
~'3'15 15 FILT<I>=Vl 
ZZlG 1FCNLYR.EQ.llGOTO 48 
BB18 DO 218 J=2,NLYR 
BBlS Nl=N2+1 
ZB2£ N2=IFIXCFSAMP*TBLVR<J>>-NSTART 
f1.;.·2·. DELV=CVLVRCJ>-VLVRCJ-1 ))/CN2-N1+2) 
.0'!42? V=VLVR<J-ll 
fdZZ: DO 38 I=Nl,N2 
ZZ24 FILTCI>=V 
BB25 V=V+OELV 
.0'~26 3JiJ CONTlNUE 
B~27 218 CONTINUE 
18228 4B Nl=N2+1 
~v~c N2=NSAMP 
2.0'3h VN=VLVRCNLVR> 
14!431 DO 5.0' I=Nl,N2 
gg3: 5.0' FILT<Il=VN 

c 
C PUT V RAMP IN AP AND FORM TV**2 
c 

WB33 CALL AP\riAIT 
£Z3A CALL APPUTACNSAMP,NSAMP,2,AFILT> 
JZ35 CALL APWD 
BB36 CALL VSQCNSAMP,l,NSAMP,l,NSAMP> 
~937 CALL VMULCS,l,NSAMP,l,NSAMP,l,NSAMP> 
~~38 CALL APWR 
2.0'39 CALL APGETACNSAMP,NSAMP,2,AFILT) 
B24~ CALL APWD 
gz41 RETURN 
0.0'4?. END 

' ' ' ~ • #, ..... , 



··r· 

-'·'" . -•·-..,.~ ..... --·- ... , ... --. 

VI/Z./84 THU 8'8-JAN-81 8'.8': 19:34 

lU1181 SUBROUTINE COTAP(TAPER,NTAP,ATAP> 
c 
C THIS ROUTINE PRODUCES A COSINE TAPER NTAP 
C SAMPLES LONG 
c 

~H~2 VIRTUAL TAPER<512) 
BBII~ CALL APWAIT 
gz~4 CALL APPUT<l.~/FLOAT<NTAP>,B,1,2> 
8BB5 CALL VCLR(l,l,NTAP> 
BB~6 CALL VTSADD<l,l,Z3B6,1,1,1> 
~18187 CALL VTSMUL<B,1,23B6,B,l,l> 
JJIIBF. CALL VRAMP<l,ll,ll,l,NTAP> 
BHHS CALL VCOS<S,l,~,l,NTAP> 
~181~ CALL VTSADD<B,l,ZB49,S,l,NTAP> 
BBll CALL VTSMUL<B,l,2327,B,l,NTAP> 
BB12 CALL APWR 
~1813 CALL APGETA<B,NTAP,Z,ATAP> 
~/114 CALL APWD 
~815 RETURN 
.0'.0'16 END 

PAGE 16111 



·-~ -~~--:....-.~·-·· .·--··------ __.,.;,_~"':""": __ :, ·····--·· ---:.-;_~.". --·--- ....... -- -·- --~.,-- .-·---·- ~···-·· 

VIJZ.184 THU 188-JAN-81 1818:19:54 

lilfii01 SUBROUII·NE BANDPS< ATBP, BPASS, F 1, F2, F3 .F4, OF I ,.NSAMP > 
c 
C SUBROUTINE WHICH CREATES A BANDPASS 
C Fl=BOTTOM CUT OFF FREQUENCY 
C F2=START OF FULL PASS 

F3=END OF FULL PASS 
F4=TOP CUT OFF FREQUENCY 

FILTER 

c 
c 
c 
c 

BETWEEN Fl,F2 AND F3,F4 A COSINE TAPER IS APPLIED 

P!SZ? VIRTUAL BPASSC 2.0'49 > 
c 
C SET UP CONSTANTS 
c 

.0'3.0'3 N1=2*F1*DFI 
SJ8~4 N2=2*F2*DFI 
gff/05 N3=2*F3*0FI 
ftf.0Zb N4=2*F4*0FI 
06.0'7 NFILT=NSAMP+l 
.0'Z~B NTPl=N2-Nl 
.0'S.0'9 ~TP2=N4-N3 
.0'81~ NOK=N3-N2 
~!811 CALL APWAIT 

c 
C SET UP THE FILTER IN THE AP 
c 

SS12 DO 1.0' 1=1,2 
!J~;3 NTAP=NTPl 
.0',0'14 IF<I.EQ.2JNTAP=NTP2 
~.0'1E RNTAP=l • .0'/FLOAT<NTAP> 
0/017 CALL APPUTCRNTAP,S,1,2> 
~~18 CALL VCLRCl,l,NTAP> 
BB!9 CALL VTSADDC1,1,2386,1,1,1> 
~~ZD CALL VTSMULCS,l,23S6,S,l,l) 
EB21 CALL VRAMPCl,S,S,l,NTAP> 
.0'822 CALL VCOS(.0',1,.0',l,NTAP> 
.0'.0'2: CALL VTSADDCS,1,2849,S,l,NTAP> 
0ff24 CALL VTSMULCS,l,2327,S,l,NTAP> 
.0'~25 IFCI.EO.l>CALL VMOV<S,l,2.0'5B,l,NTAP> 
.0'.0'27 IFCI.E0.2>CALL VMOVCS,l,41SS,l,NTAP> 
~.0'2S 1.0' CONTINUE 

c 
C NOW HAVE TAPERS FORM REST OF FILTER 
c 

SJ832 CALL VCLRC.0',1,NFILT> 
3.0'31 CALL VADDCN1,1,2ff5.0',l,Nl,l,NTP1) 
Jff32 CALL VADDCN4,-1,41.0'ff,l,N4,-l,NTP2J 
.0'.0'32 CALL VTSADD<N2,1,2.0'49,N2,1,NOK> 
.0'.0'34 CALL APWR 
ff~3S CALL APGETA<S,NFILT,2,ATBP> 
JS3c CALL APWD 
~.0'37 RETURN 
.0'ff38 END 



!J'JZ2 
~Rfflf.l 

.f/JlJZ5 
Z.fi'.J'G 

Vl62.164 THU 88-JAN-81 88:216:15 

SUBROUTINE BANDRJ<ATBR,BRJCT,Fl,F2,DFI,NSAMP> 
c 
C SUBROUTINE TO CREATE A BANOREJECT FILTER 
c 
C Fl=LOWER CUTOFF POSITION 
C F2=UPPER CUTOFF POSITION 
c 
~ THE FILTER TAKES THE FORM OF 
C A SINE BELL CENTERED ON THE FREQUENCY TO 
C BE REMOVED COMPLETELY 

VIRTUAL BRJCT< 2.0'49 > 
c 
c SET UP CONSTANTS 
c 

Nl=2 . .0'*Fl*OFI 
N2=2 • .0*F2*DFI 
NTAP=N2-Nl 
CALL APWAIT 

(; 

c SET UP FILTER IN AP 
c 

.Cff'J7 CALL VCLR<16,l,NTAP> 
SZ~3 NFILT=NSAMP+l 
J2ZS FTAP=1 . .0'/FLOAT<NTAP> 
081~ CALL APPUT<FTAP,l,l,2) 
.J'ffl: CALL APWO 
Z.012 CALL VTSMUL{1,1,2317,1,1,1) 
~.J'l':: CALL VRAMP<I6,1,.0',1,NTAP> 
~J.ffl, CALL VCOS(.0',1 ,16, 1 ,NTAP > 
Jt>l5 CALL VTSADD<I6,1,21649,.0',l,NTAP> 
?~!E CALL VTSMUL(f6,1,2327,!6,1,NTAP> 
ZJ'l7 CALL VMOV<16 ,1, 41696,1, NTAP > 

;; :()' 1 c 
:}fJ l 9 
::';] 2.0' 
:.:."' 0"2 1 
.0'~~=-: 

·r ···-:-
~ .... - .:... '-• 

c 
C S2T UP FULL FILTER NOW TAPER FINISHED 
c 

CALL VCLR<B,l,NFILT> 
CALL VTSADD<.0',1,2!649,Z,l,NFILT> 
CALL VMUL<N1.1,4!696,l,N1,1,NTAP> 
CALL APWR 
CALL APGETA<B,NFILT,2,ATBR> 
CALL APWD 
RETURN 
END 

PAGE /1/11 



VIJZ.f!J4 THU 1/8-JAN-81 111/:21/:34 PAGE !41/1 

i8Bl SUBROUTINE SPIKE<NSAMP,NSAMP2,ILENTH,WHITE,IFLAG,ISPIKEJ 
c 
c WIENER SPIKING FILTER ROUTINE 
c NSAMP=DATA LENGTH 
c NSAMP2=NEAREST POWER OF 2 TO NSAMP 
c ILENTH=FILTER LENGTH 
c IFLAG=TRACE NORMALISATION FLAG 
c II NO NORMALISATION 
c 1 FILTER UNIT ENERGY 
c 2 EQUAL INPUT-OUTPUT ENERGY 
c !SPIKE SPIKE POSITION 
c 

J382 NTRAN=2•NSAMP2 
BZJ: NCLR=NTRAN-NSAMP 
~ZZ4 NFCLR=NTRAN-ILENTH 
~Ba5 NTRAN2=NTRAN+2 
.rJ~SS NMl=NSAMP2-l 
8fJ.':If7 I6=NTRAN+ILENTH 
J~38 17=16+ILENTH 
~839 I8=I7+ILENTH 
J81B ISP=I6+ISPIKE 

c 
C HAVING SET UP CONSTANTS GET INPUT TRACE 
C ~NERGY IF REQD FOR NORMALISATION 
c 

~~~· IF<IFLAG.NE.2JGOTO 11/ 
a~12 CALL SVESQ(IJ,I,a191,NSAMP>
JglJ CALL VSQRT<8191,1,8191,1,1)
~015 CALL APWR
8216 CALL APGET<EN,8191,1,2>
231~ CALL APWD

c
C GET AUTOCORRELATION FUNCTION
c

~~lb 10 CALL VCLR<NSAMP,l,NCLR>
J81~ CALL RFFT<H,NTRAN,1>
.0'.112f' CALL VMOV < RJ, 1 , NT RAN, 1 , NT RAN>
2B2: CALL VMUL<NTRAN,l,NTRAN,1,NTRAN,1,2)
~82: CALL CVMAGS<NTRAN2,2,NTRAN2,2,NM1>
8ff23 CALL VCLR<NTRAN+3,2,NMI>
JB24 CALL RFFTSC<NTRAN,NTRAN,-1,-1)
2~2~ CALL RFFT<NTRAN,NTRAN,-1)

zn
1',1'2
(,, {,(J
'· AJ """

c
~ AUTO FUNCTION NOW 2N LONG FROM NTRAN
C ORIGINAL FUNCTION TRANSFORMED 11-NTRAN

C NO\·/ WHITEN

CALL APWR
CALL APPUT<WHITE,8191,1,2)
CALL VSMA<NTRAN,1,8191,NTRAN,l,NTRAN,l,l>

c
C SET UP SPIKE CC FUNCTION

VZ2.Z4 THU ZS-JAN-81 Z/8:2/8:34 PAGE Bll!2

~ ·::_ 1..ALL VCLRI lb , l, lL~N TH)
;J£30 CALL VTSADD<ISP,l,2Z49,ISP,l,ll

':
c. SOL VE EONS
c

.iHJ'3 l CALL WIENER<ILENTH,NTRAN,I6,I7,I8,ll
Z.0'3 2 CALL APCHK<IERl
0'.0'33 lF<IER.NE.ZlSTOP'LEVINSON FAILURE'
0''il' 35 CALL VMOV<I7,1,NTRAN,l,ILENTHl ,... ,_

c NO iU1AL I SE FILTER IF ASKED FOR
c

.3'.0'3 E IF<IFLAG.NE.llGOTO 2Z
' -' t:\.. ..;;C CALL SVESQ<NTRAN,l,I6,ILENTHl

.., .; 3~· CALL VSQRT<I6,l,I6,1,1>

.iJ.0'4fJ CALL VDIV<I6,Z,NTRAN,l,NTRAN,l,ILENTH>
c
c APPLY FILTER
c

.0'.0'41 2S CALL VCLR< 16,1, NFCLR)

.0'.0'42 CALL RFFT<NTRAN,NTRAN,l>
0'0'4 2 CALL VMUL<Z,l,NTRAN,l,Z,l,2l
.J.0' 4 '~ CALL CVMUL<2,2,NTRAN2,2,2,2,NM1,1l
"-' .0' 45 CALL RFFTSC<Z,NTRAN,Z,-ll
.0'.0'46 CALL RFFT<Z,NTRAN,-1 >

c
c DO SCALING IF REQD
c

14847 IF<IFLAG.NE.2>GOTO 3Z
.0'1449 CALL SVESQ<Z,l,8191,NSAMP>
~/45J: CALL VSQRT<8191,1,8191,1,1)
Zf15! CALL APWR
;.Ji'! S;: CALL APPUT<EN,819Z,l,2l
.JIJ S: CALL APWD
- ;>''),;. CALL VDIV<8191,1,819Z,l,819Z,l,l>
J.e-s· CALL VSMUL<Z,1,819Z,Z,l,NSAMP>
70'3i.l 3.0' CALL APWR
<-.JS ~ RETURN
'· ·· 3 s END

FORT:<;\N IV V16Z.164 THU 168-JAN-91 1616:21:161 PAGE 16161

SUBROUTINE PROICT(NSAMP, NSAMP2, ILENTH,WHITE, rFLAG,NLAG >
c
C THIS ROUTINE DESIGNS AND APPL1ES
C A PREDICTION ERROR FILTER
C NSAMP=OATA LENGTH
C NSAMP2=NEAREST POWER OF Z TO NSAMP
C ILENTH=FILTER LENGTH
C WHITE=FRACTION PREWHITENING
C IFLAG=g NO NORMALISATION
C =1 FILTER UNIT ENERGY
C =2 INPUT/OUTPUT TRACE ENERGY CONSTANT
C NLAG= LAG OFFSET OF PREDICTION
c

~~~~ NTRAN=2*NSAMP2 
~zs: NCLR=NTRAN-NSAMP 
.~fHJ.. NM1=NSAMP2-1 
Y.1.:0f1\~ NTRAN2=NTRAN+2 
BSSG NLG=NTRAN+NLAG 
RSH7 NFILT=ILENTH+NLAG 
0iJ~ I7=NLG+ILENTH 
fJ2'ff? I8=I7+ILENTH 

c 
C GE! INPUT TRACE ENERV 
c 

BBJ; IFCIFLAG.NE.2>GOTO 116 
BBl: CALL SVESQcg,1,819l,NSAMP> 
BBJ: CALL VSQRTC8191,1,8191,1,1J 
~91~ CALL APGETCEN,8191,1,2J 
~Dl~ CALL APWD 

.0'0'17 
0'21 ; 
JO'l" 
iTB:?..0 
.-:r.~; 2 ~ 

.Jz:.::.:.. 
2JJ2.:: 

;-·r,•,., 
.:..:.•:,.·~ 

fH.l'2 
J.:r? 
£Hf2 
fifi13 
.0:. 3 

C GET AUTOCORRELATION FUNCTION 

liT 

,... 
" c NOW 
-:: 

r:. 
c NOW 
c 

CALL VCLRCNSAMP,l,NCLR> 
CALL RFFT<..0',NTRAN, 1 > 
CALL VMOVcg,l,NTRAN,l,NTRAN> 
CALL VMUL<NTRAN,l,NTRAN,l,NTRAN,1,2) 
CALL CVMAGSCNTRAN2,2,NTRAN2,2,NM1J 
CALL VCLRCNTRAN+3,2,NM1> 
CALL RFFTSCCNTRAN,NTRAN,-1,-1) 
CALL RFFTCNTRAN,NTRAN,-1) 

WHITEN IT 

CALL APWR 
CALL APPUTCWHITE,8191,1,2> 
CALL VSMACNTRAN,l,8191,NTRAN,l,NTRAN,l,l) 

SOLVE EONS 

CALL WIENERCILENTH,NTRAN,NLG,I7,!8,1> 
CALL APCHKC IER> 
IFC IER.NE.g>STOP'LEVINSON FAILURE' 
IF<IFLAG.NE.l>GOTO 216 
CALL SVE SO ( I 7, 1 , I 8, I L E NTH l 



fi1B3 ": 
fJ'i13: 

fi1.8 3E 
.l:f.0"37 
ilZ3S 
ZfJ3° 
fffiJM: 
iJ'.0'4 ;_ 
_cy-x; 4 z 
x.li(J4,
Ufi tl4.· 

'HJ45 
~047 
0'.04& 
!Jfl~~ 
:"J.05F 
.0.05!. 
D'_c'S2 
tY:~S? 

.:JJ<S 4 

.:.::5~ 
Jors~; 

VS2.flJ4 THU 08-JAN-81 SflJ:21~flJ1 PAG.E flJ!lJ2 

CALL VSORT<IB,l,!S,l,l> 
CALL VDIV<IS,flJ,I7,l,I7,l,ILENTH> 

C .u P P L '! F I L TE R 
~ 

\.. 

2ff CALL VCLR<NTRAN,l,NFILT> 
CALL VTSADD!NTRAN,l,2S49,NTRAN,l,ll 
CALL V SUB< I 7 , 1 , N L G , 1 , N L G , 1 , I L E NTH ) 
CALL VCLR<I7,l,NTRAN-NFILT> 
CALL RFFT<NTRAN,NTRAN,l> 
CALL VMUL(flJ,l,NTRAN,l,llJ,l,2> 
CALL CVMUL<2,2,NTRAN2,2,2,2,NM1,1l 
CALL RFFTSC<S,NTRAN,flJ,-1> 
CALL RFFT<S,NTRAN,-1) 

c 
'- DO SCALING 
c 

IF<IFLAG.NE.2lGOTO 3/lJ 
CALL SVESO<IlJ,l,8191,NSAMP> 
CALL VSORT<Bl91,1,8191,1,1> 
CALL APWR 
CALL APPUT<EN,Bl91lJ,l,2) 
CALL APWD 
CALL VDIV<8191,1,819flJ,I,B191lJr1•1) 
CALL VSMUL<H,l,819flJ,flJ,1,NSAMPl 

38 CALL APWR 
RETURN 
END 



Vf82.1/J4 THU 1/JS-JAN-Bl !81/J:21:32 PAGE !!f!Jl 

.0Z.r! 1 SUB ROUT! NE TAP SUB< ICOM, I DRV, I STAT, I LEN, I FNUM ,.BUF, N13VT, I EOT> 
c 
S TAPE HANDLING SUBROUTINE 
- !COM IS THE COMMAND SIGNAL 
.- -1 IS A READ,.IJ IS A WIND,l IS AWRITE 
~ IDRV IS THE DRIVE BEING USED 
C ISTAT IS THE STATUS ON RETURN 
C !LEN IS THE BLOCK LENGTH OF A FILE READ OR WRITTEN 

f8f8.tJ2 INTEGER"'2 MASK<B>,ESTATI,BUF(l l 
90!8J LOGICAL•! ISTAT,COM<4l,SDSCOM<8l,IDRV,ECOM<4>, 

XIFLEN,ESTAT,ERRS<Sl 
iHJH 4 DATA MASK/" 1 ' II 2' "4 I "1.0' I "21/J' II 41/J' " 11/Jf/J' "21/Jf/J I 
.0'fi.>)G DATA SDSCOM/ "1/J' "1 • 11 2' II 3' II 4' "5' II 6. II 7 I 
~886 DATA ERRS/"377,"377,"377,"377, 11 377 1

11 377,"377,"377/ 
9~5~ ITRV=8 
1~f8f8'C IF< I COM l UJ, 31/J, 28 

~ SECTION CONTROLLING A READ 

C CHECK THAT ONLY A FEW RETRIES ARE ATTEMPTED 
c 

~Bf8~ lg ITRY=ITRV+l 
·-
'~ SET UP COMMAND FOR READ 
c 

081~ NBUF=NBVT 
tf.!"ll CALL TREAD<BUF,NBUF,ISTAT,IDRVl 
2012 IF<ISTAT.EQ.8lRETURN 

C ERROR DETECTED ON READ 
c 

.JC14 ISTATI=ISTAT 
fh: 1 5 GOTO 48 

·-
C IF SHORT RECORD FOUND REREAD TAPE 
c 

151E 58 ITMP•ISTATI.AND.MASK<E> 
~~17 IF<ITMP.NE.BlGOTO lB 
0019 ITMP=ISTATI.AND.MASKC2l 
;,J2.Z IF<ITt><1P.EQ . .0'lRETURN 

c 
C IF CRC ERROR FOUND REWIND TAPE AND RETRY 
c 

'ry - WRITEC2 1 2.0'1.0'liFNUM 
z; 2 2.0'15 FORMAT<' FILE NO ',I4,' CRC ERROR REWINDING') 
fi:J ,, IF< ITRV.GE.2>GOTO 138 
ms 6 ECOM<l>=SDSCOMC6J 
Jff - ECOM<2l=l 
~0 ECOMC3l=IDRV 
~~ ECOM14l=8 
~A CALL SDS1BCECOM 1 ESTAT, , l 
r3 GOTO lB 



Vf!2 .!3'4 THU ZS-JAN-Bl zz:zl:32 

.~ '..'R!TE SECTION 

!J~3: 2Z ITRV=ITRV+l 
1~2: IFCITRV.GT.3>GOTO 138 
J!J35 NBUF=NBYT 
ZB3S IFLEN=<ILEN+3J/4 
J~37 IFCIFLEN.LT.2JIFLEN=2 
~S39 IPAD=<IFLEN*2848J-NBUF 
.J.0'4::r CALL TWRIT<BUF,NBUF,ISTAT,IPAD,IFLEN,IDRV> 
!J!J41 IFIISTAT.EQ.BJRETURN 

~ ~R!TE ERROR DETECTED 

BZ4~ ISTATI=ISTAT 
as4: GOTO 4!J 
884~ 7!J ITMP=ISTATI.AND.MASK<G> 
ZB46 ITMPI=ISTATI.ANO.MASKIZJ 
~847 IF<ITMP.EQ.!J.AND.ITMPI.EQ.BJRETURN 

c 
C REPORT AND RETRY 
c 

384~ WRITE<2,282BJIFNUM 

PAGE !Jfi'JZ 

BBSS 2B23 FORMAT<' FILE NO ',14,' WRITE CRC ERR RETRY PROPOSED') 
0051 ECOM<ll=SDSCOMC6J 
D~52 ECOMCZI=Z 
Z05: ECOM<3>=IDRV 
B7St ECOM<4l=!J 
:::.LSS CALL SDSlfJCECOM,ESTAT, , J 
~35F NBUF=B 
0837 IPAD=<IFLEN*2!J48J-NBUF 
J~5P CALL TWRIT<ERRS,NBUF,ESTAT,IPAD,IFLEN,IDRVJ 
005~ GOTO 2!J 

- \.liND FQI..fARD ONE FILE 

JB5P 3~ COM(ll•SDSCOM<Sl 
J361 COMCZI=l 
~ga~ COMC3J=IDRV 
0rs~ COM141=8 
·-~ CALL SDSlfJCCOM,ISTAT, , J 

JGG~.:. 

.q;QF

.·2".1J t' ~: 
:rqi6? 

. CLEAR IRRELEVANT BITS FROM ERROR BYTE 

ISTAT=ISTAT.AND .. NOT.MASKC6l 
IF< ISTAT.EQ.21RETURN 
ISTATI=ISTAT 
IF<ISTAT.NE.BlGOTO 4!J 

: !r ISTAT=B REVIND AND SET UP FOR NEXT READ 
c 
C .!>S THIS 1 • .fAS A DATA FILE NOT A SHORT RECORD 

ECOM<1J=SDSCOMI61 



:'" ORTi< AN I'/ Vf6Z.flJ4 THU flJS-JAN-81 f6flJ:Z1:3Z 

IHJ/2 
.0'1371 
>'JZ/;;. 
~h;?'C 

fJf!76 

.) fJ77 
·.JXJ7 b 
ufn·? 
JfJSfJ 
'Jf!81 
JZS? 
3'.0'84 
.:J.0'85 
0'.JB6 
<'1'0'87 

.J.J82 

.0'.0'89 

.-Jz·g:~. 

}JJ9:' 

c 
c 
I"' 

"' c 
c 
c 
c 

,... 
·, 

ECOM<2J=1 
ECOM<3l=IDRV 
ECOI'H 4 l=f6 
CALL SDSlflJCECOM,ESTAT, , > 

3'5 RETURN 

IN THIS SECTION THE MAIN TAPE ERRORS ARE 
~ANOLED SUCH AS:= TAPE BUSY,TAPE OFFLINE 
80T, EOT 

TAPE BUSY SECTION ••. AFTER CLEARING BOT FLAG 

d~ WRITE<z,lglflJJISTATI,IFNUM 
1.0'1.0' FORMAT<' STATUS=',I3,' FILE NO=',I4> 

ISTATI=ISTATI.AND •• NOT.MASKC4J 
ITMP=ISTATI.ANO.MASKCS> 
IFCITMP.EQ.flJJGOTO SflJ 

9f!J ECOMCl >=SDSCOMCll 
ECOMC2l=flJ 
ECOMC3l=IDRV 
ECOMC4l=f6 
CALL SDSlflJCECOM,ESTAT, , > 

C ~:AVING EXAMINED STATUS IF TAPE STILL 
C BUSY, LOOP AGAIN,IF NOT TRY COMMAND AGAIN 

ESTATI=ESTAT 
ITMP=ESTATI.AND.MASKCSJ 
IF< ITMP.NE.flJJGOTO 9.0' 
IF< ICOMJ lflJ,3.0',2fJ 

'" 'APE OFFLINE 

Z393 88 ITMP=ISTATI.AND.MASK<l> 
i'JCi?.' IFIITMP.EQ.SJGOTO Uf!J 
;:'0'9f TYPE lfJ.0'1, IDRV 
~j29. l.T01 FORMAT<' TAPE DRIVE ',Il,' OFFLINE'> 

r 
- HAVING ANNOUNCED ERROR SKIP UNTIL CORR~CTED 

v.rgg: 11.!~ ::COM< 1 J=SDSCOM< 1 l 
3090 ECOM<2>=8 
J!BP ECOM13l=IDRV 
3:Z! ECOM14l=8 
0!~;· CALL SDSlf!J<ECOM,ESTAT, , 
SlJ? ESTATI=ESTAT 
g;a: ITMP=ESTATI.AND.MASK{lJ 
:18'~ IF<ITt-1P.NE • .0'lGOTO llf!J 
J:T lF< !COM> 1.0',3.0',2.0' 

c 

J'.iT1 1.0'.'? ITMP=ISTATI.AND.MASK<3> 
~,~ 0 IF<ITMP.EQ.f!JJGOTO 12flJ 

V.0'2.flJ4 THU flJS-JAN-81 BflJ:21:32 

3lli TVPE 1.0'.0'2,1DRV 
.0112 IfJ!J2 FORMAT<' EOT ON DRIVE ',I 1 > 
~113 IEOT:-1 
~!l~ RETURN 
'-J.t':: !221 IF{JCON) 58,35,7/i! 

c 
~ :RROR EXIT RETURN 

!G l3J ISTMTI=-1 
1; . RETURN 
12 END 

PAGE 16113 

PAGE .0'164 



Post-Stack Trace Mix :- MPTMIX 

Input file •.• . . • DK1 . MPTMIX . DAT 

Log file •••••••• DK1:MPTMIX.LOG 

Input Parameters 

READ(1,1000)NFILES,NSAMP,TPDRR,TPDRW,INFLG,OUTFLG 

1000 FORMAT(6I5) 

NFILES •.. Number of files to process 

NSAMP •••• Number of samples per trace 

TPDRR ••.• Input tape drive 

TPDRW •••. Output tape drive 

INFLG ••.. Input flag 

0 - Input from tape 

- Input from disc 

OUTFLG .•. Output flag 

0 - Output to tape 

- Output to disc 

IF(INFLG.NE.O)READ(1,1100)FSPECR 

1100 FORMAT(3A4) 

FSPECR .•• Input files, 1 to NFILES 

IF(OUTFLG.NE.O)READ(1,1100)FSPECW 

Page 191 



Page 192 

FSPECW ••. output files, 1 to NFILES 



~'ORTRAN IV v.rn., /84 THU ~8-JAN-Bl ~~~38:37 

c 
C M J POULTER OCT 818 
C MPTMIX 
C THIS IS A PROGRAM WHICH PRODUCES 
C A WEIGHTED MIX OF THREE INPUT 
C TRACES TO GIVE ONE OUTPUT TRACE 
c 

~/6/61 REAL*B FSPECR<2BB>,FSPECW<21818>,FBUF 
1816162 REAL*4 SEIS<21848>,FN8UF<3) 
9JSS3 INTEGER*2 BUF<4352>,IHBLKC256l,IHBLKS<2S:6),0UTFLG 
1418184 EQIJIVALENCE CBUF<l>,IHBLKC1>>,<BUF<257l,SEIS<l>> 
1414!85 LOGICAL*1 ISTAT,TPDRR,TPDRW 
1818186 DATA DEV/3RRK I 

c 
C SET UP I/0 PARAMETERS 
c 

1618167 IEOTR=I8 
1818188 IEOTW=I8 
1818189 IRD=IGETCC > 
1816118 IWRT=IGETC<) 
/6/811 IF<IFETCH<OEV>.NE.I8>STOP'FETCH ERR' 
B/813 CALL ASSIGN(1,'0K2:MPTMIX.DAT',l4} 
/6/614 CALL ASSIGN(2,'DK2:MPTMIX.LOG',l4l 

c 
C GET INPUT DATA 
c 

B/815 READ< l,U1.0'18l NFILES,NSAMP,TPDRR,TPDR\I,.INFLG.,OUTFLG 
181816 1/J/8.0' FORMAT<6I5> 
161817 IF<INFLG.EQ.S>GOTO 1/8 
SH19 DO 2/8 J=l,NFILES 
18S2.0' READ<l,l/8/81lFNBUF 
S/821 1/6181 FORMAT<3A4l 
181622 CALL IRAD5/8(12,FNBUF,FBUF> 
161823 FSPECR<Jl=FBUF 
~/824 218 CONTINUE 
18S2= 1/J IF<OUTFLG.EQ.SlGOTO 3/8 
181827 DO 4/J J=l,NFILES 
/8/828 READ<1,1/8/8llFNBUF 
SS29 CALL IRAD5S<l2,FNBUF,FBUF> 
18183/J FSPECW<J>=FBUF 
18S31 4/8 CONTINUE 
181832 314 CONTINUE 

c 
C SET UP CONSTANTS AND INIT AP 
c 

181833 CALL APINIT 
/8/834 CALL VCLR<I8,1,3*NSAMPl 
SY35 NBLKTR=NSAMP/128 
181836 NBLKW=NBLKTR+l 
18S37 NBVTR=NBLKW*512 
18S38 NWDR=NBVTR/2 
/8/839 NOPS=NFILES+l 
SY418 IOUT=S 

c 

PAGE !8!81 



FORTRAN TV VB?.fiJ4 

C SET UP AP ADDRESSES 
c 

fiJ!iJ41 IAl=fiJ 
fiJ!iJ42 IA2=NSAMP 
/iJ!iJ43 IA3=1A2+NSAMP 
fiJ!iJ44 IA4=IA3+NSAMP 
/iJ!iJ45 CALL APWR 

c 
C MAIN OPS LOOP 
c 

THU fiJB-JAN-81 fiJ!iJ:38:37 

fiJ!iJ46 DO 1/iJ/iJ IFIL=1,NOPS 
fiJ!iJ47 IFNUM=IFIL 

c 
C SWITCH VECTOR POSITIONS IN AP 
c 

fiJ!iJ48 CALL VMOV<IA2,1,1Al,l,NSAMP> 
fiJ!iJ49 CALL VMOV<IA3,1,IA2,l,NSAMPl 
fiJ!iJS!iJ CALL VCLR<IA3,l,NSAMP> 
fiJ!iJ51 IF<IFNUM.GT.NFILESlGOTO 11/iJ 
fiJ!iJ53 IF<INFLG.NE.fiJlGOTO 12/iJ 

c 
C TAPE READ INPUT 
c 

fiJ!iJ55 ITRV=l 
fiJ!iJ56 16/iJ IF<ITRV.GT.3lGOTO 165 
fiJ!iJ58 IF<IEOTR.GE.fiJlGOTO 17/iJ 
fiJ!iJ6/iJ 165 WRITE<7,16/iJ!iJlTPDRR,IFNUM 
fiJ!iJ61 16fiJ!iJ FORMAT<' EOT ON READ DRIVE:',I2,' FILE NO:',I"Sl 
fiJ!iJ62 WRITE<7,16/iJ5l 
fiJ.0'63 16/iJS FORMAT<' ENTE.R NEW READ DRIVE NUMBER:',$) 
BfiJ64 READ<5,161/iJlTFDRR 
fiJ!iJ65 161/iJ FORMAT<Ill 
fiJ!iJ66 IEOTR=fiJ 
/iJ!iJ67 IF<TPDRR.GT.2JSTOP' EOT TERMINATE' 

c 
C READ TO MEMORY 
c 

PAG"E fiJ!iJZ 

fiJ!iJ69 17.0' CALL TAPSUB<-l,TPDRR,ISTAT,IFLEN,IFNUM,BUF,NSVTR,I"EOTR> 
fiJ!iJ7fiJ IF<ISTAT.LT.fiJ>WRITE<2,162/iJliFNUM 
!iJg72 162/iJ FORMAT<' RETRY FAILED ON READ FILE NO:' ,15) 
fiJ!iJ73 IF<IEOTR.LT.fiJJGOTO 18/iJ 

c 
C ~IND OVER EOF MARKER 
c 

!iJZ7S CALL TAPSUB<fiJ,TPDRR,ISTAT, ,IFNUM,, ,IEOTR> 
fiJ!iJ76 18/iJ ITRV=ITRV+1 
fi!fiJ77 IF< IHBLK< 1 >.E0."177777>GOTO 16/iJ 
fiJ!iJ79 GOTO 13/iJ 

c 
C INPUT FROM DISC 
c 

fiJ!iJ8/iJ 12/iJ CONTINUE 
fiJ!iJ81 CALL CLOSEC<IRDl 
fiJ!iJ82 FBUF=FSPECR<IFNUM> 



FORTRAN IV V/12./14 THU /18-JAN-81 /1/1:38:37 PAGE 11163 

/1/183 IF<LOOKUP<IRD,FBUF>.LT./IlSTOP'LOOKUP ERROR' 
/1/185 IFCIREAD\.JCNWDR,BUF,/I,IRD>.LT./IlSTOP'Rt:AD ERROR' 
ff/187 13/1 CONTINUE 

c ,.. HEADER BLOCK MANAGEMENT '-

c 
.0'.0'88 IPOS=IHBLK<24l 
.0'/189 I HBLK( 129+ IPOS >=5 
/1.0'9/1 IPOS=IPOS+1 
.0'.0'91 IHBLK<24l=IPOS 

c 
c PUT DATA IN AP 
c 

.0'.0'92 CALL APPUT<SE!S,IA3,NSAMP,2> 
c 
c SAVE HEADER BLOCK AND REPLACE WITH PREVIOUS ONE 
c 

.0'/193 1111 DO 135 J=1,256 

.0'.0'94 ITMP=IHBLK<J l 
/1.0'95 IHBLK<Jl=IHBLKS<J> 
.0'/196 IHBLKS(JJ=ITMP 
.0'.0'97 135 CONTINUE 
.0'fi198 IF<IFNUM.LE.lJGOTO 11111 

c 
c DO WEIGHTED MIX IN AP 
c 

.0'1/1/1 CALL APWD 
!i11/ll CALL VTSMUL<IA1,1,2329,ll,l,NSAMP> 
.0'1112 CALL VTSMULCIA2,1,2327,IA4,l,NSAMPl 
.0'1113 CALL VADD < IA 1, 1, IA4, 1 , IAl , 1, NSAMP J 
.0'1/14 CALL VTSMUL<IA3,1,2329,1A4,l,NSAMP> 
.0'1.0'5 CALL VADD< IAl, 1, IA4, 1, IAl,l,NSAMP > 
.0'1.0'6 CALL SVESQ{ IA1,1, IA4,NSAMP > 
.0'1117 CALL VSQRT< IA4, 1, IA4, 1, 1 J 
fflfi18 CALL VDIVCIA4,11,1Al,l,IA1,1,NSAMPJ 
fi11.0'9 CALL APWR 
.0' 1 1.0' CALL APGET<SEIS,IA1,NSAMP,2> 

c 
c OUTPUT RESULTATNT TRACE 
G 

.0'111 IFCOUTFLG.NE.ZlGOTO 14.0' 

.0'113 IFLEN=NBLKW 

.0'114 CALL APWD 

.0'115 CALL TAP SUB< 1, TPDRW, I STAT, IFLEN, I FNUM,BUF, NBVTR ,.IEOTW J 

.0'116 
0'118 
.0'119 
.0'12.@' 
.0'121 
.0'122 
.0'123 

c 
C CHECK FOR ERRORS 
c 

IF<IEOTW.GE./IlGOTO 15.0' 
WRITE<7,17ZZ>TPDRW,IFNUM 

17.0'.@' FORMAT<' EOT ON WRITE DRIVE:',I2,' FILE NO:',IS> 
\./RITE(7,17l.a'l 

171ff FORMAT<' ENTER NEW WRITE DRIVE NUMBER:',$) 
READ<5,162.0'lTPDRW 
IEOTW=.0' 

FORTRAN IV VBZ./14 THU 118-JAN-81 /816:38:37 

11124 IF<TPDRW.GT.ZlSTOP' EOT TERMINATE' 
.0'126 1516 IF<ISTAT.GE.ZlGOTO 11111 
.0'128 WRITE<2,17211>IFNUM 
11129 17211 FORMAT<' FATAL WRITE ERROR ON FILE NUMBER:',IS> 
/113B STOP' WRITE ERROR TERMINATION' 

c 
C DISC OUTPUT 
c 

/1131 1411 IOUTaiOUT+l 
B132 FBUFaFSPEC'W(IOUTl 
.0'133 IFCIENTER<IWRT,FBUF,NBLKW>.LT.II>STOP'ENTER ERROR' 
B135 CALL APWD 
.0'136 IF<IWRITW<NWDR,BUF,II,IWRTJ.LT.IIJSTOP'WRITE E~ROR' 
0'138 CALL CLOSEC<IWRTl 
.0'139 1B0 CONTINUE 
.0'140 CALL CLOSECCIRDl 
.0'141 CALL CLOSEC<IWRTl 
.0'142 STOP' NORMAL TERMINATION' 
.0'143 END 

PAGE .0'.0'4 



Trace sequential-Time slice :- MPSLIC 

Input file .•.••• DK2:MPSLIC.DAT 

Input Parameters 

READ(1,1000)NCHAN,NSAMP 

1000 FORMAT(2I5) 

NCHAN •••. Number of input channels 

NSAMP ••.. Number of samples per channel 

READ(1,1100)FSPECR 

1100 FORMAT(3A4) 

FSPECR •.. Input File- Trace sequential 

READ(1,1100)FSPECW 

FSPECW •.• Output File- Time sliced 

Page 193 



FO?,TRAN IV VflJZ.flJ4 

c 
C M J POULTER DEC SB 
c 
c 
c 
c 
c 

THIS PROGRAM TAKES TRACE SEQUENTIAL DATA 
AND TIME SLICES IT FOR INPUT TO 
THE FD MIGRATION PROGRAM MPFMlG 

BHB1 VIRTUAL BUFFER<16384> 
BBB2 REAL"'4 BUFFER,INBUF(l28J,OUTBUF(l28>,FBUF<3> 
HHB3 REAL"'8 FSPECW,FSPECR 
8HS4 I NTEGER*2 IAD< 128 >, IWRTB< 128 > 
B8/iJ5 DATA DEV/3RRK I 

c 
c INPUT SET UP 
c 

HBB6 IF<IFETCH<DEV>.NE.B>STOP'FETCH ERROR' 
!6888 IRD=IGETC() 
8889 IWRT=IGETC( > 
BBlB CALL ASSIGN<1,'DK2:MPSLIC.DAT',14) 

c 
c READ IN DATA 
c 

8811 READ< 1 , USB> NCHAN, NSAMP · · 
8812 USB FORMAT<2I5> 
8$113 READ<1,1BB1JFBUF 
8.0'14 1.0'.0'1 FORMAT< 3A4 > 
8815 CALL IRADS.0'<12,FBUF,FSPECR> 
8816 READ( 1 ,1.0'./iJl JFBUF 
8ffl7 CALL IRADS.0'<12,FBUF,FSPECW> 

c 
c SET UP CONSTANTS 
c 

8.0'18 NCHANW=8 
80'19 1.0' NCHANW=NCHANW+l28 
8fiJ2!J IF<NCHAN.GT.NCHANW>GOTO 1./iJ 
8Xf22 NBLANK=NCHANW-NCHAN 
ZZ23 NBST=NBLANK/2 
8824 ITIM=NCHANW/128 
8825 NBLKR=NSAMP/128 
8826 NFILW=<NCHANW*NBLKRJ+l 

c 
c SET UP BUFFER ADDRESSES 
c 

flJiiJ27 IT=l 
!Ofif28 DO 2Xf J=l,l28 
fiffif29 IAD<J >=IT 
883Xf 2Xf IT=IT+128 

c 
c CLEAR STORE BUFFER 
c 

fiJKJ31 DO 3Xf J=1,16384 
fiffif32 3Xf BUFFER< J >=Z .z 

c 
c SET UP 1/0 FILES 

~AG.E fiJGJl 



FORTRAN IV 

c 

Vf82.!/J4 THU !IJS-JAN-81 SS:46:!lJ9 

f8f833 
!8.0'35 

IFCLOOKUP<IRD,FSPECR>.LT.!IJ>STOP'LOOKUP ERROR' 
IF<IENTER<I'WRT,FSPECW,NFILW>.LT.!IJ>STOP'ENTER ERROR' 

c 
C START OF TRANSFER LOOP 
c 

!lJ!lJ37 DO 1.0'!/J J=1,NBLKR 
!lJ838 IBLKR=J 
!lJ839 IST=NBST 

c 
C SET UP OUTPUT DISC ADDRESSES 
c 

!lJ84!1J DO 118 JJ=l,128 
.0'.0'41 11!8 I'WRTB<JJJ=CCJ-1)*(128*ITIMJ)+((JJ-l>*ITIM)+l 

c 
C SORT CODE 
c 

161642 
16843 
!lJf845 

DO 2!/J8 L=l,NCHAN 
IFCIREAD'WC256,INBUF,IBLKR,IRD>.LT.!IJ>STOP'READ ERROR' 
IBLKR=IBLKR+NBLKR 

c 
c PUT DATA IN INT STORE 
c 

8!lJ46 DO 3B.0' IS\o/=1,128 
!lJB47 IPOS=IADCIS'W>+IST 
!lJ848 BUFFERCIPOS>=INBUF<I~W> 
!lJ.0'49 3!1JI6 CONTINUE 
!lJ05f8 IST=IST+l 
.0'!851 IF<L.EO.NCHANJGOTO 2.18 
.0'.0'53 IF<IST.LT.l28>GOTO 2!1Jf8 

c 
c OUTPUT CODE 
c 

.0'!855 21!/J CONTINUE 
0!856 IST=f8 
0!857 DO 22!8 LL=l,128 
f8f858 IPOS=IAD<LLJ 
0059 IBLK'W=I'WRTB(LL) 
f806Z DO 23!8 LS=1,128 
.0'.0'61 OUTBUF<LS>=BUFFERCIPOS) 
.0'062 BUFFER<IPOSl=f8.f6 
0.0'63 IPOS=IPOS+1 
.0'!864 23!8 CONTINUE 

c 
C WRITE OUT 
c 

PAGE S!lJ'2 

.0'.0'65 IF ( I\JR IT\J( 256. OUTBUF. I BLK'W. IWRT>. L T .!IJ >STOP I \JRITE ERROR I 

0.0'67 1\JRTBCLL>=IBLK\J+l 
!8.0'68 22!8 CONTINUE 
.0'g69 2!/J~ CONTINUE 
.0'!1J7!lJ 1!8.0' CONTINUE 
.0'!871 CALL CLOSEC<IRD> 
Bf672 CALL CLOSECCI\JRTl 
.0'.0'73 STOP'NORMAL TERMINATION' 

FORTRAN IV 

f8!1J7 4 END 

Vf82.f84 THU !88-JAN-81 !/Jf6:46:!lJ9 PAGE !/Jf63 



Page 194 

Time Slice to Trace Sequential :- MPUSLC 

Input file ••.•.. DK2:MPUSLC.DAT 

Input Parameters 

READ(1,1000)NCHAN,NSAMP 

1000 FORMAT(2I5) 

NCHAN •••• Number of channels 

NSAMP •••• Number of samples per channel 

READ(1,1100)FSPECR 

1100 FORMAT(3A4) 

FSPECR ••• Input file- Time sliced 

READ(1,1100)FSPECW 

FSPECW ••. Output file- Trace sequential 



FORTRAN IV Vl12./64 THU /68-JAN-Bl 1111:46:48 

c 
C M J POULTER DEC 811 
c 
C THIS PROGRAM TAKES THE OUTPUT FROM FD MIGRATION 
C AND PUTS IT BACK INTO Tiiv'IE SEQUENTIAL DATA 
c 
c 

1611111 VIRTUAL BUFFERC16384) 
1616182 REAL"'4 BUFFER,INBUF<128),0UTBUFC128),FBUF(3) 
1611113 REAL"'S FSPECW,FSPECR 
1616184 INTEGER"'2 IADC128l,IWRTB<l28> 
1118185 DATA DEV/3RRK I 

c 
c INPUT SET UP 
c 

fllfllfll6 IFCIFETCHCOEV>.NE.IJJSTOP'FETCH ERROR' 
18flJIJB IRD=IGETC< l 
flJS!lJ9 IWRT=IGETC<) 
fllfJlZ CALL ASSIGNCl,'DK2:MPUSLC.DAT' ,14J 

c 
g! READ IN DATA 

fJSll READ(l,IIJSS>NCHAN,NSAMP 
SIJ12 lZfJIJ FORMAT< 215 > 
/6013 READC1,1SIJ1>FBUF 
.0'/614 111111 FORMATC3A4l 
.0'815 CALL IRAD5f1(12,FBUF,FSPECR> 
.0'.0'16 READC1,1SSl>FBUF 
111117 CALL IRADSIJC12,FBUF,FSPECW> 

c 
c SET UP CONSTANTS 
c 

_qJIJ 1 8 ~CHAN\o/=.0' 
.0'.0'19 lS CHANW=NCHAN\o/+128 
fllfJ2fJ IF ( NCHAN. GT. NCHAN\o/ JGOTO· IIJ 
fJS22 NBLANK=NCHANW-NCHAN 
fJfJ23 NBST=NBLANK/2 
fJfJ2 4 ITIM=NCHAN\o//128 
fJfJ25 NBLKW=NSAMP/128 
fJfJ26 NFILW=<NCHANW*NBLKWl+l 

c 
c SET UP BUFFER ADDRESSES 
c 

fJIJ27 IT=l 
.0'.0'28 DO 2fJ J=l,128 
fJ.0'2 9 IADCJl=IT 
Jilf13JJ 2S IT=IT+l28 

c 
c CLEAR STORE BUFFER 
c 

.0'fJ31 DO 30 J=l,l6384 
ZfJ32 318 BUFFER(JJ=IJ.S 

c 
c SET UP 1/0 FILES 

PAGE: /1181 



FORTRAN IV 

c 

V/82./64 THU .8'8-JAN-81 .8'.8':46:48 

/6/633 
/6£1'35 

IF<LOOKUP<IRD,FSPECR>.LT.YJ>STOP'LOOKUP ERROR' 
IF<IENTER<IWRT,FSPECW,NFILW>.LT.B>STOP'ENTER ~RROR' 

c 
C START OF TRANSFER LOOP 
c 

S/637 INST•NBST+l 
8838 NCHLST=/6 
161639 NCHAN0=128-NBST 
1616416 IST=I6 
S/641 NLEFT=NCHAN 
S/642 IF<NLEFT.LT.l28>NCHANO=NLEFT 
/6!044 NLEFT=NLEFT-NCHANO 

c 
C LOOP ON CHANNELS 
c 

/6/645 DO 11816 JL=l,ITIM 
/6/646 IBLKR=JL 
S/647 DO 11/6 JJ=l,NCHANO 
8848 1116 IWRTB<JJ>=<<JJ-ll*NBLKW>+<NCHLST*NBLKW>+l 

c 
C LOOP ON SAMPLES 
c 

/6/649 DO 21616 L=l,NSAMP 
1616516 IF<IREADW<256,INBUF,IBLKR,IRD>.LT.I6>STOP'READ ERROR' 
16/652 IBLKR=IBLKR+ITIM 
161653 IOUT=INST 

c 
C SORT DATA 
c 

/61654 DO 31616 LL=l,NCHANO 
161655 IPOS=IAD<LL>+IST 
161656 BUFFER<IPOS>=INBUF<IOUT> 
161657 IOUT=IOUT+l 
0858 3/6/6 CONTINUE 
/6/659 IST=IST+l 
1616&16 IF<IST.LT.128}GOTO 216/6 

/6/662 
.0/663 
/6/664 
/6/665 
/6/666 
161667 
/61668 

c 
C WRITE OUT CODE 
c 

DO 2116 JS=l,NCHANO 
IPOS=IAD<JS> 
IBLKW=IWRTB<JS> 
DO 2216 LS=l,l28 
OUTBUF<LSl=BUFFER<IPOS> 
BUFFER< IPOSl=l6.16 
IPOS=IPOS+l 

PAGE /6YJ2 

.0!069 
16167fiJ 
.0/672 

2216 CONTINUE 
IF<IWRITW<256,0UTBUF,IBLKW,IWRTl.LT.I6>STOP'WRrTE ERROR' 
IWRTB<JS>=IBLKW+l 

16fJ7 3 21£f CONTINUE 
16074 IST=I6 
161675 21616 CONTINUE 
16167 6 INST=l 

FORTRAN IV VB'Z./14 THU BS-JAN-81 BB:46:48 PAGE B63 

161677 NCHLST=NCHANO+NCHLST 
161678 NCHANO=l28 
/6079 IF<NLEFT.LT.l28>NCHANO=NL£FT 
0/681 NLEFT=NLEFT-NCHAilO 
0/682 1/616 CONTINUE 
/6083 CALL CLOSEC(IRD> 
0084 CALL CLOSEC(!WRT> 
fiJ/085 STOP'NORMAL TERMINATION' 
.0'086 END 



Finite Difference Migration :- MPFD15 and MPFD45 

Input files •.•••. DK2:MPFD15.DAT or DK2:MPFD45.DAT 

Input Parameters 

READ(1,1000)NSAMP,MSAMP,NTRACE,NV,NVELS 

1000 FORMAT(10I5) 

NSAMP •••• Number of time samples per channel 

MSAMP •••• Sample number to migrate down to 

NTRACE ••• Number of "live" data traces 

NV ••••••• Number of velcity definition points 

NVELS •••. Number of time/velocity pairs 

READ(1,1001)DX,DT,DTOR 

1001 FORMAT(3F10.0) 

DX ••.•••• Distance in km between traces 

DT ••••••• Interval in seconds between samples 

DTOR ••••• Migration interval in seconds 

READ(1,1000)(IV(I),I=1,NV) 

Page 195 

IV ....••. Positions at which velocity functions are defined 

READ(1,1002)FSPECR 



Page 196 

1002 FORMAT(3A4) 

FSPECR ••• Data file, used in both input and output 

There are then NV sets of velocity functions each with NVELS 

layers 

READ(1,1003)(TLYR(I),VLYR(I),I:1,NVELS) 

1003 FORMAT(2F10.0) 

TLYR ••••• Two-way travel time 

VLYR •..•• RMS velocity to this point 



FORHAN IV Vf82 .!81. THU !88-JAN-81 em:47:23 

c 
C M J POULTER NOV 8!8 
c 
C THIS IS A PROGRAM FOR 
C 15 DEGREE FINITE DIFFERENCE MIGRATION 
c 

Bf8Zl VIRTUAL ASAVE< 1!824 l ,BSAVE< 1.0'24 l ,CSAVEC 1!824), 
#RHSC6144l,APSAVE<2B48>,1BLK<ZB48l,VSAVE<2f848), 
#XSTOR(40'96l 

!8!8!82 REAL*S FSPECR,FSVEL 
!8!8!83 REAL*4 VINTC1!8f8l,ADXSTC4l,VC1!8.Bl;VRMSC2.Bl,FB~F(3), 

#AORHSC6l,ADAPSV<Z>,ADXDIS<4> 
!8!8!84 INTEGER*Z IV<lf8f8l,ISTC6l,Af8,A1,A2,A3,A4,AS,A6,A7, 

#ITC 2!8 l 
!8/JJJS DATA A.B/.B/,A1/lf824/,A212!848/,A3/3.B72/,A4/4-JiJ96/, 

#A5/512!8/,A6/6144/,A7/7168/ 
Bf8.B6 DATA DEV/3RRK /,FSVEL/12ROK4MPVTMPDAT/ 

c 
C SET UP CONSTANTS AND READ IN DATA 
c 

f8.BJJ7 CALL APINIT 
f8f8JiJ8 CALL ASSIGNC1,'DK2:MPFMIG.DAT',14l 
f8!8JiJ9 IFCIFETCH<DEVl.NE.BlSTOP'FETCH ERROR' 
!8!811 IVRT=IGETCC l 
!8!812 IRD=IGETC< > 

!8!813 
!8!814 
!8!815 
!8!816 
Rff817 
RJ018 
!8!819 
RJ02f8 

RJ021 
0022 
/0023 
.0'024 
.0'025 
10026 
fffJ27 
f1!J28 
f:fiJ29 
r1Z3iJ 
.0031 
!8032 
10033 
£Tlo3 4 
£1.0'35 

c 
C READ IN DATA 
c 

READ< 1, 1!8!8!8 > NSAMP,MSAMP,NTRACE,NV,NVELS 
1!8!8!8 FORMAT< 1!8!5 l 

READ< 1,10!81lDX,DT,DTOR 
1!8!81 FORMAT<3Flf8.JiJ) 

READ< 1,1!8/iJfK)( IVC I l, I=l,NVl 
READ< 1 ,1!8!82 >FBUF 

1!8!82 FORMATC3A4l 
CALL IRAD5JJ< 12,FBUF ,FSPECR> 

c 
c SET UP VM ADDRESSES 
c 

IPOS=1 
DO 1!8 J=l ,6 
ADRHS<J>=APGAD<RHS<IPOS1l 
IPOS=IPOS+1f824 

1!8 CONTINUE 
ADVEL=ADGETCVSAVE<1ll 
ADAPSV<1l=APGAD<APSAVEC1ll 
ADAPSVC2l=APGAD<APSAVEC1f825l) 
ADASV=APGADCASAVEClll 
ADBSV=APGAD<BSAVEClll 
ADCSV=APGAD C CSAVE < 1 l l 
IB=1 
DO 15 !=1,4 
ADXST< I l=APGAD< XSTOR< I B > > 
ADXD IS< I> =ADGETC XSTORC I B l l 

?AG'E !1!1!. 



FORTRAN IV VB2.B4 

BB36 IB=IB+1B24 
BB37 15 CONTINUE 

c 
C SET UP CONSTANTS 
c 

BB38 NCHANW=B 

THU BB-JAN-81 BB:47:23 

BB39 2B NCHANW=NCHANW+128 
BB4B IFCNTRACE.GT.NCHANW>GOTO 2B 
BB42 IFCNCHANV.GT.1B24>STOP' TOO MANY TRACES TO M!GRATE' 
BB44 ITIM=NCHANW/128 
BB45 NBST=CNCHANW-NTRACE>/2 
BB46 NEND=NCHANW-NTRACE-NBST 

c 
C SET UP CONSTANTS FOR LOOPS 
c 

BB47 ITOR=DTOR/DT 
BB48 ITORLM=MSAMP/ITOR 
SS49 LIMIT=NSAMP 
BBSB NVM=NV-1 
BB51 ACOF=CH.~l8*DTOR*DT>/Cl6.B*DX*DX> 
BB52 IBLKC 1 l=1 
BB53 DO 3S L=2,NSAMP 
BB54 3B IBLKCL>=IBLKCL-l>+ITIM 
BB55 NVSIZ=S 
SB56 4B NVSIZ=NVSIZ+12B 
BB57 IF<ITORLM.GT.NVSIZJGOTO 4B 
BB59 NVSIZ=NVSIZ/128 
BB6B NCHWMl=NCHANW-1 
BB61 NCHWR2=NCHANW*2 
BB62 ITRLM2=ITORLM*2 
0".0'63 IABl =AS+ 1 
.0'.0'64 IA31=A3+1 
.0'.0'65 IA41=A4+1 

.0'B66 

.0'.0'68 

.0'.0'69 

c 
C SET UP FILES 
c 

c 

IF<LOOKUPCIRD~FSPECR>.LT.B>STOP'LOOKUP ERROR' 
IFILV=NV*NVSIZ 
IFCIENTERCIVRT,FSVEL,IFILV>.LT.B>STOP'ENTER ERROR' 

C SET UP I AND I/12 
c 

.0'.0'71 CALL VCLRCA4,l,NCHANW> 

.0'.0'72 CALL VTSADD<A4,1,2B49,A4,1,NCHANW) 

.0'.0'73 CALL VMOVCA4,1,A5,l,NCHANW> 

.0'~74 CALL VTSMULCA4,1,233l,A4,l,NCHANW) 

.0'.0'75 CALL VTSMULCA4,1,"4427,A4,1,NCHANW> 

.0'.0'76 CALL APWR 

.0'.0'77 CALL APGETA<A4,NCHANW,2,ADAPSV(l)) 

.0'.0'78 CALL APGETA<A5,NCHANW,2,ADAPSVC2ll 
c 
C SET UP !NT VELOCITIES AT EACH 
C DTOR VALUE BY INTERPOLATING 
C THEN CONVERTING THE RMS VALUES 

PAGE /6/12 



FORTRAN IV VB2.B4 THU BB-JAN-81 BB:47:23 

C AND THEN WRITE OUT TO A TEMP FILE 
c 
c 

8B79 IBLKV=B 
888B DO SB LV=l,NV 
8881 IVCLVl=IV<LVl+NBST 

c 
C READ IN VELS 
c 

BB82 DO 6B LL~l,NVELS 
8883 READ<1,1883lT,VRMS<LLl 
8BB4 18B3 FORMATC2Fl8.Bl 
8985 IT<LLl=T/DTOR+l 
8B86 68 CONTINUE 

c 
C DO LINEAR INTERP ON RMS VELS 
c 

8fJ87 Nl=l 
sg88 N2=IT<l> 
fJfJ89 DO 55 LI=Nl,N2 
gggg 55 VSAVE<Lil=VRMSClJ 
8fJ91 IF<NVELS.EQ.1JGOTO 65 
fJfJ93 DO 1B LJ=2,NVELS 
8894 Nl=N2+1 
8895 N2=ITCLJ> 
fJB96 VT=VRMS<LJ-ll 
8897 DELV=<VRMSCLJl-VTJ/CN2-Nl-ll 
8898 DO 75 LT=Nl,N2 
8899 VSAVE<LTl=VT 
81BB VT=VT+DELV 
81B1 75 CONTINUE 
0182 78 CONTINUE 
01B3 65 CONTINUE 
01B4 Nl=N2+1 
01B5 N2=ITORLM+l 
ZlB6 DO SB LL=N1,N2 
81B7 88 VSAVECLLl=VRMSCNVELSl 

c 
S CHANGE INTO INT VELS 
c 

ZlZG VTP1=Z.Z 
0189 VTP2=VSAVEC1J*VSAVEC1> 
Z11Z DO 9B LINT=1,ITORLM 
01 1 1 VTP 1 =VTP 2 
8112 VTP2=VSAVECLINT+ll*VSAVECLINT+l}*CLINT+ll 
0113 VSAVECLINTl=SQRTCVTP2-VTPl> 
0114 9B CONTINUE 

PAGE BB3 

8115 IF< IWR ITA< IVRT, ITRLr-12, I BLKV ,ADVEL >. L T .BlSTOP '\IRITV ERROR' 
B117 IBLKV=IBLKV+NVSIZ 
B118 CALL IWAITCIVRT> 
0119 5B CONTINUE 

c 
C START MAIN LOOP 
c 



FORTRAN tv VfiJ2.!X4 THU .9'8-,JAN-81 0',0':47:23 PAGe !!!!61! 

.0'12.0' DO lfiJfiJ ITORCT=l,ITORLM 
fiJ121 LIMIT=LIMIT-ITOR 

c 
c ZERO X ARRAYS 
c 

.0'122 CALL VCLR<AfiJ,l,NCHANW> 

.0'123 CALL APWR 

.0'124 DO 11fiJ I=1,4 

.0'125 IST<I>=I 

.0'126 FAD=ADXST< I> 

.0'127 CALL APGETACAfiJ,NCHANW,2,FAO> 

.0'128 11.0' CONTINUE 
c 
c READ IN VELOCITIES 
c 

.0'129 IBLKV=fiJ 

.0'13.0' DO 128 L=l,NV 
8131 IF ( I READA< IVRT, ITRLM2, I BL.KV ,ADVEL). L T • .0'">STOP 'READV ERROR' 
.0'133 IBLKV=IBLKV+NVSIZ 
.0'134 CALL IWAIT< IVRT> 
.0'135 V<L>=VSAVECITORCT> 
.0'136 12..0' CONTINUE 

c 
c GEN .V SLICE 
c 

.0'137 CALL APPUT<V,A..0',NV,2> 

.0'138 DO 13..0' I=1,NVM 

.0'139 13.0' VI NT< I>=< V< I+1 >-V< I>)/( IV< I+l >-IV< I>) 

.0'148 CALL APPUT<VINT,Al,NVM,2l 

.0'141 CALL APWD 
c 

.0'142 DO 1 48 I= 1 , NVM 

.0'143 NVD=IV< I+1 >-IV< I }+1 

.0'144 CALL VRAMPCA..0'+I-1,Al+I-1,A2+fV<Il-l,l,NVD) 

.0'145 14.0' CONTINUE 

.0'146 CALL VFILL<A2+IV<l>-1,A2,1,NBST> 

.0'147 CALL VFILL<A2+IV<NV>-1,A2+IVCNV>,l,NEND> 

.0'148 CALL VSQCA2,1,A2,1,NCHANWl 
c 
c GEN A 
c 

.0'149 CALL APPUTCACOF,AfiJ,l,2) 

.0'15ff CALL APWD 

.0' 1 5 1 CALL VSMUL<A2,l,A..0',A..0',1,NCHANW> 
c 
c SET UP NECESSARY COEFFS FROM SAVE 
c 

Z152 CALL APWR 
0"153 CALL APPUTACAl,NCHANW,2,ADAPSVClll 
.0'154 CALL APPUTA<A2,NCHANW,2,ADAPSV<2>> 
.0'155 CALL AP\.10 

c 
c GEN COEFFS 
c 



FORTRAN TV V!K2.!ll4 THU !liS-JAN-81 !K!ll:47:23 PAGE !IIIliS 

c 
c < I+< B-A >T > 
c 

!Kl56 CALL VSUB<A!ll,l,Al,l,A3,1,NCHANW> 
.0'157 CALL VTSMULCA3,1,2!ll5!li,A4,1,NCHANW> 
.0'158 CALL VNEG<A4,l,A4,1,NCHANW> 
.0'159 CALL VADD<A2,l,A4,1,A4,1,NCHANW> 

c 
c CI+CA+BlT> 
c 

.0'16.0' CALL VADD<A!ll,l,A1,1,A5,1,NCHANW> 

.0'161 CALL VTSMUL<A5,1,2fK5.0',A6,l,NCHANW> 

.0'162 CALL VNEGCA6,1,A6,l,NCHANW> 

.0'163 CALL VADD<A2,l,A6,1,A6,l,NCHANW> 

.0'164 CALL APWR 
fK165 CALL APGETA<AS,NCHANW,2,ADRHS<3>> 
.0'166 CALL APGETA<A6,NCHANW,2,ADRHS<4>> 
fK167 CALL APGETA<AS,NCHANW,2,ADRHS<5>> 
.0'168 CALL APGETA<A6,NCHANW,2,ADRHSC6l> 
!K169 CALL APWD 
fK17.0' CALL VNEG<A3,1,A5,1,NCHANW> 
.0'171 CALL VNEG<A4,1,A6,1,NCHANWl 
fK172 CALL APWR 
fK173 CALL APGETA<AS,NCHANW,2,ADRHS<1>l 
.0'174 CALL APGETA<A6,NCHANW,2,ADRHS<2>> 
fK175 CALL APGETA<A3,NCHANW,2,ADCSV> 
.0'1 76 CALL APWD 
.0'177 CALL VMOV<A3,1,A5,1,NCHANW> 

c 
c PARTIALLY SOLVE AND SAVE RES 
c 

.0'178 CALL FACTOR<A3,1,A4,l,AS,l,A6,1,A7,1,NCHANW> 

.0'179 CALL APWR 

.0'18.0' CALL APGSPC15~IER> 

.0'181 IF<IER.NE • .0'lSTOP'FACTOR ERROR' 

.0'183 CALL APGETA<A6,NCHANW,2,ADASV> 

.0'184 CALL APGETA<A7,NCHANW,2,ADBSV> 

.0'185 CALL APWO 
c 
c START ON RHS 
c 
c 
c LOOP ON SAMPLES 
c 

.0'186 ISTB=NSAMP 

.0'187 DO 20.0' ITR=1,LIMIT 

.0'188 IBLKR=IBLK< ISTB > 

.0'189 FAO=AOXOIS< IST< 3 > > 

.0'19.0' CALL !WAIT< IRD > 

.0'191 IFCIREAOACIRO,NCHWR2,IBLKR,FAD>.LT • .0'>STOP"READ ERROR' 

.0'193 CALL VCLR(A7,l,NCHANW> 

.0'194 IA1=-l 

.0'195 IA2=.0' 

.0'196 CALL I WAIT< I RD l 



FORTRAN IV V!J2./64 THU /68-JAN-Bl 16/6:47:23 

/6197 DO 21/6 1=1,3 
16198 IA1=IA2+1 
/6199 IA2=IA1+1 
1621616 CALL APWR 
.0'2161 CALL APPUTA<AZ,NCHAN'W,2.,ADRHS< IAl > > 
16292 CALL APPUTA<Al,NCHANW,2,ADRHS<IA2>> 
B2!J3 FST=ADXST<IST<I>> 
162164 CALL APPUTA<A3,NCHANW,2,F'ST> 
/62/65 CALL AP'WD 
/62/66 CALL VMUL<Al,l,A3,l,A4,1,NCHAN'W> 
!12147 CALL VMAf IA/61, 1 ,A3 ,1, IA41, l,IA41,1,NCHWM1) 
!12.0'8 CALL VMA<A.0',l,IA31,l.,A4,1,A4,1,NCH'WM1l 
fJ2Z9 CALL VADD<A4,1,A7,1,A7,1,NCHANWJ 
/6210 21.0' CONTINUE 

c 
C DO SOLUTION TO ECN 
c 

!1211 CALL VCLR<A3,1,NCHAN'W> 
/6212 CALL VCLRiA4,1,NCHANWJ 
/6213 CALL APWR 
/6214 CALL APPUTA<A!I,NCHAN'W,2,ADASVJ 
/6215 CALL APPUTA<A1,NCHANW,2,ADBSVJ 
!1216 CALL APPUTA<A2,NCHANW,2,ADCSV> 
.0'217 CALL APWD 
/6218 CALL SOLVE<Af6~1,Al,l,A7,1,A2,1,A3,l.,A4,1,NCHAN'W> 
/6219 CALL APWR 
!J22.0' CALL APGSP<IER,l5J 
~221 IF<IER.NE.!JJSTOP'SOLVE FAILURE' 
/6223 FST=ADXST<IST<4>> 
/6224 CALL APGETA<A4,NCHANW,2,FST} 
0225 FAD=ADXDIS<IST<4>> 
/6226 CALL APWD 

PAGE 06 

0227 IF ( IWR ITA< IRD, NCHWR2, I BLKR, FAD). L T .!J >STOP 'WRITE E-RROR' 
c 
c TURN AROUND VECTORS 
c 

/6229 IST< 5 >=IST< 1 J 
!J2316 IST<6>=IST<2> 
.0'231 DO 22!1 1'"1,4 
16232 22B IST< I >•IST< I+2> 
B233 ISTB .. ISTB-1 

c 
c END OF LOOP 
c 

0234 2!3fiJ CONTINUE 
0235 CALL I WAIT< I RD) 
0236 1.0'fiJ CONTINUE 
0237 CALL CLOSEC<IRD> 
0238 STOP'NORMAL TERMINATION' 
0239 END 



FORTRAN IV VJ/J2.Jl/4 THU fl/8-JAN-81 J/Jfl/:48:35 

c 
C M J POULTER NOV 8J/J 
c 
C THIS IS A PROGRAM FOR 
C 45 DEGREE FINITE DIFFERENCE MIGRATION 
c 

J/JJ/JJ/Jl VIRTUAL ASAVEClJ/J24l,BSAVE(lJ/J24>,CSAVEClJ/J24>, 
#RHSClJ/J24!lJ>,APSAVECZJ/J4B>,IBLKC2J/J48),VSAVE(2J/J48>, 
#XSTOR<6144> 

J/JJ/JJ/J2 REALwa FSPECR,FSVEL 
J/JJ/JJ/J3 REALW4 VINTC1J/JJ/J},ADXST<6>,VC1J/JJ/J),VRMSC2J/J},F8Uf{3), 

#ADRHS<lB>,ADAPSV<2>,ADXDISC6> 
1616J/J4 INTEGER*2 IVClf6J/J},IST<B>,A!lJ,Al,A2,A3,A4,AS,A6.,A7, 

#IT( 2.0' > 
16.0'J/J5 DATA AJ/J/J/J/,Al/lJ/J24/,A2/2J/J48/,A3/3J/J72/,A4/4JlJ96/, 

#AS/512J/J/,A6/6144/,A7/7168/ 
16J/JJ/J6 DATA DEV/3RRK /,FSVEL/12RDK4MPVTMPDAT/ 

c 
C SET UP CONSTANTS AND READ IN DATA 
c 

J/JJ/JJ/J7 CALL APINIT 
J/Jfl/188 CALL ASSIGN<l,'DK2:MPFMIG •. DAT',l4> 
J/JJ/JJ/J9 IF<IFETCH{DEV>.NE.JlJ>STOP'FETCH ERROR' 
J/JJ/Jll IVRT=IGETC< > 
BJ/J12 IRD=IGETC< > 

c 
C READ IN DATA 
c 

18JlJ13 READ<l,lJ/JJ/JJlJ) NSAMP,MSAMP,NTRACE,NV,NVELS 
J/JJ/J14 lJ/JJ/JJ/J FORMATClJ/JIS> 
J/JJ/J15 READ<1,1.0'Bl>DX,DT,DTOR 
J/JJ/Jl6 lJ/JJ/Jl FORMATC3FlJlJ.JlJ) 
J/JJ/J17 READ< 1, UJ/JJ/J)( IV< I J, 1=1 ,NV> 
J/J.0'18 READ<l,l.0'J/J2}FBUF 
J/Jf819 1J/JJ/J2 FORMAT<3A4> 
J/JJ/J2J/J CALL IRAD5J/J(l2,FBUF,FSPECR> 

c 
C SET UP VM ADDRESSES 
c 

J/JJ/J21 IPOS=1 
J/JB22 DO 118 J=1,1J/J 
J/JB23 ADRHS<J>=APGADCRHSCIPOSJ> 
J/Jf824 IPOS=IPOS+1J/J24 
J/JJ/J2S lJ/J CONTINUE 
J/Jfl/26 ADVEL=ADGETCVSAVE<l>> 
J/JJ/J27 ADAPSV<1>=APGAD<APSAVE<l>> 
J/JB28 ADAPSV<2>=APGADCAPSAVEC1J/J25>> 
J/JJ/J29 ADASV=APGADCASAVECl>> 
J/JJ/J3J/J ADBSV=APGAD<BSAVE<l>> 
J/JB31 ADCSV=APGADCCSAVE<l>> 
J/JJ/J32 IB=l 
J/Jfl/33 DO 15 1=1,6 
BJ/J34 ADXST< I >=APGADC XSTOR< IB) > 
J/JJ/J35 ADXDIS<I>=ADGETCXSTOR<IB>> 

PAGE llfl/1 



\f82 !if A 

8836 IB=IB+1Ji!24 
883 7 15 CONTINUE 

c 
C SET UP CONSTANTS 
c 

8838 NCHANW=fi! 

THU fi!8 JAN- 81 Ji!Ji! : 4B : 3~ 

fi!fi!39 2fi! NCHANW=NCHANW+l28 
8fi!4Ji! IF<NTRACE.GT.NCHANWJGOTO 2fi! 
8Ji!42 IF<NCHANW.GT.1fi!24JSTOP' TOO MANY TRACES TO MIG"RATE' 
fi!Ji!44 ITIM=NCHANW/128 
8845 NBST=<NCHANW-NTRACE}/2 
8846 NEND=NCHANW-NTRACE-NBST 

c 
C SET UP CONSTANTS FOR LOOPS 
c 

8847 ITOR=DTOR/DT 
8848 ITORLM=MSAMP/ITOR 
fi!fi!49 LIMIT=NSAMP 
8858 NVM=NV-1 
8851 ACOF=<fi!.279*DT*OT)/(4.fi!*OX*OXl 
8852 BCOF=<OTOR*OTl/(32.fi!*DX*DX> 
.0'853 IBLK< 1 >=1 
fi!fi!54 DO 3fi! L=2,NSAMP 
8Ji!55 3Ji! IBLK<Ll=IBLK<L-ll+ITIM 
8856 NVSIZ=Ji! 
fi!fi!57 48 NVSIZ=NVSIZ+l28 
8858 IF<ITORLM.GT.NVSIZ>GOTO 4fi! 
fi!86fi! NVSIZ=NVSIZ/128 
Ji!Ji!61 NCHWMl=NCHANW-1 
fi!fi!62 NCHWR2=NCHANW*2 
~Ji!63 ITRLM2=ITORLM*2 
fi!Ji!6 4 IAfi!l=Afi!+l 
Ji!Ji!65 IA3l=A3+1 
fi!fif66 IA41=A4+1 

c 
C SET UP FILES 
c 

8867 IF<LOOKUPCIRD,FSPECRl.LT.!i!>STOP'LOOKUP ERROR' 
Ji!fi!69 IFILV=NV*NVSIZ 
fi!Ji!7.0' IF<IENTER<IVRT,FSVEL,IFILVl.LT.fi!JSTOP'ENTER E~ROR' 

c 
C SET UP I AND I/12 
c 

8fi!72 CALL VCLR(A4,1,NCHANW> 
fi!fi!7 3 CALL VTSADD<A4,1,2fi!49,A4,l,NCHANW> 
Ji!fi!74 CALL VMOVCA4,1,AS,l,NCHANW> 
fi!fi!75 CALL VTSMUL<A4,1,2331,A4,l,NCHANW> 
Bfi!75 CALL VTSMUL<A4,1,"4427,A4,1,NCHANW> 
H877 CALL APWR 
887 8 CALL APGETA<A4,NCHANW,2,ADAPSVC1ll 
~Ji! 7 9 CALL APGETA<AS,NCHANW,2,ADAPSVC2ll 

c 
C SET UP INT VELOCITIES AT EACH 
C DTOR VALUE BV INTERPOLATING 

PA E RfB2 



FORTRAN IV Vf82.184 THU 188-JAN-81 1818:48:35 

C THEN CONVERTING THE RMS VALUES 
C AND THEN WRITE OUT TO A TEMP FtlE 
c 
c 

18188g !BLKV=f8 
18881 DO 58 LV=l,NV 
18882 IVCLVl=IV<LVl+NBST 

c 
C READ IN VELS 
c 

18883 DO 618 Ll=l,NVELS 
81884 READ<1,1SI83lT,VRMS<LL> 
181885 1883 FORMATC2Flf8.Sl 
S886 ITCLL>=T/DTOR+l 
18887 6S CONTINUE 

c 
C DO LINEAR INTERP ON RMS VELS 
c 

18saa Nl=l 
81889 NZ= IT< 1 ) I 

181898 DO 55 LI=Nl,N2 
18891 55 VSAVECUl=VRMSCl) 
8892 IFCNVELS.EO.l>GOTO 65 
18B94 DO 718 LJ=Z,NVELS 
18895 Nl=NZ+l 
18896 N2=ITCLJ) 
18897 VT=VRMS<LJ-1) 
81898 DELV=CVRMSCLJl-VTl/(NZ-Nl-1} 
18899 DO 75 LT=N1,N2 
01ZM VSAVE<LTl=VT 
BlZl VT=VT+DELV 
0182 75 CONTINUE 
S1B3 718 CONTINUE 
18184 65 CONTINUE 
SIBS Nl=NZ+l 
0186 N2=ITORLM+l 
181187 DO BB LL=Nl,NZ 
01188 80 VSAVE<LL>=VRMSCNVELSl 

c 
C CHANGE INTO INT VELS 
c 

01189 VTPl=H.S 
01118 VTP2=VSAVE<l>*VSAVEC1> 
18111 DO 98 LINT=l,ITORLM 
18112 VTPl=VTPZ 
18113 VTP2=VSAVE<LINT+lJ*VSAVECLINT+lJ*<LINT+1l 
0114 VSAVECLINT>=SQRT<VTP2-VTP1> 
0115 90 CONTINUE 

PAGE 1818'3 

0116 IF ( IWRITA< IVRT, ITRLM2, IBLKV ,ADVEL>. L T .18lSTOP 'WRITV ERROR' 
0118 IBLKV=IBLKV+NVSIZ 
0119 CALL IWAIT<IVRT> 
18120 518 CONTINUE 

c 
C START MAIN LOOP 



FORTRAN IV VB2.H4 

c 
8121 DO 18B ITORCT=l,ITORLM 
8122 LIMIT=LIMIT-ITOR 

c 
C ZERO )( ARRAYS 
c 

8123 CALL VCLR<A.0',1,NCHANW> 
8124 CALL APWR 
8125 DO 11H I=1,6 
Zl26 IST< I >=I 
.0'127 FAO=ADXST< I> 
8128 CALL APGETA<AZ,NCHANW,Z,FAD> 
8129 11.0' CONTINUE 

813..0' 
.0'131 
.0'132 
f1134 
8135 
8136 
8!37 

8138 
8139 
814.0' 
.0' 1 4 1 
.0'142 

.0'143 

.0' 14 4 

.0'1 45 
k!146 
.0'1 4 7 
8148 
3149 

815.0' 
8151 
.0' 1 52 
8153 
.0'154 

.()'155 

.11' 15 6 

.e-157 
0'158 

c 
C READ IN VELOCITIES 
c 

IBLKV=H 
DO 12Z L=1,NV 
IFCIREADACIVRT,ITRLM2,IBLKV,ADVEL>.LT • .0'>STOP'READV 
IBLKV=IBLKV+NVSIZ 
CALL !WAIT< IVRT> 
VCLl=VSAVECITORCT> 

12B CONTINUE 
c 
c GEN V SLICE 
c 

CALL APPUTCV,A.0',NV,2> 
DO 13.0' I=1,NVM 

13H VI NT< I >=<V< I+1 l-V< I))/( IV< I+l >-IV< I>) 
CALL APPUT<VINT,A1,NVM,2> 
CALL APWO 

c 
DO 14..0' I=1,NVM 
NVD=IV< I+l >-IV< I l+1 
CALL VRAMP<AH+I-l,Al+I-l,AZ+IV<I>-l,l,NVD> 

148 CONTINUE 
CALL VFILL<A2+IVC 1 )-l,AZ, 1 ,NBST> 
CALL VFILLCA2+IV<NV>-1,A2+IV<NVl,1,NEND> 
CALL VSQ(A2,1,A2,1,NCHANWJ 

c 
c GEN A,B 
c 

CALL APPUTCACOF,A.0',1,2} 
CALL APPUTCBCOF,A1,1,2> 
CALL APWO 
CALL VSMUL<A2,l,A.0',AH,1,NCHANW> 
CALL VSMULCA2,1,A1,Al,1,NCHANW> 

c 
c SET UP NECESSARY COEFFS FROM SAVE 
c 

CALL APWR 
CALL APPUTA<A2,NCHANW,2,AOAPSV(l)J 
CALL APPUTA<A3,NCHANW,2,AOAPSVC2J) 
CALL APWD 

PAGE f!Jfll4 

ERROR' 



FORTRAN rv VB2.!64 THU BB-JAN-81 BB:48:35 PAGE !6/l!S 

c 
c GEN COEFFS 
c 
c 
c < 2+( 2B+ACOF >T} 
c 

.0'159 CALL VTSMUL<A2,1,2BSB,A4,l,NCHANW.J 

.0'16.0' CALL VAOD<AB,1,A4,l,A4,1,NCHANWJ 

.0'161 CALL VNEG<A4,1,AS,l,NCHANW> 
!6162 CALL VADD<A3,l,A5,l,AS,l,NCHANW> 
!6163 CALL VTSMUL<A5,1,2.0'5.0',AS,l,NCHANW> 

c 
c {l+(B+BCOFJT> 
c 

.0'164 CALL VADD<A1,1,A2,1,A6,1,NCHANW> 

.0'165 CALL VNEG<A6,1,A7,1,NCHANW> 

.0'166 CALL VTSMULCA7,1,2.0'5.0',A7,1,NCHANW> 

.0'167 CALL VADD<A3,l,A7,l,A7,1,NCHANW> 

.0'168 CALL APWR 
c 
c SAVE CALCD COEFFS 
c 

.0'169 CALL APGETA<A4,NCHANW,2,AORHS(7Jl 

.0'171i1 CALL APGETA<A5,NCHANW,2,ADRHS<B>> 
li1171 CALL APGETA<A6,NCHANW,2,ADRHSC9Jl 
!6172 CALL APGETA<A7,NCHANW,2,AORHSC1Bll 
.0'173 CALL APWD 

c 
c GET -VE OF ABOVE COEFFS AND SAVE 
c 

.0'174 CALL VNEG<A4,1,A4,1,NCHANWJ 

.0'1 75 CALL VNEG<AS,l,AS,l,NCHANW> 
J1 75 CALL VNEG<A6,!,A6,1,NCHANWJ 
.0'177 CALL VNEG<A7,l,A7,l,NCHANW> 
.0'178 CALL APWR 
!6~79 CALL APGETA<A4,NCHANW,2,ADRHSC5Jl 
2'181i1 CALL APGETA<AS,NCHANW,2,AORHS(6)) 
.0'181 CALL APGETA<A6,NCHANW,2,ADRHS<3>> 
.0'182 CALL APGETA<A7,NCHANW,2,ADRHSC4ll 
.0'183 CALL APWD 

c 
c ( !+( B-BCOF lT> 
c 

.0'184 CALL VSUBCA1,l,A2,1,A4,1,NCHANW> 
2'185 CALL VNEGCA4,1,A5,1,NCHANWJ 
2186 CALL VTSMULCA5,1,2.0'5B,A5,1,NCHANW> 
.0'187 CALL VADDCA3,l,A5,1,A5,1,NCHANW> 
.0'188 CALL APWR 
Zl89 CALL APGETA<A4,NCHANW,2,ADRHSC1J) 
2' 19Z CALL APGETA<AS,NCHANW,2,ADRHSC2ll 
.0'191 CALL APGETACA4,NCHANW,2,ADCSV> 
.0'19 2 CALL APWD 

c 
c PARTIALLY SOLVE AND SAVE RES 



FORTRAN IV VH2.H4 THU 08-.JAN-81 .0".0':48:35 

c 
H193 CALL VMOVCA4,1,A6,1,NCHANW> 
H194 CALL FACTORCA4, 1 ,AS, 1 ,A6 ,1 ,A3, l,A7 ,1, NCHAN\0 
H195 CALL APWR 
Hl96 CALL APGSPC15,1ERJ 
0197 IFCIER.NE.HlSTOP'FACTOR ERROR' 
0199 CALL APGETACA3,NCHANW,2,ADASV> 
HZHZ CALL APGETA<A7,NCHANW,2,ADBSV> 
02Zl CALL APWD 

c 
C START ON RHS 
c 
c 
C LOOP ON SAMPLES 
c 

H2H2 ISTB=NSAMP 
ZZH3 DO 2HH ITR=1,LIMIT 
H2Z4 IBLKR=IBLKCISTB> 
ZZHS FAD=ADXDIS<lSTCSll 
H206 CALL IWAITCIRDl 

?AGE flf!J6 

02H7 IF< I READA< IRD, NCHWR2, IBLKR, FAD>. L T .SJSTOP 'READ ERROR' 
H2H9 CALL VCLR<A7,1,NCHANW> 
021B IA1=-1 
0211 IA2=H 
0212 CALL IWAIT<IRD> 
0213 DO 210 1=1,5 
0214 IAl=IA2+1 
0215 IA2=IA1+1 
0216 CALL APWR 
0217 CALL APPUTA<AS,NCHANW,Z,AORHS!IAl>> 
H218 CALL APPUTA<A1,NCHANU,~,ADRHSCIA2ll 
0219 FST=ADXST<IST<I>> 
H22H CALL APPUTACA3,NCHANW,2,FST> 
0221 CALL APWD 
0222 CALL VMULCA1,1,A3,1,A4,1,NCHANW> 
0223 CALL VMACIABl,l,A3,1,IA41,1,IA41,1,NCHWM1> 
0224 CALL VMA<AH,1,IA31,1,A4,1,A4,1,NCHWM1l 
0225 CALL VADD<A4,l,A7,l,A7,1,NCHANW> 
H226 21H CONTINUE 

C DO SOLUTION TO EON 
c 

0227 CALL VCLR<A3,1,NCHANWl 
Z228 CALL VCLR<A4,l,NCHANWl 
0229 CALL APWR 
B23Z CALL APPUTACAH,NCHANW,2,ADASV> 
0231 CALL APPUTACAl,NCHANW,2,AOBSVl 
0232 CALL APPUTACA2,NCHANW,2,AOCSVl 
9233 CALL APWD 
0234 CALL SOLVECAH,l,Al,l,A7,1,A2,1,A3,1,A4,1,NCHANWl 
0235 CALL APWR 
0'236 CALL APGSPC IER, 15 l 
0237 IF<IER.NE.!JlSTOP'SOLVE FAILURE' 
0239 FST=ADXSTCISTC6>> 



FORTRAN IV VR12.il4 THU iJB-JAN-81 ilil:48:35 PAGE:: fiJftrl 

R124~ CALL APGETA<A4,NCHANW.2.FST> 
~241 FAD=ADXDIS< IST< 6)) 
0242 CALL APWD 
0243 lF<IWRITA<IRD,NCHWR2,IBLKR,FAD>.LT.Z>STOP'WR!TE ERROR' 

c 
c TURN AROUND VECTORS 
c 

0245 IST< 7>=IST< 1 > 
~246 IST<S>=IST<2> 
/1247 DO 2211 !al,6 
11248 22B IST< I )01 IST< !+2> 
.1249 ISTB•ISTB-1 

c 
c END OF LOOP 
c 

.0'25~ 2fJ~ CONTINUE 

.0'251 CALL IWAIT<IRD> 
0252 u~ CONTINUE 
0253 CALL CLOSEC<IRD> 
~254 STOP'NORMAL TERMINATION~ 
~255 END 



Kirchhoff Migration Operator Design :- MPOGEN 

Input file •••.• DK2:MPOGEN.DAT 

Input Parameters 

READ(1,1000)TSTEP,XSTEP 

1000 FORMAT(2F10.0) 

TSTEP •••• Sample interval in seconds 

XSTEP •••• Trace spacing in kms 

READ(1,1001)NHLFWD,NINC,NSAMP,NSTEP,IFRNGE,NVEL 

1001 FORMAT(6I5) 

NHLFWD ... Half-width of migration operator 

NINC •...• Step between operator traces 

NSAMP .•.• Number of samples per trace 

NSTEP ..•. Operator update step 

IFRNGE •.• Update flag 

Page 197 

<O calculate update using allowed percentage error 

>O use NSTEP to update operator 

NVEL •••.• Number of velocity layers 

READ(1,10G2)FSPECO 

1002 FORMAT(3A4) 



FSPECO ••• Operator output file 

READ(1,1000)TMIN,TMAX 

TMIN ••••. Start time for migration, seconds 

TMAX ••••• End time for migration, seconds 

READ(1,1000)(TLYR(I),VLYR(I),I:1,NVEL) 

TLYR ••••• Two-way travel time 

VLYR ••••• RMS velocity at this time 

READ(1,1000)D 

Page 198 

D •.•••••• Percentage error allowed in calculating operator 

update positions. 



!"ORTRAN !V VRJ2.214 

c 
C M J POULTER DEC 816 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM CALCULATES A SET OF 
MIGRATION OPERATORS FOR A GIVEN 
EARTH MODEL 

THIS DATA IS THEN USED AS INPUT 
TO MPKMIG 

/lJ/lJBl REAL*S FSPEC 
/lJ/6162 REAL*4 OPVAL<256B>,FBUF<3>,VELC2B>,DZ{2/6) 
/lJ/ll/lJ3 INTEGER*2 A/lJ,Al,A2,A3,A4,A5,A6,A7,A8,A9,Al/6, 

PAG£ /lJ/61 

~.tAll ,A12 ,A13 ,A14 ,Al5 ,AIOP ,A{ 5 >, NRANG-EC 512 > ,NLEADC 51.2 >, 
#IT( 2/lJ >, I OP { 2/lJ >, AC < 5), AS, ACON 

/lJ/lJ/lJ4 DATA DEV/3RRK I 
/lJ/lJ/lJS DATA A/lJ ,Al ,A2 ,A3 ,A4 ,AS ,A6 ,A7 ,AS ,A9 ,AlJil' ,All ,A12 ,A13 ,A14-, 

#Al5//lJ,512,1Jil'24,1536,2B48,256B,3B72,3584,4/lJ96,46B8, 
#51216,5632,6144,6656,7168,768/lJ/ 

/lJ/lJB6 DATA A/5632,6144,6656,7168,768/lJ/ 
/lJ/lJZ7 DATA AC/"4/lJ/lJ1,"4/lJ/lJ2,"4441,"4442,"4443/ 

c 
C SET UP SYSTEM I/0 
c 

/lJ/lJ/68 IFCIFETCHCDEV>.NE./lJ>STOP'FETCH ERROR' 
/lJ/6UJ IRD=IGETC< > 
/lJ/lJ11 CALL ASSIGN<1,'0K2:MPOGEN.DAT',l4} 

c 
C READ IN DATA 
c 

/ll/612 READ<1,1/lJflJ/lJ>TSTEP,XSTEP 
/lJ/613 l/6/lJ/lJ FORMAT<2F1/lJ./lJ) 
/ll/ll 14 READ< 1 , 1/lJ/61 > NHLF\o/0, N INC, NSAMP, NSTEP, I FRNGE, NVEL. 
/lJ/lJ15 1/lJ/lJl FORMAT<6I5> 
/lJ/lJ16 READ<l,l/lJ!lJ2>FBUF 
/ll/lJ17 l/lJ/lJ2 FORMAT<3A4l 
/lJ/lJl8 CALL IRAD5/lJ(12,FBUF,FSPEC> 
/lJ/lJl9 READ<1,1/lJ/lJ/lJ)TMIN,TMAX 
/ll/ll22' ITMIN=TMIN/TSTEP 
/llfll21 ITMAX=TMAX/TSTEP 
/ll/ll22 DO 1/lJ J=1,NVEL 
/ll!$23 READ< 1, 1/lJ.0'£l'lTPOS, VEL< J) 
/ll/lJ24 IT<J>=TPOS/TSTEP 
/ll/ll25 VEL<J>=VEL<J>/2.16 
/ll/ll26 1/lJ CONTINUE 

c 
C SET UP CONSTANTS 
c 

/lJ/lJ27 PI=3.141592 
/lJ/lJ28 CONST=-1./lJI<PI*TSTEP> 
/lJ/lJ29 NBUF=NHLF\o/D*S 
/lJ/lJ3/lJ NBUF2=2*NBUF 

c 
C SET UP RANGE OF EACH OPERATOR +NO 
C OF OPERATORS NECESSARY 



FORTRAN IV Vf!2.f!4 THU f!S-JAN-81 fffJ:SfJ:fJ6 

c 
f!f!31 IST=ff 
ffff32 5 IST=IST+l 
ffff33 IF<ITMIN.GT.IT<IST>>GOTO 5 
fff!35 IA=IST 
ffff36 ITMI=ff 
ffff37 ITMA=ITMIN 
ffff38 NOPTOT=ff 
ffff39 IPNOP=l 
ffff4ff IVS=f! 
ffff41 15 ITMI=ITMA 
ffff42 ITMA=IT<IA> 
fff!43 IF<ITMA.GT.ITMAX>ITMA=ITMAX 
ffff45 CALL OPCALC<ITMI,ITMA,NRANGE,IPNOP,NSTEP,IFRKG£,NOP) 
ffff46 NOPTOT=NOPTOT+NOP 
f!f!47 IVS=IVS+l 
f!S48 IOP<IVS>=NOP 
fff!49 DZ<IVS>=VELCIA>*TSTEP 
fff!Sff IA=IA+l 
SfJSl IF<ITMA.LT.ITMAX>GOTO 15 
f!S53 NRANGE<IPNOP-l>=ITMAX 
f!f!54 NOUT=CNOPTOT+l) 

c 
C SET UP I/0 CONSTANTS 
c 

fff!SS IBNOP=ff 
f!f!56 NBRNG=<NOUT+255)/256 
f!f!57 NINLD=<NHLFWD+255}/256 
fff!SS IOPINC=<NBUF+l27}/128 
ff.0'59 NBLD=NOPTOT*NINLD 
ffff6ff NBOPS=NOPTOT*IOPINC 
ffff61 NFILS=NBOPS+NBLD+NBRNG+l 
ffff62 INRNGS=l 
ffff63 INLDST=l+NBRNG 
.0'f!64 INOPST=INLDST+NBLD 

ffff65 

ffff67 

ffff69 

c 
C OPEN OUTPUT FILE 
c 

IF<IENTER<IRD,FSPEC,NFILS>.LT.f!>STOP'ENTER ERROR' 
c 
C WRITE OUT NOPTOT 
c 

IF { IWR ITW< 1, NOPTOT,.0', I RD). L T • .0'} STOP' NOPWR ITW ERROR' 
c 
C WRITE OUT NRANGE 
c 

IFCIWRITW<NOUT,NRANGE,l,IRD>.LT • .0'>STOP'WRITW ERR' 
c 
C CALC XSQ 
c 

ffff71 CALL APINIT 
ffff72 CALL VCLR<A.0',l,NHLFWD> 
ffff73 CALL APWR 
ffff74 CALL APPUTCXSTEP,Aff+l,l,2> 

PAG:E Bin 



FORTRAN IV VZ2.Z4 TMU NS-JAN-Sl J?JRJ:5.0';.0'6 PAGE 8H3 

8.0'75 CALL APWD 
8876 CALL VRAMP<A.0',A.0'+1,A.0',1,NHLFWD> 
8877 CALL VSQ<A.0',l,A8,l,NHLFWD> 
.0'878 CALL APWR 

c 
c GET IT VECTOR 
c 

8.0'79 CALL APPUT<NRANGE,AS,NOPTOT+l,l) 
888F.r CALL APWD 
8.0'81 CALL VFLT<AS,l,A8,l,NOPTOT+1} 
8.0'82 CALL VADD<A8, 1 ,A8+1,1 ,A7, 1,NOPTOT> 
81683 CALL VTSMUL<A7,1,2327,A6,l,NOPTOT> 
.0'B84 CALL APWR 

c 
c LOOP ON DIFFERENT VELOCITIES 
c 

.0'.0'85 IADD=-1 

.0'.0'86 IBLKNL=INLDST 

.0'.0'87 IBLKOP=INOPST 
8.9'88 DO 2.0' IV=l,IVS 
.0'889 IAOP=-1 
.0'.0'9.0' NOP=IOP<IV> 
.0'.0'91 DZINV=1.8/DZCIV> 

c 
c GET < IT*DZ>**2 
c 

8.0'92 CALL APPUT<DZ< IV>,A7,1,2> 
.0".9'93 CALL APWD 
.0'894 CALL VSMUL<A6,l,A7,A7,1,NOP> 
.0"895 CALL VSQ <A 7, 1 , A 7, 1 , NOP > 

c 
c LOOP ON OPERATORS 
c 

.0".0'96 DO 3.0' IL=1,NOP 

.0'.0'97 IADD=IADD+1 

.0'.0"98 IAOP=IAOP+1 
c 
c CALC OTHER INTERMEDIATE FACTORS 
c USED IN OPERATOR CALCULATION 
c 

.0'.0'99 CALL VSADDCA.0',1,A7+IAOP,Al,l,NHLFWD> 

.0'1.0'.0' CALL VSQRT<Al,l,Al,l,NHLFWD> 

.0'HJ'l CALL APWR 

.0' 1.0'2 CALL APPUTCCONST,A15,1,2> 
81.0'3 CALL APWD 
81.0'4 CALL VSMUL<A6+IADD,1,A15,A3,1, 1 > 

c 
c FAC! 
c 

.0'~.13'5 CALL VFILL(A3,A3+1,1,NHLFWD-1> 

.0' 1.0'6 CALL VDIV<Al ,1 ,A3 ,l ,A2 ,1, NHLFWD > 
c 
c FAC2 
c 



FORTRAN IV V182.!64 THU 188-JAN-81 BB:518:!66 PAGE !684 

B1B7 CALL APWR 
!61.0'8 CALL APPUT<DZINV,Al5,1,2> 
.0'1B9 CALL APWD 
.0'1 1£)' CALL VSMUL<A1,1,A15,A3,1,NHLFWD> 

c 
c K 
c 

18111 CALL VINTCA3,1,AS,l,NHLFWD> 
c 
c DELTA 
c 

18112 CALL VSUBCA3,l,A5,1,A4,1,NHLFWD> 
c 
c NLEAD 
c 

18113 CALL VSADD<A5~1,A8+IADD,AS,l,NHLFWDJ 
.0'114 CALL VSUB<A6+IADD,.0',AS,l,AS,l,NHLFWD> 
18115 CALL VTSADD<A5,1,2.0'49,AS,l,NHLFWD> 
.0'116 CALL VFIX<AS,l,AS,l,NHLFWD> 
.0'11 7 CALL APWR 
.0'118 CALL APGET<NLEAD,A5,NHLFWD,l> 
.0'119 CALL APWD 
!612.0' IF< IWR ITW< NHL FWD, NLEAD, I BLKNL, I RD > .L T .kf>STOP 'NLWR"IT ERR' 
.0'122 IBLKNL=IBLKNL+NINLD 

c 
c GEN OPERATOR FROM INTERMEDIATE VALUES 
c 

.0'123 DO 418 I=1,5 

.0'124 AS=A< I> 

.0'125 ACON=AC<I> 

.0'126 CALL VTSADDCA4,1,ACON,AS,1,NHLFWD> 

.0'127 CALL VDIV<A3,1,AS,l,AS,l,NHLFWD> 
18128 CALL VTSADD<AS,l,2.0'518,A9,l,NHLFWD> 
.0'129 CALL VMUL<AS,1,A9,1,AS,1,NHLFWD> 
181 318 CALL VSQRT<AS,l,AS,l,NHLFWDl 
.0'131 CALL VMUL<AS,l,A2,1,AS,1,NHLFWDl 
.0'132 418 CONTINUE 

c 
c OPl 
c 

.0'133 CALL VNEG<A11,l,A2,1,NHLFWDl 
c 
c OP2 
c 

18134 CALL VTSMUL<A11,1,218518,A3,1,NHLFWDl 
Xl'135 CALL VSUBCA12,1,A3,1,A3,1,NHLFWOl 

c 
c OP3 
c 

.0'135 CALL VTSMUL<A12,1,218518,A9,l,NHLFWD> 

.0'137 CALL VSUB<A11, 1 ,A9, 1 ,A9, 1 ,NHLFWD> 

.0'138 CALL VSUB<A13,1,A9,1,A9,1,NHLFWDl 
c 
c OP4 



FORTRAN IV 

c 

V/62.164 THU 168-JAN-81 /616:516:66 

.0'139 
,i; 1 liJ 

.0' 1 4 1 

CALL VTSMUL<A13 , 1,2B5Z , A1/6,l,NHLFWD> 
tA LL V ~ UB All , l , Al ~. l , A1B , l , HLFWD > 
CALL VSUB<A14 ,l, A1.0',1,A116,1 , NHLFWD> 

/6142 
.0'143 
/6144 

c 
C OP5 
c 

c 

CALL VTSMUL<A14,1,2BSZ,A11,l,NHLFWD> 
CALL VSUB<A13,1,Al1,1,A11,l,NHLFWD> 
CALL VSUB<A15,1,A11,1,Al1,1,NHLFWD> 

C WRITE OUT OPERATOR 
c 

/6145 CALL APWR 
B146 IAD=l 
.0'147 CALL APGET<OPVAL<IADl,A2,NHLFWD,2> 
.0'148 IAD=IAO+NHLFWD 
/6149 CALL APGET<OPVAL<IAD>,A3,NHLFW0,2) 
.0'15/6 IAD=IAD+NHLFWD 
.0'151 CALL APGET<OPVAL<IADl,A9,NHLFW0,2) 
8152 IAD•IAD+NHLFWD 
.153 CALL APGET<OPVAL<IAO),A1g,NHLFWD,2) 
.154 IAD•IAD+NHLFWD 
.155 CALL APGETCOPVAL<IAO),A11,NHLFWD,2> 
.0'156 CALL APWD 

PAGE B.S 

.0'157 IF<IWRITWCNBUF2,0PVAL,IBLKOP,IRD>.LT.B>STOP'aPWRIT ERR' 

.0'159 IBLKOP=IBLKOP+IOPINC 

.0'16.0' 316 CONTINUE 

.0'161 216 CONTINUE 
/6162 CALL CLOSEC<IRD> 
16163 STOP'NORMAL TERMINATION' 
.0'164 END 

VB2.B4 THU 88-JAN-81 BB:51:116 PAGE BBl FORnAN IV 

1616161 SUBROUTINE OPCALC<ITMIN,!TMAX,NRANGE,IPOS,NST,IFLG,NOPl 
c 
C THIS SUBROUTINE USES THE FORMULA 
C STEP SIZE=K*D/516 
C K=CURRENT SAMPLE NO 
C D=X ERROR 
c 

.0'.0'.0'2 INTEGER*2 NRANGE<512> 

.0'.0'.0'3 DATA IN/.0'/ 

.0'8.0'4 IN=IN+1 

.0'.0'.0'5 IF< IFLG.LE.I6.ANO.IN.EQ.l >READ( 1,1161616}0 

.0'.0'.0'7 1161616 FORMAT<F1.0' . .0'} 

.0'.0'.0'8 NOP=I6 

.0'16.0'9 NRANGE<IPOS>=ITMIN 

.0'.0'1.0' IPOS=IPOS+l 

.0'.0'11 I=ITMIN-1 
16.0' I 2 IF< I FL G. L E • .0' > N =I* C 0 /S.IJ. B > 
.0'.0'14 1.0' NOP=NOP+l 
.0'.0'15 IF<IFLG.GT.0lGOTO 2.1J 
.0'017 N•<I+N>*<DISB . .IJ> 
.0'.0'18 IFCN.LE • .IJ>N=1 
.0'.0'2~ I=I+2*N-1 
.0'.0'21 GOTO 3.1J 
0.0'2 2 2.1J l=I+NST 
0.1J2 3 3.0' NRANGECIPOS>=I 
.0'.0'2 4 IPOS=IPOS+1 
.0'.0' 25 IF<IPOS.GT.512lSTOP'TOO MANY OPERATORS ' 
.0'16 27 IF<I.LT.ITMAX>GOTO 116 
16.0'29 RETURN 
.0'.0' 32 END 



Kirchhoff Migration :- MPKMIG 

Input File •••... DK2:MPKMIG.DAT 

Input Parameters 

READ(1,1000)NTRACE,NO,NSAMP,NHLFWD 

1000 FORMAT(4I5) 

NTRACE ••• Number of traces in data file 

NO ••••••• Sample number of first sample in each trace 

NSAMP •••• Number of samples per trace 

NHLFWD ••• Half-width of operator 

READ(1,1000)ISTART,NSTART,NSTOP,NINC 

ISTART ••• First sample to migrate 

NSTART •.• First trace to migrate 

NSTOP •••• Last trace to migrate 

NINC ••••• Trace increment in migration 

READ(1,1001)XSTEP,TSTEP 

1001 FORMAT(2F10.0) 

XSTEP •••. Trace spacing in kms 

TSTEP ...• Sample interval in seconds 

READ(1,1002)FSPECO 

Page 199 



Page 200 

1002 FORMAT(3A4) 

FSPECO ••• Operator input file 

READ(1,1002)FSPECR 

FSPECR ••. Data input file 

READ(1,1001)FSPECW 

FSPECW ••• Migrated data output file 



FORTRAN IV VfiJZ.flJ4 THU flJS-JAN-81 flJflJ:51:23 

c 
C M J POULTER DEC SflJ 
c 
c 
c 
c 
c 
c 
c 

MPKMIG-THIS IS A KIRCHHOFF MIGRATION 
PROGRAM WHICH USES TH~ OPERATOR 
DESIGNED IN MPOGEN TO PERFORM 
CONVOLUTIONAL MIGRATION 

f4BflJ1 REAL*B FSPECR,rSPEC\J,FSPECO 
f4flJ!J2 INTEGER*2 NLEAD(512J,NRANGE<S12>,AflJ.,Al.,A2, 

#AfiJST,ATRI,AOP,ASUM,NLEADI<S12> 
f4flJflJ3 REAL*4 FBUF<3>,0PBUF<256fiJ>,TRACEC256fiJ) 
f1JflJflJ4 DATA DEV/3RRK I 
flJflJflJS DATA AfiJ ,A1 ,A2 ,ASUM/flJ, 2flJ48., 4flJ96, 67fiJ4/ 

c 
c SET I/0 CALLS 
c 

f1JflJfiJ6 IF<I~ETCHCDEV>.NE.flJ.>STOP'FETCH ERROR' 
!JBBB IRD=IGETC<) 
JlflJB9 IWRT=IGETC<) 
!610 lflJ IROP=IGETC(} 
!8!811 CALL APINIT 
B/012 CALL ASSIGN(l,'OK2:MPKMIG.DAT',14> 

c 
c READ IN DATA 
c 

!8!813 READ<l,1fiJflJfiJ)NTRACE,NB,NSAMP,NHLFWD 
/00'14 lfJZ!i1 rORMAT< 415 > 
fi1fi115 READ<l,lflJBB>ISTART,NSTART,NSTOP,NINC 
/0!816 READ<l,lfiJflJ1JXSTEP,TSTEP 
B/!17 1BfiJ1 FORMAT<2FlfiJ.fiJ) 
/0!818 READ<l,U/02JFBUF 
!8!819 UB2 FORMAT< 3A4 > 
flJflJZZ CALL 1RAD5f1J(12,FBUF,FSPECO> 
.0'/!21 READ< 1, lfiJB2 >FBUF 
R/.0'22 CALL IRADSfiJ( 12,FBUF ,FSPECR> 
f6Z23 READ<l,lZ.0'2>FBUF 
.0'/024 CALL IRADSZ<l2,FBUF,FSPECW} 

c 
c SET UP CONSTANTS 
c 

.0'/025 NBLKR=NSAMP/128 

.0'fiJ26 NFILO=NBLKR*NTRACE+l 
f!JflJ27 NW=NHLFWD-1 
.0'flJ28 NW2=NW+2 
fJ!i129 NA=NTRACE+NHLFWD 
fiJkJ3fiJ NWIDTH=2*NHLFWD-1 

c 
c OPEN UP I/0 FILES 
c 

fiJ/!31 IF< LOOKUP< IROP,FSPECO>.LT.Z>STOP'LOKKUP ERR' 
ZfiJ33 IF<LOOKUP<IRD,FSPECR>.LT.fiJ>STOP'LOOKUP ERROR' 
RlfiJ35 IF<IENTER<I~RT,FSPECW,NFILO>.LT.fiJ>STOP'ENTER ERROR' 

PAG'E ZfiJl 

•• ' ..... .# 



FORifl.AN IV VRJ2.RJ4 THU RJS-JAN-81 ZRJ:51:23 

c 
C GET OPERATOR CONSTANTS 
c 

BB37 IF<IREADW<l,NOP,B,IROP>.LT.BJSTOP'READ ERROR' 
BB39 lFCIREADW<NOP+l,NRANGE,l,lROP>.LT.B>STOP'READ ERR' 
BB41 NBRNG=<NOP+255l/256 
BB42 NBUF=NHLFWD*5 
BB43 NBUF2=2*NBUF 
BB44 NBUFAP=5*NOP 
BB45 10PINC=<NBUF+127J/128 
BB46 NINLD=CNHLFWD+255)/256 
0047 NBLD=NOP*NINLD 
0B48 INLDST=l+NBRNG 
0B49 INOPST=INLDST+NBLD 
BB50 IBLKO=l 
.0'051 ISTOP=NRANGECNOP+l) 

B052 
.0'053 

c 
C START MAIN LOOP 
c 

c 

DO lB ITR=NSTART,NSTOP,NINC 
IBLK=( < ITR-1 >*NBLKR)+l 

C READ IN OUTPUT TRACE 
c 

PA~E RJ!llZ 

.0'054 IF< IREADW< 2*NSAMP, TRACE, lBLK, IRO) .LT .B>STOP 'ReAD E"RR2' 

.0'056 CALL APPUT<TRACE,AB,NSAMP,Z> 
0057 CALL APWO 
0058 CALL VCLR<AB+ISTART,l,ISTOP-ISTART> 
0.059 IMIN=MAX0<NW2-ITR,1> 
0060 IMAX=MIN0<NA-ITR,NWIDTH> 
.0'061 IBLKR=<<ITR-NW+I~IN-2J*NBLKRJ+l 

c 
C LOOP ON OPERATOR APPLICATION 
c 

8862 DO 20 IT=IMIN,IMAX 
0063 IOP=IT-NW 
0864 IF<IOP.LT.lliOP=2-IOP 
.0'866 A8ST=AB+lSTART 
0867 IF<IREADW<2*NSAMP,TRACE,IBLKR,IRD> •. LT.B>STOP'READ ERR3' 
0869 IBLKR=IBLKR+NBLKR 
0070 CALL APPUTCTRACE,Al,NSAMP,2> 
0071 LSTOR=l 
0072 NSTOR=1 

c 
C GET OPERATOR AND LEADIN VALU~S FROM FILE 
c 

0073 IBLKLD=INLDST 
0074 IBLKOP=INOPST 
0075 DO 40 J=l,NOP 
0076 IF {I READW< NHLFWD, NLEAD I, IBLKLD, I ROP >. L T .0 >STOP' READ ERR-4' 
0B78 IFCIREADWCNBUFZ,TRACE,IBLKOP,IROP>.LT.B>STOP'READ ERR4' 
.0'080 IBLKLD=IBLKLD+NINLD 
0'B81 IBLKOP=IBLKOP+IOPINC 
0'082 IOFF=IOP 



FORTRAN IV VB2.B4 THU BS-JAN-81 BB:51:23 

BBS3 ILD=IOP 
SZ84 DO SB JJ=l,5 
BBSS OPBUF{LSTOR>=TRACE<IOFF> 
SBSS LSTOR=LSTOR+l 
SZ87 IOFF=IOFF+NHLFWD 
SB88 5B CONTINUE 
BB89 NLEAD<NSTOR>=NLEADI<ILD> 
BB9B NSTOR=NSTOR+l 
BB91 4B CONTINUE 
BB92 CALL APPUT<OPBUF,A2,NBUFAP,2l 
BB93 CALL APWD 

c 
C DO CONVOLUTIONAL MIGRATION 
c 

ZB94 DO 6B ILP=l,NOP 
BB95 ATRI=NLEAD<ILPl+Al 
BB96 LIMIT=NRANGE<ILP+ll 
BB97 AOP=A2+<S•<ILP-ll> 
BB98 NRES=LIMIT-ABST+l 

c 
C DO CONVOLVE 
c 

BB99 CALL CONVCATRI,l,AOP,l,ASUM,l,NRES,S> 
BlBB CALL VADD<ABST,l,ASUM,l,ABST,l,NRES> 
BlB1 ABST=LIMIT+l 
BlZ2 6B CONTINUE 
B1B3 2B CONTINUE 

c 
C GET MIGRATED TRACE OUT OF AP 
c 

B1B4 CALL APWR 
BlB5 CALL APGETCTRACE,AB,NSAMP,2> 
B1B6 CALL APWD 

c 
C WRITE MIGRATED TRACE TO DISK 
c 

PA~£ BB3 

B1B7 IF<IWRITW<2•NSAMP,TRACE,IBLKO,IWRT>.LT.B>STOP'WRIT WRR' 
B1B9 IBLKO=IBLKO+NBLKR 
SllB lZ CONTINUE 
8111 CALL CLOSEC<IWRT> 
B112 STOP'NORMAL TERMINATION' 
Bll3 END 



Stand Alone Interpolation :- ANINT 

Input file ••.•••• DK2:ANINV.DAT 

Input Parameters 

READ(1,1000)L,NCHAN,M,NTAP,INDEN 

1000 FORMAT(6I5) 

L •••••••• Number of samples per channel 

NCHAN •••• Number of channels 

M •••••••• Level of interpolation 

NTAP ••••• Number of samples in cosine taper 

INDEN •••• Normalisation flag 

<O no scaling 

=0 scale to RMS energy 

>O inverse energy scaling 

READ(1,1100)FBUFR,FBUFW 

1100 FORMAT(2(3A4)) 

FBUFR •••• Input file 

FBUFW •••• Output file 

Page 201 



VJH2.JH4 

~Z3l VIRTUAL SH<23552J,Sl(23552l 
)1B2 DIMENSION OUM<2H48) 
i:U.;;J DIMENSION FBUFR<3>,FBUFW(3l,FSTAP<23> 
.•.J.J 4 REAL *8 F SP ECR, F SPECW 
~~15 DATA KlM,Kl,K2,KTOP,IA,IB,IBl,IB2,IC,ICl,IDl 

l/-l,l,2,819l,H,2H48,2H49,2H5H,4Z96,4H97,6145/ 
~~~6 DATA DEV/3RDK I 

J.Ol CALL ASSIGN<l,'DK2:ANINV.OAT',l3l
n IF< IFETCH<DEV>.NE.H>STOP'FETCH ERROR'

;, •12' IDCHR=IGETC<)
),c·11 IDCHW=IGETC< >

c
C READ IN REQUIRED INPUT PARAMETERS

321:. READ< l,lZHH> L,NCHAN,M,NTAP,INDEN
1.\113 l'iJJJZ FORMAT< 2 I 5, 5X, 3 I 5)
:.r.1Jl4 READ<l,ll.0'Hl FBUFR,FBUFW
.T.:;l::; 11;;g FORNAT<2<3A4ll

C VAU DATE DATA
C NREAD IS THE NUMBER OF BLOCKS READ IN/TRACE

3716 NREAD=L/128
C STOP IF L IS NOT AN INTEGER NUMBER OF BLOCKS

33\" IF<L.NE.l28*NREAD>STOP'L NOT INTEGER NO. OF BLOCKS'

"r-""r'"":-"l
.·.- ;._- ·--·

-.'-· -:..

.:r .J::: ::
);:;2:=
.).:::zs

-~f :.rz -,
T.J2s

., -,·-
.. ..,;. ~

C LZ IS NUMBER OF WORDS READ/TRACE
L2=2*L

C I?.L IS POINTER NEEDED FOR COSINE TAPERING
IA!.=IA+L-1

C FIND L2I,INTEGER POWER OF TWO G.E. THAN L.
L2I=2
DO 5 I=l ,lZHH
IF<L2I.GE.L> GOTO lH
L21=2*L2I

5 CONTINUE
C STOP IF L2I IS GREATER THAN 2.0'48
1.0' IF<L2I.GT.2.0'48lSTOP'L2I.GT.21H48'

L2I2l=L2I/2-1
C STOP IF M.GT.23

IF<M.GT.23lSTOP'M.GT.23'
C LM IS NUMBER OF INTERPOLATED SAMPLES/TRACE

Lt~= L ••t.J
C STOP IF LM.GT.23552

1F(LM.GT.23552lSTOP'LM.GT.23552'

PAGE !6fi'fl

C L~2 IS THE TOTAL NUMBER OF WORDS WRITTEN OUT/INTERPOLATED TRACE
LM2=2*LM

; -~ _:

~ N~RITE IS THE NUMBER OF BLOCKS WRITTEN/TRACE
fi\-JRITE=LH/128

C F~TD IS ADORESS NEEDED FOR DISK READ INTO SH<l>
FST~=ADGET<SJH{lll

C ~sTl iS ADDRESS NEEDED FOR DISK WRITE FROM Sl
FSTl =ADGET< S 1 (1))

C csTAP IS ARRAY OF ADDRESSES NEEDED FOR AP TRANSFERS
i<L = 1
DO 2fiJ l<=l,M
FSTAP<Kl•APGAD<SD<KLll

Vl62.164 THU 168-JAN-81 1616:161:11 PAGE 16162

BB4~ KL=KL+L
~643 28 CONTINUE

c 0P~N READ FILE
.·~W44 CALL IRAD516{ 12,FBUFR,FSPECR>
~34~ IFCLOOKUPCIDCHR,FSPECRJ.LT.16JSTOP'LOOKUP ERROR'

~ 0PEN WRITE FILE
Z84~ CALL IRAD5f6{12,FBUFW,FSPECW>
Jj~~ IFCIENTER<IDCHW,FSPECW,NWRITE*NCHAN+ll.LT.H>STOP'ENTER ERROR'

c
·======:'==::::::
C ?ART
c~::::=;=====

c-- ---------------- ---·--·---- ---- --·---- ----- --------·------- --------------
c THIS PART OF THE PROGRAM SETS UP THE AP FOR INTERPOLATING THE TRACES.
C A COMPLEX EXPONENTIAL VECTOR IS FORMED IN REGION C,TO BE USED IN
C THE NEXT PART OF THE PROGRAM TO PRODUCE TIME SHIFTS OF TSAMP/M BV
C MULTIPLICATION IN THE FREQUENCY DOMAIN.
c---
c ENITIALISE AP

~~SB CtLL APINIT
C PUT l.S/FLOAT<M*L2I> IN IC AND 1.16/FLOAT<NTAPJ IN KTOP

~~51 CALL APWR
.Jr·sz C.A.LL APPUT<l.f6/FLOAT(M*L2I>,IC,Kl,K2J
~~33 CALL APPUT<l.f6/FLOAT<NTAPJ,KTOP,Kl,K2J
:;:r'3.1. CALL APWD

C MULTIPLY BV 2*PI FROM TM
~~S~ CALL VTSMUL<IC,Kl,2317,IC,Kl,Kl}

C F~RH VECTOR RAMP IN IA USING STARTING VALUE AND RAMP INCREMENT
C BOTH EQUAL TO VALUE IN IC.TAKE SIN AND COS OF RA~P AND
r PLP,CE IN C.

:i.''1 3F CALL VRAMPC!C,IC,IA,Kl,L2121)
r. :0. C'".LL CVEXP<IA,Kl,ICl,K2,L2I21>

~ FO~M COSINE TAPER NTAP LONG STARTING AT !Dl
.:w::;r. c.a.LL '/CLR<IDl,Kl,Kl>
.J.JS~ CALL VTSADD<IDl,Kl,23f66,IDl,Kl,KlJ
J3S~ CALL VTSMUL<KTOP,Kl,23f66,KTOP,Kl,Kl>
A;':').l CALL IJRA~IP<IDl,KTOP,IDl,Kl,NTAP>
.:r.~rs: CALL VCOSCIDl,Kl,IDl,Kl,NTAP>
~5? CALL VTSADD<IDl,Kl,2f649,IDl,Kl,NTAP>
<''f!j,' CALL VTSI'<lUL<IDl,Kl,2327,IDl,Kl,NTAPJ

C==:::====:::=
C. PA~.T

\.:=========
c--
c IN THIS PART THE SEISMIC TRACES ARE READ IN ONE AT A TIME OFF DISK.
C EACH TRACE HAS ITS MEAN REMOVED,IS SCALED<IF REQUIRED>,IS PADDED OUT
S WITH ZEROES FROM L TO L2I SAMPLES AND THEN IS INTERPOLATED SO THAT THE
C NO. OF SAMPLES BECOMES LM.THE INTERPOLATED TRACES ARE STORED ON DISK.
c ·-- --- -·-- ----- ------·---- ----
L J3~KR IS THE DISK BLOCK ABOUT TO BE READ
- JB~KW IS THE DISK BLOCK ABOUT TO BE WRITTEN

,~~- JBLKW=l
:'c· JBLKR=l

FOk.l :.i\N IV V/J2./J4 THU /JB-JAN-81 /JB:Bl:ll PAGE B/J3

~!0\./ ITEP..ATE THROUGH CHANNELS INTERPOLATING THE TRACES.
~~57 DO 8.0'8 JCHAN=l,NCHAN

C ?EAD IN TRACE FROM UNIT 2
~~G8 IF!IREADAIIDCHR,L2,JBLKR,FSTB>.LT.BISTOP'READA ERROR'
:•·7a JBLKR=JBLKR+NREAD

C CLEAR A AND TRANSFER TRACE INTO IT
~'J'J CALL VCLR<IA,I<l,L21J
0~72 CALL APWR
.:1;;113 CALL IWAIT<IDCHR>
•'7.1 CALL APPUTA<IA,L,K2,FSTAPI1})
~~75 CALL APWD

~ FI~D MEAN VALUE OF TRACE AND PLACE IN APCKTOP>
0J76 CALL MEANVCIA,K1,KTOP,L>

~ SUBTRACT MEAN FROM TRACE
J~77 CALL VNEGCKTOP,Kl,KTOP,Kl,Kll
~~7P CALL VSADD<IA,Kl,KTOP,IA,Kl,L}

•. MULTIPLY ENDS OF DATA BY COSINE TAPER
. .J.J-::~. CALL VMUL<IA,K1,IDl,Kl,IA,Kl,NTAPl
;;u:;; CALL VMULIIAL,KlM,IDl,Kl,IAL,KlM,NTAP>

C IF lNDEN IS NEGATIVE,NO SCALING OF TRACE
IF lNDEN IS ZERO SCALE TO UNIT R.M.S VALUE

C if INDEN IS POSITIVE,USE INVERSE ENERGY SCALING <DIVERSITY STACK>
J(.:.r IF<INDEN.LT . .0'> GOTO 35.0'
iJi'JS1 CALL RMSQV(IA. K 1 I KTOP. L)
:~--.=r?:.~ IF<INDEN.GT.fJ) CALL VSC<KTOP,Kl,KTOP,Kl,Kl>

C ?LACE 1 • .0' FROM TM IN IC
JJa~ CALL VCLR<IC,K1,K1>
.iJ/~7 CALL VTSADD<IC,K1,2.0'49,IC;Kl,Kll

~ USE THIS VALUE TO CREATE RECIPROCAL IN KTOP
3;JS& CALL VDIV<KTOP,K1,IC,Kl,KTOP,K1,Kl>

C !·1ULTIPLY TRACE BY RECIPROCAL
J3i9 CALL VSMUL<IA,K1,KTOP,IA,Kl,Ll

C TR;NSFER MODIFIED TRACE BACK TO SB
ZZ9~ 35.? CALL APWR
5;~·91 C.A.LL APGETA<!A,L,K2,FSTAP<1>>
•;gz CALL APWD
q·r:;J LF<M.EQ.l > GOTO 5.0'.0'

C TAKE TRANSFORM OF TRACE AND PUT IN B
, ,, CALL RFFTBCIA,IB,LZI,Kll

·:.r'> Cft.LL RFFTSCIIB,LZI,KZ,Kll
C iT~RATE FROM 2 TO M

._, .. ,t DO 4.0'.0' 1(:2,M
C MULTIPLY TRANSFORM BY COMPLEX EXPONENTIAL VECTOR

~-ga CALL CVMUL<IB2,K2,ICl,K2,I82,K2,L2I2ll
C ~OVE B TO A AND TAKE IN PLACE IFFT

'·.39 CALL VMOV<IB,Kl,IA,Kl,LZI>
.~·1%2' CALL RFFTt. Ift.,L2I ,KIM>

- T~~NSFER SHIFTED TRACE BACK TO S.0'
.JlZi CALL APWR
:·1··.'~ CALL APGETAIL~,L,KZ,FSTAP<Kl>
!~~: CALL APWD
<! :.:.;4- .;f!:J C:ONT.(NUE

- iNTERPOLATED TRACE IS NOW IN S.0' IN SCRAMBLED ORDER.
C ii~SCRAMBLE INTO Sl SO THAT RECORD IS IN CORRECT TIME SEQUENCE.

;; : ;3.~
if; if6

,_: i.J'8
.'l.l9

_,., l l _;-·

.~:·,! l

~· ! ~ 2
.z l l ~

.:11 14
~: F

I i I 7
, J J e
? ! l9

•. J 2'
i~2

;.~.0

70/ir
C NOW

VfJ2 • .0'4

01=1
DC• 7fff1 JL=l,L
J.0'=J L
DO 6f!Z Ji"'= 1, M
Sl<Jl)=S:J(J.0'>
JZ=,J.0'+l
J1=J1+1
CONTINUE
CONTINUE

THU BB-JAN-81 .0'.0':.0'1:11

WRITE OUT INTERPOLATED TRACE ONTO DISK
IF<IWRITA<IDCHW.LM2,JBLKW,FSTl>.LT.S>STOP'WRITA
JBLKW=JBLKW+NWRITE
CALL l'v/AIT< IDCHWl
CCNT!NUE
U.!.. L CLOSEC< I DC HR. l
C~LL CLOSEC<IDCHWl
STOP
END

PAGE .0'.0'4

ERROR'

Page 202

Internal Header Interrogation :- MPHIST

This is a fully interactive program which expects the input

data to be on disc. The output listing is put onto the screen or

the printer. The only input required is the name of the data

file.EG.

enter name of file to be examined: DK3:MPDATA.DAT

THU SS-JAN-81 SS:28:55

c
C THIS IS A PROGRAM WHICH INTERROGATES
C A DATA FILE TO GIVE ALL OF ITS
C PROGRAMMING PARAMETERS TO THE USER

~-~! REAL*S FSPECR,RUNITS<2>,SOURCE<4>
JBa~ REAL*4 FNAMRC31
ZZD~ INTEGER*2 HBLK<256l
0'.0'.0'4 LOG I CAL* 1 HSBL K(512 I, NOCHAN, IGCOOE, I UNlTS, I SAMP
~SSS EQUIVALENCE CSROFF,HSBLK<21JJ,CSLSPAC,HSBLKC29J1,

PAGE SSl

%CSTSPAC,HSBLKC331J,CSOEPT,HSBLK<3?J>,<RDEPT,HSBLK(41>>,
XCRSPAC,HSBLKC251>,<NOCHAN,HSBLKC12l>,CIGCOOE,HSBLKC19JI,
Y.<IUNITS,HSBLKC2Zil,CISCODE,HSBLK<4SJJ,ClBFREE,HSBLK<471l,
XC NCHAN, HS BL K (13 I > , < NBEG, HSBL K (15 I I, (NF IN, HSB L K (17 l I ,
X< I SAMP, HS BL K < 9 > >, C HBL K (1 I, HSBL K < 1 > >

Z.J.'iJS DATA DEV/3RRK /,RUNlTSCl)/'METRES '/,RUNITSC21/' FEET '/
fff!.J7 DATA SOURCECll/'AIRGUNS '/,SOURCEC2l/'EXPLOSIV'/,

%SOURCEC3l/'VIBROSEI'/,SOURCEC4l/'WEIGHTS '/

C GET NAME OF INPUT FILE
c

3ZZc WRITEC7,5l
f1~ff9 5 FORMAT<' ENTER NAME OF FILE TO BE EXAMINED:',$}
3~19 READ(S,lZlFNAMR
~f111 lff FORMATC3A4l
zz1: CALL IRAD5BC12,FNAMR,FSPECRJ

.J/3 1 ::;
~·114

;r0' 1 E
'}'fj 1 7
20' 19

c
C SET UP I/0 PARAMETERS
c

c

ICHR=IGETCC l
IF<IFETCn<DEVJ.NE.H>STOP'FETCH ERR'
ILEN=LOOKUPCICHR,FSPECR>
IF<ILEN.LT.H>STOP'LOOKUP ERR'
IF< I READW< 256, HSBLK ,H, ICHR l. L T .HI STOP 'READ ERROR'

C ~ECODE HEADER AND PRINT OUT

!=21 WRITEC7,2HlFNAMR,ILEN
2':322 2.J FORMAT<' FILE ',3A4,' TO BE ANALVSE.D, LENGTH=' ,IS,' BLOCKS' I
;n::; WRITEC7,3JJJCHSBLKCil,I=l,81
''n, 3!J FORt-1ATC' FILE N0:',3Al,' TAPE NO:',SA11
•J.:J:2::i WRITEC7,4.0'l HSBLKC9J,HSBLK<lli,HSBLKC121
.J:J2~ 4f1 FORMAT<' SAt~PLING INTERVAL SET AT ',Il,' MSEC',/,

%'AND RECORDING LASTED ',I2,' SECS',/,
::• ON ',12,' ACTIVE CHANNELS' I

0027 GOTO C58,68,6ff,BffliGCODE
~S26 58 WRITEI7,11.0'1
.J.0'2"' GOTO l!JJJ
Jff3f 6D WRITEI7,12JJ)
0831 GOTO lfJS
:.'.JJ~ 7Z WRITE<7,13H>
003? GOTO lJJJJ
ua34 30 WRITE<7,14JJ)
~035 10.0' CONTINUE

PAGE !JflZ

';!e'36 1 U FORMAT<' THE FILE CONTAINS A SHOT POINT GATHER')
fHJ37 12.0' FORMAT<' THE FILE CONTAINS A COMMON MIDPOINT GATHER'>
.0'.0'33 130' FORMAT<' THE FILE CONTAINS A STACKED TRACE')
.0'.0'3~ 14/J FORMAT<' THE FILE CONTAINS AN UNSTACKED TRACE'>
5.0'4£ WRITE<7,9H>NCHAN,NBEG,NFIN
0.0'41 98 FORMAT(' CONSISTING ',IZ,' CHANNELS,STARTING AT SAMPLE NO:'

%,15,/,' AND ENDING WITH SAMPLE NO:'IS>
.0'842 WRITE<7,15HlSOURCE<ISCODEl,RUNITStiUNITS>
.8'.()4.:: 15.0' FORMAT< I TYPE OF SOURCE= I ,AS,/,

%'AND THE UNITS OF LENGTH USED= ',ABl
0J4L WRITE<7,16HlRDEPT,SDEPT,SROFF,RSPAC,SLSPAC,STSPAC
~345 15.0' FORMAT< I RECIEVER DEPTH=',FlH.Z,/,

%' SOURCE DEPTH=',F18.2,/,
%' SOURCE-RECIEVER OFFSET=',F1H.2,/,
%' RECIEVER SPACING=',FlH.Z,/,
%' SHOT SPACING=',FlH.2,/,
%' SHOT REPITITION RATE=',Fl8.2,' SECS' >

~q~b WRITE<7,17Hl<HSBLK<I>,I=51,254)
fH/47 178 FORMAT<' USER INFO PUT INTO HEADER BLOCK',/,

X' IS GIVEN BELOW',/,3(1X,BHA1,/,))
.fHHE' !F< IBFREE.EO.H>GOTO 999

C PROCESS DECODE AREA
c

1B5S WRITE<7,1BZ>
.0'.0'5! 1 8.0' FORMAT< I, I,' THE FOLLOWING PROCESSES HAVE BEEN

%PERFORMED ON THE DATA',/)
2.0'52 IPOS=!J
Z~53 19/J CONTINUE
ff.0'5t GOT0<2ZZ,21H,22H,23H,24HlHBLK(129+IPOS>

0'0"5~
.arrs t:
.0'.0"57
.J.0'58
J.0'5S

:J ff 6.f:'
:~iJ6 i
;;cr~::.

\Jl.' 6?
.v05·'
;1:J6S
e0'6·~

~ff:Si

('.:J6~

fJ!J7f
.Jil71
.'Jff7?.
p·'J7?
fjiJ? ,,

c
C PRE STACK DECODE
c

?.!i11i! !POS=!POS+l
ICNT=HBLK< 129+IPOS)
IPOS=IPOS+l
\./RITE< 7, 31i!H) ICNT

3Z.0' FORMAT<' PRE-STACK PROCESSING CONSISTING OF',/,
%I3,' OPERATIONS IN THE FOLLOWING ORDER'>

DO 31H J=l, ICNT
ICD=HBLK< 129+IPOSl
IPOS=IPOS+l
GOT0(311,312,313,314,315,316,317,318,319,32H,321>ICD

311 WR!TE<7,4.0'1ifl
41!!91 FORMAT<' TRACE EDITING'>

GOTO 31H
312 WRITE<7,41ifll
c;g1 FOR~1AT<' POLARITY REVERSAL'>

GOTO 311!!
3 l 3 \./RITE (7, 4.0'2)
432 FORMAT<' EXPCiif.ZT> AMP RECOVERY'>

GOTO 311!!
31 Lf WRITE { 7 • 4.0'3)
..t0'3 FORMAT<' T*EXP<Iif.2Tl AMP RECOVERY' l

FORnMl IV V/82./84 THU 188-JAN-81 /8/8:28:55 PAGE /8fl3

fiJ/375 GOTO 31/8
0f176 315 WRITE< 7, 4.0'4 >
.0'J!.77 4.fl'4 FORt-1AT< ' T*V**2 AMP RECOVERY'>
fiJJJ78 GOTO 31JJ
IiJ.0'79 316 WRITE< 7, 4.0'5 >
ilJJBJJ 4.0'5 FORMAT< ' MUTING'>
0.0'8> GOTO 31.0'
fH82 317 \.JR ITE < 7, 4.0'6 >
.'J.ff8? 4.0'6 FORMAT< ' SPIKE DECONVOLUTION'>
I!JIJ84 GOTO 31.0'
.0'08;; 318 WRITE<7,4.0'7)
fHf86 4.0'7 FORMAT< ' BANDPASS FILTERING I)

0'087 GOTO 31/8
.0'.0'88 319 WRITE< 7, 4.0'8 >
f1f18~ 4.0'8 FORMAT< I BANDREJECT FILTERING'>
0Rf9fJ GOTO 31.0'
IiJ.Z9l 32ft WRITE< 7 ,4.0'9 >
.0'.0'92 4.0'9 FORMAT< ' PREDICTION ERROR DECONVOLUTION'>
0'0'9~ GOTO 31/8
li'fJJ9i; 321 WRITE< 7 ,41.0'>
.0'.:JS5 1 L0' FORMAT< I AMPLITUDE/ENERGY NORMALISATION I)

li'f096 3l.ii1 CONTINUE
ZZ97 IF< IPOS.LT.IBFREE>GOTO 19fl
0'.09S GOTO 999

c
C STACKING DECODE
c

~1.0'0 21.fl' WRITE<7,42.0'}
.':!:Jii i 42.0' FORMAT< I,' NMO CORRECTION AND COP STACK'>
~1HZ IPOS=IPOS+l
3!02 NCHST=HBLK<129+IPOS>
Hl.0'u IPOS=IPOS+l
li'f1 .. :J=c NVST=HBL!« 129+ IPOS >
li'fl.fl'6 IPOS=IPOS+l
0!.0'7 NLYRST=HBLK< 129+IPOS>
g!ms !POS=IPOS+l
0109 MST=HBLK<129+IPOS>
fill£ IPOS=IPOS+l
~lll INTSWS=HBLKC129+IPOS>
3112 IPOS=!POS+l
.01 13 WRITE< 7, 421 >NCHST, MST
8'11~ 421 FORNAT<' WITH',I3,' CHANNELS AT A L.EVEL OF',/,

#I4,' TIMES INTERPOLATION'>
z:lo WRITE<7,422>NVST,NLYRST,INTSWS
0116 422 FORMATI!S,' VELOCITY ANALYSES WERE USED EACH WITH,',/,

#13,' LAYERS AND THE INTERPOLATION SWITCH=',Il>
0'117 IF<IPOS.LT.IBFREE>GOTO 19/8
B!!S GOTO 999

c
C POST STACK DECODE
c

812£ Z2B IPOS=IPOS+l
.012'. ICNT=HBLK< 129+IPOS)
0122 !POS=IPOS+l

'JfiJZ .fiJ4

q;~~ WRITE<7,43JiJliCNT
0'lU 43.0' FORMAT< 1 POST STACK PROCESSING CONSISTING OF 1

,/,

%13,' OPERATIONS IN THE FOLLOWING ORDER')
312~ DO 33fiJ J=l,ICNT
J12f ICD=HBLKI 129+IPOS>
J1?~ IPOS=IPOS+l
J;2~ GOTOI331,332,333,334,335~336,337,338,339,34JiJ)ICD
1;2? 331 WRITEI7,4JiJfiJ)
Jl3Z GOTO 33fiJ
Ji3l 332 WRITE17,4fiJ2l
J1?2 GOTO 33fiJ
H:33 333 WRITEI7,4JiJ3l
~13~ GOTO 33fiJ
Zl3C 334 WRITEI7,4fiJ4}
8136 GOTO 33fiJ
~13~ 335 WRITEI7,405l
Jl35 GOTO 33fiJ
JiJ13~ 336 WRITEI7,4fiJ6l
g1~0 GOTO 33fiJ
.J:41 337 WRITEI7,4fiJ7l
Zl42 GOTO 33fiJ
5143 338 WRITEC7,4JiJBl
0144 GOTO 330
Jl4~ 339 WRITEC7,4fiJ9}
8146 GOTO 33fiJ
0147 34fiJ WRITEI7,4lfiJl
014L 338 CONTINUE
Bl4S IFIIPOS.LT.IBFRE!>GOTO 19fiJ
0151 GOTO 999

c
C t-1! GRA TI ON
c

915? 23B WRITEI7,45fiJ)
J:S3 45!J FORMAT<' MIGRATION'}
C~3! IPOS=IPOS+l
.0'155 IFIIPOS.LT.IBFREE>GOTO 19.8'
~157 GOTO 999

c
C THREE TRACE MIX

Jl5S 249 WRITEI7,46fiJ)
015~ ~6Z FORMAT<' THREE TRACE MIX'>
1:6S IPOS=IPOS+l
.JiS: IFIIPOS.LT.IBFREE>GOTO 19fiJ

~!63 599 STOP' NORMAL TERMINATION'
J'!S-l END

PAGE ZH4

Synthetic CMP Gathers :- ANSEI

Input file ...•.• DK1.ANINS.DAT

Output file ••••• DK2:ANOUTS.DAT

Input Parameters

READ(1,1000)L,NCHAN,NSTART,NLYR

1000 FORMAT(4I5)

L ••.•.••• Number of samples per channel

NCHAN .••• Number of channels per gather

NSTART .•• Number of starting sample from time zero

NLYR •.••• Number of events

READ(1,1100)XSTART,XSTEP,FSAMP,FRICK,FNOISE,AMP

1100 FORMAT(6F10.0)

XSTART ••• Offset of first receiver from source

XSTEP .••• Receiver spacing

Page 203

FSAMP •.•• Sampling frequency of data samples/millisecond

FRICK •••• Frequency of Source wavelet(Ricker)

FNOISE •.• Upper of Frequency of Background noise

AMP ••.••. Amplitude of Background noise

READ(1,1200)(TOLYR(I),VLYR(I),I=1,NLYR)

Page 204

1200 FORMAT(2F10.0)

TOLYR ••.• Two-way travel time of reflection on zero offset

trace

VLYR ••••• RMS velocity down to the event

J_:f!.J!
.:.rr.::rz
: .• :3

-'~.·3.::: 'f
·.:fS

:;: d6
... -:J'.;_rg
:•·'_>1';1

.• j .OJ
., ll

!12
.-: ~"";'" ~- J
' -~ l 4
·~' ";; 5
. 16

. 1 7
· · 1 e
·' -~·~

· . .<(; ,, z
~~-.~3

·;.H
26

··:: 2'7
·~e

.. ~'3.2'
.~ '31

. ')2
" . 3

34
JS.
'6
.: 7

. ;a
_:. :-g

·~
'I

·. / 2.
t3

:· :. 4
.::' ~ 5' .. '.(;

• ; .. ; 7
. ·,a

:g
.. :.e'

:; I

: :

VIJ2 • .0'4 THU .0'8-JAN-81 BB:BB:44 PAGE .16!!11

REAL"'8 FSPEC
D !MENS ION SE ISM< 2.0'48 l, T.0'L VR< 99 >, VL VR< 99 >,WAVE< SSS >, CONST< 4 >
DATA K 1 N, K.0', K 1, K2, K4, K.AMP, KSN, KT\./OP I, KSE E 0, KU/-1 ,!i1, 1, 2, 4, 8187,

18188,8189,819!i1,8191/
DATA N\./DBLK,DEV,FSPEC/256,3RDK ,12RDK2ANOUTSDAT/
CALL ASSIGN<l,'DK1:ANINS.DAT',l3>
IF< IFETCH<DEVl.NE.!i1lSTOP'FETCH ERROR'
IL'CH=IGETC! l
READ< 1,1.0'.0'.0') L,NCHAN,NSTART,NLVR
FORivJAT< 4 I 5)
READ< 1, ll!i1.0' > X START,)(STEP, FSAMP, FRICK, FNOISE, SN
FORMAT< 6F 1.0' .z l
READ<l.12.0'.0'l <T.0'LVR<I>,VLVR<I>,I=l,NLVR>
FORMAT<2F1.0' • .0'l
NBLTR=IFIX<2 • .0'*FLOAT!Ll/FLOAT<NWDBLK>+fi1.5)
L=NWDBLK*NBLTR/2
NGLTOT=NBLTR*NCHAN
IF< IENTER<IDCH,FSPEC,NBLTOT+l>.LT • .0'>STOP'ENTER ERROR'
JBLOCK=l
CALL RlCKER<FSAMP,FRICK,NBEGIN,N\./AVE,\./AVE>
L2INT=2
DO 5 i<=l,ll
IF<L2INT.GE.Ll GOTO 1.0'
L2INT=2*L2INT
CONTINUE
CONST< 1 l=l.!i1/SN
CONST<2l=8.!i1*ATAN<l.!i1l
CONST<3>=.0'.251.0'638
CONST<4>=1 • .0'
CALL APINIT<IDUM,IDUM,IDUM>
CA~~ ~PPUT<CONST,KSN,K4,K2>
C/-\L '- AP\JD
ISF.I';M=l
IWAVE=ISEISM+L2INT+NWAVE-1
I\.JA VE ::!.=I WAVE +NWAVE -1
I R.AN D =I\-/ AVE+ NWAVE
NRAND=L2INT*FNOISE/FSAMP
I~OISE•IRAND+NRAND
INOIS2=INOISE+2
iNOIS3=INOISE+3
~lR.1.ND2=2*NRAND
C/\LL APPUT<WAVE I !WAVE .~1\.JAVE ,K2)
·:ALL .~PWD
:<·~ C:: \tl =X START
'I OF i7 S = NSTART-NBEG IN
)0 4~ JCHAN=1,NCHAN
:<SQ=;(,:iC:-JAt-1**2
~JCHAN=XJCHAN+XSTEP
·-::.il.LL VCLR< K.O', Kl, !WAVE}
0C 3.0' JLYR=l,NLYR
~IT,.,IF X<FS.!l.t1P*SORTCT.O'LVRCJLVR>**2+XSQ

#,'\'LYR JLYRl*"'21+.0'.51-NOFFS
(;.~ ~. L r\D D <NT, K 1, KU, K 1 , NT, K 1, K 1 >

3.:r :>:i·~-;-: :.JE

~Oi~lrl.AN

't
· .. 57
·'-"~·a

59
·g-

5!
. :2

. · ..•. :J
_,. -6 'f

·.;::;
66
,_;T

'·" v . .,

69
" 7~
:.;,., 7 ;

' "3 ..

74
~ : -s

76
.. -7

- '11 i
~·· :12.
.::nJ?J

:t;
_·:s

. - ~ 6
''7

': .~- 8
\JY
L I

"- ;·, i 2
'CJ l 3
·r:::·:.1.

'~

'

J2i
:?2

: \/

,; 10

·,;zz .104 THU .0"8-JAN-81 1818:18.0":44 PAGE 18.0"2

;:.£! L ·_ toNV< ISF.iSM,Kl, IWAVER,K1N, ISEISM,K1 ,L2INT,NWAVE >
CALL \/RAND< KSEED, I RAND, Kl, NRAND >
CAL~ VSMUL<IRAND,Kl,KTWOPI,IRAND,Kl,NRANOl
c;;, L ~ VCLR< INOISE,K1 ,L2INTl
CALL VCOS<IRAND,Kl,INOIS2,K2,NRAND>
CAL VSIN<IRAND,Kl,INOIS3,K2,NRAND>
C.11,LL RFFT<INOISE,L2INT,K1N>
C.~LL RMSQV<INOISE,Kl,KAMP,L2INT>
':ft.LL VDIV<KAMP,Kl,KSN,Kl,KAMP,K1,Kll
CALL VSMUL< I NOISE, K 1 , KAMP, I NOISE, K 1, L2 I NT>
CALL VADD<ISEISM,Kl,INOISE,Kl,lSEISH,K1,L2INT>
CALL APWR
CALL IWA IT< I DCH l
i..~t'- L;.., APGET<SEISM<1>,ISEISM,L,K2>
C.:.'-LL APWD
IF<I~~ITE<2*L,SEISM,JBLOCK,IDCH>.LT • .0"JSTOP'WRITE ERROR'
J3LOCK=JBLOCK+NBLTR
CC:NTINUE
CALL C:LOSEC<IDCHl
STQ?
;:: ~.;)

VZ2.f14 THU .0"8-JAN-81 .0".0":.0"1:21 PAGE /6.0"1

SUBROUTINE RICKER<FSAMP,FRICK,NBEGIN,NWAVE,WAVE>
IMPLICIT INTEGER*2<I-Nl
D!I4ENSION WAVE<SS.0">
N=IF!X<FSAMP/FRICKl
~l\-.'A\/E=2'ttN+l

NBEGIN=N+l
'lAVE\ NBEGIN J=l.
IFI~.EQ.Zl RCTURN
1PLUS=NBEGIN
it~ I i~US=NBEG IN
X"'liJ.
DELX=3.14159265*FRICK/FSAMP
DO lliJ I=l,N
IPLUS=IPLUS+l
I f"l N U S = I fvl I N U S - 1
~~':::;<+DEL X
',.;,; 1! C. < I PLUS > c:f3. 5 * < 1 • +COS< X > l "'< 1 • -2 . *)(* "'2 l * E XP (-)(* * 2 l
'.-/.1.'·/Ei rt.:INUSl=WAVE(IPLUS>

::r:::TURN
;::,:o

Synthetic Sections :- MPSYNS

Input file •..•••• DK2:MPSYND.DAT

Input Parameters

READ(1,1000)TSTEP,XSTEP,FRICK,FNOISE,AMP

1000 FORMAT(10F10.0)

TSTEP •••. Sampling rate of data in seconds

XSTEP ..•• Trace spacing in kms

FRICK •••• Frequency of source wavelet

FNOISE ••• Upper limit to background noise

AMP •••••• Scale factor for noise

READ(1,1001)NTRACE,NSTART,NSTOP,NINC,NO,NSAMP,IFLAG

1001 FORMAT(10I5)

NTRACE ••• Number of output traces

NSTART ••• First trace to output

NSTOP Last trace to output

NINC ••••• Trace output increment

Page 205

NO ••.•••• Number of first sample on the trace relative to time

zero

NSAMP •.•. Number of samples per trace

IFLAG .•.. Scaling flag

<O 3 Dimensional scaling

>O 2 Dimensional scaling

READ(1,1001)NPLANE,NPOINT,NLAYER

NPLANE ••• Number of plane reflectors <6

NPOINT ••• Number of point reflectors <6

NLAYER ••• Number of velocity layers <10

The input for each of the above cases then follows:

IF(NLAYER.GT.O)

READ(1,1002)(VEL(I),THICKN(I),I=1,NLAYER)

READ(1,1002)VEL(NLAYER+1)

VEL •••••• Velocity of layer Km/s

THICKN ••• Thickness of layer Km

Page 206

VEL(NLAYER+1) •• Velocity of remaining half-space beneath last

layer

IF(NPLANE.GT.O)

READ(1,1003)(XO(I),X1(I),X2(I),DIP(I),I=1,NPLANE)

1003 FORMAT(4F10.0)

XO ..•••.. X coordinate of surface intersection

projection. Depth for horizontal layers.

X1 .•..... Beginning of reflector

X2 •..•••• End of reflector

DIP •.•••. Reflector dip in degrees

of layer

IF(NPOINT.GT.O)

READ(1,1002)(XP(I),ZP(I),I=1,NPOINT)

XP .•••••• Lateral position of reflecting point Kms

ZP ••••••• Depth of reflecting point Kms

READ(1,1004)FBUF

FBUF ••••• output file

Page 207

FORTRAN IV V182./J4 THU !JB-JAN-81 1818:52:186

c
C PROGRAM SVNTH .•• MODIFIED FROM
C A PROGRAM BV C GODBOLD BV M J POULTER
C NOV 8.0'
c

.0'.0'..0'1 REAL*S FSPECW

PAG"E !J..0'1

i4.0'B2 DIMENSION X..0'<S>,X1<S>,X2<5>,DIP<S>,SINDIP<5>,COSDIP<S>,
$XP< UJ>,ZP{1..0'l,FBUF(3)

.0'S.0'3 COMMON/ AA/TRACE < 2B48 >, TST"EP, NSAMP, !FLAG 1
0.0'..0'4 COMMON/BB/AUX<2B48>
.0'BB5 COMMON/CC/VEL<l1>,THICKN<1..0'l,NLAVER
.0'.0'.0'6 EQUIVALENCE<DIP<l>,COSDIP<1>>
.0'.0'JJ7 DATA KN1,KJJ,K1,K2,PI/-1,..0',1,2.,3.141593/
.0'.0'.0'8 DATA DEV/3RRK I
gggg CALL ASSIGN<1,'DK2:MPSVND.DAT',l4)
.0'.0'1.0' IWRT=IGETC< >
.0'/J11 IF<IFETCH<DEV>.NE • ..0'>STOP'FETCH ERROR'
.0'.0'13 IBLK=1

c
C READ IN PARAMETERS
c

JJB14 READ< 1, 1B/J..0' >TSTEP, X STEP, FRICK, FNOI SE ,AMP
.0'1815 1.0'!J.0' FORMAT<118Fl18 • ..0'>
181816 READ<1,1!J18l>NTRACE,NSTART,NSTOP,NINC,N!J,NSAMP,IFLAG1
JJ1817 1.0'181 FORMAT<118IS>
.0'/J18 READ<1,118!Jl>NPLANE,NPOINT,NLAVER
181819 IF<NLAVER.LE.!J>GOTO 118
.0'/J21 READ< 1, 118/J2){VEL< I>, TH ICKN< I>, I= 1, NLAVER >
!J.0'22 118 READ<1,118H2>VEL<NLAVER+ll
HB23 1.0'182 FORMAT<2Fl..0'.18>
.0'.0'24 IF<NPLANE.LE . ..0'>GOTO 218
01826 READ< 1, U183 >< X!J< I>, Xl< I> ,X2(I> ,DIP< I>, 1=1 ,NPLANE >
.0'1827 1.0'.0'3 FORMAT<4F1..0' • ..0'l
.0'.0'28 DO 318 J=1,NPLANE
.0'.0'29 SINDIP<J>=SIN<DIP<Il*Pl/18/J • .0')
.0'.0'3.0' 3RJ COSDIP<J l=SQRT< 1.18-SINDIP< 1>**2)
.0'1831 2.0' IF<NPOINT.LE.18>GOTO 418
.0'033 READ< 1, U182 >< XP< I> ,ZP< I), 1=1 ,NPOINT>
.0'.0'34 4.0' NVEL=NLAVER+1
0.0'35 READ<l,118.0'4>FBUF
.0'036 1.0".0'4 FOR1'1AT< 3A4 >
.0'.0'37 CALL IRAD5.0'{12,FBUF,FSPECW>
.0'.0'38 NBLKR=NSAMP/128
mB39 NBLKF=<NTRACE*NBLKRl+1
0.04fJ IF< !ENTER< 1\JRT,FSPECW,NBLKF l.LT • ..0'>STOP'ENTER ERROR'

c
C CONVERT TSTEP TO MSEC
c

~.0'42 TSTEP=INT<TSTEP*1.0'.0'.0'.18+.0'.5l
c
C EVALUATE RICKER WAVELET
c

~843 CALL RICKER<TSTEP,FRICK,N>
c

. , · ..

FORTRAN IV vrn .164 THU 168-JAN-81 1616:52:166

C SET UP AP AND GET CONSTANTS
c

J6~44 CALL APINIT
J6J645 KNSAMP=NSAMP
J6J646 KNOISE=2
J6!647 IF<AMP.LT.16.16>GOTO 516
!6!649 6J KNOISE=KNOISE*2
J6!65!6 IF<KNOISE.LT.KNSAMP>GOTO 616
!6!652 KRAND=FNOISE*TSTEP*KNOISE/2!6!6!6.!6
!6!653 5!6 KWAVE=2*N+l
J6!654 KWAVE3=KWAVE+3
J6!655 KB=N
0!656 KA=8192-KWAVE3
0857 KC=KB+KNSAMP
0!658 KD=8189
!6!659 AUX<KWAVE+1)=2.!6*PI
!6!66!6 AUX<KWAVE+2)=f6.25116638
!6!661 AUXCKWAVE3>=AMP
0862 CALL APPUT<AUX,KA,KWAVE3,2>

c
C START TRACE GENERATION LOOP
c

J6!663 DO 1!60 L=l,NTRACE
8!664 X=CL-l>*XSTEP
!6065 CALL VCLRC0,l,KNSAMP>
8066 CALL APWR
8!667 CALL APGETCTRACE,16,KNSAMP,2>
!6!668 CALL APWD

c
C EVALUATE ARRIVAL FOR EACH REFLECTOR
c

8069 IF<NPLANE.LE.0lGOTO 11!6
0071 DO 216!6 J=l,NPLANE
81672 IF(X.LT.Xl<J>.OR.X.GT.X2<J>>GOTO 2!6B
16074 XA=ABSCX-X0<J>>*SINDIP<J>**2
0075 ZA=ABS<X-XB<Jll*SINDIP(J}*COSDIP(J)
!6076 IF<ABS<SINDIP<J>>.LT.J6.!6!61>ZA=XJ6(J)
!6!678 CALL NEWTON<XA,ZA,TJ6)
0!679 CALL IMPULSCTJ6>
!6!68!6 2!6!6 CONTINUE

c
C EVALUATE FOR EACH POINT REFLECTOR
c

0081 llZ IF<NPOINT.LE.Z>GOTO 120
Z083 DO 210 J=l,NPOINT
B834 CALL NEWTONCABSCX-XPCJ)l,ZP<JJ,T16>
0!685 CALL IMPULSCTZ>
ZZ86 218 CONTINUE

c
C CONVOLVE SERIES WITH WAVEFORM
c

8887 12!6 CALL VCLR(J6,1,KB>
JJ88 CALL VCLR<KC,l,KBJ
ffa89 CALL APPUT<TRACE,KB,KNSAMP,2>

PAGE 16162

FORTRAN IV VfiJ2.fiJ4 THU fiJB - JAN-81 fiJfiJ:52:fiJ6

fiJfiJ9~ ~AL~ APWD
fiJfiJ91 CALL CO NV <fiJ,l,KA,l,fiJ,l,KNSAMP,KWAVE>
fiJfiJ92 CALL APWR
fiJfiJ93 IF<AMP.LE.fiJ.fiJ)GOTO 13fiJ

c
C GENERATE NOISE
c

fiJfiJ95 CALL VRAND<KD+l,2fiJ49 , 2,KRAND>
fiJfiJ96 CAL L VSMUL<2fiJ49,2,KD,2fiJ49,2,KRAND>
fiJfiJ97 CALL CVEXP<2fiJ49,2,2fiJ48,2,KRAND>
fiJfiJ98 CALL VCLR(2fiJ48+(2*KRAND>,l,KNOISE-<2*KRAND>>
fiJfiJ99 CALL RFFTC2fiJ48,KNOISE,-l)
fiJlfiJfiJ CALL VSMUL<ZfiJ48,1,KD+2,2fiJ48,1,KNSAMP)
fiJlfiJl CALL VADDCfiJ+NfiJ,l,2fiJ48+NfiJ,l,fiJ+NfiJ,l,NSAMP-NfiJ+l)
B1fiJ2 13fiJ CALL APWR
fiJ1fiJ3 CALL APGET<TRACE,fiJ,NSAMP,2>
fiJ1fiJ4 CALL APWD

PAGE 03

fiJlfiJS IF<IWRITW<2*NSAMP,TRACE,IBLK,IWRT>.LT.fiJ>STOP'WRITE ERROR'
fiJlfiJ7 IBLK=IBLK+NBLKR
fiJlfiJ8 lfiJfiJ CONTINUE
fiJlfiJ9 CALL CLOSEC<IWRT>
fiJ11fiJ STOP' NORMAL TERMINATION'
.0'111 END

FORTRAN IV VfiJ2.S4 THU fiJS-JAN-81 SfiJ:52:51

SUBROUTINE RICKERCTSTEP,FRlCK,N>
c
C SUBROUTINE TO EVALUATE A RICKER WAVELET
C DUE TO A G NUNNS 1979--- WITH MODS
c

.0'fiJZZ COMMON/BB/AUX<ZfiJ48>

.0'fiJfiJ3 N=IFIX<lfiJfiJ.0'.fiJ/CFRICK*TSTEP>>
ggfi}4 IPLUS=N+l
fiJfiJfiJS AUXCIPLUSl=l.fiJ
fiJfiJfiJ6 IF<N.EQ.fiJlRETURN
JfiJfiJ8 IMINUS=IPLUS
fiJfiJfiJ9 X=fiJ.fiJ
fiJSlfiJ DELX•3.14159265*FRICK*TSTEP/lfiJfiJfiJ.fiJ
8.0'11 DO lfiJfiJ I=l,N
fiJfiJ 12 IPLUS=IPLUS+l
.0'Z13 IMINUS=IMINUS-1
fiJfiJ14 X=X+DELX
fiJfiJlS AUX< IPLUS>=< l.fiJ+COS<X>l*CfiJ.5-X**2>*EXP<-X**2)
fiJfiJ16 AUXC IMINUS>=AU)((IPLUS>
fiJfiJ17 lfiJfiJ CONTINUE
8818 RETURN
.0'fiJ19 END

PAGE fiJfiJl

Vf/J2./44 THU f/JS-JAN-81 .0'f/J:53:14 FORTRAN IV

B!lZl SUBROUTINE IMPULS<TB>
c
C SUB TO CALC BANDLIMITED IMPULSE RESPONSE
c

14822 COMMON/AA/TRACE(2f/J4B>,TSTEP,NSAMP,IrLAG
1414143 DATA FRACl/l.flJ/,FRAC2/l/4.!4/
Bf/J/44 TP=FRACl*TSTEP
f4f/Jf/J5 I=<T8-TPl/TSTEP
f/Jf/J.0'6 T=I*TSTEP
.0'.0'.0'7 1=1+1
f/Jf/J.0'8 IF<IFLAG.GE.BlGOTO 1214
8f/J114 !.0'8 1=1+1
.0'.0'11 IF<I.GT.NSAMP>RETURN
.0'.0'13 T=T+TSTEP
.0'.0'14 IF<I.LT.1lGOTO 1!4f/J
.0'.0'16 IF<T-Tf/J-TP.GE.8.f/JlRETURN
f/JflJ18 IF<T-Tf/J+TP.LE.B.B>!TOP'ERROR 1'
f/Jf/J214 TRACE<I>=TRACE<Il+lf/J/414.8/Tf/J
f/Jf/J21 GOTO 1f/Jf/J
f/Jf422 12f/J VALMIN=FRAC2/SQRT<Tf/J*TP >
f/J~23 Cl=SQRT<TflJ/2.f/Jl
f/Jf/J24 C2=5f/Jf/J.flJ/(Cl*TPl
f/J025 14f/J I=I+l
8f/J26 IF<I.GT.NSAMP>RETURN
f/Jf/J28 T=T+TSTEP
f/JB29 IF<I.LT.llGOTO 14f/J
f/Jf/J31 IF<T-T8-TP.GT.flJ.flJ>GOTO 188
8833 IF<T-T8+TP.LT.8.8>STOP'EROR 2'
8835 TRACE<I>=TRACE<I>+C2*SQRT<T-Tf/J+TP>
Bf/J36 GOTO 148
f/J.0'37 16f/J TRACE<Il=TRACE<Il+VAL
8S38 I=I+l
f/J839 IF<I.GT.NSAMPlRETURN
f/JB41 T=T+TSTEP
8842 188 VAL=C1/(SQRT<T-Tf/J+TPl+SQRT<T-Tf/J-TP>>
0.0'43 IF<VAL.GT.VALMIN>GOTO 168
0.0'45 RETURN
f/Jflf46 END

PAGE !!J!!Il

FORTRAN IV

fJ!iJ!iJl

¥162.164 THU 168-JAN-81 1616:53:34

SUBROUTINE NEWTON<X,Z,T>
c
C SUBROUTINE TO EVALUATE TRAVEL TIMES THROUGH
C A SERIES OF CONSTANT VELOCITY LAVERS
C USES NE~TON - RAPHSON <N-Rl TECHINQUE
c

RmZ2 COMMON/CC/VEL < 11 l, TH I CKN < 116 >, NLAVE R
16~163 COMMON/DD/N,D<11l
liJ!iJ!iJ4 IF<NLAVER.LE.fiJ>GOTO 16/J

ZI6Z6

c
C FIND N
c

TH=Z.Z
fiJSI67 DO 116/iJ I=l,NLAVER
ZR1168 N=I
!iJ!4169 IF<Z.LE.TH+THICKN<IllGOTO
161611
!iJ.IJ12
Zl613

11818 TH=TH+THICKN<Il
N=N+1

1116 IF< N. EQ. 1 lGOTO
c
C SET VALUES OF D<I>
c

Z/815 Il=N-1
ZZ16 DO 1216 1=1,11
fiJ!iJ17 1216 D< I l=THICKN< I l
Zl618 D<Nl=Z-TH

16/8

161819 IF<X.LE.I6.16lGOTO 1716
c
C FIND N-R STARTING VALUE
c

Zl621 CZ=3.fiJ*VEL<Nl
0Z22 13Z CI6=<CZ+VEL<Nll*f8.5
0/iJ23 IF<A<CI6, 1l.LE.XlGOTO 1316

c
C FIND C BV N-R
c

!J025 Cl=CI6
fiJ!iJ25 14/iJ CI6=C1

1116

0027 Cl=C0+<A<CI6,1l-Xl/(CI6*ACCI6,3ll
ZfiJ28 IF<ABS<<Cl-CZl/Cll.GT.Z.lE-Z3lGOTO 1418

c
C EVALUATE T
c

fJS3Z T=X
Z!iJ31 DO 1516 I=l,N
.0'.0'32 150 T=T+D< I >*SORT< <Cl/VEL< I l)H2-1.16l
0033 T=T*1ZI60.0/Cl
~Z34 RETURN

c
C NO VELOC lTV INTERFACE BET~EEN SOURCE AND RECIEVER
c

!J.0'35 16/J T=SQRT<X**2+Z**2>*116/J!J.!J/VEL<1l
0/J36 RETURN

c

PAGE 16/iJl

FORTRAN IV V{lf2.{lf4 THU B8-JAN-Bl {lff1f:53:34

C VERTICAL RAVPATH
c

11ff1f37 17.0' T=.0' • .0'
11ff1f3S DO 1811f I=l,N
11ff1f39 1811f T=T+D<I>IVEL<I>
11ff1f411f T=T+lf1ff1fl1f.f1f
11ff1f41 RETURN
U42 END

FORTRAN IV

IJI1ff1fl
c

Vf1f2.11f4

FUNCTION A<C,M>

THU BS-JAN-81 11ff1f:54:11f4

C ANCILLARY FUNCTION FOR NEWTON
c

11f.0'B2
11ff1f.0'3
11fl1f,t!J~

11fflixJ5
11ff1ff1f6
.Vlf1B7

·({j!(ff39

Zf111
.0'.0'12
zg 13
.0'.0' 1 -~

COMMON/CC/VEL<ll>,THICKN<111f),NLAVER
COMMON/OD/N,D<ll)
A=.0'.11f
B= 1 .11f
D01.0'11fi=l,N
IF<M.EO.l lGOTO 111ff1f
IF<M.LT.llSTOP 'ERROR 3'
B=VEL< I l**<M-1 >

1.0'.0' A=A+D{ I l/(B*SORT< < C/VEL< I>)**2-l.Z>**M>
RETURN
END

PAGE 11fl62

PAGE 11f.0'1

Page 208

Velocity Analysis Display :- MPVCON

This routine is comletely self contained. All the

information required by the program is contained in the output

from the velocity analysis program.

Once the program has been run then it can be put onto the

plotter using RASM or rasterised and saved using MPRASM.

Input file ••••• DK2:ANOUTV.DAT, unformatted fortran data file.

C VELOCITY ANALYSIS CONTOUR PROGRAM!•
C THIS TAKES UNFORMATTED INPUT
C FROM OUTPUT OF VELOCITY ANALYSIS
C PROGRAM AND CONTOURS AND ANOTATES·IT
c

c

VIRTUAL Z<lzg,~&61
REAL*4 X<256J,V<12gJ,CZ<29J,Z.
INTEGER*2 PTR<291,NMAX<256)
LOGICAL*! SWCHES(5)
COMMON /PPEPl/ IXl,IVl,IX2,IV2,ISCAN,NSCAN,NBAND,N!PS,NIPg,

1 NIPMl,LVNfS,NIBSX,MSGLVL,XDOTS,VDOTS,PREFC2),
2 RORG< 2), PORT< 2,2 >,lEND< 4 > ,ALMT, FACT ,JPEN, XOFF,
3 XFAC,VOFF,VFAC,NBITS,NBITMl,NBVTES,NBVTMl,MSK,LMSK

DATA CZ/1.8,g.95,8.9,8.8&,8.8,9.75,8.7,8.65,8.6,g.55,8.5,8.45,
%8.4,8.35,8.3,8.25,8.2,8.15,8.1, •.• 5/

DATA SWCHES/. TRUE.,. TRUE.,. TRUE.,. TRUE.,. FALSE. I
DATA NC/18/

C ZERO CONTOUR ARRAY
c

DO 1 1=1,256
DO 2 J=1,12g

2 Z<J,Il=kJ.kJ
1 CONTINUE

CALL PLOTS<H,kJ,kJl
c
C READ IN CONTROL DATA
c

c

CALL ASSIGN<2,'DK2:ANOUTV.DAT',14l
READ<ZJ LNUM,NCHAN,NSTART,M
READ<Z> XSTART,XSTEPR,FSAMP
READ< 2 l T81, T82, TgSTH, TGATE
READ<2l VSTEP,Vl,V2MIN,V2MAX
READ<2> NTH
XSTE P= 18 .8/FLOAT< NTg-1 >
IXPOS=NTH+l

C READ IN THE SEMBLANCE DATA
c

c

DO 18 JTkJ=l,NTH
IXPOS=IXPOS-1
READ<Z> NPT,NMAX<JTH>,<Z<J,IXPOSl,J=1,NPT>
IF<NPT.GT.MVPTlMVPT=NPT

18 CONTINUE
VSTEP=4.8/FLOAT<MVPT-ll

C SET UP COORDINATES OF CONTOUR ARRAY
c

v { 1) =•. 3
DO 28 L=l,MYPT

zg V<L>=V<L-ll+VSTEP
)({ 1 >=• .•
DO 38 LL=2,NT8

38 X<LLl=X<LL-ll+XSTEP
c
C USE CONSVS CONTOUR PACKAGE
c

CALL CONTUR<V,MVPT,X,NTH,Z,l28,CZ,NC,PTR,SWCHES, " . ' ' ') c
C PLOT TIME GRID
c

TkJLEN=TkJ2-T81
TUNIT=10ffkJ.kJ*<X<NTH>-X<lll/TkJLEN

c

TTUNIT=TUNIT/1!J.!J
TfJBEG=FLOAT<IFIX<TfJl+lfJfJfJ.!J}/l!J!J!JJ
XOFF=<TfJBEG-<TfJl/lfJfJfJ.fJ))RTUNlT

C PLOT SECOND GRID
c

c

TNUM=UBEG
XPT=X<NTfJ>-XOFF

SfJ CALL PLOT<V<1J,XPT,+3J
CALL PLOT<V<MVPT>,XPT,+Zl
CALL NUMBER<fJ.fJ,XPT~fJ.fJS,TNUM,fJ.!J,lJ
XPT=XPT-TUNIT
TNUM=TNUN+ 1 .z
IFCXPT.GT.X<1JJGOTO SfJ

C PLOT TENTHS OF SECONDS GRID
c

c

LMSK="14fJ3
MSK=+1
XPT=X< NU l-XOFF

6fJ CALL PLOT<V<ll,XPT,+3}
CALL PLOT<V<MVPTJ,XPT,+2J
XPT=l<PT-TTUNIT
IF<XPT.GT.XClJJGOTO 6fJ
XPT=X<NUJ-XOFF

7fJ CALL PLOT<V<ll,XPT,+3J
CALL PLOTCVCMVPTJ,XPT,+2J
XPT=XPT+TTUNIT
IF<XPT.LT.X<NTfJJlGOTO 7fJ

C VELOCITY GRID
c

c

VLEN=V2MAX-Vl
VUNIT=<V<MVPTJ-VClll/VLEN
VTUNIT=VUNIT/lfJ.fJ
VB E G =FLOAT< I F I X (V 1 + 1 • fJ) J
VOFF=CVBEG-V1l*VUNIT

C PLOT KM/S GRID
c

c

LMS:<=-1
MSK=fJ
VPT=VCll+VOFF
VNUM=VBEG

BfJ CALL PLOT<VPT,XCNTfJJ,+3J
CALL PLOTCVPT,X<ll,+Zl

·cALL NUMBER< VPT-fJ .fJS, XC NT!J> ,fJ./65, VNUM,fJ.fJ, 1 >
VPT=VPT+VUN IT
VNUM=VNUM+l.fJ
IF<VPT.LT.V<MVPT)lGOTO BfJ

C PLOT TENTHS GRID
c

LMSK="14fJ3
I"'SK=-1
VPT=VCll+VOFF

9fJ CALL PLOT<VPT,XCNTfJJ,+3l
CALL PLOTCVPT,X<1J,+2J
VPT=VPT-VTUNIT
IF<VPT.GT.V< 1 »GOTO 9!J
YPT=V< 1 J+VOFF

1~0 CALL PLOT<VPT,X<NTfJl,+3l
CALL PLOT< VPT, X< 1 J, +2 l
YPT=VPT+VTUN IT

Tr."fVPT LT . 1/(M'/r'TJ>GOiO lfJfJ
c
C PLOT POSITION OF MAX PTS
c

c

LMSK= -1
MSK=Z
IXMP=NTZ+l
DO 4Z MP=l ,NTZ
IXMP=IXMP-1
XP=XCIXMP>
YP=VCNMAX<MP>>
CALL SYMBOLCVP,XP,Z.H2,Z,Z.Z, - l>

4Z CONTINUE

C DO ANOTATION
c

CALL SYMBOL< LZ, lZ .1 ,Z .1, 'VELOClTY ANALYSIS CONTOURS' ,Z .z, 26)
CALL SYMBOL<4.8,1Z.3,Z.l, 'PROCESSING PARAMETERS' ,Z.Z.,2l >
CALL PLOTC4.8,1Z . 3,+3)
CALL PLOTC6.9,1Z.3,+2)
CALL SYMBOL<S.fJ,lfJ.fJ,fJ.l,'NO. OF CHANNELS= ', fJ.Z~lB>
FNUM=NCHAN
CALL NUMBERC6.8,1Z.fJ,Z.l,FNUM,Z.Z,-l>
CALL SYMBOL<S.f1,9.8,Z.l,'SAMPLES PER CHANNEL= ', fJ.f1,22>
FNUM=-LNUM
CALL NUMBER<7.2,9.8,fJ.l,FNUM,fJ.f1,-1>
CALL SVMBOLCS.fJ,9.6,fJ.l,'SAMPLE DELAY= ',fJ.Z,lS>
FNUM=NSTART
CALL NUMBERC6.5,9.6,fJ.l,FNUM,fJ.fJ,-l)
CALL SYMBOL<S.f1,9.4,.1Ll, 'LEVEL OF INTERPOLATION . : ',fJ . .lr,25)
FNUM=M
CALL NUMBERC7.5,9.4,fJ.l,FNUM,fJ.fJ,-1>
CALL SYMBOL<5 . .0',9.2,fJ.l,'CHANNEL 1 OFFSET= ',fJ.fJ,l9>
CALL NUMBERC6.9,9.2,fJ.l,XSTART,fJ.fJ,ll
CALL SYMBOL<S.fJ,9.fJ,fJ.l,'CHANNEL SPACING= ',fJ.fJ,lSl
CALL NUMBERC6 . 8,9 . f1,8.1,XSTEPR,fJ.fJ,l)
CALL SYMBOL CS.fJ,B.B,fJ.l,'SAMPLING INTERVAL MS = ',Z.f1,23l
FNUM=l.f124/FSAMP
CALL NUMBERC7.3,8.8,fJ.l,FNUM,fJ.fJ,-l>
CALL SYMBOLCS.f1,8.6,8.1,'START OF ANALYSTS MS = ',Z.f1,23>
CALL NUM BERC7 .3,8.6,fJ.l,TfJl,fJ.fJ,-i)
CALL SYM BO LCS.f1,8.4,f1.1, 'END OF ANALYSIS MS = ',fJ.fJ,2l>
CALL NUMBERC7.1,8.4,fJ.l,Tf12,fJ.fJ,-l>
CALL SYMBOL<S.fJ,B.2,fJ.l,'TIME STEP MS = ',fJ.fJ,lS>
CALL NUMBERC6.5,8.2,fJ.l,TfJSTEP,fJ.l,-l)
CALL SYMBOLCS.fJ,B.fJ,fJ.l,'OPERATOR GATEW1DTH MS = ',fJ.fJ,23)
CALL NUMBERC7.3,8.fJ,fJ.l ,TGATE , fJ.fJ ,-l>
CALL SYMBOLCS.f1,7.B,f1.l,'START VELOC ITY KM/S = ',fJ.f1,22>
CALL NUMBERC7.2,7.B,fJ.l,Vl,fJ.fJ,2>
CALL SYMBOLC5.8,7.6,.0'.l,'END VELOCITY KM/S • ',Z.f1,2Z>
CALL NUMBER<7.fJ,7.6,fJ.l,V2MAX,fJ.f1,2l
CALL SYMBOL<S.f1,7.4,.0'.1, ' VELOCITY STEP KM/S = ',fJ.f1,21>
CALL NUMBER<7.1,7.4,fJ . l,VSTEP,fJ.fJ,2)
CALL PLOTCfJ.fJ,fJ.f1,999)
STOP
END

Page 209

Section Plotting :- MPSPLT

Input file ••••••• DK1gMPPLTD.DAT

Log file ••••••••• DK1:MPPLTD.LOG

Input Parameters

READ(1,1000)NTR,NPT,NINT,NDSTEP,ISBEG,ISFIN

1000 FORMAT(6I5)

NTR •••••• Number of traces to plot

NPT •••••• Number of samples per trace

NINT ••••• Interpolation factor, number of dots per sample.

NDSTEP ••• Trace spacing in dots, 4,8,10,16,20

ISBEG •••• First sample to plot

ISFIN •••• Last sample to plot

' READ(1,1000)TPDRR,TPDRW1,TPDRW2,INFLG,OUTFLG

TPDRR •••• Input tape drive

TPDRW1 ••• First output tape drive

TPDRW2 ••• Second output tape drive

INFLG •.•• Input flag

0 - Input from tape

- Input from disc

OUTFLG ••• Output flag

0 - Output to tape

Page 210

1 - Output to disc

READ(1,1001)XSF

1001 FORMAT(F10.0)

XSF .•••.• Plot Scale factor

IF(INFLG.NE.O)READ(1,1002)FSPECR

1002 FORMAT(3A4)

FSPECR •••• Input data file

IF(OUTFLG.NE.O)READ(1,1002)FSPECW

FSPECW •••• Raster output file

FORTRAN IV V!l12.!l14 THU !l!B-JAN-81 !l!!l1:33:25

iJiHH
f!J!OZ?
!0!0!03
'JfJ/04

10!0!05
f!!OB6

!OS!Oi"
0'!01JE
zzzg

0'.0'l.C
.0.0' l ~
(JfJ 1:
fJJ:JlJ
8.0'15
.0.0'16

ZDl7
fJDlC:
0'£' 1 9
!Jf:ZZ
'JZ21
fHJZ2

c
c
c
c
c
c
c

c

M J POULTER SEPT 79
PLOTTING PROGRAM FOR SEISMIC SECTION DATA
THIS PROGRAM TAKES IN SEISMIC TRACES AND
DISPLAYS THEM IN A NIB IMAGE FORM IN AN OUTPUT
FILE IN A FORM READY FOR POST PROCESSING.

VIRTUAL IPBUF(256,8Zl
REAL*B FSPECR,FSPECW
REAL*4 XBUF<2!04B>,FBUF<3>
INTEGER*2 OUTFLG,MASK(16>,IOOT(4!096l,IHBLK<256l,

X BUF<5376l,JROW<SZ>
LOGICAL*! TPDRR,TPDRW1,TPORW2,ISTAT
EQUIVALENCE <BUF<1>,IHBLK<l>>,<BUF<257>,XBUF<l>>,

X< BUF< 257 >,I DOT< 1 > >
COMMON /10/NBLKBF,NWOBF,NBVTBF,IWRT
DATA OEV/3RRK I
DATA MASK/" zgg, "1!0!0, "4!0, "2S, "1!0, "4, "2, "1,

X" 1 !l!!OS!O!l!, "4S!O!O!O, "2!l!!l!!l!!l!, " 1 zggg, "4!l!SS, "2!l!SS, " 1!0/iJ!iJ, "4!l!!l!/
IEOTR=Z
IRO=IGETC< l
IWRT=IGETC< >
IF<IFETCH<DEV>.NE.Z>STOP'FETCH ERR'
CALL ASSIGN(l,'DKl:MPPLTO.DAT',l4l
CALL ASSIGN<2~'DKl:MPPLTO.LOG',l4>

C DATA READ IN SECTION
c

lB!iJ!O

1!0!01
umz

c

READ<l,lS/iJS) NTR,NPT,NINT,NDSTEP,ISBEG,ISFIN.
FORMAT< 6I5 >
READ< 1 ,1S.0'!l!>TPORR, TPORW1, TPORW2, INFLG ,OUTFLG
READ< 1, l!l!Sl > XSF
FORMAT<FI..0'.!l!>
FORMAT<3A4l

C SET UP CONSTANTS AND FILE ACCESS
c

B022 NPTS=ISFIN-ISBEG+l
ggz4 NPINT=<NPTS*NINT>-1
3~r2~ NT I M= 1
~02E IF<NPINT.GT.2.0'4BlNTIM=2

PAG:E !l!!l!l

ZfJ28 IF<NPINT.GT.4!096l STOP' ERROR IN INTERPOLATION SPECS'
2939 NBLKR=NPT/128
8B31 NWDR=NPT*2
8.032 NBVTR=NWOR*2+512
8333 NBLKBF=NDSTEP/2
8834 NBLKW=<NTR+24l*NBLKBF*NTIM
f!335 NWDBF=NBLKBF*256
ZZ3E NBYTBF=NWDBF*2
§~37 IOFF=2*NDSTEP
0Z38 IBLKR=l
5039 IBLKWl=l
W~4h IBLKW2=NBLKW/NTIM
BB4! IA!iJ=8

FORTRAN IV V/!2 . !!4 TH U A'R -JA !I! -8 1Jf! •3 "l •25

'.0' 4 2 IA1 =4.0'96
.0'.0' 4:: ICl =IAl +NPTS
IT.0'44 ! C2 =IC1+1
.0'.0'4 E IC3=IC2+1
f!.0'4 f: IC4=IC3+1

c
c SET UP INPUT FILES
c

YJ/!4 7 IF<INFLG.EQ.f!lGOTO 1.0'
.0'0' 4':! READ< 1,1BB2>FBUF
.•JZ SIJ CALL IRAD5B(12,FBUF,FSPECR>
JJ S \ I F< LOOKUP<IRD,FSPECR>.LT.B>STOP'LOOKUP ERROR'

c
c SET UP OUTPUT FILES
c

~85 3 18 IF<OUTFLG.EQ.BlGOTO 2B
~.0' 5 5 READ<l,lBB2>FBUF
.0'.0'56 CALL IRAD58112,FBUF,FSPECW>
.0'85 7 IF<IENTER<IWRT,FSPECW,NBLKW>.LT.S>STOP'ENTER ERROR '

.0'0'59
fJ8 5RJ
0'0'6 1
0'.0'5 2
fJ:as 2
.(f.(J 6 ~

.0'.0' 6 5
J(f6£3
off 57

JHJ6 8
0'.0'59

c
C SET UP ROW COUNTER AND CLEAR PLOT BUFFER
c

c
c
c

c
c
c

c

2RJ CONTINUE
DO 15 I= 1, SB
JROW< I >=I
DO 15 J=l ,256
I P B U F < J , I l =/J

15 CONTINUE

SET UP AP

CALL APINIT
CALL VCLR<B,1,8192l
CALL AP\.JR

MAIN LOOP FOR PLOTTING DIFFERENT TRACES

DO 1/JB I=l , NTR
IFIL=I

C READ IN DATA FROM DISC
c

WB7£ I F<I NFLG.EQ.RJlGOTO 11/J
0D7? IF<IREAD\.J(N\.JDR,XBUF,IBLKR,IRD>.LT.B>STOP'REAOW ERR'
fHJ? ,, I BLKR = I BLKR+NBLKR
CD 7 S GOTO 128

c
C TAPE READ ROUTINE
c

~.0'7 ~ 11.0' ITRV=l
~f17 7 3Zf1 I F<ITRV.GT.3lGOTO 31B
IH57 ' I F I I EOTR . GE • .0' >GOTO 32.0'
~~a · 31.0' WRITE<7,11JJ.0'>TPDRR,IFIL
'-l'.G82 118RJ FORMAT<' EOT ON READ DRIVE:', I2,' FILE NO: ' , IS>

f'AGE .0'/IZ

rORTRAN IV VliJ2 . 164

liJ!iJ8 3 WRITEC 7,11li11l
.0'.0' 34 1191 FORMAT<' ENTER NEW READ DRIVE NUMBER:',$)
0 0 8 5 READC5,111iJ2lTPDRR
ZZ35 llli12 FORMATCill
liJ.qa l I EOTR=IiJ
.0'$8 ? IFCTPDRR.GT.2lSTOP'EOT TERMINATE'

c
C DO READ
c

P l\(iE 1616'3

~H3E 32~ CALL TAPSUBC-1,TPDRR,ISTAT,IFLEN,IFIL,BUF,NBYTR,IEOTR>
H091 IFCISTAT.LT.IiJ>WRITEC2,121iJ!iJliFIL
;'IIY92 12HZ FORMAT<' WARNING READ RETRY FAILED ON FILE NO:', IS l
JJ 9 ~ IFCIEOTR.LT.ZlGOTO 33Z

c
c
c

0'996
cm9-:
.0'.1798
.0'1 !U J

c
c
c

'-~'1 .0' 1

a1.0' 2
.0'1.0'2
312.:'.

c
c
c
c

.0'1Z5
Ji.46
atZ?
.0'UJ8
~ ~ 1 kl
0' 1 1 1
J 112
J 1 13
-- ~ 1 4
., : 15

.01 16

.0' 1 1 :·
'j 1 1 ':
.J l 1 r
fr 1 2:•
012 1
(3'122
'"l 2 =
(': ~ 4

.0'12 !:

.0' 12 5
'J J2 7

.')' 12 8

WIND OVER EOF MARKER

CALL TAPSUB<Z,TPDRR,ISTAT, ,IFIL, t ,HOTRl
33.0' ITRV= ITRV+ 1

IFCIHBLKC1l.EQ."l77777lGOTO 3169
12Z CONTINUE

SET UP PROCESSING CONSTANTS

X B U F < I SF I N + 1 l = 1 .liJ IF LOA T C N I NT l
XBUFC ISFIN+2l=-FLOAT< IOFF-1 l
XBUFCISFIN+3l=FLOATCIOFFl
XBUFC ISF IN+4 l=XSF

SECTION WHICH DEALS WITH INTERPLOATION
AND SCALING OF DATA BEFORE PLOTTING

13.J
~25

CALL APPUT<XBUF,IAl,NPTS+4,2l
CALL APWD
CALL VMOVCIA1,1,IAZ,N1NT,NPTSl
IFCNINT.E0.1lGOTO 125
CALL VSUB< IAl, 1 , IA1+1, 1, IA1, 1 ,NPTS-1 l
CALL VSMUL< IA1, 1, ICl, IAl, 1, NPTS-1 l
IS T=IAZ
DO 13Z J=2,NINT
CALL VADDCIST,NINT , IA1,1,IST+1,NINT,NPTS-1l
IST=IST+1
CONTINUE
CALL VSMULCIAZ,1,IC4,IA16,1,NPINTl
CALL VT SAD D (I AZ, 1 , "4 4 2 7 , I AZ, 1 , N P I NT l
CAL L V C L I P < I AZ , l , I C 2 , I C 3 , I AZ , 1 , N P I NT>
CALL VINTCIAZ,l,IA!iJ,1,NPINTl
CALL VFIXCIAZ,l,IAZ,l,NPINT>
CALL APWR
CALL APGETCIOOT ,Z, NPINT ,1 l
I BIT=16
IWORD=256
CALL APWD
ID OTC 1 l=IDOTC 1 l+IOFF
DO 3RJ IP=2,NPINT

... ' · " 1'

FORTRAN IV V.0'2 • .0'4 THU .0'8-JAN-81 .0'.0':33:25 PAGE /8114

.("129

.0'13.0

.0"131

.0'132

.0'131.
ffl35
.0'137

0"138
0" 1 ~t.tf
.0'141
Jl42
.0"144
9'145
.0'146
0'147
9'149
0' 1 5.0
iJ151
0'152
.!J l 54

.0'155

.0'156

.0'158
:'J 1 6£'
3151
.0'!62
.0'163
.t1164
;J!65
1166
.if: 6 7
Zl68
,.11 69
:J17.0'
2'171
.J! 72
'J~ 73
iJl 7 ,;
:3'! 7~
c:76
:J 1 77
J179
.0' 1 8£!
.3' 1 8 1
Z182
:Jl84
.Jl85
0'1.8f.

c
c
c

c

IBITL=IBIT
IWORDL=I\./ORD
IBIT=IBIT-1
IF<IBIT.GT • .0'> GOTO 4.0'
I\./ORD=I\./ORD-1
IF< I\./ORD.EQ • .0')GOTO 97
IBIT=16

SECTION WHERE POSITIVE <SHADED> LOBES ARE PLOTTED

4£1' IF<IDOT<IP>.LT.I8>GOTO 5/8
I DOT< IP >=IDOT(IP }+!OFF
IDT=IDOT< IP)
IF< IDOT{ IP-1} .GE. IOFF >GOTO 45
IRO\./=IDOT<IP-1>

55 I P BUF < 1\./0RDL, JR0\.1{ I ROW>> =I PBUF (1\o/ORDL, JRO\o/(I ROW>). OR. MASKC!lUTLJ
IROW=IROW+l
IF<IRO\./.LT.IOFF>GOTO 55

45 IROW=IOFF
6fJ IPBUF< IWORD,JRO\o/(IROW> >=IPBUF(1\o/ORD,JRO\o/(IROW> >.OR.MASK< IBIT>

IROW=IROW+1
IF<IROW.LT.IDT>GOTO 6/8
GOTO 318

C SECTION WHERE NEGATIVE CUNSHADED> LOBES ARE PLOTTED
c

5.0' IDOT(IP>=IDOT<IP>+IOFF
IF< I DOT< I P } . LT. 1 • OR. I DOT< I P -1) • LT. 1 > GOTO 318
IF<IDOT<IP>.GT.IDOT<IP-l>>GOTO 7.0'
IDTB=IDOT<IP>
IDTE=IDOT< IP-1 >
MSKB=MASK< IBIT>
MSKE=MASK<IBITL>
IWORDB=IWORD
I\./ORDE=IWORDL
GOTO 8.0'

7Z IDTB=IDOT<IP-1>
IDTE=IDOT< IP}
MSKB=MASK< IBITL >
MSKE =MASK {I 8 IT}
IWORDB=I\./ORDL
IWORDE=IWORD

8.0' IDTM=<IDTB+IDTE}/2
IRO\./=IDTB

9Z IPBUF<IWORDB,JROW<IROW>>=IPBUF<IWORDB,JROW<IROW>>.OR.MSKB
IROW=IROW+1
IF<IROW.LE.IDTM>GOTO 9.0'
IROW=IDTM

95 IPBUF< !\.JORDE ,JROW< !ROW> >=IPBUF< I\o/ORDE ,JROW< IRO\o/} > .OR.MSKE
IRO\./=IR0\./+1
IF<IROW.LE.IDTE>GOTO 95

3.0 CONTINUE
97 JST=JROW<l>

JFIN=JROW<NDSTEP>

!'"ORTRAN TV Vl32 •. ~4

Z187 LIN= 1
c
C FILL OUTPUT BUFFER
c

THU .~8-J.A.N-81. .0'.0'!33!25

0t88 DO 15Z L=JST,JFIN
Z189 DO lSZ J=129,256
3190 IDOT<LIN>=IPBUF<J,L>
~191 IPBUF<J,Ll=Z
B192 LIN=LIN+1
0193 15Z CONTINUE
~19~ CALL BUFOUT<BUF,OUTFLG,TPORWl,IBLKWl>

c
C DO SECOND SLICE IF NECESSARY
c

Z195 IF<NTIM.LT.2>GOTO 17Z
g197 LIN=l
~198 DO 16Z L=JST,JFIN
3199 DO 16Z J=1,128
~2!62 IDOT<LIN>=IPBUF<J,L>
7221 IPBUF<J,L>=Z
~zzz LIN=LIN+l
J2Z3 loZ CONTINUE
32~4 CALL BUFOUT<BUF,OUTFLG,TPDRW2,IBLKW2>

c
C SORT JROW ARRAY

ZZZ~ 17!6 CALL APPUT<JROW,Z,BZ,l>
gzgs CALL APGET<JROW,NDSTEP,BH-NDSTEP,ll
3237 CALL APGET<JROW<Bl-NDSTEP>,Z,NDSTEP,l>
~ZBE CALL APWD
J2.JC; lZZ CONTINUE

C FLUSH BUFFER AT END OF A STRIP

~~12 IRBEG=1
~z L I RF I N=NDSTEP
'?1:: DO 19Z IF=! ,3
~:!: JST=JROW<IRBEG>
:'2!4 JFIN=JROW<IRFIN~

__ , ~

:J21 c
:1'2 1 7
.<1218
!621~

-f2 -~?
J-]22~

c
C DO FIRST BUFFER
c

LIN= 1
DO 2ZZ L=JST,JFIN
DO 2Ji'Jf1 J=129,256
IDOT<LIN>=IPBUF(J,L>
L!N=LIN+l

2fJFf CONTINUE
CALL BUFOUT<BUF,OUTFLG,TPDRWl,IBLKWl>

C ao SECOND BUFFER IF NECESSARY
c

IF<NTIM.LT.2lGOTO 195
LIN= 1

l' AGE Z!lf5

FORTRAN IV V182.184 THU 188-JAN-Bl 1818:33:25

~225 DO 2118 L=JST,JFIN
8~2f DO 2118 J•l,l28
D227 IDOT<LIN>•IPBUFCJ,L>
~228 LIN•LIN+l
9229 ZlB CONTINUE
823~ CALL BUFOUTCBUF,OUTFLG,TPDRW2,IBLKW2>
8231 195 IRBEG=IRBEG+NDSTEP
8232 IRFIN•IRFIN+NDSTEP
0233 198 CONTINUE

c
C PUT OUT EXTRA LINES TO HELP WITH TONER PROBLEM
c

8234 DO 2218 ICL=l,NWDBF
8235 2218 IDOT<ICL>•I8

c
C SEND OUT EXTRA LINES
c

923(DO 2318 ISEN=1,218
8237 CALL BUFOUT<BUF,OUTFLG,TPDRWl,IBLKWl>
923!.1 IF<NTIM.GE.2>CALL BUFOUTCBUF,OUTFLG,TPDRW2,1BLKW2>
924Z 238 CONTINUE
8241 CALL CLOSEC<IWRT>
8242 STOP 'NORMAL TERMINATION'
0'2:.t3 END

FORTRAN IV V182./64 THU 168-JAN-81 1616:34:416

fJ0181 SUBROUTINE BUFOUT<TBUF, OUTFLG, TPDRW, IBLK >
c
C THIS A ROUTINE FOR PUTTING OUT THE BUFFERS FROM'
C THE PLOTTING PROGRAM MPSPLT
c

90182 INTEGER*2 IBUF<l>,OUTFLG
~JiHJ3 LOGICAL*! TPDRW,ISTAT
f1&!at: COMMON I IO/ NBLKBF, N\./DBF, NBVTBF, !CHAN
99~5 DATA ICOUNT/8/

c
C KEEP A COUNT OF NUMBER OF BUFFERS WRITTEN
c

ICOUNT•ICOUNT+l

PAGE 18166

PAGE /6/61

0fiJ:J6
9£ff7
ZfJ99
.'iJJJ 1 l
.0'JJ12

IF<OUTFLG.EQ.B>GOTO lfiJ
IFCI\./RITWCNWDBF,IBUFC257l,IBLK,ICHANl.LT.I8lSTOP'WRITE ERROR'
IBLK=IBLK+NBLKBF
RETURN

C DO TAPE OUTPUT
c

8812 lB NBVT=NBVTBF+512
9014 IFLEN=NBLKBF+l
3915 IEOTW=B
)J£)'16 CALL TAP SUB< 1, TPDRW, I STAT, I FLEN, I COUNT, IBUF, NBVT, IEOTW l

Z1'Tl7
0'.0'19
fJ82iJ
9921
0822.
2fJ23
882J
fl!>J2"'
YJf12 G
0328
iOJJJ£.
Z.0'3:
.0 . .0':3 2
.J 0'3::::
JHJ3"

c
C CHECK FOR ERRORS
c

l!Jfi!fi!

1 1 18.0'

tzzg

2X1

13.0'XJ

3!J

IF<IEOTW.GE.fi!lGOTO 2!8
WRITE<7,118fi!l8lTPDRW,ICOUNT
FORMAT<' EOT ON WRITE DRIVE:', 12,' BUFFER NUMBER:' I 5)
WR I T E < 7 , 1 1.0'!8 l
FORMAT<' ENTER NEW WRITE DRIVE NUMBER:',$)
READ (5,12!8!8lTPDRW
FORMAT< I 1)
IE '1TW=I8
IF<TPDRW.GT.2lSTOP' EDT TERMINATE'
IF<ISTAT.GE.fi!>GOTO 30
WRITE(7,13!80liCOUNT
FOR~1AT<' FATAL WRITE ERROR ON BUFFER:', IS l
STOP' WRITE ERROR TERMINATION'
RETURN
END

Page 211

Section Plot Background :- MPPLBK

Input file ••••• DK2:MPVDAT.DAT

Input Parameters

This program is interactive in its first stage, but input

such as velocity functions and annotation comes from the input

file.

Interactive input

TSEC ••••• Trace length in seconds

TDELAY ..• Time delay to first sample

TSPACE ••• Trace spacing in plot dots

ISTART ••• First trace number

IEND .•... Last trace number

ISCANS ••. Interpolation factor used in trace plot

IBKFLG ••• Background grid flag

0 - dorlt plot

- plot background grid

IDSCAN ... Documentation flag

0 - no documentation for plotting

- documentation in input file for plotting

IVSCAN •.• Velocity Boxes flag

0 - No velocity information for plotting

- Velocity information in input file

Page 212

The input to the velocity and documentation parts of the

program should be present in the input file, in the format shown

below.

READ(1,1000)IVCNT

1000 FORMAT(12I5)

READ(1,1000)(IVEL(I),I:1,IVCNT)

For each velocity function the format is as below:

READ(1,1000)NVEL

READ(1,1001)(T(I),VINT(I),VRMS(I),I:1,NVEL)

IVCNT •••• Number of velocity functions

IVEL ••••• Trace positions at which velocity functions are

defined

NVEL •..•• Number of layers in a velocity function

T •••••••• Time value to be written in velocity box

VINT •••.• Interval velocity value to be written in velocity box

VRMS •••.. RMS velocity values to be written into velocity box

READ(1,1002)TITLE

READ(1,1000)ILINES

READ(1,1002)(LINE(I),I:1,ILINES)

1002 FORMAT(80A1)

TITLE •••• Title to be put into documentation box

ILINES ••• Number of lines of annotation

LINE ••.•• 80 characters of annotation per line

Page 213

:'"OR1,;,N IV VB2.04 THU 08-JAN-Bl ~~:22:!8

c
C PLOTTING PROGRAM TO GENERATE THE TIME AND
C POSITION BACKGROUND GRID FOR SECTION PLOTS

JeBl DIMENSION IVEL1200J,ATIME1!2B>,AVINT112B),AVRMS1(2B>

PAGE flJ!!Jl

~5¥? COMMON /PPEPl/IXl,IV1,IX2,IV2,ISCCN,NSCCN,NBAND,NPIS,NIPS,
>NIPMl,LVNES,NIBSX,MSGLVL,XDOTS,VDOTS,PREF<2>,
>RORG12J,PORTI2,2>,INND<4>,ALMT,FACT,JPEN,XOFF,
>XFAC,VOFF,NBITS,NBITMl,NBVTES,NBVTMl,MSK,LMSK

xJff.'J:C' DATA LMASKl/" 104218/, LMASK21" 177777/
ZMB~ CALL ASSIGNCl,'DK2:MPVDAT.DAT',l4l
1885 CALL PLOTSIS,B,BJ

DATA INPUT

0S0c WRITEI7,10BB>
c.r.r.<.q! l!JfJB FORMAT<' ENTER TRACE LENGTH IN SECS<FlS.S>: 1 ,$}
IJfJtf: READCS,lBSll TSEC
IJBfJS lBfJl FORMATIFlfJ.Bl
;J.f.l.G WRITE I 7, lfJll}
.dBll 1.0'11 FORMAT!' ENTER TIME DELAY TO START OF TRACESfFU.S}: 1 ,$}
3.0'1~ READI5,10Bl>TDELAV
:J:JL WRITEI7,1002l
J.!:flt 1802 FORMAT<' ENTER TRACE INTERVAL IN INCHESIFU.S>: 1 ,$)
zu:~ READIS,lBBllTSPACE
S~lr WRITEI7 1 lfJfJ3l
ZJll l.tJ£13 FORMAT<' ENTER START TRACE NOII5l: 1 ,$}
~ZlS READI5,18fJ4liSTART
:J"l· 10'.9'4 FORMATIISl
~J2~ WRITEI7,1085l
,•oz' l.'7.3'5 FORtviAT<' ENTER LAST TRACE NUMBER< IS>:',$)
;~2: READl5,1BB4liEND
;),~2:~ WRITEI7,1SB6l
~32~ 1BfJ6 FORMAT<' ENTER THE SCAN AMPLIFICATION FACTORI!l): 1 ,$)
~~25 READI5,1BB9liSCAN

J26 .Ul'Z9 i'ORMATI I 1 l
::·:: WRITEI7,lfJlBJ
·::-z:; 1.2'1.0' FORMAT<' ENTER 1 FOR GRID PLOTTING 8 !F NOHil): ',$}
~2~ READC5,18B9>IBKFLG

;J'J32 WRITEI7,1887l
:r::n; 1f'fJ7 FORt-1AT<' ENTER 1 IF WANT DOCUMENTATION 8 IF NOT< Il): ',$)
~~~: READI5,1889}1DSCAN 
'"-'"' WRITEI7,1BB8> 
~234 1SfJ8 FORMAT!' ENTER 1 IF VELOCITIES TO BE PLOTTED 8 IF NOT(!J}:',$) 
~~35 READC5,1BB9>IVSCAN 

;1.1f3 
J'-:'3 
;J:r(3 
;~ i)' ~ 

3ASIC PROCESSING PARAMETERS 

TPAPER=1Z.56 
TI'IA X = 8 . 1 9 2 
TLENTH=l.0'.24 
DSHIFT=l.B 
TSHIFT=1.6 
DSIZE=7.25 



.UkHZ 

.0'.0' l3 

.0'.6'4.: 
:1'.0'4;·· 
1_1.(; (i ~ 

0'.0' .+ 7 
,:,',!] .~ 9 
:J6'i.0 
_,;fl"!f':}! 

.09 :i ~ 
:·g:;::-

H03., 
~ ::t:::. 

c 
c 
c 
c 
c 
... 
c 
c 
c 
c 
c 
c -. 
\... 
r 
~ 

c 
c 
c 
c 
.~ -c 
c 
c 

.-

V JJ2 , !H 

Vf'o1AX=6 .z 
VBOX=l.H 

THU mB-JAN-81 .0'.0':22:18 

EXPLANATION OF VARIABLES: 
TPAPER=BASIC PAPER WIDTH 
TSPACE=TRACE INTERVAL IN INCHES 
TSEC=TRACE LENGTH IN SECONDS 
TMAX=MAX SCAN IN SECONDS 
TLENTH=DISPLAV WIDTH IN INCHES FOR TRACES 
TSTART=FIRST TRACE NUMBER 
!END=LAST TRACE NUMBER 
ISCAN=l,2,4,8-TRACE AMPLIFICATION 

lDSCAN=COSMETICS FLAG,l=ON,Z=OFF 
DSHIFT=X SHIFT FORM ORIGIN 
TSHIFT=SEPARATION OF T SLICES 
DSifE=DECLARATION SIZE 
IVSCAN=H-NO VELOCITIES 

!-VELOCITY DISPLAY 
VMAX=MAX VELOCITY 
VBOX=VELOCITV BOX SIZE 

FORM DISPLAY CONSTANTS AND FINO NO OF TIME SLICES 

IPAD=l 
TSTART=TMAX 
TEQ=TSEC*ISCAN 

18 IFITEO.LE.TSTARTl GOTO 11 
IPAD=IPAD+l 
TSTART=TSTART+TMAX 
GOTO 1.0' 
lPAD=IPAD*ISCAN 

11 TSTART=TMAX/FLOATCISCAN> 

C !PAD=NO OF TIME PADS 

- TSTA~T=NO OF TRUE SECONDS PER PAD 
r 

c 

DlTIM=-TLENTH/TSTART 
D 10'TIM=O 1 TIM'-".0' .1 

C STEPS FOR 1 AND 1/1.0' SEC INTERVALS 

iTRACE=IEND-ISTART+l 
ITR1.0'=ITRACE/10' 

C NO OF TRACES AND DECADE POINTS 

>ry - ITl=!START/lS 
Z3 !T2=IT1*1.0' 

IST1=IT2+1S-ISTART 
.~·::: IF! ISTART.EO.IT2>ITR1.0'=ITR1Z-l 

c 
C GET TRACE AND DECADE STARTING POSITIONS 

PAGE 91912 



THU Z8-JAN-81 ZZ!22t18 

- MID REDUCE NO OF DECADES BY 1 IF STARTING ON A DECADE 
c 

0&5? XPOPST=TSPACE*H.S 
0H64 XPOPlH=XPOPST+TSPACE*FLOATCISTll 

c 
C STARTING POSITIONS FOR TRACES AND DECADES 
c 

gs6S TWIDTH=FLOATCITRACE>*TSPACE 
gg6~ Tl&SPA=TSPACE*lH.H .-

C WIDTH OF DIPLAY AND DECADE TRACE INTERVAL 

3&s;· I TNUM= IT2+ 1.0' 
c 
C STARTING DECADE NUMBER 
c 

2il68 TUPPR=TPAPER-%.81 
c 
C UPPER DISPLAY LIMIT 

.0'.0'69 TSLICE=H.3 
~Z7C TSIZE=TSLICE*H.S 
~.0'71 PSIZE=<TUPPR-TLENTH>*H.25 

C ANNOTATION PARAMETERS 
c 

B.0'72 TOTAL =DSH I FT+FLOA T( I PAD)*( T\oii DTH+TSH I FT )+ 
>FLOAT<IVSCANl*<TWIDTH+TSHIFT>+DSIZE 

JZ7? PORT<l,l>=TOTAL 

0'.0'74 
iif7 5 
ZfJ7~ 

.".0'73 

.C?fr7 f} 
:JIJ3f! 
.~'JJ8: 

0.0'82 

.0'0'8 
·Z.0'8 
: :' 3 

c 
C TOTAL DISPLAY SIZE 

c 
c 
c 
c 

l<START=DSH I FT 
VSTART=H.fiJ 
!F< IBKFLG.EQ.fiJ}GOTO 2fi11 

BEGIN MAIN DISPLAY LOOP 
SwiTCHING OUT VELOCITY PLOTS WHEN 
NOT REQUIRED 

DO 2fi1.0' ISCNT=l,IPAD 
CALL PLOTCXSTART,VSTART,-3) 
Xl=-TSLICE 
)(2=T\o/ I DTH+TSL ICE 
It'<ISCNT.NE.llGOTO 1.0'1 

CRAW BORDER FOR FIRST FRAME 

CALL NE\o/PEN<3> 
CALL PLOT<Xl,fiJ . .0',3) 
CALL PLOTCXl,TUPPR,2l 
CALL PLOT<X2,TUPPR,2> 
CALL PLOTCX2,IJ.fiJ,2} 

PAGE !!1!83 



V82.84 THU 88-JAN-81 88:22:18 F 0RTP. \N IV 

.0'.0'89 IFIIPAD.EO.l>CALL PLOT<X1,8.8,2l 

C DRAW INSIDE MARGIN 
c 

.0'.0'91 CALL NEWPEN<l> 

.0'.0'92 CALL PLOTI8.8,8.8,3) 
J~9J CALL PLOTI8.8,TUPPR,2l 
00J4 CALL PLOTIXl,TLENTH,3l 
SS9F CALL PLOTIX2,TLENTH,2l 
~.0'95 CALL PLOT<TWIDTH,TUPPR,3l 
ZD97 CALL PLOTITWIDTH,8.B,2l 

c 
C ANNOTATE MARGIN 
c 

~.0'98 VA=TLENTH+PSIZE*8.B 
BZ9S X=-TSLICE*8.33 
.il •.Bi:.' CALL SYMBOL! X, VA, PSIZE., 3HSEC,98 • .0' ~3 l 
~!01 X=X+X2 
~1.0'2 CALL SVMBOLIX,VA,PSIZE,3HSEC,98.B,3> 

C ALL SURROUND PLOTTED NOW 
C INSERT SHOT POINT LOCATIONS 
c 

~:Z3 X=XPOPlB 
31£t V=TLENTH+8.33*CTUPPR-TLENTHJ 
glz~ COUNT=FLOAT<ITNUMl 
~186 JLIM=ITRIB-1 
!O~Zi DO IPJPJ I=l,ITRU 
0lil8 CALL NUMBER<X,V,PSIZE,COUNT,PJ.PJ,-1) 
~1g~ X=X+TlSSPA 
~~;D lSB COUNT=COUNT+l8.S 

C VELOCITY ANALYSIS POSITIONING IF REQD 

0111 IF<IVSCAN.E0.8JGOTO 31 
0~1: READI1,25liVCNT 
0' ;, 1 4 2 5 FOR MAT< 12 I 5 > 
0'!10 IFIIVCNT.LE.SlGOTO 31 

r.: 
C iVCNT=NO OF VELOCITY SCANS 
.~ 

READ< 1,25 )(!VEL< I l, I=l,IVCNT> 
c 
C ~~AD IN VEL POSITIONS 
'-· 

~!18 XBASE=S.S*TSPACE 
Z~lS VBASE=TLENTH 
,:12~ DO 29 I=l,IVCNT 
.Ul2l ISHIFT=IVEL< I l-ISTART 
3122 SHIFT=FLOAT<ISHIFTl*TSPACE+XBASE-PJ.S*PSIZE 
012? 29 CALL SVMBOL<SHIFT,VBASE,PSIZE,l4,S.S,-ll 
Zc2~ GOTO 31 

C BORDER FOR OTHER DATA PADS THAN FIRST 

PAGE 884 



?ORT~.~t~ IV \iZ2.B4 THU !68-JAN-81 !6!6:22:18 

0" ~r: lLV 

.tll 2 6 
£'12 7 

.0'128 

.0'129 

.0'!3£: 
;'J 1 3; 
.0'!3: 
.Jl33 
.31 3 ~-
~ 13'." 
,qJ 1 3 F 

HJl CALL NE'WPEN<3> 
CALL PLOT<Xl,B.B,3l 
CALL PLOT<Xl,TUPPR,2l 
CALL NEWPEN<l> 
CALL PLOT<H.H,TUPPR,2> 
CALL PLOT<B.B,B.B,2> 
CALL PLOT<TWIDTH,S.H,3> 
CALL PLOT<TWIDTH,TUPPR,Zl 
CALL NEWPEN<3> 
CALL PLOT<X2,TUPPR,3> 
CALL PLOT<X2,B.B,2l 
IF< ISCNT.EO.IPAD>CALL PLOT< Xl,B .!6, 2 > 

c 
C INSERT SHOT POSITION LINES 
c 

.0'138 31 ITR=ITRACE-1 

.0'139 CALL GRID<XPOPST,H.S,ITR,TSPACE,-l,TL£NTH,LHASK1> 
014~ ITR=ITRlB-1 
Bi41 CALL GRID<XPOPlB,B.B,ITR,TlBSPA,-1,TLE~TH,LMASK2> 

.·3'14 2 

.0'14:: 
j~ 14:.. 
in 4!:
!3'14~ 

lHC 

-:! '. 4 ~· 
.·n ~.c: 
0!5:2 
"',~"7' 
• J. ""'·-

t)f: 5;~ 

·' '. 5f) 

0 .. se:: 
.:l 5~ 

0' 6fl 
.] s: 
f1 s::: 
.15 63 

C INSERT TIMING LINES 
c 

TBASE=<FLOATCISCNT-ll*TSTART*lB.Bl+CTDELAV*lH.H> 
IT1=IFIX<TBASE > 
T1 = FL OAT ( IT 1 ) 
TERR=TBASE-Tl 
TBASE=TBASE*B. 1 
IT1=IFIX<TBASE> 
T2=FLOAT< ITl > 
TERR1.0'=TBASE-T2 
IF<TERR1.0'.GE.l.H>TERR1B=TERR1B-l.B 
Tl.0'ST=TLENTH+D1.0'TIM*Cl.H-TERR> 
TlST=TLENTH+DlTIM*(l.B-TERRlBl 
TINT=<TSTART+TERR)*!B . .0' 
ITR=IFIX<TINTl 
CALL GRID< B • .0', TlHST, -1, T'WI DTH, ITR, DlHTIM, LMASKl > 
Il=IFIX<TSTARTl 
ITR=Il-1 
CALL GRIDCZ.B,T1ST,-l,TWIDTH,ITR,DlTIM,LMASK2> 

~ INSERT ANNOTATION ON SECONDS 
c 

X=-.0'.66*TSLICE 
Xl=TWIDTH+Z.33*TSLICE 
Y=T!ST 
TIMT=IFIXC.0'.l*Tl+l . .0'l 

0 6d TIM=FLOAT<TIMT> 
.~ 5C CALL NE\.JPEN< 1 l 
J 6G DO 11.0' I=l,Il 
- S~ CALL NUMBER!X,V,TSIZE,TIM,S.B,-1} 
~52 CALL NUMBER<X1,V,TSIZE,TIM,.0'.H,-1l 
~ 6~ TIM=TIM+l.B 
0 7~ 11~ V=V+DlTIM 

PAGE /6!65 



FORTRAN IV V!J2.Z4 THU 08-JAN-81 !J!J:Z2:18 

017: XSTART=TWIDTH+TSHIFT 
~17~ V=Z.Z 
;:q 7 3 2fHJ CONTINUE 

c 
C VELOCITY ANALYSIS PLOT PROGRAM 
c 

0j7' ~01 IF<IVSCAN.EQ.fiJJGOTO 641 
8!76 CALL PLOT<XSTART,YSTART,-3> 
J;77 DO 64 I=1,IVCNT 
2~ 7: READ< 1,25 >NVEL 
!179 READ<1,26><ATIME1CJJ,AVINTl<JJ,AVRMS1(JJ,J=l,NVELJ 
618~ 26 FORMATC3F1!J.ZJ 
-:r-Cl1 IVELl=IVEL<I> 
-182 VBS IZE=Z. 22*VBOX 
818~ VBLINE=Z.ll*VBOX 
Y18t VBSTX=VPLT1-fiJ.5*VB~IZE*3.fiJ 
8!85 VBSTY=TLENTH*<Z.5-AMARK*Z.25J-23.Z*VBLINE 

c 
C ORAW BOXES FOR VELOCITY PICKS 
c 

~186 CALL PLOT<VBSTX,VBSTY,3> 
Zl8i CALL GRIO<VBSTX,VBSTY,3,VBSIZE,22,VBLINE,LMASK2> 
trl8f SIZE=Z.fiJ4*VBOX 
~!85 COFFST•!J.Z25*VBOX 
Zl9~ V=TLENTH*<S.5-AMARK*fiJ.25J-VBSIZE+COFFST 
~19! X=VPLT1-2.S*SIZE 
Z 1 9 2 A V = F L OAT < I V E L 1 l 
~193 CALL NUMBERCX,Y,SIZE,AV,fiJ.Z,-1) 
3:9J Y=V-VBLINE 
Zl9~ X=VBSTX+B.l*VBSIZE 
0196 XST=X 

c 
C DO TITLES 
c 

8197 CALL SVMBOL<X,Y,SIZE,4HTIME,fiJ.fiJ,4) 
:;gs X=X+VBSIZE 
1;gc CALL SVMBOLIX,V,SIZE,4HVINT,S.B,4J 
• ~:!.''" X=X+VBSIZE 
1:J' CALL SVMBOLIX,V,SIZE,4HVRMS,B.B,4J 
·~~? Y=Y-VBLINE 
D28~ X=XST 

P~T IN THE NUMBERS 

qzg: DO 63 JJ=1,NV~L 

Z2ES CALL NUMBER<X,V,SIZE,ATIMEl<JJl,Z.Z,3> 
a2gF X=X+VBSIZE 
0}~: CALL NUMBERIX,Y,SIZE,AVINTl<JJJ,Z.!J,3l 
Z~~: X=X+VBSIZE 
~?g~ CALL NUMBERIX,V,SIZE,AVRMSlCJJl,B.B,3) 
0Ll~ X=XST 
?_!: E3 V=V-VBLINE 
~=~~ IFIAMARK.EQ.B.B>GOTO 632 
B21" AMARK=B.B 

PAGE gg5 



VZ2.Z4 

??15 GOTO 64 
~21f 632 AMARK=l.Z 
0217 61 CONTINUE 
J:lS 641 CONTINUE 

c 
C PLOT COSMETICS 
c 

THU ZS-JAN-81 ZZ:22:18 

3219 IF<IDSCAN.EO.ZJGOTO 73 
~~?• XSTART=TWIDTH+TSHIFT 
0222 VSTART•Z.Z 
~2:~ CALL PLOT<XSTART,VSTART,-3) 

C ~<:<:ORIGIN 
c 

~224 X2=0SIZE 
Z225 Y2=TLENTH 
Z22S CALL NEWPEN(4) 
~22~ CALL PLOT<Z.Z,V2,2) 
~228 CALL PLOT<X2,V2,2J 
~22~ CALL PLOT<X2,Z.Z,2l 
B23£ CALL PLOT<S.S,S.S,2> 
3?31 Xl=Z.SS 
q232 X2=X2-Xl 
B233 Yl=Xl 
B234 Y2=Y2-Yl 
Z23E CALL NEWPEN<l> 
.0'236 CALL PLOT<Xl,Yl,3) 
~237 CALL PLOT<Xl,Y2,2l 
J238 CALL PLOT<X2,V2,2l 
Z239 CALL PLOT(X2,V1,2l 
W24B CALL PLOT<Xl,Vl,2l 
~241 CALL PLOT<S.S,S.S,3) 

0 4;:'. 
J 4:3 
~r 1\tl 

tf 4~ 
.J 46 
:'! 

,., 
L;,' 

:J 48 
.3 49 

,'J s~ <: ., 
51 .;.;) 

'if s: 
.. t;" ..... ..:. 
qr 5,: 
g s:: 
;;r t;c: 

'] s: 

c 
C SURROUND DONE 
c 

c 

SIZE1=.0'.4 
SIZE2=.0'.3 
SIZE3=.0'.2 
SIZE4=.0'.1 
XMID=.0'.5*DSIZE 
Y=TLENTH 
X=Xt4ID-8.S*SIZE1 
V=Y-l.S*SIZEl 

C DRAW IN THE HEADER 
c 

CALL NEWPEN<3l 
CALL SVMBOL<X,V,SIZE1,17HDURHAM UNIVERSITV,S.S,l7) 
X=XMID-9.S*SIZE2 
V=Y-1.5*SIZE2 
CALL NEWPEN<l> 
CALL SVMBOL<X,V,SIZE2,18HSEISMIC PROCES.SING.,.0' • .0',18) 
CALL NEWPEN< 1} 
X"'DSIZE*.IJ.l 

PAGE ~flJ7 



.0'25::: 

V!02.!04 

Y=V-1.5*SIZE3 

THU !08-JAN-81 !0!0:22:18 

C KEAD IN TITLE AND PLOT 

025S READ<l,7!0>CIVEL(!},I=1,4!0J 
.0'260 7!0 FORMAT< 4!0A2 > 
ff26' CALL SVMBOL<X,V,SIZ£3,IVEL,!0.!0,8!0> 
0262 V=Y-!0.2*SIZE3 
.0'263 X=.e'.Z 
ff264 CALL PLOT<X,V,3> 
025~ CALL PLOT(DSIZE,V,2) 
Z25c V=V-1.5*SIZE3 
.:~67 X=XMID-8.!0*SIZE3 
.0"258 CALL SVMBOL<X,V,SIZE3,17HSVSTIM PARAMETERS,.8' • .11,.17> 
cy25~ X=.e'.l*DSIZE 
~27~ V=V-1.5*SIZE3 
~2n READ<1,2S>ILINES 

,.,!' 7:. ~ 

iJ ..,.~ 

I_-

z 7 
0 

.., 
' 

f1 7 
f) -

I 

fJ 7 
z .., 

c 
C FILL IN PROCESSING PARAMETERS 
c 

DO 72 l=l,ILINES 
READ< 1, 7!0H IVEL<J ),J=l ,4!0) 
CALL SVMBOL<X,V,SIZE4,1VEL,!0.!0,8!0> 

72 V=V-1.5*SIZE4 
73 CONTINUE 

CALL PLOT(!O.!O~B.!0,999) 
STOP 
END 

PAGE !0!09 



Section Plotting Merge and Post-Process :- MPMERG 

Input file ..... DK2:MPMERG.DAT 

Log file •.•...• DK1:MPMERG.LOG 

Input Parameters 

READ(1,1000)LPLT,NSTRIP,NDSTEP,IBKFLG,IPLFLG 

1000 FORMAT(5I5) 

LPLT ••••• Number of rasters in total plot 

NSTRIP ••• Number of strips to be plotted 

NDSTEP ••• Number of dots between traces 

IBKFLG ••• Background flag 

0 - No background to plot 

- Plot a background 

IPLFLG •.• Trace plot flag 

0 - No trace plot 

- Plot raster trace plot 

READ(1,1000)LSTP,LENP,IOFLGP,ITPDR1,ITPDR2 

Page 214 

LSTP ••.•• Output raster position of first raster in trace plot 

LENP .•.•• Qutput raster position of last raster in trace plot 

IOFLGP •.. Input flag for trace plot 

0 - read from tape 

- read from disc 



ITPDR1 ••• Input Tape drive number 

ITPDR2 ••• Input tape drive number 2 

IF(IOFLGP.NE.O)READ(1,1002)FBUFP 

FBUFP •••• Input file for trace plot 

READ(1,1000)LSTB,LFINB,IOFLGB,ITPDRB 

Page 215 

LSTB ••••• Output line position for first line of background 

plot 

LFINB •••• Output line position of last line in background plot 

IOFLGB ••• Input flag for background plot 

0 - input from tape 

- input from disc 

ITPDRB ••• Input tape drive for background plot 

IF(IOFLGB.NE.O)READ(1,1002)FBUFB 

FBUFB •••. Input file for background plot 



FOR.IRAN IV Vf12 • .0'4 THU .0'8-JAN-81 .0'Z:39:35 

.'J!J!J 1 
fJfJJJZ 
f]fJ[J'J 
J9f]f14 
r1.cms 

/J.IJJ36 
,CJfj.(f? 

fHJfJS 
.ffffltiJ 
0'f11 1 

!JJJ12 
.0'.()13 
.'3ff 1 .. 
2J.cJ16 
.(Jf117 
Cj'ffl9 
·:·!J2ff 
:JfJZ 1 
TV 2,: 
Ji12:3 
.J£12:5 
7027 
:J.'E3 
J!] 3.•:1 
.·J531 
-rN·~ ,, 
;._ ..:..:-. 

....,.,.........,r 

.J.t.J..;)O 

-~jfJ37 

JC33 
rtfJ30 
•)[J 4 ,, 
7;=.i i~:. 

·~;J,\3 

D044 
.);]45 
·};":; 4 -.~ 

c 
c 
c 

,... 
·~ 

c 
r• ·-

c 
c 
c 

c 

M.J.POULTER OCT 8.0' 
POST PROCESS AN~ MERGE PROG FOR 
SEISMIC PLOT SYSTEM 

INTEGER*2 IPBUF<2112l 1LBUF<132l 
REAL*4 FBUF<3l 
REAL*B FSPECP,FSPECB 
LOGICAL*l ITPDRl,ITPDR2 1 lTPDRP 1 ITPDRB 
DATA DEV/3RRK I 

SET UP AP TO USE FOR ZEROING ARRAYS 

CALL APINIT 
CALL VCLRIB 11,2112l 

SET UP I/0 DEFINITIONS 

IF< IFETCH<DEVl.NE.BlSTOP'FETCH ERR' 
CALL ASSIGNI1 1 'DKl:MPt-IERG.DAT' 114l 
CALL ASSIGN< 2 1 'DKl :MPMERG. LOG' 114 l 

C GET INPUT PARAMETERS 

c 

READ< !1 l.Cf.O'.O'lLPL T, NSTRIP, NDSTEP 1 IBKFLG 1 IPLFLG 
1 FJ!Jff F ORI·1A T< 5 I 5 l 

IF< IPLFLG.EQ • .(J'lGOTO lZ 
READ< 111.0'Z.OlLSTP .LFINP I IOFLGP I ITPDRl, ITPDR2 
IF<IOFLGP.EQ.ZlGOTO 1.0' 
READ< l.l.O'ffl lFBUF 

liJ!Jl FOR~·IAT< 3A4 l 
CALL IRAD5.G'( 12 1FBUF 1FSPECP} 
ICHP=IGETC< l 
IF<LOOKUPIICHP,FSPECPl.LT.BlSTOP'LOOKUP ERROR' 

lB IF< IBKFLG.EQ.JlGOTO 2.0' 
il.EAD ( 1 1 1 fJ.0'.0' l L STB, L FIN B, I OF L GB, ITP D RB 
IF< IOFLG3.EQ.SlGOTO Z!J 
READ\ l.lffffl JFBUF 
CALL IRAD5.9'112 1FBUF,FSPECBl 
ICHB=IGETC< l 
IF<LC'JICUPIICHB 1FSPECBl.LT .. 9'lSTOP'LOOKUP ERROR' 

2r1 conn nuc: 

C SET UP MATRIX FOR MAIN LOOP 

CP,L L r•m(SET 
CALL t<IT)((!PJUF,.0',1l 
UWI·1=.0' 
IITH1=0 
iST=lJJ57 
MBYTP=NDSTE?*2S6+512 
lli3VTB=4G;J3 
l. if·IP = '\ 6.0'8 
NWDP=NDSTEP/2*256 
!~!IOFLGP.EQ.0lLIMP=256B+NWOP 
L !1·13=2304 

PAGE Zllfl 



FORTRAN IV VH2.H4 

0048 ITPORP=ITPORl 
0049 IEOFP=H 
HZ5H IEOFB=H 

c 
C ZERO THE PLOT ARRAY 
c 

40 IST=lZ56-IST+2 

THU 08-JAN-81 00:39:35 

0.0'51 
0052 
.0'0'53 
0054 

CALL APGET<IPBUF<ISTl,H,lH56,1} 
IPSV=IST 

0055 
RIB 56 
RIBS? 

c 
c 
c 

c 

CALL APWO 

START OF MAIN LOOP 

DO 50 I =1,8 
LNUM=LNUM+l 
EOFFLG=l 

C THIS LOOP FILLS ONE LINE OF PLOT BUFFER 
C WITH INPUT FROM EACH PLOT MASK 
c 
c 
C DO SEISMIC SECTION FIRST 
c 

.0'058 IF<IPLFLG.EC.Z>GOTO 60 
Hflf6flf IF<LNUM.GT.LFINP>GOTO 60 
0062 IF<IEOFP.NE.BJGOTO 6.0' 
RfH64 EOFFLG=H 
0065 IF<LNUM.LT.LSTPJGOTO 60 
0067 IPOS=IPSV 
.0'.0'68 ICD=l 

c 
C FILL LINE BUFFER 
c 

PAGE 02 

.0'.0'69 CALL LINFIL<LBUF,ICO,IEOFP,ITPORP,IOFLGP,NBVTP,LNUM,ICHP,LIMP> 

.0'07.0' DO 7.0' J=1,132 

.CJ.0'71 IPBUF< IPOS l=IPBUF< IPOS l .OR.LBUF<J l 

.0'072 7.0' IPOS=IPOS+l 
c 
C DO BACKGROUND 
c 

Rf.0'73 6.0' IF<IBKFLG.EQ • .0'lGOTO 8.0' 
.0'.0'75 IF<LNUM.GT.LFINBlGOTO 8.0' 
.0'.0'77 IF<IEOFB.NE . .0'JGOTO 8.0' 
.0'079 EOFFLG=.0' 
.0'.0'8.0' IF<LNUM.LT.LSTBlGOTO 8.0' 
.0'.0'82 IPOS=IPSV 
.0'.0'83 IC0=2 
.0'.0'84 CALL LINFIL<LBUF,ICO,IEOFB,ITPDRB,IOFLGB,NBVTB,LNUM,ICHB,LlMB> 
.0'.0'85 DO 90 J=1,132 
.'lf.0'86 IPBUF< IPOSl=IPBUF< IPOSJ.OR.LBUF(JJ 
.0'.0'87 9Rf IPOS=IPOS+l 
.0'.0'88 8.0' IPSV=IPOS 
0.0'89 5.0' CONTINUE 

c 



FORTRAN IV V/82./84 THU /88-JAN-81 /8/8:39:35 

C WHEN A PLOT BUFFER IS FULL COME HERE TO EMPTY IT 
c 

1818918 CALL MWAIT 
B/891 CALL MTX<IPBUF!ISTJ,l/856,2} 
/8892 IF<EOFFLG.NE.8>GOTO 188 
18B94 IF<LNUM.LT.LPLT>GOTO 48 
181896 11818 CALL MWAIT 
181897 CALL APGE.T< IPBUF ,8,2112, 1) 
BS98 DO 1118 J=1,218 
S/899 CALL MTXCIPBUF,2112,2> 
181188 CALL MWAIT 
18181 118 CONTINUE 
181/82 CALL MTX!IPBUF,I8,1} 
181183 CALL MWAIT 
Bl/84 NTIM=NTIM+1 
Bl/85 LNUM=/8 
18186 ITPDRP=ITPDR2 
181187 IF<NTIM.LT.NSTRIP>GOTO 418 
181189 STOP'NORMAL TERMINATION' 
181 118 END 

PAGE Jlf/83 



FORTRAN IV VBZ./64 PAGE /8!11 

f?JRJJ(Jl SUBROUTINE UNF IU LBUF, ICD, iEOF, I DRV, IOFLG, NBYTR, IF I L .I CHAN, NLIM > 
81682 INTEGER*Z LBUF( 1 >,INBUF<S12/6l,ITPSTC2l,IST<2>,NPTS(2), 

%IBLKS<2>,IPOSSC2> 
1616163 LOGICAL*1 IDRV,ISTAT 
1616164 DATA ITPST<1l/Z3/65/,ITPST(2}/1/,IST<1>12561/, 

c 

XIST!2}/257/,NPTS<1l/128/,NPTSt2>1132/,.IPOSS{l}/51ZB/, 
XIPOSS(2)/512/6/,IBLKS<1>11/,IBLKS<2>11/,IEOTR/B/ 

C CLEAR LINE BUFFER 
c 

gggs CALL APGET<LBUF,/6,132,1> 
!6f?Jf66 NPT=NPTS<ICD> 
f?Jf?Jf67 IPOS=IPOSS<ICD> 
f?JB/68 IBLK=IBLKS<ICD> 
gggg ITST=ITPST<ICD> 
f?J/6116 IBEG=ISTCICD> 
/6f?J11 CALL APWD 

/6f?J12 
f?J/613 
f?J/614 
f?Jf?J16 

c 
C FILL BUFFER 
c 

c 

DO 116 J=l ,NPT. 
IPOS=IPOS+l 
IF< IPOS.LE.NLIM>GOTO 3/6 
IF<IOFLG.EO.f6>GOTO 4/6 

C DISC INPUT 
c 

H /61 8 I N = I READ W < 2/6 4 8 , I N B U F < I BEG > , I B L K , I CHAN > 
f?J/619 IBLK=IBLK+8 
1616216 IPOS=IBEG 
161621 IF<IN.E0.21648lGOTO 3/6 
161623 IEOF=l 
0/624 NLIM=IN+IPOS 
f?JH25 IFCIN.LT.-l>STOP'READ ERROR' 
f?JI627 IF<IN.LE.B>RETURN 
f?Jf?J29 GOTO 3/6 

c 
C TAPE INPUT 
c 

f?J83f?J 4Z ITRV=l 
16f?J31 SZ IFCITRV.GT.3lGOTO 616 
16833 IF<IEOTR.GE.B>GOTO 7f?J 
f?JI635 68 WRITE<7,1f?JI616>IDRV 
81636 1f?JZZ FORMAT<' EOT ON READ DRIVE:',I2,/, 

%' ENTER NEW DRIVE NUMBER:',$) 
161637 READC5,1!6!6l>IDRV 
Z838 1.0'.0'1 FORMAT( I 1) 
f?J1639 IEOTR=8 
f?JI64!6 IF<IDRV.GT.2liEOF=1 
f?J/642 IFCIEOF.NE.f?J>RETURN 
8.0'44 7fiJ CALL TAPSUBC-l,IDRV,ISTAT,IFLEN,IFlL.INBUF<ITST>,NBVTR,IEOTR> 
!6f?J45 IF<ISTAT.LT.f6lWRITE<2,18.0'2>IFIL 
.0'f?J47 U.0'2 FORMAT<' WARNING RETRIES FAILED ONREAD FILE NO:' IS> 
8f?J48 IFCIEOTR.LT.f?JlGOTO 8f?J 

FORTRAN IV V162.164 THU 168-JAN-81 16f?J:4f?J:I69 PAGE 16162 

1616516 CALL TAPSUB<f6,IDRV,ISTAT, ,IFIL,, ,IE.OTRl 
16851 BB ITRV=ITRV+l 
Bf?J52 IF<INBUF<ITST>.E0."177777>GOTO 516 
D054 IPOS=IBEG 
0055 30 CONTINUE 
.0'Z56 LBUFCJl=INBUF<IPOSl 
.0'1657 10 CONTINUE 
.0'.0'58 IBLKS< ICD l=IBLK 
f?JZ59 IPOSS< ICD l=IPOS 
ZZ6Z RETURN 
16.0'61 END 



Page 216 

Gather Plotting(Small Trace separation) :- MPSPLI 

This program is interactive, i.t expectR the data to he on 

disc and the output rasters are put back to a user specified disc 

file. 

The following parameters have to be input. 

NTR •••••• Number of traces to plot 

NPT •••.•• Number of samples on each trace 

NDPT ••••• Interpolation factor, number of dots per trace 

NDSTEP ••• Trace separation in dots 

XSF •••••• Plot scale factor 

FSPECR •.• Input data file 

FSPECW ••• Output raster file 



~o~: ,.!\N JV V/J2./J4 THU BS-JAN-81 BB:B9:B6 

C M J POULTER SEPT 79 
C PLOTTING PROGRAM FOR SEISMIC SECTION DATA 
C THIS PROGRAM TAKES IN SEISMIC TRACES AND 
C DISPLAYS THEM IN A NIB IMAGE FORM IN AN OUTPUT 
C FILE IN A FORM READY FOR POST PROCESSING. 

W).!l O!MENSION IPBUF< 128,8xl'>,JROWI8.0'l,FBUF(3J, 
~IDOTI2Z48l,XBUF<2Z52l,MASK(16l,NSAVE<2.0'l 

~~2 REAL*8 FSPECR,FSPECW 
. J'J EQUIVALENCE < XBUF< 1 l, !DOT< 1) l 
~~w~ DATA DEV13RRK I 
.:'C.:"S DATA MASK/ "2.0'.0', "1.0'.0', "4fiJ, "2.0', "1.0', "4, "2, "1, 

IF~ i-J 11 
1,"":."'7 

Jf:za 
)\1fiJ9 
J -'il 8 
] .; l i 
21:12 
f!r113 
, .. ; 1 ... • 
:;_::. ~ s 
ih'l6 
,}£! j 7 
~,,; l B 
-' ~ 9 
; a 2» 
' •::: 1 

3 
,.}:: 

';f 

X" 1 fiJfiJBfiJfiJ, "4.0'fiJ.0'.0', "2.0'.0'.0'fiJ, " lBBBB, " 4.0'.0'.0', "ZfiJBB, " lBBB, "4BB I 
c 
C DATA READ IN SECTION 
c 

WRITE< 7, 1.0'.0'5 l 
:zzs FOR~1ATI' ENTER NO OF TRACES', I, 

%' NO OF POINTS PER TRACE',/, 
X' NO OF TIMES TO EXPAND',/, 
.%' AND STEP SIZE 14I5l' > 

REAOI5,l/J.0'.0'l NTR,NPT,NDPT,NDSTEP 
lfiJRJ'J FORMATI4I5l 

',JR ITE < 7, 1.0'.0'6 l 
!ZfiJ6 FORMAT<' ENTER SCALE FACTOR:' ,Sl 

READ<5,1fiJ.0'lJ XSF 
10.0'1 FORMATIF1.0' • .0'J 

WRITE< 7, 1.0'.0'7 > 
l.J:J7 FORMAT<' ENTER INPUT FILE NAME:',$} 

READ<S,1.0'.0'2JFBUF 
1.0'.0'2 FOR~~AT< 3A4 l 

CALL IRAD5.0'(12,FBUF,FSPECRJ 
\JRITE< 7, 1.0'.0'8 l 

L:'.3:3 FORMAT< ' ENTER OUTPUT F 1 L E NAME:' , $} 
READ< 5,1/JfiJ2 JFBUF 
CALL IRAD5.0'112,FBUF,FSPECWJ 

SET UP CONSTANTS AND FILE ACCESS 

ICHR=IGETC< > 
ICHW=IGETC< l 
IF<IFETCH<DEVl.NE.fiJlSTOP'FETCH ERR' 
IEq=LOOKUP<ICHR,FSPECRJ 
IF<IER.LT . .0'lWRITE<7,*liER 
IF<IER.LT.fiJlSTOP'LOOKUP ERR' 
NFIN=NPT*NDPT-1 
N3L :<R=NPT I 128 
NI../DR=2*NPT 
~BLKW=<NTR+4l*(NDSTEPI2l 
NBLKBF=NDSTEP/2 
NWB!JF=NBLKBF*256 
IOFF=2*NDSTEP 
I!3LKR=l 

PAG.E fl/61 



:Jf14f: 
0'.0" 4 1 
,";.lJ 4 <' 
e.<r JJ 

t ... r: <! ~ 
~--.. ~:. 

ldH4GI 
,,.,~ 49 

.:::.?5 l 
_.;;;·s2 
JfY5_ 
0'05 ' 
3".0'56 
0".0'58 

c 
c 

c 

V/82 . .0'4 

IBLK\.1=1 
NT!r-1= 1 
NSTRIP=.0' 
IBOFF=/8 

THU /88-JAN-81 /8/8:S9:B6 

SECTION WHICH SETS UP PARAMETERS TO ALL0\1 
STRIPPING OF PLOT IF REQUIRED 

IF<NFIN.GT.2/848>GOTO 1 
IF<IENTER<ICHW,FSPECW,NBLKW>.LT.B>STOP'ENTER ERR' 
NSTRIP=l 
GOTO 2 

l NS=NFIN 
3 NSAV~<NTIM>=2/847 

NS=NS-2/848 
NTIM=NTIM+l 
IFINTIM.GT.2!8>STOP'TOO MANY STRIPS' 
IF<NS.GT.2/848lGOTO 3 
NSAVE ( NTIM >=NS 
NBLKW=NBLKW*NTIM 
IF<IENTER<ICHW,FSPECW,NBLKW>.LT.B>STOP'ENTER ERR' 

C START OF LOOP IF STRIPPING NECESSARY 
c 

C'·ffs:C 4 NSTRIP=NSTRIP+1 
/~6J ~FIN=NSAVE<NSTRIP> 
.L'6"- NPT=<NFIN+1l/NDPT 
~~6E NWDR=2*NPT 
~A66 IBLKR=l+IBOFF 
006! NBOF=NPT/128 
JH5~ IBOFF=IBOFF+NBOF 

C S~T UP ROW COUNTER FOR BUFFER USAGE 

JfS~ Z DO 5 1=1,8.0' 
~~7? 5 JROWI!l=I 

.J-~7 
_.,,,·7 I 

.?JJ75 
:J!J-:'5 
.. ~:rt s 

•c-"!V.., 0 

' 32 

~ S~T UP AP AND CLEAR PLOT BUFFER 

c 

CALL API NIT 
CALL VCLR<.0',1,512.0') 
CALL APWR 
CALL APGET<IPBUF<l,ll,.0',512/8,2l 

t'1AI N LOOP FOR PLOTT! NG DIFFERENT TRACES 

DO 1.0' I=l,NTR 
IFIIREADW<NWDR,XBUF,IBLKR,ICHR>.LT . .0'>STOP'READW ERR' 
IBLKR=IBLKR+NBLKR 
HBUF!NPT+1)=1 . .0'/FLOATINDPT> 
)\ B U F < N P T + 2 l =-FLOAT< I OFF -1 ) 
XBUF< NPT+3 >=FLOAT< IOFF > 
XBUF<NPT+4l=XSF 

PAGC: BB2 



FO;(.TilAH IV VB2.f/J4 THU BB-JAN-81 BB:B9:B6 

C SECTION WHICH DEALS WITH INTERPLOATION 
C AND SCALING OF DATA BEFORE PLOTTING 
c 

BB83 CALL APPUTIXBUF,ZB48,NPT+4,2> 
~ff84 CALL APWD 
888~ CALL VMOV<2B48,1,9J,NDPT,NPT> 
~BRf IF<NDPT.EQ.l>GOTO 25 
Zfl8~ CALL VSUBIZB48,1,29J49,1,6144,1,NPT-1> 
dJBS CALL VSMULI6144,l,ZB48+NPT,6144,l,NPT-l> 
;,_::g.) IBEG=.0' 
.~fl'91 IFIN=1 
~s92 DO 2.0' J=Z,NDPT 
~~9: CALL VADD<IBEG,NDPT,6144,l,IFIN,NDPT,NPT-1) 
Z~94 IBEG=IBEG+l 
~D3S IFIN=IFIN+l 
g09e zg CONTINUE 
.0'»97 25 CALL VSMULIB,l,2H51+NPT,B,l,NFIN> 
~19£ CALL VTSADD<.0',1,"4427,B,l,NFIN> 
B.0'3S CALL VCLIP<B,l,ZB49+NPT,29J59J+NPT,B,l,NF1N> 
Bi~~ CALL VINTIB,1,91,l,NFIN> 
s~Sl CALL VFIXI91,1,91,1,NFIN> 
B1f/J: CALL APWR 
8183 CALL APGETIIDOT,B,NFIN,ll 
21Z4 IBIT=l6 
31.0'5 IWORD=128 
Bl0S CALL APWD 
81~7 IDOTI1J=IDOTil)+IOFF 
B'flJP DO 38 IP=Z,NFIN 
B~S~ IBITL=IBIT 
Zll~ IWORDL=IWORD 
~-1: IBIT=IBIT-1 
:I'lL:. IF<IBIT.GT.91l GOTO 491 
&:lA IWORD=IWOR0-1 
B!!S IF!IWORD.EQ.SJGOTO 1291 
r. 1 ~ IBIT=16 

Ifl 1 F 
g"l Z.c' 
(f: 2 l 
.'J 1 2 2 
i''( ~ ") .• 
.) .. ~-

SECTION WHERE POSITIVE !SHADED> LOBES ARE PLOTTED 

4J IF<IDOT<IPJ.LT . .0'>GOTO 591 
IDOT< IP l=IDOT< IP J+IOFF 
IDT=IDOTI IP l 
IF<IDOT<IP-1J.GE.IOFFJGOTO 45 
IROW=IDOT< IP-1 > 

PAGE BrJ 

;11 2S 
. .-. _...; 

55 I PBUF I IWORDL, JROW< I ROW> l= I PBUFI IWORDL, JROW< IROW l l. OR.MASK( I.B ITU 
IROW=IROW+1 

., " ,:..., .... .:.. 
;r- ·:> ~ 

.cr '3:J 

IF< IRO\.J.L T .IOFF JGOTO 55 
45 IROW=IOFF 
EZ IPBUFIIWORD,JROWIIROWll=IPBUFIIWORD,JROWIIROW>>.OR.MASKIIB~l 

IROW,IROW+1 
IFIIROW.LT.IDTJGOTO 68 
GOTO 3.0' 

SECTION WHERE NEGATIVE CUNSHADED> LOBES ARE PLOTTED 



FOR' ~N 1 \J V.0'2 • .0'4 THU .0'8-JAN-91 .0'8:.0'9:.0'6 PAGE BB4 

.0"135 5.0' !DOT< IP >=lOOT< IP l+lOFF 
4136 IF<IDOT<IP>.LT.1.0R.IDOT(!P-ll.LT.l>GOTO 3.0' 
J:3o IF<IDOT<IPl.GT.IDOT<IP-lllGOTO 7.0' 
!3'14£ IDTB=ID07<IP> 
Jil41 IDTE=IDOT<IP-1> 
j:4: MSKB=MASK<IBIT> 
~!4~ MSKE=MASK<IBITL> 
0.4~ lWORDB=IWORD 
Zl4S IWORDE=IWORDL 
'Jl 4·c GOTO 8.0' 
Si47 7.0' IDTB=IDOT<IP-1> 
;Jj4, IDTE=IDOT<IP> 
314~ MSKB•MASK<IBITL> 
~;"i.C MSKE=MASK<IBIT> 
.0'15~ IWOROB=IWORDL 
.0'152 IWORDE=IWORD 
~:53 8~ IDTM•<IDTB+IDTEl/2 
SiS£ IROW=IDTB 
.0'15~ 9.0' IPBUF< IWORDB,JROW( IROW>>•IPBUF< IWORDB,JROW<IROW>>.OR.MSKB 
SJ56 IROW=IROW+l 
8!5' IF<IROW.LE.IDTM>GOTO 9.0' 
z•s; IROW=IDTM 
J:S£ 1g3 IPBUFCIWORDE,JROW<IROW>>=IPBUF<IWORDE,JROV<IROW>l.OR.MSKE 
2151 IROW=IROW+l 
.H62 IF<IROW.LE.IDTElGOTO UB 
~'64 3S CONTINUE 
a16~ 12.0' JST•JROW!ll 

c 
C WRITE OUT PART OF BUFFER AND INITIALISE 
C FOR A NEW TRACE 
c 

.Jl65 IF< IWR!TW( NWBUF, IPBUF < 1, JST>, lBLKV, ICHV>. L T • .B'>STOP 'VRITE ERR' 
~-S~ IBLKW=IBLKW+NBLKBF 
316S CALL APPUT<JROW,g,sg,l} 
J"7P CALL APGET<JROW,NDSTEP,BB-NDSTEP,l> 
JJ 7 ~ CALL APGET<JROWC81-NOSTEP>,B,NDSTEP,1> 
Z17~ CALL APWD 
0\7~ CALL VCLR<B,l,NWBUF> 
017 CALL APGET<IPBUF<l,JSTl,B,NWBUF,1> 
S175 1.0' CONTINUE 
':7· IROW=1 

c 
C F~USH BUFFER AT END OF A STRIP 
c 

3!7- DO 11.0' IF=1,3 
X_!" IF<IWRITW<NWBUF,IPBUF<1,JROW<IROV>>.IBLKW,ICHW>.LT.B>STOP'WRT ER' 
~-6~ IBLKW=IBLKW+NBLKBF 
~:B: IROW=IROW+NDSTEP 
J i a, 11.ff CONTINUE 

I J ... 

.. i. 
.-.; g -, 

CHECK IF MORE STRIPS TO BE DONE 

IF<NSTRIP.LT.NTIM>GOTO 4 
CALL CLOSEC<ICHWl 

V.0'2.B4 THU .0'8-JAN-81 .0'.0':.0'9:.0'6 

STOP 'NORMAL TERMINATION' 
END 

PAGE .0'.0'5 



Page 217 

Gather Ploting(Large Separation) :- MPGPLI 

This program is int~ractive, and it expects the seismic data 

to be in a disc file. The output rasters are written to a user 

specified disc file. Interactive input consists of the following. 

NTR •••••• Number of traces to be plotted 

NPT •••••• Number of samples per trace 

NDPT ••••• Interpolation factor, dots per sample 

XSF •••••• Plot scale factor 

FSPECR ••• Input data file 

FSPECW ••• Output raster file 



Ft:)RTRAri rv V!HZ.f44 THU !48-JAN-81 aa:l2:15 

c 
C M J POULTER SEPT 79 
C PLOTTING PROGRAM FOR SEISMIC GATHER DATA 
C THIS PROGRAM TAKES IN SEISMIC TRACES AND 
C DISPLAYS THEM IN A NIB IMAGE FORM IN AN OUTPUT 
C riLE IN A FORM READY FOR POST PROCESSING. 
c 

~-~HJ\ DIMENSION IPBUF< 128,8!4>,JR0\J(8f4),FBUF<3>, 
.!0 DOT< 2.0'48), XBUF < 2.0'52 >,MASK< 16 >, NSAVE < 2.0' > 

;0~2 REAL*B FSPECR,FSPEC\J 
ilt'.0'3 EQUIVALENCE <XBUF<l>,IOOT<1» 
T~H' DATA DEV/3RRK I 
i?oki.D'S DATA MASK/" 2!4!4, "lf4!H, "4JH, "2!4, "1!4, "4, "2, "1, 

x" 1B~f41i1.0', " 4!4IHB!4, "2BiiJBB, " 1 !4.0'.0'.0', "4.0'.0'.0', "2aaa, • 1 af4!4, .. 4!4161 
c 
~ DATA READ IN SECTION 
c 

.. ·r.ii6 1,./R ITE { 7, 1 /6JH5 ) 
~ff07 lZZS FORMAT<' ENTER NO OF TRACES',/, 

X' NO OF POINTS PER TRACE',/, 
%' NO OF TIMES TO EXPAND'> 

:~:::ra READ<5,1.0'/6.0') NTR,NPT,NDPT 
of>'f!i:9 t.1Jli1' FORMAT<415) 
70'1.8' \o/RITE<7,1.0'JH6) 
:'.0'11 UJff6 FORMAT<' ENTER SCALE FACTOR:',$) 
P'J 12 READ ( 5, 1.0'.0'1 > XSF 
~.\1 l 3 12.0'1 FORMAT< F 1.0' .k! > 
~.0' 1 4 '.JR ITE < 7, 1.0'/J7 > 
~~!5 lPB7 FORMAT<' ENTER INPUT FILE NAME:'.$) 
'1'16 READ<S,UY.0'2>FBUF 

'17 1YD2 FORMAT<3A4> 
. .''il3 CALL IRAD5.0'{ 12,FBUF ,FSPECR) 
fJ3'19 \./RITE<7,1.0'.0'8> 
;I,'J2H WDS FORNAT< ' ENTER OUTPUT FILE NAME:',$> 
:·.~~~ READ<S,lkl'.0'2lFBUF 
d~2; CALL IRAD5.0'<12,FBUF,FSPEC\o/l 

C SET UP CONSTANTS AND FILE ACCESS 
c 

,J.-3'27 ICHR=IGETC( > 
~;24- ICHw=IGETC() 
:.~25 IF<IFETCH<DEV>.NE.JH>STOP'FETCH ERR' 
.:;''::.7 IER=LOOKUP< ICHR,FSPECR> 
c•_;·?.~ IF<IER.LT.IiJl\JRITE<7,*liER 
~~3B IFIIER.LT.!JlSTOP'LOOKUP ERR' 
oq32 NDSTEP=2B 
: .. 33 NBUFSZ=BB 
~· .. 34 NBS PAC=NDSTE P /2 
~0~5 NWSPAC=NBSPAC*256 
~~36 NFIN=NPT*NDPT-1 
IJJ7 NBLKR=NPT/128 
· ~38 NWDR=2*NPT 
~~39 N8LK\J=<NTR*NBUFSZ/2)+{NTR*1Bl 
.4ff NBLKBF=NBUFSZ/2 

PAGE SBl 



J. 4 l 
:, :f42 
"f 0' 4 3 
,., iJ 4 ,, 
-:• U 4E 
·3;:· 4C• 

VS2.f/J4 THU f/JS-JAN-81 f/Jf/J:12:15 

NWBUF=NBLKBF~256 
I OFF =2"'NDSTEP 
IBLKR=l 
IBLKW=l 
NTIN=l 
NSTRIP=f/J 
IBOFF=S 

SECTION WHICH SETS UP PARAMETERS TO ALLOW 
STRIPPING OF PLOT IF REQUIRED 

:043 IFINFIN.GT.2fiJ48lGOTO 1 
~Z5f IF<IENTERIICHW,FSPECW,NBLKW>.LT.fiJ>STOP'ENTER ERR' 
~0~Z NSTRIP=l 
~H53 GOTO 2 
'Z~4 1 NS=NFIN 
1 2SS 3 NSAVE<NTIM>=2f/J47 
a~36 NS=NS-2f/J48 
ZZ~7 NTIM=NTIM+l 
1HS8 IF<NTIM.GT.2f/JlSTOP'TOO MANV STRIPS' 
~B6B IFINS.GT.2f/J48lGOTO 3 
~ff62 NSAVEINTIMl=NS 
~~63 NBLKW=NBLKW*NTIM 
~n6~ IF<IENTER<ICHW,FSPECW,NBLKWJ.LT.fiJJSTOP'ENTER ERR' 

START OF LOOP IF STRIPPING NECESSARY 

)36e 4 ~STRIP=NSTRIP+l 
/f~7 NFIN=NSAVE<NSTRIP> 
;_r;::c:)£ rlPT=INFIN+l l/NDPT 
Z~S0 NWDR•2"'NPT 
JZ7f IBLKR=l+IBOFF 
i~7, N30F=NPT/128 
~~~~ IaOFF=IBOFF+NBOF 

~at:
.:·; 4

,._-.. -;6
·~) 77
--- --g

_.:.:sz
o·r-:;J
-,: 'l 4-

c

S~T UP ROW COUNTER FOR BUFFER USAGE

7! DO 5 I= 1 , 8.0'
S JROw(I l=I

SET UP AP AND CLEAR PLOT BUFFER

CAL!. APINIT
CALL VCLRIB,l,512f/Jl
CALL AP\..'R
CALL APGET< IPBUF< 1,1 },.0',512.0',2>

1'-'i.il.H~ LOOP FOR PLOTTING DIFFERENT TRACES

DO 1f/J I=l,NTR
Ir<IREADW<NWDR,XBUF,IBLKR,ICHRl.LT.SlSTOP'READW ERR'
IBLKR=IBLKR+NBLKR
~< B U F (N P T + 1 l = 1 • .0' I F L OAT< N D P Tl
;(B U F (N P T + 2 l = - F L OAT< I 0 F F - 1)

PAGE Hllf2

!~ :J9 7
Uf3f
. ::· '3 :~·

.) .19.1'·
'S.'J9,..

.a;:· 3"
:·~9.

:'·,•3<>
·a-ggr:
r_.·];

;· ;_ z;·:
'J~
J:IJ3
"-.., ~- .'31:
:-:JS
·-· : r;:

-~·; ;]

' 1 .

.,

.J .. ~-

:z l c
<' _,

) . f

c

c
c

VJZ.f/J4 THU f/JS-JAN-81 flJflJ:l2:15

XBUF<NPT+3l=FLOAT<IOFFl
XBUF<NPT+4l=XSF

SECTION WHICH DEALS WITH INTERPLOATION
AND sc,~.LI NG OF DATA BEFORE PLOTTING

CALL APPUT<XBUF,2flJ48,NPT+4,2)
CALL .~P\JD
CALL VMOV<2fl148,l,flJ,NDPT,NPTl
IF<NDPT.EO.l>GOTO 25
CALL VSUB<2fl148,1,2flJ49,1,6144,1,NPT-ll
CALL VSMUL<6144,1,2f/J48+NPT,6144,1,NPT-ll
IBEG=.0'
IF!N=l
DO 2/J J=Z,NDPT
CALL VADD<IBEG,NOPT,6144,1,IFIN,NDPT,NPT-1>
IBEG=IBEG+l
IFIN=IFIN+l

2ff CONTINUE
25 CALL VSMUL<fl1,1,2flJ5l+NPT,flJ,l,NFINl

CALL VTSA00(flJ,l,"4427,flJ,l,NFIN>
CALL VCLIP<fl1,1,2flJ49+NPT,2fl15f/J+NPT,J,l,NFIN>
CALL VINT<fl1,1,J,1,NFIN>
CALL VFIX(flJ,l,J,1,NFIN>
CALL APWR
CALL APGET<IDOT,flJ,NFIN,ll
IBIT=16
IWORD=l28
CALL APWD
!DOT< 1 l=IDOT< 1 l+IOFF
DO 3/J IP=Z,NFIN
I BITL= I BIT
IWORDL=IWORD
IBIT=IBIT-1
IF< IBIT.GT.f/Jl GOTO 4J
IWORD=IWORD-1
IF<IWORD.EO.f/JlGOTO 12flJ
IBIT=l6

SECTION WHERE POSITIVE <SHADED> LOBES ARE PLOTTED

4:3 IF<IDOT<IPl.LT . .0'lGOTO 5.0'
IDOT< IP >=IDOT< IP l+IOFF
IDT=IDOT< IP l
IF<IDOT<IP-1l.GE.IOFFlGOTO 45
I ROW= I DOT (I P- 1 l

PAGE fllfl13

55 I P BUF < IWORDL, J ROW< I ROW l l =I P BUF < IWORDL, J ROW< I ROW>>. OR. MASK< TB ITL >
I RO'..J= I ROW+ 1
IF (I RO\.J. LT. I OFF l GOTO 55

4':i IRCW=IOFF
5B IPBUF< IWORD,JROW< IROWl l=IPBUF< IWORD,JROW< !ROW> l.OR.MASK< IBIT>

IROW=IROW+l
IF<IROW.LT.IDTlGOTO 6.0'
GOTO 3.0'

·")/, ":·()
.' .I. • ~ •

cy:~z

-''l4.-_
.: : ~ '
Z'4'::
:•;H,
,::;:4--:-
.:-l ;tb

-)I_ 4?

. - 3:.

;) : ~i "
__ · l 5 ..
.J ~ 5 -

~ -. : VB2.JJ4 THU JJS-JAN-81 JJJJ:t2:15

C SSCT!ON WHERE NEGATIVE <UNSHADED> LOBES ARE PLOTTED
c

5H !DOT< 1P >=IDOT< IP l+IOFF
iF { I DOT< 1 P). LT. 1. OR. I DOT< I P -1 l. LT. 1 lGOTO 3JJ
IF\ I DOT< 1 P l. GT. I DOT< I P -1 l lGOTO 7 fJ
IDTB,.IDOT< IP >
IDTE=IDOT< IP-1)
MSKB=I'IASK< IBITl
NSKE=MASK< IBITL >
IWORDB=IWORD
IWORDE=1WORDL
GOTO 8.0'

7fiJ IDTB=IDOT< IP-1 l
IDTE=IDOT< IP)
MSKB=t-1ASK< IBITL)
MSKE=MASK< !BIT>
IWORDB=IWORDL
I \.JORDE= 1 WORD

BB IDTM=<IDTB+IDTEl/2
IROW=IDTB

PAGE /6/64

::J .i 3/
~ ~ s ... ~
z :~ 5 :·
-- ! 6~:.!
:J -~ 5 :
:(~ 0 ~·

9ff IPBUF<1WORDB,JROW<IROW>>=IPBUF<IWORDB,JROW<IROW>>.OR.MSKB
I RO'../= I ROW+ 1

<16-
.J: 6 ~;
.. :; ~- s b
,,.,.! G:i

IF<IROW.LE.IDTMlGOTO 98
I ROI..'= I DTM

!Z~ IPBUF<IWORDE,JROW<IROW>>=IPBUF<IWORDE,JROW<IROW>>.OR.MSKE
IROW=IROw+l
IF<IROW.LE.IDTE>GOTO 1/68

%' CONTINUE
l?.il JST=JROW<1l

WRITE OUT PART OF BUFFER AND INITIALISE
FOR A NEW TRACE

·_7:, IF<I',JR!T'I-J<NWBUF,IPBUF(1,JST>,IBLKW,ICHW>.LT.8>STOP'WRITE ERR'
!BLKW=IBLKW+NBLKBF

•:7c CALL APWR
.t17' CALL VCLRUJ,l,NWBUF>
··:- CALL APGET<IPBUF<l,JST>,Z,NWBUF,l>
~~;~ CALL APWD
J177 IF<IWRITW<NWSPAC,IPBUF<l,JST>,IBLKW,ICHWl.LT.BlSTOP'WRITE ERR'
gJ?~ IBLKW=IBLKW+NBSPAC
~~3F 18 CONTINUE
·:<, c- : R.0\/=1

·.:--·

~~ECK IF MORE STRIPS TO BE DONE

F<NSTRIP.LT.NTIM>GOTO 4
AL~ CLOSEC< ICHWl
TOP 'NORMAL TERMINATION'
~lD

Page 218

Quick Raster Plot Processor :- MPPROC

This program is interactive and is designed to put out

rasterised trace plots onto th~ electrostatic plotter.

Only input parameter is the disc file containg the rasters to

be plotted.

;y'~.01

'· J:if2
·'•0'.'33
,'(:,}4.
,-;:;,;;;
~tHJJG
r.xrr_tJ7
, ::"~e

···~q

'U IP.f
": 12
. 13

·L•:s
\6

''" 17
'Z 1 e
z:.t9
' ;;;:_g
<·22

-··n4-
::J:126
:·.::27
(lrf28
.•!.(:~9

i(o31
(·•732
-:-¥33
·.'~': 4

•.:,"J'S
::r.~'36

'!37
.:;~r3s

,;.; ,ur
• ','4)

J~2
. ~ 3
. ' 4-
~G

·. ~

''

VZ2./J4 THU zs .. JAN Sl ZZ: lZ:Z7 PAGE Z/Jl

DIMENSION IBUFC132,8l,IBUFC<lZ56l,INBUFClZ24>,FBUF<3>
REAL*S FSPECR
EQUIVALENCE< IBUF< 1), IBUFCC 1 > >
DATA DEV/3RRK I
\.iRITEC 7,1Z.0'1 >

~701 FORMAT<' ENTER FILE NAME TO BE PROCESSED:',$)
READ<5,1ZZZ>FBUF

l!UJIJ FORMAT< 3A4 >
CALL IRA05/J(l2,FBUF,FSPECRl
IF< IFETCH<DEVl.NE.Z>STOP'FETCH ERR'
I DCH= IGETC< l
IFCLOOKUP<IDCH,FSPECRl.LT.Z>STOP'LOOKUP ERR'
CALL MTXSET
CALL MTX<IBUF,Z,ll
IBLK=l

15 IN=IREADWC1Z24,INBUF,IBLK,IDCHJ
IBLK=IBLK+4
IFCIN.EQ.lZ24lGOTO 2/J
IFCIN.LT.-l>STOP'READ ERR'
IFCIN.LE.Z>GOTO 4/J

2% IPOS=l
IR0\.1=1
NROW=IN/128
IF<<IN-<NROW*l28>>.NE.Z>NROW=NROW+l
NWORD=NROW*132
CALL MWAIT
0 0 5 I= 1 , 1 ZS 6

5 I BUFC< I >=Z
DO 3k! I=l,IN
IBUF< IPOS, IROWJ='INBUFC I>
IPOS=IPOS+1
IF< IPOS.LE.128JGOTO 318
IPOS=l
IROW=IROW+l

.::u c::~NTINUE
CALL MTX<IBUF,NWORD,2>
IF<IN.EQ.l0'24JGOTO 1.0'
.:;;~ L L M'..JA IT

~S :ALL MTXIIBUF,-1,1}
CALL it.WAIT
STOP'NORMAL TERMINATE'
E;4D

General Purpose Raster Merge and Output :- MPMERP

Input File ••...• DK1:MPMERD.DAT

Input Parameters

READ(1,10)NPLT,LPLT,NSTRIP

10 FORMAT(3I5)

NPLT ••••• Number of images to be merged

LPLT ••••• Length of output raster image

NSTRIP ••• Number of strips

Page 219

For each of the NPLT images the following input is needed

READ(1,10)LST,LFIN

READ(1,10)ICOM,ILOG

READ(1,10)NPLIN

READ(1,30)FBUF

30 FORMAT(3A4)

LST .•.••. Output raster line number for first input line

LFIN .•.•. Output raster line number for last input line

ICOM •..•. Data complement flag

0 - Merge in data as it is

- complement data before merging

ILOG ••.•• Logical merge flag

0 - use an OR to merge the data

- use an AND to merge the data

Page 220

NPLIN •..• Number of words per raster, 128 for seismic, 132 for

others

FBUF ••••• Input raster file

c
'.

c

VfiJ2.fiJ4 THU fiJB-JAN-81 fiJfiJ:fiJ6:fiJB

M.J.POULTER SEPT 79
POST PROCESS AND MERGE PROG FOR
SEISMIC P~OT SYSTEM

PAG.E BfiJl

INTEGER*2 IPBUF<2112l,INBUF<8192l,LBUF<132>,IOFF,
XLSTC8l,LFIN<8l,IBLKC8l,NBUF<8l,NPLINC8l,ISPOS,ICOMCBl,
~ILOGC8l,ICHAN<8l,EOFC8l

.n
-'.-'3

:;_;. 4
l/J} y;
- :t)

£~;,:·1

:; ;· ;·e

c

REAL*4 FBUF<3l
REAL*S FSPECC8l
COMMON /LFIL/ INBUF,IOFF,LBUF,IBLK,NBUF,NPLIN,ISPOS,EOF,ICHAN,ICOM
DATA 10FF/l,lfiJ25,2fiJ49,3fiJ73,4fiJ97,5721,6145,7169/
DATil. DEV/3RRK I

C SET UP AP TO USE FOR ZEROING ARRAYS

CALL AP!NIT
CALL VCLR<B,l,l856)

c
C SET UP I/0 DEFINITIONS

5~C9 IF<IFETCH<DEVl.NE.SlSTOP'FETCH ERR'
20il IFCICDFNC3Bl.NE.B>STOP'CHAN DEF ERR'
.c;>'t3 CALL ASSIGN<l,'DKl:MPMERO.DAT',l4l

C GET INPUT PARAMETERS

·h•i4 READCl,lBJ NPLT,LPLT,rlSTRIP
~DIS iH FORMATC3I5l
~·Zl6 IF<NPLT.GT.SlSTOP'TOO MANY MASKS'
~-lE DO 2B I=l,NPLT
,, __ ·1.9 READ<l,lBlLST<Il,LFIN<I>
--czz READ< 1, 1.0'liCOM< I l, ILOGC I l
:.-,- 2 l R E.a. D < 1 , 1.0' l N P L I N (I l
':;'22. R.EAD< 1,3fiJlFBUF
~"2J 3Z FO~MAT<3A4l
. :24 v/R I TE \ 7, * l N P L T, L P L T, L ST (I } , L FIN { I l, I COM< I l, I LOG { I l
·.-25 \.J~ZIE< 7, * lNPLIN(I l

_. ·zr. \JRITE< 7, 3.0'lFBUF
':27 CALL IRADSB<l2,FBUF,FSPEC<I>>

o:,.ze !CHAN< I l=2Z+I
~ ·.zg I2LK< I l=l
~:3Z EOFII)=fiJ
_::"J 3 l ~l B U F < ! l = 1.0' 2 3 + I 0 F F < I >
;''12 ISPOS(I l=NBUF< I l

·. ·33 IF(LOOKUP<ICHAN<IJ,FSPEC(l>J.LT.B>STOP'LOOKUP ERR'
':J:;' 2'1 C0i'I'TINUE

SET UP MATRIX FOR MAIN LOOP

--3E CAL~ MTXSET
137 ::ALL I>JT~(i IPBUF ,.0',1)
16 L~UM=S
39 r-;Tit·1=ff •m IST=l857

F'oRTRAI~ JV V/J2.t:14 THU /JS-JAN-81 /J/J:/J6:/J8

~ ZERO THE PLOT ARRAY

~~41 4B IST=lS56-IST+2
T·:•4Z CALL APGET<IPBUF<IST>,Z,l/J56,1}
:~·'43 IPSV=IST
~+4 CALL APWD

45
4E.

~- •. · 4 7

; (' 4 'G
~-, 4-9
. ·:'s,
·.·,:;s.J
:r·;s "
.nsG
,,·:·s•
::.::s £
.. 59

·' .'6l
'-~6 2

63
•. -{)4

. '6'i
.. • ;'61:i
l ~ 6 7

62
·; ~6q

7.~

-~·;:7 i
,~nz

;);:]J
I:F7'j

7'

... 7~
_gz;
:·l:l.
e~

as

C START OF MAIN LOOP

c
c

DO 5.0' I =1 , 8
u;U~I=L NUM+ 1
EOFFLG= 1

THIS LOOP FILLS ONE LINE OF PLOT BUFFER
WITH INPUT FROM EACH PLOT MASK

DO 6JJ J=l,NPL T
lf(LNUM.GT.LFIN<J>>GOTO 68
IF<EOF<Jl.NE.S>GOTO 6.0'
i:OFFLG=.0'
IF<LNUM.LT.LST<J>>GOTO 6.0'
IPOS=IPSV
ID=J
CALL L! NF 1 L< I D >
IF<ILOG(J}.NE • .0'lGOTO 78
DO 8.0' L=1,132
IPBUF< IPOS>=IPBUF< IPOS>.OR.LBUF<L >

az IPOS=IPOS+l
GOTO 6.0'

7!iJ DO 90' L=l,132
i P B U F < I PO~ >=I P BUF < I POS >.AND. L B UF (L >

gor IPOS=IPOS+l
6.'i' CONTINUE

I?S'J=!POS
"i:?' CONTINUE

'YiHE:rl A PLOT BUFFER IS FULL COME HERE TO EMPTY IT

CALL MWAIT
CALL MTX<IPBUF<IST>,UJ56,2)
IF<EOFFLG.NE • .0'>GOTO 1.0'.0'
IF<LNUM.LT.LPLT)GOTO 4.0'

~ . . 'J:'"f :;~. L L M\1A. IT
CALL MTX<IPBUF,/J,l}
CALL 1-1\./AIT
iT I~i=i'lTIN+ 1

'- 'l Ut-1=£1
!F(NTIM.LT.NSTRIP>GOTO 4/J
STOP'NORMAL TERMINATION'
END

PAGE /J/62

THU ZS-JAN-81 ZZ:Z6:36 PAGE ZZl

3~01 SUBROUTINE LINFIL(Jl
,.;~;::z INTEGER*2 INBUF18192l,IOFFC8l,LBUFC132l,IBLK,NBUF,

XNPLINISJ,ISPOS<Sl,EOF<Bl,ICHAN<S>,ICOM<S>
~~x3 COMMON /LFIL/ INBUF,IOFF,LBUF,IBLK,NBUF,NPLIN,ISPOS~EOF,ICHAN,ICOM

~ ~ERO LINE ARRAY

J.•A4 CALL APGET<LBUF,Z,l32,1l
' ·.;5' CALL AP\./0

c
C '!LL LINE BUFFER FROM INPUT BUFFER

~0;6 ~PT=NPLIN<Jl
~~37 IPOS•ISPOS<Jl
\:'~:'JS NLIM•NBUFIJl
:f.!o""9 IF< ICOM<J >.NE..0'lGOTO 2!iJ
.·,~.~11 J DO 1.0' I •1, NPT
·:·012 IPOS=IPOS+l
.:::.~· ~ "3 IF< I POS. LE. NL IM >GOTO 3B

REFILL BUFFER FROM FILE WHEN EMPTY

/!S !N•IREADW<U24,1NBUFC10FF<Jll,IBLK<J>,ICHANCJ>>
3016 IBLK<Jl=IBLK<Jl+4
3';:'1.'/ IPOS•IOFF<J l
:-.':'18 IF<IN.EQ.l.0'24)GOTO 3Z
~92% EOFIJJ=l
~0~l NLIM•IN+IPOS
/.'~'? 2 IF (IN. LT. -1) STOP I READ ERR I

:·:::._ IF<IN.LE.ZlRETURN
.'52b 3·-1 L3UF<Il=INBUFCIPOSl

.. ·:.1 l'i CONTiNUE
J~2S GOTO 98
"c~ 23 DO 4.0' I=l,NPT

:w IPOS=IPOS+l
.. OJ IF(iPOS.LE.NLIM>GOTO sz

~~FILL BUFFER FROM FILE WHEN EMPTY

:~31 IN=IREADW11B24,INBUFCIOFF<Jll,IBLK<J>,ICHANCJ>>
. :'1 IBLl<(Jl=lBLK<Jl+4
.,·~s IPOS=IOFFIJJ
!~16 IFCIN.EQ.lZ24lGOTO SZ
~~. "; e E 0 F < J l = 1
.~~39 NLIM=IN+IPOS

,z IF\IN.LT.-llSTOP'READ ERR'
c''i2 i:F{ li'j,LE.B>RETURN
./ -4- 5H LSUF<I>=.NOT.INBUFCIPOSl

-:s 42 CUNT!NUE
.~~ 59 ~SUFIJl=NLIM

7 lSPOS(J}=lPOS
2 RETURN

t·H 9 Ei'ID

Page 221

Appendix 2

Contained in this appendix are brief descriptions of the main

subroutines, and their arguments, which were produced in the

course of this work.

Also presented are some utility programs, which were found to

be useful, in handling data on the system.

Tape Subroutine Descriptions

TREAD

CALL TREAD(BUFFER,NBUF,ISTAT,IDRV)

Purpose:- To read from tape into a specified memory buffer

Arguments:

BUFFER ••• Integer ••• Buffer to read into

NBUF ••••• Integer ••• Number of bytes to read

ISTAT •••• Byte ••.••• Returned tape status

IDRV ••••• Byte •••••. Tape drive to read from

TWRIT

CALL TWRIT(BUF,NBUF,ISTAT,IPAD,IFLEN,IDRV)

Purpose:- To write data to tape from a memory buffer

Arguments:

BUF .•.••• Integer .•. Buffer to write from

Page 222

NBUF •.••• Integer ••• Number of bytes to write from the buffer

ISTAT •••• Byte .•.•.. Returned tape status

data

IPAD• Integer .•. Number of zero bytes to transfer at end of

IFLEN •••• Integer •.• Total transfer length in 4kbyte blocks

IDRV ...•• Byte •.•... Tape drive number to write to

Page 223

SDS10

CALL SDS10(COM,ISTAT,ITLEN,ILEN)

Purpose:- Utility tape control subroutine, allowing drive

manipulation and reads and writes to tape from the disc.

Arguments:

COM ••.••• Byte •••••• 4 Byte command buffer sent to pdp8/e

COM(1) Tape command

0 - Read tape status

- Rewind

2 - Rewind offline

3 - Read

4 - Space foward

5 - Space reverse

6 - Write

7 - Return to OS/8

COM(2) File length, or number of records

COM(3)

COM(4)

when spacing

Tape drive number

SDS10 command

<O Read from tape

unit 20

into file

:0 Tape wind operation

>O write to tape from file

unit 21

ISTAT •••• Byte •..•••• Returned tape status

on

on

Page 224

ITLEN •.•• Byte ••••••• Returned file length in seconds for

field file

ILEN ••••• Byte ••..••• Returned file length in blocks on a read

TAP SUB

CALL TAPSUB(ICOM,IDRV,ISTAT,ILEN,IFNUM,BUF,NBYT,IEOT)

Purpose :- General purpose tape handler for memory/tape transfers

Arguments:

ICOM .•••• Byte ••••••• Command flag

<O - read data

=0 - wind on tape one record

>O - write data

IDRV ..•.• Byte •.••••• Tape drive number

ISTAT •••• Byte ••.•.•• Returned tape status

ILEN •.•.. Integer ••.. Number of 4Kbyte blocks in transfer

IFNUM ...• Integer •..• File number of transfer(for log)

BUF ••••.• Integer •••• Data buffer

NBYT .•••• Integer •••• Number of bytes to transfer, on write

IEOT ••••• Integer •••• End of tape flag

0 - tape OK

-1 - End of tape mark encountered in last

operation

Page 225

TAPRED

r.AT.T. TAPRED(ICOM,IDRV 1 ISTAT 1 ITLEN,ILEN,IFNUM,IEOT)

Purpose:- General prupose tape handler for transfers to and from

the disc.

Arguments:

ICOM •.••• Byte ••••••. Command flag

<O read data from tape to disc file on

unit 20

=0 Wind tape foward one record

>O write data to tape from disc file on

unit 21

IDRV ••••• Byte ••••••• Tape drive number

ISTAT .•.• Byte ..•••.. Returned status

ITLEN •.•• Integer •... Returned file length in seconds, on read.

ILEN ••••. Integer •.•. File length of transfer, in blocks

IFNUM •••• Integer •••. File number of operation

IEOT ••.•• Integer •... End of tape flag

0 - no end of tape problem encountered

-1 - end of tape encountered on read/write

• TITLE MEMTAP
.GLOBL TREAD,TVRIT

DR$CSR=154.0'.0".0'
DRB.,l54.0".0'2
OO$CSR= 164.0'1.0'
008=164.0'12
;READ FROM TAPE TO PDPll MEMORY
; CALL TREAD<BUFF,NBYTE,STATUS,IDRV> .
TREAD:

;MAIN
l$:

MOV
MOV
MOV
MOVB
JSR

TRANSFER
TSTB
BPL
MOVB
DEC
BEQ
TST
BMI
BIS
BR

2<R5l,Rl
@4(R5l,R.0'
RDLST,ARGLST
@8.(R5l,ARGLT2
PC,MSG

LOOP
@#DRSCSR
1$
@#ORB,< Rl)+

R.0'
2$
@#DR$CSR
3$
#l,@#DRSCSR

; EXIT
2$:

FOR COUNT
MOV

l$

COMPLETE
R.0',@4(R5l

4$:
7$:

5$:

TST
BPL
DEC
MOVB
BR
MOVB
TSTB
BPL
TST
BPL
MOVB
MOVB
BR
1'-lOVB
BIS
BR

;EXIT FOR EOF
3S: MOV

DEC
MOVB

;COMMON EXIT
6S: TSTB

BPL
MOVB
RTS

@#ORSiCSR
4$
Rl
<Rll,@6(R5>
6$
{ Rl l, R2
@#DR$CSR
7$
@#ORSCSR
5$
R2,@6(R5l
@#DRB,R2
6$
@#DRB,R2
#1,@#DRSCSR
7$

SIGNALLED
R.0",@4(R5l
Rl
<Rll,@6CRS>

@#DR$CSR
6$
@#DRB,R2
PC

;GET MEMORY ADDRESS OF TARGET
;GET NO OF BYTES REQUIRED
;SET UP SDS1.0' COMMAND

;SEND COMMAND

;WAIT TILL 8 READY

;MOVE DATA FROM BUFFER TO TARGET

;EXIT LOOP IF COUNT COMPLETE
;TEST FOR END OF DATA
;FROM TAPE
;KEEP ENABLE BIT SET
;LOOP BACK

;RETURN ZERO COUNTER
;TEST IF 8 IS FINISHED ALSO
;IF NOT GO TO TAKE REST OF DATA
;IF YES GET STATUS OUT OF DATA ARRAY

;GOTO EOF TRANSFER CODE.
;SET UP STATUS SEARCH
;WAIT FOR 8 READY

;TEST FOR EOF
;IF NOT TRANSFER DATA
;IF YES MOVE SAVED STATUS
;AND CLEAR BUFFER
;BEFORE EXITING
;TAKE BYTE FROM 8

;GOBACK AND TAKE MORE DATA

;RETURN NO OF BYTES LEFT

;RETURN STATUS

;TAKE LAST CLEAN UP BYTE
;AND EXIT

:ROUTINE TO GO FROM MEMORY TO TAPE
; CALL TWRIT<BUFF,NYTE,STATUS,IBYTEPAD,NBLK,IORV>
;
TWRlT: MOV

MOV
MOVB
t<lOVB
MOVB
JSR

; SET UP CODE
1.0'$: TSTB

BPL

2(R5l,Rl
@4(R5l,R.0'
\oJRTLST ,ARGLST
@1.0'.<RS>,ARGLT1
@12.<R5l,ARGLT2
PC,MSG

@#00$CSR
1.0'$

;GET DATA ADDRESS
;GET NUM OF BYTES
;SET UP COMMAND

;WAIT FOR SYNCHRONISATION

BIC
;MAIN TRANSFER
11$: BIS

MOVB
12$: TSTB

BPL
DEC
BNE

:ZERO PASSING
MOV
BEQ

14$: BIS
MOV

15$: TSTB
BPL
DEC
BNE

EOFT: BIS
MOV

;STATUS REPLV
16$: TSTB

BPL
MOVB
MOV

17$: TSTB

.

BPL
MOVB
DEC
BNE
RTS

#4SS,@#DO$CSR
LOOP
#1, @;>·DOSCSR
<Rll+,@#DOB
@#DO$CSR
12$
RS
11$

LOOP
@8.<R5l,R2
EOFT
#l, @#DOSCSR
#/J,@#DOB
@#DO$CSR
15$
R2
14$
#4!JS,@#DO$CSR
#S,@#DOB

LOOP
@#DR$CSR
16$
@#DRB,@6CR5>
#2,RS
@#DR$CSR
17$
@#DRB,R2
R!J
17$
PC

:MESSAGE SENDING SUBROUTINE .
~1SG: BIC

MOV
MOV

~1LOOP: BIS
CLR
MOVB
MOV

9$: TSTB
BPL
DEC
8NE
B!S
MOV
RTS

;STORAGE AREA
ARGLST: .BYTE
.~RGLTl: .BYTE
.\RGL T2: . BYTE
I,JRTLST: .BYTE

. EVEN
~DLST: . WORD

.EVEN

.END

#4SS,@#DO$CSR
#ARGLST,R3
#3,R4
#1, @.fi00$CSR
R2
<R3l+,R2
R2,@#DOB
@#DOSCSR
9$
R4
MLOOP
#4SS,@#DO$CSR
#S,@#DOB
PC

fJ
fJ
f1
6

4f13

;CLEAR EOF BIT

;SET ENABLE BlT
;TRANSFER BYTE
;WAIT TILL
;ACCEPTED
;DEC COUNTER
;GO BACK FOR MORE

;IF COUNT OF ZFROS=S EXIT

;PASS ZEROS AS PADDING
;WAIT TILL ACCFPTED

;DEC COUNTER

;SET EOF BIT

;SEE IF REPLY READY

;GET STATUS

;CLEAR SVNCH ZFROS

;CLEAR EOF BIT
;GET ARGLIST ADDRESS

;SET ENABLE BIT

;GET COMMAND INTO R2
; MOV TO BUFFER

;WAIT TILL ACCEPTED

;SET EOF BIT
;RETURN

. TITLE

.GLOBL

.MCALL
DR$CSR==l64ZZZ
DOSCSR== 164ZU
DRB==164ZZ2
DOB==l64Z12
ERRBYT=52

SDSU:
MOV
MOV
MOV

1$: MOVB
DEC
BNE
TSTB
BMI
BEQ
JMP

ARGL IST:. BYTE
.BYTE
.BYTE

FLAG: .BYTE

SDSU
SDSU
.READIJ, .WRIT\ol, .EXIT, .PRINT

2<RSl,Rl
#ARGLI ST, R2
#4,RZ
CR1l+,CR2>+
RZ
l$
FLAG
READ
WIND
WRITE
g
g
g
fJ

;COMMON ENTRY POINT
;MOV ADDRESS OF COMMAND->Rl
;PUT ARGLIST IN R2
;PUT COUNTER IN RZ
;MOV COMMANDS TO ARGLIST

;TEST TYPE OF COMMAND
;GOTO APPROPRIATE SECTION

;END OF COMMON ENTRY POINT
;NEXT SECTION IS TAPE FAST READ

READ: CLR
. WRITW
JSR

RESTRT: MOV
MOV

DRLCOP: TSTB
BPL
MOVB
DEC
BEQ
TST
BMI
BIS
BR

DRDONE: .\.JRITW
BCS
ADD

DREOF:

BR

TSTB
BPL
NOVB
DEC
MOVB
MOVB
ADD
MOVB
SUB
ASR
BCC
iNC
• W'R ITW
BCS

BLKN ;CLEAR BLOCK COUNTER
#AREA,#2.e'. ,#BUFF ,#256. ,BLKN
PC,MSG ;SET UP DISC POINTER

#BUFF,R4
#2Z48.,R3
@#DRSCSR
DR LOOP
@#ORB,CR4l+
R3
DR DONE
@#DRSCSR
DREOF
#l, @#DRSCSR
DR LOOP

;AND SEND MESSAGE
;PUT AODR BUFF IN R4
;PUT COUNTER IN R3
;TEST IF BYTE READY
;IF NOT GO BACK AND TRY AGAIN
;PUT BYTE FROM INTERFACE TO BUFFER
;DEC THE COUNTER
;IF Z BUFFER FULL
;TEST FOR EOF

;KEEP ENABLE BIT SET
;IF GOT HERE GO BACK FOR MORE

#AREA,#2/J.,#BUFF,#l/J24.,BLKN
WERR ;WRITE OUT BUFFER AND TEST FOR ERRORS
#4,BLKN ;BUMP BLOCK COUNTER
RESTRT ;GO BACK TO FILL ANOTHER BUFFER

;COME HERE ON EOF
@#DRSCSR ;TEST IF BYTE READY
DREOF
@#DRB,Rl ;MOVE OVER LAST TWO BYTES
R4
-<R4l,@4<RSl ;MOVE STATUS
-CR4l,@6CR5l ;AND TIME LENGTH TO RETURN ARGLIST
#2. ,R4 ;RESET R4 POINTER
#.e',CR4l ;AND ZERO THE LAST BYTE IN BUFFER
#BUFF,R4 ;GET NO OF BYTES
R4 ;GET NO OF WORDS
2$;IF C CLEAR NO EVEN WRITE OUT
R4 ;ODD ADD ONE ON
#AREA,#2~.,#BUFF,R4,BLKN
WERR

3$:

'riERR:

INC
SUB
BGT
MOV
RTS
.PRINT
. EXIT

BLKN
#512. , R4
3$
BLKN,@B.<RS>
PC
'riMSG

rNOW BV A ROUND ABOUT METHOD
:FIND THE NO OF BLOCKS

;'riHEN FOUND RETURN TO CALLING PROGRAM
;RETURN FROM SUB

;NEXT SECTION RESPONSIBLE FOR ~INDING THE TAPE ON
;WHEN THERE IS A SHORT FILE TO JUMP OVER

'riiND: JSR
REPLY: TSTB

BPL
t-10VB
MOV

SS:: TSTB
BPL
MOVB
DEC
BNE
RTS

PC,MSG
@#DRSCSR
REPLY
@#DRB,@4(R5>
#2,R/3
@#DRSCSR
5$
@#DRB,Rl
R.0'
5$
PC

;TELL 8/E WHAT IS REQUIRED
;AND GO THROUGH PROC
;FOR RECEIVING A REPLY
;'riHICH IS RETURNED TO CALLING PROG
;TAKE LAST TWO SVNCHRO BYTES

;THIS SECTION IS RESPONSIBLE FOR THE FAST TAPE WRITI
;IN CONJUNCTON WITH THE 8/E

'riRITE: CLR
CLR
JSR

9$: TSTB
BPL
BIC

'BR

WRSTRT: t-IOV
ASL
BEQ

DOLOOP: BIS
f'<IOVB

6~: TSTB
BPL
DEC
BNE

OODGNS: TST
i31-1I
.READW
BCS
ADD
CfoiP
BEQ
BIS
f>10V
S!JB
ASL
BR

DOEFLP: BIS
MOV

8$: TSTB
BPL
DEC
BEQ
BR

BLKN
EOFW
PC,MSG
@#DOSCSR
9$
#4.0'.0',@#DOSCSR
DO DONE

#BUFF,R4
R.0'
DO DONE
#l ,@#DOSCSR
< R4 l+ ,@#DOB
@#DOSCSR
6$
R.0'
DO LOOP

;CLEAR BLOCK COUNTER
; CLEAR EOF FLAG
;SEND MESSAGE
;TEST MESSAGE RECIEVED

;CLEAR EOF
;START TRANSFER

;MOVE. BUFFER ADDR->R4
;FIND NO OF BYTES TO TRANSFER
;IF .0' FINISHED
:SET ENABLE BIT
;MOV FROM BUFF->DOB
;TEST IF READY FOR NEXT. BYTE

;DEC THE COUNTER
;IF .0' GOTO FINISH

EOFW ;TEST INTERNAL EOF FLAG
DOEFLP ;IF SET GOTO EOF AREA
#AREA,#2l.,#BUFF,#l.0'24.,BLKN
RERR ;READ IN A FULL BUFFER AND CHECK FOR ERRORS
#4,BLKN ;BUMP UP BLOCK COUNT
#l.0'24.,R.0' ;SEE IF GOT A FULL BUFFER
WRSTRT ;YES THEN TRANSFER
#l0.0'.0'.0'.0',EOFW ;NO THEN SET EOF FLAG
#l.0'24.,Rl ;SET UP COMPLETION COUNTER
R/3,Rl
Rl ;CONVERT WORD TO BYTE COUNT
WRSTRT ;AND WRITE OUT AMOUNT OF BUFFER REQUIRED

#l, @#DOSCSR
#.0',@#DOB
@#DO$CSR
8$
Rl
DOE OF
DOEFLP

;MOVE ZEROS TO OUTPUT
;TEST IF OK FOR MORE
; IF NOT WAIT
;DEC THE COUNTER
;IF .0' GOTO END

OOEOF: BIS #4.0'8,@#00SCSR ;SET INTERFACE EOF FLAG
MOV #.0'.@#DOB ;CLEAR INTERFACE BUFFER
BR REPLY ;GET REPLY

;THIS SECTION IS THE MESSAGE SENDING
;SUBROUTINE MSG AND THE BUFFER AND ERROR MESSAGE aLOCKS

MSG:

MLOOP:

7$:

RERR:

8$:

WMSG:
RMSG:

BIG
MOV
MOV
BIS
CLR
MOVB
MOV
TSTB
BPL
DEC
BNE
BIS
MOV
RTS

TSTB
BEQ
. PRINT
.EXIT
BIS
MOV
JMP
.ASCIZ
.ASCIZ

;STORAGE AREA

AREA:
BLKN:
BUFF:
EOFIH:

.BLKW

.WORD

.BLKW

.WORD

.END

#4.0'.0',@#DOSCSR
#ARGLIST ,Rl
#3,RB
#1, @#00$CSR
R2
<Rl>+,R2
R2,@#DOB
@#DOSCSR
7$
R.0'
MLOOP
#4.0'.0',@#00$CSR
#.0',@#008
PC

@#ERRBVT
8$
#RMSG

#4.0'.0',@#00$CSR
#.0',@#008
REPLY
I WRITE ERROR/
I READ ERROR I

1.0'
.0'
1.0'24.
0

;CLEAR OUTPUT EOF FLAG
;MOV ARGLIST ADDR TO Rl
;MOV COUNTER ->RB
;SET ENABLE BIT
;CLEAR INTER BUFFER
;MOV FROM ARGLIST TO R2
;MOV R2->INTERFACE
;SEE IF OK FOR NEXT BYTE

;DEC THE COUNTER
;AND GO BACK FOR MORE IF NONS
;OR IF .0' SET EOF FLAG AND
;FLUSH THE BUFFER
;RETURN

;TEST FOR TYPE OF ERROR

;SET UP ERROR FINISH

V/62.164 THU 168-JAN-81 /6/6:16:34 PAGE 16161

SUBROUTINE TAPREDCitoM,lDRV,ISTAT,ITLEN,ILEN,IFNUM,IEOTJ

TAPE HANDLING SUBROUTINE
~ TCOM IS THt COMMAND SIGNAL
~ -! IS A READ,I6 IS A WIND,l IS AWRITE

!D~V IS THE DRIVE BEING USED
- i STAT IS THE STATUS ON RETURN

:TLEN IS THE TIME LENGTH OF A FILE READ
~ ILEN IS THE BLOCK LENGTH OF A FILE READ OR WRITTEN

~ c--~~:-: I NTEGER*2 MASK< 8 J, ESTATI
rz~~ LOGICAL*l ISTAT,COMC4l,SDSCOM(8l,IDRV,ITLEN,ECOM<4>,

%IFLEN,ESTAT,ERRSCBl
·HJ~·,, DATA MASK/" 1, "2, "4, "116, "21lf, "416, "lllJJlJ, "2161lf/
~£n~ DATA SDSCOM/"JlJ,"l,"2,"3,"4,"5,"6,"7/
ffBBb DATA ERRS/"377,"377,"377,"377,"377,"377,"377,"377/
jfiT ITRV=JlJ
~:::.:J~ IFCICOt..,> 11lJ,31lJ,21lJ

~ SECTION CONTROLLING A READ

C CHECK THAT ONLY A FEW RETRIES ARE ATTEMPTED
,~

~~gc lZ ITRV=ITRV+l

'21\JL.
·:! .J l :

.. 1 '"'!'

'.·''{:

'~; l ~-

';-•"•: rJ

' ..:.. -~-

~ ~:1 UP COMMAND FOR READ
c

c

COM{ 1 l=SDSCOM< 4 l
COM<2l=l
COM13l=IDRV
C01-1i 4 l=-1
CALL SDS116CCOM,ISTAT,ITLEN,ILENl
IF<ISTAT.EQ.I6lRETURN

~RROR DETECTED ON READ

ISTAT!=ISTAT
GOTO 416

IF SHORT RECORD FOUND REREAD TAPE

5::' IH1P=ISTATI .AND .MASK< 6 l
IF\ ITNP. NE . .0' lGOTO lZ
ITMP=ISTATI.AND.MASK(2l
IF< ITt-1P.EQ . .0'lRETURN

'~ CRC ERROR FOUND REWIND TAPE AND RETRY

'025 W~ITEI2,2.0'1SliFNUM
:~(:_-~:; 2.0~.0" FORNAT<' FILE NO ',14,' CRC ERROR REWINDING'}
CfJ_j:_; L;(ITRY.GE.2lGOTO 13.0'
·,;, :s ':::COr-1{ 1 l=SDSCOt-1< 6)

.>~ ECON<2l=l

roa · · -' :, r v VS2./44 THU /48-JAN-81 S/4:16:34 PAGE 11112

BG31 ECOMC3J=IDRV
Z~J: ECOMC4J=Z
Z93~ CALL SDS!ZIECOM,ESTAT, , l
~Z3~ GOTO lZ

- ','R.ITE SECTION

1R36 23 ITRV=ITRY+l
fi.il3ii IFiiTRY.GT.3JGOTO 13Z
~~38 COMC1l=SDSCOM<7>
BBJ9 IFLEN=CILEN+3J/4
.~84~ COMC2l=IFLEN
~J4. COMC3l=IDRV
ZB4~ COM<4>=1
004~ CALL SDS1141COM,ISTAT, , >
JB~ IF<ISTAT.EQ.I4lRETURN

~RITE ERROR DETECTED

~u4" ISTATI=ISTAT
884~ GOTO 414
gs4; 7Z ITMP=ISTATI.AND.MASK<6>
3g4~ ITMPI=ISTATI.AND.MASKC2>
JS52 IFI!TMP.EQ.Z.AND.ITMPI.EC.B>RETURN

REPORT AND RETRY

WRITEI2,2Z2/4JIFNUM

(:jf' 4
]7] ~

2JJ2.'J FORMAT<' FILE NO ',14,' WRITE CRC ERR RETRY P'ROPOSED'>
ECOM!ll=SDSCOMI6l

l'_f.J 1

J8" '·
:;;_r :.
·:'J

ECOMC2l=2
ECOf"'l 3 l=IDRV
ECOMI4l=RJ
CALL SDSlBIECOM,ESTAT, , l
riBUF =8
IPAD=3276.0'
IFLENE=l6
CALL TWRITIERRS,NBUF,ESTAT,IPAD,IFLENE,IDRVl
GOTO 214

'.f!.·1t:: FOWARD ONE FILE

33 COM(ll=SDSCOMISl
COf'l(2l=l
':OM<3l=IDRV
r:OMI4l=f1
CALL SDSlSICOM,ISTAT, , l

CL:AR IRRELEVANT BITS FROM ERROR BYTE

ISTAT=ISTAT.AND .. NOT.MASKI6>
Ir\ ISTAT.EQ.2lRETURN
ISTATI=ISTAT
IFIISTAT.NE.I4lGOTO 4Rf

F' ORT ~ A r. IV VRJ2.RJ4 THU RJS-JAN-81 RJRJ:t6:34

,.. I F I STAT-=RJ REWI NO AND SET UP FOR NEXT R'EAD
r

C ~S THIS ~AS A DATA FILE NOT A SHORT RECORD
c

~~lb ~lOMtlJ=SD~C MlbJ
J 676 ECOM< 2 >=1
Z~77 ECOMC 3l= IORV
~z~a ECOM<4 l =6
xHJ: ~ CALL SDS16<ECOM,ESTAT, ,)
10HZ 3 5 RETURN

- I N THI S SECTION THE MAIN TAPE ERRORS ARE
- Y~N DLED SUCH AS:= TAPE BUSV,TAPE OFFLINE
r. BO T, EOT
c
-TAP E BUS V SECTION •• . AFTER CLEARING BOT FLAG

=as i 4Z WRI TEC2,161RJ>ISTATI,IFNUM
!3'2'q .1 1.01.!1 ::" ORMAT< ' STATUS= ' ,I3, ' FILE NO= ' ,I4>
J23 1 ISTATI=ISTATI.AND .• NOT.MASK<4>
3. g .~,. ITMP=ISTATI.AND.MASK<S>
Z~S f IFCITMP.EQ.6)GOTO 86
~zg- gg ECOM<l>=SDSCOMCl)
8B8 S ECOM<2>=6
a~a 9 ECOM<3>=IDRV
889£ ECOMC4l=6
8.0'9 1 CALL SDS16CECOM,ESTAT, ,)

.! .J9 -
gc-g_
;r,e- g ~<.

C HA VING EXAMINED STATUS IF TAPE STILL
- t USV, LOOP AGAIN,IF NOT TRY COMMAND AGAIN
,-

ESTATI=ESTAT
ITMP=ESTATI.AND.MASK<S>
I F<ITMP.NE.6>GOTO 96
IF<ICOM> 16,36,26

C Tt.i'~ OFFLINE

7~9- 80 ITMP=ISTATI.AND.MASK(l)
Jt'9g IF<ITMP.E0.6)GOTO 166
Z t :il.Z: TYPE 1.0".0"1, IDRV
..;_ fJ I ~:.J0'1 := ORMAT <' TAPE DRIVE ', Il , ' OFFLINE'>

-'. J:
;<1_q~

.. J

~n .o'l.
': 1 .J7

1 .. _.,

.'J 1 1 -

.. ~ ! 2
~·Ill
"t 15
z 11 E:
£.; 17
.: ' : r
J' ':.

. '?'·· ..,, '

C f-',!1.\flNG ANNOUNCED ERROR SKIP UNTIL CORRFCTED

'1.~ EC OM< 1 l =SOSCOM(1 >
ECOM<2>=.0"
ECOM<3 >=IDRV
EC OMC4)=f?J
CA LL SDS16<ECOM,ESTAT , ,
EST~TJ =ESTAT
I TM P=ESTATI.AND.MASK<l>
IF< ITMP . NE.Z>GOTO 116

V£12 . .0"4 THU 68-JAN-81 RJRJ:l6:34

IF <ICOM> 16,36,26

!COT

:~;r ITMP=ISTATI.A ND.MASK<3>
IF< ITMP.EC.RJ>GOTO 126
TVPE 16RJ2 , IDRV

1.1.!02 FORMAT< ' EOT ON DRIVE
IEOT,. - 1
R.i:TURN

" iF< ICON> 5.0", 35 , 7.0'

.. :-.'-OR. EX IT RETU RN

13'1 !STATI=- 1
RETURN
EN D

I , I 1 >

PAGE /6flf3

PAGE RJRJ4

SUBROUTINE TAP SUB< ICOM, 1 DRV, I STAT, I.LEN, I FNUM, BUF, NBVT, IEUT)
c
C TAPE HANDLING SUBROUTINE
C !COM IS THE COMMAND SIGNAL
C -1 IS A READ,B IS A WIND,l IS A\IRITE
C IDRV IS THE DRIVE BEING USED
C ISTAT IS THE STATUS ON R(TURN
C ILEN IS THE BLOCK LENGTH OF A FILE R"EAD OR WR.ITTEN
c

c

INTEGER*2 MASK<Bl,ESTATI,BUF<l>
LOGICAL*! ISTAT,COM<4l,SDSCOM(8l,IORV,ECOMC4),

XIFLEN,ESTAT,ERRS<Bl
DATA MASK/" 1, "2, "4. II UJ. "2.0'. "4.0'. "1.0'.0'. "2Bflfl
DATA SDSCOM/"flJ,"l,"2,"3,"4 1 "5 1 "6,"7/
DATA ERRS/"377. "377 I "377. "377. "377. "377' "377' "377/
ITRV=flJ
IF (I COM) 1.0' I 3flJ. 2.0'

C SECTIQN CONTROLLING A READ
c
c
C CHECK THAT ONLY A FEW RETRIES ARE ATTEMPTED
c

1.0' ITRV= ITRV+l
c
C SET UP COMMAND FOR READ
c

c

NBUF=NBVT
CALL TREAD<BUF,NBUF,ISTAT,IDRVl
IF<ISTAT.EQ.IlJJRETURN

C ERROR DETECTED ON READ
c

c

ISTATI=ISTAT
GOTO 4.0'

C IF SHORT RECORD FOUND REREAD TAPE
c

c

5B ITMP=ISTATI.AND.MASK(6l
IF<ITMP.NE.BlGOTO lB
ITMP=ISTATI.AND.MASK<2l
IF< ITMP.EQ.BlRETURN

C IF CRC ERROR FOUND REWIND TAPE AND RETRY
c

c

WRITE!2,2BlBliFNUM
2BlB FORMAT<' FILE NO ',I4,' CRC ERROR REWINDING' l

IF<ITRV.GE.2lGOTO 13flJ
ECOM<ll=SDSCOM<6l
ECOM<2l=l
ECOM<3l=IDRV
ECOM<4l=flJ
CALL SDSlB{ECOM,ESTAT, , l
GOTO lB

C WRITE SECTION
c

2flf ITRV= ITRV+ 1
IF<ITRV.GT.3lGOTO 13B
NBUF=NBVT
IFLEN=< ILEtl+3 l/4
IF<IFLEN.LT.2liFLEN=2
IPAD=< IFLEN*2B48 l-NBUF

c

CALL TWRIT<BUF,NBUF,ISTAT,IPAO,IFLEN,IDRV>
Ir<ISTAT.EQ.ZlRETURN

C WRITE ERROR DETECTED
c

c

ISTATI=ISTAT
GOTO 4/K

7/K ITMP=ISTATI.AND.MASK<6>
ITMPI=ISTATI.AND.MASKI2)
IFIITMP.EO.S.AND.ITMPI.EO.S>RETURN

C REPORT AND RETRY
c

c

WRITEI2,2/K2/KliFNUM
2/K2/K FORMAT<' FILE NO' ,14,' WRITE CRC ERR RETRY PROPOSED'>

ECOMI1l=SDSCOMI6l
ECOMI2l=2
ECOM<3>=IDRV
ECOM<4>=S
CALL SDSlfK<ECOM,ESTAT, , l
NBUF=B
IPAD=IIFLEN~2S4Bl-NBUF
CALL TWRIT< ERRS, NBUF, EST AT, IPAD, IFLE.N, I DRV}
GOTO 2/K

C WIND FOWARD ONE FILE
c

c

3/K COM<l>=SDSCOMCS>
COM<2>=1
COM<3l=IDRV
COM<4>=S
CALL SDSl/KI COM, I STAT, , }

C CLEAR IRRELEVANT BITS FROM ERROR BYTE
c

c

ISTAT=ISTAT.AND .. NOT.MASKCGl
IFI ISTAT.E0.2>RETURN
ISTAT!=ISTAT
IF< ISTAT.NE.SlGOTO 4/K

C IF I STAT=.0' REWIND AND SET UP FOR NEXT READ
c
C AS THIS WAS A DATA FILE NOT A SHORT RECORD
c

c

ECOM< 1 >=SDSCOM< 6 >
ECOMI2l=l
ECOM<3>=IDRV
ECO!~< 4 >=IK
CALL SDSl/KIECOM,ESTAT, , }

35 RETURN

C IN THIS SECTION THE MAIN TAPE ERRORS ARE
C HANDLED SUCH AS:= TAPE BUSV,TAPE OFFLINE
C BOT,EOT
c
C TAPE BUSY SECTION ... AFTER CLEARING BOT FLAG
c

48 WRITE<2,1818liSTATI,IFNUM
181.0' FORMAT<' STATUS=',I3,' FILE NO=',I4l

ISTATI=ISTATI.AND .. NOT.MASK(4l
ITMP=ISTATI.AND.MASKjSJ
IF{ ITMP.EQ.8JGOTO 8XJ

98 ECOM<ll=SDSCOMil I
ECOMI2l=8

c

ECOM< 3 >=IDRV
E Cot·H 4 l "'/0
CALL SDS1Z<ECOM,ESTAT, , >

C HAVING EXAMINED STATUS IF TAP! STILL
C BUSY, LOOP AGAIN,IF NOT TRY COMMAND AGAIN
c

c

ESTATl=ESTAT
ITMP=ESTATI.AND.MASK<S>
IF<ITMP.NE.ZJGOTO 9/0
IF< I COM> 110, 3/0, 2/0

C TAPE OFFLINE
c

8/0 ITMP=ISTATI .AND.MASK< 1)
IFCITMP.EQ.ZJGOTO 11010
TYPE 1/0/01, I"DRV

1/0/01 FORMAT<' TAPE DRIVE ', Il,' OFFLINE'>
c
C HAVING ANNOUNCED ERROR SKIP UNTIL CORRECTED
c

c

11/0 ECOM< 1 l=SDSCOM< 1 J
ECOM<2>=Z
ECOM<3>=IDRV
ECOM<4J=Z
CALL SDS1Z<ECOM,ESTAT, ,
ESTATI=ESTAT
ITMP=ESTATI.AND.MASK<1>
IF<ITMP.NE.ZJGOTO 11/0
IF<ICOM> 110,310,2/0

C EOT
c

c

11010 ITl.,P= ISTATI .AND. MASK< 3 >
IF<ITMP.EQ.ZJGOTO 12/0
TYPE 1/0/02, IDRV

1.0'/02 FORMAT< ' EOT ON DRIVE ', I1)
IEOT=-1
RETURN

12/0 IF<ICOM> 510,35,7/0

C ERROR EXIT RETURN
c

13/0 ISTATI=-1
RETURN
END

Page 226

Floating Point Transfers

GET NO

CALL GETNO(RNUM)

Purpose:- to find the number of floating point numbers to be

transfered from the pdp8/e to the pdp11.

RNUM •••.• Floating point ••••• Number of values to follow

GETDAT

CALL GETDAT(NUM,BUFFER)

Purpose :- To get a set of floating point values from the pdp8/e

NUM •••.•• Integer ••••.••.••• Number of values to

expect(IFIX(RNUM))

BUFFER •.• Floating Point .•.. Buffer to put values into

SEND AT

CALL SENDAT(NUM,RNUM,BUFFER)

Purpose :- To send a set of floating point numbers to the pdp8/e

NUM •••••. Integer ..••....... Number of values to transfer

RNUM .••.• Floating point ...• Floating point equivalent of the

Page 227

above

BUFFER ••• Floating Point •••• Buffer containing the values to

transfer

.nnE fPTR

.GLOBL GETNO,GETDAT,SENDAT
OR$CSR=l64.0'Z.0'
DRB=164.0'.0'2
OO$CSR=164Zl.0'
008=164.0'12

GETNO: MOV (RS l+, R.0'
MOV < RS > +, R 1
MOV Rl,R2
MOV #'4,R.0'

1$: TSTB @#'0R$CSR
BPL l$
MOVB @#ORB,<Rl)+
BIS #l,@#OR$CSR
DEC R.0'
BNE l$
SWAB <R2l+
SWAB <R2l+
RTS PC

GETDAT: MOV <R5l+,R.0'
MOV <R5l+,R.0'
MOV <RS>+,Rl
MOV Rl, R2
ASL @R.0'

2$: TSTB @#DRSCSR·
BPL 2$
MOVB @#ORB,< Rl >+
BIS #'l,@#ORSCSR

3$: TSTB @#DRSCSR
BPL 3$
MOVB @#DRB,<Rll+
BIS #l ,@#DRSCSR
SWAB < R2 l+
DEC @R.0'
BNE 2$
RTS PC

SENDAT: t~OV <R5l+,R.0'
f'10V <RS}+,R.0'
MOV <RSl+,Rl
MOV <RSl+,R2
MOV #2,R3
CLR R4
ASL @R.0'

4$: SWAB < R 1 l
BIS #l ,@#OOSCSR
MOVB <Rll+,R4
MDV R4,@#00B

5$: TSTB @#00$CSR
B?L 5$
BIS #l, @#00$CSR
MOVB <Rll+,R4
MOV R4,@#00B

6:5: TSTB @#OOSCSR
BPL 6$
DEC R3
BNE 4$

7-t'• . "'. SWAB <R2l
BIS #l,@#OO$CSR
ivlOVB <R2l+,R4
MOV R4,@#00B

8$: TSTB @#DO$CSR

9$:

BPL
BIS
MOVB
MOV
TSTB
BPL
DEC
BNE
RTS
.END

8$
#l, @#OOSCSR
<R2l+,R4
R4,@#00B
@#DOSCSR
9$
@R.0'
7$
PC

Page 228

Extended Memory Input/Output

AP to Memory

FAD = APGAD(VM(I))

Purpose:- To get a full 18 bit address for a virtual memory

element

FAD ••.••• Floating point •••• Returned 18 bit address

VM(I) •••• Any ••••••••••••••. Virtual memory element

CALL APPUTX(APAD,WCNT,FORMAT)

CALL APGETX(APAD,WCNT,FORMAT)

Purpose:- To transfer data to(PUT) and from(GET) the AP using the

18 bit address stored internally by an immediately preceeding call

~
to A~~D.

CALL APPUTA(APAD,WCNT,FORMAT,FAD)

CALL APGETA(APAD,WCNT,FORMAT,FAD)

Purpose:- To exchange data with the AP as above except the data is

provided by the value FAD which has been stored previously.

APAD ...•.. Integer •..•. AP memory address

WCNT •••••• Integer• Number of elements to transfer

FORMAT ..•• Integer .•••• AP data transfer format

Page 229

Disc to Memory

FAD=ADGET(VM(I))

Purpose:- To get a full 18 bit address for the virtual memory

element in the format for a disc transfer.

IWRITX(CHAN,WCNT,BLK)

IREADX(CHAN,WCNT,BLK)

Purpose :- To transfer between disc and virtual memory using the

18 bit address calculated in an immediately preceeding call to

ADGET.

IWRITA(CHAN,WCNT,BLK,FAD)

IREADA(CHAN,WCNT,BLK,FAD)

Purpose:- to transfer data between disc and virtual memory as

above but with the 18 bit address being provided by FAD.

FAD .•..•. Floating point •.... 18 bit address of virtual memory

element

VM(I) .••. Any •••..•••.•.••... Virtual memory element

CHAN •..•• Integer .••..••••..• I/0 channel to be used in transfer

WCNT Integer ..•........•. Number of words to transfer

BLK •••••• Integer •••..••.••.. Starting

transfer

block in file for

;/*"*** DAPEX = HOST DEPENDENT APEX FOR PDP-11 RT-11 = RH 2./6 • NOV 77 u"'"'"'"'
;C

FOR PDP-11 RT-11 OR DOS

; --- --·----------------
C 0 N F I G U R A T 1 0 N

PDP-11 DEPENDENT

P A R A M E T E R S

DOS = H ;SET TO 1 FOR DOS, ORB FOR RT-11

AP-12BB DEPENDENT

FPS = 176BBB ;AP BASE DEVICE ADDRESS

• TITLE DAPEX
.GLOBL SPLDGO,ABORT,RUNDMA,RUNAP,TSTDMA,TSTRUN,WTDMA,\o/TRUN,APIN
.GLOBL APIENA,APIDIS,TSTINT,APWI
.GLOBL APOUT,APWD.APWR,APRSET,APASGN,APRLSE

PDP-11 DEFINITIONS

RB %8
R1 Xl
R2 X2
R3 %3
R4 %4
RS %5
R6 X6
SP = %6
R7 %7
PC X7

AP-DEVICE ADDRESSES

FMTH = FPS
FMTL = FPS + 2
we = F P s + 1 fiJ/6
HMA = FPS + 1.0'2
CTRL = FPS + 1184
APMA = FPS + U6
SWR = FPS + 11.0'
FN = FPS + 112
LITES = FPS + 114
ABRT = FPS + 116

.MACRO CALL X
MOV RS,-<SP> ;SAVE RS
• IF EO,<DOS-1>
.IFT
JSR RS,X
BR .+2
. IFF
MOV #ZERO,RS
JSR PC,X
. I FTF

;

;C

MOV <SP>+,RS
.F.NDC
.ENDM

.MACRO RETURN

. IF EQ,<DOS-1>

.IFT
RTS RS
.IFF
RTS PC
.ENOC
.ENDM

;RETRIEVE RS

;!**"** SPLDGO = S-PAO LOAD AND GO= REL 2.18 , NOV 77 *.,.**********.***"*********
;C

;
;C
;C
;C
;C
;C
;C
;C
;C
;C

SUBROUTINE SPLDGO<SLIST,NSPADS,STRT,BRKLOC>
INTEGER SLIST<16>,NSPADS,STRT,BRKLOC

FIRST WAIT FOR THE LAST PROGRAM STARTED BV
'RUNAP' TO BE COMPLETED, THEN:
LOAD 'N' VALUES INTO S-PAD FROM 'SLIST'
AND START THE AP AT LOCATION 'STRT' WITH A
SET AT 'BRKLOC'

ROUTINES USED: APWR, APOUT

;C-------LOCAL STORAGE
; INTEGER I

1. WAIT FOR RUNNING DONE <APWR>
2. FOR EACH S-PAD PARAMETER:

'SPLOGO' OR

BREAKPOINT

;C
; c
; c
; c
; c
; c
; c
;C
;C

A. PUTS-PAD PARAMETER ADDRESS INTO SPD <CALL WREG<I-1,513»
B. PUT PARAMETER VALUE INTO S-PAD <CALL WREG<SLIST<I>,SI7>>

3. PUT PROGRAM STARTING LOCATION INTO TMA (CALL WREG<STRT,SlS>
4. CALL RUNAP TO START AT LOCATION 8 OF THE BOOTSTRAP, WITH

THE SPECIFIED P.S. BREAKPOINT SET

; CALL APWR
SPLCGO: CALL APWR
;C
;C LOAD PARAMETERS INTO S-PAD <IF ANY>

IF <NSPADS.EQ./8) GOTO 2/8
DO 1/8 I = 1, NSPADS
CALL APOUT< I-1, 1 >
CALL APOUT<Sl3,2l

; CALL APOUT<SLIST<I>,l>
;1/8 CALL APOUT<Sl7,2>

LDSP:

TST <RS>+
MDV <R5)+,R2
MOV @(RS)+,R/8
BEQ SBRGO
CLR Rl
MOV R 1 , @#SWR
MOV #Sl3.,@#FN
MDV @R2,@#SWR
MDV #51 7. , @#F N
TST < R2 l+
INC Rl

;GET S-PAD VALUE POINTER
;GET NSPADS

;INITIALIZE S-PAD ADDRESS
;SET S-PAO ADDRESS
;INTO SPD
;SET PARAMETER VALUE
;INTO S-PAD
;BUMP PARAMETER VALUE POINTER
; AND S-PAO ADDRESS

;
;C
;C
;C
:2£1
;

DEC R£1
BNE LDSP

;SEE IF DONE??

PUT THE STARTING ADDRESS INTO TMA, START BOOTSTRAP AT 4,
WITH BREAK ON PSA ENABLED AND BREAK IN SWR
CALL APOUTCSTRT,ll
CALL APOUT<~l5,2J
CALL RUNAP!4,£J,BRKLOC,8448J
RETURN

SBRGO: MOV @(RSJ+,@#SWR
MOV #SlS.,@#FN
MOV #8 • , @HSWR
MOV #Sl2.,@#FN

;SET STARTING ADDRESS INTO TMA

;PUT STARTING ADDRESS OF BOOT-STRAP STARTER
; INTO PSA

;
ZERO:

;
;C
;/*****
;/*****
;C .
:C
;C
; c
; c
:C
;C
;C
: c
;C
; c

' APRSET:
ABORT:

;
: c

CLR @#SWR
MOV #518.,@#FN

MOV @(RSJ+,@#SWR
MOV #8448.,@/IFN
RETURN

END

;ZERO APSTAT, CLEAR PARITY ENANLE
;DEP TO APSTAT

;SET PSA BREAKPOINT
;AND GO

ABORT = ABORT AP-EXECUTION = REL 2.£1 , NOV 77 *******"'******-********
APRSET = RESET THE AP = REL 2.£1 , NOV 77 *****************************

SUBROUTINE ABORT

STOPS ANV TRANSFER, AND/OR RUN IN PROGRESS, RESETS INTERFACE AND
CLEANS UP ANV SOFTWARE STATE INDICATORS

ROUTINES USED: APOUT

1. DO AN INTERFACE RESET <ORESET>
2. CLEAR THE CONTROL REGISTER !OCTRL!Zll
3. DO AN INTERNAL RESET !OFN<2Z48ll

CALL APOUT<XT,Ul
CALL APOUT<.0',7l
CALL APOUT<2£J48,2J
RETURN

CLR @vABRT
CLR @#CTRL
MOV #4f?J£JkT,@#FN
CLR @#LITES
RETURN

END

:/"'**** RUNDMA START A DMA TRANSFER

;C

;
;C
;C
;C
;C
;C
;C
;C
;C
;C
;C
;C

SUBROUTINE RUNDMA<HOST,APMA,N,CTRL>
INTEGER HOST,APMA,N,CTRL

WAIT FOR ANY PREVIOUS DMA TRANSFER STARTED BY 'APPUT', 'APGET', OR
'RUNDMA' TO COMPLETE, THEN:
START A DMA TRANSFER WITH THE ADDRESS OF 'HOST' AS THE INITIAL
HOST MEMORY ADDRESS, 'APMA' AS THE INITIAL AP-12BB MAIN DATA MEMORY
ADDRESS, 'N' AS THE NUMBER OF DATA ITEMS TO BE TRANSFERED,
AND 'CTRL' AS THE CONTROL REGISTER SETTING <WITH INTERRUPT CONTROL
BITS MASKED OUT> TO USE.

ROUTINES USED: APWD, APOUT, ILOC, IAND16, IRSH16

;C-------NOTE: THE DETERMINATION OF 'WC' FROM 'N' BELOW DEPENDS ON THE
;C HOST WORD LENGTH AS IF AFFECTS THE NUMBER OF HOST WORDS PER
;C AP-12SB MEMORY WORD. THIS CODE IS APPROPRIATE FOR A 16-BIT COMPUTER.
;C
;C-------LOCAL STORAGE
; INTEGER WC
;C
;C
;C
;C
;C
;C
;C

I

1. WAIT FOR DMA DONE
2. SET HOST ADDRESS <OHMA>
3. SET AP ADDRESS <OAPMA>
4. SET WORD COUNT <OWC>
5. SET CONTROL REGISTER <OCTRL>

CALL APWD

RUNDMA: CALL APWD

CALL APOUT<APMA,4l
CALL APOUT<ILOC<HOSTJ,5l
we = N

TST <RSl+
;SET PDP-11 ADDRESS MOV <RSl+,@#HMA

MOV #S, @#Ll TE S
MOV @(RSl+,@#APMA
MOV @<RSl+,R1

;CLEAR EXTENDED PDP11 ADDRESS
;SET AP MEMORY ADDRESS
;GET DATA COUNT

;
;C ISOLATE FMT FIELD AND ADJUST WC ACCORDINGLY

I F < IAN D 1 6 (I R S H 1 6 (C T R L , 1 l , 3 l . N E . 1 l WC = 2 * N
CALL APOUT< WC, 6 l

MOV @<RSl+,RS ;GET CONTROL WORD
BIT RS,#4 ;TEST 'FMT' FIELD FOR A 2
BNE l$
BIT RS,.f/2
BNE 2$

1$: ASL R1 ;DOUBLE COUNT UNLESS FORMAT #l
2$: MOV Rl,@#WC ;SET WORD COUNT

;
,C CLEAR Orr HOST INT£RRUPT ENABLE BITS

CAL L APOUTCI AND 16CCTRL,1!623>, 7>
RETU RN

BIC #l74!6!6!6,RH
MOV R8 , @#CTRL
RETURN

; CLEAR INTERUPT ENABLES

; END
; C
; /***** RUNAP = START AN AP - PROGRAM = REL 2.16 , NOV 77 ****'******-**·*-********
; C

SUBROUTINE RUNAP<PSA,NOLOAD,SWR,FN>
; INTEGER PSA,NOLOAD,SWR,FN
;C
;C WAIT FOR ANY PREVIOUS PROGRAM STARTED BY 'SPLDGO' OR ' RUNAP '
;C TO COMPLETE, THEN:
;C 1. IF 'NOLOAD' IS ZERO, PUT ' PSA' INTO PSA
;C 2 . PUT 'SWR' INTO THE SWITCH REGISTER
;C 3. PUT 'FN' CWITH ' START BIT' CLEARED AND 'CONTINUE BIT ' SET>
;C INTO THE FUNCTION REGISTER
;C
;C ROUTINES USED: APWR, APOUT, IOR16, NA ND16
; C
;C 1. WAIT FOR RUNNING DONE
;C 2 . IF -NO-LOAD NOT SPECIFIED, PUT 'PSA ' INTO PSA
;C <CALL WREG<PSA,512}}
; C 3. PUT ' SWR' INTO SWR < OSWR}
;C 3 . CLEAR POSSIBLE START BIT, OR IN CONTINUE BIT ,
; C AND PUT INTO FUNCTION COFN>
; C

;
RU N~. P :

;

CALL APWR

CALL APWR

CLEAR PAR IT Y ENA BLE IN STATUS REGISTER

CLR @#S\.JR
MOV #518 . ,@#FN

I F <NO LOAD . NE . !6 > GO TO 1.8!6
CALL APOUTCPSA,l>
CALL APOUT<512,2)

TST (RS l +
MOV @(R5l+ , @#SWR ; PUT 'PSA ' INTO THE SWITCHES
TST @CRSl+ ;SEE IF LOAD PSA77
BNE NOLOAD
MOV #512 . ,@#FN ;PUT 'PSA' INTO PSA IF ' NOLOAD ' IS ZERO

;1 8 8 CALL APO UT<SWR,l)
;C CLEAR POSSIBLE SET START BIT & OR IN CO NTI NU E BIT TO FN REG

CALL APO UT<I OR16< AND16<FN,27ll,81 92l, 2>

RETURN

;
NOLCAD: CLR @#SWR ;CLEAR SWR

MOV #U3f6. ,@#FN
MOV @<RS}+,@#SWR
MOV @(R5l+,Rf6
BIC #l7736f6,R.0'
BIS #8192.,Rf6
MOV Rf6,@#FN
RETURN

;CLEAR PARITY ERROR ENABLE
;PUT 'SWR' INTO THE SWITCHES
;CLEAR ALL BUT POSSIBLE BREAKPOINT

;SET CONTINUE BIT
;AND GO

. ; END
;C
;!*"'*** TSTDMA = TEST DMA TRANSFER COMPLETE = REL 2.16 • NOV 77 **'*"'**"*********
;C

;
;C
;C
;C
;C
;C
;C
;C
;C

.
TSTDMA:

SUBROUTINE TSTDMA<Il
INTEGER I

SET 'I' TO ONE IF THE LAST DMA TRANS~ER STARTED BY 'APPUT'
'APGET' OR 'RUNDMA' IS DONE; SET 'I' TO ZERO IF THE TRANSFER IS
STILL IN PROGRESS

ROUTINES USED: APIN, NAND16

READ CTRL AND MASK TO .NOT. LOW BIT
CALL APIN<I,7l
I=NAND16(1, I l
RETURN
MOV #l, Rl
BIC @#CTRL,Rl ;DO NOT.CTRL.AND.l
MOV Rl,@2<R5l
RETURN

; END
;C
;!***** TSTRUN = TEST RUN COMPLETE = REL 2.f6 , NOV 77 ***************"'********
;C

SUBROUTINE TSTRUN<I>
; INTEGER I
:C
;C SET 'I' TO ONE IF THE AP-12f6B IS STOPPED AFTER THE LAST RUN
;C STARTED BV 'SPLDGO' OR 'RUNAP'; ELSE SET '1' TO ZERO IF THE AP-12f6B
;C IS STILL RUNNING.
;C
;C ROUTINES USED: APIN, NEGCHK
; c
:C READ FN AND SHIFT DOWN TO LOW BIT

CALL API N (1 , 2 >

;
TSTRUN:

l$:

I =NEGCHK< 1 l
RETURN

CLR Rl
TST @#FN
BGE 1$
INC Rl ;RETURN A 1 IF THE HIGH BIT OF 'FN' WAS ON
MOV Rl,@2(R5)
RETURN

; END
;C
; 1-c.u-c.-c. WTDMA = WAIT FOR DMA TRANSFER COMPLETE = REL 2./8 , NOV 77 vt.rtt·tz.*"'"'"'"'"'"'"'
;C

SUBROUTINE WTDMA!IERR}
; INTEGER IERR
;C
;C WAITS FOR DATA TRANSFER COMPLETE. 'IERR' SET TO ONE IF A DATA LATE
;C ERROR WAS DETECTED BV THE HARDWARE. ELSE SET TO ZERO.
; c
;C ROUTINES USED: APIN, IAND16, IRSH16
;C
;C SPIN WHILE THE LOW BIT OF 'CTRL' IS ON
;1/8/8 CALL APIN<IERR,7>
; IF <IAND16<IERR,l>.EQ.l> GO TO 1/8/8
;C
;C SHIFT THE 'DATA LATE' ERROR BIT DOWN TO THE LOW END

IERR=IRSH16(IAND16(IERR, 256 >, 8 >

.
\JTDMA:

.
;C
;/*****
; c

.
;C
;C
;C
;
\JTRUN:

.
; c
'

RETURN

BIT @#CTRL,#l
BNE \JTDMA
MOV @#CTRL,R/8
BIC #l77377,RB
SWAB R/8
MOV R/8,@2(R5l
RETURN

END

;WAIT FOR THE LSB TO GO OFF
; GET CONTROL

;RETURN THE DATA LATE BIT

WTRUN = WAIT FOR RUN COMPLETE = REL 2./8

SUBROUTINE WTRUN<IERR>
INTEGER IERR

WAIT FOR AP RUN TO FINISH !HALT> , SET IERR TO ONE IF AN SRAO ERROR,
TWO IF PARITY, ELSE ZERO.

TST @#FN
BGE \JTRUN
CLR Rl
MOV #l/83/8 .• @#FN
BIT @#LITES,#24ff
BEQ 1$
MOV #2,Rl
BIT @#L I TE S , #2/8/8
BNE l$
DEC Rl
MOV R1,@2<RS>
RETURN

END

;WAIT FOR THE SIGN BIT TO GO ON

;GET AP-STATUS
;CHECK FOR PARITY OR SRAO ERROR
; IF NO ERRORS
;ASSUME PARITY ERROR
;CHECK FOR PARITY ERROR
; IF PARITY ERROR
;ELSE SRAO ERROR

;!'~<"'**** APASGN ASSIGN THE AP = REL 2./8 , NOV 77 *"'****"'****"',."'*****'****tt**'"'t

SUBROUTINE APASGN<APNUM,ACTION,STATUS>
INTEGER APNUM,ACTION,STATUS

APASGN IS A 'NOP' ON RT-11

RETURN A 1 IN STATUS TO INDICATE THE AP IS ASSIGNED
;
APASGN: MOV #1,@6(R5>

RETURN .
;SET THIRD PAPARAMETER TO

1/*•*~** APRLSE = RELEASE THE AP = REL 2.g , NOV 77 *****************~********

APRLSE IS A 'NOP' UNDER RT-11
;
APRLSE: RETURN

.
; /***"** AP lENA = INABLE INERRUPT = Rt:L 2 .g , NOV 77 ****"'********•**'**"*

; NO OP UNDER RT11
APIENA: RETURN

;
;/****** APIDIS = DISABLE INTERRUPT = REL 2.B , NOV 77 *"'************•*

; NO OP UNDER RT11
APIDIS: RETURN

;
;/****** TSTINT = TEST FOR INTERRUPT= REL 2.B , NOV 77 *"'***********.,.,*"'

; NO OP UNDER RT11
TST I NT: RETURN

.
;/***"'** APWI =WAIT FOR INTERRUPT = REL z.g , NOV 77 ***"'*****"'*****

.
APWI:

;

NO OP UNDER RT11
RETURN

;!"'**** APIN = IN~UT AN AP-12gB INTERFACE REGISTER
;C

REL 2.g , NOV 77 ********

;
;C
;C
;C
;C
;C
;C
;C
; c
;C
;C
;C
;C
;C
;C
;C
;C
;C
;C

SUBROUTINE APIN<DATA,NUM>
INTEGER DATA,NUM

READ THE CONTENTS OF INTERFACE REGISTER NUMBER 'NUM' INTO 'DATA

PARAMETERS:
DATA - RECEIVES THE CURRENT CONTENTS OF REGISTER 'NUM'
NUM SPECIFIES WHICH AP-12gB INTERFACE REGISTER IS TO BE READ:

1. SWR SWITCH REGISTER
2. FN FUNCTION REGISTER
3. LITES LITES REGISTER
4. APMA AP DMA MEMORY ADDRESS REGISTER
5. HMA HOST DMA MEMORY ADDRESS REGISTER
6. WC DMA WORD COUNT REGISTER
7. CTRL DMA CONTROL REGISTER
8. FMTH FORMAT HIGH REGISTER
9. FMTL FORMAT LOW REGISTER

1Z. RESET DO AN EXTERNAL RESET <NO-OP FOR APIN>
11. IFSTAT INTERFACE STATUS REGISTER <APIN READS, APOUT NO-OP>
12. MASK MEMORY PROTECTION AND I/0 BITS

;C 13. APMAE AP PAGE SELECT
;C 14. MAE OMA PAGE SELECT
;C
;C ROUTINES USED: NONE
;C
;C-------NOTE: THIS ROUTINE WILL TYPICALLY BE IN ASSEMBLY LANbAUGE .
;C SINCE FORTRAN CANNOT OUTPUT DIRECTLY TO AN I/0 DEVICE
;C

;
APIN:

;
APINl:

RETURN

MOV @ 4 < RS > , R 1
MOV Rl, R2
SUB #11 • , R2
BLE APIN1
SUB #4,R2
BLT IMASK

ASL Rl
MOV @TABLE<R1>,@2<RS>
RETURN

;GET REGlSTER NUMBER
;CHECK FOR EXTENDED MEMORY REGISTER READ

;LOOK FOR 12,13 OR 14
;IF LESS THAN 12

;IF EXTENDED MEMORY REGISTER READ

;CONVERT TO BYTES
;GET FROM APPROPRIATE DEVICE ADDRESS

READ MASK OR APMAE OR MAE

THE EXTENDED MEMORY REGISTERS<l2113 AND 14- SEE ABOVE> CAN NOT BE
READ OR WRITTEN INDIVIDUALL.V. A READ OF THE RESET REGISTER WILL
RENDER THE MAE<BITS S-3l,APMAE<BITS 4-7> AND THE MASK<BITS 8-13>.
A WRITE OF THE LITES REGISTER WILL SET THE MAE,APMAE AND THE MASK.
THE WRITE FORMAT IS THE SAME AS THAT OF THE READ.

UPON ENTRY OR EXIT THE VALUE OF MASK OR APMAE OR MAE ARE RlGHT
JUSTIFIED, ZERO FILLED.

;
!MASK: MOV @#ABRT,R2

CMP #12. ,Rl
BNE IAPMAE
SWAB R2

.
BIC #l777SIJ,R2

MOV R2,@2(R5>
RETURN

IAPMAE: CMP #l3.,Rl
BNE !MAE
ASR R2
ASR RZ
ASR R2
ASR R2

IMAE: BIC #l7776S,R2
MOV R2,@2(R5l
RETURN

.
;C

;
TABLE:

END

fJ
FPS+llS
FPS+ll2
FPS+ll4
FPS+lfJ6

;SWR
;FN
;LITES
;APMA

;READ MASK,APMAE,MAE
;CHECK FOR MASK

;IF NOT MASK
;RIGHT JUSTIFY MASK
;CLEAR ALL BUT MASK
;RETURN VALUE

;CHECK FOR APMAE
;IF MAE
;RIGHT JUSTIFY APMAE

;CLEAR ALL BUT MAE OR APMAE
;RETURN REGISTER VALUE

.

FPS+l.0'2
FPS+1.0'.0'
FPS+l.0'4
FPS+.0'
FPS+2
FPS+ll6

;HMA
;WC
;CTRL
;FMTH
;FMTL
;RESET

0

; /***** APOUT = WRITE TO AN AP-12.0'8. INTERFACE REGISTER "' REL 2. • .0' , NOV 77 *"'*""
;C

;
;C
;C
;C
;C
;C
;C
;C
;C
;C
;C

SUBROUTINE APOUT<DATA,NUM>
INTEGER DATA,NUM

PUT THE CONTENTS OF 'DATA' INTO INTERFACE REGISTER NUMBER 'NUM'.

PARAMETERS:
DATA - DATA TO BE PUT INTO AN INTERFACE REGISTER
NUM - NUMBER OF THE DESTINAT!ON INTERFACE REGISTER, SEE 'A~IN'

FOR THE NUMBERING

ROUTINES USED: NONE

;C-------NOTE: THIS
;C

ROUTINE WILL TYPICALLY BE IN ASSEMBLY CODE.

;
A POUT:

;

RETURN

MOV @4<R5J,Rl
MOV Rl,R2
SUB #ll.,R2
BLE APOUTl
SUB #4,R2
BLT OMASK

;CHECK FOR EXTENDED MEMORY REGISTER WR1TE
;LOOK FOR 12,13 OR 14

;IF LESS THAN 12

;IF EXTENDED MEMORY REGISTER WRITE

APOUTl: ASL Rl ;CONVERT TO BYTES
MOV @2<RSJ,@TASLE<RlJ ;STORE INTO APPROPRIATE REGI~TER
RETURN

WRITE MASK OR APMAE OR MAE

SEE COMMENTS IN APIN FOR EXTENDED MEMORY REGISTERS<MASK,APMAE.MAE>
I
01'1ASK:

.

MOV @#ABRT,R3
MOV @2{R5J,R2
CMP #12. ,Rl
BNE OAPMAE
BIC #374.0'.0',R3
SWAB R2
SIS R2,R3
MOV R3, @#LITES
RETURN

OA?MAE: CMP #l3.,Rl
BNE OMAE
SIC #36.0',R3
ASL R2
ASL R2
ASL R2
ASL R2
BIS R2,R3
MOV R3,@#LITES
RETURN

;READ MASK,APMAE,MAE
;FETCH REGISTER VALUE

;CHECK FOR MASK
;IF NOT MASK
;CLEAR MASK, KEEP APMAE AND MAE
;POSITION MASK TO BITS 8-13
;ADD NEW MASK TO OLD APMAE AND OLD MAE
;WRITE TO AP

;CHECK FOR APMAE
;IF MAE
;CLEAR APMAE, KEEP MASK AND MAE
;POSITION APMAE TO BITS 4-7

;ADD NEW APMAE TO OLD MASK AND OLD MAE
;WRITE TO AP

;
OMAE: BIC #l 7 ,R3

BIS R2,R3
MOV R3, @#LITES
RETURN

.E ND

.TITLE RKH5 VB3-Bl

. !DENT /VB3.B1/

; RT-11 DISK CRKll> HANDLER

DEC-11 - 0RTSB-A

EF/ABC/RGB/DV/JD

COPYRIGHT <C> 1977

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS Bl754

•

; L~AR MAE EP APMAE AND MASK
;ADD NEW MAE TO OLD APMAE AND OLD MASK
;WRITE TO AP

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY
ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH
THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE,
OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVI.DED OR OTHERWISE MADE
AVA ILABL E TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS . TITLE TO AND OWNERSHIP OF THE
SOFTWARE SHALL AT ALL TI MES REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DE C ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIP MEN T
WHICH IS NOT SUPPLIED BY DEC .

.MC.ALL

.MCALL
•• V2 ..
• REGDEF
• IIF NDF
.IIF NDF
. I IF NOF
.OELDF
.GLOBL
.GLOBL
OTSVS
ossvs
DXSVS
DPSVS
RFSVS
DMS'IS
RKDS
RKER
RKCS
RK\o/C
RKBA
RKDA
RKCNT
RKSTS
RKDSIZ
RKIDEN
RKIDS
RKRCNT
RKNREG
RKREGA

•• V2 •• ,.REGDEF,.DRBEG,.DREND,.FORK
.DRAST,.DRFIN,.QELOF

TIMSIT, TIM$IT=.0'
MMGT, MMGT=.0'
ERLSG, ERL$G=.0'

DPSVS, DSSVS, DXSVS, DMSVS
RKSVS, RFSVS, DTSVS
= .0'
= f,J

f,J
= f,J
= f,J
= f,J

177418.0'
= 177 4.0'2
= 1774!44
= 1774186
= 17741.0'

177412
1.0'

= 1!4.0'.0'!4!4
113.0'!4

= f,J
377

= 4!4!4!4
7
1774!4!4

.IF EQ

. I FTF

.DRBEG RK,22.0',RKDSIZ,RKSTS
MMG$T

MOV
RETRY: f4

MOV
MOV
MOV
ASR
ASR
ASR
SWAB
BIC
BR

1$: ADD
ASR
ASR
ADD

2$: MOV
SIC
BIC
BNE
CMP
BGT
ADD

3$: ADD
MOV

AGAIN: tvlOV
MOV
MOV
MOV

DISKil.D: f4
CMP

#RKCNT,CPCl+

RKCQE,RS
@R5,R2
2CRS>,R4
R4
R4
R4
R4
.ft"'C<l6f4!4f4f4>,R4
2$
R2,R4
R2
R2
R3,R2
R2,R3
#17776!4, R3
R3,R2
l$
#12., R3
3$
#4,R3
R3,R4
R4,DISKAD
RKCQE,RS
#1.0'3,R3
#RKDA,R4
CPCl+,@R4

<RSl+,CRS}+

•

•

. .. ,

. IFT
MOV <R5l+,-<R4l

• 1 F F
JSR PC,@$MPPTR
MOV <SPl+,-(R4l

. I FTF
MOV <R5l+,-<R4l
BEQ 7$
BMI 5$
NEG @R4
ADD #2,R3

5$:
MOV @#RKCS,-CSPl
BIC #1 77717, < SP >
SIS <SPl+,R3

. IFF
BIS <SPl+,R3

. I FTF
6$: MOV R3,-<R4>

RTS PC
7$: MOV 41111 , R3

BR 5$
.DRAST RK,5
MOV #RKER,R5
MOV <R5l+,R4
TST RETRY
BPL NORMAL
TST @R5
BMI NORMAL
BIT .fl2/8flflfi,@R5
BEQ RTSPC
.FORK RKFBLK

RKRETR: CLRB RETRV+l
BR AGAIN

NORMAL: CMP @R5,#31.0'
BEQ RTSPC
TST @RS
BPL DONE
. FORK RKFBLK

• IF NE ERL$G
BIT #6234.0',R4
BNE RKERR
MOV PC,RS
ADD #RKRBUF-.,R5
MOV RS,R2
MOV #RKREGA,R3
MOV #RKNREG,R4

RKRREG: MOV <R3l+,<RS>+
DEC R4
BNE RKRREG
MOV #RKNREG,R3
ADD #RKRCNT,R3
MOV RKCQE,RS
MOVB RETRV,R4
DEC R4
JSR PC,@$ELPTR
MOV #RKER,RS
MOV <RS>+,R4

.ENDC
R~CERR: MOV #l ,@RS
3$: TSTB @RS

BPL 3$
DECB RETRY
BEQ HERROR

BIT # 1 1 gggg' R<1
BEQ RKRETR
MOV DISKAO,@#RKDA
MOV -#ll5,@R5
BIS #liJRJRJRJJif,RETRV

RTSPC: RTS PC
HERROR: MOV RKCQE,RS

BIS #l ,@-(RS >
. IF NE ERLSG

BR RKEXIT
DONE: .FORK RKFBLK

MOV #RKIDS,R4
MOV RKCQE,RS
JSR PC,@$ELPTR

. IFF
DONE:
.ENDC
RKEXIT: CLR RETRY

.DRFIN RK
. ENDC
RKFBLK: .WORD Jif,iJ,iJ,iJ
. IF NE ERLSG
RKRBUF: .BLKW RKNREG
.ENDC

.OREND RK
. END

MPAPEX .TlTLE
.ENABL
.GLOBL

GBL
APGAD,APPUTX,APGETX,APGETA,APPUTA

USP.0'=17764fiJ
AP=l76/I/I.0'
WC=AP+l.0'/I
HMA=AP+U2
CTRL =AP + 1.0'4
APMA=AP+1.0'6
LITES=AP+114

APG,t,O: MOV
ASL
ASL
ASL
ASL
MOV
SIC
ASL
ASL
SIC
SIC
SIS
MOV
MOV
MOV
RTS

APPUTA: MOV
MOV
MOV

APPUTl(: MOV
JSR
MOV
MOV
BR

APGETA: MOV
MOV
MOV

APGETX: MOV
JSR
MOV
MOV

COMMON: MOV
MOV
ADD
ADD
BIT
BNE
BIT
BNE

1$: ASL
2$: MOV

MOV
MOV

BIC
MOV
RTS

@#USP.0',R/I
R.0'
R.0'
R.0'
R.0'
R.0',HIGHBT
#37777,HIGHBT
R.0'
R.0'
#1777/IS, Rl
#77 ,R.0'
Rl,R.0'
R!I,LOWBIT
HIGHBT,R.0'
LOWS lT, R 1
PC

B . C RS > , R.0'
<R.0'>+,HIGHBT
<R.0'>,LOVBIT
RS,-<SP>
PC,APWD
<SP>+,R5
#l93.,R.0'
COMMON

8. < RS >, R.0'
< R.0'>+,HIGHBT
< R.0' > , L O'WB IT

RS,-<SP>
PC,APWD
<SP>+,RS
#225., R/I

@2(RS > ,@#APMA
@4CR5>,R1
@6CR5l,R.0'
@6CR5l,R.0'
R.0',#4
1$
RM,#2
2$
Rl
Rl ,@#WC
LOWBIT ,@#HMA
HIGHBT,@#LITES

#l74.0'SS,R.0'
RS,@#CTRL
PC

LO'W8IT: .'WORD .0'
HIGHBT: ,\./ORO .0'

.END

;GET PAR B BLOCK OrFSET

;GET HIGHBITS INTO PLACE

;SAVE INTO HIGHBITS
;CLEAR OTHER BITS
;SET UP 16 BIT PART

;CLEAR UNWANTED BITS

;FORM 16 BIT PART
;AND SAVE IT
;RETURN FUNCTION VALUES
;INR.0'+Rl
;RETURN

;GET ADDRESS OF· STORE
;GET HIGHBITS FROM STORE
;GET LOWBITS
;SAVE RS
;CALL APWD
;RESTORE RS
;SET UP CONTROL WORD
;FOR A PUT AND GOTO COMMON

;GET STORE ADDRESS
;GET HIGHBITS
;AND LOWBITS

;SAVE RS
;CALL APWD
;RESTORE RS
;SET UP CONTROL WORD
;FOR A GET
;SET AP ADDRESS
;GET WORD COUNT
;SET UP THE FORMAT
;FOR THE TRANSFER
;AND SEE
;IF THE WORD COUNT
;NEEDS DOUBLING
;AS FOR THE REAL*4
;TRANSFERS
;THEN PUT IN WORD COUNT
;PUT IN LOW 16 BITS
;THEN HIGH 2 BITS
;OF PDPll ADDRESS
;DISENABLE INTERRUPTS
;SETUP CTRL TO START PROCESS

.MCALL .READC •• WRITC,.EXIT;.PRINT

.GLOBL ADGET,IREADX,IWRITX,IREADA,IWRITA
USP-0'=17764!0
RKCS=l774.0'4

ADGET: MOV @#USP.0',R.0' ;GIT EXTENSION IN RB
ASL R.0' ;GET HIGHBITS INTO PLACE
ASL R.0'
MOV RB,R2 ;SAVE IN R2
ASL RB ;GET LOWBITS INTO PLACE
ASL RB
ASL R.0
ASL R.0'
BIC #1777.0'.0', Rl ;CLEAR UNWANTED BITS
BIC #77 ,RB ;IN Rl + R.0'
BIS Rl,RB
MOV R.0' , L OWB IT ;SAVE LOWBITS
SVAB R2 ;GET HIGHBITS INTO
BIC #l77717,R2 ;CORRECT PLACE
MOV R2,HIGHBT ;SAVE IN HIGHBITS
MOV HIGHBT,RB ;PUT HIGHBITS IN R.0
MOV LOVB IT, Rl ;LOVBITS IN Rl TO REURN
RTS PC

IREAOA: MOV 8. < RS) , R.0 ;GET ADDRESS OF STORE
MOV <RB>+,HIGHBT
MOV (R.0') , L OVB IT ;AND GET ADDRESS BITS

I~EADX: MOV @21R5>,Rl ;GET ARGUMENTS INTO
MOV @41RS>,R3 ; INTO REGISTERS ·
MOV @61RS>,R4
MOV LOWB IT, R2
BIS HIGHBT,@#RKCS ;SET EXTENDED BITS
.READC #AREA,Rl,R2,R3,#XMMCMP,R4 ; INITIATE READ
BCS ERROR
RTS PC

1\.JRITA: MOV 8.1RS>,R.0'
MOV <RHl+,HIGHBT
MOV I R.0' l , L OVB IT

IWRITX: MOV @21R5l,Rl
MOV @41R5),R3
MOV @61R5l,R4
MOV LOWB IT, R2
BIS HIGHBT,@#RKCS
.WRITC #AREA,Rl,R2,R3,#XMMCMP,R4
BCS ERROR
RTS PC

XMMCMP: BIC #6.0,@#RKCS
RTS PC

FUNCTION

ERROR: NEG R.0 ;GET ERROR INTO STANDARD FORTRAN TVPE
SUB #1 ,RB
RTS PC

. EVEN
AREA: .BLKW 1.0'
LOWBIT: .WORD fJ
HI GIJBT: . \.JORD .0'

.END

Page 230

Microcode Routines

Demultiplex Microcode

CALL VBINSC(A1,I1,A2,I2,G1,IG1,N)

Purpose:- To binary scale an input vector using a vector of binary

gain values

A 1 ••••••• AP address of input vector

I 1 ••••••. AP address increment for each element

A2 ••••••• AP address of output vector

A2 ••••••• AP address increment for each output element

G 1 ••••••• AP address of gain vector

IG 1 •••••• AP address increment for gain values

N ••...••• Number of vector elements to apply the gains to

CALL DMXA(A1,A2,I2,A3,A4,N)

Purpose:- To demultiplex and reformat a frame of SEG-A field data

A 1 o ••• o • o AP address of running gains vector

A2 •••••.• AP address of Field data

12. o ••••• AP address increment per data element

A3 •.••••• AP address of submultiplexed gain check

A4 •....•• AP address of Gain switch direction to use next

N •••.•.•• Number of points to demultiplex form the frame

Tri-Diagonal Matrix equation solver

CALL FACTOR(A1,I1,A2,I2,A3,I3,A4,I4,A5,I5,N)

Purpose:- To factorise a tri-diagonal matrix

A1 ••••••• AP address of the 1st diagonal, vector A

I1 ..••••• AP increment of the above

A2 .•••••• AP address of the major diagonal, vector B

I2 ••••••• AP increment of the above

A3 •••••.• AP address of the 3rd diagonal, vector C

I3 ••••••• AP increment of the above

A4 •••.••• AP address of the output L vector

I4 ••••••• AP increment of the above

A5 ••••••• AP address of the output U vector

I5 ••••••• AP increment of the above

N •••••••• Number of elements in the major diagonal

CALL SOLVE(A1,I1,A2,I2,A3,I3,A4,I4,A5,I5,A6,I6,N)

Page 231

Purpose:- to solve the Tri-diagonal matrix equation given the

factorised input

A1 •.••••• AP address of the Factorised L vector

Il .•••••• AP increment of the above

A2 .•.•.•• AP address of the Factorised U vector

I2 •.•.•.• AP increment of the above

A3 •••.••• AP address of the RHS vector

I3 ••••••• AP increment of the above

A4 ••••••. AP address of the C vector

I4.' ••••.• AP increment of the above

A5 •••••.• AP address of workspace vector

I5 ..••.•• AP increment of the above

A6 ••••••• AP address of X result vector

I6 ••••••• AP increment of the above

N •••••••• Number of elements in the major diagonal

Page 232

ST!TLE DMXA
SENTRY DMX.\, 6

" THIS PROGRAM DOES A FAST DEMUX
" OF SEG A FORMAT DATA PRESENTED AS A 4K
" BLOCK STARTING AT ADDRESS ZERO WITH THE
" PREVIOUS GAINS ELSEWHERE IN MEMORY
" THE GAIN ADDRESS THE DEMUXED OUTPUT ADDRESS AND INCREMENT AR'E INPUT
" TO THE ROUTINE ALONG WITH THE NO OF THE GAIN CHECK AND THE
" GAIN CHANGE DIRECTION

GAIN SEQU 18
DBASE $EQU 1
DINC $EQU 2
GCNT SEQU 3
DIR SEQU 4
N1 SEQU 5
DADR $EQU 6
DIRCK SEQU 7
DATA $EQU 7
IADR SEQU 118
TEMP SEQU 11
N SEQU 12
N27 SEQU 13
SYNC SEQU 14
BIAS $EQU 15
TWO SEQU 16
MASK $EQU 17
ERR SEQU 17

"END OF REGISTER ASSIGNMENTS START OF CODE
DMXA: LDSPI BIAS;DB=15.;FADD ZERO,ZERO

LDSP I TWO ; DB=2. ; FADD

PUSH:

LDSPI N27 ;DB=27.
LDSPI SVNC;DB=-1.
LDSPI MASK;DB=2/8/8
MOV GAIN,GAIN;SETMA
SUB DINC,DBASE;LDDPA;DB=l.
LDSPI N;DB=3/8.
MOV DBASE,DADR;INCMA
DEC N;INCDPA;DPY<MD
INCMA;BGT PUSH
MOV GAIN,GAIN;DPV<SPFN
CLR IADR;SETMA

OUTLP: MOV MASK,TEMP
INC IADR;SETMA
LDSPI DATA;DB=MD
SUB SYNC,DATA

SET:

E RRl:

ERR2:

ERR3:

LDSPI GAIN;DB=MO;BNE ERRl
AND GAIN,TEMP
LDSPI OIRCK;DB=l.;BNE SET
MOV SVNC,DIRCK
LDSPI TEMP;DB=31.
AND TEMP,GAIN
SUB GAIN,TEMP
ADD BIAS,GAIN;BEQ NEW
INC GCNT;SETDPA
LDSPI TEMP;DB=OPV
SUB GAIN,TEMP
SUB DIR,DIRCK;BNE ERR2
LDDPA;DB=l.;BNE ERR3
BR SKIP
LDSP I ERR; DB= 1.
RETURN
MOV GAIN,GAIN;DPV<SPFN
JMP SKIP
COf\'1 DIR

"SET UP CONSTANTS

"SET UP SAVE ON DPV
~sET UP BASE ADDRESSES

"MD-DPV SAVE LOOP

"SAVE GAIN ADDRESS
"SET UP MEMORY ACCESS

"PUT MASK IN TEMP

"CHECK SYNC BITS
"GOTO ERROR IF NE

"CHECK DIRECTION BIT

"CLEAR UNWANTED SYNC BITS

"ADD BIAS TO GAIN

"GET GAIN TO CHECK
"CHECK GAIN AND SUBMUX GAIN

"CHECK DIRECTION BIT
•sET UP FOR NEXT LOOP

"SET UP ERROR

NEW:
SKIP:

CONT:

SAME:

NMI~

FIN:

POP:

INC DIR
JMP SKIP
CLR GCNT;LDDPA;DB=l.
INC IADR;SETMA
LDSPI N;DB=3.0'.
LDSPI GAIN;DB=DPV
LDSPI DATA;DB=MD
MOVR DATA,DATA
BZC SAME
ADD DIR,GAIN
MOVL DATA,DATA;DPX<DB;OB=SPFN
BGE NMI
ADO TWO,DATA;DPX<DB;DB=SPFN
MDV N27,N27;FADD ZERO,MDPX
MDV GAIN,GAIN;DPV<DB;DB=SPFN;FADD
DPX<FA
LDSPE TEMP;DB=DPX
SUB GAIN,TEMP;FADD ZERO,MDPX
INC IADR;SETMA;FADD
DEC N;INCDPA
ADD DINC,DADR;SETMA;MI<FA;BGT CONT
COM DIR
INC DIR
INC DBASE
DEC Nl
MOV DBASE,DADR;BEQ FIN
JMP OUTLP
LDDPA;DB=31.
LOSPI TEMP;DB=OPV
CLR ERR;LDDPA;OB=l.
MOV TEMP,TEMP;SETMA;MI<DB;DB=DPV;INCDPA
LDSPI N;DB=29.
INCMA;MI<DB;DB=DPV;INCOPA;DEC N
BGT POP
RETURN
SEND

STITLE V3INSC
SENTRY VBINSC,7

uHERE EVERY 3.0' TIMES

"START OF MAIN LOOP

"SHIFT DATA WORD R

"TURN -1 TO +1 AND VV

• THIS IS A PROGRAM WHICH
" REDUCES THE EXPONENT OF A
" FLOATING POINT NUMBER BY A
" SPECIFIED AMOUNT

S-PAD DEFINITIONS
A $EQU .0' "VECTOR BASE ADDRESS

$EQU 1 "INC OF VECTOR A
C SEQU 2 "BASE ADDRESS OF RESULT
K SEQU 3 "INC OF VECTOR C
G $EQU 4 "GAIN ADDRESS
J $EQU 5 "GAIN INCREMENT
N $EQU 6 "NO OF VECTOR ELEMENTS
FACT SEQU 7 "GAIN VALUE
RES $EQU B "NEW EXPONENT

VBINSC: MOV G,G;SETMA;FADO ZERO,ZERO
MOV A,A;SETMA;FADD

LOOP:

SUB K,C
LDSPI FACT;DB=MD
LDSPE RES;DPX<DB;DB=MD
ADO J,G;SETMA
SUB FACT,RES;FADD ZERO,MDPX
ADD l,A:SETMA
LDSP: FACT;DB=MD
DEC N;FADD
ADD K,C;SETMA;MI<FA;BGT LOOP
RETURN
SEND

"GET GAIN AND INIT FADDER
"GET A<.0'>
"SET UP RESULT ADDRESS FOR LOOP
"GET GAIN ON S-PAD
"GET VECT ELEMENT EXPONENT
"INIT ACCESS TO NEXT G
"PUT NEW EXP ON THE NO.
"INIT ACCESSTO NEXT A
"GET NEXT GAIN ONTO S-PAD
"DEC COUNTER AND PUSH FADDER
"STORE RES AND GO FOR MORE

$TilLE
SENTRY
SEl<T

MPFACT.APS

FACTOR
FACTOR,13
DIV

" THIS IS A ROUTINE TO DO FACTORISATION
" OF A TRIDIAGONAL MATRIX
" C~LL FACTOR<A,AINC,B.BINC,C,CINC,L,LINC,U,UINC,N>

" WHERE A,B,C
" TRIDIAGONAL
" RESULTS

ARE THE THREE DIAGONALS OF THE
MATRIX AND L AND U ARE THE FACTORED

A
AINC
B
BINC
c
CINC
L
LINC
u
UINC
N

SEQU Rf
SEQU 1
SEQU 2
SEQU 3
SEQU 4
SEQU 5
$EQU 6
SEQU 7
SEQU 1RJ
SEQU 11
SEQU 12

" END OF ASSIGNMENTS
" BEGINNING OF MAIN CODE

FACTOR: MOV B,B;SETMA;FADD ZERO,ZERO
SUB CINC,C;FADD
ADD AINC,A;SETMA
MOV U,U;SETMA;DB=MD;MI<DB;DPX<DB
DEC N

" START OF MAIN CALCULATION LOOP

LOOP: ADD CINC,C;SETMA;DPV<MD
.JSR DIV
FNUL DPX,t4D;ADD BINC,B;SETMA
FMUL
FMUL;ADD LINC,L;SETMA;MI<DPX
FSUBR FM,MD;AOD AINC,A;SETMA
FAOO;DEC N

"GET 8(1) AND CLEAR ADDER
"S.ET UP C ADDRESS
"GET A<2>
"GET U<1> AND SAVE ON DPX
"DEC COUNTER

"INIT C GET DO A/U

nL"'C GET NEXT B
"PUSH MULTIPLIER
"SAVE L
"B-L*C GET NEXT A

ADD UINC,U;SETMA:MI<FA;DPX<FA;BGT LOOP
"PUSH ADDER AND DEC COUNTER
"SAVE U IN MEM AND DPX

" END OF MAIN LOOP CHECK FOR ERRORS

CLR 17;BFPE ERR
RETURN

ERR: INC 1 7
RETURN

$TITLE SOLVE
$ENTRY SOLVE,15
SEXT DIV
$EXT SPUFLT

" MPSOLV.APS
" THIS IS A ROUTINE TO SOLVE A TRIDIAGONAL
" MARIX SET OF EONS ONCE THEY HAVE BEEN FACTORfSED
" BY t-IP FACT .APS
" CALL SOLVE<L,LINC,U,UINC,RHS,RHSINC,C,CINC,Y,YINC,X,XINC,N>
" L AND U ARE THE FACTORD COEFFICIENTS
" RHS IS THE RIGHT HAND SIDE
"C IS THE TOP DIAGONAL OF ORIG MATRIX
" V IS TEMPORARY STORAGE
" A~D X ARE THE RESULTS

L
LINC
u
UINC
RHS
RHSINC
c
CINC
y
YINC
X
XINC
N

SEQU
SEQU
$EOU
$EQU
$EOU
SEOU
SEQU
$EQU
SEQU
$EQU
SEQU
SEQU
$EQU

g
1
2
3
4
5
6
7
18
11
12
13
14

" END OF ASSIGNMENTS BEGINNING OF MAIN INTRO

SOLVE: MOV N, 17
JSR SPUFLT
MOV RHS,RHS;SETMA
ADD L!NC,L;SETMA;FSUBR TM,DPX<l>
ADD RHSINC,RHS;SETMA
MOV Y,Y;SETMA;MI<DB;DPX<DB;DB=MD

" START FIRST MAJOR LOOP

LOOPA: FMUL DPX,MD;AOD CINC,C;FADO
FMUL;OPY<MD;AOO UINC,U

AGET N ONTO SPAD 15
" FLOAT. IT
" SET UP STARTING ADDRr-SSES
"MANIPULATE COUNTER

"G!T RHSCll

"INC C ADDR MANIP COUNTER
"PUSH MULT GET RHS

FMUL;FSUBR TM,FA;ADD LINC,L.;SETMA
FSUBR FM,OPY;ADO XINC,X

"GET NEXT L
"RHS-L*V

FADD ZERO,FA;AOD RHSINC,RHS;SETMA
ADD YINC,V;SETMA;MI<FA;DPX<FA;BFGT

"PUSH ADDER GET NEXT RHS
LOOPA " GET NEXT V CHECK FOR LOP END

' E~J OF LOOP ONE NEXT SET UP FOR CALC
' WHICH FINALLY GET US X

MOV U,U;SETMA;FADD ZERO,ZERO
SUB CINC,C;SETMA;FADD
DEC N;DPV<DPX
DPX<MD;ADD XINC,X
JSR DIV
FMUL DPX,MD;SUB VINC,V;SETMA

" START OF LAST LOOP

LOOPB: FMUL
FMUL;SUB UINC,U;SETMA
FSUBR FM,MD;SUB CINC,C;SETMA
FADD;SUB XINC,X;SETMA;MI<DPX
DPY<FA;DPX<MD;JSR DIV

DEC N

"G!T U(Nl ZERO ADDER
"GET C<N-ll
" DEC COUNTER GET V<Nl

" SET UP X<Nl

"X<Nl*C<N-ll AND GET NEXT V

"PUSH MULTIPLIER
"G!T NEXT U
"V-REST NEXT C

"SAVE X<N>
" GET X<N-ll/U<N-2>

BGT LOOPB;FMUL DPX,MO;SUB VINC,Y;SETMA "DO MULT X*C/U

" END OF LOOP TIDY UP HERE

SUB XINC,X;SETMA;MI<DPX

" CHECK FOR ERRORS

CLR l?;BFPE ERR
RETURN

ERR: INC 17
RETURN

"SAVE X<l>

Page 233

Plotting subroutines

CONSYS

Consys was implemented from the version resident on MTS at

Newcastle, and full documentation is available from this source.

Basically it is a general contouring subroutine.

CALL CONTUR(X,IX,Y,IY,Z,IDX,CZ,NC,PTR,SWCHES,MINDIS,

NXL,XLOC,NYL,YLOC)

Arguments:-

X ••••• Floating point •.• Grid positions in X direction

IX •••• Integer •.••••••.• Number of X grid points

Y •••.• Floating point ••• Grid positions in Y direction

IY •..• Integer ••..•.••.• Number of Y grid points

z ••••• Floating Point ••. Virtual array containing values to be

contoured

Z(I,J)= Function of (X(I),Y(J))

IDX .•• Integer •••.•.••.• Declaration of column size for Z array

Z(IDX,IDY)

CZ .•.. Floating point .•. Values at which to have contour lines

NC ...• Integer •.•••....• Number of contour values

PTR ••• Floating point •.• Work array of size NC

SWCHES.Logical •.•.•.... 5 element array of logical switches

- draw XB,YB XT,YB border

2 - draw XB,YB XB,YT border

3 - draw XB,YT XT,YT border

4 - draw XT,YT XT,YB border

5 - label contours

Page 234

MINDIS.Floating point •• Minimum distance between contour labels

NXL •.• Integer .•••••.•.. Number of constant X points for labels

XLOC •• Floating point ••• Constant X positions for labels

NYL ••• Integer •••••..•.• Number of constant Y values for labels

YLOC •• Floating point •.• Constant Y positions for labels

Rasterising Interception

The rasterising interception program MPRASM picks up the

active vector plot file from the system disc and then is fully

interactive for the remaining options. The user is asked if

output is to disk or tape. If it is to disc he is then asked for

an output file name, or if it is to tape the drive number. The

plot is then rasterised and saved to the chosen medium. At the

end of the program the total number of raster lines generated is

written out for later use with the merge programs.

FORTAAI~ :v VZ2 . .0'4 THU .0'8-JAN-81 .0'.0':.0'3:57 PAGE .0'.0'1

SUBROUTINE CONTUR<X, IX, V, IV, Z, IDX, CZ, NC,PTR, SWCHES,
+ MINDIS,NXL,XLOC,NVL,VLOCl

C co~TUR PRODUCES COORDINATE PAIRS FOR DRAWING A PICTURE
WHICH iS A CONTOUR MAP OF THE DATA IN THE ARRAY z. Z IS A
)AT.\ SURFACE, I.E., Zti, Jl = F<X<Il, Y{J)).

c
c

c
c
c
,_

T-IE BASIC ALGORITHM FOR THIS ROUTINE WAS SUGGESTED BY:
G. W. HARTWIG, "CONTUR - A FORTRAN IV SUBROUTINE FOR PLOT
lNG CONTOUR LINES," BALLISTIC RESEARCH LABORATORIES MEMO
RANDUM REPORT# 2282, ABERDEEN PROVING GROUND, MARYLAND,
,'-lARCH, 1973. <NTIS ACCESS ION NUMBER AD-76.0' 437 >.

:HIS ROUTINE COMPRISES THE FIRST HALF OF HARTWIG'S ALGORITHM;
iT HAS BEEN MODIFIED TO REFLECT THE FACT THAT THE MOST COM
PUTATIONALLY EFFICIENT PROCEDURE IS TO QUICKLY REJECT SURFACE
SELLS WHICH CONTAIN NO CONTOURS. IF A CELL DOES CONTAIN ONE
OR MCRE CONTOURS, SUBROUTINE CTQQ IS CALLED TO COMPLETE
HARTWIG'S PROCEDURE, I.E., ACTUALLY FORM THE COORDINATE PAIRS
FOR THE CONTOUR LINES.

C THE FOLLOWING CODE IS FOR VERSION 1.2 OF CONSYS, PRODUCED
C 15 MAY, 1976. GNC

~z~z VIRTUAL Z<IDX,IVJ
o·,:·lJ REAL Z, X< IX>, V< IV l, CZ< NC I
'~.'5.04 REAL Il-liNOIS, XLOC<NXL>, VLOC<NVL>
;B~S LOGICAL*l SORTED, SWCHES<S>
;Jf.J% LOGICAL*1 LBLLOC, DISTOK
:1'J'Jl INTEGER*2 P.A.RERR, CONCNT, CCP1, NTEMP
~~B2 INTEGER*2 PL, PH
:.:.J9 INT:::GER*2 PTR{NCJ

nJlB ~CMMON /CONCOM/ LOWER, UPPER, XL, XR, XC, VL, VU. YC,
~ ZLL, ZUL, ZLR, ZUR

Z0lt INTEGER*2 LOWER, UPPER,ERRUNT
.. ~!l DATA !OMAX/16/,ERRUNT/7/

C~E:;(FOR OBVIOUS ERRORS IN THE PARAMETERS.

.. '' ~~ ; .. R ~ RR = fJ
F \ IX .GT. IDX) PARERR PARERR + 1

5 F \ '" L ,\ .LT. 2) PARERR PAR ERR + 1
.. , ~ ;:(IV • LT. 2) PARERR PAR ERR + 1
p ~ - ' IDX .LT. 2) PARERR PARERR + 1

:~: J :!. I NC • LT. 1) PARERR PARERR + 1

" PARERR . NE. .0') GO TO 986
5 (. fiOT. SWCHES{Sl}GOTO 1994

"!,"1 (J \1-l!.NDIS.LT.fJl PARERR = PARERR+l ·.)

t' < N)(L • '- T. fJlPARERR=PARERR+l
2 \ :l '.' L • LT. fJlPARERR=PARERR+l
4. I ·:;(L +NVL .l T .llPARERR=PARERR+l
b i?ARERR.NE.BlGOTO 1993

I

;.;;;. .. ,.,,:. -~ . .; .· -'-·-..---=--=~---"':-···---~--. ----·--:---r----~--

j
:i

VIIZ./64 THU .8'8-JAN-81 BB:B3:57 'PAGE 18112

c
C CHECK X AND V TO ENSURE THEY ARE IN STRICTLY ASCENDING
~ ORDER. NOTE THAT THE ERROR MESSAGE WHICH IS WRITTEN IF THEY
C ARE NOT SCARES THE USER INTO CHECKING BOTH ARRAYS, EVEN
C THOUGH THE CODE DOESN'T CHECK V IF X IS BAD. ,.. ·-

kf2l3E· 1994 DO 88B I = 2, I)(
.iJfJ39
.W41 08.0"
JJ/!42
B1!·43
~s4:.. sa J.

c
c
c

.0.0'46

.0'.iJd

.0'H49

.0'HSJJ

.0'.0'5l

.0'.3'52 2

.8'.0'53
H.0'54
.@'.0'55
~9156
.3ff'5-:;
M!'fi'5S
Zr!'51!
.0'.0'6l
.'U5Z 3
£1£1'53 A
tffi16 '~
.0ff5"
:C/Z57
.IJ.0'5':l
.iiXJ7Z S
J.0'7l
z.n:
.'!1~7"
~fJ7; .,
fffJ7'::
:J)J7:

c
c

c
c

IF< XCI> .LE.)((I-ll
CONTINUE

GO TO 988

DO 881 I = 2, IV
IF< V<I> .LE. V<I-1>
CONTINUE

GO TO 988

SORT THE ARRAY OF CONTOUR VALUES.

IF (NC • EQ. 1 > GO TO 5
DO 1 M = 1, NC

PTR<M> = M
CONTINUE

M = NC-1
CONTINUE
SORTED = .TRUE .
DO 4 K = 1, M

PL = PTRCK>
PH= PTR<l+Kl
IF< CZ<PHl .GT. CZCPL)

PTR<K> =PH
PTRCl+Kl = PL
SORTED = .FALSE •

CONTINUE
CONTINUE

IF< SORTED l GO TO 6
M = M - 1
IF< M • GE. 1 GO TO 2

GO TO 6
CONTINUE

OFS = 13
PTR< 1 > =
GO TO 6

CONTINUE
CZMAX = CZ<PTR<NC>>
CZMIN = CZ< PTR< 1 > >

GO TO 3

BEGIN THE CONTOURING PROCESS BY LOOKING AT EACH CELL IN THE
SURFACE IN TURN. FOR EACH CELL, WE ASK THE QUESTION, "DOES
THIS CELL CONTAIN ANY CONTOUR LINES AT THE USER-SPECIFIED
VALUES IN THE CZ ARRAY?" IF THE ANSWER IS NO, WE IMMEDIATELY
P~OCEED TO THE NEXT CELL. IF THE ANSWER IS VES, WE FIND
THE LOWER AND UPPER LIMITS IN THE SORTED CZ ARRAY OF CONTOUR
VALUES WHICH INTERSECT THIS CELL, AND PASS THIS INFORMATION
AND THE CELL COORDINATES TO SUBROUTINES CTQQ <VIA CONCOMl
WHERE THE COORDINATES FOR THE CONTOURS ARE PRODUCED.

.1'177 IYMl = IV - 1

• • :. '4 •••• j,.

FOR-:-~~.N lV .• V/12.114 THU /18-JAN-81 /1/1:/13:57 PAGE /1/13

6¥72 't'lJ,. V<l>
1667'.: DO 38 J = 1, IVM1
888£ VL VU
B/181 VU = V(J+l)
111182 VC = /I.S*<VL + VU>
/1/183 XR = X<1>
gg94 ZLR = Z<l, J)
II/ISS ZUR = Z<1, J+1)
8/186 DO 37 I = 2, IX
J/187 XL = XR
/IB8E XR = X<I>
11118~ ZLL = ZLR
&1190 ZUL = ZUR
ZZ9 J ZLR = Z< I, J >
BZ9Z ZUR = Z<I, J+l>
IIIJ93 ZMIN = AMINl<ZLL, ZUL, ZLR, ZUR>
BIJSo IF< ZMIN .GT. CZMAX > GO TO 37
/1896 ZMAX = AMAXl<ZLL, ZUL, ZLR, ZUR>
HZ97 IF< ZMAX .LT. CZMIN > GO TO 37
8/199 IF< ZMAX .Ea. ZMIN > GO TO 37
/11/11 DO 12 CONCNT = 1, NC
111112 ZIJ = CZ<PTR<CONCNT>>
111113 IF(ZIJ .LT. ZMIN > GO TO 12
~185 IF< ZIJ .GT. ZMAX > GO TO 37
-0'1.0"7 LOWER = CONCNT
.0U:f& UPPER = LOWER
1111J9 IF< UPPER .Ea. NC > GO TO 14
/1111 CCPl = CONCNT + 1
~112 DO 11 II = CCPl, NC
.0'113 IF< ZMAX .LT. CZ<PTR<II>> >

+ GO TO 14
.ill 1:
.(J1 1 =. - !
s: l
Zl 1 <' ~. z
.0' 1 1? ! 4

c
.~

c
c
c

Jl2.r
.Cl2Z
2i ~ .. 2 3
.OJ 2S
212 (;

0'12!:
JiJ 1 z ~·
.~' 3.2! 22
.0l31 23
.a' ·;:2
i'f .. :'4-
01 35

UPPER = II
CONTINUE

GO TO 14
CONTINUE

CALL CTQQ<CZ,PTR,NC)

IF THE USER SPECIFIED VIA SWCHES<5> THAT LABELS ARE TO BE
DRAWN, FIND OUT HERE IF THIS CELL IS A CANDIDATE FOR
LABELING, AND IF IT IS, CALL LABELR TO DRAW THE LABEL.

+

IF< .NOT. SWCHES<5> > GO TO 29
LBLLOC =.FALSE.
IF< NXL .Ea. II > GO TO 23

DO 22M= 1, NXL
IF< .NOT.<XL .LE. XLOC<M> .AND.

XLOC<M> .LT. XR> > GO TO 22
LBLLOC = • TRUE.
GO TO 27

CONTINUE
CONTINUE
IF< NVL .Ea. II > GO TO 27

DO 26M= 1, NVL
IF< .NOT.(VL .LE. VLOC<M> .AND.

,:; l 'J.,
_cC(\ :::9
:J13!i Z6
g\U' 27
xY' t L
.11 .. 3

;j i . .:~. r:
nu.i
-~'' 41

-~n 49
:'l Sif
.Zf!_ 01
-:r; sz
if l:; 3
_;r 1 .3-'
,(f: 5(;'

23
2J

33

r:

.;qs; 42

-""l 5 j
.a 16~ .:~"!

-: :6
-:~s7 4c
J! jS
. .J 1 7:

!;:~J ·]:35
.c ~ ~s
·' i _:6
.i 1 ~-- .,

,, - ---~

VIIJ2.164 THU IIJ8-JAN-81 flJIIJ:flJ3:57 PAGE IIJ/64

+ VLOC<M> .LT. VU> > GO TO 26
LBLLOC = .TRUE.

+

GO TO 27
CONTINUE

CONTINUE
IF< .NOT. LBLLOC l GO TO 28

IF< DISTOK<XC, VC,MINDIS> >

CONTINUE
CONTINUE

CONTINUE
CONTINUE

CALL NUMBER<XC, VC,IIJ.l, ZfiJ,flJ.flJ,4>

DRAW BORDER LINES, IF THE USER
VeCTOR THAT THEY ARE WANTED.

INDICATED VIA THE SWCHES

XL = X< 1)
XR = X< IX>
YL = Y< 1 l
YU = V<IYJ
IF(.NOT. SWCHES<l>} GOT042

CALL PLOT<XR, VL,+3>
CALL PLOT<XL, VL,+2J

CONTINUE
IF< .NOT. SWCHES<2>) GO TO 44

CALL PLOT<XL, VL,+3}
CALL PLOT<XL, VU,+2}

CONTINUE
IF< .NOT. SWCHES<3J > GO TO 46

CALL PLOT<XL, VU,+3>
CALL PLOT<XR, YU,+2)

CONTINUE
IFC .NOT. SWCHES<4> > GO TO 48

CALL PLOT<XR, VU,+3l
CALL PLOT<XR, VL,+2J

CONTiNUE
RETURN

HANDLE BAD PARAMETERS IN THE CONTUR CALL HERE.

CONTINUE
WR!TE<ERRIJNT, 997> PARERR, IX, IV, IDX, NC
WRITE<ERRUNT, 999>

CONTINUE
STOP

CONTINUE
WRITE<ERRUNT, 994>
WRITEIERRUNT, 999)

CONTINUE
S7GP

~ORHAT STATEMENTS FOR CONTUR ERROR COMMENTS.

V02.B4 THU BB-JAN-81 BB:B3:57 PAGE IJ/65

c
.0.:.'J4 3~'4 FOR!I'JATI' *"''"* ERROR: SUBROUTINE "CONTUR" HAS BEEN CALLED',

+ 'WITH EITHER THE X OR',/,6X,'THE V VECTOR (OR ',
+ 'BOTH> NOT IN STRICTLY ASCENDING ORDER.' l

.J; JS 0:97 FORt,AT(' **** THERE ARE ',I 1,' ERROR< S l IN THE PARA',
+ 'METERS IN A CALL',/,6X,'TO SUBROUTINE "CONTUR".',
+ DIAGNOSTIC INFORMATION FOLLOWS:' ,/,6X,'IX = ',
+ I15,' IV= I .Il5,/,6X, 'IDX = I ,I15,' NC = ',
+ I 15 >

J.~6 39q FORMAT<' ~*** DUE TO THE ABOVE ERROR, CONTUR WILL NOT ',
+ 'DRAW A CONTOUR MAP,' ,/,6X, 'BUT WILL INSTEAD '
+ 'IGNORE THE CALL.'>

S HANDLE ERRORS IN PARAMETERS TO CONLBL HERE.

~: ''37 1993
:".\ ;e
;:; l 89
.~, 96
0:3t

CONTINUE
WRITE<ERRUNT, 19981
WRITEfERRUNT, 19991

CONTINUE
STOP

PARERR, MINDIS, NXL, NVL

·- r~RM.'H STATEMENTS FOR CONLBL ERROR COMMENTS.
r

8192 1997 FORMAT!' ****ERROR: SUBROUTINE "CONLBL" HAS BEEN CALLED',
+ 'WITH N0',/,6X,'PRECEDING INITIALIZATION CALL '
+ 'TO SUBROUTINE "CONSET".' l

·. J93 1 ~93 O.C!\1·1ATI' **** THERE ARE ''I 1.' ERROR< s} IN THE I'

+ 'PARAMETERS IN A CALL T0',/,6X,'SUBROUTINE ',
+ '"CONLBL". DIAGNOSTIC INFORMATION FOLLOWS:' ,i,6X,
~ 'HINDIS = ',G13.6,/,6X,'NXL = ',115,' NVL = ',!15> Jl,. ·?~9 FORMAT<' ~w** DUE TO THE ABOVE ERROR, CONLBL WILL NOT ',
·!- 'INITIALIZE THE',/,6X,'CONTOUR LABELING ROUTINES,',
+ I BUT WILL INSTEAD IGNORE THE CALL. I)

,:.J 95 E~O

i/JHJ l

'J2'.0'2
J.l'l/3
:·:.·:::·
:J.;.;c;·s

_:rr<,]6
.. .;,}7

~·:r.J9
.J 1 l ,,.

l z ..

'" 1 3
.] .. 1 5
. ~(.t..I 1 6

ZZ1 8
.e-z~ 9
2.(.:::•

. ·.:>2 I
: ;22
,f23
72+
r~s

26

c ,-
c
c
·~

r .. ,.
'-

c .-..
r

~

~

c

VS2.S4 THU SS-JAN-81 SS:S4:52 PAGE SSl

LOGICAL FUNCTION DISTOK<X, V,MINDIS>
CJNTUR CALLS DISTOK TO SEE WHETHER A CONTOUR LABEL CAN
BE PLACED AT (X, Y} AND BE MORE THAN MINDIS UNITS AWAY
FROM ANY OTHER LABEL PREVIOUSLY PLACED ON THE CONTOUR MAP.
IF A LABEL CAN BE SAFELY PLACED ON THE MAP, DISTOK RETURNS
THE VALUE .TRUE. AFTER SAVING THE VALUES OF X ANDY IN A
DYNAMICALLY ALLOCATED LOCAL ARRAY. IF THE LABEL WOULD
FALL WITHIN MINDIS UNITS FROM A PREVIOUS LABEL, DISTOK
:;rr~PL'! RETURNS THE VALUE .FALSE.

TME FOlLOWING CODE IS FOR VERSION l.2 OF CONSVS, PRODUCED
i 5 MAY , 1 9 7 6 • G N C

REAL X, v, MINDIS
REAL COORD< 1.0'.0'>
I NTEGER*2 CURL EN
DATA CURLEN/.0'/,NCOORD/lSS/

DISTOK = .FALSE.
IF< CURLEN .LT. 1) GO TO 9
IF<CURLEN.GE.NCOORD>RETURN

DO 8 I= 1, CURLEN, 2
XI= COORD<!>
IF< ABS<X-XI> .GT. MINDIS GO TO 5

Y I = COORD< 1 +I >
IF< SQRT<<X-XI>**2+<V-VI>**2> .LE. MINniS >

+ RETURN
CONTINUE
CONTINUE

CONTINUE

DISTOK = .TRUE .
CCORD~l+CURLEN> X
COORD{2+CURLEN> Y
CU~LEN = CURLEN + 2
R:-:TURN
E ~JD

V!l/2.f14 THU .0'8-JAN-!H t7Jfi!:fl/5:1/8 PAGE St11

SUBROUTINE CTQQICZ,PTR,NC>
CTQQ IS CALLED FROM CONTUR TO PRODUCE CONTOUR COORDINATE
VALUES FOR THE GRID CELL BOUNDED BY XL AND XR, VL AND VU, AND
ZLL, ZUL, ZUR, AND ZLR. COORDINATE PAIRS THUS PRODUCED ARE
DISPOSED OF VIA CALLS TO THE USER-SPECIFIED ROUTINES PLOT

c
c

AND CKVA. THE Z VALUES TO BE CONTOURED ARE STORED IN
CZI PTR< LOWER)), .•• ,CZI PTRI UPPER)).

THE ALGORITHM FOR THIS ROUTINE WAS TAKEN FROM:
G. W. HARTWIG, "CONTUR - A FORTRAN IV SUBROUTINE FOR
PLOTTING CONTOUR LINES," BALLISTIC RESEARCH LABORATORIES
MEMORANDUM.REPORT # 2282, ABERDEEN PROVING GROUND,
MARYLAND, MARCH, 1973. INTIS ACCESSION NUMBER AD-76!l/ 437>.

THE FOLLOWING CODE IS FOR VERSION 1.2 OF CONSVS, PRODUCED
15 rtiAV, 1976. GNC

~B~l REAL CZINC)
.:'13'.0'3 LOGICAL KCHKI 8 >, CENTER
3P34 REAL PXI8l, PV{8), PTEMP
'i.f.n EQUIVALENCE IPXIll, PXll, IPX<2>, PX2l, IPXI3l, PX3>,

+ !PXC4l, PX4>, IPX<S>, PXS>, IPX{6}, PX6l,
+ IPXI7>, PX7l, <PXIS), PX8>

''.""·:-6 EQUIVALENCE IPVIll, PVl>, IPVC2), PV2>, <PVI3>, PV3>,
+ CPV{4}, PV4>, IPV(5), PVSJ, IPV(6}, PV6>,
+ IPV<7>, PV7}, IPVI8), PVS>

,r~7 INTEGER*2 PTRINC>

~~~~ COMMON /CONCOM/ LOWER, UPPER, XL, XR, XC, VL, VU, VC, 
+ ZLL, ZUL, ZLR, ZUR 

:0~9 I~TEGER*2 LOWER, UPPER 

'~ll ~C = B.S*IXL + XR> 
II XLMXR XL- XR 

Ji:Z XLMXC • XL - KC 
'J13 ~RMXC XR - XC 
; !'I t + V UW C Y L - Y C 
:c~5 Y~MVU YL- YU 
7J:6 VUMVC YU - YC 
"~l7 ZC = B.25*1ZLL + ZUL + ZLR + ZUR> 

18 DO 12~ LEVEL = LOWER, UPPER 
.ul9 ZD = CZIPTRILEVELll 

,-<t.J1 TLL ZLL - ZfiJ 
· ' : I T U L Z U L - zg 
•:z TLR ZLR - zcr 
~3 TUR ZUR - Z!iJ 

.. ·. :'4- TC ZC - zg 

.l 5 
6 

,, 7 

IC = fJ 
CENTER = • FALSE. 
DO 11 f'1 = 1 , 8 



.'CRT :AN 

ZB28 
,J.JZ' 

.!"1}11 
0"1f32 
f1'ff3.3 
:.J.J3!i 
o.1W26 
Y~i37 

l 1 
,_ 
l~ 

~ 

::.-.'3~ 
h'i119 i 2 
.iJ.rrU 
;HH2. 
.d .>!'4 '3 
3';·H 
'if>j45 

:·2547 
"'''HI 
r'.'''9 
:'SJI' 
00'S2. 
··.e-: 3 
."""'5.f. 
J.;c=; l5 
·~'!.15G 
.::~fS7 

:il:"5E 
.. ·1:: g 13 
:.'.\HiJ5 : ,, 

.J;"6l , .. ,, 
·H 

:'.66 
:{;(61 

<68 
_;1.'69 
~ ~:1!1f 

:'~;71 
·:;171 
. ''14-

.J .. '75 
' . 76 
J'77 
.'.<i78 
: .. 19 
: ;;iUf 

·8 I 
s 
9 

IV Vl62.164 THU 168-JAN-81 1616:165:168 

KCHK<M> .FALSE. 
CONTINUE 

SEGMENT 1 : 

IF< TLL*TLR .GT. 16. GO TO 19 
KCHK<l> = .TRUE. 
IF< TLL*TLR .Ea. 16. GO TO 12 

IC = IC + 1 
PX<IC> = TLL * XLMXRI<ZLR-ZLL> +XL 
PV<IC> = VL 
GO TO 18 

CONTINUE 
IF< TLL .Ea. g, GO TO 15 

IC = IC + 1 
PX( IC > = XR 
PV< IC > = VL 
GO TO 17 

CONTINUE 
IC = IC + 1 
PX(IC> =XL 
PV<IC> = VL 
IF< TLR .NE. B. GO TO 16 

IC = IC + 1 
PX< IC> = XR 
PV< IC > = VL 

CONTINUE 
GO TO 17 

CONTINUE 
GO TO 18 

CONTINUE 
CONTINUE 

SEGMENT 2: 

!FI TLL*TC .GT. 16. > GO TO 29 
KCHK<2> = .TRUE. 
IF< TLL*TC .Ea. 16. GO TO 22 

IC = IC + 1 
fAC = TLL/(ZC- ZLL> 
PX<IC> = Y.LMXC*FAC +XL 
PVCIC> = VLMVC*FAC + VL 
GO TO 28 

CONTINUE 
IF< TC .NE. 8. > GO TO 25 

CENTER= .TRUE. 
IC = IC + 1 
PX<IC>=XC 
PV<IC> = VC 

CONTINUE 
GO TO 28 

CONTINUE 
CONTINUE 

PAGE 16162 



FO'<TAAtf IV VB2.S4 THU BS-JAN-81 BB:S5:B8 

."<'0'82. 
'~ '34 
:·as 

.. ·.~!'6 7 
"D8fJ 
.·;;a, 
: ·g~ 

'"Q,'91 32 
.':':11 
:IZJ4-
'.i.i9~ 
U'96-

_:;n1 2 s 
._,J9!> 
.JV?9 '38 
:·: "'/l' 3 9 

S<:Gr-tENT 3: 

IF< TUL*TLL .GT. S. GO TO 39 
KCHK<3> = .TRUE. 
IF< TUL*TLL .EO. S. GO TO 32 

IC = IC + 1 
PX<IC>=XL 
PV< IC > = TLL t~ VLMVU/( ZUL-ZLL > + VL 
GO TO 38 

CONTINUE 
IF< TUL .NE. B. GO TO 35 

IC = IC + 1 
PX<IC>=XL 
PV< IC> = VU 

CONTINUE 
GO TO 38 

CONTINUE 
CONTINUE 

c. SEGMENT 4: 

.01 J' t 
. 'J''] 

.(.' "-J-4 
0' :us 
:J: Jt. 
j.'f -~ ii7 
~,' ;Je ,( s 

': \J9 
- ; : I 
·L: :;t 
'.: 4 

" -~ 

-·: •. (, 

~~' i ~ 
J' :: l 
T' ::~ 

·" .. ::' .. ~ 4 s s 
f - ;: s' 
::, Zt: 2 

.:· ·: ::.7 '3 

., . --:t 
::. jiiJ' 

- l 

!F( TUL*TC .GE. B. ) GO TO 49 
KCHK<4> = .TRUE • 
IC = IC + 1 
FAC = TUL/{ZC - ZUL> 
PX<IC> = XLMXC*FAC +XL 
PV<IC> = VUMVC*FAC + VU 

CONTINUE 

~E:".;MENT 5: 

IF{ TUL*TUR .GT. S. GO TO 59 
KCHK<S> = .TRUE. 
IF< TUL*TUR .EO. B. GO TO 52 

IC = IC + 1 
PX<IC> = TUL tr XLMXRI<ZUR-ZUL> +XL 
PY< IC> = VU 
GO TO 58 

CONTINUE 
IF( TUR .NE. B. GO TO 55 

IC = IC + 1 
PX<IC> = XR 
PV<ICl = YU 

CONTINUE 
GO TO 58 

CONTINUE 
CONTINUE 

SF.G:'IF.NT 6: 

TF< TUR*TC .GE. fJ. > GO TO 69 
KCHK(6) = .TRUE. 
IC = IC + 1 
FAC = TURI<ZC - ZUR> 

PAGE BB3 



.•--. =-~ .,---,,~·-· 

w1n 
.0'134 
8'13: 69 

c 
c 
c 

fi13E 
r:r1r 
.Jl 3~ 
f'14.!t 
SJ-1 4l 
fl'! 4;.: 79 

c 
r: 
c 

.0'1 43 

.0'1 4S 

.0'1 4 i 

.Ci t7 

.0'1 ·F 
!J) 4S 
XJ! SJ' 89 

c 
c 
c 
'= 

.0-l '51 
~1 53 

;:n 5~ 
11 s:· 
.Jl 5~ 
.:? l sc, 
J~ 5 i 

111 '"' ;;;, 

2"1 
.. 

-'" -· s. 
" _..., 6: 

/:>'' 
,Q ..:. & JZ 
;r 6: 
... o: 93 
. , 

·. JV 94 
.(f 7 
.,;; i ~:; 
c--r 7 1.1 "' -r .. 
.f 

' ·:<; 7" 

/Jj I ·. 

r · .. 

" 3 c~ .. .: I 

"' '3 ~ 
j 

V!IZ.fl4 THU fiB-JA~-81 flfl:fl5:fl8 

PX<IC> = XRMXC~FAC + XR 
PVCICl = VUMVC*FAC + VU 

CONTINUE 

SEGMENT 7: 

IF< TLR*TUR .GE. S. GO TO 79 
KCHK<7> ., .TRUE. 
IC = IC + 1 
PXC IC> = XR 
PV<IC> = TUR * VLMVU/CZUR-ZLR> + VU 

CONTINUE 

SEGMENT G: 

IF< TLR*TC .GE. fl. > GO TO 89 
KCHK<B> = .TRUE. 
IC = IC + 1 
FAC = TC/CZC - ZLR> 
PX<IC> = XRMXC*FAC +XC 
PV<IC> = VLMVC*FAC + VC 

CONTINUE 

PAGE 11114 

NOV DERIVE THE LINE SEGMENTS TO BE DRAVN FROM THE CONTENTS 
OF THE PX AND PV ARRAYS. 

IF< IC .LE. 1 > GO TO 117 
IF< IC .GE. 6 .OR. 

+ ( IC .Ea. 5 .AND. CENTER> > GO TO ·IllS 
IF< .NOT. KCHK<B> > GO TO 95 

DO 94 L = 1, 7 
LS=L 

IF< .NOT. KCHKCL> > GO TO 93 
PXCIC+1l = PX<ll 
PVCIC+1) = PVCll 
DO 92 M = 1, IC 

PX<M> = PX<M+1 l 
PV<M> = PVCM+l > 
CONTINUE 

IF< MODCLS, 2) .Ea. 1 l GO TO 95 
CONTINUE 
CONTINUE 

GO TO 97 
IF< .NOT. CENTER .OR. KCHK<l> l GO TO 97 

PTEMP = PXl 
PX1 = PX2 
PX2 = PTEMP 
PTEMP = PVl 
PVl = PV2 
PV2 = PTEMP 
GO TO 97 

CONTINUE 
CALL PLOT<PXl, PV1,+3} 
DO 98 M = 2, IC 



~ORI kA1i IV V2J2./14 THU 118-JAN-81 8/1:/15:/18 PAGE 11115 

0'184 PXM = PX<M> 
~-:a:- PVM = PV<M> 
.J:36 CALL PLOT< PXM, PVM,+2) 
:J 1 31 98 CONTINUE 
~.as GO TO Ul'9 
e;39 lfifif CONTINUE 
'-I 9.f8 IF< IC .GE. 6 GO TO 1/14 
H9~ PX6 = PX5 
i9) PV6 = PV5 

rl 9 .. PX5 = PX2 
19') PV5 = PV2 
d' : :i}t, CONTINUE 

'191 IF< KCHK<2> ) GO TO 1/15 
T l-::: 9 CALL PLOT<PX5, PV5,+3) 
·:zw CALL PLOT< PX6, PV6,+2> 

2:'.'}1 CALL PLOT< PX 1, PV1,+2> 
":::n CALL PLOT< PX2, PV2,+3) 
0'21Jl CALL PLOT< PX3, PV3,+2> 
i~2.r3' CALL PLOT<PX4, PV4,+2) 
--- =-~-'S GO TO 1118 
,J;::-36 1H5 CONTINUE 
22:J1 CALL PLOT<PX1, PV1,+3) 
::-,_~& CALL PLOT<PX2, PV2,+2> 
?.:29 CALL PLOT< PX3, PV3,+2) 
i2 Ll-: CALL PLOT< PX4, PY4,+3) 
C!.ll CALL PLOTCPX5, PV5,+2) 
-0'212 CALL PLOT<PX6, PV6,+2> 
.J2 1 3 GO TO 1/18 
_(;1'2 1 J l.0'8 CONTINUE 
:J'"1'J-.;:_ 1 ~ GO TO 1/19 
t> ~ l' :;Jg CONTINUE 
~ ~: : 7 ~ 1; CONTINUE 
::ie 12;]' CONTINUE 
"?.1' RETURN 

c 
~~ 2.:2 END 



C-T PROGRAM RASM 
c 
C-F 
c 

MAIN PROGRAM FOR VECTOR TO RASTER CONVERSfON - MAPP-ED ALGORITHM 

C COPYRIGHT C1976, VERSAT"EC INC., SANTA CLARA, CALIFORN:IA 95.0'51 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE CONTENTS: OF THIS DOCUMENT ARE PROPRIETARY TO VERSATEC, INC;, 
AND ARE NOT TO BE DISCLOS~D TO OTHERS OR US~D FOR PURPOSES OTHER 
THAN INTENDED WITHOUT THE WRITTEN APPROVAL OF VERSATEC. 

CALLS: DOPEN, DREAD, DWAIT ,MWAIT, PREAD, I.NVECT, CYCL.ER, IRZERO 
CALLED BY: -NONE
COMMON VARIBLES USED: /PPEP2/ ISCAN,NWORD,LYNEND,IC,MAXQ,N~f'L, 

MSGL VL, LOST, I XB, I Y 1, NDL TX, I YZ, 
IBUFG,IZFLG,IRZ,MXSTEP,IM 
LBLK,NBLK,LREC,JUNIT,LUNIT~IPARM, 
MUNIT 

ASSUMPTIONS: 

/IOCOM/ 

WH£N THE 'IM' OR 'INBUF' ARRAYS ARE DIMENSIONED 
OTHER CHANGES ARE AS FOLLOWS: IF IM< 'I'> THEN SET 
'IMD' ='I'; IF INBUF('J') SET 'INBUFD' = 'J'. 
'J' MUST BE AN rNTEGER MULTIPLE OF AND GREATER 
THAN OR EQUAL. TO Z*<NBLK*LBLK>. 

C-P 5.0'B3B-2.0'5B3 REV. A 
c-s RT-11 

- PART NUMBER 
- OPERATING SYSTEM 

c 
c 
c 
c 
c 

AUTHOR: M.D. DOBERVICH 

PROGRAM RASTER 

.0'7/.0'7/76 

COMMON 
1 

/PPEP2/ISCAN,NWORD,LYNEND,IQ,MAXQ,NEPL, 

2 
3 
4 

NBITS, IBTC 16} ,KBT< 16 > ,JBT< 16 > ,MSGLVL ,LOST, 
IXB,IYl,NDLTX,IYZ, 
NDW,NDB,NRUN,ISUM,NDLTV, 
IBUFG,IZFLS,IR2,MXSTE~. 

N IMC35.0'.0'J 
c 

COMMON I IOCOM/ LBLK, NBLK, LREC, LVEC, I UN IT, J UN IT, KUNrT, L UN IT ,MUNIT, 

c 
c 

c 
c 

1 IPARM,IPCTR,IPREC,IPBUF(256> 

DIMENSION INBUF(512> 

DATA IMD/35.0'.0'/,INBUFD/51.2/,MAPEND/6.0'.0'/ 

DATA IREC/.0'/,IOLD/1/,MAPKEY/1.0'2/ 

1 FORMAT 
C-D 2 FORMAT 

2 FORMAT 
3 FORMAT 
4 FORMAT 
6 FORMAT 

CZSH FILE/ALGORITHM MISMATCH ,I6> 
C21H IX.0',IY1,NDLTX,IY2 = 4(1XI6>> 
<21H IXB,IY1,NDLTX,IV2 = 4ClXI6J> 
C44H IM OR INBUF ARRAY NOT PROPERLY 
<21H MAP BUFFERS EXCEEDED> 
<1Xl6,13H VECTORS LOST I 

1 1XI6,18H ACTIVE LINES USED /) 
c 
C ... ATTACH THE MATRIX TO THIS JOB. 
C ..• FORM FEED AT PLOT/FRAME START. 
c 
C ... OPEN MAP/PARAMETER FILE. 

c 

CALL DOPEN <IPARM,-1,1) 
CALL MTXSET 
CALL MTX<IM<IBUFGJ,.0',2J 

C •.. CHECK ALGORITHM KEY. 

D !MENS ION ED > 



CALL PREAD <KEV,11 
IF IKEV.EO.MAPKEVJ GO TO 7fllfl 
'WRITE <MUNIT, 1 > KEY 
STOP 

_c 
711118 CALL PREAD <NSCAN,1l 

CALL PREAD <IR1,ll 
CALL PREAD < I R2, 1 l 
CALL PREAD < I SCAN, 1 l 
CALL PREAD <NWORO,ll 
CALL PREAD <I2FLG,ll 
CALL PREAD <IOUTl,l> 
CALL PREAD < MXSTP , 1 > 
CALL PREAD <MSGLVL,l> 
CALL PREAD <I\JORD,ll 
CALL PRE AD <LYNES,ll 
CALL PRE AD <NBLK,I> 

c 
LREC = LBLK * NBLK 
I.BLKSZ = 2*LBLK*NBLK 

c 
C... INPUT AND OUTPUT BUFF£RS DIMENs-IONED PROP:ERL V? 

c 

IF (MOD< I BLKSZ, I NBUFD l. EQ • .0' .AN.D. IBLKSZ. LE. I NBUFD .AND. I WORD. LE. IMD > 
1 GO TO 71811 

'WRITE ( MUN rT, 3 > 
STOP 

7.0'11 INE'W = LREC + 1 
c 
C ••• OPEN MAPPED VECTOR FILE 

CALL DOPEN <JUNIT,-l,NBLK> 
c - -
c ... INPUT MAP ENTRIES FOR CURRENT PLOT AT START OF THE IM ARRAY. 
c 
c ... ALLOW DYNAMIC MAP SIZE ALLOCATION ONLY IF- VECTOR QUEUING IS U.SED. 

IF <LYNES.NE.I8> MAPEND • <I'WORD-<NEPL*LVNES>- <I2FLG*ISCAN1> 
7.0'218 MAPSZ = 1 
7H3H CALL PREAD <IM<MAPSZ},2} 

c 
c ... 

c 

END OF MAP FOR THIS PLOT? 
IF <IM<MAPSZl.LT.Hl GO TO 7H4H 
MAPSZ = MAPSZ + 2 

C ••. DOES MAP SIZE ~IT 'WITHIN THE MAXIMUM MAP ALLOCATION AREA? 
IF <MAPSZ.LT.MAPENDl GO TO 7H3H 

c 
C ••. MAP BUFFERS EXCEEDED. 

'WRITE <MUNIT,4l 
STOP 

c 
C... CHECK FOR END OF ALL PLOTIING. 

7H4H IF <r~APSZ.EQ.l> GO TO 77HH 
MMAXX = IM<MAPSZ+ll 
IQNDX = MAPEND 

c 
C •.• IF VECTOR QUEUING IS USED THEN MAP ALLOCATION BECOMES DYNAMI·C. 

IF <LYNES.NE.Hl IONDX = MAPSZ 
c 
C .•. CALCULATE NSCAN , N'WORD AND ALLOCATE BUFFERS IN IM ARRAY. 

NSCAN = <I 'WORD - < NEPL *LYNES l - ION OX> I< I2FLG* I SCAN l 
NWORD = ISCAN*NSCAN 
LYNEND = I'WORD-IQNDX-< I2FLG*N'WORDl - 1 
IBUFG = LYNEND + IONDX 
IR2 = IBUFG+N'WORD+l 



c 
C ••. INITIALIZE ASSEMBLY LANGUAGE ROUTINES 

CALL !NIT <IM<IBUFG>,IM<IR2>,IM<ICND><» 
c 
C ••• CONVERT IOUTl AND MXSTP VALUES TO lOUT AND MXSTEP.BAND VALUES. 

c 

Ml<STEP = MXSTP/NSCAN 
lOUT = IOUTl/NSCAN 

C... INITIALIZE JREC AND MAP SEARCH POINTERS. 

c 

NREC = CCMAPSZ+ll/2)- 2 
JREC = NREC + IREC + 1 
NDXFTR = MAPSZ - 4 
NDl<PST = MAPSZ - 2 

C... RESET INITIAL BAND LIMITS AND' COUNTERS. 

c 

IXSTR = g 
Il<END = NSCAN-1 
IXSTRP = IXSTR 
NBANDS = fJ 

C ••. READ INITIAL BUFF~R· 

c 
CALL DREAD <JUNIT,INBUFCIOLD>.JREC> 
CALL IRZERO CIM<IBUFG>> 

C... WAIT FOR LAST READ OP.ERATION COMPLETE 
7l!JIJ CALL DWAIT CJUNIT, IERR> 

c 
c - - - - - - - - - - - - - - - -
C ••• SEARCH MAP FOR VALID VECTOR BLOCK TO READ. 
c 

c 

c 

IJMP = 1 
GQ TO 7121J 

7111J NDXFTR = NDXFTR - 2 
NREC = NREC - 1 

C ..• HAS ENTIRE MAP BEEN SEARCHED? 
7121J IF <NDXFTR.LT.!J> GO TO 7131J 

c 
C .•• DOES MAXIMUM<VECTOR> START BEFORE CURRENT BAND? 

IF <IM<NDXFTR>.LT.IXSTR> GO TO 7ll!J 
c 
C... DOES MINIMUM <VECTOR> START AF~R CURRENT BAND? 

IF <IM<NDXFTR+ll.GT.IXEND> GO TO 71l!J 
c 
C... VALID VECTOR DATA FOUND. (INCREMENT MAP AND BLOCK rNDEX> 

NDXPRS = NDXFTR 

c 
c ... 

7131J 

c 

NDXFTR = NDXFTR - 2 
JREC = NREC + IREC 
NREC = NREC - 1 
GO TO 715.3' 

END OF 
NDXFTR 
NREC = 
NBANDS 
IJMP = 

BAND. CRESET MAP AND BLOCK INDEX> 
= MAPSZ -2 
<<MAPSZ+1l/2)- 1 
= NBANDS + 1 
fJ 

C... INCREMENT CURRENT BAND LIMITS. 

c 

IXSTR = IXSTR + NSCAN 
IXEND = IXEND + NSCAN 

C ... MORE BANDS IN THIS PLOT? 
IF CIXSTR.LE.MMAXXl GO TO 7121J 



c 

IJMP " -1 
GO TO 72JlJ8 

C... START INPUT OF NEXT BUFFER 
7158 CALL DREAD (JUNIT,INBUF<INE\O,JREC> 

c 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c ... RESET END OF 'OLD' BUFFER,BUFFER IN.DEX,ANO CURRENT MAPP MINIMUM. 
c 

1288 I BEND = LREC + !OLD. - 1 
JDX = IOLD - 4 
IM<NDXPST+ll = IM<NDXPST> 

c 
C... SEARCH FOR VAL.ID VECTORS IN THE CURRENT'BUFFER 

GO TO 7258 
c 
C ••• UPDATE 'NEW' MAP MINIMUM IF VECTOR: IS LESS THAN CURRENT MINIMUM. 

7228 IF <INBUF<JDXl.LT.IM<NDXPST+l)) IM<NDXPST+l) D INRUF<JDX> 
7258 JDX = JDX + 4 

c 
c... END OF I OLD I BUFFER? 

c 

IF CJDX.GT.IBEND> GO TO 727JlJ• 
IX8 = INBUF<JDX> - IXSTRP 

C... DOES 'RELATIVE' VECTOR START BEFORE BAND? 
IF <IX8.LT.8l GO TO 7268 

c 
C... DOES 'RELATIVE' VECTOR START AFTER BAND? 

IF <IX8.GE.NSCAN> GO TO 7228 
r. 
C... VALl D VECTOR LOCATED WITH! N BAND FOR VECTOR/RASTER CONVERSION. 

IY1 = INBUF<JDX+ll 
NOLTX = INBUF<JOX+2l 
IY2 = INBUF<JDX+3) 

C-0 IF <MSGLVL.GE.6l 'w'RITE<LUNIT,2> IXJlJ,IYl,NDLTX,IV2 
IF <MSGLVL.GE.6l \o/RITE<LUNIT,2l IX8,IY1,NDLTX,IY2 

c 

c 
c ... 

7268 
727fJ 

c 
c 
c - -
c .. . 
c .. . 
c 
c 

c 

CALL INVECT { IM< IQNDX >, IM< IBUFG > l 

TEST FOR POSSIBLE END OF BUFFER <DATA> 
IF <INBUF<JDX>.GE.JlJl GO TO 7258 
NDXPST = NOXPRS 

END OF CURRENT VECTOR INPUT BLOCK. 
IS STATUS - END OF PLOT,END OF BANO,BANO NOT COMPLETE? 

EOP, EOB, BNC 
IF <IJMP> 735fJ,74JlJJlJ,75JlJJlJ 

735JlJ CALL CYCLER <NBANDS,IM<IQNDXll 
c 
C ... LOOP UNTIL ACTIVE LINE TABLE IS EMPTY 

NBANDS = 1 
IF <IO.GT.l> GO TO 735JlJ 

c 
C ..• OUTPUT LAST BAND OF CURRENT PLOT. 

CALL CYCLER < 1, IM< IQNDX l l 
c 
C ••• ACTION CHECK: FORM FEED ONLY, NO ACTION , IOUT AND FORM FEED? 
C FFO, NA, IFF 

IF <IOUT> 737JlJ,738JlJ,736JlJ 
c 



C... CVCL£ lOUT TIMES TO MOVE PLOT /fRAME PAST TON.ER. 
736B CALL CYCLER ciOUI.~M<ICNOX>> 

c 
c ... 

c 

737B 
7388 

FORM FHD AT END OF PLOT /FRAME: 
CALL MTX <IM<IBUFGl,B,2> 
MAXQ = MAXQ/NEPL 
IF CMSGLVL.GE.ll 1,./RITE <MUNIT;6> LOST,MAXQ 
LOST = B 
MAXQ = B 

c ... ADJUST CUMULATIVE PLOT <RECORD> POINTER. 
IREC = IREC + <<MAPSZ+ll/2)- 1 
CALL M\JAIT 

c 
c ... CHECK FOR NEXT PLOT 

GO TO 7B2B 
c 
C... END OF BAND 

c 

74BB CALL CYCLER < NBANDS. IM< IQNDX)) 
NBANDS = B 
IXSTRP = IXSTR 

C... SI,./AF INPUT BUFFERS 

c 

75BB IS = INEI,./ 
INEI,./ = IOLO 
IOLD = IS 
GO TO 7188 

C... END OF ALL PLOTTING; 
77B8 CALL MTX <IM<IBUFG>,-1.2) 

STOP 
END 



VZ2.fiJ4 THU fiJ8-JAN-81 fiJfiJ:15:37 

C THIS IS A SUBROUTINE 
C PACKAGE WHICH IN CONJUNCTION WITH 
C MPRASM INTERCEPTS PLOT DATA INTENDED FOR 
c THE PLOTTER AND PUTS IT TO DISC OR TAPE 

SUBROUTINE MWAIT 

.0.'.n 
,.~i.J3 

C DIJHMV ROUTINE 

RETURN 
U!D 

VfiJ2.!64 THU 168-JAN-81 fiJH:l5:47 

SUBROUTINE MTXSET 
c 
..., SET UP ROUTINE 
c 

J~·2 REAL*8 FSPECR 
~~r3 REAL*4 FBUF<3> 
.l"'.CJI. LOGICAL*! ITPDRW 
TJ.0'S COMMON /MPMTX/ICH,IOFLG,IBLK,IWD,ITPDRW 

r· 

c GET DATA PARAMETERS 

'"Z6 IBLK=l 
Y~J7 IWD=l 
-:'2~8 '.JR I TE I 7, lfiJfiJfiJ l 
; ..• 9 ~.of:!/:J FOR~1AT<' ENTER A fiJ FOR TAPE OUTPUT,',!, 

~· OR A 1 FOR DISC OUTPUT:',$) 
:Wl.S' READIS,lfiJfiJlliOFLG 
y~ ll :.;·1:1 FOR~·1ATI I 1 l 

~ET FILE NAME IF REQD 

, .. lZ IF( !OFLG.EQ.fiJlGOTO lfiJ 
·'I 4 'dR I TE ( 7 , 1 fiJfiJ2 l 

:. lS ;J:T:'i~ FCi'lr·!ATI' ENTER FILE NAME FOR OUTPUT:' .Sl 
t:r. :6 REAJIS,lJJZ3lFBUF 

17 ~;3 ~ORMATI3A4l 
.~18 CALL IRAD5fiJ{12,FBUF,FSPECR> 
:!Zl9 ICH=IGETC< l 
~026 !FI IENTERIICH,FSPECR,-ll.LT.fiJlSTOP'ENTER ERROR' 
0~~2 R~TURN 

GET TJ\P:O NO 

.,.,- 3 : . .:J w':?. ITE { 7. lfiJfiJ4 l 
Of ' l.:'f.J.' FOR~lAT<' ENTER TAPE DRIVE NUMBER:',$) 

5 READIS,lfl'fiJlllTPDR\J 
6 R.ET!JRN 

li.i.Y 7 E !'!1:• 

PAGE f!Hl 

PAGE fiJfiJl 



; ~·"f?:' .. ' ·'· "·· V~2.0'4 THU 0'8-JAN-81 0'0':16:0'6 

SUBROUTINE MTX<IPBUF,NWDS,IFLAG> 

Vf[ff-J'l. 
Z.J.~3 
<) Jili4 
~13"£!5 
.0 e'if& 
JJ:::-.J7 
.Jx.•~rt 

c 
C MAIN TRANSFER ROUTINE 
c 

INTEGER*i IBUF<20'48J,IPBUFC1J,BUF<Z30'4J 
LOGICAL*l ISTAT,ITPDRW 
COr•1MON /MPMTX/ICH, IOFLG, IBLK, IWD, ITPDRW 
EQUIVALENCE <BUFI257J,IBUF<l>> 
DATA NBVTBF/460'8/,NBLKBF/9/,ICOUNT/0'/ 
DOSJ=l,U 

"i BUF<J>=B 

CHECK FOR OPERATION TYPE 

~~0'9 IFINWDS.EQ . .fflRETURN 
~~11 ICOUNT=ICOUNT+l 
x0J~ IFINWDS.LT . .fflGOTO 50'0' 

C SWC? DATA TO OUTPUT BUFFER 

srrt+ DO 10' J=1,NWDS 
BD'lS IBUFIIWDl=IPBUF<JJ 
L~l6 IWD=IWD+1 
~~11 IFIIWD.LE.20'48JGOTO 10' 
Z619 IFIIOFLG.EQ.BlGOTO 20' 

C O!SC OUTPUT 
c 

''21 IF<IWRITW<20'48,IBUF,IBLK,ICHJ.LT.SJSTOP'WRITE ERROR' 
~~23 IBLK=IBLK+S 
2J24 IWD=1 
~~:5 GOTO 10' 

c 
.- TA?E OUTPUT 

~~~6 ZZ IFLEN=NBVTaF 
·;~7 NEVT=NBVTSF
J!28 l~OTW=B

PAGE iiiJiil

di'C:':9 CALL TAPSUB< 1, ITPDRW, I STAT, IFLEN, !COUNT ,BUF ,NBVT, IEOTWJ
~H1~ !~D=l

C~~CK FOR ERRORS

-·~-~:JI IF< IEOTW.GE.BJGOTO 30'
:JJJ '•iRITE17,10'BB>ITPDRW,ICOUNT
:JiP4 U.0.J FORI'1ATI' EOT ON WRITE DRIVE:',I2,' BUFFER NUMBER:',ISJ
:z:.;s 1:IIU TE (7, 180'1)

::6 U::O! FORMAT<' ENTER NEW WRITE DRIVE NUMBER:',$)
,-:_;37 i~E£1015,10'/JZIITPDRW
3~J8 i9J2 FORMAT! II I
~~39 IEOTW=B
.~34 .. ' IF<ITPDR\J.GT.ZlSTOP' EOT TERMINATE'
·.r'l 3.:' IF< ISTAT.GE.ZlGOTO lB
~~44 ~RITE(7,1ZB3liCOUNT

V0'2, .Cf4 THU .0'9-JA!I!-81 0'.0':16~,0'5 PAGE ,0',0'2

8S~f lB£3 FORMAT<' FATAL ERROR ON WRITING BUFFER NUMBER:' ,!5)
B046 STOP' FATAL WRITE ERROR'
~IT47 12 CONTINUE
~~~~ RETURN 

C CCME HERE TO FLUSH BUFFIRS 

~~49 50H CONTINUE 
ZZtC DO 4B J=NWD,2~48 
'7'CJ ,\Z IBUF<Jl=.0' 
·1~1 IF{ IOFLG.EQ • .0'lGOTO 5.0' 

c•f:'f'H F< IWRITW<2~48,IBUF,IBLK,ICHJ.LT.~>STOP' WRITE ERROR' 
~;56 CALL CLOSEC<ICHl 
ZJ57 WRITE<7,1.0'1.0'>ICOUNT 
.0'358 RETURN 

c 
·- ;- ~USH TO TAPE 

ZffSt 5.0' IFLEN=NBLKBF 
BIE~ NBVT=NBVTBF 
3ZSl IEOTW=.0' 
iHY6f. CALL TAP SUB< 1, ITPDRW, I STAT, I FLEN, !COUNT, BUF, NBVT, IEOTW) 
3863 IF<IEOTW.LT • .0'>GOTO 6~ 

C AS ONLY FLUSHING BUFFERS IGNORE ERRORS 
c 

8Z5' BUF\ll='E' 
3BS6 SUF<2>='0' 
0J67 BUF!3J='D' 
JZ68 CALL TAPSUB< 1, ITPDRW, I STAT, IFLEN, ICOUNT,BUF ,NBVT, IEOTW> 
~!69 50 WRITE<7,1.0'1.0'>ICOUNT 
.· --:;:>; i.J'!i}' FORi11AT< I BUFFERS WRITTEN=.' IS} 
-~ ''71 RETURN 
%·. ·2 <:NO 



Page 235 

Utilities 

File Save/Restore Utility:- MPTPSV 

This program is completely interactive and the user is 

p 
prom~ed for most of the required input. When in command mode the 

program puts a "?" on the screen and awaits one of the 4 commands 

shown below. Any other input required is then promted. 

SAVE 

This causes a file to be written to tape. The program 

prompts the user for the file name and version number. 

REST 

This command causes a file to be brought and put back onto 

disc. The user is prompted for the file name and if necessary the 

version number. 

TDIR 

This command causes the program to compile a directory of the 

files on tape and put the output to either the printer or 

terminal. 

STOP 

This command causes the program to execute any queued restore 

jobs and then terminate the execution. 



~1£!.0'~ 
:"1.0;_;~;5" 

~·-·-:'.~, 

JL1JJ7 
OB£F: 
Z~Z0 

;.~: ;J 1.r 
£0"12 

.0f1E 
_:.:no 
.0.0"17 
~:f! 1:: 
-~.'? l '? 
ii02f 

'.:r?. ; 
:r-:.··:- . 

;~ .0 ~ -~:. 
. f ::! . -~ i.. 

_;~ -r·') -

-~f-__ ('2 ::: 
...~~, 

.: . r;r-: 
... J ,:_ ~ 

70'2 ( 
: .. : .:; .. 
. - ··- ) 

'l.J3 :_ 

· ... , -
.•. _,._ 

V/J2./J4 THU 88-JAN-81 BB:!J6:39 

c 
C M J POULTER JUL 1988 
C TAPE/DISC SAVE RESTORE PROGRAM 
.- VERSION 1 

PAGE BBl 

REAL•S FSPECR,FSPECW,FSPEC<lBBB>,DATE<lBB.0'>,NBUF,DBUF,FSBUF, 
%EOTCOD,OSPEC<2Bl,TPNUM,TODATE 

REAL•4 FBUF(3l,COMC4l,CBUF 
INTEGER*2 VNUM<lBBBl,SIZE<lBBBl,VBUF,SBUF, 

%I VN UM < 1 B l , IF NUM ( 1 B l, QNO< 2.0' >, BUF ( 1.0'24 l 
LOGICAL*! EOT,EOR,HBLK<2BJ,ANS,VES,NO,IDRV,ISTAT 
E Q U I VAL E N C E < H B L K ( 1 l , N B U F > , < H B L K < 9 l , DB U F > , ( H BL K ( 1 7 > , VB U F ) , 

X<HBLK<l9l,SBUFl 
COMMON/SERCH/FSPEC,DATE,VNUM,SIZE,HBLK,IFILE 
DATA DEV/3RRK /,FSBUF/12RDKBMPTPSVDATI,VES/'V'/,NO/'N'/ 
DATA COM<ll/'SAVE'/,COM<2l/'REST'/,COM(3l/'STOP'/,COM(4)/'TUIR'/ 
DATA EOTCOD/12REOTEOTEOTEOT/ 

C S~T UP I/0 CHANNELS 

IF<ICDFN<2Sl.NE • .0'JSTOP'CHAN OVERFLOW' 
IF< IFETCH<DEV>.NE.SlSTOP'FETCH ERR' 
ITR=IGETC< l 
IRD=2B 
1\JRT=Zl 
IFILE=.0' 
IQNUM=B 
EOR=.FALSE. 
EOT=.FALSE. 

C GET TODAYS DATE 

CALL GDATE<TODATE> 
TYPE IS 

Ul' FORMAT< I TAPE SAVE/RESTORE PROGRAM VERSION 
TYPE 15 

15 F OR~·1AT ( I ENTER TAPE NAME AND DRIVE NUMBER I } 

ACCEPT 16,TPNUM,IDRV 
1 ~ 
- 0 FOR~4AT<A8, I2 l 

TYPE 17 

1 • ) 

17 FORt-1AT< ' IS THE TAPE TO BE INITIALISED V/N: I,$) 

ACCEPT !8,ANS 
18 FORII1AT< All 

IF<ANS.EQ.NOlGOTO 19 

- TAPE INITIALISATION CODE 

,_ 

NBUF=TPNUM 
D3UF=TODATE 
ILEN=l 
CALL TPHAND<4,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2Bl 

C \JRITE EOT BLOCK AND REWIND TO BEGINNING OF BLOCK 



u.nr 

.'JfJH 
:~:; 4: 
fL 1·: 
/!i43 

V.0'2.flJ4 

~IBUF=EOTCOD 
ILEN=l 

THU .0'8-JAN-81 flJ.0':.0'6:39 

CALL TPHAND<4,IORV,ISTAT, ,ILEN,IFILE,HBLK,2.0') 
CALL TPHAND<6,IDRV,ISTAT,2,IL£N,IFILE, , > 
EOT=.TRUE. 
GOTO 1 

~ORMAL INTRO TO A SESSION 

lJ CALL TPHAND<2,IDRV,ISTAT, ,lLE.N,lFILE,HBLK,2flJ) 
IF<TPNUM.NE.NBUF>TVPE 11 

PAGE flJIJ2 

?'C{ 4 4 
,,·,:· ~ 5 
.·;';1, 7 

'''.{ 18 
:! FORMAT<' WARNING TAPE NAME DIFFERENT TO INIT VALUElll' > 

CALL TPHAND<S,IDRV,ISTAT,1,ILEN,IFILE, , > 

:-D49 
JZ56 
~;''51 
~'r: .t 

START OF MAIN SOFTWARE LOOP 

TYPE 2flJ 
2.0' FORMAT<' ?' ,$) 

ACCEPT 3.0',CBUF 
2fJ FORMAT< A4 > 

~ AFTER COMMAND RECEIVED DECODE IT 

~~~3 DO 4flJ I=1,4 
Z054 4.0' IF<CBUF.EQ.COM<I>>NCOM=I
:.·:~i GOTO < 1fiJX1.0',2f.J.0'flJ,3.0'.0'.0',4HH!lJ>NCOM

.:''JST

··~ ~.''j8 ;:;,-"'i9
~·2::-s-

. :.:.

C CODE FOR SAVEING A FILE

HJ.0'0' TYPE 1.0'10
~01~ FORMAT<' ENTER FILENAME TO BE SAVED,WITH VERSlON NUMBER'>

ACCEPT 1.0'2H,FBUF,NVNO
~S2B FORMATC3A4,I2l

CALL IRAD5.0'(12,FBUF ,FSPECR>

SST TO END OF TAPE TO SAVE THE NEW FILE

"'''Si IF< .NOT.EOT>CALL FSERCH<EOTCOD,IDRV,EOT>
07~4 EOT=.TRUE.

:f.J~::.

x~:· :-rs'
-~i:)68

(..:· .. 75:.
. :·· I

,::;7'1

QP~N FILE TO BE SAVED

ISIZE=LOOKUPCIWRT,FSPECR>
IcCISIZE.LE.H>GOTO 9.0'Hl
IF< ISIZE.GT.4> GOTO 1.0'5.0'
rNDS= IS IZE"'256
N8 YTS=NWDS*2
IF< I READW< NWDS, BUF ,flJ, I\JRT >. L T • .0' JGOTO 9HZ2

SET UP INTERNAL DIRECTORY

- :+ 1~55 IFILE=IFILE+!
7~ FSPECCIFILE>=FSPECR

,.. -,; -·-:' ',.
; . \, ; ' - 'i VZ2.34

376 DATEIIFILE>=TOOATE
~877 VNUMCIFILEJ=NVNO
ZfJ78 SIZE< I FILE >=I SIZE

c
C SET UP HEADER BLOCK
c

g0?S NBUF=FSPECR
C~8£ DBUF=TODATE
JU31 VBUF=NVNO
l~l2 SBUF=ISIZE

C ~RITE HEADER BLOCK

-' 93 ILEN=l
'::n.~ CALL TPHAND< 4, IDRV, I STAT, , !LEN, IF ILE ,HBLK,2?>

[fi1 8 5
'".0'06
r:.:}g:j

c
C W?-IT~ OUT THE FILE
c

c

ILEN=ISIZE
IFIILEN.GT.4JCALL TPHAND<3,IDRV,ISTAT, ,ILEN,IFILE, , J
IF<ILEN.LE.4>CALL TPHANDC4,IDRV,ISTAT, ,ILEN,IFILE,BUF,NBVTS'

C SEC. IF MORE SAVES RTO BE DONE

~a~~ CALL CLOSEC<IWRT>
~~9l TYPE 1838
~892 lZ3S FORMAT<' MORE FILES TO BE SAVED V/N ?',$)
Z.:Y:J3 ACCEPT U48 ,ANS
c~g~ :S43 FORMAT<Al >
r-3s IFIANS.EQ.VES>GOTO 188ft

WRITE EOT FILE IF NO MORE

"J97 NBUF=EOTCOO
~~ra ILEN=l
t;~g CALL TPHANDI4,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2S>

.':J' 1.0"";
:~ ~. ::: l

~E~IND TO BEGINNING OF EOT FILE

CALL TPHANDI6,IDRV,ISTAT,2, ,IFILE, , >
GOTO 1

C~DE FOR A RESTORE

~ J~ 2ZZJ TYPE 2Z1Z
"~ .J3 2Dl.IJ' FORMAT<' ENTER FILE TO BE RESTORED'>
,,LZ:4 ACCEPT 2f12f!,FBUF
_g~ ~~20 FORMATI3A4>
5~ C~Ll IRAD58112,FBUF,FSPECWJ

' ~7 IVER=S

::ARCH TO SEE IF FILE ALREADY PASSED

DO 2938 I=l,IFILE

VS2.Z4

31Z9 IFCFSPECY.NE.FSPEC<I>JGOTO 2.0'3.0'
0t!l IVER=IVER+l
:iY'l~ IFNUM<IVER>=I
!.J; 1 ~ IVNUM< IVER >=VNUM< I)
.:; l l" ZZ3Z CONTINUE
0:1s IFIIVER.LE.l>GOTO 2.0'4.0'

'-
: IF MORE THAN ONE VERSION FIND WHICH ONE REQUIRED
c

t:;l~ TYPE 2.0'5.0'
811& ZBSB FORMAT!' ENTER VERSION NUMBER REQUIRED:',$)
SiJS ACCEPT 2B68,NVNO
~!:~ 2S6B FORMAT<I2l
ZlZ: DO 2865 I=l,IVER
~:22 2865 IFINVNO.EQ.IVNUM<I>liFNUM(lJ=IFNUM<I>

:nz,t
Zl:S
"'.127
.J l 2 ~

.~f 1 3 I

c
C FINO OUT IF NEED TO QUEUE OR CONTINUE

2848 IF<IVER.NE.B>GOTO 287.0'
TYPE 285/8
ACCEPT 2.0'68,NVNO

zg42 CALL FSERCHCFSPECW,IORV,EOT>
IFI EOT>GOTO 2999
CALL TPHAND<2,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2B>

PAGE !3f!J4

.n ::

CALL TPHAND<S,IDRV,ISTAT,l,ILEN,IFILE, , >
IFINVNO.NE.VBUF>CALL TPHAN0(5,IDRV,ISTAT,2,ILEN,IFILE, , >
IFINVNO.NE.VBUF>GOTO 2842

W;37
.0 -, J t
::'14£'
:.r;. J.i.
:~; 4?
01 42
;; 4,i-

014:.
:;!4-
'·.A

, - S.i"
;'' ':·i

',?! ~;; •_:_

,-

ISIZE=SBUF+16
IF< I ENTER< IRD, FSBUF, I SIZE>. L T .8JGOTO 9883
CALL TPHAND<l,IDRV,ISTAT, ,ILEN,IFILE, , }
CALL TPHAND<S,IDRV,ISTAT,l,ILEN,IFILE, , >
CALL R58ASC(l2,FSPECW,FBUF>
TVPE 2!J4l,FBUF

2.0'41 FORMAT(' ENTER NE\.J NAME FOR TAPE FILE: ',3A4>
ACCEPT 282B,FBUF
CALL IRADS.eH lZ,FBUF ,FSPECW}
ISIZE=SBUF
IFIIENTERIITR,FSPECW,ISIZEJ.LT.8JGOTO 9/883
IBLK=.0'
DO 2.0'45 I=l,ISIZE
lFCIREADW<256,BUF,IBLK,IRD>.LT.8>GOTO 9884
IFII\.JRIT\.JC256,BUF,IBLK,ITRJ.LT . .0'JGOTO 9885
!8LI<=IBLK+l

:~5:145 COtlT!NUE
CALL CLOSEC<IRDl
CALL CLOSECI ITR l
GOTO 1

C 0 UT NAME IN THE QUEUE

2g7g IQNUM=IQNUM+l
!JSPEC< !QNUt'll=FSPECW
QNQ{ !QNUMl=IFNUM< 1 l

Z;,iSJJ IF I . NOT. EOR lGOTO 1

~r 5t
£ ~-

~ -I

~~ ' S<; -.. 6 ~? -.· ..
f '

..., s·· ..

-,
; ' 1

.-
'-

1 l :
:;: 7 -..
.0 -7~
-~ l 77
Jl 7 ~
01 79
lirl 8 I
<' 92
'f -82
.:! ! 3 ~
--~ l 8
') ' '3£· '
i.l 1 8 -
:J1. qs
B 2 8~'
g~ ~ ..

-~ .. 92
., 9 ~
•:n 9 /~
v ' J ...
t s~

-'
~-~

J 1 g:-

Z2:0~
.·c::J,•
:)(.8" ..
";'(''• .--,. c

:::::.8 :

V/82./84 THU /88-JAN-81 HZ:H6:39 PAGE 9Jg5

c
C COME HERE AT END OF RUN

c
;_

CALL TPHAND<7,IDRV,ISTAT, , ,!FILE, ,
IQ=Z
IFILE=l
CALL TPHAND<S,IDRV,ISTAT,2, ,!FILE, ,
N2=1

SORT QUEUE iNTO ORDER

IGAP=IQNUM
2.081 IF< IGAP.LE.l lGOTO 21HZ

IGAP=IGAP/2
IMAX=IONUM-IGAP

2/885 IEX=Z
DO 2/886 I=l,IMAX
IPLUSG=I+IGAP
IF(QNO<Il.LE.ONO<IPLUSG>>GOTO 2/886
ISAVE=QNO<Il
FSPEC\.I=QSPEC<I>
QNO< I l=QNO< I PLUSG l
QSPEC< I >=OSPEC< IPLUSG l
QNO<IPLUSG>=ISAVE
OSPEC<IPLUSG>=FSPECW
IEX=IEX+l

24'85 CONTINUE
IF<IEX.GT.ZlGOTO 2/885
GOTO 2/881

~·lAIN RESTORE LOOP

:?.''Jff CONTINUE
IQ=IQ+l
Nl=N2
NZ=QNOCIQ}
NSEP=N2-Nl
!FILE=IFILE+NSEP
NFILE=NSEP*4

·nND FO\.IARD TO CORRECT FILE

IF<NFILE.GT.Z>CALL TPHAND<S,IDRV,ISTAT,NFILE,ILEN,IFILE, ,)

READ HEADER BLOCK AND CHECK IF FOUND CORRrCT FILE

CALL TPHAND<2,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2Z>
IFINBUF.NE.QSPEC<IOJ>GOTO 28/8/8
CALL TPHAND<S,IDRV,ISTAT,l,ILEN,IFI.L.E, , l
FSPEC\.I=NBUF
ISIZE=SBUF+16

~EAD ONTO TEMPORARY FILE

IF<IENTER<IRD,FSBUF,ISIZEl.LT.ZlGOTO 9/8/83

Vf52.f14 THU f!B-JAN-81 f1f1:f16:39

~2Z9 CALL TPHAND<l,IDRV,ISTAT, ,ILEN,IFILE, ,
gzl£: CALL TPHANDCS,IDRV,ISTAT,l,ILEN,IFlLE, ,
~Zll CALL R5f1ASC<12,FSPECW,FBUF>
~Z12 TYPE 2f541,FBUF
Z21) ACCEPT 2f12H,FBUF
lJ?.l.,;. CALL IRADSH< 12, FBUF, FSPECW)
.0'2'.2 IF<IENTER<ITR,FSPECW,SBUF>.LT.f1>GOTO 9Hf13

TRANSFER TO APPROPRIATE PERMANENT FILE

IBLK=H
::12~8
if21:?
;?.'2 2 l

DO 21.0'1 I=l,SBUF
IF<IREADWC256,BUF,IBLK,IRD>.LT.f1>GOTO 9Hf14
IFCIWRITWC256,BUF,IBLK,ITR>.LT.f1)GOTO 9f1f15
IBLK=IBLK+l

21224-
:~22::
, .: z~
:·:::ze
~229, .. -·
_J,__.'.;.'

21.0'1 CONTINUE
CALL CLOSEC<IRD>
CALL CLOSECCITR>
IQNUM=IQNUM-1
N2=N2+1
IFILE=IFILE+l
IF<IQNUM.NE.f1>GOTO 21HH

6::"l2
·~::33

CALL TPHANDC7,IDRV,ISTAT, , ,!FILE, ,)
STOP' NORMAL TERMINATION'

c
~ ~RONG FILE FOUND
c

IT234 !.SZfif CALL TPHAND<7,IDRV,ISTAT,
' ,!FILE,

--~:3S' C .. '\LL RSHASC<l2,NBUF,FBUF>
-;'f '3 f TYPE 281.0',FBUF
.· :~ 3 7 '2'31.0' FORHAT<' FILE FOUND ON TAPE= ', 3A4 >
,. ~'" CALL R5f1ASCC12,QSPECC!Q),FBUF> ··'...:.) .;

~-: 3~ TYPE Z82f1,FBUF
"C:4l 282.0' FORMAT< ' FILE REQUIRED = ', 3A4 >
·- :.~ 4: STOP' '.JRONG FILE FOUND FOR RESTORE'

: FI~S NOT FOUND

z:4Z 2~99 TYPE 29f1S
'!l'242 29Ylif FORMAT<' FILE NOT FOUND')
~244 GOTO 1

C CODE FOR STOP COMMAND
c

"'2 c:5 J.J.':.';; E OR.= . TRUE •
~246 IF<IQNUM.NE.f1>GOTO 2f58f1

'
)

:'48 CALL TPHANDC7,IDRV,ISTAT, , ,IFILE, , >
J'(:•'·~ C;',LL CLOSEC< IRD >
,,.,,-., CALL CLOSEC< IWRT>
2; I C.L\LL CLOSECC ITR)
·z~1 STOP' NORMAL TERMINATION'

conE FOR DIRECTORY

PAGE f6f66

. ~ ~

---- :J . .)

.0':' 5;:.

ZZ58
"''59
·---~s.~~

~ .. ~ 6 I.
-~ :~ 5?.
;'f?o)i
-:··,;;:
.. ~ ;:) ~

.,;;:6-
·J26''

.,,zn·

.~2-: ~

.J27':
"'~ 7 3

>327.:.
.'J27::
.'D27E
.€127?
.nr·
212 7:;
.:'2 S.Z·
,: ~ 31
J"t:82
(I,-_ g--.

:; z 13 ::

1]2 8 -~

i~; ;._~ 3 ~:
.D :~ "9 5_
Ci~"J.
,J-::9?
7:. c: ::~
1_-~ 3 L
- '1:0·
.. :36
_;- 3 7

::':·.J::.
cr:-:.J-::.
.?'., v ~ _ _) ;..

--

VXJ2.f04

&D~& IFC .NOT.EOT>CALL FSERCHCEOTCOD,lORV,EOT>
EOT=.TRUE.
TYPE 4Z;z

4fl7~ FORMAT<' DIR ON TERMINAL V/N:',$)
ACCEPT 4S8H,ANS

4Z8.'1'1 FOR1'1AT<Al >
LUNIT=6
IF<ANS.EQ.VES>LUNIT=7

~DlfiJ WRITE<LUNIT,4fd2HJTPNUM,IORV

PAGE lOili/

40'2S FORMAT<'l TAPE NO= ',AS,' DRIVE NO',I3,' FILE DIRECTORY'>
WRITE<LUNIT,4fd3HJ

4D3.0' FORt-4ATI' FILE NAME ',5X,' DATE SAVED ',SX,' VERSION '
X5X,' SIZE'>

DO 4/!4/! I=l,IFILE
CALL R5ZASCI12,FSPECCIJ,FBUFJ

{B45 WRITEILUNIT,4fd5ZJFBUF,DATEIIJ,VNUM<I>,SIZE<I>
4fl5fiJ FORMAT<lX,3A4,3X,A8,14X,I2,1ZX,l5J

WRITE<LUNIT,4H6HJIFILE
4fl6fiJ FORMAT<' TOTAL NUMBER OF FILES ON TAPE=',13)

GOTO 1

.:; ERROR FINISHES
c

3.0'Hl NBUF=EOTCOD
ILEN=l
CALL TPHANDI4,IDRV,ISTAT, ,ILEN,IF1LE,HBLK,2fdl
CALL TPHANDI7,IDRV,ISTAT, , ,!FILE, ,)
CALL CLOSEC<IRD>
CALL CLOSECIIWRTl
CALL CLOSEC< ITR>
STOP'LOOKUP ERROR'

'Jfi1ff2 NBUF=EOTCOD
ILEil=l
CALL TPHANDI4,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2SJ
CALL TPHANDC?,IDRV,ISTAT, , ,IFILE, , l
CALL CLOSECIIRDl
CALL CLOSEC<IWRTl
CALL CLOSEC<ITR>
STOP'READ ERR FOR SAVE'

S0B3 CALL TPHANDC?,IDRV,ISTAT, , ,!FILE, , >
CALL CLOSEC<IRD>
CALL CLOSEC<IWRTl
CALL CLOSEC< ITR)
STOP' ENTER ERR FOR RESTORE '

9S0i SALL TPHANDI?,IDRV,ISTAT, , ,IFILE, , I
CALL CLOSECCIRD>
CALL CLOSEC<IWRT>
CALL CLOSECCITRI
STOP' READ ERR ON RESTORE TRANSFER'

9SB5 ~ALL TPHANDC?,IDRV,ISTAT, , ,IFILE, , >
CALL CLOSECIIRD>
CALL CLOSECIIWRT>
CALL CLOSEC< ITR l
STOP' WRITE ERR ON RESTORE TRANSFER'

VH2 • .0'4 THU ZS-JAN-81 HH:S6:39

END

PAGE SHB

VfJ?..f84

SUBROUTINE FSERCHCFNAME,IDRV,EOT>
c
C SUBROUTINE WHICH SEARCHES FOWARD TO SPECIFIED
C FILE NAME ON THE TAPE
c

iJJJffZ REAL* 8 F NAME, F SPEC (UY.0'.0'), DATE (1.0'.0'.0' >, NBUF, DBUF, EOTCOD
21.7'J:o; INTEGER*2 SIZE<l.0'JlJ.0'l,VNOtl.0'.0'.0'},VBUF,SBUF
~~4 LOGICAL*l HBLKC2.0'>,IDRV,EOT,ISTAT

g?~~ COMMON/SERCH/ FSPEC,DATE,VNO,SIZE,HBLK,IFILE

PAGE Jnll

J~f.J::i EQU I VALENCE (HBL K < 1 > , NB UF >, < HBL K < 9 > , DBUF l , < HBLK { 17 > , VBUF >,
%<HBLK<l9l,SBUF>

JPij! DATA EOTCOD/12REOTEOTEOTEOT/
~~~8 IS CALL TPHANDC2,IDRV,ISTAT, ,ILEN,IFILE,HBLK,2.0') 
J~D 0 IF<NBUF.EQ.EOTCODlGOTO 15 

·-
C ST!CK HEADER INFO IN DIRECTORY 
c 

~~li IFILE=IFILE+l 
J~l2 FSPEC<IFILE>=NBUF 
,)•,'13 DATE< IFILE >=DBUF 
0.0'1" VNO<IFILE>=VBUF 
.!3.!:1''.':" SIZE< IFILE >=SBUF 
ABl~ IF<NBUF.EQ.FNAME>GOTO 2.0' 

C POSITION TAPE NEXT TO NEXT HEADER 
c 

~Blq CALL TPHAND<S,IDRV,ISTAT,3,ILEN,IFILE, , ) 
J:l9 GOTO lfJ 

c 
C R~WJND TO BEGINNING OF FOUND HEADER 
c 

JJ2£ 15 EOT=.T~UE. 
'ff.'?' 2.V CALL TPHAND(6,IDRV,ISTAT,l,ILEN,IFI.LE, , l 
J2c: RETURN 



Vi02.f44 PAG£ fllt/1 

!Jf!fl 1 SUBROUTINE TPHAND<ICOM,IDRV,ISTAT,ITLEN,ILEN,IFNUM,BUF,NBVT> 
c 
C TAPE HANDLING SUBROUTINE 
·- ICOM IS THE COMMAND SIGNAL 
C !COM IS THE COMMAND SIGNAL 
C l=REAO FROM TAPE TO DISC 
C 2=READ FROM TAPE TO MEMORY 
C 3=WRITE TO TAPE FROM DISC 
~ 4=\o/RITE TO TAPE FROM MEMORV 

'5=\o/IND FOWARD 
·- 5=WIND REVERSE 
- 7= REWIND TO START 
C IDRV IS THE DRIVE BEING USED 
C !STAT IS THE STATUS ON RETURN 
C ITLEN IS THE NO OF TAPE FILES TO MOVE PAST 
C !LEN IS THE BLOCK LENGTH OF A FIL£ READ OR WRITTEN 
C BUF IS THE MEMORY AREA USED BV TWRIT AND TREAD 
C ~BVT IS THE SIZE OF BUF 
c 

aB~2 INTEGER*2 MASK<S>,ESTATI 
~Acy] LOGICAL*l ISTAT,COM<4>,SDSCOM<B>,IDRV,ITLEN,ECOM<4>, 

XIFLEN,ESTAT,BUF<l> 
0P.riJ4 DATA MASK/" 1, "2, "4, "1.0', "2t/, "4.0'," ltltl, "2.0'.0'/ 
0C.'JS DATA SDSCOM/"t/,"1,"2,"3,"4,"5,"6,"7/ 
fJ}; Ji:J ITRV=.0' 
"'>J'if1 ~OTO < 1 t/.0'fl, Ztlt/.0', 3t/t/.0', 4.0'.0't/, 5t/.0'.0', 5.0'.0'.0', 5/8/8/8} I COM 

• SECTION CONTROLLING A READ 
c 
c 
C CHECK THAT ONLY A FEW RETRIES ARE ATTEMPTED 

~ .. J'8 lij/lfd ITRY=ITRV+l 

C SET UP COMMAND FOR READ 
c 

~:J; CO~(ll=SDSCOM<4l 
~Jli COM{2l=l 
.0.0' 1" COt·H 3 l =I DRV 
Y~'~ COM(4l=-1 
:~1~ CALL SDSIB<COM,ISTAT,ITLEN,ILEN> 
BDl· IF<ISTAT.EO.Z>RETURN 

c 
~ ER~OR DETECTED ON READ 
c 

J01E ISTATI=ISTAT 
071; GOTO 4Z 

~~AD FROM TAPE TO MEMORY 

0q18 2SZS NBUF=NBVT 
:::rlS CALL TREAD<BUF,NBUF,ISTAT,IDRV> 
~JZ~ ITRV=ITRV+l 
"··2! IF< iSTAT.EQ.Z>RETURN 



FOR.,.~AN iV V/iJ2.PJ4 THU liJS-JAN-81 PJ/iJ:PJS:23 

Z'.('23 ISTATI=ISTAT 
yT!J2.; GOTO 4PJ 

c 
c IF SHORT RECORD FOUND REREAD TAPE 
c 

~~2'2· 5.0' ITMP= ISTATI.AND .MASK< 6 > 
·n ~~ IF ( ITMP . N E. PJ > GOTO < 1 PJPJPJ, 2PJPJPJ >I COM 
~023 !TMP=ISTATI.AND.MASK<2> 
~725 IF<ITMP.EQ.PJlRETURN 

~ IF CRC ERROR FOUND REWIND TAPE AND RETRV 

gs31 TVPE 2PJ1PJ,IFNUM 
.r.0'32 zz1a FORMAT<· FILE NO ·, I4, • CRC ERROR REWINDING'> 
~B33 IF<ITRV.GE.2>GOTO 13PJ 
~B3S ECOM<l>=SDSCOM<6> 
~B30 ECOM<2>=1 
.~Hl'3i. ECOMC3l=IDRV 
~ff38 ECOMC4l=PJ 
Z.0'3? CALL SDSlPJCECOM,ESTAT, , ) 
J.Hf GOTO ( lklliJiiJ, 2/iJPJPJ l I COM 

;• 

C \JRITE SECTION 

Z.0'4~ 3J~~ ITRV=ITRV+l 
ZZl~ IF<ITRV.GT.2>GOTO 13PJ 
Z34t COM<l>=SDSCOM<7l 
a~45 IFLEN=<ILEN+3l/4 
~f4E CCM<2>=IFLEN 
~.0'47 COMC3l=IDRV 
~ZS6 COM(4l=l 
.0'.0'4<; CALL SOSlPJ<COM,ISTAT, , ) 
ZBSP IF<ISTAT.EQ.PJlRETURN 

''3':::. 

C ~RITE ERROR DETECTED 

ISTATI=!STAT 
GOTO 4.0' 

C MEMORY TO TAPE WRITE 
c 

~zs.; 4BBB CONTINUE 
qas~ NBUF=NBVT 
::'£'5:, IFLEN=< ILEN+3l/4 
P~s~ IF<IFLEN.LT.2liFLEN=2 
i'fC;5<; i PAD=< I FLEN*2.0'48 l-NBUF 
~~5f CALL T~RIT<BUF,NBUF,ISTAT,IPAD,IFLEN,IDRV> 
~~6. IFIISTAT.E0 . .0'lRETURN 
9Z5~ ISTATI=!STAT 
~iG· GOTO 4.0' 

C ~~ROR RETURN POSITION 

~~6S 7S ITMP=ISTATI.AND.MASKC6l 

PAGE liJPJ2 



FOR.T><.AN IV Vli12.1i14 THU BS-JAN-81 BB:B8:23 

.uS6::
!U~5/ 

ITMPI=ISTATI.ANO.MASK(2l 
If<ITMP.EQ.Iii.ANO.ITMPl.EC.IiiJRETURN 

c 
C REPORT AND RETRY 
c 

8@59 TYPE 21i121i1,IFNUM 
SJ27f:i Z1i12f1 FORMAT<' FILE NO ', I4,' WRITE CRC ERR '> 
BB7J RETURN 

C \oiPO FO\o/ARO ONE FILE 
c 

3i72 58fi1g IFCICOM.EQ.S>COM<l>=SDSCOMCS> 
S~7A IFCICOM.E0.6>COM<l>=SDSCOMC6> 
~276 IF<ICOM.EQ.7>COM<l>=SDSCOM<2> 
887~ COMC2>=ITLEN 
8~79 COMC3>=IDRV 
Jtag COM<4>=1i1 
H23~ CALL SDSlliiCCOM,ISTAT, , ) 

c 
C CLEAR IRRELEVANT BITS FROM ERROR BYTE 
c 

IS92 ISTAT=ISTAT.AND .• NOT.MASKC6l 
B28S ISTAT=ISTAT.AND •. NOT.MASK<2> 
SSB• IF<ISTAT.EO.IiiJRETURN 
JBBb ISTATI=ISTAT 
~B87 GOTO 41i1 
~78~ 35 RETURN 

IM THIS SECTION THE MAIN TAPE ERRORS ARE 
H~NDLED SUCH AS:= TAPE BUSY,TAPE OFFLINE 
SOT, EOT 

TAPE BUSV SECTION ••• AFTER CLEARING BOT FLAG 

S§GS 4Z TYPE lBlB,ISTATI,IFNUM 
XJ.~1 :'.'? l.iJ:.0 FOR~1ATC' STATUS=',I3,' FILE NO=',I4> 
3g9~ !STATI=!STATI.AND .. NOT.MASKC4l 
~~92 ITMP=ISTATI.ANO.MASKC5) 
~H92 IFCITMP.EQ.BJGOTO 88 
J~95 9B ECOM!ll=SDSCOM<l > 
gsg~ ECOM<21=8 
N~g~ ECOM!3l=IDRV 
JB~h ECOM<4J=S 
~~S~ CALL SDS18CECOM,ESTAT, , ) 

~AVING EXAMINED STATUS IF TAPE STILL 
BUSY, LOOP AGAIN,!F NOT TRY COMMAND AGAIN 

~·~( ESTATI=ESTAT 
z:z: ITMP=ESTATI.ANO.MASK<S> 
Jl~~ IF<ITMP.NE.Iii}GQTO 98 
~:3i ITMP=ESTATI.AND.MASK<4> 
~.~~ IFIITMP.EQ.B.AND.ICOM.E0.7JGOTO 9B 
j!d7 IF<ICOM.E0.7lGOTO 35 

PAGE i!B3 



F ') R -, '< .1\ N IV WJ2. !64 THU !68-JAN-81 !6!6:!68:23 

_ 'S GOTO < lJilfiJ!iJ, 2/lJJilfiJ, 31Jf6f6, 4/Jf6f6, Sf6Ji1flJ, 5!6!6/lJ, Sf6Bf6 >I COM 
c 
C TAPE OFFLINE 
c 

.!lXl Sif iTMP=ISTATI.AND.MASK<l> 
7"111 IF<ITMP.EQ.flJJGOTO lf6Ji1 
::ill: TYPE lBflJl,IDRV 
1"!! 1 •I HiZl FORMAT< I TAPE DRIVE I. I 1'. OFFLINE.) 

'-

c HAVING ANNOUNCED ERROR SKIP UNTIL CORRECTED 
c 

. 'lf. 1 Ul' ECOM< 1 >=SDSCOM< 1 > 
~!lE ECQM(2)=fiJ 
111~ ECOM<3>=IDRV 
ZilD ECOMC4>=f6 
BllS CALL SDSlB<ECOM,ESTAT, , 
H12~ ESTATI=ESTAT 
Y12~ ITMP=ESTATI.AND.MASK<l> 
~122 IF<ITMP.NE.B>GOTO llB 
Z12l GOTO Clf6f6fiJ,2Jilfi1f6,3Ji1f6Ji1,4Ji1f6f6,5f6BfiJ,SflJf6flJ,5BflJJi1)ICOM 

c 
C EOT 
c 

?125 l!JZ ITMP=ISTATI.AND .MASK< 3 > 
t.26 IF<ITMP.EQ.flJJGOTO lZB 
Zt28 TYPE 1Sf62,IDRV 
.0'125 i.~T.J2 FORMAT<' EOT ON DRIVE ',Il) 
.0'13M IDRV=3 
gi3l RETURN 
~13? 123 GOTOCS.J,5f6,7f6,7f6,35,35,35JICOM 

~) ~ 
.. , 

c 
C ERROR EXIT RETURN 
c 

13£1 ISTAT=-1 
RETURN 
END 

PAGE !6164 



Page 236 

Tape Handling Utility:-MPTAPH 

This is a fully interactive program allowing the user to 

perform any tape function from the keyboard, giving the user total 

control of all tape functions. The command sequence is completely 

prompted by the program, with the command menu being presented 

every time. 

Tape to Disc Transfer Utility:- MPTPDK 

This program allows files to be read from tape to disc and 

seismic channels to be selected for putting into a trace 

sequential file, for migration or plotting. 

Input file •••• DK2:MPTPDK.DAT 

Log file, ....• DK2:MPTPDK.LOG 

Input Parameters 

READ(1,1000)NFILIN,NBLKS,IBLKST,TPDRR 

1000 FORMAT(4I5) 

NFILIN .•• Number of files to read from tape 

NBLKS •..• Number of blocks to select from each file 

IBLKST .•• Starting block for selection 

TPDRR .•.. Tape drive 



Page 237 

READ(1,1001)FSPECW 

1001 FORMAT(3A4) 

FSPECW ••• output file 

READ(1,1001)FSPECR 

FSPECR .•. Temporary file for tape to disc read 



-;-._, 
Vfl!2~flJ4 

~Z~l REAL*S FSPEC 
U~22 REAL*4 DEVNAM,FMBUFC3> 
l')fO.fi!~· LOGICAL*1 SDSCOM<4l,COM!Sl,LUN,HBLKC1.0'>,FNUM,ITVP 
1089~ INTEGER*2 STATUS,TLEN,FLEN 
JHBS DATA COM/"H,"l,"2,"3,"4,"5,"6,"7/ 
Cf01~6 DATA DEVNAM/3RRK I 
iiW.J7 IF< IFETCHCDEVNAMJ.NE.H>STOP'FETCH ERROR' 
B8H9 IFCICDFN<3B>.NE.H>STOP'CDFN ERROR' 
CY.0"ll CONTINUE 
0".0'1:? TYPE 1.0' 
7rfi 13 l.IJ FORMAT< I ENTER TEST OPTION I,/. 

%' H FOR A READ',/, 
%' 1 FOR A WRITE',/, 
X' 2 FOR UTILITY COMMANDS',/, 
X' 3 TO LEAVE THE PROGRAM:',$) 

881~ ACCEPT 2H ,IOPT 
~£15 ZB FORMAT<II> 
IJ.iH6 IF< IOPT.EQ.3lSTOP'EXECUTION TERMINATED' 
3".0'18 IF< IOPT.EQ.2>GO TO 6H 
BZ~7 TYPE 3H 
U021 3B FORMAT<' ENTER THE FILE SPEC,NO COLONS OR DOTS',/, 

X' BUT WITH IMPLIED BLANKS INCLUDED:',$) 
ilZ~2 ACCEPT 48,FMBUF 
gH:: 4B FORMATC3A4> 
ZB24 CALL IRADSB<l2,FMBUF,FSPEC> 
~92E IF<IOPT.GT • .0'>GOTO 5.0' 

Hii2 ~.

PJJ2'3 
fHJ3.0 
s ') "3 . 

?:.n, 
:113!:' 

·::lJ 
_'"q: 

1.2 4 .. 
"0"\::C 

·'"'] 4 c: 
"'C" <t;:. 

c 
C READ 

IENT=!ENTER<2.0',FSPEC,4.0'.0'> 
IF<IENT.LT.H>TYPE 45,IENT 

45 FORMAT<' ENTER ERROR IENT=',I3> 
IF< IE NT. LT . .0') STOP 
TYPE 7fJ 

7? ~ORMAT<' ENTER TAPE UNIT TO BE READ FROM :',SJ 
ACCEPT 2fJ,LUN 
TYPE 71 

71 FORMAT<' ENTER g FOR FIELD TAPE 1 FOR INTERNAL:',$) 
ACCEPT 211, ITYP 
SDSCOM< 1 l=COt·H 4 > 
::;;;scOM< 2 >=ITYP 
SDSCOM<3>=LUN 
SOSCOf"-1( 4 l="2HH 
CALL SDS1.0'CSDSCOM,STATUS,TLEN,FLENJ 
TYPE 35,STATUS,FLEN 

3'.' FORt4AT<' STATUS EQUALS ... ',I3,'FILE LENGTH= ',13> 
IF ( ITYP. EQ. 1 lGOTO 91 
!F( IREAOW<S,HBLK,H,2Hl.LT.HlSTOP'READ HBLK ERROR' 
DO 3JiJ I=l,lJiJ 

8!0 HBLK< I l=HBLK< I l+"6JiJ 

PAG! f4!1Jl 

TYPE 9fJ,HBLK!2l,HBLKCll,HBLK!4l,HBLK!3l,HBLK!6l,HBLK<S>, 
XH3LK<S>,HBLKC7l,HBLKC lJiJ>,TLEN 

9.0 FORt-lAT<' TAPE HEADER INFO',/, 
%' F I L E NO = ' '3A 1 I I' 



V.02 ,.'!4 

%' DATA CONSTANTS= ',SAl,/, 
%' SAMPLING PERIOD= ',Al,/, 
%' DATA TIME LENGTH= ',12> 

025~ 91 CALL CLOSEC<2Z> 
0ZS~ GO TO 1 

\./RITE 

£0SE SB FLEN=LOOKUP<2l,FSPEC> 
g~57 IF<FLEN.LT.Z>STOP'LOOKUP ERROR' 
2~59 FLEN=<FLEN+3l/4 
.0f/5kl TVPE 35, STATUS, FLEN 
~ffS: TYPE 95 
0'0o<. 95 FORI>1AT<' ENTER THE TAPE UNIT TO BE WRITTEN TO:' ,S> 
8So3 ACCEPT 28,LUN 
~~64 SDSCOM<ll=COM<7> 
8~55 SDSCOM<2>=FLEN 
zg6~ SDSCOM(3l=LUN 
~:s: SDSCOM(4)=1 
~ZSC CALL SDSlZ<SDSCOM,STATUS,,FLEN> 
Z75S TYPE 35,STATUS,FLEN 
007~ CALL CLOSEC<21> 
Z€7l GOTO 1 

c 
C \.liND 
c 

zs;: 6S FNUM=8 
~p~~ LNUM=8 
11.·?7 A TYPE UZ 
z;;s 1£Z FORMAT<' UTILITY COMMAND TABLE:',/, 

..:: !.,. ' I~ 

1?,_1(.7~ 

.~.c-3:: 

iJ.6'81 
.0'.0'82 
8884 
Z88' 
f".:r-g:, 
£-Jfl,' 
?fJ:J ~ 
if .• :. 9.(· 

r.· ----------------------·,I, 
%' 1:-STATus•,;, 
%' 2:-REWIND' ,/, 
%' 3:-REWIND OFF LINE',/, 
1.' 5:-FORWARD WIND N FILES',/, 
~;· 6:-REVERSE WIND N FILES',/, 
%' 8:-RETURN PDP-BE TO OSS' ,!, 
%' ENTER YOUR OPTION :' ,$} 

ACCEPT 2.fl',NOPT 
IF<NOPT.EQ.8}GOTO 118 
T'!PE 12.0' 

12Xl' FORMAT<' ENTER TAPE UNIT NO:',$} 
ACCEPT 2!8,LUN 
IF<NOPT.EQ.S.OR.NOPT.EQ.6lTVPE 13B 

13.i! FORMAT<' ENTER NO OF FILES TO BE WOUND PAST :' ,S> 
IF<NOPT.EQ.S.OR.NOPT.EQ.6lACCEPT 2B,FNUM 

1.1.0' SDSC:OM< 1 >=COM< NOPT) 
SDSC0!'-1< 2 >=FNUM 
SDSCOMI3l=LUN 
SDSCOM<4>=XJ 
CALL SDS1.0'<SDSCOM,STATUS,, > 
TVP~ 35,STATUS,FLEN 
GOTO 1 
END 



REAL"'!3 FSPECR,FSPEC\-1 
REAL"'4 FBUF<3>,SEISMt2S48> 
LOGICAL*! TPDRR, I STAT, ITLEN 
DATA DEV/3RRK I 
IFCICDFNC25l.NE.H>STOP'CHAN ERR' 
IF< IFETCH<DEV>.NE.H>STOP'FETCH ERROR' 
CALL ASSIGNCl,'DK2:MPTPDK.DAT',14) 
CALL ASSIGN<2, 'DK2:MPTPDK.LOG.' ,14) 
IRD=2.0' 
l\JRT=21 
READCl,lHHH>NFILIN,NBLKS,IBLKST,TPDRR 

UJH.0' FORMAT< 4 I 5 > 
READC1,12.0'.0'>FBUF 

12HH F'ORMATC3A4) 
CALL IRAD5.0'Cl2,FBUF,FSPECW> 
READC 1,12H.0'>FBUF 
CALL IRAD5.0'Cl2,FBUF,FSPECRJ 
N\JDS=NBLKS*Z56 
IBLKOT=l 
IBLKSZ=NFILIN*NBLKS+l 
1 F ( I ENTER< IWRT, FSP EC\J, 1 BLKSZ >. L T~.0'} STOP' ENTER ERR' 
DO zg I=l,NFILIN 
IFIL=l 
IF< I ENTERC IRD, FSPECR ,3S.0'l. L T .S>STOP 'ENT2 ERR' 
IFCTPDRR.LE.2>GOTO 3.0' 
\JRITEC2,14.0'H>IFIL 

14H.0' FORMAT< I FILE NO I ,IS,' EOT I) 

CALL CLOSECCI\JRT> 
STOP'EOT' 

3.0' CALL TAPREDC-l,TPDRR,ISTAT,ITLEN,IFLEN,IFTL> 
IF< I STAT. L T .H>WRITEC Z., 15.0'H>IFIL 

15HZ FORMAT<' FI.LE NO ',IS, 'RETRIES FAILED LAST RC:AD US:ED'> 
IFCTPDRR.GT.2>GOTO 4.0' 
CALL TAPREDC.0',TPDRR~ISTAT, , ,IflL> 

4.0' CALL CLOSECCIRD> 
IFCLOOKUPCIRD,FSPECRJ.LT • .0'>STOP'LOOKUP ERR' 
IFCIREAD\JCNWDS,SEISM,IBLKST,IRD>.LT . .0'>STOP'R.EAD ERR' 
IF<IWRITW<NWDS,SEISM,IBLKOT,IWRT>.LT . .0'>STOP' WRITE ERR' 
IBLKOT=IBLKOT+NBLKS 
CALL CLOSECCIRD> 

2H CONTINUE 
CALL CLOSECCI\JRT> 
STOP'NORMAL TERMINATION' 
END 



Page 238 

IBM NUMAC MTS Software 

The two pieces of' software put onto the IBM have their own 

manuals describing their operation, mentioned here are their 

locations and manner of execution. 

MATHSIM 

To use the AP maths library simulator the program is written 

in the normal manner except any references in AP calls must have 

the variables defined as INTEGER*2 to be compatible with the pdp. 

$RUN PROG+GPT9:MTHSIMLIB 

AIMS 

Aims is fully documented in its own manual. Shown below is 

the run command with the file, logical unit assignments which have 

to be made. 

$RUN GPT9:AIMS+*PLOTSYS 

Logical Units 

5 •• Input Deck 

6 .. output listing 

7,8 ...• Temporary files 

9 •. Plot output 

10 to 18 ... Temporary work files in different jobs 


