
EFFECTIVE TECHNIQUES FOR UNDERSTANDING AND
IMPROVING DATA STRUCTURE USAGE

A Dissertation
Presented to

The Academic Faculty

by

Changhee Jung

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Computer Science
Georgia Institute of Technology

August 2013

Copyright c© 2013 by Changhee Jung

EFFECTIVE TECHNIQUES FOR UNDERSTANDING AND
IMPROVING DATA STRUCTURE USAGE

Approved by:

Dr. Santosh Pande, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Nathan Clark
Virtu Financial

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Silvius Rus
Quantcast

Dr. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: June 27, 2013

Soli Deo Gloria

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank our Lord and Savior, Jesus Christ, for His

grace to carry me through this intense period of my life. Without His intervention

and help, it would have been impossible to complete this dissertation. As always,

God’s grace is sufficient and abundant, and apart from it, I can do nothing.

To my wife, Sangmi. You have been a constant source of encouragement, com-

fort, and love. Thank you for your sacrifice to live together in Atlanta. It has been

four years since I asked you to take a leave of absence from the school in Ann

Arbor. I appreciate your patience. You never asked when I would graduate.

I am greatly indebted to my adviser, Prof. Santosh Pande. He offered me many

technical challenges to improve my algorithms, and helped me out with great ideas

when I was stumped. I have learned so many valuable lessons from him, not only

how to find good research topics and solve them analytically, but also how to be a

good engineer and mentor.

I would like to thank my ex-advisor, Dr. Nathan Clark, for his excellent guid-

ance and great patience during the first two years of struggling in my Ph.D. study.

He deserves thanks for teaching me to understand the high level structure of a

problem before jumping into the details.

I owe thanks to the remaining members of my dissertation committee, Prof.

Hyesoon Kim, Prof. Sudhakar Yalamanchili, and Dr. Silvius Rus. They all donated

their time to help shape this research into what it has become today. I am particu-

larly grateful to Prof. Hyesoon Kim for giving me a great advice for the academic

job search and the preparation for the interview. I am also grateful to Dr. Silvius

Rus and Dr. Easwaran Raman during my internship at Google.

iv

I also would like to thank current and ex-members of our research lab: Sangho

Lee, Kaushik Ravichandran, Tushar Kumar, Jaswanth Sreeram, and Romain Cle-

dat for being great colleagues to work with. I am also thankful to Minjang Kim,

Sunpyo Hong, Janghaeng Lee, Jaekyu Lee, Jungju Oh, Moonkyung Ryu, Sang-

min Park, Joohwan Lee, and Wonhee Cho, for being great people to discuss the

details of my and their work. Finally, to my SFC friends, Hyunshik Shin, Soowon

Bae, Hakjoong Kim, Seunghyuk Baek, Youngil Kwon, Youngseok Lee, Jiho Lee, Se-

unghyun Baek, Jinyong Shim, thank you for the wonderful time we spent together

in Christ.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiv

I INTRODUCTION . 1

1.1 The Motivation . 1

1.2 The Contribution . 2

1.3 Thesis Statement . 4

II DATA STRUCTURE DETECTION . 5

2.1 Introduction . 5

2.2 DDT Algorithm Details . 8

2.2.1 Tracking Data Organization with a
Memory Graph . 10

2.2.2 Identifying Interface Functions for the
Memory Graph . 15

2.2.3 Understanding Interface Functions
through Invariant Detection 19

2.2.4 Matching Data Structures in the Library 22

2.3 Evaluation . 25

2.3.1 Demonstrating the Correctness of DDT 26

2.3.2 Demonstrating the Utility of DDT 27

2.4 Summary . 31

III DATA STRUCTURE DETECTION WITHOUT INTERFACE FUNCTIONS
33

3.1 Introduction . 33

3.2 MIDAS: Mining Data Structures . 36

vi

3.2.1 Tracking Data Organization 38

3.2.2 Recording the Signature of a Data Structure 40

3.2.3 Detecting Data Structure Invariants in the presence of dan-
gerous traces . 48

3.2.4 Matching Invariants . 52

3.3 Evaluation . 53

3.3.1 Demonstrating the Correctness of MIDAS 53

3.3.2 Analysis . 56

3.4 Summary . 63

IV DATA STRUCTURE SELECTION . 64

4.1 Introduction . 64

4.2 Motivation . 67

4.3 Overview . 71

4.4 Model Construction . 74

4.4.1 Training Set and Overfitting 75

4.4.2 Application Generator . 77

4.4.3 Training Framework . 79

4.5 Artificial Neural Network (ANN) . 82

4.5.1 Feature Selection . 83

4.5.2 Limitation . 87

4.6 Evaluation . 87

4.6.1 Model Validation with an Application Generator 89

4.6.2 Xalancbmk . 90

4.6.3 Chord Simulator . 94

4.6.4 RelipmoC . 96

4.6.5 Raytrace . 96

4.7 Summary . 97

V MEMORY LEAK DETECTION FOR DATA STRUCTURES 98

vii

5.1 Introduction . 98

5.2 Background and Motivation . 102

5.2.1 Target Memory Leaks . 102

5.2.2 Staleness-Based Leak Detection 103

5.2.3 The Impact of Staleness Threshold 104

5.2.4 Leak Detector Requirements for Datacenters 107

5.3 Sniper Design and the Details . 107

5.3.1 Memory Access Tracking with PMU-Based Instruction Sam-
pling . 111

5.3.2 Lightweight Heap Trace Generation 113

5.3.3 Offline Trace Simulation . 114

5.3.4 Efficient Implementation of a Tag Directory for Fast Heap
Organization Tracking . 115

5.3.5 Systematic and Automated Leak Identification Using Anomaly
Detection . 117

5.3.6 Robustness to False Positives due to Sampling 121

5.3.7 Discussion . 122

5.4 Evaluation . 124

5.4.1 Analysis with Sequential Applications 125

5.4.2 Analysis with Multithreaded Applications 128

5.4.3 Analysis with Commercial Datacenter Workloads 130

5.4.4 Accuracy Analysis with Leak Injection 131

5.4.5 Sensitivity to Sampling Frequency 136

5.4.6 Case Study of Real-World Memory Leaks Vulnerable to Denial-
of-Service Attacks . 137

5.5 Summary . 139

VI DATA STRUCTURE ACCELERATION 141

6.1 Introduction . 141

6.2 Offloading Expensive Data Structure Operations 143

6.3 Compiler-Time Redundant Synchronization Elimination 147

viii

6.3.1 Local Redundant Synchronization Elimination 147

6.3.2 Global Redundant Synchronization Elimination 148

6.4 Experimental Evaluation . 150

6.4.1 Performance Characterization 152

6.4.2 Xalancbmk . 155

6.4.3 SSSP . 156

6.5 Summary . 157

VII RELATED WORK . 159

7.1 Related Research on Data Structure Detection 159

7.2 Related Research on Data Structure Selection 162

7.3 Related Research on Memory Leak Detection 165

7.4 Related Research on Data Structure Acceleration 169

VIIICONCLUSIONS AND FUTURE RESEARCH 171

8.1 Conclusions . 171

8.2 Future Research . 173

8.2.1 Future Work for Data Structure Detection 173

8.2.2 Future Work for Data Structure Selection 174

8.2.3 Future Work for Memory Leak Detection 174

8.2.4 Future Work for Data Structure Acceleration 175

REFERENCES . 177

ix

LIST OF TABLES

1 Data structure detection results of representative C/C++ data struc-
ture libraries. 26

2 The possible range of the memory graph magnitude for different data
structures . 46

3 The identification results of Olden data structures 55

4 Data structure replacements considered for each target data struc-
ture. 73

5 The behaviors of a data structure which are randomly decided, and
the specification example in a configuration file. 78

6 Selected features for each data structure 85

7 The number of find invocations and the total number of touched
data elements for all the invocations across program inputs. 93

8 The trace size and the simulation time 123

9 Commercial datacenter benchmarks 130

10 Target system specification . 151

11 The speedup results of SSSP for each input graph 157

x

LIST OF FIGURES

1 DDT Organization. 9

2 (a) Memory graph construction example. Right side of the figure
shows the memory graph for the pseudo-code at top. (b) Transition
diagram for classifying edges in the memory graph. 10

3 (a) Code snippet of the program using a vector of lists and (b)
its memory graph. 12

4 (a) Interface identification from a call graph for STL’s vector and
(b) code snippet showing argument immutability. 15

5 Invariant detection examples of interface functions; (a) STL deque,
(b) STL set. 19

6 Portion of the decision tree for recognizing binary search trees in
DDT. 22

7 Examples of the memory graph magnitude with different types of graphs
45

8 Data structure’s (a) macroscopic and (b) microscopic changes; the
memory graph magnitude of each data structure appears on Y axis. 49

9 Phase change of a data structure. The spikes in the both phases rep-
resents abnormal behaviors of a data structure such as microscopic
changes. 51

10 Memory graph magnitude for the list-set benchmark with varying
NUMBER . 57

11 Memory graph magnitude for the tree-set benchmark with varying
NUMBER . 58

12 Coverage of load time generated trace 60

13 Coverage of store time generated trace 60

14 Normalized number of traces . 62

15 Different data structure selection results on two microarchitectures:
Intel Core2 Q6600 and Intel Atom N270. Each bar represents 1000
applications whose best data structure on the Core2 is shown in the
x-axis. For each application, if the data structure remains the same
on the Atom, the application is classified as ”agree”. Otherwise, the
application is classified as ”disagree”. 70

xi

16 The number of data structure occurrences in all the code registered
in Google Code Search. 72

17 The framework of the data structure selection. 73

18 Training Framework Phase-I; Generating Applications and Measur-
ing Execution Times . 76

19 Training Framework Phase-II; Collecting Software and Hardware
Features . 76

20 Correlation between conditional branch misprediction and vector
resizing when the data structure is order-aware (a) and order-
oblivious (b) . 86

21 Target systems configurations . 88

22 Performance improvement Brainy achieved 88

23 Accuracy of data structure selection models; for the same data struc-
ture, there are two different models for Core2 and Atom microarchi-
tectures, respectively. 90

24 Normalized execution time across different data structures; The base-
line execution times (in second) are on Core are 3s, 74s, and 234s for
test, train, and reference, respectively. On Atom, the baseline exe-
cution times for these inputs are 18s, 611s, and 1345s, respectively.
Brainy selects the best data structure for each input of Xalancbmk . . 92

25 Xalancbmk’s data selection results on Core2 and Atom microarchi-
tectures. 92

26 Normalized execution times across different data structures: the
baseline execution times (in second) on Core2 are 9s, 19s, and 306s
for test, train, and reference, respectively. On Atom, the baseline ex-
ecution times for these inputs are 47s, 203s, and 2952s, respectively.
Brainy selects the best data structure for each input of Chord Simu-
lator. 95

27 Chord simulator’s data selection results on Core2 and Atom mi-
croarchitectures. 95

28 The determination of thresholdstaleness. 103

29 The accuracy tradeoff of staleness thresholds on astar (above) and
xalancbmk (below). 105

30 The Sniper Organization. 110

31 An example of a single interval tree based on a Red-Black tree. Num-
bers show the address range. 117

xii

32 The datacenter environment . 122

33 Execution time of SPEC2006/allocation-intensive benchmarks 125

34 Memory overhead of SPEC2006/allocation-intensive benchmarks . . 127

35 Scalability of PARSEC parallel benchmarks 129

36 Memory space overhead of PARSEC parallel benchmarks 130

37 Precision and recall of different leak detection approaches. Sniper’s
accuracy is shown in the second bar, i.e., Sniper-Hybrid. 133

38 The impact of the hybrid anomaly detection. Sniper’s F-measure is
shown in the third bar, i.e., Sniper-Hybrid. 134

39 Stalenesses spectrum of objects in perlbench shown in a log scale . . . 135

40 Impact of sampling period change on false positives (Precision) . . . 136

41 The idea of data structure offloading: (a) original sequential appli-
cation execution versus (b) overlapped execution 143

42 The target CMP system: Intel Nehalem microarchitecture 146

43 The dataflow equations: Available Check In and Available Check Out . 149

44 Insufficient overlapped execution and its performance impact 151

45 The offloading performance . 154

xiii

SUMMARY

Turing Award winner Niklaus Wirth famously noted, ‘Algorithms + Data Struc-

tures = Programs’, and it follows that data structures should be carefully consid-

ered for effective application development. In fact, data structures are the main

focus of program understanding, performance engineering, bug detection, and se-

curity enhancement, etc. However, due to the nature of ever-changing data struc-

tures, their unpredictable performance on program input (underlying computer

architecture), and their hard-to-track bug symptoms, existing program analysis

techniques have achieved little success.

Our research is aimed at providing effective techniques for analyzing and im-

proving data structure usage in fundamentally new approaches: First, detecting

data structures; identifying what data structures are used within an application

is a critical step toward application understanding and performance engineering.

Through dynamic code instrumentation, our tool can automatically detect the or-

ganization of data in memory and the interface functions used to access the data.

Then, our dynamic invariant detection determines exactly how those functions

modify and utilize the data.

Second, selecting efficient data structures; analyzing data structures’ behav-

ior can recognize improper use of data structures and suggest alternative data

structures better suited for the current situation where the application runs. This

is based on automatically generated machine-learning based models that predict

what the best data structure implementation is given a program, a set of inputs,

and a target architecture.

xiv

Third, detecting memory leaks for data structures; tracking data accesses with

little overhead and their careful analysis can enable practical and accurate memory

leak detection. To keep the overhead low, we leverage a lightweight monitoring

technique based on performance monitoring units available in commodity proces-

sors. For accurate memory leak detection, we perform anomaly based statistical

analysis.

Finally, offloading time-consuming data structure operations; a dedicated helper

thread executes the operations on the behalf of the application thread. By overlap-

ping the executions of both the threads and appropriately synchronizing them, we

can take the cost of executing the data structure operations away from the appli-

cation. In particular, our compiler algorithm automatically eliminates redundant

synchronization code misplaced by developers.

xv

CHAPTER I

INTRODUCTION

1.1 The Motivation

Data structures are the main focus of program understanding, performance engi-

neering, bug detection, and security enhancement. Indeed, it is not uncommon

to find situations where simply changing the data structures can result in orders

of magnitude improvement in application performance for many important do-

mains. For example, scientific applications leveraging matrix inversion [30] and

matrix multiplication [141], information mining from large databases [7], and an-

alyzing genetic data for patterns [54], are instances of criticality of data structure

selection in an application tuning process. According to [30], proper data structure

selection can make the 2-D table implementation used in that study 20 times faster.

However, due to the nature of ever-changing data structures, their unpredictable

performance on program input (underlying architecture), and their hard-to-track

bug symptoms, existing program analysis techniques have achieved little success.

Without effective techniques for data structure analysis and optimization, it would

be difficult to improve the applications based on in-depth knowledge on the data

structure usage.

In reality, due to the lack of such techniques, developers rarely attempts to un-

derstand their data structures. Often times they do not even know what data struc-

ture is used in the program they wrote because they simply rely on some standard

data structure library. However, data structure libraries were designed to be effec-

tive in the common case, and often leave considerable room for improvement in

application-specific scenarios.

1

Besides, the lack of understanding of data structure usage leads developer to

unexpected bugs such as memory leaks. Considering many real-world applica-

tions allocate their data structures predominantly in heap memory, memory leaks

adversely affect the robustness of the applications. In fact, memory leaks are com-

mon causes of real-world programming bugs, security breaches, and performance

bottlenecks.

The last promising research is to accelerate a critical data structure operation

to improve the overall performance of the application. When developers have al-

ready selected the best data structure in their application, is it possible to further

improve the performance? Prior works have realized some critical data structures

with a dedicated hardware logic to make it fast to perform their operations. How-

ever, it is questionable if accelerating data structure operations is possible on com-

modity processors without any hardware support.

1.2 The Contribution

With that in mind, this dissertation seeks to address techniques for analyzing and

optimizing data structures in fundamentally new approaches: First, we propose a

data structure detection tool called DDT. Detecting data structures can help devel-

opers optimize their program; identifying what data structures are used within an

application is a critical step toward application understanding and performance

engineering. Through dynamic code instrumentation of an application binary, our

tool can automatically detect the organization of data in memory and the interface

functions used to access the data. Then, our dynamic invariant detection deter-

mines exactly how those functions modify and utilize the data.

Second, we propose MIDAS that extends DDT in order to detect data structures

even for highly optimized application binaries. Unlike DDT, MIDAS does not rely

2

on the interface functions of which boundary is eliminated with aggressive com-

piler optimizations such as function inlining. In particular, this work addresses the

difficulty of data structure reasoning in the presence of destructive updates [117, 113]

when the interface detection is impossible. To this end, MIDAS can accurately

identify data structures and extract their useful properties based on the invariants

irrespective of how they are encapsulated, how different their implementations

are, and even how optimized the binary is.

Third, we propose Brainy the data structure selection tool. Selecting efficient

data structures can achieve significant performance gain. Analyzing data struc-

tures’ behavior can recognize improper use of data structures and suggest alter-

native data structures better suited for the current situation where the application

runs. This is based on automatically generated machine-learning based models

that predict what the best data structure implementation is given a program, a set

of program inputs, and a target architecture the program is running on.

Fourth, we propose Sniper, an effective memory leak detection tool for C/C++

production software. To track the staleness of allocated memory (which is a clue to

potential leaks) with little overhead, Sniper leverages instruction sampling using

performance monitoring units available in commodity processors. It neither per-

turbs the application execution nor increases the heap size. Sniper can deal with

even multithreaded applications with very low overhead. In particular, it performs

a statistical analysis, which views memory leaks as anomalies, for systematic and

automated leak determination.

Lastly, we propose a data structure acceleration technique called DSO. The

main idea is to leverage a dedicated thread running on an idle core to offload a

time-consuming expensive data structure operation of an application. It is inspired

by the previous helper threading approach, i.e., the helper thread executes the data

structure operation on the behalf of the application. In this way, DSO can take the

3

cost of performing the expensive operation away from the application.

1.3 Thesis Statement

The proposed techniques for understanding and improving data structure usage

can achieve efficient program execution.

4

CHAPTER II

DATA STRUCTURE DETECTION

2.1 Introduction

Data orchestration is one of the most critical aspects of developing effective many-

core applications. Several different trends drive this movement. First, as technol-

ogy advances, getting data onto the chip will become increasingly challenging. The

ITRS road map predicts that the number of pads will remain approximately con-

stant over the next several generations of processor integration [61]; the implica-

tion is that while computational capabilities on-chip will increase, the bandwidth

will remain relatively stable. This trend puts significant pressure on data delivery

mechanisms to prevent the vast computational resources from starving.

Application trends also point toward the importance of data orchestration. A

recent IDC report estimates that the amount of data in the world is increasing ten-

fold every five years [50]. That is, data growth is outpacing the current growth rate

of transistor density. There are many compelling applications that make use of big

data, and if systems cannot keep pace with the data growth then they will miss out

on significant opportunities in the application space.

Lastly, a critical limitation of future applications will be their ability to effec-

tively leverage massively parallel compute resources. Creating effective paral-

lel applications requires generating many independent tasks with relatively little

communication and synchronization. To a large extent, these properties are de-

fined by how data used in the computation is organized. As an example, previous

work by Lee et al. found that effectively parallelizing a program analysis tool re-

quired changing the critical data structure in the program from a splay-tree to a

5

simpler binary search tree [83]. While a splay-tree is generally faster on a single

core, splay accesses create many serializations when accessed from multicore pro-

cessors. Proper choice of data structure can significantly impact the parallelism in

an application.

All of these trends point to the fact that proper use of data structures is becom-

ing more and more important for effective manycore software development.

Unfortunately, selecting the best data structure when developing applications

is a very difficult problem. Often times, programmers are domain specialists, such

as biologists, with no knowledge of performance engineering, and they simply do

not understand the properties of data structures they are using. One can hardly

blame them; when last accessed, the Wikipedia list of data structures contained 74

different types of trees! How is a developer, even a well trained one, supposed to

choose which tree is most appropriate for their current situation?

Even if the programmer has perfect knowledge of data structure properties, it is

still extraordinarily difficult to choose the best data structures. Architectural com-

plexity significantly complicates traditional asymptotic analysis, e.g., how does a

developer know which data structures will best fit their cache lines or which struc-

tures will have the least false-sharing? Beyond architecture, the proper choice of

data structure can even depend on program inputs. For example, splay-trees are

designed so that recently accessed items are quickly accessed, but elements with-

out temporal locality will take longer. In some applications it is impossible to know

a priori input data properties such as temporal locality. Data structure selection is

also a problem in legacy code. For example, if a developer created a custom map

that fit well into processor cache lines in 2002, that map would likely have subop-

timal performance using the caches in modern processors.

Choosing data structures is very difficult, and poor data structure selection can

6

have a major impact on application performance. For example, Liu and Rus re-

cently reported a 17% performance improvement on one Google internal applica-

tion just by changing a single data structure [87]. We need better tools that can

identify when poor data structures are being used, and can provide suggestions to

developers on better alternatives.

In an ideal situation, an automated tool would recognize what data structures

are utilized in an application, use sample executions of the program to determine

whether alternative data structures would be better suited, and then automatically

replace poor data structure choices.

In this work we attempt to solve the first step of this vision: data structure

identification. The Data-structure Detection Tool, or DDT, takes an application bi-

nary and a set of representative inputs and produces a listing of the probable data

structure types corresponding to program variables. DDT works by instrumenting

memory allocations, stores, and function calls in the target program. Data struc-

tures are predominantly stored in memory, and so instrumentation tracks how the

memory layout of a program evolves. Memory layout is modeled as a graph: al-

locations create nodes, and stores to memory create edges between graph nodes.

DDT makes the assumption that access to memory comprising a data structure is

encapsulated by interface functions, that is, a small set of functions that can insert or

access data stored in the graph, or otherwise modify nodes and edges in the graph.

Once the interface functions are identified, DDT uses an invariant detection tool

to determine the properties of the functions with respect to the graph. For exam-

ple, an insertion into a linked list will always increase the number of nodes in the

memory graph by one and the new node will always be connected to other nodes

in the list. A data value being inserted into a splay-tree will always be located at

the root of the tree. We claim that together, the memory graph, the set of interface

functions, and their invariants uniquely define a data structure. Once identified in

7

the target application, the graph, interface, and invariants are compared against a

predefined library of known data structures for a match, and the result is output

to the user. This information can help developers quickly understand their code,

particularly if the they are working on a large legacy application, or using shared

libraries which may unknowingly be designed poorly. DDT also informs develop-

ers of dynamic program properties, such as how effective a hash-function is, and

how ’bushy’ a tree is, which can be used to optimize the application. DDT could

also be as input to performance models that can suggest when alternative data

structures may be better suited for an application/architecture.

We have implemented DDT as part of the LLVM toolset [77] and tested it on

several real-world data structure libraries: the GNOME C Library (GLib) [132], the

Apache C++ Standard Library (STDCXX) [129], Borland C++ Builder’s Standard

Library implementation (STLport) [127], and a set of data structures used in the

Trimaran research compiler [134]. We also demonstrate that DDT works for several

real-world applications, enabling the compiler/developer to more easily identify

powerful optimizations. This work demonstrates that DDT is quite accurate in

detecting data structures no matter what the implementation.

2.2 DDT Algorithm Details

The purpose of DDT is to provide a tool that can correctly identify what data struc-

tures are used in an application regardless of how the data structures are imple-

mented. The thesis of this work is that data structure identification can be accom-

plished by the following: (1) Keeping track of how data is stored in and accessed

from memory; this is achieved by building the memory graph. (2) Identifying what

functions interact with the memory comprising a data structure; this is achieved

with the help of an annotated call graph. (3) Understanding what those functions

do; invariants on the memory organization and interface functions are the basis for

8

Figure 1: DDT Organization.

characterizing how the data structure operates.

Figure 30 shows a high-level diagram of DDT. An application binary and sam-

ple input(s) are fed into a code instrumentation tool, in this case a dynamic com-

piler. It is important to use sample executions to collect data, instead of static

analysis, because static analysis is far too conservative to effectively identify data

structures. It is also important for DDT to operate on binaries, because often times

data structure implementations are hidden in binary-only format behind library

interfaces. It is unrealistic to expect modern developers to have source code access

to their entire applications, and if DDT required source code access then it would

be considerably less useful.

Once instrumented, the sample executions record both memory allocations and

stores to create an evolving memory graph. Loads are also instrumented to de-

termine which functions access various parts of the memory graph, thus helping

to delineate interface functions. Finally, function calls are also instrumented to

describe the state of the memory graph before and after their calls. This state

is used to detect invariants on the function calls. Once all of this information is

generated by the instrumented binary, an offline analysis processes it to gener-

ate the three traits (memory graph, interface functions, and invariants) needed to

uniquely identify a data structure. Identification is handled by a hand-designed

9

Figure 2: (a) Memory graph construction example. Right side of the figure shows
the memory graph for the pseudo-code at top. (b) Transition diagram for classifying
edges in the memory graph.

decision tree that tests for the presence of the critical characteristics that distin-

guish data structures. For example, if nodes in a memory graph always have one

edge that points to NULL or another node from the same allocation site, and there

is an insert-like function which accesses that graph, etc., then it is likely that

this memory graph represents a singly-linked list. The remainder of this section

describes in detail how DDT accomplishes these steps using C++-based examples.

2.2.1 Tracking Data Organization with a
Memory Graph

One part of characterizing a data structure involves understanding how data ele-

ments are maintained within memory. This relationship can be tracked by mon-

itoring memory regions that exist to accommodate data elements. By observing

how the memory is organized and the relationships between allocated regions, it

is possible to partially infer what type of data structure is used. This data can be

tracked by a graph whose nodes and edges are sections of allocated memory and

10

the pointers between allocated regions, respectively. We term this a memory graph.

The memory graphs for an application are constructed by instrumenting mem-

ory allocation functions1 (e.g., malloc) and stores. Allocation functions create a

node in the memory graph. DDT keeps track of the size and initial address of each

memory allocation in order to determine when memory accesses occur in each re-

gion. An edge between memory nodes is created whenever a store is encountered

whose target address and data operands both correspond to addresses of nodes

that have already been allocated. The target address of the store is maintained so

that DDT can detect when the edge is overwritten, thus adjusting that edge during

program execution.

Figure 2 (a) illustrates how a memory graph is built when two memory cells are

created and connected to each other. Each of the allocations in the pseudo-code at

the top of this figure create a memory node in the memory graph. The first two

stores write constant data NULL to the offset corresponding to next. As a result,

two edges from each memory node to the data are created. For the data being

stored, two nodes are created. To distinguish data from memory nodes, they have

no color in the memory graph. In instruction (5) of the figure, the last store updates

the original edge so that it points to the second memory node. Thus, stores can

destroy edges between nodes if the portion of the node containing an address is

overwritten with a new address. Typically, DDT must simultaneously keep track

of several different memory graphs during execution for each independent data

structure in the program. While these graphs dynamically evolve throughout pro-

gram execution, they will also exhibit invariant properties that help identify what

data structures they represent, e.g., arrays will only have one memory cell, and

1Data structures constructed in the stack, i.e., constructed without explicitly calling a memory
allocation routine, are not considered in this work, as it is typically not possible to reconstruct how
much memory is reserved for each data structure without access to compiler internals. Custom
memory allocators can be handled provided DDT is cognizant of them.

11

Figure 3: (a) Code snippet of the program using a vector of lists and (b) its
memory graph.

each node in a binary tree will contain edges to at most two other nodes.

Extending the Memory Graph: The memory graph as presented thus far is

very similar to that proposed in previous work [111]. However, we have found that

using this representation is not sufficient to identify many important invariants

for data structure identification. For example, if the target application contained

a singly-linked list of dynamically allocated objects, then it would be impossible

to tell what part of the graph corresponded to list and what part corresponded

to the data it contains. In order to overcome this hurdle, two extensions to the

baseline memory graph are needed: allocation-site-based typing of graph nodes,

and typing of edges.

The purpose of allocation-site-based typing of the memory nodes is to solve

exactly the problem described above: differentiating memory nodes between un-

related data structures. Many people have previously noted that there is often

a many-to-one mapping between memory allocation sites and a data structure

type [58]. Thus, if we color nodes in the memory graph based on their alloca-

tion site, it is easy to determine what part of the memory graph corresponds to a

particular data structure and what part corresponds to dynamically allocated data.

However, in the many-to-one mapping, an allocation site typically belongs to

one data structure, but one data structure might have many allocation sites. In

12

order to correctly identify the data structure in such a situation, it is necessary

to merge the memory node types. This merging can be done by leveraging the

observation that even if memory nodes of a data structure are created in different

allocation sites, they are usually accessed by the same method in another portion

of the application. For example, even if a linked-list allocates memory nodes in

both push front and push back, the node types can be merged together when

a back method is encountered that accesses memory nodes from both allocation

sites.

While empirical analysis suggests this does help identify data structures in

many programs, allocation-site-based coloring does not help differentiate graph

nodes in applications with custom memory allocators. That is because multiple

data structures can be created in a single allocation site, which is the custom mem-

ory allocator. This deficiency could be remedied by describing the custom memory

allocators to DDT so that they could be instrumented as standard allocators, such

as malloc, currently are.

The second extension proposed for the memory graph is typing of edges. As

with node coloring, typing the edges enables the detection of several invariants

necessary to differentiate data structures. We propose three potential types for an

edge in the memory graph: child, foreign, and data. Child edges point to/from

nodes with the same color, i.e., nodes from the same data structure. The name

“child” edge arose from when we first discovered their necessity while trying to

identify various types of trees. Foreign edges point to/from memory graph nodes

of different colors. These edges are useful for discovering composite data struc-

tures, e.g., list<set<vector> > >. Lastly, data edges simply identify when a

graph node contains static data. These edges are needed to identify data struc-

tures which have important properties stored in the memory graph nodes. E.g.,

a red-black tree typically has a field which indicates whether each node is red or

13

black.

A single edge in the memory graph can have several different uses as the dy-

namic execution evolves, e.g., in Figure 2 (a), the next pointer is initially assigned

a data edge pointing to NULL and later a child edge pointing to new node. The of-

fline invariant detection characterizes the data structure based on a single type for

each edge though, thus Figure 2 (b) shows classification system for edges. When a

store instruction initially creates an edge, it starts in one of the three states. Upon

encountering future stores that adjust the initial edge, the edge type may be up-

dated. For example, if the new store address and data are both pointers from the

same allocation site, the edge becomes a child edge, no matter what the previous

state was. However, if the edge was already a child edge, then storing a pointer

from another allocation site will not change the edge type.

The reason for this can be explained using the example from Figure 2 again.

Initially the next pointer in a newly initialized node may contain the constant

NULL, i.e., a data edge, and later on during execution next will be overwritten

with new node from the same allocation site, i.e., a child edge. Once next is over-

written again, DDT can produce more meaningful results if it remembers that the

primary purpose of next is to point to other internal portions of the data struc-

ture, not to hold special constants, such as NULL. The prioritization of child edges

above foreign edges serves a similar purpose, remembering that a particular edge

is primarily used to link internal data structure nodes rather than external data.

Figure 3 gives an example demonstrating why typing nodes and edges in the

memory graph is critical in recognizing data structures. The code snippet in this

figure creates a vector with four lists and inserts integer numbers between 0

and 19 into each list in a round robin manner. Nodes are colored differently

based on their allocation site, and edges types are represented by different arrow

structures. To identify the entire data structure, DDT first recognizes the shape

14

Figure 4: (a) Interface identification from a call graph for STL’s vector and (b)
code snippet showing argument immutability.

of a basic data structure for each allocation site by investigating how the “child”

edges are connected. Based on the resulting graph invariants, DDT infers there

are two types of basic data structures, vector and list. Then, DDT checks each

“foreign” edge to identify the relationship between the detected data structures.

In this example, all the elements of vector point to a memory node of each list,

which is a graph invariant. Without the node or edge typing, it would be impossi-

ble to infer that this is a composite vector-of-lists instead of some type of tree, for

example.

One potential drawback of this approach is that typing of edges and nodes is

input dependent, and therefore some important edges may not be appropriately

classified. For example, even though an application uses a binary tree, DDT may

report it is a linked-list if all the left child pointers of the tree have NULL values due

to a particular data insertion pattern. However, our experimental analysis demon-

strated no false identifications for this reason, and if a binary tree were behaving

as a linked-list, this pathological behavior would be very useful for a developer to

know about.

2.2.2 Identifying Interface Functions for the
Memory Graph

Understanding how data is organized through the memory graph is the first step

toward identifying data structures, but DDT must also understand how that data

15

is retrieved and manipulated. To accomplish this DDT must recognize what por-

tions of code access and modify the memory graph. DDT makes the assumption

that this code can be encapsulated by a small set of interface functions and that these

interface functions will be similar for all implementations of a particular data struc-

ture. E.g., every linked-list will have an insertion function, a remove function, etc.

The intuition is that DDT is trying to identify the set of functions an application

developer would use to interface with the data structure.

Identifying the set of interface functions is a difficult task. One cannot simply

identify functions which access and modify the memory graph, because often one

function will call several helper functions to accomplish a particular task. For ex-

ample, insertions into a set implemented as a red-black tree may call an additional

function to rebalance the tree. However, DDT is trying to identify set function-

ality, thus rebalancing the tree is merely an implementation detail. If the interface

function is identified too low in the program call graph (e.g., the tree rebalancing),

the “interface” will be implementation specific. However, if the interface function

is identified too high in the call graph, then the functionality may include opera-

tions outside standard definitions of the data structure, and thus be unmatchable

against DDT’s library of standard data structure interfaces.

Figure 4 (a) shows an example program call graph for a simple application us-

ing the vector class from the C++ Standard Template Library, or STL [125]. In

the figure each oval represents a function call. Functions that call other functions

have a directed edge to the callee. Boxes in this figure represent memory graph

accesses and modifications that were observed during program executions. This

figure illustrates the importance of identifying the appropriate interface functions,

as most STL data structures’ interface methods call several internal methods with

call depth of 3 to 9 functions. The lower level functions calls are very much imple-

mentation specific.

16

To detect correct interface functions, DDT leverages two characteristics of inter-

face functions. First, functions above the interfaces in the call graph never directly

access data structures; thus if a function does access the memory graph, it must be

an interface function, or a successor of an interface function in the call graph. Fig-

ure 4 demonstrates this property on the call graph for STL’s vector. Boxes in this

figure represent memory graph accesses. The highest nodes in the call graph that

modify the memory graph are colored, representing the detected interface func-

tions.

It should be noted that when detecting interface functions, it is important to

consider the memory node type that is being modified in the call graph. That is, if

an interface function modifies a memory graph node from a particular allocation

site, that function must not be an interface for a different call site. This intuitively

makes sense, since the memory node types represent a particular data structure,

and each unique data structure should have a unique interface.

You can see that finding the highest point in the call graph that accesses the

memory graph is fairly accurate. There is still room for improvement, though, as

this method sometimes identifies interface functions too low in the call graph, e.g.,

m insert aux is identified in this example.

The second characteristic used to detect interface functions is that generally

speaking, data structures do not modify the data. Data is inserted into and re-

trieved from the data structure, but that data is rarely modified by the structure

itself. That is, the data is, immutable. Empirically speaking, most interface func-

tions enforce data immutability at the language-level by declaring some arguments

const. DDT leverages this observation to refine the interface detection.

For each detected interface function, DDT examines the arguments of those

functions that call it and determines if they are modified during the function using

17

either dataflow analysis or invariant detection. If there are immutable data argu-

ments, then the interface is pushed up one level in the call graph, and the check is

repeated recursively. The goal is to find the portion of the call graph where data

is mutable, i.e., the user portion of the code, thus delineating the data structure

interface.

Using the example from Figure 4, m insert aux is initially detected as an in-

terface function. However, its parent in the call graph, push back, has the data

being stored as an immutable argument as described in Figure 4 (b). In turn, DDT

investigates, its parent, foo to check whether or not it is real interface function.

Even if foo has the same argument, it is not immutable. Thus DDT finally selects

push back as an interface function. Detecting immutability of operands at the

binary level typically requires only liveness analysis, which is a well understood

compiler technique. When liveness is not enough, invariant detection on the func-

tion arguments can provide a probabilistic guarantee of immutability. By detecting

memory graph modifications, and immutable operands DDT was able correctly to

detect that the yellow-colored ovals in Figure 4 (a) are interface functions for STL’s

vector.

One limitation of the proposed interface detection technique is that it can be

hampered by compiler optimizations such as function inlining or procedure bound-

ary elimination [133]. These optimizations destroy the calling context information

used to detect the interface. Future work could potentially address this by detect-

ing interfaces from arbitrary sections of code, instead of just function boundaries.

Source code access would help in this process. A second limitation is that this tech-

nique will not accurately detect the interface of data structures that are not well

encapsulated, e.g., a class with entirely public member variables accessed by arbi-

trary pieces of code. However, this situation does not commonly occur in modern

applications.

18

Figure 5: Invariant detection examples of interface functions; (a) STL deque, (b)
STL set.

2.2.3 Understanding Interface Functions
through Invariant Detection

Now that the shape of the data structure and the functions used to interface with

the data are identified, DDT needs to understand exactly what the functions do,

i.e., how the functions interact with the data structure and the rest of the program.

Our proposed solution for determining what an interface function does is to lever-

age dynamic invariant detection. Invariants are program properties that are main-

tained throughout execution of an application. For example, a min-heap will al-

ways have the smallest element at its root node or a data value being inserted into

a splay-tree will always become a new root in the tree. Invariants such as these

are very useful in many aspects of software engineering, such as identifying bugs,

and thus there is a wealth of related work on how to automatically detect probable

invariants [49].

Invariant properties can apply before and after function calls, e.g., insert al-

ways adds an additional node to the memory graph, or they can apply throughout

program execution, e.g., nodes always have exactly one child edge. We term these

function invariants and graph invariants, respectively. As described in Section 2.2.1,

19

graph invariants tell DDT the basic shape of the data structure. Function invari-

ants allow DDT to infer what property holds whenever functions access the data

structure as the example.

In using invariants to detect what data structures are doing, DDT is not con-

cerned so much with invariants between program variables as much as it is con-

cerned with invariants over the memory graph. For example, again, insertion to a

linked list will always create a new node in the memory graph. That node will also

have at least two additional edges: one pointing to the data inserted, and a next

pointer. By identifying these key properties DDT is able to successfully differenti-

ate data structures in program binaries.

Target Variables of Invariant Detection: The first step of invariant detection

for interface functions is defining what variables DDT should detect invariants

across. Again, we are primarily concerned with how functions augment the mem-

ory graph, thus we would like to identify relationships of the following variables

before and after the functions: number of memory nodes, number of child edges, number

of data edges, value pointed by a data edge, and data pointer. The first three variables are

used to check if an interface is a form of insertion. The last two variables are used

to recognize the relationship between the data value and the location it resides in,

which determines how the value affects deciding the location that accommodates

it.

As an example, consider the STL deque’s2 interface functions, push front

and push back. DDT detects interesting invariant results from the target vari-

ables mentioned above, as shown on the left side of Figure 5. Since the STL deque

is implemented using dynamic array, number of memory nodes and number of child

2deque is similar to a vector, except that it supports constant time insertion at the front or back,
where vector only supports constant time insertion at the back.

20

edges remain unchanged when these interface functions are called. DDT recog-

nizes that these interface functions insert elements; however, because number of

data edges, represented as ’data edges’ in the figure, increase whenever these func-

tions are called. In the push front, data pointer decreases while it increases in the

push

back, meaning that data insertion occurs in head and tail of the deque, respec-

tively. That lets us know this is not an STL vector because vector does not have

the push front interface function.

The right side of Figure 5 shows another example of the seven invariants DDT

detects in STL set’s interface function insert. The first two invariants imply

that the insert increases number of memory nodes and number of child edges. That

results from the fact the insert creates a new memory node and connects it to

the other nodes. In particular, the third invariant, “2 * number of memory nodes -

number of child edges - 2 == 0,” tells us that every two nodes are doubly linked to

each other by executing the insert function. The next three invariants represent

that the value in a memory node is always larger than the first child and smaller

than the other child. This means the resulting data structure is a similar to a binary

tree. The last invariant represents that there is a data value that always holds one

or zero. STL set is implemented by using red-black tree in which every node has

a color value (red or black), usually represented by using a boolean type.

Similar invariants can be identified for all interface functions, and a collection

of interface functions and its memory graph uniquely define a data structure. In

order to detect invariants, the instrumented application prints out the values of all

relevant variables to a trace file before and after interface calls. This trace is post-

processed by the Daikon invariant detector [49] yielding a print out very similar

to that in Figure 5. While we have found invariants listed on the graph variables

21

defined here to be sufficient for identifying many data structures, additional vari-

ables and invariants could easily be added to the DDT framework should they

prove useful in the future.

Figure 6: Portion of the decision tree for recognizing binary search trees in DDT.

2.2.4 Matching Data Structures in the Library

DDT relies on a library of pre-characterized data structures to compare against.

This library contains memory graph invariants, a set of interface functions, and

invariants on those interface functions for each candidate data structure. The li-

brary is comprised of a hand-constructed decision tree that checks for the presence

of critical invariants and interface functions in order to declare a data structure

match. That is, the presence of critical invariants and interface functions is tested,

and any additional invariants/interfaces to not override this result.

The invariants are picked that distinguish essential characteristics of each data

structure, based on its definition rather than on implementation. That is, for a

22

linked list, the decision tree attempts to look for an invariant, “an old node is con-

nected to a new node” instead of “a new node points to NULL ”. The latter is likely to

be implementation specific. Intuitively, the memory graph invariants determine a

basic shape of data structures, e.g., each node has two child edges. Meanwhile, the

invariants of interface functions distinguish between those data structures which

have similar shapes. Extending this library is an easy process: simply run a sam-

ple execution of an application with the target data structure, look through the list

of identified invariants, and add the critical invariants into the decision tree. In

practice, a new data structure can be added to the library in a few minutes.

At the top of the decision tree, DDT first investigates the basic shape of data

structures. After the target program is executed, each memory graph that was

identified will have its invariants computed. For example, an STL vector will

have the invariant of only having a single memory node. With that in mind, DDT

guesses the data structure is array-like one. This shape information guides DDT

into the right branch of the decision tree in the next to check desired function in-

variants.

Among the detected interface functions, DDT initially focuses on insert-like

functions. That is because most data structures have at minimum an insertion

interface function, and they are very likely to be detected regardless of program

input. If the required interface are not discovered, DDT reports that the data

structure does not match. After characterizing the insertion function, DDT fur-

ther investigates other function invariants traversing down the decision tree to

refine the current decision. As an example, in order to determine between deque

and vector, the next node of the decision tree investigates if there is the invariant

corresponding to push front as shown in Section 2.2.3. It is important to note

that the interface functions in the library contain only necessary invariants. Thus if

the dynamic invariant detection discovers invariants that resulted only because of

23

unusual test inputs, DDT does not require those conservative invariants to match

what is in the library.

Figure 6 shows a portion of DDT’s decision tree used to classify binary trees.

At the top of the tree, DDT knows that the target data structure is a binary tree,

but it does not know what type of binary tree it is. First, the decision tree checks if

there is the invariant corresponding to a “binary search tree”. If not, DDT reports

that the target data structure is a simple binary tree. Otherwise, it checks if the

binary tree is self-balancing. Balancing is implemented by tree rotations and they

are achieved by updating child edges of pivot and root, shown in the top-left of

Figure 6. The rotation function is detected by the invariant that two consecutive

and different “child“ edges are overwritten (shown in bold in Figure 6). If tree-

rotation is not detected in the insert, DDT reports that the data structure is a

“simple binary search tree.” More decisions using the presence of critical functions

and invariants further refine the decision until arriving at the leaf of the decision

tree, or a critical property is not met, when DDT will report an unknown data

structure. After data structures are identified, the decision tree is repeated using

any “foreign” edges in the graph in order to detect composite data structures, such

as vector<list<int> >.

Using invariant detection to categorize data structures is probabilistic in nature,

and it is certainly possible to produce incorrect results. However, this approach has

been able to identify the behavior of interface functions for several different data

structure implementations from a variety of standard libraries, and thus DDT can

be very useful for application engineering. Section 4.6 empirically demonstrates

DDT can effectively detect different implementations from several real-world data

structure libraries.

24

2.3 Evaluation

In order to demonstrate the utility of DDT, we implemented it as part of the LLVM

toolset. DDT dynamically instruments the LLVM intermediate representation (IR),

and the LLVM JIT converts the IR to x86 assembly code for execution. Output from

the instrumented code is then fed to Daikon [49] to detect invariants needed to

identify data structures. These invariants are then compared with a library of data

structures that was seeded with simple programs we wrote using the C++ Stan-

dard Template Library (STL) [125]. The entire system was verified by recognizing

data structures in toy applications that we wrote by hand without consulting the

STL implementation. That is, we developed the classes MyList, MySet, etc. and

verified that DDT recognized them as being equivalent to the STL implementations

of list, set, etc. Additionally, we verified DDT’s accuracy using four externally

developed data structure libraries: the GNOME project’s C-based GLib [132], the

Apache C++ Standard Library STDCXX [129], Borland C++ Builder’s Standard Li-

brary STLport [127], and a set of data structures used in the Trimaran research

compiler [134].

Even though the current implementation of DDT operates on compiler IR, there

is no technical issue preventing DDT’s implementation on legacy program bina-

ries. The LLVM IR is already very close to assembly code, with only two differ-

ences worth addressing. First, LLVM IR contains type information. The DDT tool

does not leverage this type information in any way. Second, LLVM IR is not reg-

ister allocated. The implication is that when DDT instruments store instructions it

will avoid needlessly instrumenting spill code that may exist in a program binary.

This may mean that the overhead experienced for instrumentation is probably un-

derestimated by a small factor. It is likely to be a small factor, though, because the

amount of spill code is generally small for most applications.

25

2.3.1 Demonstrating the Correctness of DDT

Table 1: Data structure detection results of representative C/C++ data structure
libraries.

Library Data structure type Main data structure Reported data structure Identified?
vector dynamic array vector yes

STL deque double-ended dynamic array deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
vector dynamic array vector yes

Apache (STDCXX) deque double-ended dynamic array deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
vector dynamic array vector yes

Borland (STLport) deque double-ended dynamic array deque yes
list doubly-linked list doubly-linked list yes
set red-black tree red-black tree yes
GArray double-ended dynamic array deque yes

GLib GQueue doubly-linked list doubly-linked list yes
GSList singly-linked list singly-linked list yes
GTree AVL tree balanced binary search tree no
Vector dynamic array vector yes

Trimaran List singly-linked list singly-linked list yes
Set singly-linked list singly-linked list yes

Table 1 shows how DDT correctly detects a set of data structures from STL,

STDCXX, STLport, GLib, and Trimaran. The data structures in this table were

chosen because they represent some of the most commonly used, and they exist

in most or all of the libraries examined (there is no tree-like data structure in Tri-

maran). Several synthetic benchmarks were used to evaluate DDT’s effectiveness

across data structure implementations. These benchmarks were based on the stan-

dard container benchmark [12], a set of programs originally designed to test the

relative speed of STL containers. These were ported to the various data structure

libraries and run through DDT.

Overall, DDT was able to accurately identify most of the data structures used

in those different library implementations. DDT correctly identified that the set

from STL, STDCXX, STLport were all implemented using a red-black tree. To ac-

complish this, DDT successfully recognized the presence of tree-rotation functions,

and that each node contained a field which contains only two values: one for “red”

26

and one for “black”. DDT also detected that Trimaran’s Set exploits list-based im-

plementation and GLib’s GQueue is implemented using a doubly-linked list.

The sole incorrect identification was for GLib’s GTree, which is implemented

as an AVL tree. DDT reported that it was a balanced binary search tree because

DDT only identified that there are invariants of tree-rotations. In order to correctly

identify AVL trees, DDT must be extended to detect other types of invariants. This

is a fairly simple process, however, we leave this for future work.

On average, the overhead for instrumenting the code to recognize data struc-

tures was about 200X. The dynamic instrumentation overhead for memory/call

graph generation was about 50X while the off-line analysis time including inter-

face identification and invariants detection occupies the rest of the overhead. In

particular, the interface identification time was sufficiently negligible that it occu-

pies less than 3% of the whole overhead. While this analysis does take a significant

amount of time, it is perfectly reasonable to perform heavy-weight analysis like

this during the software development process.

2.3.2 Demonstrating the Utility of DDT

DDT helps programmers understand and optimize their applications by identify-

ing the critical data structures within applications. The introduction described a

motivation of automatically replacing data structures in parallel applications, but

many other optimizations are enabled by this analysis, e.g., data structure aware

prefetching. Below, we describe an empirical study of using DDT to help optimize

six applications. All the experiments were performed on a Linux-based system

with a 2.33 GHz Intel Core2 Quad CPU and 4GB of RAM.

2.3.2.1 Em3d

Em3d is a benchmark from the Olden Benchmark Suite [3] that computes electro-

magnetic field values in a 3D space. It maintains two linked-lists that represent

27

electric and magnetic fields. Its hot loop traverses each node in one list, computes

a result value by performing convolution of the node’s scaling vector and stores the

value to nodes in the other list. A critical property of this applications is that the

resulting value is only written to the current node, which means it does not cause

data dependence on the next iteration’s computation. The singly linked-list is rec-

ognized by DDT. Based on invariants on its interface functions, DDT found out that

inserting data is occurred at the end of the linked-list. In other words, DDT detects

that the linked lists in this application can be replaced with a vector-like dynamic

array, which improves data locality, thereby achieving a speedup of 1.14. Replac-

ing the linked list with a vector also enables well-known automatic parallelization

transformations that do not work on linked lists. By manually parallelizing the

critical loop, we quickly achieved a speedup of 1.59 for this application.

2.3.2.2 Bh

Bh, also from the Olden Suite, performs a Barnes and Hut N-body force algorithm

on the gravitational interaction. To access the bodies, the program maintains a

linked-list. The main computation is occurred in a loop in grav function, which

reads each body and traverses a space decomposition tree from its root to compute

the body’s new acceleration value. Similar to em3d, each resulting value written is

never read in the critical loop, thereby causing no data dependence on any other

body nodes. DDT again reported its data structure as a singly linked-list that could

be replaced by a vector. Replacing the linked-list with a vector yielded a speedup

of 1.34, and manually simulating well-understood automatic parallelization of the

hot loop in grav, we finally obtained a speedup of 4.35 on our 4-core machine.

2.3.2.3 Raytrace

Raytrace draws a 3D image of groups of spheres using ray tracing algorithm im-

plemented in C++. The spheres are divided into groups that use a linked list to

28

store them. The main computation of the program occurred in a loop in intersect of

each group object. First, the intersection calculation is performed for each group

of spheres. If a ray hits the group, it is subsequently performed for its spheres

(scenes). DDT correctly reported its data structure as a doubly linked-list and

found that data is inserted at the end of the linked-list. Replacing the linked-list

with a vector again yielded a speedup of 1.17. The hot loop does exhibit do-all style

parallelism, however, it is not as simple to parallelize as the previous examples. In-

stead of parallelizing it, we injected software prefetch instructions in the loop body

by hand, using knowledge of the data structure. One interesting information DDT

reported, the original linked list keeps a pointer to another heap allocated object

as a data value. In other words, the replaced data structure should be vector of

pointers. With that in mind, for the prefetch target address, we used data value

itself of the vector, not data index location. This is novel, effective prefetching

strategy compared to other statistics based prefetching techniques, which mostly

do not work for irregular memory access patterns. By applying the data structure

conscious prefetching technique, we achieved a final speedup of 1.38.

2.3.2.4 Xalancbmk

Xalancbmk is an XSLT processor that performs an XML to HTML transformations.

It takes as inputs an XML document and an XSLT stylesheet file that contains de-

tailed instructions for the transformation. The program maintains a string cache

comprised of two levels, m busyList and m availableList, vectors. When a string

is freed in XalanDOMStringCache::release, it moves the string to the m availableList

provided it is found in the m busyList. DDT correctly recognized that the both

string lists are implemented using vectors and reported that the program con-

tains several red-black trees. Interestingly, the invariants of one interface function

for the vector invoked by XalanDOMStringCache::release describe that the interface

29

function loads a sequence of addresses with the same stride from the start address

of the vector, which is exactly what std::find does for vector. This was suspi-

cious enough for us to suspect that it performs a linear search having O(n) time

complexity. We replaced the data structure with STL set in which the search-

ing operation uses a binary search algorithm, i.e., O(log n). This transformation

achieved a speedup of 1.13.

2.3.2.5 Jaula

Jaula is a C++ based JSON parser implemented using STL. It verifies the syntax of

a JSON file and writes the reduced expression of each JSON type instance as an

output to cut down the file size. During the parsing, the program creates var-

ious JSON type instances based on a lexical analysis result. The instances are

stored in different data structures and all their elements are iterated to generate

the output. DDT correctly recognized that the two main JSON type instances,

object and array, are maintained using a red-black tree and a doubly-linked list,

respectively. In particular, DDT reported their insert-like interface functions as

array::addItem and object::insertItem differently. The reason is that DDT performs

argument-immutability based interface detection. However, since these are just

wrappers of STL interface functions, list< T >::push back and map< T >::insert,

which means their invariant results are identical, DDT could correctly identified

such data structures. We replaced the linked list with vector as its original name

(array) implies, however, we did not get a significant speedup. This results from

the fact that the syntax of JSON documents is quite simple, and therefore the ma-

jority of the execution time is spent on the lexical analysis.

2.3.2.6 DDT Memory Graph

Here DDT itself was used as a test application. At runtime, DDT keeps detailed

information about dynamically allocated memory chunks, e.g., memory nodes to

30

keep track of which two of them are connected to each other. This information is

stored using an STL set implemented as a red-black tree. DDT correctly recognized

this critical data structure and found out that an interface function accessing it,

operator++, is invoked much more frequently than the insert-like function. This

tells us that the benchmark spends the majority of its execution time on iterating

the data structure repeatedly. This was the case because on every memory oper-

ation, the tree needed to be iterated to determine if the address modified affected

memory graph nodes. Thus, DDT tells us that a data structure with more effi-

cient lookup is appropriate for implementing this particular set. We implemented

a new version of the map that can lookup all memory nodes whose range contains

a target address in O(log N) time, instead of the O(N) version that was previously

implemented. Replacing this data structure, DDT was able to profile 181.mcf from

SPECint 2000 in just 6 seconds, where previously it took over 24 hours to complete.

These examples show that DDT can be used to help developers understand

and easily optimize their applications. This can take the form of identifying re-

placement data structures, or enabling other optimizations such as automatic par-

allelization or data prefetching.

2.4 Summary

The move toward manycore computing is putting increasing pressure on data or-

chestration within applications. Identifying what data structures are used within

an application is a critical step toward application understanding and performance

engineering for the underlying manycore architectures. This work presents a fun-

damentally new approach to automatically identifying data structures within pro-

grams.

Through dynamic code instrumentation, our tool can automatically detect the

organization of data in memory and the interface functions used to access the data.

31

Dynamic invariant detection determines exactly how those functions modify and

utilize the data. Together, these properties can be used to identify exactly what

data structures are being used in an application, which is the first step in assisting

developers to make better choices for their target architecture. This paper demon-

strates that this technique is highly accurate across several different implemen-

tations of standard data structures. This work can provide a significant aid for

assisting programmers in parallelizing their applications. We plan future work

to extend DDT by integrating cost models to predict when alternative data struc-

tures are better suited for the target application, and providing semi-automatic or

speculative techniques to automatically replace poorly chosen data structures.

32

CHAPTER III

DATA STRUCTURE DETECTION WITHOUT INTERFACE

FUNCTIONS

3.1 Introduction

Understanding how data is stored and accessed in programs is a critical aspect of

the design and maintenance of software. With a knowledge of what data structures

are being utilized, a developer can more easily maintain code [37], reverse engi-

neer an application [110], find bugs [65], and even enforce data-structure-specific

consistency properties to make the application more secure and stable [39]. Ad-

ditionally, recent studies show that identifying data structures is very useful for

malware detection [107] as well as memory leak detection [147].

High-level information on data structures also enables new types of optimiza-

tion strategies. Data structure aware compilers improve the quality of alias anal-

ysis, thereby achieving more efficient lock generation for user-specified atomic

regions [136]. Using the specificity of underlying data structures, data structure

libraries can integrate a prefetching thread to leverage data access patterns [90].

Memory allocators take advantage of data structure knowledge as hints for im-

proving memory reference locality [64]. Similarly, high-level information about

data structures significantly improves techniques for data object layout [29] and

pool allocation [78].

The industry trend toward manycore processors has shifted the burden of im-

proving system performance primarily from hardware vendors to software engi-

neers and a critical component of software performance is an application’s ability

to effectively leverage parallel compute resources. Parallelization of an algorithmic

33

step at the level of a function call is very useful for converting sequential semantics

into optimistic parallelism. However, optimistic parallelism at function level can

high overheads due to rollbacks and thus, high confidence in optimism is essen-

tial for effective parallelization at the function level. Knowledge of the underly-

ing data structure (especially its shape in terms of whether it is a tree or a graph

with many joins) can effectively serve to boost the confidence for aggressive op-

timistic parallelization. Programming models such as Galois [74] and languages

such as Deterministic Parallel Java [14] allow the programmers to leverage data

structure properties for parallelization. It is also shown that the careful selection

of data structures can significantly impact the amount of parallelism in an applica-

tion [9, 86, 22].

For these reasons and many more [30, 141, 7], tools that automatically identify

the data structures in a program can contribute significantly to the effective soft-

ware development and optimization. If we do not know what data structures is

used, how can we enable data structure aware optimizations? Unfortunately, it is

very difficult to identify what data structures are utilized in programs. Data struc-

ture implementations are often provided exclusively in binary form and hidden behind

library interfaces. Even when complete source files are available, implementation

idiosyncrasies can complicate the process of identifying data structures. Due to

these complications, it becomes an overwhelming challenge for software devel-

opers to recognize that different implementations possess the same fundamental

properties.

This paper presents the design and implementation of MIDAS, a framework

for data structure identification. To effectively identify data structures, MIDAS

leverages dynamic analysis on an application binary. Memory allocation functions

34

and load/store instructions are instrumented using dynamic binary instrumenta-

tion. The instrumentation code monitors how the memory layout of the appli-

cation evolves during program execution. To keep track of the memory layout,

MIDAS dynamically constructs and updates a memory graph where heap-allocated

objects and their points-to relations are represented by vertices and edges, respec-

tively. Invariant properties of the graph and data values of a data structure are

then matched against a library of known data structures, providing a probabilistic

identification.

Unfortunately, the invariants may be violated at times, which makes it impos-

sible to identify data structures correctly. The reason for such violations is twofold;

(1) data structures suffer from destructive updates when they are updated [117, 113].

(2) data structures may take on various forms at different times during execution,

e.g., a binary tree can look like a linked list according to particular data inser-

tion/deletion patterns. The execution traces in both cases easily falsify the critical

invariants of the data structure necessary for proper identification.

The insight to the problem is that when data structures lose the defined shape,

their critical invariants do not hold. In other words, if data structures retains the

defined shape, their critical invariants should hold. With that in mind, MIDAS

figures out the defined shape of a data structure to filter out those traces generated

while it loses the shape. The challenge is how to recognize the defined shape in

the presence of constant changes of the data structre shape.

To achieve this, MIDAS relies on the observation that for most of the time, a

data structure shows the defined shape. That leads MIDAS to take an inductive

manner to catch the shape; MIDAS associates each trace with memory graph mag-

nitude which coarsely but effectively summarizes the ever-changing shape of data

strucures over time. Then, MIDAS post-processes the collection of execution traces

and filters out problematic traces which possess rare memory graph magnitudes. This

35

ensures that only essential traces generated while data structures retain the defined

shape are used into the invariant detector for their identification.

In particular, MIDAS detects not only shape (structural) but also data (numer-

ical) invariants of data structures—effectively differentiating those data structures

that possess very similar or identical shapes, e.g., discerning a binary search tree

from a binary tree. Experimental results show that MIDAS can accurately identify

data structures and extract their useful properties based on the invariants irrespec-

tive of how they are encapsulated, how different their implementations are, and

even how optimized the binary is.

3.2 MIDAS: Mining Data Structures

The purpose of MIDAS is to provide a tool that can correctly identify the data

structures that are used in an application regardless of how the data structures are

implemented, how they are encapsulated, and even how they are optimized in an

application binary. MIDAS is an automated approach requiring no user interven-

tion. There are three primary tasks performed by MIDAS in order to facilitate ac-

curate data structure identification; (1) Keeping track of how data is stored in and

accessed from memory; this is achieved by building a memory graph. (2) Recording

the signature of a data structure; invariants on the shape and data values of a data

structure provide a unique identifier. (3) Filtering out execution traces generated

while data structures lose the characteristics shape thereby violating their critical

invariants.

The high-level workflow of MIDAS is as follows. First, application binary is

fed into dynamic binary instrumentation tool. To track the memory layout of indi-

vidual data structures, memory allocation functions are dynamically instrumented

36

together with load/store instructions that access heap memory. The instrumenta-

tion code interacts with MIDAS runtime. It maintains memory graphs of data struc-

tures and records their execution traces to a file to facilitate the detection of shape

and data invariants during later stages. It is important for MIDAS to operate on

binaries, because data structure implementations are often hidden in binary-only

formats behind library interfaces. Besides, it is unrealistic to expect developers to

have source code access to their entire applications, and—accordingly– if MIDAS

required source code access, it would be considerably less useful.

Once program execution finishes, MIDAS analyzes the trace files and selects

only the critical execution traces of data structures. This is very important because—

at times— data structures may not show their defined shapes due to destructive up-

dates and data structure change. For example, insertion into (or removal from) the

middle of a doubly-linked list makes it temporarily lose the characteristic appear-

ance of a doubly-linked list. A similar problem arises in the case of tree rotation

of a binary search tree. Even worse, a data structure may change its shape from

one to another, e.g., a singly-linked list can change to a doubly-linked or even

a binary tree. Therefore, those execution traces generated while a data structure

has temporarily lost its defined shape easily falsify its critical invariants and—as a

result—prohibit proper identification.

To overcome these challenges, MIDAS attempts to capture the defined shape

of a data structure in an inductive manner using its memory graph magnitude which

effectively summarizes the essence of the shape. This approach is based on the

observation that data structures will demonstrate their characteristic shape during

the majority of the execution time. Thus, MIDAS post-processes the collection of

execution traces and filters out problematic traces that possess a rare memory graph

magnitude, which ensures that only essential traces are fed into the invariant detec-

tor. Once the shape and data invariants of a data structure are detected, they are

37

compared against a predefined library of known data structures. E.g., if the shape

invariant says nodes in a memory graph always have one edge that points to NULL

or another node from the same allocation site, and the data invariant says data val-

ues in each node are always less than the values in their successor nodes, then

MIDAS reports the data structure as a sorted, singly-linked list. The remainder of

this section describes in detail how MIDAS accomplishes these steps.

3.2.1 Tracking Data Organization

The first task of characterizing a data structure involves understanding how data

elements are maintained within memory. This relationship can be tracked by mon-

itoring memory regions that exist to accommodate data elements. By observing

how the memory is organized and the relationships between allocated regions, it

is possible to partially infer what type of data structure is used. This data can be

tracked by using a memory graph, which is a directed graph with heap-allocated ob-

jects as vertices and points-to relations as edges. For example, in the graph, there

is an edge from vertex a to vertex b if the object corresponding to a points to the

object corresponding to b.

The memory graphs for an application are constructed by instrumenting mem-

ory allocation functions (e.g., malloc) 1 and stores. Allocation functions create a

node in the memory graph. MIDAS keeps track of the size and initial address of each

memory allocation in order to determine when a memory access occurs in each re-

gion. An edge between memory nodes is created whenever a store is encountered

whose target address and data operands both correspond to addresses of nodes

that have already been allocated. The target address of the store is maintained

so that MIDAS can detect when the edge is overwritten, thus adjusting that edge

during program execution. While these graphs dynamically evolve throughout

1This work assumes that MIDAS is aware of non-standard memory allocators.

38

program execution, they will also exhibit shape invariants that help identify the

data structures they represent, e.g., each node in a binary tree will contain edges to

at most two other nodes.

It needs to be noted that multiple data structures can be contained in a memory

graph. To differentiate data structure instances in the memory graph, each node

is colored based on its allocation site. With the help of this node coloring scheme,

MIDAS can identify the recursive backbone of each data structure and detect its

shape invariants. Again, the shape invariants identify data structures with differ-

ent shapes.

However, many data structures have very similar or identical shapes and, con-

sequently, they also possess the same shape invariants. To differentiate such data

structures, MIDAS also leverages the data invariants of a data structure, which

may, for example, discern a binary search tree from a binary tree. Detecting the

data invariants of a data structure requires the typing of edges in the memory

graph. Each edge in the memory graph is typed as one of three edge classes: child,

foreign, or data. Child edges point to/from nodes with the same color, i.e., nodes

from the same data structure. The name “child” edge arose from when we first

discovered their necessity while trying to identify various types of trees. Foreign

edges point to/from memory graph nodes of different colors. These edges are

useful for discovering composite data structures, e.g., a tree of linked-lists. Lastly,

data edges simply identify when a graph node contains static data. These edges

are needed to identify data structures which have important properties stored in

the memory graph nodes. E.g., a red-black tree typically has a field which indicates

whether each node is red or black.

39

3.2.2 Recording the Signature of a Data Structure

The critical step needed to accomplish data structure identification is to record

the signature of a data structure. Invariant properties on the shape and the data

values of a data structure are the basis for characterizing different data structures.

To achieve this, MIDAS leverages dynamic invariant detection. MIDAS records the

execution trace of a data structure to a file and post-processes the trace to detect the

shape and data invariants of the data structure. The first step of invariant detection

is defining what variables MIDAS should detect invariants across.

The target variables as follows; (1) number of memory nodes, (2) number of child

edges, (3) address pointed to by child edges, (4) address pointed to by foreign edges, (5)

value held in a data edge. The first two variables are necessary to calculate the mem-

ory graph magnitude metric (see Section 3.2.2.2). Note that they are maintained for

each connected component of the memory graph so that the metric is computed

per connected component per data structure instance. (2)-(4) detect structural in-

variants of data structures such as ’prev ptr(next ptr(my node)) == my node’ in a

doubliy-linked list.

Again, (4) is necessary for discovering compositie data structures. E.g., to iden-

tify a tree of linked-lists, MIDAS first recognizes the shape of a basic data struc-

ture for each allocation site by investigating how the child edges are connected.

Based on the resulting invariants, MIDAS infers there are two types of basic data

structures, tree and list. Then, MIDAS checks each foreign edge to identify the

relationship between the detected data structures. Here, all the tree nodes point

to a memory node of each list, which is another invariant. Finally, (5) the last de-

tects the data invariants. These critical invariants can uniquely define a given data

structure.

40

3.2.2.1 Challenges of Detecting Data Structure Invariants

Detecting the invariants of data structures is very challenging. Unlike the original

work of dynamic invariant detection which relies on the source code [49], MIDAS

cannot simply record those target variables at function boundaries, because com-

pilers can optimize an application thereby eliminating the function boundaries in

the binary (inlining is one of the most basic optimizations triggered by compilers at

the lowest level of optimizations). One might think of generating the traces when

a load (store) instruction accesses the data structure—however, this does not help

to solve the more serious problem of the ever-changing behavior of data structures

which makes it even more difficult to detect their critical invariants.

Data structures change during runtime and temporarily lose their defined shape

thereby invalidating their critical invariants. There are two reasons for this. On the

one hand, a data structure can look like another instead of its defined shape, e.g,

a simple (non-balancing) binary search tree can look like a list according to the

particular data insertion and deletion patterns. In such a case, this work says that

data structures suffer from macroscopic change, and MIDAS should report the data

structure as a binary search tree other than a list. On the other hand, the defined

shapes of data structures are temporarily corrupted due to disconnections or cycles

created during destructive updates [117, 113]. For example, insertion into (removal

from) the middle of a doubly-linked list makes it not look like a doubly-linked list.

In this case, this work says that data structures suffer from microscopic change, and

MIDAS should be robust enough to compensate for such changes and make sure

it detects the doubly-linked list structure. To overcome these challenges, this work

first define dangerous traces and then relies on an axiom to avoid them.

Definition 1 Dangerous traces are defined as any traces that invalidate the shape or data

invariants of a data structure.

41

The dangerous traces are problematic, since the critical invariants are the basis

for characterizing data structures. The followig axiom provides the insight to this

problem.

Axiom 1 When data structures lose the defined shape, their critical invariants do not hold.

This Axiom translates to the fact that those traces generated while a data struc-

ture has lost its defined shape are dangerous traces. In other words, if data structures

retain the defined shape, their critical invariants should hold. With that in mind,

MIDAS figures out the defined shape of a data structure to filter out those traces

generated while it loses the shape. The challenge is how to recognize the defined

shape in the presence of constant changes of the data structre shape due to the

macroscopic/Microscopic changes.

To achive this, MIDAS relies on the observation that for most of the time, a data

structure shows the defined shape. That leads MIDAS to take an inductive man-

ner to catch the shape; MIDAS associates each trace with memory graph magnitude

which coarsely but effectively summarizes the ever-changing shape of data stru-

cures over time. Then, MIDAS post-processes the collection of execution traces and

filters out problematic traces which possess rare memory graph magnitudes. This en-

sures that only essential traces generated while data structures retain the defined

shape are used into the invariant detector for their identification. The next sec-

tion describes the memory graph magnitude metric and Section 3.2.3 explains how

MIDAS correctly filters out the dangerous traces.

3.2.2.2 Monitoring Data Structure Change with Memory Graph Magnitude

As mentioned before, data structures change in both macroscopic and microscopic

scales in terms of their shapes, and therefore MIDAS must keep track of such

changes to discriminate data structure’s defined shape. More specifically, MIDAS

should be able to characterize how the data structure appears at a certain point

42

during execution as well as differentiate the shapes at each point in the meantime.

To achieve this, this work introduces memory graph magnitude, a simple metric that

coarsely and effectively summarizes the ever-changing shape of data structures.

It is important to note that the purpose of this simple metric is not to directly

detect the data structure shape but to focus on the representative traces for pre-

serving the shape/data invariants. Recall that rare traces are likely to be dangerous

since they are generated when data structures lose the defined shape.

In the following, this work defines the memory graph magnitude metric, and

presents Theorem 2 to show the metric has well-defined range to be used as a

magnitude. To prove Theorem 2, Theorem 1 is presented as a preparation step.

Definition 2 For a memory graph G = (V, E) where E is a set of child edges, a memory

graph magnitude M(G), is a function M: G → R defined as

M(G) =
‖E‖
‖V ‖

∆(G) (1)

where ∆(G) is a maximum degree 2 of a memory graph G.

Theorem 1 Any two k-regular graph G1 and G2 have the same memory graph magnitude

M(G1) = M(G2) (2)

For any k-regular graph G, ‖E‖‖V ‖ = k,∆(G) = k,

M(G) =
‖E‖
‖V ‖

∆(G) = kk = k2 (3)

This implies that M(G) is independent on ‖E‖, ‖V ‖. Therefore, Every k-regular

graph G has the same magnitude.

Theorem 2 For a memory graph G = (V, E) with the maximum degree ∆(G) = k, M(G)

takes the maximum value when G is k-regular graph.

2This paper uses the term degree and out-degree interchangeably according to the definition of the memory
graph.

43

We use proof by contradiction. Suppose the claim is false; that is, M(G) is not a

maximum;

∃G′ = (V ′, E ′) s.t. M(G′) > M(G) (4)

Note that G’ is not a k-regular graph.

‖E ′‖
‖V ′‖

>
‖E‖
‖V ‖

(5)

because ∆(G’) = ∆(G) = k. Then,

‖E ′‖
‖V ′‖

>
‖E‖
‖V ‖

= k (6)

because G is k-regular. However, for G’ = (V’, E’), ∆(G’) is k; that is, for every vertex

v ∈ V ′, deg+(v) ≤ k. Therefore, the total number of edges ‖E ′‖

‖E ′‖ =
∑
v∈V ′

deg+(v) ≤
∑
v∈V ′

k ≤ k‖V ′‖ (7)

i.e., ‖E ′‖ ≤ k‖V ′‖. Therefore,

‖E ′‖
‖V ′‖

≤ k (8)

This is a contradiction from (6). Finally,

M(G′) =
‖E ′‖
‖V ′‖

∆(G′) ≤ kk = k2 = M(G) (9)

M(G′) ≤M(G) (10)

This is another contradiction from (4). Therefore, the Theorem 2 must be true.

Note that Theorem 2 holds for any G = (V, E), no matter how big ‖E‖ and ‖V ‖

are (see the Theorem 1). Intuitively, for a given memory graph G = (V, E) with

the maximum degree ∆(G), the memory graph magnitude M(G) represents how the

graph is close to a k-regular graph. Figure 7 shows how memory graph magnitude

44

0.75

1.50

3.00

4.50 9.00

(a) (b)

(c) (d) (e)

Figure 7: Examples of the memory graph magnitude with different types of graphs

is used to differentiate memory graphs with the same number of memory nodes.

Each memory graph has its own M(G) , shown in the top of the graph, based on

how tightly memory nodes are connected to each other and its maximum degree.

As shown in Figure 7(a) and (b), it is said that a singly-linked list is less than a

doubly-linked list in terms of M(G). That is, the tighter connection between nodes

leads to the greater M(G) . The same thing is with the memory graphs in Figure 7(c)

and (d). Note that the memory graph in Figure 7(d) has the maximum degree of 3.

In particular, a memory graph in Figure 7(e) has the maximum value, since it is a

3-regular graph.

One good side effect is that it becomes possible to infer what type of data struc-

ture is used just by evaluating the memory graph magnitude M(G) (even if our data

45

Table 2: The possible range of the memory graph magnitude for different data struc-
tures

Type (minimum ‖V ‖) ‖V ‖ ‖E‖ ∆(G) Possible range of M(G)
Singly-linked List (2) n n-1 1 0.5 ≤ n−1

n
1 < 1

Binary Tree w/o a parent (3) n n-1 2 1.33 ≤ n−1
n

2 < 2

Doubly-linked List (2) n 2(n-1) 2 2.0 ≤ 2(n−1)
n

2 < 4

Binary Tree w/ a parent (4) n 2(n-1) 3 4.5 ≤ 2(n−1)
n

3 < 6

structure detection currently relies on matching invariants with a predefined li-

brary of known data structures). I.e., it can serve as a clue to data structure iden-

tification in those situations where the invariant detection is too expensive or un-

available. It can also easily keep track of data structure evolution, e.g., when a data

structure changes to which data structure. Lastly but not least, it can be used as a

guideline for optimistic parallelization by comparing its value to the possible max-

imum magnitude based on theorem 2. For example, if M(G) value of the graph-like

data structure is very close to the maximum magnitude, it should be better not to

parallelize the data structure execution due to too many join points in it.

Table 2 shows the possible ranges of M(G) for some type of data structure com-

prised of n. Especially, since the first term of M(G), i.e., ‖E‖‖V ‖ , is an increasing se-

quence, the M(G) has the minimum value when n is the minimum. As shown in

the table, each data structure has its own M(G) range that is not overlapped with

the range of others. Thus, matching a M(G) value with one of the ranges makes it

possible to infer the type of the data structure.

Basically, the memory graph magnitude can strictly tell the order between data

structures without a parent pointer. The same goes for data structures with a par-

ent pointer. But, there can be an overlap between two M(G) ranges from data

structures with/without a parent pointer, e.g., the M(G) of a quad tree without a

46

parent pointer can overlap with the M(G) of a doubly-linked list3. However, this is

not a problem, since there is almost no possibility that data structures are evolving

between the doubly-linked list and the quad tree. Even if there is such a case, MI-

DAS can effectively recognize the fundamental difference of data structures with

the help of edge classification information in a memory graph. It must be noted

that the memory graph magnitude can correctly recognize the case where data struc-

tures grow by adding a parent pointer, e.g., change from the binary tree without

a parent pointer to binary tree with a parent pointer. In other words, it is guaran-

teed that the ranges of the two M(G) ranges of data structures with and without

a parent pointer are disjoint, e.g., there is no overlap between M(G) values of the

singly linked and the doubly-linked list. This is important in that some data struc-

tures evolve in a way that gets the connection between nodes in the memory graph

tight by adding an new edge between them, e.g., a singly-linked list changes to a

a doubly-linked list by adding an backward edge between the nodes. Section 3.2.3

shows such an example.

Note that unlike previous work [27], the memory graph magnitude metric con-

siders only out-degree, not in-degree. The main reason is that in-degree is more

vulnerable to transient behavior occurring during data structure manipulation,

i.e., destructive updates. Another reason is that ignoring in-degree takes away

the need for special care for connections between a data structure node and a sen-

tinel node. It also needs to be noted that the metric is calculated on the fly by

tracking a connected component of memory graphs and simply counting its num-

bers of memory nodes and child edges. Again, the metric is computed per data

structure instance. The next section describes how MIDAS correctly filters out the

dangerous traces with the help of the memory graph magnitude.

3In fact, it is possible to make M(G) completely differentiate data structures without any overlap.
This can be done by rescaling the term, ∆(G) in its equation, e.g., (∆(G))3 or (∆(G))4, but we have
not felt such a necessity.

47

3.2.3 Detecting Data Structure Invariants in the presence of dangerous traces

MIDAS relies on the Axiom 1 to work around dangerous traces (See Section 3.2.2.1).

With that in mind, MIDAS needs to recognize the defined shape of a data structure

to filter out the dangerous traces. As a basis for recognizing the defined shape, this

paper claims that data structures show their representative behavior thus showing

their defined shape for most of the time, even if they may suffer the macroscopic

and microscopic changes. E.g., for a tree, the duration during which it does not

look like a tree is likely to be very short. And destructive updates are not represen-

tative behavior of data structures, either.

A key observation of destructive updates is that they are caused mostly by exe-

cuting a few store instructions. With that in mind, MIDAS generates the traces of

the target variables of the shape and data invariants along with memory graph mag-

nitude, when a load instruction is executed instead of a store. This allows MIDAS

to focus more on representative behaviors of data structures.

Before discussing how to filter out dangerous traces, this work first verifies the

claim that the macroscopic and microscopic changes of a data structure, which

easily invalidate its critical invariants, are not representative behaviors of a data

structure which easily. Figure 8a and Figure 8b describes how MIDAS can capture

both macroscopic and microscopic changes in the shape of data structures. In the

figures, X-axis represents the number of executed load instructions while Y-axis

represents the memory graph magnitude at a specific time that a load instruction is

executed.

Figure 8a describes how the critical data structure of Bh from Olden benchmark

suite changes as time goes by. The main data structure of Bh is a doubly-linked list,

but at the beginning of the execution, the nodes of the list are connected by using

only a next pointer in each node. I.e., the benchmark looks like a singly-linked

list initially. Then, at some point, the benchmark traverses the list adding a new

48

0 1000 2000 3000 4000 5000

The number of accumalted load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(a) Macroscopic change of a data structure in Bh benchmark.

0 1000 2000 3000 4000 5000

The number of accumalted load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(b) Microscopic change of a data structure in STL set microbenchmark.

Figure 8: Data structure’s (a) macroscopic and (b) microscopic changes; the mem-
ory graph magnitude of each data structure appears on Y axis.

back edge to each node, thereby changing the data structure into a doubly-linked

list. As Figure 8a describes, for most of the time, the data structure exists in a state

that memory graph magnitude represents its defined shape, a doubly-linked list. The

implication is that in spite of such a macroscopic change in the shape, the data

structure shows its representative behavior.

Figure 8b describes how STL set represents the microscopic changes in its

shape. Note that set is implemented by using a red-black tree that has a parent

pointer, i.e., the maximum degree is 3 in the memory graph. The microbenchmark

simply inserts 100 integers in the increasing order. Therefore, the tree rotation is

frequently occurred to re-balance the red-black tree. Such tree rotations are typi-

cal examples of destructive updates, and they are represented as a little spike of the

curve in the Figure 8b. Overall, it turns out that microscopic changes due to the

destructive updates are pretty sporadic.

49

Thus, these tests verify our claim that the macroscopic and microscopic changes

are not representative behaviors of data structures, and therefore it may be possible

to filter them out.

3.2.3.1 Filtering Out Dangerous Traces

It turns out that data structures show their defined shape for most of the time.

Therefore, if traces are generated when a data structure keeps its defined shape, the

traces should be dominant among the whole execution traces of the data structure.

On the other hand, those traces should be rare that are generated when the data

structure loses its defined shape due to the macroscopic and microscopic changes.

This motivates MIDAS to focus on the common case in the entire traces of a data

structure to recognize the defined shape of the data structure.

To achieve this, MIDAS post-processes the generated trace file at the end of

program execution. The offline process finds out for each number of memory

nodes which memory graph magnitude M(G) appeared the most frequently in the

traces, i.e., the pairs of the number of memory nodes and the mode M(G) are discov-

ered. MIDAS feeds only those traces that correspond to the pairs into the invariant

detection tool. Thus, the tool can detect the invariants for the representative be-

haviors of a data structure which keep the shape and data invariants. In this way,

MIDAS completely filters out dangerous traces due to the macroscopic (Figure 8a)

and microscopic (Figure 8b) changes, since they rarely appear thus not belonging

to the the pairs. Note that in the traces from first phase in Figure 8b are completely

filtered out. This is very important to correctly detect the data structure, a doubly-

linked list, since the data structure initially looks like a singly-linked list.

Sometimes, even the same data structure can show phase behaviors in terms

of memory graph magnitude. That is based on the usage patterns of a data struc-

ture. Figure 9 shows such an example conceptually. During the first phase in the

50

Figure 9: Phase change of a data structure. The spikes in the both phases repre-
sents abnormal behaviors of a data structure such as microscopic changes.

Figure, a binary search tree executes with some number of data elements. Even if

the insertion/deletion/re-balancing operations are performed, the number of ele-

ments in the tree remains same as the initial number for most of the phase. In the

second phase, the tree accommodates more data elements suddenly. And again

in spite of tree operations, it mostly keeps the total number of data elements for

the rest of the time. In this case, for the both phases, the data structure mostly

shows its defined shape, a binary search tree. Especially, the data structure spends

the most of its life time in the second phase, thus the first phase would not be

the representative behavior. The lesson here is that data structure identification is

still achievable with traces in the second phase. This leads MIDAS to perform the

invariant detection only for the most representative behavior of data structures.

To accomplish this, MIDAS first finds out which M(G) appeared the most fre-

quently, i.e., the same mode M(G) is computed. Note that many traces can have the

mode M(G) as long as they have the same ‖E‖‖V ‖ and ∆(G). With that in mind, MIDAS

then finds out for the mode M(G) which number of memory nodes (‖V ‖) appeared the

most frequently, i.e., the pairs of the mode M(G) and the mode ‖V ‖ are discovered.

Like tall spikes in Figure 9, those small spikes in the second phase are very likely to

51

be dangerous traces that have the mode M(G) but not the mode ‖V ‖. Again, MIDAS

feeds only those traces that correspond to the pairs into the invariant detection

tool. This strengthen MIDAS against the dangerous traces due to data structure’s

evolution (macroscopic change) and destructive updates (microscopic change).

These two schemes effectively filter out the dangerous traces thus they both

identify data structures. Later in Section 3.3.2.3, these approaches are compared

and discussed.

3.2.4 Matching Invariants

After performing the filtering scheme while preserving the critical invariants of

data structures, MIDAS is ready to identify the data structures by matching the in-

variants. MIDAS relies on a library of pre-characterized data structures to compare

against. This library contains a set of shape and data invariants for each candidate

data structure. Against this library, a target data structure can be compared to de-

termine what known data structure best matches the target, i.e., the presence of

critical invariants is tested.

The invariants are picked that distinguish essential characteristics of each data

structure, based on its definition rather than on implementation. That is, for a

linked list, MIDAS attempts to look for an invariant, “an old node is connected to

a new node” instead of “a new node points to NULL ”. The latter is likely to be im-

plementation specific. Intuitively, the shape graph invariants of a data structure

determine how the data structure looks like, e.g., each node has two child edges.

Meanwhile, the data invariants distinguish between those data structures which

have similar shapes. Extending this library is an easy process: simply run a sam-

ple execution of an application with the target data structure, look through the list

of identified invariants, and add the critical invariants into the library. In practice,

a new data structure can be added to the library in a few minutes.

52

It is important to note that the library contain only necessary invariants. Thus

if the dynamic instrumentation creates additional invariants that may be overly

conservative, MIDAS does not require those conservative invariants to match what

is in the library. Again, using invariant detection to categorize data structures

is probabilistic in nature, and it is certainly possible to produce incorrect results.

However, as Section 3.3 empirically demonstrates MIDAS can effectively detect

different implementations from several real-world data structure libraries.

3.3 Evaluation

To evaluate the accuracy of MIDAS, we implemented it using PIN dynamic bi-

nary instrumentation tool [89]. The traces generated from the instrumented code

are fed into Daikon [49] to detect invariants needed to identify data structures.

These invariants are then compared with a library of data structures that was

seeded with simple applications we wrote using the C++ Standard Template Li-

brary (STL) [125].

3.3.1 Demonstrating the Correctness of MIDAS

This section first demonstrates MIDAS’ accuracy to identify encapsulated data

structures using real-world data structure libraries.

3.3.1.1 Detecting Encapsulated Data Structures

Together with STL, we verified MIDAS’ accuracy using two externally developed

data structure libraries: the GNOME project’s C-based GLib [132] and Borland C++

Builder’s Standard Library STLport [127]. Several microbenchmarks were used

to evaluate MIDAS’ effectiveness across data structure implementations. These

benchmarks were based on the standard container benchmark [12], a set of appli-

cations originally designed to test the relative speed of STL containers. These were

ported to the various data structure libraries and run through MIDAS.

53

MIDAS correctly identified a set of recursive data structures from the three li-

braries. MIDAS reported that set in STL and STLport uses a red-black tree. To ac-

complish this, MIDAS successfully recognized the presence of the data invariants,

e.g., the left child’s data is less than the right child’s data, and that each node con-

tained a field which contains only two values: one for “red” and one for “black”.

Similarly, MIDAS reported that GTree in GLib uses an AVL tree. In particular,

MIDAS recognized that each node has a field of the balance factor to strictly bal-

ance the AVL tree. MIDAS also detected that list in STL and STLport GQueue

is implemented using a doubly-linked list. For hash map and GHashTable from

STL/STLport and GLib, MIDAS reported the data structures as an array of singly-

linked lists.

In addition, we tested a non-balancing binary tree to evaluate MIDAS’ accuracy

against macroscopic changes of a data structure, varying data insertion patterns.

MIDAS correctly identified the data structure in spite of many artificial insertion

and deletion patterns that sporadically makes the data structure look like a singly-

linked list and then recovers its defined shape soon.

On average, the overhead for instrumenting the code to recognize data struc-

tures was about 90X-120X. The instrumentation overhead was about 20X-30X while

the invariant detection time comprises the rest of the overhead. The time spent on

filtering traces is negligible. The memory space overhead is about 2.5-4x depend-

ing on how much heap memory is originaly used in an application. While this

analysis does take a significant amount of time, it is reasonable to perform heavy-

weight analysis like this during the software development process since it is once

in a development cycle cost.

54

3.3.1.2 Detecting Non-Encapsulated Data Structures

To evaluate MIDAS’ accuracy for non-encapsulated data structures, we use Olden

benchmarks since their data structures do not have well-defined interface func-

tions and some of them do not use the standard memory allocator. Thus, the

benchmarks are appropriate to show how MIDAS works in the presence of a cus-

tom memory allocator. All the benchmarks were compiled with an option, ”-O3”

to show MIDAS’ accuracy on optimized application binaries. Table 3 shows the

main data structures of each benchmark applications and the reported data struc-

tures by MIDAS.

Table 3: The identification results of Olden data structures

Application Main Data Structure Reported Data Structure
Bh doubly-linked list same
Em3d singly-linked list same
Health doubly-linked list same
Mst hash table array of singly-linked lists
Perimeter quad tree quad tree with a parent pointer
Power singly-linked list same

of singly-linked lists
Treeadd binary tree full binary tree
Tsp binary tree quad tree

two jump pointers

For Bh, Em3d, and Health, MIDAS correctly reported their critical data struc-

tures. As shown in Section 3.2.3, Bh changes its data structure from a singly-linked

list to a doubly-linked list. In this case, MIDAS successfully preserved the critical

invariant that every two nodes are doubly linked to each other thereby reporting

the data structure as a doubly-linked list. MIDAS correctly identified the main

data structure of Perimeter which is a quad tree with a parent pointer. MIDAS de-

tected the invariant that parent and child nodes are doubly connected in the tree.

The main data structure of Power is a singly-linked list in which every node holds

its own singly-linked list. MIDAS reported the data structure as a singly-linked

55

list of singly-linked lists. For Treeadd, MIDAS reported the data structure as a full

binary tree. In particular, MIDAS recognized the data invariant that data values

in the tree nodes have the same value, ”1”. Lastly, MIDAS reported the main data

structure of Tsp as a quad tree. This is because MIDAS identified the two jump

pointers in the tree node as child edges.

Overall, MIDAS successfully reported the main data structures of Olden bench-

marks when they are compiled with aggressive compiler optimization. We also

tested different compiler optimization levels, and found out that MIDAS consis-

tently identifies the data structures. Thus MIDAS can accurately identify data

structures irrespective of how encapsulated they are, and even of how optimized

the binary is.

3.3.2 Analysis

This section first provides quantitative results to demonstrate MIDAS’ abilities to

tolerate destructive updates. We then verify whether MIDAS catches the representa-

tive behavior of data structures. Finally, we provide a way to reduce the overhead

of the invariant detection tool.

3.3.2.1 How Robust is MIDAS against Destructive Updates?

It should be noted that even a single trace generated during destructive updates can

invalidate the critical invariants of data structures. Therefore, MIDAS must be ro-

bust against destructive updates, i.e., it must completely filter out such a dangerous

trace.

To evaluate how robust MIDAS is against destructive updates, two microbench-

marks, list-set and tree-set, were used that are two different set data structure imple-

mentations using a doubly-linked and a red-black tree, respectively. Basically, the

both microbenchmarks insert a random number and erase another random num-

ber so that destruction updates are frequently performed inside a loop body as

56

0 50000 100000 150000

The number of accumulated load instructions

0

1

2

3

4

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(a) NUMBER 8

0 100000 200000 300000

The number of accumulated load instructions

0

1

2

3

4

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(b) NUMBER 16

0 200000 400000 600000

The number of accumulated load instructions

0

1

2

3

4

5

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(c) NUMBER 32

0 500000 1000000

The number of accumulated load instructions

0

1

2

3

4

5

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(d) NUMBER 64

Figure 10: Memory graph magnitude for the list-set benchmark with varying
NUMBER

follows;

set.insert(rand() % NUMBER)

set.erase(rand() % NUMBER)

In particular, list-set inserts a new data element to the random position to cause

more destructive updates, i.e., data elements can be inserted to an arbitrary position

in the list. Thus, the benchmarks cause destructive updates frequently according to

the NUMBER on insert as well as on erase.

Figure 10 and Figure 11 describe how the microbenchmarks suffer from destruc-

tive updates when the NUMBER is varying. In the Figures, more fluctuation of the

memory graph magnitude means that more destructive updates are occurring, thus the

smaller NUMBER is, the more destructive updates are. In particular, tree-set suffers

from more severe destructive updates than list-set does for the same NUMBER. That

57

0 50000 100000 150000 200000

The number of accumulated load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(a) NUMBER 8

0 50000 100000 150000 200000 250000

The number of accumulated load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(b) NUMBER 16

0 100000 200000 300000

The number of accumulated load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(c) NUMBER 32

0 100000 200000 300000

The number of accumulated load instructions

0

2

4

6

M
em

or
y

gr
ap

h
m

ag
ni

tu
de

(d) NUMBER 64

Figure 11: Memory graph magnitude for the tree-set benchmark with varying
NUMBER

is because tree rotations cause destructive updates not only in erase operations but

also in insert operations.

For each benchmark configuration, we investigated whether critical invariants

of the data structure hold. It turns out that for the benchmarks, the critical invari-

ants of the data structures always hold. We show some invariants of the tree-set in

Daikon output syntax [49].

child_edges_per_memory_node of { 0, 1, 2, 3 }

child_edges: - 2 * memory_nodes: + 2 == 0

node.data_offset_0 : one of {0, 1}

node.child_offset_8.data_offset_0: one of { 0, 1 }

node.child_offset_16.data_offset_0: one of { 0, 1 }

node.child_offset_24.data_offset_0: one of { 0, 1 }

node.data_offset_32: > ::node.child_offset_16.data_offset_32:

58

node.data_offset_32: < ::node.child_offset_24.data_offset_32:

The first invariant tells that each node has at most 3 connections with another.

Note that the red-black tree in tree-set has a parent pointer. The invariant, “child edges

- 2 * memory nodes + 2 == 0”, tells us that every two nodes are doubly linked to

each other. The next four invariants represent that there is a data value that always

holds one or zero, the color of a red-black tree node. The rest invariants represent

that the value in a memory node is always larger than the first child and smaller

than the other child. Consequently, MIDAS can correctly identify the data struc-

tures against excessive destructive updates.

3.3.2.2 Does MIDAS capture representative behavior of Data Structure ?

As shown in previous section, MIDAS can detect accurately data structures in the

presence of severe destructive updates by filtering them out. The achieve this,

MIDAS focuses on the common case in the entire traces on the assumption that

destructive updates are relatively rare (See Section 3.2.2.1. In other words, it is as-

sumed that those traces selected by MIDAS for invariant detection should be the

representative behavior of data structures. This section verifies this assumption in

case one might suspect that MIDAS would cherry-pick a small number of traces

to make the critical invariants hold; if MIDAS would not focus on the representa-

tive behavior, the identification result would be less convincing. With that it mind,

we leverage the term coverage, which is the fraction of entire execution traces that

are selected and fed into the invariant detection tool to identify the data structure.

Intuitively, coverage represents how dominant the selected traces are.

Figure 12 shows the coverage of the both microbenchmarks when the NUMBER

is 8, which is the case of the most severe destructive updates. In the Figure, the cov-

erage is represented for each number of data elements. Note that in this case, the

microbenchmarks can have at most 8 elements. For example, the fifth bar shows

59

1 2 3 4 5 6 7 8
0

20

40

60

80

100

C
ov

er
ag

e(
%

)

(a) list-set with NUMBER 8
1 2 3 4 5 6 7 8

0

20

40

60

80

100

C
ov

er
ag

e(
%

)

(b) tree-set with NUMBER 8

Figure 12: Coverage of load time generated trace

1 5 6 7 82 3 4
0

20

40

60

80

100

C
ov

er
ag

e(
%

)

(a) list-set with NUMBER 8
1 2 3 4 5 6 7 8

0

20

40

60

80

100

C
ov

er
ag

e(
%

)

(b) tree-set with NUMBER 8

Figure 13: Coverage of store time generated trace

the coverage of the traces generated when the data structure contains five data el-

ements. For each number of elements in list-set, the coverage is almost close to

100%. In tree-set, even if it suffers from more destructive updates, every coverage is

still high, which means the selected traces for invariant detection are dominant.

This confirms that those traces, which make the critical invariants of a data struc-

ture hold, are dominant, i.e., they reflect the representative behavior of the data

structure. In addition, this shows that MIDAS verifies almost all accesses to data

structures with the invariant detection. Thus the identification results are credible,

and it is expected that MIDAS can be leveraged for verifying the properties of data

structures in spite of its probabilistic nature.

It should be noted that such high coverage mainly results from the load time

trace generation. The implication is that load instructions are rarely involved in

data structure’s abnormal behaviors. Recall that destructive updates are realized

60

with a few consecutive store instructions. What if MIDAS uses store time trace

generation? Figure 13 shows this situation with the same configuration of the

both microbenchmarks. In the both microbenchmarks, most of coverages are be-

low 50%. This shows the traces selected for invariant detection are not dominant,

even though they appear the most frequently in the whole trace. The real prob-

lem is that among the selected traces, there are ones generated during destructive

updates shown in empty bars in Figure 13. Thus, store time trace generation can-

not provide MIDAS with a way to recognize the representative behaviors of data

structures. In that case, MIDAS cannot report data structures correctly.

3.3.2.3 Optimization to Reduce Traces to Invariant Detection Tool

One problem of the invariant detection tool is that it is very slow and requires a

lot of memory. This can be a problem since the invariant detection tool sometimes

requires more than a GB memory, thus for low-end machines with small memory,

MIDAS might end up with out-of-memory error. In general, the more traces are

fed into the tool, the more memory are required and the slower the analysis time

is. Therefore, reducing the number of traces fed into the tool directly address this

problem.

MIDAS attacks this by taking both online and offline approaches. Online ap-

proach is to reduce the number of traces generated at runtime. MIDAS generates

traces only when load instructions access the data part of a data structure 4. I.e.,

no trace is generated when the recursive backbone of data structures is accessed.

This allows MIDAS to avoid generating traces for the load instruction generated

while traversing data structures without touching data element itself. One good

side effect of this approach is that MIDAS can avoid unnecessary traces generated

during destructive updates.

4This is achieved with the help of the edge typing in the memory graph of a data structures. See
Section 3.2.1.

61

Figure 14: Normalized number of traces

The offline approach is to reduce the number of the generated traces fed into

the invariant detection tool. The basic idea is to select only the traces that corre-

spond to the most representative behaviors of data structures in terms of memory

graph magnitude M(G). Again, those rare traces that accidently have the mode M(G)

are filtered out (See Figure 9). Figure 14 shows how the number of those traces

that are processed for checking invariants varies for three cases; Online, Offline,

Hybrid: combination of the previous two approaches. This experiment uses the

same benchmark configuration as in Section 5.3.6.

Overall, the online approach reduces the traces of Baseline (no optimization

case) by almost 60% on average. This results from the fact that once data elements

are inserted into a data structure, they are searched and traversed a lot over the

data structure. The offline approach reduces the original trace entities by 75% on

average. Finally, the hybrid approach, online + offline, works the best creating

synergy, i.e., it reduces the original trace entities by almost 90% on average. In

spite of reduced traces, the results of data structure identification are consistently

correct for all the benchmarks.

62

3.4 Summary

Identifying what data structures are used within an application is a critical step to-

ward application understanding and many other aspects of program optimization.

This work presents MIDAS, a framework for mining data structures from an ap-

plication binary. MIDAS is a fully automated approach with no user intervention.

During program execution, MIDAS traces the shape and data invariants of a data

structure. These invariants can uniquely define the data structure. In particular,

MIDAS automatically filters out those traces generated while a data structure loses

its defined shape, thus preserving the critical invariants of the data structure. This

paper demonstrates that MIDAS is highly accurate across several different imple-

mentations of standard data structures and non-encapsulated data structures of

which the binary was optimized.

63

CHAPTER IV

DATA STRUCTURE SELECTION

4.1 Introduction

Niklaus Wirth famously noted, “Algorithms + Data Structures = Programs” [142],

and it follows that one of the most critical aspects of creating effective applications

is data structure selection. Data organization is one of the defining characteris-

tics in determining how effectively applications can leverage hardware resources

such as memory and parallelism. Indeed, it is not uncommon to find situations

where simply changing the data structures can result in orders of magnitude im-

provement in application performance for many important domains. For exam-

ple, scientific applications leveraging matrix inversion [30] and matrix multipli-

cation [141], information mining from large databases [7], and analyzing genetic

data for patterns [54], are instances of criticality of data structure selection in an

application tuning process. According to [30], proper data structure selection can

make the 2-D table implementation used in that study 20 times faster.

In one recent study, researchers at Google analyzed the use of the C++ Stan-

dard Template Library (STL) [125] on several of their internal applications, and

found many instances where expert developers made suboptimal decisions on

which data structures to use [87]. Simply changing a single data structure in one

application resulted in a 17% speedup in that study. When applying this type of

speedup to data-center-sized computations, poor data structure selection can re-

sult in millions of dollars in unnecessary costs. Thus, selecting the appropriate

data structures in applications is an important problem.

However, the reality is that most often developers do not select data structure

64

implementations at all; they simply rely on a data structure library and assume

that the library designer made a good decision for them. Data structure libraries

were designed to be effective in the common case, and often leave considerable

room for improvement in application-specific scenarios.

When developers do manually select a data structure implementation, they

most frequently utilize asymptotic analysis to guide their decision. Asymptotic

analysis is an excellent mathematical tool for understanding data structure prop-

erties; however, it often leads to incorrect conclusions in real systems. For example,

comparing the STL set (implemented as a red-black tree) with unordered set

(implemented as a hash table), the set has worse asymptotic behavior but almost

always has faster lookup times on modern architectures when holding fewer than

200 data elements. In other situations data structures have identical asymptotic

behavior but very different real-world behavior. For example, splay trees [122] al-

most always perform better than red-black trees on real-world data though they

have the same asymptotic complexity. Asymptotic complexity measures were de-

signed as a unified basis for comparing and choosing an algorithm and not data

structures. To a large extent, once an algorithm is chosen, attention is rarely paid to

the choice of data structures. This can leave substantial inefficiencies on the table.

In short, traditional solutions leave much to be desired.

Unfortunately, selecting the best data structure for a given situation is a very

difficult problem. This requires thorough understanding both of how a program

uses a data structure, and of the underlying architecture. Even further, input

changes can lead to different optimal data structures. Thus, a tool that ignores

inputs could not possibly make a high-quality decision for selecting the best data

structure. To ameliorate the data structure selection problem, this paper presents

Brainy, an automated tool to develop a repeatable process for creating accurate

65

cost models that predict the best data structure implementation for a given applica-

tion/input/architecture combination.

In order to construct an input- and architecture-aware cost model, the model

must be trained to understand the effect of architectural behaviors while taking

into account input changes. This is accomplished by first constructing a set of syn-

thetic programs that exercise different behaviors of a given data structure under

consideration. For example, the test programs will stress all of the data structures’

interface functions with modeling different inputs by varying data type sizes and

various numbers of elements stored in the data structure. Then several measure-

ments are collected through hardware performance counters and code instrumen-

tation in order to understand how each data structure behaves. These measure-

ments are then summarized into statistics which are then fed into a machine learn-

ing model. The machine learning model creates a function to accurately determine

the optimal data structure choice for each static program variable. Machine learn-

ing characterization has been shown repeatedly to be more effective than human

designed models because machine learning picks up on subtle interactions human

experts often miss [46, 79, 99, 126, 137]. This paper demonstrates that leveraging

machine learning to generate cost models, which leverage architectural events and

dynamic software behavior, is significantly more accurate than asymptotic analy-

sis or human designed models for data structure selection. This paper also demon-

strates that using these models can result in significant performance improvements

in real-world applications. Moreover such techniques are shown to be repeatable

empirically on two different architectures across a variety of data structures.

The vision of this work is that the synthetic program generation tool we have

developed can be used to tune a cost model once for each target system at install-

time. These models can then be used either by a developer manually (e.g., as

part of a performance debugging tool similar to Intel’s VTune), or built into data

66

structure libraries so that the compiler or runtime can automatically select the best

implementations for many users of the libraries. Utilizing machine learning to au-

tomatically generate cost models for data structure selection is a fundamentally

new way to analyze data structure behavior; this method is significantly more ef-

fective than the traditional asymptotic analysis.

The contributions of this work include:

• A repeatable methodology for characterizing the performance of data struc-

tures using architectural events and runtime software properties of the ap-

plication.

• An analysis on what program and hardware properties are most important

to consider when selecting data structure implementations on modern archi-

tectures. This paper presents several non-intuitive discoveries. For example,

branch misprediction rate is a very useful predictive feature.

• An empirical demonstration of the machine learning model, compared with

traditional hand-constructed and asymptotic methods. This paper demon-

strates that considering performance counters and dynamic properties can

provide significant improvements in application performance.

4.2 Motivation

Effective data structure selection requires thorough understanding of how a data

structure interacts with the application. Apart from the asymptotic behavior of

data structures, a number of factors should be considered, such as what types of

functions interact with the data, how many times the interface functions are in-

voked, how big each data element is, and so on. It is also important to take into

account hardware behavior to understand the effect of the underlying architecture

on data structure related code. Given all this, identifying a function that accurately

67

predicts the best data structure implementation is very challenging.

As an example, assume that a developer is deciding between a vector and

list data structure from the C++ Standard Template Library (STL) [125]. The for-

mer is a dynamically-sized array stored contiguously in memory and the latter is

a doubly-linked list. The developer might think that vector is almost always bet-

ter than list because its contiguous data layout better leverages spatial locality in

memory hierarchies, and the dynamically adjusting size will make tail insertions

require fewer memory allocations than with a linked list. In reality, vector is

preferable in situations with frequent search or iteration over data elements. How-

ever, data insertion into (or removal from) the middle of the structure is extremely

expensive for vector, since all data elements located after the insertion point must

be moved backwards (or forwards) to maintain contiguity. The challenging issue

is how to quantify the pros and cons of each data structure to accurately com-

pare them. For example, how many find or iteration operations are enough to

overcome poor insertion and deletion times for vector to perform better than

list? In some sense, we are looking at performing amortized analysis of differ-

ent operations that are associated with a given data structure. Purely basing such

an analysis on the frequency of operations would be a naive simplification of the

problem, since the operations and their costs are linked to the program state and

are continuously varying throughout the execution. It is a challenge about how to

come up with such an amortized cost model without worrying about the deeper

notions of the program state; a challenge partially solved by this paper. We first

delve on this issue of generating an appropriate cost model.

Without worrying the issues of program state, one could limit oneself to the in-

terface functions and their order of executions, and try to approximate the model

of behaviors exercised. In general, constructing a cost function is much more dif-

ficult than illustrated by the above example, since there are many functions that

68

interact with each data structure. The best data structure implementation changes

as each interface function is invoked more or less frequently relative to the oth-

ers. Beyond just interface functions, any changes in data element size, the number

of data elements, data search pattern, and so on, which can be affected by pro-

gram inputs, can have a significant impact on the most appropriate data struc-

ture implementation. For example, STL’s find searches for the first instance of a

data element located in the structure without iterating over all the elements. This

means the data being stored affects how important iteration is to the performance

of the application. These and other input-dependent factors make it very difficult

to hand-construct accurate data structure cost models.

A final challenge is that underlying hardware can have a considerable effect on

data structure selection results. Even if a programmer chooses the best data struc-

ture, that data structure will not always be the best when it runs on different mi-

croarchitectures. That is, architectural changes can make the data structure, which

was the best, suboptimal as input changes. For instance, in the previous example

of data structure selection, a developer might choose a vector over a list for

fewer cache misses during iteration, although hardware systems with larger cache

sizes might execute list faster than vector. The reason is that list nodes will

typically remain cached after a cold start; however, whenever vector is resized

the cold start penalty will have to be paid anew. Thus, architectural events have a

very important role in data structure selection.

To further motivate the importance of microarchitectural differences for effec-

tive data structure selection, this work analyzed several thousand randomly gen-

erated applications that exercise different behaviors of C++ STL data structures

(further details on the application generator will be discussed in Section 4.4.1).

Each application was run on both an Intel Core2 Q6600 and an Intel Atom N270 to

see what the best data structure implementation for each architecture is. Figure 15

69

Figure 15: Different data structure selection results on two microarchitectures: In-
tel Core2 Q6600 and Intel Atom N270. Each bar represents 1000 applications
whose best data structure on the Core2 is shown in the x-axis. For each ap-
plication, if the data structure remains the same on the Atom, the application is
classified as ”agree”. Otherwise, the application is classified as ”disagree”.

shows how differently two distinct microarchitectures can behave. Each bar in the

figure represents 1000 randomly-generated applications whose best data structure

implementation on the Core2 is shown on the x-axis. For example, the left-most bar

in the figure represents 1000 applications whose best data structure on the Core2

was a vector. The dark gray, top portion of the bar represents how many of those

exact same applications the best data structure was not a vector on the Atom ar-

chitecture. So in ≈200 applications where vector performed best on the Core2,

another data structure would perform better on the Atom.

This experiment demonstrates that the best data structure choice for each ap-

plication significantly differs on the two different microarchitectures. The degree

of such an inconsistency varies across data structures. On average, 43% of the

randomly generated applications have different optimal data structures. Thus, all

efforts to construct a data structure cost model without considering architectural

properties will necessarily be lacking. The complexity of modern architectures

further motivates the need for an automated tool to construct these models, as

human-constructed models will be tedious and likely inaccurate. Section ?? shows

that it is inherently difficult and sometimes impossible for hand-constructed mod-

els to capture the architectural events of an alternative data structure. E.g., the

70

number of branch mispredictions in the original data structure has no causal rela-

tion to that in the alternative data structure.

4.3 Overview

The purpose of this work is to provide a tool that can report the best data structures

for different situations due to specific input sets and underlying hardware archi-

tecture changes. To keep up with the various behaviors of an application, this work

exploits dynamic profiling that utilizes runtime instrumentation. Every interface

function of each data structure is instrumented to model how that data structure

interacts with the application. The instrumentation code observes how the data

structure is used by the application (i.e, software features), and at the same time

monitors a set of performance counters (i.e., hardware features) from the underly-

ing architecture. The runtime system maintains the trace information in a context-

sensitive manner, i.e., the calling sequences are considered at the data structure’s

construction time. This helps developers know the location in the source code of

the data structures to be replaced. Once program execution finishes, the trace files

are fed into a machine learning tool. Finally, the machine learning tool reports

what data structures should be replaced with which alternatives.

Due to a significant amount of effort involved, to train and build machine learn-

ing models for the data structures, this paper limits its focus to C++ programs

using a subset of the STL. It may be noted that as the tool is not fundamentally

limited, the approach should be applicable to other data structures expressed in

other contexts. To determine the target data structure replacements, we surveyed

programs using Google Code Search (GCS) [53]. GCS indexes many open-source

projects on the Internet. Figure 16 shows the number of static references to each

data structure type across the entire index. This figure shows that vector, list,

set, and map are the most common STL data structures used, thus this paper

71

Figure 16: The number of data structure occurrences in all the code registered in
Google Code Search.

will focus on various implementations of these structures. Simply counting the

number of static references to each data structure ignores the importance of data

structure’s impact to the application performance at runtime. However, this gives

a rough estimate for which data structure needs to be targeted initially.

Given this set of target data structures, it is also necessary to define a set of

implementations, and delineate what implementations can be replaced by what.

Table 4 shows the possible data structure replacements considered, along with

the benefits and limitations of each. For example, vector can be replaced with

list for faster insertion, and with set for faster search. Similarly, if vector is

frequently searched with a key for a match, e.g., using std::find if, then it can be

replaced with map. However, vector cannot always be replaced by set or map

because they are oblivious to the data insertion order (i.e., order-oblivious); Since

they internally sort data elements, iteration over them leads to the sorted sequence

of the elements. Therefore, iterating over the vector precludes these replacement

candidates. Those particular implementations in Table 4 were chosen because they

are already implemented within the STL, and other implementations could easily

be added to the cost model construction system.

With this set of target implementations in mind, Figure 30 shows a high-level

diagram of the proposed usage model. At compile time, an application is linked

72

Table 4: Data structure replacements considered for each target data structure.

DS Alternate DS Benefit Limitation
vector list Fast insertion None

deque Fast insertion None
set (map) Fast search Order-oblivious
avl set (avl map) Fast search Order-oblivious
hash set (hash map) Fast insertion & search Order-oblivious

list vector Fast iteration None
deque Fast iteration None
set (map) Fast search Order-oblivious
avl set (avl map) Fast search Order-oblivious
hash set (hash map) Fast search Order-oblivious

set avl set Fast search None
vector Fast iteration Order-oblivious
list Fast insertion & deletion Order-oblivious
hash set Fast insertion & search Order-oblivious

map avl map Fast search None
hash map Fast insertion & search Order-oblivious

Figure 17: The framework of the data structure selection.

with a modified C++ Standard Template Library (STL) so that profiling data struc-

tures are used instead of the original ones. The profiling data structures are inher-

ited from the original STL data structure, and their interface functions contain code

which records the behaviors including hardware performance counters, and then

calls the original interfaces. All the profiling features are recorded in trace files,

which are post-processed and sorted by data structure. This sorting takes both

relative execution time and calling context into consideration, in order to provide

developers with a prioritized list of which data structures are most important to

change. Once the data is sorted, the machine-learning-based cost model provides

73

a suggestion of what data structures should be replaced with alternate implemen-

tations. Optionally, this output could be fed into a code refactoring tool [92], which

could automate the implementation replacements. This type of optimization tool

can have a significant impact on the performance of real-world applications.

4.4 Model Construction

Accurate model construction is essential for effective data structure selection. Brainy

leverages machine learning to construct the model for predicting the best data

structure implementations. The model must satisfy three properties to be success-

ful. First, the model should be accurate across many different data structure behav-

iors and usage patterns. Second, the model should be aware of microarchitectural

characteristics of the underlying system. Third, the methodology for characteriz-

ing the performance of data structures should be automated and repeatable so that

it is easy to construct new models for new microarchitectures.

If these properties are not satisfied by the model, architectural variations would

easily make the predicting performance of the model inaccurate. In this case, im-

proving the accuracy of the model requires re-training the model on the new mi-

croarchitecture. A more serious problem is that the training applications/exam-

ples1 painfully-collected to cover the huge design space on the original microar-

chitecture might not provide abundant learning capabilities any longer on the new

microarchitecture (See Figure 15). That is, due to the architectural change, the orig-

inal training applications could not produce the broad spectrum of the best data

structures as before, thus failing to model various data structure behaviors. There-

fore, new training applications should be collected again to cover the missing por-

tion of the design space. This is extremely time-consuming and requires enormous

effort without the help of the automated and repeatable methodology. This section

1This paper uses the terms ”training applications” and ”training examples” interchangeably.

74

describes how these issues are addressed. It must be noted that just using machine

learning itself cannot satisfy the issues. These issues are rather the prerequisites

for the success of machine learning.

Formally, the description of the data structure selection model is as follows:

given a set of input features X and a set of data structure implementations Y as

output, the model is to find a function f: X → Y such that the predicted result y

= f(x), where y ∈ Y and x is a set of features for a data structure in an application,

matches the best data structure (BestDS) of the application. The training set of the

model is comprised of many pairs of the feature set and the best data structure,

i.e., (x1, BestDS1), (x2, BestDS2), ..., etc. The features include both software features

such as the number of interface invocations and hardware features such as cache

misses (Section 4.5.1 discusses the both features in more detail). Thus, features

capture various aspects of the data structure usage when an application is run-

ning. In collecting the training set, Brainy uses an application generator to prepare

a significant quantity of applications and executes each application through two

phases of data collection: first to measure the runtime and second to record the

detailed performance metrics. This section describes why so many applications

are required, the details of the application generator, and how it is used in the two

phases of data collection.

4.4.1 Training Set and Overfitting

Creating an accurate model using machine learning that represents a vast array

of different data structure behaviors requires having a large and thorough set of

training examples. If the training examples are not representative of the many

varied behaviors of real world applications, then the resulting model cannot yield

75

accurate predictions. Therefore, training should provide the machine learning al-

gorithm with all critical patterns of data structures’ behaviors in which one imple-

mentation performs much better than another. Unfortunately, constructing such a

training set is a very difficult problem.

Figure 18: Training Framework Phase-I; Generating Applications and Measuring
Execution Times

Figure 19: Training Framework Phase-II; Collecting Software and Hardware Fea-
tures

The main difficulty of constructing effective training example sets is the very

large design space. For example, an application may use only a subset of inter-

face functions, or use them with a consistent frequency distribution (e.g., always

performing twice as many lookups as insertions). On top of that, there are many

hardware-specific characteristics, such as the size of data elements in relation to

cache-block size, that make the training example sets constructed for one architec-

ture potentially irrelevant for another.

76

Compounding the problem, each portion of the design space must be fully rep-

resented in order to avoid overfitting the model. Overfitting is a well-documented

problem where machine learning algorithms adjust to random features (i.e., noise)

of the training examples. Since such random features have no causal relation to the

prediction function, the resulting prediction performance on unseen data becomes

poorer while the performance on the training examples improves [42]. Thus, over-

fitting misleads the resulting model away from the optimum. This is most likely

to become a severe problem for insufficient amount of training examples, since the

noises are much more outstanding in that case, i.e., the model is inevitably inaccu-

rate.

Because of the immense search space and the problems from overfitting, sample

benchmarks cannot effectively train a machine learning model for data structure

selection.

4.4.2 Application Generator

Instead, this work proposes using an application generator to cover the design space

sufficiently with synthetic applications. That is, a tool (the application generator)

creates a variety of applications that test different parts of the overall space. Each

application models particular behaviors of a single data structure which are ran-

domly determined, i.e., a probability distribution determines how the interface

functions should be invoked. Using the application generator, Brainy can easily

have as many training examples as needed, thereby avoiding the overfitting. Note

that if there are a sufficient number of training examples, then the noise would play

a vanishingly small role in the learning process. The vision is that the application

generator and the configuration file can be distributed with the data structure li-

brary, and can be used to train the machine learning model at install-time for the

specific hardware of the system.

77

Table 5: The behaviors of a data structure which are randomly decided, and the
specification example in a configuration file.

DS behavior determined randomly Specification example Description

Total # of calls for all interface functions TotalInterfCalls = 1000 Randomly divide 1000 calls and assign them to each interface
Size of data element DataElemSize = {4, 8, 64, ...} Randomly pick one from the specified set
Maximum value of data to be inserted MaxInsertV al = 65536 Insert a random number between 0 and 65536 on insert
Maximum value of data to be removed MaxRemoveV al = 65536 Remove a random number between 0 and 65536 on erase
Maximum value of data to be searched MaxSearchV al = 65536 Search a random number between 0 and 65536 on find
Maximum # of data elements to be iterated MaxIterCount = 65536 Iterate data elements a random # of times under 65536 on ++/--

The application generator first prepares a synthetic application with an abstract

data type (ADT) implemented by a C++ template that can take each data structure.

The modeling is achieved via randomization. To illustrate, the synthetic applica-

tion runs a function-dispatch loop. A random number determines which interface

function is invoked every iteration of the loop. Thus, the order of interface invo-

cations and their invocation frequencies are random. Randomization also controls

how the dispatched interface is invoked, e.g., what data element is searched for

find. Table 5 represents what property is randomly determined, and how it is

specified in a configuration file. In particular, this configuration only specifies the

total number of all the interface invocations. In each generated application, the

number of invocations of each interface may vary, but the total number of invoca-

tions is constant across the applications.

To cover the different behaviors of interface invocations, the number of invoca-

tions for a given interface should be able to vary between zero and the total num-

ber. To achieve this goal, Brainy exploits a random number distribution to choose

the number of invocations for each interface, such that the sum of the invocations

is the configured total.

After determining how the application interacts with the ADT, the application

generator finally creates a set of applications with interchangeable data structures,

based on the replacement limitations described in Table 4. This is achieved by sim-

ply specifying an actual data structure in the ADT, which is a C++ template. Thus,

the behavior of the synthetic applications is exactly same, i.e., the only difference

78

is that they have a different data structure.

Since the random numbers completely determine every behavior of a data struc-

ture, a different sequence of random numbers leads to different interactions with

the ADT, and thus different sets of applications. With that in mind, the application

generator must use a randomization method that has a sufficiently low probability

of generating equivalent random sequences.

4.4.3 Training Framework

input : data structures from config
input : need more sets from config
output: seed ds pairs - pairs of seeds and data structures
;
Map<seed, DS> seed ds pairs← ∅;
Map<DS, time> runtime← ∅;
while need more sets do

seed← Time();
forall DS ∈ data structures do

A← Compiler(AppGen(seed,DS));
A() // run;
runtime[DS]← GetRuntime();

end
seed ds pairs← seed ds pairs ∪ (seed, FastestDS(runtime));
runtime[DS]← ∅;
update need more sets ;

end
Algorithm 1: Training Framework Phase-I

Figure 18 and Figure 19 show how the training framework of Brainy functions

based on the application generator. The training consists of two phases, each of

which are iterative processes. As detailed in Algorithm 1, the first phase (Phase-

I) consists of iterations of generating sets of synthetic applications with the same

behavior but different data structures using the application generator. The appli-

cations are compiled, run on the target machine, and the execution time is mea-

sured to determine which data structure is the best for each application. Then in

79

seed ds pairs, the best data structure is recorded together with the seed value used

to generate the set of the applications 2.

Updating need more sets is complex as there is no intervention or effort to gen-

erate applications that are best for a specific data structure; so after many iterations

some data structures will have more “best” applications than others. Brainy stops

Phase-I when a certain number of applications, e.g., ten thousand, is best for each

data structure and switches to the next step (Phase-II). This threshold number is

adjustable, and it is possible to use a different threshold for each data structure

through the configuration file. It is important to note that the Phase-I is very fast

since it does not perform any expensive profiling to extract features. Thus, mea-

suring the applications’ execution time to determine the best data structure has

minimal overhead.

input : data structures from config
input : seed ds pairs from Phase-I
output: train set - training data for model
;
Map<DS, Map<features,DS>> train set← ∅;
forall seed ∈ seed ds pairs do

forall DS ∈ data structures do
A← Compiler(AppGen(seed,DS), Instrumentation);
A() // run;
features← GetFeatures();
train set[DS]← train set[DS] ∪ (features, seed ds pairs[seed]);

end
end

Algorithm 2: Training Framework Phase-II

In Phase-II, the application generator replays the executions of the applications

in Phase-I by taking the seed value recorded in Phase-I (as using the same seed

guarantees producing the same sequence of random numbers in most pseudo-

random number generators). Note, using seeds is but one way of retaining the

2Brainy records the best data structure only if it is 5% or more faster than any another. This
prevents a data structure, which is barely the best, from being selected as an alternative.

80

applications between phases. That is, the applications are regenerated, and there-

fore Brainy can execute millions of training applications without an explosion in

disk space. As shown in Algorithm 2, this phase iterates through the recorded

seed values (seed ds pairs), regenerates the applications, and compiles them with

additional instrumentation, specifically a modified STL library that has profiling

for data structures. With this profiling, all of the software and hardware features

can be collected during program execution. The profiling data structures record

the features in a designated training set file according to the type of the data struc-

ture. train set is updated with the collected features and the best data structure as

observed in Phase-I. Again, the applications generated in each iteration have the

exact same behavior, and the only difference between them is the data structure

implementation. This iterative process stops when all the seeds are consumed. At

the end, each data structure’s training set file is fed into the machine learning tool

to train the corresponding model.

In addition, Brainy’s training framework is flexible. When long training time

is unacceptable, users can specify that training occur for only a small number of

training applications for each data structure, e.g., train only 1000 applications for

each data structure. The two-phase training framework can prevent extra appli-

cations generated in Phase-I from being fed into Phase-II which performs a time-

consuming feature profiling. E.g., if Phase-I generates 1500 and 1000 applications

for vector and list, respectively, Phase-II does not accept the rest 500 vector

applications. In this way, the framework can dramatically reduce the training time.

One might suggest simply using real applications to train the machine learning

algorithm. However, this approach is neither practical nor plausible. Assume that

there is a good real application which clearly shows list is better than vector.

Nevertheless, this real application just shows one particular case among millions

81

of situations where list outperforms vector. For effective data structure se-

lection, the training process must cover as many cases as possible, so that the ma-

chine learning model will yield accurate prediction results for unseen applications,

which are practically infinite. That is, if the model just learns a few cases where

one data structure is better than another, the resulting data structure selection is

very likely to be inaccurate for real applications that were unseen in the training

process.

The application generator is a reasonable approach for modeling the myriad

cases required for accurate machine learning predictions. Furthermore, this frame-

work for modeling has further advantages over real applications (or hand con-

structed benchmarks) by not being tied to current implementations / architectures.

Otherwise, every variation to any part of the system would potentially require con-

structing a new set of applications. Therefore, it is desirable that the framework can

automatically produce training examples tuned to the specific architecture within

a reasonable time.

4.5 Artificial Neural Network (ANN)

Several machine learning techniques have been proposed over the last few decades,

and it remains a question of great debate as to which machine learning technique

is optimal for a given classification problem. The accuracy of the machine learning

technique is inherently dependent on the characteristics of the data set. For ex-

ample, Artificial Neural Network and Support Vector Machine generally perform

better when the features are continuous and multicollinearity is present. They can

both deal with a case where relationship between input and output features is non-

linear3, i.e., data are not linearly separable. [98, 73].

3Support Vector Machines can also address this case with the help of transformed feature space.
A linear separation in the transformed feature space corresponds to a non-linear separation in the
original space [73].

82

The features generated by instrumentation code show both linear and non-

linear characteristics. Brainy exploits Artificial Neural Network (ANN), since it

is robust to noise as well as effective for linear and non-linear statistical data mod-

eling [55]. This seems an appropriate approach in that data structure selection is a

highly complex problem domain and its training examples may have considerable

noise and model-bias, thereby hurting the prediction accuracy. The training of the

ANN model in this work leverages a back-propagation algorithm [114].

The ANN model predicts the alternative data structure that achieves the best

performance in replacing the original data structure in an application. The target

data structures, determined in Section 4.3, have their own ANN model as shown in

Figure 17. That is because the list of features necessary for predicting the best data

structure type is different between data structures. For example, vector suffers

from resizing when its capacity is full, but list does not. In particular, there is

another model for vector and list to address the situation when they are used

in an order-oblivious manner (where insertion order has nothing to do with data

organization in the data structure). When they are used in this manner, vector

and list can be replaced with hash set or set. When the underlying hardware

system is changed, the ANN models for data structures should be trained and

learned again for the new microarchitecture, possibly with a new set of training

examples. This is achieved with the help of the application generator.

4.5.1 Feature Selection

It is important to determine which subset of features to collect for the training ex-

amples. By selecting only the most relevant features, the machine learning model

will be more accurate and the learning process will converge faster. Initially, most

of interface functions of a data structure and, if available, how much work is done

on their invocation are collected through instrumentation code. This work calls the

83

latter a cost of each interface invocation. For example, find has a cost to model

how many data elements are accessed until the search operation is finished. Sim-

ilarly, for erase and insert, their costs represent how many data elements, lo-

cated after the insertion and removal point, are moved backwards or forwards.

Along with these software features, hardware features are also considered to make

the model aware of underlying hardware architecture.

Initially, we collected the numbers on L1 and L2 caches, TLB, retired instruc-

tion, page faults and processor clock cycles, and so on. Especially, this work omits

some features such as L2 cache misses, TLB misses, OS page faults, and bus uti-

lization, since manual feature selection empirically shows that these features rarely

affect the prediction of the best data structure. Since all the code to be executed be-

comes entirely different after data structure replacements, Brainy uses hardware

features just to capture how the original data structures show certain behaviors

useful for data structure selection.

To perform the feature selection, this work leverages the evolutionary approach

based on genetic algorithm due to its success especially for large dimensions of fea-

tures [121]. This approach represents a given subset of features as a chromosome,

a binary string with the length of the total number of features. In the chromosome,

each binary value represents the presence of a corresponding feature. The pop-

ulation of chromosomes (different feature selection candidates), evolves toward

better solutions. Meanwhile, mutation in the genetic algorithm prevents the evolu-

tion from getting stuck in local optima, helping to approach the global optimum.

In particular, this work constitutes the chromosome as real-valued weights, instead

of binary value, that show which feature has more impact on the resulting model

instead of binary values [62, 59].

Table 6 shows the top five features with the highest weight for each ANN

model. For each data structure, the order of features shown in the table follows

84

Table 6: Selected features for each data structure

vector order-oblivious vector list order-oblivious list set map

resizing br miss iterate find cost find cost L1 miss
insert find cost push front find L1 miss data-size / cache block-size
br miss L1 miss L1 miss L1 miss data-size / cache block-size br miss
insert cost resizing insert erase find insert cost
iterate erase cost erase cost data-size / cache block-size insert cost find cost

the decreasing order of the weights, e.g., the first low corresponds to the features

with the highest weight.

The most important features to decide whether vector should be replaced,

no matter if it is order-aware or order-oblivious, contain the number of resizes,

that is performed on data insertion when the size of vector is full. It is inter-

esting that a misprediction rate of conditional branches belongs to the important

features. This results from the fact that such a branch misprediction can model

exceptional behaviors of data structures, e.g. invoking resize on insert oper-

ations of vector and hash table. In other words, data insertion to the data

structures does not suffer from performing resize for most of time if the capacity

of the dynamic array is not full. Note that once resize is invoked due to insuffi-

cient capacity, it takes a while to see the recurrence of another resize. The reason

is that resize extends the capacity, in case there are many more data insertions

to again fill the array. In the insert function, a conditional branch instruction de-

termines whether resize is invoked. The branch predictor could fail to correctly

predict the branch instruction for this uncommon path, which is a taken branch

to call resize. This is justified in Figure 20 where the X-axis corresponds to the

branch misprediction rate while the Y-axis to the resize ratio (%) among the total

interface invocations.

It turns out that insert and insert cost are relevant features for vectors.

This makes sense since these features capture how much vector suffers from

shifting data after the insertion point. The same goes for why erase cost is rel-

evant for the order-oblivious vector. In particular, when vector is used in the

85

Figure 20: Correlation between conditional branch misprediction and vector
resizing when the data structure is order-aware (a) and order-oblivious (b)

order-oblivious manner, find is a relevant feature. Note that in this case, there is

no explicit iteration operation, thus every data access is performed by find.

For order-aware and order-oblivious lists, L1 cache miss rate is a relevant

feature. It can be thought that the miss rate would capture how the nodes of the

linked list fit into a cache block. Again, for the order-oblivious list, find-related

features are relevant. In particular, push front is relevant when list is used in

the order-aware manner. This is understandable given how frequently data inser-

tion occurs at the beginning of data structures, which can guide whether vector

or deque is an appropriate alternative.

For set and map, find-related features are most relevant, as their data struc-

ture selection highly depends on how frequently find is performed and how

many data elements a find operation accesses. Again, the insert cost and

find cost represent the number of data elements accessed while the correspond-

ing operations reach the insertion point and the search location, respectively. In

86

addition, L1 cache miss rates and data element size per cache block size can cap-

ture how long the latency of each data element is on the find operation. Thus,

they can quantify the cost of data accesses involved in find operations.

4.5.2 Limitation

While Brainy captures many useful properties with synthetic applications created

by the application generator, it also has a limitation that leaves room for future im-

provement. The synthetic applications might not accurately model the impact of

other parts of a real application on the microarchitectural state, e.g., the L1 is pol-

luted by data in intervening instructions. However, it should be noted that Brainy

is aware of such a microarchitectural behavior, and possibly another synthetic ap-

plication can capture the polluted L1 cache behavior.

Even with these drawbacks, it turns out that the training with the synthetic ap-

plications can ”cover” real applications. That is it is conjectured that the behaviors

exhibited in actual execution would be a subset of training behaviors therefore

hoping that the actual execution model would be subset of the constructed one.

Section 4.6 demonstrates that for real-world applications, Brainy can consistently

select optimal data structures across input and architectural changes.

4.6 Evaluation

In order to evaluate the effectiveness of Brainy, we implemented it as a part of C++

Standard Template Library (STL) for GCC 4.5 [131]. To access hardware perfor-

mance counters, we used PAPI [44]. Especially, to show Brainy’s accuracy across

different inputs, we selected a set of C++ applications where the best data structure

varies on input changes. The data structure selection experiments were performed

on two different systems that have Intel Core2 and Intel Atom microarchitectures,

respectively. The detailed system configurations are described in Figure 21.

In the next sections, we first validate Brainy’s data structure selection models.

87

Desktop
CPU Intel Core2 Quad Q6600 2.4 GHz
Caches 4 X 32 KB L1 data, 2 X 4 MB L2 unified
Memory / DISK 2 GB SDRAM, 200 GB HDD
Operating System 64-bit Ubuntu Desktop 8.04
Compiler GCC 4.5 with libstdc++ 4.5.0

Laptop
CPU Intel Atom N270 1.6 GHz with HyperThreading
Caches 32 KB L1 data, 512 KB L2 unified
Memory / DISK 512 MB SDRAM, 8 GB solid state disk (SSD)
Operating System 32-bit Ubuntu Netbook Remix 9.10
Compiler GCC 4.5 with libstdc++ 4.5.0

Figure 21: Target systems configurations

Figure 22: Performance improvement Brainy achieved

Then, we show four case studies with real-world applications. In the first two

applications, the optimal data structures vary across inputs and even microarchi-

tectures (Section 4.6.3). Thus, they show the difficulty of accurate data structure

selection. In the next two applications, the optimal data structures are rarely af-

fected by input and microarchitecture changes. Thus, we show their results briefly

compared to the first two applications.

Figure 22 summarizes the performance improvement of each application ob-

tained from Brainy’s data structure replacement. In cases where the optimal data

structure varies across inputs, only the best performance result Brainy achieved

88

appears in the figure. Brainy achieved an average performance improvement of

27% and 33% on Core2 and Atom microarchitectures, and up to 77% for some case

(Section 4.6.3).

4.6.1 Model Validation with an Application Generator

Validating Brainy’s data structure selection models leverages the application gen-

erator. For an accurate and fair evaluation, the application generator newly pro-

duces 1000 random applications for each data structure model. Note that all these

random applications have never been seen by the models, i.e., the model valida-

tion is performed with completely new applications. Thus, the applications here

are not the ones used to train the models. The accuracy is calculated as follows;

accuracy(%) = 1− The number of mispredictions

1000
(11)

Figure 23 shows how accurate the prediction results of each data structure

model are for the 1000 applications on the Core2 and Atom microarchitectures.

Overall, for Core2 microarchitecture, the accuracies of models are between 80%

and 90%. This is impressive in that the 1000 applications for each model cap-

ture a variety of behaviors of data structure usages, thus the best data structure is

quite different across the applications. It needs to be noted that each data struc-

ture model attempts to select the best data structure among many replaceable data

structures as described in Table 4. For instance, the model for vector selects the

best data structure among possible six candidates, when it is used in the order-

oblivious manner. For Atom microarchitecture, the accuracies of models are be-

tween 70% and 80%. This is enough to effectively predict the best data structure of

a real application as described in the next section.

89

Figure 23: Accuracy of data structure selection models; for the same data struc-
ture, there are two different models for Core2 and Atom microarchitectures, re-
spectively.

4.6.2 Xalancbmk

Xalancbmk is an open source XSLT processor that performs XML to HTML trans-

formations. It takes as inputs an XML document and an XSLT style sheet with

detailed instructions for the transformation. The program maintains a string cache

comprised of two levels, m busyList and m availableList, vectors. When a string

is freed in XalanDOMStringCache::release, it moves the string to the m availableList,

provided it is found in the m busyList. To determine whether the string is found in

the latter list, the data structure, vector, performs find operations. In general,

these operations are often recurring, but the frequency of performing them is vary-

ing across program inputs. In addition, each input brings about different search

patterns.

To define the accuracy of Brainy for data structure selection, the evaluation

process leverages comparison with the Oracle scheme which is empirically de-

termined across program inputs on each microarchitecture. If the resulting data

structure selection agrees with the Oracle’s, the result are considered accurate.

In addition, the evaluation compares Brainy with Perflint, the state-of-the-art

90

data structure advisor that relies on hand-constructed models [87]. On each in-

terface invocation, Perflint assigns the cost taking into account traditional asymp-

totic analysis. As an example, for the cost of a find operation among N data ele-

ments, vector leverages average case for linear search, i.e., ’3/4N’, while set uses

’logN’ for binary search4. Each cost is multiplied with a coefficient value, which

is determined by linear regression analysis for execution time, and accumulated

whenever the interface function is called. In particular, Perflint provides the hand-

constructed model for vector-to-set replacement while vector-to-hash set

is not supported. Each interface invocation of the original data structure (vector)

updates the costs of both vector and set. Based on comparing the accumulated

costs at the end of program execution, Perflint selectively reports the alternative

data structure.

Figure 24 shows execution times of three selected data structures, vector, set,

and hash set with those schemes. The ideal data structure selection (Oracle), i.e.,

vector is the best for a train input while hash set for test and reference inputs,

are identical on both microarchitectures. Especially, set performs differently on

the two microarchitectures. That is, for test and reference inputs, set outperforms

vector on Core2 microarchitecture while the data structure replacement to set

does not achieve significant performance improvement on Atom microarchitec-

ture.

Figure 25 shows the results of each data structure selection scheme for the two

different microarchitectures. Baseline represents the original data structure in the

figure. According to the Oracle, for test and reference inputs, the original data

structure, which is vector, is desired to be replaced with hash set for better

performance. The reason is that the data structure executes many search opera-

tions. However, for a train input where hash set is suboptimal, vector is the

4For binary search, the average and worst cases are exactly the same.

91

Figure 24: Normalized execution time across different data structures; The base-
line execution times (in second) are on Core are 3s, 74s, and 234s for test, train,
and reference, respectively. On Atom, the baseline execution times for these inputs
are 18s, 611s, and 1345s, respectively. Brainy selects the best data structure for
each input of Xalancbmk

Input Size Selection Schemes Reported Best DS
Core2 Atom

Test

Baseline vector vector
Perflint set set
Brainy hash set hash set
Oracle hash set hash set

Train

Baseline vector vector
Perflint set set
Brainy vector vector
Oracle vector vector

Reference

Baseline vector vector
Perflint set set
Brainy hash set hash set
Oracle hash set hash set

Figure 25: Xalancbmk’s data selection results on Core2 and Atom microarchitec-
tures.

best data structure. This is not easily understandable and rather surprising. Ac-

cording to the profiled features with instrumentation code of Brainy, the applica-

tion invokes the find function more than 60 millions times for a train input as

well as for a reference input. On top of that, the train input causes the applica-

tion to erase the first data element from the head of the dynamic array almost 30

times more frequently than the reference input does, which is pretty problematic

for vector. On the other hand, for the test input, the application achieves the best

performance with hash set in spite of a relatively small number of find function

92

invocations, which is about thirty-seven thousand. Thus, accurate data structure

selection is very difficult for this application.

With the help of the profiled feature results, it turns out that find operation

is much more dominant compared to the problematic erase operation. What

happened behind the scenes related to the find operation is that the number of

data elements the operation touched is varying across program inputs. This is

mainly due to the change of search patterns across inputs. Table 7 presents more

detailed information about this situation. This implies that building an accurate

hand-constructed model would be much more difficult.

Table 7: The number of find invocations and the total number of touched data
elements for all the invocations across program inputs.

Input Size find invocations Touched data elements
Test 37,594 32,804,644
Train 62,438,422 2,569,120,180
Reference 67,720,063 89,454,229,684

For the training input, a majority of find operations succeed in searching the

designated data element in the very beginning of the dynamic array of the original

data structure, vector. In this case, hash set just causes extra memory con-

sumption compared to vector. It is desirable to force the application not to pay

for complex operations such as maintaining hash buckets which is not really nec-

essary, thus vector is preferable to hash set. Brainy can recognize the search

pattern based on find-related features as described in Section 4.5.1. Together

with considering other software and hardware features profiled, Brainy correctly

reported the same results as the Oracle across different inputs for the both microar-

chitectures.

Meanwhile, Perflint failed to consistently report accurate prediction results for

the best data structure, even if it only needs to perform a binary decision between

vector and set. For the train input, Perflint incorrectly reported that set is

93

preferable to vector. This is problematic because the resulting data structure re-

placement to set causes performance degradation on both microarchitectures as

shown in Figure 24. For the reference input, Perflint reported that set is prefer-

able, which only works on Core2 microarchitecture, i.e., replacing vector with

set achieves little performance improvement on Atom microarchitecture. Again,

Brainy selected the optimal data structures consistently across all the program in-

puts on both microarchitectures.

4.6.3 Chord Simulator

This application is an open source simulator for Chord, a distributed lookup pro-

tocol to locate Internet resources. The main work of the simulation is to send query

requests for a certain resource over the network and to record if the lookup fails by

checking the response to the query. Whenever the response is received, the sim-

ulator drops the message, which corresponds to the resource of the response, in

a pending list of routing messages. The search performance thus translates to the

simulation time reduction. In particular, determining the message to be dropped

performs std::find if on the pending list, which is implemented using vector,

checking an ID field of each message structure. Thus, the vector can be replaced

with map-like data structures using the ID field as its key.

Brainy suggested to replace the original vector with map or hash map, ac-

cording to different inputs. In the application, the optimal data structure varies

across different inputs on both microarchitectures, as shown Figure 27. It is impor-

tant to note that for the Large input, the optimal data structures on both microar-

chitectures do not agree with each other, i.e., vector is optimal on Core2 whereas

map performs the best on Atom. This shows the difficulties of the data structure

selection in the application. Overall, Brainy correctly reported the same results as

the Oracle across different inputs and microarchitectures. It needs to be noted that

94

when vector, the original data structure, is optimal, Brainy correctly selected this

data structure. Figure 26 shows the performance results of different data structures

across different inputs and microarchitectures. The configuration of the graph and

the table follows the one in the previous section.

Figure 26: Normalized execution times across different data structures: the base-
line execution times (in second) on Core2 are 9s, 19s, and 306s for test, train, and
reference, respectively. On Atom, the baseline execution times for these inputs are
47s, 203s, and 2952s, respectively. Brainy selects the best data structure for each
input of Chord Simulator.

Input Size Selection Schemes Reported Best DS
Core2 Atom

Small

Baseline vector vector
Perflint map map
Brainy map map
Oracle map map

Medium

Baseline vector vector
Perflint map map
Brainy hash map hash map
Oracle hash map hash map

Large

Baseline vector vector
Perflint map map
Brainy vector map
Oracle vector map

Figure 27: Chord simulator’s data selection results on Core2 and Atom microar-
chitectures.

Again, we compared Brainy with Perflint5. Perflint selected map for all combi-

nations of inputs and mircroarchitectures. However, for the Large input on Core2,

5Since Perflint does not support vector-to-map replacement explicitly, this work considers
its suggestion of set as the replacement to map. We believe that the implementation of the replace-
ment should exactly follow the manner that vector-to-set is implemented.

95

map performs worse than the original data structure, vector. Perflint’s sugges-

tion causes performance degradation in this case. In contrast, Brainy consistently

selected the optimal data structures for all combinations of inputs and microarchi-

tectures.

4.6.4 RelipmoC

RelipmoC is an open source translator that converts i386 assembly code to C code,

i.e., a decompiler for i386 assembly. It analyzes the input assembly code and builds

a list of basic blocks implemented using STL set, thus a red-black tree. On the set

data structure, it performs data flow and control flow analyses to extract high level

expressions, and to recover program constructs, e.g., loops and conditional state-

ments, along with the information about their nesting level. It frequently checks if

a basic block belongs to the program constructs which are normally a list of basic

blocks. In the meantime, find and iteration operations are executed many times

for short lists and long lists of basic blocks, respectively. Brainy suggested replac-

ing setwith avl set, the implementation of which is an AVL tree. By conducting

the suggested replacement, we improved the execution time of the application on

Core2 and Atom microarchitectures by 23% and 30% on both microarchitectures,

respectively. The baseline execution times (in seconds) of this application on Core2

and Atom are 41s and 120s. We could not compare Brainy with Perflint since it

does not support any replacement for set.

4.6.5 Raytrace

This application draws a 3D image of groups of spheres using a ray tracing al-

gorithm implemented in C++ STL. The spheres are divided into groups that use

list to store them. The main computation of the program occurs in a loop on

intersect of each group object. First, the intersection calculation is performed for

each group of spheres. If a ray hits the group, it is subsequently performed for its

96

spheres (scenes). Thus the list is heavily accessed and iterated during the ray

tracing, i.e., vector is much preferable. Brainy correctly suggested to replace the

list with vector. By taking Brainy’s suggestion, we replaced the original data

structure with vector thereby reducing the execution time of the application on

Core2 and Atom microarchitectures by 16% and 13%, respectively. The baseline

execution times (in seconds) of this application on Core2 and Atom are 79s and

347s. This time Perflint selected the optimal data structure just as Brainy did.

4.7 Summary

Data structure selection is one of the most critical aspects in determining program

efficiency. This paper presents Brainy, a novel and repeatable methodology for

generating machine-learning based models to predict what the best data structure

implementation is given a program, a set of inputs, and a target architecture. The

work introduces a random program generator that is used to train the machine

learning models, and demonstrates that these models are more accurate and more

effective than previously proposed hand-constructed models based on traditional

asymptotic analysis for real-world applications. The experimental results show

that Brainy achieved an average performance improvement of 27% and 33% on

two real machines with different processors.

97

CHAPTER V

MEMORY LEAK DETECTION FOR DATA STRUCTURES

5.1 Introduction

Memory management bugs are a common source of persistent errors in real-world

code. Memory leaks are particularly notorious, since their symptoms and causes

are insidious and hard-to-track [104, 56]. Most of the data structures are dynami-

cally allocated in the heap area of the memory and one of the most common prob-

lems encountered for the dynamically allocated objects is the memory leaks. They

occur when allocated objects are not freed, even if they are never accessed again.

Since they remain allocated consuming the heap memory, they gradually affect

the quality-of-service (QoS) of the system. Even worse, piled leaks eventually

crash applications by exhausting system resources. Memory leaks can also result

in software security/reliability problems (CWE-401) [35]. For example, many CVE

entries including CVE-2013-0152/0217/1129 have detailed the problems [34], and

malicious exploits have been designed based on memory leaks to launch denial-

of-service (DoS) attacks [138].

In the manycore era, leaks are more common than ever in multithreaded soft-

ware. When heap-allocated objects escape their thread, it is hard to determine when

and which thread is to deallocate them. Due to the difficulties of reasoning about

the liveness of the shared objects, programmers often end up leaving the objects

allocated in the memory thereby producing leaks. Despite undergoing extensive

in-house testing, leaks often exist in deployed software and show up in customer

usage [20, 17]. In fact, they are common causes of bug reports for production soft-

ware [101, 2].

98

With the advent of cloud services that allow customers to deploy various ser-

vices in the datacenter, memory leak detection is one of the most critical issues

in datacenters. Several reasons drive this movement. First, the threat of service

downtime due to leaks has been a constant concern in datacenters [123, 8]. Such

a service-level-agreement (SLA) violation leads to the penalty, e.g., a reduction in

fees [47].

Second, since each machine in the datacenter supports multiple services in gen-

eral, one leaking application can threaten the QoS and the reliability of every ser-

vice running on the same machine. I.e., leaks impact not only the leaking appli-

cation but also all the others, due to the limited amount of available system mem-

ory [31].

Third, memory leaks directly affect the datacenter operational cost; the fact that

the service applications can be leaky puts significant pressure on resource over-

provision in the datacenter. Once memory is actually leaking, the datacenter ends

up consuming more and more resources, e.g., co-locating fewer services in a ma-

chine in the datacenter, to deliver as promised in the SLA.

Lastly, the datacenter provider needs not only to detect the threat of leaks but

also to correctly attribute it to the leaking application; just consuming large mem-

ory should not be blamed unless the application is leaking. That is necessary to

adjust the SLA and better support it rather than to blame for the memory leak.

E.g., after fixing the leak, the customer can run the service with a lower cost while

the provider can allocate less resource to it. Thus, effective memory leak detec-

tion can improve the datacenter ecosystem by helping the provider as well as the

customers.

Unfortunately, existing tools [56, 104, 93, 31, 28, 106, 20] cannot be used in data-

centers for many reasons. First, the tools cannot meet the QoS demand due to their

high overhead. While state-of-the-art tools leverage sampling techniques to track

99

accesses to heap objects [28, 106], the resulting overhead is still unacceptable, e.g.,

9.72x slowdown and more than 70% dynamic memory increase for heap-bound

applications.

Note that such memory-consuming approaches including [106, 109] are pro-

hibitive in datacenters. In reality, even 5% increase of heap size due to faster mem-

ory allocation makes it impossible to use the memory allocator in enterprise sys-

tems. Apart from that, it just makes no sense to spend more memory for less leak.

More importantly, existing tools are neither systematic nor automated. Their

leak determination relies on a manually-set threshold. That is, user intervention

is required for each service, and even worse such a high cost will have to be paid

anew on environmental change, e.g., SLA adjustment or microarchitecture change.

It is unrealistic for datacenter providers to ask the customer to provide the thresh-

old for every service/SLA/architecture combination.

The lack of a methodology to determine the threshold forces users to do that

properly, or ends up blindly applying a fixed threshold to those applications that

have different characteristics. As a result, existing tools can falsely blame non-

leaking objects or miss real leaks. I.e., the tools inherently vulnerable to false posi-

tives and negatives.

Given all this, there is a compelling need for a practical memory leak detection

tool usable in datacenters. With that in mind, this paper presents the design and

implementation of Sniper to effectively detect memory leaks in C/C++ produc-

tion applications. It leverages instruction sampling using performance monitor-

ing units (PMU) in processors to track accesses to heap objects without significant

overhead. It also offloads most of time- and space-consuming work, e.g., tracking

heap organization and searching for the heap object accessed by a sampled instruc-

tion. To achieve this, Sniper uses a trace-driven approach based on the combina-

tion of a lightweight heap trace generation and an offline trace simulation.

100

During program execution, Sniper records full traces of malloc/free as well as

sampled PMU traces. The offline simulator then analyzes those traces and calcu-

lates the staleness of heap objects, which is a clue to potential memory leaks. I.e.,

the simulator replays the program’s heap-related activities, thereby catching every

leak occurred during the program execution. In this way, Sniper rarely increases

the execution time and the memory space at runtime. The takeaway is that the

same mechanism is applicable to multithreaded program with no synchronization

overhead.

In particular, Sniper’s leak identification is very accurate. Rather than relying

on ad hoc efforts which require user intervention, Sniper provides a systematic and

accurate methodology to identify leaks. The key idea is to view memory leaks

as anomalies. Sniper’s anomaly detection is not only fully automated but also

application-tailored. Such a statistical analysis makes Sniper robust against false

positives/negatives across applications. E.g., chances are much low that innocent

objects with over-estimated staleness due to the sampling are falsely blamed.

Finally, Sniper neither requires recompilation nor perturbs the application exe-

cution with instruction instrumentation or memory allocator modification. Along

with the low overheads, that makes Sniper work transparently to the application.

In case QoS requirement becomes more stringent, it is possible to dynamically turn

off Sniper taking away all the overheads.

Overall, Sniper is usable in datacenters, and therefore can observe real execu-

tion characteristics that actually cause memory leaks. The following are the contri-

butions of this work:

• The first systematic and automated methodology for accurate leak identifica-

tion based on an anomaly detection. The issue is to automatically determine

the staleness threshold, which is an ‘open problem’ in that no prior work has

addressed the issue despite its importance. Our leak identification, which

101

is tailored not just for each application but for each allocation site as well,

effectively deals with the problem.

• A new trace-driven methodology to track how an application interacts with

the heap; it not only offloads heavy work to the offline simulator, but also

enables the statistical analysis of leaks.

• To the best of our knowledge, Sniper is the first to effectively detect leaks for

multithreaded software.

• No heap size increase and very little time overhead.

5.2 Background and Motivation

This section introduces basic concepts and terminologies used in state-of-the-art

leak detection tools, and shows their limitations as well as the requirements for

production use in datacenters, which drive Sniper’s design.

5.2.1 Target Memory Leaks

Memory leaks are of two kinds: (1) unreachable memory, i.e., program cannot access

it, and (2) dead memory, i.e., it is reachable, but the program will never use it again,

thus it is not live. The unreachable leaks can be effectively addressed by garbage

collection [15] and static analyses [57, 144, 26, 70]. However, the dead leaks are

much more tricky, since it is in general undecidable to determine if certain memory

will not be accessed in the remainder of the program execution. This difficulty

leads to the advent of many dynamic analyses [109, 18, 147, 16, 17, 31, 20] including

Sniper. The focus of this work is to detect the dead leaks even though Sniper can

deal with the both types of leaks.

102

Figure 28: The determination of thresholdstaleness.

5.2.2 Staleness-Based Leak Detection

Chilimbi and Hauswirth formulated the problem of memory leak detection based

on ‘how stale heap objects are’ in their pioneering work called SWAT [28]. They

define the staleness of an object as how long it remains unaccessed since the last access

time. SWAT reports those heap objects whose staleness is greater than the length

of timeout. I.e., if an object has not been accessed for a long time, it is likely to

be a leak. At time treport, an object o is identified as a leak if treport − tlast access(o) >

thresholdstaleness. To track the last access with low overhead, existing tools leverage

a sampling technique.

Depending on the threshold, they can end up reporting innocent objects as

leaks (false positives) and miss real leaks (false negatives). Figure 28 shows the im-

portance of accurate threshold determination. In the figure, circles on a time arrow

represent the last access of heap objects whose staleness appears below the arrow.

Tn corresponds to each threshold while ln and in to leaking and innocent objects,

respectively. Here, T1 misses l2 since its staleness is less than T1, thus smaller thresh-

old is desirable. Alternatively, T2 correctly identifies l2 as a leak, but falsely blames

i1 since its staleness becomes greater than the threshold. The ideal threshold exists

between tlast access(argminx∈L staleness(x)) and tlast access(argmaxy∈I staleness(y)) where

L and I are the sets of leaking and innocent objects, respectively.

103

However, it is practically impossible to determine the ideal threshold, since

such a determination already requires perfect knowledge of what object is a leak.

Note that the ideal value exists if and only if

min
x∈L

staleness(x) > max
y∈I

staleness(y) (12)

I.e., if the inequality 12 above does not hold, then

6 ∃ threshold s.t. ‖{FalsePositive} ∪ {FalseNegative}‖ = 0

meaning that there is no threshold to achieve perfect accuracy. In reality, since

existing tools leverage a sampling technique thereby over/under-estimating the

staleness, the inequality 12 is likely to fail meaning that they suffer from false pos-

itives/negatives.

Note that the ideal staleness threshold should be different across applications.

That is, the leak determination should be application-specific. In particular, this

work shows that even if the inequality 12 does not hold in the first place, Sniper

can still achieve good results with the help of its context-sensitive leak detection

(See Section 5.3.5.2).

5.2.3 The Impact of Staleness Threshold

In a sense, the staleness based leak detection is an intuitive view of memory leakage

problem which attributes stale objects as the symptom of memory leaks. Thus,

staleness thresholds play an important role for accurate memory leak detection.

A high threshold, which states that an object has to be highly stale for it to be

reported as a leak, will detect few leaks, but be highly precise and will not report

innocent objects as leaks. On the other hand, a low threshold, which states that

small staleness is enough for the leak identification, will report relatively many

objects as leaks. Here, most leaks would be detected, but such a threshold may also

falsely blame many innocent objects as leaks. Therefore, a good staleness threshold

104

0

0.2

0.4

0.6

0.8

1

1.2

P
re

ci
si

o
n

/R
ec

al
l (

h
ig

h
e

r
is

 b
et

te
r)

Staleness Threshold

Precision Recall

0

0.2

0.4

0.6

0.8

1

1.2

P
re

ci
si

o
n

/R
ec

al
l (

h
ig

h
er

 is
 b

et
te

r)

Staleness Threshold

Precision Recall

Figure 29: The accuracy tradeoff of staleness thresholds on astar (above) and
xalancbmk (below).

should make a good balance between the two extremes so as to detect many real

leaks but not to generate too many false positives which will waste the user’s time

inspecting the cause of falsely reported leaks.

Empirical Evaluation of SWAT’s Staleness Thresholds To evaluate the efficacy

of SWAT’s staleness approach and the impact of different staleness thresholds, we

implemented SWAT using the LLVM toolset [77] and tested it with various staleness

105

thresholds. Chilimbi and Hauswirth suggest using idleGt1Billion threshold [28].

However, it is doubtful whether the recommended threshold works well across

applications, since the threshold came from an empirical evaluation and rather

than analytical reasoning.

Our empirical results show that this concern turns out to be true impacting the

accuracy of SWAT. Figure 29 depicts the precision/recall tradeoff for two SPEC2006

applications, astar and xalancbmk. The figure shows that for astar, there is a chance

to improve the accuracy by carefully adjusting the threshold, i.e., till the staleness

threshold reaches 1 billion, the precision increases without sacrificing the recall.

On the contrary, the same does not hold for xalancbmk, i.e., a higher precision

comes at the cost of poor recall. Thus, astar benefits from a relatively higher stale-

ness threshold whereas xalancbmk from a relatively lower staleness.

We found three lessons here. First, selecting the best performing threshold is

not an easy task. Thus, there is a compelling need to automatically determine

an appropriate staleness threshold. Second, even if users successfully select the

best staleness threshold for one application, the threshold tends to be suboptimal

for different applications ending up with the accuracy degradation. Again, the

staleness threshold determination should be performed in an application-specific

manner.

Finally, despite the concerns of the threshold determination, the staleness based

leak detection works well in general. For both applications, carefully selected

thresholds can achieve perfect precision, e.g., those objects with very high stale-

ness are actually leaking. This supports the philosophy of SWAT which states that

highly stale objects are likely to be memory leaks. Again, the empirical results are

not that of Sniper. However, since it is built on top of the staleness based leak de-

tection, the lessons learned from this empirical evaluation of SWAT can guide the

design of Sniper for accurate memory leak detection.

106

5.2.4 Leak Detector Requirements for Datacenters

Since memory leaks are very input- and environment-sensitive [20, 17], produc-

tion use is essential to observe real execution characteristics that actually cause the

leaks. There are several requirements for production use in datacenters that Sniper

must meet.

First, Sniper must not cause significant overhead that jeopardizes the QoS re-

quirements of the production service, e.g., it should not increase heap size, thus

memory-consuming approaches [106, 109] are prohibitive. Second, due to the

variety of the service/SLA/architecture combinations and their frequent change,

Sniper must provide a systematic and automated methodology for leak determi-

nation. Third, it has to be precise; it should not blame an application for the falsely-

reported leaks while real leaks must be detected. Lastly, Sniper should be able to

effectively deal with multithreaded software. Otherwise, it would be considerably

less useful.

Unfortunately, existing tools are not usable for production use due to their in-

abilities to meet those requirements. In light of this, Sniper takes into account the

requirements.

5.3 Sniper Design and the Details

The first goal is to provide a lightweight memory leak detection tool usable in dat-

acenter environment. To achieve this, we identified the key sources of runtime and

space overheads in staleness based leak detectors. (1) the instruction instrumenta-

tion to track accesses to heap objects causes high runtime overhead. (2) most of

the space overhead comes from tag (meta) data that abstracts the heap objects;

for each heap object, tools need to maintain the staleness, the allocation site, the

dynamic program point that accessed the object, and the heap organization infor-

mation, e.g., the address range of the object. (3) updating the staleness of the heap

107

objects causes both space and time overheads. In particular, for every sampled

load, the tools need to determine if the instruction accesses a heap object. This

requires searching the tag directory1 (which is a memory-intensive data structure)

for the heap object whose range embraces the target address of the load instruction.

Sniper addresses each source of the overheads effectively. To remove the heavy-

weight instrumentation completely, Sniper exploits instruction sampling using hard-

ware performance monitoring units (PMU) available in commodity processors. To

reduce the space overhead due to the tag data, Sniper buffers the full trace of mal-

loc/free and flushes each buffer into files when it is full. Similarly, Sniper main-

tains another buffer to keep information about PMU samples. Thus, the additional

memory consumption is bound to the size of the buffers.

Sniper also offloads time- and space-consuming work of the staleness update

to its trace simulator. Using the malloc/free/PMU traces generated at runtime

as an input, the simulator performs the expensive staleness update offline. That

way the memory-hungry tag directory and the space needed for the staleness are

no longer necessary at runtime. Instead, it is during the offline simulation that a

tag directory is constructed and searched for the staleness update. In this manner,

Sniper minimizes both time and space overheads during program execution by

offloading much of the work.

Another goal of Sniper is to provide a systematic and automated methodology

for precise leak determination. Again, the lack of the methodology ends up blindly

applying a fixed threshold to all the applications which may differ significantly

in their behaviors. Sniper leverages a couple of observations; (1) one-size-fit-all

threshold does not exist even within the same application, i.e., multiple thresh-

olds should be carefully determined according to application characteristics. (2)

1For Java program, the search is not necessary because Java allocates a header, which can store
information such as staleness, for each requested dynamic memory.

108

separating objects based on program context where they are created, and then per-

forming leak detection on the separated sets can improve the accuracy, i.e., the

inequality 12 is more likely to hold. In short, the leak determination methodology

should be tailored for each allocation-site as well as each application.

With that in mind, Sniper leverages a statistical analysis on the trace informa-

tion as well as detailed results of the trace simulation. In particular, this work

reformulates the problem of memory leak detection as that of anomaly detection.

Thus Sniper views memory leaks as anomalies. The reason for this is that the stale-

ness of a leaking object should be extremely higher than that of considerably many

normal objects in the entire application or even in the same allocation site. The

end result is that Sniper can automatically determine the staleness threshold in an

application-specific manner.

Figure 30 shows a high-level view of Sniper. First, an application binary is fed

into Sniper’s launcher. It prepares a ptrace hook so that a ptrace monitor ob-

serves every PMU transaction from the core the application is running on. That

way Sniper can collect the instruction samples without perturbing the applica-

tion execution. Then, the launcher preloads Sniper’s wrapper (.so) to hijack heap

interfaces, e.g., malloc/free, and fork and executes the application. At runtime,

the wrapper generates traces of the functions to track how the heap organization

evolves. They are buffered and later recorded in files. PMU traces are recorded in

a similar manner.

Once the application completes execution, all the traces are fed into a trace sim-

ulator. To extract program context information, it consults the binary analyzer.

During the simulation, it tracks the interaction between the application and the

heap organization as well as the accesses to the heap-allocated objects. I.e., the

simulator replays the application’s execution in terms of its heap usage, and up-

dates the staleness of the allocated objects.

109

Figure 30: The Sniper Organization.

110

At the end of the simulation, Sniper finally reports leaks detected with its anomaly

detection to Bugzilla. In particular, Sniper’s report is rich with details about each

object including the program context (malloc/free sites2) and various simulation

results such as memory access/growth analysis. While prior work reports just the

last access site of only leaking objects, i.e., a single instruction address, Sniper pro-

vides an snapshot of different instruction accesses to the object whether or not it is

a leak thus helping developers to fix it while debugging. E.g, using the techniques

found in [25], one can construct a dynamic slice to track down the offending mem-

ory allocation and find the program flow from that allocation site until the point of

last use.

5.3.1 Memory Access Tracking with PMU-Based Instruction Sampling

The key to detect leaks is the staleness of allocated objects in that if they have not

been accessed for a long time, they are likely to be leaks. By its definition, i.e.,

the elapsed time from the last access, the staleness calculation requires tracking

the memory access to the objects. For efficient leak detection, it is important to

collect the last access with a low overhead. With that in mind, Sniper obtains the

memory access profile through the PMU without incurring a significant overhead.

This section briefly presents Sniper’s hardware/software internals and the related

issues.

An instruction sampling is a hardware mechanism that offers a good insight

into program behaviors with a very low overhead. The PMU on modern proces-

sors has a special mode called event-based sampling [60, 45]. For a given event,

this mode can configure the corresponding performance counter to raise an inter-

rupt on overflow of its value, i.e., sampling period; when an interrupt occurs, the

2Sniper records the return address of malloc and free at runtime. Later the offline trace simulator
calculates the their actual site address from the return address by analyzing the application binary.

111

instruction that causes the overflow can be queried. As an extension to that, In-

tel’s PEBS (Precise Event Based Sampling) [60] not only provides precise location

of the event in the instruction space, but also provides a way to access the register

contents of the instruction that causes the event. Likewise, AMD’s IBS (Instruc-

tion Based Sampling) supports reading the virtual address in the target register of

retired load/store instruction together with its address. Similar sampling sup-

port is available on other microarchitectures such as Intel Pentium4/Itanium, IBM

POWER5, Sun UltraSparc, etc.

Sniper samples memory accesses, i.e., load(store) events, to capture both

the instruction and data addresses in the target register through the PMU based

instruction sampling. Such information about each sample along with its times-

tamp is recorded in the trace files. Later, the trace simulator determines whether

sampled instructions access a heap object. That is, if there exists a heap object

that embraces the data address of the instruction when it executes, the simulator

updates the staleness of the object based on its timestamp.

Currently, Sniper supports process- and thread-aware sampling with the help

of Perfmon2 kernel interface [115] and ptrace system calls. Sniper intercepts pro-

cess/thread creation requests through the ptrace hook, and creates a PMU context

for each thread; the context contains appropriate PMU configurations including

event types and sampling periods. Sniper then attaches the PMU context to the

corresponding thread to be created.

On a context switch, the kernel reconfigures the PMU according to the attached

PMU context, and enables the sampling of memory accesses. With this support,

Sniper can monitor and save thread-level information thereby effectively dealing

with multithreaded applications. During program execution, Sniper monitors the

application’s PMU transactions, i.e., memory access samples, and fetches the sam-

ples through the Perfmon2 kernel interface.

112

It is important to note that Sniper does not interrupt the target application exe-

cution at all. Thus, Sniper keeps track of the heap accesses without perturbing the

original application execution. In particular, to prevent a majority of samples from

falling into a synchronized pattern in some loops, Sniper leverages the sampling

period randomization, i.e., adding a small randomized factor to the period.

5.3.2 Lightweight Heap Trace Generation

To track the staleness of the heap objects, Sniper has to be aware of the heap or-

ganization in terms of its allocation and deallocation during program execution.

For this purpose, Sniper should record full traces of malloc/free and the related

program context information. Even if the trace simulator takes over much of the

heavy work such as tracking heap organization, Sniper still needs to minimize the

overhead of the trace generation.

Unfortunately, the trace occupies a large amount of memory space to store the

tag data of each heap object which includes its allocation/deallocation/last-access

sites, heap organization information, e.g., the range information of an allocated

object and freed address, etc3. To tackle the space overhead, Sniper buffers the tag

data trace and flushes the buffer into a file when it is full. In this way, the memory

consumption of the trace generation is bound to the buffer size.

Especially for a multithreaded application, Sniper should take care of contention

to the buffer and the file from multiple threads. Of course, Sniper should guarantee

that multiple threads write their trace correctly. One way to do that is relying on

locking mechanism on the buffer and the file. However, this causes unacceptable

performance degradation of the application due to the high synchronization over-

head as the number of threads increases. Instead, Sniper allocates both a buffer

and a file into each thread, thus they become thread-private. This makes the buffer

3The space for the staleness is not necessary at runtime because it is calculated offline by the trace
simulator.

113

accesses lock-free and allows Sniper to use fwrite unlocked for lockless file

writing.

In particular, it is important for the trace simulator to have a synchronized view

of traces from multiple threads. Note that Sniper achieves this with no additional

cost, since it associates each of malloc/free/PMU traces with its timestamp in the

first place for single-threaded applications.

5.3.3 Offline Trace Simulation

Sniper offloads the time- and space- consuming work of the staleness update for

heap objects, which requires tracking heap organization and searching for the heap

object accessed by a sampled instruction. To achieve this, Sniper leverages the

lightweight heap trace generation and its offline trace simulator that takes over the

heavy work. In particular, the simulator builds the tag directory based on recorded

traces and performs expensive tag searches to calculate the staleness offline.

Once the traces of malloc/free/PMU(memory access) are recorded at the end

of program execution, all the trace files are fed into the simulator. An application

binary is also fed into the simulator for its binary analyzer to extract an actual

allocation site address, i.e., the instruction address of call to malloc/new, based

on their return address in the stack trace; the same thing is with deallocation and

last-access sites.

Then, the simulator first merges the traces in the files and sorts them by the

timestamp of each trace, which gives the simulator a time-synchronized view of all

the traces, using MapReduce [36]. While the simulator is running, it decodes each

trace in turn and performs appropriate actions according to the decoded results.

To keep track of heap organization, Sniper models each heap object with the

start and end addresses of the object in the tag, and maintains a tag directory to

114

manage the tags. When the simulator processes a malloc (free) trace, the corre-

sponding tag is created/inserted (removed) in the directory. For a memory access

trace, the simulator determines if the address of the access corresponds to one of

heap objects. This involves a search for the corresponding tag whose range (the

start of the tagged object ∼ its end address) embraces the queried address in the

tag directory4. If the search succeeds, i.e., a heap object access, the staleness of the

resulting tag for the object is calculated and recorded by the simulator. Since it

tracks the heap organization, each access is correctly attributed to the correspond-

ing heap object.

In summary, the simulator replays the program execution in terms of heap us-

ages, updating the staleness of the allocated objects. That way Sniper catches every

leak occurred during the execution that generated those traces being simulated.

5.3.4 Efficient Implementation of a Tag Directory for Fast Heap Organization
Tracking

For every heap access, i.e., PMU sample, the trace simulator needs to search the

tag directory for the corresponding heap object. Therefore, the search performance

dictates the choice of a data structure for implementing the tag directory. At the

same time, the data structure should be compact in case the trace file is huge. In

this respect, a hash table is not appropriate due to its lack of range searching ca-

pability; even if it can mimic the range search by inserting every byte address of

an heap object, it causes huge space overhead. Another candidate for the directory

implementation might be an interval tree that supports the range search. Unfortu-

nately, their implementation is too heavyweight requiring O(NlogN) construction

time, where N is the number of stored objects, to find all the intervals for a query.

4For the fast range search, we implements the directory using the specially modified red-black
tree whose asymptotic complexities remains the same, i.e., O(logN) time. Appendix provides more
deatil on it.

115

We use the following insight to propose a better data structure; a malloc guar-

antees that no two allocated objects overlap with the each other, thus there can be

only one interval for a query in the tag directory. With that in mind, Sniper ex-

ploits a new data structure called single interval tree. This is a compromise between

an interval search tree and a binary search tree. The idea is that visiting right child

requires checking if the range of the current tag node, i.e., the start address to the

end address, embraces the query address. Algorithm 3 shows the details of the

range search in pseudo code.

Require: data address from a sampled load instruction
Link type& x← getRoot();
while x is not null do

if data address < x.start then
x← x.left child

else if data address < x.end then
return iterator(x) // search succeeded

else
x← x.right child

end if
end while
return end(x) // search failed

Algorithm 3: Search Operation in Single Interval Trees

Figure 31 shows an example of the single interval tree where each node repre-

sents a tag. The tags only show the range information in the figure. As an example,

for a query address of 970, searched is the tag node with a range of [900, 990] in the

tree, since the query address belongs to the range. To implement the single interval

tree, this work modifies a Red-Black tree, a self-balancing binary search tree. Note

that all other operations of a Red-Black tree do not need any modification. Conse-

quently, the asymptotic complexities of the single interval tree remains the same as

those of the Red-Black tree, i.e., O(logN) time for insert/delete/search operations and

O(N) space. With the help of the single interval tree, Sniper can efficiently simulate

huge traces of heavily multithreaded applications.

116

Figure 31: An example of a single interval tree based on a Red-Black tree. Num-
bers show the address range.

5.3.5 Systematic and Automated Leak Identification Using Anomaly Detection

Once the trace simulation finishes, Sniper is ready to report leaking objects based

on the staleness. An important issue is how to determine the thresholdstaleness. It is

very important to precisely determine the threshold, since it directly impacts the

number of false positives and negatives.

To the best of our knowledge, no prior work deals with this issue, thus users are

left to set it properly. Unfortunately, it is indeed difficult, costly, and error-prone for

users to set the threshold correctly. Upon any change, such a high cost of threshold

determination will have to be paid anew. In particular, the threshold should be

different across applications, and there is no one-size-fit-all solution even in the

same application.

With that in mind, this work leverages a statistical anomaly detection, i.e.,

Sniper views leaks as anomalies. That is based on a couple of observations; (1) the

staleness of a leaking object is very high compared to normal objects allocated in the

same site, which is the basic philosophy of staleness-based approaches. (2) the num-

ber of leaks is a lot smaller than that of normal objects, which is true because pro-

duction software should undergo a number of extensive testing procedures from

its creation to the release. In fact, large software companies such as Google has

already adopted the test-driven application development [103]. Without passing

117

various test cases, developers cannot submit even a single line of change to code

repository. That way naive leaks in applications are likely to be detected before its

production release.

5.3.5.1 Anomaly Detection with Adjusted Boxplots

Sniper transforms the problem of leak detection into that of anomaly detection

for univariate data set which is comprised of the staleness of objects. The issue

here is that most of anomaly detection techniques assumes underlying distribu-

tion, e.g., boxplot approach works best for normal distribution as other approaches

favor it [139].

However, the leak detection problem does not follow normal distribution. Re-

call that leaks are not relatively many whereas normal objects are dominant, and

the stalenesses of leaking objects is very large compared to that of normal objects.

Thus, the distribution of stalenesses data tends to be right-skewed, i.e. having a long

tail in the positive direction, which can paralyze the anomaly detection capability

of a naive approach.

That leads to a different approach, i.e., Sniper leverages adjusted boxplots [139]

for the anomaly detection. In contrast to the original boxplot that classifies all points

outside the interval of [Q1 − 1.5 IQR;Q3 + 1.5 IQR], where Q1 and Q3 are 1st and

3rd quartiles respectively and IQR is Q3 − Q1, as potential anomalies, the adjusted

boxplot shifts the interval with the consideration of how the underlying distribution

of the data set is skewed. For the systematic leak determination, Sniper sets the

thresholdstaleness as the upper bound of the adjusted boxplot defined as;

Threshold =

{
Q3 + 3.0e3 MC IQR MC ≥ 0

Q3 + 3.0e4 MC IQR MC < 0

118

where medcouple (MC), i.e., a robust measure of the skewness of underlying distri-

bution, is defined as;

MC = med
xi≤Q2≤xj

h(xi, xj)

where Q2 is the sample median and for all xi 6= xj . That is, MC is the median of

the kernel function (h) results where h is given by;

h(xi, xj) =
(xj −Q2)− (Q2 − xi)

xj − xi

More details of adjusted boxplots can be found in [139].

5.3.5.2 The Granularity of the Anomaly Detection

This section describes leak detection schemes that differ in the scope of the anomaly

detection, e.g., an entire application/allocation site.

Local Detection: Sniper can apply the anomaly detection for each allocation

site, which is called local detection. This scheme has potential to achieve higher ac-

curacy, since it performs allocation-site-specific (context-sensitive) leak detection.

Even when the inequality 12 does not hold for entire objects, the scheme can still

detect leaks with no false positive/negative. I.e., by narrowing down the scope of

leak detection to those objects created in the same site, the inequality 12 is likely to

hold.

However, the local scheme can be misleading depending on the state of an

allocation site. They might occur for a couple of reasons; (1) insufficient amount

of sample data; if some site has a few objects, e.g., < 10 objects, in which case no

statistical method works. (2) similarity of sample data; even with the abundant

amount of sample data, stalenesses of the objects could have not much difference,

in which case even humans cannot detect any anomaly. E.g, it would be the case

where every object created in one site is all leaking, or no object is leaking.

Global Detection: To deal with the problems, Sniper can perform the anomaly

detection for entire objects within the application, which is called global detection.

119

Note that the global scheme still performs the application-tailored leak detection

but not in the allocation-site-specific way. When the local scheme fails to detect

leaks due to its high threshold (local thresholdstaleness), the global scheme would be

a good alternative. E.g., when those objects created in the same site are all leaking,

the global scheme can still detect them in that its threshold (global thresholdstaleness)

is likely to be smaller than their stalenesses.

Then the question is how to make a correct decision to pick the right detection

scheme for each case. By doing that, Sniper can take advantage of the synergy

between the local/global schemes thereby achieving higher accuracy. On the con-

trary, an incorrect decision translates to false positives/negatives. With that in

mind, this work designs Sniper’s hybrid detection scheme.

Hybrid Detection: Sniper performs the local detection for each site in the first

place. The idea is that Sniper respects the leak report of the allocation-site-specific

detection scheme. For only those allocation sites that report no anomaly (leak),

does Sniper consult the global detection scheme. For the local and global schemes

to generate a different result, the staleness spectrum of the objects in the site has to

be overlapped with the interval of the two thresholds of the both schemes. I.e., the

candidate sites for the hybrid detection is defined as

candidate sites = {site|site ∈ S, global thresholdstaleness <

max
o∈site

staleness(o) < local thresholdstaleness(site)}
(13)

where S is a set of allocation sites in an application.

For each candidate site, the hybrid scheme simply uses the global scheme as-

suming that the site’s objects are leaking. The intuition behind the heuristic is

two-fold; (1) it follows the philosophy of the original staleness-based leak detec-

tion [28], i.e., highly-stale objects are likely leaking. (2) Sniper must not miss leaks.

Otherwise, it loses its worth as a leak detection tool.

However, the heuristic might end up with false positives in case the assumption

120

is wrong. Note that this is rather a limitation of staleness-based leak detection, i.e.,

it is possible to incorrectly blame the objects that are highly stale but that do not

actually leak. As an example, even if GUI objects might not be accessed for a long

time after their creation, they should not be reported as leaks [147].

To avoid such unnecessary false positives, Sniper focuses on users’ expectation

for a leak detection tool. In general, users are interested in the critical leak that

impacts overall memory consumption. That is, they would not care about a leak

which rarely affects memory consumption, even though it is highly stale.

With that in mind, Sniper selectively applies the heuristic according to how

much stale objects contribute to total memory consumption, i.e., the hybrid scheme

switches to the global one only for the following sites;

hybrid sites = {site|site ∈ candidate sites,∑
obj∈site

size(obj) > θ
∑

obj∈allocated set

size(obj)}
(14)

where allocated set is a set of the objects that have been allocated but not yet freed

at time treport. That is, if it turns out that the stale objects detected by the global

scheme do not contribute that much, the hybrid scheme remains at the local scheme.

Note that θ is a configurable parameter which takes into account the application’s

SLA and the QoS requirement. This work sets the value of θ to 0.1% in the experi-

ments.

5.3.6 Robustness to False Positives due to Sampling

Since Sniper leverages instruction sampling to update the staleness of the accessed

heap object, it could miss some memory access. Such a uncaught access to heap

objects causes Sniper to overestimate their staleness. In a sense, Sniper might falsely

report them as leaks, thus causing false positives.

It is important to note that for frequently accessed objects, the sampling does

121

Figure 32: The datacenter environment

not have a significant impact on the false positives5. The reason is that often times

leaks become manifest after long-running execution. I.e., it is practically impos-

sible to generate false positives against frequently accessed objects for that long

time. The real possibility of false positives due to the sampling comes from those

objects that are sporadically accessed. E.g., if the last access to the objects with a

long life time is not sampled, Sniper ends up overestimating the staleness thereby

falsely reporting them as leaks.

In particular, Sniper turns out to be accurate even when the sampling frequency

is low (see Section 5.4.5). That is because even if staleness gets overestimated due to

the low sampling rate, Sniper’s anomaly detection adapts itself to the underlying

sample distribution. I.e., Sniper adjusts the threshold appropriately according to

the resulting staleness distribution. Thus, Sniper can effectively prevent unsampled

objects from being falsely blamed as leaks.

5.3.7 Discussion

Trace Size/Simulation Time: Without any optimization, the largest trace file we

evaluated was ≈7 GB, and its simulation took ≈20 minutes including the time

spent sorting the trace with MapReduce [36]. Table 8 summerizes both the trace

size and the simulation time of those applications whose trace simulation takes

5In [28], Chilimbi and Hauswirth reported the same phenomenon in their execution-path-biased
sampling technique.

122

Table 8: The trace size and the simulation time

Benchmark Trace Size Simulation Time
omnetpp 6832.5 MB 18.5 Min

dealII 3585.4 MB 9.3 Min
xalancbmk 3118.4 MB 8.6 Min

more than 5 minutes. For other SPEC2006 applications, the trace size is mostly less

than 512 MB while the trace simulation takes a few minutes.

One possible optimization to reduce the trace size (simulation time) is period-

ically processing partial trace files during program execution. Once simulation

outputs are generated, most of the trace files can be deleted. Those malloc traces

having the corresponding free traces can be deleted too. However, for incremental

staleness update, any information necessary to track the heap organization should

be maintained. For efficiency, the partial trace files can be transmitted to other

available machines in a pipelined way for the remote simulation.

Note that many datacenter applications have already collected various traces

for a monitoring purpose. Thus, dedicated analysis machines often exist in the

datacenter to process the log and trace data of production machines, which is true

for Google’s datacenter [112]. Sniper can thus leverage such machines to enable

the remote simulation. Figure 32 shows the datacenter environment. In particular,

both production and analysis machines share a distributed file system, e.g., Google

File System [51], which is connected to a separate a gigabit network. Thus, writing

a trace file rarely affects the QoS of the application which is serviced using another

network, e.g., Internet; the production machines are equipped with two NICs for

each separated network in order to keep the overhead minimal.

Limitation with Virtualization: The target of Sniper is non-virtualized data-

centers where high-performance is a critical issue. E.g., almost all Google’s pro-

duction applications including Bigtable [24] run on a non-virtualized cluster node

in the datacenter for performance reasons [94, 95]. Since the proposed PMU-based

123

technique does not assume a virtual machine (VM), Sniper is not directly applica-

ble to VMs in its current form.

However, this is not a fundamental obstacle for Sniper to be used on virtualized

datacenters. In the VM environment, PMU is shared among processes on different

VMs as well as on the same VM. Therefore, PMU virtualization is a key to avoid

mixing memory access samples of different processes. Recently, operating sys-

tem researchers have come up with a framework for the PMU virtualization [105].

Currently, KVM (Kernel-based Virtual Machine) has already supported Intel’s ar-

chitectural PMU [4]. Thus, we expect that the support for other features of PMU to

be available soon.

5.4 Evaluation

In order to demonstrate the effectiveness of Sniper, we implemented it in C++ as

a shared library on a Linux operating system. To access PMU, we leverage Perf-

mon2 kernel interface [48]. This section first analyzes the time and space overhead

of Sniper for both single- and multi-threaded benchmark suites with their largest

input available. We run the benchmark applications five times using the largest in-

put available, and show the median result for the applications; a geometric mean

is used to calculate every average. Then, thie section presents a performance anal-

ysis with commercial datacenter workloads. And then, it analyzes the accuracy of

Sniper using synthetic memory leak injection, and presents a sensitivity analysis

to sampling period.

Finally, it describes a case study of using Sniper to detect real-world mem-

ory leaks in several open-source applications vulnerable to malicious denial-of-

service attacks. All experiments were performed on a Linux machine with two

Intel Nehalem-based quad-core Xeon processors (i.e., 8 cores total in two sockets)

with 32GB of memory. In particular, trace files are written to a distributed file

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

cf
ra

c

es
p
re

ss
o g
s

ro
b
o
o
p

g
eo

_
m

ea
n

so
p
le

x

p
o
v
ra

y

g
o
b
m

k

sj
en

g

m
cf

h
m

m
er

g
cc

sp
h
in

x
3

h
2
6
4
re

f

b
zi

p
2

m
il

c

lb
m

x
al

an
cb

m
k

o
m

n
et

p
p

p
er

lb
en

ch

li
b

q
u

an
tu

m

g
ro

m
ac

s

as
ta

r

d
ea

lI
I

n
am

d

g
eo

_
m

ea
n

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Baseline
Sniper

Figure 33: Execution time of SPEC2006/allocation-intensive benchmarks

system. This configuration is similar to one type of cluster nodes in commercial

datacenters. Except for the sensitivity analysis, Sniper runs with a sampling pe-

riod of 100.

5.4.1 Analysis with Sequential Applications

This section analyzes the time and memory overhead of Sniper for C/C++ applica-

tions from SPEC2006 benchmark suite. In addition, we measure the overhead for

several allocation-intensive applications, since they were used in the most recent

work [106].

5.4.1.1 Runtime Overhead of Serial Benchmarks

Figure 33 summarizes the execution time overhead incurred by Sniper in serial

applications including both SPEC2006 and allocation-intensive benchmarks. In

the figure, the dark bars correspond to a baseline execution time without Sniper,

while light bars to the execution time with Sniper enabled, which is normalized to

the baseline time.

For most of the SPEC2006 applications, Sniper’s overhead is negligible (<1–

3%) except for xalancbmk (4%), perlbench (5%), and omnetpp (6%). Note that prior

work [106] omitted the applications but 483.xalancbmk in its evaluation, e.g., it

failed to execute omnetpp due to its overhead. For xalancbmk, the prior work causes

125

huge overhead (almost 10x slowdown), while Sniper’s overhead is only 4%. Over-

all, the execution time overhead incurred by Sniper is 3% on average for the SPEC2006

applications.

In addition, we measure the overhead for several allocation-intensive applica-

tions, since they were used in the most recent work [106]. For these applications,

Sniper causes relatively significant overhead (3%–59%) despite its lightweight heap

trace generation. However, such overhead is encouraging in that the applica-

tions spend a considerable amount of the entire execution time for memory al-

location/deallocation. In fact, prior work [106] causes much more overhead (50%–

100%) for the same applications. On average, Sniper’s execution time overhead is

31% for the allocation-intensive applications.

Sniper can lead to performance degradation for three reasons. First, those ap-

plications are allocation- and deallocation-intensive, thus Sniper perturbs the ap-

plication execution for a moment in order to store the meta data necessary to leave

malloc (free) trace for each malloc (free) invocation. Second, they create many

small heap objects, thus the meta data can become much larger than the the origi-

nal size of the objects. As a result, the applications can cause more traffic to caches

and TLBs. Finally, such many allocations/deallocation requests quickly make the

trace buffers full. Thus, the file write operation to flush the buffers also occurs

relatively frequently.

5.4.1.2 Memory Overhead of Serial Benchmarks

To evaluate Sniper’s space overhead for sequential applications, This experiment

measures the memory consumption while Sniper is running. Again, we ran all

C/C++ applications from SPEC2006 benchmark suite and allocation-intensive ap-

plications. Figure 34 summarizes the memory space overhead incurred by Sniper

across the benchmark applications. The chart configuration remains the same as

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cf
ra

c

es
p
re

ss
o g
s

ro
b
o
o
p

g
eo

_
m

ea
n

so
p
le

x

p
o
v
ra

y

g
o
b
m

k

sj
en

g

m
cf

h
m

m
er

g
cc

sp
h
in

x
3

h
2
6
4
re

f

b
zi

p
2

m
il

c

lb
m

x
al

an
cb

m
k

o
m

n
et

p
p

p
er

lb
en

ch

li
b

q
u

an
tu

m

g
ro

m
ac

s

as
ta

r

d
ea

lI
I

n
am

d

g
eo

_
m

ea
n

N
o

rm
al

iz
ed

 m
em

o
ry

 c
o

n
su

m
p

ti
o

n
Baseline
Sniper

Figure 34: Memory overhead of SPEC2006/allocation-intensive benchmarks

before. The memory consumption was measured by taking multiple memory

snapshots during program execution and computing their average. It is based

on counting the number of occupied physical pages to calculate the total mem-

ory consumption by both the original application and Sniper. This means that the

overhead incurred by Sniper is probably overestimated in that the pages could not

be fully occupied due to fragmentation or malicious heap allocation/deallocation

patterns.

It is important to note that there is no increase in application’s heap size, since

Sniper does not change the underlying memory allocator unlike prior work [106].

The only source of Sniper’s space overhead comes from the trace buffers necessary

to keep the meta data of each heap object. That is, the memory space overhead

is bound to the buffer size; recall that Sniper buffers the malloc/free/PMU traces

and flush them into files when the buffers become full. On average, the memory

space overhead incurred by Sniper is 0.4% for the SPEC2006 applications.

For allocation-intensive applications, Sniper’s overhead varies (7%–17%) de-

pending on the applications. The reason why the overhead is high compared to

SPEC2006 applications is mainly due to their memory allocation/deallocation pat-

tern. They repeatedly allocate many small objects and deallocate them shortly.

In fact, their original memory consumption is very small (< 2MB), thus the trace

buffers look relatively larger in these applications. On average, Sniper’s memory

127

space overhead is 10% for the allocation-intensive applications.

5.4.2 Analysis with Multithreaded Applications

This section analyzes the time and memory space overhead of Sniper for PARSEC

parallel benchmark suite.

5.4.2.1 Runtime Overhead of Parallel Benchmarks

To evaluate the execution time overhead for parallel applications, we chose PAR-

SEC benchmark suite whose applications are heavily multithreaded and written in

C/C++ [11]. Since the PARSEC applications run in parallel on multiple cores, this

section focuses on Sniper’s influence on the scalability of the original applications.

Figure 35 represents how Sniper affects the scalability of the multithreaded appli-

cations as the number of threads increases. The solid line corresponds to a speedup

of a baseline execution without Sniper, while the dashed line to a speedup of the

execution with Sniper enabled. Overall, Sniper does not hurt the scalability of the

applications. The main reason for this is that Sniper lets multiple threads have

thread-private buffers and file pointers to dump the buffers for efficient trace col-

lection. In this way, Sniper cannot only reduce contention to the buffers, but also

can exploit lockless file operations. On average, when the number of threads used

is 1, 2, 4, and 8, Sniper’s execution time overhead is 3.3%, 3.8%, 4.3%, and 4.8%,

respectively.

5.4.2.2 Memory Overhead of Parallel Benchmarks

This experiment measures the memory consumption of PARSEC applications while

Sniper is running. Figure 36 summarizes the memory space overhead incurred

by Sniper across the applications, when the number of threads used is eight. In

the figure, the dark bars correspond to a baseline memory consumption without

Sniper, while light bars to the memory consumption with Sniper enabled, which

128

1 2 4 8

1

2

3

4

5

S
pe

ed
up

Number of Cores

Baseline
Sniper

(a) blackscholes

1 2 4 8

1

2

3

4

5

S
pe

ed
up

Number of Cores

Baseline
Sniper

(b) bodytrack

1 2 4 8

1

2

3

S
pe

ed
up

Number of Cores

Baseline
Sniper

(c) canneal

1 2 4 8

1

S
pe

ed
up

Number of Cores

Baseline
Sniper

(d) dedup

1 2 4 8

1

2

3

4

S
pe

ed
up

Number of Cores

Baseline
Sniper

(e) facesim

1 2 4 8

1

2

3

4

5

S
pe

ed
up

Number of Cores

Baseline
Sniper

(f) fluidanimate

1 2 4 8

1
2
3
4
5
6
7
8
9

10

S
pe

ed
up

Number of Cores

Baseline
Sniper

(g) freqmine

1 2 4 8

1

S
pe

ed
up

Number of Cores

Baseline
Sniper

(h) raytrace

1 2 4 8

1

2

3

4

5

S
pe

ed
up

Number of Cores

Baseline
Sniper

(i) streamcluster

1 2 4 8

1

2

3

4

5

6

7

S
pe

ed
up

Number of Cores

Baseline
Sniper

(j) swaptions

1 2 4 8

1

2

3

4

5

6

7

S
pe

ed
up

Number of Cores

Baseline
Sniper

(k) vips

1 2 4 8

1

2

3

4

5

6

7

S
pe

ed
up

Number of Cores

Baseline
Sniper

(l) x264

Figure 35: Scalability of PARSEC parallel benchmarks

129

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

b
la

ck
sh

o
le

s

b
o
d
y
tr

ac
k

ca
n
n
ea

l

d
ed

u
p

fa
ce

si
m

fl
u
id

an
im

at
e

fr
eq

m
in

e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o
n
s

v
ip

s

x
2
6
4

g
eo

_
m

ea
n

N
o
rm

al
iz

ed
m

em
o
ry

 c
o
n
su

m
p
ti

o
n

Baseline
Sniper

Figure 36: Memory space overhead of PARSEC parallel benchmarks

Table 9: Commercial datacenter benchmarks

Benchmark Lines Description Overhead
A ≈ 1 M Web search engine 3.7 (%)
B ≈ 1 M Ads search engine 3.2 (%)
C ≈ 1 M Application server 1.9 (%)
D ≈ 1 M Protocol buffers 3.3 (%)
E ≈ 1 M Panoramic image stiching 1.4 (%)
F ≈ 200 K Openssl encryption 0.9 (%)
G ≈ 100 K (De)compression 1.1 (%)

is normalized to the baseline memory consumption. For most of the applications,

the space overhead is negligible (<1–4%) except for swaptions (33%). In particu-

lar, the memory footprint of the swaptions benchmark is very small (< 3MB). Thus,

Sniper’s space overhead, i.e., the size of trace buffers for each thread, ends up look-

ing much larger in the application. On average, Sniper’s memory space overhead

is 3.3% for the PARSEC parallel applications.

5.4.3 Analysis with Commercial Datacenter Workloads

We also evaluated Sniper with a set of large C++ benchmarks used currently at

Google’s datacenter. They span a wide range of applications from the web search

engine to the image stitching for panoramic streetview in maps. Except for bench-

mark D and E, all the others have a very large code base with million lines of

source code. Table 9 briefly introduces each benchmark application. The fourth

130

column of the table entries shows the performance overhead when Sniper is run-

ning with each application. In particular, the benchmark D is comprised of over 20

test applications whose performance is aggregated to calculate the average perfor-

mance. I.e., the performance of this benchmark shown in the table is a geometric

mean. Overall, the performance overhead incurred by Sniper is not that significant

(roughly 1 to 4%) in those commercial datacenter applications. Thus, Sniper does

not hurt the QoS of the datacenter applications, which is defined as the execution

time or the throughput.

5.4.4 Accuracy Analysis with Leak Injection

To evaluate the leak detection accuracy of Sniper, there is a need of a good set of

applications containing various memory leaks. with which the detection accuracy

is measured and compared. However, there is no such standard applications to

the best of our knowledge. This work therefore creates leak benchmarks stress-

tested with the synthetic leak injection. We inject two types of leaks, i.e, dynamic

and static leaks, into C/C++ SPEC2006 applications6. In real-world applications,

memory leaks often times manifest only in certain program contexts (e.g. specific

procedure calling sequence or malicious user input patterns). To model this kind

of memory leaks (called dynamic leaks), we first run the original SPEC2006 appli-

cations with Sniper to collect the free traces, and then randomly remove 10% of

deallocations from the traces.

On the other hand, leaks sometimes occur irrespective of the contexts (called

static leaks), e.g., every object created in a single allocation site is leaking. Even if

such leaks are relatively rare in deployed software due to extensive in-house test-

ing, they become a serious problem whenever they occur. That is because every

created object gets lost and never reaches any deallocation site, thereby leading to

6The experiment omits mcf, sjeng, lbm since these applications allocate very few objects, i.e., their
results tend to be misleading.

131

memory bloat. To model this scenario, we work first pick an allocation site which

is responsible for closest to 10% of entire allocations, and then remove dealloca-

tions of the objects created from the site. As metrics to evaluate the leak detection

accuracy, we use precision, recall, F-measure that are commonly used to measure

the quality of classifiers in the information retrieval community. Intuitively, high

precision leads to less false positives (falsely blamed leaks) while high recall to

less false negative (undetected leaks), and the F-measure is the harmonic mean of

precision and recall which focuses on the balance between the other two metrics.

To compare accuracy of different approaches, we test the ad hoc approach (i.e.,

using manual threshold) used in prior tools with Sniper approach that automati-

cally selects the threshold using anomaly detection. Remember that due the lack

of the systematic methodology, prior tools end up using a fixed threshold across

applications. To model the ad hoc approach by selecting the appropriate threshold,

we first try 20 candidates forming arithmetic series among which the smallest value

results in no false negative while the largest in no false positive. Then, we select a

value with the best F-measure as the threshold. Thus, the real ad hoc approach may

perform worse than what we model here.

In particular, to quantify and verify effectiveness of Sniper’s heuristic for the

hybrid anomaly detection (described in Section 5.3.5.2), we implement an ideal

hybrid approach based on oracle information. That is, the ideal approach (called

Ideal Hybrid) always selects the best between the global and local leak detection

schemes.

Figure 37 compares precision/recall of different leak detection approaches; (1)

Ad-Hoc: the manual approach of prior work, (2) Sniper-Hybrid: Sniper’s leak iden-

tification based on the hybrid anomaly detection, (3) Ideal-Hybrid: the ideal version

132

 0

 0.2

 0.4

 0.6

 0.8

 1

p
er

lb
en

ch

b
zi

p
2

g
cc

m
il

c

g
ro

m
ac

s

n
am

d

g
o

b
m

k

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

h
m

m
er

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

sp
h

in
x

3

x
al

an
cb

m
k

g
eo

_
m

ea
n

P
re

ci
si

o
n

Ad−hoc
Sniper−Hybrid
Ideal−Hybrid

 0

 0.2

 0.4

 0.6

 0.8

 1

p
er

lb
en

ch

b
zi

p
2

g
cc

m
il

c

g
ro

m
ac

s

n
am

d

g
o

b
m

k

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

h
m

m
er

li
b

q
u

an
tu

m

h
2

6
4

re
f

o
m

n
et

p
p

as
ta

r

sp
h

in
x

3

x
al

an
cb

m
k

g
eo

_
m

ea
n

R
ec

al
l

Ad−hoc
Sniper−Hybrid
Ideal−Hybrid

Figure 37: Precision and recall of different leak detection approaches. Sniper’s
accuracy is shown in the second bar, i.e., Sniper-Hybrid.

of Sniper based on the oracle information. For most applications, Hybrid outper-

forms Ad-Hoc. This is due to Sniper’s application-tailored leak identification strat-

egy. Sniper-Hybrid works comparably in namd, omnetpp, sphinx3. and it is less ac-

curate than Ad-Hoc only in gromacs. In perlbench, bzip2, gcc and gobmk, Ad-Hoc does

not work at all and the results translates to its low average of precision/recall. On

the contrary, Sniper-Hybrid can fit itself into each problem instance by examining

underlying staleness distributions and never has a case where it fails to detect all

the presence of leaks.

In gromacs and astar, Sniper-Hybrid fails to detect static leaks, which are sup-

posed to be caught by the global anomaly detection scheme (See Section 5.3.5.2),

thus resulting in low recall. However, it turns out that the global detection could

not detect the static leaks either. The reason for this is that in gromacs 31% of allo-

cations end up leaks due to the leak injection. Because of such a large number, the

133

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

libquantum h264ref astar perlbench

F
−

m
ea

su
re

Global
Local
Sniper−Hybrid
Ideal−Hybrid

Figure 38: The impact of the hybrid anomaly detection. Sniper’s F-measure is
shown in the third bar, i.e., Sniper-Hybrid.

leaks does not look like anomalies to the global detection, i.e., it cannot distinguish

leaks from innocent objects. Similarly, astar has static leaks too, thus Sniper-Hybrid

suffers from the same problem. As an exception, it achieves low precision and re-

call in namd. That is because the stalenesses of innocent objects and leaks in namd

are so severely overlapped that it cannot accurately separate leaks even with its

allocation-site specific local detection scheme.

Note that Sniper-Hybrid is near-optimal for most applications, i.e., it is as ac-

curate as Ideal-Hybrid; it turns out that most of the time, Sniper’s heuristic for the

hybrid anomaly detection correctly selects the best between the local and global

detection schemes. There are four exceptions (namd, soplex, sphinx3, xalancbmk).

That is because Sniper-Hybrid is either too conservative or too aggressive for them.

I.e, for namd, Sniper-Hybrid is too conservative due to the severe overlap in the

application while it is too aggressive for the rest of them. Overall, Sniper-Hybrid

is very accurate; its precision and recall are 0.88 and 0.75, respectively, and the

resulting F-measure is 0.80.

One reason for the high accuracy of Sniper-Hybrid is that its heuristic for the hy-

brid anomaly detection successfully selects the best between the local and global

detection schemes. Figure 38 shows the F-measure of each scheme, and highlights

how Sniper-Hybrid behaves when either the local detection scheme (Local) or the

global scheme (Global) works better than the other. In libquantum and h264ref,

134

Figure 39: Stalenesses spectrum of objects in perlbench shown in a log scale

Global outperforms Local. That is because these applications have relatively many

static leaks for which Local is destined to fail. Here, even the local detection reports

no anomaly, Sniper-Hybrid catches the leaks by correctly switching to the global

detection.

On the other hand, Local outperforms Global for astar and perlbench. In particu-

lar, they have relatively many dynamic leaks which are supposed to be caught by the

local anomaly detection scheme (Section 5.3.5.2). As a result, the applications show

considerable overlap in the stalenesses of dynamic leaks and innocent objects, which

prevents the global scheme from detecting the leaks. That is why Global achieves

the low accuracy for the applications. In contrast, the local detection scheme can

solve this problem with the help of its allocation-site-based partitioning of objects.

Figure 39 shows four 1-D scatter plots demonstrating the benefit of such parti-

tioning. Each point in the plot represents staleness of an object. Leaks are plotted

in the upper part of a plot while innocent objects are plotted in the lower part.

As shown in Figure 39(a), before partitioning, there are huge overlap between

stalenesses of leaks and innocent objects. I.e., here it is very difficult for Global to

recognize the leaks an anomalies.

However, when the objects are partitioned according to their allocation sites,

135

● ● ● ● ● ● ●

100 150 200 250 300 350 400

0.5
0.6
0.7
0.8
0.9
1.0

Sampling periods

P
re

ci
si

on
● Sniper−Ideal

Sniper−Hybrid

Figure 40: Impact of sampling period change on false positives (Precision)

the degree of overlap within each partition reduces a lot. Thus, those objects of

each partition become much more amenable to the anomaly detection. To support

this, the rest of 1-D scatter plots in Figure 39, i.e., (b), (c), and (d) show three differ-

ent allocation sites after partitioning. Here, Sniper-Hybrid makes correct decision,

i.e., adopting the local anomaly detection scheme.

Overall, Sniper-Hybrid is comparable to Ideal-Hybrid and thus performs better

than both the local and global detection schemes. Comparing the impact of the lo-

cal scheme only and the global scheme only, it is clear that they have a constructive

effect in Sniper-Hybrid which is the combination of Global and Local. I.e., Sniper-

Hybrid achieves better accuracy than either scheme of them can. Apart from that,

the fact that Sniper-Hybrid achieves the optimal accuracy of Ideal-Hybrid supports

that Sniper’s hybrid leak identification is accurate and effective.

5.4.5 Sensitivity to Sampling Frequency

Since Sniper leverages the instruction sampling, an unsampled access to heap ob-

jects causes their staleness to be overestimated thus possibly leading to false posi-

tives. Sniper should be robust against such false positives to be useful in datacen-

ters that might force the sampling period to be adjusted for the SLA satisfaction.

Figure 40 shows Sniper’s average precision on sampling period changes. Here,

the average precision is the geometric mean of the precisions of C/C++ SPEC2006

136

applications. Overall, the precision change of Sniper is not significant across differ-

ent sampling periods. For example, when the period is 400, i.e., Sniper observes a

single access out of 400 memory accesses seen by the PMU, the resulting precision

(Sniper-Hybrid) is still high; 0.872.

This is because even if the staleness overestimation due to the coarse sampling is

inevitable, Sniper’s anomaly based leak identification adapts itself to the resulting

sample distribution of staleness. In other words, the automatic anomaly detection

adjusts the threshold appropriately to determine leaks. In particular, Sniper-Hybrid

is comparable to Ideal-Hybrid across the sampling periods.

5.4.6 Case Study of Real-World Memory Leaks Vulnerable to Denial-of-Service
Attacks

Squid is a web caching proxy [2] widely used in datacenters. It caches frequently-

requested web pages and delivers the contents from its local cache upon request

from many users (clients), thereby improving the response time and the network

bandwidth. Squid has a memory leak which could potentially be used by mali-

cious attackers to crash the program or cause some system failure, i.e., denial-of-

service. The root-cause of the problem is that invalid HTTP requests with an empty

URL trigger a control path in which the memory allocated to serve the request will

not be deallocated. To reproduce the leak, we ran Squid for several hours request-

ing many valid web site addresses along with the problematic URL at a constant

rate.

It turns out that Sniper successfully detected the memory leak with no false

positive. In addition, Sniper found that based on its simulation outputs, every

non-leaking object created for valid HTTP requests has the same free site, and that

all the objects including leaks have the same allocation site. By simply checking

the object counts and the free site, the user can further recognize that most of the

objects are not leaked—e.g., 95%—and freed in a single location. Then, it would be

137

a natural reaction for the user to attempt to deallocate the rest 5% leaking objects

in the same location where ‘all the non-leaking objects’ (95% of the entire objects)

are deallocated, which is the solution for the leak problem of Squid.

Packet-o-matic is a multithreaded network packet analyzer used in the local

datacenter network. It performs network forensics [1], thus reading network pack-

ets and logging various information about the network connections. It has a mem-

ory leak due to incorrect thread termination. When the application reads an input

file (pcap capture file) that generates the network traffic, a new thread is created to

process the file. The problem is that even if each thread is supposed to join at its

termination, (i.e., specified as joinable in the pthread create), there is a case where it

does not execute pthread join.

According to Sniper, the leaking objects are all allocated in the same function,

i.e., pthread create. That is, they are a sort of thread local resources, which should be

returned to the system at the end of the thread execution; such unredeemed objects

accumulate as the application reads more input files. Here, Sniper’s information of

the last access to the objects can help the user find the appropriate location to put

pthread join. In fact, the exact joining point was in the end of the pthread worker

function. In order to give users the context information, e.g., the allocation site,

the pthread library were statically compiled in this experiment. The alternative

is to instrument the dynamic loader (ld.so) so that it can leave the information on

where the pthread library is loaded in memory [69]. In particular, Sniper generated

no false positive for this application.

USIMM is an open source architecture simulator for memory scheduling [63].

It had severe leaks causing the simulator to eventually crash with an out-of-memory

error when the simulation input is large. The root-cause is that memory requests

already serviced are not deallocated even if they do not exist in the service queue

any longer. Since there are billions of memory requests being scheduled in the

138

queue, the simulation can eventually eat up all the available memory in the sys-

tem.

Sniper turns out to be very accurate, i.e., no false positive, in detecting the mem-

ory leak in USIMM. Note that in this case, the last-touch site information helps to

figure out the cause of the leak. Sniper successfully reported that the site where the

memory requests are serviced. For developers with full understanding of how the

simulator schedules the requests with the queue, the site information motivates

them to investigate the function of clearing the queue where free is supposed to

exist to fix the leak.

5.5 Summary

Memory leak detection in datacenters is a critical step toward the QoS enforce-

ment, the reliability enhancement, and the reduction of both the SLA violation and

the operational cost. This work presents Sniper, an effective memory leak detec-

tion tool. Its runtime overhead is negligible (mostly <3%) and never increases

the application’s heap size. Sniper is also applicable to multithreaded applications

without hurting the scalability. Thus, Sniper can be practically used in datacenters

and observe real execution characteristics in production runs thereby effectively

detecting memory leaks, which are inherently input- and environment-sensitive.

To the best of our knowledge, Sniper is the first to provide a systematic method-

ology for accurate leak identification. Sniper automatically determines the stale-

ness threshold based on an anomaly detection. As a result, the leak identification

is tailored not just for each application but for each allocation site as well, thus

Sniper achieved an F-measure of 81% on average for 17 benchmarks stress-tested

with various memory leaks. We believe that our statistical methodology improves

the accuracy of other leak detection approaches that use different sampling tech-

niques. In particular, Sniper is a transparent unlike prior tools; it does not change

139

application behaviors by modifying the executable or replacing the original mem-

ory allocator. The empirical evaluation demonstrates that Sniper is highly accurate

in detecting critical memory leaks in real-world software.

140

CHAPTER VI

DATA STRUCTURE ACCELERATION

6.1 Introduction

Data structures are the main focus of performance engineering. They are one of the

most critical aspects in determining the performance of many real-world applica-

tions. Indeed, it is not difficult to find situations where improved data structure

usage can result in orders of magnitude improvement in application performance.

E.g., Chung et al. report that they achieved more than 20x speedup by carefully

optimizing 2-D table data structures used in their work[30], and there are many ex-

amples; matrix multiplication [141], information mining from large databases [7],

and analyzing genetic data for patterns [54], just to name a few.

To this end, computer architects have investigated various hardware support

to accelerate common data structures including trees and graphs [84, 135, 10, 100,

85, 38, 91] over the last several decades. Wu et al. [143] devised ADP (Abstract

Datatype Processor), special hardware acceleration for hash tables and sparse vec-

tors. To improve memory performance of priority queues, Chandra and Sinnen [23]

implemented HardwarePQ based on the full shift-register architecture [100]. Re-

cently, Bloom et al. [13] proposed a dedicated hardware logic system called HWDS

(Hardware Data Structure) as well as an exception model to support large queues.

All these efforts turn out to effectively improve the application performance by

accelerating the hot code of the data structure manipulation.

However, any commodity processor has not yet supported such special hard-

ware. Even if FPGA-based data structure accelerators might be available, the oper-

ating system and compiler support to leverage them must be addressed in the first

141

place for their pervasive adoption. In light of this, to improve data structure usage,

this work takes a software-only approach called data structure offloading, simply

DSO. It is inspired by previous helper threading approaches [68, 80, 151, 124, 43,

71, 88, 32, 19]. In particular, this work leverages a helper thread running on an

idle core to offload expensive data structure operations of an application. That is,

the helper thread executes the data structure code on the behalf of the application

thread. While the former operates on the data structure, the latter can keep execut-

ing the rest of its code. Thus, the helper thread can take the cost of performing the

expensive operations away from the application thread.

This work first recognizes a critical data structure and its operations in the pro-

file run of the application. For effective communication and synchronization be-

tween the helper and application threads, we leverage Lamport’s lockfree queue

that does not require any hardware support [76]. I.e., the application pushes the

argument of the operations to the lockfree queue for offloading them. Thus, data

structure offloading effectively replaces the complex data structure operations with

simple lockfree queue operations. Since both helper and application threads run

in parallel, they need to be carefully synchronized for the data structure not to

be corrupted. For program correctness, users are required to place the synchro-

nization code, which is also realized using the lockfree queue, at the right place if

necessary. However, in reality, users often end up generating redundant synchro-

nization code in the presence of the complex control flow. With that in mind, this

work presents a compiler algorithm to eliminate such redundant synchronization

code automatically.

The empirical results demonstrate that data structure offloading (DSO) can

achieve significant speedups for several applications that are inherently sequential

and hard to parallelize. It delivers a significant speedup from 1.12 of 1.30 for data

structure intensive real-world applications. Note that even if this work evaluates

142

Figure 41: The idea of data structure offloading: (a) original sequential application
execution versus (b) overlapped execution

DSO with sequential applications, the proposed techniques are directly applicable

to parallel applications as long as idle cores are available to run helper threads. In

general, this situation is often very common because many parallel applications

are not fully scalable due to either resource contention or insufficient amount of

parallelism [66, 82, 81, 108]. I.e., their best performance is achieved when not all

the available cores are used.

6.2 Offloading Expensive Data Structure Operations

The main idea of data structure offloading (DSO) is to hide the cost of performing

the expensive data structure operations of an application by offloading them. This

is achieved by leveraging a helper thread which performs the operations on the

behalf of the application thread. If the operations being offloaded are to insert

143

(erase) to (from) the data structure, the application thread can keep executing the

rest of its code; we call them non-blocking data structure interfaces1 while find-

like operations are called blocking interfaces since the application needs to wait for

what they return. To communicate the data if necessary, DSO leverages Lamport’s

single-producer/single-consumer concurrent lockfree queue [76]. E.g., to offload

an insert interface, the application thread explicitly executes a push operation2

to deposit the data argument being stored in the lockfree queue.

Right after that, it can execute the very next code without waiting for the helper

thread to finish the offloaded work of insert. Accordingly, DSO allows the ap-

plication to effectively replace the complex data structure operation with the much

simpler lockfree queue operation, i.e., push. Figure 41 describes this situation, i.e.,

how the helper thread takes the cost of performing the expensive operation away

from the application thread.

However, there is no point in offloading blocking interface, since the applica-

tion anyway must wait for the completion of the interface due to the data depen-

dence. E.g., while the helper thread executes find operation on the behalf of the

application, it must wait for the return value of the operation. In this case, there

is no performance benefit at all due the lack of the overlapped execution. More

seriously, the overhead of executing lockfree operations might rather degrade the

overall performance of the application.

Note that since both the threads run in parallel with each other, we must care-

fully deal with the case where the application thread accesses the data structure

while the helper thread is still executing the offloaded operation. Otherwise, the

data structure might be corrupted and behave incorrectly ending up with program

1This work uses the terms operation and interface interchangeably.
2push is a lockfree queue operation to enqueue a data item to the circular buffer of the queue.

144

failure. For the program correctness, DSO must guarantee the sequential seman-

tics of the original application. That is, the original calling sequence of the interface

functions of the data structure has to be preserved using explicit synchronization.

E.g., if the application invocations insert(1024) and find(1024) in turn and

offloads the former to the helper thread, then it must finish the offloaded operation

before the application attempts to find the data, i.e., 1024.

In particular, there is no need to care about the order between offloaded opera-

tions due the FIFO nature of the lockfree queue. For instance, when the application

offloads two consecutive invocations to insert with different data, their calling

sequence are guaranteed to be the same with the help of the lockfree queue; the

helper thread executes the offloaded operations in order with regard to the eu-

queuing order of the application. In this respect, the easiest strategy to guarantee

the sequential semantics is offloading every interface of a data structure. Again,

offloading even blocking interface is likely to degrade the overall performance of

the application, thus that is not a right strategy.

With that in mind, we offload only non-blocking operations, thus only caring

about invocations to non-offloaded interface functions of the data structure as can-

didates for the synchronization. As a result, every call site to such interface func-

tions 3 becomes the synchronization point where the application must wait for

the helper thread to finish all the previously offloaded operations completely. To

achieve the synchronization, DSO leverages the lockfree queue again. By checking

if the queue is empty, the application can determine if it can keep executing pass-

ing over the synchronization point. Thus, the synchronization is implemented by

repeatedly checking the empty condition until the lockfree queue is fully drained.

3If other functions access the offloaded data structure, i.e., it is not encapsulated well, then
their call sites are synchronization points too. However, such situation would be rare provided the
application is developed in the object oriented philosophy.

145

L3 $ Mem
Ctrl.

DRAM

DRAM

Memory Module
L1 $ L1 $

Application

Thread

Helper

Thread

L2 $ L2 $

Figure 42: The target CMP system: Intel Nehalem microarchitecture

For this purpose, the application is supposed to explicitly execute a sync instruc-

tion which is a macro that performs the emptiness checks of the lockfree queue.

To a large extent, users often end up placing the sync instruction everywhere

they think it is necessary. That is because users are always under the pressure

of guaranteeing the correctness without program failure; what they want is the

performance improvement not the segmentation fault. I.e., even when they are

not completely sure if the sync is necessary at some program point, they tend to

place the synchronization code there for safety reason. In reality, in the presence

of the complex control flow, it becomes a very difficult task to precisely recognize

the right synchronization point. To this end, users are likely to place redundant

sync instructions along the complex control flow. Therefore, it is desired that the

compiler automatically eliminates such redundant sync instructions.

Figure 42 describes the target processor architecture of DSO. To avoid unneces-

sary resource contention, it is important that the application and helper threads are

run on different cores in the same chip of a standard CMP (chip multi-processor)

system as showed in the figure. For this purpose, this work pins both the threads

146

to separate cores using a system call, i.e., pthread setaffinity np, at the be-

ginning of program execution. Thus, they are never migrated to any other cores

during program execution.

6.3 Compiler-Time Redundant Synchronization Elimination

Executing the sync instruction is the overhead of data structure offloading (DSO).

Especially when the amount of offloaded work is not significant compared to the

overhead, it would be difficult for DSO to improve the overall performance of the

application. That is because the benefit from the overlapped execution of DSO is

offset or dominated by the synchronization overhead.

This work founds out that depending on the complexity of application code,

many of the sync instructions are often redundant, thus removing them does not

violate the sequential semantics for the program correctness. In light of this, this

work presents a global dataflow analysis to recognize such unnecessary sync in-

structions and to remove them automatically.

This section describes a compiler algorithm that statically eliminates the redun-

dant sync instructions. In particular, it is assumed that an application can offload

the operations of different data structure instances. This means that there can be

multiple lockfree queue instances too, even if our previous example shows only

one instance.

6.3.1 Local Redundant Synchronization Elimination

In a basic block, if the same sync instruction appears multiple times without any

intervening push(q, data) instruction. Then, except for the first sync instruc-

tion, all the others are safely eliminated. Here, the sync removal decision is made

without regard to the data argument of the push instruction, thus we omit it

hereafter. For example, the instruction sequence is like push(q); sync(q);

find(q); sync(q); find(q), the last sync instruction is redundant thus can

147

be eliminated. To make the compiler analysis easier, we transform the push(q)

instruction into a write to q, i.e., the instruction makes a new definition of q. Then

for the decision making of the elimination alrogithm, the analysis can simply check

if the same definition of q is used in both the sync(q) instructions. Note that if an-

other intervening push(q) appears right after the first one, then the last sync(q)

cannot be eliminated since its q has been re-defined. Thus, the analysis only needs

the USE-DEF chain of q that is directly available on SSA (static single assignment)

forms [6, 102].

6.3.2 Global Redundant Synchronization Elimination

Across basic blocks, the compiler analysis should be able to eliminate redundant

sync instructions in the presence of complex control flow. To achieve this, this

work leverages a global dataflow analysis. The main idea of the analysis remains

the same, i.e., once a sync(q) instruction is made, it should be used until the pro-

gram point where the q is re-defined. Only difference is that we need to propagate

the sync information along the control flow. In the following, we introduce a set

of definitions necessary for the analysis, and present the dataflow equations, and

then describe an algorithm that eliminates redundant synchronization code based

on the dataflow analysis results. First, available sync instruction is defined as below.

Definition 3 A sync(q) is available at a given program point P if the following condi-

tions are satisfied.

• the sync(q) has been performed on every path to P from the entry node of the CFG

(control flow graph).

• the argument q has not changed since the last time it was computed on the paths to

P.

Similarly, killed sync instructions are defined as below.

148

Avaiable Check In[B] =
⋂

(P∈Pred(B)) Avaiable Check Out[P]

Avaiable Check Out[B] = {Avaiable Check In[B] −Kill[B]} ∪ Gen[B]

Avaiable Check In[B] =

{ ⋂
(P∈Pred(B)) {Avaiable Check In[P] −Kill[P]} ∪ Gen[P] if Pred(B) 6= {}
{ } if Pred(B) = {}

Figure 43: The dataflow equations: Available Check In and Available Check Out

Definition 4 A sync(q) is killed by the definition of q. I.e, only when it is written by

push(q), killed is the sync that uses the q.

Let us then define Gen and Kill sets, respectively. For a given basic block B, the

Gen[B] is defined as below.

Definition 5 Gen[B] is comprised of the sync instructions of the basic block B that are

not killed by any of later definitions, i.e., push(q) in the block.

Then for a given basic block B, the Kill[B] is defined as below.

Definition 6 Kill[B] is comprised of the sync instructions outside the basic block B that

are killed within the basic block B

Figure 43 describes the dataflow equations based on the definitions above. It

first shows the definitions of Available Check In and Available Check Out. Since each

equation is defined in terms of the other, Available Check In can be derived by sub-

stituting the Available Check Out with its definition showed in the figure. In par-

ticular, if there is no preceding basic block, the resulting Available Check In should

be an empty set. This additional condition prevents the Available Check In from

being a universal set. I.e., without this special care, the dataflow analysis ends up

propagating all the sync instructions along the control flow, which is problematic.

Finally, Algorithm 4 describes the overall process of the redundant synchro-

nization elimination in pseudo code. Once the dataflow analysis equation is solved,

149

the algorithm iterates each basic block and evaluates its sync instructions consult-

ing the analysis results, i.e., Available Check In. A sync(q) in a basic block, b, is

redundant and thus can be eliminated if Available Check In[b] has the same sync

instruction and it is available at the program point where the sync(q) appears.

Algorithm 4 performs this by determining if there is no intervening push(q) be-

tween the basic block entry and the location of the sync(q) being currently eval-

uated, and by invoking Eliminate(sync(q)) if that is the case.

Algorithm 4: Complete Redundant Check Elimination with Available Check
Dataflow Analysis

Require: Basic Blocks: a set of basic blocks
Require: Checks[]: a set of sync instructions in a basic block

for all b ∈ Basic Blocks do
Compute Gen[b] and Kill[b]

end for

// Solving the dataflow analysis
while Available Check In[] changes do

for all b ∈ Basic Blocks do
Available Check In[b] =

⋂
(P∈Pred(b)) {Avaiable Check In[P] − Kill[P]} ∪

Gen[P]
end for

end while

// Eliminating redundant synchronization
for all b ∈ Basic Blocks do

for all sync(q) ∈ Checks[b] do
if sync(q) ∈ Available Check In[b] and 6 ∃ push(q) between EntryPoint(b)
and Point(sync(q)) then
Eliminate(sync(q))

end if
end for

end for

6.4 Experimental Evaluation

In order to demonstrate the effectiveness of data structure offloading (DSO), we

implemented the proposed compiler algorithm as part of the LLVM toolset [77].

150

Figure 44: Insufficient overlapped execution and its performance impact

The Lamport’s lockfree queue was implemented as a C++ template. All the exper-

iments were performed on a Linux-based system with Intel Xeon E5520 2.26 GHz

8-Core CPU and 24GB of RAM. Table 10 shows the system configuration in detail.

This section first presents the performance characterization of DSO to understand

the impact of overlapped execution of the application and helper threads, and then

presents two case studies.

Table 10: Target system specification

CPU Intel Xeon quad-core E5520 2.26GHz
Microarchitecture Nehalem
Caches 64 KB L1 cache per core,

256 KB L2 cache per core, 8 MB L3 unified
Memory / Disk 24 GB SDRAM / 1 TB HDD
Operating System 64 bit Linux with a kernel 2.6.30
Compiler GCC 4.4 with libc/libstdc++ 4.4.0

151

6.4.1 Performance Characterization

In this section, we evaluate and analyze the effects of both the lockfree queue over-

head and the amount of overlapped execution on the performance of data struc-

ture offloading (DSO). On the one hand, DSO can improve the overall performance

of the application by allowing the application to replace its expensive data struc-

ture operation with much simpler lockfree queue operation. Intuitively, the longer

operation the application offloads, the better performance it can achieve. On the

other hand, the overall performance of DSO is affected by the ratio of the time that

the application spends executing the expensive operations to the rest of the appli-

cation execution time. That is because the amount of overlapped execution of the

application and helper threads, which leads to the time saved, varies depending

on the ratio.

To obtain a more precise idea of the extent and nature of the overlapped execu-

tion, we evaluate the speedup of a microbenchmark when the time ratio is varied.

It has a hot loop whose body inserts a couple of integers to a priority queue im-

plemented by a binary search tree and erase one of the existing data in the queue,

and performs some random work, and then checks the size of the queue. Before

entering the loop, the microbenchmark populates the priority queue with a fixed

number of random integer values. To enable the overlapped execution, the first

two priority queue operations are wrapped with a macro function, and it is of-

floaded to the helper thread. Since the end of the loop body has an access to the

priority queue in order to get its current size, the application thread has to wait for

the helper thread to finish the offloaded operation. In this experiment, we vary the

amount of the random work in the middle of the loop body, thus changing the ratio

of the original time spent in the offloaded operation to the rest of the application

execution time.

Based on the speedup measurement, it turns out that the overall performance

152

initially improves as the ratio increases, and it reaches the peak speedup of 1.38,

and then it starts to decrease even if the ratio keeps increasing. The reason for that

is because when the offloaded work is larger than the rest of application work,

DSO cannot fully overlap the executions of the application and helper threads.

Figure 44 describes how this happens. Here, due to the insufficient amount of the

overlapped execution, the helper thread cannot fully hide the time spent perform-

ing the expensive data structure operation. The figure also demonstrates that the

lockfree queue operations, e.g., enqueue , dequeue, can affect the overall perfor-

mance of the application.

With that in mind, we introduce a simple speedup model to understand the per-

formance potential of DSO. Tenq and Tdeq are enqueue and dequeue times shown in

Figure 44, while Tcheck is the time spent checking whether or not the lockfree queue

is empty. Then, the speedup can be calculated as below.

Speedup =
Toffload + Tother

Tenq + Tother + Tsync

It is assumed that the queuing delay is included in the Tdeq. In particular, Tsync

varies depending on the ratio of Toffload to Tother, and it is defined as below.

Tsync =

Tcheck if Tother >= Tdeq + Toffload

Tdeq + Toffload − Tother otherwise

When there is a sufficient amount of the overlapped execution, Tsync is just the time

spent checking the emptiness of the lockfree queue, thus Tsync equals to Tcheck. Oth-

erwise, i.e., within the time of Tother the helper thread cannot finish the offloaded

operation, Tsync becomes the time the application thread must wait until the the

operation is finished as shown in Figure 44. By substituting Tsync, the speedup will

153

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

T
h

e
 S

p
e

e
d

u
p

The offloaded fraction

0% Lockfree Queue Overhead
1% Lockfree Queue Overhead
5% Lockfree Queue Overhead

10% Lockfree Queue Overhead
15% Lockfree Queue Overhead
30% Lockfree Queue Overhead

Figure 45: The offloading performance

be:

Speedup =

Toffload+Tother

Tenq+Tother+Tcheck
if Tother >= Tdeq + Toffload

Toffload+Tother

Tenq+Tdeq+Toffload
otherwise

In the speedup formula above, Tcheck is small compared to the other two lockfree

queue operations that have similar costs. For simplicity, we ignore Tcheck, assume

that Tenq and Tdeq takes the same time, and represent it with Foverhead ∈ [0, 1] in the

formula. In addition, if the offloaded fraction of the application execution time is

Foffload ∈ [0, 1], then the speedup will be:

Speedup =

1

1−Foffload+Foverhead
if Foffload <= 1−Foverhead

2

1
Foffload+Foverhead×2

otherwise

Figure 45 shows how the speedup changes when Foffload increases. In particu-

lar, Foverhead is also varied to evaluate the impact of the lockfree queue overhead on

154

the speedup. The best performance is achieved when the fraction of the original

application that are not offloaded is the same as a sum of the Foffload + Foverhead.

If the Foffload becomes larger than the equilibrium, the speedup starts to decrease.

Especially, as the overhead of lockfree queue operations increases, this equilibrium

is reached more rapidly. For example, when Foverhead is 0.15, i.e., Tdeq is 15% of the

original execution time of the application, the maximum speedup is made at the

point where Foffload is 0.425.

There are two lessons from the observation. First, the selection of a candidate

data structure operation for offloading should take into account how far the syn-

chronization needs to be made. For example, if the sync instruction has to im-

mediately follow the offloading point where push instruction appears, there will

not be a sufficient amount of the overlapped execution DSO can achieve. In this

respect, if the compiler can schedule the code in a way that a distance between

the push and sync instructions is maximized. Second, the execution time of the

candidate operation being offloaded needs to be sufficiently long enough. Other-

wise, the resulting offloading performance is likely to be offset by the overhead

of the lockfree queue operations, e.g., the target application repeatedly executes

quick data structure operations. In such a case, the hardware supports, that can

accelerate the lockfree queue operations, are essential to preserve the offloading

performance [84].

6.4.2 Xalancbmk

Xalancbmk is an XSLT processor that performs an XML to HTML transformations.

It takes as inputs an XML document and an XSLT stylesheet file that contains de-

tailed instructions for the transformation. The program maintains a string cache

comprised of two levels, m busyList and m availableList, vectors. When a string

is freed in XalanDOMStringCache::release, it moves the string to the m availableList

155

provided it is found in the m busyList. This makes the find operation on the

m busyList one of hottest functions in the application.

However, the find function is not a non-blocking function meaning that it

should not be offloaded to the helper thread. That leads us to investigate its caller

function, i.e., XalanDOMStringCache::release, in turn to find another offloading can-

didate. Initially, the caller function has a return value. However, our compiler ver-

ified the return value is not used by leveraging an aggressive interprocedural anal-

ysis. Thus, we could safely offload the XalanDOMStringCache::release to the helper

thread. Our compiler analysis successfully eliminated redundant sync instructions

that were mislaid in the first place. To evaluate the performance improvement

of DSO, we ran the program without any special option, i.e., the source document

validation is not enabled. When a reference input available in the SPEC2006 bench-

mark suite, DSO achieved a speedup of 1.28.

6.4.3 SSSP

This program solves the single-source shortest path problem using Dijkstra’s al-

gorithm. It has a doubly nested loop and maintains a priority queue built on top

of using set in C++ standard template library (STL) whose implementation is a

red-black tree. In the outer loop, the program picks the node that currently has the

minimum distance estimate by consulting the priority queue. In the mean time, the

inner loop iterates the edge list of the minimum-distance node updating the dis-

tance estimate of the neighbors if necessary. During the iteration of the inner loop,

the priority queue is repeatedly accessed to accommodate the neighbor whose dis-

tance estimate is updated with a smaller value. I.e., the set::insert operation of

the priority queue becomes a hot function. Note that the cost of set::insert is

quite expensive since it iterates the red-black tree possibly causing cache misses as

well as performs multiple tree rotations if necessary. To this end, we offloaded the

156

Table 11: The speedup results of SSSP for each input graph

Input Edge density Number of vertices Speedup
A m = 8n 1048576 1.12
B m = 16n 65536 1.20
C m = 32n 1048576 1.24
D m = 64n 65536 1.26
E m = 128n 1048576 1.30

set::insert operation to the helper thread. Again, our compiler analysis suc-

cessfully eliminated all the redundant sync instructions mislaid in the first place.

As an input of the program, we used the most common graph type called Gn,m

used as an input into Dijkstra’s algorithm. In the graph, n and m describe the

number of vertices and the number of edges, respectively. Thus, they represent the

edge density of the input graph. In particular, the DIMACS web page provides the

script that generates arbitrary graphs with different n andm values [41]. The script

randomly connects different vertices for a graph with a specific edge density. Here,

we evaluated the performance improvement of DSO with several input graphs of a

different edge density. The table 11 represents the edge density of each input graph

and the resulting speedup of DSO for the input graph. As shown in the table,

when the edge density of a graph increases, the resulting speedup increases too.

That is because when the graph becomes denser, i.e., having many more neighbors,

the number of set::insert operations also increases in the original application.

Thus, that contributes to the increase in the offloaded fraction of the application

execution time.

6.5 Summary

Data structure offloading (DSO) is a promising technique to accelerate sequen-

tial applications that are hard to parallelize. By offloading a time-consuming data

157

structure operation to a helper thread running on an idle core, the application per-

formance can be improved with a minimal effort to place necessary synchroniza-

tion code. DSO achieves effective communication and synchronization by leverag-

ing a concurrent lockfree queue without any hardware support. In particular, our

compiler analysis automatically eliminates redundant synchronization code mis-

placed by users. We realized DSO on commodity processors, and demonstrated

that it can achieve significant speedups for data structure intensive real-world ap-

plications.

158

CHAPTER VII

RELATED WORK

This chapter classifies the related research into data structure detection, data struc-

ture selection, and memory leak detection. Finally, it presents the research related

to data structure acceleration.

7.1 Related Research on Data Structure Detection

There is a long history of work on detecting how data is organized in programs.

Shape analysis (e.g., [52, 116, 140]) is among the most well known of these efforts.

The goal of shape analysis is to statically prove externally provided properties of

data structures, e.g., that a list is always sorted or that a graph is acyclic. Despite

significant recent advances in the area [75, 149], shape analysis is provably unde-

cidable and thus necessarily conservative.

Related to shape analysis are dynamic techniques that observe running appli-

cations in an attempt to identify properties of data structures [39]. These proper-

ties can then be used to automatically detect bugs, optimize applications [29, 111],

repair data structures online, or improve many software engineering tasks [40].

While this type of analysis is not sound, it can detect properties outside the scope

of static analysis and has proven very useful in practice.

This previous work statically proved or dynamically enforced data structure

consistency properties in order to find bugs or optimize applications. The work

here takes a different approach, where we assume the data structure is consistent

(or mostly consistent), and use the consistency properties to identify how the data

structure operates. We are leveraging consistency properties to synthesize high-level

159

semantics about data structures in the program.

The reverse-engineering community has also done work similar to this effort [5,

110]. These prior works use a variety of static, dynamic, and hybrid techniques to

detect interaction between objects in order to reconstruct high-level design pat-

terns in the software architecture. In this paper we are interested not just in the

design patterns, but also in identifying the function of the structures identified.

The four works most similar to ours are by Raman et al. [111], Dekker et al. [37],

Cozzie et al. [33], and Jump et al. [65], Raman’s work introduced the notion of us-

ing a graph to represent how data structures are dynamically arranged in memory,

and utilized that graph to perform optimizations beyond what is possible with

conservative points-to or shape analysis. Raman’s work differs from this work in

that it was not concerned with identifying interface functions or determining ex-

actly what data structure corresponds to the graph. Additionally, we extend their

definition of a memory graph to better facilitate data structure identification.

Dekker’s work on data structure identification is exactly in line with what we

attempt to accomplish in this paper. The idea in Dekker’s work was to use the

program parse tree to identify patterns that represent equivalent implementations

of data structures. Our work is more general, though, because (1) the DDT anal-

ysis is dynamic and thus less conservative, (2) DDT does not require source code

access, and (3) DDT does not rely on the ability to prove that two implementations

are equivalent at the parse tree level. DDT uses program invariants of interface

functions to identify equivalent implementations, instead of a parse tree. This is a

fundamentally new approach to identifying what data structures are used in ap-

plications.

Cozzie’s work presented a different approach to recognizing data structures:

using machine learning to analyze raw data in memory with the goal of matching

160

groups of similar data. Essentially, Cozzie’s approach is to reconstruct the mem-

ory graph during execution and match graphs that look similar, grouping them

into types without necessarily delineating the functionality. Instead this paper

proactively constructs the memory graph during allocations, combines that with

information about interface functions, and matches the result against a predefined

library. Given the same application as input, Cozzie’s work may output “two data

structures of type A, and one of type B,” whereas DDT would output “two red-

black trees and one doubly-linked list.” The take away is that DDT collects more

information to provide a more informative result, but requires a predefined library

to match against and more time to analyze the application. Cozzie’s approach is

clearly better suited for applications such as malware detection, where analysis

speed is important and information on data structure similarity is enough to pro-

vide a probable match against known malware. Our approach is more useful for

applications such as performance engineering where more details on the imple-

mentation are needed to intelligently decide when alternative data structures may

be advantageous.

Jump and McKinley propose ShapeUp for Java to recognize the shape of recur-

sive data structures during program execution [65]. This analysis constructs a class

field summary graph (CFSG) and checks in- and out-degree invariants of the CFSG

whenever garbage collection occurs. They show that, even though the invariant

check is performed periodically at garbage collection time, artificially injected bugs

in microbenchmark are detected successfully.

However, this method is inherently incapable of detecting bugs which are tem-

porarily hidden between garbage collection executions. The reality is that bugs

show changing behavior thus it is unrealistic to assume that bugs appear at garbage

collection times. Similarly, data structures also change, e.g., a binary tree can look

like a linked-list according to particular data insertion and deletion patterns. If this

161

happens just before at a garbage collection time, ShapeUp could not detect the bi-

nary tree. In fact, it is quite possible for data structures to lose their defined shape

due to data removal from them.

In addition, since ShapeUp relies on type information and garbage collection,

it is also restricted to languages which provide managed runtimes and whose

binaries maintain sufficient type information. Thus, ShapeUp is not applicable,

for example, to an application binary compiled for C/C++. In addition, since

ShapeUp does not consider invariants of a data structure’s internal representation,

i.e., the data invariants, their work cannot differentiate between those data struc-

tures whose shapes are very similar or exactly same. Again, the data invariants are

necessary to discern a binary search tree from binary trees.

7.2 Related Research on Data Structure Selection

Selecting the best data structure implementation is often a problem ignored by de-

velopers; they simply rely on library developers to choose a good implementation

for the average case and accept the results. This leaves significant room for im-

provement. When developers do select specific implementations, they typically

rely on asymptotic analysis, even though it can often lead to incorrect decisions in

real-world applications. As pointed out, asymptotic analysis was always intended

to be used in algorithmic selection and not in data structure selection/tuning.

Several researchers have previously investigated the problem of data structure

selection in various contexts [118, 119, 120, 87, 67]. Jung and Clark propose a dy-

namic analysis that can automatically identify data structures and their interface

functions. They showed that the resulting information, e.g., how the functions in-

teract with the data structures, is very useful for data structure selection [67]. Other

researchers suggests language level supports for data structure selection. For ex-

ample, in high-level programming languages, such as SETL, it is impossible to

162

select data structure implementations; all data structures are specified as abstract

data types, and the compiler must determine the implementation [118]. Work in

this area focused on using only static analysis for data structure selection [119].

While the raised abstraction level of these languages did help productivity, the

performance of these tools was generally worse than hand-selected implementa-

tions.

The Chameleon [120] and Perflint [87] projects are the most similar to Brainy.

Chameleon and Perflint instrument Java and C++ applications, respectively, to col-

lect runtime statistics on behaviors such as interface function calls. Additionally,

Chameleon collects heap-related information from the garbage collector. These

statistics are then fed into hand-constructed diagnostics to determine if the data

structures should be changed. Both Chameleon and Perflint showed impressive

space and performance improvements for real-world benchmarks. In particular,

Brainy considers memory bloat as Chameleon does. Recall that the application

generator varies the number of data elements in a data structure as well as the size

of each element, thus the generator can create applications suffering from memory

bloat. Brainy extends those prior works by 1) using machine learning to automati-

cally construct more accurate models, instead of relying on hand-construction, and

2) incorporating hardware performance counters into the analysis, thus providing

greater accuracy. In particular, unlike Chameleon, Brainy is not restricted to lan-

guages that have managed runtime features such as garbage collection.

The prior works have three problems. First, they require many models for each

data structure replacement. For example, if M data structures can be replaced with

N alternative data structures, the prior works require total M x N models. Note that

modeling the execution of alternative data structures depends on the original data

structure. On the contrary, Brainy needs only M models, thus the instrumentation

overhead can be greatly reduced.

163

Second, modeling the accurate execution of the alternative data structure is in-

herently difficult and sometimes impossible. For example, in a vector-to-set

data structure replacement, it is very difficult to know how many data elements

are accessed for a find operation in the alternative data structure (set) just by in-

strumenting the code of the original data structure (vector); that requires exactly

tracking data insertion and deletion, operation order, orderedness of data values,

search patterns, and so on. This subtlety of modeling the execution behavior of

the alternative data structure forces the prior works to rely on asymptotic analysis

and average case. However, such approximation is likely to generate inaccurate

models. Thus we conclude that if the resulting models are inaccurate, why pay the

cost of heavy instrumentation code for M x N models?

In this work, rather than modeling the execution of the alternative data struc-

ture, Brainy’s machine learning-based model tries to answer the question, ‘what

alternative data structure is desirable when the original data structure behaves in a certain

way?’ That is, Brainy focuses on modeling how the original data structure is ex-

ecuted to identify the relation between the execution location and the alternative

data structures suited for the role. Consequently, Brainy reduces the number of

models required compared to the prior works.

The last problem is about using hardware features, which are important as

shown in Section 4.5.1. Unlike software features such as the number of function

calls and their costs, it is almost impossible to model hardware features of the al-

ternative data structure. For example, the number of mispredictions of conditional

branches in the original data structure has no causal relation to the number of

mispredictions in the alternative data structure. Thus, the prior works cannot ef-

fectively exploit hardware features while Brainy’s machine learning-based model

can. Again, the hardware features are critical for effective data structure selection.

In a different perspective, a body of work has been done to address inefficient

164

use of data structures in terms of memory bloat [96, 97, 148, 146]. In [97], Mitchell

and Sevitsky suggest a systematic approach to detect those data structures that end

up with unnecessary memory (bloat). They introduces a new notion, Health, that

analyzes how the memory space of a data structure is organized and used; and

they present judgement schemes based on the notion to determine the inefficiency

of the data structure use [148]. Xu and Rountev also present static and dynamic

tools that detect inefficiently used data structures to avoid. They first identify in-

terface functions (e.g, ADD/GET) of a data structure using static analysis. Then

the static or dynamic tools analyze how these interface functions are called during

the data structure execution.

There are key differences between these prior works and Brainy. First, they

target Java and rely on virtual machine support. Again, Brainy is not restricted to

languages that have managed runtime features. Second, they can deal with only

case of the bloat-caused inefficiency of data structures. In C/C++, bloat is less of a

concern than in Java where garbage collection is very important. Brainy can deal

with many more cases of data structure inefficiency. Finally, they do not select a

data structure, i.e., they just show if a data structure is inefficient in terms of bloat.

In contrast, Brainy does provide a solution for inefficient usage of a data structure

by selecting an alternative data structure.

7.3 Related Research on Memory Leak Detection

There is a large body of existing research addressing the issue of memory leaks.

Memory leaks are of two kinds: (1) unreachable memory, i.e., program cannot access

it, and (2) dead memory, i.e., it is reachable, but the program will never use it again,

thus it is not live. The unreachable leaks can be effectively addressed by garbage

collection [15] and static analysis [57, 144, 26, 70] techniques. However, the dead

165

leaks are much more tricky, since it is in general undecidable to determine if cer-

tain memory will not be accessed in the remainder of the program execution. This

difficulty leads to the advent of many dynamic analysis techniques that leverage

staleness of allocated objects to determine leaks [109, 18, 128, 147, 16, 17, 31, 20, 145].

Since the focus of Sniper is to detect the dead leaks without a managed runtime,

This section limits the discussion to dynamic techniques that can detect dead leaks

without a managed runtime. conducted to date for C/C++ program. In particular,

those tools [104, 93, 31, 20] based on full-tracing not only cause a huge slowdown

(10x–300x) due to the instruction instrumentation, but also occupy a considerable

memory space, e.g., half of the entire memory capacity in the case of shadow mem-

ory. For this reason, we do not consider them for further detail.

Path-Biased Sampling: Chilimbi and Hauswirth [28] were the first who pro-

posed the staleness based leak detection in their pioneering system called SWAT.

The staleness update relies on code instrumentation. To reduce the overhead, SWAT

uses path-biased sampling in tracking heap accesses. It samples each program

path at a different rate; the sampling rate is in inverse proportion to the execution

frequency. That way SWAT can reduce the overhead, since instructions on a hot

path rarely get sampled. However, the sampling can result in overestimating the

staleness of the objects in hot paths, thus leading to false positives. Thus, the effort

to reduce the runtime overhead may end up undermining the quality of the leaks

detection.

Uniform Sampling versus Path-Biased Sampling: One might wonder which

sampling is better. The path-biased sampling was invented to reduce overheads at

the expense of hot-path’s precision. Thus, only if the cold-path hypothesis holds,

the path-biased sampling is more precise than uniform sampling. However, there

is doubt about the generality of the hypothesis. As [106] pointed out, it does not

166

hold for many cases, e.g., data structure operations, where the path-biased sam-

pling generates many false positives.

Even if the hypothesis holds, Sniper is still robust against false positives. That

is, Sniper’s anomaly detection effectively prevents unsampled objects from being

falsely reported as a leak. More importantly, the path-biased sampling is intrusive

and memory consuming, thus it cannot be used in production environment. It

does not make sense to spend much more memory to detect leaks in production

environment.

Page Protection Based Sampling: Novark et al. present Hound that removes

the heavyweight instrumentation for the staleness updates using a page-level sam-

pling [106]. The basic idea is to employ a memory protection mechanism of an

OS kernel to detect the accesses of the objects. Hound periodically protects every

page and updates the last access time of all objects on the same page to the pro-

tection time. Once a page fault occurs, Hound catches the signal and unprotects it

for a performance reason; here, Hound does not update the last access time of all

objects on that page until it gets protected again. That is, actual staleness updates

are always delayed to the protection time. The resulting staleness is underestimated

thus posing a risk of false negatives.

Another cause of false negatives is that Hound works at the granularity of a

page; it is possible that a page contains both live and dead objects, and a single

access to a live object can cause a reset to the staleness of dead objects in that page.

To mitigate that, Hound changes the underlying memory allocator to perform an

age-based segregation of the objects, which can end up degrading the performance

of the memory allocator. Nevertheless, the page-level false sharing can still occur

depending on memory allocation patterns.

Sniper versus SWAT/Hound: There are key differences between SWAT/Hound

and Sniper. First, Sniper is fully automated whereas others are not. Second, Sniper

167

does not perturb the original application execution. In contrast, SWAT inserts in-

strumentation code but also changes the original control flow for the path-biased

sampling. Hound changes the original memory allocator, which is not acceptable

in production runs due to the resulting allocation/deallocation speed and heap

size increase. Besides, some applications are tightly coupled with the original

memory allocator, thus they may simply fail to run with a new allocator.

Third, Sniper does not require any recompilation while SWAT relies on bi-

nary translation. Fourth, Sniper is more robust against false positives/negatives

due to its application-tailored anomaly detection, and its sampling operates at a

much finer granularity compared to Hound’s page-level sampling. In particular,

the anomaly detection strategy reduces the possibility that those objects rarely sampled due

to Sniper’s uniform sampling in a cold path gets falsely reported as a leak. On the con-

trary, SWAT/Hound are vulnerable to false positives/negatives due to their ad hoc,

manual determination of the staleness threshold.

Fifth, Sniper is detachable from the application for mission-critical situations.

That way all the overheads due to Sniper can be dynamically managed. On the

contrary, the code transformed by SWAT permanently resides as a part of the ap-

plication. Meanwhile, the internal and external fragmentation caused by Hound’s

memory allocator continuously affects the application performance. Finally, Sniper

has much lower time and space overheads compared to SWAT/Hound. Their

overheads particularly get worse for multithreaded applications; that is why they

deal with only sequential applications. On the contrary, Sniper supports multi-

threaded applications with very low overhead.

ECC Protection Based Sampling: Qin et al. present a different approach called

SafeMem [109]. It first groups heap objects according to their size and the calling

contexts of the allocation site, and measures the lifetime of each object. SafeMem

relies on the observation that the maximal lifetime of objects in the same group

168

remains stable and is thus anticipatable. The underlying assumption is that if the

lifetime of a certain object is much longer than the expected lifetime of the group it

belongs to, then the object is likely to be a leak. To reduce false positives, SafeMem

monitors the access to such suspicious objects using an ECC memory protection

mechanism; heap data is scrambled and stored in the memory, and the first access

to data, which is recognized by the ECC fault, leads to a conclusion that it is not a

leak.

However, such a method arrives at a premature conclusion in that the object

can end up with a leak even after multiple accesses. To avoid the false negatives,

SafeMem keeps watching some objects even their first access by having the ECC

fault handler update metadata such as the lifetime and its maximum of the group.

Whenever such objects become suspicious, i.e., the lifetime is longer than some

threshold, the ECC monitoring is periodically enabled. Thus, SafeMem compro-

mises the memory reliability, which is critical in datacenters.

Besides, SafeMem’s excessive memory consumption prevents its use in produc-

tion environment. There are a couple of reasons for that. First, it maintains various

information for each heap object/group. For heap-bound application, such meta-

data quickly becomes very large. Second, to differentiate a real hardware memory

error from the access fault, SafeMem stores the original heap data in a private

memory region for a match against the scrambled data. Those end up occupying

considerable space, e.g., 57% memory consumption overhead.

7.4 Related Research on Data Structure Acceleration

Over the last several decades, computer architects have investigated various hard-

ware support to accelerate common data structures including trees and graphs [84,

135, 10, 100, 85, 38, 91]. Wu et al. [143] devised ADP (Abstract Datatype Processor),

169

special hardware acceleration for hash tables and sparse vectors. To improve mem-

ory performance of priority queues, Chandra and Sinnen [23] implemented Hard-

warePQ based on full shift-register architecture [100]. Recently, Bloom et al. [13]

proposed a dedicated hardware logic system called HWDS (Hardware Data Struc-

ture) as well as an exception model to support large queues.

All these efforts turn out to effectively improve the application performance by

accelerating the hot code of the data structure manipulation. However, any com-

modity processor has not yet supported such special hardware. Even if FPGA-

based data structure accelerators might be available, the operating system and

compiler support to leverage them must be addressed in the first place for their

pervasive adoption. Thus, there is a compelling need to have a software-only ap-

proach for accelerating critical data structure operations on commodity processors.

DSO is inspired by the helper threading approach [68, 80, 151, 124, 43, 71, 88, 32,

19]. That is, the helper thread performs the data structure operation on the behalf

of the application. Unlike previous works, DSO does not require any hardware

supports, and therefore it can be realized on commodity processors to take the

cost of performing the expensive operation away from the application. In addition,

we presented a compiler algorithm to eliminate redundant synchronization code

misplaced by users.

170

CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

Data structures are the main focus of program understanding, performance engi-

neering, bug detection, and security enhancement. Thus, it is very important for

developers to have a good programming tool so that they can leverage their data

structure in a more effective and more robust way. In light of this, this thesis pro-

posed a programming tool suite that includes four new and enhanced components

to improve data structure usage. These four components are (1) DDT and MIDAS:

data structure detection tools, (2) Brainy: a data structure selection tool, (3) Sniper:

a tool to detect memory leaks for data structures, and (4) DSO: a technique to of-

fload expensive data structure operations.

• Chapter II implemented a data structure detection tool called DDT. Detecting

data structures can help developers to optimize their program. Through dy-

namic code instrumentation of a program binary, DDT can automatically detect

the organization of data in memory as well as the interface functions used to

access the data. Once the program execution finishes, the dynamic invariant

detection then determines exactly how those functions modify and utilize the

data. We demonstrated that DDT is highly accurate across several different im-

plementations of standard data structures.

• Chapter III introduced MIDAS, another tool that can detect data structures with-

out relying on the interface functions for a highly optimized program binary.

During program execution, MIDAS traces the shape and data invariants of a

data structure as DDT does. To keep the invariants against destructive updates

171

when there is no interface boundary, MIDAS automatically filters out those traces

generated while a data structure loses its defined shape. To this end, MIDAS can

accurately identify data structures and extract their useful properties based on

the invariants irrespective of how they are encapsulated, how different their im-

plementations are, and even how optimized the binary is.

• Chapter IV presented Brainy, a novel and repeatable methodology for gener-

ating machine learning based models to predict what the best data structure

implementation is given a program, a set of inputs, and a target architecture.

The work introduces a random program generator that is used to train the ma-

chine learning models, and demonstrates that these models are more accurate

and more effective than previously proposed hand-constructed models based

on traditional asymptotic analysis for real-world applications. The experimental

results demonstrate that Brainy can achieve significant performance improve-

ment.

• Chapter V provided Sniper, an effective memory leak detection tool for C/C++

production software. To the best of our knowledge, Sniper is the first to provide

a systematic methodology for accurate leak identification. Sniper automatically

determines the staleness threshold based on an anomaly detection. As a result,

the leak identification is tailored not just for each application but for each allo-

cation site as well. In particular, Sniper is transparent unlike prior tools; it does

not change application behaviors by modifying the executable or replacing the

original memory allocator. The empirical evaluation demonstrates that Sniper is

highly accurate in detecting critical memory leaks in real-world software.

• Chapter VI proposed a data structure acceleration technique called DSO. By

172

offloading a time-consuming data structure operation to a helper thread run-

ning on a separate core, users can improve the overall performance of the ap-

plication with a minimal effort to place necessary synchronization points. DSO

achieves effective communication and synchronization by leveraging a concur-

rent lockfree queue without any hardware support. In particular, our compiler

analysis automatically eliminates redundant synchronization code misplaced by

users. We realized DSO on commodity processors, and demonstrated that DSO

can achieve significant speedups for data structure intensive real-world applica-

tions.

8.2 Future Research

This thesis opens up multiple areas of interesting research. This section summa-

rizes the main points and provides the future research directions.

8.2.1 Future Work for Data Structure Detection

The move toward manycore computing is putting increasing pressure on data or-

chestration in applications. Identifying what data structures are used within an

application is a critical path toward application understanding and performance

engineering for the underlying manycore architectures.

Based on dynamic invariant detection, DDT has already reported many useful

properties that can be used to identify exactly what data structures are being used

in an application, as well as to infer what operations are performed on the data

structures. We believe that this is the first step in assisting developers to make

a better choice for their target architecture and can provide a significant aid for

assisting them in parallelizing their applications. With the integration of existing

data dependence profiling tools [150, 72], we can extend DDT to detect those data

structures that unnecessarily cause data dependence by themselves.

We also plan to extend DDT by integrating cost models, e.g., Brainy’s machine

173

learning based data structure selection models, in order to predict when alternative

data structures are better suited for the target application, and providing semi-

automatic or speculative techniques to automatically replace poorly chosen data

structures.

8.2.2 Future Work for Data Structure Selection

One obvious approach to enhance Brainy is to extend its scope to parallel appli-

cations. That is, Brainy can select the best parallel data structures among many

candidates. Note that Brainy has already leveraged a repeatable, automated, and

systematic training framework to generate machine learning based models for pre-

dicting what the best data structure implementation is given a program, a set of

inputs, and a target architecture. I.e., building a model that selects the best par-

allel data structure only requires running the training framework with the new

examples that exercise different behaviors of the target parallel data structures.

Another direction to leverage Brainy’s model to tune critical properties of a

data structure property to improve the overall performance. E.g., our previous

work offers diagnostics for the initial size of vectors or hash tables [21, 130]. Es-

pecially for large scale enterprise software, it would be interesting to address how

to predict the performance of its distributed data structures and to adjust their

property affecting the performance. With that in mind, we plan to address the

tradeoffs in distributed hash tables, e.g., predicting the speedup a particular appli-

cation achieves by relaxing the consistency requirements of the distributed hash

table.

8.2.3 Future Work for Memory Leak Detection

The success of staleness based leak identification depends on the accurate determi-

nation of the staleness. It is very important to precisely determine the threshold,

since it directly impacts the number of false positives and negatives. Sniper has

174

leveraged its systematic methodology that automatically determines the staleness

threshold based on an anomaly detection. As a result, the leak identification is

performed in an application-specific manner. To improve the accuracy, Sniper cur-

rently applies the statistics to each group of objects that are created in the same

allocation site. For further improvement on the accuracy, Sniper can leverage high-

level data structure information to group objects based on each data structure they

belong to and then to separately apply the statistics to each group.

We also believe that our statistical methodology can improve the accuracy of

existing staleness based leak detection tools. Most of the time, they depend on

various sampling techniques to keep the staleness tracking overhead low. I.e., apart

from the importance of the accurate staleness threshold, there is a compelling need

to make up the accuracy loss because of the data access sampling. As the number

of uncaught accesses due the the sampling increases, the false positive rate also

increases in general. Sniper’s anomaly based statistical analysis can allow existing

tools to reduce the false positive rate even in the presence of over-approximated

staleness due to their sampling.

8.2.4 Future Work for Data Structure Acceleration

Even if DSO has a large potential to improve the overall performance of the ap-

plication, an automated approach of generating the necessary code is essential for

its pervasive adoption. While DSO provides a complier analysis to eliminate re-

dundant synchronization code misplaced by users, they are currently required to

recognize which program points must have a synchronization code to guarantee

program correctness. Thus, it is still users that understand what functions possibly

access and modify the offloaded data structure while its operation is performed by

the helper thread.

In this respect, we plan to address a compiler analysis that can automatically

175

find such functions and place the synchronization code on their call site. This can

be achieved based on interprocedural Mod/Ref analysis [102], e.g., if a function

does not modify any data touched in the offloaded data structure operation, there

is no need to place synchronization code before the call site of the function. We

believe that a scalable and precise points-to analysis is the key for the success of

the Mod/Ref analysis. Thus, this future work will involve developing a demand-

driven and context-sensitive points-to analysis for C/C++.

176

REFERENCES

[1] “packet-o-matic.” http://www.packet-o-matic.org/.

[2] “Squid: Optimising web delivery.” http://www.squid-cache.org/.

[3] “Olden benchmark suite,” 2002. http://www.cs.princeton.edu/∼mcc/olden.html.

[4] “Red hat enterprise linux 6,” tech. rep., Red Hat, 2012.

[5] ABD-EL-HAFIZ, S. K., “Identifying objects in procedural programs using
clustering neural networks,” Automated Software Eng., vol. 7, no. 3, pp. 239–
261, 2000.

[6] AHO, A., SETHI, R., and ULLMAN, J., Compilers: Principles, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

[7] AREF, M., “Discussions on the LogicBlox Datalog Optimization Engine,”
2009. personal communication.

[8] ARREGOCES, M., Data Center Fundamentals. Cisco Press, 2003.

[9] BALLARD, L., “Conflict avoidance: Data structures in transactional mem-
ory,” 2006.

[10] BHAGWAN, R. and LIN, B., “Fast and scalable priority queue architecture
for high-speed network switches,” in IN INFOCOM 2000, pp. 538–547, 2000.

[11] BIENIA, C., KUMAR, S., SINGH, J. P., and LI, K., “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. of the 17th
PACT, Oct. 2008.

[12] BJARNE STROUSTRUP AND ALEX STEPANOV, “Standard Container Bench-
mark,” 2009.

[13] BLOOM, G., PARMER, G., NARAHARI, B., and SIMHA, R., “Shared hard-
ware data structures for hard real-time systems.,” in EMSOFT (JERRAYA, A.,
CARLONI, L. P., MARANINCHI, F., and REGEHR, J., eds.), pp. 133–142, ACM,
2012.

[14] BOCCHINO, JR., R. L., ADVE, V. S., DIG, D., ADVE, S. V., HEUMANN, S.,
KOMURAVELLI, R., OVERBEY, J., SIMMONS, P., SUNG, H., and VAKILIAN,
M., “A type and effect system for deterministic parallel java,” in Proceeding
of the 24th ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pp. 97–116, 2009.

177

[15] BOEHM, H. J., “Space efficient conservative garbage collection,” SIGPLAN
Not., vol. 39, pp. 490–501, April 2004.

[16] BOND, M. and MCKINLEY, K., “Tolerating memory leaks,” in Proceedings of
the 23rd ACM SIGPLAN OOPSLA, ACM, 2008.

[17] BOND, M. D. and MCKINLEY, K., “Leak pruning,” in Proceeding of the 14th
ASPLOS, pp. 277–288, ACM, 2009.

[18] BOND, M. D. and MCKINLEY, K. S., “Bell: bit-encoding online memory leak
detection,” in Proc. of the 12th ASPLOS, (New York, USA), 2006.

[19] BROWN, J. A., WANG, H., CHRYSOS, G., WANG, P. H., and SHEN, J. P.,
“Speculative Precomputation on Chip Multiprocessors,” in the 6th Workshop
on Multithreaded Execution, Architecture (MTEAC-6), November 2002.

[20] BRUENING, D. and ZHAO, Q., “Practical memory checking with dr. mem-
ory,” in Proc. of the 9th CGO, pp. 213–223, 2011.

[21] C. JUNG AND THE GCC TEAM, “GCC, the GNU Compiler Collection, 4.5
Contribution,” 2010. http://gcc.gnu.org/news.html.

[22] CARLSTROM, B. D., Programming With Transactional Memory. PhD thesis,
Stanford University, 2008.

[23] CHANDRA, R. and SINNEN, O., “Improving application performance with
hardware data structures,” Tech. Rep. 678, Stanford University, Mar. 2010.

[24] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A.,
BURROWS, M., CHANDRA, T., FIKES, A., and GRUBER, R. E., “Bigtable: A
distributed storage system for structured data,” in Proc. of 7th USENIX OSDI,
2006.

[25] CHEN, D., VACHHARAJANI, N., HUNDT, R., LI, X., ERANIAN, S., CHEN,
W., and ZHENG, W., “Taming hardware event samples for precise and ver-
satile feedback directed optimizations,” Computers, IEEE Transactions on.

[26] CHEREM, S., PRINCEHOUSE, L., and RUGINA, R., “Practical memory leak
detection using guarded value-flow analysis,” in Proc. of 28th PLDI’07.

[27] CHILIMBI, T. M., “Heapmd: Identifying heap-based bugs using anomaly
detection,” in In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2006.

[28] CHILIMBI, T. M. and HAUSWIRTH, M., “Low-overhead memory leak detec-
tion using adaptive statistical profiling,” in Proc. of 11th ASPLOS’04.

[29] CHILIMBI, T. M., HILL, M. D., and LARUS, J. R., “Cache-conscious structure
layout,” pp. 1–12, May 1999.

178

[30] CHUNG, I.-H., Towards Automatic Performance Tuning. PhD thesis, University
of Maryland, College Park, 2004.

[31] CLAUSE, J. and ORSO, A., “Leakpoint: pinpointing the causes of memory
leaks,” in Proc. of the 32nd ICSE, (New York, NY, USA), 2010.

[32] COLLINS, J. D., TULLSEN, D. M., WANG, H., and SHEN, J. P., “Dynamic
speculative precomputation,” in Proceedings of The 34th International Sympo-
sium on Microarchitecture (MICRO-34), December 2001.

[33] COZZIE, A., STRATTON, F., XUE, H., and KING, S., “Digging for Data Struc-
tures,” pp. 255–266, 2008.

[34] CVE DETAILS, “Common Vulnerabilities and Exposures (CVE),” 2013.
http://www.cvedetails.com.

[35] CWE DETAILS, “Common Weakness Enumeration (CWE),” 2013.
http://cwe.mitre.org/data/definitions/401.html.

[36] DEAN, J. and GHEMAWAT, S., “Mapreduce: simplified data processing on
large clusters,” in Proc. of 5th USENIX OSDI, 2004.

[37] DEKKER, R. and VERVERS, F., “Abstract data structure recognition,” in
Knowledge-Based Software Engineering Conference, pp. 133–140, Sept. 1994.

[38] DELORIMIER, M., KAPRE, N., MEHTA, N., RIZZO, D., ESLICK, I., RUBIN, R.,
URIBE, T. E., KNIGHT, T. F., and DEHON, A., “Graphstep: A system archi-
tecture for sparse-graph algorithms,” in In Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines. IEEE, IEEE Computer So-
ciety, 2006.

[39] DEMSKY, B. and RINARD, M. C., “Goal-directed reasoning for specification-
based data structure repair,” IEEE Transactions on Software Engineering,
vol. 32, no. 12, pp. 931–951, 2006.

[40] DEMSKY, B., ERNST, M. D., GUO, P. J., MANT, S. M., PERKINS, J. H., and
RINARD, M. C., “Inference and enforcement of data structure consistency
specification s,” in International Symposium on Software Testing and Analysis,
pp. 233–244, 2006.

[41] DIMACS, “The 9th dimacs implementation challenge - shgortest paths.”
http://www.dis.uniroma1.it/ challenge9/.

[42] DING, S. Q. and XIANG, C., “Overfitting problem: a new perspective from
the geometrical interpretation of mlp,” pp. 50–57, 2003.

[43] DING, Y., KANDEMIR, M., RAGHAVAN, P., and IRWIN, M., “A helper thread
based edp reduction scheme for adapting application execution in cmps,”
pp. 1–14, 2008.

179

[44] DONGARRA, J., LONDON, K., MOORE, S., MUCCI, P., and TERPSTRA, D.,
“Using papi for hardware performance monitoring on linux systems,” in
Proceedings of the 2nd International Conference on Linux Clusters: The HPC Rev-
olution, Linux Clusters Institute, 2001.

[45] DRONGOWSKI, P. J., “Instruction-based sampling: A new performance anal-
ysis technique for amd family 10h processors,” 2007.

[46] DUBACH, C., CAVAZOS, J., FRANKE, B., FURSIN, G., O’BOYLE, M. F. P.,
and TEMAM, O., “Fast compiler optimisation evaluation using code-feature
based performance prediction,” in ACM International Conference on Comput-
ing Frontiers, 2007.

[47] EDWARD WUSTENHOFF, “Service Level Aggrement in the Data Center,”
2002.

[48] ERANIAN, S., Perfmon2: a Standard Performance Monitoring Interface.

[49] ERNST, M. and OTHERS, “The Daikon system for dynamic detection of likely
invariants,” Science of Computer Programming, vol. 69, pp. 35–45, Dec. 2007.

[50] GANTZ, J., CHUTE, C., MANFREDIZ, A., MINTON, S., REINSEL, D.,
SCHLICHTING, W., and TONCHEVA, A., “The diverse and exploding digi-
tal universe,” 2008. International Data Corporation.

[51] GHEMAWAT, S., GOBIOFF, H., and LEUNG, S.-T., “The google file system,”
in Proc. of the 19th SOSP, (New York, NY, USA), 2003.

[52] GHIYA, R. and HENDREN, L. J., “Is it a tree, a dag, or a cyclic graph? a
shape analysis for heap-directed pointers in c,” in ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Jan. 1996.

[53] GOOGLE, “Google code search,” 2009. http://www.google.com/codesearh.

[54] GUSFIELD, D., Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[55] HASSOUN, M. H., Fundamentals of Artificial Neural Networks. Cambridge,
MA, USA: MIT Press, 1995.

[56] HASTINGS, R. and JOYCE, B., “Purify: Fast detection of memory leaks and
access errors,”

[57] HEINE, D. L. and LAM, M. S., “A practical flow- and context-sensitive c/c++
memory leak detector,” in Proc. of the 23rd PLDI, 2003.

[58] HIND, M., “Pointer analysis: haven’t we solved this problem yet?,” pp. 54–
61, June 2001.

180

[59] HUSSEIN, F., “Genetic algorithms for feature selection and weighting, a re-
view and study,” in ICDAR ’01: Proceedings of the Sixth International Confer-
ence on Document Analysis and Recognition, (Washington, DC, USA), p. 1240,
2001.

[60] Intel Corporation, CA, Intel R©Microarchitecture Codename Nehalem Perfor-
mance Monitoring Unit Programming Guide, 2010.

[61] ITRS, “International technology roadmap for semi-
conductors exectutive summary, 2008 update,” 2008.
http://www.itrs.net/Links/2008ITRS/Update/2008 Update.pdf.

[62] JARMULAK, J. and CRAW, S., “S.: Genetic algorithms for feature selection
and weighting. in,” in Proceedings of the IJCAI’99 workshop on Automating the
Construction of Case Based Reasoners, pp. 28–33, 1999.

[63] JOURNAL OF INSTRUCTION LEVEL PARALLELISM, “3rd workshop on com-
puter architecture competitions: Memory scheduling championship,” 2012.

[64] JULA, A. and RAUCHWERGER, L., “Two memory allocators that use hints to
improve locality,” in ISMM ’09: Proceedings of the 2009 international symposium
on Memory management, (New York, NY, USA), pp. 109–118, ACM, 2009.

[65] JUMP, M. and MCKINLEY, K. S., “Dynamic shape analysis via degree met-
rics,” in ISMM ’09: Proceedings of the 2009 international symposium on Memory
management, (New York, NY, USA), pp. 119–128, ACM, 2009.

[66] JUNG, C., LIM, D., LEE, J., and HAN, S., “Adaptive execution techniques for
SMT multiprocessor architectures,” pp. 236–246, 2005.

[67] JUNG, C. and CLARK, N., “Ddt: design and evaluation of a dynamic pro-
gram analysis for optimizing data structure usage,” in MICRO 42: Proceed-
ings of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, (New York, NY, USA), pp. 56–66, ACM, 2009.

[68] JUNG, C., LIM, D., LEE, J., and SOLIHIN, Y., “Helper thread prefetching for
loosely-coupled multiprocessor systems,” in Proceedings of the 20th interna-
tional conference on Parallel and distributed processing, IPDPS’06, (Washington,
DC, USA), pp. 140–140, IEEE Computer Society, 2006.

[69] JUNG, C., WOO, D.-K., KIM, K., and LIM, S.-S., “Performance characteriza-
tion of prelinking and preloading for embedded systems,” in Proc. of the 7th
ACM & IEEE EMSOFT, (New York, NY, USA), 2007.

[70] JUNG, Y. and YI, K., “Practical memory leak detector based on parameter-
ized procedural summaries,” in Proc. of the 7th ISMM, 2008.

181

[71] KIM, D. and YEUNG, D., “Design and Evaluation of Compiler Algorithms
for Pre-Execution,” in the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-X), pp. 159–170,
October 2002.

[72] KIM, M., KIM, H., and LUK, C.-K., “Sd3: A scalable approach to dynamic
data-dependence profiling,” in 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 2010, 4-8 December 2010, Atlanta, Georgia,
USA, pp. 535–546, IEEE, 2010.

[73] KOTSIANTIS, S. B., “Supervised machine learning: A review of classification
techniques.,” Informatica (Slovenia), vol. 31, no. 3, pp. 249–268, 2007.

[74] KULKARNI, M. and OTHERS, “Optimistic Parallelism Requires Abstrac-
tions,” pp. 211 – 222, June 2007.

[75] KUNCAK, V., LAM, P., ZEE, K., and RINARD, M. C., “Modular pluggable
analyses for data structure consistency,” IEEE Transactions on Software Engi-
neering, vol. 32, no. 12, pp. 988–1005, 2006.

[76] LAMPORT, L., “Specifying concurrent program modules,” ACM Trans. Pro-
gram. Lang. Syst., vol. 5, pp. 190–222, Apr. 1983.

[77] LATTNER, C. and ADVE, V., “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” pp. 75–86, 2004.

[78] LATTNER, C. A., Macroscopic data structure analysis and optimization. PhD
thesis, Champaign, IL, USA, 2005. Adviser-Adve, Vikram.

[79] LEATHER, H., BONILLA, E., and O’BOYLE, M., “Automatic Feature Genera-
tion for Machine Learning Based Optimizing Compilation,” Mar. 2009.

[80] LEE, J., JUNG, C., LIM, D., and SOLIHIN, Y., “Prefetching with helper
threads for loosely coupled multiprocessor systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 9, pp. 1309–1324, 2009.

[81] LEE, J., PARK, J.-H., KIM, H., JUNG, C., LIM, D., and HAN, S., “Adaptive
execution techniques of parallel programs for multiprocessors,” J. Parallel
Distrib. Comput., vol. 70, pp. 467–480, May 2010.

[82] LEE, J., WU, H., RAVICHANDRAN, M., and CLARK, N., “Thread Tailor :
Dynamically Weaving Threads Together for Efficient , Adaptive Parallel Ap-
plications,” Language, 2010.

[83] LEE, S. and TUCK, J., “Parallelizing Mudflap using Thread-Level Specula-
tion on a Chip Multiprocessor,” pp. 72–80, 2008.

[84] LEE, S., TIWARI, D., SOLIHIN, Y., and TUCK, J., “Haqu: Hardware-
accelerated queueing for fine-grained threading on a chip multiprocessor.,”
in HPCA, pp. 99–110, IEEE Computer Society, 2011.

182

[85] LEISERSON, C., SCIENCE., C.-M. U. P. P. D. O. C., and DEPT, C.-M. U.
C. S., Systolic Priority Queues. Defense Technical Information Center, 1979.

[86] LIAO, C., QUINLAN, D. J., WILLCOCK, J. J., and PANAS, T., “Extending au-
tomatic parallelization to optimize high-level abstractions for multicore,” in
IWOMP ’09: Proceedings of the 5th International Workshop on OpenMP, pp. 28–
41, 2009.

[87] LIU, L. and RUS, S., “perflint: A Context Sensitive Performance Advisor for
C++ Programs,” Mar. 2009.

[88] LUK, C.-K., “Tolerating Memory Latency through Software-Controlled Pre-
Execution in Simultaneous Multithreading Processors,” in Proceedings of the
29th International Symposium on Computer Architecture, June 2001.

[89] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY,
G., WALLACE, S., REDDI, V. J., and HAZELWOOD, K., “Pin: building cus-
tomized program analysis tools with dynamic instrumentation,” in Proc. of
the 25th PLDI.

[90] MALHOTRA, V. and KOZYRAKIS, C., “Library-based prefetching for pointer-
intensive applications,” 2006.

[91] MENCER, O., HUANG, Z., and HUELSBERGEN, L., “Hagar: Efficient multi-
context graph processors,” in Proceedings of the Reconfigurable Computing Is
Going Mainstream, 12th International Conference on Field-Programmable Logic
and Applications, FPL ’02, (London, UK, UK), pp. 915–924, Springer-Verlag,
2002.

[92] MENS, T. and TOURWE, T., “A survey of software refactoring,” IEEE Trans-
actions on Software Engineering, vol. 30, no. 2, pp. 126–139, 2004.

[93] MEREDITH, B., “Omega: An instant leak detector tool for Valgrind,” 2008.
http://www.brainmurders.eclipse.co.uk/omega.html.

[94] MICHAEL PROCOPIO, “Cloud computing does not require virtualization,”
2011. http://www.enterprisecioforum.com.

[95] MICROSOFT SHAREPOINT FOUNDATION, “Hyper-V Performance Tests,”
2010. http://technet.microsoft.com/en-us/library/gg454734.aspx.

[96] MITCHELL, N., SCHONBERG, E., and SEVITSKY, G., “Four trends leading to
java runtime bloat,” IEEE Software, vol. 27, pp. 56–63, 2010.

[97] MITCHELL, N. and SEVITSKY, G., “The causes of bloat, the limits of health,”
in Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, (New York, NY, USA),
pp. 245–260, 2007.

183

[98] MITCHELL, T. M., Machine Learning. New York: McGraw-Hill, 1997.

[99] MONSIFROT, A., BODIN, F., and QUINIOU, R., “A machine learning ap-
proach to automatic production of compiler heuristics,” in AIMSA ’02: Pro-
ceedings of the 10th International Conference on Artificial Intelligence: Methodol-
ogy, Systems, and Applications, pp. 41–50, 2002.

[100] MOON, S.-W., SHIN, K. G., and REXFORD, J., “Scalable hardware priority
queue architectures for high-speed packet switches,” IEEE Trans. Comput.,
vol. 49, pp. 1215–1227, Nov. 2000.

[101] MOZILLA.ORG, “Mozilla Bugzilla,” 2012. https://bugzilla.mozilla.org.

[102] MUCHNICK, S., Advanced Compiler Design Implementation. Morgan Kauf-
mann Publishers, 1997.

[103] NAGAPPAN, N., MAXIMILIEN, E. M., BHAT, T., and WILLIAMS, L., “Re-
alizing quality improvement through test driven development: results and
experiences of four industrial teams,” Empirical Softw. Eng., 2008.

[104] NETHERCOTE, N. and SEWARD, J., “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proc. of the 28th PLDI, 2007.

[105] NIKOLAEV, R. and BACK, G., “Perfctr-xen: a framework for performance
counter virtualization,” in Proc. of the 7th ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, VEE ’11, 2011.

[106] NOVARK, G., BERGER, E. D., and ZORN, B. G., “Efficiently and precisely
locating memory leaks and bloat,” in Proc. of the 30th PLDI, 2009.

[107] PAYNE, B. D., Improving Host-Based Computer Security Using Secure Active
Monitoring and Memory Analysis. PhD thesis, Georgia Institute of Technol-
ogy, 2010.

[108] PUSUKURI, K. K., GUPTA, R., and BHUYAN, L. N., “Thread reinforcer: Dy-
namically determining number of threads via os level monitoring,” in Pro-
ceedings of the 2011 IEEE International Symposium on Workload Characterization,
IISWC ’11, (Washington, DC, USA), pp. 116–125, IEEE Computer Society,
2011.

[109] QIN, F., LU, S., and ZHOU, Y., “Safemem: Exploiting ecc-memory for de-
tecting memory leaks and memory corruption during production runs,” in
Proc. of the 11th HPCA, 2005.

[110] QUILICI, A., “Reverse engineering of legacy systems: a path toward suc-
cess,” in Proceedings of the 17th International Conference on Software Engineer-
ing, pp. 333–336, 1995.

184

[111] RAMAN, E. and AUGUST, D. I., “Recursive data structure profiling,” in ACM
SIGPLAN Workshop on Memory Systems Performance, June 2005.

[112] REN, G., TUNE, E., MOSELEY, T., SHI, Y., RUS, S., and HUNDT, R., “Google-
wide profiling: A continuous profiling infrastructure for data centers,” IEEE
Micro, vol. 30, no. 4.

[113] RUGINA, R., “Quantitative shape analysis,” in In Static Analysis Symposium
(SAS04, pp. 228–245, SpringerVerlag, 2004.

[114] RUMELHART, D. E., HINTON, G. E., and WILLIAMS, R. J., “Learning inter-
nal representations by error propagation,” pp. 673–695, 1988.

[115] S. ERANIAN, “Perfmon2: a flexible performance monitoring interface for
linux,” in In Ottawa Linux Symposium (OLS), 2006.

[116] SAGIV, M., REPS, T., and WILHELM, R., “Parametric Shape Analysis via 3-
Valued Logic,” ACM Trans. Programming Languages and Systems, vol. 24, no. 3,
pp. 217–298, 2002.

[117] SAGIV, M., REPS, T., and WILHELM, R., “Solving shape-analysis problems
in languages with destructive updating,” in Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’96, (New York, NY, USA), pp. 16–31, ACM, 1996.

[118] SCHONBERG, E., SCHWARTZ, J. T., and SHARIR, M., “An automatic tech-
nique for selection of data representations in setl programs,” ACM Trans.
Program. Lang. Syst., vol. 3, pp. 126–143, April 1981.

[119] SCHWARTZ, J. T., “Automatic data structure choice in a language of very
high level,” in POPL ’75: Proceedings of the 2nd ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pp. 36–40, 1975.

[120] SHACHAM, O., VECHEV, M., and YAHAV, E., “Chameleon: adaptive selec-
tion of collections,” in PLDI ’09: Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation, pp. 408–418, 2009.

[121] SIEDLECKI, W. and SKLANSKY, J., “A note on genetic algorithms for large-
scale feature selection,” Pattern Recogn. Lett., vol. 10, no. 5, pp. 335–347, 1989.

[122] SLEATOR, D. D. and TARJAN, R. E., “Self-adjusting binary search trees,” J.
ACM, vol. 32, no. 3, pp. 652–686, 1985.

[123] SNEVELY, R., Enterprise Data Center Design and Methodology. Prentice Hall,
2002.

[124] SOLIHIN, Y., LEE, J., and TORRELLAS, J., “Using a user-level memory thread
for correlation prefetching,” in Proceedings of the 29th International Symposium
on Computer Architecture, May 2002.

185

[125] STEPANOV, A. and LEE, M., “The standard template library,” tech. rep.,
WG21/N0482, ISO Programming Language C++ Project, 1994.

[126] STEPHENSON, M. W., Automating the Construction of Compiler Heuristics Us-
ing Machine Learning. PhD thesis, Massachusetts Institute of Technology,
2006.

[127] STLPORT STANDARD LIBRARY PROJECT, “Standard C++ Library Implemen-
tation for Borland C++ Builder 6 (STLport),” 2009.

[128] TANG, Y., TANG, Y., GAO, Q., GAO, Q., QIN, F., and QIN, F., “Leaksurvivor:
towards safely tolerating memory leaks for garbage-collected languages,” in
Proc. of USENIX 2008 Annual Technical Conference.

[129] THE APACHE SOFTWARE FOUNDATION, “The Apache C++ Standard Library
(STDCXX),” 2009.

[130] THE GCC TEAM, “GCC C++ standard library,” 2010.
http://gcc.gnu.org/libstdc++.

[131] THE GCC TEAM, “GCC, the GNU Compiler Collection,” 2010.
http://gcc.gnu.org.

[132] THE GNOME PROJECT, “GLib 2.20.0 Reference Manual,” 2009.

[133] TRIANTAFYLLIS, S., BRIDGES, M. J., RAMAN, E., OTTONI, G., and AUGUST,
D. I., “A framework for unrestricted whole-program optimization,” in In
ACM SIGPLAN 2006 Conference on Programming Language Design and Imple-
mentation, pp. 61–71, 2006.

[134] TRIMARAN, “An infrastructure for research in ILP,” 2000.
http://www.trimaran.org/.

[135] TSAY, J.-J., “An efficient implemention of priority queues using fixed-sized
systolic coprocessors,” Inf. Process. Lett., vol. 46, no. 4, pp. 193–198, 1993.

[136] UPADHYAYA, G., MIDKIFF, S. P., and PAI, V. S., “Using data structure
knowledge for efficient lock generation and strong atomicity,” in PPoPP ’10:
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, (New York, NY, USA), pp. 281–292, ACM, 2010.

[137] WANG, Z. and O’BOYLE, M. F., “Mapping parallelism to multi-cores: a ma-
chine learning based approach,” in PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pp. 75–
84, 2009.

[138] WHITTAKER, J., How to Break Software Security. Addision Wesley.

[139] WILCOX, R., Introduction to Robust Estimation and Hypothesis Testing. Elsevier
Science & Technology, 2012.

186

[140] WILHELM, R., SAGIV, M., and REPS, T., “Shape analaysis,” Mar. 2000.

[141] WILLIAMS, S., OLIKER, L., VUDUC, R., SHALF, J., YELICK, K., and DEM-
MEL, J., “Optimization of Sparse Matrix-Vector Multiplication on Emerging
Multicore Platforms,” 2007.

[142] WIRTH, N., Algorithms + Data Structures = Programs. Prentice Hall, 1978.

[143] WU, L., KIM, M., and EDWARDS, S., “Cache impacts of datatype accelera-
tion,” IEEE Comput. Archit. Lett., vol. 11, pp. 21–24, Jan. 2012.

[144] XIE, Y. and AIKEN, A., “Context- and path-sensitive memory leak detec-
tion,” in In Proc. of ESEC/FSE 2005, ACM Press, 2005.

[145] XU, G., BOND, M. D., QIN, F., and ROUNTEV, A., “Leakchaser: helping
programmers narrow down causes of memory leaks,” in Proc. of the 32nd
PLDI, 2011.

[146] XU, G., MITCHELL, N., ARNOLD, M., ROUNTEV, A., and SEVITSKY, G.,
“Software bloat analysis: finding, removing, and preventing performance
problems in modern large-scale object-oriented applications,” in Proceedings
of the FSE/SDP workshop on Future of software engineering research, FoSER ’10,
(New York, NY, USA), pp. 421–426, ACM, 2010.

[147] XU, G. and ROUNTEV, A., “Precise memory leak detection for java software
using container profiling,” in Proc. of the 30th ICSE, 2008.

[148] XU, G. and ROUNTEV, A., “Detecting inefficiently-used containers to avoid
bloat,” in ACM SIGPLAN 2010 Conference on Programming Language Design
and Implementation, ACM, 2010.

[149] ZEE, K., KUNCAK, V., and RINARD, M., “Full functional verification of
linked data structures,” pp. 349–361, June 2008.

[150] ZHANG, X., NAVABI, A., and JAGANNATHAN, S., “Alchemist: A transparent
dependence distance profiling infrastructure,” in Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’09, (Washington, DC, USA), pp. 47–58, IEEE Computer Society, 2009.

[151] ZILLES, C. B. and SOHI, G. S., “Execution-based prediction using specu-
lative slices,” in Proceedings of The 28th International Symposium on Computer
Architecture (ISCA’01), July 2001.

187

