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SUMMARY

Unwary computer users are often blamed as the weakest link on the security chain,

for unknowingly facilitating incoming cyber attacks and jeopardizing the efforts to

secure systems and networks. However, in my opinion, average users should not bear

the blame because of their lack of expertise to predict the security consequence of

every action they perform, such as browsing a webpage, downloading software to their

computers, or installing an application to their mobile devices.

My thesis work aims to secure software and systems by reducing or eliminating

the chances where users’ mere action can unintentionally enable external exploits

and attacks. In achieving this goal, I follow two complementary paths: (i) building

runtime monitors to identify and interrupt the attack-triggering user actions [58, 59];

(ii) designing offline detectors for the software vulnerabilities that allow for such

actions [57, 25]. To maximize the impact, I focus on securing software that either

serve the largest number of users (e.g. web browsers) or experience the fastest user

growth (e.g. smartphone apps), despite the platform distinctions.

I have addressed the two dominant attacks through which most malicious software

(a.k.a. malware) infections happen on the web: drive-by download and rogue websites.

BLADE [59], an OS kernel extension, infers user intent through OS-level events and

prevents the execution of download files that cannot be attributed to any user intent.

Operating as a browser extension and identifying malicious post-search redirections,

SURF [58] protects search engine users from falling into the trap of poisoned search

results that lead to fraudulent websites. In the infancy of security problems on mobile

devices, I built Dalysis, the first comprehensive static program analysis framework
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for vetting Android apps in bytecode form. Based on Dalysis, CHEX detects the

component hijacking vulnerability in large volumes of apps [57].

My thesis explores, realizes, and evaluates a new perspective of securing software

and system, which limits or avoids the unwanted security consequences caused by un-

wary users. It shows that, with the proposed approaches, software can be reasonably

well protected against attacks targeting its unwary users. The knowledge and insights

gained throughout the course of developing the thesis have advanced the community’s

awareness of the threats and the increasing importance of considering unwary users

when designing and securing systems. Each work included in this thesis has yielded

at least one practical threat mitigation system. Evaluated by the large-scale real-

world experiments, these systems have demonstrated the effectiveness at thwarting

the security threats faced by most unwary users today. The threats addressed by this

thesis have span multiple computing platforms, such as desktop operating systems,

the Web, and smartphone devices, which highlight the broad impact of the thesis.
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CHAPTER I

INTRODUCTION

1.1 Thesis Overview

The increasing efforts of securing computer and communication systems has greatly

reduced the attack surface of today’s software and networks, making extremely diffi-

cult to directly launch remote attacks. As a result, cyber attackers are switching to

the new strategies that are more subtle and often require victims to unintentionally

expose extra attack surface. Thanks to the vast number of unwary and uninformed

computer users who are incapable of recognizing their attack-enabling actions, such

as visiting a compromised webpage or downloading malicious software, the new at-

tack strategies have seen a wide adoption during the past a few years and helped

attackers bypass the-state-of-art defenses, as highlighted by the recent system intru-

sions into Google and RSA [15, 18], as well as the surge of the so-called watering hole

attacks [20].

In face of this new and rising trend of conducting cyber attacks, most existing

defense and mitigation techniques become inadequate or even ineffective. This is

largely because they focus on voiding the conditions that were necessary to the success

of attacks but now are no longer required thanks to the exploitation of unwary users.

Traditional firewalls and intrusion detection systems serve as a clear example: their

designs unanimously assume that external attacks should always be initiated by the

remote side, and thus solely focus their attention on inbound connection requests.

However, outbound requests, issued by a misinformed or uninformed user, may also

introduce advanced attacks, such as drive-by download, rogue webpages and etc,

which easily breaks the aforementioned detections.
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In comparison, my thesis work aims to secure software and systems by reducing or

eliminating the chances where users’ mere action can unintentionally enable external

exploits and attacks. In achieving this goal, I follow two complementary approaches:

• Building runtime monitors to identify and interrupt the attack-triggering user

actions [58, 59];

• Designing offline detectors for the software vulnerabilities that allow for such

actions [57, 25].

To pursue a maximum impact, my work focuses on software that either serve the

largest number of users (e.g. operating systems and web browsers) or experience the

fastest user growth (e.g. smartphone apps).

Specifically, my work addresses the two dominant attacks through which most

malicious software (a.k.a. malware) infections happen on the web: drive-by download

and rogue websites. BLADE [59], an OS kernel extension, infers user intent through

OS-level events and prevents the execution of download files that cannot be attributed

to any user intent. Operating as a browser extension and identifying malicious post-

search redirections, SURF [58] protects search engine users from falling into the trap

of poisoned search results that lead to fraudulent websites. In the infancy of security

problems on mobile devices, I built Dalysis, the first comprehensive static program

analysis framework for vetting Android apps in bytecode form. Based on Dalysis,

CHEX detects the component hijacking vulnerability in large volumes of apps [57].

1.2 Blocking Web-borne Malware at OS Level

Accounting for the majority malware infections on the web, drive-by download,

launched by a booby-trapped webpage, exploits vulnerabilities inside visitors’ web

browsers, email clients, or even operating systems, in order to surreptitiously install

persistent malware. Current preventive efforts are largely passive and attack-specific.
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They patch the vulnerabilities and block the offending websites only when new attack

intelligence becomes available. As indicated by the recent Google and RSA incidents,

such efforts are useless to fresh attacks and often incur a response period that is long

enough for attackers to quickly accumulate victims or launch targeted attacks.

Recognizing that drive-by download requires a user to willingly visit a webpage

without knowing the consequent attack, I designed and built BLADE to robustly pre-

vent web surfers from the entire class of drive-by download, regardless of the targeted

vulnerabilities or other attack specifics [59]. BLADE alerts the absence of user intent

for browsers to download and execute remote files (i.e. coerced by an ongoing at-

tack), and in turn blocks the surreptitious install of malware. The research problems,

involving multiple aspects of OS managing user interactions, networking, and filesys-

tems, lie in the fundamental tasks of BLADE: (i) infer authentic download intent from

user interaction events; (ii) correlate inferred user intent to resulting download files;

(iii) prevent unintended download files from being loaded as binary code into the

memory. BLADE relies on hardware interrupt events (i.e. unforgeable by software) to

infer user intent. BLADE listens to the IOCTL messages from human input devices to

the OS (e.g. raw mouse clicks and keyboard strokes) and recovers their semantics

by referring to the GUI subsystem. Once a download intent is captured, represented

by the expected network source and the file information, BLADE discovers the result-

ing download file and validates its origin by matching the file content with recorded

network traffic from the source. For files that are downloaded without a direct user

intent, consisting of legitimate webpage-included files and dropped malware, BLADE

makes them only accessible to their respective owner processes and disallows their

execution and propagation, so that the normal functioning of browsers remains in-

tact and malware stay harmless. I implemented BLADE on Windows as a collection of

kernel drivers, compatible with all major web browsers.

BLADE has gained a considerable amount of media coverage and technology transfer
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inquiries from the industry. It has also been incorporated into a large-scale web

security survey project funded by the World Economic Forum. Working on BLADE

strengthened my expertise and interest in the security aspects of operating systems

and web technologies. It enlightened me with an overall picture of the real-world

threats plaguing current web users.

1.3 Preventing Rogue Websites at Browser Level

Tricking visitors with sophisticated social engineering techniques, rogue websites have

seen a dramatic increase in its share of today’s illicit websites, primarily aiding mal-

ware propagations and scam promotions. This trend reflects an important shift of

cyberattack strategy—from solely targeting software vulnerabilities to a combined

approach that also exploits unwary human users. This shift, partly forced by the

efforts of making software less exploitable, reveals an alarming fact that current de-

signs of software and security countermeasures have failed to prevent the users from

unintentionally or deludedly enabling attacks. My work aims to fill this blank.

Leveraging on browser instrumentation, my work addresses the rogue website

prevention via two complementary approaches: (i) check for signs of fraudulence as

the current webpage unfolds; (ii) check for signs of approaching a rogue website as

the browsing session proceeds. Each approach captures the invariants of different

classes of rogue websites. Following the first approach, I designed a method, applying

image and text matching techniques on fine-grained HTML components, to measure

the human-perceptible resemblance among webpages. It is particularly useful for

detecting rogue websites that pose as providing well-known services, because these

websites bear inherent visual resemblance to the legitimate providers. The prototype

I developed is now protecting the users of Microsoft Bing and Yahoo from stumbling

upon scareware websites [76].

The second approach are suited for rogue websites that do not exhibit invariants
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in their appearances. Rogue websites usually require certain types of referring pro-

cess to lure visitors and cheat their trust. Among many options, search poisoning

has quickly emerged as attackers’ favorite choice, maneuvering search engines into

displaying arbitrary webpages as part of the search results for popular keywords. To

prevent users from falling victim to poisoned search results and the rogue websites

hidden behind, I designed and built SURF [58], a browser extension that inspects

live browsing sessions and alerts the user in realtime when a poisoned search result

is encountered. From three sources—internal events of the browser, network level

information, and search term characteristics—SURF extracts nine detection features,

which are carefully selected and evaluated in terms of their individual robustness and

collective distinguishability. Based on these features, a decision tree model, trained

with large volumes of real world samples, determines if the current browsing session

is heading to a rogue website under the disguise of a relevant search result. SURF has

made two major contributions. First, its realtime, in-browser, and malice-agnostic de-

tection method directly protects web surfers from all kinds of social-engineering-based

websites that employ search poisoning. Second, SURF prototype allows for the first

large-scale empirical study of search poisoning in reality, which spans seven months

in time and monitors poisoned search results in major search engines. The result

reveals shocking facts that hint at the ineffectiveness of existing detection methods,

and it offers insights into the highly stealthy and efficient operations behind search

poisoning attacks.

1.4 Vetting Smartphone Apps at Market Level

I have recently expanded my research onto the smartphone platforms with the same

focus on protecting end users, as mobile devices continue to gain huge numbers of

users and offload more and more user-centric applications from traditional computers.
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The design of smartphone OS adopts rather strict policies that govern apps’ develop-

ment and distribution, enforce least-privileges and isolation among apps, and forbid

modifications to the underlying system and hardware. Having significantly raised the

bottom line of smartphone security, these policies, however, may be put in vein by

users who unknowingly install vulnerable or malicious apps. Due to the inadequate

app quality assurance and large presence of amateur developers, a significant amount

of vulnerable apps may have been produced and found their way to users’ devices, as

revealed by the Facebook and Skype incidents.

The centralized app distribution model provides an opportunity to vet apps before

releasing them to users. To support research along this line, I designed Dalysis [57],

a comprehensive program analysis framework for Android apps that aims at enabling

market-scale vetting tasks. Its front end, built from scratch to consume off-the-

shelf Android apps, compiles the Dalvik bytecode into an intermediate representation

(IR) used by the IBM WALA project, and then converts the IR into the static single

assignment (SSA) form. Comparing with decompilation-based approach, Dalysis takes

more efforts to implement yet avoid loss of accuracy and unscalable overhead. The

extensible back end hosts an array of basic program analyzers, including call graph

builder, data-flow analyzer, and etc., which serve as building blocks of vetting methods

for different types of vulnerabilities and malice.

Component hijacking is a broad class of vulnerabilities that allow unauthorized

apps to access the private or protected resources of the vulnerable app via its public

components. I modeled this vulnerability from a data-flow perspective and designed

CHEX [57], a vetting method that searches for hijack-enabling data-flows on an aug-

mented system dependence graph (SDG) derived from the app code. The event-based

programing paradigm of Android apps imposes challenges, such as multiple entry

points and asynchronous components, to the inter-procedural and context-sensitive

analysis. CHEX overcomes them by proposing a novel entry point discovery algorithm
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and the app-splitting technique to efficiently model the asynchronous executions,

which can also serve other types of app analysis. As I did for my other works, I

evaluated CHEX by conducting a large-scale empirical experiment, which tested over

five thousand real apps and confirmed the capability of CHEX to accurately vet large

volumes of apps. My case studies on the vulnerable apps found during the experi-

ment show that component hijacking can enable a variety of attacks, including those

previously unseen on Android platform, such as script injection and data tampering.

CHEX is now being commercialized by NEC Corp.

In addition to static analysis, my research also involves designing dynamic pro-

gram analysis methods to investigate apps’ impact on users’ privacy and security. A

very recent project of mine addresses the lack of comprehensive understanding about

the causes and approaches for apps to access and handle users’ private data, which

is necessary for the research community to come up with generically applicable yet

sufficiently restrictive policies and mechanisms that govern privacy consumptions on

smartphones. To do so, we built a specialized information flow tracking tool, which

rewrites .Net assembly of Windows Phone apps to conduct instruction-level instru-

mentation. It not only tracks the acquisition and propagation of private data inside

an app as it runs, but also records detailed execution context along the tracked paths,

providing semantics of movement and manipulation of private data. We plan to inte-

grate our analysis into the app reviewing process at Windows App Market and reveal

the private data consumption based on a large volume of apps.

1.5 Thesis Contributions

In summary, this thesis makes the following technical contributions to the security

research community:

1. It proposes, explores, realizes, and evaluates a new perspective of securing soft-

ware and system, which limits or avoids the unwanted security consequences
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caused by unwary users. It also clarifies the importance of considering the pres-

ence and impact of unwary users when designing security methods and systems.

2. The knowledge and insights gained throughout the course of developing the

thesis have advanced the communitys understanding of several emerging threats

and related problem;

3. Each work included in this thesis has yielded at least one practical threat miti-

gation system, including several that have been adopted in real-world products

and services;
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CHAPTER II

BLADE: AN ATTACK-AGNOSTIC APPROACH FOR

PREVENTING DRIVE-BY MALWARE INFECTIONS

Web-based surreptitious malware infections (i.e., drive-by downloads) have become

the primary method used to deliver malicious software onto computers across the

Internet. To address this threat, we present a browser-independent operating system

kernel extension designed to eliminate drive-by malware installations. The BLADE

(Block All Drive-by download Exploits) system [59] asserts that all executable files

delivered through browser downloads must result from explicit user consent and trans-

parently redirects every unconsented browser download into a nonexecutable secure

zone on disk. BLADE thwarts the ability of browser-based exploits to surreptitiously

download and execute malicious content by remapping to the filesystem only those

browser downloads to which a programmatically inferred user-consent is correlated,

BLADE provides its protection without explicit knowledge of any exploits and is thus

resilient against code obfuscation and zero-day threats that directly contribute to the

pervasiveness of today’s drive-by malware. We present the design of our BLADE

prototype implementation for the Microsoft Windows platform, and report results

from an extensive empirical evaluation of its effectiveness on popular browsers. Our

evaluation includes multiple versions of IE and Firefox, against 1,934 active malicious

URLs, representing a broad spectrum of web-based exploits now plaguing the Inter-

net. BLADE successfully blocked all drive-by malware install attempts with zero false

positives and a 3% worst-case performance cost.
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Figure 1: Overview of the BLADE system architecture

2.1 Drive-By Exploit

The web is an increasingly treacherous place. The mere act of connecting one’s

web browser to the wrong website may result in the installation of an application

without the user’s authorization or knowledge. Furthermore, attempting to limit

one’s browsing behavior to reputable and well-known websites is becoming a less

effective strategy, as malware developers are actively infiltrating these sites to spread

their malicious links [60].

To understand how BLADE defends client browsers from the current generation of

drive-by exploits, we first provide a more refined explanation of how drive-by exploits

operate. We can then identify the underlying common transaction performed by

drive-by exploits that BLADE ultimately aims to stop.

A drive-by download can be described as a series of steps that the adversary

performs to achieve the surreptitious download and installation of malware via the

victim’s browser. The goal of the drive-by exploit is to take effective, temporary

control of the client web browser for the purpose of forcing it to fetch, store, and

then execute a binary application (e.g., .exe, .dll, .msi, .sys) without revealing to the

human user that these actions have taken place. We present the drive-by exploit

strategy as a series of phases.
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Shellcode injection phase: The first challenge in delivering the drive-by exploit

is that of gaining temporary control of the browser. Uniformly, all drive-by exploits

begin with a remote code injection, such as buffer overflow exploit against some

component within the browser process, e.g., the ActiveX interpreter, a multimedia

plug-in, the PDF helper object, the Flash player etc.

Shellcode execution phase: Regardless of which exploit technique is selected

by the malware author, the objective of this exploit is to inject a small shellcode seg-

ment within the browser process to conduct covert binary installation (this essentially

defines the attack as a drive-by exploit).

Covert binary install phase: The final phase of the drive-by exploit is the

sequence of steps leading to the final, permanent infection of the client host. Here, the

shellcode effectively coerces the now tainted browser into fetching a remote malware

application from some remote source on the Internet, storing it within the filesystem

and executing it on the victim’s host.

2.2 Threat Model, Design Objectives, and Challenges

In our threat model, an adversary conducting drive-by download attacks is allowed

to hijack control of a vulnerable browser and inject remote code. BLADE assumes

that this attacker should have no persistent malware deployed on the target host

in advance, as otherwise the goal of the attack would have been already achieved.

Specifically, there is no rootkit from the adversary installed on the system, i.e., the

OS kernel is trusted. Although scenarios where the assumed attacker can remotely

exploit a kernel vulnerability via a browser exist, which are out of the scope of this

model, we argue that they are extremely rare and could be addressed by integrating

orthogonal OS integrity protection technologies, such as hypervisor-based protections,

with BLADE.

BLADE does not attempt to halt the drive-by exploit at the shellcode injection
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phase or the shellcode execution phase. Given the overwhelming diversity of browser

extensions, modules, and code changes that are continually churned out by the high-

paced browser development community, the task of stopping all shellcode injections

is a truly daunting challenge. Even with the introduction of OS-level protections

such as DEP and ASLR and browser-level sand-boxing, drive-by exploits are still

succeeding [47].

Rather, BLADE incorporates a different tactic in fighting drive-by attacks. From

BLADE’s perspective, the drive-by download attack conducts a series of steps de-

signed to bypass the normal user-content-handling procedure that should be per-

formed whenever a browser attempts to store this data to disk. The fetched binary

itself represents an unsupported browser type that cannot be handled and rendered

directly by the browser, but must be delivered through the standard user-initiated

consent-to-download dialog. BLADE aims to disrupt the covert binary install phase,

completely agnostic of which browser component was exploited or which shellcode

injection strategy was employed to achieve the initial browser hijack.

BLADE’s core mission is to foil the execution by any program entity (including the

OS), of any on-disk data content received through the browser process tree, unless

that content can be correlated with a user consent dialog event. BLADE enforces

this requirement while not interfering with normal browser operations in any way.

Specifically, we can accommodate automated software updating that is a common

practice among browsers and their plug-ins through source domain whitelisting 1.

Browser native code execution mechanisms (e.g. Native Client) are not affected by

BLADE since they rely on the preinstalled client, rather than the OS, to load and

execute the code.

Inherent in this task are several key technical challenges, which we outline here

and further cast as design goals that we directly address in this paper:

1Our current prototype does not implement this capability.
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• Real-time user authorization capture and interpretation – BLADE must monitor

user-to-browser interaction events to capture explicit user authorizations that permit

upcoming download actions. From each captured authorization, BLADE must extract

identity information pertaining to the expected download (i.e. remote URL, file name,

and local path) in order to uniquely identify the resulting file.

• Robust correlation between authorization and download content – BLADE must pro-

grammatically distinguish user-initiated browser downloads from unauthorized ones

and reliably correlate every authorization event with the corresponding binary stream

that is downloaded by the browser from the network.

• Stringent enforcement of execution prevention – Files containing unauthorized

download content must be stringently prevented from execution, while other types

of access from supervised processes are allowed. This enforcement must not impede

normal operations of browsers as well as other programs.

• Browser agnostic enforcement – BLADE must not depend on either the integrity of

browsers or their internal handling of tasks. We must assume that new browser attack

strategies will continue to evolve along with the rapid development of new browser

technologies. Browser updates or potential browser compromises caused by inevitable

software vulnerabilities must not affect the protection quality BLADE provides.

• Exploit and evasion independence – BLADE’s enforcement mechanism must be

entirely agnostic to exploits employed as the first step to subvert the browser into

performing drive-by downloads, and thus be immune to all kinds of sophisticated

evasion techniques including code obfuscations and zero-day vulnerabilities.

• Efficient and usable system performance – BLADE’s performance impact on browser

content handling must be negligible. Overall, BLADE should not impose percepti-

ble delays to normal browser operations, and have no impact on non-browser host

operations.
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Considering the threat model and design trade-offs, we believe that placing BLADE

as a dynamic loadable driver into the OS is a viable design choice to achieve our goals

listed above. To reliably capture and interpret user interactions and guarantee un-

forgeability, BLADE has to reside at least as low as the OS. Even in scenarios where

virtual machine monitoring systems are deployed, having BLADE inside the kernel

is more efficient than placing BLADE-equivalent functionalities inside the hypervisor

and more accurate than solely using virtual machine introspection.

2.3 BLADE System Architecture

Figure 5 illustrates the BLADE software architecture and its core components. The

front-end components, including the Screen Parser, Hardware-Event Tracer and Su-

pervisor are responsible for collecting information displayed on the screen and track-

ing user interactions when necessary. The Screen Parser monitors kernel windowing

events as the status of on-screen UI changes in real time. It signals the Supervi-

sor upon the appearance of a download consent dialog (or authorization dialog) on

the screen foreground and reports necessary information parsed from the screen (see

§ 2.3.1). A download consent dialog is defined as any prompt (dialog box) created

by browsers or plug-ins seeking download permission from the user. Due to the well-

defined application interface used by commodity browsers to implement download

confirmation dialogs, a small number of signatures (one or two per browser family)

are needed to capture all download consent events. Each signature captures the ex-

ternal appearance and the internal hierarchy shared by all UI instances of that class.

The Screen Parser uses these signatures to discover download consent dialogs, locate

the respective positions of confirmation elements on these UI dialogs (e.g. the “Save”

button), and extract the download identity information (e.g. URL, file name) to be

used in the correlation process. Upon receiving the signal from the Screen Parser,

the Supervisor invokes the Hardware-Event Tracer to intercept subsequent mouse
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and keyboard input events that would trigger the download confirmation. BLADE

relies on hardware events as the only dependable source of extracting user consent

information due to their unforgeability in our threat model (see § 2.3.3).

The Correlator and the I/O Redirector form the back end of the BLADE system.

They correlate inferred authorizations from the front end with resulting downloads

and enforce the nonexecution policy for downloads that are not directly requested

by the user. The Correlator ensures BLADE’s resistance to spoofing attacks such

as forged UI dialogs (discussed in § 2.4), by virtue of its capability to validate the

authenticity of the consequent file corresponding to a user download consent. We

define the download identity information as (URL, Path), i.e., a 2-tuple of the remote

URL and the local storage path, to uniquely delegate a user download authorization.

The Correlator matches a file f with a tuple (u, p) when f is saved at p with data

content received from u (see § 2.3.4).

The I/O Redirector persistently guarantees that uncorrelated downloads can do

no harm by establishing the secure zone. As its name suggests, the I/O Redirec-

tor intercepts disk write operations initiated from the browser process tree (namely,

supervised processes) and redirects them to the secure zone, where execution is ex-

plicitly prohibited by blocking memory-section synchronizations. We describe this in

more detail in § 2.3.5. By default all files downloaded by supervised processes are

transparently redirected to the secure zone. Files that pass the download correlation

process (i.e., where the content written is indeed from the user-authorized remote

URL) are subsequently moved out of the secure zone back to their original destina-

tion in the file system. This move is accomplished by modifying file system metadata

as opposed to copying the downloaded data, which can be finished in constant time.

Our design of the secure-zone-based I/O redirection with the capability to discern

user-initiated downloads enables a generic defense strategy that targets the common

behavioral pattern shared by all drive-by download attacks.
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Figure 2: Download authorization workflow

We now discuss the design details of the BLADE architecture components, in the

order of web download and authorization workflow as shown in Figure 2.

2.3.1 Screen Parser

BLADE’s download authorization lifecycle is triggered by the appearance of download

consent dialogs, which seek user’s permission on downloads. Internally, every status

change of UI elements causes a certain windowing event to be sent to the operating

system, which express the change by re-drawing the screen. For instance, creating

a new window causes an OBJ CREATE event to be generated on Windows platforms,

which contains information needed by the operating system to draw the new window

on the screen (e.g. position, size, text). The Screen Parser component of BLADE

relies on accurate interpretations of these windowing events intercepted from within

the OS to discover download consent UI elements and effectively monitor content

displayed on the screen.

Since significant performance degradation can be introduced if suboptimal meth-

ods are employed, this component merits considerable care in implementation. For

example, a naive option to implement the Screen Parser is as a direct hook into

windowing event handlers. However, such implementation would block the window

drawing process while trying to recognize newly visible UI elements, and in turn,
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result in perceptible UI delays when the window being parsed contains too many

elements.

To optimize performance, BLADE implants an agent in user space to prefilter

irrelevant windowing events. It runs in parallel with the window management rou-

tines, asynchronously filtering and preparsing windowing events in the user space that

would otherwise incur significant kernel CPU cycles if directly handled by the Screen

Parser. The agent pipes its output to the Screen Parser, which may represent a user

consent dialog currently in focus. To secure against interference from untrusted user-

level programs, an independent sanity checker in the Screen Parser cross-validates

the input from the agent by inspecting kernel memory objects representing the UI

elements.

On the Windows platforms, handling only three types of events is sufficient to

completely cover the real-time changes of the currently focused window:

EVENT SYSTEM FOREGROUND, EVENT SYSTEM MOVESIZEEND, and EVENT SYSTEM MINIMIZEEND.

Key strokes triggering a particular UI element can also be obtained as one of the as-

sociated attributes. Screen information is parsed only if the newly focused window is

deemed to represent a request for download permission.

UI signatures are used to identify download consent dialogs and guide informa-

tion extraction from these dialogs. Each signature describing the internal composition

shared across all UI instances of a class is sufficiently general and accurate in captur-

ing all dialogs with the same look and feel as the sample used for signature generation.

Due to the uniform use of interfaces by current browsers to request download per-

missions, there are only a handful of UI classes that serve this purpose, which also

remain highly stable across browser versions and regular updates. Hence, using only

two signatures for Firefox and one signature for IE, we can successfully capture all

forms of download notifications in these browser families across versions.
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Note that attempted evasions by faking user consent dialogs may trigger a signa-

ture match, but cannot elude the Correlator (see § 2.3.4 for the correlation process).

2.3.2 Supervisor

As the first component loaded upon BLADE startup, the Supervisor serves the role

of coordinator for carrying out all tasks of BLADE. It is charged with assigning tasks

to other BLADE components and coordinating their execution, as responding to the

different event notifications from the Screen Parser. The Supervisor also takes care of

internal communications among all BLADE components, including user-kernel com-

munication backed by IOCTLs (device input and output control), and kernel-kernel

communication implemented by simply sharing a nonpaged pool across all kernel com-

ponents as a means of information exchange. Here, spin-lock-based synchronizations

are used to protect the integrity of shared data.

Upon notification of the appearance of a download consent dialog, or a status

change to an existing one, the Supervisor initiates other kernel components accord-

ingly, or resets them in response to status changes. As shown in Figure 2, when a new

relevant UI element is discovered, the Hardware Event Tracer (H/W Event Tracer) is

triggered, with input information such as the on-screen locations of download consent

dialogs. Its task is to sense the user-invoked hardware device signals that may indi-

cate the user’s consent to permit a pending download request. The Correlator also

receives a command from the Supervisor, indicating that the corresponding stream

recording process should start. A download authorization is not recognized by the

Supervisor until user consent is captured by the H/W Event Tracer (in the form of

physical mouse clicks or keystrokes).

The Supervisor also actively maintains a complete list of supervised processes, on

which most BLADE routines rely to function correctly. For example, the I/O Redi-

rector and the Correlator only intercept file operations and record inbound network
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streams of supervised processes. The list is initialized to be empty when BLADE

starts. A process p will be added into the list when (a) it is a newly created browser

process, (b) it is a newly created process spawned by a supervised process, or (c) a

remote thread is created within the process by a supervised process. Tracking re-

mote thread creations is critical for blocking I/O redirection evasions, which may

employ a remote thread to carry out disk I/O on behalf of an unsupervised process.

The consequent list of this logic covers all possible execution entities that might ei-

ther initiate a legitimate browser download or be exploited to deliver surreptitious

downloads. Listed processes will be removed as they are terminated. The Supervisor

registers a callback routine for process creation and termination events by calling

PsSetCreateProcessNotifyRoutine.

2.3.3 Hardware Event Tracer

Once a download consent dialog is identified by the Screen Parser, the next task is

to interpret the user’s response. We developed the Hardware Event Tracer (HET)

to track user interactions with this UI element by monitoring signals generated from

the hardware to the OS. Signals at this level can never be forged by attackers in our

threat model; thus, BLADE is immune to attempted evasions by faking an affirmative

response to user download consent events.

The HET starts with a notification from the Supervisor indicating the appearance

of a certain download confirmation UI. The HET’s role is to capture responses from

the user’s mouse clicks or keystrokes. During the tracing interval, which normally

lasts a few seconds, the HET looks for any mouse click whose on-screen coordinates

fall in the areas of download consent dialogs, and any keystroke that can trigger

these UIs. The HET also maintains some state information in order to make accurate

decisions regarding whether the intercepted hardware events could finally trigger the

download consent. The HET terminates the tracing activity due to status changes
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from the on-screen consent dialog (e.g. minimized, unfocused).

Our current prototype implements the tracking routines only for pointer input

devices, which means that users can express their consent only by using the mouse.

However, adding support for keyboard input using the same principle should be

straightforward. Moreover, the performance overhead introduced by the addition

of keyboard tracing is expected to be minimal simply because keyboard events are

less frequent than mouse events in web browsing.

2.3.4 Correlator

One of the key challenges in BLADE is establishing the 1-1 mapping between user

download authorizations and downloaded files. The Correlator addresses this problem

and ensures the authenticity of user-consented file downloads. Guaranteeing authen-

ticity prevents potential attacks seeking to deliver a malicious download, either by

prompting deceptive dialogs or subverting benign browser downloads.

Since BLADE is independent of the browser and treats it as a black box, only the

external behavior of the browser (e.g. interactions with OS) is visible to it. Hence, the

Correlator analyzes information available in the OS kernel, oblivious to the internal

download handling of browsers. As browsers invariably rely on the OS to provide

network and file system capabilities, all kernel drivers including the Correlator have

the chance to peek into each transaction and retrieve a wealth of information about

it. For example, network traffic incurred by a browser is fully transparent to the

Correlator (at multiple kernel system levels) while it is being processed in the OS

network protocol stack. Similarly, the Correlator can intercept file system access

operations from the browser.

The Correlator associates a file download with a user authorization in two steps:

it discovers the correlation candidate file, and then validates its authenticity. We now

demonstrate why a file that passes these two steps while being correlated with a given
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user authorization is assured to be in compliance with that authorization.

Recall the tuple form of an inferred user authorization discussed earlier in this

section (URL, Path). Here, we use the second element, the destination path in the

local storage, plus the file name as a criteria for discovering the correlation-candidate.

Whenever a file has been written with the same path and name as that of a pend-

ing authorization, the Correlator marks it as a correlation candidate and starts the

validation process immediately. We call it a candidate because the adversary in our

threat model is able to replace the file content after fully compromising the browser.

The first element of the authorization tuple, the source domain, indicates the ori-

gin location of the file content and is used for source validation. We implement the

following source validation technique based on content comparison. First, we keep

a log of inbound transport-level stream for each TCP session created by supervised

processes, which is later compared with the download candidate. If the content of

a particular download-candidate appears in a stream log that corresponds to the

source URL recorded in the authorization tuple, the candidate is validated and the

correlation process completes with the candidate being correlated with the user au-

thorization. Our content-comparison approach works even when encryption is used

(e.g. HTTPS, VPN), because browsers rely on OS support to process transactions of

this kind. The user-level APIs are simply wrappers for kernel functions and there-

fore plaintext content can always be obtained by kernel drivers prior to encryption

(when sending) or after decryption (when receiving). Furthermore, browser-level com-

pression/encoding schemes (e.g. SDCH), which only apply to web streams that are

natively rendered by browsers, do not interfere with the BLADE correlation process.

Although the source validation idea is straightforward, an efficient comparison

algorithm and a reliable implementation require careful consideration. From a per-

formance perspective, the Correlator should avoid unnecessary stream logging and
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halt ongoing log writes once they are deemed unnecessary. Moreover, stream record-

ing needs to be performed only when there is an incoming authorized download file

and needs to consider only inbound content. Hence, a new logging process will be

initiated, only when a download consent dialog requesting a download permission

pops up, and only on streams sharing the same remote endpoint as the authoriza-

tion dialog. A subtle issue is that the source of the download file is identified by a

URL on the authorization dialog, while the remote end of a stream is identified by

an IP address. The Correlator performs a domain name lookup in the local DNS

cache to resolve the corresponding IP address(es). Integrity of the local DNS cache

is guaranteed in our threat model because it is being maintained by a trusted kernel

component. The logging terminates either when the user denies the download request

or after the last stacked authorization permitting that source has been correlated with

a file download. As native browser downloaders are all single-threaded, our current

prototype does not support the case of multi-threaded downloads where content of a

single file comes from multiple streams.

2.3.5 I/O Redirector

BLADE introduces the secure zone (i.e., a virtual storage area) as a mechanism to

restrict execution of disk footprints that are caused by supervised processes but not

explicitly allowed by users. Unlike sandboxing, which blindly isolates execution of

untrusted code, the secure zone of BLADE is intelligent enough to selectively contain

potential threats and ultimately prevent them.

The design philosophy of the secure zone is based on the closure property of

browser disk writes derived from our study of generic disk access patterns by browsers.

The robustness of this property was evaluated by exercising popular browsers with

multiple web browsing workloads (see § 2.6.3).

Closure property: On a clean computer running commodity OS and browsers,
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let P = {p | p : any browser process}, and F , Fauth, Fint and F ′ be four sets of files

on disk:

F = {f | f : any file written by p, where p ∈ P};

Fauth = {fa | fa : any -authorized browser download};

Fint = F − Fauth (given Fauth ⊂ F is always true);

F ′ = {f ′ | f ′ : any file opened by p′, where p′ ∈ P̄};

We observe that Fint∩F ′ ≈ ∅. This implies that, except for user-authorized download

files (Fauth), any other file to which browser process (P ) writes data is not normally

accessed by non-browser processes (P̄ ). More generally, it indicates that the disk data

that is written by browsers without explicit user consent is well-contained within an

implicit scope on disk, and thus should not be accessed by other processes or executed

by any program entity. Discovering this scope inspired our design of the secure zone.

The I/O Redirector plays a central role in managing the secure zone by enforcing the

following policies:

P1 : Any new file created by a supervised process is redirected to the secure zone.

P2 : Any existing file modified by a supervised process is saved as a shadow copy

in the secure zone, without change to the original file.

P3 : I/O redirection is transparent to supervised processes.

P4 : I/O redirection only applies to supervised processes. Files in the secure zone

can only be accessed via redirection.

P5 : No execution is allowed for files in the secure zone.

P6 : Any file correlated with a user download authorization is remapped to the

filesystem.

Together these policies enable a complete containment of disk footprints affected

by content delivered through browser processes without user knowledge, while still

preserving the browser usability due to transparency.
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Figure 3: Browser file access requests processing by the I/O Redirector (top: write;
bottom: read)

Figure 3 provides a high-level overview of how the I/O Redirector handles the two

types of file accesses in order to enforce P1 – P3 listed above: the upper subfigure

shows that the browser is trying to write C:\a.exe to the disk (i.e.opening a file

handle with write privilege). Upon receiving the request, the I/O Redirector first

checks the existence of the file’s shadow copy “\SecureZone\C\a.exe”. If it exists,

i.e.the file has been previously created or modified by the supervised process, the

I/O Redirector immediately forwards the request down to the file system driver with

the target being modified into the path of the shadow copy. Otherwise, the I/O

Redirector might need to create such a shadow copy before modifying and redirecting
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the request, depending on whether the request is to create a new file “Disk1\C\a.exe”

or to modify/replace an old one. Finally, the browser that obtains the returned file

handle is unaware that it is operating on a shadow copy of the file in the secure

zone. The lower subfigure shows that a read request is redirected to the shadow copy

“\SecureZone\C\a.htm” if it exists. Otherwise, the request is passed down to the file

system without the need for redirection. The I/O Redirector also provides a different

file system view to supervised processes, which hides the separation of files inside and

outside the secure zone.

To enforce P4, which guarantees the nonpropagation property of files in the secure

zone, the I/O Redirector simply passes through file access requests from processes that

are not supervised (i.e.no redirection happens), except for denying those that are ob-

taining handles to files in the secure zone. The policy P5, file execution prevention,

is performed by blocking executable images from being mapped into the memory.

Specifically, the I/O Redirector intercepts AcquireForSectionSynchronization op-

erations on files located in the secure zone. This is a necessary operation performed by

the Windows kernel to load all forms of executables including normal program (.exe,

.msi) startups, dynamic library (.dll) loads and driver module (.sys) installations.

When the Correlator successfully matches a previously inferred user download

authorization with a file written to the secure zone, the I/O Redirector is notified

and the file is remapped back to the filesystem instantly.

2.4 Security Analysis

In this section, we analyze the soundness of the BLADE system design by discussing

various attacks that knowledgeable adversaries may pursue to circumvent BLADE.

For each attack strategy, we identify the countermeasures that have been incorporated

into the BLADE design to address these threats.

Spoofing attacks – The attacker may attempt to drop malware directly onto the
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local file system, without being redirected to the secure zone. To accomplish this, the

attacker must (a) fool BLADE by forging a fake download consent dialog and the user

response, or (b) fool user and the BLADE Screen Parser by spoofing browser GUI to

display rogue download confirmations [27]. Countermeasures: We address (a) by

ensuring that the user authorization inference is based on real hardware events that

cannot be spoofed at the application layer. The BLADE Correlator eliminates the

possibility of (b) by taking additional steps to validate the origins of user consented

downloads. Although the attacker can launch a denial-of-service attack by disabling

the user-level Screen Parser, this action will not lead to the surreptitious infection of

the browser’s host.

Download injection and process hijacking attacks – The attacker may attempt

to move a downloaded malware instance out of the secure zone and then execute

it. Having control of the browser process, the attacker could replace an authorized

download with malware. The attacker may also hijack an unsupervised process whose

file I/O is not redirected, e.g., by creating a remote thread within an unsupervised

process. Countermeasures: Content-based correlation guarantees the source of au-

thorized downloads and prevents download injection attacks. The BLADE Supervisor

follows process creations (i.e., child processes of the browser) and remote thread acti-

vations (sibling) to ensure that unauthorized file writes from the supervised processes

are appropriately redirected to the secure zone.

Coercing attacks – The attacker may attempt to coerce the operating system

to execute the malware directly from the secure zone. Countermeasure: Since

I/O redirection is implemented and enforced by a kernel driver, we believe that such

attacks should be infeasible by design. If one asserts that the malware publisher may

have control logic buried within the kernel to halt BLADE’s operation, then we argue

that the drive-by download attack is entirely unnecessary.
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2.5 Limitations

While we believe BLADE represents an effective service for stopping surreptitious

drive-by installations of malware, we recognize that it does not provide complete

coverage of all threats web users are facing. First, BLADE does not prevent social

engineering attacks where the user authorizes the download and installation of ma-

licious binaries disguised as benign applications. Second, BLADE does not prevent

in-memory execution of transient malware, which could be scripts such as JavaScript

bots or x86 code inserted into memory by exploits. While such attacks are out of

scope for our system, the latter attacks could be prevented by orthogonal protection

techniques, such as DEP. Third, BLADE is dependent on explicit download-consent

UI, which is optional (can be disabled by the user) in certain browsers. Users wishing

to use BLADE to protect their web surfing activities must enable download confirma-

tions on their browsers. Finally, BLADE is effective only against binary executables

and does not prevent the download and installation of interpreted scripts. How-

ever, the overwhelming majority of current drive-by download malware is delivered

as binaries. At a minimum, our system raises the bar by rendering the prevalent

drive-by download threat obsolete. We intend to explore ways to stop the installation

of malicious scripts in the future.

2.6 Evaluation

2.6.1 Empirical Daily Evaluation on Malware URL Lists

One way to demonstrate the effectiveness of a security system is to exercise it against

contemporary real-world threats. Our testbed automatically harvests malware URLs

from multiple whitehat mailing lists on a daily basis and evaluates BLADE against po-

tential drive-by URLs that were reported in the past 48 hours. To validate BLADE’s

browser and exploit independence, each URL is tested against multiple software con-

figurations covering different browser versions and common plug-ins.

27



!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

! "#$%&! "'()!
*#+,$,-)!

.%&+)!
*#+,$,-)!

"'()!
/)0%$,-)!

.%&+)!
/)0%$,-)!

"',%&+! 18896 7925 0 10971 0 

123+! 3992 1934 0 2058 0 

.,&)!"45)+!6%&7%')!
89$)':)5$);!

<=<! >33!

?@!:#-)'%0)!
>%4AB!
C@"!'%$)D!

9745 8126 1619 28.43% 

"#$
%!

#&#
$! #'#

%!
#'#
(!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

IE
6 

r8
,f

8,
j5

 

IE
7 

r8
,f

8,
j5

 

IE
8 

r9
,f

9,
j6

 

FF
3 

r8
,f

8,
j5

 

'$+#!

#+)*!
%*%! $)#!

)!

*))!

#)))!

#*))!

()))!

(*))!

")))!

"*))!

')))!

'*))!

*)))!

Adobe 
Reader 

Sun 
Java 

IE Adobe 
Flash 

#"$#!##)&!
#"(! #)$! #)(!

($! ()! #%!
#!

#)!

#))!

#)))!

r=Adobe Reader, f=Adobe Flash, j=Sun Java 

(a) Encountered Exploit-Kit Distribution
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(b) Vulnerability Distribu-
tion!
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(c) Attack Distribution

Figure 4: Statistics from daily malicious URL experiment

The experiment lasted for 3 months and visited 3,992 unique malicious URLs. The

dataset that was collected also offers a glimpse into the Internet’s contemporary drive-

by malware landscape as summarized in Figure 4. Figure 4 (a) shows the distribution

of exploit kits encountered during our experiments illustrating the growing popularity

of commercialized exploit kits. Eleonore and JustExploit seem to be the most popular.

Figure 4 (b) shows the distribution of attacks by vulnerable software. We find that

(i) pdf exploits currently dominate, (ii) attackers increasingly prefer targeting plug-

ins over browsers because of the wider attack surface, and (iii) they largely rely on
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commercialized exploit kits to launch reliable attacks.

Figure 4 (c) displays the distribution of successful attacks based on browser and

software configuration. Not surprisingly, we find that all tested browsers are vulnera-

ble. We find that the Internet Explorer 6.0 system configured with Adobe Reader 8.0,

Adobe Flash 8.0, and JVM 5.0 is the most vulnerable. A similarly configured Firefox

3.0 system experiences less than half the number of exploits and is comparable to

Internet Explorer 8 running Adobe Reader 9.0 and JVM 6.0. Table 1 summarizes

results from our daily evaluation. The number of trials is more than the number of

unique URLs because each URL might appear on the list for multiple days and is

tested on multiple VM configurations. As shown in Table 1(a), BLADE was success-

ful at blocking all 7,925 attempted drive-by malware installs while generating zero

false alarms. Furthermore, all downloaded malicious binaries were safely quarantined

into the secure zone. While these results might be surprising at first glance, they are

expected because BLADE is designed in an exploit oblivious manner. It is worth not-

ing that at no point did our system design or implementation necessitate additional

tuning to handle a new exploit or shellcode type. Table 1(b) provides a summary

of the malware binaries captured. The 7,925 trials pushed 9,745 binaries (certain

sites push more than one binary) which included 8,126 EXEs and 1,619 DLLs. The

average detection rate of these binaries from virustotal.com was only 28.43%.

Only about half of the malicious URLs were observed to be delivering drive-by

download attacks when tested. While we do not know the exact reason why attacks

fail in each instance, they include the following: (a) malicious sites that have been

cleaned up, (b) misclassified sites (e.g., phishing sites) that do not attempt surrep-

titious drive-by downloads, (c) sites that employ IP tracking to blacklist repeated

visitors, and (d) sites that target vulnerabilities not present in our configuration.
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(a) Evaluation Metrics
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(b) Dropped File Statistics
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Table 1: Results from daily malicious URL experiment

2.6.2 In Situ Attack Coverage Evaluation

The first experiment demonstrates BLADE’s effectiveness against thousands of drive-

by download attacks in the wild. However, it is possible that attacks in the wild are

dominated by a few exploit kits and exercise only a limited set of common exploits.

To compensate for this potential limitation, we conducted a second experiment that

specifically evaluates BLADE against a wider set of hand-crafted attacks and more

browser versions. Specifically, this customized attack set is composed of diverse shell-

codes and exploits targeting several vulnerabilities in browser/plug-in software includ-

ing 11 recently disclosed zero-day exploits listed in Table 2. In each case, BLADE

successfully prevented the execution of the drive-by exploit binary, reaffirming our

design premise that BLADE delivers complete and accurate protection in a browser-

agnostic and exploit-oblivious manner.

2.6.3 Benign Website Evaluation

We evaluate BLADE’s effectiveness on benign web sites, i.e., the false positive rate.

For BLADE, a false positive implies that the execution of a legitimate (authorized)

executable download is blocked by BLADE. Under BLADE’s design, there are two

potential reasons why an authorized executable download may be inadvertently hin-

dered by BLADE: (i) the user’s authorization cannot be inferred, which leaves the

resulting download in the secure zone as untrusted; (ii) a legitimate browser download

seeks to execute benign logic without the user’s consent, which represents a violation

of our root assumption. Thus, we tried to create a workload that might trigger (i) or
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Table 2: Test results on targeted attacks and 0-days

(ii).

To address (i), we first tested the signature coverage of download consent dialogs

for each browser by looking for an unknown method for requesting download consent.

We downloaded 30 different software applications from 15 highly ranked freeware sites,

with varying file types (.exe, .zip, .msi etc.). We also checked whether download

consent UIs can be reliably discovered when noise is introduced onto the screen.

Neither of the above two test cases revealed any false positives. We used a stress-

testing-based strategy to create a workload that could lead to false positives incurred

from (ii). By manually visiting a URL pool, including the top 5 highly ranked

websites from 16 categories [1], we verified that BLADE does not disrupt normal

browser interactions with these benign sites.
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2.7 Related Work

We discuss prior measurement studies that inform the design of BLADE and distin-

guish it from existing URL analysis services, malware defense systems, and browser-

based protections.

2.7.1 Internet Measurement Studies

The problem of drive-by downloads, particularly those resulting in malware installa-

tions on unsuspecting victims, has attracted considerable attention from researchers.

In 2005, Moshchuk et al. [62] studied the threats, distribution, and evolution of spy-

ware through an examination of more than 18 million URLs, finding scripted drive-by

downloads in 5.9% of the pages visited. Seifert et al. [75] examined the prevalence

and distribution of malicious web servers using the Capture-HPC client honeypot,

identifying more than 300 malicious sites. In [71], Provos et al. provided a detailed

dissection of the sophisticated methodology employed by the blackhats and the steps

involved in executing a typical drive-by download exploit of a system. In a subse-

quent study [70], the authors provided extensive quantitative measurements of the

global prevalence and distribution of the parties (landing sites, redirection sites and

script hosting sites) involved in drive-by downloads by examining billions of URLs

in the Google web archive. These studies underscore the significance of the drive-by

download malware problem and motivate development of the BLADE system.

2.7.2 Website Survey Systems and Proxy Services

Blacklist services such as [12] provide alerts on malicious software systems and web-

sites, currently listing more than 392,000 malicious sites. Strider HoneyMonkey [85]

and phoneyc [65] crawl the Internet looking for websites that host malicious code.

While the former approach uses Virtual Machines running different operating sys-

tems and patch levels, the latter is a lightweight low-interaction system that emulates
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browser execution of JavaScript.

SpyBye [69] operates as a proxy server and uses simple rules to classify a URL

into three categories: harmless, unknown, or dangerous. The classification process

can be error prone and is meant to be a tool for webmasters to track the security

for sites that they administer. The SecureBrowing software plug-in developed by

Finjan [11] scans web pages in real time for viruses and malware. While the details

of their detection methodology are proprietary, it is presumed to be a combination

of attack signatures and URL blacklists. The BrowserShield [74] proxy system uses

script rewriting and vulnerability-driven filtering to transform inbound web pages into

safe equivalents by disabling execution of malicious JavaScript and VBScript exploits

at runtime. Wepawet is an online submission service for detecting and analyzing

malicious URLs with the capability of analyzing exploits in Flash, JavaScript, and

PDF files [40]. Unlike these approaches, BLADE does not require attack signatures

and is effective against zero-day attacks.

SpyProxy [61] is an execution-based malware detection proxy system, that ex-

ecutes active web content in a virtual machine environment before it reaches the

browser. A limitation is that protection is guaranteed only when the host machine

and the proxy machine maintain the identical software configuration.

2.7.3 Network- and Host-based Malware Defense Systems

Systems such as BotHunter [42] and BotSniffer [43] are meant to detect infected

enterprise systems based on post-infection network dialog, but do not prevent the

execution of malware. AntiVirus systems [13] and services like CloudAV [67], which

attempt to block the execution of malware, are limited by the reliance on binary sig-

natures. For drive-by attacks, BLADE addresses the limitations of these approaches,

i.e., it acts like an IPS that thwarts the execution of malware and does not rely on

signatures.
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Egele et al. [32] proposed the use of x86 emulation techniques to defend browsers

against a specific type of drive-by download attack, i.e., heap-spraying code injection

attacks. Their objective is similar to that of NOZZLE [73], which uses static analysis

of objects in the heap to detect heap-spraying attacks. BLADE differs from these

systems in that it does not detect the attack, but rather prevents the execution of the

malware. Our approach has the benefit that it defends against all forms of web-based

surreptitious-download exploits, including malware installed using heap-spraying code

injection attacks.

2.7.4 Sandboxing/Isolation Systems

Solitude [51] and Alcatraz [54] are two systems that limit the effects of attacks by

providing support for application-level isolation recovery. Secure browsers [23, 83]

have been developed that use sandbox techniques to prevent malware installations.

The Chromium sandbox [23] attempts to mitigate browser exploits by separating

the trusted browser kernel (which runs with high-privilege outside the sandbox) and

untrusted rendering engine. However, the presence of published client-side exploits

for Chrome validates that such strategies are not a panacea. Recently, Barth et al.

proposed a browser extension system that uses privilege separation and isolation to

limit the impact of untrusted extensions [21]. The Polaris system uses the princi-

ple of least authority to restrict the impact of running untrusted applications [79].

BLADE’s unconsented-content execution prevention is a similar concept to sandbox-

ing. However, BLADE fully prevents the binary execution from occurring, rather

than imposing privilege limitations, and it is significantly more transparent in how it

uses user-dialog confirmation to auto-remap user-initiated downloads. More signifi-

cantly, unlike secure browser frameworks that require the adoption of an entirely new

browser, BLADE security protections can be deployed underneath the wide range of

current and legacy Internet browsers.
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2.8 Conclusion

We introduced the BLADE system as a new approach to immunizing vulnerable

Windows hosts from surreptitious drive-by download infections. The BLADE system

incorporates a kernel module to track all browser-to-human interactions, and then

uses this information to distinguish consented web-based binary downloads from those

cases where covert binary installations are performed. In the former case, the user-

consented binaries are transparently remapped to the filesystem, and BLADE imposes

no perceptible runtime behavioral changes or performance impacts on the browser.

In the latter case, BLADE isolates and reports the malicious link and binary to the

user, and unlike traditional sandboxes these malicious binaries are never executed.

We presented results from an ongoing evaluation of BLADE against thousands

of active drive-by exploits currently plaguing the Internet (our evaluation results

are unfiltered, auto-generated, and posted publicly to www.blade-defender.org). To

date, BLADE’s interception logic has demonstrated 100% effectiveness in preventing

covert binary installations using the most widely deployed browsers on the Internet.

Furthermore, over the past six months we have tested BLADE against the newest 0-

day drive-by exploit attacks within days of their release and none have circumvented

BLADE. In our next phase, we plan to extend BLADE support to other network-

capable applications subject to drive-by download attacks.
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CHAPTER III

SURF: DETECTING AND MEASURING SEARCH

POISONING

Search engine optimization (SEO) techniques are often abused to promote websites

among search results. This is a practice known as blackhat SEO. In this work we

tackle a newly emerging and especially aggressive class of blackhat SEO, namely

search poisoning. Unlike other blackhat SEO techniques, which typically attempt

to promote a website’s ranking only under a limited set of search keywords relevant

to the website’s content, search poisoning techniques disregard any term relevance

constraint and are employed to poison popular search keywords with the sole purpose

of diverting large numbers of users to short-lived traffic-hungry websites for malicious

purposes.

To accurately detect search poisoning cases, we designed a novel detection system

called SURF [58]. SURF runs as a browser component to extract a number of robust

(i.e., difficult to evade) detection features from search-then-visit browsing sessions, as

shown in Figure 5, and is able to accurately classify malicious search user redirections

resulted from user clicking on poisoned search results.

Our evaluation on real-world search poisoning instances shows that SURF can

achieve a detection rate of 99.1% at a false positive rate of 0.9%. Furthermore, we

applied SURF to analyze a large dataset of search-related browsing sessions collected

over a period of seven months starting in September 2010. Through this long-term

measurement study we were able to reveal new trends and interesting patterns related

to a great variety of poisoning cases, thus contributing to a better understanding of

the prevalence and gravity of the search poisoning problem.
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3.1 Background and Problem Study

In this Section, we provide a brief overview of the fundamentals of search engines

and the reason why search results are subject to manipulation. We then present a

study of search poisoning based on real world data, and discuss the observations that

inspired our detection approach.

3.1.1 Search Engine and Blackhat SEO

eb search engines answer a user’s query with a list of webpages selected from their

index, in a descending order of relevance. After years of evolution, web search has

grown into a relatively mature phase where major vendors are following similar work

models.

Search engines typically employ crawlers to discover newly created or updated

webpages. Each crawled page is then indexed based on keywords retrieved from its

content. Upon a search query, webpages are ranked based on their relevance to the

search terms and presented to the user.

This gives the abusers the following advantages. First, search engines implicitly

trust the authenticity of the content on the indexed webpages, even though the content

is under complete control of the website owners. Second, a web server can easily

distinguish between search crawlers and human visitors. It is this implicit trust and

distinguishability that give rise to blackhat SEO, whereby a web server fulfills webpage
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requests from crawlers with specially crafted content having inflated relevance to a

selected set of keywords, referred to as the target keywords. In addition, these crafted

pages often contain large numbers of cross-reference hyperlinks to webpages that

belong to the same blackhat SEO campaign. These hyperlinks have the effect of

increasing the incoming link count for the promoted webpages, thus boosting the

ranking in the search results.

Despite the fact that they involve some level of dishonesty, blackhat SEO tech-

niques are sometimes used by legitimate businesses. In this paper, we distinguish

between two types of blackhat SEO, namely search inflating and search poisoning.

Search inflating aims to boost a website ranking through search keywords closely re-

lated to the promoted website, therefore only attracting users who search for topics

related to the promoted website. On the other hand, search poisoning aims to boost

a website’s ranking though popular search keywords, regardless of whether these key-

words are actually related to the promoted website’s content or not. Unlike search

inflating, which may be adopted by some legitimate websites, search poisoning only

fits the need of visitor-hungry websites that simply want to increase the number of

visitors for malicious purposes (e.g., for malware propagation purposes).

Most previous works on blackhat SEO detection apply lexical and structural anal-

ysis on page content [66, 82], or graph-based analysis on hyper-links [87]. However,

very limited success has been achieved in practice [16], as the battle soon turned into

an arms race. Having full control over webpage visibility and the freedom of adopting

new evasion techniques gives adversaries significant upper hands, and makes it funda-

mentally difficult to design robust detection schemes based on lexical and structural

analysis. To mitigate these problems, our approach aims to detect search poisoning

instances using a set of features that are collectively difficult to evade because they

are intrinsic to how search poisoning works, as we discuss in Section 3.2.3.
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3.1.2 Search Poisoning Study

Search poisoning instances luring visitors to malware websites were first reported in

2007 [10]. However, until recently search poisoning has not been sufficiently stud-

ied, and has been only sporadically mentioned within the anti-malware community

(mostly due to fake AV websites [72]).

To gain a more in-depth understanding of the search poisoning problem, we man-

ually analyzed a dataset Sstudy containing 1,084 real-world search poisoning cases

collected in September 2010. This preliminary study aimed to discover a set of ro-

bust features that can be leveraged for detection purposes, and to inspire our overall

detection approach.

To collect the dataset Sstudy we proceeded as follows. We deployed an army of

instrumented browsers, which on a daily basis automatically query Google and Bing

with keywords that have been popular for the past 7 days. For each query, the

browsers visited the top 100 URLs in the search results1. All network data and

browsing events occurred during each browsing session were recorded as a browsing

trace. This data collection process resulted in a very large dataset D containing over

half a million browsing traces. Sstudy was derived from D using a simple heuristic

to select traces that lead to malicious [6] or non-reputable webpages [8] with content

irrelevant to the search keywords. This coarse-grained filtering yielded 1,084 highly

likely search poisoning cases consisting of 596 unique landing URLs. It is worth

noting that this dataset is not meant to be inclusive of all poisoning traces in D,

which is impossible to achieve without first developing a reliable detection system.

However, our filtering heuristic produced a Sstudy dataset that exhibits satisfactory

accuracy and sufficient diversity, as confirmed by our manual analysis. Therefore,

Sstudy represents a reasonable base for our preliminary study of search poisoning.

1excluding URLs already flagged as malicious by search engines.
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Below we itemize our observations and lessons learned from our manual analysis,

which inspired the choice of the statistical features used by SURF.

O1: Ubiquitous use of cross-site redirections

We found that over 98% traces in Sstudy contain one or more redirections that

cross website boundaries. The remaining 2% of browsing traces that do not contain

such redirections are mostly due to incompletely rendered webpages, or modal dialogs

that require non-trivial user interactions to proceed. On the other hand, less than

6% of the entire traces in (D−Sstudy) involve cross-site redirections. This ubiquitous

use of cross-site redirections can be intuitively explained by the high risk and low

effectiveness of exposing the malicious terminal website directly to search engines for

rank promotion (thus a separated landing website is needed). For example, search

engines have various security detectors in place to filter known malicious webpages

and downgrade ranks of suspicious ones. Therefore, directly promoting malicious

webpages can be a vain attempt and risks to jeopardize the entire search poisoning

campaign. In fact, as our study went deeper, more evidence emerged supporting the

need for malicious search user redirection in search poisoning.

O2: Search poisoning as a service

From all traces in Sstudy we extracted their chain of redirections, which are then

used to compose a redirection graph, in which the nodes represent encountered do-

mains and the directed edges represent redirections from one domain to another.

Large numbers of inter-connected chains form subgraphs that represent different

search poisoning campaigns. Two representative subgraphs are shown in Figure 6, as

examples to illustrate our findings. Successful campaigns are able to employ many

landing domains and target different search keywords to maximize the incoming search

users. Figure 6 (top) shows a campaign that successfully poisoned over 28 “trendy”

search keywords and injected at least 46 URLs into top search results. Furthermore,
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the variety of terminal domains supported by a single campaign suggests that spe-

cialized search poisoning services are available to all kinds of malicious websites for

purchase. The graph also indicates a two-tier affiliate marketing model followed by

this campaign. Some landing pages redirected search users to centralized “super affil-

iate” domains (circled in the graph), which then dynamically dispatch the lured users

to different terminal domains. As a result, more intermediate webpages appeared in

the redirection chains.

O3: Sophisticated poisoning and evasion tricks

Cloaking techniques [44] are commonly used in search poisoning (by 97% landing

pages in Sstudy). Search crawlers are presented with specially crafted content with

fake relevance. The malicious redirection process only starts when visited by search

users that queried the target (poisoned) keywords, while blocking other visitors as an

attempt to prevent security detectors reaching the malicious content or domains. By

forging the browser’s User-Agent strings, we managed to obtain the search crawler

views of 26 landing pages in our Sstudy dataset that did not verify the crawler’s source

IP address. These views were carefully composed to mimic normal webpages (e.g.,

blogs or news sites), with highly relevant content (possibly scraped from elsewhere)

organized in a smooth way. We noticed that this well-crafted content may easily

fool human readers, and is therefore very likely to evade content-based blackhat SEO

detectors. In addition, we discovered a handful of image-rich landing pages that likely

targeted at multimedia searches.

Another way in which search poisoning try to evade detection is by hosting the

landing pages on compromised websites. These websites typically have been indexed

by search engines for quite some time and accumulated a non-trivial domain history or

reputation. This can help search poisoning to bypass some security checks performed

by search engines and to facilitate rank promotion. In our study dataset Sstudy we

found that about 70% of the redirections start from domains with a fair reputation
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score in [8] and only 2% originate from blacklisted domains in [6].

O4: Persistence under transient appearances

To achieve a persistent poisoning effect, search poisoners have to accommodate

for the volatility of popular search keywords. The bottom graph in Figure 6 shows a

campaign that made multiple appearances on different popular search results across

the entire study period: old landing domains had been active only for a limited time

(a few days) before a new batch came in with a new set of poisoned search keywords.

Rapidly rotating landing domains not only enable a wide coverage on trendy search

topics, but also hinder detection efforts due to their transient appearance. Terminal

domains behave in a similar way. An important difference is the fact that terminal

domains tend to be disposable and have short registration periods (likely using domain

tasting services), which further impedes blacklist-based detection.

O5: Various malicious applications

While previous reports always associate search poisoning with malware distribu-

tion websites[14, 50], search poisoning is used in a variety of other malicious appli-

cations. Figure 6 shows at least three types of malicious websites that use search

poisoning to promote different types of cyber crimes, such as distributing fake AV

software, hosting of rogue pharmacy sites, and other types of scams. Other types of

uses (not reported in Figure 6) were also observed in Sstudy, such as sites that host

drive-by download exploits, are part of click fraud schemes, or host phishing pages.

Therefore, we argue that security solutions specific to individual types of malicious

websites fail to thoroughly address the general search poisoning problem.

Lessons learned: Detecting search poisoning is a daunting task. Solely relying

on identifying suspicious features associated with the landing pages (e.g., deceptive

relevance, suspicious linkage structures, etc.) is immediately subject to evasion, given
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Figure 6: Redirection graphs of two search poisoning campaigns

the attackers’ freedom to craft the page content. At the same time, detecting ma-

licious terminal pages is hindered by their diversity and conditional accessibility of

the actual malicious content (in particular, malicious sites can detect crawlers and

security scanners). However, our observations convey a positive message to the de-

fenders: the malicious search user redirections are intrinsic to search poisoning cases

and exhibit distinguishable behaviors that are difficult to avoid completely for search

poisoning to be successful. SURF’s design was inspired by these findings.

3.2 SURF System Design

Based on the lessons learned, we set three primary design goals for our detection

system:

• Generality : Search poisoning techniques are employed by attackers to promote

a variety of malicious contents, and are not limited to luring users to visiting

malware distribution pages. Therefore, SURF aims to detect generic search

poisoning instances, regardless of the malicious content the attackers intend to

promote.
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• Robustness : While it is arguably impossible to completely prevent an arms race

between defenders and attackers, we aim to identify features typical of search

poisoning cases that are difficult to evade. In practice, we restrict SURF to

using a set of robust features, which cannot be evaded by adversaries without

incurring a significant cost (e.g., because of the need to completely change their

attack strategy, or move to a different attack infrastructure).

• Wide deployability : Unlike most previous work on blackhat SEO detection,

which is constrained by the dependency on search engine private data and only

deployable at the search engine side, our approach aims to provide a solution

that can be deployed at end-user’s browsers (as a plugin), at automated security

crawlers, and inside search engines. End-users can be protected from malicious

terminal webpages hidden behind poisoned search results. At the same time,

search engines or security vendors can deploy SURF in a “browsers farm” to ac-

curately detect whether a search keyword is poisoned and harvest the malicious

terminal page.

3.2.1 System Overview

To meet the goals listed above, we designed SURF as a browser component. An

overview of SURF is shown in Figure 5. In practice, SURF sits in a browser and ob-

serves search-related browsing sessions. Whenever a user submits a query to a search

engine and receives the result page, SURF starts its monitoring on page loads and

redirections, from the search result page, to the landing page (on user’s click), and

to the terminal page the user is eventually brought to (after going through several

intermediate pages in some cases). During this course, SURF extracts a number of

statistical features from a range of sources, such as browser events, network informa-

tion regarding the domain names and IP addresses involved in the redirection chain,

and the search results themselves (see Section 3.2.2 for details). The resulting feature
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Aspects Features Source* Evasion 
Possibility

Redirection 
Composition

Total redirection hops
Cross-site redirection hops
Redirection consistency

B
B,N
B

Low
Low
Low

Chained 
Webpages

Landing to terminal distance
Page load/render errors
IP-to-name ratio

B,N
B,N
B

Low
Low

Medium

Poisoning 
Resistance

Keyword poison resistance
Search rank
Good rank confidence

S
S
S

Low
Low
Low

* B=browser events/data;     N=network info;    S=search result

Table 3: Feature selection

vector is then sent to the SURF Classifier, which is trained to distinguish between

normal redirections and malicious search user redirections. In practice, the SURF

Classifier is a supervised statistical classifier trained using a labeled dataset contain-

ing examples of redirection chains resulted from clicking on either legitimate or a

variety of poisoned search results. It is worth noting that our definition of “malicious

search user redirections” in this paper is restricted to redirections following poisoned

search results. Detecting other types of malicious redirection is out of the scope of

this work. While the vast majority of redirections used by the search poisoning cases

we encountered during our study (Section 3.1.2) only change the URLs of webpages’

top frames, SURF also covers the malicious redirections that occur within dynamic

subframes (e.g., an iframe).

3.2.2 Detection Features

Inspired by our study and guided by our design goals, we identified a set of nine sta-

tistical features that capture the characteristics of generic search poisoning instances,

and that are difficult for the attacker to evade without incurring a significant cost

(e.g., the attacker would need to move to a new search poisoning strategy and infras-

tructure). The features extracted by SURF are divided in three groups as summarized

in Table 3 and detailed below.
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Redirection composition: This group of three features aims at capturing discrep-

ancies between the legitimate and malicious search user redirections. The total

redirection hops records the number of redirections that transport the visitor from

the landing page to a terminal page, whereas the cross-site redirection hops

counts how many of these redirections cross website boundaries. In SURF, a cross-

site redirection is a redirection that brings from a domain d1 to a domain d2, where

the second-level domains2 of d1 and d2 differ (e.g., www.cnn.com and blogs.cnn.com

share the same second-level domain, while www.cnn.com and www.bbc.com do not).

As noted in Section 3.1.2, the vast majority of poisoned search results rely on cross-

site redirections to transport search users to the malicious terminal pages hosted on

covert domains. On the other hand, legitimate search user redirections rarely send

incoming visitors away to another websites, simply because of the common incentive

of keeping as many visitors as possible within their own domain. The redirection

consistency feature captures whether a redirection is only visible to targeted search

users. In legitimate search user redirections, users who arrive to the landing page

through a search engine or though a direct link (e.g., by typing the same URL on

the browser’s address bar, or clicking the hyperlink on a “non-search” website) will

be redirected to the same terminal page displaying relevant content. This is in con-

trast with search poisoning cases, in which typically only users that reach the landing

page through a search will be redirected to the malicious content, while other visitors

will be presented with non-malicious content in an attempt to evade some detection

systems or manual analysis (see Section 3.1.2). To measure redirection consistency,

SURF can first command the browser to directly visit the landing page (thus ef-

fectively stripping the Referrer field in the HTTP request, for example), and then

allows the user’s click on the search result link to go through so that the two obtained

2The second-level domain of a domain name d.c.b.a is typically defined as b.a, where a is
called the top-level domain. We leverage Mozilla’s public domain suffix list to take effective top-
level domains such as co.uk into account.
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sets of redirection events can be compared for consistency. When used at the search

engine-level (e.g., in a “browsers farm”), SURF could perform this comparison on

redirections obtained by visiting the landing page from different IP addresses to by-

pass some of the cloaking techniques discussed in Section 3.1.2 whereby the malicious

content is not provided to IP addresses visiting the same landing page twice in a row.

It is worth noting that such cloaking technique would not affect SURF’s protection

when deployed at end user’s browsers. If the attacker refuses to offer the malicious

content at the second visit (i.e., when SURF allows the user’s click on a search result

to go through), the user will not be exposed to the malicious content in the first place.

Chained webpages : This group of features measures three properties of the web-

pages involved in search user redirections. The landing to terminal distance

feature measures the (approximate) geographical and topological distances between

the landing page and the terminal page. In practice, to measure this distance we

leverage information about the geo-location of the IPs where the two pages reside,

the autonomous systems (AS) the IPs belong to, and the websites’ domain names.

The intuition is that malicious search user redirections always “travel” a long dis-

tance. The reason is that in search poisoning cases the landing page is usually hosted

on a (likely compromised) website that belongs to a separate (usually legitimate) or-

ganization, while the terminal page is often hosted on a “bullet-proof” server provided

by a different (usually not legitimate or boarder-line) organization often located in a

different country.

The page load/render errors flags pages in the redirection chain that failed

to load or render properly, due to exceptions or network errors. The intuition is

that compromised pages are sometimes blacklisted or remediated, and the redirection

chain to the malicious terminal page may end prematurely. The IP-to-name ratio

feature represents the number of the redirection URLs that use an IP address (e.g.,

http://192.168.0.1/index.php) divided by the number of redirection URLs that
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instead use a domain name (e.g., http://example.com/index.php). This is moti-

vated by the fact that a large number of search poisoning cases encountered in our

study involve URLs that use IPs that are dynamically assigned to unnamed hosts, in

an effort to bypass URL blacklists commonly available in major browsers.

Poisoning resistance: This group of features measure properties of the search key-

words and their corresponding search results. The keyword poison resistance

quantifies the difficulty of poisoning search results under a given keyword. We mea-

sure this feature using publicly available information. The basic idea is straightfor-

ward: given a certain search keyword, the competitiveness of promoting a link higher

in the result rankings is reflected by how prominent the top ranked webpages are

under that keyword. We use Google’s PageRank [68] to measure the prominence of a

website. The keyword poison resistance of a keyword k is defined as the average

PageRank value of the top 10 ranked websites obtained from the search results under

k. In practice, the higher the value of this feature, the more prominent websites

competing for the top rank positions, and thus the more difficult for an attacker to

poison the keyword and force a link to a rogue landing page to appear higher in the

ranking.

From our study dataset Sstudy (see Section 3.1.2), we noticed that the distribution

of poisoned keywords across different search poisoning cases is skewed towards key-

words with low keyword poison resistance. This result was somewhat expected,

because keywords that are popular and yet easier to poison than others tend to at-

tract the attackers’ attention. Another feature we consider is the search rank of a

landing page. The higher the rank of a landing page, the lower the probability that

the result has been poisoned. This follows directly from our previous argument that

top ranked pages are often prominent websites, making it difficult for search poisoners

to promote their sites ahead of these prominent sites. The rank confidence feature
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is computed by dividing the keyword poison resistance by the rank of a particu-

lar search result. The higher the rank confidence, the less likely that the result is

poisoned.

3.2.3 Qualitative Robustness Analysis

Here we present a qualitative analysis of the robustness of SURF’s statistical fea-

tures against evasion attempts. A quantitative robustness analysis is discussed in

Section 3.3.

Redirection composition: This group of features tries to capture the “search poison-

ing as a service” phenomenon discussed in Section 3.1.2. In practice, attackers often

compromise several legitimate websites to host rogue landing pages, which use decep-

tive content to promote their ranks and at the same time redirect lured search users

to the malicious terminal webpages. While in principle an attacker can attempt to

evade this group of features, this would force the attacker to move to a completely

different malicious network infrastructure in which all malicious redirections and ter-

minal malicious pages are hosted on the same second-level domain, for example. In

addition to incurring the significant cost of changing the malicious network infrastruc-

ture, this could also increase the risk of being detected by the compromised website’s

administrators, thus exposing search poisoning instances to a more prompt remedia-

tion, and end up sacrificing the established rogue landing pages which typically take

considerable amount of time and efforts to mature.

Chained webpages : This group of features measure properties of the webpages involved

in search user redirections. The IP-to-name ratio, while useful for classification in

most practical cases, is not very difficult to evade because it only requires the attacker

to register more domain names. However, we would like to emphasize that carrying an

evasion attack on this feature will not significantly impact SURF’s accuracy, as shown

in the quantitative analysis in Section 3.3. The remaining two features are harder
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to evade. The landing to terminal distance feature depends on the attacker’s

network infrastructure, and therefore the same arguments we made for the redirection

composition features hold in this case. The page load/render errors may depend,

for example, on pages (and domains) along the redirection chain that have been

blacklisted or remediated. Therefore, this feature is not under the attacker’s direct

control and is difficult to evade.

Poisoning resistance: Since these three features are derived from the search result

pages themselves with the help of public PageRank data, which is determined by the

search engine algorithms and out of attackers’ control. Therefore these features are

difficult to evade.

3.2.4 Prototype Implementation

SURF only requires a limited amount of data to be collected during search-then-visit

browsing sessions, and can be easily incorporated into a browser as a plugin. To

demonstrate the effectiveness of our detection approach, we implemented SURF on

top of an instrumented version of Internet Explorer 8. This instrumented browser

leverages mshtml.dll for HTML parsing and rendering, and is able to listen for event

notifications (e.g., used to identify subframe redirections) and peek into browsing data

(e.g., HTML code and user visible content) at different rendering stages. In addition,

SURF is capable of emulating simple user interactions during visiting sessions that

require certain user input to proceed (e.g., clicking on a message dialogue box, acti-

vating a mouse-over action, etc.).

To perform our evaluation of SURF, we used several instrumented browser in-

stances and instructed them to retrieve lists of popular (or “trendy”) search key-

words, query each keyword on both Google and Bing, and visit the top 100 search

results for each query. Our evaluation data collection started in September 2010. We

deployed our browser on 20 virtual machines which would run daily to query search
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Figure 7: Threshold Curves (ROC)

keywords that had reached popularity within the past seven days. In addition, our

instrumented browser was enhanced with BLADE [59], which we used to protect the

VMs from drive-by download malware infections and to log attempted exploits. The

obtained browsing information for each browsing session was then saved for offline

analysis. While we performed our evaluation offline for convenience reasons, mainly

to be able to run cross-validation experiments on large datasets, once the statistical

classifier has been trained SURF can detect search poisoning instance online (see

Figure 5).

3.3 Evaluation Results

3.3.1 Evaluation Dataset

To the best of our knowledge, there exists no public labeled dataset of search results

and their related user redirection events related to search poisoning cases. Therefore,

we chose to semi-manually label part of our dataset. In particular, we labeled browsing

sessions collected during October 2010. In the following, we refer to obtain dataset

as Seval. It is worth noting that Seval differs from the Sstudy dataset that we used for

the search poisoning study in Section 3.1.2 (Sstudy was collected one month earlier).

This is to make sure that SURF does not “overfit” Sstudy because Sstudy inspired the

choice of SURF’s statistical features, and to avoid over-estimating SURF’s accuracy.

For the same reasons, none of the statistical features measured by SURF were used

to guide our labeling. We simply semi-manually labeled the data using a separate set
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of heuristics based on the relation between the search terms and a (visual) analysis

of the terminal page content rendered by the browser.

In practice, we labeled search poisoning cases related to three types of malicious

activities: search result for popular search keywords that lead to irrelevant terminal

pages serving (1) drive-by download malware, (2) fake AV software, or (3) hosting

rogue pharmacy sites. We labeled all these cases as poisoned (or positive). At the

same time, we labeled a search result as non-poisoned (or negative) only when all

URLs appeared in redirection chain have a fair reputations (e.g., according to [8])

and none of them are flagged as malicious by website scanning or blacklisting services

(e.g, using [6]). Overall, Seval consists of 1,184 negative samples and 1,160 positive

ones, with 585 fake AV, 414 drive-by download, and 161 rogue pharmacy cases.

To evaluate SURF and confirm it follows our design goals, we conducted three dif-

ferent experiments. The first experiment aims to estimate SURF’s accuracy, while the

second attempts to show that SURF is able to detect generic search poisoning cases,

and is not limited to one specific type of malicious content. The third experiment

aims to show what features are the most important for classification, and how SURF

may respond to evasion attempts on these features. Throughout all our experiments,

we used Weka’s J48 decision tree classifier [45], which is an implementation of the

well known C4.5 algorithm [9]. This choice is motivated by the fact that decision

trees are efficient (both during the training and testing phases) compared to other

statistical classifiers, and the resulting trained classifier can be easily interpreted.

3.3.2 Overall Accuracy

To estimate SURF’s detection rate and false positives, we performed a 10-fold cross

validated of SURF’s classifier on the Seval dataset, achieving an average true positive

rate of 99.1% at a 0.9% false positive rate. The ROC curve in Figure 7 shows a very

slow decrease of the detection rate as the false positive rate is pushed down from 0.9%
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to 0.28%. Therefore SURF can satisfy a relatively wide range of usage scenarios with

different levels of tolerance to false positives, while still maintaining a reasonably high

true positive rate. In our SURF prototype we set the detection threshold to limit the

false positive rate to 0.4% (marked point in Figure 7). We also analyzed the decision

tree produced by the trained J48 classifier and found that misclassifications were

mainly caused by those rare cases in which poisoned search results achieved a top

rank under a very competitive keyword, or cases in which a legitimate landing page

redirects visitors to a very “distant” terminal page (see Section 3.2.2) and detours

sampled visitors through third-party traffic analysis services.

3.3.3 Generality Test

To confirm that SURF is able to detect generic search poisoning cases, regardless of

the specific malicious content that they promote, we performed the following experi-

ment. We prepared three datasets, D, F , and P , containing labeled search poisoning

example from the drive-by malware downloads, fake AV, and rogue pharmacy cases

from Seval, respectively. In addition, we prepared two separate datasets, Na and Nb,

containing randomly selected negative examples (i.e., legitimate search redirection

cases). We then performed a 3-fold cross validation by using D ∪ F ∪ Na for train-

ing, and testing on P ∪ Nb for the first fold, training on D ∪ P ∪ Na and testing on

F ∪Nb for the second fold, and training on F ∪P ∪Na and testing on D∪Nb for the

third one. Figure 7 shows the three separate ROC curves (one per fold). Averaging

the results of the 3-fold validation, we obtained a detection rate of 98% at a false

positive rate of 1.8%. It is worth noting that while this result does not appear to

be as good as the result obtained for the overall 10-fold cross validation experiment,

our 3-fold evaluation presents SURF with much harder cases in which no examples

of search poisoning instances of the same category used for testing are present in the

training set. However, the high detection rate and relatively limited false positives
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demonstrate that the features used by SURF can indeed capture generic search poi-

soning properties, independent of the specific type of malicious content delivered by

the terminal page.

3.3.4 Feature Robustness

This experiment attempts to quantify SURF’s resistance to evasion effects on the

statistical features. To perform the experiments, we ran SURF’s classifier on 100

randomly chosen positive samples. We artificially modified the values of the features

describing these 100 samples to simulate different evasion scenarios, and evaluated

how the classifier’s accuracy changed as a consequence. We first artificially set the

IP-to-name ratio to zero, which is the most common value of the feature in negative

samples. The IP-to-name ratio feature is the only one among SURF’s features that

is not difficult to evade. After altering this feature, only 1 out of 100 samples was

misclassified, which suggests that the attacker cannot gain much by attempting to

evade it. Despite the fact that other features are hard to evade, we nonetheless

wanted to investigate the effect of altering the most discriminant features, i.e., the

features that appeared close to the root of the decision tree. The redirection

consistency and landing to terminal distance turned out to be the top two

most discriminant features. Replacing their values with values drawn from negative

samples caused 80 out of 100 samples to be misclassified. However, it is worth noting

that evading these two features would require the attacker to change her malicious

network infrastructure, thus incurring a significant cost, as discussed in Section 3.2.3

3.4 Discussion

At a first glance, our evaluation may seem unconvincing because we used a dataset

labeled by ourselves. However, to the best of our knowledge, no public labeled dataset

exists that contains browsing session data related to a variety of search poisoning in-

stances. As discussed in Section 3.3, our semi-manual labeling process is based on
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a set of heuristics that do not overlap with any of the detection features measured

by SURF. This allowed us to perform an unbiased evaluation. While we acknowl-

edge that our semi-manual labeling can only help us collect partial “ground truth”,

it is extremely difficult, if not impossible, to obtain complete ground truth without

a deterministic search poisoning detection system. In absence of such perfect search

poisoning detector, our labeling method represents our best effort to produce a rep-

resentative (even though not complete) ground truth that includes a variety of search

poisoning instances leading to different types of malicious content.

During our feature selection process, we discarded a few candidate features that

may help the classification accuracy but are not robust. For example, we chose not

to include features based on measuring the relevance of the content of terminal pages

to the search keywords because the content of the terminal pages is under complete

control of the attacker, making these types of features easy to evade. Also, we did

not include features related to the structure of the URLs involved in malicious search

user redirections. These features usually require historical knowledge of the “normal”

structure of the URLs for each particular website. While these type of features may be

included in a search engine-side deployment of SURF, client-side deployments would

not be able to collect and leverage this kind of information, and therefore we decided

not to add them to our prototype implementation. Furthermore, an attacker has a

non-negligible flexibility when choosing the structure of the redirection URLs, and

therefore it is not clear how robust these features would be. We also considered some

features based on domain or IP reputation scores. Though capable of reducing the

false positive rate, these features were excluded from our selection because of their

heavy dependence on external security services, and because we wanted to evaluate

the detection accuracy of SURF based solely on the strengths of our own features. In

practice, SURF implementations may opt to incorporate reputation-based features to

improve classification accuracy.
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When deployed at the search engine side (e.g., using a “browser farm”), SURF can

be used to analyze suspicious search results and accurately detect poisoning cases.

This can provide search engines with valuable information that goes beyond specific

poisoning instances. For instance, the landing pages involved in search poisoning

are often organized in a “botnet mode”, so that the keywords to be poisoned can

be periodically fetched from a command-and-control server. Therefore, detecting

search poisoning cases can reveal information about compromised websites and botnet

organizations. In addition, newly detected malicious terminal webpages may serve as

labeled samples for malicious webpage detectors that require periodic re-training.

At the same time, SURF can be deployed at each single client to detect (and block)

poisoned search results. A possible deployment scenario could include large numbers

of client-side SURF installations that collaboratively detect search poisoning case

and share information about the underlying malicious network infrastructures (e.g.,

domain names, IP address, etc.) through a cloud service, thus potentially improving

SURF’s detection accuracy.

3.5 Empirical Measurements

To gain a deeper insight into the search poisoning problem, we performed a long-term

(7 months, 212 days) measurement study. We manually analyzed data in the first

month. We used SURF to analyze browsing data we collected in the next 6 months.

During this period we instructed SURF to analyze over 12 millions search results

from both Google and Bing collected by querying the top 40 “trendy” keywords [4].

In practice, once a search keyword appeared in the top 40 list on a given day, we used

SURF to query the search engines for this keyword for the following 7 days. Overall,

during our measurement study SURF automatically queried the search engines with

8,480 keywords. This long-term data collection process enabled us to study in-the-

wild search poisoning instances from two different angles, a “micro measurement”
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Figure 8: Micro measurement statistics

study based on a 7-day window that focuses on how search poisoning evolves with

respect to frequently changing keyword popularity, and a “macro measurement” study

that looks at poisoning trends over the entire 7-month period.

3.5.1 Micro Measurements

Due to frequent changes in the trendy search keywords [4], we expected that some

time (e.g., a few days) would be required for the attackers to poison the search terms

and make their landing pages of choice appear in the related top search results. Sur-

prisingly, our measurements on the micro developments of detected search poisoning

cases suggest otherwise: adversaries are extremely responsive and have built effec-

tive approaches to promote rogue landing pages under the targeted trendy search

keywords in a short time.

Among the 3,869 keywords for which we detected related poisoned search results,

38% of them had poisoning lag (i.e., the time it takes for the first poisoned result

to be detected) of one day or less. This percentage decreases as the lag increases,

and only 7% of the keywords had a poisoning lag of 7 days, as shown in Figure 8.

This results suggest that the adversaries are capable of keeping up with search users’

interests, and that the majority of their poisoning attempts succeed within the first

3 days.

We also found that the average life time of a rogue landing page involved in search
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poisoning is only 1.7 days. This indicates that adversaries favor a fast-switching strat-

egy to reduce the exposure window, thus reducing the possibility of the rogue pages

being detected and conserving the compromised landing sites for reuse in future poi-

soning attacks. However, the appearance of these rogue landing pages in the search

results lasts for more than 3 days on average, until the page ranking is demoted due to

the new information retrieved by the search crawlers. At the same time, the relative

volume of detected rogue landing pages for a given poisoned keyword keeps increasing

throughout the 7-day observation window, as shown by the poisoned volume increase

in Figure 8 (the poisoned volume is relative to the total number of detected poi-

soned results during the 7-day period). We believe this fast paced operation proposes

significant challenges for blacklisting and other traditional security solutions, making

them inadequate to solve the search poisoning problem. In fact, well-known malicious

webpage scanners (e.g., [6]) have failed to detect 78.9% of malicious terminal pages

involved in the search poisoning cases detected by SURF (we scanned all the terminal

pages using [6] on the same day when SURF detected the related search poisoning

instance).

Our measurements show that the visiting traffic reaching a particular malicious

terminal page is always contributed by multiple landing pages that appear in poisoned

search results related to different search keywords. In particular, we found that during

a 7-day period, for each given malicious terminal page, their visitors were supplied

in average by 2.9 poisoned search keywords and 2.2 different rogue landing sites per

keyword. We speculate this is a reflection of a growth in the “search poisoning as a

service” phenomenon discussed in Section 3.1.2.

3.5.2 Macro Measurements

After examining the development of poisoned search results in the first 7 days period,

we now zoom out our measurement window to consider the entire 7-month data
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Figure 9: Poisoned keywords percentage (left) and landing domains engaging search
poisoning (right)

collection period. Through these long-term measurements we aim to discover search

poisoning’s evolving trends and characteristics that are observable only throughout

a long period of time. To highlight specific patterns and long-term trends, we divide

the 7-month observation period in 31 epochs, where each epoch is equal to one week.

Then, for each week we compute a number of statistics (discussed below), and plot

how these statistics vary with respect to time.

During most epochs, we found that more than 50% of the search keywords that

became popular on that epoch got poisoned. For this particular measurement, a

search keyword is considered to be poisoned if at least one out of the top 100 search

results for that keyword is related to a search poisoning instance. Figure 9 (left)

plots the percentage of poisoned keywords for each week, broken down into different

degrees of success in terms of search ranking. We can see that during some of the

epochs, almost 60% of the trendy search keywords resulted in rogue landing pages

that ranked within the top 50 search results. Furthermore, in some cases adversaries

managed to promote their rogue landing pages up to the top 10 search results. These

particularly successful attacks were related to about 15% of all poisoned keywords on

59



average. These findings are alarming because they suggest that a large number of

search users can easily be affected by search poisoning.

Figure 9 (right) shows two curves. One represents the number of rogue landing

sites (counted as the number of distinct related domain names) that were involved

in search poisoning cases, and the other the number of distinct (landing domain,

keyword) pairs. The two peeks (marked by A and B in the figure) that appeared

around Christmas time and the Super Bowl are not a coincidence. Our analysis

shows that important predictable events can help adversaries to further increase their

poisoning success rate, given the sufficiently large preparing time (enabled by the

predictability of the events) and the interest of large number of search users in the

events being exploited. At the same time, less predictable breaking news that receive

broad attention for a not too short amount of time (e.g., a few days) are also an easy

target for search poisoning. An example of this is the earthquake and tsunami that

recently hit Japan (marked by C in Figure 9). Furthermore, as the targeted keywords

(upper curve) fluctuated between attempts to leverage different events, the number of

detected landing domains (lower curve) remained somewhat more stable, suggesting

that search poisoning operators have a solid footing in the search engines’ indexes,

and are ready to launch new attacks whenever the opportunity comes.

On average, users who fall victim of search poisoning are redirected at least twice,

including one cross-domain redirection, before reaching the malicious terminal page.

About 29% of these redirections were due to HTTP 30x responses. Not surprisingly,

the majority of the remaining 70% were mostly due to client-side scripts (likely an

attempt to evade security crawlers that do not support script execution). About

78% of the landing page URLs explicitly contained the targeted search keywords to

boost the page relevance perceived by search crawlers. About 98% of the intermediate

URLs include ID-like parameters to track unique visitors, identify search poisoning

affiliates, or prevent repeated visits. In 94% of the cases, the terminal page URLs

60



0%!

20%!

40%!

60%!

80%!

100%!

2010-9! 2010-10! 2010-11! 2010-12! 2011-1! 2011-2! 2011-3!

Unknown!
Void Page!
Click Fraud!
Rogue Pharmacy!
Scam (discount luxury)!
Scam (local service)!
Scam (free gift)!
Rogue Search Engine!
Drive-by download!
FakeAV!

Figure 10: Terminal page variety survey

used domain names registered for less than a year, with many of these domain chosen

to purposely deceive victim users and promote specific scams. Among the detected

search poisoning cases, the most frequently used top-level domains (TLDs) for landing

pages are .com, .org, .net, and .info, with a TLD distribution similar to regular

websites. On the other hand, domains related to terminal pages were mostly registered

under TLDs such as .cc, .com, .in, and .net, some of which are known to be malware

friendly.

To have a sense of the variety of malicious content promoted by search poisoning,

we surveyed 350 randomly chosen terminal pages. These 350 terminal pages were

evenly distributed across our 7-months measurement period. The results are shown

in Figure 10. We manually categorized the terminal pages based on data saved at the

time when the page was visited by SURF, including screen shots of each rendered page.

As expected, fake AVs are the most prevalent adopters of search poisoning during the

entire 7-month period. However, we noticed that their pervasiveness started fading

as other types of malicious terminal pages increased. Drive-by malware downloads

and other browser exploitation techniques did not appear to be commonly leverag-

ing search poisoning. On the other hand, various types of social engineering-based

malicious pages are dominant players. The figure shows a clear surge of rogue search

engine pages, which present the users with links seemingly relevant to the search

keyword but aim to profit from user clicks. Scam pages (e.g., watch replicas, etc.)

represent another significant fraction of the surveyed terminal pages. Regardless of
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their individual tactics, scam pages in general bait traps with free or unrealistically

cheap goods to attract users and steal private information (e.g., credit card numbers,

passwords, etc.). We also encountered a number of malicious terminal pages related to

click fraud and rogue pharmacies. The terminal pages categorized as “void” typically

contain clues of of certain types of maliciousness (e.g., based on their domain name

patterns) but were inaccessible when visited due to unsuccessful DNS resolution, or

webpage errors. SURF’s ability to detect even these “void” malicious terminal pages

supports our initial goal of building a detection system that is agnostic to the specific

content of malicious pages promoted through search poisoning.

3.6 Related Work

Blackhat SEO countermeasures: Blackhat SEO, which involves abusing search

engine optimization techniques to achieve undeserved rankings, is not a new problem

and has been studied for year, especially in the information retrieval community. Most

proposed detection methods work at the search engine level and attempt to identify

deceptive information introduced by the adversaries into the search index to influence

the rankings of their websites. Various detection features explored by these methods

mainly focus on two aspects of indexed webpages: intra-page characteristics [66, 82,

88] and inter-page linkages [87]. However, for adversaries with full control over their

injected search landing pages, such features are not difficult to evade, sometimes even

without requiring changes to their operation routines. In fact, this traditional way

of countering blackhat SEO has failed to stop its rising trend [17]. SURF addresses

search poisoning, a new class of blackhat SEO, building on the lessons learned from

previous work and approaching the detection from a new angle using a set of feature

that is more robust to evasion.

deSEO[52] is a very recent work done in parallel with SURF. It detects URLs

from the search index that contain signatures derived from known search poisoning
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landing pages and exhibit patterns not previously seen by the search engine on the

same domain. Since there is no need to crawl each URL, this approach scales much

better than SURF when facing a huge volume of search results. However, deSEO

is limited by the coverage of the URL signatures, and may only find a subset of

what SURF detects. For example, about 12% landing page URLs detected by SURF

in Section 3.5.2 do not contain trendy search keywords, and thus may be missed

by deSEO. Moreover, SURF does not rely on any information internal to search

engines and can be deployed at the client side, enabling single browsers to detect

poisoned search results as well as malicious webpages behind them before the content

is presented to the user.

Malicious webpage detection: SURF, when implemented as an automated detec-

tion agent, can be viewed as a dynamic crawler used to scan search results looking

for poisoned ones. From this perspective, SURF is similar to many proposed systems

that crawl the Internet for various kinds of malicious webpages [63, 84]. Such systems

always employ an army of browsing agents running in a controlled environment to

visit suspicious URLs in batch and detect signs of specific types of malicious activi-

ties. SURF can be easily integrated into these systems and can enable the detection

of search poisoning cases along with the related compromised landing page and ma-

licious terminal pages. On the other hand, solely relying on malicious page detectors

for finding poisoned search results may achieve limited success, because of the variety

of terminal pages, many of which use social engineering attacks that are difficult to

detect.

Applying machine learning techniques to data collected during a crawling session

is also a common approach to detecting malicious webpages. A recent work [80] is

able to detect URLs that lead to spam pages. Our work is different because SURF is

not limited to detecting spam pages, and can instead detect generic search poisoning

cases.
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3.7 Conclusion

Search poisoning is an abuse of SEO techniques by which miscreants target any search

term that can maximize the number of incoming search users to their malicious web-

sites. We observed through an empirical study that a key characteristic of search poi-

soning is the ubiquitous use of cross-site redirections. We designed and implemented

SURF, a novel detection system that runs as a browser component and is able to de-

tect malicious search user redirections resulted from user clicking on poisoned search

results. SURF extracts a number of detection features from search-then-visit brows-

ing sessions. These features are robust and the resulting classifier is hard to evade

because they capture the key properties of search poisoning (derived from our empir-

ical study and analysis). Our evaluation showed that SURF can achieve a detection

rate of 99.1% at a false positive rate of 0.9% on a dataset that contains real-world

search poisoning instances. Using SURF, we also performed a long-term measurement

study on search poisoning on the Internet over a period of seven months. Our study

revealed new trends and interesting patterns related to a great variety of poisoning

cases, and underscored the prevalence and gravity of the search poisoning problem.
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CHAPTER IV

CHEX: STATICALLY VETTING ANDROID APPS FOR

COMPONENT HIJACKING VULNERABILITIES

An enormous number of apps have been developed for Android in recent years, mak-

ing it one of the most popular mobile operating systems. However, the quality of

the booming apps can be a concern [5]. Poorly engineered apps may contain secu-

rity vulnerabilities that can severally undermine users’ security and privacy. In this

paper, we study a general category of vulnerabilities found in Android apps, namely

the component hijacking vulnerabilities. Several types of previously reported app

vulnerabilities, such as permission leakage, unauthorized data access, intent spoofing,

and etc., belong to this category.

We propose CHEX [57], a static analysis method to automatically vet Android

apps for component hijacking vulnerabilities. Modeling these vulnerabilities from a

data-flow analysis perspective, CHEX analyzes Android apps and detects possible

hijack-enabling flows by conducting low-overhead reachability tests on customized

system dependence graphs. To tackle analysis challenges imposed by Android’s special

programming paradigm, we employ a novel technique to discover component entry

points in their completeness and introduce app splitting to model the asynchronous

executions of multiple entry points in an app.

We prototyped CHEX based on Dalysis, a generic static analysis framework that

we built to support many types of analysis on Android app bytecode. We evaluated

CHEX with 5,486 real Android apps and found 254 potential component hijacking

vulnerabilities. The median execution time of CHEX on an app is 37.02 seconds,

which is fast enough to be used in very high volume app vetting and testing scenarios.
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Figure 11: An app vulnerable to component hijacking

4.1 Component Hijacking Problem

Android framework dictates a component-based approach to app design, for flexi-

ble interoperability among apps and efficient app lifecycle management. In this ap-

proach, app developers organize their code into individual application components [19]

(i.e. Activities, Services, and etc.). Each component fulfills a logically indepen-

dent task and can serve requests from other components in the same app, the frame-

work, or another app if the component is publicly available (or is exported, in Android

terminology). For example, an instant messaging app may need a contact enumerator

(i.e. collecting all contacts on the device) to suggest friends for the user. Instead of im-

plementing its own, the app can leverage an existing contact enumerator component

exported by a contact manager app.

However, the capability of reusing a component under its containing app’s identity

can lead to serious security threats, when the component is security-critical but not

well protected. To generalize threats of this kind, we introduce the concept of compo-

nent hijacking, describing a class of attacks that seek to gain unauthorized access to

protected or private resources through exported components in vulnerable apps. As

shown in Figure 11, if the contact manager app fails to deny requests from unautho-

rized apps, a malicious app can easily take advantage of (or hijack) the Enumerator
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Service and consequently gain access to user’s contacts without the required per-

mission. Recent works [29, 55, 39, 41] reported attacks similar to this particular

example, all of which derive from the classic confused deputy attack [46] and aim at

escalating privileges of attacking apps in the context of Android’s permission system.

Note that, although permission-protected resources (e.g. contacts, geo-location, and

etc.) are obvious targets, component hijacking is by no means limited to these con-

fused deputy attacks that bypass the permission checks. In fact, if carelessly exposed,

data or invokable interfaces that are only intended for app’s internal use (thus not

permission-protected) can also become targets of component hijacking attacks. In

this case, where no explicit permission is involved, the attacking app seeks to tamper

or steal private data of a vulnerable app that does not enforce access control or in-

put validation properly. For instance, in Figure 11, the security-critical information

stored in the app internal database can be tampered through the Setting Update

Receiver in an SQL-injection fashion. Complicated cases exist, where an attacker

can leverage a chain of vulnerable components to steal private data, modify critical

settings, or perform privileged actions, by simply issuing crafted requests as a regular

app.

Several topics related to component hijacking were studied by recent works. Com-

Droid [28] checks app metadata and API usages for publicly exported components.

Such components, if granted direct or indirect access to sensitive resources, may be-

come launching points for hijacks. Grace et al. [41] analyzed factory stock apps to

identify permission leakage, a threat that also spurred studies on its runtime mit-

igations [39, 30, 24]. While these works are effective in archiving their own goals,

they target at the vulnerabilities that only represent a subset of component hijacking

(i.e. hijacks seeking to access non-permission-protected sensitive resources are not

covered). Plus, these works do not intend to provide any in-depth detection method

suited for scalable app vetting. Our work aims to bridge this gap.
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It is noteworthy that component hijacking vulnerability is not caused by any

insecurity intrinsic to Android framework. In fact, Android does provide a set of

mechanisms to secure app components and their interactions. Instead, similar to

other security vulnerabilities in software, component hijacking stems from issues that

are hard to avoid in reality, such as undertrained developers, lacks of proper app

quality assurance, and usability issues of existing security mechanisms. We expect

component hijacking vulnerability to emerge rapidly in terms of popularity and sever-

ity. As the user population of Android constantly grows, more and more developers

are migrating to this platform, often with inadequate experience or knowledge on its

security mechanisms. In addition, the current app distribution model offers a conve-

nient way for amateur developers to release their apps to a wide range of users. With

these factors adding up, the odds becomes high for a regular Android user to install

apps that insecurely handle external requests and thus are subject to component hi-

jacking. Attackers who are now struggling with crafting new exploiting techniques

on Android would not easily let this new attacking vector pass by.

Apps with component hijacking vulnerabilities are generally not malicious on their

own, but can be coerced by attacking apps to conduct malicious activities. Defensive

efforts may focus on either finding the vulnerabilities in benign apps, or detecting

corresponding exploits from suspicious apps. Our work follows the first approach for

the more distinguishable and less volatile nature of the subject being detected, than

that of the second one. Without loss of generality, we define component hijacking

attacks as follows:

Definition 1 An unauthorized app, issuing requests to one or more public compo-

nents in a vulnerable app, seeks to:

G1 : READ sensitive data out of the app; or

G2 : WRITE to critical data region inside the app; or

G3 : perform a combination of G1 and G2.
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Based on this definition, to determine if a given component (or set) is vulnerable

to hijacking is equivalent to finding feasible data flows that can enable any of the

three goals above without going through any security checkpoint. We refer to these

flows as hijack-enabling flows hereafter. In a simple example, the Emulator Service

in Figure 11 is vulnerable if a hijack-enabling flow exists that fulfills G1: the flow

propagates the contact list into an object to be returned to the requestor, serving

as a data sink from which the requestor (or attacking app) can read data directly.

In a more complex scenario, the data sink may not seem immediately accessible to

the requester (e.g. sending contact to an URL, as shown in Figure 11). However, if

the component contains a hijack-enabling flow that writes requester-supplied input

into certain output-controlling data (e.g. the destination URL), requestors can still

indirectly read the contact information by redirecting the output and achieve G3.

Component hijacking is also possible on a chain of components, when the hijack-

enabling flows span across component boundaries.

Defining component hijacking from a data flow perspective allows us to trans-

form the vulnerability detection problem into an equivalent data flow analysis prob-

lem. A different but related topic is data leakage detection [34, 48], which looks for

individual data flows that indicate sensitive data being propagated out of certain

containment scope. Note that apps sending out sensitive data are not necessarily

exploitable nor harmful (e.g. an app sends users’ GPS information to remote servers

for location-based services). Therefore, data leakage detection only reports outbound

sensitive data flows without clarifying their security implications. In contrast, com-

ponent hijacking vulnerability is always exploitable and undermines user’s privacy.

On the other hand, techniques for identifying component hijacking vulnerability can

be applied to finding data leaks, but not vice versa. Because finding data leaks are

essentially identifying special hijack-enabling flow that enable G1 with all data sinks

supposed to be accessible by attackers.
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Component hijacking gives attackers the freedom to surreptitiously perform priv-

ileged actions and access private data. In our threat model, successful hijacks require

users to willingly install the attacking app on their devices. To create a user pop-

ulation of decent size, attackers can resort to many illicit techniques that promote

their apps in the market and lure users. Given component hijacking apps often re-

questing little to no permissions, users, even vigilant ones, tend to trust them easily.

Although attackers cannot control, but only hope for, the availability of vulnerable

apps on users’ devices, the reality has been working towards attacker’s favor due to the

large number of under-trained Android developers and an overall lack of app quality

assurance. Therefore, as a defensive effort, we designed CHEX to assist apps devel-

opers, testers, and market operators in filtering out apps vulnerable to component

hijacking attacks before they reach end user devices. We chose to target CHEX on

non-malicious apps, which constitute the majority of exploitation targets, so that we

can safely assume a non-adversarial application scenario (e.g. heavy obfuscations and

anti-analysis techniques are out of our concern) and solely focus on designing the

detection and analysis method.

4.2 Detection and Analysis Method

CHEX follows a static program analysis approach, featuring a novel data-flow analyzer

specially designed to accommodate Android’s special app programming paradigms.

Static analysis makes sense for vetting benign apps in that, the anti-analysis tech-

niques that are commonly used in adversarial scenarios are out of scope, and the

advantages of static analysis, such as its completeness and bounded time complexity,

are well suited to addressing the vulnerability discovery problem.

Existing data-flow analysis and modeling methods are not immediately applicable

to Andriod apps due to Android’s special event-driven programming paradigm. Our

70



flow- and context-sensitive analyzer, incorporated with a number of analysis tech-

niques and models that we devised for Android apps, can efficiently discover data

flows of interest within the entire app. Its underlying flow extraction mechanism is

separated from the high level policies that define interesting flows. As a result, our

data-flow analysis method can be applied to other applications than vulnerability

discovery. Our method also offers the flexibility to choose if the Android framework

code1 needs to be included or simply modeled during the analysis, depending on

specific usage scenarios. In this paper, we model the framework code for reasons

discussed in Section 4.3.

Next, we present a concrete example to illustrate component hijacking vulnera-

bilities, as well as typical challenges associated with performing data-flow analysis on

Android apps.

4.2.1 A component hijacking example

Our example is a hypothetical Android app that aggregates the popular location-

based services and provides a one-stop solution for users. Figure 12 shows a critical

Service component of the app. Upon requested by particular Intents, this com-

ponent obtains user’s location information and synchronizes it with a remote server.

Despite that the component is intended for the app’s internal use only, its developer

carelessly left it open to other apps. This mistake is not uncommon partly because

Android by default publicly exports components that register to accept particular

Intents. Here, we demonstrate two possible component hijacking attacks on this

example app and highlight the challenges associated with analyzing the code. The

vulnerabilities in this example app are similar to those that we found in the real apps

and reported in Section 4.5.3.

In Figure 12, Method onBind (Ln. 5) is invoked by the framework whenever a

1Android framework consists of the Dalvik runtime and Android system libraries. We refer to it
as the framework hereafter. Note that apps (including system apps) are not part of the framework.

71



1 public class SyncLocSrv extends Service{
2 Location currLoc;
3 final Messenger mMessenger = new Messenger(new

ReqHandler());
4
5 public IBinder onBind(Intent intent) {
6 return mMessenger.getBinder();
7 }
8
9 private class ReqHandler extends Handler {

10 public void handleMessage(Message msg) {
11 ...
12 switch (msg.what) {
13 case MSG_UPDATE_LOCATION:
14 // get GPS location
15 currLoc = lm.getLastKnownLocation(PROVIDER);
16 break;
17 case MSG_SYNC_LOCATION:
18 // sync GPS with specified URL
19 String url = msg.getData().getString("url");
20 String[] sendParams = new String[] {url};
21 new SendToNetwork().execute(sendParams);
22 break;
23 ...
24 default:
25 ...
26 }
27 }
28 }
29
30 private class SendToNetwork extends AsyncTask<String

, String, String> {
31 // run in a separate thread
32 protected String doInBackground(String[] params) {
33 HttpClient hc = new DefaultHttpClient();
34 HttpPost pst = new HttpPost(params[0])); // URL
35 pst.setEntity(new StringEntity("gps:"+currLoc));
36 HttpResponse resp = hc.execute(pst);
37 return resp.toString();
38 }
39 }
40 ...
41 }

Listing 1: Vulnerable component example

C2 : Soundly modeling the asynchronous invocations of
entry points for analysis.

Once connected to the example Service, an attacking app
can exploit at least two separate hijacking vulnerabilities to
obtain the device location and perform network communi-
cations respectively, without requiring any permissions or
user interactions. A MSG_UPDATE_LOCATION followed by a
MSG_SYNC_LOCATION message from an attacker can coerce the
message handler to first retrieve the device location (Ln. 15)
and then send the data to a URL of the attacker’s choice
(Ln. 21). Alternatively, with a single MSG_SYNC_LOCATION,
an attacker is able to make arbitrary connections to any
URL he supplied in the message. Based on Definition 1,
these two particular cases of component hijacking are asso-
ciate with hijack-enabling flows that respectively allow the
attacker to (i) read the location data (i.e. realizing G1), and
(ii) write to the variable that controls the URL to be con-
tacted (i.e. realizing G2).

In general, hijack-enabling flows often consist of multi-
ple individual data-flows that are either loosely connected
or partially overlapped. They collectively enable one of the

three goals described in Definition 1. In our example, two in-
dividual data-flows – one carrying location data obtained on
Ln. 15 to the HTTP Post on Ln. 36 and the other carrying
requester-supplied URL on Ln. 19 to the same HTTP Post

operation – form the hijack-enabling flows that together al-
low an attacker to read the location data. The capability of
detecting such hijack-enabling flows hinges on not only an
accurate data-flow tracker, but more importantly, an ana-
lyzer that tackles the challenge of:

C3 : Assessing the collective side-e↵ects of individual
data-flows to identify converged flows of interest.

Due to the asynchronous invocations of entry points with
unknown call-sites, tracking data-flows are not as straight-
forward in Android apps as in traditional programs. Code
that is reachable from each entry point is a subset of the en-
tire component code and can be statically determined. We
refer to these subsets as splits (defined shortly). However,
splits, though representing separate execution contexts, are
by no means isolated and in fact can relate to each other
with inter-split data-flows that are enabled by heap or global
variables, or created by the framework. In the example, to
improve the app responsiveness, the network related oper-
ation is set to execute as an AsyncTask (i.e. a convenient
threading construct provided by the framework). On Ln. 21,
handleMessage prepares the parameter for SendToNetwork

task with the requester-supplied URL and then leaves it for
the framework to start doInBackGround (Ln. 32) in a new
thread with the parameter – essentially introducing another
entry point to the component. Note that there exist two
hijack-enabling flows that cross the boundary between the
splits started by handleMessage and doInBackground: (i)
the heap variable currLoc assigned with the location data
(Ln. 15) and used as the HTTP Post content (Ln. 34), and
(ii) the local array sendParams containing the URL (Ln. 20),
implicitly passed to params on Ln. 32 by the framework, and
used for the HTTP Post (Ln. 34). Similarly, hijack-enabling
flows can happen across components too. Therefore, our
analyzer needs to be capable of:

C4 : Tracking data flows across splits and components.

In summary, the example demonstrates that a component
is vulnerable to hijacks when it is exported to the pub-
lic without assuring to only accept requests from intended
users. It also shows that using hijack-enabling data-flows to
model the vulnerability is general and straightforward, but
a program analyzer aiming at detecting those flows faces
four major challenges imposed by the unique Android pro-
gramming paradigms (C1, C2) or by the complications of
the data-flows (C3, C4). Next, we introduce our approach
to conducting data-flow analysis on Android apps, with vul-
nerability detection as an application. We propose analysis
methods and models that overcome the challenges discussed
above and are expected to be useful to other applications as
well.

3.2 Analysis methods and models
The reason why we chose to exclude the framework out of

the analysis scope, and we believe most data-flow analysis
of apps should do the same, is because of the complexity of
analyzing the framework code and the simplicity of model-
ing its external data-flow behavior. Theoretically, when the
framework code is included, the analysis scope contains the
entire program code that can be executed within the app’s

4

Figure 12: Vulnerable component example

requester component connects to the Service. Android programming paradigm dic-

tates that apps organize their logic into components of different kinds, whose life-

cycles are managed by the framework in an event-driven manner. Each component

implicitly or explicitly registers event handlers (e.g. Ln. 5, 10, and 32). These han-

dlers serve as the entry points through which the framework starts or activates the

component when handled events happen. Apps, even average-sized ones, can have a

large amount of entry points of diverse object types and appearances, which posed

the first challenge to our analysis:
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C1 : Reliably discovering all types of entry points (or event handlers) in their

completeness.

Method onBind returns to the requester component an object that implements

the IBinder interface (Ln. 6) — a common pattern to achieve inter-component com-

munications in Android apps. The requester component can then send messages for

the Service to handle via the object. It is the framework that delivers the message

and invokes handleMessage as an entry point (Ln. 10) when an incoming message

arrives. Since the invocations of different entry points in an app can be asynchronous,

we faced the second challenge:

C2 : Soundly modeling the asynchronous invocations of entry points for analysis.

Once connected to the example Service, an attacking app can exploit at least

two separate component hijacking vulnerabilities to obtain the device location and

perform network communications respectively, neither incurring any permission viola-

tions or user interactions. Specifically, the attacking app can send a MSG UPDATE LOCATION

message, followed by a MSG SYNC

LOCATION message, to coerce the message handler to first retrieve the device location

(Ln. 15) and then send the data to a URL of the attacker’s choice (Ln. 21). Alterna-

tively, using a single MSG SYNC LOCATION message, the attacking app is able to make

connections to arbitrary URL he supplies in the message. Based on Definition 1,

these two particular cases of component hijacking are enabled by data-flows that re-

spectively allow the attacker to (i) read the location data (i.e. realizing G1), and (ii)

write to the variable that controls the URL to be contacted (i.e. realizing G2).

Sometimes it takes multiple individual data-flows, loosely connected or partially

overlapped, to enable one of the three goals described in Definition 1. In our example,

two individual data-flows together allow the attacking app to read the location infor-

mation (i.e. by forcing the vulnerable component to retrieve and send the location

information to a specified URL): one flow carrying location data obtained on Ln. 15
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to the HTTP Post on Ln. 36 and the other carrying requester-supplied URL on Ln. 19

to the same HTTP Post operation. To detect such hijack-enabling flows, a data-flow

analyzer needs to tackle the challenge of:

C3 : Assessing the collective side-effects of individual data-flows and identifying

converged flows of interest.

For optimized responsiveness, Android apps always perform blocking operations

within the doInBackGround method in AsyncTask2, such as network-send (Ln. 30).

The message handler prepares the network-send parameter with the requester-supplied

URL (Ln. 20). Once execute on the next line is called, the framework starts

doInBackGround (Ln. 32) in a new thread, introducing another entry point to the

component. Code that is reachable from each entry point is a segment of the entire

component code. These segments can be statically determined via reachability anal-

ysis. We refer to them as splits (defined shortly). Although executing in separate

contexts, splits are by no means isolated and in fact can relate to each other through

inter-split data-flows. Heap and global variables used in different split can form these

flows. Note that there exist two hijack-enabling flows that originate from the split

started by handleMessage and reach to the split started by doInBackground: (i)

the heap variable currLoc assigned with the location data (Ln. 15) and used as the

HTTP Post content (Ln. 34), and (ii) the local array sendParams containing the URL

(Ln. 20), implicitly passed to params on Ln. 32 by the framework as an entry point

parameter, and used for the HTTP Post (Ln. 34). Therefore, our analyzer needs to

be capable of:

C4 : Tracking data flows across splits and components.

In summary, this example demonstrates that a component is vulnerable to hijacks

when it is exported to the public without limiting its interfaces to intended users. It

also shows that using hijack-enabling data-flows to model the vulnerability is general

2A convenient threading construct provided by the framework.
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and straightforward. A program analyzer aiming at detecting these flows faces four

major challenges imposed by the unique Android programming paradigms (C1, C2)

or by the complications of the data-flows (C3, C4). Next, we introduce our approach

to conducting data-flow analysis on Android apps, with vulnerability detection as an

application. We propose analysis methods and models that overcome the challenges

discussed above. They are expected to be useful to other types of app analysis as

well.

4.3 Analysis Methods and models

The reason why we chose to model the framework, instead of including all its code

into the analysis scope, is because of the complexity of analyzing the framework

code and the simplicity of modeling its external data-flow behavior. Due to the

framework’s extensive use of reflections, mixed use of programming languages, and

overwhelming code size, including the framework code into the analysis scope incurs

a significant amount of overhead and introduces certain extent of inaccuracy to the

analysis. Therefore, analysis that only require a partial knowledge on the framework’s

external behavior, such as data-flow analysis, should model rather than diving into the

framework, to avoid unnecessary performance overhead and inaccuracy. In addition

to modeling the framework in terms of its data-flow behavior, our analysis requires

type information of framework-defined classes (the app-level classes are derived from

these types). We will show that, such information can be easily extracted from the

framework, which the analyzer uses to build the complete class hierarchy.

4.3.1 Entry Point Discovery

As the first step to deal with the multi-entry-point nature of apps and tackle C1,

we designed an algorithm that discovers entry points in app code at a very low false

rate, without requiring analyzing the framework code. To avoid ambiguity, we use
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Algorithm 1 Entry points discovery

Mf ← {Uncalled framework methods overridden by app}
Ma ← {App methods overriding framework}
E ← {Listeners in Manifest; Basic component handlers}
repeat
G← BuildCallGraph(E)
for all ma ∈Ma ∧ma overrides mf ∈Mf do

if ma’s constructor ∈ G then
E ← E ∪ {ma}

end if
end for

until E reaches a fixed point
output E as entry point set

the following definition of entry points in this paper:

Definition 2 App entry points are the methods that are defined by the app and in-

tended to be called only by the framework.

Entry points in an app can be large in amount, often with a great variety in their

object types. For instance, each UI elements in an app can define multiple event

listeners to be called at different moments as particular events happen. Similarly,

each component can implement handlers to get notified about its life-cycle changes.

Therefore, we avoided any manual efforts that use expert knowledge to generate

sets of possible entry points, due to its error pruning nature and no guarantee for

completeness.

Since the entry point methods are supposed to be called by the framework, the

latter then requires the prior knowledge about these methods. In fact, there are only

two ways for an app to define entry points that can be recognized by the framework:

either via explicitly stating them in the manifest file, or implicitly overriding methods

or implementing interfaces that are originally declared by the framework as app entry

points. Those defined using the first option can be determined by parsing the mani-

fest. To find the rest, our algorithm first generates the set of uncalled methods in the

app that override their counterparts declared in the framework, and then excludes
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methods that are unreachable even by the framework (i.e. dead methods). Telling

apart entry points from dead methods that override the framework, despite neither

is called by the app, is based on two facts unique to entry points: (i) the containing

class of any entry point always have at least one instantiated object (since app entry

points are non-static methods), and (ii) there should be no app-level invocation on

the original method that the entry point overrides or on any decedents of the original

method in the class hierarchy. In contrast, dead methods that override the framework

mostly cannot satisfy both conditions.

Our entry point discovery method, as formulated in Algorithm 1, follows an iter-

ative procedure until a fixed point is reached for the entry point set E. Method set

Mf and Ma are generated by a simple scan of the class hierarchy and all call sites

in the app code. E is initialized to include entry points declared in manifest files

and basic component-life-cycle handlers defined in the code. Compared with other

entry points, the component-life-cycle handlers have very few types and are the only

entry points whose containing class is created by the framework (i.e. calls to their

constructors are invisible at the app level). During each iteration, a new call graph

G is built based on the already discovered entry points in E. Due to the new entry

points added in the last iteration, the new G may contain previously unreachable

methods and classes instantiations. A method ma ∈ Ma is added to E as a new

entry point when ma overrides a framework method or interface mf ∈ Mf and ma’s

containing class is instantiated in G. We build the call graph using the entire E,

rather than just using the newly discovered entry points in the previous iteration, so

that the point-to analysis supporting the call graph builder can be as complete and

accurate as possible. The algorithm terminates when E stops growing and contains

all possible entry points. Very rare false positives can happen only when framework-

declared methods are never called in the app while they are already overwritten by

instantiated classes and made for app use.
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4.3.2 App Code Splitting

Once all entry points are discovered, we model their asynchronous invocations and

addresses C2 with a novel technique named app code splitting. We define the concept

of splits as follows:

Definition 3 A split is a subset of the app code that is reachable from a particular

entry point method.

From a static analysis perspective, app executions can be viewed as a collection

of splits executing in all feasible orders, possibly interleaved. The idea of modeling

app execution in terms of splits may seem challenging at the first glance. However,

constrains imposed by the framework and our focus on data-flow analysis significantly

simplify the realization of the idea. In fact, most splits in an app can only be executed

in a sequential order (i.e. not interleaving each other), because the framework invokes

the majority of app entry points in the main thread of an app. The mere exceptions

are entry points of concurrency constructs, such as threads. Since our goal is to

perform security vulnerability detection, concurrency-incurred data-flows are usually

not a concern in this context due to their extreme unreliability to be reproduced

or exploited. Therefore, we can safely approximate the app execution as sequential

permutations of splits that are feasible under framework constraints.

Under this app splitting model, our data-flow analysis first computes the split

data-flow summary (SDS) for each split in the app. It then starts the permutation

process and, for each possible sequence of splits, generates permutation data-flow

summary (PDS) by linking the SDS of each split in the sequence. As the permuta-

tion proceeds, each PDS is checked for interesting data-flows specified by pre-defined

policies. Eventually, all possible data-flows can happen in the app are enumerated.

Figure 13 shows two SDS marked by dashed boxes. They are generated based

on the two entry points, handleMessage and doInBackground. An SDS consists
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of intra-split data-flows whose end nodes represent: (i) heap variables3 entering or

exiting the split scope (depicted by octagons); or (ii) pre-defined sources or sinks

(depicted by rectangles). We omitted intermediate nodes in the SDS in Figure 13

to ease illustration. In essence, an SDS only contains data-flows within a split that

may contribute to connecting a source to a sink (may resides in another split). We

refer to these data-flows as interesting-flows hereafter. The upper SDS in Figure 13

has two isolated data-flows: the one on the left propagates the location data (a

sensitive source, tagged as Tag SensSrc) to a heap variable currLoc, and the one

on the right carries the requester’s input (tagged as Tag InputSrc) to a transit sink;

The lower SDS captures the convergence of a heap variable and a transit source

at a sink associated with two tags (Tag DataSink and Tag CriticalSink, explained

shortly). We compute SDS via a context- and field-sensitive data dependence analysis,

identifying interesting-flows in the current split. As Figure 13 shows, heap variables

are represented by their heap location key, which is a three-tuple in the form of

(field, allocSite,method), indicating the field whose containing object was allocated

at allocSite in method (field of any array object is null). Pre-defined sources and

sinks (data entry or exit points of the analysis’s interest) are represented by a four-

tuple, (method, paramIndex, tag, callSite), indicating that a parameter of a method

called at callSite is a source or sink depending on the tag.

Our analysis method allows for a fairly flexible way of defining and extending tags

associated with sources and sinks. Tags are used to differentiate sources and sinks

with different semantic meanings given by the analyzer users based on their specific

usage scenarios. Policies that specify interesting-flows can be defined based on the

tags associated with their end nodes:

P := Fint 1 [Fint | ∅]n, Fint := [Tag] ; [Tag], where 1 defines a join

relationship exists between two interesting-flows (i.e. two flows, or their extensions,

3Variables with a global scope, as opposed to local variables.
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SD
S: handleM

essage

(getLastKnownLocation, 
-1, Tag_SensSrc, Ln.15)

(handleMessage, 
1, Tag_InputSrc, Ln.N)

(SendToNetwork.execute, 
1, Tag_TransSink, Ln.21)

SD
S: doInBackground

(currLoc, Ln.X, <init>) (doInBackground,
(1, Tag_TransSrc, Ln.M)

(HttpClient.execute,
1, Tag_DataSink^Tag_CriticalSink, Ln.36)

(currLoc, Ln.X, <init>)

Figure 13: Linked-SDS for the running example

intersect or converge with each other), and ; defines an interesting flow with two end

nodes of specified tags. By supporting customizable tags and the join relationship in

defining interesting-flows, our analyzer provides a means of expressing the side-effects

of converged flows on a semantic level, which solves C3.

For component hijacking vulnerability detection, we define two general source

tags, Tag SensSrc and Tag InputSrc, to mark the start points of interesting-flows

that propagate sensitive information or requester’s input. We also define three general

sinks to mark end points of interesting-flows that are to make data publicly accessible

(Tag PublicSink), make data accessible to specified entities (Tag SpecifiedSink),

or write data into critical data regions (Tag CriticalSink). With these tags defined,

we can easily convert Definition 1 into three simple policies to capture hijack-enabling

flows:

P1 : {Tag SensSrc ; Tag PublicSink}

P2 :

{Tag InputSrc ; Tag CriticalSink 1 Tag SensSrc ; Tag SpecifiedSink}

P3 : {Tag InputSrc ; Tag CriticalSink}
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These policies are checked on every newly generated PDS as the split permuta-

tion continues. For the example, our analyzer can detect the hijack-enabling flows,

satisfying P2 and P3, from a PDS that links the SDS of handleMessage with that of

doInBackGround, as shown in Figure 13.

The PDS generation is carried out by two basic operations – link and unlink an

SDS. The link operation adds a new SDS into a PDS if inter-split data-flows exist

from the latter to the former. It draws data-flow edges (e.g. the two thick edges in

Figure 13) from leaf nodes in the PDS to those reachable root nodes in the new SDS.

For Android apps, the only two channels through which data can flow across splits

are: heap variables sharing the same location key tuple, and framework API pairs

that transit data among splits. We introduce a pair of special tags, Tag TransSink

and Tag TransSrc, to model these API pairs. The link operation can reject the SDS

if no edge can be drawn and the SDS does not contain flows starting with any pre-

defined source. A rejection suggests that the new SDS has no effect on any potential

propagation of interesting-flows in the current PDS, and thus, there is no need to add

it. Unlink operation simply reverts the last link operation.

Intuitively iterating through all split permutations can be a prohibitively expensive

operation for apps with a large number of entry points. We leverage on the continuity

of data-flows across splits to carry out a simple but effective search pruning. The

depth-first search only appends an SDS to the current permutation if it is accepted

by the link operation and then continues iterating along that path. As shown in

Section 4.5, this pruning greatly reduces the search space and time overhead of the

permutation process. The permutation also considers a few constraints on the launch

order of splits that handle life-cycle events of basic components (e.g. entry points

relating to component initialization and termination are called in fixed orders).

Finally, C4 is addressed, because all interesting-flows in an app, both intra-split

and inter-split ones, are constructed during the split permutation process. Our app
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splitting technique enables a data-flow analysis that is more efficient and better ac-

commodates the event-driven nature of Android apps, than the conventional methods,

which synthesize a main function explicitly invoking event handlers. App splitting

creates a divide-and-conquer theme. The sub-problems (i.e. constructing intra-split

data-flows and SDS) are significantly easier and smaller in scale than the original

problem (i.e. constructing data-flows for an entire app, as faced in the conventional

methods). The merge process (i.e. permuting splits) can be very fast. Moreover, due

the mutual independence among SDS, they can be built in parallel and cached for

reuse (e.g. SDS for common libraries can be built once and reused when analyzing all

apps that make use of them) to further improve the performance.

4.4 Implementation of Dalysis and CHEX

We built a generic Android app analysis framework named Dalysis, which stands for

Dalvik bytecode analysis. As suggested by its name, Dalysis directly works on off-

the-shelf app packages (or Dalvik bytecode) without requiring source code access or

any decompilation assistance. Previous app analysis efforts that relied on decompiled

source code have two major drawbacks — heavy performance overhead and incom-

plete code coverage. As reported by Enck et al. [35], the state of the art technique to

decompile an app, on average, takes about 27 minutes and leaves 5.56% of the source

code failed to be recovered. Conducting analysis at the dalvik bytecode level over-

comes these issues. In addition, unlike x86 binary code, bytecode retains sufficient

program information from the high level language and does not have any parsing

ambiguity, thus serves as an ideal analysis subject.

To our best knowledge, Dalysis is the first generic analysis framework that operates

on Dalvik bytecode and intended to support multiple types of program analysis tasks.

Next, we introduce the internals of Dalysis that can facilitate the understanding of the

implementation of CHEX, our component hijacking analyzer built based on Dalysis.
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We leave out the low-level system building details as they are out of the scope of this

paper.

4.4.1 Dalysis Framework

The front end of Dalysis consumes an Android app package (.apk) at a time. It

retrieves package information from metadata files and translates the Dalvik byte-

code into an intermediate representation (IR), based on which the back end analyzers

carry out their tasks. The front end starts the IR generation process by parsing the

input bytecode file. Dalysis employs an open source Dalvik bytecode parser named

DexLib, part of a well-known disassembler for Android apps [3]. DexLib provides use-

ful interfaces to programmatically read embedded data, type information, and Dalvik

instructions from a bytecode file. Dalysis allows different analysis to choose either

include the entire Android framework code or model its external behaviors, which

is achieved by linking two different versions of the runtime library into the analysis

scope. The front end constructs the class hierarchy, performs an semantical IR trans-

lation from Dalvik and Java bytecode (Android framework libraries are compiled into

java bytecode), and then hands over the IR to backend analyzers.

We adopted our IR from the WALA project [7], a popular static analysis framework

for Java, for two reasons: the semantic proximity between Dalvik bytecode and the

IR and a wide selection of basic analyzers developed for the IR by the WALA community.

The translation process is mostly straightforward, since both instruction sets follow

the register-machine model and retain a similar amount of information from the same

high level language (i.e. Java). However, a handful of instructions that are unique

to Dalvik virtual machine require special handling during the translation process.

For example, the filled-new-array instruction allocates and initializes an array in

one step; And the move-result instruction retrieves the result of the previous call

from the special result-register. Following the semantic translation is the final
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task for the front end – static single assignment (SSA) conversion. The conversion

performs an abstract interpretation on each method, wherein the define-use chain is

determined for each Dalvik register as well as its mapping to the local variable on Java

level. New instructions are generated, as a side effect incurred by the flow function

of the abstract interpretation. As a result of variable renaming (i.e. a register model

conversion), newly generated instructions operate on a conceptual register model

with unlimited registers, each of which can only be assigned once as required by SSA

form. Meet operations happen at basic block boundaries. As a result, φ variables

are generated to merge two or more values that may flow into a same variable in

the current basic block from predecessors in the control flow graph. Converting the

IR into SSA form can simplify various types of program analysis, especially data-flow

related ones, such as definition reachability test, constant propagation and etc. In

fact, many existing analyzers for WALA assume an SSA IR.

The back end of Dalysis hosts a variety of analyzers and provides them the in-

terfaces to access the IR, the class hierarchy, and other useful information. Some

basic analyzers released by WALA, such as the point-to analysis and the call graph

builders, are included in Dalysis. These building-block analyzers can be found useful

by many advanced analyzers. Dalysis itself is not specific to any particular flavor of

app analysis — it is designed to be a generic framework that can enable as many

types of analysis as possible on Android apps. For example, CHEX demonstrates

how we implemented the data-flow analysis methods, introduced in Section 4.3, by

using the Dalysis framework.

Dalysis is implemented in Java with 15,897 lines of source code, excluding 3rd

party libraries. The building process took us a significant amount of efforts due to

a lack of similar work and reusable code. But most efforts were spent on tackling

engineering related issues or implementing existing algorithms from the programming

language community, therefore we do not intend to claim these efforts as contributions
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Figure 14: CHEX workflow

in this paper. We also omit the implementation details of Dalysis that should be

oblivious to analyzer designers, which is out of the scope of this paper.

4.4.2 CHEX: Component Hijacking EXaminer

CHEX realizes our data-flow analysis methods and models discussed in Section 4.3.

It detects hijack-enabling flows based on policies P1-3, with a set of 180 sources

and sinks that match the tags defined by these two policies. This set was constructed

semi-automatically to cover a relatively wide range of hijack-enabling flows that affect

the sensitive resources managed by the system (i.e. protected by Android permissions

and accessed uniformly across apps). Parts of the sensitive sources (Tag SensSrc)

were selected based on the API-to-permission mapping provided by [38]. This set is

adequate for our testing and evaluation purpose, but it is not meant to be complete.

In fact, it can be extended with source and sinks specific to individual apps, so that

CHEX can capture hijack-enabling flows in app’s semantics.

As shown in Figure 14, entry point discovery starts at first. It queries Dalysis front-

end for information necessary to the initialization process, such as event listeners

defined in manifest and method overloading relationships (shown in Algorithm 1).

CHEX makes multiple different uses of the call graph builder from WALA, which can

be configured to have different degrees of context sensitivity. For each iteration in
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the entry point discovery process, we generate a context-insensitive call graph, for the

least performance overhead and the unnecessity of context sensitivity in this scenario

(i.e. we use the call graph only to conservatively estimate if a method was called or

a class was instantiated before).

For each discovered entry point, or more specifically, the split started by that

entry point, CHEX builds an SDS to summarize its data-flow behaviors that may

contribute to forming any hijack-enabling flow (Step 2 in Figure 14). Building SDS

is a computation heavy step in the entire analysis because it is where all intra-split

data-flows are constructed directly by analyzing the IR. In comparison, in a later step,

the permuter generates inter-split flows and PDS based on simple rules determining

the connectivity between two intra-split flows.

Conventional data-flow analysis approaches solve data-flow equations through an

iterative process. This process is expected to reach a fix-point after limited iter-

ations of basic-block state changes made by transfer functions. However, for the

purpose of building SDS, we can safely avoid this procedure and still be able to check

interesting-flows, thanks to the SSA IR and our abstraction of the flow checking

problem. Specifically, the SSA conversion carried out by the front end has already

conducted a basic data-flow analysis and saved information (e.g. variable use-define

chains and etc.) that can greatly facilitate the construction of system dependence

graphs. Inspired by the way of utilizing system dependence graphs in the classic

program slicing algorithm [49], we convert the problem of checking interesting data-

flows into an equivalent graph reachability test problem. We test the connectivity

of source-sink pairs on customized system dependence graphs that only have data-

dependence edges (referred as data-dependence graph, or DDG). A source-sink pair

that is connected on a DDG indicates the existence of a data-flow from the source

to the sink. Compared with the conventional approaches, this abstraction offers us

a better leverage on the existing IR and avoids unnecessary analysis work, yet still
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achieving the same goal.

DDG is constructed in a similar way as system dependence graph is in [49], but

without generating control-dependence edges. Each node in DDG represents either a

normal SSA statement or an artificial statement to model inter-procedure parameter

passage. An edge is drawn from node S1 to node S2 only when the variable defined by

S1 is directly used by S2. Intra-procedural edges between scalar variables are drawn

with the help of local use-define chains implied from the SSA IR. Identifying inter-

procedural dependencies among heap variables requires a call graph with a proper

degree of context sensitivity and an inter-procedural definition reachability analysis.

We chose a 0-1-CFA call graph builder with the call-string context sensitivity

(i.e. using the calling string to identify a particular node in the call graph), for

its sufficient accuracy and acceptable performance overhead. With the call graph,

regular parameter and return passing edges can be added between the corresponding

callers and callees. The definition reachability analysis provides information about

(transitive) heap variable accesses in a method, which is needed to create heap related

nodes and draw edges between them (inter-procedural heap variable accesses are

modeled as artificial parameters or returns).

Before used for the interesting-flow discovery, a DDG needs to go through an edge

inflation process, as a way to model data dependencies that are still missing. Missing

edges are resulted from out-of-scope code (i.e. methods defined outside of the anal-

ysis scope). Thus we need to model the external data-flow behavior of such code.

The modeling can be easily done by means of adding artificial edges into the DDG,

bases on two simple rules: (i) for methods with returns, the return value is depen-

dent on all parameters (i.e. drawing edges from each ParameterCaller node to the

ReturnCaller node); and (ii) for return-less methods, the first parameter (i.e. this*

for non-static methods) is dependent on all other parameters, if any (i.e. drawing
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edges to the define node of the first parameter from other ParameterCaller). Ex-

ceptions to these rules do exist, but only very few happen frequently enough that we

need to specially handle, such as several methods of strings and collection types.

With the DDG is generated, searching for interesting flows becomes intuitive.

CHEX first picks two sets of nodes from the graph, Sstart and Send, where Sstart

contains pre-defined sources (i.e. start points of inter-split flows), and Send contains

pre-defined sinks (i.e. end points of inter-split flows). CHEX then constructs the SDS

as it traverses the DDG – a flow is added to the SDS if it starts from a node in

Sstart and ends with a node in Send. The resulting SDS serves as a gadget for the

permuter to compute PDS (Step 3 in Figure 14). Although the SDS building process

is the most computation-intensive step during the entire analysis, the problem size is

already greatly reduced, comparing with conducting the similar analysis on the whole

app without app splitting. Tasks performed during the SDS construction, such as

point-to analysis, generally scale poorly as the app size increases. Therefore, dividing

the app into smaller but self-contained splits can help with the performance, and

alleviates the scalability issue for large apps. In addition, due to their independence,

SDS constructions for different splits can be carried out in parallel in performance-

critical and computing-resource-rich scenarios, to further reduce the overhead.

The split permuter always starts a new sequence with a split from an exported

component, a constraint to reflect the causal relationship between external requests

and potential hijack-enabling flows. The permutation is implemented as a regular

depth-first-search with pruning and configurable search space. For example, the max-

imum DFS depth specifies the maximum number of splits a feasible hijack-enabling

flow can span through, a practical trade-off between performance and completeness.

As the permutation proceeds, interesting flows in the current PDS are matched with

policies P1-P3 for hijack-enabling flows. Node tags and the ; relation can be simply
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checked on individual interesting flows. As for the 1 relationship, we test if two inter-

esting flows merge into a new variable or join at a same method call site. Discovered

hijack-enabling flows are recorded (Step 4 in Figure 14) with detailed information,

such as the corresponding paths in PDS, the split sequence, and the policy they sat-

isfy. Such information can assist app developers or security researchers to verify and

fix vulnerabilities.

4.5 System Evaluation and Experiments

We exercised CHEX with a large set of real-world apps, Spop, containing about 5,486

free popular apps we collected in late 2011. Spop consists of around 3,486 apps

from the official Android market and 2,000 from alternative markets. The experi-

ments were conducted on a cluster of three computers, each equipped with an Intel

Core i7-970 CPU and 12GB of RAM. During the experiments, we launch concurrent

CHEX instances on 64-bit JVM with a maximum heap space of 4GB. To optimize the

throughput, we limit the processing time of each app within 5 minutes.

4.5.1 Performance

We instrumented CHEX to measure its execution time while it examining apps in

Spop. The median processing time for an app is 37.02 seconds with the interquartile

range (IQR) of 161.87 seconds, which suggests that CHEX can quickly vet a large

amount of apps for component hijacking vulnerabilities. 22% apps needed more than

5 minutes to be analyzed thus timed out in our experiments. In practice, with more

computing resources available, a more generous time-out value should be used.

We found that CHEX’s execution time varies significantly across different apps.

As a result, we studied the impact of four app-specific factors that may affect CHEX’s

execution time the most (see Figure 15). Although these factors are in a strong cor-

relation with the execution time, no single factor dominates it (i.e. none poses major

bottleneck to the performance). Furthermore, we decomposed the execution time
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Figure 15: Timing Characteristics of the Analysis

into three parts, corresponding to the three analysis phases each app goes through,

as shown in Figure 16). In general, SDS construction (or split permutation) causes

the majority of the time overhead, whereas entry point discovery and DFS generation

often finish fast.

Some findings acquired during the evaluation also prove that the app analysis

challenges we tackled in this work (C1 − C4) are very common to encounter when

analyzing real apps. On average, we found 50.37 entry points of 44 unique class

types in an app. Moreover, the number of entry points is not directly related to

the app size. Apps implementing complex user interfaces or requiring frequent user

interactions (e.g. games) tend to have more entry points than others. About 99.70% of

apps contain inter-split data flows, which strongly indicates the necessity of analyzing

such flows the contexts created by different entry points.
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Figure 16: Performance Decomposition

4.5.2 Accuracy

Among the 5,486 apps in Spop, CHEX flagged 254 as potentially vulnerable to com-

ponent hijacking attacks. Due to the lack of a ground truth, we manually verified all

the flagged apps by checking if the discovered hijack-enabling flows are indeed feasi-

ble and exploitable by attackers. This verification process largely replied on human

expert knowledge with the assistance of well-known Android app disassemblers and

decompilers. In the end, we identified 48 flagged apps as false positives, which yields

a true positive rate above 81%. The main causes for the false positives are infea-

sible split permutations and apps’ complicated input validations that CHEX cannot

understand. Although the false positive rate is acceptable in a vulnerability filtering

scenario, we argue that the first cause can be minimized by incorporating Android

domain knowledge into the permutation pruning logic, while the second cause is a

difficult but orthogonal issue to this work (i.e. checking the quality of program’s input

validation).

4.5.3 Case Studies

Our manual verification process also helped us gain practical insights into the com-

ponent hijacking vulnerabilities. All 206 apps that are confirmed as vulnerable can

be roughly categorized into five classes, as shown in the first column of Table ??. It
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clearly shows that, in addition to vulnerabilities exploited by confused deputy attacks

on the Android permission system, other vulnerability classes also fall into the scope

of component hijacking and can be detected by CHEX. The second column refers to

Definition 1 and indicates the hijacking type for each vulnerability class. To improve

the community’s awareness and understanding of component hijacking, we selected

at least one app from each class and conducted the following case studies. We hide

part of the app package names as a precaution to not leak undisclosed vulnerability

information.

Case A1 in the data theft class resembles the example app we used in Figure 12.

One of its components obtains the GPS location and saves it to a global variable.

Another component initializes a URL parameter using a string provided by an arbi-

trary app via Intent, and sends the GPS information to the URL. An attacker thus

can steal the sensitive location information by sending a crafted Intent to the second

component, causing the GPS location to be sent to the attacker controlled server.

Apps can also leak their private, permission-protected capabilities through public

components, as previously reported. Case B1 has a public component that takes

a string from another app’s Intent and uses it as a URL for Internet connection.

Likewise, a public component of case B2 uses a string from an Intent as the host

name for socket connections. These vulnerable apps essentially give out the Internet

permission to all other apps who may not have it. For example, a malicious app can

exploit these apps to transmit information to an arbitrary Internet server, or even

launch network attacks against a victim server. We have observed Internet capability

leakages in both Activity and Service components of vulnerable apps. In the cases

of Activity components, the exploited components can be forced to display specified

remote content to the user; Whereas exploits on vulnerable Service components can be

carried out more stealthily, because Service components execute in the background

(in this case, communicating with attacker controlled servers) without interacting
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with users.

Intent proxy is another class of vulnerabilities that can be exploited in a fash-

ion similar to capability leak. Case C1 accepts an input Intent (X) that embeds

another Intent (Y ). It then starts a new Activity per Y ’s request using its own iden-

tity. More specifically, in the OnResume() function of C1, the Intent Y is retrieved

from the Bundle object through the key “intent”. Next, Intent Y is directly passed

to startActivity without checking any properties of Intent Y . With this proxy,

an attacking app can hide its identity and start activities, even those protected by

permissions that C1 has but the attacking app does not.

Android heavily relies on internal SQL database to organize system and app data,

such as contacts and app private information. Apps can interact with its database

using APIs that take SQL statements as arguments. Case D1 passes an input string

from an Intent directly into a raw SQL query, which allows attackers to inject SQL

statements to manipulate the database or even cause system comprises. In addition,

we have also uncovered more subtle SQL injection vulnerabilities in many apps, which

use parameterized query instead of raw query, but in a non-parametric form. In

particular, the vulnerable apps construct the selection clause of a query by directly

inserting unescaped strings from Intent, instead of passing them in a parameter array.

Such practices allows the attackers to inject an arbitrary condition into the selection

clause, and derail the execution of the query, causing unexpected behaviors of the

victim app. Besides SQL injections, a similar but more harmful vulnerability, as in

Case D2, is the shell command injection, where app issues Linux shell commands

using unchecked input strings.

The last class, data tampering, leads to private or critical data being overwritten

by attackers. Case E1 is a game that reports user’s score to a remote server for

ranking purposes. However, the reporting component is made public and reports

arbitrary scores specified by a requestor, which creates an easy way for cheating the
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game’s online scoreboard. We also observed a more security-critical case where the

payment URL of an online shopping app can be modified by attackers. The extent of

damage by this type of vulnerability is highly dependent on the function of individual

apps, as well as the robustness of client-server interactions of the apps.

4.6 Discussions

As the evaluation shows, CHEX do have false positives. However, they can be reduced

by addressing two limitations of our current prototype. First, our prototype does

not leverage on much domain knowledge about the partial orders in which Android

components and their entry points can run or interleave. This design choice was

made because PDS construction enforces the data-flow continuity between splits,

which sorts out the majority of infeasible split permutations but not all. In addition,

building such domain knowledge, possibly time-consuming and error-prune, is out

of this work’s scope. We argue that when adopted in practice, CHEX can always

incorporate new constraints into the split permeation, which not only reduce the

false positive rate but also improve the performance. Second, our current prototype is

unable to recognize false hijack-enabling flows that are sanitized by complicated logic

(e.g. regular expression matching and etc.), because it by itself is an open research

problem. On the other hand, we observe that the majority of apps rely on simple

framework APIs (e.g. checkCallingPermission) and constant string matching to

carry out effective input validation, which are already handled by CHEX.

The fact that CHEX only checks data-flows to detect vulnerabilities may cause

false negatives. Rare vulnerable components may exist that enable hijacking attacks

without explicit data-flows. In these cases, date dependencies are essentially en-

coded into control dependencies and thus sources and sinks are no longer connected

via data-flows. We could selectively track control dependence for certain sources
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(e.g. Tag InputSrc) in our SDS, so that implicit intra-split data-flows can be consid-

ered during analysis. On the other hand, control dependency analysis can also easily

bring false positives. The study of this trade-off is out of the scope of this paper.

4.7 Related Work

Event-driven (callback-based) programming is widely used in implementing graphical

user interface (GUI) and web systems. To statically analyze GUI systems, previous

work [78, 77] leverage on domain knowledge to identify and to configure the entry

point (callback) methods. In web systems, event handler functions are easy to identify

given the uniform ways to define them. However, in Android, the large number of

entry point types makes it difficult to identify them completely—previous work relied

on specific domain knowledge to detect common component entry points without

guarantee for completeness [41]. We devise a heuristic-based approach to discover all

possible entry points to the apps with low false positives. To model the execution

of multiple entry points, previous work [78, 77] employ a synthetic main function to

mimic the event loop dispatcher in GUI systems. We introduce SDS to summarize

intra-split data-flows and permute the splits to model their asynchronous invocations

and derive the inter-split data-flow behaviors. Comparing with [78, 77], we divided the

global data-flow analysis problem into much smaller but self-contained sub-problems,

which improves the performance and scalability.

Static analysis and model checking have a history in assisting vulnerability dis-

coveries [26, 56, 53, 37]. For web systems, Jovanovic et al. designed Pixy [53] to

detect input validation flaws in server side scripts written in PHP through an inter-

procedural context-sensitive data flow analysis. A similar study has been carried for

cross site scripting vulnerabilities [86]. Bandhakavi et al. applied a context-sensitive

and flow-sensitive static analysis for analyzing the security vulnerabilities of Firefox
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plugins written in JavaScripts [22]. For Java programs, Livshits et al. designed a dat-

alog language to describe the security policies that direct vulnerability detection [56].

Tripp et al. built an industrial strength static taint analysis tool [81]. Compar-

ing with the aforementioned efforts, we focused on detecting component hijacking

vulnerabilities in Android apps. We first tackled general challenges faced by static

app analyzers due to Android’s special programming paradigm, and then proposed a

data-flow-based detection approach.

Security mechanism based on information flows, such as JIF [64], HiStar [89] and

Asbestos [31], are also related in that our work define and detect component hijacking

by means of data-flow policies, despite that we do not enforce the policies in runtime.

Mobile security issues have gained much attention recently. Malware are not

strangers for both the official Android market and alternative ones [91]. Research

efforts were made on detecting repackaged apps [90] or apps with known malicious

behavior [92, 41]. Recently Google also launched its malware filtering engine [2].

Information leakage is another major security threat for mobile devices. Kirin [36]

detects apps whose permissions might indicate potential leakage. TaintDroid [34]

leverages dynamic taint analysis to detect information leakage at runtime. PiOS [33]

addressed the same problem using static analysis for iPhone app. In general, in-

formation leakage detection reveals the potential out bound propagation of sensitive

information, which might be benign in many cases. Instead, component hijacking de-

tection captures the information leakages resulted from an exploitation (i.e. sensitive

data theft), in addition to other hijacking types.

Enck et al. introduced Ded [35] to convert Dalvik bytecode back to Java bytecode,

and then used existing decompilers to obtain the source code of the apps for analysis.

Our Dalysis framework directly converts Dalvik byte code to an SSA IR and enables

various types of static analysis. Unlike the decompilation process, our IR conversion is

sound (e.g. no heuristics or failures) and costs much less time. We model the Android
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framework and its special program paradigm rather than coarsely treating apps as

traditional Java programs. As a result, our analysis is more tailored for Android apps

and thus has better precision.

Android mediates access to protected resources using a permission system. How-

ever, its effectiveness hinges on app developers correctly implementing it. Chin et

al. showed that apps may be exploitable when servicing external intents [28]. They

built ComDroid to identify publicly exported components and warn developers about

the potential threats. For this purpose, it is sufficient for ComDroid to only check

app metadata and specific API usages, rather than performing an in-depth program

analysis as CHEX does. As a result, warned public components are not necessar-

ily exploitable or harmful (i.e. the openness can be by design or the component

is not security critical). On the other hand, Android permission system is subject

to several instances of the classic confused deputy attack [46]. As demonstrated

by [29, 55, 39, 41], an unprivileged malicious app can access permission-protected re-

sources through privileged agents (or app components) that do not properly enforce

permission checks. Recently proposed runtime mitigations either reduce the agent’s

effective permissions to that of the original requestor [39] or inspect the IPC chains for

implicit permission escalations [30, 24]. While these runtime solutions are effective at

protecting end users adopting them, scalable detection methods for the problematic

agents in question (i.e. hijack-able components) are still important to have in order

to prevent vulnerable apps from reaching the vast users in the first place. Grace et

al. [41] employed an intra-procedural path-sensitive static analysis to discover per-

mission leaks specific to stock apps from multiple device vendors. In comparison,

CHEX targets at a more general vulnerability in all types of Android apps and per-

forms inter-procedural analysis with high degrees of sensitivity. Thanks to our novel

entry point discovery and app-splitting techniques, CHEX is capable of accommo-

dating Android’s special programming paradigm and finding complex hijack-enabling
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flows. It is also noteworthy that the component hijacking attacks we address includes

but is not limited to attacks targeting at permission-protected resources.

4.8 Conclusion

We defined and studied the component hijacking problem, a general category of vul-

nerabilities found in Android apps. By modeling the vulnerabilities from a data-flow

perspective, we designed a static analyzer, CHEX, to detect hijack-enabling data-flows

in a large volume of apps. In doing so, we introduced our method to automatically

discover entry points in Android app, as well as the novel analysis technique, app split-

ting, as an efficient and accurate way to model executions of multiple entry points and

facilitate global data-flow analysis. We also built the Dalysis framework to support

various types of static analysis directly performed on Android bytecode. CHEX proto-

type was implemented based on Dalysis and was evaluated with 5,486 real-world apps.

The empirical experiment demonstrated a satisfactory scalability and performance of

our analysis method, as well as provided an insight into the real-world vulnerable

apps we detected.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

My thesis as a whole explores, realizes, and evaluates the new perspective of secur-

ing software and system, which limits or avoids the unwanted security consequences

caused by unwary users. My work shows that, with the proposed approaches, software

can be reasonably well protected against the attacks targeting the unwary users, which

have been emerging into the major threats to today’s cyber systems inside enterprises,

governments, and other organizations. This new perspective brings an unconventional

thinking into the research of software and systems security—instead of focusing on the

attack specifics and their individual mitigations, security monitors for certain threats

should center around the users, including their interactions with software, and the

unexpected consequences. Because the monitors designed in this way provide generic

and robust coverages. As demonstrated by BLADE and SURF, the sophisticated

threats targeting users tend to exhibit invariant characteristics when being examined

once users’ intents or the impact of their actions are understood. Therefore, detec-

tion methods leveraging such understandings can remain attack-agnostic and achieve

more complete and accurate results than previous ones.

Moreover, the knowledge and insights gained throughout the course of developing

the thesis have advanced the community’s understanding of several emerging threats

and related problems: SURF provided the first large-scale study of search poison-

ing campaigns in the wild and revealed their sophisticated operations; CHEX found

previous unknown vulnerability classes in Android apps and generalized similar vul-

nerabilities into the general component hijacks. As a result, they have inspired and
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guided many follow up research works. More importantly, these insights have em-

phasized the increasing importance of considering the wide existence of unwary users

when designing and securing systems.

Each work included in this thesis has yielded at least one practical threat miti-

gation system, including several that have been adopted in real-world products and

services. Evaluated by the large-scale real-world experiments, these systems have

demonstrated their effectiveness at thwarting the security threats faced by most un-

wary users today. The threats addressed by this thesis have span multiple computing

platforms, such as desktop operating systems, the Web, and smartphone devices,

which highlight the broad impact of the thesis.

In terms of the possible extensions of this thesis and future research, I vision that

the fast growing popularity and the privacy-bearing nature of mobile devices will spur

powerful and advanced attacks targeting at unwary users, vulnerable apps, and OS

design flaws. Therefore, more research on comprehensive app vetting methods are

needed to aid the underdeveloped field of app quality assurance, and in turn reduce

the amount of vulnerable apps arriving at end users in the first place. In particular,

it is very useful to design mobile app analysis methods that can generically identify

design flaws leading to privacy leak or resource abuse. This is because such high-level

flaws threaten mobile users more significantly than the hard-to-exploit implementa-

tion errors on mobile platforms. Improving design-in security in mobile OS is also

an important research direction. Although mobile operating systems have inherited

the-state-of-the-art security mechanisms from their desktop counterparts, their lack

of considerations of the mobile utilities and the user factors requires revisits of the OS

security design. Design-in security on mobile platforms is expected to, among other

goals, contain the unwanted security impact of uninformed or misinformed users.
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