
DISCRETE OPTIMIZATION VIA SIMULATION WITH
STOCHASTIC CONSTRAINTS

A Thesis
Presented to

The Academic Faculty

by

Chuljin Park

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2013

Copyright c⃝ 2013 by Chuljin Park



DISCRETE OPTIMIZATION VIA SIMULATION WITH
STOCHASTIC CONSTRAINTS

Approved by:

Professor Seong-Hee Kim, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor David M. Goldsman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Sigrún Andradóttir
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SUMMARY

In this thesis, we first develop a new method called penalty function with

memory (PFM). PFM consists of a penalty parameter and a measure of constraint

violation and it converts a discrete optimization via simulation (DOvS) problem with

stochastic constraints into a series of DOvS problems without stochastic constraints.

PFM determines a penalty of a visited solution based on past results of feasibility

checks on the solution. Specifically, assuming a minimization problem, a penalty

parameter of PFM, namely the penalty sequence, diverges to infinity for an infeasible

solution but converges to zero almost surely for any strictly feasible solution under

certain conditions. For a feasible solution located on the boundary of feasible and

infeasible regions, the sequence converges to zero either with high probability or

almost surely. As a result, a DOvS algorithm combined with PFM performs well

even when optimal solutions are tight or nearly tight. Second, we design an optimal

water quality monitoring network for river systems. The problem is to find the optimal

location of a finite number of monitoring devices, minimizing the expected detection

time of a contaminant spill event while guaranteeing good detection reliability. When

uncertainties in spill and rain events are considered, both the expected detection

time and detection reliability need to be estimated by stochastic simulation. This

problem is formulated as a stochastic DOvS problem with the objective of minimizing

expected detection time and with a stochastic constraint on the detection reliability;

and it is solved by a DOvS algorithm combined with PFM. Finally, we improve PFM

by combining it with an approximate budget allocation procedure. We revise an

existing optimal budget allocation procedure so that it can handle active constraints

and satisfy necessary conditions for the convergence of PFM.

xii



CHAPTER I

INTRODUCTION

For a complicated industrial or service system with various uncertainties, analytically

examining the system performance is usually difficult. Meanwhile, the computing

power has been significantly improved in last decades, opening up large opportunities

for stochastic simulation as analysis or supporting tools for decision-making.

Researchers often use simulation to compare the performance of a number of

simulated systems (or solutions) and have proposed many statistical procedures to

efficiently and accurately find the best simulated system. Ranking and Selection

(R&S) procedures are useful for comparing a finite number of simulated systems, and

either provide statistical validity of correct selection or maximize the probability of

correct selection under a finite computing budget. See [9] and [18] for example R&S

procedures. R&S procedures are appropriate when the number of systems is no more

than several hundred (up to 1,000).

When the search space is too large to simulate all systems at the same time,

a different class of procedures, namely optimization via simulation (OvS), is more

appropriate. OvS algorithms enable us to find the best or a good system when the

objective function needs to be evaluated through simulation. Thorough reviews of

OvS research and practice for both discrete and continuous variables can be found

in [3] and [11]. In this thesis, we focus on discrete OvS (DOvS). Research directions

and guidance for use of DOvS algorithms are provided in [24].

The simulation community has presented a number of DOvS algorithms. [2]

presents advantages of using a cumulative sample mean to estimate the value of an

optimal solution and provides a structure of adaptive random search algorithms. [5]
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provides the balanced explorative and exploitative search with estimation (BEESE)

algorithms that simultaneously maintain the global search, the local search, and the

improvement of solution estimation. The nested partitions (NP) method due to [33]

is a globally convergent DOvS algorithm that works for both continuous and discrete

decision variables. [28] proposes DOvS algorithms using the NP framework. Their al-

gorithms use a cumulative sample mean as an estimate of a performance measure and

are globally convergent in a bounded discrete solution set. The convergent optimiza-

tion via most-promising-area stochastic search (COMPASS) of [14] is a framework

for discrete optimization that finds a local optimum. Other model-based methods for

DOvS problems such as stochastic model reference adaptive search (SMRAS) due to

[15] are well established. SMRAS employs a parameterized distribution as a sampling

distribution that generates solutions and updates parameters of the sampling distri-

bution using the Kullback-Leibler distance. Although these algorithms are shown to

perform well for many stochastic optimization problems, they are not directly ap-

plicable when a DOvS problem has stochastic constraints, constraints on secondary

performance measures that need to be estimated by stochastic simulation.

Recently, simulation optimization with stochastic constraints on secondary per-

formance measures have been studied actively. For example, one may want to find

an inventory policy with the smallest long-run cost per period while the expected

number of lost sales is less than or equal to some constant. This problem is more

difficult than a pure R&S or stochastically unconstrained OvS problem because of

the following reasons:

• Correlation among the performance measures: Primary and secondary perfor-

mance measures are often correlated in practice. For example, expected queue

length and throughput in a queueing model are correlated.

• Solutions near or right on the boundary of feasible and infeasible regions of

2



stochastic constraints: In optimization problems, as discussed in [25], con-

straints on secondary performance measures almost always represent limits on

our ability to minimize or maximize the objective function, implying that op-

timal solutions are likely to be tight or nearly tight. When the true optimal

solution is right on the boundary, the solution can be declared as infeasible

(with a high probability even when the number of observations is large) and

thus it may not be selected as the optimal.

A constrained R&S problem is formulated in [4], which proposes statistically-

valid selection procedures when there is one stochastic constraint and performance

measures are correlated. Although their methods are statistically valid, they cannot

handle solutions located right on the boundary of the feasible and infeasible regions

(i.e. tight solutions with one or more active constraints). Instead, they introduce

the concept of error tolerance for stochastic constraints and assume that a decision

maker is willing to accept a system whose secondary performance measure is within

a constant amount of the constraint threshold as the best if it shows a good primary

performance measure. The procedures of [4] are extended to multiple stochastic

constraints in [13]. On the other hand, several researchers provide a method of

efficiently allocating a finite computing budget in order to maximize the probability

of selecting the best feasible solution. For example, see [16], [17], [29], and [36]. Some

discuss correlations between primary and secondary performance measures, but none

of proposed procedures can handle tight solutions.

In OvS, there have been some efforts to use the concept of the penalty function

which is a popular method in deterministic optimization of [26]. With the penalty

function, a DOvS algorithm is applied to a series of new DOvS problems without

stochastic constraints, rather than applied to the original problem. [21] proposes

a penalty function method in which the penalty parameter diverges to infinity as

search iteration increases and the measure of violation of a constraint is estimated by a

3



sample average of a secondary performance measure for each constraint. [22] proposes

a method of finding saddle points of a DOvS problem with stochastic constraints.

These methods can handle correlation among performance measures, but does not

perform well when the best feasible solution is tight or nearly tight.

In this thesis, we consider a DOvS problem with stochastic constraints and propose

a new method, namely penalty function with memory (PFM). PFM enables us to

handle multiple stochastic constraints with general inequalities in DOvS. PFM also

uses the idea of the penalty function and reformulates the original problem into a series

of new unconstrained problems. However, PFM uses a different penalty parameter

whose value converges to 0 for feasible solutions and diverges to infinity for infeasible

solutions. More specifically, a penalty value for each solution is determined adaptively

based on observed feasibility of the solution.

Chapter II introduces PFM that enables existing DOvS algorithms to handle

stochastic constraints. Convergence properties are provided with their proofs. Pa-

rameter selection for PFM is discussed and a DOvS algorithm with PFM is tested

on three numerical examples. In Chapter III, we formulate a problem designing the

optimal water quality monitoring network for river systems as a stochastically con-

strained DOvS problem. We use NP+PFM, a version of NP combined with PFM, as

an optimization algorithm, and address implementation issues specialized for design-

ing the water quality monitoring network. The performance of NP+PFM is tested

on the Altamaha River and compared with that of the genetic algorithm (GA) from

[39]. Chapter IV provides an approximate budget allocation procedure that further

improves the performance of DOvS algorithms combined with PFM. Convergence

properties are proven and experimental results on three numerical examples are pre-

sented. Finally, Chapter V summarizes main contributions of the thesis.

4



CHAPTER II

PENALTY FUNCTION WITH MEMORY FOR

DISCRETE OPTIMIZATION VIA SIMULATION WITH

STOCHASTIC CONSTRAINTS

In this chapter, we propose a new method, namely penalty function with memory

(PFM), that can handle multiple stochastic constraints even when performance mea-

sures are correlated and tight or nearly tight solutions exist in stochastically con-

strained DOvS problems. PFM itself is not an optimization algorithm, however, it

aids existing DOvS algorithms originally developed for stochastically unconstrained

DOvS problems and helps them find an optimal solution in the presence of stochastic

constraints. PFM uses the same measure of violation for a stochastic constraint as

in [21]. However, PFM differs from their method in that it determines a penalty

parameter of a visited solution based on the past results of feasibility checks on the

solution. More specifically, PFM guarantees that a sequence of penalty parameters

diverges to infinity almost surely (if minimization) for an infeasible solution. For a

strictly feasible solution, the sequence is guaranteed to converge to zero almost surely.

For a tight solution, the sequence converges to zero either with high probability or

almost surely. As a result, a DOvS algorithm combined with PFM works well even

when optimal solutions are tight or nearly tight. When the set of feasible solutions is

not empty, one version of PFM guarantees that a solution returned by the combined

algorithm converges to one of the optimal solutions.

We first present conditions in which a penalty sequence of PFM should satisfy

and prove that if the penalty sequence satisfies the conditions, a global convergence

property is preserved when an existing globally-convergent algorithm is combined

5



with PFM. Then we present two example penalty sequences: a penalty sequence with

constants (PSc) and a penalty sequence with functions (PSf ). Both sequences guar-

antee almost sure convergence to infinity and zero for infeasible and strictly feasible

solutions, respectively. For a tight solution, PSc guarantees only that the sequence

converges to zero with high probability while PSf provides almost-sure convergence

to zero under some conditions.

This chapter is organized as follows: Section 2.1 defines our problem and notation,

provides a framework of existing DOvS algorithms for a stochastically unconstrained

DOvS problem, and then presents an example that demonstrates the need for a more

sophisticated penalty function. Section 2.2 introduces PFM and two example penalty

sequences along with their convergence proofs. Section 2.3 discusses parameter selec-

tion for the implementation of PFM. Experimental results of three different numerical

examples are presented in Section 2.4, followed by concluding remarks in Section 2.5.

2.1 Background

In this section, we define our problem and notations and review a common structure of

existing DOvS algorithms. Then we demonstrate the need for a sophisticated penalty

function using a simple example with three systems.

2.1.1 Problem and Notation

Let x = (x1, . . . , xd) represent a solution and Θ the whole decision variable space,

which is a discrete and finite set in Rd, the set of d−dimensional real-numbered

vectors. We assume that information on deterministic constraints is already reflected

in Θ. Let G(x) represent the primary performance measure and Hℓ(x) a secondary

performance measure of the ℓth constraint, for any ℓ = 1, 2, . . . ,m. Then Gi(x) and

Hℓi(x) represent the ith observation of G(x) and Hℓ(x), respectively, both observed

by stochastic simulation. We assume that for any given x, Gi(x), i = 1, 2, . . ., are

independent and identically distributed (iid) random variables. For a given ℓ =

6



1, 2, . . . ,m, Hℓi(x), i = 1, 2, . . ., are also iid. It is possible that Gi(x) and Hℓi(x)

are correlated. The expectation and variance of G(x) are E[G(x)] and Var[G(x)],

respectively. Also, for any ℓ = 1, 2, . . . ,m, the expectation and variance of Hℓ(x) are

E[Hℓ] and Var[Hℓ(x)], respectively.

Then our DOvS problem with stochastic constraints is defined as follows:

argminx∈ΘE[G(x)],

subject to E[Hℓ(x)] ≥ qℓ, ℓ = 1, 2, ...,m,
(1)

where qℓ is a threshold constant of the ℓth stochastic constraint.

To explain our method, we need the following notations:

Θf ≡ the set of all feasible solutions;

Θ∗ ≡ the set of optimal solutions with minx∈Θf
E[G(x)];

xb
o ≡ an optimal solution in Θ∗;

Λ ≡ an index set of all stochastic constraints (i.e., Λ ≡ {1, 2, ...,m});

ΛS(x) ≡ {ℓ | E[Hℓ(x)] > qℓ, ℓ ∈ Λ}, an index set of strictly feasible stochastic

constraints for x;

ΛA(x) ≡ {ℓ | E[Hℓ(x)] = qℓ, ℓ ∈ Λ}, an index set of active stochastic constraints for

x; and

ΛI(x) ≡ {ℓ | E[Hℓ(x)] < qℓ, ℓ ∈ Λ}, an index set of infeasible stochastic constraints

for x.

We also make the following assumption throughout the chapter.

Assumption 1 Θf is not an empty set and for any x ∈ Θ and ℓ = 1, 2, . . . ,m,

E[(G(x))2] <∞, Var[G(x)] <∞, E[(Hℓ(x))
2] <∞, and Var[Hℓ(x)] <∞.

Section 2.2.1 provides short discussion about implementation when Θf is empty.

2.1.2 DOvS Algorithms

Let D represent an existing DOvS algorithm designed for a DOvS problem with-

out any stochastic constraint. Many DOvS algorithms follow a general structure of

7



Step 1: Set search iteration counter k = 1. Choose an initial solution sampling
strategy.

Step 2: Sample a fixed number of solutions according to the current sampling strat-
egy and take additional observations from the solutions sampled at iteration k (not
from all solutions sampled so far).

Step 3: Update the current optimal solution.

Step 4: If stopping criteria are satisfied, then stop. Otherwise, update the solution
sampling strategy, set k ← k + 1, and go to Step 2.

Figure 1: General structure of random search algorithms.

random search algorithms, shown in Figure 1, presented by [3].

When describing D, we need additional notations:

r ≡ counter for the number of visits;

vk(x) ≡ the number of visits up to iteration k for x;

∆nr(x) ≡ the number of new observations obtained at the rth visit for x;

nr(x) ≡ the total number of observations obtained up to the rth visit for x;

nvk(x) ≡ nvk(x)(x), the total number of observations obtained up to iteration k for x;

Gk(x) ≡ 1
nvk

(x)

∑nvk
(x)

i=1 Gi(x), cumulative sample mean of observations Gi(x) for the

primary performance measure up to iteration k;

Hℓk(x) ≡ 1
nvk

(x)

∑nvk
(x)

i=1 Hℓi(x), cumulative sample mean of observations Hℓi(x) for

the ℓth secondary performance measure up to iteration k; and

x̂∗
k ≡ the sample best among all sampled solutions up to iteration k.

Table 1 summarizes all of the notations used in the chapter. Throughout the chapter,

we assume that D satisfies the following assumption:

Assumption 2 Algorithm D follows a general structure of random search algorithms

in Figure 1 and satisfies the following:

1. A solution sampling strategy of D guarantees that each solution has non-zero

probability of being sampled at any iteration k.
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Table 1: Notation.

Θ the whole decision variable space which is a discrete
and finite set in Rd

Θf the set of all feasible solutions
Θ∗ the set of optimal solutions with

minx∈Θf
E[G(x)]

PROBLEM xb
o an optimal solution in Θ∗

FORMULATION Λ an index set of all stochastic constraints
ΛS(x) an index set of strictly feasible stochastic

constraints for x
ΛA(x) an index set of active stochastic constraints for x
ΛI(x) an index set of infeasible stochastic constraints for x
D an existing DOvS algorithm designed for a

stochastically unconstrained problem
k search iteration counter k = 1, 2, . . .
r counter for the number of visits, r = 1, 2, . . .

∆nr(x) the number of new observations obtained at
the rth visit for x

vk(x) the number of visits up to iteration k for x
nr(x) the total number of observations obtained up to the

rth visit for x
DOvS nvk(x) the total number of observations obtained up to

iteration k for x
Gk(x) cumulative sample mean of the objective up to

iteration k
Hℓk(x) cumulative sample mean of the ℓth secondary

performance measure up to iteration k
x̂∗
k the sample best among all sampled solutions

up to iteration k

2. An observation allocation strategy of D guarantees that P
[
limk→∞ nvk(x) =

∞
]
= 1 for any x ∈ Θ.

3. To estimate the performance of an objective at each solution, D uses a strongly

consistent estimator.

Assumption 2 implies that the sampling strategy of D should guarantee that as

iteration k increases both vk(x) and nvk(x) go to infinity. In a finite solution set,

example algorithms that satisfy Assumption 2 include the NP-based algorithms of

[28], random search methods of [2], the balanced explorative and exploitative search
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with estimation (BEESE) algorithms of [5]. A modified simulated annealing [1] and

the stochastic model reference adaptive search [15] also satisfy Assumption 2 and can

be combined with PFM. However, the definitions of Gk(x) and Hℓk(x) need to be

changed to sample means based on observations newly obtained at each visit because

they do not use cumulative sample means.

2.1.3 Motivating Example

In this subsection, we demonstrate that a naive penalty function method can fail

and a sophisticated penalty function is needed in stochastic optimization. Assuming

a single stochastic constraint, one may say that Problem (1) can be solved by any

existing DOvS algorithm with objective argminx∈ΘGk(x) +Mk ·max{0, q−Hk(x)},

where Mk → ∞ as k increases. The reasoning would be that max{0, q − Hk(x)}

should converge to zero as k increases due to the strong law of large numbers (SLLN)

for any feasible solution, which would, in turn, result in a zero penalty value for any

feasible solution. Similarly one would argue that the penalty of an infeasible solution

should converge to infinity and thus, the algorithm should be able to find a true

optimal solution.

However, this reasoning is not true. Consider an example with three systems and

a single constraint. We assume that all G(x) and H1(x), for x ∈ {1, 2, 3} are normally

distributed with variances 1 and mean values as follows:

• System 1: E[G(1)] = 1, E[H1(1)] = 0.3

• System 2: E[G(2)] = 0, E[H1(2)] = 0

• System 3: E[G(3)] = −1, E[H1(3)] = −0.3

We set Mk = 3k and q1 = 0. Thus, system 2 is the optimal solution which is

tight. One observation is obtained for each solution at each iteration, and the current

sample best x̂∗
k is a solution with the smallest Gk(x) + Mk · max{0, q − Hk(x)}.

Figure 2 reports the percentage of time that x̂∗
k is equal to system 2 over 500 macro

replications.
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Figure 2: Percentage of time that x̂∗
k = xb

o of the problem with three systems.

As seen in Figure 2, system 2 is returned as the sample best only around 50% of

the time, which clearly demonstrates the failure of a naive penalty function method.

[25] provides the following mathematical arguments to explain the need for a penalty

function whose value converges to zero for feasible solutions and to infinity for infea-

sible solutions.

For a constant ω > 0,

P{receive a penalty}

= P{Mk max{0, q −Hk(x)} > ω}

≥ P{Mk(q −Hk(x)) > ω}

= P

{√
nvk

(x)(Hk(x)−E[H1(x)])√
Var[H1(x)]

<

√
nvk

(x)√
Var[H1(x)]

(q − E[H1(x)]− ω/Mk)

}
.

By the Central Limit Theorem (CLT), the above probability can be calculated from

a standard normal distribution as k →∞ in three cases:

• Infeasible x: Mk should become large quickly, so Mk →∞ is fine.

• Strictly feasible x: Mk should remain small and ideally go to 0.

• Tight x: Mk must go to 0 to avoid a penalty.
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PFM allows its penalty value to assume a complicated form and to depend on observed

feasibility/infeasibility of each solution.

2.2 Penalty Function with Memory

In this section, we introduce PFM and prove global convergence of a combined pro-

cedure of D and PFM. Then we propose two example penalty sequences and prove

their convergence properties.

2.2.1 Structure of PFM

PFM consists of a penalty sequence and a measure of violation for each constraint. Let

λrℓ(x) define a penalty sequence of the ℓth constraint at the rth visit for x. To simplify

notation, we use λvkℓ (x) to denote λ
vk(x)
ℓ (x) which is a penalty parameter at visit vk(x)

for x. In PFM, the value of λvkℓ (x) is determined based on observed (in)feasibility

of solution x and it should go to zero for feasible solutions but infinity for infeasible

solutions. A measure of violation for the ℓth constraint is max(0, qℓ−Hℓk(x)) for ℓ =

1, 2, . . . ,m. Then PFM is defined as
∑

ℓ∈Λ
[
λvkℓ (x)×max{0, qℓ −Hℓk(x)}

]
. A new

objective function with PFM at search iteration k is Zk(x) = Gk(x)+
∑

ℓ∈Λ
[
λvkℓ (x)×

max{0, qℓ − Hℓk(x)}
]
. We show that if a combined algorithm D+PFM returns a

solution with the smallest Zk(x) as x̂
∗
k, then Zk(x̂

∗
k) converges to minx∈Θf

E[G(x)] as

k increases. We first need the following condition for λvkℓ (x):

Condition 1 As k goes to infinity, λvkℓ (x)
a.s.−→ 0 for ℓ ∈ ΛS(x) ∪ΛA(x) and λ

vk
ℓ (x)

a.s.−→

∞ for ℓ ∈ ΛI(x) where
a.s.−→ denotes almost sure convergence.

Theorem 1 For all x ∈ Θ, if Assumptions 1 and 2 hold and λvkℓ (x) satisfies Condi-

tion 1, then Zk(x)
a.s.−→ E[G(x)] if ΛS(x) ∪ ΛA(x) = Λ; Zk(x)

a.s.−→∞ if ΛI(x) ̸= ∅.

See the Appendix for the proof of Theorem 1. Now, we get a main convergence

theorem of D+PFM:
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Theorem 2 If Assumptions 1 and 2 hold and λvkℓ (x) satisfies Condition 1, then

Zk(x̂
∗
k)

a.s.−→ minx∈Θf
E[G(x)] as k →∞.

See the Appendix for the proof of Theorem 2.

Remark 1: If Θf = ∅, then minx∈Vk
Zk(x) diverges as k → ∞. Thus, if a penalty

sequence of a sample best does not show convergence to zero but instead shows

increasing tendency for large k, a decision maker may declare no feasible solution.

The above theorem implies that the problem of finding an optimal solution in

DOvS falls down to the problem of coming up with a penalty sequence that satisfies

Condition 1. In the next subsections, we provide two example penalty sequences, PSc

and PSf , and discuss their convergence properties.

2.2.2 Penalty Sequence with Constants (PSc)

We first introduce PSc, an intuitive and easy-to-implement penalty sequence. Let

Svk
ℓ (x) ≡

∑vk(x)
r=1 ζℓr(x) where ζℓr(x) ≡

∑nr−1(x)+∆nr(x)
i=nr−1(x)+1

Hℓi(x)−qℓ√
∆nr(x)

. Then PSc is defined

as follows:

Penalty Sequence with Constants (PSc)

λvkℓ (x) =

 λ
vk−1

ℓ (x)× θa, if Svk
ℓ (x) < 0,

λ
vk−1

ℓ (x)× θd, if Svk
ℓ (x) ≥ 0,

where λ0ℓ(x) is the initial penalty constant λ0ℓ for any x ∈ Θ, θa is an appreciation

factor, and θd is a depreciation factor such that θa > 1 and 0 < θd < 1.

If ∆nr(x) is a constant ∆n for any x and r, then Svk
ℓ (x) < 0 and Svk

ℓ (x) ≥ 0 are

simplified to Hℓk(x) < qℓ and Hℓk(x) ≥ qℓ, respectively.

To prove the convergence properties of PSc, we first need two lemmas.

Lemma 1 [31] If {Zn, n = 1, 2, . . .} is a sequence of random variables with E[Zj] =

µj <∞, Var[Zj] = σ2
j <∞, and

∑∞
j=1

σ2
j

j2
<∞, then∑n

j=1 Zj

n
−
∑n

j=1 µj

n

a.s.−→ 0, as n→∞.
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Lemma 1 is known as Kolmogorov’s strong law of large numbers. Note that

if σ2
j is a finite constant for any j, then

∑∞
j=1

σ2
j

j2
< ∞ is always satisfied because∑∞

j=1
1
j2
<∞.

Lemma 2 [10] Let X1, X2, · · · be independent random variables each having mean

0 and variance 1 and such that the central limit theorem is applicable. Let sk =

X1 + X2 + · · · + Xk and let Nn denote the numbers of sk’s, 1 ≤ k ≤ n, which are

positive. Then, for 0 ≤ ξ ≤ 1,

lim
n→∞

P
[Nn

n
< ξ
]
=

2

π
arcsin

√
ξ.

Theorem 3 Under Assumptions 1 and 2, PSc guarnatees λvkℓ (x)
a.s.−→ 0 for any ℓ ∈

ΛS(x) and λ
vk
ℓ (x)

a.s.−→∞ for any ℓ ∈ ΛI(x) as k →∞.

See the Appendix for the proof of Theorem 3. For ℓ ∈ ΛA(x), the following theorem

holds:

Theorem 4 Under Assumptions 1 and 2, PSc guarantees that λ
vk
ℓ (x)

D−→ Y as k →

∞ for any ℓ ∈ ΛA(x), where

Y =

 0, with probility 1− 2
π
arcsin

√
− log θa

log θd−log θa
,

∞, with probility 2
π
arcsin

√
− log θa

log θd−log θa
.

See the Appendix for the proof of Theorem 4. Theorem 4 implies that PSc does

not satisfy Condition 1, but a careful choice of θa and θd makes the penalty sequence

converge to zero with high probability. The choice of θa and θd is discussed in Sec-

tion 2.3.

2.2.3 Penalty Sequence with Functions (PSf)

While PSc uses same appreciation and depreciation factors for every solution, PSf

allows each solution to use different appreciation and depreciation factors depending
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on, so called, the infeasible probability pℓ(x). The infeasible probability pℓ(x) rep-

resents how likely a solution is declared to be infeasible and is defined as pℓ(x) ≡

limr→∞P
[
ζℓr(x) < 0

]
. We estimate the infeasible probability by p̂vkℓ (x), where

p̂vkℓ (x) =

∑vk(x)
r=1 I{ζℓr(x) < 0}

vk(x)
. (2)

To implement PSf , a decision maker needs to choose the following parameters:

• two real-valued constants wa and wd such that 0 < wa < 1 and 0 < wd < 1, and

two positive integers u and v such that u < v;

• 0 < h1 < . . . < hu < 0.5 < hu+1 < . . . < hv < 1;

• 1 < aν and 0 < dν < 1, for all ν = 1, 2, . . . , v.

An estimated error tolerance for the infeasible probability of tight solutions is denoted

as γkℓ and it is calculated as

γkℓ =



min
(
hu+1 − 0.5, 0.5− hu,minx∈{x|p̂vkℓ (x)>0.5+ϵℓ0, x∈Vk}

p̂
vk
ℓ (x)−0.5

2

)
,

if {x|p̂vkℓ (x) > 0.5 + ϵℓ0, x ∈ Vk} ̸= ∅;

min (hu+1 − 0.5, 0.5− hu), otherwise,

where ϵℓ0 are very small positive constants close to zero for ℓ = 1, 2, . . . ,m. The

estimated error tolerance γkℓ defines a range in which a solution x does not receive

any appreciation factor regardless of a feasibility decision at iteration k if p̂vkℓ (x) falls

in the range. Having such a range is critical when we establish λvkℓ (x) with almost

sure convergence for a tight solution.

Then PSf is defined as follows:
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Penalty Sequence with Functions (PSf)

λvkℓ (x) =

 λ
vk−1

ℓ (x)× αvk
ℓ (x), if Svk

ℓ (x) < 0,

λ
vk−1

ℓ (x)× δvkℓ (x), if Svk
ℓ (x) ≥ 0,

where λ0ℓ(x) is the initial penalty constant λ0ℓ , α
vk
ℓ (x) is an appreciation function,

and δvkℓ (x) is a depreciation function whose values are determined by p̂vkℓ (x) and the

following table:

p̂vkℓ (x) [0, h1) [h1, h2) . . . [hu, 0.5− γkℓ ) [0.5− γkℓ , 0.5 + γkℓ ]

αvk
ℓ (x) a0 a1 . . . au wa

δvkℓ (x) d0 d1 . . . du wd

p̂vkℓ (x) (0.5 + γkℓ , hu+1] . . . (hv−1, hv] (hv, 1]

αvk
ℓ (x) au+1 . . . av−1 av

δvkℓ (x) du+1 . . . dv−1 dv

To prove the convergence properties of PSf , we need the following lemma:

Lemma 3 Let bn, n = 1, 2, . . ., be a positive real sequence such that limn→∞ bn = c <

∞ for c ∈ R. Then limn→∞
1
n

∑n
r=1 br = c.

See the Appendix for the proof of Lemma 3.

Theorem 5 If ∆nr(x) → ∞ as r → ∞ (i.e., k → ∞), then (i) p̂vkℓ (x)
a.s.−→ 0 for

ℓ ∈ ΛS(x); (ii) p̂
vk
ℓ (x)

a.s.−→ 1 for ℓ ∈ ΛI(x); and (iii) p̂vkℓ (x)
a.s.−→ 0.5 for ℓ ∈ ΛA(x).

See the Appendix for the proof of Theorem 5. Now we present the main theorems

of PSf .

Theorem 6 If Assumptions 1 and 2 hold and ∆nr(x)→∞ as r →∞ (i.e., k →∞),

then PSf guarantees (i) λvkℓ (x)
a.s.−→ 0 for any ℓ ∈ ΛS(x)∪ΛA(x); and (ii) λvkℓ (x)

a.s.−→∞

for any ℓ ∈ ΛI(x).
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See the Appendix for the proof of Theorem 6. Although some optimization al-

gorithms such as the simulated annealing method of [1] and SMRAS of [15] allow

∆nr(x) to increase as k increases, majority of OvS algorithms assume finite ∆nr(x).

Next we show the convergence properties of PSf assuming finite ∆nr(x).

Corollary 1 If Assumptions 1 and 2 hold and ∆nr(x) < ∞, then PSf guarantees

λvkℓ (x)
a.s.−→ 0 for any ℓ ∈ ΛS(x).

The proof of Corollary 1 is same as Case (i) in the proof of Theorem 6. For the

convergence properties of ℓ ∈ ΛA(x) ∪ ΛI(x), we make the following assumption:

Assumption 3 For a finite constant ∆n(x) > 0, limr→∞∆nr(x) = ∆n(x) and

ζℓr(x) are independent with a symmetric probability density or mass function.

Remark 2: In Assumption 3, ∆n(x) can be different for each solution x but in the

experiment we use equal ∆n(x) for all solutions x by setting ∆n(x) = ∆n.

Assumption 3 ensures that pℓ(x) = 0.5 for ℓ ∈ ΛA(x) and pℓ(x) > 0.5 for ℓ ∈ ΛI(x).

In practice, ifHℓi(x) are either within-replication averages or batch means or if ∆nr(x)

is large, then ζℓr(x) will be approximately symmetric.

Theorem 7 If Assumptions 1, 2, and 3 hold, then PSf guarantees (i) λvkℓ (x)
a.s.−→∞

for any ℓ ∈ ΛI(x) and (ii) λvkℓ (x)
a.s.−→ 0 for any ℓ ∈ ΛA(x) as k →∞.

See the Appendix for the proof of Theorem 7.

2.3 Parameter Selection

In this section, we discuss how to choose parameters for implementation of each

penalty sequence. We first investigate effects of appreciation and depreciation factors

on a convergence or divergence rate of Zk(x) for a single solution x and then provide

guidelines for parameter selection of PSc and PSf .
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2.3.1 Single Solution

We first study how appreciation and depreciation factors affect the convergence rate

of Zk(x) to E[G(x)] for a feasible solution and the divergence rate of Zk(x) to infinity

for an infeasible solution. Desirable appreciation and depreciation factors should

ensure fast convergence of Zk(x) to the right value (i.e., either E[G(x)] or ∞) with

high probability.

Let ρc represent the probability that λvkℓ (x) converges to 0 for any ℓ ∈ ΛA(x). That

is, ρc is the probability of converging to the right value for tight solutions. Then, for

fixed ρc and θa, θd is determined by

θd = exp

(
− (log θa)

(
sin

π(1− ρc)
2

)−2

+ log θa

)
,

which is derived from Theorem 4.

To study convergence rates for various combinations of θa and ρc, we consider

a single solution x with one constraint, E[H1(x)] ≥ 0. In this problem, H1(x) is

normally distributed with variance 1. We consider five different levels of feasibility: (i)

E[H1(x)] = 0.5244 (p1(x) = 0.3 and clearly feasible); (ii) E[H1(x)] = 0.1257 (p1(x) =

0.45 and barely feasible); (iii) E[H1(x)] = 0 (p1(x) = 0.5 and tight); (iv) E[H1(x)] =

−0.1257 (p1(x) = 0.55 and barely infeasible); and (v) E[H1(x)] = −0.5244 (p1(x) =

0.7 and clearly infeasible).

We test ρc ∈ {0.5, 0.7, 0.8, 0.9} and θa ∈ {
√
1.1,
√
1.3,
√
1.5,
√
1.7,
√
1.9}. At each

search iteration k ∆nr(x) is set to a single constant ∆n = 1 for all solutions. Based

on 100 macro replications, P{λvkℓ (x)max{0, qℓ − Hℓk(x)} < 0.1} is estimated if x

is feasible and P{λvkℓ (x)max{0, qℓ − Hℓk(x)} > 10} is estimated if x is infeasible.

Table 2 reports parameter settings with the largest estimated probability for each

level of feasibility. As seen in the table, ρc = 0.9 and θa ≥
√
1.3 perform equally

well for feasible solutions and ρc = 0.5 and θa =
√
1.9 perform the best for infeasible

solutions.
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Table 2: Recommended parameter settings for five different levels of (in)feasiblity.
Clearly Barely Feasible with Barely Clearly
Feasible Feasible a Tight Constraint Infeasible Infeasible

ρc 0.9 0.9 0.9 0.5 0.5

θa ≥
√
1.3 ≥

√
1.3

√
1.3

√
1.9

√
1.9

Figure 3 shows estimated P{λvkℓ (x)max{0, qℓ −Hℓk(x)} < 0.1} for feasible solu-

tions when ρc = 0.9 and θa =
√
1.3 while Figure 4 shows estimatedP{λvkℓ (x)max{0, qℓ−

Hℓk(x)} > 10} for infeasible solutions when ρc = 0.5 and θa =
√
1.9. For all exper-

iments, we observe that the estimated probability converges to 1 for both strictly

feasible and infeasible solutions while it converges to ρc for a tight solution. We also

note that a desirable combination for a feasible solution is the worst combination for

an infeasible solution and vice versa.

2.3.2 Parameter Selection for PSc

Now we discuss how to choose parameters for PSc which applies the same appreciation

and depreciation factors to all solutions. If all solutions are feasible, then the findings
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Probability
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0.65
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1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Barely Feasible

Feasible with a Tight 
Constraint

Number of observations 

Figure 3: Estimated P{λvkℓ (x)max{0, qℓ−Hℓk(x)} < 0.1} for feasible solutions when
ρc = 0.9 and θa =

√
1.3.
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Figure 4: Estimated P{λvkℓ (x)max{0, qℓ − Hℓk(x)} > 10} for infeasible solutions
when ρc = 0.5 and θa =

√
1.9.

from the previous subsection imply that we should choose (ρc, θa) = (0.9,
√
1.3). If

all are infeasible, then (ρc, θa) = (0.5,
√
1.9) would be desirable. However, most

DOvS problems contain both feasible and infeasible solutions with various levels of

feasibility/infeasibility. Thus, we need to choose (ρc, θa) that shows performances

robust for both feasible and infeasible solutions. To see the performance of various

choices of (ρc, θa), we revisit the three-system example from Section 2.1.3.

Figure 5 shows the percentage of time that x̂∗
k = xb

o based on 500 macro replica-

tions. To focus on small-sample-size behaviors of each combination, Figure 5 reports

performances up to 1000 total number of observations although the experiment contin-

ued up to 10,000 total number of observations. The figure shows that (i) combinations

(ρc, θa) with the same value of ρc exhibit similar behaviors and their probabilities of

returning a true optimal solution converge to ρc (if observed up to 10,000 observa-

tions); (ii) combinations with high ρc show slower convergence with a high probability

of returning a true optimal solution while combinations with low ρc show fast conver-

gence with a low probability of returning a true optimal solution; and (iii) for a given
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Figure 5: Percentage of time that x̂∗
k = xb

o using PSc for the problem with three
systems.

ρc,
√
1.3 ≤ θa ≤

√
1.9 show faster convergence than θa <

√
1.3. To balance between

fast convergence and high probability of returning a true optimal solution, (0.7,
√
1.3)

is a good compromise. For the largest probability of returning a true optimal solution,

(ρc, θa) = (0.9,
√
1.1) performs well but has very slow convergence.

2.3.3 Parameter Selection for PSf

Unlike PSc, PSf adjusts parameters to an effective choice using the infeasible prob-

ability pℓ(x). Intuitively, it makes sense to use (ρc, α
vk
ℓ (x)) = (0.5,

√
1.9) when pℓ(x)

is close to 1 and (ρc, α
vk
ℓ (x)) = (0.9,

√
1.3) when pℓ(x) is close to 0. Table 3 is an

example that assigns appreciation and depreciation functions this way. However, our

experiments (which we omit due to space) show that the initial performance of PSf is

worse than that of PSc with (ρc, θa) = (0.7,
√
1.3) for the three-system example. It is

because inaccurate p̂vkℓ (x), when vk(x) is small, makes feasible or infeasible solutions

receive the worst combination (ρc, α
vk
ℓ (x)) and it takes a while to fix wrong penalty

values.

An adaptive PSf can reduce such initial error: start with parameters robust to
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Table 3: An example of PSf .
p̂vkℓ (x) [0, 0.35) [0.35, 0.5− γkℓ ) [0.5− γkℓ , 0.5 + γkℓ ] (0.5 + γkℓ , 0.65] (0.65, 1]

ρc 0.9 0.9 0.9 0.5

αvk
ℓ (x)

√
1.3

√
1.3 0.95

√
1.3

√
1.9

δvkℓ (x) 0.0054 0.0054 0.1 0.0054 0.7255

feasibility/infeasibility of solutions as shown in Table 4 and then jump to Table 3 when

vk(x) > Np where Np is the number of visits that makes p̂vkℓ (x) accurate enough. For

a given level of estimation error of the infeasible probability, one can plan for the

value of Np in advance by using the fact that the standard deviation of probability is

maximized at 0.5.

Table 4: Robust PSf .
p̂vkℓ (x) [0.5− γkℓ , 0.5 + γkℓ ] Otherwise

ρc 0.7

αvk
ℓ (x) 0.95

√
1.3

δvkℓ (x) 0.5 0.6033

2.4 Numerical Experiments

In this section, we test PFM on three numerical examples: (i) the Goldstein-Price

problem, (ii) an (s, S) inventory policy problem, and (iii) the three-system example

from Section 2.1.3 to test the performance of PFM when secondary performance

measures have asymmetric distributions. The Goldstein-Price problem is introduced

in Section 2.4.1 and the (s, S) inventory policy problem is described in Section 2.4.2.

In all problems, there is a unique optimal solution xb
o.

For the Goldstein-Price problem and the (s, S) inventory policy problem, we need

a DOvS algorithm because search spaces of the problems are too large to update and

compare Zk(x) for all x ∈ Θ at each iteration. A version of NP [28] is used and com-

bined with PFM. The combined algorithm NP+PFM returns x̂∗
k ≡ argminx∈Vk

Zk(x)

at each iteration k. Table 5 shows parameters for the implementation of NP where n0
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is the number of observations obtained in the first visit, τk is the number of solutions

sampled at iteration k, and ω is the number of subregions.

Table 5: Basic parameter settings for NP.

Problem n0 τk ω
Goldstein Price Problem 9 16 4

(s, S) Inventory Policy Problem 30 9 2

[21] provide a penalty function for a DOvS problem with one stochastic constraint,

which we call the augmented cost function (ACF). We take a straightforward exten-

sion of their method to multiple constraints and define ACF as
∑

ℓ∈Λ α
k
ℓ ×max{0, qℓ−

Hℓk(x)}. We take αk
ℓ similar to the one used in their online companion:

αk
ℓ =


ek

minx∈Υk
(qℓ−Hℓk(x))

, if Υk ̸= ∅;

106, otherwise,

where Υk ≡ {x|Hℓk(x) < qℓ and x ∈ Vk}. NP+ACF takes Z
′

k(x) = Gk(x) +∑
ℓ∈Λ α

k
ℓ ×max{0, qℓ −Hℓk(x)} as an estimate of the performance measure in NP.

Let PFM(PSc) and PFM(PSf ) represent PFM using PSc and PSf , respectively, as

a penalty sequence. For PSc, we test two different combinations of (ρc, θa) discussed

in Section 2.3.2: (ρc, θa) = (0.7,
√
1.3) and (ρc, θa) = (0.9,

√
1.1). We denote PSc with

the former combination as PSc1 and the latter as PSc2. For PSc, we set ∆nr(x) = ∆n

for all solution x, and use ∆n = 3 for the Goldstein-Price problem and ∆n = 10 for

the (s, S) inventory policy problem.

For PSf , we employ an adaptive version: Table 4 is used until vk(x) ≤ Np and

then PSf uses parameters in Table 3 for vk(x) > Np. We set Np = 10 for the three-

system example since the problem only includes three systems. For other numerical

examples, Np = 200 is used which ensures the standard error in p̂vkℓ (x) is no more

than 0.035. We denote PSf with fixed ∆nr(x) = ∆n as PSf1, and PSf with increasing
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∆nr(x) as PSf2. For increasing ∆nr(x), the following equation is used:

∆nr(x) =

 n0 + ⌈log r⌉ , if r > 1,

n0, otherwise.
(3)

For the three-system example, we set n0 = ∆n. PSc uses ∆nr(x) = ∆n for all

three systems where ∆n ∈ {1, 10, 30}. For PSf , ∆nr(x) is set to (3). As a competitive

method, we apply Mk = 3k as in Section 2.1.3.

We set λ0ℓ for PFM as follows:

λ0ℓ =

 maxk≤20 maxx∈Υk

|Gk(x
∗
k)−Gk(x)|

|qℓ−Hℓk(x)|
, if Υk ̸= ∅ and k > 20;

106, otherwise,

where Υk ≡ {x|Hℓk(x) < qℓ and x ∈ Vk}.

2.4.1 Goldstein-Price Problem

The Goldstein-Price problem is one of the famous deterministic and continuous opti-

mization problems with a two-dimensional quadratic function defined as,

g(x) =
{
1 + (x1 + x2 + 1)2 · (19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

}
×
{
30 + (2x1 − 3x2)

2 · (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
}
.

Let ϕi(x) and ψℓi(x), ℓ = 1, 2, ...,m be iid normal random variables with mean zero

and standard deviations 0.15 g(x) and 0.15 (aℓx1+bℓx2) where aℓ and bℓ are constants.

We define Gi(x) = g(x)+ϕi(x) andHℓi(x) = aℓx1+bℓx2+ψℓi(x) and want to minimize

E[G(x)] such that E[Hℓ(x)] ≥ qℓ. We set Θ = {−2.50,−2.49, ..., 1.99, 2.00}2 which is

a two-dimensional discretized set in [−2.50, 2.00]2. The function g(x) has four local

minima and the global minimum at (0,−1). In Θ, the largest and smallest values of

g(x) are 1,015,685 and 3, respectively.

We first consider a single constraint with one of the following constraints:

E[−x1 − x2 + ψ1i] ≥ 0.0; (4)

E[−x1 − x2 + ψ1i] ≥ 1.5. (5)
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Figure 6: Contour of the Goldstein-Price function with a single constraint: constraint
(4) (left) and constraint (5) (right).

Figure 6(a) shows that the true optimal solution of the problem with constraint

(4) is identical to the global minimum of the unconstrained Goldstein-Price function.

On the other hand, Figure 6(b) shows that constraint (5) is a difficult stochastic

constraint because the optimal solution is located right on the line −x1 − x2 = 1.5

and there are many superior infeasible solutions near the optimal solution.
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Figure 7: Percentage of time that x̂∗
k = xb

o with constraint (4).
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Figure 8: Average estimated objective value of x̂∗
k with constraint (4).

Figure 7 shows the percentage of time that x∗
k = xb

o and Figure 8 provides the

average objective value of the sample best over 500 macro replications when constraint

(4) is considered. Each macro replication is terminated when the total number of

observations obtained so far reaches 100,000. As shown in Figure 7, NP+PFM(PSf2)

accomplishes up to 100% with the fastest rate of convergence and others achieve up

to 95% with similar rates of convergence.

Figures 9 and 10 show the percentage of time that x∗
k = xb

o and the average ob-

jective value of the sample best over 500 macro replications when constraint (5) is

considered. We arbitrary set ϵ10 = 0.00617 for PSf1 and PSf2. Figure 9 shows that the

choice of θa and θd does matter for a good performance of PSc in a difficult problem.

At the end of the search, NP+PFM(PSf2) achieves up to 90% while NP+PFM(PSc2)

and NP+PFM(PSf1) reach around 80% and NP+PFM(PSc1) reaches around 70%.

NP+ACF finds the true best only around 50% of the time. Figure 10 shows that

NP+PFM(PSc1), NP+PFM(PSf1) and NP+PFM(PSf2) obtain better average esti-

mated objective values than NP+PFM(PSc2) and NP+ACF.
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Figure 9: Percentage of time that x̂∗
k = xb

o with constraint (5).
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Figure 10: Average estimated objective value of x̂∗
k with constraint (5).

Note that average objective value of NP+PFM in Figures 10 (and Figure 13 later

in the chapter) tends to start below the true optimal value and increases as the total

number of observations increases. The true optimal solution xb
o is tight and infeasible

solutions near the true optimal have better (superior) primary performance measures
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Figure 11: Contour of the Goldstein-Price function with constraints (6).

in the problem setting. Thus, NP+PFM selects one of superior but infeasible solutions

as the current sample best at the beginning of search due to a small penalty. As

the search goes on, infeasible solutions receive a large penalty value and this helps

NP+PFM move away from infeasible solutions and select the true optimal solution

or one of feasible solutions near xb
o.

Now we consider two stochastic constraints:

E[−x1 − x2 + ψ1i] ≥ 1.5 and E[x1 − x2 + ψ2i] ≥ 0.9. (6)

Figure 11 shows that the feasible region becomes smaller than that of the sin-

gle constraint case and xb
o is located on the extreme point of two stochastic con-

straints with many superior infeasible solutions near xb
o. We arbitrary set (ϵ10, ϵ20) =

(0.00617, 0.0103) for PSf1 and PSf2. As the two constraints are independent and the

optimal solution has two tight constraints, the probability that the penalty sequence

of PSc1 of the optimal solution converges to zero is expected to be ρc×ρc = 0.49. For

PSc2, the probability would be 0.81.

Figure 12 shows that NP+PFM(PSf1) and NP+PFM(PSf2) return the true opti-

mal around 80% of the time as the number of observations increases and NP+PFM(PSc2)

returns the true optimal around 70% while NP+PFM(PSc1) find the true optimal
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Figure 12: Percentage of time that x̂∗
k = xb

o with constraints (6).

38

39

40

Average objective value of sample best solution

34

35

36

37

1
0

0
0

0

4
0

0
0

0

7
0

0
0

0

1
0

0
0

0
0

1
3

0
0

0
0

1
6

0
0

0
0

1
9

0
0

0
0

2
2

0
0

0
0

2
5

0
0

0
0

2
8

0
0

0
0

3
1

0
0

0
0

3
4

0
0

0
0

3
7

0
0

0
0

4
0

0
0

0
0

4
3

0
0

0
0

4
6

0
0

0
0

4
9

0
0

0
0

5
2

0
0

0
0

5
5

0
0

0
0

5
8

0
0

0
0

6
1

0
0

0
0

6
4

0
0

0
0

6
7

0
0

0
0

7
0

0
0

0
0

7
3

0
0

0
0

7
6

0
0

0
0

7
9

0
0

0
0

8
2

0
0

0
0

8
5

0
0

0
0

8
8

0
0

0
0

9
1

0
0

0
0

9
4

0
0

0
0

9
7

0
0

0
0

1
0

0
0

0
0
0

NP+PFM(PSc1)

NP+PFM(PSc2)

NP+PFM(PSf1)

NP+PFM(PSf2)

NP+ACF

OPTIMAL VALUE

Number of observations

Figure 13: Average objective value of x̂∗
k with constraints (6).

around 50% and NP+ACF find the true optimal only around 25% of the time. We ob-

serve that the probability increases to 81% for NP+PFM(PSc2) as we further increase

the total number of observations. NP+PFM(PSf1) and NP+PFM(PSf2) give a bet-

ter estimated objective value than NP+PFM(PSc1), NP+PFM(PSc2) and NP+ACF
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as shown in Figure 13.

2.4.2 (s, S) Inventory Policy Problem

Now we consider an (s, S) inventory policy problem [19] with (i) non-normal ob-

servations for the secondary performance measure; and (ii) correlation between the

primary and secondary performance measures.

If the inventory level at a review is found to be below s units, then an order

is placed to increase the inventory level to S. If not, there is no order. Demand is

assumed to be Poisson distributed with mean 25. The solution set is Θ = {(s, S)|20 ≤

s ≤ 80, 40 ≤ S ≤ 100, s ∈ Z, S ∈ Z}, where Z is a set of integers.

We define the failure probability as the probability that a shortage occurs. We

want to find values of s and S that minimize the steady-state expected inventory cost

per review period while keeping the failure probability less than or equal to 0.01. All

analytic results can be obtained by using a Markov chain model, and Figures 14 and

15 show the expected cost and the failure probability of solutions near the optimal

solution of the unconstrained problem. The true optimal solution is xb
o = (31, 61)

and its expected cost and failure probability are 117.3428 and 0.00998, respectively.

Many superior infeasible solutions are located near the true optimal solution xb
o,

the stochastic constraint becomes nearly tight at xb
o, and it is difficult to accurately

estimate the secondary performance measure with small samples. Therefore this is a

very difficult optimization problem.

We arbitrarily choose ϵ10 = 0.001 for PSf1 and PSf2.

Figure 16 shows the percentage of time that x̂∗
k = xb

o over 500 macro replications

when each macro replication is terminated with 2,000,000 total observations. At the

end of the searches, NP+PFM(PSf1), NP+PFM(PSf2), and NP+PFM(PSc2) achieve

up to 90% and NP+PFM(PSc1) shows the percentage around 77% while NP+ACF

achieves only up to 40%. NP+PFM shows better average estimate objective values
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Figure 15: Steady-state failure probability of the (s, S) inventory problem.

than NP+ACF as in Figure 17.

2.4.3 Shortcoming and Recommendation

We use the three-system example to study the performance of PFM when H1(x)

has an asymmetric distribution. More specifically, let Ψ represent an exponential

random variable with mean 1. Then three distributions for the secondary performance

measure are considered: (i) H1(x) is normally distributed (symmetric), (ii) H1(x) =

E[H1(x)]+(Ψ−1) (positively skewed), and (iii)H1(x) = E[H1(x)]+(1−Ψ) (negatively

skewed). We arbitrary setϵ10 = 0.08 for PSf1 and PSf2. Table 6 shows infeasible
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Figure 16: Percentage of time that x̂∗
k = xb

o in the (s, S) inventory problem.

probabilities of three systems when ∆n = 1 for the three distributions of H1(x).

Table 6: Infeasible probability with ∆n = 1.
System p1(x)

symmetric H1(x) positively skewed H1(x) negatively skewed H1(x)

1 0.3821 0.5034 0.2725

2 0.5000 0.6321 0.3679

3 0.6179 0.7275 0.4966

Figures 18, 19, and 20 show the percentages of time that x∗
k = xb

o with ∆n = 1 over

500 macro replications when H1(x) are symmetric, positively skewed, and negatively

skewed, respectively. Each macro replication continues until the total number of

observations obtained so far reaches 10,000.

When H1(x) are symmetric, Figure 18 shows that PFM(PSf1) and PFM(PSf2)

achieve almost 100%, PFM(PSc1) and PFM(PSc2) achieve close to their ρc (0.7 or

0.9), and the linear penalty finds the true optimal solution only 50% of the time.

PFM(PSc1), PFM(PSf1) and PFM(PSf2) show similar convergence rates for a small

number of observations and this is expected because all three sequences essentially

use the same values of ρc and θa up to Np = 10 visits. However, PFM(PSf1) and
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Figure 17: Average estimated objective value of x̂∗
k in the (s, S) inventory problem.
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Figure 18: Percentage of time that x̂∗
k = xb

o for the three-system example with normal
H1(x).

PFM(PSf2) achieve a lot better final convergence probability (close to 100%) than

PFM(PSc1). PFM(PSc2) achieves a high convergence probability in the end but shows

slow convergence, which is expected from the discussion in Section 2.3.2.

Figures 19 and 20 show that the performance of PFM(PSc1) and PFM(PSc2) under

asymmetric distributions are similar to that under the normal case because their
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Figure 19: Percentage of time that x̂∗
k = xb

o for the three-system example with
positively skewed H1(x).
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Figure 20: Percentage of time that x̂∗
k = xb

o for the three-system example with
negatively skewed H1(x).

behaviors do not depend on an underlying distribution of a secondary performance

measure. PFM(PSf2) also performs well regardless of the underlying distribution but

Figure 19 shows slower convergence to 100% under the positively skewed distribution.

Although we do not report the results in the chapter due to space, we confirmed that
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(a) ∆n = 1
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(b) ∆n = 10
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(c) ∆n = 30

Figure 21: Percentage of time that x̂∗
k = xb

o using PSf1 with different ∆n with PSf1.
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the probability does approach to 100% as the total number of observations increases.

On the other hand, the performance of PFM(PSf1) is deteriorated especially when

H1(x) is negatively skewed. In the positively skewed distribution, pℓ(x) of systems

2 and 3 are greater than 0.5 and the systems are likely to receive (ρc, α
vk
ℓ (x)) =

(0.7,
√
1.3) for vk(x) ≤ 10 and then (0.9,

√
1.3) for vk(x) > 10. This explains why

PFM(PSf1) converges to 0.9 for the positively skewedH1(x). In the negatively skewed

distribution of H1(x), pℓ(x) of the infeasible but superior system lies in the range of

[0.5 − γkℓ , 0.5 + γkℓ ] which makes system 3 receive 0 < wa < 1 or 0 < wd < 1 quite

often. This, in turns, makes Zk(x) of system 3 converge to E[G(3)] = −1 which is

better than the true optimal value, E[G(2)] = 0. As a result, PFM(PSf1) tends to

choose system 3 as the sample best and performs no better than the naive linear

penalty function.

This caveat of PFM(PSf1) can be avoided simply by (i) setting γkℓ = 0 so that

PSf1 essentially becomes adaptive PSc whose performance does not depend on the

underlying distribution of ζℓr(x); or (ii) using ∆n large enough for ζℓr(x) to be ap-

proximately symmetric. Figure 20 shows that the performance of PFM(PSf1) with

γkℓ = 0 is similar to that of PFM(PSc1) at the beginning and then PFM(PSc2) later.

Figures 21 also shows that PFM(PSf1) performs similarly regardless of the underly-

ing distribution of H1(x) as ∆n increases. An experimenter can use a flow chart in

Figure 22 to determine which penalty sequence to use.

2.5 Conclusions

In this chapter, we present PFM that converts a DOvS problem with stochastic

constraints into a series of unconstrained DOvS problems. PFM determines a penalty

value on a solution based on records of fast feasibility checks on the solution and it

forces the penalty sequence converge to zero for a strictly feasible solution but diverges

to ∞ for an infeasible solution. For even a tight solution, the penalty sequence
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Figure 22: A flow chart for the determination of a penalty sequence.

converges to zero with high probability or almost surely under some conditions. We

provide two penalty sequences, namely PSc and PSf , with proofs of their convergence

properties and discuss parameter selections for their implementation. Our findings

show that the implementation of PSc is easier than PSf and its performance does not

depend on the underlying distribution of Hℓ(x). However, its performance depends

on the choice of parameters ρc and θa.

In addition, we show that PSf with increasing ∆nr(x) works well and is robust to

the underlying distribution of Hℓ(x). PSf with fixed ∆nr(x) = ∆n also works well as

long as Assumption 3 is satisfied. If Assumption3 is not satisfied, it could introduces

a caveat especially when the distribution is negatively skewed and ∆nr(x) is small.

Since it is unlikely that means and variances of solutions in the search space and the

location of a the optimal solutions are known prior to simulation, either PSf with

increasing ∆nr(x) or PSf with finite ∆n and γkℓ = 0 appears to be a reliable choice.

In this chapter, we make a feasibility decision simply based on comparison be-

tween an estimate of secondary performance measures and qℓ. However, others (e.g.,
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[4], [6], [16], and [29]) have developed more sophisticated statistical methods for fea-

sibility checks. These sophisticated methods can be combined with PFM to further

enhance the performance of the combined algorithm D+PFM. This topic is discussed

in Chapter IV.
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CHAPTER III

DESIGNING OPTIMAL WATER QUALITY

MONITORING NETWORK FOR RIVER SYSTEMS

USING CONSTRAINED DISCRETE OPTIMIZATION

VIA SIMULATION

Maintaining good water quality for river systems is an important problem in envi-

ronmental engineering. Many researchers have studied effects of contaminants, water

purifying techniques, and systemized water quality monitoring. This chapter deals

with the problem of designing a water quality monitoring network for river systems

where the goal is to find the optimal location of a finite number of monitoring devices

to detect a potential contamination event in a river network. Some researchers sug-

gest that a good network design should have small expected detection time and high

detection reliability. This problem is difficult because (a) a river system is large and

complicated, requiring huge computational time for its process simulation, (b) the

two performance measures (detection time and reliability) are observed only through

stochastic simulation when uncertainties in spill and rain events are considered, and

(c) detection time and reliability criteria are opposing criteria requiring balanced

optimal solutions.

Many researchers have studied water quality monitoring for river systems. For

example, [35] give a comprehensive review of past approaches to the factors that

affect effective water quality monitoring network design. [27] design a monitoring

network based on a geometric analysis of river systems and demonstrate a simple

application in a hypothetical river system. [38] show that a dynamic analysis of

contaminant fate and transport may be necessary to solve this problem by formulating
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a bi-objective problem (minimizing the detection time and maximizing the reliability)

for the hypothetical river; and find the optimal placement of monitoring devices

using a genetic algorithm (GA) under relatively simple discrete uniform distributions

on spill events. [39] extend their previous work to a more complicated model that

accounts for rain events and a larger-sized river, namely, the Altamaha River. In

their work, the two objectives are combined into one objective by assigning a large

penalty value whenever a spill is not detected. They obtain a pre-determined number

of observations to estimate the combined objective prior to optimization and apply

the GA, assuming that the number of observations is large enough to ensure that

an estimated value for the combined objective function is close to its true expected

value. Although their proposed GA is shown to produce a good solution, (i) the GA

itself is a heuristic algorithm without any guarantee about convergence to the true

best solution; (ii) it is well known that the number of pre-determined observations

may be too few, causing high estimation error, or too many, wasting computation

time especially when one run takes long. For example, see [24]. Also, due to the use

of a large penalty value when they combine two objectives, the GA tends to return a

solution with 100% or the highest possible reliability. If a decision maker is interested

in finding a solution with the smallest detection time among the solutions whose

reliability is at least, say, 95%, the GA may not be the best method because it does

not have any control on feasibility of the returned solution.

In this chapter, the water quality monitoring design problem is formulated as an

optimization via simulation (OvS) problem with a constraint on reliability, assum-

ing that a decision maker wants to identify the best solution among those whose

reliability level is greater than or equal to a constant. In the simulation society, a

number of algorithms for an OvS problem have been developed and shown to perform

significantly better than heuristic algorithms in a variety of stochastic optimization

problems where the objective function needs to be estimated by simulation. An
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OvS algorithm sequentially obtains additional observations as needed until stopping

criteria are satisfied and finds the best or a near-best solution with global or local

convergence.

The previous chapter presents thorough theoretical developments and convergence

proofs of PFM. From the convergence properties of PFM, one can choose a good

penalty sequence for PFM that is reliable and robust under different mean and vari-

ance configurations of solutions in the search space of an optimization problem in

consideration. Thus, the contributions of this chapter are on addressing the choices

of implementation parameters of NP+PFM specifically tuned for the water qual-

ity monitoring design problem; demonstrating that the new optimization algorithm

works significantly better than a popularly used method in environmental manage-

ment; and solving the water quality monitoring design problem for the Altamaha

River and studying how the best location changes when more random factors (that

have not considered in literature) are considered.

This chapter is organized as follows: Section 3.1 formulates the problem consid-

ered in the chapter, describes process simulation for hydrodynamics and contam-

inant transport in a river, introduces frameworks of DOvS algorithms and PFM,

respectively, and gives the NP+PFM algorithm. Section 3.2 discusses detailed imple-

mentation issues of the NP+PFM algorithm for designing the optimal water quality

monitoring network. Experimental results of applying the NP+PFM algorithm to

the Altamaha River are summarized in Section 3.3, followed by concluding remarks

in Section 3.4.

3.1 Background

This section includes problem formulation and a description of process simulation

with hydrodynamics and contaminant transport in river systems. Then the section
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introduces general frameworks for DOvS algorithms and PFM, and presents an al-

gorithmic statement of NP+PFM. All notation needed throughout the chapter is

summarized in a table of Appendix B.

3.1.1 Problem

A river network system has N nodes and each node can be a possible monitoring

station or a possible spill location. Let I be the index set, I = {1, 2, ..., N}. The

number of monitoring devices is M and M < N . Each solution x represents a

location ofM devices and is denoted as anM dimensional vector, x = (x1, x2, ..., xM)

such that xu ∈ I for u = 1, ...,M and xu ̸= xv for u ̸= v. It is also assumed that

x1 < x2 < ... < xM to prevent the repetition of solutions (e.g., (1, 2, 3), (3, 2, 1), (2,

1, 3) etc. are the same solution). Set Θ is defined as the set of all possible solutions.

Let td(xu) represent detection time at the monitoring location xu which is the

first time when the concentration level at xu goes over the detection threshold of a

monitoring device, Cth. Then the elapsed detection time at xu is defined as,

d(xu) =

 td(xu)− SS, if a contaminant is detected at xu;

∞, otherwise,

where SS is a contaminant injection time (i.e., the starting time of a contaminant

spill event). The minimum elapsed detection time for x is defined as

t(x) = min
1≤u≤M

d(xu).

An indicator R(x) is

R(x) =

 0, if none of monitoring devices detects a contaminant (i.e., t(x) =∞);

1, otherwise.

The two main outputs are t(x) and R(x) and they are only observed by stochastic

simulation. Notation ti(x) and Ri(x) represent observations obtained from the ith

run of stochastic simulation.
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Let E[Y ] and Var[Y ] represent expectation and variance of a random variable Y ,

respectively. The expected reliability is defined as P(Ri(x) = 1), the probability that

a spill is detected. The minimum required reliability level is denoted as q. Then the

problem is formulated as follows:

argminx∈Θ E[ti(x) | Ri(x) = 1]

subject to P(Ri(x) = 1) ≥ q,

ti(x) ∈ R+, Ri(x) ∈ {0, 1}, 0 < q < 1.

(7)

Note that the objective function is the conditional expectation of ti(x) given the event

that a spill is detected. It is assumed that E[ti(x) | Ri(x) = 1], Var[ti(x) | Ri(x) = 1],

E[Ri(x)] and Var[Ri(x)] exist and are finite real numbers, which implies Assump-

tion 1 satisfied.

The next subsection describes how to generate ti(x) and Ri(x) using a process

simulation with randomness in contaminant spill and rainfall events.

3.1.2 Process Simulation

Process simulation is needed to simulate hydrodynamics and contaminant transport

in a river system. A popular software package is the Storm Water Management

Model (SWMM) developed by U.S. Environmental Protection Agency (EPA). As in

the EPA user manual [30], SWMM is capable of simulating a dynamic flow model

with rainfall events and a variety of watershed conditions for an urban area. SWMM

takes as inputs (i) geologic and geometric data and basic hydrodynamics data to

construct the river, (ii) spill location, spill intensity, and spill time of contaminant,

and (iii) rain intensities over a time period for each location. In this chapter, geologic

and basic hydrodynamics are fixed but contaminant spill and rainfall events contain

randomness.

Three random variables are needed to simulate a spill event for the ith run: the

spill location LS
i , spill intensity ISi , and spill starting time SS

i . Also, we need a
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random variable which simulates a rainfall event, and there are a number of ways to

generate the events. [39] divide the whole river region into M s number of subregions,

called sub-catchments. Each sub-catchment contains neighborly nodes in a subregion

and a rain pattern for the sub-catchment is randomly chosen from a number of pre-

generated rain patterns. Let PR
im represent a rain pattern for the mth sub-catchment

in the ith simulation run. A vector PR
i = (PR

i1 , . . . , P
R
iMs) denotes rain patterns for

the entire region in the ith simulation run.

For randomly generated input data (LS
i , I

S
i , S

S
i , P

R
i ) and geologic information

(locations, elevations, and shapes of nodes and reaches placed between nodes), one

process simulation run returns a large binary output file including concentration levels

at each node at every constant inter-reporting time of the simulation clock. Each

output file provides one realization of ti(x) and one realization of Ri(x).

3.1.3 DOvS and PFM

In this section, we explain how we combine a DOvS algorithm with the process sim-

ulation and briefly review PFM. As shown in Figure 23, at each search iteration, a

DOvS algorithm samples candidate solutions x and obtains additional observations

from each sampled solution. If stopping criteria are satisfied, the algorithm stops

and returns the current best solution as the optimal solution. Otherwise, it updates

the solution sampling strategy and repeats previous steps. Unfortunately, existing

DOvS algorithms assume deterministic constraints and cannot handle stochastic con-

straints. Thus, they are not directly applicable to the problem considered in this

chapter because it has a stochastic constraint on reliability. The previous chapter

proposes PFM that enables a DOvS algorithm to solve stochastically constrained

DOvS problems. Note that the process simulation requires extensive computational

costs but a DOvS algorithm does not. Also, results from the process simulation can

be reused if they have been generated and saved. Thus, a simpler version of PFM,
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Figure 23: General structure of DOvS with process simulation.

the penalty sequence with constants (PSc), is used in this chapter. Before presenting

the simpler version of PFM, additional notation is needed.

T k(x) :=
1∑nvk

(x)

i=1 Ri(x)

∑nvk
(x)

i=1 ti(x)Ri(x), conditional sample mean of ti(x) up to iter-

ation k given the event that a spill is detected;

Rk(x) :=
1

nvk
(x)

∑nvk
(x)

i=1 Ri(x), cumulative sample mean of Ri(x) up to iteration k.

PFM consists of a measure of constraint violation and a penalty sequence. For

Problem (7), a measure of constraint violation is max(0, q−Rk(x)) and with a constant

∆nr(x) = ∆n, penalty sequence λvk(x) is defined as

λvk(x) =

 λvk−1(x)× θa, if Rk(x) < q;

λvk−1(x)× θd, if Rk(x) ≥ q,
(8)

where λ0(x) = λ0 is an initial penalty constant for the constraint, θa is an appreciation

factor, and θd is a depreciation factor such that θa > 1 and 0 < θd < 1. With PFM,

Zk(x) = T k(x)+λ
vk(x)×max{0, q−Rk(x)} is calculated. Then, to solve Problem (7),

a solution with the smallest Zk(x) is selected as the current best at search iteration
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k.

Section 2.2 shows that a solution with the smallest Zk(x) at search iteration k

converges to the true best feasible solution to Problem (7) as k goes to infinity when

(i) PFM is designed in a way that the penalty value of a feasible solution converges

to zero but diverges to infinity for an infeasible solution and (ii) a globally convergent

DOvS algorithm is applied with the PFM. The version of PFM presented above does

satisfy the convergence property when no solution is located right on the boundary

of feasible/infeasible regions (i.e., no active constraint). However, if a solution has an

active constraint, the penalty value of a solution with an active constraint converges

in distribution to a random variable with two possible values: zero and infinity as

in Section 2.2.2. Recall that Section 2.3.2 provides a direction for choosing good

parameters which balance between fast convergence and high probability of returning

a true optimal solution when PSc is used.

3.1.4 NP+PFM

Among DOvS algorithms, we choose a version of NP presented in [28]. NP focuses

on a special region called the most promising region and spends more computa-

tional efforts in the most promising region by sampling more solutions from it. More

specifically, NP systematically partitions the promising region into a number of sub-

regions. Then it samples and assesses solutions from the subregions. At the same

time, it keeps sampling some solutions from the region outside the most promising

region called the surrounding region. If the current sample best solution is in one

of the subregions, the subregion with the current sample best will be the next most

promising region. Otherwise, the most promising region becomes the whole set, Θ.

Prior to the description of NP+PFM, some additional notation for NP is defined first:

Rk := the most promising region at search iteration k;
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Rk(ℓ) := the ℓth subregion at search iteration k;

Θ \ Rk := the surrounding region at search iteration k;

Sk := the set of solutions sampled at iteration k;

Vk := the set of all solutions visited up to iteration k;

ω := the number of subregions;

τk := the total number of sampled solutions at iteration k; and

τk(ℓ) := the number of sampled solutions at iteration k from subregion ℓ.

We specialize NP+PFM for the water quality monitoring design problem and its

detailed steps are given in Figure 24.

[34] point out that the performance of NP on a combinatorial type problem highly

depends on how to index nodes, partition a search space, and sample solutions. The

next section discusses how to efficiently perform each step in NP+PFM including

stopping criteria.

3.2 Implementation

This section addresses implementation issues in NP+PFM for the water quality mon-

itoring design problem including indexing, partitioning, sampling, and stopping.

3.2.1 Indexing

Many search methods tend to generate alternative solutions from neighbors of the

current best solution. In this chapter, a solution is a M-dimensional vector whose

elements are in the increasing order of integers. Changing a few elements in x up and

down generates neighbor solutions. As NP+PFM spends more computing efforts on

the most promising region, it would be desirable if neighbors of a solution tend to

share the same feasibility with the current solution.

The idea is to index each node based on quality where the quality is defined as

the probability that a spill is detected, assuming only one monitoring device is placed

at the node and the device does not miss a spill under any circumstances. Then
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Algorithm NP + PFM

Step 0. Initialization:
- Perform the indexing algorithm (Section 3.2.1.).
- Set k = 1, Rk = Θ, and Vk = ∅.
- Sample an initial solution x̂∗

0 randomly from Θ.
- Select constants ω, τk, ∆n, λ

0(x), θa and θd.

Step 1. Partitioning: (Section 3.2.2.)
- PartitionRk into ω disjoint subregions, Rk(1),Rk(2), ...,Rk(ω). IfRk is a singleton,
set Rk(1) = Rk and Rk(2) = . . . = Rk(ω) = ∅.
- Set Rk(ω + 1) = Θ \ Rk which denotes the surrounding region.

Step 2. Sampling Solutions: (Section 3.2.3.)
- From each region Rk(j), j = 1, 2, ..., ω + 1, sample τk(j) solutions. Always sample
x̂∗
k−1 so that x̂∗

k−1 ∈ Sk.
- Include all sampled solutions x into Sk.
- If x /∈ Vk for any x ∈ Sk, then Vk = Vk ∪ {x}.

Step 3. Estimating the Promising Index:
- For each x ∈ Sk, take ∆n observations, set nvk(x) = nvk−1

(x)+∆n where n0(x) = 0,
for any x ∈ Θ, and update Zk(x).
- Select x̂∗

k such that x̂∗
k ≡ argminx∈Vk

Zk(x).

Step 4. Selecting the Most Promising Region and Backtracking:
- Determine j∗ such that x̂∗

k ∈ Rk(j
∗).

- If Rk(j
∗) ⊂ Rk, then Rk+1 = Rk(j

∗). Otherwise, Rk+1 = Θ.
- Set k = k + 1.

Step 5. Stopping Rule (Section 3.2.4.)
- If the stopping rule is satisfied, then stop and return x̂∗

k as the best solution. Oth-
erwise go to Step 1.

Figure 24: Algorithm NP + PFM for the water quality monitoring design problem.
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Figure 25: The hypothetical river with 12 nodes indexed based on quality.

nodes are indexed in the decreasing order of the quality. If there are nodes with the

same quality, they are indexed by the increasing order of the distance from the node

with the highest quality. Figure 25 shows quality levels in parenthesis for all nodes in

the hypothetical river [27], assuming equal spill probability at each node (i.e., 1/12),

and the indices of nodes based on the quality levels. This indexing method helps

neighbors of a solution show similar levels of reliability.

3.2.2 Partitioning

The current most promising region Rk needs to be partitioned into two subregions,

Rk(1) and Rk(2), if ω = 2. The partitioning scheme in this chapter is based on

the bisection method. More specifically, the algorithm selects an element of x whose

range of possible values contains two or more integers. Then the partitioning is done

by dividing the range into approximately two equal ranges.

Figure 26 illustrates the partitioning scheme for the monitoring system with three

monitoring devices in the hypothetical river, assuming no backtracking occurs by

k = 5. Although the partitioning is presented only for ω = 2 in this chapter, it can
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Figure 26: Partitioning for the hypothetical river.

be easily extended to ω ≥ 3, in which case the range can be divided into ω number

of equal ranges.

3.2.3 Sampling

Solutions are sampled from three regions: two subregions, Rk(1) and Rk(2), and the

surrounding region, Θ \ Rk. Since the size of two subregions can be different, τk(1)

and τk(2) are set to proportional to the sizes of subregions 1 and 2, respectively.

Although the size of the surrounding region Θ \ Rk tends to be much bigger than

Rk, the ⌊τk/2⌋ or |Rk| number, whichever is smaller, of solutions are sampled from

Rk and then the rest τk − τk(1) − τk(2) number of solutions are sampled from the

surrounding region. This ensures that NP+PFM visits more solutions in the most

promising region. Moreover, τk(1) and τk(2) are proportional to the sizes of Rk(1)

and Rk(2), respectively. Detailed steps of the sampling scheme is given in Figure 27.

In general, it is important that a search algorithm visits a few number of neighbor

solutions to the current best solution because good solutions tend to be herded to-

gether. Visiting neighbor solutions is more important for OvS problems with stochas-

tic constraints. Finding the best feasible solution becomes difficult when the best
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Sampling scheme

1. Set


τk(1) = min

(
|Rk(1)|,max

(
1, ⌊ |Rk(1)|

|Rk|
· τk

2
⌋
))

;

τk(2) = min
(
|Rk(2)|, ⌊ τk2 ⌋ − τk(1)

)
; and

τk(3) = τk − τk(1)− τk(2).

2. Sample τk(1) and τk(2) number of different solutions fromRk(1) andRk(2) using
the uniform sampling, respectively.

3. If Rk is not a singleton (i.e., |Rk| ≥ 2), sample τk(3) number of different
solutions by the uniform sampling from Θ\Rk. Otherwise, sample ⌊ τk

2
⌋ number

of different solutions by the local search sampling and the rest number of
different solutions by the uniform sampling from Θ \ Rk.

Figure 27: Sampling scheme for NP+PFM.

feasible solution is the one whose reliability is close to the minimum reliability level,

q. An extreme case occurs when the reliability of the best feasible solution is exactly

equal to q, in which case there always exists positive probability that the solution is

declared as infeasible at each visit to the solution. This, in turns, increases the chance

of labeling the region that contains the best feasible as the surrounding region. PFM

is designed to ensure that NP+PFM eventually selects the best feasible as long as

there is nonzero probability of visiting the solution. When the most promising region

is not a singleton, the sampling scheme ensures visiting some neighbor solutions to

the current best. To ensure that this happens also when Rk is a singleton, a local

search sampling is adopted. In the local search sampling, two methods are used. The

first method randomly selects an element xu∗ from the current best solution in the

singleton set Rk, and then change the value of xu∗ by ±1 randomly. The second

method varies the value of xu∗ to any integer between xu∗−1 and xu∗+1. For example,

if the solution in a singleton set Rk is (1, 4, 7) and xu∗ = 4 (or u∗ = 2), then the first
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method randomly selects either (1, 3, 7) or (1, 5, 7) with equal probability and the sec-

ond method generates one solution among (1, 2, 7), (1, 3, 7), (1, 5, 7), and (1, 6, 7) with

equal probability. About half of ⌊τk/2⌋ number of solutions are generated using the

first method and the other half number of solutions are generated using the second

method.

3.2.4 Stopping Criteria

The global convergence is achieved when k goes to infinity but, in practice, the algo-

rithm should terminate with finite search iterations. [14] give some popular stopping

criteria. In this chapter, the following stopping criterion is used: the algorithm stops

when event E1 occurs consecutively nE times, where

E1 := {x̂∗
k = x̂∗

k−1 , |Zk(x̂
∗
k)− Zk−1(x̂

∗
k−1)| < ϵ , R(k) is a singleton} (9)

for a small positive constant ϵ. The decision maker needs to choose ϵ and nE.

3.3 Case Study

This section presents the performance of NP + PFM compared to the GA algorithm

in [39] on the water quality monitoring design problem for the Altamaha River. The

Altamaha River is located in Georgia, U.S.A. and known to have the largest watershed

in the State. Figure 28 shows the Altamaha River with one hundred nodes which

are located on the most upstream points, confluences, and points evenly distributed

along each river reach. Each node can be a possible monitoring location or a spill

location. The Altamaha River is composed of 60 river reaches and total 62 river

junctions. To construct river system, U.S. Geological Survey (USGS) in the National

Elevation Dataset is used as in [39]. Each process simulation continues until the

simulation clock reaches 40 days and uses every 15 minutes of the simulation clock

as the inter-reporting time.
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Figure 28: Shape of the Altamaha River and possible monitoring locations [39].

[39] define

d′(xu) =

 detected time − spill time, if detected at xu;

Pv, otherwise,

where Pv is a constant penalty value and t′(x) = min1≤u≤M d′(xu). Then they solve

argminx∈ΘE[t
′(x)] by the GA algorithm.

As discussed in the beginning of this chapter, the GA tends to return a solution

with 100% or the highest possible reliability. For implementation of the GA, three

parameters are needed: the number of observations (i.e., SWMM runs), a generation

size, and a population size. Large values of these parameters help the GA return

a solution close to the true best solution but at the cost of computational efforts.

In general, it is hard to pick these parameters that balance between computational

efficiency and accuracy in a returned solution. In addition, when a decision maker

is more interested in finding a solution with the shortest detection time at the slight

cost of reliability (e.g., 99% or 95%), it is hard to use the GA because there is no

available information about what values of Pv would be appropriate to find the best

feasible solution.
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Figure 29: Ten sub-catchments of the Altamaha River [37].

3.3.1 Experimental Setup

Spill location LS
i is assumed as a discrete random variable from sample space {1, 2, . . . , 100}

and it is modeled as either a uniform discrete random variable or a non-uniform dis-

crete random variable. The non-uniformly distributed LS
i case is assumed to detect a

specific type of chemicals produced by paper mill factories. Two paper mill factories

exist close to nodes 30 and 68 in Figure 29 around the Altamaha River [23] thus the

probability of occurring a spill at the two nodes is assumed to be ten times higher than

the probability at the other nodes. Threshold Cth for the monitoring devices is set

to Cth ∈ {0.0001, 0.05}. Then, four different cases are examined: Cth = 0.0001 mg/ℓ

and uniformly distributed LS
i ; Cth = 0.0001 mg/ℓ and non-uniformly distributed LS

i ;

Cth = 0.05 mg/ℓ, and uniformly distributed LS
i ; and Cth = 0.05 mg/ℓ and non-

uniformly distributed LS
i . Under each case, SS

i , I
S
i , P

R
i , M , and q are varied.

For a spill event, only one single instantaneous spill is considered. Spill starting

time SS
i is uniformly distributed between 0 and 240 hours in the simulation clock and
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intensity of a spill ISi is uniformly distributed between 10 and 1000 g/ℓ. The hydro-

dynamics of the river system is adopted from [37] where the steady-state hydraulic

system is calibrated for the flow pattern in the river based on the data obtained

from annual average flow rates measured in 2006 at twenty USGS gauging stations

that are distributed throughout the river network. In this application, all lakes and

impoundments were approximated as river reaches to simplify the network with an

adjustment to the length of the reach.

The rain events for the case study are also generated in the same way as in [37].

The Altamaha River watershed is divided into ten sub-catchments as in Figure 29.

The rainfall measurements are obtained from different USGS observation stations

close to these 10 sub-catchments in the year 2006. Then, using the results of the

statistical analysis of these observations, five rain patterns are generated for each sub-

catchment. Note that these five rain patterns are different for each sub-catchment

and thus there are total fifty rain patterns for the entire watershed. Also, each

rain pattern describes time-dependent rainfall events and keeps changing hydrologic

conditions in each sub-catchment during process simulation. For each SWMM run,

one out of five rain patterns is randomly selected for each sub-catchment, which

defines PR
i . All nodes in the same sub-catchment have the same rain pattern during

process simulation. The number of monitoring devices M is set to M ∈ {5, 6, 7, 10}.

Minimum reliability requirement q is q ∈ {0.9, 1.0}, if Cth = 0.0001 mg/ℓ. Otherwise

q ∈ {0.9, 0.95} are used since there is no solution with 100% detection reliability.

In a SWMM run, simulating hydrodynamics under a random rain event PR
i takes

long but simulating contaminant transports under the hydrodynamics can be done

relatively fast. Thus, [37] design one SWMM run to generate 100 observations of t′(x)

by (i) simulating hydrodynamics with PR
i and (ii) performing 100 different spill events,

each with randomly generated ISi and SS
i , under the hydrodynamics. Moreover, [37]

generate 1000 SWMM runs (thus, 100,000 observations of t′(x)) and apply the GA to
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find a solution with the smallest sample mean of the 100,000 observations. Following

their experiments, when the spill location is uniformly distributed, one SWMM run

performs 100 spill events (one spill event at each node with randomly generated ISi

and SS
i ) under shared hydrodynamics and obtain 100 observations of t(x) and R(x).

When the spill location is non-uniformly distributed, 10 spill events are simulated at

both nodes 30 and 68 and one spill event is simulated at each of the other nodes in

one SWMM run. Thus, one SWMM run performs 118 spill events resulting in 118

observations of ti(x) and Ri(x), respectively. While the GA completes 1000 SWMM

runs prior to optimization search, NP+PFM performs additional SWMM runs as the

optimization search continues and NP+PFM stops either when the stopping criterion

in Section 3.2.4 is satisfied with nE = 10 and ϵ = 0.5 or when the total number of

SWMM runs reaches 100.

For the implementation of the GA, it always takes 1000 SWMM runs for each

solution visited. As parameters of the GA, a population size of 100 and a generation

size of 400 are initially used. Unless the GA with the initial population and generation

sizes finds a comparable solution to that of NP+PFM, the population and generation

sizes are increased up to 200 and 800, respectively, until a comparable solution is

found by the GA. This chapter reports only the best results obtained by the GA with

this parameter adjustment.

It is clear that monitoring devices should be located toward downstream if one is

to increase reliability, but this tends to increase the expected detection time. Thus

there exists positive dependence between reliability and the expected detection time.

It implies that the best feasible solution is likely (but not always) to have reliability

exactly equal to or close to q. Thus θa and θd need to be selected carefully to ensure

both convergence and efficiency as discussed in section 2.3.2. Recall ρc represent the

probability that λvkℓ (x) converges to 0 for any active constraint. It is known that
√
1.3 ≤ θa ≤

√
1.9 and 0.7 ≤ ρc ≤ 0.9 can generally be a good compromise regarding
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efficiency and accuracy for PSc. Thus we select θa =
√
1.5 and θd =

√
1.5
10

which

ensures ρc ≈ 0.8082 by Theorem 4. For the implementation of NP+PFM, τk = 200

is used. Also, ∆n = 100 is selected for uniform spill probability case and ∆n = 118

is selected for non-uniform spill probability cases. This ensures that each iteration of

NP+PFM makes one SWMM run.

Three performance measures are reported to compare the GA and NP+PFM:

NUM, EMD and ER. NUM represents the number of SWMM runs required by each

optimization algorithm until it stops. It takes about 2 hours to complete one SWMM

run on a PC with 2.6 GHz Intel Core 3 Quad Q8300 CPU while one iteration of

NP+PFM takes less than two seconds. This implies that, with a single CPU, it would

take about 2000 hours (83 days) to perform 1000 SWMM runs. In this chapter, mul-

tiple CPUs were used to obtain 1000 SWMM runs in two weeks. Since computation

cost mainly depends on the number of SWMM runs needed, NUM is used as a mea-

sure for computation cost. Note that NUM is always 1000 for the GA because it

requires the 1000 SWMM runs to be completed prior to optimization. On the other

hand, NUM is usually smaller than 1000 for NP+PFM because it only continues until

stopping criteria are satisfied.

EMD and ER are quality measures for solutions returned by the two competing

methods. EMD denotes estimated conditional minimum detection time in minutes

and is calculated as conditional sample average of ti(x) given Ri(x) = 1 over 1000

SWMM runs. EMD can be interpreted as estimated time interval between the time

when a spill occurs and the time when the spill is detected. ER represents estimated

reliability. ER is calculated as sample average of Ri(x) over 1000 SWMM runs.

Note that EMD and ER values reported in the tables are calculated based on all

observations from 1000 SWMM runs, even when NP+PFM stops with a fewer number

of iterations than 1000. EMD and ER are meaningful up to the tenths digit and the

ten-thousandths digit, respectively.
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3.3.2 Results

The main results are summarized in this section. For all figures in this section, the

node indices are generated by rules in Section 3.1.

3.3.2.1 Uniform spill probability and small threshold monitoring system

Figure 30 shows solutions returned by NP+PFM in red circles and GA in black

triangles when Cth = 0.0001 mg/ℓ, uniformly distributed LS
i , and q = 1.0 for M =

5, 6, 7, and 10. When M = 5 and 7, both NP+PFM and GA return exactly the same

solution and when M = 6 and 10, only one placement from NP+PFM is different of

that from GA.

Table 7 shows that NP+PFM uses a smaller number of SWMM runs (smaller

NUM) and yet returns equal or better solutions than GA. More specifically, when

M = 6, NP+PFM stopped only after 107 SWMM runs and the returned solution’s

EMD is 16 minutes shorter than that of the solution returned by the GA with 1000

SWMM runs. That is, the GA and NP+PFM find a similar solution with respect to

EMD but NP+PFM saves approximately 1786 hours of CPU computation time when

using a single PC with 2.6 GHz Intel Core 3 Quad Q8300 CPU.

Figure 31 and Table 8 show results when Cth = 0.0001mg/ℓ, uniformly distributed

LS
i , and q = 0.9. As GA returns the same solutions when q = 1.0, only the results

of NP+PFM are reported as discussed earlier. The optimal solutions when q = 0.9

tend to be located in the more upstream than those when q = 1.0. Table 8 shows

NUM, EMD, and ER when q = 0.9. EMD are smaller than those when q = 1.0. Note

that Cth = 0.0001 mg/ℓ is so small that it rarely misses any spill. As a result, the

estimated reliability is simply the maximum probability that the monitoring devices

can achieve to detect a spill assuming no miss.
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Figure 30: Optimal solutions when Cth = 0.0001 mg/ℓ, uniformly distributed LS
i ,

and q = 1.0.

Table 7: Results of NP+PFM and GA when Cth = 0.0001 mg/ℓ, uniformly dis-
tributed LS

i and q = 1.0.
M NP+PFM GA

NUM EMD ER NUM EMD ER
5 91 3156.1 1.0000 1000 3156.1 1.0000
6 107 2718.8 1.0000 1000 2734.8 1.0000
7 277 2329.0 1.0000 1000 2329.0 1.0000
10 757 1917.3 1.0000 1000 1923.3 1.0000

Table 8: Results of NP+PFM when Cth = 0.0001 mg/ℓ, uniformly distributed LS
i ,

and q = 0.9.
M NUM EMD ER
5 154 2782.7 0.9300
6 321 2407.1 0.9300
7 205 2222.7 0.9300
10 459 1738.1 0.9100
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Figure 31: Optimal solutions when Cth = 0.0001 mg/ℓ, uniformly distributed LS
i ,

and q = 0.9.

Table 9: Results of NP+PFM and GA when Cth = 0.0001 mg/ℓ, non-uniformly
distributed LS

i , and q = 1.0.
M NP+PFM GA

NUM EMD ER NUM EMD ER
5 79 2778.2 1.0000 1000 2778.2 1.0000
6 126 2407.1 1.0000 1000 2407.1 1.0000
7 241 2122.8 1.0000 1000 2122.8 1.0000
10 827 1677.9 1.0000 1000 1762.2 1.0000

Table 10: Results of NP+PFM when Cth = 0.0001 mg/ℓ, non-uniformly distributed
LS
i and q = 0.9.

M NUM EMD ER
5 120 2450.4 0.9407
6 305 2144.6 0.9407
7 156 1930.0 0.9407
10 602 1488.9 0.9068
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: Solution from NP + PFM

: Solution from GA
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Figure 32: Optimal solutions when Cth = 0.0001mg/ℓ, non-uniformly distributed
LS
i , and q = 1.0.
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: Solution from NP + PFM

: Location of Paper Mill Factory!(
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Figure 33: Optimal solutions when Cth = 0.0001 mg/ℓ, non-uniformly distributed
LS
i , and q = 0.9.
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3.3.2.2 Non-uniform spill probability and small threshold monitoring system

Now this section discusses the results with Cth = 0.0001 mg/ℓ and non-uniformly

distributed LS
i . Figures 32 and 33 show optimal locations of monitoring devices when

q = 1.0 and q = 0.9, respectively. In Figure 32, solutions from NP+PFM and GA

are exactly same when M = 5, 6, and 7, but for M = 10 case, results from NP+PFM

and GA are different. The monitoring devices are located exactly on the nodes close

to the paper mill factories for any value ofM and for both NP+PFM and GA. When

q = 0.9, monitors tend to be placed upward compared to the q = 1.0 case as shown

in Figure 32 and Figure 33, but two monitoring devices are still located exactly on

the nodes closed to the paper mill factories.

Tables 9 and 10 show three main performance measures. Table 9 shows that

NP+PFM returns the same or a better solution with significantly smaller number of

SWMM runs than the GA does.

3.3.2.3 Uniform spill probability and large threshold monitoring system

Next this section considers the case with uniformly distributed LS
i but larger threshold

Cth (i.e., Cth = 0.05 mg/ℓ). The larger threshold Cth increases the chance that a

monitoring device misses a spill due to flow speed and dilution by dynamic flow and

rain. Figure 34 shows solutions returned by NP+PFM and GA and Table 11 shows

NUM, EMD, and ER of the returned solutions. NP+PFM returns solutions with

smaller EMD and smaller ER. Especially, when M = 10, a solution from NP+PFM

saves about 400 minutes according to EMD but its detection reliability is also dropped

by 1.34 % compared to a solution from GA.

By comparing Figures 31 and 35, one can notice that the optimal locations of

monitoring devices when Cth = 0.05 mg/ℓ tend to be placed in more downstream

than those when Cth = 0.0001 mg/ℓ. Also, Table 12 shows that NP+PFM needs

more SWMM runs (thus, larger NUM) until it stops and the estimated detection
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Figure 34: Optimal solutions with Cth = 0.05 mg/ℓ, uniformly distributed LS
i , and

q = 0.95.
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Figure 35: Optimal solutions with Cth = 0.05 mg/ℓ, uniformly distributed LS
i , and

q = 0.9.
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Table 11: Results of NP+PFM and GA when Cth = 0.05mg/ℓ, uniformly distributed
LS
i , and q = 0.95.

M NP+PFM GA
NUM EMD ER NUM EMD ER

5 893 3750.7 0.9534 1000 3779.9 0.9559
6 656 3230.0 0.9570 1000 3322.1 0.9600
7 598 2764.7 0.9553 1000 3043.0 0.9728
10 809 2272.6 0.9626 1000 2670.3 0.9760

Table 12: Results of NP+PFM when Cth = 0.05 mg/ℓ, uniformly distributed LS
i ,

and q = 0.9.
M NUM EMD ER
5 614 3349.7 0.9041
6 702 2851.2 0.9018
7 800 2668.4 0.9162
10 586 2130.3 0.9021

times (EMD) are much larger when Cth = 0.05 mg/ℓ than when Cth = 0.0001 mg/ℓ.

It is well expected because this case is more difficult than the first case with the small

threshold. The estimated reliability levels (ER) of the returned solutions are greater

than q = 0.9, providing an evidence that the solutions are feasible, but are smaller

than the reliability levels obtained when Cth = 0.0001 mg/ℓ.

3.3.2.4 Non-uniform spill probability and large threshold monitoring system

Finally, non-uniformly distributed LS
i are considered with Cth = 0.05mg/ℓ. Figure 36

and Table 13 show the optimal solutions returned by NP+PFM and GA and their

performance measures, respectively. Similar to Table 11, NP+PFM provides solutions

whose EMD is smaller and ER is also smaller than a solution from GA.

Solutions returned by NP+PFM are shown in Figure 37 and Table 14 when q = 0.9

is considered. Compared to the second case where Cth = 0.0001 mg/ℓ and non-

uniformly distributed Li
S, this is a more difficult case because a spill can be missed.

NP+PFM needs more SWMM runs until it stops and EMD are larger than those
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: Solution from NP + PFM

: Solution from GA

: Location of Paper Mill Factory    
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Figure 36: Optimal solutions with Cth = 0.05 mg/ℓ, non-uniform LS
i , and q = 0.95.
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: Solution from NP + PFM

: Paper Mill Factory
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Figure 37: Optimal solutions with Cth = 0.05 mg/ℓ, non-uniform LS
i , and q = 0.9.
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Table 13: Results of NP+PFM and GA when Cth = 0.05 mg/ℓ, non-uniformly
distributed LS

i , and q = 0.95.
M NP+PFM GA

NUM EMD ER NUM EMD ER
5 421 3198.3 0.9527 1000 3446.4 0.9674
6 954 2795.4 0.9571 1000 2895.5 0.9706
7 544 2472.8 0.9507 1000 2660.3 0.9763
10 1000 1961.5 0.9545 1000 2269.9 0.9808

Table 14: Results of NP+PFM when Cth = 0.05 mg/ℓ, non-uniformly distributed
LS
i , and q = 0.9.

M NUM EMD ER
5 320 2834.9 0.9035
6 350 2498.5 0.9109
7 543 2261.1 0.9132
10 675 1835.3 0.9135

from the second case. The returned solutions for M = 5, 6, 7, and 10 seem all feasible

based on estimated reliability ER.

3.4 Conclusions

This chapter considers the problem of designing a water quality monitoring network

for river systems where the goal is to find the optimal location of a finite number

of monitoring devices that minimizes the expected detection time of a contaminant

spill event while guaranteeing detection reliability greater or equal to some constant.

The problem is formulated as a DOvS problem with a stochastic constraint and

implementation issues in a DOvS algorithm, namely NP+PFM, are discussed.

The advantage of NP+PFM is that it obtains additional observations as needed

while the GA requires the decision maker to determine how many observations to

take prior to optimization. The chosen number of observations for the GA may be

too small, introducing large estimation error in performance measures which in turns

increases a chance to return a solution quite different from the true optimal, or too
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large, wasting time on taking unnecessary observations. In addition, NP+PFM with

the penalty sequence used in the chapter has a guarantee on global convergence when

there is no active constraint while the GA is a heuristic algorithm that does not

provide such guarantee.

The experimental results on the Altamaha River show that NP+PFM handles

feasibility of solutions on a stochastic constraint effectively and returns a good feasible

solution. Also, NP+PFM finds the same or better solution than the GA algorithm

with significant savings in computational efforts. The proposed algorithm can be

applicable to other river systems and extended to more realistic and complex settings

such as those that account for multiple spills, complicated rain patterns, or detection

error of a monitoring device.
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CHAPTER IV

IMPROVING PERFORMANCE OF PENALTY

FUNCTION WITH MEMORY BY APPROXIMATE

SIMULATION BUDGET ALLOCATION

In discrete optimization via simulation (DOvS), decision variables are discrete and the

number of potential solutions is large, requiring a search method to determine which

solutions to simulate in the next iteration. A number of efficient DOvS algorithms

are presented. For example, see [2], [5], [14], [15], [28], [33], and [40].

Recently stochastically constrained DOvS problems have received attentions from

the simulation community. For the problems, we propose penalty function with mem-

ory (PFM) to handle stochastic constraints on secondary performance measures in

Chapter II. PFM determines a penalty sequence of each solution based on past results

of feasibility checks and a DOvS algorithm combined with PFM, denoted as D+PFM,

can solve a stochastically constrained DOvS problem. To ensure a good performance

of D+PFM, two things need to happen: (i) PFM should make a correct decision on

feasibility with high probability when a solution is visited; and (ii) a DOvS algorithm

should find the most promising region (or solution) correctly at each search iteration.

The version proposed in Chapter II currently takes the equal number of observations

on each visited solution (equal allocation) and uses cumulative sample means to make

a feasibility decision or find a feasible promising region. If we can efficiently and accu-

rately select the most promising region (or solution) with accurate feasibility checks,

the performance of D+PFM can be further improved.

For stochastically unconstrained DOvS problems, a number of ranking and selec-

tion (R&S) procedures are used to further improve efficiency or accuracy of a DOvS
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algorithm. For example, [8] and [28] propose statistical comparison procedures for

either cleaning up solutions at the end of the search (in order to find the best among

all solutions visited during the search) or assisting a DOvS algorithm with finding a

correct promising region. Although the statistical comparison procedures are shown

to be very useful for clean-up, it is known that they tend to ‘overdo’ when they are

applied within a DOvS algorithm at each search iteration because they try to provide

a guarantee on the probability of correctly selecting the true best solution (PCS). On

the other hand, there are statistical procedures called optimal computing budget al-

location (OCBA). These procedures allocate a finite computing budget (either count

or time) among a finite number of solutions to maximize PCS. OCBA often suffers

due to low PCS or inability telling how many observations would be needed for a

correct selection in R&S. However, OCBA finds a good application in DOvS because

DOvS algorithms need to allocate a finite budget among visited solutions at each

search iteration. For example, [12] presents that OCBA improves the performance of

optimization algorithms significantly compared to equal allocation.

To improve the performance ofD+PFM for stochastically constrained DOvS prob-

lems, constrained R&S procedures can be considered. [4] and [13] propose statisti-

cally valid procedures that select the best feasible solution with PCS guarantee in the

presence of multiple stochastic constraints. They are good candidate procedures for

clean-up at the end of the optimization search. [16] and [20] provide optimal budget

allocation methods that allocate finite sampling budget to maximize the probabil-

ity of correctly selecting the best feasible solution. [16] allows observations to have

general marginal distributions but it is hard to implement their procedure when the

number of solutions is large. On the other hand, [20] provides a procedure, called

OCBA-CO, that is easy to implement even with a large number of solutions but the

procedure requires the normal assumption on observations.

In this chapter, we focus on improving the performance of D+PFM by combining
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it with a budget allocation method. More specifically, we consider OCBA-CO from

[20] due to its easiness in implementation and applicability to a large number of

solutions, modify it so that convergence properties of D+PFM can be preserved when

the modified budget allocation method is combined with D+PFM, and test how much

improvement is achieved over equal allocation. We call the modified budget allocation

method the approximate budget allocation (ABA). ABA is different from OCBA-CO

in two aspects:

1. OCBA-CO always considers a fixed set of simulated solutions and re-allocates

cumulative total number of simulation budget among all solutions in the set at

each iteration. On the other hand, the size of a set of sampled solutions and

identities of elements in the set can be different in D+PFM at each iteration.

Thus ABA allocates only new additional simulation budget among sampled

solutions at each iteration.

2. Assuming a minimization problem, OCBA-CO chooses a solution with the

smallest sample mean of the primary performance measure as the sample best

among solutions whose estimates of the secondary performance measures satisfy

stochastic constraints. However, ABA combined with D+PFM (which we de-

note as D+PFM+ABA) define the sample best as a solution with the smallest

sum between sample mean of the primary performance measure and penalty

value.

This chapter is organized as follows: Section 4.1 defines our problem and notation,

and then briefly reviews PFM and OCBA-CO. Section 4.2 introduces D+PFM+ABA

and provides its asymptotic convergence properties along with proofs. Experimental

results of D+PFM+ABA on the three numerical examples are presented in Sec-

tion 4.3, followed by concluding remarks in Section 4.4.

73



4.1 Background

In this section, we define our problem and notation, and review PFM and OCBA-CO.

4.1.1 Problem

From Section 2.1.1, recall that Θ represents the whole decision variable space which

is a discrete and finite set in Rd and x = (x1, . . . , xd) represents a solution (or decision

variable). Let G(x) and Hℓ(x) represent the primary performance measure and the

secondary performance measure of the ℓth constraint, respectively and Gi(x) and

Hℓi(x) represent their ith observations from stochastic simulation. Then our DOvS

problem with stochastic constraints is defined as follows:

argminx∈ΘE[G(x)],

subject to E[Hℓ(x)] ≥ qℓ, ℓ ∈ Λ,
(10)

where m is the number of stochastic constraints and Λ is a set of all indices for

stochastic constraints (i.e., Λ = {1, 2, . . . ,m}). We also make the following assump-

tion throughout the chapter.

Assumption 4 The original problem (10) satisfies the following:

1. Gi(x) are normally distributed and independent for all i = 1, 2, . . ., given any

x ∈ Θ,

2. Hℓi(x) are normally distributed and independent for all i = 1, 2, . . ., given any

ℓ ∈ {1, 2, . . . ,m} and any x ∈ Θ.

3. There exists a unique best feasible solution.

The first two assumptions in Assumption 4 are often used in R&S. In prac-

tice, Gi(x) and Hℓi(x) have approximate normal distributions, if Gi(x) and Hℓi(x)

are either within-replication averages or batch means. We test the performance of

D+PFM+ABA when the normal assumption is violated in Section 4.3.3.
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4.1.2 PFM

We review PFM. In this chapter, “solution x is visited” means that solution x is

simulated to obtain additional observations. Thus, it is possible that a solution is

sampled under a DOvS algorithm D, but not visited if no additional observation is

obtained from the solution based on a simulation budget allocation method. We list

notation for PFM below:

k ≡ iteration counter;

r ≡ counter for the number of visits;

vk(x) ≡ the number of visits up to iteration k for x;

nr(x) ≡ the total number of observations obtained up to the rth visit for x;

nvk(x) ≡ nvk(x)(x), the total number of observations obtained up to iteration k for x;

∆nr(x) ≡ the number of new observations obtained at the rth visit for x;

Gk(x) ≡ 1
nvk

(x)

∑nvk
(x)

i=1 Gi(x), cumulative sample mean of observations Gi(x) for the

primary performance measure up to iteration k;

Hℓk(x) ≡ 1
nvk

(x)

∑nvk
(x)

i=1 Hℓi(x), cumulative sample mean of observations Hℓi(x) for

the ℓth secondary performance measure up to iteration k;

x̂∗
k ≡ the sample best among all sampled solutions up to iteration k; and

xb
o ≡ the true best feasible solution up to iteration k.

As discussed in Section 2.2, a new objective function with PFM at search iteration

k is

Zk(x) = Gk(x) +
∑
ℓ∈Λ

[
λvkℓ (x)×max{0, qℓ −Hℓk(x)}

]
, (11)

where λvkℓ (x) is a penalty sequence of the ℓth constraint at visit vk(x) for x. Whenever

a solution x is visited, a feasibility check is performed. If x is declared as feasible,

a positive constant smaller than 1 (depreciation factor) is multiplied to the previous

penalty sequence value, λ
vk−1

ℓ (x). Similarly, if x is declared as feasible, a positive

constant larger than 1 (appreciation factor) is multiplied to λ
vk−1

ℓ (x). In Section 2.2,
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two example penalty sequences, PSc and PSf are presented. PSf generally performs

better than PSc as shown in Sections 2.3 and 2.4 because PSc uses same appreciation

and depreciation factors for every solution while PSf adaptively adjusts appreciation

and depreciation factors according to the level of feasibility of each solution.

When PSf with finite ∆nr(x) is used, we should guarantee Assumption 3: both

limr→∞∆nr(x) = ∆n(x) and symmetric marginal distributions of all secondary per-

formance measures. However, a simulation budget allocation method tends to change

∆nr(x) at every iteration and we may have a problem with either limr→∞∆nr(x) =

∆n(x) or symmetry of the underlying distribution of Hℓ(x). Therefore, throughout

this chapter, we consider only two penalty sequences that do not require Assump-

tion 3: (i) PSf with increasing ∆nr(x) and (ii) an adaptive penalty sequence with

constants (APSc).

More specifically, APSc is constructed as follows: Recall Svk
ℓ (x) ≡

∑vk(x)
r=1 ζℓr(x)

where ζℓr(x) ≡
∑nr−1(x)+∆nr(x)

i=nr−1(x)+1
Hℓi(x)−qℓ√

∆nr(x)
and the infeasible probability,

p̂vkℓ (x) =

∑vk(x)
r=1 I{ζℓr(x) < 0}

vk(x)
. (12)

Prior to running APSc, the following parameters should be chosen:

• 0 < h1 < . . . < hu < 0.5 < hu+1 < . . . < hv < 1;

• 1 < aν and 0 < dν < 1, for all ν = 1, 2, . . . , v.

Then APSc is defined as follows:
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Adaptive Penalty Sequence with Constants (APSc)

λvkℓ (x) =

 λ
vk−1

ℓ (x)× αvk
ℓ (x), if Svk

ℓ (x) < 0,

λ
vk−1

ℓ (x)× δvkℓ (x), if Svk
ℓ (x) ≥ 0,

where λ0ℓ(x) is the initial penalty constant λ0ℓ , α
vk
ℓ (x) is an appreciation function,

and δvkℓ (x) is a depreciation function whose values are determined by p̂vkℓ (x) and the

following table:

p̂vkℓ (x) [0, h1) [h1, h2) . . . (hv−1, hv] (hv, 1]

αvk
ℓ (x) a0 a1 . . . av−1 av

δvkℓ (x) d0 d1 . . . dv−1 dv

Note that APSc is PSf with finite ∆nr(x) and γ
k
ℓ = 0 but its convergence proofs

follow convergence proofs of PSc in Chapter II. In this chapter, if simulation budget

allocated at each iteration increases, then PSf is used. If the simulation budget is

finite but can be different at each iteration, then APSc is used.

4.1.3 OCBA-CO

In this section, we review OCBA-CO in [20]. OCBA-CO considers a fixed set, say

Ω. Let T define a total computing budget we want to allocate and N(x) define the

number of simulation observations for solution x (i.e., T =
∑

x∈ΩN(x)). The goal of

the optimal budget allocation is to intelligently control each N(x) in a way that PCS

is maximized. PCS is defined as follows:

PCS = P
{
∩ℓ∈Λ(H̄ℓN(x

b
o) ≥ qℓ)

∩x∈Ω,x ̸=xb
o

{[
∩ℓ∈Λ (H̄ℓN(x) ≥ qℓ) ∩ (ḠN(x

b
o) > ḠN(x))

]c}}
,

where ḠN(x) =
∑N(x)

i=1 Gi(x)

N(x)
and H̄ℓN(x) =

∑N(x)
i=1 Hℓi(x)

N(x)
. The OCBA-CO problem is

defined as follows:

max
N(x),∀x∈Ω

PCS subject to
∑
x∈Ω

N(x) = T. (13)

77



However, it is known that there is no closed-form for PCS. Bonferroni inequality

provides that PCS is bounded below by APCS (i.e., PCS ≥ APCS) which is defined

as

APCS =
∑
ℓ∈Λ

P
(
H̄ℓN(x

b
o) ≥ qℓ

)
+ (1−m) (14)

−
∑

x∈Ω,x̸=xb
o

[
min

[
min
ℓ∈Λ

P
(
H̄ℓN(x) ≥ qℓ

)
,P
(
ḠN(x

b
o) > ḠN(x)

)]]
.

Let ℓ∗(x) define the most critical constraint (i.e., ℓ∗(x) ≡ argminℓ∈Λ P{H̄ℓN(x) ≥

qℓ}), then, we can define two sets ΩO and ΩF as follows.

ΩO ≡ {x|x ̸= xb
o,x ∈ Ω,P(H̄ℓ∗N(x) ≥ qℓ∗(x)) ≥ P(ḠN(x

b
o) > ḠN(x))}, and

ΩF ≡ {x|x ̸= xb
o,x ∈ Ω,P(H̄ℓ∗N(x) ≥ qℓ∗(x)) < P(ḠN(x

b
o) > ḠN(x))}.

Note that ΩO represents the set of solutions where optimality is a more dominant

issue and ΩF represents the set of solutions where feasibility is a more dominant issue.

Then APCS of (14) can be rewritten as

APCS =
∑
ℓ∈Λ

P
(
H̄ℓN(x

b
o) ≥ qℓ

)
+ (1−m) (15)

−
∑
x∈ΩF

P
(
H̄ℓ∗N(x) ≥ qℓ

)
−
∑
x∈ΩO

P
(
ḠN(x

b
o) > ḠN(x)

)
.

Let β(x) be the proportion of the total budget allocated to solution (i.e., N(x) =

β(x) · T ). Instead of Problem (13) we can solve the following problem to optimally

allocate T :

max
N(x),∀x∈Ω

APCS subject to
∑
x∈Ω

β(x) = 1. (16)

Recall σ2
0(x) = Var(G(x)) and σ2

ℓ (x) = Var(Hℓ(x)), for any ℓ ∈ Λ. In [20], the

following theorem is provided and proved:

Lemma 4 Define the noise-to-signal ratio, η(x), as follows:

η(x) =


σ0(x)

E[G(x)]−E[G(xb
o)]

√
1 +

σ2
0(x

b
o)/β(x

b
o)

σ2
0(x)/β(x)

, if x ∈ ΩO,

σℓ∗ (x)
qℓ∗−E[Hℓ∗ (x)]

, if x /∈ ΩO.

Then, APCS is asymptotically (as T →∞) maximized if
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β(x)

β(y)
=

(
η(x)

η(y)

)2

,∀x ̸= y ̸= xb
o, and

β(xb
o) = max(βO(x

b
o), βF (x

b
o)),

where βO(x
b
o) = σ0(x

b
o)
√∑

x∈ΩO

β2(x)

σ2
0(x)

and βF (xb
o)

β(x)
=
(

η(xb
o)

η(x)

)2
,∀x ̸= xb

o.

As in [20], we assume β(xb
o) >> β(x) for all x ∈ ΩO in this chapter. This

assumption produces η(x) ≈ σ0(x)
E[G(x)]−E[G(xb

o)]
and it makes implementation of OCBA-

CO easier. Based on Lemma 4, a heuristic sequential allocation procedure, OCBA-

CO, is constructed to solve (16) and detailed steps of OCBA-CO are given in [20].

4.2 Methodology

In this section, we provide D+PFM+ABA and prove its convergence properties.

4.2.1 D+PFM+ABA

D+PFM+ABA represents a framework combining D+PFM of Chapter II with a

revised OCBA-CO procedure, ABA. To explain D+PFM+ABA, we first need addi-

tional notation.

Qk ≡ a set of solutions to which we apply ABA at iteration k;

Vk ≡ a set of all visited solutions up to iteration k;

∆Nk(x) ≡ the number of new observations obtained at iteration k for x

∆Tk ≡ total number of new observations obtained at iteration k;

s20k(x) ≡ sample variance of all Gi(x) obtained up to iteration k;

s2ℓk(x) ≡ sample variance of all Hℓi(x) obtained up to iteration k, for ℓ ∈ Λ; and

x̃k ≡ the sample best among all solutions in Qk.

OCBA-CO always considers the same set of solutions, say Ω, but in ABA, Qk

can be different at each iteration. The budget allocation ABA in D+PFM+ABA, is

designed to solve the following problem:

max
∆Nk(x),∀x∈Qk

PCS subject to
∑
x∈Qk

∆Nk(x) = ∆Tk. (17)
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Let η̂k(x) represent a strongly consistent estimator of η(x) and β̂k(x) represent

an estimator β(x) at iteration k. Q̃kO and Q̃kF represent estimates of QkO and QkF

in implementation where QkF (QkO) represents the set of solutions in Qk in which

optimality (feasibility) is a more dominant issue. An implementation summary of

D+PFM+ABA is provided in Figure 38.

Remark 3: In practice, an active constraint often produces an extremely small

H̄ℓ∗k(x) − qℓ∗(x), which, in turn, results in an extremely large η̂k(x). To prevent

such cases, when calculating η̂k(x), we use max{ϵcℓ∗ , |H̄ℓ∗k(x) − qℓ∗(x)|} instead of

H̄ℓ∗k(x)− qℓ∗(x), where ϵcℓ∗ is an error tolerance for the constraint ℓ∗, the amount of

error a decision maker is willing to take.

Remark 4: Similarly, if Ḡk(x) is very close to Ḡk(x̃k), then η̂k(x) becomes extremely

large. To avoid such cases, when calculating η̂k(x), we use max{ϵob, |Ḡk(x)−Ḡk(x̃k)|}

instead of Ḡk(x) − Ḡk(x̃k), where ϵob is an indifference zone parameter, practically

meaningful difference in the primary performance measure worth detecting.

When a problem includes a small search space Θ, then we can simply sample

all solutions at every k (i.e., Qk = Θ). However, if a search space Θ is large, then

sampling all solutions at every k is not desirable (or impossible). Instead, existing

DOvS algorithms use a solution sampling strategy that forms Qk as a subset of Θ.

Depending on DOvS algorithms, Qk converges to a fixed set or keeps changing:

• Converging Qk: As k increases, Qk converges to a fixed set, Q∞. This happens

if SMRAS of [15], NP of [32], and CE of [12] are used as D because these

algorithms take Qk = Vk and Vk eventually converges to Θ in the algorithms.

• Changing Qk: As k increases, Qk keeps changing but its cardinality is fixed.

This happens if NP of [28], a random search of [2], and BEESE of [5] are used

as D because these algorithms take Qk as a set of sampled solutions at iteration

k.
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Algorithm : D+PFM+ABA

Step 0. Initialization:
- Set k = 1. Select n0, ϵob, and ϵcℓ for all ℓ ∈ Λ.
- Choose a DOvS algorithm as D, set Vk = ∅, and v0(x) = 0 for all x ∈ Θ.

Step 1. Sampling:
- Sample solutions using the solution sampling strategy of D to form Qk.
- Set n1(x) = n0 and vk(x) = 1 for all x ∈ Qk \ Vk−1 (i.e., solutions newly visited).
- Calculate Ḡk(x), s

2
0k(x), H̄ℓk(x), S

1
ℓ (x), and s

2
ℓk(x), for all ℓ ∈ Λ and all x ∈ Qk\Vk−1.

- Set Vk = Vk−1∪Qk and find x̃k = argminx∈Qk
Zk(x) where Zk(x) is defined in (11).

Step 2. Updating:
- Set

Q̃kO =
{
x | x ̸= x̃k, x ∈ Qk,

qℓ∗(x)− H̄ℓ∗k(x)

sℓ∗k(x)
≤ Ḡk(x)− Ḡk(x̃k)

s0k(x)

}
Q̃kF =

{
x | x ̸= x̃k, x ∈ Qk,

qℓ∗(x)− H̄ℓ∗k(x)

sℓ∗k(x)
>
Ḡk(x)− Ḡk(x̃k)

s0k(x)

}
where ℓ∗(x) ≡ argminℓ∈Λ qℓ − H̄ℓk(x), s

2
ℓ∗k(x) = s2ℓ∗(x)k(x), and qℓ∗(x) = qℓ∗(x).

- If x ∈ Q̃kO, η̂k(x) =
s0k(x)

max{ϵob,|Ḡk(x)−Ḡk(x̃k)|}
. Otherwise, η̂k(x) =

sℓ∗k(x)
max{ϵcℓ∗ ,|H̄ℓ∗k(x)−qℓ∗ (x)|}

.

Step 3. Allocating:
- If x /∈ Qk, set β̂k(x) = 0. Otherwise, find β̂k(x) such that

∑
x∈Qk

β̂k(x) = 1,

β̂k(x)

β̂k(y)
=
(

η̂k(x)
η̂k(y)

)2
for all x ̸= y ̸= x̃k, and β̂k(x̃k) = max(βÕ

k+1, β
F̃
k+1), where β

Õ
k+1 =

s0k(x̃k)

√∑
x∈Q̃kO

(
β̂k(x)
s0k(x)

)2
and βF̃

k+1 = β̂k(x)
(

η̂k(x̃k)
η̂k(x)

)2
for all x ̸= x̃k.

- Determine the number of additional simulation observations for each x ∈ Qk:

∆Nk(x) = ⌊∆Tkβ̂k(x)⌋+ I
{
U < ∆Tkβ̂k(x)− ⌊∆Tkβ̂k(x)⌋

}
, (18)

where I{·} represent an indicator function and U is a uniform random variable be-
tween 0 and 1. If ∆Nk(x) > 0, then set vk(x) = vk−1(x) + 1 and ∆nvk(x) = ∆Nk(x).
Otherwise, set vk(x) = vk−1(x) and ∆nvk(x) = 0.
- Adjust the allocation so that

∑
x∈Qk

∆nvk(x) = ∆Tk.

Step 4. Simulating:
- Obtain ∆nvk(x) additional observations and update nvk(x) = nvk−1

(x) + ∆nvk(x)
for all x ∈ Qk.
- Update Ḡk+1(x), s

2
0,k+1(x), H̄ℓ,k+1(x), S

vk+1

ℓ (x), and s2ℓ,k+1(x), for all ℓ ∈ Λ and for
all x ∈ Qk.

Step 5. Stopping Rule:
- Update the sample best x̂∗k = argminx∈Vk

Zk(x).
- If a stopping rule is satisfied, then stop and return x̂∗

k as the best feasible solution.
Otherwise, update the solution sampling strategy, set k ← k + 1, and go to Step 1.

Figure 38: Algorithmic statements of an D+PFM+ABA.
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Locally convergent algorithms, such as COMAPSS of [14] and [40], can also be

used as D. In this case, Qk converges to a set of neighbor solutions of one of a local

optimal solution. However, stochastic constraints and a definition of a local optimum

in [14] and [40] can unexpectedly create too many local optima near the infeasible

and feasible boundary. This will be further discussed in Section 4.3.2.

4.2.2 Convergence Properties

We first provide a lemma needed to guarantee convergence of D+PFM+ABA.

Lemma 5 Under Assumptions 1 and 2, if ∆Tk > 0 for any k, then D+PFM+ABA

guarantees

P
[
lim
k→∞

vk(x) =∞
]
= 1 and P

[
lim
k→∞

nvk(x) =∞
]
= 1 for any x ∈ Θ.

Proof of Lemma 5. If ∆Tk →∞ as k →∞, then ∆Nk(x)→∞ because βk(x) > 0

for any x ∈ Qk at any k. On the other hand, if ∆Tk is finite, then ∆Nk(x) =

⌊∆Tkβ̂k(x)⌋+ I
{
U < ∆Tkβ̂k(x)−⌊∆Tkβ̂k(x)⌋

}
can be 0 and a “sampled” solution is

not always “visited”. However, for any x and k, since βk(x) > 0, P
{
U < ∆Tkβ̂k(x)−

⌊∆Tkβ̂k(x)⌋
}
> 0 (i.e., the probability of visiting x is always positive when x is

sampled at iteration k, which guarantees vk(x) → ∞). Therefore, with Assumption

2, the result directly follows. 2

Remind that in this chapter, APSc is used with finite ∆Tk and PSf is used

with ∆Tk → ∞. Then, the following corollary shows the convergence properties

of D+PFM+ABA.

Corollary 2 Under Assumptions 1, 2, and 4, D+PFM+ABA satisfies Theorems 3

and 4 when APSc (with finite ∆Tk) is used. Similarly, D+PFM+ABA satisfies The-

orem 6 when PSf (with ∆Tk →∞) is used.

Proof of Corollary 2. The results follow directly from Lemma 5.2
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Most OCBA methods calculate computing budget based on the total number of

observations obtained up to the current iteration over Θ as in OCBA-CO procedure of

[20]. However, ABA uses a different allocation scheme (18) that calculates computing

budget only based on the number of new observations over Qk. The next theorem

shows that the allocation scheme (18) still guarantees that the number of observations

obtained for solution x up to iteration k, nvk(x), is proportional to β(x), if β̂k(x) is

a strongly consistent estimator of β(x).

Theorem 8 Assume β̂k(x) is a strongly consistent estimator of β(x). For a finite

constant ∆T , if either limk→∞∆Tk = ∆T or limk→∞∆Tk = ∞ holds, then (18) of

D+PFM+OCBA with converging Qk (i.e., Qk = Vk) guarantees that limk→∞
nvk

(x)

nvk
(y)

=

β(x)
β(y)

for any x ̸= y, x ∈ Θ, and y ∈ Θ.

Proof of Theorem 8. Assumption 2 guarantees Vk → Θ. We first provide the

proof with limk→∞∆Tk = ∆T . For any x ∈ Θ, by CMT, ∆Tkβ̂k(x)
a.s.−→ ∆Tβ(x), as

k →∞. For x ∈ Θ,

lim
k→∞

nvk(x)

k
= lim

k→∞

n0 +
∑k

j=1⌊∆Tjβ̂j(x)⌋+ I
{
U < ∆Tjβ̂j(x)− ⌊∆Tjβ̂j(x)⌋

}
k

= lim
k→∞

n0

k
+

∑k
j=1⌊∆Tjβ̂j(x)⌋

k
+

∑k
j=1 I

{
U < ∆Tjβ̂j(x)− ⌊∆Tjβ̂j(x)⌋

}
k

= ⌊∆Tβ(x)⌋+P
{
U < ∆Tβ(x)− ⌊∆Tβ(x)⌋

}
(By Lemmas 1 and 3)

= ∆Tβ(x). (19)

For any x ̸= y, x ∈ Θ, and y ∈ Θ, (19) implies

lim
k→∞

nvk(x)

nvk(y)
= lim

k→∞

nvk(x)

k

k

nvk(y)
=
β(x)

β(y)
.

Next, we provide the proof with limk→∞∆Tk = ∞. For a fixed k and 1 ≤ j ≤ k,

define a sequence χj,k(x) =
⌊∆Tj β̂j(x)⌋+I

{
U<∆Tj β̂j(x)−⌊∆Tj β̂j(x)⌋

}
∆Tk

. Then,

∆Tkβ̂k(x)− 1

∆Tk
≤ ⌊∆Tkβ̂k(x)⌋

∆Tk
≤ χk,k(x) ≤

⌈∆Tkβ̂k(x)⌉
∆Tk

≤ ∆Tkβ̂k(x) + 1

∆Tk

83



We have limk→∞
∆Tkβ̂k(x)−1

∆Tk
= limk→∞ β̂k(x)− 1

∆Tk
= β(x) and similarly, we also have

limk→∞
∆Tkβ̂k(x)+1

∆Tk
= β(x). Therefore, we have limj→∞ χj,∞(x) = β(x).

lim
k→∞

nvk(x)

k∆Tk
= lim

k→∞

n0 +
∑k

j=1⌊∆Tjβ̂j(x)⌋+ I
{
U < ∆Tjβ̂j(x)− ⌊∆Tjβ̂j(x)⌋

}
k∆Tk

= lim
k→∞

n0

k∆Tk
+

∑k
j=1 χj,k(x)

k

= β(x) (By Lemma 3). (20)

For any x ̸= y, x ∈ Θ, and y ∈ Θ, (20) implies

lim
k→∞

nvk(x)

nvk(y)
= lim

k→∞

nvk(x)

k∆Tk

k∆Tk
nvk(y)

=
β(x)

β(y)
.2

Remark 5: By Lemma 5 and the strong law of large numbers (SLLN), all estimates

converge to true values (i.e., as k → ∞, Ḡk(x)
a.s.−→ E[G(x)], s20k(x)

a.s.−→ Var[G(x)],

H̄ℓk(x)
a.s.−→ E[Hℓ(x)], and s

2
ℓk(x)

a.s.−→ Var[Hℓ(x)] for any ℓ and any x ∈ Θ). As a re-

sult, the sets, QkO and QkF , can be determined asymptotically correct and the sample

allocation β̂k(x) is an asymptotically consistent estimator β(x) under assumptions as

k →∞.

If we take Qk as a set of sampled solutions at iteration k (i.e., changing Qk)

in Theorem 8 while keeping the other conditions same, then the main results in

Theorem 8 do not hold any more. In fact, we cannot derive any asymptotic results

on allocating the total number of observations over Θ,
∑

x∈Θ nvk(x), with changing

Qk.

4.3 Numerical Result

In this section, we revisit the three numerical examples from Section 2.4: (i) the

three-system example, (ii) the Goldstein-Price problem, and (iii) the (s, S) inventory

policy problem. We test D+PFM+ABA on these three examples with both tight

optimal and strictly feasible optimal solutions.
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D+PFM(APSc)+ABA and D+PFM(PSf )+ABA represent D+PFM+ABA with

APSc and PSf , respectively. APSc uses same parameters from Table 3, but γkℓ is set

to γkℓ = 0.

For the three-system example, we do not need a DOvS algorithm D because

there are only three solutions. We sample all three solutions at each iteration (i.e.,

Qk = Θ); apply PFM(APSc)+ABA; and compare their performances with those of

PFM(APSc), PFM(PSf ), and OCBA-CO. We set ∆Tk = 9 when APSc is used and

∆Tk = 3(n0 + ⌈log k⌉) when PSf is used.

For the Goldstein-Price problem and the (s, S) inventory policy problem, the

search space is large and a DOvS algorithm is needed. We take NP as D and com-

bine it with PFM+ABA. The performance of NP+PFM+ABA is compared with

those of NP+PFM. When we combine NP+PFM with ABA, we take Qk as a set

of sampled solutions at iteration k and set ∆Tk = ∆n · |Qk ∩ Vk−1| for APSc and

∆Tk =
∑

x∈Qk∩Vk−1
(n0 + ⌈log vk(x)⌉) for PSf , where | · | represents the cardinality

of a set. The rest of parameter settings are the same as in Section 2.4. NP+PFM

without ABA uses equal allocation in a sense that the same number of additional

observations across all sampled solutions except newly visited solutions are obtained

at each iteration for APSc or the same number of additional observations are obtained

for solutions with the same number of visits for PSf .

4.3.1 Three-System Example

Mean and variance configuration of three systems are given in Section 2.4.3. In this

problem, we arbitrary select ϵc1 = ϵob = 0.01 for ABA and ϵ10 = 0.04 for PFM.

Figure 39 shows the percentage of time that x∗
k = xb

o over 500 macro replications

for the three-system example. Each run terminates when the total number of obser-

vations obtained from all visited solutions so far reaches 3,000. As shown in Figure
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Figure 39: Percentage of time that x̂∗
k = xb

o for the three-system example with a
tight solution.

39, PFM(PSf )+ABA achieves the highest percentage of time over 90% while OCBA-

CO achieves the lowest percentage around 50%. It is not surprising that OCBA-CO

does not perform well because OCBA-CO cannot handle tight solutions. Also, com-

paring PFM(PSf )+ABA with PFM(PSf ) (or PFM(APSc)+ABA with PFM(APSc)),

one can observe improvement due to ABA over equal allocation. The percentage of

time that x∗
k = xb

o is about 5% ∼ 8% higher in both small and large observation sizes

when ABA is combined with PFM(PSf ). However, for APSc, ABA shows about 10%

increase in the percentage compared to equal allocation only when the total number

of observations is small but the advantage disappears as more observations are taken.

In order to examine the small-sample behaviors more closely, we changeE[H1(2)] =

0 to E[H1(2)] = 0.03 so that there is no tight solution while system 2 is still the true

best feasible solution. Each run terminates when the total number of observations

obtained from all visited solution reaches 1,000. Figure 40 shows the percentage of

time that x∗
k = xb

o over 500 macro replications for the three-system example. In this

case, OCBA-CO achieves a higher percentage up to 80% but does not outperform
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Figure 40: Percentage of time that x̂∗
k = xb

o for the three-system example without
any tight solution.

any variant procedure of PFM. ABA improves the performance of PFM compared to

equal allocation, especially when APSc is used.

4.3.2 Goldstein-Price Problem

We consider the Goldstein-Price problem with a difficult constraint (5) from Sec-

tion 2.4.1 to examine the performance of NP+PFM+ABA. We arbitrary select an

error tolerance, ϵc1 = 0.005, and an indifference zone paramenter ϵob = 0.1 for ABA.

For PFM with PSf , we use ϵ10 = 0.04.

Figure 41 represents the percentage of time that x∗
k = xb

o over 500 macro repli-

cations for the Goldstein-Price problem with Constraint (5) and each replication is

terminated with one million total number of observations. When PSf is used as a

penalty sequence, ABA slightly improves the performance of the combined procedure

compared to equal allocation at the beginning, but as the total number of observa-

tions increases, both NP+PFM(PSf )+ABA and NP+PFM(PSf ) show similar per-

formance, achieving 90% of time that x∗
k = xb

o. On the other hand, when APSc is
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Figure 41: Percentage of time that x̂∗
k = xb

o with Constraint (5).

used as a penalty sequence, NP+PFM(APSc)+ABA shows a significant improvement

over NP+PFM(APSc). More specifically, NP+PFM(APSc)+ABA achieves 90% and

performs almost similar to procedures with PSf after the total number of observations

reaches 310,000. However, the percentage of NP+PFM(PSf ) is significantly smaller

than that of NP+PFM(PSf )+ABA, showing up to 20% difference. As we observe

in the three-system example, ABA brings more significant improvements when it is

used with APSc. Figure 42 shows average objective values at the sample best. The

figure implies that NP+PFM(APSc) tends to select superior infeasible solutions as

the sample best at the beginning of the search while the other three procedures do

not.

If a locally convergent DOvS algorithm, such as COMPASS of [14], is considered

as D, many local optima can be created unexpectedly by the definition of the neighbor

solutions used in [14] when stochastic constraints exist. [14] and [40] define neighbor

solutions as solutions that differ by±1 in only one coordinate. For the Goldstein-Price

problem with Constraint (5), Figure 43 shows that any solution on the constraint line
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Figure 42: Average estimated objective value of x̂∗
k with Constraint (5).

becomes a local optimal solution. More specifically, solution x0 has four solutions in

the neighborhood, x1, x2, x3 and x4. Note thatx1 and x2 are infeasible but have better

E[G(x)] than x0 while x3 and x4 are feasible and have worse E[G(x)] than x0. In

this case, x0 becomes a local optimal solution because x0 is the best feasible solution

among all solutions in the neighborhood. As a result, any solution on the constraint

x2x2

Infeasible Region

x0 x1x3

Feasible Region

x4

g

x4

Figure 43: Local optimal solution in the Goldstein-Price problem with Constraint
(5).
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line becomes a local optimal solution and COMPASS is likely to stop when it reaches

a solution on the constraint line. Thus, when there exist stochastic constraints, using

a locally convergent algorithm as D needs some cautions.

Now we consider an easier constraint:

E[−x1 − x2 + ψ1i] ≥ 1.499. (21)

With Constraint (21), the true optimal solution is still the same but now it is strictly

feasible.

Figure 44 shows the percentage of time that x∗
k = xb

o and Figure 45 shows the

average objective value of the sample best over 500 macro replications. To focus on

behaviors of procedures when the total number of observations is small, we termi-

nate each macro replication when the total number of observations reaches 200,000.

NP+PFM(PSf )+ABA performs the best. ABA improves the performance of com-

bined procedures compared to equal allocation but greater improvement is achieved

when APSc is used as a penalty sequence for PFM.
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Figure 45: Average estimated objective value of x̂∗
k with constraint (21).

4.3.3 (s, S) Inventory Policy Problem

We revisit the (s, S) inventory policy problem in Section 2.4 to test the performance of

NP+PFM+ABA when a problem includes non-normal observations for the primary

and secondary performance measures and there exists correlation across performance

measures. We arbitrary select an error tolerance, ϵc1 = 0.0001, and an indifference

zone paramenter ϵob = 0.1 for ABA. For PFM with PSf , we select ϵ10 = 0.0001.

We first consider the same problem in Section 2.4 where the true optimal solution

is strictly feasible but nearly tight. Figure 46 shows the percentage of time that

x̂∗
k = xb

o over 500 macro replications when each macro replication is terminated with

2,000,000 total observations. At the end of the search, NP+PFM(APSc)+ABA and

NP+PFM(PSf )+ABA achieve over 90% while NP+PFM(APSc) and NP+PFM(PSf )

achieve under 90%. Figure 47 shows average objective value of the sample best.

Average objective values of NP+PFM(APSc)+ABA and NP+PFM(PSf )+ABA start

above the true optimal value while NP+PFM(APSc) and NP+PFM(PSf ) start under

the true optimal value. This supports that ABA helps accurate feasibility checks at
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Figure 46: Percentage of time that x̂∗
k = xb

o in the (s, S) inventory problem with a
difficult constraint.

the beginning of the search.

Now we consider an easier constraint where failure probability should be less than

equal to 0.05. The true optimal solution changes to xb
o = (24, 58) and its expected

cost and failure probability are 113.0864 and 0.04878, respectively.
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Figure 47: Average estimated objective value of x̂∗
k in the (s, S) inventory problem

with a difficult constraint..
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Figure 48: Percentage of time that x̂∗
k = xb

o in the (s, S) inventory problem with a
relaxed constraint.

Figures 48 and 49 show the percentage of time that x̂∗
k = xb

o and the average objec-

tive value at the sample best over 500 macro replications. To focus on the small sample

behaviors, each macro replication is terminated with 100,000 total observations. Both

figures show that ABA brings significant savings compared to equal allocation. When
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Figure 49: Average estimated objective value of x̂∗
k in the (s, S) inventory problem

with a relaxed constraint.
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APSc is used as a penalty sequence in PFM, NP+PFM(APSc)+ABA achieves about

20% higher percentage than NP+PFM(APSc). On the other hand, when PSf is used

as a penalty sequence in PFM, the combined procedure with ABA achieves about

15% higher percentage than the procedure with equal allocation.

4.4 Conclusions

In this chapter, we improve the performance of D+PFM by combining it with ABA.

ABA is a modified version of OCBA-CO of [20]. ABA can handle active constraints

and satisfies necessary conditions for convergence properties of PFM. Convergence

properties of the combined procedure is provided with proofs. Our experimental

results on the three numerical examples show that ABA improves the performance of

D+PFM. Greater improvement is observed when the total number of observations is

small/medium or APSc is used as a penalty sequence in PFM.
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CHAPTER V

CONTRIBUTIONS

We present a novel method, PFM, which converts a stochastically constrained DOvS

problem into a series of stochastically unconstrained DOvS problems. To the best of

our knowledge, PFM is the first work that (i) adaptively determines penalty values

based on observed feasibility of solutions and (ii) can handle tight solutions among

simulation-based optimization algorithms. The proposed method is general enough to

handle problems that occur in a wide range of applications including IE/OR, health

care, environmental and energy management.

We apply PFM to an important problem in environmental management, namely

the water quality monitoring network design problem for river systems. The purpose

of the problem is to find the optimal location of a finite number of monitoring devices

that minimizes the expected detection time of a contaminant spill event while guaran-

teeing good detection reliability. We formulate this problem as a DOvS problem with

a stochastic constraint and present D+PFM. Experimental results on the Altamaha

River shows that our algorithm performs better than an existing popular method in

environmental management in terms of both efficiency and accuracy.

Finally, we present ABA, that allocates simulation budget among sampled so-

lutions at each iteration instead of taking equal number of observations from each

sampled solution. Our experimental results on three examples shows that ABA im-

proves the performance of D+PFM significantly, especially when the total number of

observations is small or a small budget needs to be allocated at each iteration as in

APSc.
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APPENDIX A

Proof of Theorem 1. Assumption 2 and SLLN ensure that Gk(x) converges to

E[G(x)] and Hℓk(x) converges to E[Hℓ(x)] almost surely. By the continuous mapping

theorem (CMT, Theorem 5.5 of [7]) and Condition 1, the results follow. 2

Proof of Theorem 2. Recall that Vk is a set of all solutions visited by D+PFM

up to iteration k and Θf is the set of all feasible solutions. At iteration k, D+PFM

selects x̂∗
k such that x̂∗

k ≡ argminx∈Vk
Zk(x).

As k →∞,

min
x∈Vk

Zk(x)
a.s.−→ min

x∈Θ
Zk(x) (by Assumption 2)

a.s.−→ min
x∈Θf

E[G(x)]. (by Theorem 1)

This implies that P{limk→∞ Zk(x̂
∗
k) = minx∈Θf

E[G(x)]} = 1.

2

Proof of Theorem 3. We start with the case for ℓ ∈ ΛS(x). Let ζsℓr(x) represent a

random variable ζsℓr(x) =
∑nr−1(x)+∆nr(x)

i=nr−1(x)+1
Hℓi(x)−E[Hℓ(x)]√

∆nr(x)
. Note that ζsℓr(x), r = 1, 2, . . .,

are independent random variables with mean zero and a finite variance Var(Hℓi(x)).

Let I(·) represent an indicator function. Then,

I {Svk
ℓ (x) ≥ 0}

= I


∑vk(x)

r=1 ζsℓr(x)

vk(x)
+

∑vk(x)
r=1

∑i=nr−1(x)+∆nr(x)
i=nr−1(x)+1

E[Hℓ(x)]−qℓ√
∆nr(x)

vk(x)
≥ 0


= I

{∑vk(x)
r=1 ζsℓr(x)

vk(x)
≥ −

∑vk(x)
r=1

√
∆nr(x) · (E[Hℓ(x)]− qℓ)

vk(x)

}

≥ I

{∑vk(x)
r=1 ζsℓr(x)

vk(x)
≥ qℓ − E[Hℓ(x)]

}
(∵ ∆nr(x) ≥ 1 and E[Hℓ(x)]− qℓ > 0)

By Lemma 1, there exists Nℓ(x) ∈ Z+ such that
∑vk(x)

r=1 ζSℓr(x)

vk(x)
≥ qℓ − E[Hℓ(x)] for any

k ≥ Nℓ(x). This implies that solution x is declared as feasible after k ≥ Nℓ(x) and
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θd is kept multiplied to λvkℓ (x), resulting the sequence to converge to 0 almost surely.

Using similar arguments, it can be shown that λvkℓ (x)
a.s.−→∞ for any ℓ ∈ ΛI(x).

2

Proof of Lemma 3. For any ϵb > 0, there exists a positive integer Nb such that

|bn − c| < ϵb
2
for all n ≥ Nb. Since bn converges to a finite value, there exists a finite

constant Mb such that |bn− c| < Mb for all n < Nb. Therefore, we can select N ≥ Nb

such that (Nb−1)Mb

N
< ϵb

2
. By the triangular inequality, for n ≥ N ,∣∣∣∣∣ 1n

n∑
r=1

br − c

∣∣∣∣∣ ≤ 1

n

n∑
r=1

|br − c|

<
(Nb − 1)M

n
+

(n−Nb + 1)ϵb
2n

<
ϵb
2
+
ϵb
2
= ϵb.

Thus, limn→∞
1
n

∑n
r=1 bn = c. 2

Proof of Theorem 4. By Assumption 1, σ2
ℓ (x) = Var(Hℓi(x)) <∞. Let T vk

ℓ (x) =∑vk(x)
r=1 I{Sr

ℓ (x) ≥ 0} (the number of feasible decisions up to the vk(x)th visit). Then

for any ϵ > 0,

lim
k→∞

P [λvkℓ (x) < ϵ]

= lim
k→∞

P
[
θ
T

vk
ℓ (x)

d · θvk(x)−T
vk
ℓ (x)

a < ϵ
]

= lim
k→∞

P

[
θvk(x)a ·

(θd
θa

)T vk
ℓ (x)

< ϵ

]
= lim

k→∞
P [T vk

ℓ (x)(log θd − log θa) < log ϵ− vk(x) log θa]

= lim
k→∞

P

[
T vk
ℓ (x)

vk
>

log ϵ
vk
− log θa

log θd − log θa

]

= 1− 2

π
arcsin

√
− log θa

log θd − log θa
(by Lemma 2).

Therefore, λvkℓ (x) converges to 0 with probability 1 − 2
π
arcsin

√
− log θa

log θd−log θa
and

diverges to ∞ with probability 2
π
arcsin

√
− log θa

log θd−log θa
as k →∞. 2

97



Proof of Theorem 5. Let Jr ≡ I{ζℓr(x) < 0}. Then, Jr, r = 1, 2, . . . are indepen-

dent Bernoulli random variables with success probability E[Jr].

lim
r→∞

E[Jr]

= lim
∆nr(x)→∞

P

 1

∆nr(x)

∆nr(x)∑
i=1

Hℓi(x) < qℓ


= lim

∆nr(x)→∞
P

{∑∆nr(x)
i=1 (Hℓi(x)− E[Hℓi(x)])

σℓ(x)
√
∆nr(x)

<

√
∆nr(x)(qℓ − E[Hℓi(x)])

σℓ(x)

}

By Lemma 3 and the CLT, we have

lim
r→∞

∑r
j=1 E[Jj]

r
= lim

r→∞
E[Jr] =


Φ(−∞) = 0, if ℓ ∈ ΛS(x);

Φ(∞) = 1, if ℓ ∈ ΛI(x);

Φ(0) = 0.5, if ℓ ∈ ΛA(x),

(22)

where Φ(·) represents the cumulative distribution of the standard normal random

variable.

For ℓ ∈ ΛA(x), by Lemma 1 and (22) we have

P

{
lim

vk(x)→∞

∣∣∣∣∣p̂vkℓ (x)−
∑vk(x)

r=1 E[Jr]

vk(x)

∣∣∣∣∣+
∣∣∣∣∣
∑vk(x)

r=1 E[Jr]

vk(x)
− 0.5

∣∣∣∣∣ = 0

}
= 1,

and the triangular inequality implies that

P

{
lim

vk(x)→∞
|p̂vkℓ (x)− 0.5| = 0

}
= 1.

Similar arguments apply to ℓ ∈ ΛI(x) ∪ ΛS(x), which completes the proof. 2

Proof of Theorem 6. (i) When ℓ ∈ ΛS(x): By Theorem 3, there exists Nℓ(x) ∈ Z+

such that x is declared as feasible for any k ≥ Nℓ(x). Thus, the penalty sequence

receives δvkℓ (x) which is a number smaller than 1. As a result, the sequence converges

to 0 almost surely.

When ℓ ∈ ΛA(x): By Theorem 5, for any k ≥ N
′

ℓ(x),

0.5− ϵℓ0 ≤ p̂vkℓ (x) ≤ 0.5 + ϵℓ0, (23)
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for 0 < ϵℓ0 < γkℓ . Thus, the penalty sequence receives either αvk
ℓ (x) or δvkℓ (x) for any

k ≥ N
′

ℓ(x). As both αvk
ℓ (x) and δvkℓ (x) are less than 1, the sequence converges to 0

almost surely.

(ii) When ℓ ∈ ΛI(x): By Theorem 3, there exists Nℓ(x) ∈ Z+ such that the penalty

sequence for the constraint ℓ of an infeasible solution x receives only appreciation

function αvk
ℓ (x) after Nℓ(x). Also, by Theorem 5, there exists N

′

ℓ(x) such that for

any k ≥ N
′

ℓ(x)

p̂vkℓ (x) > hu+1.

Then, for any k ≥ max(Nℓ(x), N
′

ℓ(x)), x is declared infeasible and a penalty se-

quence keeps receiving an appreciating factor which is greater than 1. This results in

λvkℓ (x)
a.s.−→∞ for any ℓ ∈ ΛI(x). 2

Proof of Theorem 7. (i) When ℓ ∈ ΛI(x): By Theorem 3, there exists Nℓ(x) ∈ Z+

such that the penalty sequence for the infeasible constraint ℓ of x receives only αvk
ℓ (x)

after Nℓ(x).

Now, let pIℓ represent the infeasible probability for constraint ℓ that is greater than

but the closest to 0.5.

By Lemma 3 and similar argument used in the proof of Theorem 5, there exists

N
′

ℓ(x) ∈ Z+ such that

pℓ(x)− ϵℓ0 ≤ p̂vkℓ (x) ≤ pℓ(x) + ϵℓ0. (24)

Set a constant 0 < ϵℓ0 <
pIℓ−0.5

4
and ϵℓ1 =

pIℓ−0.5

4
. Note that Assumption 3 implies

pℓ(x) ≥ pIℓ > 0.5 for any infeasible solution x. Then the left hand side of (24) satisfies

pℓ(x)− ϵℓ0 ≥ pIℓ − ϵℓ0 > pIℓ −
(
pIℓ − 0.5

4

)
=

3

4
pIℓ +

0.5

4
.

Thus, we get

3

4
pIℓ +

0.5

4
< p̂vkℓ (x) ≤ pℓ(x) + ϵℓ0. (25)
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Recall

γkℓ =



min
(
hu+1 − 0.5, 0.5− hu,minx∈{x|p̂vkℓ (x)>0.5+ϵℓ0, x∈Vk}

p̂
vk
ℓ (x)−0.5

2

)
,

if {x|p̂vkℓ (x) > 0.5 + ϵℓ0, x ∈ Vk} ̸= ∅;

min (hu+1 − 0.5, 0.5− hu), otherwise.

Consequently, when the set of infeasible solutions is not empty, as k →∞,

γkℓ
a.s.−→ min

(
hu+1 − 0.5, 0.5− hu, min

x∈{x|p̂vkℓ (x)>0.5+ϵℓ0, x∈Θ}

p̂vkℓ (x)− 0.5

2

)
(by Assumption 2),

a.s.−→ min

(
hu+1 − 0.5, 0.5− hu,

pIℓ − 0.5

2

)
(by Lemma 3 and CMT).

Also, there exists N
′′

ℓ (x) ∈ Z+ such that for any k ≥ max (N
′

ℓ(x), N
′′

ℓ (x)),

γkℓ ≤ min

(
hu+1 − 0.5, 0.5− hu,

pIℓ − 0.5

2

)
+ ϵℓ1 and γkℓ ≤

pIℓ − 0.5

2
+ ϵℓ1.

This implies that for any k ≥ max (N
′

ℓ(x), N
′′

ℓ (x))

0.5 + γkℓ ≤ 0.5 +
3(pIℓ−0.5)

4
= 3

4
pIℓ +

0.5
4
. (26)

For k ≥ max(Nℓ(x), N
′

ℓ(x), N
′′

ℓ (x)), x is declared infeasible, a penalty sequence of

x keeps receiving an appreciation factor, and (25) and (26) ensure that the appreci-

ation factor is greater than 1. Thus, the penalty sequence diverges to infinity almost

surely.

(ii) When ℓ ∈ ΛA(x): For any ℓ ∈ ΛA(x), pℓ = 0.5 by Assumption 3. We need to

consider two cases: when there exists solution x that violates constraint ℓ and thus

pIℓ exists and when all solutions are feasible with respect to constraint ℓ and thus pIℓ

does not exist.

If pIℓ exists, there exists N
′′′

ℓ (x) ∈ Z+ such that for k ≥ N
′′′

ℓ (x),

min
(
hu+1 − 0.5, 0.5− hu,

pIℓ−0.5

2

)
2

≤ γkℓ . (27)
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Also, there exists N
′′′′

ℓ (x) ∈ Z+ such that for any k ≥ N
′′′′

ℓ (x),

0.5− ϵℓ2
2
≤ p̂vkℓ (x) ≤ 0.5 +

ϵℓ2
2
, (28)

where ϵℓ2 =
min

(
hu+1−0.5,0.5−hu,

pIℓ−0.5

2

)
2

. From (27), for k ≥ N
′′′

ℓ ,

0.5− γkℓ ≤ 0.5−
min

(
hu+1 − 0.5, 0.5− hu,

pIℓ−0.5

2

)
2

, and

0.5 + γkℓ ≥ 0.5 +
min

(
hu+1 − 0.5, 0.5− hu,

pIℓ−0.5

2

)
2

.

Then from (27) and (28), for k ≥ max(N
′′′

ℓ (x), N
′′′′

ℓ (x)),

0.5− γkℓ ≤ 0.5− ϵℓ2
2
≤ p̂vkℓ (x) ≤ 0.5 +

ϵℓ2
2
≤ 0.5 + γkℓ ,

and αvk
ℓ (x) = wa < 1 which proves λvkℓ (x)

a.s.−→ 0 as k →∞ for any ℓ ∈ ΛA(x).

If pIℓ does not exist, min
(
hu+1 − 0.5, 0.5− hu,

pIℓ−0.5

2

)
needs to be replaced with

min(0.5− hu, hu+1 − 0.5) and the results follow by similar argument. 2
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APPENDIX B

N the number of nodes in a river system
I the index set, I = {1, 2, ..., N}
M the number of monitoring devices (M < N)
x a solution vector representing locations of

M monitoring devices.
td(xu) spill detection time at the monitoring location xu

PROBLEM SS spill starting time
FORMULATION d(xu) if detected at xu, d(xu) = td(xu)− SS ; otherwise, d(xu) =∞

t(x) the minimum elapsed detection time for x
(i.e., t(x) = min1≤u≤M d(xu))

R(x) if a spill is detected, R(x) = 1; otherwise, R(x) = 0
ti(x) an observed value of t(x) from the ith simulation run
Ri(x) an observed value of R(x) from the ith simulation run

Cth detection threshold of a monitoring device
LS
i spill location for the ith simulation run

PROCESS ISi spill intensity for the ith simulation run
SIMULATION SS

i spill starting time for the ith simulation run
P im
R a rain pattern for the mth sub-catchment in the

ith simulation run
P i
R (P i1

R , . . . , P iMs

R ) where MS is the number of sub-catchment

vk(x) the number of visits to x up to iteration k
DOvS nvk(x) the total number of observations obtained up to

iteration k for x

& PFM T k(x) conditional sample mean of ti(x) up to iteration k
given that a spill is detected

Rk(x) cumulative sample mean of Ri(x) up to iteration k

Rk the most promising region at search iteration k
Rk(ℓ) the ℓth subregion at search iteration k
Θ \ Rk the surrounding region at search iteration k
Sk the set of solutions sampled at iteration k

NP+PFM Vk the set of all solutions visited up to iteration k
ω the number of subregions
τk the total number of sampled solutions at iteration k

τk(ℓ) the number of sampled solutions at iteration k
from subregion ℓ

x̂∗
k the current best solution obtained by NP+PFM

(i.e., a solution with the smallest Zk(x) at iteration k)
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[5] Andradóttir, S. and Prudius, A. A., “Balanced explorative and exploita-

tive search with estimation for simulation optimization,” INFORMS Journal on

Computing, vol. 21, pp. 193–208, 20090.

[6] Batur, D. and Kim, S.-H., “Finding feasible systems in the presence of con-

straints on multiple performance measures,” ACM Transactions on Modeling and

Computer Simulation (TOMACS), vol. 20, no. 3, pp. 1–26, 2010.

[7] Billingsley, P., Convergence of Probability Measures. John Wiley & Sons,

New York, 1978.

103



[8] Boesel, J., Nelson, B. L., and Kim, S.-H., “Using ranking and selection

to “clean up after simulation optimization,” Operations Research, vol. 51, no. 5,

pp. 814–825, 2003.

[9] Chick, S. E., “Subjective probability and bayesian methodology,” Handbooks in

operations research and management science, S. G. Henderson and B. L. Nelson,

eds., vol. 13, pp. 225–257, 2006.

[10] Erd̈os, P. andM., K., “On the number of positive sums of independent random

variables,” Bull. Amer. Math. Soc, vol. 53, pp. 1011–1020, 1947.

[11] Fu, M. C., “Optimization for simulation: Theory vs. practice, journal = IN-

FORMS Journal on Computing, year = 2002, volume = 14, number = 3, pages

= 192–215,,”

[12] He, D., Lee, L. H. L., Chen, C. H., Fu, M. C. F., and Wasserkrug, S.,

“Simulation optimization using the cross-entropy method with optimal comput-

ing budget allocation,” ACM Transactions on Modeling and Computer Simula-

tion (TOMACS), vol. 20, no. 4, pp. 1–22, 2010.

[13] Healey, M. C., Advances in ranking and selection: variance estimation and

constraints. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, 2010.

[14] Hong, L. J. and Nelson, B. L., “Discrete optimization via simulation using

compass,” Operations Research, vol. 54, no. 1, pp. 115–129, 2006.

[15] Hu, J., Fu, M. C., and Marcus, S. I., “A model reference adaptive search

method for stochastic global optimization, journal = Communications in Infor-

mation & Systems, year = 2008, volume = 8, number = 3, pages = 245–276,,”

104



[16] Hunter, S. R. and Pasupathy, R., “Optimal sampling laws for stochasti-

cally constrained simulation optimization,” INFORMS Journal on Computing,

p. DOI: 10.1287/ijoc.1120.0519, 2012.
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