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SUMMARY

In this thesis, we first develop a new method called penalty function with
memory (PFM). PFM consists of a penalty parameter and a measure of constraint
violation and it converts a discrete optimization via simulation (DOvS) problem with
stochastic constraints into a series of DOvS problems without stochastic constraints.
PFM determines a penalty of a visited solution based on past results of feasibility
checks on the solution. Specifically, assuming a minimization problem, a penalty
parameter of PFM, namely the penalty sequence, diverges to infinity for an infeasible
solution but converges to zero almost surely for any strictly feasible solution under
certain conditions. For a feasible solution located on the boundary of feasible and
infeasible regions, the sequence converges to zero either with high probability or
almost surely. As a result, a DOvS algorithm combined with PFM performs well
even when optimal solutions are tight or nearly tight. Second, we design an optimal
water quality monitoring network for river systems. The problem is to find the optimal
location of a finite number of monitoring devices, minimizing the expected detection
time of a contaminant spill event while guaranteeing good detection reliability. When
uncertainties in spill and rain events are considered, both the expected detection
time and detection reliability need to be estimated by stochastic simulation. This
problem is formulated as a stochastic DOvS problem with the objective of minimizing
expected detection time and with a stochastic constraint on the detection reliability;
and it is solved by a DOvS algorithm combined with PFM. Finally, we improve PFM
by combining it with an approximate budget allocation procedure. We revise an
existing optimal budget allocation procedure so that it can handle active constraints

and satisfy necessary conditions for the convergence of PFM.
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CHAPTER I

INTRODUCTION

For a complicated industrial or service system with various uncertainties, analytically
examining the system performance is usually difficult. Meanwhile, the computing
power has been significantly improved in last decades, opening up large opportunities
for stochastic simulation as analysis or supporting tools for decision-making.

Researchers often use simulation to compare the performance of a number of
simulated systems (or solutions) and have proposed many statistical procedures to
efficiently and accurately find the best simulated system. Ranking and Selection
(R&S) procedures are useful for comparing a finite number of simulated systems, and
either provide statistical validity of correct selection or maximize the probability of
correct selection under a finite computing budget. See [9] and [18] for example R&S
procedures. R&S procedures are appropriate when the number of systems is no more
than several hundred (up to 1,000).

When the search space is too large to simulate all systems at the same time,
a different class of procedures, namely optimization via simulation (OvS), is more
appropriate. OvS algorithms enable us to find the best or a good system when the
objective function needs to be evaluated through simulation. Thorough reviews of
OvS research and practice for both discrete and continuous variables can be found
in [3] and [11]. In this thesis, we focus on discrete OvS (DOvS). Research directions
and guidance for use of DOvS algorithms are provided in [24].

The simulation community has presented a number of DOvS algorithms. [2]
presents advantages of using a cumulative sample mean to estimate the value of an

optimal solution and provides a structure of adaptive random search algorithms. [5]



provides the balanced explorative and exploitative search with estimation (BEESE)
algorithms that simultaneously maintain the global search, the local search, and the
improvement of solution estimation. The nested partitions (NP) method due to [33]
is a globally convergent DOvS algorithm that works for both continuous and discrete
decision variables. [28] proposes DOvVS algorithms using the NP framework. Their al-
gorithms use a cumulative sample mean as an estimate of a performance measure and
are globally convergent in a bounded discrete solution set. The convergent optimiza-
tion via most-promising-area stochastic search (COMPASS) of [14] is a framework
for discrete optimization that finds a local optimum. Other model-based methods for
DOvS problems such as stochastic model reference adaptive search (SMRAS) due to
[15] are well established. SMRAS employs a parameterized distribution as a sampling
distribution that generates solutions and updates parameters of the sampling distri-
bution using the Kullback-Leibler distance. Although these algorithms are shown to
perform well for many stochastic optimization problems, they are not directly ap-
plicable when a DOvS problem has stochastic constraints, constraints on secondary
performance measures that need to be estimated by stochastic simulation.

Recently, simulation optimization with stochastic constraints on secondary per-
formance measures have been studied actively. For example, one may want to find
an inventory policy with the smallest long-run cost per period while the expected
number of lost sales is less than or equal to some constant. This problem is more
difficult than a pure R&S or stochastically unconstrained OvS problem because of

the following reasons:

e Correlation among the performance measures: Primary and secondary perfor-
mance measures are often correlated in practice. For example, expected queue

length and throughput in a queueing model are correlated.

e Solutions near or right on the boundary of feasible and infeasible regions of



stochastic constraints: In optimization problems, as discussed in [25], con-
straints on secondary performance measures almost always represent limits on
our ability to minimize or maximize the objective function, implying that op-
timal solutions are likely to be tight or nearly tight. When the true optimal
solution is right on the boundary, the solution can be declared as infeasible
(with a high probability even when the number of observations is large) and

thus it may not be selected as the optimal.

A constrained R&S problem is formulated in [4], which proposes statistically-
valid selection procedures when there is one stochastic constraint and performance
measures are correlated. Although their methods are statistically valid, they cannot
handle solutions located right on the boundary of the feasible and infeasible regions
(i.e. tight solutions with one or more active constraints). Instead, they introduce
the concept of error tolerance for stochastic constraints and assume that a decision
maker is willing to accept a system whose secondary performance measure is within
a constant amount of the constraint threshold as the best if it shows a good primary
performance measure. The procedures of [4] are extended to multiple stochastic
constraints in [13]. On the other hand, several researchers provide a method of
efficiently allocating a finite computing budget in order to maximize the probability
of selecting the best feasible solution. For example, see [16], [17], [29], and [36]. Some
discuss correlations between primary and secondary performance measures, but none
of proposed procedures can handle tight solutions.

In OvS, there have been some efforts to use the concept of the penalty function
which is a popular method in deterministic optimization of [26]. With the penalty
function, a DOvS algorithm is applied to a series of new DOvS problems without
stochastic constraints, rather than applied to the original problem. [21] proposes
a penalty function method in which the penalty parameter diverges to infinity as

search iteration increases and the measure of violation of a constraint is estimated by a



sample average of a secondary performance measure for each constraint. [22] proposes
a method of finding saddle points of a DOvVS problem with stochastic constraints.
These methods can handle correlation among performance measures, but does not
perform well when the best feasible solution is tight or nearly tight.

In this thesis, we consider a DOvS problem with stochastic constraints and propose
a new method, namely penalty function with memory (PFM). PFM enables us to
handle multiple stochastic constraints with general inequalities in DOvS. PFM also
uses the idea of the penalty function and reformulates the original problem into a series
of new unconstrained problems. However, PFM uses a different penalty parameter
whose value converges to 0 for feasible solutions and diverges to infinity for infeasible
solutions. More specifically, a penalty value for each solution is determined adaptively
based on observed feasibility of the solution.

Chapter II introduces PFM that enables existing DOvS algorithms to handle
stochastic constraints. Convergence properties are provided with their proofs. Pa-
rameter selection for PFM is discussed and a DOvS algorithm with PFM is tested
on three numerical examples. In Chapter III, we formulate a problem designing the
optimal water quality monitoring network for river systems as a stochastically con-
strained DOvS problem. We use NP4+PFM, a version of NP combined with PFM, as
an optimization algorithm, and address implementation issues specialized for design-
ing the water quality monitoring network. The performance of NP4+PFM is tested
on the Altamaha River and compared with that of the genetic algorithm (GA) from
[39]. Chapter IV provides an approximate budget allocation procedure that further
improves the performance of DOvS algorithms combined with PFM. Convergence
properties are proven and experimental results on three numerical examples are pre-

sented. Finally, Chapter V summarizes main contributions of the thesis.



CHAPTER 11

PENALTY FUNCTION WITH MEMORY FOR
DISCRETE OPTIMIZATION VIA SIMULATION WITH
STOCHASTIC CONSTRAINTS

In this chapter, we propose a new method, namely penalty function with memory
(PFM), that can handle multiple stochastic constraints even when performance mea-
sures are correlated and tight or nearly tight solutions exist in stochastically con-
strained DOvS problems. PFM itself is not an optimization algorithm, however, it
aids existing DOvS algorithms originally developed for stochastically unconstrained
DOvS problems and helps them find an optimal solution in the presence of stochastic
constraints. PFM uses the same measure of violation for a stochastic constraint as
in [21]. However, PFM differs from their method in that it determines a penalty
parameter of a visited solution based on the past results of feasibility checks on the
solution. More specifically, PFM guarantees that a sequence of penalty parameters
diverges to infinity almost surely (if minimization) for an infeasible solution. For a
strictly feasible solution, the sequence is guaranteed to converge to zero almost surely.
For a tight solution, the sequence converges to zero either with high probability or
almost surely. As a result, a DOvS algorithm combined with PFM works well even
when optimal solutions are tight or nearly tight. When the set of feasible solutions is
not empty, one version of PFM guarantees that a solution returned by the combined
algorithm converges to one of the optimal solutions.

We first present conditions in which a penalty sequence of PFM should satisfy
and prove that if the penalty sequence satisfies the conditions, a global convergence

property is preserved when an existing globally-convergent algorithm is combined



with PFM. Then we present two example penalty sequences: a penalty sequence with
constants (PS.) and a penalty sequence with functions (PS¢). Both sequences guar-
antee almost sure convergence to infinity and zero for infeasible and strictly feasible
solutions, respectively. For a tight solution, PS. guarantees only that the sequence
converges to zero with high probability while PS; provides almost-sure convergence
to zero under some conditions.

This chapter is organized as follows: Section 2.1 defines our problem and notation,
provides a framework of existing DOvS algorithms for a stochastically unconstrained
DOvS problem, and then presents an example that demonstrates the need for a more
sophisticated penalty function. Section 2.2 introduces PFM and two example penalty
sequences along with their convergence proofs. Section 2.3 discusses parameter selec-
tion for the implementation of PFM. Experimental results of three different numerical

examples are presented in Section 2.4, followed by concluding remarks in Section 2.5.

2.1 Background

In this section, we define our problem and notations and review a common structure of
existing DOvS algorithms. Then we demonstrate the need for a sophisticated penalty

function using a simple example with three systems.
2.1.1 Problem and Notation

Let x = (x1,...,24) represent a solution and © the whole decision variable space,
which is a discrete and finite set in R? the set of d—dimensional real-numbered
vectors. We assume that information on deterministic constraints is already reflected
in ©. Let G(x) represent the primary performance measure and Hy(x) a secondary
performance measure of the ¢th constraint, for any £ = 1,2,...,m. Then G;(x) and
Hy;(x) represent the ith observation of G(x) and Hy(x), respectively, both observed
by stochastic simulation. We assume that for any given x, G;(x), i = 1,2,..., are

independent and identically distributed (iid) random variables. For a given ¢ =



1,2,...,m, Hy(x), 1 = 1,2,..., are also iid. It is possible that G;(x) and Hy;(x)
are correlated. The expectation and variance of G(x) are E[G(x)] and Var[G(x)],
respectively. Also, for any ¢ = 1,2,...,m, the expectation and variance of H,(x) are
E[H,| and Var[H,(x)], respectively.

Then our DOvS problem with stochastic constraints is defined as follows:

argmin, .o E[G(x)],
subject to E[Hy(x)] > q¢, £ =1,2,....,m,
where ¢, is a threshold constant of the /th stochastic constraint.
To explain our method, we need the following notations:
O = the set of all feasible solutions;

* = the set of optimal solutions with minyce, E[G(X)];

b —

x, = an optimal solution in ©F

A = an index set of all stochastic constraints (i.e., A = {1,2,...,m});

Asx) = {0 | E[Hi(x)] > q, ¢ € A}, an index set of strictly feasible stochastic
constraints for x;

Ay = {0 | E[H(x)] = qo, € € A}, an index set of active stochastic constraints for
x; and

Ay = {0 | E[Hy(x)] < g, £ € A}, an index set of infeasible stochastic constraints

for x.

We also make the following assumption throughout the chapter.

Assumption 1 Oy is not an empty set and for any x € © and ¢ = 1,2,...,m,

E[(G(x))?] < oo, Var[G(x)] < oo, E[(Hy(x))?] < 0o, and Var[H,(x)] < oco.
Section 2.2.1 provides short discussion about implementation when ©; is empty.
2.1.2 DOvS Algorithms

Let D represent an existing DOvS algorithm designed for a DOvS problem with-

out any stochastic constraint. Many DOvS algorithms follow a general structure of



Step 1: Set search iteration counter £ = 1. Choose an initial solution sampling
strategy.

Step 2: Sample a fixed number of solutions according to the current sampling strat-
egy and take additional observations from the solutions sampled at iteration & (not
from all solutions sampled so far).

Step 3: Update the current optimal solution.

Step 4: If stopping criteria are satisfied, then stop. Otherwise, update the solution
sampling strategy, set k <— k + 1, and go to Step 2.

Figure 1: General structure of random search algorithms.

random search algorithms, shown in Figure 1, presented by [3].
When describing D, we need additional notations:
r = counter for the number of visits;
vg(x) = the number of visits up to iteration k for x;
An,(x) = the number of new observations obtained at the rth visit for x;
n,(x) = the total number of observations obtained up to the rth visit for x;

Ny, (X) = Ny, (x)(X), the total number of observations obtained up to iteration k for x;

G(x) = - 1(X) ZZZ’;(X) G;(x), cumulative sample mean of observations G;(x) for the
Vg
primary performance measure up to iteration k;
Hy(x) = n;(x) ZZL:”’;(X) Hy;(x), cumulative sample mean of observations Hy;(x) for
Yk
the ¢th secondary performance measure up to iteration k; and
x; = the sample best among all sampled solutions up to iteration k.

Table 1 summarizes all of the notations used in the chapter. Throughout the chapter,

we assume that D satisfies the following assumption:

Assumption 2 Algorithm D follows a general structure of random search algorithms

in Figure 1 and satisfies the following:

1. A solution sampling strateqy of D guarantees that each solution has non-zero

probability of being sampled at any iteration k.



Table 1: Notation.

© the whole decision variable space which is a discrete
and finite set in R?
Of the set of all feasible solutions
o* the set of optimal solutions with
minceo, B[G(x)
PROBLEM xb an optimal solution in ©*
FORMULATION A an index set of all stochastic constraints
Agx)  an index set of strictly feasible stochastic
constraints for x
Aax) an index set of active stochastic constraints for x
Arx)  an index set of infeasible stochastic constraints for x
D an existing DOvS algorithm designed for a
stochastically unconstrained problem
k search iteration counter £ = 1,2, ...
r counter for the number of visits, r = 1,2, ...
An,(x) the number of new observations obtained at
the rth visit for x
v(x)  the number of visits up to iteration k for x
n,(x)  the total number of observations obtained up to the
rth visit for x
DOvS Ny, (X)  the total number of observations obtained up to
iteration k for x
Gr(x) cumulative sample mean of the objective up to
iteration k
Hyp(x) cumulative sample mean of the fth secondary
performance measure up to iteration k
X, the sample best among all sampled solutions

up to iteration k&

2. An observation allocation strateqy of D guarantees that P[lim;Hoo Ny, (X) =
oo] =1 for any x € O.
3. To estimate the performance of an objective at each solution, D uses a strongly

consistent estimator.

Assumption 2 implies that the sampling strategy of D should guarantee that as
iteration k increases both vi(x) and n,, (x) go to infinity. In a finite solution set,
example algorithms that satisfy Assumption 2 include the NP-based algorithms of

28], random search methods of [2], the balanced explorative and exploitative search



with estimation (BEESE) algorithms of [5]. A modified simulated annealing [1] and
the stochastic model reference adaptive search [15] also satisfy Assumption 2 and can
be combined with PFM. However, the definitions of Gj(x) and Hy(x) need to be
changed to sample means based on observations newly obtained at each visit because

they do not use cumulative sample means.
2.1.3 Motivating Example

In this subsection, we demonstrate that a naive penalty function method can fail
and a sophisticated penalty function is needed in stochastic optimization. Assuming
a single stochastic constraint, one may say that Problem (1) can be solved by any
existing DOVS algorithm with objective arg min,ce Gy (x) + M}, - max{0, ¢ — Hy(x)},
where M — oo as k increases. The reasoning would be that max{0,q — Hy(x)}
should converge to zero as k increases due to the strong law of large numbers (SLLN)
for any feasible solution, which would, in turn, result in a zero penalty value for any
feasible solution. Similarly one would argue that the penalty of an infeasible solution
should converge to infinity and thus, the algorithm should be able to find a true
optimal solution.

However, this reasoning is not true. Consider an example with three systems and
a single constraint. We assume that all G(x) and H;(x), for x € {1,2,3} are normally
distributed with variances 1 and mean values as follows:

e System 1: E[G(1)] =1, E[H;(1)]

e System 2: E[G(2)] = 0, E[H/(2)]

e System 3: E[G(3)] = —1, E[H,(3)] = —0.3

=0.3
0

We set My = 3k and ¢; = 0. Thus, system 2 is the optimal solution which is
tight. One observation is obtained for each solution at each iteration, and the current
sample best X} is a solution with the smallest Gj(x) + My - max{0,q — Hy(x)}.
Figure 2 reports the percentage of time that xj, is equal to system 2 over 500 macro

replications.
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Figure 2: Percentage of time that X} = x® of the problem with three systems.

As seen in Figure 2, system 2 is returned as the sample best only around 50% of
the time, which clearly demonstrates the failure of a naive penalty function method.
[25] provides the following mathematical arguments to explain the need for a penalty
function whose value converges to zero for feasible solutions and to infinity for infea-
sible solutions.

For a constant w > 0,

P{receive a penalty}
= P{M;max{0,q — Hy(x)} > w}
> P{M(q— Hi(x)) > w}

— p{ B B VT (g~ Bl (0] - /)|

\/Var[H1 (x)] \/Var[Hl(x)]

By the Central Limit Theorem (CLT), the above probability can be calculated from
a standard normal distribution as & — oo in three cases:

e Infeasible x: M} should become large quickly, so M} — oo is fine.

e Strictly feasible x: M} should remain small and ideally go to 0.

o Tight x: M} must go to 0 to avoid a penalty.

11



PFM allows its penalty value to assume a complicated form and to depend on observed

feasibility /infeasibility of each solution.

2.2 Penalty Function with Memory

In this section, we introduce PFM and prove global convergence of a combined pro-
cedure of D and PFM. Then we propose two example penalty sequences and prove

their convergence properties.
2.2.1 Structure of PFM

PFM consists of a penalty sequence and a measure of violation for each constraint. Let
A} (x) define a penalty sequence of the /th constraint at the rth visit for x. To simplify
notation, we use \;*(x) to denote \,* ) (x) which is a penalty parameter at visit vg(x)
for x. In PFM, the value of A\;*(x) is determined based on observed (in)feasibility
of solution x and it should go to zero for feasible solutions but infinity for infeasible
solutions. A measure of violation for the fth constraint is max (0, s — H g (x)) for £ =
1,2,...,m. Then PFM is defined as Y, , [\)*(x) x max{0,q — Hpu(x)}]. A new
objective function with PFM at search iteration k is Zj,(x) = Gj(x) +>_,cp [A" (%) X
max{0, ¢ — Heu(x)}]. We show that if a combined algorithm D+PFM returns a
solution with the smallest Zj(x) as X}, then Z, (X)) converges to minyce, E[G(x)] as
k increases. We first need the following condition for A\;*(x):

Condition 1 As k goes to infinity, A\j*(x) == 0 for £ € Agp) U A and AF(x) ==

oo for £ € Ajx) where 2% denotes almost sure convergence.

Theorem 1 For all x € ©, if Assumptions 1 and 2 hold and \;*(x) satisfies Condi-
tion 1, then Z(x) == E[G(X)] if Asp) U Aa) = A; Zi(x) == 00 if A # 0.

See the Appendix for the proof of Theorem 1. Now, we get a main convergence

theorem of D+PFM:
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Theorem 2 If Assumptions 1 and 2 hold and N\)*(x) satisfies Condition 1, then

Zp(%3) = mingee, E[G(x)] as k — oo.

See the Appendix for the proof of Theorem 2.

Remark 1: If ©; = (), then minyey, Zi(x) diverges as k — oo. Thus, if a penalty

sequence of a sample best does not show convergence to zero but instead shows

increasing tendency for large k, a decision maker may declare no feasible solution.
The above theorem implies that the problem of finding an optimal solution in

DOvS falls down to the problem of coming up with a penalty sequence that satisfies

Condition 1. In the next subsections, we provide two example penalty sequences, PS,.

and PS¢, and discuss their convergence properties.
2.2.2 Penalty Sequence with Constants (PS,)

We first introduce PS., an intuitive and easy-to-implement penalty sequence. Let

v _ v (x _ ny—1(X)+An,(x i (xX)—qe .
S (x) = Zr’“:(l ) Cr(x) where Cp(x) = Zi:ni(,1)(i)+1 (x) %. Then PS. is defined

as follows:

Penalty Sequence with Constants (PS,)

A (x) x O, if ST (x) < 0,
) = 4 (x) ¢ (%)
A1 (x) % O, if ST(x) > 0,

where A\)(x) is the initial penalty constant \) for any x € ©, 6, is an appreciation

factor, and 6, is a depreciation factor such that 6, > 1 and 0 < 6, < 1.

If An,(x) is a constant An for any x and 7, then S;*(x) < 0 and S;*(x) > 0 are
simplified to Hy(x) < ¢ and Hy(x) > qp, respectively.

To prove the convergence properties of PS,, we first need two lemmas.

Lemma 1 [31] If {Z,, n=1,2,...} is a sequence of random variables with E[Z;] =

2
pj < 00, Var(Z;] = 07 < oo, and 32, j—; < 00, then
n n
Zj:l Zj . Zj:l Hj a.s.

n n

0, asn — oo.
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Lemma 1 is known as Kolmogorov’s strong law of large numbers. Note that

2
if 0]2- is a finite constant for any j, then Z;L j—; < oo is always satisfied because
> e ]% < 00.
Lemma 2 [10] Let Xy, X5, - be independent random variables each having mean

0 and variance 1 and such that the central limit theorem s applicable. Let s, =
X1+ Xo+ -+ X and let N, denote the numbers of s;.’s, 1 < k < n, which are

positive. Then, for 0 < & <1,

N, 2
lim P [— < 5] = — arcsin \/Z
n s

n—o0

Theorem 3 Under Assumptions 1 and 2, PS, guarnatees \;*(x) 2250 for any ¢ €

a.s.

Agix) and NJF(x) = oo for any € Ajx) as k — oo.

See the Appendix for the proof of Theorem 3. For £ € A 4(x), the following theorem
holds:

Theorem 4 Under Assumptions 1 and 2, PS, guarantees that \;*(x) Y ask —

oo for any € € Ay, where

, g _ 2 in. | —1080a

v 0, with probility 1 7 ATCSUN [ 150 " Tog e
) g2 i [ —logfs
0o, with probility arcsin [ p555e-

See the Appendix for the proof of Theorem 4. Theorem 4 implies that PS. does
not satisfy Condition 1, but a careful choice of 6, and 6; makes the penalty sequence
converge to zero with high probability. The choice of §, and 6, is discussed in Sec-

tion 2.3.
2.2.3 Penalty Sequence with Functions (PSy)

While PS, uses same appreciation and depreciation factors for every solution, PS;

allows each solution to use different appreciation and depreciation factors depending

14



on, so called, the infeasible probability p,(x). The infeasible probability p,(x) rep-
resents how likely a solution is declared to be infeasible and is defined as p,(x) =

lim, o0 P [(4r(x) < 0]. We estimate the infeasible probability by p;*(x), where

vg () x
ﬁZk (X) — Zr:l I[U{kc(f;() ) < 0}

(2)

To implement PS¢, a decision maker needs to choose the following parameters:
e two real-valued constants w, and w, such that 0 < w, < 1 and 0 < wy < 1, and
two positive integers u and v such that u < v;
e 0<h <...<h,<0b5<hyy1 <...<hy,<1;
e l<ag,and0<d, <1,forallv=1,2,... 0.
An estimated error tolerance for the infeasible probability of tight solutions is denoted
as ¢ and it is calculated as

"

min (husr — 0.5,0.5 — hy, min_ 51905
u+1 -J, U us xe{x[p, " (x)>0.5+¢€00, XEVi} 2 ’
- if {x|p;*(x) > 0.5+ €, x € Vi.} # 0;
min (A1 — 0.5,0.5 — hy,),  otherwise,
\
where €y are very small positive constants close to zero for £ = 1,2,...,m. The

estimated error tolerance v} defines a range in which a solution x does not receive
any appreciation factor regardless of a feasibility decision at iteration & if p,*(x) falls
in the range. Having such a range is critical when we establish A\;*(x) with almost
sure convergence for a tight solution.

Then PSy is defined as follows:
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Penalty Sequence with Functions (PSy)

A (x) X agt(x),

A (%) x 67 (x),

At (x)

if S (x) < 0,
if S (x) > 0,

where \)(x) is the initial penalty constant ), a;*(x) is an appreciation function,
and §,"(x) is a depreciation function whose values are determined by p,*(x) and the

following table:

P(x)  [0,h1) [k, Do) [0, 0.5 =) 0.5 =97, 0.5+ ]
af(x)  ag a ay Wa
6" (x) do dy dy wq

Pt (%) (05477, huta] (ho-1,ho] (o, 1]

ok (x) Ayl ay—1 ay

6" (x) dyt1 dy—1 dy

To prove the convergence properties of PS¢, we need the following lemma:

Lemma 3 Letb,, n=1,2,..., be a positive real sequence such that lim,_,,, b, = c <

0o for ¢ € R. Then limy, o + >0 by = c.
See the Appendix for the proof of Lemma 3.

Theorem 5 If An,(x) — o0 as 7 — o< (i.e., k — 00), then (i) p;*(x) == 0 for

0 € Ngix); (11) Py (%) 2% 1 for b € A1) and (ii1) p*(x) 2%50.5 for 0 € Aax)-

See the Appendix for the proof of Theorem 5. Now we present the main theorems

Of PSf

Theorem 6 If Assumptions 1 and 2 hold and An,.(x) — 0o asr — oo (i.e., k — 00),
then PS; guarantees (i) \;*(x) 250 for any £ € Agx) U ) and (i) AJ*(x) 2% 0

for any l € Ajx).
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See the Appendix for the proof of Theorem 6. Although some optimization al-
gorithms such as the simulated annealing method of [1] and SMRAS of [15] allow
An,.(x) to increase as k increases, majority of OvS algorithms assume finite An, (x).

Next we show the convergence properties of PS¢ assuming finite An,.(x).

Corollary 1 If Assumptions 1 and 2 hold and An,(x) < oo, then PS; guarantees

AF(x) =5 0 for any € € Agx).-

The proof of Corollary 1 is same as Case (i) in the proof of Theorem 6. For the

convergence properties of £ € Ayx) U Afx), we make the following assumption:

Assumption 3 For a finite constant An(x) > 0, lim, ., An,.(x) = An(x) and

Cor(x) are independent with a symmetric probability density or mass function.

Remark 2: In Assumption 3, An(x) can be different for each solution x but in the

experiment we use equal An(x) for all solutions x by setting An(x) = An.
Assumption 3 ensures that py(x) = 0.5 for £ € Ayx) and pe(x) > 0.5 for £ € Aj.

In practice, if Hy;(x) are either within-replication averages or batch means or if An,.(x)

is large, then (p.(x) will be approximately symmetric.
a.s.

Theorem 7 If Assumptions 1, 2, and 3 hold, then PS; guarantees (i) \)*(x) — 0o

for any € € Ajxy and (i) \J*(x) == 0 for any € € Ay as k — oo.
See the Appendix for the proof of Theorem 7.

2.3 Parameter Selection

In this section, we discuss how to choose parameters for implementation of each
penalty sequence. We first investigate effects of appreciation and depreciation factors
on a convergence or divergence rate of Zj(x) for a single solution x and then provide

guidelines for parameter selection of PS, and PSy.
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2.3.1 Single Solution

We first study how appreciation and depreciation factors affect the convergence rate
of Zy.(x) to E[G(x)] for a feasible solution and the divergence rate of Zj(x) to infinity
for an infeasible solution. Desirable appreciation and depreciation factors should
ensure fast convergence of Zi(x) to the right value (i.e., either E[G(x)] or co) with
high probability.

Let p. represent the probability that \)*(x) converges to 0 for any £ € A ). That
is, p. is the probability of converging to the right value for tight solutions. Then, for

fixed p. and 6,, 0, is determined by

(1 — pe) 2
0y =exp | — (logh,) (sin T) +logb, |,

which is derived from Theorem 4.

To study convergence rates for various combinations of 6, and p., we consider
a single solution x with one constraint, E[H;(x)] > 0. In this problem, H;(x) is
normally distributed with variance 1. We consider five different levels of feasibility: (i)
E[H,(x)] = 0.5244 (p1(x) = 0.3 and clearly feasible); (ii) E[H;(x)] = 0.1257 (p1(x) =
0.45 and barely feasible); (iii) E[H;(x)] = 0 (p1(x) = 0.5 and tight); (iv) E[H;(x)] =
—0.1257 (p1(x) = 0.55 and barely infeasible); and (v) E[H;(x)] = —0.5244 (p;(x) =
0.7 and clearly infeasible).

We test p. € {0.5,0.7,0.8,0.9} and 6, € {\/ﬁ, V1.3,v/1.5,V/1.7, \/E} At each
search iteration k An,(x) is set to a single constant An = 1 for all solutions. Based
on 100 macro replications, P{\}*(x) max{0,q, — Hy(x)} < 0.1} is estimated if x
is feasible and P{\}*(x) max{0,q — Hep(x)} > 10} is estimated if x is infeasible.
Table 2 reports parameter settings with the largest estimated probability for each
level of feasibility. As seen in the table, p, = 0.9 and 6, > /1.3 perform equally
well for feasible solutions and p. = 0.5 and 6, = v/1.9 perform the best for infeasible

solutions.

18



Table 2: Recommended parameter settings for five different levels of (in)feasiblity.

Clearly  Barely Feasible with Barely Clearly
Feasible Feasible a Tight Constraint Infeasible Infeasible
Pe 0.9 0.9 0.9 0.5 0.5
0. | >v13 >13 V1.3 V1.9 V1.9

Figure 3 shows estimated P{\}* (x) max{0, ¢o — H.(x)} < 0.1} for feasible solu-
tions when p, = 0.9 and 6, = v/1.3 while Figure 4 shows estimated P{\;*(x) max{0, g,—
Hp(x)} > 10} for infeasible solutions when p. = 0.5 and 6, = v/1.9. For all exper-
iments, we observe that the estimated probability converges to 1 for both strictly
feasible and infeasible solutions while it converges to p. for a tight solution. We also
note that a desirable combination for a feasible solution is the worst combination for

an infeasible solution and vice versa.
2.3.2 Parameter Selection for PS.

Now we discuss how to choose parameters for PS, which applies the same appreciation

and depreciation factors to all solutions. If all solutions are feasible, then the findings

Probability
1
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005 L DD, 00BN
: AAM
° A AN
0.9 AAM A
00 ‘000000,
A 000000000 oo ___O ‘00000000000000000
0.85 88— 000 o®_o oo X X
’ A 0000 0, 000
oP 00 o ;
A 000 Clearly Feasible
0.8 AAA
A a o
075 04 )
A oooooo ABarely Feasible
07 02
A o
0.65 OFeasible with a Tight
o Constraint
0.6
A

0.55 o
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I 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 8 89 93 97

Number of observations

Figure 3: Estimated P{\}*(x) max{0, ¢ — Hg(x)} < 0.1} for feasible solutions when
pe=10.9 and 6, = v1.3.
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Figure 4: Estimated P{\}*(x) max{0,q — H(x)} > 10} for infeasible solutions
when p. = 0.5 and 6, = v/1.9.

from the previous subsection imply that we should choose (p.,0,) = (0.9,+/1.3). If
all are infeasible, then (p,6,) = (0.5,4/1.9) would be desirable. However, most
DOvVS problems contain both feasible and infeasible solutions with various levels of
feasibility /infeasibility. Thus, we need to choose (p.,0,) that shows performances
robust for both feasible and infeasible solutions. To see the performance of various
choices of (p,, 0,), we revisit the three-system example from Section 2.1.3.

Figure 5 shows the percentage of time that x; = x® based on 500 macro replica-
tions. To focus on small-sample-size behaviors of each combination, Figure 5 reports
performances up to 1000 total number of observations although the experiment contin-
ued up to 10,000 total number of observations. The figure shows that (i) combinations
(pe, 0,) with the same value of p. exhibit similar behaviors and their probabilities of
returning a true optimal solution converge to p. (if observed up to 10,000 observa-
tions); (ii) combinations with high p. show slower convergence with a high probability
of returning a true optimal solution while combinations with low p. show fast conver-

gence with a low probability of returning a true optimal solution; and (iii) for a given
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Figure 5: Percentage of time that x; = x? using PS,. for the problem with three
systems.

Pey, V1.3 < 0, < /1.9 show faster convergence than 6, < v/1.3. To balance between
fast convergence and high probability of returning a true optimal solution, (0.7,+/1.3)
is a good compromise. For the largest probability of returning a true optimal solution,

(pe,0a) = (0.9,4/1.1) performs well but has very slow convergence.
2.3.3 Parameter Selection for PS;

Unlike PS,., PSy adjusts parameters to an effective choice using the infeasible prob-
ability py(x). Intuitively, it makes sense to use (p., a}*(x)) = (0.5,/1.9) when p,(x)
is close to 1 and (p., ay*(x)) = (0.9,/1.3) when py(x) is close to 0. Table 3 is an
example that assigns appreciation and depreciation functions this way. However, our
experiments (which we omit due to space) show that the initial performance of PSy is
worse than that of PS, with (p,0,) = (0.7,/1.3) for the three-system example. It is
because inaccurate p;* (x), when vg(x) is small, makes feasible or infeasible solutions
receive the worst combination (p., ;*(x)) and it takes a while to fix wrong penalty
values.

An adaptive PSy can reduce such initial error: start with parameters robust to
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Table 3: An example of PS;.
p,5(x)  [0,0.35) [0.35,0.5—7F) [0.5—~F,05+~%] (0.5++/,0.65] (0.65,1]

Pe 0.9 0.9 0.9 0.5
aF(x) V13 V13 0.95 V13 V19
0¥ (x)  0.0054 0.0054 0.1 0.0054 0.7255

feasibility /infeasibility of solutions as shown in Table 4 and then jump to Table 3 when
vi(x) > N, where N, is the number of visits that makes p,*(x) accurate enough. For
a given level of estimation error of the infeasible probability, one can plan for the
value of N, in advance by using the fact that the standard deviation of probability is

maximized at 0.5.

Table 4: Robust PSy.
p,"(x) [0.5—19F,0.5+~F] Otherwise

Pec 0.7
o,k (x) 0.95 V1.3
5T (%) 0.5 0.6033

2.4 Numerical Experiments

In this section, we test PFM on three numerical examples: (i) the Goldstein-Price
problem, (ii) an (s, S) inventory policy problem, and (iii) the three-system example
from Section 2.1.3 to test the performance of PFM when secondary performance
measures have asymmetric distributions. The Goldstein-Price problem is introduced

in Section 2.4.1 and the (s, .S) inventory policy problem is described in Section 2.4.2.

b

In all problems, there is a unique optimal solution x,.

For the Goldstein-Price problem and the (s, S) inventory policy problem, we need
a DOvVS algorithm because search spaces of the problems are too large to update and
compare Z(x) for all x € O at each iteration. A version of NP [28] is used and com-

bined with PFM. The combined algorithm NP+PFM returns Xj = argmin, ., Z(x)

at each iteration k. Table 5 shows parameters for the implementation of NP where ng
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is the number of observations obtained in the first visit, 73 is the number of solutions

sampled at iteration k, and w is the number of subregions.

Table 5: Basic parameter settings for NP.

Problem ng Tp W
Goldstein Price Problem 9 16 4
(s,S) Inventory Policy Problem 30 9 2

[21] provide a penalty function for a DOvS problem with one stochastic constraint,
which we call the augmented cost function (ACF). We take a straightforward exten-
sion of their method to multiple constraints and define ACF as ), af x max{0, ¢, —

Hyp(x)}. We take af similar to the one used in their online companion:

k

Oz? _ minger, (ge—Hek(x))’ if T 7 0;
109, otherwise,

where 1), = {x|Hp(x) < g andx € V). NPH+ACF takes Z,(x) = Gip(x) +
> ren @F x max{0, ¢ — Hyy(x)} as an estimate of the performance measure in NP.

Let PEM(PS,) and PFM(PSy) represent PFM using PS. and PSy, respectively, as
a penalty sequence. For PS,., we test two different combinations of (p.,,) discussed
in Section 2.3.2: (pe, 0,) = (0.7,4/1.3) and (p,6,) = (0.9,/1.1). We denote PS, with
the former combination as PS,; and the latter as PS.,. For PS., we set An,.(x) = An
for all solution x, and use An = 3 for the Goldstein-Price problem and An = 10 for
the (s,.5) inventory policy problem.

For PSy, we employ an adaptive version: Table 4 is used until v,(x) < N, and
then PSy uses parameters in Table 3 for vy(x) > N,. We set N, = 10 for the three-
system example since the problem only includes three systems. For other numerical
examples, N, = 200 is used which ensures the standard error in p;*(x) is no more

than 0.035. We denote PS; with fixed An,(x) = An as PSy;, and PSy with increasing
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An,(x) as PSyy. For increasing An,.(x), the following equation is used:

ng + [logr], ifr>1,
Any() = "0 Toe] 3)

no, otherwise.

For the three-system example, we set ng = An. PS. uses An,(x) = An for all
three systems where An € {1,10,30}. For PS¢, An,(x) is set to (3). As a competitive
method, we apply M, = 3k as in Section 2.1.3.

We set A for PFM as follows:

, if Ty # 0 and k > 20;

|G (x}) =G (x)|
20— R0 T =00
108, otherwise,
where T, = {x|Hy(x) < ¢, and x € V. }.
2.4.1 Goldstein-Price Problem

The Goldstein-Price problem is one of the famous deterministic and continuous opti-

mization problems with a two-dimensional quadratic function defined as,

g(x) = {1 + (z1 + 20 +1)% - (19 — 142, + 322 — 1429 + 62,29 + 31‘%)}

X {30 + (221 — 3x9)* - (18 — 32z + 1227 + 4875 — 361175 + 27x§)}.

Let ¢;(x) and ¢y (x), £ = 1,2, ...,m be iid normal random variables with mean zero
and standard deviations 0.15 g(x) and 0.15 (ayz1+bsz2) where a, and by are constants.
We define G;(x) = g(x)+¢;(x) and Hy;(x) = apry+bpra+1)s(x) and want to minimize
E[G(x)] such that E[H,(x)] > q,. We set © = {—2.50, —2.49, ...,1.99,2.00}* which is
a two-dimensional discretized set in [—2.50, 2.00]2. The function g(x) has four local
minima and the global minimum at (0, —1). In O, the largest and smallest values of
g(x) are 1,015,685 and 3, respectively.

We first consider a single constraint with one of the following constraints:

E[—l’l — T2 + ¢12] Z 00, (4)
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Figure 6: Contour of the Goldstein-Price function with a single constraint: constraint
(4) (left) and constraint (5) (right).

Figure 6(a) shows that the true optimal solution of the problem with constraint
(4) is identical to the global minimum of the unconstrained Goldstein-Price function.
On the other hand, Figure 6(b) shows that constraint (5) is a difficult stochastic
constraint because the optimal solution is located right on the line —xy — x5 = 1.5

and there are many superior infeasible solutions near the optimal solution.
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Figure 7: Percentage of time that X} = x% with constraint (4).
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Figure 8: Average estimated objective value of x; with constraint (4).

Figure 7 shows the percentage of time that x; = x’ and Figure 8 provides the
average objective value of the sample best over 500 macro replications when constraint
(4) is considered. Each macro replication is terminated when the total number of
observations obtained so far reaches 100,000. As shown in Figure 7, NP+PFM(PSy,)
accomplishes up to 100% with the fastest rate of convergence and others achieve up
to 95% with similar rates of convergence.

Figures 9 and 10 show the percentage of time that x; = x% and the average ob-
jective value of the sample best over 500 macro replications when constraint (5) is
considered. We arbitrary set ;9 = 0.00617 for PSs; and PSy,. Figure 9 shows that the
choice of 6, and 6; does matter for a good performance of PS, in a difficult problem.
At the end of the search, NP+PFM(PSy,) achieves up to 90% while NP+PEFM(PS,,)
and NP+PFM(PSy;) reach around 80% and NP+PFM(PS.;) reaches around 70%.
NP+ACF finds the true best only around 50% of the time. Figure 10 shows that
NP+PFM(PS.1), NP+PFM(PSf;) and NP+PFM(PSy;) obtain better average esti-
mated objective values than NP+PFM(PS.,) and NP+ACF.
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Figure 9: Percentage of time that X} = x% with constraint (5).
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Figure 10: Average estimated objective value of Xj with constraint (5).

Note that average objective value of NP+PFM in Figures 10 (and Figure 13 later
in the chapter) tends to start below the true optimal value and increases as the total
number of observations increases. The true optimal solution x? is tight and infeasible

solutions near the true optimal have better (superior) primary performance measures
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Figure 11: Contour of the Goldstein-Price function with constraints (6).

in the problem setting. Thus, NP+PFM selects one of superior but infeasible solutions

as the current sample best at the beginning of search due to a small penalty. As

the search goes on, infeasible solutions receive a large penalty value and this helps

NP+PFM move away from infeasible solutions and select the true optimal solution
b

or one of feasible solutions near x,.

Now we consider two stochastic constraints:
E[—(El — T + wlz] Z 1.5 and E[xl — T + w2z] Z 0.9. (6)

Figure 11 shows that the feasible region becomes smaller than that of the sin-
gle constraint case and x? is located on the extreme point of two stochastic con-
straints with many superior infeasible solutions near Xf’). We arbitrary set (€10, €29) =
(0.00617,0.0103) for PS¢y and PSys. As the two constraints are independent and the
optimal solution has two tight constraints, the probability that the penalty sequence
of PS.; of the optimal solution converges to zero is expected to be p. x p. = 0.49. For
PS.s, the probability would be 0.81.

Figure 12 shows that NP+PFM(PS¢;) and NP+PFM(PS¢,) return the true opti-
mal around 80% of the time as the number of observations increases and NP+PFM(PS.,)

returns the true optimal around 70% while NP+PFM(PS,;) find the true optimal
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Figure 12: Percentage of time that x; = x% with constraints (6).

Average objective value of sample best solution

40
X
00+
0.0
© "8~ 00000400060000000000000000000°0C0006000000EEE0000600C0EE0EO00EECCOC00000EECO000OC000000000
39 —a
X L OO0
++$°$M+++
o N AT
R A A T M warrw—
& R ORRIHHOHHING YOO NV
38 A S
A AAAAAAA
ADABABNN
AL
(%
A8
37
7 b o NP+PFM(PScl)
Py
A & 4 A NP+PFM(PSc2)
A NS X NP+PFM(PSfl)
36 AA + NP+PFM(PSf2)
A o NP+ACF
--= OPTIMAL VALUE
35
Y
[ = =T == T T = B = S =S = B = T = i = S i = S S == R = T = T = =R = R = R R = R = I = T = = I = A = A = 1 — =~ =]
S O O O O O O 0O O 0O o O 0 O 0 o0 0 0 0 0 o0 00 o 0 0 Q0 0 o 0 o
== =T~ = T = =T = T = = T = T = T~ =~ R = R = T~ T =R = R R R = R = = T = R = T = T =~ S~ S = = R =]
S O O 2 O O o O o o oo oo oo o oo oo Qo Qo oo Q0o oo o Qo o9
—_ &~ ©O N O O N v 0 —~ > O N0 AN v X0 —= O N0 A v — O
—_ = = —~ &N N & nenn T T T NN N O O O 0NN O

Number of observations

Figure 13: Average objective value of x; with constraints (6).

around 50% and NP+ACF find the true optimal only around 25% of the time. We ob-
serve that the probability increases to 81% for NP+PFM(PS,;) as we further increase
the total number of observations. NP+PFM(PS¢;) and NP+PFM(PSy,) give a bet-
ter estimated objective value than NP+PFM(PS,,), NP+PFM(PS.;) and NP+ACF
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as shown in Figure 13.
2.4.2 (s,S) Inventory Policy Problem

Now we consider an (s,.S) inventory policy problem [19] with (i) non-normal ob-
servations for the secondary performance measure; and (ii) correlation between the
primary and secondary performance measures.

If the inventory level at a review is found to be below s units, then an order
is placed to increase the inventory level to S. If not, there is no order. Demand is
assumed to be Poisson distributed with mean 25. The solution set is © = {(s,.5)[20 <
s <80, 40 < S <100, s € Z, S € Z}, where Z is a set of integers.

We define the failure probability as the probability that a shortage occurs. We
want to find values of s and S that minimize the steady-state expected inventory cost
per review period while keeping the failure probability less than or equal to 0.01. All
analytic results can be obtained by using a Markov chain model, and Figures 14 and
15 show the expected cost and the failure probability of solutions near the optimal
solution of the unconstrained problem. The true optimal solution is x? = (31,61)

and its expected cost and failure probability are 117.3428 and 0.00998, respectively.

b

0)

Many superior infeasible solutions are located near the true optimal solution x
the stochastic constraint becomes nearly tight at x°, and it is difficult to accurately
estimate the secondary performance measure with small samples. Therefore this is a
very difficult optimization problem.

We arbitrarily choose €19 = 0.001 for PSy; and PSy,.

b

. over 500 macro replications

Figure 16 shows the percentage of time that x; = x
when each macro replication is terminated with 2,000,000 total observations. At the
end of the searches, NP+PFM(PSy;), NP+PEFM(PSy,), and NP+PFM(PS,,) achieve
up to 90% and NP+PFM(PS,;) shows the percentage around 77% while NP+ACF

achieves only up to 40%. NP+PFM shows better average estimate objective values
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Figure 15: Steady-state failure probability of the (s,.S) inventory problem

than NP4+ACF as in Figure 17.

2.4.3 Shortcoming and Recommendation

We use the three-system example to study the performance of PFM when H;(x)
has an asymmetric distribution. More specifically, let ¥ represent an exponential
random variable with mean 1. Then three distributions for the secondary performance

measure are considered: (i) Hi(x) is normally distributed (symmetric), (ii) H;(x) =

E[H,(x)]+(V—1) (positively skewed), and (iii) H;(x) = E[H;(x)]4+(1—V) (negatively

skewed). We arbitrary sete;g = 0.08 for PSy; and PSye. Table 6 shows infeasible
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16: Percentage of time that x} = x? in the (s, S) inventory problem.

probabilities of three systems when An =1 for the three distributions of H;(x).

Table 6: Infeasible probability with An = 1.

System p1(x)
symmetric Hi(x) positively skewed H;(x) negatively skewed H;(x)
1 0.3821 0.5034 0.2725
2 0.5000 0.6321 0.3679
3 0.6179 0.7275 0.4966

Figures 18, 19, and 20 show the percentages of time that x} = x® with An = 1 over
500 macro replications when H;(x) are symmetric, positively skewed, and negatively

skewed, respectively. Each macro replication continues until the total number of

observations obtained so far reaches 10,000.

When H;(x) are symmetric, Figure 18 shows that PEM(PS) and PFM(PSy,)
achieve almost 100%, PFM(PS.;) and PFM(PS,,) achieve close to their p. (0.7 or
0.9), and the linear penalty finds the true optimal solution only 50% of the time.
PFM(PS.;), PEM(PS¢;) and PFM(PSyy) show similar convergence rates for a small
number of observations and this is expected because all three sequences essentially

use the same values of p. and 6, up to N, = 10 visits. However, PEM(PS;;) and
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Figure 17: Average estimated objective value of X} in the (s, S) inventory problem.
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Figure 18: Percentage of time that X} = x? for the three-system example with normal
H1 (X) .

PFM(PSy,) achieve a lot better final convergence probability (close to 100%) than
PFM(PS.1). PFM(PS,2) achieves a high convergence probability in the end but shows
slow convergence, which is expected from the discussion in Section 2.3.2.

Figures 19 and 20 show that the performance of PEM(PS,.;) and PEM(PS,;) under

asymmetric distributions are similar to that under the normal case because their
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Figure 19: Percentage of time that X} = x’ for the three-system example
positively skewed H;(x).
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Figure 20: Percentage of time that X} = x% for the three-system example
negatively skewed H;(x).

with

behaviors do not depend on an underlying distribution of a secondary performance

measure. PEM(PSy,) also performs well regardless of the underlying distribution but

Figure 19 shows slower convergence to 100% under the positively skewed distribution.

Although we do not report the results in the chapter due to space, we confirmed that
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the probability does approach to 100% as the total number of observations increases.
On the other hand, the performance of PFM(PSy) is deteriorated especially when
H;(x) is negatively skewed. In the positively skewed distribution, p,(x) of systems
2 and 3 are greater than 0.5 and the systems are likely to receive (p.,a;"(x)) =
(0.7,4/1.3) for vx(x) < 10 and then (0.9,v/1.3) for vi(x) > 10. This explains why
PFM(PSy1) converges to 0.9 for the positively skewed H;(x). In the negatively skewed
distribution of H;(x), ps(x) of the infeasible but superior system lies in the range of
(0.5 — vF,0.5 + ] which makes system 3 receive 0 < w, < 1 or 0 < wg < 1 quite
often. This, in turns, makes Zj(x) of system 3 converge to E[G(3)] = —1 which is
better than the true optimal value, E[G(2)] = 0. As a result, PFM(PSy;) tends to
choose system 3 as the sample best and performs no better than the naive linear
penalty function.

This caveat of PFM(PSy;) can be avoided simply by (i) setting ) = 0 so that
PSyi essentially becomes adaptive PS. whose performance does not depend on the
underlying distribution of (,.(x); or (ii) using An large enough for (,.(x) to be ap-
proximately symmetric. Figure 20 shows that the performance of PFM(PSy;) with
7§ = 0 is similar to that of PFM(PS,;) at the beginning and then PFM(PS,,) later.
Figures 21 also shows that PFM(PSy;) performs similarly regardless of the underly-
ing distribution of H;(x) as An increases. An experimenter can use a flow chart in

Figure 22 to determine which penalty sequence to use.

2.5 Conclusions

In this chapter, we present PFM that converts a DOvS problem with stochastic
constraints into a series of unconstrained DOvS problems. PFM determines a penalty
value on a solution based on records of fast feasibility checks on the solution and it
forces the penalty sequence converge to zero for a strictly feasible solution but diverges

to oo for an infeasible solution. For even a tight solution, the penalty sequence
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Figure 22: A flow chart for the determination of a penalty sequence.

converges to zero with high probability or almost surely under some conditions. We
provide two penalty sequences, namely PS. and PS, with proofs of their convergence
properties and discuss parameter selections for their implementation. Our findings
show that the implementation of PS, is easier than PS; and its performance does not
depend on the underlying distribution of Hy(x). However, its performance depends
on the choice of parameters p. and 6,.

In addition, we show that PS; with increasing An, (x) works well and is robust to
the underlying distribution of Hy(x). PS; with fixed An,(x) = An also works well as
long as Assumption 3 is satisfied. If Assumption3 is not satisfied, it could introduces
a caveat especially when the distribution is negatively skewed and An,.(x) is small.
Since it is unlikely that means and variances of solutions in the search space and the
location of a the optimal solutions are known prior to simulation, either PS; with
increasing An,(x) or PS; with finite An and 7§ = 0 appears to be a reliable choice.

In this chapter, we make a feasibility decision simply based on comparison be-

tween an estimate of secondary performance measures and ¢,. However, others (e.g.,
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[4], 6], [16], and [29]) have developed more sophisticated statistical methods for fea-
sibility checks. These sophisticated methods can be combined with PFM to further

enhance the performance of the combined algorithm D+PFM. This topic is discussed

in Chapter IV.
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CHAPTER III

DESIGNING OPTIMAL WATER QUALITY
MONITORING NETWORK FOR RIVER SYSTEMS
USING CONSTRAINED DISCRETE OPTIMIZATION
VIA SIMULATION

Maintaining good water quality for river systems is an important problem in envi-
ronmental engineering. Many researchers have studied effects of contaminants, water
purifying techniques, and systemized water quality monitoring. This chapter deals
with the problem of designing a water quality monitoring network for river systems
where the goal is to find the optimal location of a finite number of monitoring devices
to detect a potential contamination event in a river network. Some researchers sug-
gest that a good network design should have small expected detection time and high
detection reliability. This problem is difficult because (a) a river system is large and
complicated, requiring huge computational time for its process simulation, (b) the
two performance measures (detection time and reliability) are observed only through
stochastic simulation when uncertainties in spill and rain events are considered, and
(c) detection time and reliability criteria are opposing criteria requiring balanced
optimal solutions.

Many researchers have studied water quality monitoring for river systems. For
example, [35] give a comprehensive review of past approaches to the factors that
affect effective water quality monitoring network design. [27] design a monitoring
network based on a geometric analysis of river systems and demonstrate a simple
application in a hypothetical river system. [38] show that a dynamic analysis of

contaminant fate and transport may be necessary to solve this problem by formulating
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a bi-objective problem (minimizing the detection time and maximizing the reliability)
for the hypothetical river; and find the optimal placement of monitoring devices
using a genetic algorithm (GA) under relatively simple discrete uniform distributions
on spill events. [39] extend their previous work to a more complicated model that
accounts for rain events and a larger-sized river, namely, the Altamaha River. In
their work, the two objectives are combined into one objective by assigning a large
penalty value whenever a spill is not detected. They obtain a pre-determined number
of observations to estimate the combined objective prior to optimization and apply
the GA, assuming that the number of observations is large enough to ensure that
an estimated value for the combined objective function is close to its true expected
value. Although their proposed GA is shown to produce a good solution, (i) the GA
itself is a heuristic algorithm without any guarantee about convergence to the true
best solution; (ii) it is well known that the number of pre-determined observations
may be too few, causing high estimation error, or too many, wasting computation
time especially when one run takes long. For example, see [24]. Also, due to the use
of a large penalty value when they combine two objectives, the GA tends to return a
solution with 100% or the highest possible reliability. If a decision maker is interested
in finding a solution with the smallest detection time among the solutions whose
reliability is at least, say, 95%, the GA may not be the best method because it does
not have any control on feasibility of the returned solution.

In this chapter, the water quality monitoring design problem is formulated as an
optimization via simulation (OvS) problem with a constraint on reliability, assum-
ing that a decision maker wants to identify the best solution among those whose
reliability level is greater than or equal to a constant. In the simulation society, a
number of algorithms for an OvS problem have been developed and shown to perform
significantly better than heuristic algorithms in a variety of stochastic optimization

problems where the objective function needs to be estimated by simulation. An
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OvS algorithm sequentially obtains additional observations as needed until stopping
criteria are satisfied and finds the best or a near-best solution with global or local
convergence.

The previous chapter presents thorough theoretical developments and convergence
proofs of PFM. From the convergence properties of PFM, one can choose a good
penalty sequence for PFM that is reliable and robust under different mean and vari-
ance configurations of solutions in the search space of an optimization problem in
consideration. Thus, the contributions of this chapter are on addressing the choices
of implementation parameters of NP4+PFM specifically tuned for the water qual-
ity monitoring design problem; demonstrating that the new optimization algorithm
works significantly better than a popularly used method in environmental manage-
ment; and solving the water quality monitoring design problem for the Altamaha
River and studying how the best location changes when more random factors (that
have not considered in literature) are considered.

This chapter is organized as follows: Section 3.1 formulates the problem consid-
ered in the chapter, describes process simulation for hydrodynamics and contam-
inant transport in a river, introduces frameworks of DOvS algorithms and PFM,
respectively, and gives the NP+PFM algorithm. Section 3.2 discusses detailed imple-
mentation issues of the NP+PFM algorithm for designing the optimal water quality
monitoring network. Experimental results of applying the NP+PFM algorithm to
the Altamaha River are summarized in Section 3.3, followed by concluding remarks

in Section 3.4.

3.1 Background

This section includes problem formulation and a description of process simulation

with hydrodynamics and contaminant transport in river systems. Then the section
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introduces general frameworks for DOvS algorithms and PFM, and presents an al-
gorithmic statement of NP+PFM. All notation needed throughout the chapter is

summarized in a table of Appendix B.
3.1.1 Problem

A river network system has N nodes and each node can be a possible monitoring
station or a possible spill location. Let I be the index set, I = {1,2,..., N}. The
number of monitoring devices is M and M < N. Each solution x represents a
location of M devices and is denoted as an M dimensional vector, x = (z1, Z2, ..., Tps)
such that z, € I foru =1,.... M and z, # x, for u # v. It is also assumed that
1 < T3 < ... < xpr to prevent the repetition of solutions (e.g., (1, 2, 3), (3, 2, 1), (2,
1, 3) etc. are the same solution). Set © is defined as the set of all possible solutions.

Let tq4(x,) represent detection time at the monitoring location x, which is the
first time when the concentration level at x, goes over the detection threshold of a

monitoring device, Cy,. Then the elapsed detection time at x, is defined as,

tq(w,) — 8%, if a contaminant is detected at z,;
d(z,) =

0, otherwise,

where S is a contaminant injection time (i.e., the starting time of a contaminant

spill event). The minimum elapsed detection time for x is defined as

t(x) = 1gii<nM d(z,).

An indicator R(x) is

R(x) 0, if none of monitoring devices detects a contaminant (i.e., ¢(x) = 00);
X) =
1, otherwise.

The two main outputs are ¢(x) and R(x) and they are only observed by stochastic
simulation. Notation ¢;(x) and R;(x) represent observations obtained from the ith

run of stochastic simulation.
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Let E[Y] and Var[Y] represent expectation and variance of a random variable Y,
respectively. The expected reliability is defined as P(R;(x) = 1), the probability that
a spill is detected. The minimum required reliability level is denoted as ¢q. Then the

problem is formulated as follows:

argmin, o E[t;(x) | R;(x) = 1]
subject to  P(R;(x)=1) > g, (7)
ti(x) € R, Ri(x) € {0,1}, 0 < g < 1.

Note that the objective function is the conditional expectation of ¢;(x) given the event
that a spill is detected. It is assumed that E[t;(x) | R;(x) = 1], Var[t;(x) | R;(x) = 1],
E[R;(x)] and Var|R;(x)] exist and are finite real numbers, which implies Assump-
tion 1 satisfied.

The next subsection describes how to generate ¢;(x) and R;(x) using a process

simulation with randomness in contaminant spill and rainfall events.
3.1.2 Process Simulation

Process simulation is needed to simulate hydrodynamics and contaminant transport
in a river system. A popular software package is the Storm Water Management
Model (SWMM) developed by U.S. Environmental Protection Agency (EPA). As in
the EPA user manual [30], SWMM is capable of simulating a dynamic flow model
with rainfall events and a variety of watershed conditions for an urban area. SWMM
takes as inputs (i) geologic and geometric data and basic hydrodynamics data to
construct the river, (ii) spill location, spill intensity, and spill time of contaminant,
and (iii) rain intensities over a time period for each location. In this chapter, geologic
and basic hydrodynamics are fixed but contaminant spill and rainfall events contain
randomness.

Three random variables are needed to simulate a spill event for the 7th run: the

spill location LY, spill intensity I, and spill starting time S°. Also, we need a
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random variable which simulates a rainfall event, and there are a number of ways to
generate the events. [39] divide the whole river region into M* number of subregions,
called sub-catchments. Each sub-catchment contains neighborly nodes in a subregion
and a rain pattern for the sub-catchment is randomly chosen from a number of pre-
generated rain patterns. Let P represent a rain pattern for the mth sub-catchment
in the ith simulation run. A vector P® = (P%,..., P%..) denotes rain patterns for
the entire region in the 7th simulation run.

For randomly generated input data (L7, I, S, P®) and geologic information
(locations, elevations, and shapes of nodes and reaches placed between nodes), one
process simulation run returns a large binary output file including concentration levels

at each node at every constant inter-reporting time of the simulation clock. Each

output file provides one realization of t;(x) and one realization of R;(x).
3.1.3 DOvS and PFM

In this section, we explain how we combine a DOvS algorithm with the process sim-
ulation and briefly review PFM. As shown in Figure 23, at each search iteration, a
DOvS algorithm samples candidate solutions x and obtains additional observations
from each sampled solution. If stopping criteria are satisfied, the algorithm stops
and returns the current best solution as the optimal solution. Otherwise, it updates
the solution sampling strategy and repeats previous steps. Unfortunately, existing
DOvS algorithms assume deterministic constraints and cannot handle stochastic con-
straints. Thus, they are not directly applicable to the problem considered in this
chapter because it has a stochastic constraint on reliability. The previous chapter
proposes PFM that enables a DOvS algorithm to solve stochastically constrained
DOvVS problems. Note that the process simulation requires extensive computational
costs but a DOvS algorithm does not. Also, results from the process simulation can

be reused if they have been generated and saved. Thus, a simpler version of PFM,
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Figure 23: General structure of DOvS with process simulation.

the penalty sequence with constants (PS.), is used in this chapter. Before presenting

the simpler version of PFM, additional notation is needed.

Ti(x) = W Z?:U’i(x) ti(x)R;(x), conditional sample mean of ¢;(x) up to iter-
i=1 i(X

ation k given the event that a spill is detected;

Ri(x) := n%l(x) Z?:”’i‘(x) R;(x), cumulative sample mean of R;(x) up to iteration k.
PFM consists of a measure of constraint violation and a penalty sequence. For
Problem (7), a measure of constraint violation is max(0, ¢g— Ry (x)) and with a constant

An,(x) = An, penalty sequence A" (x) is defined as

A=1(x) X 0, if Rip(x) < ;
A% (x) = . —k( e ®
A=1(x) X Oy, if Rp(x) > g,

where \°(x) = A" is an initial penalty constant for the constraint, 6, is an appreciation
factor, and 6, is a depreciation factor such that 6, > 1 and 0 < 0; < 1. With PFM,
Zp(x) = Tr(x)+ A% (x) x max{0, ¢g— Rj(x)} is calculated. Then, to solve Problem (7),

a solution with the smallest Z(x) is selected as the current best at search iteration
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Section 2.2 shows that a solution with the smallest Zi(x) at search iteration k
converges to the true best feasible solution to Problem (7) as k goes to infinity when
(i) PFM is designed in a way that the penalty value of a feasible solution converges
to zero but diverges to infinity for an infeasible solution and (ii) a globally convergent
DOvS algorithm is applied with the PFM. The version of PFM presented above does
satisfy the convergence property when no solution is located right on the boundary
of feasible/infeasible regions (i.e., no active constraint). However, if a solution has an
active constraint, the penalty value of a solution with an active constraint converges
in distribution to a random variable with two possible values: zero and infinity as
in Section 2.2.2. Recall that Section 2.3.2 provides a direction for choosing good
parameters which balance between fast convergence and high probability of returning

a true optimal solution when PS, is used.
3.1.4 NP+PFM

Among DOvS algorithms, we choose a version of NP presented in [28]. NP focuses
on a special region called the most promising region and spends more computa-
tional efforts in the most promising region by sampling more solutions from it. More
specifically, NP systematically partitions the promising region into a number of sub-
regions. Then it samples and assesses solutions from the subregions. At the same
time, it keeps sampling some solutions from the region outside the most promising
region called the surrounding region. If the current sample best solution is in one
of the subregions, the subregion with the current sample best will be the next most
promising region. Otherwise, the most promising region becomes the whole set, ©.

Prior to the description of NP4+PFM, some additional notation for NP is defined first:

Ry := the most promising region at search iteration k;
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Ry () := the (th subregion at search iteration k;
© \ Ry := the surrounding region at search iteration k;
Sy := the set of solutions sampled at iteration k:;
V) := the set of all solutions visited up to iteration k;
w := the number of subregions;
T := the total number of sampled solutions at iteration k; and
T,(¢) := the number of sampled solutions at iteration k from subregion ¢.
We specialize NP+PFM for the water quality monitoring design problem and its
detailed steps are given in Figure 24.
[34] point out that the performance of NP on a combinatorial type problem highly
depends on how to index nodes, partition a search space, and sample solutions. The
next section discusses how to efficiently perform each step in NP+PFM including

stopping criteria.
3.2 Implementation

This section addresses implementation issues in NP4+PFM for the water quality mon-

itoring design problem including indexing, partitioning, sampling, and stopping.
3.2.1 Indexing

Many search methods tend to generate alternative solutions from neighbors of the
current best solution. In this chapter, a solution is a M-dimensional vector whose
elements are in the increasing order of integers. Changing a few elements in x up and
down generates neighbor solutions. As NP+PFM spends more computing efforts on
the most promising region, it would be desirable if neighbors of a solution tend to
share the same feasibility with the current solution.

The idea is to index each node based on quality where the quality is defined as
the probability that a spill is detected, assuming only one monitoring device is placed

at the node and the device does not miss a spill under any circumstances. Then
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Algorithm NP + PFM

Step 0. Initialization:

- Perform the indexing algorithm (Section 3.2.1.).
-Set k=1, R, =0, and V;, = 0.

- Sample an initial solution X randomly from ©.
- Select constants w, 7, An, \°(x), 6, and 6.

Step 1. Partitioning: (Section 3.2.2.)

- Partition Ry into w disjoint subregions, Ry (1), Ri(2), ..., Rk (w). If Ry is a singleton,
set Ri(1) = Ry and Ri(2) = ... = Rp(w) = 0.

- Set Ri(w + 1) = © \ Ry, which denotes the surrounding region.

Step 2. Sampling Solutions: (Section 3.2.3.)

- From each region Ry(j),7 = 1,2, ...,w + 1, sample 74(j) solutions. Always sample
x;_, so that x;_, € &p.

- Include all sampled solutions x into S.

- If x ¢ V) for any x € S, then V, = Vi, U {x}.

Step 3. Estimating the Promising Index:

- For each x € Sy, take An observations, set n,, (X) = n,, ,(x)-+An where ng(x) = 0,
for any x € O, and update Zj(x).

- Select X such that X} = argmin, ¢, Z5(x).

Step 4. Selecting the Most Promising Region and Backtracking:
- Determine j* such that xj € Ry (j*).

- If Ry(5%) C Ri, then Ry = Ri(5*). Otherwise, Ry1 = ©.

-Set k=Fk+ 1.

Step 5. Stopping Rule (Section 3.2.4.)
- If the stopping rule is satisfied, then stop and return xj as the best solution. Oth-
erwise go to Step 1.

Figure 24: Algorithm NP + PFM for the water quality monitoring design problem.
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Figure 25: The hypothetical river with 12 nodes indexed based on quality.

nodes are indexed in the decreasing order of the quality. If there are nodes with the
same quality, they are indexed by the increasing order of the distance from the node
with the highest quality. Figure 25 shows quality levels in parenthesis for all nodes in
the hypothetical river [27], assuming equal spill probability at each node (i.e., 1/12),
and the indices of nodes based on the quality levels. This indexing method helps

neighbors of a solution show similar levels of reliability.
3.2.2 Partitioning

The current most promising region R needs to be partitioned into two subregions,
Ri(1) and Rg(2), if w = 2. The partitioning scheme in this chapter is based on
the bisection method. More specifically, the algorithm selects an element of x whose
range of possible values contains two or more integers. Then the partitioning is done
by dividing the range into approximately two equal ranges.

Figure 26 illustrates the partitioning scheme for the monitoring system with three
monitoring devices in the hypothetical river, assuming no backtracking occurs by

k = 5. Although the partitioning is presented only for w = 2 in this chapter, it can
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Figure 26: Partitioning for the hypothetical river.

be easily extended to w > 3, in which case the range can be divided into w number

of equal ranges.
3.2.3 Sampling

Solutions are sampled from three regions: two subregions, Ry (1) and R, (2), and the
surrounding region, © \ Ry. Since the size of two subregions can be different, 7(1)
and 75(2) are set to proportional to the sizes of subregions 1 and 2, respectively.
Although the size of the surrounding region © \ R}, tends to be much bigger than
Ry, the |7:/2] or |Rg| number, whichever is smaller, of solutions are sampled from
Ry and then the rest 7, — 7(1) — 7%(2) number of solutions are sampled from the
surrounding region. This ensures that NP+PFM visits more solutions in the most
promising region. Moreover, 7;(1) and 7(2) are proportional to the sizes of Rg(1)
and Ry(2), respectively. Detailed steps of the sampling scheme is given in Figure 27.

In general, it is important that a search algorithm visits a few number of neighbor
solutions to the current best solution because good solutions tend to be herded to-
gether. Visiting neighbor solutions is more important for OvS problems with stochas-

tic constraints. Finding the best feasible solution becomes difficult when the best
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Sampling scheme

(1) = min ( |Ry(1)], max <1, L% : %’“J)),

1. Set 7(2) = min ( [R(2)|, [ %] — Tk<1)>; and

Tk<3) =T — Tk(l) — Tk(2)

2. Sample 75 (1) and 73 (2) number of different solutions from Ry (1) and Ry (2) using
the uniform sampling, respectively.

3. If Ry is not a singleton (i.e., |Rg| > 2), sample 7(3) number of different
solutions by the uniform sampling from © \ R. Otherwise, sample [ | number
of different solutions by the local search sampling and the rest number of
different solutions by the uniform sampling from © \ Ry.

Figure 27: Sampling scheme for NP+PFM.

feasible solution is the one whose reliability is close to the minimum reliability level,
q. An extreme case occurs when the reliability of the best feasible solution is exactly
equal to ¢, in which case there always exists positive probability that the solution is
declared as infeasible at each visit to the solution. This, in turns, increases the chance
of labeling the region that contains the best feasible as the surrounding region. PFM
is designed to ensure that NP+PFM eventually selects the best feasible as long as
there is nonzero probability of visiting the solution. When the most promising region
is not a singleton, the sampling scheme ensures visiting some neighbor solutions to
the current best. To ensure that this happens also when Ry is a singleton, a local
search sampling is adopted. In the local search sampling, two methods are used. The
first method randomly selects an element x,« from the current best solution in the
singleton set Ry, and then change the value of z,« by +1 randomly. The second
method varies the value of x,« to any integer between x,«_1 and x,+,1. For example,

if the solution in a singleton set Ry, is (1,4,7) and x,» = 4 (or u* = 2), then the first
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method randomly selects either (1,3,7) or (1,5, 7) with equal probability and the sec-
ond method generates one solution among (1,2,7),(1,3,7),(1,5,7), and (1,6, 7) with
equal probability. About half of |7;/2] number of solutions are generated using the
first method and the other half number of solutions are generated using the second

method.
3.2.4 Stopping Criteria

The global convergence is achieved when k goes to infinity but, in practice, the algo-
rithm should terminate with finite search iterations. [14] give some popular stopping
criteria. In this chapter, the following stopping criterion is used: the algorithm stops

when event F; occurs consecutively ng times, where
Ey ={x, =%5_1, |Zk(X}) — Zk—1(x5_1)| < €, R(k) is a singleton} (9)
for a small positive constant e. The decision maker needs to choose € and ng.

3.3 Case Study

This section presents the performance of NP + PFM compared to the GA algorithm
in [39] on the water quality monitoring design problem for the Altamaha River. The
Altamaha River is located in Georgia, U.S.A. and known to have the largest watershed
in the State. Figure 28 shows the Altamaha River with one hundred nodes which
are located on the most upstream points, confluences, and points evenly distributed
along each river reach. Each node can be a possible monitoring location or a spill
location. The Altamaha River is composed of 60 river reaches and total 62 river
junctions. To construct river system, U.S. Geological Survey (USGS) in the National
Elevation Dataset is used as in [39]. Each process simulation continues until the
simulation clock reaches 40 days and uses every 15 minutes of the simulation clock

as the inter-reporting time.
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Figure 28: Shape of the Altamaha River and possible monitoring locations [39].

[39] define

) detected time — spill time, if detected at z,;
d'(z,) =
P,, otherwise,

where P, is a constant penalty value and t'(x) = minj<,<p d'(x,). Then they solve
argmin, o E[t'(x)] by the GA algorithm.

As discussed in the beginning of this chapter, the GA tends to return a solution
with 100% or the highest possible reliability. For implementation of the GA, three
parameters are needed: the number of observations (i.e., SWMM runs), a generation
size, and a population size. Large values of these parameters help the GA return
a solution close to the true best solution but at the cost of computational efforts.
In general, it is hard to pick these parameters that balance between computational
efficiency and accuracy in a returned solution. In addition, when a decision maker
is more interested in finding a solution with the shortest detection time at the slight
cost of reliability (e.g., 99% or 95%), it is hard to use the GA because there is no
available information about what values of P, would be appropriate to find the best

feasible solution.

93



Figure 29: Ten sub-catchments of the Altamaha River [37].

3.3.1 Experimental Setup

Spill location L7 is assumed as a discrete random variable from sample space {1,2,...,100}
and it is modeled as either a uniform discrete random variable or a non-uniform dis-
crete random variable. The non-uniformly distributed L? case is assumed to detect a
specific type of chemicals produced by paper mill factories. Two paper mill factories
exist close to nodes 30 and 68 in Figure 29 around the Altamaha River [23] thus the
probability of occurring a spill at the two nodes is assumed to be ten times higher than
the probability at the other nodes. Threshold Cy, for the monitoring devices is set
to Cy, € {0.0001,0.05}. Then, four different cases are examined: Cy, = 0.0001 mg/¢
and uniformly distributed L?; Cy, = 0.0001 mg/¢ and non-uniformly distributed L?;
Ciy = 0.05 mg/f, and uniformly distributed L7; and Cy, = 0.05 mg/¢ and non-
uniformly distributed LY. Under each case, S, I°, PR, M, and q are varied.

For a spill event, only one single instantaneous spill is considered. Spill starting

time S is uniformly distributed between 0 and 240 hours in the simulation clock and
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intensity of a spill I is uniformly distributed between 10 and 1000 g/¢. The hydro-
dynamics of the river system is adopted from [37] where the steady-state hydraulic
system is calibrated for the flow pattern in the river based on the data obtained
from annual average flow rates measured in 2006 at twenty USGS gauging stations
that are distributed throughout the river network. In this application, all lakes and
impoundments were approximated as river reaches to simplify the network with an
adjustment to the length of the reach.

The rain events for the case study are also generated in the same way as in [37].
The Altamaha River watershed is divided into ten sub-catchments as in Figure 29.
The rainfall measurements are obtained from different USGS observation stations
close to these 10 sub-catchments in the year 2006. Then, using the results of the
statistical analysis of these observations, five rain patterns are generated for each sub-
catchment. Note that these five rain patterns are different for each sub-catchment
and thus there are total fifty rain patterns for the entire watershed. Also, each
rain pattern describes time-dependent rainfall events and keeps changing hydrologic
conditions in each sub-catchment during process simulation. For each SWMM run,
one out of five rain patterns is randomly selected for each sub-catchment, which
defines P. All nodes in the same sub-catchment have the same rain pattern during
process simulation. The number of monitoring devices M is set to M € {5,6,7,10}.
Minimum reliability requirement ¢ is ¢ € {0.9, 1.0}, if Cy, = 0.0001 mg/¢. Otherwise
q € {0.9,0.95} are used since there is no solution with 100% detection reliability.

In a SWMM run, simulating hydrodynamics under a random rain event P/ takes
long but simulating contaminant transports under the hydrodynamics can be done
relatively fast. Thus, [37] design one SWMM run to generate 100 observations of t'(x)
by (i) simulating hydrodynamics with P and (ii) performing 100 different spill events,

each with randomly generated I° and S?, under the hydrodynamics. Moreover, [37]

77

generate 1000 SWMM runs (thus, 100,000 observations of ¢'(x)) and apply the GA to
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find a solution with the smallest sample mean of the 100,000 observations. Following
their experiments, when the spill location is uniformly distributed, one SWMM run
performs 100 spill events (one spill event at each node with randomly generated I’
and S?) under shared hydrodynamics and obtain 100 observations of ¢(x) and R(x).
When the spill location is non-uniformly distributed, 10 spill events are simulated at
both nodes 30 and 68 and one spill event is simulated at each of the other nodes in
one SWMM run. Thus, one SWMM run performs 118 spill events resulting in 118
observations of ¢;(x) and R;(x), respectively. While the GA completes 1000 SWMM
runs prior to optimization search, NP-+PFM performs additional SWMM runs as the
optimization search continues and NP+PFM stops either when the stopping criterion
in Section 3.2.4 is satisfied with ny = 10 and € = 0.5 or when the total number of
SWMM runs reaches 100.

For the implementation of the GA, it always takes 1000 SWMM runs for each
solution visited. As parameters of the GA, a population size of 100 and a generation
size of 400 are initially used. Unless the GA with the initial population and generation
sizes finds a comparable solution to that of NP4+PFM, the population and generation
sizes are increased up to 200 and 800, respectively, until a comparable solution is
found by the GA. This chapter reports only the best results obtained by the GA with
this parameter adjustment.

It is clear that monitoring devices should be located toward downstream if one is
to increase reliability, but this tends to increase the expected detection time. Thus
there exists positive dependence between reliability and the expected detection time.
It implies that the best feasible solution is likely (but not always) to have reliability
exactly equal to or close to q. Thus 6, and 6; need to be selected carefully to ensure
both convergence and efficiency as discussed in section 2.3.2. Recall p. represent the
probability that \,*(x) converges to 0 for any active constraint. It is known that

V1.3<60, <+v1.9and 0.7 < p. < 0.9 can generally be a good compromise regarding
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efficiency and accuracy for PS.. Thus we select 6, = V1.5 and 6, = % which
ensures p. ~ 0.8082 by Theorem 4. For the implementation of NP+PFM, 7, = 200
is used. Also, An = 100 is selected for uniform spill probability case and An = 118
is selected for non-uniform spill probability cases. This ensures that each iteration of
NP+PFM makes one SWMM run.

Three performance measures are reported to compare the GA and NP+PFM:
NUM, EMD and ER. NUM represents the number of SWMM runs required by each
optimization algorithm until it stops. It takes about 2 hours to complete one SWMM
run on a PC with 2.6 GHz Intel Core 3 Quad Q8300 CPU while one iteration of
NP+PFM takes less than two seconds. This implies that, with a single CPU, it would
take about 2000 hours (83 days) to perform 1000 SWMM runs. In this chapter, mul-
tiple CPUs were used to obtain 1000 SWMM runs in two weeks. Since computation
cost mainly depends on the number of SWMM runs needed, NUM is used as a mea-
sure for computation cost. Note that NUM is always 1000 for the GA because it
requires the 1000 SWMM runs to be completed prior to optimization. On the other
hand, NUM is usually smaller than 1000 for NP+PFM because it only continues until
stopping criteria are satisfied.

EMD and ER are quality measures for solutions returned by the two competing
methods. EMD denotes estimated conditional minimum detection time in minutes
and is calculated as conditional sample average of ;(x) given R;(x) = 1 over 1000
SWMM runs. EMD can be interpreted as estimated time interval between the time
when a spill occurs and the time when the spill is detected. ER represents estimated
reliability. ER is calculated as sample average of R;(x) over 1000 SWMM runs.
Note that EMD and ER values reported in the tables are calculated based on all
observations from 1000 SWMM runs, even when NP+PFM stops with a fewer number
of iterations than 1000. EMD and ER are meaningful up to the tenths digit and the

ten-thousandths digit, respectively.
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3.3.2 Results

The main results are summarized in this section. For all figures in this section, the

node indices are generated by rules in Section 3.1.
3.3.2.1  Uniform spill probability and small threshold monitoring system

Figure 30 shows solutions returned by NP+PFM in red circles and GA in black
triangles when Cj, = 0.0001 mg/¢, uniformly distributed L7, and ¢ = 1.0 for M =
5,6,7, and 10. When M =5 and 7, both NP+PFM and GA return exactly the same
solution and when M = 6 and 10, only one placement from NP+PFM is different of
that from GA.

Table 7 shows that NP+PFM uses a smaller number of SWMM runs (smaller
NUM) and yet returns equal or better solutions than GA. More specifically, when
M = 6, NP+PFM stopped only after 107 SWMM runs and the returned solution’s
EMD is 16 minutes shorter than that of the solution returned by the GA with 1000
SWMM runs. That is, the GA and NP+PFM find a similar solution with respect to
EMD but NP+PFM saves approximately 1786 hours of CPU computation time when
using a single PC with 2.6 GHz Intel Core 3 Quad Q8300 CPU.

Figure 31 and Table 8 show results when Cy, = 0.0001 mg/¢, uniformly distributed
LS

79

and ¢ = 0.9. As GA returns the same solutions when ¢ = 1.0, only the results
of NP+PFM are reported as discussed earlier. The optimal solutions when ¢ = 0.9
tend to be located in the more upstream than those when ¢ = 1.0. Table 8 shows
NUM, EMD, and ER when ¢ = 0.9. EMD are smaller than those when ¢ = 1.0. Note
that Cy, = 0.0001 mg/¢ is so small that it rarely misses any spill. As a result, the
estimated reliability is simply the maximum probability that the monitoring devices

can achieve to detect a spill assuming no miss.
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© : Solution from NP + PFM
A : Solution from GA

Figure 30: Optimal solutions when Cy, = 0.0001 mg/¢, uniformly distributed L7,

and ¢ = 1.0.

Table 7: Results of NP4+PFM and GA when Cy, = 0.0001 mg/¢, uniformly dis-

tributed L and ¢ = 1.0.

M NP+PFM GA

NUM EMD ER NUM EMD ER
bt 91  3156.1 1.0000 1000 3156.1 1.0000
6 107 2718.8 1.0000 1000 2734.8 1.0000
7 277 2329.0 1.0000 1000 2329.0 1.0000
10 757 1917.3 1.0000 1000 1923.3 1.0000

Table 8: Results of NP+PFM when Cy, = 0.0001 mg/¢, uniformly distributed L7,

S

and ¢ = 0.9.
M NUM EMD ER
5 154 2782.7 0.9300
6 321 2407.1 0.9300
7 205 22227 0.9300
10 459  1738.1 0.9100
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© : Solution from NP + PFM

Figure 31: Optimal solutions when Cy, = 0.0001 mg/¢, uniformly distributed L7,
and ¢ = 0.9.

Table 9: Results of NP+PFM and GA when Cy, = 0.0001 mg/¢, non-uniformly
distributed L7, and ¢ = 1.0.

M NP+PFM GA

NUM EMD ER NUM EMD ER

5 79 27782 1.0000 1000 2778.2 1.0000
6 126 2407.1 1.0000 1000 2407.1 1.0000
7
1

241 2122.8 1.0000 1000 2122.8 1.0000
0 827 16779 1.0000 1000 1762.2 1.0000

Table 10: Results of NP+PFM when Cy, = 0.0001 mg/¢, non-uniformly distributed
L? and ¢ = 0.9.

M NUM EMD ER

) 120 2450.4 0.9407
6 305  2144.6 0.9407
7 156 1930.0 0.9407
10 602  1488.9 0.9068
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° : Solution from NP + PFM
A : Solution from GA
[ : Location of Paper Mill Factory

Figure 32: Optimal solutions when Cy, = 0.0001mg/¢, non-uniformly distributed
L? and q = 1.0.

7
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O solution from NP + PFM
[ : Location of Paper Mill Factory

Figure 33: Optimal solutions when Cy, = 0.0001 mg/¢, non-uniformly distributed
L? and ¢ =0.9.

7
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3.3.2.2  Non-uniform spill probability and small threshold monitoring system

Now this section discusses the results with Cy, = 0.0001 mg/¢ and non-uniformly
distributed L. Figures 32 and 33 show optimal locations of monitoring devices when
g = 1.0 and ¢ = 0.9, respectively. In Figure 32, solutions from NP+PFM and GA
are exactly same when M = 5,6, and 7, but for M = 10 case, results from NP4+PFM
and GA are different. The monitoring devices are located exactly on the nodes close
to the paper mill factories for any value of M and for both NP4+PFM and GA. When
g = 0.9, monitors tend to be placed upward compared to the ¢ = 1.0 case as shown
in Figure 32 and Figure 33, but two monitoring devices are still located exactly on
the nodes closed to the paper mill factories.

Tables 9 and 10 show three main performance measures. Table 9 shows that
NP+PFM returns the same or a better solution with significantly smaller number of

SWMM runs than the GA does.
3.3.2.3  Uniform spill probability and large threshold monitoring system

Next this section considers the case with uniformly distributed L7 but larger threshold
Cy, (ie., Cy, = 0.05 mg/l). The larger threshold Cj, increases the chance that a
monitoring device misses a spill due to flow speed and dilution by dynamic flow and
rain. Figure 34 shows solutions returned by NP4+PFM and GA and Table 11 shows
NUM, EMD, and ER of the returned solutions. NP+PFM returns solutions with
smaller EMD and smaller ER. Especially, when M = 10, a solution from NP+PFM
saves about 400 minutes according to EMD but its detection reliability is also dropped
by 1.34 % compared to a solution from GA.

By comparing Figures 31 and 35, one can notice that the optimal locations of
monitoring devices when Cy, = 0.05 mg/¢ tend to be placed in more downstream
than those when Cy, = 0.0001 mg/¢. Also, Table 12 shows that NP+PFM needs

more SWMM runs (thus, larger NUM) until it stops and the estimated detection
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© : Solution from NP + PFM
A : Solution from GA

Figure 34: Optimal solutions with Cy, = 0.05 mg/¢, uniformly distributed L7, and
q = 0.95.
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© : Solution from NP + PFM

Figure 35: Optimal solutions with Cy, = 0.05 mg/¢, uniformly distributed L7, and
q=0.9.
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Table 11: Results of NP+PFM and GA when Cy;, = 0.05 mg/¢, uniformly distributed
L7, and g = 0.95.
M NP+PFM GA
NUM EMD ER NUM EMD ER

893  3750.7 0.9534 1000 3779.9 0.9559

656  3230.0 0.9570 1000 3322.1 0.9600

598  2764.7 0.9553 1000 3043.0 0.9728
0 809 2272.6 0.9626 1000 2670.3 0.9760

= ~J O Ot

Table 12: Results of NP+PFM when Cy, = 0.05 mg/¢, uniformly distributed L7,
and ¢ = 0.9.

M NUM EMD ER

) 614  3349.7 0.9041
6 702 2851.2 0.9018
7 800  2668.4 0.9162
10 586  2130.3 0.9021

times (EMD) are much larger when Cy, = 0.05 mg/¢ than when Cy, = 0.0001 mg/?.
It is well expected because this case is more difficult than the first case with the small
threshold. The estimated reliability levels (ER) of the returned solutions are greater
than ¢ = 0.9, providing an evidence that the solutions are feasible, but are smaller

than the reliability levels obtained when Cy, = 0.0001 mg/¢.
3.3.2.4  Non-uniform spill probability and large threshold monitoring system

Finally, non-uniformly distributed L7 are considered with Cy, = 0.05 mg/¢. Figure 36
and Table 13 show the optimal solutions returned by NP4+PFM and GA and their
performance measures, respectively. Similar to Table 11, NP4+PFM provides solutions
whose EMD is smaller and ER is also smaller than a solution from GA.

Solutions returned by NP4+PFM are shown in Figure 37 and Table 14 when ¢ = 0.9
is considered. Compared to the second case where Cy, = 0.0001 mg/¢ and non-
uniformly distributed L%, this is a more difficult case because a spill can be missed.

NP+PFM needs more SWMM runs until it stops and EMD are larger than those
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° : Solution from NP + PFM
A : Solution from GA
[ : Location of Paper Mill Factory

Figure 36: Optimal solutions with Cy, = 0.05 mg/¢, non-uniform L?, and ¢ = 0.95.
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© : Solution from NP + PFM
- Paper Mill Factory

Figure 37: Optimal solutions with Cy, = 0.05 mg/¢, non-uniform Lf, and ¢ = 0.9.
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Table 13: Results of NP+PFM and GA when Cy, = 0.05 mg/¢, non-uniformly
distributed L7, and ¢ = 0.95.

M NP+PFM GA

NUM EMD ER NUM EMD ER

5 421 3198.3 0.9527 1000 3446.4 0.9674
6 954 27954 0.9571 1000 2895.5 0.9706
7
1

o044 2472.8 0.9507 1000 2660.3 0.9763
0 1000 1961.5 0.9545 1000 2269.9 0.9808

Table 14: Results of NP+PFM when Cy, = 0.05 mg/¢, non-uniformly distributed
L7, and ¢ = 0.9.

M NUM EMD ER

) 320 2834.9 0.9035
6 350 2498.5 0.9109
7 o043 2261.1 0.9132
10 675 1835.3 0.9135

from the second case. The returned solutions for M = 5,6,7, and 10 seem all feasible

based on estimated reliability ER.

3.4 Conclusions

This chapter considers the problem of designing a water quality monitoring network
for river systems where the goal is to find the optimal location of a finite number
of monitoring devices that minimizes the expected detection time of a contaminant
spill event while guaranteeing detection reliability greater or equal to some constant.
The problem is formulated as a DOvS problem with a stochastic constraint and
implementation issues in a DOvS algorithm, namely NP4+PFM, are discussed.

The advantage of NP+PFM is that it obtains additional observations as needed
while the GA requires the decision maker to determine how many observations to
take prior to optimization. The chosen number of observations for the GA may be
too small, introducing large estimation error in performance measures which in turns

increases a chance to return a solution quite different from the true optimal, or too
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large, wasting time on taking unnecessary observations. In addition, NP+PFM with
the penalty sequence used in the chapter has a guarantee on global convergence when
there is no active constraint while the GA is a heuristic algorithm that does not
provide such guarantee.

The experimental results on the Altamaha River show that NP+PFM handles
feasibility of solutions on a stochastic constraint effectively and returns a good feasible
solution. Also, NP+PFM finds the same or better solution than the GA algorithm
with significant savings in computational efforts. The proposed algorithm can be
applicable to other river systems and extended to more realistic and complex settings
such as those that account for multiple spills, complicated rain patterns, or detection

error of a monitoring device.
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CHAPTER IV

IMPROVING PERFORMANCE OF PENALTY
FUNCTION WITH MEMORY BY APPROXIMATE
SIMULATION BUDGET ALLOCATION

In discrete optimization via simulation (DOvS), decision variables are discrete and the
number of potential solutions is large, requiring a search method to determine which
solutions to simulate in the next iteration. A number of efficient DOvS algorithms
are presented. For example, see [2], [5], [14], [15], [28], [33], and [40].

Recently stochastically constrained DOvS problems have received attentions from
the simulation community. For the problems, we propose penalty function with mem-
ory (PFM) to handle stochastic constraints on secondary performance measures in
Chapter II. PFM determines a penalty sequence of each solution based on past results
of feasibility checks and a DOvS algorithm combined with PFM, denoted as D+PFM,
can solve a stochastically constrained DOvS problem. To ensure a good performance
of D+PFM, two things need to happen: (i) PFM should make a correct decision on
feasibility with high probability when a solution is visited; and (ii) a DOvS algorithm
should find the most promising region (or solution) correctly at each search iteration.
The version proposed in Chapter II currently takes the equal number of observations
on each visited solution (equal allocation) and uses cumulative sample means to make
a feasibility decision or find a feasible promising region. If we can efficiently and accu-
rately select the most promising region (or solution) with accurate feasibility checks,
the performance of D4+PFM can be further improved.

For stochastically unconstrained DOvS problems, a number of ranking and selec-

tion (R&S) procedures are used to further improve efficiency or accuracy of a DOvS
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algorithm. For example, [8] and [28] propose statistical comparison procedures for
either cleaning up solutions at the end of the search (in order to find the best among
all solutions visited during the search) or assisting a DOvS algorithm with finding a
correct promising region. Although the statistical comparison procedures are shown
to be very useful for clean-up, it is known that they tend to ‘overdo’ when they are
applied within a DOvS algorithm at each search iteration because they try to provide
a guarantee on the probability of correctly selecting the true best solution (PCS). On
the other hand, there are statistical procedures called optimal computing budget al-
location (OCBA). These procedures allocate a finite computing budget (either count
or time) among a finite number of solutions to maximize PCS. OCBA often suffers
due to low PCS or inability telling how many observations would be needed for a
correct selection in R&S. However, OCBA finds a good application in DOvS because
DOvS algorithms need to allocate a finite budget among visited solutions at each
search iteration. For example, [12] presents that OCBA improves the performance of
optimization algorithms significantly compared to equal allocation.

To improve the performance of D+PFM for stochastically constrained DOvS prob-
lems, constrained R&S procedures can be considered. [4] and [13] propose statisti-
cally valid procedures that select the best feasible solution with PCS guarantee in the
presence of multiple stochastic constraints. They are good candidate procedures for
clean-up at the end of the optimization search. [16] and [20] provide optimal budget
allocation methods that allocate finite sampling budget to maximize the probabil-
ity of correctly selecting the best feasible solution. [16] allows observations to have
general marginal distributions but it is hard to implement their procedure when the
number of solutions is large. On the other hand, [20] provides a procedure, called
OCBA-CQO, that is easy to implement even with a large number of solutions but the
procedure requires the normal assumption on observations.

In this chapter, we focus on improving the performance of D+PFM by combining
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it with a budget allocation method. More specifically, we consider OCBA-CO from
[20] due to its easiness in implementation and applicability to a large number of
solutions, modify it so that convergence properties of D+PFM can be preserved when
the modified budget allocation method is combined with D+PFM, and test how much
improvement is achieved over equal allocation. We call the modified budget allocation
method the approximate budget allocation (ABA). ABA is different from OCBA-CO

in two aspects:

1. OCBA-CO always considers a fixed set of simulated solutions and re-allocates
cumulative total number of simulation budget among all solutions in the set at
each iteration. On the other hand, the size of a set of sampled solutions and
identities of elements in the set can be different in D+PFM at each iteration.
Thus ABA allocates only new additional simulation budget among sampled

solutions at each iteration.

2. Assuming a minimization problem, OCBA-CO chooses a solution with the
smallest sample mean of the primary performance measure as the sample best
among solutions whose estimates of the secondary performance measures satisfy
stochastic constraints. However, ABA combined with D+PFM (which we de-
note as D+PFM+ABA) define the sample best as a solution with the smallest
sum between sample mean of the primary performance measure and penalty

value.

This chapter is organized as follows: Section 4.1 defines our problem and notation,
and then briefly reviews PFM and OCBA-CO. Section 4.2 introduces D+PFM+ABA
and provides its asymptotic convergence properties along with proofs. Experimental
results of D+PFM+ABA on the three numerical examples are presented in Sec-

tion 4.3, followed by concluding remarks in Section 4.4.
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4.1 Background

In this section, we define our problem and notation, and review PFM and OCBA-CO.
4.1.1 Problem

From Section 2.1.1, recall that © represents the whole decision variable space which
is a discrete and finite set in R and x = (z1, ..., 24) represents a solution (or decision
variable). Let G(x) and H,y(x) represent the primary performance measure and the
secondary performance measure of the (th constraint, respectively and G;(x) and
Hy;(x) represent their ith observations from stochastic simulation. Then our DOvS

problem with stochastic constraints is defined as follows:

argmiﬂxee)E[G(X>]> (10)

subject to E[Hy(x)] > q¢, € A,

where m is the number of stochastic constraints and A is a set of all indices for
stochastic constraints (i.e., A = {1,2,...,m}). We also make the following assump-

tion throughout the chapter.

Assumption 4 The original problem (10) satisfies the following:

1. G;(x) are normally distributed and independent for all i = 1,2,..., given any
X € 0O,
2. Hy(x) are normally distributed and independent for all 1 = 1,2, ..., given any

te{l,2,...,m} and any x € O.

3. There exists a unique best feasible solution.

The first two assumptions in Assumption 4 are often used in R&S. In prac-
tice, G;(x) and Hy;(x) have approximate normal distributions, if G;(x) and Hy;(x)
are either within-replication averages or batch means. We test the performance of

D+PFM+ABA when the normal assumption is violated in Section 4.3.3.
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4.1.2 PFM

We review PFM. In this chapter, “solution x is visited” means that solution x is
simulated to obtain additional observations. Thus, it is possible that a solution is
sampled under a DOvS algorithm D, but not visited if no additional observation is
obtained from the solution based on a simulation budget allocation method. We list
notation for PFM below:
k = iteration counter;
r = counter for the number of visits;
vg(x) = the number of visits up to iteration k for x;
n,(x) = the total number of observations obtained up to the rth visit for x;
Ny, (X) = Ny, () (X), the total number of observations obtained up to iteration k for x;
An,(x) = the number of new observations obtained at the rth visit for x;
Gr(x) = ﬁ Z?;’i(x) G;(x), cumulative sample mean of observations G;(x) for the
primary performance measure up to iteration k;
Hy(x) = ﬁ Z?:”’i(x) Hy;(x), cumulative sample mean of observations Hy;(x) for
the fth secondary performance measure up to iteration k;
X; = the sample best among all sampled solutions up to iteration k; and
x? = the true best feasible solution up to iteration k.

As discussed in Section 2.2, a new objective function with PFM at search iteration
k is

Zp(x) = Gr(x) + Y [N\*(x) x max{0, g — H(x)}], (11)

leA

where \}* (x) is a penalty sequence of the ¢th constraint at visit vy, (x) for x. Whenever
a solution x is visited, a feasibility check is performed. If x is declared as feasible,
a positive constant smaller than 1 (depreciation factor) is multiplied to the previous
penalty sequence value, \;*"'(x). Similarly, if x is declared as feasible, a positive

constant larger than 1 (appreciation factor) is multiplied to A,*"*(x). In Section 2.2,
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two example penalty sequences, PS. and PSy are presented. PS; generally performs
better than PS. as shown in Sections 2.3 and 2.4 because PS,. uses same appreciation
and depreciation factors for every solution while PS¢ adaptively adjusts appreciation
and depreciation factors according to the level of feasibility of each solution.

When PSy with finite An,.(x) is used, we should guarantee Assumption 3: both
lim, o An,(x) = An(x) and symmetric marginal distributions of all secondary per-
formance measures. However, a simulation budget allocation method tends to change
An,(x) at every iteration and we may have a problem with either lim,_,,, An,(x) =
An(x) or symmetry of the underlying distribution of Hy(x). Therefore, throughout
this chapter, we consider only two penalty sequences that do not require Assump-
tion 3: (i) PS; with increasing An,(x) and (ii) an adaptive penalty sequence with
constants (APS,).

More specifically, APS, is constructed as follows: Recall S;*(x) = Z:’“:(lx ) Con(x)

nr—1(X)+An(x) Hp;(x)—qe

where (pr(x) =7 17 X v

Ny

and the infeasible probability,

vk (x) x
ﬁZ’k(X) _ Zr:l I[/U{kc(f;() ) < 0}‘ (12)

Prior to running APS,, the following parameters should be chosen:
e 0<hi <...<h,<05<hy1<...<hy, <1,
e l<ag,and0<d, <1, forallv=1,2,...,0.

Then APS, is defined as follows:
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Adaptive Penalty Sequence with Constants (APS,)

M) x o (x), if SPF(x) <0,
A (x) =
AT (x) x 0 (x), i SR (x) > 0,
where A\)(x) is the initial penalty constant \), ay*(x) is an appreciation function,

and §,"(x) is a depreciation function whose values are determined by p,*(x) and the

following table:

P (%) [0,h1)  [ha,ha) ..o (Pu—1,he] (B, 1]
ok (x) ag ay .. Ay—1 oy
52% (X) do dl e dv—l dv

Note that APS, is PS; with finite An,(x) and 75 = 0 but its convergence proofs
follow convergence proofs of PS, in Chapter II. In this chapter, if simulation budget
allocated at each iteration increases, then PS; is used. If the simulation budget is

finite but can be different at each iteration, then APS. is used.

4.1.3 OCBA-CO

In this section, we review OCBA-CO in [20]. OCBA-CO considers a fixed set, say
Q). Let T define a total computing budget we want to allocate and N(x) define the
number of simulation observations for solution x (i.e., T'= )" ., N(x)). The goal of
the optimal budget allocation is to intelligently control each N(x) in a way that PCS
is maximized. PCS is defined as follows:
PCS = P {Nea(Hn(x) > q)
Nucoscrt{ | Niren (ow(x) = 4) 0 (Gr(x) > G(x))| '}

— N o _ N(x) g
where Gy (x) = izl G0 apq Hiny(x) = iz Hul®) - ppe OCBA-CO problem is

N(x) N(x)
defined as follows:
N(g@ﬁgﬂ PCS subject to };2 Nx)=T. (13)
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However, it is known that there is no closed-form for PCS. Bonferroni inequality
provides that PCS is bounded below by APCS (i.e., PCS > APCS) which is defined

as

APCS = Y P(Hw(x}) > q) + (1—m) (14)
LeA

= Y [min [minP(Fi (0 > 0. P(Gu(xt) > Gu(0)] |

xEQ,x£x,
Let ¢*(x) define the most critical constraint (i.e., £*(x) = argmingey P{Hn(x) >
qc}), then, we can define two sets Qp and Qp as follows.
Qo = {x|x#xb,xe€ QP(Hpn(x) > q-(x) > P(Gn(x2) > Gy(x))}, and
Qr = {x|x#x%,x€QP(Hpy(x) > q(x)) < P(Gn(x2) > Gn(x))}).
Note that Qo represents the set of solutions where optimality is a more dominant

issue and {2 represents the set of solutions where feasibility is a more dominant issue.

Then APCS of (14) can be rewritten as

APCS = > P(Hw(x)) > q) + (1 —m) (15)
— Z Hg N > QZ) Z P(GN(XI;) > GN(X))

Let 5(x) be the proportion of the total budget allocated to solution (i.e., N(x) =
p(x) - T). Instead of Problem (13) we can solve the following problem to optimally

allocate 7™
max APCS subject to Zﬁ(x) = 1. (16)

N(x),¥x€Q
(%),vx et

Recall 02(x) = Var(G(x)) and o7(x) = Var(H,(x)), for any ¢ € A. In [20], the
following theorem is provided and proved:

Lemma 4 Define the noise-to-signal ratio, n(x), as follows:

ago X) UO o)/ﬁ( ) .
GGl EIGGD) 1\/1 t e U X € Lo,

opx (%) .
Qe *é[He* (x)]’ if x ¢ Qo

n(x) =

Then, APCS is asymptotically (as T — oo) mazimized if

78



A (@)Q,V)c;éy;éxg, and
n(y)

B(x;) = max(Bo(xy), Br(x;)),

2
where Bo(x) = ao(x") /> B2x) ymd BrGe) _ (n(x2)> Vx #£ x.

) x€Qo o3 (x) 5(X)o n(x)

As in [20], we assume ((x%) >> fB(x) for all x € Qo in this chapter. This

oo (x)

assumption produces 7(x) ~ SECIm )

and it makes implementation of OCBA-
CO easier. Based on Lemma 4, a heuristic sequential allocation procedure, OCBA-

CO, is constructed to solve (16) and detailed steps of OCBA-CO are given in [20].

4.2 Methodology
In this section, we provide D+PFM+ABA and prove its convergence properties.
4.2.1 D+PFM+ABA

D+PFM+ABA represents a framework combining D+PFM of Chapter II with a
revised OCBA-CO procedure, ABA. To explain D+PFM+ABA, we first need addi-
tional notation.
Qr = a set of solutions to which we apply ABA at iteration k;
V. = a set of all visited solutions up to iteration k;
ANy (x) = the number of new observations obtained at iteration k for x
AT, = total number of new observations obtained at iteration k;
s2.(x) = sample variance of all G;(x) obtained up to iteration k;
s%.(x) = sample variance of all Hy(x) obtained up to iteration k, for £ € A; and
X, = the sample best among all solutions in Q.
OCBA-CO always considers the same set of solutions, say €2, but in ABA, Q,
can be different at each iteration. The budget allocation ABA in D+PFM+ABA, is

designed to solve the following problem:

max PCS subject to ANL(x) = ATy. 17
AN, (x),VxE€Qy, J x;;k k() k (17)

79



Let 7(x) represent a strongly consistent estimator of 7(x) and f,(x) represent
an estimator ($(x) at iteration k. kao and QkF represent estimates of Qo and Qrp
in implementation where Qrr (Qro) represents the set of solutions in Qy in which
optimality (feasibility) is a more dominant issue. An implementation summary of
D+PFM+ABA is provided in Figure 38.

Remark 3: In practice, an active constraint often produces an extremely small
Hyp(x) — qp-(x), which, in turn, results in an extremely large 7,(x). To prevent

Hypp(x) — qo-(x)|} instead of

such cases, when calculating 7x(x), we use max{e.p,
Hy1,(x) — qo-(x), where e is an error tolerance for the constraint ¢*, the amount of
error a decision maker is willing to take.

Remark 4: Similarly, if G (x) is very close to G (X;), then 7(x) becomes extremely
large. To avoid such cases, when calculating 7, (x), we use max{eq, |Gr(x) — Gi(X1) |}
instead of Gj(x) — Gi(Xx), where €, is an indifference zone parameter, practically
meaningful difference in the primary performance measure worth detecting.

When a problem includes a small search space ©, then we can simply sample
all solutions at every k (i.e., Qr = O). However, if a search space © is large, then
sampling all solutions at every k is not desirable (or impossible). Instead, existing
DOvS algorithms use a solution sampling strategy that forms O, as a subset of ©.

Depending on DOvVS algorithms, Q) converges to a fixed set or keeps changing:

e Converging Q: As k increases, Qy converges to a fixed set, Q... This happens
if SMRAS of [15], NP of [32], and CE of [12] are used as D because these
algorithms take Qp = V, and Vj, eventually converges to © in the algorithms.

e Changing Q;: As k increases, Q. keeps changing but its cardinality is fixed.
This happens if NP of [28], a random search of [2], and BEESE of [5] are used

as D because these algorithms take Q, as a set of sampled solutions at iteration

k.
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Algorithm : D+PFM-+ABA

Step 0. Initialization:
- Set k = 1. Select ng, €., and €. for all £ € A.
- Choose a DOvS algorithm as D, set Vi, = (), and vp(x) = 0 for all x € ©.

Step 1. Sampling:

- Sample solutions using the solution sampling strategy of D to form Q.

- Set ny(x) = ng and vg(x) =1 for all x € Qy \ Vi_; (i.e., solutions newly visited).

- Calculate Gy (x), s2,(x), Hu(x), St(x), and s2,(x), forall £ € A and all x € Q\Vy_1.
- Set Vi = V1 U Qy and find Xj, = argmingeo, Zx(x) where Z;(x) is defined in (11).

Step 2. Updating:
- Set
Qo = {xIx#%, x€Q

G+ (x) — Hpep(x) < Gh(x) — Gk(ik)}

Spep(X) - Sok(X)
~ ~ q *(X) — H *k(X) ék(X) — Gk<ik)
Qur = {xlx# % xeQ T2 — T8 > ZEE S R

where *(x) = argminges ¢ — Ho(x), s7.4(x) = 5. ok (%), and ge- (X) = ge(x)-
-1fx € Qpo, Mi(x) = S0 (x) 7y~ Otherwise, Me(X) = 5. ()

max{ep,| G (x) -G (X max{eqpx,| Hpx, (x)—qex (%)}

Step 3. Allocating: R R
- If x ¢ Q, set fBi(x) = 0. Otherwise, find 8j(x) such that > o B(x) = 1,

- R 2 N - - -
20— (03)" forall x # y # %, and (%) = max(80,, BfL,), where B2, =

- 2 - . N2
sok(ik)\/zxegko <§)’Z((i))> and B, = Br(x) <7ka(—()§))> for all x # xy.

- Determine the number of additional simulation observations for each x € Q:

ANy(x) = [ATBu(x)| + I{U < ATifi(x) — |ATeBr(x)] }, (18)

where I{-} represent an indicator function and U is a uniform random variable be-
tween 0 and 1. If AN,(x) > 0, then set vg(x) = ve_1(x) + 1 and An,, (x) = ANL(x).
Otherwise, set vj(x) = vg_1(x) and An,, (x) = 0.

- Adjust the allocation so that > An,, (x) = ATy

xEQy
Step 4. Simulating:

- Obtain An,, (x) additional observations and update n,, (x) = n,,_,(x) + An,, (x)
for all x € Q.

- Update Grs1(x), 8§ 11(X), Hopg1(x), S, (x), and 57, (x), for all £ € A and for
all x € Qk

Step 5. Stopping Rule:

- Update the sample best T} = arg minyey, Zi(x).

- If a stopping rule is satisfied, then stop and return xj as the best feasible solution.
Otherwise, update the solution sampling strategy, set k <— k4 1, and go to Step 1.

Figure 38: Algorithmic statements of an D+PFM-+ABA.
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Locally convergent algorithms, such as COMAPSS of [14] and [40], can also be
used as D. In this case, Q)i converges to a set of neighbor solutions of one of a local
optimal solution. However, stochastic constraints and a definition of a local optimum
in [14] and [40] can unexpectedly create too many local optima near the infeasible

and feasible boundary. This will be further discussed in Section 4.3.2.
4.2.2 Convergence Properties

We first provide a lemma needed to guarantee convergence of D+PFM+ABA.

Lemma 5 Under Assumptions 1 and 2, if ATy, > 0 for any k, then D+PFM+ABA

guarantees

P[ lim vy(x) =00l =1 and P[lim n,,(x) =oo] =1 for any x € O.

k—o0 k—oo

Proof of Lemma 5. If AT, — oo as k — oo, then AN (x) — oo because fi(x) > 0
for any x € Q at any k. On the other hand, if AT} is finite, then ANg(x) =
| AT, B (x) | + {U < AT (x) — | AT, S (x )]} can be 0 and a “sampled” solution is
not always “visited”. However, for any x and k, since [x(x) > 0, P{U < ATkﬁk(x) —
| AT, kﬁk J} > 0 (i.e., the probability of visiting x is always positive when x is
sampled at iteration k, which guarantees vy(x) — 00). Therefore, with Assumption

2, the result directly follows. O

Remind that in this chapter, APS, is used with finite AT} and PS; is used
with AT, — oo. Then, the following corollary shows the convergence properties

of D+PFM+ABA.

Corollary 2 Under Assumptions 1, 2, and 4, D+PFM+ABA satisfies Theorems 3
and 4 when APS, (with finite ATy ) is used. Similarly, D+PFM+ABA satisfies The-

orem 6 when PSy (with ATy, — o0) is used.

Proof of Corollary 2. The results follow directly from Lemma 5.0

82



Most OCBA methods calculate computing budget based on the total number of
observations obtained up to the current iteration over © as in OCBA-CO procedure of
[20]. However, ABA uses a different allocation scheme (18) that calculates computing
budget only based on the number of new observations over Q. The next theorem
shows that the allocation scheme (18) still guarantees that the number of observations
obtained for solution x up to iteration k, n,, (x), is proportional to §(x), if Bk(x) is

a strongly consistent estimator of 5(x).

Theorem 8 Assume Bk(x) is a strongly consistent estimator of B(x). For a finite

constant AT, if either limy_,o AT, = AT or limy_,oo ATy = oo holds, then (18) of

D+PFM+OCBA with converging Qy, (i.e., Qr = Vi) guarantees that limy_, ::: g; =
%for any X #y,x €0, andy € O.

Proof of Theorem 8. Assumption 2 guarantees V, — ©. We first provide the
proof with limy_,., AT, = AT. For any x € ©, by CMT, ATkBk(X) L% ATB(x), as

k — o0o. For x € O,

M, (X) lim no + Y1 [AT)B(x) ] + {U < ATyf;(x) — |AT;5(x)] }

Jim === = lim k
iy 10 SELATB(x)] S T{U < ATy B5(x) — [AT;8(x)] }
- kl—glo? + k + k

= |[ATB(x)] + P{U < ATB(x) — |ATB(x)|} (By Lemmas 1 and 3)

= ATH(x). (19)

For any x #y, x € ©, and y € O, (19) implies

Next, we provide the proof with lim; ,., AT, = co. For a fixed k and 1 < j < k,

define a sequence y;4(x) = LATjﬁj(X)HH{U <AAT;;ﬁj(X)LATij(X)J} . Then,

ATkBk(X) —1 < LATkBk(X)J
ATk o ATk

[AT; 5 (x)] < AT} By(x) + 1
ATy, - ATy,

< Xgp(x) <
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We have lim;,_, %T(kx)fl = limy_ oo Bk(x) — ALTk = [(x) and similarly, we also have

lims_ oo %T(:)H = [(x). Therefore, we have lim;_, ;o (X) = 5(x).
poma () et S AT(0) +T{U < ATy (x) — AT (x)]}
k
— i 0 2Zm )
k—o00 ]{ZATk k
= f(x) (By Lemma 3). (20)

For any x #y, x € ©, and y € O, (20) implies

. nvk (x) o . nvk (X) k?ATk
O (y) A RAT, ()
Bx)
B(y)'D

Remark 5: By Lemma 5 and the strong law of large numbers (SLLN), all estimates
converge to true values (i.e., as k — oo, Gx(x) = E[G(x)], s2,(x) = Var[G(x)],
Hyp(x) 22 E[H,(x)], and s2,(x) =% Var[H,(x)] for any ¢ and any x € ©). As a re-
sult, the sets, Qro and Qpp, can be determined asymptotically correct and the sample
allocation f3;(x) is an asymptotically consistent estimator 8(x) under assumptions as
k — oo.

If we take QO as a set of sampled solutions at iteration k (i.e., changing Q)
in Theorem 8 while keeping the other conditions same, then the main results in
Theorem 8 do not hold any more. In fact, we cannot derive any asymptotic results
on allocating the total number of observations over ©, > o n,,(x), with changing

Qk.-
4.3 Numerical Result

In this section, we revisit the three numerical examples from Section 2.4: (i) the
three-system example, (ii) the Goldstein-Price problem, and (iii) the (s, S) inventory
policy problem. We test D+PFM+ABA on these three examples with both tight

optimal and strictly feasible optimal solutions.
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D+PFM(APS,.)+ABA and D+PFM(PSy)+ABA represent D+PFM+ABA with
APS, and PSy, respectively. APS, uses same parameters from Table 3, but v} is set
to vy = 0.

For the three-system example, we do not need a DOvS algorithm D because
there are only three solutions. We sample all three solutions at each iteration (i.e.,
Qi = 0); apply PFM(APS,.)+ABA; and compare their performances with those of
PFM(APS.), PFM(PSy), and OCBA-CO. We set AT}, = 9 when APS, is used and
ATy = 3(ng + [logk]) when PSy is used.

For the Goldstein-Price problem and the (s,.S) inventory policy problem, the
search space is large and a DOvS algorithm is needed. We take NP as D and com-
bine it with PFM+ABA. The performance of NP+PFM+ABA is compared with
those of NP+PFM. When we combine NP+PFM with ABA, we take Q, as a set
of sampled solutions at iteration k and set AT, = An - |Qx N Vi_1| for APS, and
ATy = 3 vco,rv,, (Mo + [logv(x)]) for PSy, where | - | represents the cardinality
of a set. The rest of parameter settings are the same as in Section 2.4. NP+PFM
without ABA uses equal allocation in a sense that the same number of additional
observations across all sampled solutions except newly visited solutions are obtained
at each iteration for APS, or the same number of additional observations are obtained

for solutions with the same number of visits for PSy.
4.3.1 Three-System Example

Mean and variance configuration of three systems are given in Section 2.4.3. In this

problem, we arbitrary select €.,; = €., = 0.01 for ABA and € = 0.04 for PFM.
Figure 39 shows the percentage of time that x} = x® over 500 macro replications

for the three-system example. Each run terminates when the total number of obser-

vations obtained from all visited solutions so far reaches 3,000. As shown in Figure
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Figure 39: Percentage of time that x; = x% for the three-system example with a
tight solution.

39, PEM(PSy)4+ABA achieves the highest percentage of time over 90% while OCBA-
CO achieves the lowest percentage around 50%. It is not surprising that OCBA-CO
does not perform well because OCBA-CO cannot handle tight solutions. Also, com-
paring PFM(PS¢)+ABA with PEM(PSy) (or PEM(APS,.)+ABA with PEM(APS,)),
one can observe improvement due to ABA over equal allocation. The percentage of
time that x} = x? is about 5% ~ 8% higher in both small and large observation sizes
when ABA is combined with PEM(PSy). However, for APS., ABA shows about 10%
increase in the percentage compared to equal allocation only when the total number
of observations is small but the advantage disappears as more observations are taken.

In order to examine the small-sample behaviors more closely, we change E[H;(2)] =
0 to E[H,(2)] = 0.03 so that there is no tight solution while system 2 is still the true
best feasible solution. Each run terminates when the total number of observations

obtained from all visited solution reaches 1,000. Figure 40 shows the percentage of

b

. over 500 macro replications for the three-system example. In this

time that x; = x

case, OCBA-CO achieves a higher percentage up to 80% but does not outperform
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Figure 40: Percentage of time that x; = x’ for the three-system example without
any tight solution.

any variant procedure of PFM. ABA improves the performance of PFM compared to

equal allocation, especially when APS. is used.
4.3.2 Goldstein-Price Problem

We consider the Goldstein-Price problem with a difficult constraint (5) from Sec-
tion 2.4.1 to examine the performance of NP4+PFM+ABA. We arbitrary select an
error tolerance, €.,; = 0.005, and an indifference zone paramenter ¢,, = 0.1 for ABA.

For PFM with PS¢, we use €;9 = 0.04.

b

Figure 41 represents the percentage of time that x; = x,

over 500 macro repli-
cations for the Goldstein-Price problem with Constraint (5) and each replication is
terminated with one million total number of observations. When PS; is used as a
penalty sequence, ABA slightly improves the performance of the combined procedure
compared to equal allocation at the beginning, but as the total number of observa-

tions increases, both NP+PFM(PS;)+ABA and NP+PFM(PS) show similar per-

formance, achieving 90% of time that x; = x%. On the other hand, when APS, is

0
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Figure 41: Percentage of time that x; = x4 with Constraint (5).

used as a penalty sequence, NP+PFM(APS.)+ABA shows a significant improvement
over NP+PFM(APS,.). More specifically, NP+PFM(APS,.)+ABA achieves 90% and
performs almost similar to procedures with PS; after the total number of observations
reaches 310,000. However, the percentage of NP+PFM(PSy) is significantly smaller
than that of NP+PEFM(PS;)+ABA, showing up to 20% difference. As we observe
in the three-system example, ABA brings more significant improvements when it is
used with APS.. Figure 42 shows average objective values at the sample best. The
figure implies that NP+PFM(APS,) tends to select superior infeasible solutions as
the sample best at the beginning of the search while the other three procedures do
not.

If a locally convergent DOvS algorithm, such as COMPASS of [14], is considered
as D, many local optima can be created unexpectedly by the definition of the neighbor
solutions used in [14] when stochastic constraints exist. [14] and [40] define neighbor
solutions as solutions that differ by 41 in only one coordinate. For the Goldstein-Price

problem with Constraint (5), Figure 43 shows that any solution on the constraint line
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Figure 42: Average estimated objective value of x; with Constraint (5).

becomes a local optimal solution. More specifically, solution xy has four solutions in
the neighborhood, x;, X5, X3 and x4. Note thatx; and x, are infeasible but have better
E[G(x)] than xq while x5 and x4 are feasible and have worse E[G(x)] than x,. In
this case, xy becomes a local optimal solution because xq is the best feasible solution

among all solutions in the neighborhood. As a result, any solution on the constraint

Infeasible Region

———e -9

X3 Xo

Feasible Region

X46

Figure 43: Local optimal solution in the Goldstein-Price problem with Constraint

(5).
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line becomes a local optimal solution and COMPASS is likely to stop when it reaches
a solution on the constraint line. Thus, when there exist stochastic constraints, using
a locally convergent algorithm as D needs some cautions.

Now we consider an easier constraint:
E[—:L'l — X9 + Qﬁh] > 1.499. (21)

With Constraint (21), the true optimal solution is still the same but now it is strictly
feasible.

Figure 44 shows the percentage of time that x; = x% and Figure 45 shows the
average objective value of the sample best over 500 macro replications. To focus on
behaviors of procedures when the total number of observations is small, we termi-
nate each macro replication when the total number of observations reaches 200,000.
NP+PFM(PSy)+ABA performs the best. ABA improves the performance of com-
bined procedures compared to equal allocation but greater improvement is achieved

when APS. is used as a penalty sequence for PFM.
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Figure 44: Percentage of time that x; = x5 with constraint (21).
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Figure 45: Average estimated objective value of X} with constraint (21).

4.3.3 (s,S5) Inventory Policy Problem

We revisit the (s,.S) inventory policy problem in Section 2.4 to test the performance of
NP+PFM+ABA when a problem includes non-normal observations for the primary
and secondary performance measures and there exists correlation across performance
measures. We arbitrary select an error tolerance, ¢,; = 0.0001, and an indifference
zone paramenter €, = 0.1 for ABA. For PFM with PS¢, we select €19 = 0.0001.

We first consider the same problem in Section 2.4 where the true optimal solution

is strictly feasible but nearly tight. Figure 46 shows the percentage of time that

b

o over 500 macro replications when each macro replication is terminated with

X; =X
2,000,000 total observations. At the end of the search, NP-+PFM(APS,)+ABA and
NP+PFM(PSy)+ABA achieve over 90% while NP+PFM(APS,) and NP+PFM(PSy)
achieve under 90%. Figure 47 shows average objective value of the sample best.
Average objective values of NP+PFM(APS.)+ABA and NP4+PFM(PS;)+ABA start
above the true optimal value while NP+PFM(APS,) and NP+PFM(PS;) start under

the true optimal value. This supports that ABA helps accurate feasibility checks at
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Figure 46: Percentage of time that x; = x
difficult constraint.

the beginning of the search.
Now we consider an easier constraint where failure probability should be less than
equal to 0.05. The true optimal solution changes to x4 = (24,58) and its expected

cost and failure probability are 113.0864 and 0.04878, respectively.
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Figure 47: Average estimated objective value of xj in the (s, S) inventory problem
with a difficult constraint..
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Figure 48: Percentage of time that x; = x
relaxed constraint.

Figures 48 and 49 show the percentage of time that X} = x® and the average objec-
tive value at the sample best over 500 macro replications. To focus on the small sample
behaviors, each macro replication is terminated with 100,000 total observations. Both

figures show that ABA brings significant savings compared to equal allocation. When
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Figure 49: Average estimated objective value of xj in the (s, S) inventory problem
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APS. is used as a penalty sequence in PFM, NP+PFM(APS.)+ABA achieves about
20% higher percentage than NP+PFM(APS,). On the other hand, when PS; is used
as a penalty sequence in PFM, the combined procedure with ABA achieves about

15% higher percentage than the procedure with equal allocation.

4.4 Conclusions

In this chapter, we improve the performance of D+PFM by combining it with ABA.
ABA is a modified version of OCBA-CO of [20]. ABA can handle active constraints
and satisfies necessary conditions for convergence properties of PFM. Convergence
properties of the combined procedure is provided with proofs. Our experimental
results on the three numerical examples show that ABA improves the performance of
D+PFM. Greater improvement is observed when the total number of observations is

small/medium or APS, is used as a penalty sequence in PFM.
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CHAPTER V

CONTRIBUTIONS

We present a novel method, PFM, which converts a stochastically constrained DOvS
problem into a series of stochastically unconstrained DOvS problems. To the best of
our knowledge, PFM is the first work that (i) adaptively determines penalty values
based on observed feasibility of solutions and (ii) can handle tight solutions among
simulation-based optimization algorithms. The proposed method is general enough to
handle problems that occur in a wide range of applications including IE/OR, health
care, environmental and energy management.

We apply PFM to an important problem in environmental management, namely
the water quality monitoring network design problem for river systems. The purpose
of the problem is to find the optimal location of a finite number of monitoring devices
that minimizes the expected detection time of a contaminant spill event while guaran-
teeing good detection reliability. We formulate this problem as a DOvS problem with
a stochastic constraint and present D4+PFM. Experimental results on the Altamaha
River shows that our algorithm performs better than an existing popular method in
environmental management in terms of both efficiency and accuracy.

Finally, we present ABA, that allocates simulation budget among sampled so-
lutions at each iteration instead of taking equal number of observations from each
sampled solution. Our experimental results on three examples shows that ABA im-
proves the performance of D4+PFM significantly, especially when the total number of
observations is small or a small budget needs to be allocated at each iteration as in

APS..
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APPENDIX A

Proof of Theorem 1. Assumption 2 and SLLN ensure that Gj(x) converges to
E[G(x)] and H (x) converges to E[H,(x)] almost surely. By the continuous mapping
theorem (CMT, Theorem 5.5 of [7]) and Condition 1, the results follow. O

Proof of Theorem 2. Recall that Vj is a set of all solutions visited by D+PFM
up to iteration k£ and Oy is the set of all feasible solutions. At iteration &, D+PFM
selects X, such that X; = argmin,y, Z5(x).

As k — oo,

min Z;,(x) <% min Z,(x) (by Assumption 2)
x€Vg XEO

min E[G(x)]. (by Theorem 1)

XE@f

This implies that P{lim;_, Zi(X}) = mingeo, E[G(x)]} = 1.
(]
Proof of Theorem 3. We start with the case for £ € Ag(x). Let (.(x) represent a
. s ny—1(x)+An,(x ;i (X)— p(x s
random variable (. (x) = Zi:ni(,l)(i)+1 ) %ﬁ[g")(”. Note that (;.(x),r =1,2,...,

are independent random variables with mean zero and a finite variance Var(H;(x)).

Let I(-) represent an indicator function. Then,

I{S™(x) > 0}

Z

= )4

Z:z;(lx) ZZZT:IEQLAW(X) E[H,(x)]—qe
1 \/ Ang(x) Z 0

Vk(X)
_ H{ TG, B VAR <E[He<x>1—qf>}

vk (x)

> {TC? > Qv — E[Hg(X)]} ( ATL,«(X) >1 and E[Hz(X)] —qy > 0)

v (x)
By Lemma 1, there exists Ny(x) € Z* such that % > qo — E[H(x)] for any

k > Ny(x). This implies that solution x is declared as feasible after k > N,(x) and
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64 is kept multiplied to \)*(x), resulting the sequence to converge to 0 almost surely.
Using similar arguments, it can be shown that A\}*(x) — oo for any ¢ € Ar(x).-

O

Proof of Lemma 3. For any ¢, > 0, there exists a positive integer N, such that

b, — ¢| < 2 for all n > Nj. Since b, converges to a finite value, there exists a finite

constant M, such that |b, — c¢| < M, for all n < N,. Therefore, we can select N > N,

such that % < 2. By the triangular inequality, for n > N,

‘%ibr—c < %iﬂ)r—c\
r=1 r=1

(Nb — 1>M 1 (n - Nb + 1)6(,

<
n 2n
€p €p
< —+ = =6.
2 "ot

Thus, lim,,_, % S bp=c O
Proof of Theorem 4. By Assumption 1, 07(x) = Var(Hy;(x)) < co. Let T,*(x) =
Z:’;(lx JI{S7(x) > 0} (the number of feasible decisions up to the v, (x)th visit). Then

for any € > 0,

lim P [\ (x) < ¢

k—oo
— klim P Q?k(x) . QZk(x)iT‘k(x) < e}
—00 L
- o o
— lim P |0 (%Té "
k—oo @ ‘9(1

= lim P [T/*(x)(log 04 — log 0,) < log e — vg(x) log 6,]

k—o0
[ Tow e 1og g,
= limP T (x) k &
k—00 Vg log 60, — log 6,
2 —log 0,
— 11— Zaresing [ — 8% (by Lemma 2).
T log 63 — log 6,

Therefore, A\,*(x) converges to 0 with probability 1 — %arcsin \ /ﬁ and

. . .1 2 . —log b,
diverges to oo with probability = arcsin 4/ g0, logd, 85 k — oo. O

97



Proof of Theorem 5. Let J, = I{(;(x) < 0}. Then, J,, r = 1,2,... are indepen-

dent Bernoulli random variables with success probability E[.J,].

lim E[J,]

r—00

Angy(x)
= lim Hy(x) <
An, (x)—)oo Anr Z € a

=1

P {zf_"*’”(mm E[Hu(x)]) _ Am(x)(qf—E[Hm(X)D}
o(x)\/An,(x) 4(%)

By Lemma 3 and the CLT, we have

= lim
An,(x)—o00

(I)(—OO) = 0, if ¢ € AS(x);
rggof = ri}rgo | = q)(oo) =1, if ¢ e A[(x); (
$(0) = 0.5, if ¢ € AA(x)7
where ®(-) represents the cumulative distribution of the standard normal random

variable.

For ¢ € Ayx), by Lemma 1 and (22) we have

Vg x)
P { lim ‘ = ;]
vk (x) =00

and the triangular inequality implies that

ka (x) E

Uk:

P (x) = =05

o}zl,

P{ lim |}5§"(X)—0.5|:0} = L

v (x)—00

Similar arguments apply to £ € Ay U Ag(x), which completes the proof. O
Proof of Theorem 6. (i) When ¢ € Ag(x): By Theorem 3, there exists N;(x) € Z"

such that x is declared as feasible for any k > N,(x). Thus, the penalty sequence
receives 6, (x) which is a number smaller than 1. As a result, the sequence converges
to 0 almost surely.

When ¢ € Ayx): By Theorem 5, for any k > N,(x),

0.5 — €0 < PU(x) < 0.5 + €0, (23)
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for 0 < €y < 7/ Thus, the penalty sequence receives either ay*(x) or §;*(x) for any
k > N,(x). As both aj*(x) and ;" (x) are less than 1, the sequence converges to 0
almost surely.

(ii) When ¢ € Ajx): By Theorem 3, there exists Ny(x) € Z* such that the penalty

sequence for the constraint ¢ of an infeasible solution x receives only appreciation
function ay*(x) after Ny(x). Also, by Theorem 5, there exists N,(x) such that for
any k > N,(x)

Dyt (%) > hugar

’

Then, for any k& > max(Ny(x), N,(x)), x is declared infeasible and a penalty se-
quence keeps receiving an appreciating factor which is greater than 1. This results in
AE(x) == oo for any £ € Afx). O

Proof of Theorem 7. (i) When ¢ € Ajx): By Theorem 3, there exists N,(x) € Z*

such that the penalty sequence for the infeasible constraint ¢ of x receives only «,* (x)
after N,(x).

Now, let p! represent the infeasible probability for constraint ¢ that is greater than
but the closest to 0.5.

By Lemma 3 and similar argument used in the proof of Theorem 5, there exists

N,(x) € Z* such that

Pe(x) — €0 < Py (x) < pe(x) + €. (24)

pl—0.5
4

pl—0.5
4

Set a constant 0 < €9 < and €, = . Note that Assumption 3 implies

pe(x) > pl > 0.5 for any infeasible solution x. Then the left hand side of (24) satisfies

I'—0.5 3 0.5
B [ (P20 _ 2, 29
Pe(X) — €0 > py — €0 > Py ( 1 ) 4]0@ 1

Thus, we get
3 ;05

“De T ——

1 1 < P (x) < pe(x) + €. (25)
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Recall
(

min (1 — 0.5, 0.5 — by, min sitt-os)

x€{x|p,* (x)>0.5+¢€00, XEVi} 2

- if {x|p,*(x) > 0.5+ €, x € Vi } # 0;

\ min (hy41 — 0.5,0.5 — hy,),  otherwise.

Consequently, when the set of infeasible solutions is not empty, as k — oo,

a.s. . . AUk —0.5
v, <% min (hu+1 —0.5,0.5 — hy, min ?L>

xe{x|pik (x)>0.5+€0, x€O} 2
(by Assumption 2),
ph—0.5

% min <hu+1 — 05, 0.5 — hu7 9

) (by Lemma 3 and CMT).

Also, there exists N, (x) € Z* such that for any & > max (N,(x), N, (x)),

F—05 F—05
'yf < min (hu+1 —0.5,0.5 — hy, WT) + €1 and 75 < peT + €41.
This implies that for any k > max (N,(x), N, (x))
0.5+ 7F < 0.5+ 2000 3,14 05 (26)

’ "

For k£ > max(N,(x), N,(x), N, (x)), x is declared infeasible, a penalty sequence of
x keeps receiving an appreciation factor, and (25) and (26) ensure that the appreci-
ation factor is greater than 1. Thus, the penalty sequence diverges to infinity almost
surely.

(ii) When ¢ € Ayx): For any ¢ € As), pe = 0.5 by Assumption 3. We need to

consider two cases: when there exists solution x that violates constraint ¢ and thus
p} exists and when all solutions are feasible with respect to constraint ¢ and thus p/
does not exist.

"

If p} exists, there exists N, (x) € Z* such that for k > N,"(x),

min (hu+1 —0.5,0.5 — hy, pff*”"”)

2
5 <. (27)
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"

Also, there exists N, (x) € Z* such that for any k > N,” (x),
€02 vy, €02
05— 2 <pprx) <05+ 2, (28)

I
min (hu+1—0.5,0.5—hu,pf 20'5)
2

"

. From (27), for k > N, ,

where €y =

min (hu+1 —0.5,0.5 — hy, @)
05—7, < 05— ; ,

min (hu+1 — 05,05 — h, ”t{*“’)

2

and

0.5+7 > 05+ 5

1" 1"

Then from (27) and (28), for £ > max(N, (x), N, (x)),
0.5—F <0.5— % < P (x) < 0.5+ % < 0.5+ %,

and oy*(x) = w, < 1 which proves A\*(x) == 0 as k — oo for any £ € A ).
If p! does not exist, min (hu+1 —0.5,0.5 — hy, @) needs to be replaced with

min(0.5 — Ay, hyt1 — 0.5) and the results follow by similar argument. O
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APPENDIX B

X =~

PROBLEM S5
FORMULATION  d(z,)

the number of nodes in a river system

the index set, I = {1,2,..., N}

the number of monitoring devices (M < N)

a solution vector representing locations of

M monitoring devices.

spill detection time at the monitoring location x,

spill starting time

if detected at x,, d(x,) = t4(x,) — S°; otherwise, d(z,) = oo
the minimum elapsed detection time for x

(i.e., t(X) = mil’llguSM d(ﬂju))

R(x) if a spill is detected, R(x) = 1; otherwise, R(x) =0
ti(x)  an observed value of t(x) from the ith simulation run
R;(x) an observed value of R(x) from the ith simulation run
Cy, detection threshold of a monitoring device
LiS spill location for the ¢th simulation run
PROCESS A spill intensity for the ¢th simulation run
SIMULATION SZS spill starting time for the ¢th simulation run
Pi™  arain pattern for the mth sub-catchment in the
tth simulation run
P (Pil, ..., PM") where M® is the number of sub-catchment
vk(x)  the number of visits to x up to iteration k
DOvS Ny, (X)  the total number of observations obtained up to
iteration k for x
& PFM Tir(x) conditional sample mean of ¢;(x) up to iteration k
given that a spill is detected
Ry(x) cumulative sample mean of R;(x) up to iteration k
Ry the most promising region at search iteration k
Ri(¢) the fth subregion at search iteration k
© \ Ry the surrounding region at search iteration k
Sk the set of solutions sampled at iteration &
NP+PFM Vi the set of all solutions visited up to iteration k
w the number of subregions
Th the total number of sampled solutions at iteration k
T(€)  the number of sampled solutions at iteration k
from subregion ¢
X, the current best solution obtained by NP+PFM

(i.e., a solution with the smallest Zj(x) at iteration k)

102



1]

REFERENCES

ALREFAEI, M. H. and ANDRADOTTIR, S., “A simulated annealing algorithm

with constant temperature for discrete stochastic optimization,” Management

Science, vol. 45, no. 5, pp. 748-764, 1999.

ANDRADOTTIR, S., “Accelerating the convergence of random search methods for
discrete stochastic optimization,” ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol. 9, no. 4, pp. 349-380, 1999.

ANDRADOTTIR, S., “An overview of simulation optimization via random
search,” The Handbook of OR & MS: Simulation, S. G. Henderson and B. L.
Nelson, eds., vol. 13, pp. 617-631, 2006.

ANDRADOTTIR, S. and KiM, S.-H., “Fully sequential procedures for comparing

constrained systems via simulation,” Naval Research Logistics, vol. 59, pp. 403—

421, 2010.

ANDRADOTTIR, S. and PRUDIUS, A. A., “Balanced explorative and exploita-

tive search with estimation for simulation optimization,” INFORMS Journal on

Computing, vol. 21, pp. 193-208, 20090.

BATUR, D. and KiMm, S.-H., “Finding feasible systems in the presence of con-
straints on multiple performance measures,” ACM Transactions on Modeling and

Computer Simulation (TOMACS), vol. 20, no. 3, pp. 1-26, 2010.

BILLINGSLEY, P., Convergence of Probability Measures. John Wiley & Sons,

New York, 1978.

103



8]

[10]

[11]

[12]

BoEeseL, J., NELsoN, B. L., and KiMm, S.-H., “Using ranking and selection
to “clean up after simulation optimization,” Operations Research, vol. 51, no. 5,

pp. 814-825, 2003.

CHICK, S. E., “Subjective probability and bayesian methodology,” Handbooks in
operations research and management science, S. G. Henderson and B. L. Nelson,

eds., vol. 13, pp. 225-257, 2006.

ErDOs, P. and M., K., “On the number of positive sums of independent random

variables,” Bull. Amer. Math. Soc, vol. 53, pp. 1011-1020, 1947.

Fu, M. C., “Optimization for simulation: Theory vs. practice, journal = IN-
FORMS Journal on Computing, year = 2002, volume = 14, number = 3, pages
= 192-215,”

He, D., Leg, L. H. L., CHEN, C. H., Fu, M. C. F., and WASSERKRUG, S.,
“Simulation optimization using the cross-entropy method with optimal comput-
ing budget allocation,” ACM Transactions on Modeling and Computer Simula-
tion (TOMACS), vol. 20, no. 4, pp. 1-22, 2010.

HeALEY, M. C., Advances in ranking and selection: variance estimation and

constraints. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, 2010.

Hong, L. J. and NELSON, B. L., “Discrete optimization via simulation using

compass,” Operations Research, vol. 54, no. 1, pp. 115-129, 2006.

Hu, J., Fu, M. C., and MARcuUs, S. I., “A model reference adaptive search
method for stochastic global optimization, journal = Communications in Infor-

mation & Systems, year = 2008, volume = 8, number = 3, pages = 245-276,,”

104



[16]

[17]

[18]

[19]

[20]

[21]

[22]

HUNTER, S. R. and PAsupATHY, R., “Optimal sampling laws for stochasti-

cally constrained simulation optimization,” INFORMS Journal on Computing,

p. DOI: 10.1287/ijoc.1120.0519, 2012.

KABIRIAN, A. and OLAFSSON, S., “Selection of the best with stochastic con-
straints,” Proceedings of the 2009 Winter Simulation Conference, M. D. Rossetti,
R. R. Hill, B. Johansson and R. G. Ingalls, eds., IEEE, Piscataway, New Jersey.
2009.

Km, S.-H. and NELSON, B. L., “Selecting the best system,” Handbooks in
operations research and management science, S. G. Henderson and B. L. Nelson,

eds., vol. 13, pp. 501-534, 2006.

KoENIG, L. W. and Law, A. M., “A procedure for selecting a subset of size m
containing the ¢ best of k£ independent normal populations, with applications to
simulation,” Communications in Statistics-Simulation and Computation, vol. 14,

no. 3, pp. 719-734, 1985.

LeE, L. H., PusowipianTo, N. A., L1, L. W., CHEN, C. H., and YAP, C. M.,
“Approximate simulation budget allocation for selecting the best design in the

presence of stochastic constraints,” IEEE Transactions on Automatic Control,

vol. 57, no. 11, pp. 29402945, 2012.

L1, J., Sava, A., and Xige, X., “Simulation-based discrete optimization of
stochastic discrete event systems subject to non closed-form constraints,” IFEFE

Transactions on Automatic Control, vol. 54, no. 12, pp. 2900-2904, 2009.

Luo, Y. and Lim, E., “Simulation-based optimization over discrete sets with
noisy constraints,” Proceedings of the 2011 Winter Simulation Conference, S.
Jain, R. R. Creasey, H. Himmelspach, K. P. White, and M. Fu, eds, pp. 4008 —
4020, IEEE, Piscataway, New Jersey. 2011.

105



[23]

[25]

[26]

28]

[29]

McCARrtTHY, P., Pulp mills, pulp and paper mills, paper mills in Geor-
gia.  [online]. Atlanta, GA: Georgia Institute of Technology. Available
from: http://www.cpbis.gatech.edu/data/mills-online?state=Georgia. [Accessed
28 January 2012].

NELsON, B. L., “Optimization via simulation over discrete decision variables,”

TutORials in Operations Research, J. J. Hasenbein, ed., pp. 193-207, 2010.

NELsON, B. L., Foundations and methods of stochastic simulation: A first

course. Springer-Verlag, forthcoming, 2013.

NoOCEDAL, J. and WRIGHT, S. J., Numerical optimization. Springer Verlag,

1999.

OuvanG, H. T., Yu, H., Lu, C. H., and Luo, Y. H., “Design optimization
of river sampling network using genetic algorithms,” Journal of Water Resources

Planning and Management, vol. 134, pp. 83-87, 2008.

PicHITLAMKEN, J. and NELSON, B. L., “A combined procedure for optimiza-

tion via simulation,” ACM Transactions on Modeling and Computer Simulation

(TOMACS), vol. 13, no. 2, pp. 155-179, 2003.

PusowipianTO, N. A., LEg, L. H., CHEN, C. H., and Yap, C. M., “Optimal
computing budget allocation for constrained optimization,” Proceedings of the
2009 Winter Simulation Conference, M. D. Rossetti, R. R. Hill, B. Johansson
and R. G. Ingalls, eds., IEEE, Piscataway, New Jersey. 2009.

RossMAN, L. A., Storm water management model user’s manual, version 5.0.
National Risk Management Research Laboratory, Office of Research and Devel-

opment, US Environmental Protection Agency.

106



[31]

[32]

[34]

[35]

SEN, P. K. and M., S. J., Large sample methods in statistics : an introduction

with applications. hapman & Hall, New York, 1993.

SHI, L. and CHEN, C. H., “A new algorithm for stochastic discrete resource
allocation optimization,” Journal of Discrete Fvent Dynamic Systems: Theory

and Applications, vol. 10, pp. 271-294, 2010.

SHI, L. and OLAFSSON, S., “Nested partitions method for stochastic optimiza-
tion,” Methodology and Computing in Applied Probability, vol. 2, no. 3, pp. 271—
291, 2000.

SHI, L. and OLAFSSON, S., Nested partitions method, theory and applications,

vol. 109. Springer Verlag, 2009.

STROBL, R. O. and ROBILLARD, P. D., “Network design for water quality

monitoring of surface freshwaters: A review,” Journal of Environmental Man-

agement, vol. 87, no. 4, pp. 639-648, 2008.

SZECHTMAN, R. and YUCESAN, E., “A new perspective on feasibility determi-
nation,” Proceedings of the 2008 Winter Simulation Conference, S. J. Mason,
R. R. Holl, L. Ménch, O. Rose, T. Jefferson and J. W. Fowler, eds., IEEE,

Piscataway, New Jersey. 2008.

TeLct, I. T. and ARAL, M. M., “Contaminant source location identification

in river networks using water quality monitoring systems for exposure analysis,”

Water Quality, Exposure and Health, vol. 2, no. 3, pp. 205-218, 2011.

Tevrct, I. T., NaMm, K., Guan, J., and ARAL, M. M., “Real time optimal
monitoring network design in river networks,” World Environmental and Water

Resources Congress 2008, R. Babcock and R. Walton, eds., pp. 1-10, 2008.

107



[39] TELcr, I. T., NaMm, K., GUAN, J., and ARAL, M. M., “Optimal water quality
monitoring network design for river systems,” Journal of Environmental Man-

agement, vol. 90, no. 3—4, pp. 2987-2998, 2009.

[40] Xu, J., NELSON, B. L., and Hong, J. L., “An adaptive hyperbox algorithm
for high-dimensional discrete optimization via simulation problems,” INFORMS

Journal on Computing, vol. 25, no. 1, pp. 133-146, 2013.

108



