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SUMMARY

Within the last decade, a new type of signal acquisition has emerged called

Compressive Sensing that has proven especially useful in providing a recoverable

representation of sparse signals. This thesis presents similar results for Compressive

Parametric Estimation. Here, signals known to lie on some unknown parameterized

subspace may be recovered via randomized compressive measurements, provided the

number of compressive measurements is a small factor above the product of the

parametric dimension with the subspace dimension with an additional logarithmic

term. In addition to potential applications that simplify the acquisition hardware,

there is also the potential to reduce the computational burden in other applications,

and we explore one such application in depth in this thesis.

Source localization by matched-field processing (MFP) generally involves solving

a number of computationally intensive partial differential equations. We introduce a

technique that mitigates this computational workload by “compressing” these com-

putations. Drawing on key concepts from the recently developed field of compressed

sensing, we show how a low-dimensional proxy for the Green’s function can be con-

structed by backpropagating a small set of random receiver vectors. Then, the source

can be located by performing a number of “short” correlations between this proxy

and the projection of the recorded acoustic data in the compressed space. Numeri-

cal experiments in a Pekeris ocean waveguide are presented which demonstrate that

this compressed version of MFP is as effective as traditional MFP even when the

compression is significant. The results are particularly promising in the broadband

regime where using as few as two random backpropagations per frequency performs

almost as well as the traditional broadband MFP, but with the added benefit of

xii



generic applicability. That is, the computationally intensive backpropagations may

be computed offline independently from the received signals, and may be reused to

locate any source within the search grid area.

This thesis also introduces a round-robin approach for multi-source localization

based on Matched-Field Processing. Each new source location is estimated from the

ambiguity function after nulling from the data vector the current source location

estimates using a robust projection matrix. This projection matrix effectively min-

imizes mean-square energy near current source location estimates subject to a rank

constraint that prevents excessive interference with sources outside of these neighbor-

hoods. Numerical simulations are presented for multiple sources transmitting through

a generic Pekeris ocean waveguide that illustrate the performance of the proposed

approach which compares favorably against other previously published approaches.

Furthermore, the efficacy with which randomized back-propagations may also be in-

corporated for computational advantage (as in the case of compressive parametric

estimation) is also presented.
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CHAPTER I

INTRODUCTION

Over the last half of a century, a powerful set of tools and insights in the field of dig-

ital signal processing have evolved that shape the way we look at modern challenges

of inference, observation, and prediction. Advances in storage space, computational

power, information transmission, algorithmic complexity, parallelism, sensor and ac-

quisition hardware, fabrication costs, and energy efficiency have enticed innovative

approaches to previously intractable problems. However, these virtues have not ad-

vanced at a uniform rate, and many applications place great emphasis some of these

attributes while remaining relatively indifferent to others. These particular niche

applications have motivated the evaluation of tradeoffs whereby some attributes are

improved at the expense of others. For example, recent research in the field of “sensor

networks” has produced computationally intensive distributed algorithms to overcome

the limitations of a network of inexpensive battery-operated sensing devices [1, 2].

1.1 Compressive Sensing

More recently, research in the field of “compressive sensing” proposes an alternative

data-acquisition method to solve a variety of inference and reconstruction challenges

that were considered intractable only a decade ago. The problem is stated generally

as follows. We observe some “compressive” measurements y ∈ RM of some unknown

signal x ∈ RN corrupted by noise e ∈ RM :

y = Φx+ e, (1)

where the “fat” measurement matrix Φ ∈ RM×N with M < N yields an underdeter-

mined system. That is, even in the absence of noise, the recovery of a general vector

1



x is ill-posed because for any potential solution, there exist arbitrarily many other

solutions that differ from each other along the null space of the measurement matrix.

It may nevertheless be the case that a restricted search within a specific signal class

yields a unique solution. In fact, there are a remarkable number of signal classes for

which efficient algorithms exist to recover approximations to x, along with associated

guarantees of performance.

1.1.1 Sparse Signals and the Restricted Isometry Property

Seminal work in compressed sensing established the main results for the so-called

“sparse” signal class model. A signal x ∈ XS ⊂ RN is called S-sparse if at most S of

its elements were nonzero. That is, XS = {x : ‖x‖0 ≤ S} where the pseudonorm `0 is

defined as ‖x‖0 ,
∑

n I(xn 6= 0). In this way, although a signal’s “ambient dimension”

is N , its “sparsity” or “intrinsic dimension” S � N more closely represents the

number of degrees of freedom it exhibits under such a characterization. The set XS

is then S-dimensional in the same sense that the surface of a standard cube is 2-

dimensional (within an ambient dimension of 3). Examples of such sparse signals

include photographs of the starry sky where most of the image is black, for example.

Effective recovery of such signals was tied directly to a specific property of the

linear measurement matrix Φ. This operator Φ is said to obey the restricted isometry

property (RIP) over set X with parameter δ if this operator is nearly isometric over

the domain X . That is, for every x ∈ X , we have:

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2, (2)

where ‖.‖ denotes the Euclidean norm. In this case, we say that Φ embeds X in RM .

This RIP can guarantee the uniqueness of a solution within the class XS in the ideal

(noiseless) case, even when the problem is underdetermined in general. For example,

if the operator is isometric over 2S-sparse signals with parameter δ < 1, then the

compressed representation of all S-sparse signals are unique. That is, any pair of

2



S-sparse vectors x and z satisfying Φ(x − z) = 0 (i.e., Φx = Φz) must also satisfy

(1− δ)‖x− z‖2
2 ≤ 0 (i.e., x = z) by the RIP property (2).

Although it is difficult to verify the RIP condition for any particular matrix [3],

random matrices generated with independent and identically distributed (i.i.d.) Gaus-

sian entries entries with zero mean and variance 1/M have been shown using proba-

bilistic methods to obey the RIP condition with overwhelming probability provided

that M & S log(N) [4].

1.1.2 Recovery Algorithms

Because of the uniqueness that RIP induces in the ideal case when e = 0, we could

estimate x uniquely using the following `0 minimization:

minimize ‖x‖0 s.t. Φx = y, (`0-min)

because x is the unique S-sparse solution satisfying y = Φx. Unfortunately, solving

this system directly essentially involves testing all
(
N
S

)
combinations and is known to

be NP-hard, essentially requiring O((N/S)S) computations.

The key insight that enabled compressed sensing to be of practical importance,

rather than an academic curiosity, is that the `1 norm, defined as ‖x‖1 ,
∑

n |xn|,

which is the closest convex norm to the `0 pseudo-norm, may be substituted in the

above optimization as the following basis pursuit:

minimize ‖x‖1 s.t. Φx = y. (BP)

In the more general case when the nonzero noise term satisfies ‖e‖ ≤ ε, we modify

the optimization to yield the following basis pursuit de-noising:

minimize ‖x‖1 s.t. ‖y −Φx‖ ≤ ε. (BPDN)

The surprising result is that the resulting estimate from latter convex optimiza-

tions, which can be obtained relatively easily using polynomial-time algorithms [5],
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coincide remarkably often with the former (`0-min) minimization. This is formalized

by the following theorem:

Theorem 1 (Theorem 1.2 of [6]) Assume that δ2S ≤
√

2 − 1 and ‖e‖2 ≤ ε and let

xS be the best S-term approximation to the (not necessarily sparse) vector x. Then

the solution x∗ to (BPDN) obeys:

‖x∗ − x‖2 ≤ C0S
−1/2‖x− xS‖1 + C1ε, (3)

for some modest universal constants depending only on δ2S. For instance, when δ2S =

0.2, the bound holds with C0 = 4.2 and C1 = 8.5.

This theorem not only guarantees perfect recovery in the noiseless case when x is

S-sparse, but generalizes this result in a natural way to handle signals x that are

not necessarily sparse, but are at least compressible, so that the magnitudes of their

elements, when sorted in descending order, decay rapidly.

Also, there is a closely related formulation that generalizes the sparse model to

the dictionary-sparse model a representation that models x as the weighted sum of S

dictionary elements of some orthobasis:

x =
N∑
n=1

Ψnαn = Ψα, (4)

where Ψ represents an orthobasis of RN (e.g., the discrete cosine transform basis, or

the discrete wavelet basis) so that ΨTΨ = I, and α ∈ XS is an S-sparse vector. The

natural extension of (BPDN), for example, simply solves for the sparse α as follows:

minimize ‖α‖1 s.t. ‖y −ΦΨα‖ ≤ ε. (BPDN-Ψ)

In fact, the mechanics of recovery of this sparse vector are identical to the canonical

case (i.e., when Ψ = I) by simply using a different observation matrix Φ̃ = ΦΨ in

the recovery procedure, which incidentally is equal in distribution to Φ in the i.i.d.

Gaussian case, due to rotational invariance.

4



Because of convex duality [7], the (BPDN) optimization is equivalent to its La-

grangian form, called LASSO [8]:

minimize ‖y −Φx‖2 + λ‖x‖1, (LASSO)

for some value of dual variable λ, and for the same reason is equivalent to the following

optimization, for some value of L:

minimize ‖y −Φx‖2 s.t. x ∈ XL, (5)

where XL = {x : ‖x‖1 ≤ L}. Each of these equivalent formulations are advantageous

at various times for building intuition, drawing connections with related work, and

efficiently computing solutions. In particular, Eq. (5) takes the form that directly

parallels the compressive parametric estimation defined below.

1.1.3 Applications and Limitations

The advent of compressive sensing has led to a series of innovations in a number of

areas. In the field of medical imaging, compressed sensing techniques have been used

to recover both magnetic resonance [9, 10, 11] and computed tomography [12, 13]

images using fewer measurements or a simplified acquisition hardware compared to

previous approaches. In the field of telecommunications, the insights of compressed

sensing have been used to randomly generate an encoding operation for a transmitted

signal to protect it against sparse additive errors [14], and also for the estimation of

an unknown sparse channel [15, 16, 17, 18]. Additionally, novel imaging systems were

prototyped, including the single-pixel camera [19] that have developed alongside re-

lated innovations from the computational photography community such as the coded

aperture [20, 21] and the flutter shutter [22].

But there are subtle caveats to this field of compressed sensing, even in the ideal

noiseless case. Consider, for example, the application of frequency estimation of a

discrete sinusoid xn = cos(8πn/N) for 0 ≤ n ≤ N − 1 from its compressed mea-

surements y = Φx, using an ambient dimension of, say, N = 100. By using as few
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Figure 1: The magnitudes of the recovered α∗ vector using (BPDN-Ψ) when the
underlying signal is (a) sparse (xn = cos(8πn/N)) and (b) compressible (xn =
cos(8

√
2πn/N)) with respect to the Fourier basis so that the sorted coefficient decay

as O(1/n) in magnitude, resulting in poor recovery performance.

as 10 measurements out of the ambient dimension, (BPDN-Ψ) recovers the original

signal correctly with high probability using the appropriate DCT basis Ψ (i.e., with

ΨΨT = I) as shown on Fig. 1a.

On the other hand, by simply modifying the signal to have an irrational frequency,

xn = cos(8
√

2πn/N), the signal is no longer sparse in the DCT basis, and now the

basis pursuit recovery gives an M -sparse signal with several nonzero elements but, at

best, with its largest element close to the true frequency (as in Fig. 1b). In general,

the largest element corresponds to a different frequency.

This result is unsatisfying, because it seems at least as though there is as much

information in the observed vector y corresponding to the frequency 4/N cycles per

sample as the one corresponding to the frequency 4
√

2/N cycles per sample. This

sort of leakage phenomenon is not limited to frequency estimation, but shows up in

many applications such as compressive target tracking, matched filtering, and the

particular application we present in this thesis, passive acoustic localization. This

type of artifact illustrates the perils of stretching the sparse signal model beyond its
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intended use, and motivates the exploration of an alternative model.

1.2 Compressive Parametric Estimation

For all of the development in the field of sparse signal recovery, there is another class

of signals that is not yet as well understood. This thesis aims to develop a general

framework and corresponding theory for compressive parametric estimation (CPE),

focusing particularly on the application of passive acoustic source and multi-source

localization using compressive matched field processing [23].

In its most general form, parametric estimation involves searching for the closest

function to h from within a parameterized set F :

minimize ‖h− f‖2 s.t. f ∈ F . (PE)

Its compressive counterpart simply finds the closest function with respect to some

dimension-reducing linear operator Φ:

minimize ‖Φ(h− f)‖2 s.t. f ∈ F , (CPE)

a constrained minimization that parallels Eq. (5). One of the main results of the

thesis is that, for an appropriate choice of Φ, for a wide variety of parameter classes

F , and with high probability, (CPE) yields a solution that is characteristically similar

to (PE).

Because this set F is not necessarily convex, we generally must use an exhaustive

search over the entire parameter space to find the global optimum. Consequently,

compressive parametric estimation generally lends itself well to problems with only

a few parameters. For example, scanning a two-dimensional area for land mines,

estimating a three-dimensional registration between a pair of images, searching for a

one dimensional time-shift, or searching over range and depth for one or more acoustic

sources – the application focused on in this thesis.
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One example of nonlinear parametric estimation in signal processing is matched

filtering where F = {f0(t − θ) : θ ∈ Θ} for some bounded set Θ = [a b] and some

base function f0 where the parameter θ that is implicitly estimated corresponds to

the best matching “shift” of the modeled base function f0 to the observed function

h. It is often taken for granted that the resulting parametric estimate θ̄ to (PE) is

invariant to scalar multiplication of either h or f0. That is, the solution is equivalent

to the solution obtained via the set F = {αf0(t−θ) : θ ∈ Θ, α ∈ R} for some compact

parameter set Θ ⊂ RD. This is a valuable feature since the scale of the received signal

is often not known in advance. However, this feature depends entirely upon the fact

that all f ∈ F have the same norm, and is unfortunately not shared with (CPE) since

the Φf do not all share the same norm.

We can simultaneously overcome this shortcoming and generalize this parameter-

ized set in an interesting way by explicitly defining F as a parameterized collection

of K-dimensional subspaces:

F = {Vθα : θ ∈ Θ, α ∈ RK}, (6)

where Vθ : RK → L2 represents an orthobasis spanning parameterized subspace Sθ.

Now, rather than modeling h as a shift of a function, we model h more generally

from a class of parameterized subspaces. This generalization affords us a wide variety

of applications that are especially well suited for inverse problems with a few number

of nonlinear parameters and potentially many linear coefficients.

This generalization essentially amounts to a collection of least-squares problems,

one for each fixed value of θ. We will discuss specific practical cases in Chapters 2 and

3 when solving this system is not only feasible but computationally advantageous. In

such cases and others when CPE provides other advantages, it is important to weigh

the cost, which is primarily due to the loss in accuracy.

To illustrate this approach, we apply CPE to the compressive tone estimation

problem described above in section 1.1.3. On Figure 2, we compare the performance
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Figure 2: This figure shows that parametric estimation by minimizing the compres-
sive proxy ‖Φ(h − f)‖2 over the set of all discrete sinusoids f ∈ F (i.e., (CPE),
shown with the solid line) often gives a characteristically similar estimate to the clas-
sical approach that minimizes ‖h−f‖2 (i.e., (PE), shown with the dashed line) using
only (a) M = 10 and (b) M = 20 compressive measurements. The arrows indicate
the frequency estimates that result from these approaches, and show the similarity of
these estimators.

of (CPE) with 10 and 20 compressive measurements to the classical estimator (PE).

By modeling the functional set directly, we are able to achieve performance that more

closely resembles the classical estimator than the `1 minimization discussed above.

In Chapter 4, after reviewing related work that has already applied specific in-

stances and minor variations of CPE, we will give probabilistic performance bounds

that depend only on the subspace dimension and the geometry or “regularity” of

the parameterized set of subspaces. To wit, under mild conditions of regularity, we

show that CPE performs favorably when the number M of compressive measurements

taken are a small multiple of the product of the parameter dimension and subspace di-

mension, with an additional log factor in this subspace dimension and the parametric

volume.
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1.3 Compressive Matched Field Processing

The primary application of CPE that we consider in this thesis is compressive matched

field processing (cMFP) for localizing underwater acoustic targets from passive sonar

data. We give a short introduction here by giving the classic formulation of MFP

and then continue to show how it may be modified in a straightforward way for

computational advantage.

For the sake of brevity and simplicity, we discuss the simple canonical case where

a single sound-source at location ~r0 ∈ R2 (containing range and depth) emits sound

described by known frequency ω and unknown complex amplitude α. The thesis will

discuss and show results for the broadband MFP where the advantages of random

compression are much more salient.

The goal is to estimate the location of the source from the corresponding received

complex amplitude at N receiver locations yn (n ∈ {1, ..., N}), given by

yn = αg(~rn, ~r0) + ηn, (7)

where the Green’s function g(~rn, ~r0) describes the acoustic frequency response between

two locations and ηn is some noise term. Using the common assumption that ηn

is independent and identically distributed Gaussian noise, the maximum likelihood

solution for the source location gives rise to the familiar least-squares formulation:

r̄ = arg min
~r∈R

min
β∈C

‖Y − βG(~r)‖2, (8)

where Y ∈ CN and G(~r) ∈ CN (i.e., G : R2 → CN) are the vectorized forms of yn

and g(~rn, ~r) over all n ∈ {1, ..., N}. Note that this formulation has the same form as

Eq. (PE) with the range/depth vector ~r representing the parameter vector θ.

For any fixed location ~r, the inner optimization problem over β (whose scalar

value is of no intrinsic interest) is simply finding the closest point on the line spanned

by G(~r) to the point Y . Plugging in the closed-form solution to this problem, the
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problem above reduces to

arg max
~r

|Y HG(~r)|2

‖G(~r)‖2
, (9)

where Y H denotes the Hermitian transpose. We designate this objective function as

the ambiguity function h(~r) and show it in Figure 4.a.

In common practice, an unnormalized variation on Eq. (9) is solved by construct-

ing |Y HG(~r)| via a single back-propagation and identifying the maximizing ~r. The

construction of this unnormalized ambiguity function takes only as much computa-

tional effort as the evaluation of the full Green’s frequency response G(~r) for a single

point ~r, though the quality of the estimate will suffer somewhat, as illustrated by the

gap between the green and blue dashed lines on Figure 7a. In general, solving Eq. (9)

requires knowledge of the full Green’s function: the frequency response between any

feasible source location and any of the N receivers. This process generally involves

solving N computationally intensive PDEs to determine the frequency response be-

tween each of the N receivers and each candidate source location point.

By using a compressive approach, we can achieve comparable performance by

solving only M < N PDEs via a compression matrix Φ ∈ RM×N . We are able

to compute ΦG(~r) via M propagations of the form G(~r)Hφm, where φm is one of

the M random rows of the matrix Φ. We refer to each one of these random back-

propagations as a random measurement because it plays an analogous role to the

random measurements taken in the traditional CS paradigm, and can be thought of

as a measurement probe that gives some partial information about G(~r), though we

note here that the term measurement is simply a useful fiction.

The application of the compressive parametric estimation as in Eq. (CPE) yields

a least-squares problem in compressed space:

arg min
~r

min
β
‖ΦY − βΦG(~r)‖2, (10)
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which reduces to

(narrowband cMFP) arg max
~r

|Y HΦHΦG(~r)|2

‖ΦG(~r)‖2
. (11)

We designate this latter objective function h̃(~r) and show it in Figure 4.b and 4.c.

It can be interpreted as a compressed version of the ambiguity function h(~r) in (9)

shown in Figure 4.a.

Note that unlike the standard MFP, in this case the pre-computations give us

direct access to the denominator ‖ΦG(~r)‖2 (we simply take the norms of the columns

of ΦG(~r)), and so we leave it in the optimization program. This normalization term

plays an important role in improving the source location estimation accuracy by up

to a factor of two. Notice that an evaluation of (11) at a point ~r essentially only

requires an inner product between the encoded observations ΦY and the M -vector

ΦG(~r) (formed from the backpropagated fields at point ~r from all M random vectors)

that can be effectively carried out with a matrix-vector multiply. This application is

presented in greater detail in Chapter 3.

1.4 Multiple-Source Localization

This compressive approach to matched-field processing may be extended from a single

source to multiple sources. In this thesis, we present a robust round-robin multiple-

source localization method that uses a greedy algorithm similar to orthogonal match-

ing pursuit [24]. To sum up, consider the following variation on Eq. (7). Suppose that

instead of a single source ~r transmitting a narrowband pulse, we have S > 1 sources

transmitting as:

Y =
S∑
s=1

βsG(~rs) + η, (12)

for some noise term η. The localization approach that extends naturally from the

earlier least-squares solution is then:

arg min
~rs∈R

min
β∈C

‖Y −
S∑
s=1

βsG(~rs)‖2, (13)
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If not for computational constraints, we would solve this by maximizing directly

over all joint combinations of source locations. When the ~rs are fixed, this minimiza-

tion amounts to linear least squares over the βs. However, for the full minimization

over all variables this approach is typically only computationally feasible for only 2 or

3 sources and suffers from the curse of dimensionality otherwise. Instead, we utilize

a greedy approach that iteratively estimate each of the source location vectors ~rs one

at a time [24]. For an overview of these methods, refer to Appendix A.2.

1.5 Theoretical Analysis of CPE

The difference in performance between the classical and compressive parametric es-

timators primarily relate to the difference between the corresponding classical and

compressive parametric-subspace-projection operators over a specific parameter set.

In Chapter 4, we show the conditions under which this difference is small leading to

favorable performance.

To this end, we leverage tools in empirical processes and random matrix theory

to bound the performance of our proposed estimator, giving specific guarantees that

depend only on the dimension of the subspaces and the geometry of the parameterized

set. We do this by setting up the problem as the maximum deviation of an empir-

ical process whose mean is precisely the classical parametric estimator, proceeding

by bounding several processes of interest, incidentally showing the well-conditioned-

ness of the compression operator with respect to the parameterized set. For these

supremum bounds of random processes, we develop a chaining argument similar to

and largely derived from the ones utilized by Talagrand [25] but tailored for our as-

sumptions on the regularity of our parameter set to give specific probabilistic bounds.

To make use of this chaining argument, it then only remains to establish the associ-

ated increment tail bounds for these various processes, showing that samples of these

processes are “close” with high probability whenever the corresponding deterministic
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parameterized subspaces are “close”.

1.6 Contributions and Organization of the Thesis

The thesis presents a compressive approach to parametric estimation, focusing on the

specific context of the passive localization of acoustic sources. The specific unique

contributions are discussed in greater detail with the following overview of the thesis.

Chapter 2 introduces compressive matched field processing (cMFP), a computa-

tionally efficient method for passive acoustic source localization. While traditional

approaches would construct a series of Green’s vectors to match against by performing

N time-reversed backpropagation partial differential equations (PDE) solutions across

the N receivers, we show how a similar type of dimension-reduced templates may be

constructed by time-reversing M < N randomly chosen sets of initial conditions, and

matching against the resulting templates. The application to the broadband case

is discussed in terms of both the incoherent and coherent regimes where the source

signal is either unknown or generally known to within an unknown scale factor, re-

spectively. Simulated results employing a Pekeris ocean waveguide suggest only a

modest sacrifice in accuracy, and are particularly promising in the broadband regime

where using as few as two random backpropagations per frequency (resulting in an

order of magnitude computational gain) performs almost as well as the traditional

broadband MFP, but with the added benefit of generic applicability. That is, the

computationally intensive backpropagations may be computed offline independently

from the received signals, and may be reused to locate any source within the search

grid area.

Chapter 3 extends this cMFP approach to multiple-source passive acoustic local-

ization via matched-field processing (MFP). Here, we introduce a round-robin ap-

proach for multi-source localization. Each new source location is estimated from the

ambiguity function after nulling from the data vector the current source location
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estimates using a robust projection matrix. This projection matrix effectively min-

imizes mean-square energy near current source location estimates subject to a rank

constraint that prevents excessive interference with sources outside of these neighbor-

hoods. Numerical simulations are presented for multiple sources transmitting through

a generic Pekeris ocean waveguide that illustrate the performance of the proposed ap-

proach which compares favorably against other previously published approaches.

Finally, Chapter 4 formalizes these parametric approaches to localization as a

compressive parametrized subspace estimation problem. The problem formulation

is somewhat more general than existing approaches in compressive parametric es-

timation, and favorable performance is claimed to depend only on the number of

measurements and the condition of a specific type of geometric regularity. This type

of regularity appears to be satisfied by a wide variety of parametric subspace classes,

and is succinctly expressed in terms of an effective dimension and base covering num-

ber. Apart from proving this claim, this chapter focuses on validating this assumption

of regularity for time-shifts of orthobases that are approximately compactly supported

in both time and frequency. It is furthermore explained how compressive parametric

estimation obeys this form of regularity.

1.6.1 Notation

This thesis will measure norms in a variety of different ways and will utilize the

consistency between norms to make intuitive cases of the utility of CPE. Unless

otherwise subscripted, all norms ‖.‖ are Euclidean `2 norms for vectors, L2 norms for

functions, and operator 2-norms (spectral norms) for matrices. We will denote the

Frobenius norm as ‖.‖F , which is equivalently the norm of the singular values of this

matrix. We will also use a stochastic measure called the Orlicz norm, which will be

denoted as ‖.‖Ψ1 and defined later in Chapter 4.4.

Matrices and linear operators are generally capitalized and bold, e.g., G. Scalars
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are generally lowercase. C shall denote a universal constant, not necessarily the

same at every occurrence. Subscripted constants (e.g., C1) denote specific universal

constants, generally with a known upper bound.
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CHAPTER II

COMPRESSIVE MATCHED FIELD PROCESSING

2.1 Introduction

2.1.1 Background and Motivation

Matched field processing (MFP) continues to serve as one of the most widely used

methods for localizing undersea targets acoustically. However, as the models govern-

ing undersea acoustic interactions become more sophisticated, often requiring fine-

grain solutions to more complex partial differential equations, the tradeoff between

run time and performance begins to worsen, perhaps unnecessarily. We will begin by

discussing why this is the case and giving an overview of our approach to mitigate

the problem.

MFP generalizes standard array beamforming methods (e.g. plane wave beam-

forming) for locating an acoustic source in a complex environment (such as a multi-

path shallow water waveguide). MFP has been studied extensively both theoretically

and experimentally as described in several review articles [26, 27, 28]. MFP is usu-

ally implemented by systematically placing a test point source at each point of a

spatial search grid of L candidate locations, computing the acoustic field (replicas)

at all the elements of the receiver array and then correlating this modeled field with

the data from the real point source whose localization is unknown to determine the

best-fit location (see Fig. 3). This approach works well when that the computational

replica environment is sufficiently accurate. However, this direct implementation of

MFP using brute force search would require L computation runs which can become

numerically cumbersome for large search space especially when simulating complex

propagation environments.

17



One alternative to this direct implementation of MFP is to use a “backpropaga-

tion” algorithm (also referred to as “time-reversal imaging”) to locate the unknown

source. In this case, a time-reversed version of the recorded data is used as an initial

waveform excitation along the array aperture using the principle of superposition,

and then subsequently “backpropagated” numerically in the replica environment to-

wards the grid search area [29]. The unknown source location is then estimated from

the maximum of the distribution of the backpropagated peak amplitude (or energy)

across the grid search. Consequently, when compared to the direct implementation

first mentioned, this backpropagation approach appears attractive at first glance,

since it requires one computational run per unknown source. Nevertheless, this back-

propagation approach becomes computationally expensive if multiple sources need to

be located repetitively over the same search grid as the number of required computa-

tional runs would grow proportionally. For instance, this may occur when one tries to

locate a source moving along a long track throughout the search space. Indeed, in or-

der to be able locate any source throughout the search space using N receivers, MFP

would require computing N backpropagations by using sequentially each individual

receiver as a backpropagation source [26, 27]. This would allow determining the full

set of Green’s functions associated with the channel between each search location and

each receiver element. Alternatively, one could weight spatially the amplitude of the

backpropagated signals along the receiver array using N different orthogonal codes

(e.g. obtained from an Hadamard basis).

This article develops instead a compressive MFP formulation which reduces this

computational burden by pre-computing the backpropagation of a number M � N

of random test signals. The results of these backpropagations effectively encode the

Green’s function associated with the channel, and they can be re-used in subsequent

localizations without any additional computational cost. This approach is inspired by

recent work in the field of compressed sensing [30, 31, 32], whose central message is
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that random projections provide an effective encoding for sparse signals. The motiva-

tion for compressed sensing is typically concerned with reducing the cost of acquiring

signals by shifting the workload from sensor hardware to software [33, 34, 35], and

is natural in applications where physical measurements are expensive compared to

numerical computations. Here we explore a variation on this theme: mitigating the

computational workload in software instead of the sensing workload in hardware. The

proposed compressive MFP allows us to estimate the underlying ambiguity function

central to conventional MFP algorithms over the entire search space using only M

computational runs instead of N , an effective speedup of a factor of N/M . In prac-

tice, these M simulations can be independently computed as a background process

offline before the actual source signal is received.

2.1.2 Related Work

In this chapter, we effectively demonstrate how classical localization procedures under

a least-squares framework such as matched-field processing (MFP) may be solved in a

reduced-dimensional space even without a-priori knowledge of the “best” dimension-

reducing transform. This property has been shown in similar forms in the mainstream

canon of Compressed Sensing (CS) literature. Davenport et al. have described a num-

ber of useful variations on the theme of CS including a matched filtering detector [36].

They have also described the “smashed filter” that performs compressive parametric

estimation inside of a generalized likelihood ratio test [37]. Wakin has also established

some rigorous results on parameter estimation that relate the recovery properties of a

general compressive estimation problem to the properties of the manifold that these

parameters induce. Their work could be used to analyze this problem of acoustic

localization via its manifold parameters [38].

Carin et al. have utilized CS principles to show how a Green’s function of a

scattering field that is compressible in the wavelet domain may be recovered from a
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small set of measurements, though they use incoherence in their structured measure-

ments to recover a scattering field, while we primarily care about the location of the

source [39]. Likewise, Marengo et al. have applied compressed measurements to the

scattering problem, utilizing the target-sparse model to improve their performance

[40].

Our work may also be viewed in the context of randomized SVDs [41]. In this

field of research, the idea is to apply the matrix A to a series of random vectors Φm

as AΦm in order to determine the range space of A. For example, Chaillat et al.

show how the inverse medium problem can be simplified using a dimension reducing

random projection and solving the inverse problem in the reduced range-space [42].

Similarly to this field, we apply the time-reversal or adjoint of the Green’s function

Gω to random vectors in order to discover the range space of admissible ambiguity

functions.

There is also a large amount of recent research performing multi-target tracking

under the “target-sparse” assumption. That is, the methods propose to simultane-

ously localize several targets that lie on some grid (or generally some set of points)

by solving an `1 minimization program. The recovered support resulting from this

optimization corresponds to the grid points that the various targets are estimated to

occupy. All of this work dovetails in very nicely with the main results of Compressed

Sensing, which can be effectively leveraged to prove that the targets may be perfectly

localized with high probability. Often, the painstaking effort in these papers involves

showing that the Restricted Isometry Property (RIP) holds for the observation ma-

trix. For example, Fannjiang et al. show the conditions under which a sufficiently

small coherence is achieved for perfect recovery [43]. Gurbuz et al. show similar results

for a Compressive beamformer, requiring a number of measurements on the order of

the number of sources [44], but the application there is different in that they utilize

a signal common to all sensors with an unknown time shift to localize their target
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in angle (assuming free space propagation), and apply the compression operator in

time per-sensor instead of applying the operator across the range of sensors as we do.

Also from a communications perspective, Cevher et al. demonstrate the relatively

low amount of information to be transmitted for purposes of localization when using

a Compressed Sensing framework [45]. These “target-sparse” approaches depend on

targets lying exactly on the grid points. Also, by necessity these grid points must be

spaced sufficiently far away from one another to avoid coherence-inducing correlations

in the observation matrix. This creates a restrictive model of limited applicability.

When a target is somewhere in between a set of grid points, the necessary conditions

for recovery may not even approximately hold, similarly to how a discrete sinusoid

corresponding to an off-grid point in the DFT will not be sparse in the frequency

domain (or any other basis for any standard transform for that matter) due to DFT

leakage. In contrast to this approach, we do not require our target to lie on a grid

point. However, instead of promising perfect recovery, we instead content ourselves to

claim that our target may be localized to within a small neighborhood of the actual

source location, or at least the location found via deterministic means.

2.1.3 Outline

The remainder of the chapter is organized as follows. Section 2.2 briefly describes

conventional MFP formulation for locating both single-frequency (narrowband) and

broadband sources. Section 2.3 presents the corresponding compressive MFP (cMFP)

formulation for both cases. Section 2.4 presents numerical simulations in a Pekeris

waveguide [46, pg 540–552] illustrating the performance of cMFP in comparison to

the conventional MFP results including the effects of additive ambient noise to the

data and model mismatch due to uncertain knowledge of the actual environment. Sec-

tion 2.5 extends this compressive approach to adaptive MFP. Section 2.6 summarizes

the findings and conclusions drawn from this study.
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Figure 3: Schematic of a matched-field processing implementation in an ocean waveg-
uide. The signal transmitted by a source (star symbol) located at an unknown location
~r0 is recorded along a N elements receiver array after multipath propagation. Using
a computational model of the original ocean waveguide, the location ~r0 may be in-
ferred by matching the actual received signals with the simulated replica waveforms
obtained from varying the test source location (dot symbols) ~r throughout the search
grid area.

2.2 Conventional MFP

A brief summary of the conventional MFP formulation is presented hereafter based

on the standard solution of the linearized wave equation. The acoustic pressure field

y(~r, t) at a fixed point ~r and time t produced by a point source located at ~r0 satisfies:

1

c2(~r)

∂2y(~r, t)

∂t2
−∇2y(~r, t) = α(t)δ(~r − ~r0) (14)

where c(~r) is the speed of sound and α(t) is the signal emitted by the source. The

time-domain Green’s function for the same environment g(~r, ~r0, t) is, by definition,

the solution of Eq. (14) for a impulsive point source (i.e. for α(t) = δ(t)) that

satisfies all boundary conditions [46, pg 540–552]. Using Eq. (14) (and assuming that

the radiation condition applies as ‖~r‖ → ∞) the Fourier transform of the recorded

pressure field at ~rn, the nth element of a receiver array (n = 1..N) (see Fig. 3), is

denoted yω(~rn) and given by:

yω(~rn) = αωgω(~rn, ~r0) (15)
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where ω is the frequency. The variables αω and gω(~rn, ~r0) denote respectively the

Fourier transform of the source signal and time-domain Green’s function. Using

vector notation, Eq. (15) can be restated as:

Yω = αωGω(~r0), (16)

where Yω is a (N × 1) column vector obtained by stacking the complex amplitudes

yω(~rn) measured along the receiver array. Similarly, the (N ×1) column vector Gω(~r)

contains Green’s functions gω(~rn, ~r) between the N receiver array elements and a

source located at ~r0. Note that the position vectors are written in lowercase letters

with arrows and the column vectors are written with capital letters in the remainder

of this article.

2.2.1 Single-Frequency MFP

We start by considering the simplest MFP that works from measurements at a single

frequency ω (as in (16)), known as the harmonic (or narrowband) formulation. Given

a set of measurements Yω ∈ CN across the N receivers at frequency ω, we search for

the location ~r in our region of interest R (and complex source amplitude β) that best

accounts for these measurements by solving the least-squares problem

arg min
~r∈R

min
β∈C

‖Yω − βGω(~r)‖2. (17)

With the location ~r fixed, the inner optimization problem is simply finding the closest

point on the line spanned by Gω(~r) to the point Yω. Plugging in the closed-form

solution to this problem (see Appendix A.1), the problem above reduces to:

arg min
~r
‖Yω‖2 − |Y

H
ω Gω(~r)|2

‖Gω(~r)‖2
= arg max

~r

|Y H
ω Gω(~r)|2

‖Gω(~r)‖2
, (18)

(where Y H
ω denotes the Hermitian transpose) which we will refer to as the normalized

ambiguity function, and will refer to its maximization as normalized Matched Field

Processing (nMFP). We show an example of the normalized ambiguity function in

Fig. 4.a.
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The term Y H
ω Gω(~r) can be computed at every location ~r in an efficient manner

using time-reversal. Precise values for ‖Gω(~r)‖2 are typically not available when

computing the backpropagation Y H
ω Gω(~r). However it is often the case (and we will

assume this here) that these energies either do not vary much across our locations

of interest, or vary predictably (e.g. cylindrical spreading of the field amplitude).

Dropping the denominator yields the so-called unnormalized ambiguity function (al-

ternatively the unnormalized Bartlett formulation) [26, 27, 28], the objective function

used for estimating the source location:

~̂r = arg max
~r
|h(~r)|2 where h(~r) = Y H

ω Gω(~r), (19)

————————————————————————–

2.2.2 Broadband MFP

Now suppose that most of the energy of the source signal occupies some continuous

bandwidth [ωmin ωmax], known as the broadband formulation. Ideally, we would

solve (17) over a continuum of ω values. However, for the sake of source localiza-

tion, it is computationally advantageous to sample this bandwidth at K frequencies

ω1, ω2, . . . , ωK , yielding K measurement vectors Yωk
where k ∈ {1, 2, ...K}. In this

way, we can achieve a computational complexity at most K times the single frequency

case, without sacrificing much precision.

We now search for the location ~r that jointly matches the joint behavior of the

measurements Yω over multiple frequencies ω1, ω2, . . . , ωK . The least-squares problem

from (17) becomes

arg min
~r

min
βω1 ,...,βωK

K∑
k=1

‖Yωk
− βωk

Gωk
(~r)‖2. (20)

The inner optimization problem is separable over the βωk
, and so the above is equiv-

alent to

arg min
~r

K∑
k=1

min
βωk

‖Yωk
− βωk

Gωk
(~r)‖2 = arg max

~r

K∑
k=1

|Y H
ωk
Gωk

(~r)|2

‖Gωk
(~r)‖2

. (21)
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As before, if the energies ‖Gωk
(~r)‖2 are homogenous across space and frequency, then

a reasonable unnormalized approximation to the above is

arg max
~r

K∑
k=1

|Y H
ωk
Gωk

(~r)|2 =
K∑
k=1

|hωk
(~r)|2. (22)

The formulation in (22) assumes that the source amplitudes βωk
are unknown. If

we have knowledge of the source signal’s complex amplitudes, that is we know them

up to a common amplitude and phase, then (20) can be refined to

arg min
~r

min
β∈C

∥∥∥∥∥∥∥∥∥∥∥∥∥



Yω1

Yω2

...

YωK


− β



αω1Gω1(~r)

αω2Gω2(~r)

...

αωK
GωK

(~r)



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(23)

where the source amplitudes αωk
are fixed and known. Applying again the results

from Appendix A.1, the inner optimization program can be solved in closed form,

and so (23) is equivalent to

arg max
~r

∣∣∣∑K
k=1 αωk

Y H
ωk
Gωk

(~r)
∣∣∣2∑K

k=1 |αωk
|2‖Gωk

(~r)‖2
, (24)

as shown in Fig. 4.b, which we can approximate (by removing the denominator) as

its unnormalized counterpart

arg max
~r

∣∣∣∣∣
K∑
k=1

αωk
hωk

(~r)

∣∣∣∣∣
2

. (25)

Hereafter, we will refer to (21) and (22) as the incoherent MFP formulation, and (24)

and (25) as the coherent MFP formulation.

2.3 Compressive MFP

In this section, we describe Compressive Matched Field Processing (cMFP). This is an

efficient method for acquiring a compressed version of the Green’s function operator

Gω(~r) that exhibits a behavior in some regards similar to the dimension-reduced
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Figure 4: Single-frequency (left column) and broadband-coherent (right column)
ambiguity functions. These ambiguity functions shown on the dB scale (20 log10(·))
for: (a, b) the standard MFP as described in Eqs. (18) and (24), and (c, d) cMFP
as described in Eqs. (28) and (35) for the single-frequency case with M = 10 and
broadband coherent case with M = 2 measurements per frequency, and (e, f) cMFP
for the single-frequency case with M = 30 and broadband coherent case with M = 20
measurements per frequency.
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counterpart achieved via Principal Component Analysis, but may be obtained with

only incomplete knowledge of the Green’s function Gω(~r). Our approach works by

precomputing the backpropagation of a small number of hypothetical received signals

to construct a dimension-reduced proxy for the Green’s function. Then, given the

actual observed data Yω we localize the source by finding the closest match between

the received signal and the Green’s function in the compressed domain. With the

compressed version of Gω(~r) in hand, locating the source only requires computing

a series of short inner products. In addition, the compressed version of Gω(~r) is

independent of the received signal, and so can be pre-computed and re-used for later

observations. As we will demonstrate in Section 2.4, this cMFP strategy is effective

even when the number of pre-computed compressive measurementsis far fewer than

what would be required for a full acquisition of Gω(~r) over the whole search grid area.

2.3.1 Single-Frequency cMFP

We start by discussing the single-frequency case in detail. First, we compute the

compressed Green’s function ΦGω(~r), where Φ is a M × N encoding matrix. Note

that matrices are written in boldface letters in the remainder of this article. We

construct ΦGω(~r) by backpropagating (i.e. applying GH
ω to) a series of test vectors

Φ1, . . . ,ΦM ∈ CN — we will discuss how the Φm are chosen in the next section.

The result of one of these computations ΦH
mGω(~r) is a complex-valued acoustic

field over ~r and requires as much effort to compute as the ambiguity function h(~r).

We stack up the results of these precomputations as rows in the ensemble

ΦH
1 Gω(~r)

ΦH
2 Gω(~r)

...

ΦH
MGω(~r)


=

[
Φ1 Φ2 ... ΦM

]H
Gω(~r) = ΦGω(~r). (26)

This ensemble gives us access to an indirect, dimension-reduced version of Gω(~r).

27



Given observations Yω, we search for the ~r that best explains these compressive

measurementsin the compressed space. The least-squares program (17) becomes

arg min
~r

min
β
‖ΦYω − βΦGω(~r)‖2, (27)

which, again using the results from Appendix A.1, reduces to

(narrowband cMFP) arg max
~r

|Y H
ω ΦHΦGω(~r)|2

‖ΦGω(~r)‖2
where h̃(~r) = Y H

ω ΦHΦGω(~r).

(28)

The function h̃(~r) is shown in Fig. 4.c and 4.e, and can be interpreted as a compressed

version of the ambiguity function h(~r) in (19) shown in Fig. 4.a. The cross sections

in range and depth of these ambiguity functions are shown in Fig. 5.a and 5.b.

Note that unlike the standard MFP, in this case the precomputations give us direct

access to the denominator ‖ΦGω(~r)‖2 (we simply take the norms of the columns of

ΦGω(~r)), and so we leave it in the optimization program. As shown in the results

section, this normalization term plays an important role in improving the source

location estimation when the magnitude of the Green’s function varies significantly

across the search grid area.

Notice that an evaluation of (28) at a point ~r essentially only requires an inner

product between the encoded observations ΦYω and the M -vector ΦGω(~r) formed

from the backpropagated fields at point ~r from all M test vectors.

2.3.2 Random Projections

The question remains as to how to choose the encoding matrix Φ so that solution to

the cMFP (28) is the same (or close to) the solution to the standard MFP (19). The

corresponding least-squares problems are

standard MFP : arg min~r,β ‖Yω − βGω(~r)‖2 (29)

cMFP : arg min~r,β ‖Φ (Yω − βGω(~r)) ‖2. (30)
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Figure 5: Cross-sections of the ambiguity functions displayed on Fig. 4: (a, b) single-
frequency case described by Eqs. (18) and Eqs. (28); (c, d) broadband coherent case
Eqs. (24) and (35); range (left column) and depth (right column). Here we show the
normalized standard MFP (nMFP) and the cMFP (cMFP) for various values of M .
The dashed lines show the boundaries for the main lobe and region of uncertainty
that we are able to localize within under the presence of modest noise.
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These two programs will have similar solutions if their functionals are close to one

another for all values of β and ~r. If Yω = αGω(~r0), then the performance of the

cMFP will match that of the standard MFP when Φ preserves the energy of the

differences between the observations Yω and all scalar multiples of the Green’s function

at different points:

‖Φ(F1−F2)‖2 ≈ ‖F1−F2‖2 for all F1, F2 ∈ F := {F : F = αGω(~r), α ∈ C; ~r ∈ R}.

(31)

Essentially, we want Φ to stably embed (i.e. preserve the distances between members

of) the set F into CM .

We propose taking Φ to be a random linear mapping. This choice is inspired

both by classical results in theoretical computer science and from the recently devel-

oped theory of compressive sensing. In the mid-1980s, Johnson and Lindenstrauss

[47] demonstrated that the distances within a finite set of n points are essentially

preserved through a random projection into a space of dimension ∼ log n (see also

[48, 49]). Recently it has been shown that this same type of projection also embeds

sparse signals into a low-dimensional subspace [4], a result which plays a key role

in compressive sampling [31, 50], and are effective at reducing the dimensionality of

certain types of manifolds [51].

We will discuss the particular the case where Φ is a random orthoprojection,

although the results will be almost identical for many different choices of random Φ

(e.g. with entries that are independent and identically distributed Gaussian or ±1

random variables). To generate Φ, we simply draw an M ×N matrix of independent

Gaussian random variables with unit variance, orthonormalize the rows using the

Gram-Schmidt (or QR) algorithm, and then multiply by
√
N/M . For an arbitrary
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fixed vector F , the random orthoprojection Φ obeys two properties[48]:

E
[
‖ΦF‖2

]
= ‖F‖2 (32)

P
{∣∣ ‖ΦF‖2 − ‖F‖2

∣∣ > ε
}
≤ 2e

− M
2‖F‖2 (ε2/2−ε3/3). (33)

This allows us to interpret the compressed energy functional ‖Φ(Yω − βGω(~r))‖2 in

(30) as a random process, indexed by β and ~r, whose mean is the standard energy

functional ‖Yω − βGω(~r)‖2 in (29). At a fixed point β,~r, this random process is

concentrated around its mean roughly like a Gaussian random variable with standard

deviation
√

2/M‖Yω−βGω(~r)‖. The larger we make M (the more random vectors we

precompute backpropagations for), the tighter the concentration. By construction,

when M = N , ΦHΦ = I and we have acquired a “lossless” version of the Green’s

function Gω(~r), meaning that the functionals are exactly equal to one another. In

general, however, we will be interested in cases where there is a significant compression

factor M � N and benefit from the associated computational savings.

2.3.3 Broadband cMFP

The cMFP formulation can be readily extended to combine observations at multiple

frequencies in both the incoherent and coherent cases. For frequencies ω1, ω2, . . . , ωK ,

we generate a sequence of M×N random matrices Φω1 ,Φω2 , . . . ,ΦωK
and backpropa-

gate the rows of each (for a total ofMK time-reversals) to acquire Φω1Gω1(~r), . . . ,ΦωK
GωK

(~r).

Then given observations Yω1 , . . . , YωK
, we compress them by calculating Φω1Yω1 , . . . ,ΦωK

YωK
,
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and then using the compressed versions of the Gωk
, we proceed as in (20) for the in-

coherent case

(incoherent cMFP) arg min
~r

min
βω1 ,...,βωK

K∑
k=1

‖Φωk
Yωk
− βωk

Φωk
Gωk

(~r)‖2

= arg min
~r

K∑
k=1

min
βωk

‖Φωk
Yωk
− βωk

Φωk
Gωk

(~r)‖2

= arg max
~r

K∑
k=1

|Y H
ωk

ΦH
ωk

Φωk
Gωk

(~r)|2

‖Φωk
Gωk

(~r)‖2
,

= arg max
~r

K∑
k=1

|h̃ωk
(~r)|2

‖Φωk
Gωk

(~r)‖2
(34)

and as in (23) for the coherent case:

(coherent cMFP) arg min
~r

min
β

∥∥∥∥∥∥∥∥∥∥∥∥∥



Φω1Yω1

Φω2Yω2

...

ΦωK
YωK


− β



αω1Φω1Gω1(~r)

αω2Φω2Gω2(~r)

...

αωK
ΦωK

GωK
(~r)



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= arg max
~r

∣∣∣∑K
k=1 αωk

Yωk
ΦH
ωk

Φωk
Gωk

(~r)
∣∣∣2∑K

k=1 |αωk
|2 ‖Φωk

Gωk
(~r)‖2

= arg max
~r

∣∣∣∑K
k=1 αωk

h̃ωk
(~r)
∣∣∣2∑K

k=1 |αωk
|2 ‖Φωk

Gωk
(~r)‖2

. (35)

The incoherent and coherent case are respectively illustrated in Fig. 4.d and 4.f and

in Fig. 5.c and 5.d. Note that in this coherent case, the optimization is identical in

its structure to the single-frequency case. In particular, by concatenating:

G(~r) =



αω1Gω1(~r)

αω2Gω2(~r)

...

αωK
GωK

(~r)


Y =



Yω1

Yω2

...

YωK


Φ =



Φω1

Φω2

. . .

ΦωK


, (36)

we see that the coherent broadband formulation (35) shares the same formulation as

the single frequency case (28).
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2.4 Numerical simulations

In this section, we present numerical experiments demonstrating that underwater

acoustic sources can be localized from highly compressed versions of the Green’s

functions. Our cMFP results give locations estimates for single-frequency, incoherent

broadband, and coherent broadband that are comparable with the traditional MFP.

After the initial pre-computation (which consists of backpropagating the random

codes at each frequency), the cMFP is substantially faster than the traditional MFP,

requiring only a short inner product to be calculated at each search location.

The MATLAB code generating all the numerical results presented in this section

is available online 1.

2.4.1 Numerical set-up

All numerical simulations were conducted using a 200m deep Pekeris waveguide and

the Green’s functions were computed using a standard normal mode code [46, pg

540–552]. The two dimensional search grid area in depth and range spans respectively

[10m 190m], and [5000m 5810m] for the single frequency and broadband incoherent

simulations. The range span for the broadband coherent simulations was reduced to

[5000m 5270m] to keep constant the number of search locations over which the ambi-

guity functions are computed since the effective resolution of the ambiguity function

in the coherent case was about 3 times higher in range (see Fig. 4 and Fig. 5). A

uniformly spaced vertical line array with N = 37 elements spaced between 10 and 190

meters was used to sample the acoustic field. The Green’s functions between each of

the search locations and the receiver array (see Fig. 3) were calculated across K = 20

different frequencies between 141 Hz and 160 Hz (the narrowband configuration uses

150 Hz). Given the selected numerical set-up, the natural resolution in frequency of

1Download the code at http://users.ece.gatech.edu/˜wmantzel3/cmfp/code.zip.
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the computed Green’s function is around 5 Hz; that is, Gω1(~r) and Gω2(~r) are essen-

tially uncorrelated when |ω1 − ω2| ≥ 10π. The selected sample spacing of 1 Hz falls

well within this frequency resolution.

After selected a source location ~r0 inside the region of interest, observations at the

K frequencies were simulated using the forward model, and uncorrelated zero-mean

Gaussian noise was added to the result:

Yωk
= αωk

Gωk
(~r0) + Zk, Zk ∈ CN , Zk ∼ Normal(0, σ2I), (37)

where each Zk has i.i.d. Gaussian real and imaginary parts with variance σ2/2. In

all of our experiments, we set αωk
= 1 for all k. The signal-to-noise ratio (SNR)

corresponding to noise variance σ2 is

SNR = 10 log10

(
|αω|2‖Gω(~r0)‖2

Nσ2

)
(38)

in the single frequency case, and

SNR = 10 log10

(∑K
k=1 |αωk

|2 ‖Gωk
(~r0)‖2

KNσ2

)
(39)

in the broadband case. Unless otherwise stated, we used an SNR of 16 dB.

Given a set of observations, we estimate the source location by solving (28) single

frequency), (34) (broadband incoherent), or (35) (broadband coherent) and compare

against the standard MFP formulations (19), (22), and (25) As stated, these opti-

mizations problems are over a continuous variable ~r — in practice, we compute these

functionals on a finite grid of points and choose the maximum from amongst these

points. We used a 90×90 grid for the simulations presented below, which corresponds

to 2m spacing in depth, a 9m spacing in range in the single-frequency and broadband

incoherent cases, and 3m spacing in range in the broadband coherent case. We wish

to emphasize that while our solution will of course lie on one of these grid points, the

actual source location is chosen to be an arbitrary point.
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circles as shown here (see Eq. (40)). The color scheme for this ambiguity surface
10 log10(|h(~r)|2) = 10 log10(|Y H

ω Gω(~r)|2) has been lightened somewhat to allow for
better visibility for the overlaid ellipses.

35



The natural resolutions in depth and range of the ambiguity function hω(~r) dif-

fer, as shown in Fig. 6 and Fig. 5 for a source located at ~r0 = (5540m, 100m) in

(range,depth) for a single frequency ω = 300π rad/sec (150 Hz) for a source located

at ~r0 = (5540, 100) in (range,depth). In this case, the main lobe has a width of ∼ 360

m in range and ∼ 32 m in depth. Again the grid spacing of 9m/2m in range/depth

falls well within this resolution. The spatial resolution of the ambiguity surface in the

selected multi-modal Pekeris waveguide is primarily a function of the source-receiver

array configuration as well as the selected frequency band [26, 27] In light of these

differing spatial resolutions, we use a weighted norm to report distance errors in most

cases presented here in this section. The distance from a point ~r0 = (rrange
0 , rdepth

0 ) to

the estimated source location ~̂r is computed using the elliptical distance:

‖~r0 − ~̂r‖e =

√√√√(rrange
0 − r̂range

erange

)2

+

(
rdepth

0 − r̂depth

edepth

)2

. (40)

We use edepth = 3m and erange = 36m for the single-frequency and incoherent cases,

and erange = 12m in the coherent case. The values of edepth and erange were chosen so

that the contour {~r : ‖~r0 − ~r‖e = 1} was approximately the same as the isosurface

of the ambiguity function at 0.9 of its maximum. Equidistant points from ~r0 =

(5540, 100) for ‖~r0 − ~r‖e = 1, 5, and 10 are shown in Fig. 6. For example, an error of

14.4 meters in range and 0.9 meters in depth translates to 0.5 units of distance error

in the elleptical ‖ · ‖e norm.

2.4.2 Localization performance of cMFP.

Fig. 7a compares the performance of cMFP (see Eq. (28)) and MFP (see Eq. (eq:amb-

norm-eq:amb)) for locating a harmonic source (f = 150Hz). The SNR of the received

data vector (see Eq. 37) was set to 16 dB. For a fixed M we aggregate performance

statistics across 1000 simulations: 100 different source locations (chosen from R uni-

formly at random) and 10 different draws of the Φω for each location. For each test
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simulation, the error between the true and estimated target location was recorded in

units of the target ellipse radius (see Fig. 6). From the results of the 1000 simula-

tions, we calculated the empirical distance tail probability PM(d)-for a given number

of random backpropagations M - as the fraction of results that produces a location

estimate~̂r with ‖̂~r− ~r0‖e > d. As shown, we are able to estimate the target within the

unit ellipse more than 99% of the time from only M = 6 test vectors. Notice that the

cMFP actually outperforms the unnormalized version of the MFP (from (19) above)

when M ≈ 6. This happens because the cMFP has an estimate of the normalizing

factor in the denominator, as shown in (28). The cMFP is really an estimate of the

normalized MFP in (18), and indeed that formulation is what the cMFP approaches

as the number of random backpropagations M becomes equal to number of receivers

N .

The cMFP was also tested in a variety of SNR for the single-frequency case.

Fig. 7b shows the probability that the localization estimate is within the first ellipse

(i.e. d < 1) as a function of the number of random backpropagations M . In all

cases, the failure probability asymptotically decreases exponentially in the number

of random backpropagations. Finally, Fig. 7c shows the tail probability of distance

error for a fixed number of random backpropagations M = 20. As expected, the

performance of cMFP gradually decrease as the SNR of the measurements is reduced

from 16dB to 0dB, similarly to what occurs when using conventional MFP [28].

Fig. 8 and Fig. 9 show a similar performance study for respectively the broadband

incoherent cMFP (see Eq. (34)) or broadband coherent cMFP(see Eq. (35)) formula-

tions, including the influence of the SNR of the measurements as well as the number

the number of random backpropagations M . Note that in Fig. 9, the horizontal axis

is normalized differently than in the other two cases due to the different spatial res-

olutions of the ambiguity surfaces (see Eq. (40)). Our intentions are not to directly
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Figure 7: (a) Tail probability of distance error ‖~̂r−~r0‖e (see Eq. (40)) for the single-
frequency cMFP formulation (see Eq. (28)) at 150 Hz. PM(d) is the probability that
the localization is worse than some distance d using M compressive measurements.
The dashed lines indicate the performance under normalized and unnormalized MFP
(Eq. (18) and Eq. (19)). The next two plots show results for PM(d) over various
SNRs of the received signal with (b) fixing d = 1 and (c) fixing M = 20.
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Figure 8: Same as Fig. 7 but using instead the incoherent broadband cMFP formu-
lation (see Eq. (35))
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Figure 9: Same as Fig. 7 but using instead the coherent broadband cMFP formula-
tion (see Eq. (35))
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compare the performance of each of the three cMFP formulations (the coherent lo-

calization being always better as expected), but rather to show that in each case the

selected cMFP formulation performs as well as the corresponding normalized MFP

formulation and better the corresponding unnormalized MFP formulation. This is

especially true for the broadband coherent cMFP results as Fig. 9.a shows that with

just M = 1 measurement per frequency, we achieve an error within 3 times what

standard MFP gives us at least 90% of the time, and with M = 2, we fall within

about 10% distance error of what MFP gives us about 99% of the time.

Furthermore, note that we do not show results for M = 1 for the broadband

incoherent cMFP formulation (Fig. 8.a) as in this case ΦkGωk
(~r) is a scalar for each

~r, and (34) reduces to

arg max
~r

K∑
k=1

|Y H
ωk

ΦH
k ΦkGωk

(~r)|2

‖ΦkGωk
(~r)‖2

= arg max
~r

K∑
k=1

|ΦkYωk
|2|ΦkGωk

(~r)|2

|ΦkGωk
(~r)|2

(41)

= arg max
~r

K∑
k=1

|ΦkYωk
|2. (42)

This optimization problem is ill-defined, as the functional does not depend on ~r.

2.4.3 Evolution of the main lobe to side lobe ratio of the cMFP ambiguity
surface.

Fig. 10 shows the logarithmic variations of the main lobe to side lobe ratio of the

ambiguity surface obtained with the single frequency and broadband coherent cMFP

formulations for increasing number of random backpropagations M . In each case,

the displayed values represent the median value of the main lobe to side lobe ratios

obtained from 1000 simulations for each value of M . Here the main lobe is defined as

the maximum of the ambiguity surface |h(~r)| (obtained from the corresponding con-

ventional MFP formulation, e.g. see Fig. 4a-b and Fig. 5) over the region of interest

R, and the side lobe as the maximum of |h(~r)| over the search area R excluding an

ellipse E of the approximate size of the main lobe. We show the cross sections of
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Figure 10: Evolution of the main lobe to side lobe ratio (in dB) of the estimated
ambiguity surface (e.g. see Fig. 4) vs. number of random backpropagations M using
either (a) the single frequency cMFP formulation at 150 Hz or (b) the broadband
coherent MFP formulation (see Eq. (35)). Note that in each case the main lobe to
side lobe ratio of the ambiguity surface obtained with cMFP reaches the main lobe
to side lobe ratio value obtained using the corresponding nMFP formulation (dashed
line) when M = N = 37.

the ambiguity function in Fig. 5 where we illustrate our choice of main lobe ellipse

parameters that define our main lobe ellipse E. For the single frequency case, the

ellipse has parameters erange = 180 meters and edepth = 16 meters (the broadband

coherent case uses erange = 72 meters and edepth = 16 meters) as illustrated in Fig. 5.

The logarithmic value of the main lobe to side lobe ratio is computed as:

20 log10

(
max~r∈R |h(~r)|

max~r∈R\E |h(~r)|

)
, (43)

Note that for small M values, the cMFP side lobes may be significantly larger than

their standard MFP counterparts. The concentration inequality (33) suggests that

as M gets larger, the side lobes dampen. This behavior is observed in Fig. 10. Note

that since the Φ matrix is an isometry when M = N , the side lobes in this case are

exactly the same as for the standard MFP.
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2.4.4 Influence of model mismatch on the cMFP performance

Previous studies have shown extensively that one major liability of MFP is sensitiv-

ity to model mismatch which occurs when one has an incorrect model for the ocean

waveguide (e.g. sound speed profile error) [27]. Since MFP exploits the knowledge

of the environment (via the Green’s functions), its numerical accuracy must be suffi-

ciently accurate, to ensure accurate source localization. Here we simply ensure that

the localization accuracy of cMFP remains comparable to conventional MFP in the

presence of error in the sound speed value. To do so, a set of received signals with

a set SNR of 16 dB were computed for a reference sound speed of 1520 m/s. The

broadband coherent cMFP -using M = 4 random backpropagations per frequency

(see (35)) and normalized MFP formulation (see (24)) were then implemented using

backpropagations in a simulated environment with different nominal values for the

sounds speed (between 1520 m/s and 1530 m/s) than the reference value of 1520 m/s.

Fig. 11 shows that the cMFP performs substantially the same as traditional MFP, for

better or for worse. We show the average distance error in actual Euclidean distance

(meters) as √
(rrange

0 − rrange)2 + (rdepth
0 − rdepth)2, (44)

instead of ellipse distance. The small localization error occurring even without mod-

eling error is due to the fact that the true source location did not coincide exactly

with one the grid search location ~r.

Note also that the range error tends to dominate for sufficiently large modeling

error: the slope of the displayed error values is roughly 5000/1520 (the nominal range

divided by the nominal speed of sound) as we would expect because a 15 m/s error

in the speed of sound of 1520 m/s causes a corresponding approximate 1% distortion

in the apparent range, or 50 meters, i.e. 15/1520 · 5000.
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Figure 11: Evolution of the localization error for broadband coherent cMFP and
corresponding conventional MFP a for increasing error of the modeled sound speed
value. The correct sound speed value is 1520m/s here. Notice that the localization
errors obtained from cMFP (circle symbols) match closely the localization errors
obtained obtained from standard MFP (cross symbols).

2.4.5 Application of cMFP for tracking a moving source.

The advantage of cMFP over conventional MFP for locating a moving source along a

long track is illustrated here. Fig. 12 displays the arbitrary path of a source moving

along a parabolic trajectory (dashed lines). For the sake of simplicity, the Doppler

effect is not accounted: this moving source scenario is simply simulated as 100 suc-

cessive stationary sources located along the parabolic trajectory. For each positions,

the SNR of the received signals at the vertical line array is constant and equal to 16

dB (Fig. 12.a) or 8 dB (Fig. 12.b). Conventional broadband coherent MFP is im-

plemented by running 100 successive backpropagations per frequency over the search

grid to estimate the source trajectory (see crosshair symbols). On the other hand,

broadband coherent cMFP is implemented using M = 2 random backpropagations

per frequency to estimate the same source trajectory (see cross symbols). The median
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Figure 12: Tracking of a source moving along a parabolic source trajectory (dashed
line) using either coherent broadband cMFP, implemented with M = 2 random back-
propagations per frequency for the whole search grid, or using conventional broadband
coherent MFP. For each of the 100 source positions, the SNR of the received signals
at the vertical line array is constant and equal to (a) 16dB or (b) 8 dB.

value of the distance errors (computed from Eq. (44)) between the estimated and ac-

tual source trajectory is 1m when using both MFP and cMFP for a SNR of 16dB. A

slightly higher error of 1.6m (resp. 1.1m) for the cMFP (resp. MFP) was found for a

SNR of 8dB. Overall, Fig. 12 indicates that cMFP can potentially achieve comparable

source tracking performance with a significantly reduced number of simulations.

2.5 Extension to adaptive MFP

Several variants of the MFP algorithm have been proposed in the existing literature

[26, 46] to enhance the robustness and performance of the basic Bartlett formulation

presented above (see Eq. (19)). This can be especially beneficial in the presence of

added coherent noise to the received data vector Yω (see Eq. (16)). To do so, these

higher resolution MFP algorithms are data adaptive, but typically have also a high

resolution in their environmental knowledge requirements. A commonly used adap-

tive MFP formulation is the Minimum Variance Distortionless Response (MVDR)

formulation. The MVDR formulation adaptively constructs a replica (or weighting)
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vector to yield a minimum mean square response to the recorded noise field along the

receiver array while maintaining a constraint of unity processing gain for the incoming

signal vector Yω [46, pg 540–552]:

|hMVDR
ω (~r)|2 =

(
(Gω(~r))H K−1Gω(~r)

)−1

. (45)

where K is the N ×N is the empirical correlation matrix from multiple realizations

of the noisy received data vector Yω:

K =
L∑
l=1

Yω,lY
H
ω,l. (46)

The physical interpretation and performance analysis of the MVDR formulation (see

Eq. (45)) over the simple Bartlett formulation (see Eq. (19)) have been discussed

extensively in the previous literature [26, 46] and thus will not be further repeated in

this article.

The previous cMFP formulation can be readily extended to handled adaptive

variants of the simple Bartlett MFP algorithm as discussed in Section III.C. For

instance, using Eq. (45) and by direct analogy to Eq. (28), the magnitude square of

the compressive MVDR ambiguity surface is:

|h̃MVDR
ω (~r)|2 =

(
(ΦGω(~r))H

(
ΦKΦH

)−1
ΦGω(~r)

)−1

. (47)

So once we have computed the M tests measurements ΦGω(~r), they can be readily

applied to either the compressive adaptive MFP formulation (see Eq. (47)) or the

simple Bartlett formulation (see Eq. (28)) to locate the unknown source.

2.6 Conclusions

We have shown here how dimension-reducing random projections can greatly reduce

the computational cost involved with source localization via matched-field processing.

When compared to the location of the maximum of the ambiguity surface obtained

from conventional MFP using N distributed receivers, the localization error achieved
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by cMFP scales down as square root of the number of random backpropagations M .

The proposed cMFP formulation has also the added benefit to be able locate any

source within the search grid area using only M random backpropagations, while

conventional MFP would require at least N backpropagations to do the same. Thus

cMFP provides an effective speedup factor of N/M per frequency, which can be

significant when a large number of receivers N is available to locate a broadband

source. Consequently this cMFP technique enables the ability to both broaden the

search space and employ more sophisticated models of the Green’s function, without

introducing worries about sacrificing real-time performance

This compressive approach is not limited to source localization, and could be

extended to a more general type of machine learning problem when matches are

evaluated via inner products (or equivalently via Euclidean norms). This type of

approach has the potential to substantially decrease computational complexity in

these cases, while admitting a negligibly small probability of error.
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CHAPTER III

MULTIPLE-SOURCE LOCALIZATION

3.1 Introduction

Matched field processing of the source signal (MFP) can be used to passively locate an

acoustic source using time-series recordings taken from N receivers in the ocean [27].

The most likely position of the acoustic source is estimated by matching this acoustic

response at the N receivers to the closest hypothetical modeled response generated

from a candidate source location. The response at the N receivers from a candidate

source location is determined by the corresponding Green’s function for a given model

of the ocean environment. However, localizing multiple sources in this way can present

a challenge. It is often computationally prohibitive to jointly evaluate the plausibility

of all combinations of potential source locations, and approaches that estimate the

sources’ locations independently rather than jointly can face challenges when these

multiple sources “interfere” with each other, especially if the source locations are close

to one another.

This chapter presents a round-robin multi-source localization scheme (ROMULO),

which is outlined in Algorithm 1. This approach first makes initial estimates for all

source locations, and then iteratively re-estimates each source’s location in a round-

robin fashion. Although the other source locations remain fixed as each source’s

location is re-estimated, their complex amplitude is jointly updated over all frequen-

cies at each iteration to be maximally consistent with the observed data. A robust

variation on this approach utilizes the uncertainty in the location estimate to null out

a broad area around the source location estimates in an attempt to minimize their

interference with the localization of the remaining sources. This is accomplished
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by constructing a rank-restricted projection matrix via singular value decomposition

(SVD) that effectively nulls a sum of correlation matrices. When this SVD is compu-

tationally prohibitive to compute over each iteration, a recently developed randomized

method is utilized to rapidly construct an approximation of this projection matrix

[41]. The main idea behind this randomized method is that for any low-rank matrix

Q ∈ RN×N and any i.i.d. Gaussian matrix X ∈ RN×M with M less than N but larger

than the rank of Q, the range of Q is approximately preserved as the range of QX,

whose SVD is much easier to compute (O(MN2) total operations instead of O(N3)).

This round-robin multiple-source localization method is also conducive toward the

use of randomly compressed Green’s functions described in earlier work, and draws

on the computational benefits of this approach while sacrificing only a small amount

of accuracy [23].

With respect to the acoustics literature, ROMULO bears resemblance to an ap-

proach to multi-source MFP proposed by Song et al. that was inspired by the CLEAN

algorithm [52, 53]. The essential differences are that they effectively keep their source

estimates fixed instead of jointly estimating them at each iteration, and do not release

any of the location estimates back into the residual (what they call the dirty image)

for re-estimation. They also utilize a robust method that accounts for uncertainty

in intermediate source estimates that is similar to ROMULO, but is a somewhat

different method than the nulling projection used by ROMULO because it acts in

ambiguity-function space instead of acting in data-model space. Kim et al. also pro-

pose a similar but non-iterative nulling-based approach for the 2-source case (loud

source suppression in particular) using an objective function equivalent to Eq.(58) to

estimate the weaker source. Earlier work by Mirkin and Sibul presents an alternating

maximization approach that is substantially equivalent to the “point-nulling” version

of ROMULO described below [54]. One minor distinction is that ROMULO imme-

diately incorporates new source locations into its projection matrices, rather than
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waiting until an outer loop has transpired (i.e., until all source locations have been

re-estimated). Michalopoulou utilizes a Bayesian approach [55] to solve the multi-

source localization problem that has essentially the same global objective function

discussed in section 3.2.1 but solves it using a stochastic sampling approach. Al-

though the focus discussed here is mainly on the standard least-squares (Bartlett)

formulation of MFP, this approach is also conducive to other cost functions such as

the one introduced by Westwood [56] and utilized by Neilsen [57] for multi-source

localization. The latter approach uses simulated-annealing to identify sensitive pa-

rameters and jointly update all source locations, rather than updating each source’s

location individually. As is the case in general with simulated annealing algorithms

utilizing gradient descent, there is still a risk of reaching a local minimum.

The remainder of the chapter is organized as follows. Section 3.2, after reviewing

single-source matched-field processing, presents the natural extension of the objective

function for the multi-source case, and illustrate how it could be approximately solved

using a greedy iterative scheme such as the ones described in Appendix A.2. Then,

after showing how it can be made more robust with respect to faulty intermediate

source location estimates, the full algorithm is presented in the general broadband

case. Then, it is shown how a compressive approach may be employed by substitut-

ing a randomized proxy Green’s function for the actual Green’s function. Section 3.3

shows simulated results from a shallow-water Pekeris waveguide to demonstrate the

performance of this approach. Section 3.4, concludes with some remarks on imple-

mentation issues.

3.2 Matched-Field Processing

Matched-field processing estimates a sound source’s location from acoustic data col-

lected at N hydrophones by solving a parametric inverse problem, usually with least-

squares (assuming Gaussian noise) [27]. For the sake of simplicity in illustrating the
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crux of the matter and to avoid multiple subscripts, this exposition will begin by

discussing the case where a single frequency is emitted from the source, and discuss

the broadband extensions later in Section 3.2.3. In this case, a source located at some

range and depth within the region of interest ~r0 = (r0, z0) ∈ R emits sound at a single

frequency ω with unknown amplitude α ∈ C (i.e., αejωt) so that the received complex

amplitudes at the N receivers, described by the data vector Y ∈ CN , is given as

Y = αG(~r0) + η, (48)

where η ∈ CN is a noise term, and the Green’s function G : R → CN is obtained

from a model that approximately describes the frequency response between the source

and the N receivers at frequency ω. Given a data vector Y , the source’s location is

estimated as a joint search for the source’s amplitude β ∈ C and location ~r ∈ R (all

norms are Euclidean norms unless stated otherwise):

~̄r = arg min
~r

min
β
‖Y − βG(~r)‖2. (49)

This approach generally gives an accurate estimate when the modeled Green’s func-

tion G is accurate and the signal to noise ratio of the receiver is large.

Plugging in the closed-form solution to this problem with respect to β, reduces

this to a maximization of the so-called Bartlett ambiguity function [27]:

~̄r = arg max
~r

|Y HG(~r)|2

‖G(~r)‖2
, (50)

(where Y H denotes the Hermitian transpose). Here and throughout, a normalized

Green’s function is used, so that ‖G(~r)‖2 = 1. There is no loss of generality with

this assumption, as Eq. (50) only uses the normalized version of the Green’s function,

making storage of the unnormalized version unnecessary.

3.2.1 Multiple Sources

The estimation of many source locations presents a challenge not present in the single-

source case. This subsection discusses the nature of this challenge and how it may be
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dealt with by estimating one source’s location at a time.

The objective function given in Eq. (49) can readily be modified to deal with

S0 > 1 sources, yielding the following global optimization over all source amplitudes

β1, ..., βS0 and source locations ~r1, ..., ~rS0 :

arg min
~rs

min
βs

∥∥∥∥∥Y −
S0∑
s=1

βsG(~rs)

∥∥∥∥∥
2

. (51)

A generalization of this optimization for non-white noise was presented by Mirkin

and Sibul [54].

If not for computational constraints, this would be solved by maximizing directly

over all joint combinations of source locations. When the ~rs are fixed, this minimiza-

tion amounts to linear least squares over the βs. However, for the full minimization

over all variables this approach is typically only computationally feasible for only a

few sources and suffers from the curse of dimensionality otherwise.

In the case of many sources, greedy methods may be utilized (such as orthogonal

matching pursuit (OMP)) that iteratively estimate each of the source location vectors

~rs one at a time [24]. For an overview of these methods, refer to Appendix A.2. The

main idea as it applies here is that although it is computationally difficult to estimate

all sources jointly, it is easy to estimate each source individually if the other sources’

locations are known. For instance, given an initial estimate for the first source’s

location ~r1 by using standard MFP as in Eq. (49), the second source’s location is

estimated as:

arg min
~r2

min
β2

‖(Y − β1G(~r1))− β2G(~r2)‖2 , (52)

and then continuing onward similarly, estimate each subsequent source’s location

~r3, ~r4, ... sequentially using the following greedy optimization for all S ≥ 2:

arg min
~rS

min
βS

∥∥∥∥∥
(
Y −

S−1∑
s=1

βsG(~rs)

)
− βSG(~rS)

∥∥∥∥∥
2

, (53)

by substituting the first residual term YS = Y −
∑S−1

s=1 βsG(~rs) for Y in Eq. (50).

52



Although a global search over all variables in Eq. (53) is usually intractable, one

can utilize linear least squares to plug in a closed-form solution β̂s (s ≤ S − 1) for all

of the βs that best match the existing source location estimates ~r1 through ~rS−1 by

computing:

β̂ = G†SY = (GH
S GS)−1GH

S Y = arg min
β
‖Y −

S−1∑
s=1

βsG(~rs)‖2, (54)

where GS comprises the concatenation of Green’s function column vectors [G(~r1) G(~r2) ... G(~rS−1)]

and G†S is the pseudoinverse of this concatenation. In order for the residual term

YS = Y −
∑S−1

s=1 βsG(~rs) = Y −GSG†SY to be of minimal norm, it must be orthog-

onal to G(~r1), ..., G(~rS−1), and therefore the projection YS = PSY is substituted for

the smallest possible residual term as follows:

arg min
~rS

min
βS
‖PSY − βSG(~rS)‖2. (55)

where PS = I−GSG†S is a rank N−(S−1) projection matrix satisfying PSG(~rs) = 0

for all s ≤ S − 1. In effect, PS attempts to “null out” from the data vector Y the

influence of sources that are already estimated, so that the locations of remaining

sources may be estimated with minimal interference. Here and throughout, P is a

symmetric projection matrix acting on Green’s functions or data vectors, but changes

depending on the context (with subscripts added as appropriate to denote different

constructions).

In a straightforward variation on Eq. (55), note that rather than fixing the βs

(s ≤ S−1) while searching for the best βS and ~rS pair that accounts for the resulting

residual term, ROMULO may implicitly include them in the optimization by substi-

tuting PSG(~r) for G(~r). This removes the portion of the candidate G(~r) vectors that

can be accounted for by some other multiples of the existing G(~rs) terms (s ≤ S−1),

resulting in the formulation:

arg min
~rS

min
βS
‖PS(Y − βSG(~rS))‖2. (56)
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By utilizing Eq. (50), the ambiguity functions for Eq. (55) and Eq. (56) are given

respectively by:

arg max
~r

|Y H
S PSG(~r)|2

‖G(~r)‖2
(57)

arg max
~r

|Y H
S PSG(~r)|2

‖PSG(~r)‖2
, (58)

and so differ only in the normalization of their denominator. We focus on the former

formulation of Eq. (57) because it tends to work better in practice, but scenarios may

exist where the latter version Eq. (58) outperforms, and that the mode-space version

of Eq. (58) was presented in [58]. Note in particular that although the denominator

of Eq. (58) may become very close to zero, potentially causing sharp singularities

in the objective function, the magnitude of the denominator is always larger than

the magnitude of the numerator (by the Cauchy-Schwarz inequality), so that the

objective function remains bounded by 1.

Algorithm 1: Round-Robin Multi-Source Localization

ROMULO(Y ,G(·)))
Input: Data vector Y , Green’s function G(~r) over domain ~r ∈ R
Output: Estimates {~r1, ~r2, ..., rS0} of the source locations

repeat
for S = 1 to S0

QS =
∑

s 6=S G(~rs)G(~rs)
H {Correlation Matrix}

VΣ2VH = QS {Eigenvalue Decomposition}

PS ← I−VnrV
H
nr

{Projection Matrix}

~rS = arg max~r∈R
|Y HPSG(~r)|2
‖G(~r)‖2 {Least-Squares Estimation}

until (stopping criterion)

The algorithm is described in pseudocode in Algorithm 1 and illustrated on Fig. 16.

Given some input data vector Y and corresponding model Green’s function G(~r)
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defined over the region of interest ~r ∈ R, this approach seeks a set of source locations

~rS so that the objective function in Eq. (51) is minimized. The outer loop allows

each source to be re-estimated on subsequent passes. The stopping criterion may be

designed to occur when the residual error (or its difference from the previous residual

error) falls below a specified threshold. Alternatively, a small fixed number of outer-

loop iterations are generally sufficient (five to ten, say). On the first pass through

the outer loop, the sum over all s 6= S is only carried out over the first S − 1 terms

(~r1, ..., ~rS−1), and the first estimate of ~r1 is taken without projection (i.e., with P = I).

The eigenvalue decomposition (EVD) of the rank-nr correlation matrix QS returns a

unitary eigenvector matrix V ∈ CN×N [59]. The matrix VH
nr
∈ CN×nr is simply the

“tall” sub-matrix of V corresponding to the first nr columns (i.e., corresponding to

the nr largest eigenvalues, generally corresponding to the non-zero eigenvalues). This

basic approach constructs the projection matrix through the matrix as QS given as:

QS =
∑
s6=S

G(~rs)G(~rs)
H . (59)

Constructing a projection matrix from the eigenvalue decomposition in this way is

equivalent to the construction PS = I −GSG†S given above and will be referred to

hereafter as the point-nulling method. This method is discussed in greater detail and

generality in earlier work by Mirkin and Sibul [54].

This algorithm can also be viewed essentially as a continuous-time version of

orthogonal matching pursuit (OMP) that has its own unique challenges. Even without

noise in the signal, the source locations will generally not be accurately estimated

during a first pass. For this reason, once location estimates exist for all sources by

using either Eqs. (57) or (58), each estimate ~rs is continuously improved in exactly

the same way that the final ~rS term was computed, by “nulling” out the other sources

first. Because each new location estimate is at least as good as its previous estimate in

terms of the residual of the objective function in Eq. (51), this leads to a monotonically

decreasing error, resulting in convergence of the source location estimates.
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This proposed approach is similar to greedy approaches found in compressive

sensing literature used to solve sparse inverse problems, such as matching pursuit

(MP) orthogonal matching pursuit (OMP) and compressive sampling matching pur-

suit (CoSaMP) [60, 24, 61, 62]. These algorithms choose a small number of vector

elements drawn from a given dictionary whose weighted sum matches a given data

vector. In fact, the first pass through Algorithm 1 to obtain initial source estimates

is equivalent to OMP, because the minimization of the distance between the replica

vector and the data post-projection is equivalent to a maximization of correlation

between the Green’s function and the least-squares residual of the data with respect

to the current source location estimates.

CoSaMP [62] is especially well-suited for problems where signals x and y with

disjoint support give rise to compressed vectors Φx and Φy (for random projection

Φ) that are statistically independent from one another, an assumption whose analog

is not met in this case. On the other hand, CoSaMP effectively handles much larger

Φ matrices than ROMULO requires (e.g., dimensions in the thousands) while the

proposed approach is more tailored toward Φ matrices whose dimensions are on the

scale of the number of sources generally dealt with in acoustic localization (dozens

rather than thousands, say). In particular, the computational complexity of RO-

MULO scales quadratically in the number of sources while theirs is somewhat faster,

if not linear in the number of support elements. One advantage of this extra com-

putational effort expended per-source (which is rather modest for common cases of

interest) is the ability to revisit all source locations, rather than continuously focusing

on those support elements which are contributing the least toward the minimization

of the residual, a feature found (in simulations at least) to substantially improve the

performance.

Here, we utilize a simulated shallow-water environment discussed in earlier work

[23]. That is, a Pekeris waveguide with a depth of 200m, where the Green’s functions
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were computed using standard normal mode code [46] using 150 Hz in the single

frequency case and 20 uniformly-spaced frequencies between 140 Hz and 160 Hz for

the multi-frequency case. In this Green’s function model, as with most others, the

neighborhood of similar Green’s functions {~r′ : ‖G(~r0) − G(~r
′
)‖2 ≤ ε} around any

fixed location ~r0 is well-approximated by an ellipse, so the erroneous estimates from

solving Eq. (49) with vector Y containing white additive noise tend to fall within

an ellipse around the true source location [23]. For this reason, distance errors are

reported according to an elliptical metric as later described by Eq. (74) in Sec. 3.3.

3.2.2 A Robust Variation on Multi-Source Localization

This section discusses some considerations that will motivate a variation on the min-

imization proposed in Eq. (56), and in particular the construction of a projection

matrix that is robust against faulty location estimates.

First, consider the 2-source case where there is a source of primary interest at

location ~r2 that is being obscured by a stronger source elsewhere at location ~r1 (e.g.,

a loud surface ship obscuring a weaker submerged source). Suppose the following

observation is made:

Y = α1G(r1) + α2G(r2) + η. (60)

While making the initial estimate of the loud source ~r1 (e.g., by maximizing the

original ambiguity function Eq. (50)), the weaker source acts as an interferer whose

energy contributes to the energy of the noise. This causes a mild error in the estimate

of ~r1. During the iterations between estimating one source while attempting to null

out the other, this procedure may end up with a situation where faulty estimates

cause ROMULO to null out an insufficient amount of the interfering source, perhaps

leading to an unsatisfying estimate of Eq. (56).

These considerations motivate a different construction of the projection matrix

that takes into account the uncertainty inherent in the intermediate source location
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estimates. Because interfering perturbations from the noise and other sources often

cause each source’s position to be estimated only within some ellipse around its true

location, this fact is utilized in the proposed filter design. Given some estimate for ~r1

that is believed to be accurate to within some elliptical region of uncertainty E, and

given that ~r2 could lie anywhere within the region of interest R, the goal is to design

a projection matrix P so that the projected data vector

PY = α1PG(r1) + α2PG(r2) + Pη, (61)

contains a greatly diminished nuisance term PG(r1) term while leaving the other two

terms relatively unchanged so that ~r2 may be reliably estimated using this projected

data vector.

To make this concrete, the “attenuation factor” is defined to represent the fraction

of energy (between zero and one) leftover after the projection, as

0 <
‖PG(~r)‖2

‖G(~r)‖2
= ‖PG(~r)‖2 < 1, (62)

and will define the expected (or average) attenuation factor over a region A (e.g.,

where A is the ellipse of uncertainty E or the region of interest R) as:

E
[
‖P G(~x)‖2

]
= E

[
Tr(PG(~x)G(~x)H)

]
= Tr(P E

[
G(~x)G(~x)H

]
)

= Tr(PQA),

where ~x is a uniform random variable over region A, and where:

QA = |A|−1

∫
A

G(~r)G(~r)Hd~r. (63)

The specific goal is then to design a projection matrix that minimizes the ex-

pected energy of the nuisance term E [‖PG(~r1)‖2] = Tr(PQE) (i.e., by using A = E

in Eq. (63)) without significantly affecting the expected energy of the source of in-

terest E [‖PG(~r2)‖2] = Tr(PQR). Put another way, the goal is to make the local
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Figure 13: Attenuation factors ‖PG(~r)‖ (see Eq. (62)) over range and depth for (a)
single-frequency case when attempting to null out a single source located close to
the ocean surface using a nulling rank nr =5 to construct the projection matrix and
(b) broadband-coherent case when attempting to null out nine sources distributed
throughout the water column using a nulling rank nr =20 to construct the projection
matrix. The intended nulling region E for each source is indicated by a super-imposed
line on the plot.

attenuation factor Tr(PQE) as small as possible while keeping the global attenuation

factor Tr(PQR) as close to unity as possible.

The proposed construction of P takes the eigenvalue decomposition VΣ2VH of

QE, and then defines the projection matrix P = I − VnrV
H
nr

for some user-defined

nulling rank nr and where Vnr contains the first nr columns of V. The two parameters

that describe this projection are the size of the ellipse and the rank of the projection.

The resulting attenuation factor over each point on the region of interest is shown in

Fig. 13 for both the single-frequency case and the broadband coherent case discussed

in greater detail later in Section 3.2.3. Here, a correlation matrix QE was constructed

for a small ellipse near the top-center of the region of interest R, then a projection

matrix P was constructed using nr = 5.

The remainder of this section considers the effect of this choice of projection

matrix on the energy of the three terms in Eq. (61). As will be shown, this projection

aggressively attenuates the G(~r1) term while indifferently affecting the other terms,
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so that the G(~r2) and noise term η suffer only mildly from this collateral damage.

First, note that this construction gives the rank N − nr projection matrix that best

minimizes the expected energy of the nuisance term G(~r1):

E
[
‖PG(~r1)‖2

]
= Tr(PQE) =

N∑
n=nr+1

σ2
n, (64)

where the σn are the eigenvalues of the correlation matrix, QE.

This expression summing the smallest eigenvalues represents the fraction of left-

over energy after the projection averaged over all locations in the region E. The

amount of energy that has been nulled out depends on the size of the region E. This

fraction is illustrated in Figure 14 for several sizes of E (relative to some target ellipse)

and for several choices of rank nr. This approach is similar to the way that prolate

spheroidal wave functions have been used to account for and isolate approximately

time-limited and band-limited waveforms in related work [63].

For independent and identically distributed (i.i.d.) Gaussian noise, the noise term

η from Eq. (61) can also be easily analyzed using rotational symmetry as follows:

E
[
‖Pη‖2

]
= E

[
‖
[
IN−nr 0

]
η‖2

]
=
N − nr
N

E
[
‖η‖2

]
, (65)

for rank N−nr projections, yielding an attenuation factor of 1−nr/N . By rotational

symmetry, we mean that Gη is equal in distribution to η for any unitary G.

To build a reasonable lower bound on the attenuation factor of the source to

be estimated, PG(~r2), a correlation matrix QR over the entire region of interest R

instead of the neighborhood E is constructed. A similar approach to the one used

before is then used to bound the attenuation:

E
[
‖P G(~r2)‖2

]
= Tr(PQR) (66)

= Tr((VH
RPVR)ΣR)

≥
N∑

n=nr+1

σ2
n

≥ 1− nrσ2
1,
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Figure 14: Local attenuation factor resulting vs. size of the ellipse-shaped nulling
area for various values of the nulling rank nr used to construct the projection matrix.
The size of the nulling area, defined as {~r : d(~r, ~r1) ≤ γ} using the elliptical metric
defined in Eq. (74), was quantified by a single factor γ which was used to scale up
both major and minor axis of the ellipse. a) single-frequency case. b) broadband
coherent case.

where the second-to-last inequality was changed from the equality used earlier, and

the last inequality comes from the monotonicity of QR’s eigenvalues σ2
n and the fact

that
∑N

n=1 σ
2
n = 1 (because ‖G(~r)‖ = 1). It turns out that this simple bound is

actually quite accurate because most of the energy resides in eigenvalues that vary

very little (well within a factor of 2 for the proposed model, empirically speaking). The

quantities
∑N

n=nr+1 σ
2
n and 1−nrσ2

1 are compared in Fig. 15 using a projection ellipse

of radius 1
2

to illustrate the tightness of this approximation, including the broadband-

coherent case discussed in more detail later in Section 3.2.3. Note that although the

nominal dimension is N = 37 in the single-frequency case and N = 37 ∗ 20 = 740

in the multiple-frequency (coherent) case (for the particular channel considered), the

effective dimension is much lower, with 99% of the energy being contained in the first

12 and 54 eigenvalues for the single-frequency and coherent cases. Note also that this

quantity is

Although the choice of construction for this projection matrix from the subspace
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Figure 15: Shown in the solid line for the (a) single-frequency and (b) broadband-
coherent cases is the attenuation factor Tr(PQR) over the entire region of interest
R under a rank-nr nulling projection over the ellipse {~r : d(~r, ~r1) ≤ 1

2
} using the

elliptical metric defined in Eq. (74). The dashed line shows the simple linear lower-
bound approximation 1− nrσ1.

spanned by the first few principal components of the correlation matrix Q is relatively

simple and intuitive, there is a stronger justification. This justification depends on

assumptions that approximately hold in many cases that discussed in greater detail

in Appendix A.3. In this Appendix section, we show how the apparently simple

heuristic of eigenvalue-thresholding relates to more principled approaches such as the

one proposed by Vaccaro et al. [64].

To summarize the robust variation of the general case where S0 ≥ 2, ROMULO

continues to operate as described in Algorithm 1 with the following two modifications.

First, the correlation matrix QS is defined over the union of all target ellipses except

for the source location ~rS currently being estimated:

QS ,
∑
s 6=S

QEs =

∫
{
⋃

s6=S Es}
G(~r)G(~r)Hd~r, (67)

where
⋃

is the set-union operation. Second, the eigenvalue decomposition VΣ2VH

becomes the eigenvalue decomposition of the closest rank-nr matrix to QS (i.e., after

eigenvalue truncation). Note that as the size of the ellipse approaches zero, this
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reduces to the non-robust case as in Eq. (59) discussed in the previous section, so

that this variation is a generalization of that approach.

3.2.3 Extension to Broadband MFP

The extension to the “broadband” case involves discretizing a frequency range of

interest into a set of frequencies ω1, ..., ωK , observing a data vector Yk ∈ CN of complex

amplitudes for each of the K frequencies, and solving a least-squares problem over

the source’s amplitudes βk and location ~r.

3.2.3.1 Incoherent MFP

In the general case, there is no prior information of the complex amplitudes of the

source’s signal (e.g. if the source is a a random radiator). Assuming When estimating

the first source’s location, the objective function is formed by incoherent summation

over the K selected frequencies and thus becomes[27]:

~̄r = arg min
~r

min
βk

K∑
k=1

‖Yk − βkGk(~r)‖2. (68)

For each subsequent source’s localization when some sources’ locations are known,

we utilize a series of projection matrices Pk, constructed on a frequency-by-frequency

basis exactly as in the single frequency case (e.g., by Eq. (67)). Then, Eq. (68) is

modified as before by using these nulling projection matrices:

arg min
~r∈R2

min
βk∈C

K∑
k=1

‖PkYk − βkGk(~r))‖2 = arg max
~r∈R2

K∑
k=1

|Y H
k PkGk(~r)|2

‖Gk(~r)‖2
. (69)

This objective function is referred to as broadband-incoherent MFP (or incoherent

MFP for short).

3.2.3.2 Coherent MFP

There is the opportunity to do better than the incoherent case when the source com-

plex amplitudes over the K frequencies are known up to some common multiplicative

constant, known as broadband-coherent MFP (or coherent MFP for short)[27]. Here,
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the measurement vectors and the Green’s functions across all frequencies are simply

stacked to achieve a much higher ambient dimension. Here, instead of the need to

null for each frequency specifically, one may instead null across all frequencies jointly

by constructing the correlation matrix in NK ×NK space instead of N ×N space,

constructing the large P appropriately.

Specifically, when the source amplitudes α1, ..., αK are known up to some unknown

multiplicative constant β, the minimization is constructed as:

arg min
~r

min
β

∥∥∥∥∥∥∥∥∥∥∥∥∥
P



Y1

Y2

...

YK


− β



α1G1(~r)

α2G2(~r)

...

αKGK(~r)



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= arg max
~r∈R2

|Ȳ HPḠ(~r)|2

‖Ḡ(~r)‖2
, (70)

and note that this has an equivalent form to the single-frequency case in (55) when

treating the stacked αkGk(r) terms as a single Ḡ(~r) term and similarly treating the

stacked Yk terms as a single Ȳ term (with dimension NK instead of N).

This coherent approach yields a higher dimension to start with (approximately

54 for this case, as shown in Fig. 15) so that a larger number of degrees of freedom

are able to be removed via the nulling projection without suffering adverse effects.

While degrees of freedom are scarce in the single-frequency case, in the coherent

case, there are many extra degrees of freedom that may be used for nulling. The

attenuation factors induced by the projection matrix (see Eq. (62)) at each location

for the broadband coherent case are illustrated in Figure. 14b.

3.2.4 Extension to Compressive MFP

Earlier work demonstrated how a series of M < N randomized backpropagations -

using rows of a random projection matrix Φ ∈ RM×N as weighting vectors of the array

elements for the backpropagation - could be used to construct a dimension-reduced

proxy of the Green’s function G̃(~r) = ΦG(~r)[23]. This compressive MFP approach
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allows for a more computationally efficient implementation of Eq. (49) by reducing the

required number of backpropagations by a factor N/M . The entries of this random

matrix are drawn independently from a Gaussian distribution, and then the matrix

is constrained to be orthonormal, satisfying ΦΦH = I (e.g., by Q-R decomposition).

The multi-source localization method discussed here (along with most other variations

on MFP) can be easily adapted to compressive MFP (cMFP) by substituting the

compressed proxies ΦY , ΦG(~r), and M for their classical counterparts Y , G(~r), and

N :

ΦY ← Y (71)

ΦG(~r) ← G(~r) (72)

M ← N. (73)

The single-frequency, incoherent, and coherent cases in Equations (56), (69),

and (70) respectively are easily modified via this substitution. For example, the

correlation matrix for a source believed to lie within ellipse E is constructed as:

QE = E
[
(ΦG(~x))(ΦG(~x))H

]
for the vector G(~x) drawn randomly from the Green’s

function in that region. The entries of Ỹ = ΦY are also called “compressed mea-

surements”, as if they were obtained by a random compressing projection Φ. How-

ever, this compression operation is actually introduced after the data vector Y has

been measured in order to facilitate compressive matched field processing against

the more easily obtained compressed Green’s function G̃(~r) = ΦG(~r). In particu-

lar, ΦG(~r) = (G(~r)HΦH)H can be computed using M randomized backpropagations

applying the adjoint operation GH to each of the M rows of the Φ matrix.

The primary source’s location may be recovered via cMFP by nulling the interfer-

ing source below the additive noise level, provided that an extra number of randomized

backpropagations are taken that will provide the buffer of necessary extra degrees of
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freedom that may be removed during the nulling process. Then, in principle, RO-

MULO should be able to recover the primary source, where the attenuated interfering

source acts as additive noise that combines with the existing white noise.

3.3 Numerical Results

This section demonstrates the efficacy of the proposed approach by simulating the

localization of (1) two sources in the single-frequency case using Eq. (58), and (2) ten

sources in the coherent case using Eq. (57). Specifically, numerical experiments are

presented hereafter to quantify:

• the spatial resolution of the proposed approach for localizing two distinct sources

accurately as they get closer together,

• the benefits of robust nulling over a region of the search area, the sacrifice in

accuracy made when using the proposed greedy search method (ROMULO)

instead of the relatively infeasible global search,

• the computational efficiency achieved when using randomized backpropagations

(especially in the broadband regime) causing only relatively small loss of local-

ization accuracy,

• the effectiveness of the greedy receiver-space nulling approach – used by the

ROMULO algorithm – when compared to an alternative greedy ambiguity-space

nulling approach. [52].

All numerical simulations were conducted using a 200m deep Pekeris waveguide

and the Green’s functions were computed using a standard normal mode code [46].

The configuration of the acoustic environment largely matches earlier work by Mantzel

et al. [23]. A uniformly spaced vertical line array with N = 37 elements spaced

between 10 and 190 meters was used to sample the acoustic field. The Green’s
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functions between each of the search locations and the receiver array were calcu-

lated across K = 20 different frequencies between 141 Hz and 160 Hz (the nar-

rowband configuration uses 150 Hz). The region of interest (i.e. search area) was

R = [5000m 5720m]× [10m 190m] for the single frequency case, and was reduced to

R = [5000m 5240m] × [10m 190m] for the broadband coherent case due its higher

spatial resolution for locating sound sources[27]. In both cases, R was discretized into

120 points in range and 180 points in depth so that the spatial resolution was 6 meters

in range for the single-frequency case and 2 meters in range for the coherent case.

The following default parameters were used unless otherwise specified. The noise

amplitude was 20 dB below the weakest source amplitude in the coherent case and

40 dB below the weakest source amplitude in the single-frequency case. All source

amplitudes are set equal by default. The locations of all sources are independently

drawn uniformly from R. The coherent tests were taken with 10 sources with the

fixed (but unknown to the algorithm) locations (depicted in Fig. 19) and the single-

frequency tests were taken with 2 sources. In order to prevent the sources (whose

pairwise distances were fixed) from having a fixed distance from the nearest gridpoint

in all of the simulations, a small rigid random translation (on the order of magnitude

of the grid spacing, roughly a meter) was added to the locations of the sources at

each of the 1000 simulations. M = 4 randomized backpropagations per frequency

were used in the coherent case and M = 10 randomized backpropagations were used

in the single-frequency case. The case when M = 37 corresponds with the classical

(uncompressed) approach. Regarding the parameters of the ROMULO algorithm,

10S0 iterations were used in a round-robin approach so that each source location was

estimated in 10 total passes. For the projection matrices, nr = 2S0 in the coherent

case and nr = min(bM/2c, 5) in the single-frequency case unless otherwise noted.

Fig. 16 illustrates the specific iterations of ROMULO (see Algorithm 1) for the

coherent 10-source case using M = 4 randomized backpropagation per frequency.
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The projection matrix was computed using a nulling rank of nr = 15. Note that

an approximate estimate for the location of five of the sources is obtained after 5

iterations as shown on Fig. 16c. The estimated locations for all S0 = 10 sources are

further refined after completing all 10 iterations as depicted in Fig. 16d.

Following earlier work [23], the distance d(~r1, ~r2) between two grid point location

within the search area R is computed using an elliptical norm weighted with (ze =

3m)−1 in the depth direction and (re = 36m)−1 in the range direction for the single-

frequency case ( or (re = 12m)−1 in the range direction for the broadband coherent

case) such that:

d(~r1, ~r2) =

√(
r1 − r2

re

)2

+

(
z1 − z2

ze

)2

, (74)

where ~r = (r, z) is the ordered pair of range and depth and (re, ze) are the ellipse

parameters. The “target ellipse” E is then defined as the unit ball based on Eq. (74):

E = {~r : d(~r, ~rs) < 1}, (75)

where ~rs represents the actual source’s location or its estimate. For example, the

correlation matrices QEs for a given source’s location estimate ~rs are constructed

over the half-unit ball {~r : d(~r, ~rs) ≤ 1/2}. When comparing all of the source es-

timates to ground truth, the aggregated distance error reported is the maximum

distance d(~rs, ~r
′
s ) over all source indices s. Here, the labeling is chosen via a modified

Hungarian algorithm that minimizes this maximum distance over all permutations of

re-assignment [65].

3.3.1 Performance study

In general, it is difficult to localize a weak source that that is in the vicinity of another

louder source. Fig. 17 illustrates this difficulty by showing the empirical probability of

localization of the weak source as a function of its location. Here, the dominant source

remains at a fixed location at the top-center of R ( (5360, 20) for the single-frequency
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Figure 16: An illustration of the evolution of the source location estimates for the
broadband-coherent case with a nulling rank of nr = 20, S0 = 10 acoustic sources, and
M = 4 randomized backpropagations per frequency. Here the actual source locations
are shown in circles and the estimates that are currently being nulled are shown
using “x” symbols. First ~r1 is estimated using (a) the original ambiguity function
in Eq. (50). Then, after constructing the appropriate projection P from ~r1, ~r2 is
estimated using (b) the projected ambiguity function as in Eq. (58). The (c) pane
shows this process after 5 iterations so that 5 sources are attempted to be nulled out,
and pane (d) shows this process after 100 iterations, so that each of the 10 source
locations have been estimated 10 times. In all cases, the compressed proxies ΦY and
ΦG(~r) were used in place of Y and G(~r), corresponding to a compression ratio of
M/N = 4/37.
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Figure 17: The probability of localizing both sources to within the target ellipse
(shown superimposed) for the (a) single-frequency and (b) coherent cases as a function
of the second source’s location when the primary source is located in the top-center
of their respective regions of interest R (i.e., (5360m, 20m) for (a) and (5120m, 20m)
for (b)).
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Figure 18: Single-frequency (a) tail probabilities of distance errors using a nulling
rank nr = 5 and M ∈ {8, 10, 37} randomized backpropagations, and (b) probability
that the location estimate is outside the target ellipse for increasing number of M
randomized backpropagations, using two different values for the nulling rank nr ∈
{3, 5}.
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Figure 19: For a fixed pattern of 10 sources shown in (a), (b) shows the empirical tail
probabilities (with respect to the randomness caused by the selection of the random
matrix Φ or the additive white noise η for each realization) for the localization of
these sources in the broadband-coherent regime. Here, with only M = 4 randomized
backpropagations per frequency, 10 sources may be localized to within the target
ellipse with 98% probability.

case and (5120, 20) for the coherent case as shown super-imposed in Fig.17). Then a

weaker secondary source is placed within R and the empirical probability of detecting

both to within their target ellipses is recorded. This weaker source has a signal to

noise ratio of 40 dB in the single frequency case and 20 dB in the coherent case, and

the dominant source has an SNR 20 dB higher in both cases, so that the loud source

is almost always localized to within the target ellipse. These empirical probabilities

were estimated by running one simulation per pixel (corresponding to a range and

depth of the secondary source), and then averaging the results over a neighborhood

of pixels. In both cases, a nulling rank of nr = 3 was used. In both cases, the lower

two thirds of the region of interest (i.e., z > 70) is assumed to have probability of

recovery close to 1 though it was not explicitly tested for the sake of computational

simplicity.

Fig. 18a shows the empirical tail probability of distance error for the single-

frequency case using M = 8, 10, and 37 randomized backpropagations (where the

latter coincides exactly with traditional MFP) using 1000 trials. In other words, this
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figure shows, for a fixed d the fraction of simulations (out of 1000) that performed

worse than a distance d, meaning that at least one of the sources was not localized

to within a distance of d. Fig. 18b shows that same quantity as a function of M for

a fixed target distance d = 1 (describing the so-called target ellipse) for nulling rank

nr ∈ {3, 5}. Note that nr = 3 outperforms for low M , but nr = 5 works slightly

better when M & 8, motivating the simple heuristic nr = min(bM/2c, 5) mentioned

above.

When using multiple frequencies coherently, several sources can be localized.

Fig. 19 illustrates the coherent joint localization of 10 sources using M = 2 and

M = 4 randomized backpropagations per frequency (i.e., 40 and 80 backpropagations

total), yielding computational gains of N/M = 37/2, 37/4 respectively. The loca-

tions of these 10 sources are depicted in Fig. 19a and 16d, where at each simulation,

a small random rigid translation is applied to all sources to create some degree of

randomness (in addition to the randomness created by the additive noise and in the

selection of the Φ matrix) while keeping the distance between the sources fixed.

The performance of recovery depends on the noise level as well. Fig. 20 illustrates

this dependency using M = 10 and M = 4 randomized backpropagations for the

single-frequency and coherent cases respectively. The broadband-coherent case gen-

erally can perform under lower SNR thanks to the extra degrees of freedom available

in this case.

3.3.2 Comparison of the ROMULO algorithm to previous variations and
alternatives

Fig. 21 illustrates the benefit that the robust approach described in section 3.2.2

gives over the basic point-nulling approach given in Eq. (59). With 10 sources in the

hexagonal pattern used above using coherent localization with M ∈ {2, 4} randomized

backpropagations, ROMULO searched for each source’s location either by nulling out

the other source location estimates directly (point-nulling) or by nulling out all sources
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within a neighborhood of these location estimates via a more general correlation

matrix. It is worth noting here that although the robust approach outperforms in

this case, there may be other configurations or channel models when point-nulling

works better, especially at high SNR.

Fig. 22 compares performance between ROMULO and the CLEAN-based algo-

rithm proposed by Song et al. [52]. Note that with just M = 4 randomized back-

propagations, the proposed algorithm gives better performance than the CLEAN

algorithm does for M = 37 randomized backpropagations (the uncompressed case)

while utilizing a compressed Green’s function that requires nearly 10 times fewer

backpropagation runs.

Finally, Fig. 23 compares ROMULO to the global optimum for the 2-source case

in the broadband-coherent regime using M = 2 randomized backpropagations (i.e.,

using an exhaustive search as in Eq. (51)). Here, ROMULO performs roughly 3.5

more poorly than the global method in terms of distance error and roughly 3.7 times

worse in residual error. However, finding this global solution involves solving least

squares on the data Y using all possible combinations (pairs). To expedite this search,

a simple heuristic was actually used to eliminate infeasible optima by examining the

corresponding pairs of values of Y HG(~r), as described in more detail in Appendix A.4.

3.4 Conclusions

This chapter presented a computationally efficient scheme for multi-source localiza-

tion and shows how it is conducive to a compressive approach using randomized

backpropagations, even when the number of degrees of freedom (as determined by the

rank of the underwater channel’s correlation matrix) in the acoustic field is a small

factor of the number of sources present (a factor of three to five, say). The round-

robin approach of releasing source estimates back into the residual for re-estimation

in particular appears to improve localization estimates substantially compared to
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Figure 20: Tail probabilities under various noise levels in the (a) single-frequency
(M = 10) and (b) coherent (M = 4) cases, where the signal to noise ratio is referenced
to the weak source’s amplitude and the ratio of amplitudes for the loud source to the
weak source was fixed at 20 dB.

previous approaches. The simple design of the projection matrix, and in particular,

the randomized approximation for larger dimensions (e.g., the broadband-coherent

case) ensures computational feasibility. In practice, the compressive approach of the

ROMULO algorithm provides a means to significantly reduce the dimensionality of

the problem while the localization accuracy is gradually reduced when compared to

results of the classical uncompressed approach

The major blind spot of ROMULO is the ability to localize sources that are

close to one another, with strong correlations in the Green’s function. However,

this resolution problem is more or less fundamental to the multi-source localization

problem, due to the ill-conditionedness of recovery. Furthermore, the compressive

MFP approach inherits the known limitations of the classical MFP approach (e.g. to

model mismatch of the actual environmental parameters).
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Figure 21: Localization performance (according to Eq. (55)) when the projection
matrix is constructed from a correlation matrix via a neighborhood around current
location estimates (solid lines) and when the correlation matrix is constructed from
a neighborhood of size zero around those points, i.e., point nulling (dashed lines).
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Figure 22: Comparison of the proposed ROMULO approach (solid lines) to previ-
ous implementation of the CLEAN algorithm[52] (dashed lines). Note that even in
the compressed case with M = 4 randomized backpropagations per frequency, the
ROMULO approach outperforms the CLEAN approach in the uncompressed case.
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Figure 23: Comparison of the proposed greedy method (ROMULO) and the global
optimum (solving Eq. (51) exhaustively) shown as (a) distance error and (b) squared-
residual error ‖Y − βG(~r)‖2.
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Figure 24: Relationship between physical distance and Green’s function correlation.
Shown here for the (a) single-frequency and (b) coherent cases are. In both panes,
the upper bound ε+(δ) and the lower bound ε−(δ) on the Green’s function ‖G(~r1)−
G(~r2)‖2 are displayed as a function of the physical distance ‖~r1 − ~r2‖2 under the
elliptical distance described in Eq. (74). In particular, these functions satisfy both
1
2
‖G(~r1)−G(~r2)‖2 ≤ ε+(δ) for all ‖~r1 − ~r2‖2 ≤ δ, and 1

2
‖G(~r1)−G(~r2)‖2 ≥ ε−(δ) for

all ‖~r1 − ~r2‖2 ≥ δ.
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CHAPTER IV

COMPRESSIVE PARAMETRIC ESTIMATION

4.1 Introduction

In this chapter, we explore compressive parametric estimation more generally, where

we search over a parameterized subspace for the closest match to the data:

minimize ‖h− f‖2 s.t. f ∈ F , (PE)

where F is the parameterized collection of subspaces described by:

F = {Vθα : θ ∈ Θ, α ∈ RK}, (76)

where Vθ : RK → L2 represents an orthobasis spanning parameterized subspace Sθ

and Θ ⊂ RD for compact parameter set Θ. (Whenever meaningful, we will express

this functional class F as the union over over the set of subspaces {Sθ}, which is

shorthand for {Sθ : θ ∈ Θ}.)

Its compressive counterpart simply finds the closest function with respect to some

dimension-reducing linear operator Φ:

minimize ‖Φ(h− f)‖2 s.t. f ∈ F , (CPE)

a constrained minimization that parallels Eq. (5). Note that estimating f is equivalent

to estimating the D-dimensional parameter vector θ and the K-dimensional vector of

linear coefficients α.

This formulation is a very natural approximation to the general parametric es-

timation problem in (CPE), given a constrained number of linear measurements

Y = Φh ∈ RM . This formulation essentially finds the closest member f ∈ F to

h under some compression operator Φ. Provided that Φ approximately preserves
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distances between all close members of F , it will be unlikely that the compressive

estimate will be significantly different than its classical counterpart.

We denote the classical and compressive minimizers of (PE) and (CPE) as θ̄ and

θ̂ respectively with associated errors:

Ē2 = min
α
‖h−Vθ̄α‖2 = ‖h‖2 − ‖Pθ̄h‖2 (77)

Ê2 = min
α
‖h−Vθ̂α‖

2 = ‖h‖2 − ‖Pθ̂h‖
2, (78)

where Pθ = VθV
T
θ . Throughout this chapter, we assume for simplicity and without

loss of generality that ‖h‖ = 1. In the general case, Ē and Ê are defined as the

relative errors:

Ē2 = min
α

‖h−Vθ̄α‖2

‖h‖2
= 1− ‖Pθ̄h‖2

‖h‖2
(79)

Ê2 = min
α

‖h−Vθ̂α‖2

‖h‖2
= 1−

‖Pθ̂h‖2

‖h‖2
, (80)

Note that the estimates of both θ̄ and θ̂ given in (PE) and (CPE) are invariant to

scalar multiplication of h (or Φ for that matter).

Here, rather than modeling h as a parametric function, we instead model it by a

subspace with some small known of unknown parameters. This generalization affords

us a wide variety of applications that are especially well suited to a small number of

nonlinear parameters and a potentially large number of linear coefficients, problems

involving a small number of unknown shifts or translations in particular. In Chapter

4.2.1, we discuss how this approach relates to the compressive approach to passive

acoustic localization proposed in Chapter 2.

As in the case of compressed sensing of sparse signals, the performance of (CPE) is

closely related to the restricted isometry property over our set F , analogously defined

as follows:

δF , sup
f∈F

∣∣∣∣‖Φf‖2

‖f‖2
− 1

∣∣∣∣ = sup
θ∈Θ
‖PθΦ

TΦPθ −Pθ‖ (81)
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where the latter norm is a matrix spectral norm.

Obviously, the row-deficient Φ has a null space, so F cannot be arbitrary if we

require δF < 1. We need a useful measure of F (analogous to the “sparsity” measure

of sparse sets) that will allow us to meaningfully relate the number of compressive

measurements M to the accuracy of our compressive estimate.

4.1.1 Chaining Stochastic Processes

In order to build a meaningful measure of F , it will be necessary to understand

the behavior of its elements under random projection. For example, to understand

the descriptor δF , we would like to estimate the probability that all subspaces pa-

rameterized by θ contain only functions whose norms differ from the norms of their

compressive counterparts by at most some tolerance. Equivalently, we can estimate

the supremum over θ of the random process ‖PθΦ
TΦPθ −Pθ‖ as above in Eq. (81).

To bound the supremum of stochastic processes of this type, we will use a so-called

“chaining” approach to analyze this continuous process [25]. The main idea of this

approach is as follows. Consider a stochastic process g(θ). (For example, a stationary

Gaussian process with zero mean and known autocorrelation function.) In order to

bound the probability of a supremum over all θ ∈ Θ of a process g(θ) from being too

large, first define a sequence of finite but successively larger subsets Tj of Θ (with

j ≥ 0) with T0 = {θ0} containing only a single element (deterministically fixed but

arbitrary) known as the reference point. Here, each subset Tj is a successively more

“dense” approximation to Θ than its predecessor Tj−1 (in the sense that the set of

all fractions n/j with 0 ≤ n < j ≤ J become successively more dense on the interval

[0 1] as J increases). In this way, any element θ ∈ Θ can be approximated at any

“scale” j by the closest element in Tj. The operation πj(θ) denotes projection of θ

onto Tj – that is, the closest element in Tj to θ according to some metric that will

be defined shortly below. Then, the deviation of any point from the reference point
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g(θ) − g(θ0) can be bounded as the telescoping sum over all j of the “increments”

g(πj+1(θ))− g(πj(θ)). By defining increment “targets” δj, we can write:

P

{
sup
θ∈Θ

g(θ)− g(θ0) ≥ δ

}
≤
∑
j≥0

P

{
sup
θ∈Θ

g(πj+1(θ))− g(πj(θ)) ≥ δj

}
(82)

where δ =
∑

j≥0 δj. Now, the supremum of the continuous process can be reduced to

a series of piecewise supremums over finite sets. This is because, for every fixed scale

j, the corresponding increment can take only take a finite number of values, each

corresponding to a pair of samples from the finite sets Tj and Tj+1. The maximum

increment value for any given scale j can then be probabilistically bounded using a

union bound over the finite set.

The goal of an effective chaining approach is then to simultaneously minimize

both δ =
∑

j δj and the sum of probabilities on the right hand side of Eq. (82). The

remaining challenge then lies in defining the sets Tj and choosing the targets. Most

commonly, these Tj are defined as ε-nets of the set Θ for some decreasing sequence

εj. An ε-net Tj of Θ with radius εj is by definition a finite set of minimal cardinality

satisfying d(θ, Tj) ≤ εj for all θ ∈ Θ (where d(θ, Tj) denotes the smallest distance

between θ and an element of Tj). This minimal cardinality is called the covering

number and is defined as follows:

N(Θ, ε) = min{card(T ) | sup
θ∈Θ

d(θ, T ) ≤ ε, T ⊂ Θ}. (83)

Evidently, the cardinality of the Tj described above is then N(Θ, εj). The result of

chaining then depends on the covering function of ε, N(Θ, ε), for some appropriately

defined metric.

4.1.2 Subspace Metric

Now that we have briefly overviewed the chaining approach, we next define an ap-

propriate metric. There are many potential metrics on the parameter set Θ, but for
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the purpose of this thesis, it will be useful and natural to view the structure of F ac-

cording to the metric defined by the spectral norm of the difference of the projection

operators:

d(θ1, θ2) = ‖Pθ1 −Pθ2‖. (84)

Incidentally, this metric, sometimes called the Finsler distance, is equal to the sine

of the largest principal angle between Sθ1 and Sθ2 [66]:

‖Pθ2 −Pθ1‖ = sin(γK), (85)

where the principal angles γ1, ..., γK are defined recursively via their cosines [59]:

cos(γk) = max{〈Vθ1uk,Vθ2vk〉 | ‖uk‖ = ‖vk‖ = 1, 〈uk, ui〉 = 〈vk, vi〉 = 0 (∀ ≤ i ≤ k)}.

(86)

Note that this metric is symmetric, satisfies 0 ≤ d(θ1, θ2) ≤ 1, is zero if and only if

Sθ1 = Sθ2 , and is equal to one if and only if there is a function f1 ∈ Sθ1 orthogonal to

Sθ2 (i.e., Pθ2f1 = 0).

In this thesis, using this metric, we explore the case when these covering numbers

grow at most polynomially as ε decreases to zero. That is

N({Sθ}, ε) ≤ N0ε
−d, (87)

for all ε ≤ 1. As it turns out, this assumption is met for many and perhaps even most

cases of practical interest. In this way, {Sθ} can be characterized by three scalars:

the base covering N0 (not necessarily an integer), intrinsic dimension d, and subspace

dimension K. The values of N0 and d need not be unique, and generally we will utilize

any known and reasonably small pair of values that satisfy Eq. (87). A natural way

to characterize the best pair of values is any feasible pair that minimizes d+ log(N0)

for reasons that will become clear later. For the sake of analysis, we assume that both

d and log(N0) are at least 1.
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4.1.3 Geometric Regularity

For a wide variety of applications in parametric estimation of subspaces, the signal

model exhibits a great deal of structure, and we exploit one particular type of structure

in this thesis. The class {Sθ}θ∈Θ is said to be Lipchitz-regular with respect to the

descriptive parameterization Θ if the distances between subspaces are closely related

to the Euclidean distances of the parameters that describe them. That is, for some

scalar constant A,

‖Pθ2 −Pθ1‖ ≤ A‖θ2 − θ1‖. (88)

More generally, a set {Sθ}θ∈Θ is said to be polynomial-regular if this bound only

holds up to some exponent α ≤ 1:

‖Pθ2 −Pθ1‖ ≤ A‖θ2 − θ1‖α. (89)

(Note that by redefining the parameter set Θ as its scaled counterpart, A1/αΘ, then

Eq. (89) is satisfied with a constant of unity.)

In either type of regularity, we can enforce the polynomial-growth bound on the

covering numbers as in Eq. (87) to ensure that they do not grow too rapidly as ε→ 0.

In particular, we can link the structure of {Sθ} to the simpler Euclidean structure of

Θ to yield easy-to-compute estimates for N0 and d as follows:

d = D/α (90)

N0 = 3dN(Θ, 1, ‖.‖) (91)

by using the fact [67] that a D-dimensional unit ball BD may be covered in Euclidean

space as:

N(BD, ε) ≤
(

1 +
2

ε

)D
. (92)

In many cases, the base covering N0 will be closer to N(Θ, 1, ‖.‖). The extra 3d

term provides a loose buffer. This notion of regularity will expanded upon in the

subsequent Section 4.3.
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Under this characteristic structural regularity, we will show that, with high prob-

ability, the compressive estimate obtained via (CPE) is characteristically similar to

the one obtained by (PE) provided that:

M & K(d+ log(KN0)) , (93)

and that the difference in residual errors between the two solutions decays asymptot-

ically as the inverse-square-root of the oversampling factor. That is:

Ê2 − Ē2 . O

((
M

K(d+ log(KN0))

)−1/2
)
, (94)

When d and log(K) are less than log(N0), as is often the case, this result essentially

requires a number of measurements M on the order of magnitude of K log(N0). This

result is analogous to the classical compressive sensing result requiring a number of

measurements M at least on the order of K log(N) to recover a K-sparse signal with

ambient dimension N , but here the role of the ambient dimension N has been replaced

by the base covering set descriptor N0. There are K + D degrees of freedom in the

functional class F , so there is little surprise that we require M at least on the order of

K. The extra log factor is common to many randomized inverse problems for reasons

relating to the coupon collector’s problem [68].

4.1.4 Continuous Random Projection

Before stating the main result, we first will make the definition of Φ concrete. In

the classical case, Φ is an M ×N random matrix. In the continuous case, each mth

element (for 1 ≤ m ≤M) is the inner product with a white noise process:

[Φf ]m =
1√
M
〈wm, f〉, (95)

where wm(t) is an independent sample of the white noise process w(t) with zero mean

and unit variance. Because we have [Φf ]m ∼ N (0, ‖f‖2/M), the M components of

Φf are i.i.d. Gaussian with zero mean and variance ‖f‖2/M , so that E [‖Φf‖2] =

‖f‖2, as is commonly characterized in the discrete case.
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In the cases where the class of functions F is covered by some finite N -dimensional

subspace (e.g., band-limited functions defined over some finite or periodic interval),

this general continuous operation collapses in a very natural way to the standard M×

N matrix-vector multiplication acting on the function’s spanning coefficients. Also,

by concatenating a finite dimensional orthoprojector P – e.g., the projection onto all

piecewise constant functions defined on the interval [0 1) – with this operator as ΦP f ,

we can reach broad variety of such operators. Although we focus on the Gaussian

operator in this thesis, there is potential to extend to a wider variety of operators

using similar techniques to those developed for traditional compressive sensing [69,

70].

4.1.5 Main Results

In this section, we state our main result, which essentially says that (PE) and (CPE)

give comparable performance whenever M is sufficiently larger than K.

Theorem 2 Let {Sθ} be a polynomial-regular (N0, d) parameterization of K-dimensional

subspaces. The difference in residual errors between classical and compressive para-

metric estimation (i.e., (77) and (78)) is probabilistically bounded above as:

P

{
Ê2 − Ē2 > C

(√
Kt

M
+
K log(2K)t

M

)}
≤ KN0e

d−t. (96)

The proof of this theorem is given in Chapter 4.4.6. Because the square root term

dominates for sufficiently large M and t must be at least d+log(KN0), this essentially

says that the the difference in errors decays asymptotically with M as the inverse

square root of the oversampling factor. That is,

Ê2 − Ē2 ≤ O

((
M

K log(KN0)

)−1/2
)

(97)

For a comparable probabilistic bound, we also have a restricted isometry property

over F =
⋃
θ∈Θ{Sθ}.
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Theorem 3 For some δG satisfying:

P

{
δG > C

(√
Kt

M
+
K log(2K)t

M

)}
≤ KN0e

d−t. (98)

and for all f ∈ F , we have the restricted isometry property:

(1− δG)‖f‖2 ≤ ‖Φf‖2 ≤ (1 + δG)‖f‖2 (99)

The proof of this theorem is also given in Section 4.4.6 and essentially depends on

Lemma 15.

4.1.6 Related work

A closely related research area is the study of manifold embeddings, which may be

parametric, or more generally, non-parametric. Baraniuk and Wakin made seminal

progress in this area in a result that mirrored the isometric properties in a natural

way [51]. Here, they relate the volume of the manifold, its ambient dimension and

intrinsic dimension, its condition number, and its geodesic covering regularity to

the number of compressive measurements needed to effectively preserve the pairwise

distances of all members of the manifold within a prescribed distance. Clarkson later

refined this result, removing the dependence on the ambient dimension, and robustly

substituting an average curvature when the worst case curvature was previously used

implicitly [71]. Yap et al. later published a variation on these earlier results for

a variety of projection operators Φ [72]. This thesis generalizes this prior work by

guaranteeing performance of the compressive estimation of parameterized subspaces,

and also utilizes set descriptors N0, d, and K that can be readily and intuitively

estimated for a wide variety of practical cases, providing relative ease of use.

In the field of empirical processes, Talagrand has recently stated necessary and

sufficient conditions for the boundedness of arbitrary Gaussian processes via generic

chaining arguments, improving upon earlier theorems involving Kolmogorov’s metric

entropy, and has established related theorems that are utilized in this thesis [25].
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We develop a similar chaining framework to analyze the performance of CPE while

focusing on probability bounds instead of expectations, but tailor it specifically for

the relatively intuitive parameters N0 and d that describe polynomial-regular param-

eter sets, lessening the need of the principled but somewhat arcane set descriptor γ2

developed in the generic chaining. Mendelson et al. also prove a restricted isometry

property for sparse vectors, but do so in a way that allows for generalizations to other

sets via a set descriptor that can be analyzed via these generic chaining techniques

[73]. However, it is not clear how this work can be applied to parametric estimation.

Researchers have already utilized this type of parametric estimation in specific

applications, including work in compressive matched filtering, radar pulse signal ac-

quisition, and compressive matched-field processing [74, 75, 23]. Mishali et al. have

successfully designed hardware for analog to digital conversion at sub-Nyquist rates

using a scheme they call Xampling [76]. This hardware appears to be conducive to

the compressive estimation of subspaces from receiver data using parameters for each

carrier frequency, although this has not been tested yet to the author’s knowledge.

In the field of radio estimation, Yoo et al. estimate the frequency, starting time and

ending time of a sinusoidal pulse that has been sampled via a random block-diagonal

sensing matrix [75]. Here, they utilize Discrete Prolate Spheroidal Sequences (DPSS)

functions [63], and particularly the projection operator onto this basis in order to

remove the contribution of each candidate sinusoid, as the procedure searches for

multiple carrier frequencies.

Many researchers have performed multi-target tracking under the “target-sparse”

assumption. That is, the methods propose to simultaneously localize several targets

that lie on some grid (or generally some set of points) by solving an `1 minimiza-

tion program. The recovered support resulting from this optimization corresponds

to the grid points that the various targets are estimated to occupy. This leverages

the main results of CS to prove that the targets may be perfectly localized with a
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high probability. Often, the painstaking effort in these papers involves showing that

the RIP holds for the observation matrix. For example, Fannjiang et al. show the

conditions that guarantee a sufficiently small coherence, which in turn guarantees

exact localization [43]. Gurbuz et al. show similar results for a compressive beam-

former, requiring a number of measurements on the order of the number of sources

[44], but the application there is different in that they utilize a signal common to all

sensors with an unknown time shift to localize their target in angle (assuming free

space propagation), and apply the compression operator in time per-sensor instead of

applying the operator across the range of sensors as we do. In seminal work under a

framework that predates compressed sensing somewhat, Fuchs proposed an algorithm

for detecting multiple acoustic sources’ direction of arrival [77]. Essentially they solve

a sparse inverse problem of an underdetermined system. They consider a greedy al-

gorithm such as matching pursuit [60], but instead opt to solve a regularized least

squares problem that is equivalent via duality to basis pursuit denoising (BPDN) with

an additional positivity constraint on the sparse vector, which can in turn be solved

with a known polynomial time linear program solver. Also, from a communications

perspective, Cevher et al. demonstrate the relatively low amount of information to

be transmitted for purposes of localization when using a CS framework [45].

These “target-sparse” approaches depend on targets lying exactly on the grid

points. Also, by necessity these grid points must be spaced sufficiently far away

from one another to avoid coherence-inducing correlations in the observation matrix.

This creates a restrictive model of limited applicability. When a target is somewhere

in between a set of grid points, the necessary conditions for recovery may not even

approximately hold, similarly to how a discrete sinusoid corresponding to an off-grid

point in the DFT will not be sparse in the frequency domain (or any other basis for

any standard transform for that matter) because of DFT leakage. In contrast to this

approach, we do not require the target to lie on a grid point. However, instead of
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promising perfect recovery, we instead make the softer claim that the target may be

localized to within a small neighborhood of the actual source location.

Ekanadham et al. recognized this limitation of these target-sparse approaches

and devised an innovative solution, called continuous basis pursuit (CBP) [78]. Here,

the grid points are spaced far enough to avoid coherence issues, so to account for

candidates lying between the grid points, they utilize a subspace of small dimension

that accounts for local shifts of the base function. This work dovetails very nicely with

the framework proposed in this thesis. For example, the Hermite functions discussed

in Chapter 4.3.1 approximate the derivatives of a Gaussian function, and could be

used to search for a fine-grained match with a Gaussian pulse, even using a coarse

grid to do so.

Also, in 2011, Eftekhari et al. proposed a method for compressive matched fil-

tering and provided probabilistic results to its performance. Here, they maximize

the correlation between the compressed data vector and the compressed model over

a bounded set of possible shift parameters, where the model signal being matched is

band-limited and the compression operator measures frequencies uniformly at random

inside this band. Lastly, Candès and Granda propose a novel analytical framework

for super-resoution, defined as the approximate recovery of the sum of a small num-

ber of dirac point sources from a low-frequency (and consequently low-dimensional)

observation [79]. This work differs from our own in that it measures the time series

directly and deterministically instead of compressively and also does not explicitly

estimate the parameteric shift of the point sources, but rather does so implicitly by

recovering the function itself via a simple convex program that jointly minimizes the

total variation of that function and a least-squares constraint.

The rest of this chapter is organized as follows. Section 4.3 illustrates practical

methods for showing Eq. (87), including a few specific examples. Section 4.2 discusses
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some potential applications that could benefit from a compressive approach, includ-

ing compressive matched field processing (cMFP). Finally, Section 4.4 develops the

analytical framework necessary to establish the main results.

4.2 Applications

Although this compressive approach in Eq. (CPE) tends to suffer a loss of accuracy

relative to its classical counterpart in Eq. (PE), this loss may be small enough to be

outweighed by other tangible advantages.

The flagship application presented in this thesis is compressive matched field pro-

cessing. Here, the acquisition hardware is relatively simple, needing only sampling

rates in the kilohertz, and the advantage of a compressive approach is an improvement

on software, not hardware (see Section 2.1). However, the most commonly claimed

advantage in compressive sensing involves a simplified data acquisition architecture.

This can prove advantageous (for example) for low-power devices that must run on

battery or solar power that must do very little data processing and communication,

but are connected to machines with enormous computational power and storage ca-

pacity. ECG and transit detection. We now show how these applications may be

analyzed within the proposed framework.

4.2.1 Compressive Matched-Field Processing

Compressive Matched-Field Processing, discussed in detail in Chapter 2, may be

examined within the framework of the thesis. The complex-valued model for the

Green’s function for a given frequency:

F = {G(~r)α ∈ CN : ~r ∈ R, α ∈ C} (100)

can be readily adapted to a real-valued subspace-matching problem:

{S~r} = {V(~r)α : ~r ∈ R, α ∈ R2} (101)
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where the search parameters ~r constitute range and depth over some bounded search

region of interest Θ = R and the subspace model V (~r) ∈ R2N×2 is given as:

V(~r) =

Re(G(~r)) −Im(G(~r))

Im(G(~r)) Re(G(~r))

 , (102)

where it is assumed that the Green’s function is normalized so that ‖G(~r)‖ = 1. The

natural extension of the projection metric under this model is:

d(~r1, ~r2)2 = 1− |〈G(~r1), G(~r2)〉|2. (103)

It only remains to show that this metric is Lipchitz-continuous. This condition holds

at least empirically for the Pekeris waveguide employed in this thesis, as demonstrated

on figure. 24. For the elliptical distance metric defined in Eq. (75), we have the

following Lipchitz bounds for the single-frequency and coherent cases, respectively:

ds(~r1, ~r2) ≤ 1

2
‖~r1 − ~r2‖s (104)

dc(~r1, ~r2) ≤ 1

3
‖~r1 − ~r2‖c (105)

where ‖.‖s and ‖.‖c denote the elliptical norms defined for the single-frequency and

coherent. For this reason, this parameterized set is polynomial-regular with d = 2 and

N0 ' N(R, 2, ‖.‖s) for the single-frequency case and N0 ' N(R, 3, ‖.‖c) for the coher-

ent case. In particular, the regions of interest R described in Chapter 2.4 correspond

to N0 = 116 in the single-frequency case whereR = [10m 190m]×[5000m 5720m] and

N0 = 52 in the broadband-coherent case where R = [10m 190m] × [5000m 5240m]

via a hexagonal covering argument discussed in more detail in Chapter 4.3.

4.2.2 Transit Detection

In the field of astronomy, the discovery of new planets in distant solar systems is indi-

rectly possible by observing a drop in light intensity of a star caused by a temporarily

occluding planet, a method known as transit detection [80]. The Kepler spacecraft,
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launched in 2009, is focused on a star cluster NGC 6791 in an attempt to discover

new planets using this method while mitigating atmospheric effects that encumber

terrestrial observatories.

To date, 105 planets have been discovered using the Kepler spacecraft, but there

are hardware constraints that limit the performance of this system. A 95-megapixel

CCD array is sampled once every 6 seconds, and then further downsampled on-board

by averaging over a thirty minute interval. Unfortunately, this results in the loss of

high-frequency information so that a given transit event may only have dozens of

samples describing it. But even at this low rate, there is too much information to

send back to Earth, so only a small-number of pre-selected pixels are sent back to

Earth, amounting to roughly 5% of the total pixel array.

Alternatively, to the extent that such transit patterns are well-described by a para-

metric model, it may be possible to improve performance for a comparable information

budget using a compressive approach where this time-series information is randomly

compressed, possibly by a common operation for all pixels over a given time interval.

Rather than implicitly throwing away all high-frequency information via averaging,

compressive measurements could be made across several frequency bands: some used

for detection, and others used for more fine-grained timing estimation than would be

afforded at the half-hour interval. A simple parametric model containing time-shift

and dilation could suffice while the extra K − 1 degrees of freedom in the modeled

subspace Vθ could account for variations in the nominal model.

4.2.3 ECG Monitoring

Similar compressive techniques have already been applied in remote monitoring of

Electrocardiogram (ECG) data [81]. Here, Garudadri et al. present an efficient hard-

ware design for random projections that has a side benefit that it is inherently resilient
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against packet losses of the transmitted compressed data, since each compressed mea-

surement is essentially as valuable as any other one and contains redundant informa-

tion. Here, power efficiency enables a wearable form factor and a long battery life.

Although they did not explore compressive parametric estimation, their hardware is

conducive towards such a system.

The ultimate goal is not reconstruction per se, but rather the robust detection

of irregular heartbeats. One approach, given a set of randomly compressed mea-

surements, would be to model both healthy heartbeats and irregular heartbeats via

some known basis (e.g., from PCA) with an unknown shift, and then classify each

heartbeat according to false alarm criteria. The parameterization may include only

a simple time shift, or could also include a parameterized deformation between a

healthy heartbeat and an unhealthy one.

4.3 Parametric Regularity

In this section, we will discuss some parameterized subspaces Sθ, and show the con-

ditions under which these classes are polynomial-regular, satisfying:

N({Sθ}, ε) ≤ N0ε
−d, (106)

where {Sθ} is shorthand for the set of parameterized subspaces {Sθ : θ ∈ Θ}.

We will do this primarily by showing that the projection matrices are Hölder-

continuous with respect to parameterized transformation. That is:

‖Pθ1 −Pθ2‖ ≤ ‖A(θ1 − θ2)‖α, (107)

for some constants α and A. When possible, we will redefine the set Θ to the “nor-

malized” parametric set AΘ so that this scalar term A will be unnecessary.

This property in Eq. (107) will allow us to directly tie the covering numbers of

the set class F to the covering numbers of the parameter class Θ:

‖Pθ1 −Pθ2‖ ≤ ‖θ1 − θ2‖α −→ N({Sθ}, ε) ≤ N(Θ, ε1/α) ≤ N0ε
−D/α (108)
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for some N0. For example, the following lemma shows that N0 ≤ 3DN(Θ, 1).

Lemma 1 [67, Lemma 3.18] Let BD denote the unit ball in RD. For any 0 < ε < 1,

we have the following upper bound on the covering number of ball of radius ε:

N(BD, ε) ≤
(

1 +
2

ε

)D
≤
(

3

ε

)D
(109)

Alternatively, suppose that Θ ⊂ θ0 +RBD, where BD is the unit ball in RD. (The

boundedness of Θ follows from its compactness). Then Lemma 1 gives us, for any

ε ≤ R:

N(Θ, ε) ≤
(

3R

ε1/α

)D
, (110)

so that Eq. (106) is satisfied with base covering N0 = (3R)D and effective dimension

d = D/α.

A simple volumetric argument shows that the covering numbers must be at least

the ratio of the volume |Θ| to the volume of the covering ball. For example, for

Θ ⊂ R2, we have N(Θ, ε) ≥ |Θ|
πε2

, yielding N0 ≥ π−1|Θ|. On the other hand, the

base covering term N0 is often not much bigger than this minimum number. In the

two-dimensional case, there exists a hexagonal lattice sampling which is only sub-

optimal by a factor of ϑ2 = 2π
3
√

3
(the ratio of the area of a circle to the area of

a the hexagon with the same radius), yielding an asymptotic covering number of

N(Θ, ε) ' |Θ| 2
3
√

3
ε−2 as ε becomes smaller. This so-called covering density ϑD ≥ 1

is the asymptotic ratio of the covering area to the set area, and is known to be at

most CD log3(D) in the D dimensional case for some constant C [82, pg. 19], so that

N(Θ, ε) & ϑD|Θ|
|BD|εD

for small ε (where |BD| is the volume of the D-dimensional unit

ball), yielding a lower bound of and often a decent approximation to N0. The non-

asymptotic case generally requires only a mild buffer for edge effects. For example,

when Θ = [0 a] × [0 b] for some dimensions a, b at least 3, then N(Θ, ε) ≤ abε−2 so

that N0 = ab and d = 2, a factor of roughly 3 above the lower bound of N0.
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There are other ways that the polynomial condition may be applied to obtain

good bounds on the base covering and effective dimension. In particular, if the set Θ

has a great deal of variation in some of its dimensions, but relatively small variation in

others, the following application of composite parametric operations becomes useful.

Lemma 2 Let Θ1, ...,ΘJ be parameter sets such that the subspaces parameterized by

them are polynomial-regular with base coverings N
(j)
0 and effective dimensions d(j).

Then the functional class of their product: {Sθ} = {f (1) · · · f (J) : f (j) ∈ S(j)

θ(j) , θ
(j) ∈

Θ(j)} is also polynomial-regular with base covering N0 = Jd
∏

j N
(j)
0 with effective

dimension d =
∑

j d
(j).

Proof Because:∥∥∥(f (1) · · · f (J)
)
−
(
f (1) · · · f (j)

′

· · · f (J)
)∥∥∥ ≤ ∥∥∥f (j) − f (j)

′∥∥∥ , (111)

we have:

N({Sθ}, ε) ≤ N

(∏
j

{S(j)

θ(j)}, ε

)
≤
∏
j

N
(
{S(j)

θ(j)}, ε/J
)
≤
∏
j

Jd
(j)

N
(j)
0 ε−d

(j)

. (112)

Likewise, it may be easier to consider a partition of the parameterized set, as

follows.

Lemma 3 Let F1, ...,FJ be parameterized functional classes that are polynomial-

regular with base coverings N
(j)
0 and effective dimensions d(j). Then the functional

class of their union: F =
⋃
j Fj has base covering N0 ≤

∑
j N

(j)
0 with effective di-

mension d ≤ max{d(j)}.

Proof Simply adding the covering numbers gives:

N({Sθ}, ε) ≤
∑
j

N({Sθ}j, ε) ≤
∑
j

N
(j)
0 ε−d

(j) ≤ N0ε
−d. (113)
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4.3.1 Orthobasis Analysis

Now that we’ve established some basic properties of covering numbers and the param-

eters describing polynomial-regular sets, we proceed by showing Eq (107) for specific

cases of interest. This bound is implied from a similar bound on the basis matrix V

instead of the projection matrix P for the following reason.

Lemma 4 Let V1 and V2 be K-dimensional orthogonal bases with corresponding

rank-K projection matrices P1 = V1V
T
1 and P2 = V2V

T
2 onto corresponding sub-

spaces S1 and S2. Then we have:

‖P1 −P2‖ ≤ 2‖V1 −V2‖ ≤ 2‖V1 −V2‖F , (114)

where ‖.‖F denotes the Frobenius norm [59]. Furthermore, there exist orthobases Va

and Vb for these subspaces (i.e., such that P1 = VaV
T
a , P2 = VbV

T
b ) satisfying:

‖Va −Vb‖ ≤ ‖P1 −P2‖. (115)

Proof For the first claim, we write:

‖P1 −P2‖ =
1

2
‖(V1 −V2)(V1 + V2)T + (V1 + V2)(V1 −V2)T‖ (116)

≤ 2‖V1 −V2‖ (117)

≤ 2‖V1 −V2‖F . (118)

For the second claim, consider an arbitrary orthobasis Ṽ1 for S1 and Ṽ2 for S2 with

singular value decomposition ṼT
1 Ṽ2 = UΣY. Defining σ = ΣK,K , Va = Ṽ1U, and

Vb = Ṽ2Y gives ṼT
1 Ṽ2 = Σ, so that:

‖Va −Vb‖2 = max
‖x‖=1

‖Vax‖2 + ‖Vbx‖2 − 2〈Vax, Vbx〉 (119)

= 1− σ (120)

≤ 1− σ2 (121)

≤ ‖(P1 −P2)VaK‖2 (122)

≤ ‖P1 −P2‖2. (123)
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where VaK is the Kth column of Va.

In light of this, it only remains to be shown that the individual unit-norm functions

defining the orthobasis satisfy polynomial-regularity – i.e., that ‖ψ1−ψ2‖ ≤ ‖θ1−θ2‖α

– and then use the Frobenius norm as in Lemma 4 to establish bounds on N0 and d.

Now, we consider the polynomial-regularity of shifts of orthobases that are ap-

proximately compactly supported. Note that a signal cannot have limited support in

both time and frequency according to the Weyl-Heisenberg principle, but there are

classes of signals that are more concentrated than others, and here we will consider

three such orthobases (Hermite, LOT, and DPSS) that could be used to account for

a signal that is well-localized in both time and frequency, but where the temporal

support (and perhaps frequency support) of the signal is unknown. In particular, we

show show how their bounded total variation ensures that shifts of these bases will

be polynomial-regular.

The examples here are meant to be illustrative more than precise, and in particular

we note that low order polynomials of d and K in N0 do not substantially affect the

log(KN0) term in Theorem (2), which effectively already contains additive terms in d

and log(K). Also, in all cases the base covering N0 must be at least 1, so in all cases

when writing N0 = (·) we implicitly mean N0 = max{1, (·)}. We begin by relating the

polynomial-regularity of time shifts of an orthobasis to the bounded total variation

of its individual orthobasis functions.

Lemma 5 Specifically, suppose we have a base function whose total variation is

bounded as: ∫
|ψ′(t)|dt ≤ L. (124)

Then we have:

‖ψθ1 − ψθ2‖ ≤ L‖θ1 − θ2‖1/2. (125)
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Proof The L2 norm may be bounded as:∫ ∞
−∞

(ψ(t)− ψ(t− θs))2dt =

∫ θs

0

∞∑
k=−∞

(ψ(t+ kθs)− ψ(t+ (k − 1)θs))
2 (126)

≤
∫ θs

0

(
∞∑

k=−∞

|ψ(t+ kθs)− ψ(t+ (k − 1)θs)|

)2

(127)

≤ L2θs. (128)

Note that in all cases, the norm of the difference of functions only depends on the

relative shift θs = θ2 − θ1:

‖ψ(t− θ2)− ψ(t− θ1)‖ = ‖ψ(t− θs)− ψ(t)‖, (129)

and also that there is a sort of invariance of polynomial-regularity to dilation of the

form:
√
νψ(νt) (130)

provided that the set Θ is dilated to νΘ. That is,

‖ψ(t− θ2)− ψ(t− θ1)‖ = ‖
√
νψ(νt− νθ2)−

√
νψ(νt− νθ1)‖, (131)

and naturally the orthogonality of V is preserved under this dilation as well. For this

reason, the properties stated for the canonical orthobases below generalize naturally

to other scales of these orthobases.

Hermite Polynomials

Now we consider the properties of the specific orthobases, beginning with the

Hermite polynomials [83]. The Hermite polynomials are defined as:

H0(t) = 1 (132)

H1(t) = t (133)

... (134)

Hk+1(t) = tHk(t)− kHk−1(t), (135)
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or alternatively are given explicitly as:

HK(t) = K!

bK/2c∑
k=0

(−1)k

k!(K − 2k)!
(2t)K−2k, (136)

and are orthogonal under the inner product:

〈Hk, Hk′ 〉 =

∫
Hk(t)Hk′ (t)w(t)dt = I(k = k

′
)k!
√

2π, (137)

where the window function:

w(t) = e−t
2/2. (138)

A natural choice of orthobasis in standard Euclidean space is then

ψk(t) =

√
w(t)

k!
√

2π
Hk(t), (139)

with the corresponding parameterized K-dimensional subspace Sθ = {
∑K−1

k=0 αkψk(t−

θ) : α ∈ RK}. Using the facts that |ψk(t)| ≤ 1 and that ψk has exactly k + 1 local

extrema, we have
∫
|ψ′k(t)|dt ≤ 2(k + 2), so applying Lemmas 4 and 5, we have:

‖P1 −P2‖2 ≤ 64K3‖θ1 − θ2‖, (140)

and

N({Sθ}, ε) ≤ N(64K3[ta tb], ε
2) ≤ 64K3|tb − ta|ε−2, (141)

so that {Sθ : θ ∈ Θ = [a b]} is polynomial-regular with d = 2 and N0 = 64K3|tb− ta|.

Lapped Orthogonal Transform

Next, we discuss the lapped orthogonal transform (LOT) [84]. These are defined

via a window function g(t), defined as:

g(t) =



0 : t < −η

β( t
η
) : −η ≤ t < η

1 : η ≤ t < 1− η

β(1−t
η

) : 1− η ≤ t < 1 + η

0 : 1 + η ≤ t
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for some η ≤ 1/2 and base function β(t) satisfying: β(t)2 +β(−t)2 = 1 on the domain

t ∈ [−1 1], the most common example being:

β(t) = sin
(π

4
(1 + t)

)
. (142)

The orthobasis functions ψk for the lapped orthogonal transform are then defined

via this window g(t) as:

ψk(t) = g(t)
√

2 cos

(
π

(
k +

1

2

)
t

)
. (143)

Similarly to the case of the Hermite orthobasis, we note that |ψk(t)| ≤
√

2 and also

that ψk(t) = 0 everywhere except t ∈ (−η 1+η), a domain containing at most 2k+1

extrema, so that
∫
|ψ′k(t)|dt ≤ 4

√
2(k+1). Using Lemmas 4 and 5 as before, we have:

‖P1 −P2‖2 ≤ 128K3‖θ1 − θ2‖, (144)

and

N({Sθ}, ε) ≤ N(128K3[ta tb], ε
2) ≤ 64K3|tb − ta|ε−2, (145)

so that {Sθ : θ ∈ Θ = [a b]} is polynomial-regular with d = 2 and N0 = 128K3|tb−ta|.

Prolate Spheroidal Functions

Prolate spheroidal wave functions (PSWFs) (also called Slepian functions) have re-

cently proven their utility at bridging the gap between theoretical compressed sensing

and practical applications such as signal reconstruction and channel identification [85,

63]. The associated K-dimensional subspace S essentially contains the band-limited

functions that are the most approximately time-limited. That is, this subspace S

satisfies:

min
f∈S

‖PΩPTf‖2

‖f‖2
≥ min

f∈S′
‖PΩPTf‖2

‖f‖2
. (146)

for all other K-dimensional subspaces S ′ , where PT denotes a projection onto the

time interval [−T
2

T
2
] via multiplication by a rectangular window, and PΩ denotes a

projection onto the frequency interval [−Ω
2

Ω
2
] via an ideal low-pass filter. The basis
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functions ψk(t) (1 ≤ k ≤ K) spanning this space S are simply the eigenfunctions

of the symmetrized operator PTPΩPT with corresponding eigenvalues λk so that

minf∈S
‖PΩPT f‖2
‖f‖2 = λK . Roughly speaking, this successive time-limiting bandwidth-

limiting operation has a rank of approximately TΩ, so that λk ' 1 for k . TΩ and

λk ' 0 for k & TΩ, so taking K . TΩ is a natural choice. In any rate, we will assume

that K is chosen so that λK ≥ 1/2.

Unlike the previous two examples, here we are able to show polynomial-regularity

directly without the use of Lemma 5. Because the orthobasis functions ψk(t) are

band-limited, we have for any θs = θ1 − θ2:

‖ψk;θ1 − ψk;θ2‖2 =

∫ Ω/2

−Ω/2

ψ̂k(ω)2|ejωθs/2 − e−jωθs/2|2dω (147)

≤ 4 sin(Ωθs/4)2 (148)

≤ (Ωθs/2)2, (149)

where ψ̂k is the Fourier transform of ψk. Therefore, the set of parameterized subspaces

{Sθ} = {{
∑

k αkψk(t − θ) : α ∈ RK} : θ ∈ [ta tb]} is polynomial-regular with base

covering N0 = |tb− ta|Ω and effective dimension d = 1. Note that because of the shift

invariance property of function norms as in Eq. (129), we have the same regularity for

any projection PT onto an interval of length T , not only the canonical one. Indeed,

these shifted subspaces are equivalent to those obtained via the operator PT ;θ that

truncates the signal to the interval [θ − T/2 θ + T/2].

Continuing in this vein, suppose now that the parameter θ affects changes in

frequency via a modulation with the function ejθ (or equivalently, a shift in the

frequency domain). We can use a similar approach as before to show polynomial-

regularity. The ψk functions are not time-limited, but are closely related to functions
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that are. We write:

‖ψk;θ1 − ψk;θ2‖2 = λ−2
k ‖PΩPT (ψk;θ1 − ψk;θ2)‖2 (150)

≤ 4‖PT (ψk;θ1 − ψk;θ2)‖2 (151)

≤ 4

∫ T/2

−T/2
(PTψk(t))

2|ejθst/2 − e−jθst/2|2dt (152)

≤ 4

∫ T/2

−T/2
4 sin(θsT/4)2 (153)

≤ (θsT )2, (154)

so that as before, we can cover a frequency range of Θ = [ωa ωb] with base covering

N0 = |ωb − ωa|T and effective dimension d = 1. Also, as before with the time-shifted

case, we can equivalently apply this result to projections over a variable frequency

range of bandwidth Ω.

Now suppose we construct a parameterized set with parameters controlling both

time-shift and frequency shift, so that the parametric estimation essentially jointly

searches for the time interval and frequency interval that best contains the compressed

signal. In this case, we can bound the difference between basis functions as:

‖ejθ
(1)
1 ψk(t− θ(2)

1 )− ejθ
(1)
2 ψk(t− θ(2)

2 )‖

≤ ‖ejθ
(1)
1 ψk(t− θ(2)

1 )− ejθ
(1)
1 ψk(t− θ(2)

2 )‖+ ‖ejθ
(1)
1 ψk(t− θ(2)

2 )− ejθ
(1)
2 ψk(t− θ(2)

2 )‖

≤ |θ(1)
2 − θ

(1)
1 |T + Ω|θ(2)

2 − θ
(2)
1 |/2

where the parameter vector θ =

θ(1)

θ(2)

 describes changes in both frequency and

time. Consequently, because of the consistency between `1 and `2 norms, we have

polynomial-regularity with base covering N0 =
√

2(|ωb − ωa|T + Ω|tb − ta|/2) and

effective dimension d = 2 for the class of parameterized subspaces with basis functions

ejθ
(1)tψk(t− θ(2)) for θ ∈ Θ = [ωa ωb]× [ta tb].
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4.4 Analysis

In this section, we establish the theoretical framework that will help us to prove

the main results. We start by establishing definitions and conventions, then proceed

to use a chaining argument to establish uniform probabilistic bounds on processes

related to the quantities of interest.

4.4.1 Definitions and Conventions

The following definitions will be used throughout this section:

Pθ = VθV
T
θ (155)

P̃θ = (ΦVθ)((ΦVθ)
T (ΦVθ))

−1(ΦVθ)
T (156)

Wθ = ‖P̃θΦh‖2 − ‖Pθh‖2 (157)

Gθ = Pθ −PθΦ
TΦPθ (158)

δG = sup
θ∈Θ
‖Pθ −PθΦ

TΦPθ‖ = sup
θ∈Θ
‖Gθ‖. (159)

All parameter distances here are defined with respect to their corresponding pro-

jection operators:

d(θ1, θ2) , ‖Pθ1 −Pθ2‖ (160)

In order to bound the difference between Ē and Ê, we will relate their difference

to the W process as follows:

Ê2 − Ē2 = (‖h‖2 − ‖Pθ̂h‖
2)− (‖h‖2 − ‖Pθ̄h‖2) (161)

≤ (‖P̃θ̂Φh‖
2 − ‖Pθ̂h‖

2)− (‖P̃θ̄Φh‖2 − ‖Pθ̄h‖2) (162)

≤ sup
θ∈Θ

Wθ −Wθ̄ (163)

= sup
θ∈Θ
〈h, (ΦT (P̃θ − P̃θ̄)Φ− (Pθ −Pθ̄))h〉. (164)

To this end, we begin by establishing a chaining argument that will help us to analyze

this W process.
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4.4.2 Chaining

As discussed earlier in Chapter 4.1.1, we can analyze the supremum of a stochastic

process using finite union bounds over progressively denser subsets The following

chaining argument utilizes polynomial-regularity to construct a supremum bound

characteristically similar to the increment tail bound.

Proposition 1 Suppose we have an increment bound of the following form on the

random process L(θ):

P {‖L(θ2)− L(θ1)‖ ≥ l(u)d(θ1, θ2)} ≤ Cae
−u, (165)

for some concave function l(u) and constant Ca. Then the following supremum bound

holds:

P

{
sup
θ∈Θ
‖L(θ)− L(θ0)‖ ≥ 3l(u)

}
≤ CaN

2
0 8de−u+1, (166)

for any fixed θ0 ∈ Θ.

Proof This proof adapts a similar one of a more general form from Talagrand

[25, Theorem 1.2.7]. We first define T0 = {θ0}, and {Tj}j≥1 as a series of ε-nets

of Θ with radius 2−j with respect to projection distance d, so that the cardinality

of the jth ε-net is at most N02jd. For any θ ∈ Θ, we define πj(θ) as the closest

member in Tj to the parameter θ, so that d(θ, πj(θ)) ≤ 2−j. Consequently, we have

d(πj+1(θ), πj(θ)) ≤ d(πj+1(θ), θ) + d(θ, πj(θ)) ≤ 3
2
· 2−j. By defining the sequence:

aj = log(2)(2j + 1)d+ 2 log(N0) + j

then we have, by Eq. (165):

P

{
|L(πj+1(θ))− L(πj(θ))| ≥

3

2
2−jl(u+ aj)

}
≤ Ca exp(−aj − u). (167)

Also, because l is concave, we have:

∞∑
j=0

2−j−1l(u+ aj) ≤ l(3 log(2)d+ 2 log(N0) + u+ 1). (168)
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This is because, by definition, l(λx1 + (1 − λ)x2) ≥ λl(x1) + (1 − λ)l(x2), and by

inductive substitution we have l(
∑

j λjxj) ≥
∑

j λjl(xj) for some convex combination

defined by the λj (i.e., with λj ≥ 0 and
∑

j λj = 1). Now, by summing these

probabilities over all scales j and over all Lj links for each scale, we have:

P

{
sup
θ∈Θ
|L(θ)− L(θ0)| ≥ 3l(3 log(2)d+ 2 log(N0) + 1 + u)

}
≤ P

{
sup
θ∈Θ
|L(θ)− L(θ0)| ≥

∑
j≥0

3

2
2−jl(u+ aj)

}

≤
∑
j≥0

P

{
sup
θ∈Θ
|L(πj+1(θ))− L(πj(θ))| ≥

3

2
2−jl(u+ aj)

}

≤
∑
j≥0

CaLje
−aje−u ≤ Cae

−u

(
1

N0

+
∑
j≥1

e−j

)
≤ Cae

−u,

where the number of combinatorial “links” Lj between the elements of Tj and Tj+1

is the product of their cardinalities, at most eaj−j.

4.4.3 Matrix Bernstein and Orlicz Norms

In order to build the chaining argument for various processes, we will first need

a tail bound on its increment of the form (165). To this end, we will utilize the

matrix Bernstein (or non-commutative Bernstein) inequality that depends on the

Orlicz norm, defined as follows.

Definition 1 The Ψ1 Orlicz norm of a random matrix X is defined as:

‖X‖Ψ1 , inf{c : E

[
exp

(
‖X‖
c

)]
≤ 2}. (169)

where ‖.‖ is the spectral norm.

There are generalizations of this Orlicz norm, but in this thesis, we will work ex-

clusively with this particular Ψ1 norm, which generalizes the Orlicz norm of scalar

random variables to matrices, dealing exclusively with the spectral norms on these

matrices. The following two lemmas show that a finite Orlicz norm is consistent with

a sub-exponential tail bound.
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Lemma 6 [86, page 96] Let X be a random matrix with finite Ψ1 norm. Then we

have:

P {‖X‖ ≥ τ‖X‖Ψ1} ≤ 2e−τ . (170)

Proof Using Markov’s inequality, we have:

P {‖X‖ ≥ τ‖X‖Ψ1} = P
{
e‖X‖/‖X‖Ψ1 ≥ eτ

}
≤

E
[
e‖X‖/‖X‖Ψ1

]
eτ

≤ 2e−τ . (171)

Conversely, an exponential tail bound of this type shows that ‖X‖Ψ1 is finite.

Lemma 7 [86, Lemma 2.2.1] Let X be a random matrix with P {‖X‖ > x} ≤ K1e
−x/K2

for every x, for constants K1 and K2. Then its Orlicz norm satisfies ‖X‖Ψ1 ≤

(K1 + 1)K2.

Proof By Fubini’s theorem

E
[
e‖X‖/D − 1

]
= E

[∫ ‖X‖
0

D−1es/Dds

]
=

∫ ∞
0

P {‖X‖ ≥ s}D−1es/Dds. (172)

Now, insert the inequality on the tails of ‖X‖ and obtain the explicit upper bound

K1K2/(D − K2). This is less than or equal to 1 for D greater than or equal to

(1 +K1)K2.

Proposition 2 (Matrix Bernstein, Orlicz norm version [87]) Let X1, ..., XM be inde-

pendent self-adjoint random matrices with dimension K with E [Xm] = 0 with bounded

Ψ1 norms:

‖Xm‖Ψ1 ≤ B. (173)

Then, for all t ≥ 0 and some universal constant CB at most 4,

P

{∥∥∥∥∥∑
m

Xm

∥∥∥∥∥ ≥ CB max

{
σ
√
t, 2Bt log

(
2B
√
M

σ

)}}
≤ 2Ke−t where σ2 :=

∥∥∥∥∥∑
m

E
[
X2
m

]∥∥∥∥∥ .
(174)
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We give a proof of this in Section A.5 that follows the more general proof given in

[87], which mirrors the derivation of classical Bernstein’s inequality similarly to other

works (e.g., [88, 89, 90]), and is repeated there for convenience. The corollary via

matrix dilation to the non-symmetric case follows.

Proposition 3 (Non-Symmetric Matrix Bernstein, Orlicz norm version [91]) Let

X1, ..., XM be independent random matrices with dimensions K1×K2 with E [Xm] = 0

with bounded Ψ1 norms:

‖Xm‖Ψ1 ≤ B. (175)

Then, for all t ≥ 0 and some universal constant CB at most 4, we have

P

{∥∥∥∥∥∑
m

Xm

∥∥∥∥∥ ≥ CB max

{
σ
√
t, 2Bt log

(
2B
√
M

σ

)}}
≤ 2(K1 +K2)e−t, (176)

where

σ2 := max

{∥∥∥∥∥
M∑
m=1

E
[
XT
mXm

]∥∥∥∥∥ ,
∥∥∥∥∥

M∑
m=1

E
[
XmX

T
m

]∥∥∥∥∥
}

(177)

We will also use the fact that Orlicz norms of chi-squared random variables are

well-approximated by their mean.

Lemma 8 Let X be a chi-squared random variable with M degrees of freedom. Then

the following consistency bound relates its mean to its Orlicz norm:

2

log(4)
≤ ‖X‖Ψ1

E [X]
=

2

M(1− 4−1/M)
≤ 8/3. (178)

Naturally, the bound holds under scalar multiplication of the random variable.

Proof This result follows directly from the monotonicity of the moment generating

function of a chi-squared random variable with M degrees of freedom:

MX(t) , E [exp(tX)] = (1− 2t)−M/2. (179)

Now, we have E [X] = M and ‖X‖−1
Ψ1

= M−1
X (2) = (1 − 4−1/M)/2, establishing the

lemma.
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Lemma 9 The Orlicz norm of the geometric mean of two independent random vari-

ables X and Y is at most the geometric mean of their Orlicz norms:

‖
√
XY ‖Ψ1 ≤

√
‖X‖Ψ1‖Y ‖Ψ1 (180)

Proof Let X
′
= X/‖X‖Ψ1 and Y

′
= Y/‖Y ‖Ψ1 . Then:

E

[
exp(

√
XY

‖X‖Ψ1‖Y ‖Ψ1

)

]
= E

[
e
√
X′Y ′

]
(181)

≤ E
[
e(X

′
+Y
′
)/2
]

(182)

= E
[
eX
′
/2
]

E
[
eY
′
/2
]

(183)

≤
√

E
[
eX
′ ]

E
[
eY
′ ] ≤ 2. (184)

Lemma 10 The compressed inner product is concentrated around its expectation:

P

{
〈Φf,Φg〉 − 〈f, g〉

‖f‖‖g‖
≥ C1u+ C2

√
u

}
≤ 2e−u (185)

for some universal constants C1 and C2 at most 51 and 4
√

2, respectively.

The proof of this is given in Section A.5.

4.4.4 Increment Bounds

In this section, we establish bounds on various increments (e.g., Wθj+1
−Wθj) that

may be used in conjunction with Proposition 1 to bound the maximal deviation of a

stochastic process. For the sake of brevity, we write P2, P1 for Pθj+1
, Pθj etc. and

also write ∆ := ‖P2 −P1‖.

Lemma 11 The G increment may be bounded as follows:

P {‖G2 −G1‖ ≥ CBg(t)‖P2 −P1‖} ≤ 2K exp(−t) (186)

where

g(t) =

√
8t(K + 1)

M
+
t(320K + 6) log(116

√
K)

M
. (187)
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Proof We write the increment as a sum of independent random matrices, and then

use the matrix Bernstein inequality to establish a tail bound. We have

G2 −G1 = P1 −P2 −P1Φ
TΦP1 + P2Φ

TΦP2

=
M∑
m=1

1

M
P1 −

1

M
P2 −P1φmφ

T
mP2 + P2φmφ

T
mP2

=:
M∑
m=1

Xm,

where the φm are rows of Φ.

Notice that since E
[
P1φmφ

T
mP1

]
= M−1P1 and similarly E

[
P2φmφ

T
mP2

]
= M−1P2,

the Xm are zero mean. The matrix Bernstein inequality depends on the variance term∥∥∥∥∥
M∑
m=1

E
[
X2
m

]∥∥∥∥∥ =
1

M
‖E
[
X2
]
‖

where X is the random matrix

X = P1 −P2 −P1φφ
TP1 + P2φφ

TP2, (188)

where φ is a random vector whose entries are Normal(0, 1). We compute

E
[
X2
]

= E
[
(P2φφ

TP2 −P1φφ
TP1

]
− E

[
P2φφ

TP2 −P1φφ
TP1])2

]
= E

[
(P2φφ

TP2 −P1φφ
TP1)2

]
− (P1 −P2)2.

To make computing the expectation above a little less unwieldy, we introduce the

sum and difference matrices

S = P1 + P2

D = P1 −P2,

and so

(P1φφ
TP1 −P2φφ

TP2)2 =
1

4

(
SφφTD +DφφTS

)2

=
1

4

(
SφφTDSφφTD + SφφTD2φφTS +DφφTS2φφTD +DφφTSDφφTS

)
.
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Using Lemma 14, we have

E
[
SφφTDSφφTD

]
= S E

[
φφTDSφφT

]
D

= S (DS + SD + trace(DS)I)D

= SDSD + S2D2 + trace(DS)SD

E
[
DφφTSDφφTS

]
= DSDS +D2S2 + trace(DS)DS

E
[
SφφTD2φφTS

]
= S(2D2 + trace(D2)I)S

= 2SD2S + trace(D2)S2

E
[
DφφTS2φφTD

]
= 2DS2D + trace(S2)D2,

and so

E
[
X2
]

=
1

4

(
SDSD + S2D2 + trace(DS)SD +DSDS +D2S2+

trace(DS)DS + 2SD2S + trace(D2)S2 + 2DS2D + trace(S2)D2 − 4D2
)

=
1

4

(
SDSD + (S2 − 4I)D2 + trace(DS)SD +DSDS +D2S2+

trace(DS)DS + 2SD2S + trace(D2)S2 + 2DS2D + trace(S2)D2
)
.

Defining ∆ = ‖D‖ = ‖P1 − P2‖ and using the facts that

‖S‖ = ‖P1 + P2‖ ≤ 2,

trace(DS) ≤ ‖D‖F‖S‖F ≤
√

2K
√

2K∆2 = 4K∆,

trace(D2) ≤ 2K∆2,

trace(S2) ≤ 8K,

we have the bound

‖E
[
X2
]
‖ ≤ 1

4

(
4∆2 + 4∆2 + 8K∆2 + 4∆2 + 4∆2 + 8K∆2 + 8∆2 + 8K∆2 + 8∆2 + 8K∆2

)
= 8(K + 1)∆2.

Thus ∥∥∥∥∥
M∑
m=1

E
[
X2
m

]∥∥∥∥∥ ≤ 8(K + 1)

M
‖P1 −P2‖2
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The other ingredient for matrix Bernstein is a uniform bound on the Orlicz norms

of the Xm (or equivalently, X). We know that

‖X‖ = ‖P1(I − φφT)P1 −P2(I − φφT)P2‖

=

∥∥∥∥1

2

(
S(I − φφT)D +D(I − φφT)S

)∥∥∥∥
≤ ‖S(I − φφT)D‖

≤ ‖S‖ ‖D‖ + ‖Sφ‖2‖Dφ‖2.

It is a standard result (see, e.g., [86, proposition A.2.1]) that

P {‖Sφ‖2 > u} ≤ 2 exp

(
− u2

8‖S‖2
F

)
≤ 2 exp

(
− u2

64K

)
,

P {‖Dφ‖2 > u} ≤ 2 exp

(
− u2

8‖D‖2
F

)
≤ 2 exp

(
− u2

16K∆2

)
,

and so

P {‖Sφ‖2‖Dφ‖2 > t} ≤ P
{
‖Sφ‖2 >

√
2t/∆

}
+ P

{
‖Dφ‖2 >

√
∆t/2

}
≤ 4 exp

(
− t

32K∆

)
.

Thus

‖X‖ψ1 ≤
2

log 2
∆ + ‖‖Sφ‖2‖Dφ‖2‖ψ1

≤ 3∆ + 160K∆,

and

‖Xm‖ψ1 ≤
(160K + 3)

M
‖P1 −P2‖.

Now applying Proposition 2 with these two bounds on the Orlicz norm and variance

term, we have:

P {‖G2 −G1‖ ≥ CBg(t)‖P2 −P1‖} ≤ 2K exp(−t), (189)

as desired.
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Lemma 12

P
{
‖P2Φ

TΦP⊥2 h−P1Φ
TΦP⊥1 h‖ ≥ CBg

⊥(t)‖P2 −P1‖
}
≤ (4K+2) exp(−t), (190)

where

g⊥(t) =

√
8t(K + 1)

M
+

758
√
Kt

M
. (191)

Proof

We can represent:

P2Φ
TΦP⊥2 h−P1Φ

TΦP⊥1 h =
1

M

∑
m

xm, (192)

where

xm = P2φφ
TP⊥2 h−P1φφ

TP⊥1 h, (193)

and then control this using Vector Bernstein (i.e., Proposition 3) yielding:

P

{∥∥∥∥∥ 1

M

∑
m

xm

∥∥∥∥∥ ≥ CB∆

(√
8t(K + 1)

M
+ 182 log(182/

√
8)
t
√
K

M

)}
≤ (4K + 2)e−t,

(194)

as desired using the bound on the variance term σ2 ≤ 8∆2(K+1)/M and Orlicz norm

‖xm‖Ψ1 ≤ 91∆
√
K/M , which remain to be shown. Note also that the dimension

utilized in Vector Bernstein is 2K × 1 by using the argument:

‖P2Φ
TΦP⊥2 h−P1Φ

TΦP⊥1 h‖ = ‖VT
12(P2Φ

TΦP⊥2 h−P1Φ
TΦP⊥1 h)‖, (195)

where V12 : R2K → L2 is an orthobasis for the direct sum of S1 and S2.

For the variance term, since the xm are i.i.d. and zero mean, we have that∥∥∥∥∥
M∑
m=1

E
[
xmx

T
m

]∥∥∥∥∥ ≤ trace(E
[
xmx

T
m

]
) =

∥∥∥∥∥
M∑
m=1

E
[
xTmxm

]∥∥∥∥∥ =
1

M
E
[
‖x‖2

2

]
, (196)

where

x =
1

2

(
DφφTTh− SφφTDh

)
, (197)
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and φ is a Gaussian random vector whose entries are independent and have unit

variance, and

D = P1 −P2 (and also D = P⊥2 −P⊥1 )

S = P1 + P2

T = P⊥1 + P⊥2 .

To begin, note that

‖x‖2
2 =

1

4

(
hTTφφTD2φφTTh− 2hTTφφTDSφφTDh+ hTDφφTS2φφTDh

)
.

Treating each of these terms separately,

E
[
hTTφφTD2φφTTh

]
= hTT (2D2 + trace(D2)I)Th

≤ 2∆2‖Th‖2
2 + trace(D2)‖Th‖2

2

≤ 8(K + 1)∆2,

since ‖Th‖2
2 ≤ 4‖h‖2

2 = 4. For the second term,

∣∣E [hTTφφTDSφφTDh]∣∣ =
∣∣hTT (DS + SD + trace(DS)I)Dh

∣∣
≤ (2‖S‖ ‖D‖+ trace(DS)) ‖Th‖2‖Dh‖2

≤ (4∆ + 4K∆) 2∆

= 8(K + 1)∆2.

Finally for the third term,

E
[
hTDφφTS2φφTDh

]
= hTD(2S2 + trace(S2)I)Dh

≤ (8 + 8K)‖Dh‖2
2

≤ 8(K + 1)∆2.

Collecting these results means that the variance is∥∥∥∥∥
M∑
m=1

E
[
xTmxm

]∥∥∥∥∥ ≤ 8(K + 1)

M
‖P1 −P2‖2. (198)
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Next we need to bound the Orlicz-1 norm of the xm. Note that

‖xm‖ψ1 =
‖x‖ψ1

M
, (199)

where x = DφφTTh − SφφTDh as above. We will bound each part of x separately.

For the first term, we note that φTTh is a Gaussian random scalar with variance

‖Th‖2
2, and so

P
{
|φTTh| > u

}
≤ exp

(
− u2

2‖Th‖2
2

)
≤ exp

(
−u

2

8

)
. (200)

Since Dφ is itself a Gaussian random vector, we have the bound

P {‖Dφ‖2 > u} ≤ 2 exp

(
− u2

8‖D‖2
F

)
≤ 2 exp

(
− u2

16K∆2

)
.

Then for any u > 0,

P {‖〈φ, Th〉Dφ‖2 > t} ≤ exp

(
−u

2

8

)
+ 2 exp

(
− t2

u216K∆2

)
,

and taking u = t1/2(2K∆2)−1/4 yields

P {‖〈φ, Th〉Dφ‖2 > t} ≤ 3 exp

(
− t

8
√

2K∆

)
,

and so

‖〈φ, Th〉Dφ‖ψ1 ≤ 32
√

2K∆.

For the second part of x, we have

P
{
|φTDh| > u

}
≤ exp

(
− u2

2‖Dh‖2
2

)
≤ exp

(
− u2

2∆2

)
,

and

P {‖Sφ‖2 > u} ≤ 2 exp

(
− u2

8‖S‖2
F

)
≤ 2 exp

(
− u2

64K

)
,
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and so

P {‖〈φ,Dh〉‖Sφ‖2 > t} ≤ P

{
|〈φ,Dh〉| >

√
∆t

2(2K)1/4

}
+ P

{
‖Sφ‖2 >

2(2K)1/4
√
t√

∆

}
≤ 3 exp

(
− t

8
√

2K∆

)
,

and so

‖〈φ,Dh〉Sφ‖ψ1 ≤ 32
√

2K∆,

and finally

‖xm‖ψ1 ≤
91
√
K

M
‖P1 −P2‖.

4.4.4.1 W increment

Lemma 13 The increment on W is as follows:

P {W2 −W1 ≥ w(t)‖P2 −P1‖} ≤ (4K + 6)e−t. (201)

where

w(t) = 4(C1t/M + C2

√
t/M) + CBg

⊥(t)/(1− δG) (202)

and g⊥(t) is defined above in Eq. (191).

Proof First, we break h into a pair of orthogonal decompositions as follows: h =

h1 + h⊥1 = h2 + h⊥2 where h1 = P1h and h2 = P2h. Then, using the fact that

P̃ΦP = ΦP, we have:

W2 −W1 = 〈Φh, (P̃2 − P̃1)Φh〉 − 〈h, (P2 −P1)h〉 (203)

= ‖Φh1‖2 − ‖h1‖2 − (‖Φh2‖2 − ‖h2‖2) (204)

+2(〈Φ(h2 − h1),Φh〉 − 〈h2 − h1, h〉) (205)

+‖P̃2Φh
⊥
2 ‖2 − ‖P̃1Φh

⊥
1 ‖2 (206)
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The first two terms may be dealt with using Lemma 10 as follows:

P

{
‖Φh1‖2 − ‖h1‖2 − (‖Φh2‖2 − ‖h2‖2)

‖h2 + h1‖‖h2 − h1‖
≥ C1u+ C2

√
u

}
≤ 2e−u

P

{
〈Φ(h2 − h1),Φh〉 − 〈h2 − h1, h〉

‖h2 − h1‖
≥ C1u+ C2

√
u

}
≤ 2e−u.

The last term may be bounded as:

‖P̃2Φh
⊥
2 ‖2 − ‖P̃1Φh

⊥
1 ‖2 (207)

≤ (‖P̃2Φh
⊥
2 ‖ − ‖P̃1Φh

⊥
1 ‖)(‖P̃2Φh

⊥
2 ‖+ ‖P̃1Φh

⊥
1 ‖) (208)

≤ (1− δG)−1/2(‖P2Φ
TΦh⊥2 ‖ − ‖P1Φ

TΦh⊥1 ‖)(‖P̃2Φh
⊥
2 ‖+ ‖P̃1Φh

⊥
1 ‖) (209)

≤ 2
√

1 + δh + 2
√

1 + δG√
1− δG

(‖P2Φ
TΦh⊥2 −P1Φ

TΦh⊥1 ‖). (210)

By Lemma 12, this can be bounded as:

P

{
‖P̃2Φh

⊥
2 ‖2 − ‖P̃1Φh

⊥
1 ‖2 ≥ 4

√
8CB

1− δG
‖P2 −P1‖g⊥(t)

}
≤ (4K+2) exp(−t). (211)

Combining these gives the bound as desired.

Lemma 14 Let φ ∈ RN be a random vector with φ[n] ∼ Normal(0, 1), and let A be

an arbitrary N ×N matrix. Then

E
[
φφTAφφT

]
= A + AT + trace(A) · I. (212)

Proof Let Q = E
[
φφTAφφT

]
be the matrix in question. An entry of Q can be

written as

Q(j, k) = E
[
(φTAφ)φ(j)φ(k)

]
=

N∑
n1=1

N∑
n2=1

A(n1, n2) E [φ(n1)φ(n2)φ(j)φ(k)] .

For an off-diagonal term, j 6= k, the expectation E [φ(n1)φ(n2)φ(j)φ(k)] is nonzero

only when

(n1 = j and n2 = k) or (n1 = k and n2 = j). (213)
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Under either of these conditions (which do not overlap, since j 6= k), E [φ(n1)φ(n2)φ(j)φ(k)] =

E [|φ(j)|2] E [|φ(k)|2] = 1, and so

Q(j, k) = A(j, k) + A(k, j), j 6= k. (214)

On the diagonal, when j = k, we have

Q(k, k) =
N∑

n1=1

N∑
n2=1

A(n1, n2) E
[
φ(n1)φ(n2)φ2(k)

]
. (215)

For the expectation in the expression above to be non-zero, we need n1 = n2, and so

Q(k, k) =
N∑
n=1

A(n, n) E
[
φ2(n)φ2(k)

]
=

N∑
n=1

A(n, n)−A(k, k) + E
[
φ4(k)

]
A(k, k)

= trace(A) + 2A(k, k), (216)

since E [φ4(k)] = 3. Combining (214) and (216) establishes the lemma.

4.4.5 Chaining the Processes

Applying Proposition 1 to the increment bounds established in the preceding section,

we are now able to bound δG and consequently, supθ∈ΘWθ −Wθ̄ using the following

lemmas.

Lemma 15 The uniform bound on δG is given as:

P {δG > 4CBg(t)} ≤ 2K(8dN2
0 e+ 1)e−t. (217)

for the g(t) defined in Eq. (187).

Proof A straightforward application of Proposition 1 with the increment bound in

Lemma 11 yields:

P

{
sup
θ
‖Gθ −Gθ̄‖ ≥ 3CBg(t)

}
≤ 2K8dN2

0 e
−t+1, (218)
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In light of this, it only remains to prove:

P

{
‖Gθ̄‖ ≥ CB(

√
t(K + 1)

M
+
t(K + 2) log(2K + 4)

M

}
≤ 2Ke−t, (219)

because: √
t(K + 1)

M
+
t(K + 2) log(2K + 4)

M
≤ g(t). (220)

Similarly to Lemma 11, we employ the Orlicz norm version of Matrix Bernstein, by

noting that VT
θ̄
ΦTΦVθ̄ − I is equal in distribution to the sum of M independently

drawn copies of:

X = (VT
θ̄ φ(VT

θ̄ φ)T − I)/M. (221)

Using a similar of line of reasoning to Lemma 11 yields ‖E [X2] ‖ = K+1
M

and ‖X‖Ψ1 ≤
K+2
M

, yielding the requisite bound via Proposition 2 and the fact that ‖Gθ̄‖ = ‖VT
θ̄
ΦTΦVθ̄−

I‖.

Lemma 16 The maximal difference of the W process is given probabilistically as:

P

{
sup
θ
‖Wθ −Wθ̄‖ ≥ 3w(t)

}
≤ (4K + 6)N2

0 8de−t+1 (222)

where, as before:

w(t) = 4C1
t

M
+ 4C2

√
t

M
+
CBg

⊥(t)

1− δG
. (223)

4.4.6 Main Theorems and their Proofs

With these tools established in the preceding sections, we are now able to prove the

main results.

Proof (of Theorem 2)

The specific version of this inequality that is proven takes the following form:

P

{
Ê2 − Ē2 ≥ C0

√
(K + 1)t

M
+ C2

0

K log(116K)t

M

}
≤ (8K + 6)(8dN2

0 e+ 1)e−t.

where C0 is a universal constant at most 100.

117



First, as above, we relate the difference in errors to the W process:

Ê2 − Ē2 = (‖h‖2 − ‖Pθ̂h‖
2)− (‖h‖2 − ‖Pθ̄h‖2) (224)

≤ (‖P̃θ̂Φh‖
2 − ‖Pθ̂h‖

2)− (‖P̃θ̄Φh‖2 − ‖Pθ̄h‖2) (225)

≤ sup
θ∈Θ

Wθ −Wθ̄. (226)

Combining lemmas 15 and 16, while noting that Ê2 − Ē2 is always less than one,

we have, with probability at least 1− (8K + 6)(8dN2
0 e+ 1)e−t:

Ê2 − Ē2 ≤ min

1, 12C2

√
t

M
+ 12C1

t

M
+

CB(
√

8t(K+1)
M

+ 758
√
Kt

M
)

1− 4CB(
√

8t(K+1)
M

+ t(320K+6) log(116
√
K)

M
)


≤ 48

√
t(K + 1)

M
+ min

1, 612
tK

M
+

12
√

t(K+1)
M

+ 3040
√
Kt

M

1− 16(
√

8t(K+1)
M

+ t(320K+6) log(116
√
K)

M
)


≤ 100

√
(K + 1)t

M
+ 10000

K log(116K)t

M

Proof (of Theorem 3)

There is at least one θ such that Pθf = f . For this Pθ, we then have, using the

same δG from Lemma 15:

|‖Φf‖2 − ‖f‖2| = |fT (PθΦ
TΦPθ −Pθ)f | ≤ δG‖f‖2. (227)
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CHAPTER V

CONCLUSIONS

Compressive sensing has opened up many avenues for new applications in sparse ac-

quisition and underdetermined inverse problems beyond what had been previously

thought possible. This thesis explores a variation on classical compressive sensing

to establish properties of parametric subspace estimation, where these parametric

subspaces exhibit a specific type of structure. This characteristic structure, called

Hölder-regularity, is evidently common among many types of parametric estimation

problems, and is sufficiently described in terms of an effective dimension and base

covering. These two descriptors can often be intuitively estimated, providing imme-

diate insight on the dependencies of the accuracy of the compressive estimator upon

the parameters of the problem.

The exploration of this work was inspired primarily through the application of

compressive matched field processing (cMFP), discussed in Chapter 2. Here, for

a set of N hydrophones, we demonstrated how a series of M < N randomized

back-propagations could greatly reduce the computational complexity by reducing

the number of necessary partial differential equations from N to M without signifi-

cantly reducing the accuracy of the estimator. In this way, we essentially provide an

easily-implemented tradeoff between accuracy and computational complexity. The

simulations we ran indicated a logarithmic dependency on the area of the region of

interest by the number of measurements M for comparable performance as well as

an inverse-square-root relationship of M on the accuracy, an observation validated

by work in Chapter 4.

This compressive approach also extends to the localization of multiple sources, as
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discussed in Chapter 3. There, we presented a novel algorithm for multi-source local-

ization that utilized a variation on OMP, but where the least-squares re-calculation

step was performed with respect to a projection matrix that sought to minimize the

interfering energy of the sources whose localizations had already been estimated, while

taking into consideration the uncertainty in the existing estimates of those source lo-

cations. The design of this projection matrix ties in closely with related work on

surface source suppression, but is much easier to compute, which is a vital property

given Romulo’s iterative nature. We also utilized recent work in randomized sub-

space sensing by Tropp to more rapidly compute our projection matrices, speeding

the computation of this matrix up by more than a factor of 10.

The algorithm Romulo is essentially a greedy approximation to the type of com-

pressive parametric estimation we discuss in this thesis, so performance guarantees

of this algorithm have yet to be established. This is an area of future potential work,

and may benefit from similar analysis on other greedy algorithms [61]. On the other

hand, the global optimization discussed in Appendix A.4 falls under the framework

studied in Chapter 4, but is only posed for the two-source case. Extending this heuris-

tic proposed in Appendix A.4 to handle dozens or even hundreds of sources would be

broadly useful and is another area of future potential interest.

In Chapter 4, we discussed the generalized compressive parametric estimation as

a K-dimensional subspace estimation problem. We established novel results on the

accuracy of this estimator under a natural assumption of regularity of the parame-

terized subspace, and showed how such assumptions were met for several practical

cases of interest, including cMFP. This work essentially rests upon an application of

a chaining argument along with the use of a recently developed version of matrix-

Bernstein to prove the key result: that effective estimation becomes feasible when

the number of compressive measurements M is taken to be at least a small factor of

K(d+ log(KN0) for effective dimension d and base covering N0 of the parameterized
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class of subspaces. Although this work was shown specifically for i.i.d. Gaussian

measurement operators that are in some sense ideal, much of this work could extend

to more practical operators such as block-diagonal operators and Bernoulli operators

as well, a topic of potential interest.
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APPENDIX A

APPENDIX

A.1 Closest point on a line

For fixed vectors U, V ∈ Cn, the following optimization program finds the closest

point on the line spanned by v to u,

min
β∈C

‖U − βV ‖2.

The functional above attains its minimum value of

‖U‖2 − |V
HU |2

‖V ‖2

when

β =
V HU

‖V ‖2
.

This fact can be verified by differentiating ‖U − βV ‖2 with respect to the real and

imaginary parts of β, and solving for value of β that makes them both equal to zero.

A.2 Matching Pursuits

This section overviews matching pursuit (MP) and orthogonal matching pursuit

(OMP), two seminal approaches in the field of greedy sparse approximation [60, 24].

The nature of the problem to be solved is as follows. Given a dictionary of column

vectors A = [A1 A2 ... AN ] ∈ RM×N , usually of unit norm with M � N , the goal is

to find K < M columns AK = [An1 An2 An3 ...AnK
] and an associated model vector

x ∈ RK to approximate a data vector b. That is, that minimizes:

‖b−AKx‖2 =
M∑
m=1

(bm −
K∑
k=1

xkAm,nk
)2. (228)

Essentially, matching pursuit loops the following steps ranging the variable k from

1 to K, after initializing the residual r = b:
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1. nk = arg max |〈r, An〉|

2. xk = |〈r, Ank
〉|

3. r = b−
∑k

k′ xk′Ank
′ .

Orthogonal matching pursuit improves upon this approach by re-estimating all xk

at every iteration, instead of just the current one. To wit, step 2 is replaced by the

following step

x = arg min
x1,...,xk

‖b−
k∑
k′

xk′Ank
′ ‖2. (229)

In this way, all elements of the model vector x are updated through joint re-estimation.

A.3 Matrix Filter Analysis and Comparisons

Although the proposed choice of construction for the projection matrix P from the

subspace spanned by the first few principal components of the correlation matrix

Q is relatively simple and intuitive, there is a stronger justification that depends

on assumptions that approximately hold in many cases. In particular, when the

attenuation factor over the region of interest scales linearly with the rank of the

projection (i.e., proportional to N −nr for rank N −nr projections), then this choice

of projection P coincides with the solution to the following minimization for certain

values of z:

minimize |E|−1

∫
E

‖PG(~x)‖2d~x (230)

subject to |R|−1

∫
R
‖PG(~x)‖2d~x ≥ z (231)

σmax(P) ≤ 1 (232)

P = PH � 0, (233)

where the objective function attempts to minimize E [‖P G(~r1)‖2], the first constraint

keeps from minimizing E [‖P G(~r2)‖2] too much via parameter z, the second con-

straint requires P to be passive (i.e., so that ‖PG(~r)‖ ≤ 1 for all ~r ∈ R), and where
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the last constraint restricts the unnecessary extra degrees of freedom in P by forcing

it to be symmetric and positive semidefinite. To see why this last constraint may be

imposed without loss of generality, suppose that a matrix P with SVD decomposition

P = GΣVH is a minimizer of the objective function (230) under the first two con-

straints (231) and (232). Then it must also be the case that P∗ = VΣVH = VGHP

is also a minimizer under those constraints because of the invariance of Euclidean

norms and singular values under unitary transformation, and in particular under

multiplication by unitary matrix VGH .

This optimization is similar to the one proposed by Vaccaro et al. [64]. In fact,

the main difference is that they replaced the average region attenuation factor with

the minimum region attenuation factor. Although, they solve for this matrix-filter

using an iterative log-barrier scheme, there now additionally exist specialized software

packages that solve this problem as a semi-definite program (SDP) [7, 92, 93].

This optimization may be explicitly cast as an SDP as follows:

minimize 〈QE,P〉 (234)

subject to 〈QR,P〉 ≥ z

P � I

P ∈ SN+ ,

where the matrix inner products is given as 〈A,B〉 , Tr(AHB) and where SN+ is the

cone of symmetric positive semi-definite matrices of size N ×N .

When the attenuation factor Tr(PQR) falls linearly with respect to the nulling

rank nr (see for example Fig. 15), then the matrix QR is well-approximated as QR '
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N−1
0 GRGH

R for some unitary GR ∈ CN×N0 . In this case, the optimization may be well-

characterized by the following dimension-reduced minimization over P̂ = GH
RPGR:

minimize 〈Q̂E, P̂〉 (235)

subject to 〈N−1
0 I, P̂〉 ≥ z

P̂ � I

P̂ ∈ SN0
+ ,

where Q̂E = GH
RQEGR. Here, the constraints essentially require that the singular

values σn of P̂ be between zero and one and average at least z. In the case that Q̂E

and P̂ share the same singular vectors, this essentially leads to a linear program (LP)

over the vector σ containing these singular values:

minimize 〈σ̂E, σ〉 (236)

subject to 0 � σ � 1

1
N0

∑N0

n=1 σn ≥ z.

When z = 1 − nr

N0
for some positive integer nr ≤ N0, the minimizing σ has nr

leading zeros followed by N − nr ones, and the corresponding P follows the simple

principal-component construction exactly. In the general case when z falls in be-

tween two such values, the resulting matrix P is a convex combination of the two

corresponding projection matrices, so that it has one of its eigenvalues between zero

and one. This parameter z defines a tradeoff between the aggressiveness of the nulling

in the ellipse E and the ability to preserve most of the energy of the other locations.

In spite of the powerful existing software packages to solve the SDP, however, the

work presented still opts for the approximate solution via the simpler version of SVD

thresholding that is usually is more than a hundred times faster, especially since this

matrix will need to be constructed repeatedly for each source location. Indeed, even

this relatively fast method of SVD thresholding starts to become computationally
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prohibitive when both dimensions of the matrix start to approach a thousand. In

these cases however, this bottleneck can be reduced by an order of magnitude using

a randomized SVD algorithm to construct an approximate projection matrix [41].

Specifically, the left singular vectors of QEX are used for correlation matrix QE and

i.i.d. Gaussian matrix X ∈ CN×Nx (Nx < N) to construct the projection matrix.

Because each column of X is unitary invariant (in probability), this product can be

expressed as
∑N

n=1 gnσnUn where gn is an i.i.d. Gaussian sequence (standard normal)

and Un and σn are the N singular vectors and values of QE. In particular, the range

of QEX is the range of QE almost surely whenever Nx is taken to be at least the

rank of QE, so that projection matrices may be constructed appropriately.

At first glance, it appears that the attenuation constraint over the region of inter-

est R should have been defined without the ellipse R \ E. However, in light of the

objective function, the two are functionally equivalent (for an appropriate modifica-

tion of the z parameter). Additionally, there can be a computational convenience to

defining the attenuation over the entire region of interest R instead of the intended

“passband” R \ E (using language analogous to the design of a notch filter).

A.4 Necessary and Efficient Conditions

This section describes deterministic necessary conditions that may be used to quickly

and efficiently rule out infeasible pairs of locations during the 2-source exhaustive

search as in Eq. (51).

The goal is to search through the normalized columns of a matrix A ∈ CM×N for

the best pair of columns An1 , An2 of A that accounts for Y . (The N in this particular

case is the number of potential source locations in the grid.) That is, to search for

the pair that minimizes:

min
n1,n2,β1,β2

‖Y − β1An1 − β2An2‖2. (237)

In this case, it may be feasible to solve such a system by maximizing the norm of the
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pseudo-inverse of each pair of columns applied to the data vector Y :

max
n1,n2

‖
[
An1 An2

]†
Y ‖2 , max

n′≤(N
2 )
‖A†

n′
Y ‖2, (238)

where An′ denotes a particular pair of columns (n1, n2), and where A†
n′

= (AH
n′

An′ )
−1AH

n′
.

This exhaustive search would require
(
N
2

)
pseudo-inverses for a total of O(MN2)

computations. However, even this can be computationally prohibitive when N is

large. The adjoint operation AHY may be computed with only O(MN) computations

(as may the normalization of the columns of A), but the bottleneck lies in computing

the correlation terms 〈An1 , An2〉.

This bottleneck on the computation of 〈An1 , An2〉 motivates the construction of a

useful heuristic rule on the (easily computed) elements of AHY . The main idea is that

for anyA ∈ CM×2 satisfying |〈A1, A2〉| ≤ γ (for unit norm columns ‖A1‖ = ‖A2‖ = 1),

and for any x ∈ C2:

‖AHAx‖p
‖Ax‖2

≥
√

1− γ, (239)

where p = 2
1+γ

. (As before, all norms are Euclidean 2-norms by default unless stated

otherwise.) This property is expressed more generally in the following lemma, which

will be proved at the end of the Appendix.

Lemma 17 Let Y = Ax+ η, where A ∈ CN×2, AHη = 0, ‖A1‖ = ‖A2‖ = 1. Then:

‖AHY ‖p ≥
√

1− γ‖Ax‖, (240)

where γ = |〈A1, A2〉|, p = 2
1+γ

.

Using this fact, one may efficiently eliminate candidate pairs (n1, n2) of Green’s

vectors (corresponding to candidate locations) from consideration of the search carried

out in Eq. (238) in the following way. First, one chooses a value of γ (e.g., 1/2) and

determine p = 2/(1 + γ) accordingly. Then, one chooses a parameter L (discussed

more later) in an attempt to estimate the ‖Ax‖ term in Lemma 17. Then, after

127



normalizing the columns of A and Y (where A is a matrix containing the candidate

Green’s vectors), one computes the N values Zn = |〈Y,An〉|p, and eliminate all pairs

(n1, n2) from consideration if Zn1 + Zn2 ≤ (L
√

1− γ)p, provided that this pair has

correlation at most γ:

|〈An1 , An2〉| ≤ γ, (241)

This condition can be shown, at least empirically for the case of interest, in Fig. 24,

where sources that are sufficiently far away from one another are guaranteed to have

a correlation below some threshold γ. In particular |〈G(~r1), G(~r2)〉| ≤ 1−ε−(δ) for all

d(~r1, ~r2) ≥ δ. The thresholding of the sum Zn1 +Zn2 over all N pairs may be efficiently

done by pre-sorting the Zn in descending order. Then, Eq. (238) is maximized over

all candidate pairs that remain, yielding optimum (n∗1, n
∗
2) with corresponding source

amplitudes β∗1 , β∗2 .

Given this pair, it only remains to verify the assumptions of Lemma 17 to ensure

that viable pairs were not accidentally eliminated. By virtue of the least squares

solution, the orthogonality assumption is satisfied AH
n′

(Y −An′β∗) = 0 where An′ =

[An∗1 An∗2 ]. It only remains to verify that ‖An′β∗‖ ≥ L. If this is not the case,

then one simply reduces L and repeat the elimination procedure from the begin-

ning. One sensible initial estimate for L is
√

1− 2σ2, for noise to signal ratio

σ2 = E [‖η‖2] ‖α1G(~r1) + α2G(~r2)‖−2, using the notation of Eq. (60).

Apparently, as evidenced by the relatively small ε−(δ) function in the single-

frequency case as illustrated in Fig. 24, this approach is more effective on the coherent-

case where the distance between pairs of Green’s (replica) vectors are more closely

tied to physical distance. In such cases with K frequencies, M randomized back-

propagations, and N candidate source locations, this approach can potentially re-

duce an O(MKN2) operation to an O(N2) operation. For purposes of the results

presented, it transformed a simulation that would have required weeks to complete

into one that could be completed in less than a day.
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Proof First, note that ‖AHY ‖p = ‖AHAx‖p, so that it only remains to show that

‖AHAx‖p ≥
√

1− γ‖Ax‖. Note that AHA is of the form:

AHA =

 1 γejθ0

γe−jθ0 1

 , (242)

and that x is of the form:

x =

x1e
jθ1

x2e
jθ2

 , (243)

where x1, x2 ≥ 0 and θ0, θ1, θ2 ∈ [−π, π). Using this form, and using the fact that

p-norms are invariant to element-wise phase shifts, gives:

‖AHAx‖p =

∥∥∥∥∥∥∥
 1 γejθ

γe−jθ 1


x1

x2


∥∥∥∥∥∥∥
p

= C‖Bθxz‖p, (244)

where C = (x1 + x2)/2, θ = θ0 + θ2 − θ1, and:

Bθ =

 1 γejθ

γe−jθ 1

 , z =
x1 − x2

x1 + x2

, xz =

1 + z

1− z

 , (245)

so that [x1 x2]T = Cxz. For similar reasons,

‖Ax‖2 = C
√
xTzBθxz. (246)

For the last part of the proof, it will be shown that

‖AHAx‖pp
‖Ax‖p2

=

∥∥∥∥∥ Bθxz√
xTzBθxz

∥∥∥∥∥
p

p

(247)

≥

∥∥∥∥∥ Bπxz√
xTzBπxz

∥∥∥∥∥
p

p

(248)

≥

∥∥∥∥∥ Bπx0√
xT0Bπx0

∥∥∥∥∥
p

p

(249)

= 2

(
1− γ

2

)p/2
≥ (1− γ)p/2. (250)
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It has already been established that the first equality is true for some z and θ (whose

values depend on x and A). The two following inequalities show that the worst case

(smallest) value occurs when θ = π and z = 0 so that these values give a lower bound

on the first expression.

To show that θ = π gives a lower bound for all |z| ≤ 1, note that the magnitude-

squared of the elements within the norm in Eq. (247) are:

1− (1− z)2(1− γ2)

(1 + z)2 + (1− z)2 − 2γ(1 + z)(1− z) cos(θ)
(251)

1− (1 + z)2(1− γ2)

(1 + z)2 + (1− z)2 − 2γ(1 + z)(1− z) cos(θ)
, (252)

and both reach their minimum value at θ = π, thereby establishing Eq. (248).

To show Eq. (250), the following function is defined as:

f(z) =

∥∥∥∥∥ Bπxz√
xTzBπxz

∥∥∥∥∥
p

p

, (253)

so that f(z) ≥ f(0) will be shown by showing that f
′
(z) ≥ 0 for all 0 < z < 1 and

noting that f is an even function (by the definition of xz).

First, an equivalent form on this domain, using the substitution q = p− 1 = 1−γ
1+γ

:

f(z) =
((1− γ) + z(1 + γ))p + |(1− γ)− z(1 + γ)|p

(2(1− γ) + 2z2(1 + γ))p/2
(254)

= (1 + γ)p/2
(q + z)p + |q − z|p

(2q + 2z2)p/2
. (255)

The term within the absolute value reaches its cusp at z = q. On the interval

q < z < 1, both terms in the numerator are increasing faster than the denominator.

On the interval 0 < z < q, the first derivative can be expressed as:

f
′
(z) =

(1 + γ)p/2p

(2q + 2z2)p/2+1

(
(q + z)q(2q + 2z2 − 2z(q + z))− (q − z)q(2q + 2z2 + 2z(q − z))

)
,

which can be shown positive on this domain by following this string of inequalities

130



(using the dummy variable 0 < w < 1):

(q < 1) (256)

q2

q2 − w2
>

1

1− w2
(257)∫ z

0

q
−2q

q2 − w2
dw <

∫ z

0

−2

1− w2
dw (258)

q log

(
q − z
q + z

)
< log

(
1− z
1 + z

)
, (259)(

q − z
q + z

)q
<

2q + 2z2 − 2z(q + z)

2q + 2z2 + 2z(q − z)
(260)

(q + z)q(2q + 2z2 − 2z(q + z)) > (q − z)q(2q + 2z2 + 2z(q − z)), (261)

as desired.

A.5 Constants

For reference, the following specific constants are used in this thesis

C0 = 250 (262)

C1 = 51 (263)

C2 = 4
√

2 (264)

CB = 4 (265)

These are understood to be upper bounds for these constants, and are expected to

be at least somewhat loose. The following proofs of Proposition 2 and Lemma 10

support these particular numerical constants.

Proof (of Proposition 2)

This proof follows the more general proof given in [87], which mirrors the deriva-

tion of classical Bernstein’s inequality similarly to other works (e.g., [88, 89, 90]), and

is repeated here for convenience.

We wish to establish:

P

{∥∥∥∥∥∑
m

Xm

∥∥∥∥∥ ≥ CB max

{
σ
√
t, 2Bt log

(
2B
√
M

σ

)}}
≤ 2Ke−t, (266)
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where ‖Xm‖Ψ1 ≤ B, and

σ2 :=

∥∥∥∥∥∑
m

E
[
X2
m

]∥∥∥∥∥ . (267)

Let YM := X1 + · · · + XM . Note that ‖YM‖ < t if and only if −tI < YM < tI.

Therefore,

P {‖YM‖ ≥ t} = P {YM 6≤ tI}+ P {YM 6≥ −tI} . (268)

The following bounds are straightforward by simple matrix algebra:

P {YM 6≤ tI} = P
{
eλYM 6≤ eλtI

}
≤ P

{
tr
(
eλYM

)
≥ eλt

}
≤ e−λt E

[
tr(eλYM )

]
. (269)

To bound the expected value in the right hand side, we use the well-known Golden-

Thompson inequality (see, e.g., [94, pg. 94]):

tr(eA+B) ≤ tr(eAeB). (270)

and the independence of random variables X1, . . . , XM , yielding:

E
[
tr(eλYM )

]
= E

[
tr
(
eλYM−1+λXM

)]
≤ E

[
tr
(
eλYM−1eλXM

)]
= tr

(
E
[
eλYM−1eλXM

])
=

tr

(
E
[
eλYM−1

]
E
[
eλXM

])
≤ E

[
tr
(
eλYM−1

)] ∥∥∥E
[
eλXM

]∥∥∥.
By induction, we conclude that

E
[
tr(eλYM )

]
≤ E

[
tr
(
eλX1

)] ∥∥∥E
[
eλX2

]∥∥∥ . . . ∥∥∥E
[
eλXM

]∥∥∥.
Since E

[
tr
(
eλX1

)]
= tr

(
E
[
eλX1

])
≤ K

∥∥∥E
[
eλX
]∥∥∥, we get

E
[
tr(eλYM )

]
≤ K

∥∥∥E
[
eλX
]∥∥∥M . (271)

It remains to bound the norm ‖E
[
eλX
]
‖. To this end, we use a Taylor expansion

and the condition E [X] = 0 to get

E
[
eλX
]

= I + E

[
λ2X2

[
1

2!
+
λX

3!
+
λ2X2

4!
+ . . .

]]
≤

I + λ2 E

[
X2

[
1

2!
+
λ‖X‖

3!
+
λ2‖X‖2

4!
+ . . .

]]
= I + λ2 E

[
X2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]]
.
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Therefore, for all τ > 0,∥∥∥E
[
eλX
]∥∥∥ ≤ 1 + λ2

∥∥∥∥E

[
X2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]]∥∥∥∥ ≤
1 + λ2

∥∥∥E
[
X2
]∥∥∥[eλτ − 1− λτ

λ2τ 2

]
+ λ2 E

[
‖X‖2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]
I(‖X‖ ≥ τ)

]
.

Let τ := 2 log( 4
σ2 ) and suppose that λ ≤ τ−1 ≤ 1/2. Suppose also for now that

‖X‖Ψ1 ≤ 1 so that E
[
e‖X‖

]
≤ 2. Then

E

[
‖X‖2

(
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

)
I(‖X‖ ≥ τ)

]
≤ 4 E

[
e‖X‖/2I(‖X‖ ≥ τ)

]
(272)

≤ 4
√

E [e‖X‖] P {‖X‖ ≥ τ}(273)

≤ 2σ2, (274)

by Lemma 6 and Cauchy-Schwarz. As a result, we get the following bound:

∥∥E
[
eλX
]∥∥ ≤ 1 +

λ2σ2

M

[
eλτ − 1− λτ

λ2τ 2

]
+

2λ2σ2

M
≤ 1 +

eλ2σ2

M
(275)

Thus, for all λ satisfying the condition

λ ≤ 1

2 log(4M
σ2 )

(276)

we have ‖E
[
eλX
]
‖ ≤ exp(eλ2σ2/M). This can be combined with Eqs. (268), (269), (271)

to get

P {‖YM‖ ≥ t} ≤ 2K exp(−λt+ eλ2σ2). (277)

It remains now to minimize the last bound with respect to all λ satisfying Eq. (276)

to get

λoptimal = min

(
1

2 log(4M/σ2)
,

t

2eσ2

)
. (278)

yielding

P {‖YM‖ ≥ t} ≤ 2K exp

(
−min

(
t2

4eσ2
,

t

4 log(4M/σ2)

))
(279)

so that for CB = 4 and ‖Xm‖Ψ1 ≤ 1 we have

P
{
‖YM‖ ≥ CB max(σ

√
t, 2t log(2

√
M/σ))

}
≤ 2Ke−t. (280)
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In the general case when ‖Xm‖Ψ1 ≤ B, we simply substitute YM/B for YM and σ/B

for σ, utilizing the homogenity of the σ parameter and B parameter with respect to

scalar multiplication of the random matrices, yielding:

P
{
‖YM‖ ≥ CB max(σ

√
t, 2Bt log(2B

√
M/σ))

}
≤ 2Ke−t. (281)

which immediately implies Eq.(266).

Proof (of Lemma 10)

P

{
〈Φf,Φg〉 − 〈f, g〉

‖f‖‖g‖
≥ C1

u

M
+ C2

√
u

M

}
≤ 2e−u (282)

Note that it suffices to prove the case when ‖f‖ = ‖g‖ = 1. It will be useful to

decompose g as:

g = αf + βg⊥ (283)

where α = 〈f, g〉 and α2 + β2 = ‖g⊥‖ = 1, and write the quantity of interest as the

sum of M i.i.d. copies of the random scalar:

X =
〈φf, φg〉 − α

M
=
α(‖φf‖2 − 1) + β〈φf, φg⊥〉

M
, (284)

where φ is an i.i.d. Gaussian row vector with zero mean and unit variance. Then:

σ2 ≤ 2/M (285)

and

M‖X‖Ψ1 ≤
8

3
(α + β) ≤ 8

√
2/3, (286)

using Lemmas 8 and 9. Applying Matrix Bernstein via Proposition 2 gives

P

{
〈Φf,Φg〉 − 〈f, g〉

‖f‖‖g‖
≥ CB

(
16
√

2u

3M
log(16/3) +

√
2u

M

)}
≤ 2e−u (287)

as desired.
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