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a b s t r a c t

The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites
in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and
are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for
nematode development. Arabidopsis contains a large number of different amino acid transporters in
several gene families but those of the AAP family were found to be especially expressed in syncytia.
Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of
AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to
confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid
transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters
are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP
genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and
AAP8 significantly reduced the number of female nematodes developing on these plants. Our study
showed that amino acid transport into syncytia is important for the development of the nematodes.

� 2013 The Authors. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Nematodes are a large group of animals with different life styles,
including free-living bacterial feeders such as the model nematode
Caenorhabditis elegans as well as a variety of pathogens of plants
and animals. Obligate biotrophic plant parasitic nematodes attack
mainly the roots of many plant species and cause severe damage to
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their host plants, either directly or as vectors of plant viruses. It has
been estimated that the worldwide crop losses due to nematode
damage amount to more than $100 billion per year [1]. Some of the
most economically important species belong to the family Heter-
oderidae and induce the formation of specialised feeding sites
which are their sole source of nutrients throughout their life.
Root-knot nematodes of the genus Meloidogyne induce a feeding
structure which is composed of several giant cells [2] while cyst
nematodes (genera Heterodera and Globodera) induce a feeding
structure which is a syncytium. Cyst nematodes enter the plant
roots as second stage juveniles (J2) and select a single root cell to
induce a syncytium, which then expands by incorporation of up to
several hundred neighbouring cells by local cell wall dissolution.
The adult male cyst nematodes leave the roots to mate with fe-
males. After fertilization, the female cyst nematode continues to
feed from the syncytium until the egg development is completed.
The dead body, which is then called a cyst, protects several hundred
eggs until infective J2 hatch in favourable conditions. Cysts can
. All rights reserved.
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survive in the soil for many years which makes the cyst nematodes
difficult to control in agriculture. The sugar beet cyst nematode
Heterodera schachtii completes its life cycle on Arabidopsis roots
in vitro within six weeks [3] and this interaction has been estab-
lished as a model system. Arabidopsis can be cultured on artificial
media under sterile conditions in Petri dishes and the translucent
roots facilitate the study of the development of the nematodes
inside the root.

The drastic changes in cell morphology of syncytial elements
[4,5] as compared with normal root cells imply an underlying
global change in gene expression and a variety of methods were
used to identify genes that are specifically induced in syncytia or in
giant cells (reviewed by Gheysen and Fenoll [6]). We have recently
analysed the transcriptome of syncytia induced by H. schachtii in
roots of Arabidopsis at 5 and 15 days post-inoculation (dpi) [7] and
found that one of the strongly induced genes in syncytia coded for
the amino acid permease AAP8.

Amino acids represent one of the essential long-distance
transport forms for the distribution of organic nitrogen in plants.
This allocation of amino acids is mediated by both xylem and
phloem [8]. In the xylem, the transport occurs unidirectionally
upwards, whereas in the phloem the translocation is bidirectional
and the nutrients flow from source to sink tissues. On their way
from the sites of uptake and biosynthesis in roots or leaves, amino
acids have to be transported across several membranes to enter the
long-distance pathways or to reach sink tissues. Amino acid
translocation thus requires proteins which control the transport
across these membranes.

By functional analysis and sequence homology, a large number
of potential amino acid transporters from different gene families
were found in the Arabidopsis genome [9,10]. The most important
groups are amino acid permeases (AAP), cationic amino acid
transporters (CAT), and lysine/histidine transporters (LHT), which
all mediate proton-dependent import of amino acids into the cell
[11e18]. Prior to a proton coupled import, amino acids have to be
exported into the apoplast. This is especially required where no
intracellular connections, such as plasmodesmata, are present. An
apoplastic pathway exists, for example, in roots, where passive
diffusion between epidermis and cortex cells ends at the casparian
strip of the endodermis [19] and solutes must enter the symplast.
Finally, the nutrients need to be exported out of the symplast into
the tracheary elements, as these are dead bymaturity and therefore
belong to the apoplast. So far, only few plant proteins have been
published that mediate a bidirectional transport, and, hence, also
an efflux of amino acids. AtBAT1 [20] was shown to mediate the
efflux of glutamate and lysine, but also the influx of alanine and
arginine. Another Arabidopsis membrane protein, SIAR1 [21] has
been shown to play an important role in organic nitrogen allocation
and particularly in amino acid homeostasis in developing siliques.

Physiological functions have been proposed for several amino
acid transporters. The import of amino acids into the filial part of
the seeds is most likely mediated by members of the AAP family.
The expression of the high affinity transporter AAP1 was detected
in embryos and is responsible for the import of amino acids into the
filial tissue [11,13,22e24]. Besides AAP1, other secondary active
amino acid importers were identified to be involved in the amino
acid uptake into developing seeds such as AAP2 and AAP8 [25,26].

Microsporogenesis represents amajor sink for nitrogen [18]. The
situation in stamen resembles the one in developing seeds as the
filaments contain a strand of vascular tissue which ends at the
connective. Thus, the delivery of nutrients to the anthers must
occur via an unloading process and a subsequent transfer across
apoplastic barriers towards the developing pollen grains. The up-
take of neutral and acidic amino acids into tapetum cells is
dependent on LHT2 [18,27]. Amino acid uptake is also essential in
symbiotic interactions with mycorrhizal fungi and rhizobia [8] and
in plantepathogen interactions. Amino acid transporters are, for
instance, specifically expressed in haustoria which are produced by
biotrophic fungal pathogens for the uptake of nutrients from plant
cells [28].

Amino acids supply is also important in the pathogenic inter-
action between nematodes and plant roots. Syncytia and also giant
cells, feeding sites induced by several genera of sedentary plant
pathogenic nematodes, have a high metabolic activity and are a
severe sink for the plant since the nutrients that are taken up by the
nematode have to be continuously restored. Amino acids and other
nutrients must either be taken up from the apoplast with the help
of specific transport proteins or provided symplastically through
plasmodesmata. It was originally thought that syncytia are sym-
plastically isolated [29] but, recently, evidence has been reported
that there is a direct connection between syncytia and the phloem
[30]. Still, the apoplastic pathway seems to play an important role
for nutrient uptake into syncytia since several genes for sugar
transporters are induced in syncytia and are important for nema-
tode development [31]. Besides sugars, syncytia also have to take
up amino acids as a nitrogen source to cope with the constant loss
due to nematode feeding. Indeed, the level of 14 amino acids was
higher in syncytia as compared with uninfected roots and with root
tissues surrounding the syncytium [32]. Correspondingly, our
recent transcriptome analysis has revealed that several AAP amino
acid transporter genes are strongly upregulated in syncytia [7]. A
similar situation has been found in giant cells induced by the root-
knot nematode Meloidogyne incognita in Arabidopsis roots. A
microarray analysis of root sections containing root knots showed
that the expression of many amino acid transporters was signifi-
cantly altered as compared to control root sections [33,34].

Here we report our expression analysis of AAP-type amino acid
transporter genes in syncytia. In addition, we included the LHT1
genewhich is also expressed in syncytia and roots at a high level. To
test the importance of these genes for the development of the
nematodes we used the available knock-out mutants.
2. Results

We recently performed a transcriptome analysis of syncytia
induced byH. schachtii in Arabidopsis roots [7]. AAP8was one of the
genes that was found to be strongly upregulated in syncytia as
compared to control root sections and this was confirmed by real-
time RT-PCR and in situ RT-PCR. Here we have extended that work
and have in addition studied the expression of several other AAP-
type amino acid transporter genes together with LHT1. As shown
in Table 1, 6 of the 8 AAP genes are expressed at high levels in
syncytia and most of them are upregulated as compared to control
root sections. Only AAP5 and AAP7 of the 8 AAP genes are slightly
downregulated. Of the other 44 amino acid transporter related
genes, only LHT1 showed a very strong expression in roots and in
syncytia and was therefore included in this study. However, it was
approximately three folds downregulated as compared to control
root sections. Among the other amino acid transporter related
genes, only rather few were expressed at a higher level in syncytia
than in control root sections (Table 1) which is also evident from
Fig. S1. Comparing expression in 5 and 15 dpi syncytia, only AAP8
showed a significantly different expression, being approximately
expressed 10 folds higher in 15 dpi syncytia (Fig S2). These data
indicate that the AAP-type gene family might be especially
important for the amino acid uptake into syncytia. We have
therefore in addition studied their expression using promoter::GUS
lines and in situ RT-PCR.



Table 1
Expression of genes coding for amino acid transporters in syncytia and control root
sections according to microarray data. The data for microaspirated syncytia at 5 dpi
and 15 dpi were compared with control roots (elongation zone without root tip was
used as control). The third and fourth columns show the normalized expression
values on a log2 scale. The differences (fold changes) between the pairwise samples
displayed (fifth column) are accordingly normalized log2 ratios (see “Methods”
section and the “Supporting methods” section in the Online supplement for details).
The q-values in column 6 indicate significance after correction for multiple testing
controlling the false discovery rate. Raw data are from Ref. [7].

Gene ID Control Syncytium
(5 þ 15 dpi)

Syncytium
vs control

q-value

At1g58360 AtAAP1 5.7 8.4 2.7 0.05
At5g09220 AtAAP2 9.9 11 1.1 0.32
At1g77380 AtAAP3 7.1 9.8 2.7a 0.00
At5g63850 AtAAP4 6.6 9.8 3.2 0.06
At1g44100 AtAAP5 7.8 5.2 �2.6a 0.00
At5g49630 AtAAP6 3.8 11.5 7.7a 9.26e�05
At5g23810 AtAAP7 5.2 4.1 �1.1a 0.02
At1g10010 AtAAP8 2.5 7 4.5a 3.41e�05
At2g38120 AtAUX1 6.2 6 �0.2 0.50
At5g01240 AtLax1 5.4 4.7 �0.7a 0.02
At2g21050 AtLax2 3 2.5 �0.5 0.04
At5g40780 AtLHT1 11.2 9.4 �1.8a 0.00
At1g24400 AtLHT2 2.6 2.5 �0.1 0.52
At1g61270 AtLHT3 not available on GeneChip
At1g47670 AtLHT4 5.9 5 �0.9a 0.00
At1g67640 AtLHT5 3.6 3.2 �0.4 0.17
At3g01760 AtLHT6 not available on GeneChip
At4g35180 AtLHT7 3.4 3.6 0.2 0.42
At1g71680 AtLHT8 3.9 3.4 �0.5 0.09
At2g39890 AtProT1 6.8 7.4 0.6 0.20
At3g55740 AtProT2 4.4 4.6 0.2 0.45
At2g36590 AtProT3 2.9 2.7 �0.2 0.34
At1g08230 AtProT4 3.1 3.3 0.2 0.36
At5g41800 AtProT5 5.7 6 0.3 0.14
At3g11900 ANT1 6.7 6 �0.7 0.06
At5g65990 ANT2 4.5 6.9 2.4a 0.00
At4g38250 ANT3 8.6 7 �1.6a 0.00
At2g41190 AVT1L1 5.2 6.2 1 0.05
At3g09340 AVT1L2 not available on GeneChip
At3g09330 AVT1L3 not available on GeneChip
At5g02170 AVT1L4 3.3 3.1 �0.2 0.45
At5g02180 AVT1L5 3.1 2.8 �0.3 0.17
At3g54830 AVT1L6 not available on GeneChip
At2g39130 AVT1L7 3.6 3.3 �0.3 0.22
At5g15240 AVT1L8 3.6 3.3 �0.3 0.20
At3g28960 AVT1L9 2.6 2.2 �0.4 0.04
At1g80510 SN1L1 4.1 3.8 �0.3 0.20
At5g38820 SN1L2 7.9 4.9 �3a 0.00
At3g30390 SN1L3 10.3 5.9 �4.4a 0.00
At3g56200 SN1L4 6 5.8 �0.2 0.6
At2g40420 SN1L5 5.2 4.6 �0.6 0.13
At4g21120 AtCAT1 4.4 4.6 0.2 0.43
At1g58032 AtCAT2 not available on GeneChip
At5g36940 AtCAT3 7.8 6 �1.8a 0.00
At3g03720 AtCAT4 6.7 5.4 �1.3 0.03
At2g34960 AtCAT5 3.5 3.1 �0.4 0.24
At5g04770 AtCAT6 5.3 5.9 0.6 0.03
At3g10600 AtCAT7 3.3 3 �0.3 0.20
At1g17120 AtCAT8 6.5 5.6 �0.9a 0.00
At1g05940 AtCAT9 8.1 7 �1.1a 0.00
At5g05630 AtLAT1 3.5 3.7 0.2 0.43
At3g13620 ATLAT2 5.1 7 1.9a 0.00
At1g31820 AtLAT3 4.6 3.9 �0.7 0.07
At1g31830 AtLAT4 8.1 7.5 �0.6 0.22
At3g19553 AtLAT5 6.2 5.2 �1a 0.09
At5g44370 AtBNP1hom1 5.2 5 �0.2 0.38
At2g29650 AtBNP1hom2 3.6 6.3 2.7a 0.00
At3g46980 AtBNP1hom3 4.3 4.1 �0.2 0.52
At2g38060 AtBNP1hom4 4.8 4.6 �0.2 0.45
At4g00370 AtBNP1hom5 5.4 7.6 2.2a 0.00

a Indicates significant up- or downregulation (false discovery rate <5%).
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2.1. Promoter::GUS analysis

The GUS staining results of the promoter::GUS lines for AAP1,
AAP2, AAP3, AAP4, AAP6, AAP8, and LHT1 (Table S1), as related to
nematode infection, are shown in Fig. 1. AAP1 showed GUS staining
that was limited to lateral root tips and emerging lateral root
primordia. There was no GUS staining observed in syncytia at both
5 and 15 dpi. AAP2 showed no expression at the root tip and the
elongation zone. AAP2 expression appeared in the maturation zone
and further posterior and it showed a higher expression level in 5
dpi syncytia in comparison with the surrounding tissues and it
showed a faint staining in 15 dpi syncytia. The expression of AAP3
was strongest in root tips, root meristem, and elongation zone and
the expression decreased in older parts of the lateral roots. AAP3
showed a strong GUS expression in 5 dpi and 15 dpi syncytia with
no staining of the surrounding root part. AAP4 showed a similar
expression pattern as AAP3 in 5 dpi and 15 dpi syncytia. However,
AAP4::GUS syncytia at 15 dpi showed a fainter staining than in AAP3
15 dpi syncytia. AAP6 and AAP8 did not show expression in the early
primordia and the elongation zone but in the older parts of the
roots. Both AAP6 and AAP8 showed a strong expression in syncytia
at 5 dpi and 15 dpi. LHT1 gave a strong GUS staining in all root parts,
especially in the root tips, while GUS staining in syncytia at 5 dpi
and 15 dpi was less than in the surrounding root tissues.

All the GUS lines except AAP4::GUS have been studied before
(for references see Table S1) but none of these studies looked at the
expression in syncytia.We have therefore restricted our work to the
above-mentioned expression studies of syncytia and control roots.
However, AAP4::GUS has not been reported before and we have
included GUS pictures from leaves in the supplement (Fig. S3). It is
evident that the expression is restricted to the leave veins.

2.2. Localization of gene expression by in situ RT-PCR

We have recently reported the in situ RT-PCR detection of AAP8
expression in syncytia [7]. Here we have used in situ RT-PCR to
study the expression of AAP2, AAP3, AAP4, and AAP6 (Fig. 2). High
levels of AAP2, AAP3, AAP4, and AAP6 transcripts were detected
mainly in syncytia and the central cylinder. In the cross-sections
from uninfected roots, the expression of all tested AAPs was local-
ized to the central cylinder with a different level of intensity. AAP3
showed the highest level of expression in the central cylinder.
Furthermore, AAP3 expressionwas observed in the endodermis and
the cortex. No specific staining was detected in the negative
controls.

2.3. Resistance tests

The strong expression of the amino acid transporter genes that
we have studied pointed to an important function of these genes
for syncytium function and development. We have therefore tested
the effect of knock-out mutants for the development of H. schachtii.
The available mutants were in two different backgrounds
(Table S1). The tests were therefore performed in two different
groups with either the Col-0 or the Ws wild type. The first group
included the aap1, aap2, aap8, and lht1 mutants which were
compared to the Col-0 ecotype as a control (Fig. 3a). The second
group included the aap3, aap5, and aap6 mutants and these were
compared to the Ws ecotype (Fig. 3b). The mutant lines aap1, aap2,
and aap8 from the first group showed a significant difference in the
number of females per cm root length but no significant difference
was observed for the lht1 mutant. The number of males was not
significantly different for all mutants of the Col-0 background
except in case of aap8. The aap3, aap5, and aap6mutants of the Ws
wild type did not have a significantly different number of females



Fig. 1. GUS analysis of infected and uninfected Arabidopsis roots of pAAP::GUS fusion lines. Uninfected roots and syncytia were stained for GUS activity at 5 and 15 dpi, respectively.
The nematodes at 5 dpi were stained with acid fuchsin to ease observation and juveniles are marked with arrows.
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as compared to Ws. The number of males on the aap3, aap5, and
aap6 mutants was also not significantly different from the wild
type.

3. Discussion

3.1. Expression of amino acid transporter genes in syncytia

We have studied here the expression of several AAP genes and of
LHT1 in syncytia induced by H. schachtii in Arabidopsis roots using
promoter::GUS lines and in situ RT-PCR. In general, the data re-
ported here support the results of the transcriptome analysis of
syncytia [7] with a few exceptions. For the AAP1::GUS line we did
not find GUS expression in syncytia and also the expression in un-
infected roots was restricted to the primordia of side roots and root
tips. According to the syncytium transcriptome analysis this gene
was upregulated in syncytia as compared to control root sections
[7]. According to Genevestigator, a repository of GeneChip data [35]
AAP1 showed a very low expression level in roots (Fig. S4) while a
root transcriptome analysis [36] found quite strong expression in
the root central cylinder (Fig. S5). The reason for this discrepancy is
currently unknown, but since the expression in uninfected roots
and in syncytia was lower than could have been predicted from
some transcriptome data, it might be possible that the promoter
fragment that was used for the construction of the AAP1::GUS line,
was too short. Unfortunately, the expression in roots of the pro-
moter AAP1::GUS line was not reported in the original publication
[22]. To resolve the discrepancies between these different tran-
scriptome studies and the GUS analysis would require to produce
GUS fusions with promoter fragments of different lengths.

In case of AAP2 and AAP4, GUS expressionwas downregulated in
syncytia at 15 dpi. The reason for this is currently unknown but



Fig. 2. In situ RT-PCR for AAP genes. (þ) ¼ 15 dpi syncytia, (�) ¼ negative control of 15 dpi syncytia, and uninfected ¼ uninfected roots. The gene name on the left of each row shows
the targeted gene (scale bar ¼ 50 mm).
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might also be related to the promoter fragment that was used. Our
in situ RT-PCR analysis has confirmed the presence of the AAP2,
AAP3, AAP4, and AAP6 transcripts in 15 dpi syncytia. In uninfected
roots, the expression was mainly found in the central cylinder
which is supported by data from the AREX database (Fig. S5).

3.2. Function of AAP transporter genes for cyst nematode
development

The upregulation of most AAP genes in syncytia pointed to an
important function of these genes for H. schachtii development. The
majority of the 8 AAP amino acid transporters have moderate af-
finity for neutral and acidic amino acids while AAP3 and AAP5 also
transport basic amino acids [9,11,37,38] and LHT1 was described as
a lysine and histidine transporter [16]. Together, these transporters
should be able to support the syncytium with all amino acids.

We tested several T-DNA mutants for their effect on nematode
development. For 3 genes (AAP1, AAP2, AAP8) we found that
a significantly lower number of females developed on the
correspondingmutants. In case of LHT1 and several other AAP genes
(AAP3, AAP5, AAP6) no enhanced resistance was found although
LHT1 was strongly expressed in roots and syncytia and AAP6 was
the onewith the strongest upregulation of all AAP genes. The reason
that we did not find enhanced resistance in more single mutants is
probably the redundancy among the large number of amino acid
transporters. In the future it would therefore be necessary to
combine several of the single mutants in one line to overcome this
redundancy. The amino acid content of syncytia has been compared
to uninfected root sections and it was found that the levels of
several amino acids were higher in syncytia [32]. If the knock-out of
certain amino acid transporters has an effect on the amino acid
content of syncytia is not known. This would require a metabolic
analysis of all mutants.

The mutants that we tested were in different backgrounds, Col
and Ws. Sijmons et al. [39] tested 74 Arabidopsis ecotypes,
including Col and Ws, and found that, for instance, Sah-0 and Lan-
0 supported less females than Gre-0 and La-0. They did not
publish the number of females per plant for Col and Ws,



Fig. 3. Nematode infection assay for aap and lht1 mutants. Average numbers of fe-
males and males per cm root are shown with the standard error bar. The data are the
average of all three independent repetitions. (a) Shows the results of the mutants with
a Col genetic background and (b) shows the mutants with Ws genetic background. (*)
marks the values with statistically significant difference to the wild type according to
the LSD test at confidence level 90.0%.
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indicating that they were somewhere in between. In our work,
Ws supported around 50% more females than Col. One might
therefore argue that mutations in the Col background showed an
effect because the Col plants are already less supportive for
nematode development than the Ws ecotype because the AAP
mutants in the Col background were more susceptible while
those in Ws background were not. However, the LHT1 mutant
which we tested was also in the Col background and this mutant
showed no effect. Furthermore, the AAP5 gene is downregulated
in syncytia and it is therefore not surprising that the mutant for
this gene, which is in the Ws background, did not show an effect.
This indicates that the observed differences for the AAP genes are
not just an ecotype effect. Unfortunately, nothing is known yet
about the expression of AAP genes in the Ws ecotype. To rule out
an ecotype specific effect, it would be necessary to analyse the
same mutants in both ecotypes as has been done by Marella et al.
[40] who tested aap3 mutants in both ecotypes and found in both
cases an effect on M. incognita development. The aap3 mutant in
the Ws background was the same mutant that we used but we did
not see an effect on the number of H. schachtii males or females.
Thus, AAP3 might be more important for gall nematodes than for
cyst nematodes.

While the feeding site of cyst nematodes is the syncytium,
feeding sites of gall nematodes contain several giant cells. In an
analysis of transporter gene expression in Arabidopsis roots
infected with M. incognita, only AAP6, AAP7, and to some degree
AAP3 were found to be upregulated [33]. However, in that study
whole root samples were used and the specific expression in giant
cells might have been overlooked. Another amino acid transporter
that was upregulated in root knots was AtCAT6 [34]. Mutants for
this gene did not show a difference in resistance toM. incognita. In a
more comprehensive analysis of gene expression in root knots in
Arabidopsis [41], galls were cut out from the roots and analysed
using the CATMA microarrays (AAP4 not included). This analysis,
different from the situation described here, showed only a slight
upregulation of AAP1, AAP2, and AAP6 in galls compared to control
root sections. If this shows the real situation in giant cells is
doubtful since the samples contained probably more gall tissues
than giant cells. In addition to these publications, gene expression
has also been studied inmicrodissected giant cells [42]. The authors
of that study classified AAP6 as “gall distinctive”, meaning that it
was “upregulated in galls but not in giant cells”, while AAP5 was
classified as “downregulated in galls and giant cells” as compared to
vascular cylinder cells. Other AAP genes and LHT1 were not ana-
lysed in that work.

Mutants for AAP3 and AAP6 transporters were analysed by
Marella et al. [40]. It was found that both mutants had a significant
effect on M. incognita development. Egg masses produced on the
mutant roots were lower than on wild type roots, however, the
double mutant did not differ from the single mutants, which lead
the authors to speculate that both transporters might act in a co-
ordinated fashion.

4. Conclusion

While sugar transport into syncytia has been intensively stud-
ied, not much is known about amino acid transport into syncytia.
Our analysis has shown that AAP transporters play an important
role in that regard, considering the strong expression in syncytia
and the fact that some single mutants had a significant effect on
nematode development. Since the specificity of AAPs for amino
acids is to some degree redundant, it will be interesting to extend
this analysis to combinations of single mutants and to combine this
with a metabolic analysis.

5. Methods

5.1. Plant cultivation

Arabidopsis plants (mutants and Col-0 and Ws ecotypes) were
cultured on 0.2% Knop medium containing 2% sucrose [39] for
nematode infection experiments. Seeds were surface sterilized by
soaking them in 5% (W:V) sodium hypochlorite for 10 min followed
by 3 washes with sterile water. The plates were sealed and incu-
bated in a growth chamber at 25 �C with 16 h light and 8 h dark
cycles. The mutants that were used in this work are listed in
Table S1.

5.2. Statistical analysis of microarray data

Affymetrix CEL files were analysed using packages of the
Bioconductor suite (www.bioconductor.org). Details are provided
in Ref. [7] and in the accompanying Online Supplement of
that paper (Appendix S1). The additional online material for
Szakasits et al. [7] providing large comprehensive tables and
plots and detailed technical analysis results is archived at http://
bioinf.boku.ac.at/pub/Szakasits2008/. A brief description is also
provided in the Supporting Information (Appendix S1) of this
paper.

http://www.bioconductor.org
http://bioinf.boku.ac.at/pub/Szakasits2008/
http://bioinf.boku.ac.at/pub/Szakasits2008/
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5.3. Cloning of pAAP4::GUS

The AAP4 promoter region was amplified by PCR using primers
50- GAGATTGAGATGGGACCTCTGCG -30 and 50- GCTGGCCGTGGAA-
CATCCATCTG -30. The PCR fragment was cloned into the HincII site
of pBluescript SKþ, and was sequenced to ensure that no mutation
had been introduced. The promoter sequence was then excised
from the pBluescript SKþ vector with Bsp120I (subsequently
blunted with Klenow enzyme) and XbaI, and cloned between the
HindIII (blunted) and XbaI sites, of pGPTV-BAR [43] (upstream of
the uidA sequence). The final plasmid was transformed into Agro-
bacterium GV3101 and introduced into Arabidopsis using in planta
transformation [44]. Transformed Arabidopsis plants were selected
on soil by spraying with BASTA. A single representative homozy-
gous line was selected and used in this work.

5.4. In situ RT-PCR

In situ RT-PCR was carried out as described by Szakasits et al. [7].
Syncytia at 15 dpi were dissected from the roots and immediately
immersed in cold fixation solution (63% ethanol, v/v; 2% formalin,
v/v). After 24 h, syncytiawere embedded in 4% low-melting agarose
and 25 mm thick sections were prepared using a vibratome (VT 100,
Leica, http://www.leica.com/). RT-PCR was then carried out using
digoxigenin-labelled dUTP at the annealing temperature listed in
Table S2 together with the primer sequences. After a staining re-
action with nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl
phosphate substrate, cross-sections were photographed using an
inverted microscope (Axiovert 200M, Zeiss, http://www.zeiss.com/
) with an integrated camera (AxioCam MRc5, Zeiss, http://www.
zeiss.com/).

5.5. Nematode infection assays

Cysts of H. schachtii were harvested from sterile in vitro stock
cultures that were grown onmustard (Sinapis alba cv. Albatros). The
collected cysts were soaked in 3% ZnCl2 at 25 �C for 4 days in order
to hatch them. The collected juveniles were used for inoculating the
12 days old Arabidopsis seedlings (60 J2/plants) that were growing
on 0.2% Knop medium (10 seedlings/plate). Root length was esti-
mated at the date of inoculation as described by Jürgensen [45].
Each infection assay had 5 replicates from each T-DNA insertion
line and the corresponding wild type (Col-0 for aap1, aap2, aap4,
aap5, and lht1, and Ws for aap3, aap5, and aap6, respectively). Each
mutant was at least tested in 3 independent experiments. Two
weeks after inoculation, the number of males and females was
counted in each plate. The pathogenicity level was calculated based
on the number of male and female nematodes per cm of root
length. For the statistical analysis we used STATGRAPHICS Centrion
XV (Version 15.2.11) to perform a one-way ANOVA for the numbers
of males and females per cm root length among mutants and wild
types corresponding to their genetic background (Col or Ws). Box
and whisker plot was used to detect outliers and identified outliers
were removed from the analysis. The distribution of tested values of
male- and female-infection was detected to make sure that the
tested values are normally distributed (alpha ¼ 0.1). Fisher’s least
significant difference (LSD) procedure was used to discriminate
among the means defining the significantly different means (con-
fidence level ¼ 90,0%).

5.6. GUS assays

Transgenic Arabidopsis lines containing promoter::GUS fusions
were grown as described above. All lines were infected with
nematodes as described before and stained for GUS activity at 5 and
15 dpi. The samples were soaked in pre-chilled 90% acetone for 4 h
followed by several washes with chilled distilled water. The spec-
imens were then stained by overnight incubation at 37 �C in
100 mmol NaPO4 buffer (pH 7.0) containing 10 mmol EDTA, 0.01%
Triton X-100, 0.5 mmol K3(Fe(CN)6), 0.5 mmol K4(Fe(CN)6) and
1 mg ml�1 5-bromo-4-chloro-3-indolyl glucuronide. At the 5 dpi
stage the nematodes were also stained by incubation in Fuchsin
solution (875 ml lactic acid, 63 ml glycerol, 62 ml H2O, 0.1 g acid
fuchsin) overnight at room temperature. Fuchsin staining made it
easier to observe the juveniles at 5 dpi. At last, samples were
washed several times with 70% EtOH followed by a final wash with
95% EtOH. The GUS lines that were used in this work are listed in
Table S1.
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