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SUMMARY 

The overall goal of the thesis is to attempt to highlight the major topics 
which must be considered in the design of any Intelligent Tutoring System and 
to illustrate their application within the particular domain of LISP 
programming. 

There are two major sections to the thesis. The first considers the 
background to the educational application of computers. It examines possible 
roles for the computer, explores the relationship between education theory and 
computer-based teaching, and identifies some important links among existing 
Tutoring Systems. The section concludes with a summary of the design goals 
which an Intelligent Tutoring System should attempt to fulfill. 

The second section applies the design goals to the production of an 
Intelligent Tutoring System for programming languages. It devises a formal 
semantic description for programming languages and illustrates its application 
to tutoring. A method for modelling the learning process is introduced. Some 
techniques for maintaining a structured tutoring interaction are described. 

The work is set within the methodology of Artificial Intelligence research. 
Although a fully implemented tutoring system is not described, all features 
discussed are implemented as short programs intended to demonstrate the 
feasibility of the approach taken. 
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The cardinal function of the teacher, in the early 
stages, is to get the pupil on the inside of the form of 
thought or awareness with which he is concerned. At a later 
stage, when the pupil has built into his mind both the concepts 
and mode of exploration involved, the difference between teacher 
and taught is obviously only one of degree. For both are 
participating in the shared experience of exploring a common 
world. The teacher is simply more familiar with its contours 
and more skilled in finding and cutting pathways. The good teacher 
is a guide who helps others to dispense with his services." 

[Peters 1966] 
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Part 1 

An Overview. 



Chapter 1. 

Overview of thesis. 



This project, like much recent work in the Educational Application of 

computers, derives its basic motivation from the work conducted at M.I.T. on 

teaching LOGO to children. 

The literature from this LOGO group suggests that the computer is a 

powerful tool for tackling educational problems. It is suggested that letting 

a child interact freely with an appropriate computer-based environment is 

sufficient to permit the pupil to discover great things for herself. 

In the spirit of this LOGO approach I attempted to design a friendly 

environment (MATILDA) in which postgraduate students could learn LISP by 

discovery [Elsom-Cook 1982] . In essence, by producing an environment in which 

every error a student made resulted in constructive feedback. MATILDA attempted 

to emulate the LOGO experience. The system has been used practically for 

several years. and it was immediately apparent that simply placing a student in 

front of a computer. no matter how friendly the environment. was not sufficient 

to ensure that she learnt LISP. Worksheets. individual tuition and other forms 

of guidance were necessary. 

Although this programming environment did not achieve its original aim. 

the limitations suggested a possible method for extending the system. Since it 

is generally the case that a learning task involves interaction with an 

environment and with a teacher. MATILDA provided a starting point for an 

investigation of the nature of the "missing" component - guidance. The work 

reported in this thesis stems from that investigation. 

~. -ov~vi~ of th!! !hesi!!. . 
• 
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The purpose of this thesis is to investigate the nature of the teaching 

interaction. A system intended to guide a discovery learning interaction about 

the programming language LISP will be described, and the issues of 

representation of domain knowledge, skills of interaction and knowledge about 

the user will be discussed. 

The study is set within the framework of producing software capable of 

acting as a stand-alone tutor for the programming language LISP. A tutoring 

system called IMPART, which is an instantiation of a more general tutoring 

system architecture will be described. IMPART is intended to support the early 

stages of learning a programming language, and to facilitate easy transfer to 

normal programming environments once programs become too complex for it to make 

a reasonable teaching contribution. 

This work embodies a specific model of the teaching interaction. Let us 

suppose that a teacher has her own (usable) representation of a domain of 

knowledge, and that the pupil also has a representation of knowledge which may 

be of relevance to the domain. The goal of teaching must be to provide the 

pupil with a model of the domain (at least) as powerful as that of the teacher. 

This model will not necessarily have the same internal form, since it must be 

bound to differing cognitive structures in the two individuals, but both models 

aust be consistent with the real world. A "direct teaching" strategy involves 

the teacher in translating her model into a suitable external representation. 

The learner then attempts to integrate features of this representation with her 

preexisting cognitive structures, and possibly to modify the fora of these 

structures. One way of categorising varieties of teaching interaction is by 

locating the point in this "transfer of knowledge" at which major 

reorganisation of the knowledge occurs. The following examples wIll illustrate 
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this; 

In a traditional "chalk and talk" environment, the teacher generates an 

external form from her domain knowledge which is reasonably independent of the 

states of knowledge of the pupils whom she is teaching - at best it is based on 

a simple "prototypical" student model. This leaves the student to do all the 

work of adapting the knowledge for her own understanding. A further instance 

of a situation in which the burden of adapting knowledge rests on the student 

alone occurs when attempting to learn from a book. 

At the opposite extreme, the tutor devotes much energy to developing an 

accurate model of her pupil. She then combines this model with her domain 

knowledge to generate an individualised course of tuition. In this approach, 

the tutor must constantly update her model and reassess the presentation 

method. A fairly complete exposition of this approach to education will be 

found in the work of Jean-Jacques Rousseau [Rousseau 1762] . Rousseau's 

philosophy is based on providing one teacher per child who tries to model the 

child's interests and readiness to learn, and ensure that the appropriate 

experiences occur in the environment to trigger each phase of learning. It 

should be noted that it is actually possible to exert complete control over the 

pupil by this method, while maintaining the impression of freedom. Rousseau's 

own ideas of what is "natural" have a great influence on what the pupil is 

allowed to learn. 

Between these extremes there is a continuum of teaching styles. The above 

framework permits a distinction to be .. ade between "~ood" and "bad" teachers 

and "good" and "bad" learners. A good teacher is one who successfully 

restructures information to make it easier to learn before presenting it. A 

good learner is one who is capable of doing large a.ounts of reorganisation of 

knowledge to make it fit into her existing cognitive structures, and of 

modifying those structures when necessary. We can see that good learners are 
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less dependent on the ability of their teachers than are poor learners. 

If we assume that the pupil has the clearest idea of her current state of 

knowledge and that the teacher has the clearest understanding of the domain, 

then it is reasonable to suppose that an optimal teaching interaction is one in 

which the matter to be presented and the form of it's presentation is decided 

by negotiation between the two parties. From this it follows that a study of 

teaching should seek to identify the issues about which negotiation may take 

place, and should investigate the form of that negotiation. 

An examination of the teaching techniques applied in Intelligent Tutoring 

systems to date shows that they concentrate on producing a copy of the 

teacher's model of the domain in the head of the pupil. While this technique 

is the most straightforward to study, it is a dangerous practical tool since it 

has a strong tendency to produce uniformity among the pupils to whom it is 

applied. It is also apparent that, unless much extra work is done by the pupil 

in integrating this knowledge with her existing structures, her model cannot be 

more powerful than that of the teacher. These techniques remain close to the 

"chalk and talk" methods of teaching. 

In its most restrictive form this approach is manifest in Computer Aided 

Learning packages which make little attempt to adapt to the user. It is also 

apparent in Intelligent systems which use overlay modelling (discussed in 

chapter 5); the user model is built as a subset of a model of an expert in the 

problem domain. The process of instructing the pupil involves finding 

discrepancies between the two models and attempting to remove them. These 

systems often use direct testing strategies to find evidence for the existence 

of units of the model. This should not be confused with systems which maintain 

a descriptive representation of an "expert" level of achievement. This is 
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necessary for assessment of the pupil, but the details of the experts approach 

are not used in tutoring. In essence, this suggests that the teacher's expert 

knowledge of the domain should be regarded as a black box, and any glass box 

form which the pupil sees should be adapted to that individual. 

An improvement of this type of model is to explicitly include 

representations of variations on the expert skill which are not actually used 

by the expert, but which reflect likely deviations from the model such as 

simplified versions of complex rules. The "bug" representation of systems such 

as BUGGY [Burton 1982] are examples of this category. This provides a better 

means of categorising the difficulties of a pupil, but does not affect the 

basic problem since these systems still have a goal of making the pupil into a 

copy of the expert. 

In IMPART, an attempt has been made to avoid this restrictive aspect of 

the interaction. The system maintains a descriptive model of expert competence 

in programming, and tries to detect discrepancies between this and a 

descriptive model of the pupil's programming. When an inconsistency is 

detected, the system brings it to the attention of the pupil so that the pupil 

may make appropriate corrections to her model. No particular model of expert 

problem-solving ability or bugs is explicitly maintained in the system for the 

purpose of tutoring. The pupil model is derived by applying a model of the 

learning process to the same information sources which the pupil is able to 

access. 

Most Intelligent Tutoring systems make use of a highly constrained 

interaction such as Socratic tutoring [Collins 1980] . More recent systems 

begin to permit mixed-initiative interaction with a greater degree of freedom 

for the pupil, but they are still found to revert to their restrictive fora in 
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difficult situations in order to tie people to the model which they know about. 

The method adopted in designing IMPART is to approach the problem from the 

other end of this Freedom-Constraint dimension: the system leaves control of 

the interaction to the pupil, and only interferes when it has a justification 

for doing so. 

The Educational Philosophy of "Discovery Learning" on which the child­

centred education movement (and recent computer applications such as LOGO at 

MIT) has been based raises major issues about the degree and type of guidance 

which should be given to a pupil. In particular, it is generally acknowledged 

that totally "free" learning, in which a learner is simply left alone in an 

environment, is a very poor use of available resources, and unlikely to lead to 

high levels of attainment [Dearden 1967]. It is interesting to note that 

although LOGO is often thought of as a free environment for learning, a case 

study of LOGO use at MIT [Solomon 1976] shows an interaction which is actually 

tightly constrained in practical terms, and in which the pupil exercises 

virtually no control. 

It is apparent that discovery learning offers advantages in terms of the 

motivation of the individual. If we consider the form of teaching which is 

necessary in "guided discovery" learning, we find that we can reduce the amount 

of detail involved in negotiating the course of teaching, since much of the 

learner's contribution can be in terms of actions in the environment. This 

reduces the amount of direct interaction needed between teacher and pupil, 

since the role of the teacher is now assessing the possible directions which 

the pupil could follow at a given point, and encouraging those which she 

considers to be most productive. This leaves the major problem of assessing the 

likely value of a course of action. 

It was decided to design a system which provides an environment in which a 

pupil can "discover" the language Lisp. The system also contains a teaching 

program which monitors the interaction of pupil and enVironment, and attempts 
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to make positive contributions to that interaction. The system has a goal of 

detecting skills which the user is ready to learn, and encouraging the 

exploration of those skills, either by manipulating the environment or by 

making direct "teaching statements" to the pupil. 

The thesis is divided into four sections, together with some appendices. 

Part 1 (this section), provides a brief overview of the thesis and the 

tutoring system which it describes. It also attempts to clarify the possible 

roles which a computer can play in the educational process. 

Part 2 discusses the basic issues in education and tutoring system design 

which determined the nature of IMPART. 

Part 3 is the central component of the thesis. It describes the tutoring 

system in detail, and shows how the general issues which have been discussed 

may be practically applied. 

Part 4 summarizes the major points which the thesis has made. 

The appendices list some of the More interesting parts of the 

implementation. 

The thesis attempts to discuss aspects of Education Theory and Tutoring 

System design. It is unusual for these areas to appear together in a single 

document, but their juxtaposition reflects the author's view that it is vitally 

important to design tutoring systems with reference to a larger educational 

framework. Both these aspects of tutoring system design require a substantial 

amount of further research. Rather than attempting to produce a definitive 

piece of work on either aspect this thesis aims to show the way in which these 
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areas should be related to make Intelligent Tutoring System design a truly 

interdisciplinary field. 
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Chapter 2. 

Overview of the 

tutoring system. 



Conceptually, the system may be regarded as three separate entities. The 

first is the PUPIL, which is a system user plus various interfacing packages to 

enable her to interact smoothly with the system. The second is the 

ENVIRONMENT, which Is the domain about which the pupil is trying to discover 

together with some tools to aid her exploration. In this case the environment 

is a LISP interpreter, and the tools are such things as Trace packages and 

Editors. The third item is the TEACHER, which is considered to embody the 

intelligent aspects of the system. The teacher monitors the interaction 

between pupil and world, and attempts to build a model of the state of the 

pupil which can be used to decide when to intervene in this interaction. It is 

also possible for the pupil to appeal directly to the teacher for aid. 

Pupil Environ.ent. 

Teacher. 

Figure 1 - Guided discovery learning framework. 

Let us examine the action of the system when dealing with a specific 

problem. Assume that a task has been agreed between teacher and pupil which is 

to define a function to extract the second element from a list; 

(FRED (QUOTE (A B C») --> B 
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One correct solution would be 

(DE FRED (X) 

(CAR(CDR X») 

and we will assume that the teacher is aware of this solution. Suppose 

that the pupil offers the following definition; 

(DE FRED (X) 

(CDR (CAR (QUOTE X»» 

The tutor executes the pupil's expression before it is completed in order 

to find possible errors. A violation of the semantics due to an inappropriate 

argument to CAR (i.e. X) is detected. It finds that there is one evaluation too 

few on the variable X (by comparing this with the correct solution), and notes 

that removing QUOTE would correct this. The tutor makes a simple patch to get 

round this error and continues execution. A second error, due to an 

inappropriate argument to CDR is found. Comparison with the correct solution 

detects the difference in evaluation order, so this problem is also noted. It 

is important to note that, rather than being "the right solution" to the 

problem, what the system tries to generate is a solution using techniques which 

are currently at the boundary of the pupil's skill level; the solution form is 

indirectly determined by the user model. 

The comparisons of solutions are not done in the programming language 

itself, but rather in the underlying semantic representation. This enables the 

system to identify the reasons for a difference. These differences can be used 

to identify necessary changes in surface form, or can be discussed in their own 

right. 

The tutor now compares the detected errors with the user aodel. It finds 

evidence that this pupil has experience of the aultiple-EVAL problea, but has 

had less experience of the EVAL-order problem. The teaching strategies use 

this to decide to make a simple statement of fact about the .foraer difficulty, 
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but pass control to a specialized teaching unit (a "topic controller") for a 

more detailed discussion of EVAL-order. 

The EVAL topic controller waits until the problem becomes manifest to the 

pupil before doing anything. It takes this decision based on the evidence 

which the user model provides for the pupil's ability to deal with error 

situations, together with the pupil's experience of this type of problem. The 

pupil tests the function with' (0 C A). An error results and the pupil 

immediately asks for help. The topic controller attempts to illustrate the 

error by breaking the problem into sub-problems which make the difficulties 

more obvious. The tutor asks "WHAT is (CAR (QUOTE (D C A») ", then "WHAT sort 

of argument does CDR expect". If this is insufficient to cause the user to 

generate a correct answer then it uses a more informative technique. 

An attempt has been made to produce a clear separation between the 

knowledge sources in the system, so that the examination of the way in which 

they interact to produce a reasonable teaching sequence is possible. A further 

goal of this separation was to make the system capable of teaching different 

programming languages with little overall modification. 

!.,g.! . .!-~t~. 

In effect, problems of syntax have been bypassed in this system. The 

pupil works through a syntax-directed editor which is driven from a Backus-Naur 

form description of the language. The editor generates a parse-tree of any 

expression in the language, which is the form on which all other parts of the 
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system act. This technique was originally investigated in the EMILY system 

[Hansen 1971] . The current system was designed for novice programmer's 

rather than experts, so the constraints upon the editor design were different 

from those of Emily. In particular, the overhead of learning to use the 

interface was kept to a minimum. 

The boundary between syntax and semantics is not perfectly defined, and 

some problems are difficult to assign to either class. An example of this is 

the question of declaring variables before using them. While many systems 

assume this to be a high level of syntactic information (e.g. [Teitelbaum 

1981] ), IMPART assigns it to the semantics, because it represents an aspect of 

the language for which underlying principles exist. 

An examination of standard techniques of program description showed that 

although they are well suited to mathematical manipulations, they are not the 

most appropriate representation for transferring a "psychologically reasonable" 

model of the language to a pupil. For this reason a different semantic 

representation was devised. This representation describes each statement in the 

language in terms of preconditions for it's application plus a body of co.mands 

to execute in order to achieve the appropriate effect. The coamands are drawn 

from a set of about fifteen primitive operations which constitute the lowest 

level of semantic description in the system. This has similarities with 

certain aspects of Axiomatic and Operational semantics. In choosing this 

representation, some of the constraints of mathematical consistency and 

completeness for which other approaches have aimed, have been relaxed. The 

form used is a type of Direct semantics, so it is unable to handle unusual 

control flow features such as Jumps or Errors. Other limitations include an 

inability to prove termination of a program. and some limits involving aliasing 
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of variables. 

This declarative form of semantics is acted upon by different programs for 

each of the applications to which it is put in the system. The most obvious 

application is execution of expressions in lieu of an interpreter. The system 

is often able to execute incomplete expressions and ignore those errors which 

are due to the incompleteness. Describing statements of the language or 

behaviour of an expression is done by mapping the semantics onto some simple 

English descriptions of the primitive elements. Automatic generation of 

problems and problem-solutions using the semantics is an important area, but is 

was decided that it should not be a major research goal in the design of this 

system, so it has not been examined in detail. The teaching methodology 

requires that the action of programs can be made visible in such a way as to 

avoid implying a particular mechanism, so some effort is devoted to providing 

the teacher with different ways of displaying information during execution. 

So far, the system has been applied to small domains, where it is possible 

to detect correct problem solutions by exhaustive search. In real programming 

domains the search space will be too large to apply this technique, so the 

system requires the search to be constrained by likely solution forms. More 

importantly, the student is unlikely to discover such techniques as recursion 

by trial and error, so some representation ot these must exist it the teacher 

is to guide the pupil towards them. These representations aust include 

conceptual roles (such as "stopping condition") to which actual elements of the 

program can be assigned. A representation such as that used in the 

Programmer's Apprentice system [Rich 1981] is envisaged, but it will not be 

incorporated into the systea until the relationship between these structures 

and lower level progra .. ing knowledge has been further investigated. 
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Some "knowledge" about high level concepts of the language may be thought 

to reside in the topic controllers of the domain, but this knowledge is not 

accessible to the reasoning components of the system. In fact, this knowledge 

is more about conventional methods of describing the units than about their 

actual semantic form. 

The student model of the system embodies most of the information which the 

system has about the pupil. Some information about the dialogue state may also 

be regarded as part of the user model. 

The existence of a history of interaction in the system seems important 

for several reasons. Being able to refer back to recent events in the 

interaction helps provide a continuity to the teaching, and enables discussion 

of features which the English interface cannot handle. Exactly which past 

events can reasonably be referred to is not yet clear, and it is apparent that 

a principled solution to this problem must involve another level of user 

modelling. This may lead to a more selective form of history storage than is 

currently used. 

It may prove necessary for the system to do some updating of the user 

model offline in order to maintain a reasonable interaction rate. What form 

this processing will take has not been examined, but it is certainly the case 

that human teachers consider problems which their pupils have presented them 

outside direct teaching time. It is likely that a teachin~ system capable of 

learning from experience would focus on this activity. 

Part of the student model is maintained by building a language description 

corresponding to the language which the student thinks she is using. In the 

WUMPUS system [Goldstein 1982] , Goldstein identified a set of rules for 
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approaching new knowledge in ways based on previous knowledge. These 

extrapolation rules identified possible forms of transition between "islands of 

knowledge" in a "Genetic Graph". IMPART takes a similar approach, but the 

transitions are generated during the interaction (rather than being wired into 

the curriculum), and the rules which are used derive from a Machine Learning 

methodology [Michalski 1983] A crude monitoring system attempts to assign 

"success values" to each rule depending on how well the system's goals are 

achieved if they involve that type of rule. More subtle techniques for 

exploring and modelling the pupil's own extrapolation rules should be 

investigated. It is interesting to note that there is a possibility of giving 

the system a goal of extending the pupil's rule set. 

The learning model is not claimed to produce the same hypotheses as the 

pupil. Rather, it provides an upper and lower bound for the hypotheses which 

the pupil could have generated at a particular point. These hypotheses can be 

used as the basis for deductive reasoning mechanisms to predict consequences of 

these hypotheses. Testing these predictions allows the system to bring the 

bounds closer together until it has a sufficiently accurate model of the. 

student (in some particular area) to make a tutoring contribution. 

In knowing when to intervene, the system must have so.e idea of the 

pupil's ability to handle the problem with which she is currently confronted. 

In part this is achieved by examining the student's knowledge of the current 

problem area, but it also involves knowing about the pupil's ability to trace a 

bug from the sort of feedback which she receives. For this reason, the syste. 

should monitor the effectiveness with which pupils can respond to error 

.essages. A goal of the system is to i.prove this ability so that transfer to 

nor.al interpreters is fairly straightforward. 
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Unlike most Inte11igent Tutoring systems, which are purely reactive, this 

system is intended to participate in a structured interaction with the pupil. 

Much of the work in this section makes use of recent progress in models of 

conversation [Power 1979] [Reichmann 1978] . Control of the interaction is 

shared between three major units; 

1) Descriptors of domain. 

Each concept about which the system is able to talk has a topic controller 

associated with it. This topic controller embodies all domain specific aspects 

of the concept, so it contains such things as outlines of various ways to 

present and discuss a topic. It also contains mechanisms to assess it's own 

importance at the current point in the interaction, and routines which enable 

it to make some assessment of it's own success in modifying the user's model of 

the problem_domain. These mechanisms may contribute to the interaction by 

passing data to standard teaching strategies, or they may control an 

interaction specific to their own domain. These controllers may be thought of 

as including the tutorial goals of the teacher. Each controller can be 

regarded as an agent, with associated declarative and procedural knowledge. 

2) General interaction skills. 

These skills have the purpose of maintaining the consistency and 

smoothness of the interaction. They perform such tasks as marking subject 

boundaries, and adjudicating in the process of topic selection by choosing a 

topic controller on the basis of a bid indicating the likely importance and 

relevance of the topic. Since these procedures make no assumptions about the 

actual actions of a topic controller. they can integrate linguistic and non­

linguistic forms of interaction. 

3) Teaching strategies. 

Teaching strategies are special conversation techniques which can be 
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called by topic controllers. They are intended to represent those processes of 

communication which are common to all areas of the domain. They include such 

things as asking questions, giving examples, and making direct statements of 

fact. 

Since the focus of this research was on the design of a tutoring system, 

the implementation was not carried to completion. Instead, a number of small 

programs were produced intended to demonstrate the feasibility of the approach. 

Figure 2 shows the extent of the implementation. 

The architecture of IMPART is shown in terms of information flow between 

components. It is probably best explained by following the passage of 

information round the diagram, beginning with the pupil. 

Our PUPIL may interact with a SYNTAX-DIRECTED EDITOR to produce 

expressions in the language which she is learning. This editor produces a 

parse-tree of the language statement which is transmitted to the INTERPRETER. 

This transmission occurs at all stages of construction of the expression, so 

that the system may provide information during construction of an expression. 

When an expression is complete, and the student wishes to execute it, the 

EDITOR sends it to the INTERPRETER. The INTERPRETER executes it and returns 

results and error messages to the editor which displays them in an appropriate 

form for the PUPIL (e.g. unparsing them). The system described so far 

corresponds to the passive programming environment in which the PUPIL will 

ultimately work. 

Parsed expressions, with a description of their behaviour, are sent from 

the INTERPRETER to the LEARNING MODEL, and the PATCHER. The LEARNING MODEL 
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applies learning mechanisms to generate a set of possible hypotheses which the 

student could draw from the current example. These are passed to an ASSESSOR 

which compares them with the actual language definition and filters out those 

which are not valid. The resulting hypotheses are passed, as a maximally­

specific/minimally-specific pair, to the CONVERSATION CONTROLLER which stores 

them as a record of that interaction step. 

The PATCHER operates on expressions which have produced errors to find 

specific modifications which would remove the error. It also produces a set 

which identifies each basic error and the manifestations of that error. This 

information is passed to the CONVERSATION CONTROLLER. 

The CONVERSATION CONTROLLER operates by repeatedly invoking TOPIC 

CONTROLLERS and enabling them to bid for control of the conversation. It gives 

these controllers access to knowledge about the current state of the 

interaction which has been drawn from different sources. 

Each TOPIC CONTROLLER may pass information to one or more DISCOURSE GAMES 

of either type. These GAMES may, in turn, invoke a language generator to 

present information to the pupil in an appropriate form. In order to access 

detailed information which it may require to instruct the pupil, each TOPIC 

CONTROLLER may invoke the INTERPRETER, a PROBLEM GENERATOR and a PROBLEM 

SOLVER. Each of these units can respond to instructions froa the CONTROLLER 

(for example, the problem generator can be requested to produce a problem 

involving values of atoms, the interpreter can be asked to reexecute an 

expression while tracing particular components etc). 

Direct interaction between pupil and teacher occurs via the parser (or 

other input software) which directly affects the conversational context 

maintained by the CONVERSATION CONTROLLER. This section has not been 

implemented. 
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Figure.2 - I_ple_entation overview 
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The structure of IMPART which is shown in Figure 2 is suitable for 

tutoring any programming language. To change language it is necessary to 

provide alternative syntactic and semantic descriptions (in a form which will 

be discussed later), and probably some additional topic controllers. All other 

parts of the system operate on the basic semantic description, and hence do not 

need to be changed for languages other than LISP. 

IMPART itself is a particular instantiation of a more general guided 

discovery architecture. This architecture is shown in figure 3. It will be 

observed that it focusses on the internal structure of the tutor. It is 

claimed that this provides a framework within which tutoring systems for a wide 

range of domains can be constructed. There are two key features; one is the 

division into teacher, pupil and environment while the second is the central 

position given to "bounded user modelling" and the model of learning. 

The division into three parts distinguishes the active, changing 

components which constitute the teacher, from the reactive system which the 

pupil Is learning to understand. It is possible to conceive of a degenerate 

case in which no interaction with the environment occurs, but in general a 

pupil should apply things which are learnt in some environment. 

The "bounded user modelling" approach which was described briefly above, 

provides an alternative to expert-based modelling. Its centrality in this 

system implies that the focus of the tutor's activity is concerned with 

building and maintaining a model of the knowledge state of the pupil. An 

adequate modelling .echanism is a prerequisite of any Intelligent Tutoring 

System. All tutoring activities are strongly dependent upon the quality of this 
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modelling component. 

In figure 3 the tutor interacts with the world via "discourse mechanisms" 

and "observational mechanisms". The former deal directly with the pupil, the 

latter with events that occur in the environment. Both these units provide 

information which is acted upon by the "learning model". This "learning model" 

generates sets of hypotheses which become the "bounded user model". 

The "discourse mechanisms", in addition to an internal model of the 

discourse structure which controls the interaction, may be affected by the 

"bounded user model" and the "assessor". The "bounded user model" identifies 

things which may usefully be pursued from the current conversational state (for 

example, if atoms and lists have been talked about. the user model would 

indicate that a discussion of datatypes would be reasonable. but the discourse 

mechanisms alone would not be aware of this). The "assessor" identifies 

differences between the performance of an "expert" in the domain. and a 

"glass-box expert" which attempts to find the consequences which follow from 

the hypotheses which are currently in the "bounded user model". The "glass-box 

expert" is expected to work with techniques which are on the current bounds of 

the pupil's understanding. but is not to be regarded as a model of the 

problem-solving skills of the student; it is an approximation to such a model. 

and should always be treated as an approximation. The "discourse mechanisms" 

may directly invoke the "glass-box expert" to generate and solve problems. 

In an actual implementation it is difficult to separate each of the 

components of the general tutoring system architecture. In IMPART. for 

example. the observational mechanisms include the syntax-directed editor and 

the semantically-driven language interpreter. but these units also play roles 

as part of the environment. and (to some extent) as part of the black-box 

expert. 
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Chapter 3. 

Computers in an educational 

environment. 



The computer is having a major effect upon many aspects of modern life. 

It is a central focus of the technological revolution which we are currently 

facing. 

There seems to be a certain degree of inevitability in the way that computers 

appear in all types of environment, so much so that they are often accepted 

unquestioningly as a sign of progress in a particular area. 

Within the Educational system the problems are particularly apparent. 

Computers seem to be a vital part of every secondary curriculum, primarily in 

terms of "computer awareness" (teaching people what computers can do), but also 

in the role of aids to teaching. These trends are spreading to primary and 

infant schooling. 

There are two extreme positions which educationalists may hold with 

respect to the issue of computers in education. On one side are those who 

advocate wholesale acceptance of this technology while on the other are those 

who simply ignore it in the hope that it will go away. It is remarkable that a 

high percentage of teachers adopt one or the other of these extreme positions, 

rather than possessing opinions which lie between them. Let us examine these 

points more closely. 

The group which advocate acceptance of the computer into all aspects of 

education typically do so without good reason. A computer is considered to be 

appropriate because it is high technology, and therefore progress. In taking 

this attitude we are ignoring a fundamental tenet of any educational system; 

Each new idea should be thoroughly tested and examined, and introduced ONLY if 
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it appropriate to do so. There is no merit in taking drill and practice 

arithmetic from a book and placing it on a computer screen - nothing has been 

added. Computers free machine-based programmed learning from the burden of 

expensive task-specific hardware which was a major obstacle to this movement. 

Unfortunately, this has the effect of eliminating the practical problems of the 

approach without resolving the theoretical ones. 

Another practical difficulty for this approach is that it typically talks 

about the value of computers per se; there is no real appreciation that the 

versatility of the computer is such that assessment should be carried out upon 

each piece of software individually. 

The teachers who reject computers altogether as an educational tool are 

probably taking a sensible decision given the information which is available to 

them. Most teachers have only seen the output of typical commercial software 

houses. 

The problems with these programs are many. A large number of software 

companies with experience in fields other than education produce Educational 

Software. It is only recently that such companies have begun to consult 

educationalists about the design of their programs. Much of the early work 

made use of the primitive facilities which a computer offers (such as 

iteration) to produce very mechanistic software (such as rote learning 

programs) which was economical in machine time, but of dubious educational 

value. These programs often repeated the trends followed by the movement 

towards programmed learning in Education which occured during the 1960's. It 

is small wonder that teachers who see computers in this light dismiss them as 

simply a more technological version of this unsucessful paradigm. A classic 

dismissal of this type is that given by H.Broudy [Broudy 1969]. In this 

paper the author points out that the most important element of a Socratic 

Dialogue was Socrates. If a machine cannot support the level of reasoning 

which Socrates must have used during a discourse then it can only be a shaa, 
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simply giving the impression of a useful dialogue. 

Unfortunately, the recent initiative to put "microcomputers in schools" 

placed the emphasis on providing hardware without considering the problems of 

educating teachers about the potential of these machines. As a result, both 

the views given above have become more entrenched - there are more co.puters 

sitting unused, and more alienated members of the teaching profession than 

there were before. 

There is a need to educate teachers about the facilities which properly 

written software could offer. Until such information is made available it is 

unreasonable to expect teachers to be able to decide about the applicability of 

the computer to various educational tasks. I would propose that there are two 

main themes to discuss; the first is identifying Educational tasks which can be 

usefully tackled by existing technology, and the second is creating an 

awareness of the new potential which Artificial Intelligence based techniques 

could bring to education. 

A major problem with existing Educational software is that it does not 

adapt to the individual user, and as such produces a stereotyped interaction. 

The dangers of non-adaptive systems will be discussed later. For the present, 

we may note that the behaviour of a group of children is much more predictable 

than that of an individual. It would seem reasonable, therefore, to propose 

that current software methods could be justifiably applied to the production of 

programs intended to promote interaction among a group of children. Anyone who 

has watched a group of children interacting with a computer will know how much 

argument can be produced by something as siaple as a hangaan program. The 

ability to communicate ideas to your peers is important. If computers can help 

to achieve this then we have found a role for them which is not adequately 
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covered by any other (currently practicable) method. Within this area. I 

suggest there exist two major applications for the computer. 

The first application is that of a "Quiz-master". By this I mean that the 

computer should present problems to a group of pupils which are intended 

to fire debate among them. These questions would be provided in advance 

by a teacher as they would be for programmed learning software. The 

difference is that the focus is not upon the answers given, but upon the 

discussion which precedes those answers. The computer would not be aware 

of such discussion, or capable of contributing to it. 

The unique facility offered by the computer in this case is the prospect 

of Immediate Feedback on answers (in a way which a book could not 

provide), without inhibiting the discussion in the way that the presence 

of a teacher would. It is important to note that correct use of such 

software is not simply a matter of picking half a dozen pupils at random 

and sitting them in front of the machine. The teacher is required to use 

her judgement to set up groups who are likely to interact well together. 

This highlights a general difficulty with current approaches to using 

computers in education; it is wrong to attempt to use them in isolation 

from other activities - they should be integrated with the curriculum and 

become an extension to the teachers repertoire of tools rather than a 

substitute teacher. 

The second role which I would propose is that of "Computer as Pupil". It 

is acknowledged that attempting to teach something is a powerful aethod 

for clarifying and structuring that information. If pupils habitually 

taught the subject that they are learning it would provide an outlet 

through which to polish communicative skills, while also causing the pupil 

to think about the material in such a way as to bring about deeper 

understanding. There are certain practical difficulties in using this 
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technique in schools. The teacher cannot be a very convincing pupil since 

such a role conflicts with the image of a teacher as a source of 

knowledge. Recent Educational research has examined the provision of this 

facility in the form of peer-group teaching [Furlong 1976] . It is 

certainly the case that children impart information to their peers, but 

the spirit of competition prevents a child's own class from being a good 

audience. Another problem is that with all the children trying to teach 

(often teaching the same thing), there aren't enough pupils to go roundl 

I would suggest that the Computer can alleviate this problem by providing 

a medium through which pupils may teach. It seems unlikely that current 

educational software methods could produce a computer which acts as an 

appropriate pupil since this problem still presents major research 

difficulties, but it may provide an intermediate device allowing pupils to 

prepare educational material. The sort of interaction envisaged here is 

that a group of pupils, having studied a given area, get together to 

jointly produce a simple Computer Aided Instruction package for that area. 

Existing author languages (if made slightly more friendly) are perfectly 

adequate for this sort of work. Whether the end product is ever used is 

irrelevant, since the educational experience occurs for the designers 

during the design process. 

The idea of pupils teaching each other through the computer is distinct 

from the idea of learning by telling the computer what to do (an idea 

associated with LOGO). In this case the pupils are directly concerned with the 

process of ordering and presenting information to their peers. It directly 

fosters the development of communication skills. 
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I propose to divide the potential applications for Artificial Intelligence 

influenced computer use into two categories. The first is to use a computer as 

an aid to thought in the way that Artificial Intelligence research uses it, 

while the second is the application of systems which embody the results of 

Artificial Intelligence research. 

In research, the computer acts as a tool to clarify thought processes. 

Producing a computer program based upon some theory gives a concrete form to 

the abstract theory. The computer provides a simulation environment which may 

represent things that are not directly perceivable in the real world. 

Immediate feedback can be provided on the consistency and consequences of a 

particular theory. 

This view of the computer is at the base of those approaches to computers 

in education which involve providing a programming environment for the pupil. 

LOGO [Papert 1971] and PROLOG [Ennals 1981] have been applied within this 

paradigm. It is important to note that this approach does not centre upon a 

simple relationship between computer and child - the entire environment in 

which the child operates is important. Some attempts to introduce such 

approaches into the classroom have failed because it is not realized that they 

require a large amount of teacher re-education, and a considerable expenditure 

of effort in integrating the computer into the educational environaent. This 

reflects the fact that much early research in this area ignored the large scale 

context of the computer application. 

Having said this, programming based approaches are very successful as aids 

to Artificial Intelligence research, and it is likely that they can be equally 

constructiv~ in other areas (such as teaching mathematics) PROVIDED APPROPRIATE 

ENVIRONMENTS ARE DEVELOPED. 

Artificial Intelligence research involves the production of co.puter based 
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models of behaviours which may be regarded as 'intelligent'. It is clear that 

teaching is such a skill. Research into computer models of teaching involves 

the combination of many aspects of A.I. research in exploring this very complex 

skill. If such research produces powerful models of teaching, then it may be 

possible to apply these models in an Educational setting as teachers. 

With the low cost of computers, computer based teaching systems could be 

provided on an individual basis allowing a level of personalization in 

education which has only previously been available to the few who could afford 

personal tutors. A computer could be the constant companion of an individual. 

never tiring and always focussed upon the needs of that individual. The 

machine could combine the expert knowledge of many humans (as a book might do) 

while retaining an adaptiveness to the individual during educational 

interactions. 

The efficacy of this approach to education is very much dependent on the 

quality of computer-based teaching. While the above system would be of great 

value if computers were as proficient as good human teachers, anything less 

could be extremely dangerous. Even if computers achieved the level of poor 

huaan teachers. the scope for difficulties such as indoctrination of pupils is 

great. 

At present there are no Intelligent Tutoring systems capable of providing 

an adequate practical interaction, even in very restricted domains. I wish to 

propose that this area should provide a central focus for research on computers 

in education. It may lead towards more powerful computer based teachers, and 

in the process will serve to clarify the nature of education at a level which 

may be of practical importance for human teachers. 

It may be noted that the two approaches described above may be combined. 

The pupil may interact with a computer-based environaent, with help provided by 

a computer-based teacher. This may be extremely interesting in that it 
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provides a way to explore those things which the pupil requires over and above 

a powerful mechanism for representing theories. 

Teaching, as was pointed out by Whitehead [Whitehead 1932] , is commonly 

regarded as an art. It seems unusual to talk about the "Science of Education", 

and yet such an important topic must be amenable to scientific techniques. 

There exists a strong field of empirical educational research, but when 

attempts are made to attach this work to some theoretical framework the results 

are often vague and unconvincing. Bennett [Bennett 1976] describes the 

" ... current chaos which is a pretence at research". He points out that 

" ... it must be obvious to the critical reader that what is missing 

from many of the reported studies is the sense of direction and controlled 

orderliness which can only be provided by an adequate theory." 

It is clear from this report that there are difficulties in providing a 

suitable theoretical framework for educational research. It is not possible to 

provide a complete and accurate description of a particular teaching method 

when, as Bennett points out, even the term "teaching method" has not been given 

a stable definition. 

The nature of educational theories is similar to that of psychological 

theories - indeed, Bruner (among others) has proposed the division of 

educational theories into educational philosophy and psychological theories. 

In recent years the development of Artificial Intelligence has introduced the 

computational metaphor to psychology and provided a powerful foraalism for 

expressing psychological theories. This approach has gained a large following, 
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and computer-based ~Cognitjve Science" is becoming a major field. 

Given that this formalism has had such an impact on Psychology, it seems 

likely that a similar benefit to Educational Research may be obtained by the 

introduction of Artificial Intelligence methods. Computer models of the 

processes of teaching and learning, and the interaction between the two, may 

provide the basis for a clearer theoretical framework for research on the , 
nature of education. 

There has been little interaction between Artificial Intelligence and 

Education theory as yet. One eXisting example of such an interdisciplinary 

approach is the work of Collins [Collins 1982] . While developing a cognitive 

model of interactive teaching, Collins applied computational metaphors to 

produce a description of the behaviour of teachers in certain circumstances. 

This information was used as the basis of a computer-based teaching system 

which maintained a Socratic dialogue with a pupil. The information collected 

could alternatively be applied to teacher training - providing a more precise 

definition of Socratic tutoring. The tutoring system based upon this work will 

be further discussed in chapter 5. 

The work reported in this thesis may be regarded as the beginnings of an 

attempt to examine Artificial Intelligence based models of the process of 

education. It seeks to establish a framework within which a variety of models 

of learning and teaching may be compared. 
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This part of the thesis has provided an overview of the thesis itself, and 

of the tutoring system IMPART. A discussion of the role of computers with 

respect to education has suggested their use both as a teaching aid and as a 

aeans for exploring the nature of the educational process in a rigourous 

.anner. Themes which have been introduced here will be discussed in more 

detail in subsequent parts of the thesis. 
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Part 2-

Background to the 

system design. 



Chapter 4. 

Education theory. 



In selecting a particular method of teaching, various decisions must be 

taken about exactly WHAT is being taught and how to teach it. In order to 

clarify the form of these decisions, the second part of this chapter discusses 

the nature of theories of Education and outlines some major components of an 

educational theory suitable for an Intelligent Tutoring system. 

An important factor influencing the choice of theory is the model of 

learning upon which it is based. As Bruner points out [Bruner 1966] ; 

" a theory of instruction ... must be congruent with the theories 

of learning and development to which it subscribes." 

It is remarkable that many Educational Theories do not explicitly state 

the Theory of Learning with which they are associated. No Intelligent Tutoring 

Systems have assigned learning theory a central role in their design. It was 

such a change as this which Goldstein was requesting when he asked for tutoring 

system research to move froll an "expert-oriented paradiga" to a "learner­

oriented paradigRI" [Goldstein 1982] . 

In order to approach this difficulty, the first part of this chapter 

attempts to briefly summarize sOlle theories of learning and outline their 

consequences for Instructional Techniques. The second part discusses the 

nature of educational theories, and the final part outlines the need for a new 

theory of education to relate computer-based learning to other educational 

activi ties. 
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A vital component of any theory of education must be a detailed model of 

the learning process. Unless the mechanisms by which learning occurs can be 

specified, it is not possible to produce a theory which can describe methods 

for controlling these mechanisms to achieve our specified ends. 

It is difficult to define learning. The problem is that the common usage 

of the term covers a multitude of activities which occur in a wide variety of 

situations. Some examples of "learning activities" are; learning to ride a 

bicycle, learning the names of the kings of England, learning to perform 

symbolic integration, and learning to maintain relationships with other people. 

The common features of these tasks are not immediately apparent. 

While there have been many interesting attempts to produce detailed 

theories of learning in recent years [Bower 1981] , there has not been 

sufficient co.mon ground between them to allow the evolution of a single 

unified theory of learning. It has been suggested that this may be due to the 

fact that learning itself is not a unitary phenomenon [Borger 1966] , or it 

may be that there is a highly general learning mechanism which is manifested in 

very different ways in different situations. In either case, a consequence is 

that the few truly general statements which have been made about the nature of 

learning offer little help in modelling specific learning situations. 

In this section we will briefly examine two theories of learning, each of 

which is of limited scope. We will conclude by outlining an approach to 

aodelling learning which is of particular relevance to the tutoring systea 

outlined in part 3 of the thesis. 

1.1.1-Behaviourism. - - - ------

BehaviouriSM has been an important area of learning theory for many years. 
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While most people acknowledge the limitations of behaviourist theories. the 

approach has been very influential in the past. Since so much of the 

literature is written with these overtones it is often difficult to avoid 

slipping into a behaviourist perspective on learning. 

The essence of behaviourism is an emphaSis on the observable. A learning 

system receives certain inputs (Stimuli) and it produces certain outputs 

(Responses). Learning is regarded as the process by which new links are formed 

between stimulus and response. This does not involve considering any internal 

"cognitions" of the learning system. 

Skinner has provided a framework within which behaviourist methodology 

could be applied in the Educational process. This involved methods of dividing 

presentation of material into small units which could be categorized as learnt 

or not. and constructing a sequence of these units. each building on the last. 

leading towards some goal state of the pupil. After each unit. testing may be 

used to decide whether to continue or engage in remedial study. Skinner 

described this "programmed learning" approach as a "technology for learning" 

rather than as an attempt at a theory of education . 

.1.!. ,g-p iY!!t. 

A major difference in the approach to learning associated with Piaget Is 

the idea of the learner as an active agent. The function of intellectual 

behaviour is regarded as adaption to the environaent, and adaptive behaviour is 

regarded as a thing which is pleasurable in itself (there is supporting 

psychological evidence for this view e.g. [Holt 1965). 

Learning is seen as a process which changes the internal state of an 

organism by interaction with the world. Thi. involves building new 

intellectual structures fro. old ones in order to achieve increaSing 
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complexity. Piaget proposes two techniques for modifying these structures; 

1) Assimilation - absorbing new experiences into existing structures. 

2) Accomodation - changing existing structures to deal with new 

situations. 

Clearly, a real learning interaction involves both of these processes. 

Piagetian models of learning have been widely accepted as a practical 

foundation of teaching methods. The exploration of the nature of education 

within this framework has received much study. A major contributor to this 

area is Bruner (e.g. [Bruner 1966] ). An important focus of Piagetian 

approaches to learning is the provision of suitable learning environments to 

sstimulate the pupil. 

I wish to propose the following working definition of learning; 

" Learning is the process by which interaction with the envirollllent 

brings about a (non-transient) change in the state of a syste.. This 

change may result in observable effects on the behaviour of the system. 

but this is not necessarily the case." 

There are several difficulties with this definition. One i8 that the key 

phrase "non-transient" has been left undefined. Another probleM is that this 

description does not allow certain processes which should be categorized as 

learning. A particular example is the insight into a subject which can be 

gained by simply restructuring knowledge internally. This is an instance of 

learning which does not require interaction with an environaent. A further 

difficulty is that this definition peraits negative as well as positive changes 
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in the state of the learner - it allows someone to learn a worse way of doing 

something! 

The type of learning on which this work will focus is Concept Acquisition. 

Within this area there is still a choice between behaviourist and cognitive 

models. The following is a somewhat behaviourist definition of "concept"; 

" A concept is defined as a common response made to a category of 

experiences which have some property in common." [Borger 1966] 

A more cognitive approach will be taken here. A concept will be regarded 

as an intellectual structure which imposes organization upon perceived events. 

These concepts achieve a more concise representation of events by representing 

thea at a level of abstraction which has predictive power. 

Learners will be regarded as active hypothesis-testers who are constantly 

generating hypotheses to explain their observations and testing them against 

the world. There is empirical evidence to support this view. and it has been 

shown that " .. people pursue a definite information-seeking strategy which is 

guided by their current hypotheses." [Cohen 1983] 

There has been considerable work on concept acquisition in the Machine 

Learning literature. It is this area that provides the best-foraalized 

descriptions of concept learning. Some of this work wl11 be discussed in aore 

detail in chapter 11. We conclude this section with a definition of a concept 

taken froll [Church 1963] • which is adequate to describe the tera "concept" as 

it will be used in the remainder of the thesis; 

" Any given syabol can be attached to a set of objects. Por any 

object there exists a rule to decide whether or not it beloncs to that 

set. The decision rule is the concept represented by that naae, and the 

set is the denotation of that naae." 
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Before discussing methods of educating people we must examine the 

difficult question "What constitutes an Educational activity?". The Oxford 

Concise English dictionary defines Education as follows; 

" Bringing up (of the young);systematic instruction;course of 

this ... ; development of character or mental powers;training (of animals)." 

This definition shows the diverse nature of Education. What is the common 

theme of these processes which identifies them as Educational activities? 

Firstly we can see that they all imply the presence of some Agent other than 

the learner who is participating in the educational process. A person 

exploring her environment without assistance is not being "educated" in this 

sense. An Educational activity must certainly have links with learning. It is 

possible for learning to exist without education (as in the case of a young 

child examining its environment), but if learning does not exist then how could 

we define the goals of education? If we allow "learning" in its Ilost general 

sense to be some process of adaption, then we may describe "Education" in 

general as acting on this process to affect the content (what is learnt) and 

the efficiency (how it is learnt). Within this definition, "teaching" aay be 

considered as the activity which an intelligent agent (other than the learner) 

may make towards the achieveaent of soae Educational goals. It is worth noting 

that this requires someone (teacher or pupil) to possess such goals. 

In itself, this link to learning does not greatly reduce the space of 

possible educational activities, for learning, as we have seen in the previous 

section, appears to be a tera covering a multitude of different activities. It 

seems that a description of "education" can provide us with standards which 

aust be met by an educational activity, but cannot otherwise specify what 

constitutes such an activity. Peters [Peters 
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follows; 

" ... education is associated with learning ... But no specific type of 

activity is required. A man can do it himself in solitary confinement, or 

acquire it by constant activity in a small group. He can be trained on 

his own by a tutor or inspired by lectures given to 500. In this respect 

"education" is rather like "reform". It picks out no particular activity 

or process. Rather it lays down criteria to which activities or processes 

must conform." 

In order to specify a particular educational method it is necessary to 

provide a set of rules which describe what should happen in every conceivable 

situation which may arise during an Educational Interaction. It will not 

generally be possible to exhaustively enumerate every situation which may arise 

and specify an appropriate action for it. Instead, an attempt should be made 

to produce an educational theory that provides us with reasons for tutoring in 

a certain way so that it is possible to generate appropriate behaviour in a 

novel situation by referring to this theory. A further purpose of an 

educational theory is to allow comparison of differing methods of education. 

Doyle [Doyle 1973] attempts to produce a more unified method of looking 

at education by providing a "theory schella" with variables which aay be filled 

in to produce the Educational Theory of your choicel This reads; 

" Education is an activity in which X is fostering or seeking to 

foster in Y some disposition D by Ilethod N." 

X and Yare agents of soae kind. If X is oaitted, we have a situation in 

which learning occurs without a teacher, and this can no lonier be properly 

called education (althouih phrases like "lite is ay teacher" aiiht suggest a 

aore liberal interpretation). Y is clearly vital since the only changes which 

occur, occur in Y, and without change we have no process of learning or 
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teaching. 0 is the crucial element because it has a major influence on M, and 

hence on most aspects of a particular theory. Doyle suggests that these 

"dispositions" could be particular states of mind, forms of thought, skills or 

attitudes. D and M together constitute the major components of an educational 

theory. Let us examine these components in more detail. 

A reasonable description of the necessary units of an educational theory 

is given by O'Connor [O'Connor 1956] . He distinguishes three basic 

components; 

1) a set of techniques for imparting knowledge, skills and attitudes. 

2) a set of theories which purport to explain or justify these 

techniques. 

3) a set of values or ideals embodied and expressed in the purposes for 

which knowledge, skills and attitudes are iMparted and so directing the 

amounts and types of training that is given. 

It is commonly suggested that there are two basic techniques which may be 

applied to the validation of educational theories; on the one hand are the 

aethods of philosophy. and on the other are empirical techniques. In the list 

given above, component 3) is essentially a set of ethical and lIoral judgements. 

Such judgements can only be investigated by a philosophical approach. 

Components 1) and 2) however, involve testing hypotheses about aethods for 

achieving given educational ideals and providing scientific theories to explain 

the efficacy of these methods. Probleas of this type are aaenable to eapirical 

study by such disciplines as Psychology. Indeed. Bruner claias that these 

probleas are central to Psychology. since " ... it is psychology aore than any 

other discipline that has the tools for explorin~ the liaits of aan's 

perfectability" [Bruner 1966]. It is not necessarily the case that 

philosophy can aake no contribution to these areas since philosophical aethods 

aay well be appropriate to clarify the arguments: as Peters says [Peters 1973] 
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" We are. I think. only at the beginning of our understanding of what 

is a philosophical point about learning and what is an empirical point." 

Peters examines the role which Educational Philosophy can play in deriving 

teaching methodology. He points out that the nature of philosophy is not such 

that it is ever capable of providing definitive answers to questions such as 

"What should I teach?". He does demonstrate its importance, though, as a tool 

to clarify practical methods and make explicit the assumptions which lie behind 

answers to such questions. Peters is not optimistic about this contribution of 

the discipline reaching practical decision-takers and affecting educational 

policy [Peters 1966] ; 

" ... educators ... formulate principles in ignorance of the detailed 

discussion by philosophers of the fundamental asssumptions presupposed by 

these principles." 

Peters finally proposes a goal of Educational Philosophy as being to; 

" ... indicate the sort of condition under which forms of conception 

could be intelligibly learnt. For with these, as with any other concepts, 

one has to postulate both conditions in which they could be applied and 

soae aids to conceptualization, even if they take the for. of "cognitive 

stimulation" rather than direct teaching. It is an e.pirical question, of 

course to determine the conditions which actually do have a .arked 

influence." [Peters 1966] 

Bruner indicates the coapleaentary nature of these approaches when he 

points out that [Bruner 1966] : 

" ... however able psychologists aay be, it is not their tunction to 

decide upon Educational goals." 
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One point which Bruner makes is that a theory of instruction should be 

PRESCRIPTIVE. In this it deviates greatly from the DESCRIPTIVE nature of 

theories of learning and development. 

Bruner identifies four major features which a prescriptive theory of 

instruction must satisfy; 

1) A theory must specify those experiences which most effectively 

implant a predisposition to learning in the individual. 

2) It should specify the ways in which a body of knowledge should be 

structured so that it can be most readily grasped by the learner. It is 

worth noting that there may be many possible structures for a particular 

body of knowledge and that the most appropriate structure is therefore a 

function both of the subject-matter and of the nature of a particular 

learner. 

Bruner proposes several criteria for assessing a particular structure, 

including power to simplify information, power to generate new 

propositions, and power to increase the manipulability of a body of 

knowledge. This assessment wIll be discussed further below. 

3) The theory should specify effective presentation sequences for the 

material. 

4) It should specify the nature and pacing of rewards and punishaent 

in the process of learning and teaching (Notice that this refers to 

intrinsic as well as extrinsic rewards). 

In what follows we will reduce the idea of an educational theory to two 

components; a statement of a set of educational goals (which correspond to 

educational values to be maintained), and a specification of methods for 

achieving those goals (which includes both a statement of appropriate 
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techniques and theories to support those techniques). The choice of goals lies 

in the domain of educational philosophy, while the methods of attaining these 

goals are open to empirical study. 

In this section an attempt will be made to provide reasons for advocating 

the development of a new theory to deal with Computers within an educational 

system. The section will also highlight some starting points from which such a 

theory could be developed. IMPART attempts to embody the approach to education 

which is described in this section. outlined. 

The computer brings certain unique properties to an educational 

interaction. Various researchers (e.g. [Papert 19801) have identified 

features such as the possibility of providing concrete representations of 

abstract objects, and have proposed applications for the computer as an 

educational tool based upon these features. There has been no attempt to 

relate these applications to the mainstream of educational thought, or to find 

a co •• on framework within which to relate different approaches to computer 

based learning. These tasks would be fulfilled by research on the implications 

of computers for education theory. 

One of the most important of the features offered by computer based 

teaching is the possibility of providing genuine one-to-one tuition (i.e. 

tuition adapted to the individual) for every pupil. It should be apparent that 

making full use of this feature is incompatible with many of the current 

educational theories. Since the time of Quintilian, educationalists have 

concentrated on single teachers dealing with groups of pupils. Many of the 

considerations in this situation are to do with controlling the group and 

producing a level of teaching acceptable to all members. To find discussion of 
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individual tuition it is necessary to return to the work of Rousseau or Plato. 

This concentration on one-to-one education revives many debates which were 

left unresolved when individual tuition became impracticable. In particular, 

computers bring the issue of freedom and constraint to the foreground. The 

power of the machine provides us with the opportunity to move further along 

paths of complete control of the population than has ever been possible 

previously. No existing theory has adequately dealt with these issues. 

I would propose that this indicates the need for developing a radically 

new theory of education. Such a theory should attempt to describe the roles 

which may be fulfilled by a computer in an educational environment, and should 

endeavour to relate the possible activities of the computer to other activities 

in the broader educational setting. It may, for example, be the case that 

computers could be most appropriately applied as tools for imparting topic 

content to the pupil. Students would learn subjects (in the traditional sense) 

by interacting with the machine, which (due to the one-to-one nature of the 

interaction) would be able to support structured informal approaches more 

effectively than a teacher confronted with a whole class. This would free the 

teacher and pupils to spend time away from the computer involved in activites 

which foster personal development, acquisition of social skills etc. 

I wish to suggest that producing a theory capable of handling the special 

requirements of computers may best be tackled by starting from the framework 

outlined by Jean-Jacques Rousseau [Rousseau 1762] The following quote 

describes what Rousseau hoped for from the perfect educational environment. It 

is easy to imagine he is talking of a computer I In fact, be is referring to 

the environment described in "Robinson Crusoe"; 

" Is there no way of correlating so many lessons scattered through so 

many books, no way of focussing them on some common object, easy to see, 

interesting to follow, and stimulating even to a child? Could we but 

discover a state in which all man's needs appear in such a way as to 
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appeal to the child's mind, a state in which the ways of providing for 

these needs are as easily developed, the simple and stirring portrayal of 

this state should form the earliest training of the child's imagination." 

Briefly, Rousseau suggests that a child should have a single tutor who is 

with her from birth. They should engage in all activities together - there 

will not be one set of rules for the teacher and another for the student. The 

teacher may not directly control the pupil, but should manipulate her 

environment to ensure that appropriate learning experiences occur. Each new 

step must be integrated with the pupil's learning up to this point, and no idea 

is accepted unless it is understood and capable of being used. 

The theory he expounds has a number of holes in it, and many of the ideas 

are inadequately worked out, but it is the most recent attempt to provide a 

complete educational theory dealing with all aspects of individual tuition. 

Archer [Archer 1916] offers the following summary of the standard criticisms 

of this theory; 

" The most frequent contemporary criticism to be made of the 

educational system of EMILE was probably that it was impracticable, and in 

many ways the criticism seeMS justified. Not only does the tutor have 

only one pupil ... , but he must devote himself totally - and without 

payment I - to his pupil's education. The child must be kept in near 

isolation from society, and the tutor has to have absolute control over 

his whole environment. Though it is no doubt desirable for the child to 

learn only what he wants to, and then only when his interest has been 

aroused, is it really possible to rouse the ordinary child's interest as 

easily as Rousseau imagines? And however desirable it may be to acquire 

knowledge only by first-hand discovery, is it really feasible that an 

ordinary child would acquire enough in this way for his future needs, 

especially in the modern world?" 
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Many of these issues do not arise when the tutor is not human, but there 

are fundamental flaws in Rousseau's approach to education which require 

detailed study. 

The first is that, while giving the appearance of freedom to the pupil, 

Rousseau actually constrains the educational experience very strongly. This is 

the reason that the tutor requires total control of the environment: nothing 

should happen without the tutors approval, but no overt interference should 

occur. Rousseau describes the task as follows; 

" Young teacher, I am setting before you a difficult task, the 

art of controlling without precepts, and doing everything without doing 

anything at all." 

" Do not undertake to bring up a child if you cannot guide him merely 

by the laws of what can or cannot be. The limits of the possible and the 

impossible are alike unknown to hi., so they can be extended or contracted 

around him at your will." [Rousseau 1762] 

The reason that such strong control is exerted is that Rousseau does not 

believe that his pupil is capable of the self-discipline necessary to follow a 

topic through alone, or of the foresight required to agree to subordinate one's 

own freedom to enhance the learning process. Most of Rousseau's work 

concentrated on an age when he considered a child far too young to understand 

the nature of educational goals. In consequence it is weak on ideas about 

learning as a joint responsibility of pupil and teacher, or about the 

possibility of the child voluntarily waiving her right to freedom in the 

interest of achieving those goals. Bennett [Bennett 1979] highlights this 

(still current) difficulty in the following way: 

" The question of whether pupils have sufficient maturity to choose a 

topic and carry it through lies at the heart of discovery learning 
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approaches." 

Resolving this difficulty requires a better understanding of ways to 

foster self-discipline in a pupil and of circumstances under which individuals 

may reasonably be expected to voluntarily subordinate themselves to another. 

These areas both imply a model of the pupil which gives her more credit as a 

contoller of her own ends than Rousseau was prepared to give. 

, 
Another problematic issue is that Rousseau focusses upon the "natural" 

state of a human as the target to which he is guiding his pupil. This is very 

much Rousseau's own idea of what is "natural". While the state he describes 

can be seen to have many laudable aspects. there is no reasoning provided which 

gives this state any claim to primacy over any other state that could be 

thought uP. and it certainly does not correspond to the "natural" state of 

human beings dissociated from a culture. The idea of being natural as opposed 

to "manufactured" is an enticing one which deserves further examination. An 

interesting perspective on this area appears in [Radcliffe Richards 1980] . 

In the next two sections we will briefly su .. arize some educational goals 

and propose a method of teaching which is compatible with them. 

Ultimately we wish the pupil to operate independently of the teacher. 

When this state is achieved. the only cues available to the student will be 

direct perceptions of the environment. In order to facilitate this the teacher 

must ensure that the student perceives relevant featUres of the environment. 

Purther. the teacher must build upon these perceptions in lUiding the pupil 
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towards higher level concepts as methods of organising the environment. In 

this we are following Bruner [Bruner 1966] 

" Much of perception involves going beyond the information given 

through reliance on a model of the world of events that makes possible 

interpolation, extrapolation and prediction." 

To achieve this, the teacher must avoid overwhelming the pupil with aid, 

and should provide as little assistance as is necessary at a particular time. 

Rousseau suggests; 

" Let there be no question of obedience for him or tyranny for you. 

Supply the strength he lacks just so far as is required for freedom, not 

for power, so that he may receive your services with a sort of shame, and 

look forward to the time when he may dispense with them and may achieve 

the honour of self-help." [Rousseau 1762] 

we also find Bruner advocating such an approach; 

" The tutor must correct the learner in a fashion that eventually 

makes it possible for the learner to take over the corrective function 

himself." [Bruner 1966] 

In particular. attempting to produce autonomous Artificial Intelligence 

prograaaers requires that we ensure our pupils are capable of dealing with a 

"typical" programming enviroDJIent by the time their interaction with the system 

is finished. To achieve this end things are organised so that the pupil is 

always interacting with such an environment. In the early stages a teacher 

euides this interaction, but as the pupil develops the teacher wIll gradually 

withdraw, providing a smooth transition into the real world. 

In order to maintain the consistency of the system which the pupil is 

trying to model. it is vitally important to foster a strong distinction between 
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the teacher (whose nature is changing) and the programming environment (whose 

nature is fixed). The pupil is only expected to produce a powerful model of 

the latter. The teacher must encourage the pupil to interact directly with the 

environment to gain practical experience of the language being learnt. This 

also extends to leaving the pupil alone to tackle problems which are within her 

capabilities, using only the "built-in" feedback. Such problem-solving will 

aid the development of debugging skills. 

In this context the term "freedom" is used to represent an issue distinct 

from that of autonomy. It is being used in the sense in which it is used in 

"free learning"; that is, to identify the issue of control within the 

Educational interaction. It is apparent that complete freedom is not 

necessarily good (e.g. we don't want our young children to be free to get run 

over), but in the restricted case where freedom implies a choice among "good" 

things, " ... the enlargement of people's freedom tends to promote their interest 

because it provides more opportunities for the discovery of what is good" 

[Peters 1966] . We may now see the issue of freedom as one of only imposing 

restrictions on an individual if we can justify the imposition of those 

restrictions. The problem in an educational setting may be suamarized as 

follows; "What constraints can justifiably be placed upon a learner during an 

Educational interaction?" 

Two types of constraint must be distinguished. The first (type 1) is a 

limit on the ability of an individual with respect to the environaent in which 

she finds herself. If a hUman flaps her aras up and down she will not be able 

to fly. Whether we can say that she is not "free" to fly .ay require further 

debate, but it is certainly apparent that the possible set ot activities which 

she can carry out is constrained in this respect. 
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A second form of constraint (type 2) is that which is imposed by one agent 

upon another. If I wish to apply a bulldozer to 10 Downing Street I would meet 

a constraint (a policeman) which prevented me. This constraint exists because 

someone (probably the Prime Minister) does not want 10 Downing Street 

flattened. There is no intrinsic limit of nature which prevents me following 

this course of action. 

In an educational interaction the distinction between these types of 

constraint is not so clear-cut. In the first case above the human cannot fly 

because of the restrictions of the "natural" world. An Educational environment 

is an "unnatural" world, and as such, while some constraints may appear to the 

pupil as limits of his environment, those limits were actually imposed by the 

designer of this artificial environment and are hence constraints of the second 

type. 

Consider the example of teaching students to program using a syntax­

directed editor. I (the teacher) have imposed this environment upon them 

because I consider the behaviour of syntactically incorrect programs to be 

irrelevant to teaching programming: in this sense it is a type 2 constraint 

(imposed by an agent). The pupils, on the other hand, will never see a 

syntactically incorrect program: such things do not exist in this environment, 

so this may be perceived as a constraint of the first type. 

The issue becomes more complicated if we eXBaine the relationship between 

the constraints imposed upon the pupil and the desires ot the pupil. It the 

pupil is prevented froa doing soaething which she will never want to do, then 

she will never meet the constraint and will be unaware ot its existence. Is 

this a constraint any longer? I would suggest not. Froa this it tollow8 that 

a teacher who guides her pupil so that the pupil only desires those things 

which are available to her is not constraining her in the SBae sense. Of 

course, since it is rarely possible to be oertain that an individual would not 

hit the constraint if left to her own devices we aust acknowledge the existence 
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of some form of concealed constraint. 

For Rousseau, the issue of freedom and control was the centre-point of his 

educational theory. It provides a source of hypotheses to which we will return 

later [Rousseau 1762] 

" The man is truly free who desires what he is able to perform, and 

does what he desires. This is my fundamental maxim. Apply it to 

childhood, and all the rules of education spring from it." 

There is an imbalance between the free approach and the constrained 

approach to learning. If a pupil is free, then they are free to choose a more 

constrained learning style, whereas if the teacher always constrains the pupil 

there will be no scope for the pupil to move towards a less constrained 

approach. For this reason I claim that every teaching system should begin from 

a free learning perspective, and should be prepared to move to a more 

structured approach (it should also be capable of such a move). 

Linked to discussions of autonomy and freedom we find the idea of 

individuality. Should we try and enforce some uniform approach to problea. of 

a particular kind. or should we allow the idiosyncracies of the individual to 

develop, possibly even at the expense of efficiency? Rousseau gives primacy to 

the desires and beliefs of his pupil, and by linking new teaching to old 

experiences and discoveries produces a course of learning derived froa the 

nature of his pupil. This is not "freedoa" in the traditional sense. but the 

respect which it embodies for the desires of the pupil ensure a large coaponent 

of freedom. Another advantage of this approach is that it builds upon the 

things which the pupil Is most aotivated to learn about. resulting in a more 

efficient interaction (see below). Claias aay also be aade that this i .. ediate 
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linking to personal experience increases the meaningfulness and memorability of 

the educational material. To quote Rousseau [Rousseau 1762] ; 

" The teacher's art consists in this: To turn the child's attention 

from trivial details and to guide his thoughts continually towards 

relations of importance which he will one day need to know, that he may 

judge rightly of good and evil in human society. The teacher must be able 

to adapt the conversation with which he amuses his pupil to the turn 

already given to his mind. A problem which another child would never heed 

will torment Emile for half a year." 

Our choice is between encouraging the idiosyncratic programming behaviour 

of individuals, or teaching a uniform style to all our pupils. If the system 

was aimed at producing commercial software writers then we would choose the 

latter course. By ensuring a uniform style across our pupils we could produce 

software which is easy to maintain and debug (without reference to the original 

author). 

In fact, the system is aimed specifically at postgraduate students 

learning Artificial Intelligence. In consequence we wish the pupils to develop 

a clear understanding of WHY certain language constructs behave in certain ways 

- using them without understanding is not adequate. To achieve this our system 

will permit a pupil to examine any area of LISP, the only restriction being 

that the pupil should understand fully that subset of LISP which they use. 

This approach affects the way in which we assess the progress of a 

particular pupil. Part of that assessment depends on the delree to which the 

student has attained the domain-specific loals of the curriculua (e.g. knowing 

what a variable is), but a major consideration must be the level of 

understanding which the pupil has reached within that part of the domain which 

she has examined. 
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If our pupil is merely taught to accept what the teacher offers, since the 

teacher is of special status and must therefore be right at all times, we have 

introduced two difficulties. On the one hand we have a stopping point in the 

process of understanding. It will be acceptable to say "X is true because the 

teacher said so", without looking for any further reasons. If our pupil once 

searches beyond what the teacher says, then this can no longer be used as a 

limit of understanding if we are to be consistent. The pupil must continue 

searching for reasons until she reaches some other form of limit (such as a 

relationship in the world). This searching beyond what the teacher gives is in 

some sense questioning the teacher's authority. The pupil will only accept the 

teacher's statements if they can be justified. Peters summarizes this point in 

the following way [Peters 1966] 

" Teaching involves further that, if we try to get the student to 

believe that such and such is the case, we try also to get hi. to grasp it 

for reasons that, within the limits of his capacity to grasp, are our 

reasons. Teaching, in this way. requires us to reveal our reasons to the 

student and, by so doing, to submit them to his evaluation and criticism." 

Rousseau takes this point and sees it as i.plying that "authority by 

status" must be completely eliminated, and replaced by reason [Rousseau 1762] 

"Let him not be taught science, let him discover it. If ever you 

substitute authority for reason, he will cease to rea80n; he will be a 

mere plaything of other people's thoughts." 

Our system will never aake use of intrinsic authority. It has often been 

pointed out that any computer appearing to perform 80me mildly intelligent task 
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is invested with a great deal of authority by a novice user. It is common to 

assume that" I am wrong because the machine doesn't make mistakes, so it must 

be right". It may be the case that the computer tutor must actively discourage 

such a perception of itself. I am not suggesting that the machine should make 

mistakes, but it should certainly leave room for uncertainty in its statements. 

Any statement which the system makes to the pupil should also be 

justifiable to the pupil in terms which she can understand. 

The problem of pansophic teaching was dealt with in detail by Comenius 

[Rusk 1967]. It is essentially a question about the general form of the 

content of an education. The contrast which Comenius drew was between pouring 

facts into an individual or attempting to instil a level of understanding such 

that facts could be discovered with ease. The former method provides expert 

knowledge in a particular area, while the latter encourages the development of 

general techniques which will contribute to many areas of the pupils' 

education. Comenius summarizes the difference thus; 

" Encyclopaedic teaching is neither practicable nor desirable; 

pansophic teaching is both. The one aims at making the learner an 

inexhaustible mine of information on every subject, the other would make 

him capable of wisdom in his regard for any subject and able to see any 

subject in relation to others and to general principles." 

The emphasis of IMPART is on developing general skills of programming 

rather than memorizing particular details. At all times the tutor must try to 

fit experiences of the pupil into a broader context. The system should 

encourage the pupil to develop the skills necessary to think about problems at 

this more abstract level. 
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It is important to maintain the interest of the pupil in what is being 

learnt and to focus her attention on the matter in hand. Unless the pupil 

desires to learn, the task of education will be hopeless. This was pOinted out 

by Locke [Locke 1706] ; 

"The greatest skill of the teacher is to get and keep the attention of his 

scholar; while he has that, he is sure to advance as fast as the learner's 

abilities will carry him." 

Bruner recognises the importance of this issue and points out that curiosity 

alone is not sufficient since " ... unbridled curiosity is little more than 

unlimited distractability". For this reason the curiosity needs to be 

constrained into certain channels without losing the " ... energising lure of 

uncertainty made personal by one's efforts to control it". The desire for 

competence may meet difficulties if the pupil does not know exactly what is a 

reasonable goal to try and achieve. The tutor should foster a sense of 

accomplishment by identifying such goals. Preferably there should be well­

defined tasks with a clear beginning and end, so that the feeling of "closure" 

when a task is complete may be invoked. 

It seems self-evident that intrinsic motivations are preferable to 

extrinsic ones, since the latter will cease to exist when the teacher leaves or 

is no longer at a higher level of competence than the student. However, the 

pupil learning about a new domain has difficulty equating the desire to learn 

with goals within that domain. The tutor should provide extrinsic motivations 

while introducing the pupil to appropriate foras of goal within that doaain. 

The pupil should gradually move towards the intrinsic aotivations. 

It is hoped that our pupils will be highly aotivated to learn Lisp before 

they start using the tutoring system. However, as was discovered in earlier 
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research [Elsom-Cook 83] this is not sufficient to carry them through the 

transition period when they are still unsure of the nature of reasonable Lisp 

goals . 

To provide assistance during this period, the system should have some 

strategies for generating extrinsic motivations. The tutor must remove these 

motivations as the intrinsic motivations of using Lisp gain in strength. It 

seems necessary to provide some way of monitoring the usefulness of these 

techniques, otherwise the tutor will have no infor.ation available on which 

decisions about withdrawing the extrinsic aotivation can be made. 

DOmaIn knowl~ 

Teaching methods 
ExlsUog knowl~ 

Leamtog methods 

Figure 4 - Location of teaching knowledge. 

In this section a particular teaching method will be outlined. Its 

consequences have not been fully explored, and the teaching method itself is 

not yet fully specified, but the tutoring syste. described in the second part 

of this thesis endeavours to use a style which is co.patible with the .ethod 

outlined here. 

Consider a teacher and pupil engaged in an educational interaction. The 

teacher has knowledge of the do.ain to be taught, which she is able to apply in 

that do.ain. She also has knowledge of possible teaching methods and co .. on 
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pupil errors based upon past teaching experience. The pupil has certain 

existing knowledge structures to which new information will be related. and 

some preferred methods for learning. 

These types of knowledge must be combined to produce an interaction in 

which the pupil gains well-integrated knowledge structures which can be applied 

to the domain. These will not necessarily be the same as structures in the 

teacher; partly because the teacher must bind thea to different pre-existing 

knowledge. but also because the pupil may be better infor.ed than the teacher 

in some aspects of the domain. A good teacher should help the pupil develop a 

aodel of the domain which is at least as powerful as her own. 

The simplest approach to teaching which could be taken is for the teacher 

to externalize her representation of the doaain as it stands. This leaves the 

pupil to impose some suitable order for learning, and to carry out the task of 

integrating this material. 

It would be more helpful if the teacher could undertake part of this 

structuring task. The difficulty is that to structure the interaction well 

involves information about the doaain (which is possessed by the teacher) and 

inforaation about the internal state of the pupil (which is possessed by the 

pupil). Developing the best structure requires another level ot interaction 

between teacher and pupil - essentially a negotiation about the educational 

style and content. 

The teaching method which I would propose is as follows; 

The pupil interacts with an environaent in which events related to the 

material to be learnt can occur. The pupil should be .ade aware of the 

sorts of assistance which the teacher can offer. The pupil uses the 

events which occur in the environ.ent to learn about the environaent. At 
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any time the pupil may turn to the teacher and request assistance. 

The teacher observes the pupil and attempts to model the preferred 

learning styles of the pupil and the current state of the pupils 

knowledge. This information is combined with knowledge about the nature 

of the domain to enable the teacher to look ahead and attempt to predict 

what situations will arise in the (near) future. If the teacher predicts 

a situation arising in which the pupil will get "bogged down" in the 

learning process ( examples of this would be exploring a blind alley, or 

consistently missing an important piece of information), then the teacher 

should intervene to guide the pupil away from this. If the teacher 

predicts situations in which the pupil is close to acquiring a new piece 

of knowledge about the domain, but not quite close enough to reach it 

alone, then the teacher should consider intervening to push the pupil 

towards that knowledge (there is a complex process of evaluation involved 

here). If the pupil appears to be losing interest in what is occuring, or 

experiencing a long period of unsucessful interaction, then the teacher 

should increase the pupils motivation - either by presenting an extrinsic 

reward or guiding the pupil to an activity with an attainable intrinsic 

reward. In other instances the teacher should do nothing unless 

explicitly requested to act by the pupil. Such a request indicates that 

the teacher has in SOMe sense Modelled the state of the pupil incorrectly, 

since no question should be unanticipated. Consequently, direct action 

from the pupil indicates that modifications to the internal Model should 

be made. 
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Chapter 5. 

Intelligent tutoring 

systems. 



This section is essentially a description of several major systems which 

have been designed to approach the problem of computer use in education. The 

systems have been selected to provide examples of a wide range of perspectives 

on this area. The following section discussses some themes which link these 

systems together. 

SCHOLAR [Carbonell 1970] is a system which teaches facts about South 

American geography using a mixed-initiative dialogue. Domain knowledge is 

represented as a semantic net which links a fact to those around it with tags 

about relevance and appropriate timing for its presentation in a dialogue. 

Before designing this system, a study was made of the strategies used by 

teachers operating in a similar domain. 

WHY [Stevens 1982] attempts to tutor knowledge about the causes of 

rainfall. It is provided with information about temporal and causal links 

between the facts which is used to generate some short-term structure in the 

interaction. 

Collins claims that detailed do.ain-specific knowledge is "overwhelmingly 

central" to a teaching interaction. He says " The nature of the stored 

knowledge determines not only the content of a tutorial interaction, but also 

the goal structure that governs the tutor's selection of examples, questions 

and statements at different points in the dialogue, the types of misconceptions 

that students have and the way that tutors diagnose and correct these 

Mark E-C 27 - 2 - 85 Pale 79 



aisconceptions based on student errors." 

The system actually engages in a Socratic interaction, since it is claimed 

that this form of teaching is well suited to tutoring causal links between 

items. It has a set of 24 empirically determined tutoring heuristics which 

enable it to decide how to respond when it detects certain forms of error in a 

statement made by the pupil. These errors are in turn assigned to one of four 

categories. Having decided which errors need correcting, the system uses some 

ordering rules to decide upon a temporal sequence for tutoring them, and then 

generates its output. 

Collins points out that the major practical difficulty with WHY is that it 

often detects and corrects the surface manifestation of an error, but does not 

detect the underlying cause. 

The discourse mechanisms of WHY will be further discussed in chapter 12. 

The Rather Intelligent Little Lisper (TRILL) is a systea designed to 

cenerate a didactic dialogue about basic functions and data structures in Lisp. 

It automatically generates sequences of examples, questions and explanatory 

text in an attempt to locate and correct errors in the student's knowledge 

about the language. A Socratic tutoring strategy is used, and the systea 

progresses from correcting specific instances of error to revising general 

rules if the former technique does not work. 

Knowledge about Lisp is stored as a seaantic net whose nodes correspond to 

statements in Lisp and to concepts such as Punction,Areuaent or data structure. 

These nodes are linked by relations such as Causal Property. An interaction 

corresponds to aoving along a path throuch this net, presentinc any canned 
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Questions which are encountered en route. Properties can be inferred from the 

superset to which items belong. For example; 

Selector 

CDR 

Remove first element 

Identify first element 

could be used to solve a problem of extracting an element from a list by 

first generating an interaction about selector functions in general and then 

CDR in particular. If the action of CDR is not clear, the system may revert to 

testing whether the pupil can identify S-expressions within a list. The net is 

described as " a formalization of intuitions on the mistakes students make and 

on the procedures for diagnosing and correcting the misconceptions underlying 

these mistakes." [Cerri 1983] 

The student model of the system consists of tags attached to items in the 

net. The system presents Questions to test whether the student has a correct 

grasp of a piece of knowledge, and will tag text which it has presented, 

questions which have been correctly answered and practical knowledge which has 

been verified accordingly. 

WEST is designed to coach a player using a simple lIue called "How the 

west was won" (a more complicated version of snakes and ladders). The lIame 

involves use of basic mathematical skills together with some strategy 

particular to this game environment. The goal of the system is to develop the 

pupil's ability in these areas without detracting from the enjoyment of the 
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galle. 

The environment is one in which direct teaching strategies (such as 

Socratic tutoring) are inapplicable. WEST tackles the problem from the 

perspective of guided discovery learning. This involves providing a "learning 

environment" which is augmented by a system to provide tutorial guidance for 

errors whose symptoms are beyond the student's ability to recognise or correct. 

The idea of a bug or misconception is central to this approach. A 

"constructive" bug is a difficulty which the student is able to learn from 

during the process of correcting it. The environment should encourage 

constructive bugs and discourage non-constructive ones, but since there will 

necessarily be non-constructive bugs, the teacher must have a goal of turning 

such bugs into constructive ones. Examples of non-constructive bugs are 

problems which can only be solved by techniques that are a long way beyond the 

current skill level of the pupil, or bugs which are not perceived. 

It is not claimed that Guided discovery learning is the only way to learn, 

but that it is a technique worthy of further investigation. It is pointed out 

that "Many human tutors interrupt far too often, generally through lack of time 

or patience." [Burton 1982] 

WEST has a aodel of an expert player which generates optiaal .oves in each 

galle situation. The system assesses a player's aove by coaparing the outcome 

of that aove with the outcoae of the optiaal one. If the aove i8 sub-optiaal, 

the system atteapts to resolve both aoves into a sequence of underlying steps 

and identify any discrepancies in the skills or concepts which are used. If 

the systea identifies a discrepancy and decides to tutor it, then a talker 

associated with this issue is activated. 

ISSUES represent the basic doaain knowledge in the systea. Each issue 

represents soae skill which the system monitors. It has a weighting which is 

derived from the aaount of ev1dence which the systea has collected for the 
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existence of that skill. An ISSUE embodies some of the glass-box model of 

problem solving in the domain. It is able to recognise an application of 

itself in a problem solution, and has some canned text associated with it to 

enable it to talk about itself. 

Brown points out that it is not necessary for a system to provide a 

problem solver which actually solves problems in the same way as a human (a 

glass box expert). So long as some problem solver exists (a black box expert), 

all that is necessary is to provide the facility for generating glass-box 

reasoning for a given problem solution. This permits some contribution to be 

aade by a tutor in domains in which glass-box knowledge is incomplete. 

The problem of assessing the pupil is difficult in a gaming environment, 

since diagnostic techniques must not interfere with the game. WEST builds its 

student model by observation of the actions which the student uses. There are 

several problems with this, for example; "With the expert it is not possible to 

determine whether the student is weak in some skill. or whether the skill has 

not been used because the need for it has arisen infrequently in the students 

experience." Several problems arise with WEST because it has not tackled the 

way in which the student model must change with time. A skill which the 

student has just met for the first tiae will appear the same as a skill which 

the. student has known for a long tiae. but is weak in using. 

Burton identifies three major sources of noise in the systea. One is that 

blame is uniformly aSSigned to all issues involved in a bad problea solution. 

so it is difficult to uniquely identify a problea area. A second problem is 

that the reasoning generated by the differential model is not necessarily that 

of the pupil. and the inconsistencies aay confuse the aodelling system into 

tutoring the wrong issue. A third cause of noise is that there is no aodel of 

deterioration of the student's performance due to fatigue or boredoa. 
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Like WEST, this system is designed to coach a player in a game 

environment. In this case, the game is Wumpus which is an exploration game that 

exercises logical skills associated with making inferences from evidence 

presented in order to choose a move. The game is simple, and a complete model 

of all possible strategies in this closed environment can be easily generated. 

The basic model of the domain knowledge is a complete enumeration of rules 

which can be used and the rule-variants which represent bugs but may be used by 

a learner. Goldstein is opposed to systems which simply model a learner as a 

subset of these rules. Instead, WUSOR attempts to capture some information 

about the relationships between rules and the ways in which they are learnt. 

The rules are structured by linking them with one of five relations; 

GENERALISATION- R' is a generalisation of R if R' is obtained from R by 

quantifying over some constant. 

SPECIALISATION is the inverse of generalisation. 

ANALOGY- R' is analogous to R if there exists a aapping from the 

constants of R to the constants of R' . 

DEVIATION - R' is a deviation of R if R' has the same purpose as R but 

fails to fulfill it in some circumstances. 

CORRECTION is the inverse of deviation. 

Note that the last two links will necessarily lead to buggy rules. This 

structure of interlinked rules is called a Genetic graph. 

Learning is viewed as the process of creating new rules froa those already 

existing by following these links. The student .odel consists of tars showing 
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which rules have been learnt and which links have been followed. The system 

can then produce teaching statements designed to take students to a nearby rule 

via a type of link which they like using. 

The structure of the graph provides a possible mechanism for recognising 

unintentional actions by the student(slips). A slip may produce a result which 

is accidentally worse than expected, or accidentally better than expected. In 

either case, it must correspond to an item in the Genetic Graph which is 

distant from the current boundaries of the pupil's skill level. 

BUGGY is not strictly an intelligent TEACHING system, since it's purpose 

is to serve as a tool for diagnosing difficulties rather than remediation. It 

has been applied to tutoring in the system DEBUGGY which was used to help 

teachers learn to identify the bugs of pupils. 

The domain in which BUGGY operates is that of high school subtraction 

problems. The reason for choosing this domain is that subtraction " ... is a 

virtually meaningless procedure. Most elementary school students have only a 

dim conception of the underlying semantics of subtraction ... This 

isolation ... allows me to study a skill formally without bringing in a worlds 

worth of associations." [VanLehn 1981] . Prior to the BUGGY system, some 

educational researchers had done work on analysis of the bugs underlying 

children'S arithmetic errors, and books to tutor teachers in detecting bugs in 

such skills had been produced [Ashlock 1976] . 

BUGGY operates by attempting to build a model of the pupil which 

accurately predicts her response to test problems with reference to the 

features of those problems. The system does this by selecting rules for 

solving problems from a collection of correct and "buggy" rules which it knows 
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about. It varies the choice of rules to provide the closest possible fit to 

the results which a student achieved on a pencil and paper test. Data from 

BUGGY has enabled the detection of over 300 types of bug which have been used 

to augment the rule-base. IDEBUGGY differs from the basic system in that it 

interactively presents subtraction problems to the pupil, so it is able to 

specify problems which are rich in the bugs which it believes are present, thus 

enabling it to verify its hypotheses more quickly and accurately. 

The simple model of bugs does not explain all the observed errors. It was 

found to be necessary to postulate two extensions to the theory. One is the 

slip, which is a surface error which does not appear to be a manifestation of 

SOMe underlying problem. BUGGY identifies these by assuaing that they have 

virtually no temporal stability. The second extension is the concept of a 

repair. 

The assumption of repair theory is that when a person comes up against a 

difficulty in solving a problem, they are unlikely to give up. Rather, they 

will attempt to use the knowledge that they have to find a way to circumvent 

the difficulty. These heuristics for patching up an error are known as 

REPAIRS. Repair theory states that a surface manifestation of an error is due 

to the attempts of a problem solver to repair a problem which has arisen due to 

one (or more) bugs in their knowledge. The following example illustrates this 

for a simple subtraction problem; 

23 -

19 

16 

23 -

19 

10 

Both the above problems are manifestations of the SAME bug - a miSSing 

rule about borrowing when the top digit is smaller than the bottom one. The 

answers differ because a different repair has been applied In each case. In 

the first sum, the reasoning would be something like "3-9 can't be done, so do 
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9-3=6", while in the second case it would be "3-9 can't be done, but 9 is 

bigger than 3 so it must be 0". 

Empirical results show that while a bug/slip model explains about 60% of 

children's' subtraction errors, adding repairs allows the model to explain 

almost 75% of errors [VanLehn 1981] . Most of the errors which are not 

resolved seem to involve temporal instability of bugs. An attempt to deal with 

this by permitting TINKERING (using different repairs for the same bug during a 

test) and BUG MIGRATION (changing the repair used on a bug between tests) has 

been made, but no good model of the stability of bugs exists. 

!.§-Guidon. 

GUIDON is a teaching system which was designed to operate over a knowledge 

base already set up for the expert system MYCIN. MYCIN attempts to diagnose 

bacterial infections by reasoning from information about the symptoms of a 

patient. 

patient. 

It can ask clarifying questions and suggest methods for examining the 

The MYCIN system has a rule base containing approximately 450 rules, 

of which about 20% are typically involved in the solution of a given problem. 

The problem domain is one in which the heuristics for diagnosis which the 

student is being taught are not derivable from a simple model of the problem. 

This lack of causal linking between rules simplifies the task of tutoring. 

Some abstractions such as rule-groups are discussed which attempt to capture 

some hierarchical structuring of the rules (presumably reflecting the 

structuring in an expert problem solver), but since such information is not 

currently present in the MYCIN database a closer approach to modelling the 

organization of the experts knowledge involves rewriting all the rules. 

GUIDON teaches by presenting the pupil with a case history of a patient 

and allowing her to ask questions and to state hypotheses about the case. The 
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system compares the questions and deductions with those made by MYCIN and 

tutors on the basis of these differences, hence it is a form of differential 

modelling. 

The major difference between this and other tutoring systems is that 

GUIDON concentrates on generating a structured interaction. The dialogue is 

aixed initiative, and goal directed. The "knowledge of communication" within 

the system includes a model of the students knowledge, a list of the tutors 

intentions and a list of the student's intentions. This knowledge is 

represented as a subset model of the student together with a "focus record" and 

a "case syllabus". The focus record keeps track of factors in which the 

student has recently shown interest. The case syllabus is a list of those 

topics which are vital to the current problem. This could theoretically be 

generated automatically from MYCIN'S solution, but is actually produced by hand 

before a session. The actual course of topics discussed is determined by 

combining these three items with a general weighting for iaportance assigned to 

each topic. 

The discourse mechanisms of Guidon will be furthet discussed in chapter 

12. 

1.7.1-Tbe basic environment. - - - -- --- ------

The Logo system produced at MIT is a prograaaing language environaent 

designed to be used as a teaching aid for children. The general spirit is to 

encourage exploration of some command subsets (MICROWORLDS). The best known 

microworlds are a world of "turtles" which allow study of various geometric 

systems [Abelson 1980] and microworlds for learning about music [Bamberger 

1976]. LOGO is in use at many centres throughout the world. with varying 
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degrees of faithfulness to the original conception upon which it was based. 

The educational philosophy which is implicit in the original statements of 

the LOGO approach has much in common with the child-centred education movement. 

The impression given by much of the literature is that it is only necessary to 

sit a child in front of a LOGO computer and the child will guide her own 

learning experiences. A teacher is expected to be accessible, although her 

role should be more like that of a companion in exploration. Papert offers the 

following overview of this role; 

" The LOGO teacher will answer questions, provide help if asked, and 

sometimes sit down next to a student and say 'Let me show you something'". 

[Papert 1980] 

No further details of the teacher's goals are given. 

Papert claims that the procedural nature ot LOGO makes the learning 

process easier since we are used to interacting with the real world, and hence 

procedural knowledge is a major part of our everyday activities. LOGO is seen 

as a tool to give the child greater access to her own thought processes. It 

encourages the student to think about thinking by providing a concrete external 

form for her beliefs in the shape of a program. In the course of developing 

and debugging a program, Papert claims that the pupil will develop and debug 

her own beliefs. This is not dissimilar to the role of a coaputer in 

Artificial Intelligence research. 

In practice, most LOGO centres structure the experience which the child 

will have by setting problems, providing worksheets etc. [Howe 1982] . The 

aost successful interactions are those in which one adult and one child operate 

a computer together. Caution should be exercised in deciding bow .uch of this 

learning can be attributed to the LOGO environment, and bow aucb is due to 

individual tuition. As an example, let us consider a case study of LOGO use at 

MIT. The LOGO laboratories at MIT bave aaintained a strong allegiance to the 
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principle of learning experiences driven by the pupil. However, we find that 

the only case study available from MIT [Solomon 1976] describes a lesson very 

much at odds with this approach. 

The study deals with a child who is having a 40 minute session with a LOGO 

system, after spending 4 months using LOGO then 6 months without it. During 

the whole session the child receives one-to-one tuition from Cynthia Solomon 

and in addition Seymour Papert is in the background, though he only intervenes 

at one point. Various points in the interaction can be identified at which 

there is scope for the child to take the initiative. In fact the child never 

does. and every idea originates from Cynthia Solomon. Solomon states "From the 

sessions with Lin. another first grader I had worked with quite extensively. I 

developed techniques and aids which have helped older children get into turtle 

work. and subprocedurisation. debugging, anthropomorphising." Solomon appears 

to have a large number of projects and materials prepared in advance of a 

session. She says " ... 1 was always ready to intervene in case the situation 

became unresolvable ... " This intervention is often of a minimal form such as 

si.ply reading out things which the child has already written down. 

Spade provides a heavily structured programming environment within the 

LOGO system. It is intended to teach students to plan a pro~ram by writin~ a 

detailed speCification. This specification is in a langua~e devised tor the 

automatic turtle-program debugger MYCROFT [Goldstein 1980] . 

The system represents the planning process as a sequence of steps chosen 

fro. categories such as DECOMPOSE_PROBLEM or REPEAT. This is represented as a 

context-free grammar, and deriving a valid plan constitutes making a set of 

choices fro. this grammar. It is claimed that this automatically leads to a 

taxonomy of bugs in the system. For example, a syntax bug violates the 
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grammar, a semantic bug omits a constraint of the problem (e.g. includes an 

unnecessary optional component of the grammar), a slip is anything which does 

not reflect a conceptual error in the plan etc. 

The system operates by prompting the student to perform a particular type 

of planning at each node in the tree; 

"At each step SPADE-O chooses an appropriate next step to pursue;but 

there is no requirement to accept its choice ... Although the system always 

encourages obeying the model, features are provided to allow violating 

it." 

This choice of an appropriate next step corresponds to a model of the 

"ideal" student. SPADE does not attempt any modelling of individual users, but 

regards pupils as variations on the ideal model. 

The system has several "modes" which correspond to different stages of the 

process of generating a program. Refinement mode allows development of the 

plan. There are also modes to tryout a program, locate a known bug and repair 

it by editing plan or LOGO code. The system switches between these 

automatically at appropriate points in the interaction. 

In order to design an Artificial Intelligence based system for tutoring it 

is important to consider earlier systems which have been produced to perform 

similar tasks. This section attempts to identify some themes which should be 

considered when attempting to make an evaluation of Intelli~ent Teaching 

Systems. It is hoped that these themes are sufficient to provide a framework 

within which comparative examination of teaching systems may take place. Some 

new terminology Is introduced. Throughout this section two questions should be 

borne in mind. The first Is "What requirements MUST a teaching system 

satisfy?" and the second is "What can a computer bring to the task of teaching 
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other than the facilities provided by a human?". 

In the sense that a human teacher can be described as applying a 

particular philosophy of education, it should be possible to identify the 

philosophy of any given tutoring system. Selecting such a philosophy should be 

one of the design decisions taken in developing the system. Since these 

teaching systems operate in a one-to-one environment which is unusual for human 

teachers, it does not i.Mediately follow that a system has an adequate 

philosophy if it embodies that of its designer. In practice, most systems 

teach froM a set of adhoc rules generated by a single individual. A goal of 

tutoring system design must be to explicitly e.body the educational philosophy 

within the syste. so that it may be changed. A reasonable intermediate stage 

is to specify the philosophy on paper in advance and build the systeM in 

accordance with that philosophy. 

The most coaaon philosophy applied by existing systems is that of Socratic 

tutoring. There are practical reasons for this. In the Socratic method the 

teacher is very much in control of the interaction; the options open to the 

pupil at any given point are restricted. This makes the task of understanding 

the students actions much simpler. SCHOLAR, WHY, TRILL and GUIDON are all 

examples of this approach. 

Another possible philosophy is that of Discovery learnini. In the 

ulU.ate form, "free" discovery is epitomised by the LOGO approach. The pupil 

is set in front of a computer with no preset task. The difficulties of this 

method have been discussed above. It may be observed that this approach to 

LOGO use echoes the child-centred MoveMent in Education and the procressive 

education moveMent. The similarity extends to include the unresolved problems 

associated with these approaches. More interesting application of Discovery 

Mark E-C 27 - 2 - 85 Pap 92 



Learning is in the Guided discovery learning approach of systems such as WEST 

and WUSOR. In these systems the pupil is playing a game, but a tutoring system 

is observing the interaction in search of points at which Educational Input may 

usefully be interjected. 

A real human teacher makes use of many forms of communication during the 

course of an interaction. Non-verbal cues such as facial expression and 

features of spoken language such as pauses and intonation greatly enhance the 

amount of information which the teacher can gain from his pupil. By 

comparison, a computer has a very restricted range of information about the 

pupil which it can access, and it is unlikely that any extra information 

sources will become available to computers in the near future. Imagine trying 

to teach someone when you are unable to see visual cues or hear vocal ones. 

The loss of these information sources makes the teachers task .uch .ore 

difficult. This is the problem faced by a computer-based teacher: it has a 

narrow channel through which information must pass. Teachine syste.s .ust 

search for ways to extend the effective width of this input channel. Given 

that techniques such as speech recognition are too little developed to .ake 

actual broadening of the channel possible. there are two alternative approaches 

to the proble.. The options are either to explicitly obtain all the 

information which is required throu~h a channel of narrow bandwidth (which is a 

long and tedious process) or to rely on inference techn.iques to .ake 

assumptions about likely situations. A human teacher also uses inference in 

this way. but the paucity of input to the .achine means its inference 

techniques must be more powerful. A clear example of the use of wider 

information input occured when the BUGGY system had its perfor.ance on 

detectine errors in children's subtraction co.pared aaainst human teachers. In 

al.ost all the cases where teachers correctly diagnosed proble.s which BUGGY 

aissed. the diagnosis was achieved by reference to the "scratch .arks" .ade by 
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pupils during the calculation. If this information was made available to 

BUGGY, we could say that the bandwidth of the human-computer interaction had 

been broadened. 

From this description it is clear that the problem of increasing the 

richness of communication with the system is very much tied to considerations 

of the sort of information which is needed by the system. Assessment of the 

"value" of the input information can only be made with reference to the task 

for which that information will be used. This clearly indicates the necessity 

for using knowledge of the domain being tutored and knowledge about the pupil 

(the user-model) when attempting to expand the interaction. 

At the simplest level, a computer just has access to a sequence of key­

presses. These cannot be regarded as a form of communication between pupil and 

machine until the machine is capable of aSSigning meaning to these events at 

some level. The most primitive meaning is that assigned by a computer 

operating system such as UNIX. It has enough "knowledge" to recognise groups 

of characters which correspond to individual commands and to find the program 

corresponding to a particular command and channel the interaction to it. 

Determining higher levels of meaning involves going beyond the surface form of 

an event and trying to interpret the purpose behind it. This introduces the 

assumption that the computer user has "goals" which she is attempting to 

satisfy through the interaction. Since there is no need to assume that a 

single goal is created and satisfied for each event in the interaction, this 

brings with it the requirement for a model of the set of current goals of the 

user at any given time, and this in turn requires a representation for possible 

goals and methods of satisfying them in the domain with which the interaction 

is concerned. 

Given that a computer has limited access to the information about the 

pupil which it requires to teach, there are several ways to get round the 

problem. All require that some knowledge of the domain being tutored is used 
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to guide (or process results of) the interaction. The simplest method is 

simply to ask the pupil if she knows something. Socratic teaching systems, 

such as SCHOLAR or WHY, typically engage in such interaction. Since it is not 

always the case that a pupil knows that she knows something, and some skills 

may be present at a variety of levels, we find systems such as WUSOR do not 

"believe" what they are told, but regard direct statements by the pupil as 

evidence towards something. A more complex method of eliciting information is 

to provide a teaching system with test-questions (or the facility to generate 

such questions) whose outcomes give information about various aspects of the 

knowledge which is being tutored. As these questions become more complex, 

successively more powerful inference mechanisms must be used to interpret the 

implications which they have for the systems beliefs about the pupil. IDEBUGGY 

may be considered as an example of this technique, if we regard a single 

subtraction problem as a question and the whole process of bug analysis as the 

inference mechanism linking that question to the systems beliefs about the 

pupil. 

In systems which are tutoring a skill, some scope must be given to the 

pupil to tryout that skill. Monitoring the attempted use of the skill is a 

way for the system to collect extra information without interfering with the 

pupil by making this collection process explicit. SOPHIE, for example, 

monitors a pupil attempting to fault-find in an electronic circuit. It 

attempts to use the information to guide its tutorial strategy. The system 

often enters a direct interaction with the pupil to clarify its observations of 

the fault-finding process. Since the systea does not, in general, control the 

behaviour which it is monitoring, the inference techniques necessary to derive 

information from such a process must be even more powerful than those 

associated with asking complex questions. This is siailar to the difference in 

difficulty between learning from examples and learning by observation. In its 

most extreme form this can be seen in those systems which Burton [Burton 1982] 

classified as "coaching" systeas. WEST and WUSOR are examples of such systems. 

The fact that they operate in gaae environaents aeans that direct intervention 
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must be restricted to the level at which it does not affect the enjoyment of 

the game. 

The bandwidth problem which affects communication from human to computer 

does not have a counterpart in communication from computer to pupil. A computer 

has a wide range of output forms available to it such as high level graphics, 

speech (typed natural language) and special teaching devices (e.g. Turtle, 

Slide projector). The tutoring system can integrate all these things (which a 

human teacher must regard as separate media) into a single coherent 

interaction. 

In summary, then, effective communication requires the computer to go 

beyond the information explicitly obtained from the pupil. In order to do this 

the system requires information about the domain which it is tutoring and about 

the current state of the pupil. This should include a model of the Goals of 

the pupil. 

The choice of problem domain has an effect on almost all aspects of the 

system. It is useful to investigate teaching by considering specialized 

domains, but the consequences of the domain choice for the rest of the system 

must be examined. In particular, it is important to consider whether some 

aspects of the domain mean that the system uses techniques which cannot be 
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generalized to other tutoring tasks. 
Open 

cJoma1ns 
4 ~ 

Closed 

oomaIns 

4 ~ 

lXlCal1eCted 

Figure 5 - Types of tutoring domain. facts 

The simplest domain is probably that comprising a set of unconnected facts 

(e.g. Derby winners). Since the system must know all the facts, and since 

there is no underlying linking mechanism which must be tutored, the pupil 

cannot bring any information to bear on the problem which is outside the 

knowledge of the system. Previous knowledge of the pupil can have no effect on 

the task. 

It is clearly the case that few domains support this idealized form of 

knowledge acquisition. Since many domains come close to this ideal, there 

exists a number of systems which tutor as though their subject area was of this 

type. An example of such a system is SCHOLAR, which atte.pts to tutor facts 

about South American Geography which cannot be derived fro •• ore general rules. 

Perhaps a more surprising example is GUIDON. In this syste. the domain 

consists of "rules of thumb" used by medical experts. The experts cannot 

normally provide reasoned links between these heuristics. so in some sense 

these must also be tutored as unconnected facts. 

A more complex do.ain is the "closed environaent" in which all possible 

correct methods of relating facts can be enu.erated. By providing a restricted 

set of possible skills. such an environment siaplifies the problem of user 

.odelling and ensures that the system can behave as though it has co.plete 

knowledge. WHY is an eX8llpie of such a syste.. The introduction of reasoning 
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steps in the learning task complicates the issue by allowing previous 

experience of the pupil to affect the learning process. However, the closure 

of the domain ensures that no matter what course is chosen it cannot pass 

outside the knowledge of the system. Such domains permit the design of an 

"expert" who knows everything, and may allow the complete set of possible 

"experts" for the domain to be generated. Almost all Tutoring systems to date 

operate in a closed environment. 

An open domain is one in which there are an infinite number of possible 

problems. In such a domain, the computer cannot assume that it has complete 

knowledge of the problem area and methods of problem solution. This is more 

like the problem which faces a real teacher. The system must possess methods 

of assessing, tutoring and modelling the pupil which can deal with situations 

which are new to it. In short the pupil must learn A right way to solve a 

problem rather than THE right way. This has implications for user modelling 

and assessment of pupil progress which will be discussed below. Many systems 

deal with domains in which a number of possible correct behaviours exist by 

modelling only one of these behaviours. Pupils must use the mechanisms which 

the tutor knows, even though these may not be the most appropriate mechanisms 

for the pupil and domain. 

It should be noted that real tutoring tasks may often be usefully divided 

into more than one domain, with the tutor attempting to teach all the domains 

in parallel. A co .. on exaaple of this is domains which require certain levels 

of meta-knowledge in order to use them. It is often the case that skills 

required for the application of information may be regarded as a separate 

domain from acquisition of that information. 

Having established the domain in which the system is to operate we must 

also consider how to keep the pupil within that domain. If the tutor is asked 

a question outside its area of specialization it should acknowledge its 

limitations. From this it is apparent that effort must be expended on 
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providing the system with methods for deciding upon its own limits. 

In summary, the choice of domain must be examined to see what effect it 

has on the general applicability of system design. In particular, the 

distinction between closed and open domains must be made. 

Having chosen our domain, we must decide how to best represent it for the 

task of tutoring. This knowledge is static, yet there are generally 

relationships which hold between the components that must be modelled. 

SCHOLAR, WHY and TRILL all use a semantic net to represent concepts to be 

taught. These topics are organised into a hierarchical structure which is 

primarily based upon levels of generality. A particular topic may be a sub­

component of a general issue and may itself possess other topics as sub­

components. 

The Genetic Graph representation introduced by Goldstein imposes a rather 

different type of ordering. In this system domain knowledge is represented as 

little islands of knowledge. These knowledge units are connected by links 

which correspond to different learning methods, such as generalization, analogy 

etc. Goldstein uses this mechanism as a first attempt at aodelling the 

processes by which a learner may negotiate a body of inforaation. 

It is also worth mentioning GUIDON, since this system attempted to tutor 

using an expert system (MYCIN) as its domain-knowledge source. This approach 

was not found to be adequate. More recent research is attempting to rewrite 

the expert system in order to include knowledge which is better able to support 

tutoring interactions. It remains to be seen whether there are fundamental 

representation problems with an expert-systea based approach. 
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In order to tutor effectively, a system requires knowledge about the 

current level of ability of the pupil. This information can then be applied to 

selecting an appropriate item to tutor and a style for teaching it which will 

relate it to those areas in which the student is currently interested. In 

practice, the form which this "user model" takes will be constrained by the 

range of techniques available for eliciting information about the pupil and by 

the application to which this knowledge will be put. The former limitation was 

discussed above; In this section we will consider the effect of the latter 

constraint. The type of model which is possible depends on the type of domain 

in which the tutor is operating; this section reflects the ordering of domains. 

The simple domain of independant facts can be tutored with a fairly basic 

.odel of the learner. Since each fact is either present or absent, and no 

hierarchical organisation can be imposed, it is just necessary to associate.a 

tag with each fact indicating its presence or absence (e.~. SCHOLAR, TRILL). 

The problem may be slightly more complex because learners may "forget" 

so.ething which they have learnt, or .ake a "sUp" (a careless error) in what 

they are doing. For this reason the mechanism associated with these user­

modelling tags should be able to remOve tags and note the teaporary instability 

of tags as well as adding them to items which the pupil has learnt. The 

unprincipled "slips" may be described as "noise" in the interaction which the 

user model must overcome. 

In an appropriate environment, this technique can be very powerful. EPAM 

[Fei~enbaum 1963] used a discriaination net to aeaorize nonsense syllables. 

This simple mechanism demonstrated auch of the behaviour shown by huaans when 

confronted with this task based upon aeanin~less eleaents. 

Let us now consider a closed environment in which there are relationships 
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between basic "facts" and every possible solution method can be enumerated. It 

is possible to define a set of "experts" who could operate correctly in the 

domain. The goal of the system is to make the pupil an expert in the domain, 

and since the teacher knows all the possible experts this is equivalent to 

making the pupil into one of these experts. The idea of glass-box and black­

box experts [DuBoulay 1980] which represent the division between 

"psychologically reasonable" and "psychologically unreasonable" forms of expert 

may now provide a dimension for categorizing the usefulness of particular 

experts as models which may be directly tutored to the user. 

Given that the particular expert which we are attempting to tutor 

corresponds to a set of skills E, that our pupil has a set of skills P, and 

that there exists a set of skills B which may be acquired by our pupil but 

which have no counterparts in our expert in the domain, we may represent our 

pupil as an OVERLAY model. There are two types of overlay .odel, subset models 

and perturbation models; 
E~rt 

~~~ 

Figure 6 - Expert-based modelling methods., 

, 
The subset model means that for each skill which exists in the expert, the 

pupil either has that skill or she doesn't. The teacher will try to expand the 

pupils skills until they are equivalent to those of the expert. 

In a perturbation model there may be skills possessed by the pupil which 

do not have counterparts in the expert. These skills are faulty or "bUllY" and 

will not lead to correct behaviour. A teacher with a perturbation .odel .ust 
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attempt to eliminate all "buggy" rules which the pupil possesses and expand the 

set of skills common to expert and pupil. 

Systems which rely on perturbation modelling (e.g. Buggy,LMS) ultimately 

reduce the model to a set of primitive subskills which are either present or 

absent - a buggy rule corresponds to a set of subskills which differs in one or 

more components from the set associated with the correct rule. It is worth 

noting that bugs, like the domain knowledge itself, may also correspond to a 

closed or open domain. In essence a bug-based system is an expert-system for 

mistakes: it suffers from the same limitations as expert-based domain 

knowledge. In particular, it does not know how to handle classes of errors 

which it hasn't been explicitly told about, and will persistently try to coerce 

the student into the categories which it has available. 

Another term often used in the literature is "differential model". This 

means that the pupil is modelled in terms ~f the difference between pupil and 

expert. This is essentially equivalent to an overlay model, but the focus is 

on reducing the size of a set of "differences" between pupil and expert rather 

than increasing the set of expert skills. This variant forms a valuable 

assessment technique. 

Some systems (WEST) attempt to tutor by achieving equivalence between the 

pupil and a set of partial expert models which do not cover the whole doaain. 

These "local experts" have the saae fundamental nature as complete doaain 

experts. 

WHY operates on subset modelling. It has a set of causal links between 

facts about rainfall which correspond to a particular theory of rainfall. A 

nuaerical value is associated with each link to represent the amount ot 

evidence which the system has that that link has been acquired. Not only does 

WHY not have a representation of possible incorrect rules which a pupil might 

use to model rainfall, it only represents those rules corresponding to one 
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particular expert in the domain. 

At this point it is worth noting that tutoring. diagnosis and assessment 

are different functions of the pupil model. Expert based systems provide a 

useful set of criteria for assessment since they constitute a benchmark against 

which students can be compared. This comparison cannot validly be extended to 

the internal workings of the pupil and expert. In trying to use an expert for 

tutoring in this way systems overreach the usefulness of the technique. 

The techniques applied so far may prove valid in a closed domain. but once 

we attempt to tutor an open domain the problem of user-modelling becomes vastly 

more difficult. 

In general. it is not possible to enumerate all the conceivable problems 

and solutions within the domain. so an individual's domain knowledge must exist 

in the form of some generative model of the domain which predicts its behaviour 

under various circumstances. It will not generally be the case that one 

"correct" model of the domain exists. Each model must be assessed in terms of 

its own virtues and vices. Issues such as input-output behaviour. simplicity, 

"prettiness" etc. must be considered. It is likely that different individuals 

will have different internal structures for their models, since they are linked 

to different pre-existing structures in the individual. Por this reason a 

teacher should be prepared to accept any .odel ot the domain (not just her own) 

provided it satisfies assessment criteria such a. predictive power. An exaaple 

ot such a situation as this would be if a tutor knows only Newtonian physics 

and is attempting to teach simple .echanics problems. It a pupil cODslstently 

produces answers equivalent to those of the teacher by u81na different .ethods 

(e.i. the laws of relativistic physics) then the teacher must accept the 

students' model of the domain. In this case, it is found that the student has 

a more powerful .odel of mechanics than that of the teacher since It will 

predict correctly when Newtonian physics fail •. 
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It is useful to describe open domains as ones in which the pupil Must 

acquire certain concepts if she is to understand the domain. Concepts may be 

acquired in closed domains, but they are necessary in open domains. A concept 

is a means of organizing information. 

In order to model the state of the pupil in an open domain, it is 

necessary to model the concepts which the pupil has acquired. If the intention 

is to find ways to educate the pupil (i.e. extend her model of the do.ain), 

then it also becomes important to model the mechanisms which she is using to 

acquire those concepts. 

In summary we find that expert-based models of the pupil are inadequate. 

Modelling the learner in an open domain involves modelling a number of 

"concepts" which the learner has acquired and which cannot necessarily be built 

into the system in advance. 

Most Tutoring systems operate a highly restricted torm ot interaction with 

the pupil. The restriction is not necessarily apparent since it is normally 

below the surface level. Systems such as SOPHIE appear to provide a reasonable 

natural language interface, but are actually very limited in the way in which 

they interact. The problem Is that individual inputs fro. the pupil are 

treated separately - no attempt Is made to integrate them into a conversation. 

It is as though everything before the current utterance is coapletely 

forgotten. This is clearly not the way in which a human teacher operates I 

There are a few systems which atteapt to aaintain a structured 

interaction. A notable example is GUIDON. In this system there are problem­

solving operators which derive a solution to the problem which teacher and 

pupil are discussing. The teacher then att"pts to carry out an interaction 
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which reflects the structure of the problem solution. SCHOLAR also produces a 

conversation structure. It uses importance-tags associated with the things it 

is able to talk about to select a set of goals and subgoals from which to 

choose the current topic of conversation. This work was based on an analysis 

of the behaviour of real teachers and, while it contains some ad-hoc sections, 

is actually capable of emulating the structure of some real teaching dialogues. 

In general then, we wish a tutoring system to maintain a set of teaching 

goals which allow it to structure a discourse in order to make use of previous 

steps and to plan ahead. These goals do not form a uniform group, but may vary 

in nature. 

Goals may be divided into those which remain static and those which are 

transient. A static goal is one which may never be completely satisfied. It 

is always present and influencing the interaction, although it may vary in 

importance. Each step in the interaction must be assessed in terms of the 

effect which it has had on each of these goals. Transient goals are ones which 

may be generated and, once satisfied, will cease to exist. It may be useful to 

introduce the idea of the scope of a goal, rather like the scope of a variable, 

which indicates the range of interaction for which a particular goal is valid. 

There are several levels at which goals may exist. WEST, for example, 

identifies three levels: the first is basic mathematical skills, the 8econd is 

the application of these skills in the WEST game environment, and the third 

consists of transferrable game-playing skills such as learning from your 

opponents lIoves. In general there seems to be a continuum of generality along 

which goals can be categorized. 

The goal structure of a teacher corresponds to the set ot goals which are 

currently active at a given time. There is clearly a link between this 

structure and the structure of the curriculum. They do not 8eem to be directly 

equivalent, but much of the goal structure aay be derivable tro. the 
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curriculum. 

Another restriction which systems impose on the pupil is to permit only a 

very small set of responses at any given point in the interaction. Bobrow 

[Bobrow 1977] claims that most dialogue systems give a semblance of reasonable 

interaction by exercising close control over the dialogue. The opposite extreme 

to this would be a genuine mixed-initiative dialogue in which teacher and pupil 

.ay freely interrupt and change the topic of the dialogue. 

Such interruption is easily handled in a reactive system which does not 

maintain a plan for the conversation, but systems which plan ahead must be 

capable of modifying their plans if an unexpected situation arises. We may 

describe the distance ahead which a system plans as a planning horizon for the 

interaction. 

Any real interaction mechanism must make use of a model of the other 

participants in the dialogue. For a tutoring system this involves linking the 

pupil model to the interaction mechanisms. Such linking should affect both the 

content and the presentation style of the interaction. 

In summary, a tutoring system should maintain a set of goals which 

corresponds to a plan for the interaction. These goals should be derived froa 

the curriculum, the pupil model, and possibly some higher level sources. The 

goal structure should be flexible enough to permit modifications to be made if 

an unexpected dialogue situation arises. 

Most Intelligent tutoring systems are based upon the sort of expert­

modelling described above. This approach has a particular method of assessment 

within it. In essence the difference between the expert-model and the pupil-
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model is the current assessment of pupil progress. Unfortunately. rather than 

giving assessment the independant consideration which it deserves. most systems 

simply accept this approach as standard. 

If we examine the literature of education. and work on LOGO. we find that 

assessment is a hotly debated issue. This problem should be reflected in 

tutoring system design. I propose that a major advantage of non-expert based 

modelling is that it forces the question of assessment to the forefront of 

design issues. 

A pupil will not approach the systeM with an empty mind. There will be 

existing cognitive structures onto which the pupil will attempt to link the new 

material which she learns. The teacher should be capable of representing 

information about those preconceptions which the pupil is bringing to the 

domain since they may profoundly affect her knowledge of the domain. 

particularly at early stages. For instance. it is likely that it may be easier 

to link new items to existing knowledge than to other new items. so the pupil 

may represent the domain as a number of unconnected models which grow together 

over the course of time. 

None of the tutoring systems which exist attempt to say anything about the 

problem of previous knowledge of the pupil. All assume that the student comes 

to them as a tabula rasa. BUGGY is a strange example of this because it 

assumes that no real world knowledge is brought to bear on the problem, but 

relies on the fact that certain subtraction bugs will have achieved stability 

due to earlier experience. 
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The nature of theories of education. and the need for a new theory to 

integrate computers with other educational media has been outlined. It has 

been suggested that a suitable starting point for this theory is the work of 

Jean-Jacques Rousseau. The educational methodology to which IMPART adheres has 

been outlined. 

Brief sketches of some important Intelligent Tutoring Systems have been 

given and some general themes in tutoring system design have summarized. The 

importance of explicitly stating the educational philosophy associated with a 

particular system has been discussed. The issues of pupil modelling. choosing 

and representing a problem domain. and maintaining a structured interaction 

have been introduced. 
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Part 3 -

A tutoring system 

for LISP. 



Chapter 6. 

Aims of the system. 



In this section we will identify those aspects of tutoring system design 

which this project will pursue. These issues have been discussed earlier in 

the thesis; our purpose here is to provide a concise summary. 

!.1-0v~al! g~ls. 

A primary goal of the system is that it should embody a particular 

educational philosophy. We wish our pupils to learn to be self-suffcient in 

the application of a particular skill. We also wish to encourage the 

idiosyncratic exploration of our pupils, and will respect their freedom in 

sufficient degree to ensure that we do not impose constraints upon them without 

justification. The pupil should only respect the authority of our teacher in 

so far as the teacher earns it. Learning from experience and developing 

intrinsic motivation towards a subject will also be highly valued. Our focus 

will be upon the development of general skills rather than acquisition of 

specific knowledge, and our "curriculum" will provide a structure linking 

knowledge rather than a structure for the teaching interaction. 

To explore this approach, our tutoring system will attempt to apply Guided 

Discovery Learning methods in an open domain. The system may be regarded as a 

"teacher" watching the interaction between the "pupil" and a "prograJlJling 

environment" while being prepared to intervene if it seeRls necessary. 

The chosen domain is programming in LISP, which may be regarded as having 

a closed component (the syntax and semantics of the language), and an open 

component (the possible problem solutions). Because of limits on the time 

available for this work, the former part of the domain will be explored more 

completely, with some suggestions provided with regard to the latter part. The 
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system should attempt to model and tutor three levels of knowledge: basic 

domain knowledge, rules for acquisition of that knowledge, and rules for the 

presentation of that knowledge. 

To guide the learning process, the system will attempt to build upon the 

current state of the pupil's model of the domain. This involves taking a 

particular model of the learning process and applying it to observations which 

the pupil could make. This information will be used to guide a discourse and 

build a model of the current state of the pupil. Achieving this goal also 

involves attempting to represent those things which the pupil can directly 

perceive. Relating new information to this model precludes the arbitrary 

introduction of new topics by the teacher. 

A consequence of attempting to build up from the current state of the 

pupil is that emphasis is placed on the techniques required to build problem 

solutions. It is not sufficient to simply present an algorithm to the pupil, 

there must be some jusitification of it in terms of things which the pupil 

already knows about. 

The system does not possess a model of the "expert skills" of a programmer 

which it is trying to inculcate. The problems of an expert-based approach have 

been discussed above, and they are very apparent in the domain of prograaaing 

where several researchers (e.g. [Schneiderman 1980] ) have noted the vast 

discrepancies in the sort of skills possessed by individual "expert 

programmers". 

No explicit representation of common progra .. ing errors will be 

incorporated into the system. Each problem which is discovered will be tackled 

using general rules and previous experience WITH THE CURRENT PUPIL. This also 

involves attempting to eliminate incorrect ideas before they have a chance to 

become stable in the pupil's mind. This results in a tutoring strategy which 
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is an alternative to the expert/mal-rule based approach. 

The interaction of pupil and teacher will have a structure which is 

derived from the current goals of the participants. The teacher will have a 

goal structure corresponding to a curriculum, which combines with information 

derived from the behaviour of the pupil to produce short and long-term order in 

the interaction. Tutoring rules which guide the form of interaction should be 

written in a domain independent manner. 

It is important that the system should present arguments to the student 

which have been reasoned about at a semantic level. Deriving a problem 

solution by unguided search and presenting it without explanation will not aid 

the learner. 

Throughout the course of instruction the teacher should be at the side of 

the pupil to offer adVice. If we may assume that this is the only aid which 

the student is receiving, then the user modelling may rely on the pupil knowing 

only those things which the teacher has taught. The model cannot be assuaed to 

be perfect, but large rifts between the state of the pupil and the state of the 

model will not occur. This involves assuming an idealised world in which books 

and peer group discussions are avoided. 

A related problem is that of real world knowledee. A pupil typically 

attempts to modify existing knowled~e structures in order to .odel a new domain 

(the classic example being a model of a push-down stack baaed upon plate 

dispensers), rather than building something new. If a tutor has no knowledge 

outside the specialized domain then she cannot hope to model a pupil who is 

importing this type of knowledge, or to make use of the pre-existing knowledge 
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structures of the pupil to enhance the educational interaction. 

Because the computer tutor cannot represent all the real world knowledge, 

we assume that our student comes to us as a Tabula Rasa. This is a typical 

assumption of systems which attempt to model humans (e.g. [VanLehn 1981] , 

[Anderson 1982] ), the normal argument being that if our domain is 

sufficiently abstract (as VanLehn claims subtraction is to high-school 

students) then so little world knowledge could be imported that the 

approximation is not unreasonable. Programming languages are probably 

sufficiently abstract to make this claim acceptable (though they could also be 

taught in a concrete way, using real world analogies). 

A related argument is put forward by Papert in defence of LOGO [Papert 

1980] . He claims that procedural knowledge is fundamental to all humans, and 

that things should be taught by fitting them to a procedural framework. Rather 

than trying to relate all our activities to this narrow base, I would propose 

that a valid use of computers is to lend concrete form to other sorts of 

abstract representation, thereby broadening the set of basic representations 

which the pupil may comfortably handle. When teaching Artificial Intelligence 

programming this means that a language should be taught as a new formalism, 

rather than by relating it to other things about which the pupil should know; 

we should attempt to instil a clear understanding of the language into our 

pupil WITHOUT recourse to analogies from other experience of the pupil. 

The system is intended to be suitable for pupils learning Artificial 

Intelligence programming methods at postgraduate level. The students are 

expected to be novice computer users. The choice of audience permits the 

assumption that the students will be highly motivated to acquire LISP 

programming skills. 
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Because this system is intended to provide a framework for exploring the 

nature of interactive teaching, it is important to try to make each of the 

major constituents of the design into a separable unit in the implementation. 

Unpluggable units containing syntax, semantics and higher level constructs of a 

programming language should permit different languages to be taught. It 1s not 

(currently) possible to formalize the Educational Philosophy sufficiently to 

make it a separable part of the system, but making the teaching strategies 

unpluggable will go some way towards allowing an interchangable teaching style. 
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Chapter 7. 

A toy example. 



This section outlines the teaching interaction which we are attempting to 

achieve. Its purpose is to give the reader an overall view of the problems 

facing the system, so not all details are explained. More complete 

descriptions of the design and the reasoning behind it are given in later 

sections. In order to make the role of each component clear a simplified world 

is used. The basic priciples to be demonstrated are the same ones that are 

applied in teaching a programming language, though not all features of the 

system can be shown in this world. In particular, all statements in this 

example are imperatives; there are no questions or conditional statements. 

The toy world which has been selected is similar to that used by Richard 

Power in a program to generate conversation between two robots [Power 1979] 

In this version, the pupil must learn to use a simple co.mand language to 

achieve changes in the state of the world. The world consists of a room with a 

door which has a sliding bolt, and an "outside". There are two actors in the 

world, JOHN and MARY, each of whom may be either IN or OUT. To change trom one 

state to another, an actor can MOVE, but nothing will happen unless the DOOR is 

OPEN. The DOOR may be OPEN or SHUT, and an ACTOR can move it from one state to 

the other by PUSHing it, although it will not change state unless the bolt is 

UP. The bolt can change state if an actor SLIDEs it, so long as the actor is 
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IN the room. 

Figure 7 - A simple environment. 

In order to achieve something in this world. the pupil must issue 

statements in a simple command language. In this section we provide an 

informal description of the way in which knowledge about this language is 

represented. 

The syntax of the language is simple since each possible action requires 

an actor and an object. The elements must be combined in the sequence 

<ACTOR> <ACTION> <OBJECT> 

e.g. MARY PUSH DOOR. Since the rectification of syntax errors is not the 

focus of interest of this tutoring system nothing more will be said about this 

aspect of the problem. It will be assumed that all input is syntactically 

correct. 
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The semantics of the language is described by producing a description of 

the effect of each action which is possible in the world. These descriptions 

consist of a list of tests which must be true before the action can be applied, 

and a list of modifications to make to the environment due to the execution of 

the action. These are called the preconditions, and the body, respectively. 

Formal descriptions of the semantics will be given later, but for the purposes 

of this example, the descriptions will be presented in English; 

PUSH 

Preconditions; 

The first argument to push must be an ACTOR. 

The second argument to push must be a member of the group of 

pushable objects. 

Body; 

If the BOLT is DOWN then do nothing. 

If the object is OPEN, make a note that it is now SHUT. 

If the object is SHUT, make a note that it is now OPEN. 

SLIDE 

Preconditions; 

The first argument to slide is an ACTOR who is IN. 

The second argument to slide is a member of the group of slidable 

objects. 

Mark E-C 

Body; 

If the object is UP. make a note that it is now DOWN. 

If the object is DOWN. make a note that it is now UP. 
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MOVE 

Preconditions; 

The first argument to move is an ACTOR. 

The second argument to move is the same as the first. 

Body; 

If the DOOR is SHUT then do nothing. 

If the ACTOR is in. make a note that it is now OUT. 

If the ACTOR is out. make a note that it is now in. 

Figure 8 - Toy language semantics. 

As was mentioned earlier. we wish to model the pupil in terms of a 

learning theory applied to her perception of the environment. In this case our 

system must note which language statements the pupil has used, and must attempt 

to derive the set of hypotheses which the student could hold about their 

behaviour. The system should also monitor the meta-level of the pupil's 

ability to respond to error messages. 

The major goals of the teacher are to get the pupil faailiar with the 

command language. and with the programming environaent. Within this, the 

system seeks to extend the pupils knowledge of the language statements, of 

methods of combining them, and of problem-solving strategies. 
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The following interaction is intended to give some idea of the role which 

the computer would fulfill in a teaching situation. Actual steps in the 

interaction appear in numbered boxes, with the originator indicated as TEACHER 

or PUPIL. These are interspersed with descriptions of the processes which are 

occuring within the teacher. 

The "natural language" flavour of the interaction is deceptive. Output is 

"canned" or generated using unprincipled tricks, and input is in a very 

restricted subset of English, or may be produced by non-linguistic devices such 

as pOinting to items on the screen. 

================================ 

*********************************************************************** 

* 0: The pupil sits down at the machine, types her name, and is * 
* presented with a screen which shows three menus, a view of the * 
* world, and a region for talking to the teacher. One menu contains * 
* the editing functions for generating commands, a second contains * 
• the list of possible actions in the world, and the third contains * 

* the list of objects which exist in the world. There is also a * 
* message inviting new users to type HELP.} * 
*********************************************************************** 

The problem of designing the user interface is a complex and interesting 

one, but is beyond the scope of this program. All the display environments and 

"tools" for interacting with the world are generated in advance. It is also 

necessary to provide canned explanation for those aspects which are beyond the 

knowledge of the system. 
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Figure 9 - Toy screen layout. 

******************** 

* 1: PUPIL: Help. * 
******************** 

The teacher initialises a model of a new pupil whb knows nothing about 

LISP. In response to the request for help, a canned speech is produced by the 

"introduction" topic controller. 

************************************************************************** 

* 2: TEACHER: On the screen there are three menus - editing functions, * 

* actions and objects. Your goal is to make things happen in the world * 

* by creating commands using actions and objects. To do this you use * 

* editing functions. Point to CREATE to generate a command, then try * 

* it out using EXECUTE. * 

************************************************************************** 

************************************************************************ 

* 3: PUPIL: Points to CREATE, then MOVE, resulting in the template * 
* NACTORN MOVE NOBJECTN. Pupil asks teacher "What does NactorN mean?" * 

************************************************************************ 

The question is about one particular slot in one particular template. Its 
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effect is to activate topic controllers to do with actions, arguments and 

datatypes which talk at a general level using specific Illustrations from the 

current expression. Each of these contollers contributes to the following 

speech. 

************************************************************************** 

* 4: TEACHER: MOVE is an action. It has two ARGUMENTS. ARGUMENT 1 is * 
* is an NACTORN. This can be JOHN or MARY. ARGUMENT2 is an NOBJECTN. * 
* This can be anything on the object menu. * 
************************************************************************** 

********************************************************************** 

* 5: PUPIL: Fills in template to produce JOHN MOVE MARY. She has * 
* forgotten about executing it so asks "What next?". * 
********************************************************************** 

The teacher has already evaluated this expression and identified the 

errors which will result from executing it. It could tutor the errors now, but 

a tutoring rule makes it refrain until the expression has been evaluated by the 

pupil. It recalls the intention of generating and executing an expression, so 

a topic controller reminds the pupil about the EXECUTE operation. 

************************************************************************* 

* 6: TEACHER: If you use the EXECUTE operation, you can see what effect * 
* your command has on the world. * 
************************************************************************* 

************************************************************************* 

* 7: WORLD: Pupil points to EXECUTE, and the command JOHN MOVE MARY Is * 
* carried out. The message "JOHN cannot MOVE MARY" results. * 
************************************************************************* 

Referring back to the description of MOVE given in figure 8, we see that 

the semantic requirements have been violated since MOVE .ust have the same 

object as both arguments. Now that the execution has been performed the 
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datatype topic controller can be applied to the description of MOVE, producing 

a speech which clarifies the error. The problem-solver is used to suggest a 

change to the expression, and this invokes the MODIFY topic controller to 

introduce a new editing operation. 

************************************************************************ 

* 8: TEACHER: This statement did not succeed, since the first and * 

* second argument to MOVE must be the same, and must be an ACTOR. You * 
* can change your command by using MODIFY or you can CREATE a new one. * 

************************************************************************ 

************************************************************************* 

* 9: WORLD: Pupil modifies command to JOHN PUSH JOHN, and executes it. * 

* World reports "nothing has changed". * 
************************************************************************* 

The teacher notes that execute has been used unprompted. This message was 

expected by the teacher, and a speech is generated to amplify the reasons for 

this behaviour. In effect the speech is simply a translation into english of 

the path which was followed through the semantic description. The tutor uses 

the problem-solver to find a situation in which an alternative course of action 

would be followed, and tells the pupil about it. 

************************************************************************* 

* 10: TEACHER: The reason that nothing has changed in the world is that* 

* the MOVE command does nothing if the door is shut. 

* door by PUSHing it. 

You can open the * 
* 

************************************************************************* 
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Chapter 8. 

A syntax-directed 

programming environment. 



The initial problem was to design a programming environment which would 

facilitate the learning of the programming language LISP. The Users were 

expected to be novices with no previous computing experience. The environment 

was not intended for autonomous use, but to be part of a course including 

individual tuition, a reference text [Winston 1981] , and group discussions 

about the language. No lectures were given, and the text was not introduced 

until several weeks into the course owing to differences in dialect and method 

of approach. 

The intention of the programming is to provide people with an 

understanding of some fundamental concepts about programming and computers, 

without necessarily producing expert programmers. One consequence of this is 

that knowledge of the hardware of the machines and of operational details (such 

as disk file handling) is not expected of the students, and may in fact be a 

distraction from the main purpose of the course. This is manifested as a 

constraint upon the interface to protect the user from this side of the system. 

Interest is focussed upon the virtual machine represented by a LISP 

interpreter. 

In order to preserve the consistency of the language which is being learnt 

(and hopefully make it easier to learn), a fairly pure version of LISP is used 

which does not involve global variables and retains as few side effects as is 

practicable. These features are introduced later in the course, when this 

teaching environment is no longer in use, for people who wish to write large 

programs. 
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MATILDA was expected to provide a tool which made it reasonable for 

students to learn about LISP by experimenting with expressions in the language. 

To this end, everything that the User does to the system should result in some 

sort of constructive response. 

!.~-T~ MAI~ fEATURES QF THE ENV-1.R.Q~~. 
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~9WTE ("~ SHEEP>'>' 

IJIIUT: 
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Figure 10 - MATILDA - screen layout. 
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As seen by the User, MATILDA consists of three menus from which items can 

be selected by pointing and a region of screen in which a LISP expression can 

be built. The menus contain editing commands (menu 1), functions available in 

LISP (menu 2), and functions defined by the User (menu 3). There are also 

three smaller regions in which information appears. One region is for users to 

type input, one is for values returned from LISP, and one is for messages from 

the system. Use of the system involves pOinting to Editing Operations, and 

then specifying arguments for those operations by pointing to function names 

and to Locations in the expression on which the User is working. When the 

expression is completed to the user's satisfaction she may transmit it to the 

LISP interpreter and receive information about its behaviour. This explicit 

division between the interface and the language was intentional, its purpose 

being to ease the process of transfer to a normal interpreter at a later date. 
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The expression on which the user is working is maintained on the screen 

until it is explicitly dismissed by the User. This expression provides an 

external representation of the user's focus of attention. The expression can 

be modified incrementally and evaluated repeatedly in order to examine the 

relevance of particular parts to the overall effect. This makes it easier for 

users to test and correct their hypotheses and examine conditions under which 

they break down. 

Since an expression typed to a normal interpreter is lost as soon as it 

has been evaluated, students tend to avoid writing long expressions or making 

incremental modifications in order to reduce typing. This situation can be 

improved by making all expressions into function definitions, but this involves 

introducing the concepts embodied in defining functions before the basics of 

the language can be thoroughly understood. The Current Expression in MATILDA 

overcomes this difficulty and means that function definitions need not be 

introduced until much later than is customary. 

The menus are regions of the screen which display inputs that the user can 

make (such as LISP function names). Any item on a .enu can be indicated to be 

the next input by pointing to it. This serves the purpose of freeing users who 

cannot type fro. learning this skill concurrently with learning the language. 

By explicitly displaying the operations and functions available to the User it 

is possible to ensure that she is aware of all the options open to her. The 

inputs available to the user are divided into two categories, which are 
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represented by two separate menus. 

The first menu (menu 1) contains editing operations which are recognised 

by the interface. As soon as the user points to one of these it is executed, 

prompting the user for any arguments which are necessary. This separation of 

the interface operations from Lisp functions is intended to encourage the user 

to regard Lisp as a separate entity from the interface for reasons mentioned 

earlier. Some of these operations will be briefly described. 

CREATE clears whatever Current Expression previously existed, and starts a 

new one. It prompts the user to point to a function name, and this 

becomes the new Current Expression. 

REPLACE is used to fill in a slot in a Current Expression. The User is 

asked to indicate first the slot to be filled, then the function with 

which to fill it. 

EVALUATE passes the Current Expression to the Lisp interpreter for 

evaluation, and displays the resulting value or error message. 

Menu 2 contains the names of the functions available in LISP. Pointing to 

an item on this menu results in that function appearing on the screen in a 

syntactically correct format with "slots" marking the parts which aust be 

filled in to form a valid expression. 

The final menu (menu 3) contains the names of user-defined functions. 

These appear as soon as the function name and number of arguments has been 

specified, since this is sufficient information to allow the system to assign a 

default template for it. It is necessary for these names to become available 

before the function is fully defined in order to facilitate recursive function 

definitions. 
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When a function call is requested as part of a Current Expression. a 

syntactically correct calling format for that function appears on the screen. 

This includes the appropriate parentheses. the correct number of unoccupied 

slots for the arguments. and an indicator of the type of expression required 

for each slot. This eliminates trivial syntactic problems such as miscounting 

of brackets, which do not throw any light on the level of understanding of the 

individual and can be very frustrating. The fact that a complete function call 

is the smallest element appearing on the screen is intended to encourage the 

User to regard this as the basic entity of LISP. 

Rather than making all possible LISP functions accessible to the User on 

the first occasion that she encounters the interface. the language is 

introduced through a series of subsets of functions called Microworlds (in 

analogy with LOGO [Papert 1978] ). The functions in these microworlds are 

intended to be suitable for examination by the User (i.e. she is thought to 

have satisfied all the prerequisites for understanding thea). and are chosen to 

guide her on a reasonable course to learning the language. In this case the 

sequence started with list building functions. then those for dissecting lists. 

then predicates and conditionals and finally function definitions. It was not 

intended that this sequence be rigorously adhered to, and microworlds have been 

generated to reflect individual interests. 

1.2.5-STRUCTURAL CURSOR CONTROLS - - - ------ ---- -----
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When the student must indicate a particular location within the Current 

Expression she may use the cursor keys to manipulate an extended Cursor on the 

expression. This Cursor always highlights a complete subexpression, and the 

keys affect it's position in a manner which reflects the structure of the 

expression: Left and Right arrows move along a list, Down descends into a list, 

and Up moves to the list containing the Current Location. It is hoped that 

this practical outlet for knowledge about expression structure will encourage 

students to regard a LISP Expression as a structured object rather than a piece 
• 

of homogeneous text. 

Enabling people to understand what is occuring when an expression is 

passed to the LISP interpreter requires that they be presented with information 

that helps them to build a model of the actions taking place. Unfortunately, 

constraints of time meant that most of the feedback information planned for 

MATILDA has not been implemented. The only information is the Evaluation 

results and Error Messages from the interpreter itself. 

1.3-0BSERVED USE OF THE SYSTEM. - - ----- -- - -- ----

Students used the system for between 5 weeks and 3 months before moving to 

use of an unadorned interpreter. This section is based upon general 

observations and comments made by the students during this time, together with 

the results of a Questionnaire produced by Roy Pinder at Warwick University. 

Some global observations are followed by specific comaents about each of the 

features described above. The only source of information for comparison is 

experience teaching students from the previous year, who used a normal 

interpreter. 
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A Universal criticism of the system was the low speed with which menus 

could be scrolled to select items. This was an implementation problem due to 

the fact that special screen handling extensions produced for the LISP 

interpreter operated via CP/M in order to preserve compatability across most 

Z80 based systems. Subsequent versions of MATILDA have better display 

handling, but these have not yet been made available to students. This 

constraint was a source of frustration which resulted in many users moving onto 

an unadorned interpreter earlier than they would otherwise have done. There 

were also problems with the reliability of the hardware used for teaching which 

detracted from the intended simplicity of the interaction. These have now been 

rectified. 

The intent of providing a safe environment in which people could discover 

LISP by experiment was not fully realised. A major part of the problem was 

that many people felt unhappy about just trying things in order to discover how 

they behave. The question "What shall I do now?" was frequent in early use of 

the system. The introduction of discussion sessions to share knowledge about 

the language did not noticably improve the level of this non-directed 

exploration. 

In part, this can be attributed to the fact that goals in LISP are very 

different from those in domains of which the students had previous experience. 

Producing an expression which returns NIL is not inherently exciting. One 

method for overcoming this discrepancy is to start from a subset of LISP which 

has goals about which the student has some preconceptions, such as numeric 

functions. This approach is used in Winston's book [Winston 1981] , and was 
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tried with one student who was particularly uncomfortable with the other 

microworlds. An alternative is to provide a worksheet of problems which 

specify lisp-like goals and require students to find expressions to return the 

appropriate values. These can become progressively less restrictive until the 

students generate their own subgoals. A further technique would be to provide 

a graphical interpretation of the action of functions in transforming arguments 

into values. This would help increase the importance which the user assigns to 

the value. 

A further origin of this difficulty is that since free learning is not 

encouraged by the educational system in this country it has to be relearnt by 

students at this level. The people who achieved most with MATILDA equated it 

with a Video Game. A more difficult problem to deal with was that some people 

carried on interactions on a basis akin to random keypresses, and kept this up 

for a long time without actually learning anything. It seems that this must be 

handled by direct teaching of the learning skills. 

The level of understanding of fundamental concepts was gauged from the 

group discussion sessions. A high level of understanding was displayed on all 

topics discussed. Many concepts discovered at an early date with this system 

(such as the question of evaluation order) were never discovered by the 

previous group of students. This was reflected in the fact that all students 

could make sensible suggestions about how to tackle new problems. 

No co .. ents upon the idea of the Current Expression were made while people 

were working with Matilda, but the lack of such an expression was one of the 
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first difficulties reported when students moved to the interpreter. Structure 

editors or external screen editors carne into use to fill this role. 

Apart from the problem with the speed of operation, the menus were very 

popular - both as a way of seeing the options which were available and as a 

means of reducing typing. When the option of typing function names rather than 

pointing was introduced it was only used for functions which were widely 

separated on the menu. 

Most students commented on the usefulness of the syntactic information 

provided by the templates. On transferring to a simple interpreter, the number 

of syntactic errors which were observed was considerably lower than the error 

rate of students who had never used MATILDA. It is proposed that this is due 

to the early development of a method of analysing expressions which makes use 

of the underlying semantic information. 

The sequence of microworlds was found to be generally sucessful. The early 

worlds were perhaps too small, since they were only incremented by one or two 

functions at a time. Each of these microworlds was used for a period of about 

two hours. The very first environment was not a good idea in practice. It 

consisted of EVAL and QUOTE, but since no side-effects were admitted, no 

variables could have values, so it was difficult to produce an expression which 

evaluated to anything other than NIL. This lack of side effects caused other 
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problems which will be discussed below. 

The structural Cursor controls achieved their purpose in a very convincing 

manner. The dependence of some concrete goal such as moving round an 

expression upon modelling the somewhat abstract structure of the expressions 

quickly led to a complete understanding of this means of regarding the 

language. All the students are able to focus attention on subexpressions, and 

none had difficulty in learning to use an INTERLISP type structure editor. 

This is in direct contrast to the problems experienced by the previous year's 

students in this respect. 

As was expected, the limited feedback provided by the system at the time 

that it was introduced for use resulted in problems for the learners. The 

individual tutorials allowed this to be dealt with by explanations of the 

information that the system would have returned, but this is far from 

satisfactory. Most major of the problems was the cryptic nature of the error 

messages which were returned direct from the interpreter and had a very low 

information contentj messages were often completely inappropriate for the error 

which caused them. Another source of feedback which would be very useful is a 

package to give information about intermediate stages in evaluation (i.e. a 

trace package). 

Experience gained with MATILDA as a stand-alone systea suggests that 
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Discovery Learning is an excellent way to attain understanding of a subject 

area provided that it is used in conjunction with some guidance which attempts 

to overcome the motivational difficulties of the user and maintain a reassuring 

interaction. Powerful feedback to aid the detection and correction of errors 

(both within the program and within the thought processes which led to the 

program) is also necessary. With MATILDA this was provided by a teacher. 

IMPART is an attempt to provide this aid within the machine which is in one­

to-one contact with the student. 

The assumption made by this system is that a syntactically incorrect 

program is not a program at all, and as such is beyond the scope of the tutor. 

From experience with MATILDA it seems that students who never see syntactically 

incorrect expressions learn the structure of correct expressions and generate 

few errorful expressions when free to do so. It is suggested that this is 

because they learn to associate a particular syntactic structure with an 

underlying semantic form, and hence find syntax errors very obvious. This view 

is supported by empirical work carried out by Weiser [Weiser 1982] and 

Shneiderman [Shneiderman 1980] . 

In order to ensure that the tutor and pupil see only syntactically correct 

programs, the pupil interacts with the programming language via a syntax 

directed editor. The editor is based upon MATILDA, a Menu and Template based 

editor for LISP which has been discussed above. 

All language statements and editor operations are made visible on menus so 

that the options available to the student at any time are explicit. When a 

function is selected, a syntactically correct template for that function is 

displayed. The pupil may now fill in the arguments (untilled slots) ot the 

template. Moving around the expression is achieved by issuing commands which 

reflect the underlying structure of the expression (for example, UP would move 
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the cursor to the parent node of the expression it is currently on) rather than 

the surface appearance of the text. 

The original version of MATILDA was specific to LISP. In order to try and 

achieve domain independence in the current system a new screen-based structure 

editor was devised which has a plug-in definition of the syntax of the 

language. It was originally hoped to derive the editor behaviour from a 

Backus-Naur form description, but in practice a more specific description has 

been used. Backus-Naur based editors such as EMILY [Hansen 1971] and other 

forms of language independent editor (see e.g. [Medina-Mora 1982] ) are now 

well understood. It seems likely that the translation from BNF to the 

representation used in this editor will be an easily mechanizable task. 

The editor must display expressions for the pupil in terms of the agreed 

syntax of the language. The other components of IMPART operate upon a parse 

tree of the expression. The editor must be capable of transforming expressions 

to parse-trees and vice versa if it is to provide a useful interface between 

the pupil and the rest of the system. In fact, since this is the only point in 

the system which embodies syntactic knowledge, all expressions in the target 

language (including, for example, illustrations used by the teacher during 

conversation) must pass through the editor. 

As an example, suppose the pupil wishes to create the expression 

(CONS (QUOTE A) (QUOTE (B C» 

The instruction sequence CREATE CONS produces the te.plate 

The pupil may REPLACE each argument with QUOTE, and REPLACE the arguments 
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to QUOTE with the appropriate text. The completed expression will be passed to 

the rest of the system in the parsed form; 

cons(quote(a),quote(**list(b,c))) 

and the result passed to the editor will be 

**list(a,b,c) 

which will be displayed as 

(A B C) 

The editor is driven by pointing to items on menus - this applies to 

editor operations and program statements. The screen layout used by this 

tutoring system is shown in figure 11. 

PODIT TO CJIERAmJI 
___ Idem 

~~(WOTE HElLO). 
CREATE 

REPlACE 
{~E (GREEN 'lInEn EWUJATE 

FWICtianI 

1=1 
WU£ IS: (HELLO CREEN SLDlE) 

·To tNI:ha: 

Figure 11 - Overall screen layout. 

Figure 12 illustrates the relationship of the programming environment to 

the overall structure of IMPART. MATILDA may be regarded as a non-intelligent 

Mark E-C 27 - 2 - 85 Page 138 



component which is part of the environment rather than the teacher . 
..-,.iiiiiiiiiiiiiiiiii_~_ ,..----....... 

Environ.ent. Pupil 

Figure 12 - The relationship of MATILDA to IMPART. 

The design of a syntax-based programming environment called MATILDA has 

been discussed, and experience with the use of this environment has been 

reported. A more general syntax-directed editor used in IMPART has been 

briefly outlined. The role of this component in relation to the rest of the 

system has been discussed. 
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Chapter 9. 

Choosing a representation 

for 

program semantics. 



In order to teach a programming language, the system must have knowledge 

about the "meaning" of statements in the language. Since there exist well 

developed theories of the semantics of formal languages, it was decided to 

assess these as possible forms of representation. This section outlines the 

problems to which the semantic representation must be applied and briefly 

summarises the difficulties associated with three standard approaches to 

computer language semantics. Following this, the reasons for choosing the 

formalism which was finally adopted are given. 

In deciding upon a way to represent the programming language which is to 

be taught, it is important to consider the way in which the representation will 

be used. This section indicates those tasks in the system which make use of 

the semantic description and attempts to point out the requirements which each 

task places on the representation. 

It is important to consider whether the activities which the system must 

support can be dealt with effectively by a single form of the semantics, or 

whether multiple representations should be maintained. Separate semantic 

descriptions have the advantage that their form can be adapted to maximise 

their efficiency for a particular application, but it is necessary to carry out 

more maintainance if a modification is made. There is also a problem in 

demonstrating the consistency of different representations. The possibilities 

of multiple formal semantic systems being combined to produce an internally 

consistent group of language definitions has been investigated in the past 

[Hoare 1974] . In the present system a decision was made to carry the use of a 

single representation as far as possible, being prepared to change to multiple 

descriptions if insuperable problems were met. 

To distinguish the language being taught from the implementation 
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languages, it will subsequently be described as the target language of the 

system. This also serves as a reminder that the system should attempt to tutor 

several different languages. 

The first requirement of the system is that it should be capable of 

deriving the correct behaviour for any expression in the target language. The 

initial intention was to include a normal language interpreter in the system. 

and have an independent semantic representation which corresponded with it. In 

fact, following the above discussion of duplicated information in the 

representations it was decided to use a single semantic representation as the 

ONLY means of executing expressions in the system. This representation must be 

usable to produce input/output behaviour like that of a real interpreter, and 

must respond to violations of the semantics with "error messages". These 

violations are only one form of error recognised by the teacher. Other sorts 

of error will be discussed later. 

The teacher must be aware of errors generated by the pupil as soon as they 

occur if it is to decide how to tutor each problem in the most appropriate way. 

For this reason it is important that it should be possible to execute 

INCOMPLETE expressions in such a way as to identify errors in completed 

sections of the expression, while ignoring errors which are caused by 

incompleteness. For example, given the program segment 

vars xy:integer; 

while x<y do 

it should be immediately apparent to the system that some undeclared 

variables have been used and that the underlying intention was probably to 

declare them in the earlier statement. Both this and the lack of a second 

argument to the "while do" statement cause violations of the semantic 
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description of the statement, but the latter problem should not be tutored 

since it is due to incompleteness. A special case of this is permitting the 

execution of subexpressions of a complete expression, by generating an 

appropriate context in which they can operate. This is valuable in allowing 

pupil or teacher to reduce a problem to its essential features. As an example, 

it would be useful to demonstrate the action of Pascal loop statements by 

executing the expression 

for i:=1 to 5 do writeln(i) 

whereas in actual fact, the code necessary to execute this is 

program fred(input,output); 

var i:integer; 

begin 

for i:=l to 5 do writeln(i) 

end. 

A necessary extension of the error detecting facilities would be to 

provide a system which finds all the manifestations of a particular error, and 

similarly identifies all other errors and their manifestations. If all this 

information regarding potential errors is available to the teacher, she can 

take decisions about which error to deal with first, and which aanifestation of 

it to concentrate on. This decision can be taken with regard to the state of 

the student and the teaching techniques available. For instance, consider the 

expression; 

(APPEND (PLUS 3 X) 

(CAR Z» 

where X is 'A and Z is '(B CD), 

The first error detected during normal evaluation would be that A is an 

inappropriate argument to PLUS, so the whole expression would result in an 
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error message. If this error is corrected, we should then find that whatever 

the result of PLUS, it is an inappropriate first argument to APPEND. 

Correcting this would show that 8 (the result of (CAR Z)) is also an 

inappropriate argument to APPEND. This information is necessary as a basis for 

deciding what to tell the pupil. It is worth noting that the inappropriateness 

of these arguments to APPEND is for different reasons. PLUS is always 

inappropriate, but CAR is correct for some values of Z. 

The language interpreter (which in this case is a role filled by the 

semantic description), should behave in a way which will enable pupils to 

progress to a normal programming environment when they leave the system. For 

this reason, it is necessary to generate error messages to be given to the 

user. In general, these will be supported by further explanation from the 

teacher. The semantics should provide the basis for a system of simple error 

messages which are not misleading, though they may be less informative than is 

optimal in a teaching environment. These simple messages should be produced in 

parallel with more detailed error specifications which are passed to the 

teacher. 

Part of the difficulty experienced in learning programming languages is to 

do with perceiving what happens during execution of an expression with 

sufficient clarity to model it. This precedes the problem of understanding 

what has happened. To provide this facility, it is important to be able to see 

the way in which the environment is changed by individual expressions and small 

groups of expressions. For this reason, there is a requirement that the 

semantic representation can be accessed in a way that enables effects to be 

made "visible" as they happen. This is a more general form of the sort of task 

which is traditionally filled by tools such as a trace package. 
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At various points during the interaction, the teacher will need to 

describe all or part of the action of a statement to the pupil. The depth and 

form of the explanation will vary depending on the knowledge of the user. For 

this reason, a semantic representation which can be used to generate 

psychologically reasonable descriptions of varying levels of complexity is very 

important. 

These descriptions will be used in two ways. The first is in generating 

complete descriptions of the behaviour of a single statement. This fulfills a 

role rather like that of a help package, although it must be "intelligent" in 

the sense of adapting the form of explanation to the level of knowledge of the 

pupil. 

The second, and more complex, form of description which Is necessary Is 

the partial description of the action of programs. This involves the same 

techniques as the first usage, but also requires the presence of some knowledge 

to enable the system to select only those parts of the semantics which are 

relevant to the current discussion, and blend them into a cohesive whole. In 

particular, this will require being able to abstract common parts from several 

different statements within a complete expression. Many different problems 

arise with this application, as the following example illustrates; 

(DE LENGTH (L) 

(COND «NULL L) 0) 

(T (ADD! (LENGTH (CDR L»»» 

If we wish to discuss the way in which the recursion progresses, it is 

necessary to monitor the values of L and the values returned by the call to 

LENGTH. If we wished to discuss the way in which the problem is decomposed, we 

would also introduce the values returned by CDR. A discussion of the way in 

which results are built involves the value of ADD1. The semantics should 
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provide a mechanism which supports these forms of "focussed analysis" of an 

expression. 

A teacher does not always talk about specific instances of a problem. A 

goal of teaching must be to provide the pupil with the most general lesson 

which can be learnt from a particular experience. For example. if the student 

evaluates; 

(CAR X) 

where X is unbound. 

then a direct translation from the semantic error to English would be 

something like "CAR attempts to find the value of X and take the first element 

of that value. X does not have a value". A teacher would probably say 

something like "Most lisp functions evaluate their arguments before doing 

anything to them. Before CAR takes the first element of X it tries to evaluate 

it, but fails because X does not have a value". The latter explanation offers 

more information to the pupil by relating the case to other instances. 

Achieving this sort of generalization requires knowledge about reasonable 

forms of comparison to draw to the attention of the user. There should be 

"rules of extrapolation" which can decide what level of infor.etion to give to 

the pupil. This decision should be taken by examining the entire language 

description and comparing it to the particular case being studied. For 

example, drawing an analogy with SETQ would be wholly inappropriate in the case 

shown above. The semantic description should facilitate such extrapolation 

from particular instances. 

Mark E-C 27 - 2 - 8S Page 146 



It has been pointed out that experts in a particular domain often perceive 

that domain differently from novices. This has been observed to hold for 

computer programming [Schneiderman 1979] and summarized as follows; 

" An expert computer programmer encodes and processes information 

semantically, ignoring programming language syntactic details." [Weiser 

1982] 

Weiser introduces the concept of a "slice" to describe a programmers 

perception of a program. This is a non-contigous section of code within a 

program containing all the expressions which could affect a particular variable 

at a particular statement. Weiser claims that the process of debugging a 

program involves a programmer in making a mental "slice" from the point at 

which the error occured in order to restrict the possible locations of a cause 

of error. The validity of this view has been demonstrated empirically [Weiser 

1982] • and an automated slicing algorithm has been developed. A claim is made 

that slicing techniques should be taught as part of programming; 

" Slicing is now reinvented by every programmer who uses it. 

Beginning programmers taught the concept of slicing could avoid this 

reinvention and could more rapidly improve their debugging skills." 

In this and other work on program decomposition [Zislis 1975] the 

emphasis is upon dividing a program into sections based upon dataflow with the 

goal of aiding debugging. I would propose that the technique of slicing is 

more generally applicable than Weiser claims. The mechanisms for achieving 

semantic decomposition of a program are a fundamental part of establishing a 

relationship between high level algorithms and the semantics of individual 

statements: There exist inverses of slicing methods which guide the process of 
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problem solution. 

Since a goal of the system design is to build upon the perceptions of the 

pupil it seems important to provide a framework which is psychologically 

meaningful for building programs out of primitives. Slicing provides a basis 

for that framework. To this end we should attempt to choose a semantic 

formalism which will support the use of slicing techniques to aid debugging, 

and the inverses of these techniques to aid program design. 

When the pupil is attempting to solve a problem, the teacher must be aware 

of at least one correct solution to the problem in order to make judgements 

about the amount of progress which the learner is making. This involves 

knowing what the pupil is trying to achieve, and deriving a solution path from 

this information together with knowledge of the language. In general, the 

problem solution should be derived in relation to the user model so that it 

will be similar in form to the pupils own solution. Since this system is 

intended to support mixed-initiative interaction, problems may be generated by 

the machine or the student. How these problems are specified may vary. 

One method of specification is to describe a desired final state. and give 

an initial state from which the final state must be achieved. This is the 

approach used in the TOY EXAMPLE (chapter 7), and results in descriptions such 

as " Try to get John inside" (final state). The initial state is explicitly 

given on the screen in this case. A possible solution generated by the program 

would be; 
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JOHN MOVE JOHN 

The toy version of the system generates this solution by unguided depth 

first search. Such a technique would quickly run into problems of 

combinatorial explosion if it was applied to any programming language of 

reasonable size, so some form of constraint upon the search is necessary. 

There is a large literature on program proving and some techniques may be 

borrowed from this area, although the restricted nature of the problems tackled 

by novices are amenable to less powerful techniques. 

In the course of tutoring, the teacher needs to supply the pupil with 

example problems relevant to the current work, and exercises which the pupil 

may try in order to practice new skills. For this reason, it is necessary to 

provide some means of combining the semantic descriptions with a "specification 

of difficulty" in order to generate such problems. The specification of 

difficulty will presumably be derived from the user model. 

The overall aim is to produce a program which takes a problem 

specification as input and generates a program which will solve the problem in 

the original specification. This is the basic goal of automatic programming 

systems. 

To deal with the generation task, we wish to be able to supply the program 

with a partial specification of a problem (i.e. the set of things which we wish 

the pupil to use). In this case our program should produce a problem solution, 

and a more complete instantiation of the problem specification. For example, 

we wish to be able to specify that we require a problem to test the pupil's use 

of list-accessing functions. In return we wish our problem generator/solver to 

produce the problem; "Write an expression to extract the third element of the 

list ( MANDY EATS BURGERS FREQUENTLY)" and the solution; (CAR(CDR(CDR(QUOTE 

(MANDY EATS BURGERS FREQUENTLY»») 
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In the context of a tutoring system, there are various constraints at 

work. One of these is that the solution should be understandable to the pupil. 

This involves ensuring that no techniques are used which are beyond the level 

of programming ability which the student has achieved. 

The methods which the problem-solver used to generate the solution must be 

documented alongside the solution so that they can be used as the basis of 

instructional dialogue by the teacher if that proves necessary. 

An important issue here is the glass-box or black-box nature of the 

problem-solver. It is implicit in the above description that some of the 

workings of the problem-solver should be made visible to the pupil. It is not 

the case, however, that we wish to regard the problem-solver as our programming 

expert and attempt to make our pupil emulate this problem-solving style. 

Instead, we wish the problem-solver to adapt to the pupil. The fundamental 

components of the problem-solving strategies should be derived from the model 

of the pupil. The only built-in components will be of such a general nature as 

to be unquestionably necessary for any problem solution. 

Since the 1950's there have been attempts to describe computer language 

behaviour in terms of a formal representation. This task has been attempted 

for a variety of reasons, such as specifying language behaviour across 

installations, proving facts about individual progra.s (such as whether they 

will terminate) and examining theoretical problems in computer science, such as 

computability. This was su •• arized by Hoare as follows; 

" The objective of a formal description of a progra .. lng language is 

to give a clear and unambiguous definition of the interface between the 

designers, users and implementors of the language, which they can all 

understand and refer to." [Hoare 1974] 
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Backus-Naur form has become a universally accepted way to describe 

programming language syntax. There has not been an approach to semantics which 

has had such success. The three most influential attempts have been 

Operational, Axiomatic and Denotational semantics. 

In this section, a brief summary will be given of the limits of each of 

the existing formalisms. This will be followed by an overview of the semantic 

representation which has actually been adopted. 

There are several limitations of this form of semantic representation. 

An important theoretical point is that this representation does not 

resolve the question of the "meaning" of an abstract expression. COllplex 

expressions are reduced to a large sequence of simpler expressions, but 

ultimately we reach the level of the basic operations, and we must rely on our 

own understanding to endow these with meaning. Operational semantics reduces 

the behaviour of a complex machine to the behaviour of a machine so simple that 

it could not possibly be misunderstood. 

A program is basically described by mimicing what happens during its 

execution. For this reason the semantics are not useful for making decisions 

about whether or not a program will terminate. Any program which locks itself 

into an infinite loop will have a corresponding operational se.antic 
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description which locks itself into an infinite loop. This was not really a 

problem in the original design of these semantics, since they were intended as 

a guide to the necessary behaviour of an implementation of a language rather 

than a system for proving facts about various properties of specific programs. 

A further consequence of this method of modelling programming semantics is 

that the operational approach does not allow statements to be made about 

expected outcomes or relationships between states. This makes the 

representation unsuitable for such tasks as automatic programming or program 

specif ication. 

The control flow between statements is a feature of the operational 

semantic machine. It is effectively a direct semantics, unable to deal with 

jumps and labels. 

Any form of operational semantics relies heavily on the architecture of 

its own abstract machine in reducing the "meaning" of an expression to a 

problem with simpler units. It has been noted that the teacher must be 

prepared to make drastic variations in the way she talks about a problem domain 

in order to make those descriptions more easily assimilable by the pupil. This 

flexibility is NOT easily achievable using Operational semantics. The systems 

which communicate with the pupil would need to be capable of drastic 

restructuring of information if this were the basic representation. 

A further problem is that the use of Constructed Objects to describe data 

items conceals something of their simplicity. The Constructed Object 

description of something as simple as a list can appear very confusing. 

In some ways, this representation provides an appropriate model for 
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tutoring Lisp. For example, the three element list which is constructed by 

(prefix a (prefix b (prefix c nullist») 

is very similar to the method used to construct such a list in Lisp; 

(CONS A (CONS B (CONS C NIL») 

This would allow a direct correspondence to be set up between prefix and 

CONS. This similarity reflects the common ancestry of the two systems. Both 

Lisp and Operational Semantics owe much of their underlying form to Church's 

lambda calculus [Church 1956] Indeed, one application which was originally 

suggested for Lisp was its use as a method for comparing program.ing languages. 

The simplicity offered by this similarity would not extend to tutoring 

other languages than Lisp. For this reason it was a deciding factor in not 

choosing this form of representation. 

In summary, then, operational semantics is capable of simulating the 

behaviour of a language interpreter. It provides a reasonable model of Lisp 

for generating descriptions of procedural mechanisms, but is cumbersome when 

applied to most other languages. It cannot be used to tackle the problems of 

automatic programming or problem generation. 

Since the introduction of axiomatic semantics, many papers have been 

produced showing formal limitations of Hoare logic as a system. A common 

difficulty is that since the system was designed around program units with a 

single input and output state, there is a problem with dealing with unusual 

control flow features. 
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dealt with. Certain instances of label can be dealt with by reorganising the 

loop as a function call [Clint 1972] , and more generally it has been proposed 

that axiomatic semantics can handle these features if it follows the control 

structure of a program rather than the textual form. This is returning to the 

work of Floyd [Floyd 1967] on which axiomatic semantics was based. In this 

work the inference was applied to a flowchart rather than a program text. 

For our purposes, an interesting limitation is that pointed out by 

M.O'Donnell [O'Donnell 1982] . In this paper it is shown that several rules 

used in axiomatic semantics are not logically sound, and introduce 

inconsistencies into the system. He suggests that it is important for a system 

such as this to " ... use a criterion for correctness that corresponds to our 

intuitive idea of legitimate reasoning.". This is contrasted with certain Hoare 

logic proofs, in which it is suggested that some rules " ... allow intuitively 

false reasoning which leads by formal tricks to a true result." This has 

important implications for the "truth" of intermediate results of a proof. It 

is shown that correct rules can be written, but that they are "unsatisfyingly 

inelegant". In conclusion, O'Donnell suggests that "convenient and elegant 

rules for reasoning about certain programming constructs will probably require 

a more flexible notation than Hoare's." 

It is suggested that axiomatic semantics provides an inadequate means of 

describing user-defined functions. This is not due to a limitation of the 

mechanism, but to the way in which the results are expressed. It seems 

intuitively reasonable to want to calculate the effect of a function once, and 

then to state the result as a lemma which may be directly incorporated into the 

proof of any program which uses that function. In fact, axiomatic semantics 

requires the conditions of the function proof of the function to be 

reestablished each time the function is called. 

Having highlighted these problems it should be acknowledged that research 

into axiomatic techniques is still progressing, and Hoare logiC has been 
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applied to some remarkably complex systems (such as parallel processing 

machines) . 

This semantic system appears to be better suited to providing explanations 

of programs and reasoning about specific problems than operational semantics. 

In a complete definition of a programming language [Hoare 1973] . we find 

fairly simple rules associated with each language statement. While these rules 

do describe the effect of the statement, they are not in direct correspondence 

with the descriptions which human programmers would exchange. To derive 

appropriate descriptions from these representations requires reference to 

certain global rules used in the language definition, and consequently involves 

a large amount of computation in organizing this knowledge for presentation. 

Apart from the problem of intuitively false reasoning being permitted in 

Hoare logic, it is unlikely that any of the formal limitations of the system 

which were mentioned above will cause problems in the task of tutoring novice 

programmers. Most of these limitations are in areas in which the requirements 

for correctness of the system can reasonably be relaxed when dealing with 

novices. 

A more serious problem is with the style of proof. While a typical 

axiomatic semantic proof of the properties of a program would be quite 

acceptable to an individual with a mathematical background, many others would 

find it extremely unhelpful. For these people it is a transfer from one 

unclear formalism (the programming language) to another. The problem is not 

easily overcome, since it is to do with overall approach rather than some 

detail such as how the proof is described. 

It is apparent that mathematicians generally have some model of the form 
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that a proof will take before attempting to write it rigorously. We must try 

and access the information which precedes the formal proof if we are to provide 

psychologically reasonable explanations of programs. 

Denotational semantics has proved to be a powerful method for describing 

program behaviour. Its limits as a representation system have not been fully 

explored, although there seems to be some difficulty in describing certain 

classes of parallel and nondeterministic computation. These li.its need not 

concern us here. 

The denotational description of the execution of a program 

corresponds quite well to an intuitive model of the way in which an 

interpreter operates. The description may be manipulated mathematically to 

deal with other issues in program representation. A possible limitation is 

that the system is essentially procedural in nature, which aay lead to 

difficulties when attempting to tutor declarative languages. Another source of 

uncertainty for the pupil is the primacy of recursive representations in 

Denotational Semantics. Recursion does not appear to be an obvious form of 

activity to novice programmers. 
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As has been shown in the previous section, none of the existing formalisms 

for describing the semantics of programming languages is perfectly suited to 

all the tasks required for tutoring. The design goals of the representation 

which is actually used focus upon some of these difficulties. These goals will 

now be outlined. 

1) The task of explaining the execution of a program requires a procedural 

model of the interpreter. This need not be a model of the actual 

implementation provided that it does not conflict with the behaviour of the 

interpreter. In fact, there may be a large number of acceptable models, and 

different models may be suitable for teaching the same concepts to different 

individuals, or different concepts to the same individual. 

For example, consider the following three models of recursion. 

i) When a function calls itself, the current value of each local 

variable is placed on a push-down stack and new values are calculated. 

When that invocation exits, the old values are retrieved from the stack in 

the reverse order to that in which they were put on. 

ii) Each local variable is a push-down stack. When a new invocation of 

the function is made, the new value calculated for a given variable 

becomes the top item on that variable-stack. The next item down is the 

previous value for that variable, and so on. Each time an invocation of a 

function is exited, the top item on each variable-stack is thrown away. 

iii) When a call to a function is encountered, the system finds the body 

of the function and sUbstitutes it for the function call, replacing each 

instance of a bound variable with the appropriate calculation of an 

argument. 
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The first two examples are completely acceptable models of recursion. The 

first is closer to an actual implementation, while the second achieves 

simplicity by ignoring the available ordering information and positing an 

arbitrary number of stacks. Since the latter does not require a particular 

evaluation sequence for arguments it is closer to the mathematically pure idea 

of a functional architecture. The third example provides an adequate model for 

purely functional systems, but is wrong in its predictions for certain cases 

involving side-effects. For example, 

(DE FRED (X) 

(COND «ZEROP X) NIL) 

(T (PROGN (SETQ X (ADDl X» 

(FRED (SUBl X» »» 

will recurse indefinitely. If we used the model in iii) to substitute a 

calculated value for X in a second invocation etc, we would get; 

(DE FRED (X) 

(COND «ZEROP X) NIL) 

(T (PROGN (SETQ X (ADDl X» 

(COND «ZEROP (SUBl X» NIL) 

(T (PROGN (SETQ X (ADDl (SUBl X») 

(FRED (SUBl(SUBl X») »» 

we can see that the value of X actually decreases for the next substitution, so 

this model predicts that the function will terminate. 

Despite its problems, the third model is very useful. It can be shown as 

a simple extension of more general function invocation, and will behave 

perfectly in most situations. 

Each of the formal descriptions given earlier (with the exception of 

Denotational semantics) implies one particular procedural .odel of the 
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language. A goal of the chosen formalism was to support an explanatory 

mechanism which could offer different procedural models of the same basic 

representation. 

2) When a real programmer or student describes the action of a program, 

they often talk in terms of the "state" of the execution at a particular time, 

or the "properties" of a particular statement. Empirical studies have shown 

[Sime 1973] that programmers tend to analyse programs in terms of "states" as 

opposed to procedural features such as control flow. These declarative 

statements about a program are a necessary part of abstracting away from the 

properties of a particular machine. The semantic representation is intended to 

support these static descriptions of a program. 

3) The primitives used by each of the systems mentioned above are chosen 

for their expressive power in a formal mathematical sense. This is not 

necessarily equivalent to their expressive power as concepts for producing 

reasonable descriptions for human beings to use. The primitives must often be 

explained before they can be used. A good example of this is the use of "dot 

notation" for representing lists. This notation is a basic unit in all the 

systems which have been described and corresponds to a typical method of 

implementing list representations in a computer. It divides a list into the 

complementary pair of "first element" and "everything except the first 

element". A human being (unlike a computer) may examine a list starting from 

either end, so this unbalanced representation of a list is far less flexible 

than that used by humans. I would suggest that humans are able to use "the nth 

element", "the elements before n", and "the elements following n", as 

reasonable primitives of list manipulation. 

In choosing the primitives of this system, the process of explaining them 

to the pupil has been borne in mind, so it is hoped that they are aore 

immediately understandable than the basic concepts of 'other systems. 
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Before describing the semantics in detail, it is best to acknowledge 

certain limitations of the representation which is used here. These may not be 

absolute limits of this form of representation, but are aspects which were too 

complex to explore in the available time, or which were not of fundamental 

importance to this application. 

1) The representation is a form of Direct Semantics. This means that the 

state resulting from executing one piece of code is always passed directly to 

the textually adjacent section of code. Such an approach leads to a simpler 

semantics for individual statements than would be the case with a Continuation 

semantics, but unusual control flow features - such as jumps and exits due to 

errors - cannot be adequately represented. Some special cases can be handled 

by unusual techniques (e.g. [M.Clint 1972] ), but a consistent general method 

for dealing with these features cannot be provided. The semantic 

representation used in IMPART assumes that jumps do not exist, and deals with 

errors by patching a temporary solution and continuing the execution. 

2) Representing variables so that their behaviour is correctly modelled 

under all circumstances is difficult. In particular, a complete modelling of 

aliasing and shared binding is hard to produce. Modelling the difference 

between call by value and call by reference languages also requires a 

flexibility which has not been explored in this representation. LISP, in 

particular, treats variables in ways which are difficult to .odel. 

Another problem of the system used here is that it is difficult to 

represent holes in variable scoping. In particular all local variables are 

effectively scoped as fluids. This limitation should be reasonably 
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straightforward to overcome, but no attempt to do so has been made. 

3) Many formal program description techniques focus on the difficult 

problem of proving whether a program will terminate or not. The present system 

does not consider this problem. Expressions are executed without proving that 

they will terminate. 

4) Effort has not been expended on achieving mathematical purity for this 

representation. It is not a mathematically minimal system, nor is it 

sufficiently complete or consistent to model all formal languages. The 

representation is probably more powerful than it need be to deal with context­

free languages. It is hoped that work on this area can be continued. 

5) The semantics of datatypes have not been dealt with in sufficient 

degree. In particular, lazy typing can cause problems. For example, NIL may 

be regarded as an atom, a list or a boolean in Lisp. If these roles are mixed 

(e.g. by CONSing onto the value of a failed predicate), then the current 

version of the semantics will regard it as illegal. 

Another problem is with user-defined datatypes. Although simple datatypes 

have been explored, the system is not in a state which is capable of dealing 

with embedded datatypes. For example, a PASCAL record whose fields are 

themselves records cannot be handled. 

Five major problems which must be tackled in the tutoring system have been 

described. Each of them makes use of knowledge about the semantics of the 

programming language which is being tutored. Traditional methods of 

representing program semantics have been summarized, and their application to 

tutoring considered. The reasons for opting for a new formalism have been 

given and the limitations of that formalism have been discussed. 

Mark E-C 27 - 2 - 85 Page 161 



Chapter 10. 

Using a semantic representation 

for tutoring. 



The representation used is essentially a form of predicate calculus. In 

fact, the semantics are implemented in PROLOG to simplify the task of 

mechanization. For this reason they will be shown in PROLOG syntax. No 

knowledge of the language itself is assumed. 

The basic model for communication involves the existence of an arbitrary 

number of named "channels" which link program statements together. Statements 

communicate using the primitives IN and OUT. Each of these primitives has two 

arguments. In both cases the first argument is a channel name. These names 

must match if information is to pass from an OUT statement to an IN statement. 

The second argument to OUT may be any piece of data. The second argument to IN 

must be a variable. The effect is to bind that data to occurences of that 

name. For example, 

out($value$,4),out($printer$,hello), 

... , 

in($value$,VAL),in($printer$,PR) 

has the effect of replacing VAL with 4 and PR with hello. It should be 

noted that the naming of channels permits the representation of the se.antics 

of parallel communicating processes. The "value" channel is co_only used to 

return the values of expressions. 
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In order to determine the effect of a particular statement it is often 

necessary to determine the effect of subcomponents within that statement. For 

example, the value of (ADDl X) depends on the value of X. The DO primitive 

takes one argument and represents determining the effect of that argument. If 

I wish to determine the behaviour of "addl(3)" I would represent this as 

"do(addl(3»", and somewhere within the description of addl(3) will be the 

statement "do(3)". 

It is worth noting that allowing the DO primitive to appear in statement 

descriptions permits the recursive definition of statements. The 

representation does not have an iterative control flow construct. 

Some language statements must represent a choice between two or more 

possibilities; (this is the case with conditional statements, for example). A 

choice is represented using the OR predicate. This predicate may have two or 

three arguments, each of which is a list of semantic primitives. As an 

example, "IF test THEN actionl ELSE action2" would include in its description 

the primitive; 

or([test,action1],[action2]). 

The way OR operates is to start with the leftmost argument and carry out 

every item in that list. If it reaches the end of the list then it has 

succeeded, otherwise it repeats the process for the second argument. An error 

situation arises if OR cannot get to the end of any of the lists. 

Another useful predicate for control flow is DONOTHING. This, as one 

would expect, does nothing. The predicate is used in conjunction with OR when 

one path requires no action to be taken (e.g in a while-do statement). 

The EQUALL predicate is a test which takes two arguaents. If the 

arguments are identical then the test succeeds, otherwise it fails. 
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Side-effects are represented by introducing the concept of an 

"environment" which holds information about the value of variables, scope of 

identifiers and so on. Special items like scoping are represented by "tags" 

which are identifiers surrounded by "$" signs. There are four primitives which 

can manipulate the environment; 

1) CREATE - This primitive takes two arguments, the first being an 

identifier and the second being an item associated with that identifier. 

It adds this pair as the most recent thing in the environment. It does 

not affect any existing members of the environment. Examples of using 

this primitive would be 

create(deal,5) 

create(deal,$local$) 

which may be taken to mean assign value 5 to "deal", and declare 

"deal" as a local variable, respectively. The environment maintains a 

recency ordering, so that 

create(deal,5) 

create(deal,8) 

may be used to represent a variable which currently has value 8, but 

which will revert to a value 5 when the program exits from the current 

scope declaration. 

2) DELETE - This takes two arguments. The first is an identifier and the 

second matches an item in the environment. The primitive removes the 

most recent member of the environment which matches its arguments. If no 

such member is found, it fails. The most COBmon use of this and the 

previous predicate is to change variable declarations. The effect of a 

PROG statement which declares X local will include the primitives 
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create(x,nil) 

create(x,$local$) 

near the beginning and 

delete(x,_) 

delete(x,$local$) 

near the end. 

3) CHANGE - This has two arguments. It finds an expression whose left 

hand side is equal to the first argument and modifies the right-hand side 

of that environment pair to be equivalent to the second argument. This 

primitive is not strictly necessary since the task could be achieved by a 

DELETE/CREATE pair, but these pairs occur with such frequency that it is 

convenient to have a more concise version. 

before: [[x,5],[y,7],[x,fred]] 

change(x,different) 

after: [[x,different],[y,7],[x,fred]] 

4) SEE - This takes two arguments. The first being an identifier and the 

second being an item. It succeeds if it can find a corresponding pair in 

the environment, and fails otherwise. As an example, 

see(x,SlocaIS) 

is a means of checking whether x has been declared as a local 

variable. 

There are three datatypes recognised by tbe seaantic system; 

Mark E-C 27 - 2 - 85 Page 166 



1) Numbers - The semantics are capable of dealing with positive and 

negative integers. The operations PLUS, TIMES, DIFFERENCE, DIVIDE and 

GREATER are defined on these numbers. 

2) Identifiers - A usable identifier is taken to be a string of 

alphanumeric characters. There are no special operations defined on 

identifiers. 

3) Ordered sets - Every other object is an ordered set of elements ( 

which may themselves be ordered sets). Each set has a set-type associated 

with it (such as **list). These have no effect on the actions which may be 

performed on the set, but indicate a particular type of object in the 

target language with which that set may be associated. For example, 

**list(a,b,c) 

**vector(a,b,c) 

are two different datatypes in the target language (one is a list, the 

other a vector), but are effectively indistinguishable in terms of the 

primitive operations which may be carried out on them. There is one 

special case of this primitive, which is the empty set. There are six 

operations defined on ordered sets; 

i) 'ELEMENT(N,SET,NAME) - gives name NAME to the Nth element of SET. 

ELEMENT(3,*(a,b,c,d),c) 

ii) BEFORE(N,SET,NAME) - NAME becomes a set of those elements which 

precede the Nth element in SET. 

BEFORE(3,*(a,b,c,d),*(a,b» 

iii) AFTER(N,SET,NAME) - NAME becomes a set of those elements which 

follow the Nth element in SET. 

AFTER(3,*(a,b,c,d),*(d» 

iv) ADDELEMENT(N,ITEM,SET,NAME) - NAME is a new set, like SET but with an 

additional element ITEM in the Nth position. 
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ADDELEMENT(3,zz,*(a,b,c,d),*(a,b,zz,c,d» 

v) ADDBEFORE(N,NEWSET,SET,NAME) - NAME becomes a set, like SET but with 

the elements of NEWSET added before the Nth position. 

ADDBEFORE(3,*(x,y,z),*(a,b,c,d),*(a,b,x,y,z,c,d» 

vi) ADDAFTER(N,NEWSET,SET, NAME) - Like ADDBEFORE, but the new elements 

appear after the Nth position. 

ADDAFTER(3,*(x,y,z),*(a,b,c,d),*(a,b,c,x,y,z,d» 

As part of the description of a language, it is necessary to provide a 

description of all the basic types of object which are used in the language. 

This must cover types of program statement as well as data types. In this 

formalism object-types are defined by a series of "type" predicates which 

describe the types of the target language in terms of the primitive datatypes 

of the semantic representation. Some work has been done on formalizing the 

semantics of datatypes [Hoare 1972] but since the types of object in a given 

language are very diverse and have few properties which are shared due to 

underlying principles, this system has made no attempt to generate a set of 

semantic primitives which will describe all datatypes. Types are described by 

Prolog clauses such as those shown below. Since this is a bottom-level of the 

system "understanding", methods for talking about these datatypes must also be 

provided with a particular language. 

sexpr 

atom list Vector 
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num bool alpha biglist dotted-pair 

Figure 13 - Lisp datatypes. 

This figure illustrates the hierarchy of datatypes in LISP. Each of these 

datatypes must be described in terms of the primitive datatypes. For example, 

the number 3 is an instance of "num". More generally it may be regarded as a 

special case of an "atom", and as one particular type of "sexpr". 

The following specification is a complete set of type descriptions for 

LISP. The general convention is that the first argument corresponds to a 

particular object whose type we wish to determine, while the second gives the 

name of that type of object. In the instance of "t", for example, rule (2) 

simply indicates that "t" is a boolean. The more complex datatypes include a 

right-hand side (following the ":-" operator), which express the constraints 

upon a particular sort of datatype in terms of the primitives of the semantic 

representation. An example of this is rule (4), which states that any object 

?X is an instance of "alpha" if it corresponds to an identifier in the semantic 

representation. It will be recalled that there are three types of primitive 

to which datatypes may be related: identifiers, integers and ordered sets. 

These are identified by the corresponding predicates "prim_identifier", 

"prim_integer" and "prim_o_set". 

It was mentioned above that an item may belong to several categories of 

object-type. In the specification shown below the rules are ordered: rule (1) 

is the most specific rule and rule (8) is the least specific. It can be seen 

that an integer could be identified as a number by rule (1), as an atom by rule 

(5) and as an sexpr by rule (8). 

1) type(?X,number):-prim_integer(?X). 

/* Anything is a number if it is a primitive integer */ 

2) type(t,boolean). 

1* t is a boolean 
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3) type(nil,boolean). 

/* nil is a boolean */ 

4) type(?X,alpha):-prim_identifier(?X). 

/* Anything is an alpha if it is a primitive identifier */ 

5) type(?X,atom):-type(?X,number); 

type(nil,boolean); 

type(?X,alpha). 

/* Anything is an atom if it is a number or a boolean or an alpha *1 

6) type(?X,list):-prim_o_set(?X), 

o set name(?X,**list). 

/* Anything is a list if it is a primitive ordered set called "**list" 

*/ 

7) type(?X,vector):-prim_o_set(?X), 

o_set_name(?X,**vector). 

/* Anything is a vector if it is a primitive ordered set called 

"**vector" */ 

8) type(?X,sexpr):-type(?X,atom); 

type(?X,list); 

type(?X,vector). 

/* Anything is an sexpr if it is an atom or a list or a vector */ 

One further example will illustrate the application of this technique to 

giving types to particular language expressions. This predicate defines an 

expression as any statement which returns a value; 

type(X,expression):­

effect(X,PRE,POST), 

member(out($value$, ),POST). 
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To illustrate the operation of user-defined datatypes. let us consider 

defining the following record in PASCAL; 

VAR fred:RECORD x.y:num; 

This involves creating a variable "fred" which has two numbers associated 

with it that may be referenced as fred.x and fred.y respectively. This is 

achieved by defining ".n as a binary operator in PASCAL. which searches the 

environment for an instance of its first argument with the second argument in 

its tag-field. Essentially our definition of "fred" will add 

[[fred.$fluid$].[fred.[x.*unbound]].[fred.[y.*unbound]]] 

to the environment. This will be deleted when the scope of fred is left. 

For each statement in the language. a description is produced which lists 

the preconditions for carrying out that statement and then gives a sequence of 

actions which correspond to the effect of the body of the statement. Further 

examples of statement descriptions can be found in appendix 2. where a 

reasonably complete description of LISP is given. 

As a simple example. consider representing the behaviour of a number in a 

programming language. The effect of executing a number. such as 1. is to 

return that number as the value of the execution. This is represented as 
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follows; 

effect(l, 

[], 

[out('$value$' ,1)]). 

This representation is called an "effect" predicate. It should be 

regarded as an object "effect" which corresponds to a description of the action 

of a language statement. The predicate has three arguments which are shown on 

separate lines, delimited by commas. A full stop indicates the end of the 

description. In this case, argument 1 is the number 1. This simply identifies 

the statement which this effect applies to. The second argument is the empty 

list []. This fills the position at which we would expect to find 

preconditions of the statement. In this case it indicates that when we are 

dealing with the number 1, no further tests need be made. The final argument 

represents the body of the function. In this case only one action is present. 

This is an OUT action which, as explained above, has the net effect of causing 

the expression to return the value 1 as its result. 

Clearly, it is not possible to provide such an effect description for each 

member of the infinite set of numbers. Instead, an "effect schema" is defined. 

This is an effect predicate similar to that given above, but which may match a 

number of program statements. If the schema successfully matches a particular 

statement, then it becomes "instantiated", to produce an effect description for 

that particular statement. In the following exaaple we have a scheaa for 

numbers. The particular instance of the nuaber 1 would match this and it would 

become instantiated to the same "effect" description as that given above. 

effect(NUM, 

[], 

[out('$value$' ,NUM)]) 

:-type(NUM,number). 
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Some additional features of the representation have been introduced in 

this example. "NUM" is a variable. It may match any statement but will become 

instantiated to a particular number if the schema is applied to a number. It 

is a convention that all variables will be shown in capital letters. It will 

also be noticed that this schema has a right-hand side (following the .- sign). 

This provides constraints upon the language statements which may match a 

particular schema. In this case it indicates that this schema will only apply 

to statements which are numbers. It is important to note the distinction 

between instantiating a schema to produce an effect description, and 

instantiating an effect description to produce a complete description of the 

action of a statement. 

It should be observed that the right-hand side of the schema does not 

serve the same purpose as the preconditions of the "effect" (argument 2). The 

preconditions are a feature of a particular effect description, while the 

right-hand side is part of the instantiation mechanism which produces that 

effect description from a schema. It should be apparent that the following 

schema is incorrect since it confuses these roles. 

effect (NUM, 

[type(NUM,number)], 

[out('$value$' ,NUM)]). 

Let us now consider the application of these descriptions to the lisp 

function ADD1. This function expects one argument which is a number, and 
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returns a value one greater than that argument. 

effect(addl(ARG1), 

[type(ARG1,sexpr)], 

[do(ARG1) , 

in('$value$' ,VARG1), 

type (VARGl ,number} , 

plus(l,VARGl,RES) , 

out('$value$' ,RES)]). 

/* 1 */ 

/* 2 */ 

/* 3 */ 

The first argument /* 1 */ is more complex than in the previous example. 

It provides an "abstract syntax" of the function ADDl which indicates that it 

has one argument. Ordering of arguments is the same as that of the language 

being described, but no other "syntactic spice" is preserved. In this case, as 

with most statements, the abstract syntax is sufficient to determine whether a 

given expression can be represented by this schema. Use of a right-hand side 

is rare. If we attempt to describe the general properties of ADDl using this 

schema, we would have the following description; 

" ADDl takes one argument {addl(ARGl}}. The argument must be an s­

expression (any lisp expression) {type(ARG1,sexpr)}. The arguaent is 

evaluated {do(ARG1)} and it returns a value {in('$value$' ,VARGl)}. This 

value must be a number {type(VARGl,number)}. One is added to the number 

{plus(l,VARGl,RES)} and this is returned as the value of the function 

{ ou t ( '$val ue$' , RES) } . " 

Note that this schema will match any instance of ADDl irrespective of the 

type of argument which it has. For example, (ADDl (QUOTE X» will produce the 
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legitimate instantiation; 

effect(addl(quote(x», 

[type(quote(x),sexpr)], 

[do(quote(x» , 

in('$value$' ,VARGl), 

type(VARGl,number), 

plus(l,VARGl,RES), 

out('$value$' ,RES)]). 

The system detects the problem with this expression if it actually 

attempts to fill in the undetermined parts of the instantiation. The step 

"do(quote(x»" will place a value X in the environment which will be 

substituted for all instances of VARG1. The body will therefore contain the 

test "type(x,number)" which will fail. Any item in the preconditions or body 

which fails would correspond to an error being generated by a normal 

interpreter. By contrast, here is an example of the description of (ADDl 

(QUOTE 3» after it has been successfully carried out; 

effect(addl(quote(3», 

[type(quote(3),sexpr)], 

[do(quote(3», 

inC '$value$' ,3), 

type(3,number), 

plus(1,3,4), 

out('$value$' ,4)]). 

Consider the more complex exuple of a "whUe_do_" statement in PASCAL. 

This statement executes its second argu.ent until the test which is represented 

by its first argument fails. It then terminates. The choice of paths in a 

statement is represented by the predicate "or". An "error" will only be 
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generated inside an "or" if all the alternative paths fail. 

effect( 'while_do'(ARGl,ARG2), 

[type(ARGI,expression) , 

type (ARG2 ,statement)] , 

[do(ARGl), 

in('$value$' ,VARGI), 

type (VARGI ,boolean) , 

or([equall(VARGl,true) , 

do (ARG2) , 

dO('while_do' (ARG1,ARG2»], 

[equall(VARGI,false) , 

donothing])]). 

In the "or" statement, the first path corresponds to the case where the 

test (of the while statement) is true. In this case the second argument is 

executed and the "while_do" schema is used recursively. If the test fails, the 

second path of the "or" is followed and no further action is taken. 

The representation of pieces of code that have been named by the user 

(such as LISP function definitions or PASCAL procedure calls) involves adding 

an effect description to the language which will recognise a user-defined 

function, retrieve the appropriate code, and channel the appropriate data to 

and from that function. If such an effect descriptor exists, then it Is only 

necessary to place appropriate code in the environ.ent when a function is 

defined. Consider defining a function KATHLEEN; 

(DE KATHLEEN (A B) 
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(LIST A (ADDl B») 

The description of DE in appendix 2 shows that the net effect of this is 

to add 

[[kathleen. [$expr$. [a.b].list(a.(addl(b»)]] 

to the environment. Invoking KATHLEEN will match the description 

effect(X(ARG1.ARG2). 

[see(X.[$expr$. [PAR1.PAR2].BODY])]. 

[do(ARG1). 

in($value$.PAR1). 

do(ARG2) • 

in($value$.PAR2). 

do (BODY) , 

in($value$,VBODY), 

out($value$.VBODY)]). 

In this case, matching the function call with the environment has the 

effect of retrieving the parameters and body. Each argument is executed, and 

the resulting value bound to the appropriate parameter. The body is then 

executed, with the value being passed back to the statement which invoked this 

function. 

This section illustrates the foregoing description by providing a more 

formal outline of the way in which the semantics of the language used in the 

toy domain of chapter 7 is represented. 

The formal semantic descriptions of this toy language will now be given to 

show the practical aspects of this representation. They are presented in the 
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form of predicates written in the language PROLOG. These predicates are 

manipulated by a variety of programs in order to carry out tasks such as 

descriptive output, execution of commands, and planning a command sequence. An 

equivalent definition for LISP can be found in appendix 2. 

This is the description of the action PUSH. It should be compared with 

the English description in figure 8. 

effect(push(ARG1,ARG2), (1) 

[type(ARG1,actor), (2) 

type(ARG2,pushable)], (3) 

[or([ see(bolt,$down$)], (4) 

[ see(ARG2,$open$), 

change(ARG2,$shut$)], 

[ see(ARG2,$shut$), 

change(ARG2,$open$)] )] 

Figure 14 - Semantics of PUSH. 

) . 

Line 1 will match with a particular example of the action. For instance, 

MARY PUSH DOOR would match this effect by replacing all occurences of ARG1 with 

MARY, and all occurences of ARG2 with DOOR. Notice that all actions are 

reduced to this prefix format which retains the original argument ordering, but 

ignores syntactic "spice". 

Lines 2 and 3 together constitute the preconditions for the application of 

the function. In line 2 a check is made to ensure that the actor is a possible 

actor in this world. Line 3 makes sure that the object being pushed is a 

member of the class of pushable objects, although in this case the sparseness 

Mark E-C 27 - 2 - 85 Page 178 



of the world means that the only member of that class is the door. 

Line 4 to the end is the body of the action. In this case it consists of 

a single "or" statement, whose arguments represent 3 alternative possible ways 

to manipulate the world. Each argument is a list of statements consisting of 

tests on the environment or changes to be made in the environment. The 

interpreter will report a semantic error in a command if none of these 

alternatives can be completely carried out. The statements used in this case 

are "see", which tests the presence of a fact in the environment, and "change" 

which replaces a fact with another one. 

For this particular action, it is not possible to violate the semantics in 

the body, because it is defined in such a way that if it is not possible to 

move something then the function completes successfully but has no effect. 

Actions are not generally so robust. If it is preferable for an error to result 

from attempting to push an object when something is preventing it from moving, 

the definition would be rewritten as follows; 

effect(push(ARG1,ARG2) , 

[type(ARGl,actor), 

type(ARG2,pushable)], 

[or([ see(bolt,$up$), 1* Changes here *1 

see(ARG2,$open$), 

change(ARG2,$shut$)], 

[ see(bolt,$up$), 

see(ARG2,$shut$), 

change(ARG2,$open$)] )] 

Figure 15 - Extended se.antics ot PUSH. 

) . 

Sliding is an action which can be done to any slidable object (only the 

bolt in this case). It may be done by either actor, so long as they are 
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inside. It results in the bolt becoming up if it was down, or down if it was 

up. This would be expressed in the following way; 

effect(slide(ARGl,ARG2), 

[type(ARG1,actor), 

see([ARGl,$in$]), 

type(ARG2,slidable)], 

[or([ see(ARG2,$up$), 

change(ARG2,$down$)], 

[ see(ARG2,$down$), 

change(ARG2,$up$)])] 

Figure 16 - Semantics of SLIDE. 

) . 

An example of a violation of this semantic description would be " cannot 

satisfy see([john,$in$]) in the preconditions of slide" i.e. JOHN cannot slide 

the bolt because he is not in. 

Move has the special requirement that it's actor and object are the same. 

It only has an effect if the door is open, when it moves actors out if they are 

in, or in if they are out; 

effect(move(ARG1,ARG2), 

[type(ARG1.actor). 

equall(ARG1.ARG2)], 
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[or([ see(door.SshutS)]. 

[ see(ARG1,$in$), 

change(ARGl.$out$)]. 

[ see(ARG1.$out$). 

change(ARG1.$in$)])] 
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Figure 17 - Semantics of MOVE. 

In the above definitions, all predicates (such as "see") are primitives 

which are defined within the "effect interpreter" with the exception of "type", 

which identifies the basic datatypes of the language. This predicate must be 

provided as part of the language description. It takes two arguments, the 

second being the name of the type of the first. These are written as normal 

prolog clauses. For this world they are as follows; 

type(john,actor). 

type(marY,actor). 

type(door,pushable). 

type(bolt,slidable). 

type(_,object). /* i.e. Everything is an object */ 

As an example of the way in which this system is extensible, consider 

adding an extra actor which will behave exactly like the others. This simply 

involves adding the type description; 

type(suzi,actor). 

If an extra object which behaves differently is added, then the actions 

must be rewritten accordingly. For example, adding a WINDOW which may be 

PUSHed and is independant of the state of the BOLT would require PUSH to be 

modified as follows; 

effect(push(ARG1,ARG2), (1) 
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[type(ARG1,actor), (2) 

type(ARG2,pushable)], (3) 

[or([ equall(ARG2,door),see(bolt,$down$)], (4) 

[ see(ARG2,$open$), 
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change(ARG2,$shut$)], 

see(ARG2,$shut$), 

change(ARG2,$open$)] )] 

Figure 18 - Alternative semantics of PUSH. 

) . 

i.e. one extra test has been added to line 4. It is also necessary to add 

a type predicate which extends the set of pushable objects; 

type(window,pushable). 

The formalism used here may be compared with other methods of describing 

programming language semantics. It may be viewed in a variety of ways, 

depending upon the manner in which it is applied. 

The primitives of the representation may be regarded as primitives of a 

simple machine, as with Operational semantics. This is not the most productive 

way to regard the system, since it precludes the sort of reasoning about the 

semantics which will be described in the next section. Although the effect 

descriptions may be read declaratively as assertions about the state of the 

environment before and after a statement is executed, it is not immediately 

clear whether these descriptions provide a basis for linking assertions about 

relationships between states as is done in Axiomatic semantics. It may be 

possible to regard the effect descriptions as purely functional mappings 

between states, as in denotational semantics, but this requires further 

discussion (see below). 

Other differences of this representation are the choice of primitives 

(particularly those for list processing), and the fact that the system allows 

names to be assigned to individual objects within a program, rather than to 

groupings of objects. 
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It may also be noted that recursively defined statements 
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are of great importance to this style of language definition. 

Since denotational semantics is a very powerful representation system 

about which many results have been proved, it would be extremely useful to 

demonstrate an equivalence between this system and the Prolog representation 

given above. As it stands the Prolog system has acknowledged deficiencies and 

any formal attempt to prove an equivalence would undoubtedly fail. Instead an 

informal comparison will be provided with the proviso that future extensions to 

this representation will be made with reference to ways of improving this 

correspondence with denotational semantics. This section briefly outlines the 

basic ideas of denotational semantics, gives two definitions of the language 

TINY [Gordon 1979] (for comparison), and concludes by stating some rules for 

transforming between the Prolog representation and denotational semantics. 

Denotational semantics is the most complete descriptive formalism for 

programming languages which has been developed up to the present. It combines 

a complete and elegant mathematical structure with an intuitively reasonable 

descriptive theory. 

Only a direct denotational semantics will be outlined. A direct semantics 

is a system in which the result of executing one expression is passed to the 

textually adjacent expression in the program (similarly to axiomatic 

semantics). A more complex form of semantics which is capable of handling 

awkward control flow features, is a Continuation semantics. Here the idea of a 

CONTINUATION associated with each expression is used to for.alise the 

possibility of execution moving to an arbitrary point in the program text. 
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Continuation semantics will not be further discussed. 

The overall approach is to associate each program statement with a 

DENOTATION - an abstract mathematical entity which models the meaning of that 

statement. These denotations are described by SEMANTIC FUNCTIONS which are 

mathematical functions providing mappings between STATES, VALUES and ERRORS. 

The basic form is an expression 

P[P' ]s 

which represents P, the denotation of P' with respect to state s. 

A VALUE is defined to be a member of the set of denotable values defined 

for a particular language (this may contain integers, identifiers, complex 

numbers etc.). Let us also allow {error} to be the set of possible error 

conditions for a given language. A STATE consists of 3 components; 

MEMORY - a correspondence between identifiers and values, 

INPUT - list of all inputs to a program 

OUTPUT - list of all outputs from a program 

Language statements may be divided into Expressions and Commands, the 

distinction being that the former return a value. This difference is reflected 

in the range of their denotations; 

Semantic function of expressions; 

E[E]s E:EXP-->[State-->[[Value*State]+{error}]] 

E is the denotation of an expression E with respect to state s. The 

denotation takes a state, and either maps it onto a state and a value, or onto 

an error. 
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Semantic function of commands; 

C[C]s C:[State-->[State+{error}] 

C is the denotation of a command C with respect to state s. The 

denotation is a mapping which starts from a state and either maps onto a state 

or an error. 

Let us represent our environment as a value-state pair, where the state is 

a triple of memory-input-output (i.e. (v,s) and (v,(m,i,o» represent 

environments). The following examples give denotations for some simple 

expressions. 

E[l]s (l,s) {I} 

1 is an expression which has a value of 1 and leaves the current state 

unchanged. 

E[I](m,i,o) = (ml unbound)->error,(ml,(m,i,o» {2} 

In this case, I is any identifier. This denotation expresses the fact 

that if I is associated with the special value "unbound" in memory, then 

executing this expression results in an error. In other cases, the expression 

returns a value which is the item associated with I in memory, and leaves the 

original state unchanged. This description refers to the function m, which is 

a mathematical function associating variable names with values. 

C[I;=E]s =(E[E]s=(v,(m,i,o»)->(m[v/I],i,o),error {3} 

The assignment statement is a command. It determines the denotation of 

the right hand side of the assignment, and calls the resulting state 

(v,(m,i,o». If this succeeds then it returns a state in which the memory has 

been modified to give the value v to I, otherwise it returns an error. This 

illustrates a further use of the memory function in which m[v/I] is taken to 

mean: modify the memory such that I has value v. 
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In order to demonstrate the equivalence of this system to denotational 

semantics let us consider two definitions of the semantics of a simple language 

[M.J.C.Gordon 1979J called TINY. The aim is to give an intuitive feel for the 

correspondence between the definitions. The denotational form chosen is 

slightly simpler than the "standard" representation. 

The syntax of TINY can be given in a Backus-Naur form as follows; 

E' .= 0111 

truelfalsel 

readl 

II 

not EI 

El=E21 

E1+E2 

C' '= I:=EI 

output EI 

if E then C1 else C21 

while E do CI 

Cl;C2 

where E represents expressions and C represents commands. 

For the purposes of the denotational description, we will define the 

following domains 
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Ide={III is an identifier} 

Exp={EIE is an expression} 
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Com={CIC is a command} 

and formalise the state as follows; 

State=Memory x Input x Output 

Memory=Ide --> [Value+{unbound}] 

Input=Value* 

Output=Value* 

Value=Num + Bool 

Where * indicates a string (sequence of the items preceding the star). 

The formalized state corresponds to a "batch process" model of input and 

output where all inputs are present in the environment before execution and all 

outputs are present in the environment after execution. In the prolog 

formalism this will be modelled by the use of special tags "$input$" and 

"$output$". We will now give denotational and prolog forms of the semantics of 

each statement. 

(El) 

(El*) 

E[O]s 

E[l]s 

(O,s) 

(1. s) 

effect(O, 

[]. 

[out('$value$' ,0)]). 

effect(l, 

[]. 

[out('$value$' ,1)]). 

(E2) E[true]s = (true,s) 

E[false]s = (false,s) 

(E2*) effect(true, 

[]. 

[out('$value$' ,true)]). 
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effect(false, 

[], 

[out('$value$' ,false)]). 

These statements are clearly equivalent. The prolog version seems more 

like an "action", but it may be read in a declarative form. The use of replace 

with tags is more complex than setting the value of a denotational state, but 

it provides a more powerful mechanism which indicates the generality of the 

prolog "environment". 

(E3) E[read](m,i,o) 

(E3*) effect(read, 

[], 

null i 

->error, 

(hd i,(m,tl i,o» 

[in('$input$' ,VAL), 

out('$value$' ,VAL)]). 

E3 introduces the use of an if-then-else construct to allow for the 

possibility of an error in the execution of this statement. An equivalent item 

is not needed in E3* because the possibility of error is implicitly present in 

all the descriptions. The denotational description uses "HD" and "TL" to 

modify the input string, making some reference to the idea of a sequence of 

such objects. The Prolog form refers only to the item directly involved. The 

overall effect upon the "state" is not depicted as clearly in the Prolog 

representation as in E3. 

(E4) E[l](m,i,o) = (ml = unbound) 

(E4*) effect(ATOM, 

[], 
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->error 

,(ml,(m,i,o» 
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[see([ATOM,['$value$' ,VAL]]), 

out('$value$' ,VAL)]). 

In E4, mI corresponds to finding the value associated with I in memory. 

This is exactly equivalent to the "find" statement in E4*. The final "out" has 

no net effect on the state, and may be considered confusing when compared with 

the obviously unchanged state of E4. 

(E5) E[not E]s = (E[E]s=(v,s'» 

->isBool v 

->(not v,s') 

, error) , 

,error 

(E5*) effect(not(ARG1), 

[type(ARG1,expression)], 

[do (ARG1) , 

in( '$value$' , VARG1), 

type(VARG1,boolean), 

or([equall(VAL,false), 

out('$value$' ,true)], 

[equall(VAL,true), 

out('$value$' ,false)])]). 

E5* explicitly represents the fact that ARGl must be an expression. The 

"do" predicate corresponds to determining the denotation of the subexpression E 

in E5. The alternative possibilities are more clearly visible in E5*, where 

the use of an "or" predicate which permits an arbitrary number of possibilities 

subsumes the role of several if-then-else expressions. The "isBool" primitive 

is equivalent to a "type" predicate. E5* explicitly manipulates the truth 

values whereas E5 refers to a primitive boolean operation to achieve this. The 

lack of explicit mention of error states simplifiies the description in E5*. 

Both formalisms have introduced extra symbols to name intermediate states in 
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the process of execution. 

(E6) E[El=E2]s = (E[El]s=(vl,sl)) 

->«E[E2]sl=(v2,s2» 

->(vl=v2,s2) 

,error) 

,error 

(E6*) effect(equal(ARG1,ARG2), 

[type(ARG1,expression) , 

type(ARG2,expression)], 

[do (ARG1) , 

in('$value$' ,VARG1), 

do (ARG2 ), 

in('$value$' ,VARG2), 

or([equall(VARG1,VARG2), 

out('$value$' ,true)], 

[out('$value$' ,nil)])]). 

The only new item introduced here is the explicit test for equality 

"equall", which is equivalent to a denotational equality primitive. 

(E7) E[El+E2]s (E[El]s=(vl,sl» 

->«E[E2]s1 (v2,s2)) 

->(isNum vl and isNum v2 

->(v1+v2,s2) 

,error) 

,error) 

,error 

(E7*) effect('+'(ARGl,ARG2), 
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[type (ARGl ,expression) , 

type(ARG2,expression)], 

[do(ARG1) , 
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in('$value$' ,VARGl), 

type (VARGl ,number) , 

do (ARG2) , 

in ( '$value$' ,VARG2) , 

type (VARG2 ,number) , 

plus(VARGl,VARG2,RES) , 

out('$value$' ,RES)]). 

The denotational description introduces isNum (equivalent to a "type" 

predicate) and an addition primitive. A similar addition primitive is 

introduced in E7*. 

(Cl) C[I:=E]s (E[E]s=(v,(m,i,o») 

->(m[v/I],i,o) 

,error 

(Cl*) effect(' :=' (ARGl,ARG2), 

[type(ARG1,atom) , 

type(ARG2,expression)], 

[do(ARG2) , 

in('$value$' ,VARG2), 

change(ARG1,['$value$' ,VARG2])]). 

Typechecking is explicit in C1*. The function m[v/I] corresponds to a 

replace statement where the identifier is the first item. 

(C2) C[output E]s (E[E]s = (v,(m,i,o») 

->(m,i,v.o) 

,error 

(C2*) effect(output(ARGl), 
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[type (ARG1 ,expression)] , 

[do(ARG1) , 
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in('$value$' ,VARGl), 

out('$output$' ,VARGl)]). 

In C2, the string of outputs is modified by using the 

divides a list into first and rest. 

(C3) C[if E then Cl else C2]s = (E[E]s = (v,s'» 

->(isBool v 

->(v 

->C[Cl]s' 

,C[C2]s') 

,error) 

,error 

(C3*) effect('if_then_else' (ARG1,ARG2,ARG3), 

[type(ARGl,expression)], 

[do (ARG1) , 

in(['$value$' ,VARGl]), 

or([equall(VARG1,true), 

dO(ARG2)], 

[equall(VARGl,false) , 

do(ARG3)])]) . 

It .. operator which 

The use of a value as a test for the "->" construct is introduced in C3. 

Nothing new is added in C3*. 

(C4) C[while E do C]s = (E[E]s = (v,s'» 

->(isBool v 

->(v 

->«C[C]s' = s' ') 

->C[whlle E do C]s" 

,error) 

, s' ) , 

,error 
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(C4*) effect{'while_do' (ARGl,ARG2), 

[type(ARGl,expression), 

type{ARG2,statement)], 

[do(ARG1), 

in{'$value$' ,VARGl), 

type{VARG1,boolean), 

or{[equall{VARGl,true), 

do(ARG2} , 

do{'while_do' (ARGl,ARG2»], 

[equall(VARGl,false}, 

donothing]}]}. 

(C5) C[Cl;C2]s = (C[Cl]s = error) ->,C[C2](C[Cl]s} 

(C5*) effect('; '(ARGl,ARG2), 

[], 

[do(ARG1), 

do(ARG2}]). 

C5 illustrates the simplicity of the compound statement operator. Note 

the use of a null "then" part in the if-then-else construct. 

We will provide a set of rules for transforming individual primitives of a 

direct denotational semantic representation (slightly simpler than the standard 

representation) to a prolog semantic representation. 

A few global comparisons can be made. Firstly it should be noted that 

denotational semantics represents an expression as a mathematical 

transformation between states. The Prolog representation may also be regarded 

in this way, although the states are implicit in the representation rather than 
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being formalised. Where denotational semantics names separate states this 

formalism names individual items within a state - the set of these named items 

at any time constitutes a state. 

Another point of comparison is error-situations. Errors are permissible 

states in direct denotational semantics and in the Prolog formalism. The 

difference is that a denotational description must provide an explicit 

representation of possible error situations - an error is implicitly assumed in 

Prolog if any primitive fails to achieve its purpose. Each primitive will be 

discussed individually. 

E [E ' ] s 

C[C' ]s 

do (E' ) 

do (C ' ) 

The action of these primitives is subsumed by the "do" predicate. It 

appears simpler, since it does not explicitly refer to the state with respect 

to which the denotation of the object is determined. The type of a language 

statement cannot be determined from the "do" predicate and reference to the 

actual action of the statement must be made. 

TEST -> ACTIONI ,ACTION2 or([TEST,ACTIONl], 

[ACTION2]) 

The "or" predicate is rather more general than the If-then-else construct 

used in this description, since it permits an arbitrary number of tests and 

actions. Since they can be mixed together, this weakens the concept of "test" 

in the prolog representation and any action which does not succeed may be 

regarded as a test. 

NUMl + NUM2 == plus(NUMl,NUM2,RESULT) 

The only notable difference between these primitives is that the prolog 

form assigns a "name" to the result of the calculation, allowing it to be 
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explicitly mentioned later in the description. 

equall 

As a test for equivalence of two items, these two primitives serve the 

same purpose. In the denotational description, however, this primitive is used 

to perform other tasks. In expression C4 above, for example, it is being used 

to assign values to v and s'. 

not 

There is no Prolog equivalent of the "not" primitive. The effect of 

complementing a truth value is achieved by explicit manipulation of the 

booleans. 

isBo01 v == type(V,boolean) 

isNum v == type(V,number) 

For each domain, such as numbers, a function which tests an item for 

membership of that domain is generated. These are directly equivalent to the 

prolog "type" predicate which describes all the objects in the system. 

mI == see(I,VAL) 

Non-destructive examination of the value associated with an identifier is 

achieved by "seeing" the value in the environment. Notice that the prolog form 

has the side-effect of assigning a name to that item. 

m[v/I] == change([I,['$value$' .v]] 

The second argument to change may be an arbitrarily complex expression. 

null 

hd 

tl 
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The remaining primitives have no direct equivalent in the prolog form. 

The only larger data structure used in the denotational description is the 

list, which consists of a head and a tail which may be joined by a dot 

operator, or separated using "hd" and "tl". As was mentioned earlier, this 

notation for lists is essentially based upon a particular method for 

representing such structures in a computer. 

The prolog representation represents all larger data structures as ordered 

sets. It uses a different set of primitives to access the structure. The 

choice of primitives is based upon certain assumptions about the way in which 

humans deal with ordered sets. 

At this point, we have described a semantic representation which provides 

an adequate method of describing the behaviour of programs. A new formalism 

has been introduced, but the system could be expressed in terms of Predicate 

Calculus. 

In subsequent sections the tasks of modelling a learner and controlling an 

interaction will be discussed, as well as the problems identified in chapter 9. 

Each of these tasks makes use of the semantic notation which has been 

described. In most cases it is necessary to introduce extra domain-specific 

knowledge in order to solve the problems. It should be possible to formalize 

this additional knowledge. 

The approach which will be taken is to extend the semantic representation 

such that specialized knowledge may be associated with each semantic primitive. 
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Reasoning processes may be guided by this additional source of information. 

This knowledge will be represented using Annotated Predicate Calculus 

(APC) [Michalski 1983] which is a formalism that was developed for research on 

inductive reasoning. Michalski describes the overall aim of the formalism as 

follows; 

It •• Annotated Predicate Calculus adds to predicate calculus additional 

forms and new concepts that increase its expressive power and facilitate 

inductive inference." 

The main feature of APC is an ANNOTATION associated with each 

predicate,variable or function. These annotations contain problem-specific 

knowledge such as rules which relate that primitive to others, domain and range 

of functions, type of permissible descriptors etc. The annotations used in this 

tutoring system will be described as they are required in subsequent sections. 

To illustrate the idea, a partial annotation will be given here. The reader 

who wishes for more detail is referred to appendix 1 which lists all the 

information associated with each primitive. 

Primitive: addbefore 

Input:(l 1 1 0) 

Type: (number o-set o-set o-set) 

Rewrite: ((addbefore NAB C) 

((addafter N-l A B C)) 

This specifies that the first three arguments to ADDBEFORE must be given, 

while the fourth is a returned value. The first argument must be a number, 

while the rest are ordered sets. The rewrite rule specifies that attempting to 

add something before the Nth element of a set is the same as adding it after 
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the (N-l)th element of the set. 

The previous section discussed the basic way in which knowledge about the 

semantics of a programming language are represented. In this section we will 

discuss the way that this formalism can be used to tackle five of the problems 

described in chapter 9. 

The problems to be examined consist of; simulating an interpreter, 

generating descriptions of events, problem solving, problem generation and 

analysing program structure. 

Since there is no language interpreter as such in the system. a major task 

must be simulating the behaviour of an interpreter. This involves finding a way 

to mechanize the application of the semantic description to determining the 

effect of a particular expression. Within this problem we should examine the 

sub-problems of generating correct input-output behaviour, providing error 

messages at varying levels of complexity and generating information about 

intermediate states within a program. These issues will be discussed 

separately. 

The problem involves using "effect" descriptions of language statements to 

imitate the behaviour of an expression composed of those statements. For 

example, the following behaviour 

(QUOTE HERMIONE) 
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19. 

HERMIONE 

should be produced by referring to the definition of QUOTE given in figure 

effect(quote(ARG1), 

[type(ARG1, '$sexpr$')], 

[out('$value$' ,ARG1)]). 

Figure 19 - Semantics of QUOTE. 

The problem is simplified by the fact that the syntax editor (as mentioned 

above) produces a parse-tree of the expression on which the rest of the program 

can operate. In the above instance this would be "quote(hermione)". 

An automated interpreter must find the general schema which matches the 

expression it is trying to describe and instantiate that schema to produce a 

specific description of the effect of the given expression. In the above case, 

instantiation would produce 

effect(quote(hermione), 

[type(hermione, '$sexpr$')], 

[out('$value$' ,hermione)]). 

It was mentioned earlier that instantiation involves examining all the 

"effect" descriptions until one is found in which th~ abstract syntax and 

right-hand-side (if it exists) match the current expression. 

It is not usually the case that a description is completely determined by 

the instantiation process. Normally there are still undetermined elements. To 

complete the description, each primitive must be examined in turn to ensure 

that its conditions of application are satisfied. In the above case this 

involves checking that "hermione" is of the specified type, and ensuring that 

there is no reason why output could not be generated. In this illustration all 
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these tests succeed with no noticable effect on the description. A program to 

carry out this process has been implemented and appears with some sample 

interactions (including this one) in appendix 3. 

It is worth providing one further illustration of this process for a more 

complex expression. The behaviour which we expect is; 

(PLUS2 3 (PLUS2 4 5» 

12 

where the "effect" which matches PLUS2 is 

effect(plus2(ARG1,ARG2), 

[type(ARG1, '$sexpr$'),type(ARG2, '$sexpr$')], 

[do(ARG1), 

in('$value$' ,VARG1), 

type (VARGl , '$number$'), 

do (ARG2) , 

in('$value$' ,VARG2), 

type (VARG2, '$number$'), 

plus(VARG1,VARG2,RES) , 

out('$value$' ,RES)]). 

and the "effect" of a number is; 

effect (NUM, 

[], 

[out('$value$' ,NUM)]). 

The instantiation replaces all occurences of the variables ARGl and ARG2; 

effect(plus2(3,plus2(4,5», 

[type(3, '$sexpr$'),type(plus2(4,5), '$sexpr$')], 

[dol 3) , 

in( '$value$' ,VARG1) , 
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type(VARG1, '$number$'), 

do(plus2(4,5», 

in('$value$' ,VARG2), 

type(VARG2, '$number$'), 

plus(VARG1,VARG2,RES), 

out('$value$' ,RES)]). 

As in the previous case, each "type" test succeeds, so these can be 

removed from the description. When we reach the "do" primitive, it is 

essentially a request to determine the effect of a subexpression. For the 

purposes of illustration we will do this by substituting the meaning of that 

expression for the "do" primitive( the actual interpreter simply inserts a 

reference so that it is easier to generate debugging information). 

Instantiating the description of a number for the special case "3" ("type" 

predicates have been omitted for clarity), we get; 

effect(plus2(3,plus2(4,5», 

[out('$value$' ,3), 

inC '$value$' ,VARG1) , 

type (VARGl, '$number$'), 

do(plus2(4,5», 

in('$value$' ,VARG2), 

type(VARG2, '$number$'), 

plus(VARG1,VARG2,RES), 

out('$value$' ,RES)]). 

Examining the definitions of "out" and "in" shows that an out/in pair with 

the same channel name effectively cancel out, resulting in a substitution of 

the second argument to "out" wherever the second argument to "in" occured. 

This produces; 

effect(plus2(3,plus2(4,5», 

[type(3, '$number$'), 
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do(plus2(4,5» , 

in('$value$' ,VARG2), 

type (VARG2, '$number$'), 

plus(3,VARG2,RES), 

out('$value$' ,RES)]). 

The "type" test succeeds, and the "do" statement will be treated as in the 

previous case, leaving the description as 

effect(plus2(3,plus2(4,5)), 

[plus(3,9,RES), 

out('$value$' ,RES)]). 

Finally, the plus primitive is found to be correct when RES is 12, and the 

corresponding substitution is made. Our description of the event is 

effect(plus2(3,plus2(4,5)), 

[out('$value$' ,12)]). 

It can clearly be seen that this corresponds to the expected behaviour. 

In general this process reduces any description of an expression to instances 

of those primitives which have consequences for the state of the machine. In 

our system this is instances of OUT,CHANGE and CREATE. It is also worth noting 

that this mechanization will result in identical descriptions for events which 

have identical effects. If two expressions have the same effect their 

simplified descriptions will be the same, although the process of deriving 

those descriptions may be vastly different. 

As was discussed in chapter 9, there are several issues involved in the 

production of error information. One of these is the generation of simple 

"error messages" for the pupil, a second is the generation of more complex 
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error information to help the teacher. 

In the mechanization described above, an error occurs if one of the 

description primitives cannot be satisfied. For example, 

(CAR (QUOTE ADRIAN» 

would result in an error when the system tests to ensure that ADRIAN is a 

list. This violation of the requirements of a semantic primitive constitutes 

the basic component of all error information. This example and the semantic 

description of CAR will be referred to later. The description is; 

effect(car(ARG1), 

[type(ARG1, '$sexpr$')], 

[do(ARG1), 

in ( '$value$' , VARGl) , 

type(VARG1, '$list$'), 

element(l,VARGl,VAL), 

out('$value$' ,VAL)]). 

This section indicates which semantic information could be used to produce 

error messages. It does not explain how this information is transformed to 

reasonable English. This is partially covered in subsequent sections, but 

constitutes an area of the system design which has not yet been examined in 

sufficient detail. 

The task of producing simple messages which appear like those of a normal 

Lisp interpreter is quite simple. It will be recalled that these messages are 

intended to aid the pupil in transferring to a normal interpreter, so they 

should be concise and perhaps somewhat less informative than is optimal in a 
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teaching environment (though they will be backed up by the teacher). A 

reasonable means of achieving this is simply to report which semantic primitive 

failed. Allowing for a canned message associated with each primitive this 

would produce something like; 

"***** NOT A LIST" 

for the above case. Few LISP interpreters are this unhelpful (there are 

some!). It is more useful to provide a little contextual information by giving 

details of the specific instantiation of the primitive. This would produce 

"***** ADRIAN IS NOT A LIST" 

This is the level of message chosen for the interpreter. More details of 

the actual messages used will be found in appendix 1. 

It is clear that neither of these messages is adequate for anything except 

reminding an expert user of a careless slip. This is why it is necessary to 

produce more detailed information for the teacher to use in guiding the pupil. 

The first advantage that the teacher has is detailed knowledge of the 

location of an error. It is apparent which statement description was being 

used when the error occured, and where the primitive which failed was located 

in that description. In the above example this is sufficient to indicate that 

CAR expects the value of its argument to be of "type" list, and that this is 

what ADRIAN failed to satisfy. 

As well as examining those things which occured before the error, useful 

information can often be produced by continuing execution from the error point 

and detecting any consequences of the error. In the case shown above this 

would result in a second error since it is not possible to take the first 
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element of ADRIAN. This provides sufficient information for a more detailed 

description of what went wrong, such as; 

" CAR evaluates its argument. It expects the result to be a LIST. 

It examines the first element from this LIST. The value of the argument 

is ADRIAN. ADRIAN is not a LIST. It is not possible to examine the first 

element of ADRIAN." 

It may be the case that more than one error is generated by a particular 

expression. In this case it is important to identify all the errors which 

occur so that the teacher can decide which ones to talk about and what order to 

discuss them in. Sometimes the error messages refer to the least important 

problem with the expression! 

Continued execution will produce a set of violated semantic primitives, 

without distinguishing those which are basic errors from those which are 

contingent upon other errors. In the above example, the violation of "type" 

and of "element" should be grouped together since correcting one will also 

correct the other. 

While it is possible to approach this problem by complex reasoning about 

the expression, the method of separating errors adopted here is somewhat 

simpler. It is often the case that a programmer tests her work by inserting 

typical values at various points in the execution; a similar technique will be 

used here. 

When an error occurs, the semantic interpreter may react to it by simply 

continuing execution or by aborting. A third possibility is to introduce a 

result which would be typical for that primitive if it had not failed. 

Continuing execution will now produce only errors which are not contingent upon 

the first. Some examples of this appear in the appendix. The following 

example shows the behaviour of (CAR(QUOTE ADRIAN», both without and with 
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patching; 

WITHOUT PATCHING; 

?- do(car(quote(adrian)),M). 

1) cannot satisfy; 

type(adrian,list) 

2) cannot satisfy; 

element(l,adrian,_39) 

M = [[$value$, 39]] 

yes 

WITH PATCHING; 

?- do(car(quote(adrian)),M). 

1) cannot satisfy; 

type(adrian,list) 

### Patched (a,b,c) for adrian 

M = [[$value$,a]] 

yes 

It is important to realise that this technique does not always produce 

useful information. The choice of patched item is very important. In some 

cases the patch may be sufficiently inappropriate to generate more errors than 

it corrects. For example; 

(MAPCAR X 'ADDI) 

requires that X have a list of numbers as its value. The default patch if 

the value is not a list would be to substitute a list of atoms. This will 
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cause ADD! to fail because it does not receive a numeric argument. 

Another task for the interpreter to satisfy is the execution of partially 

complete expressions in such a manner that errors due to incompleteness can be 

distinguised from "genuine" errors. This problem has not been explored in 

depth, but it seems likely that the patching technique described above can be 

applied to this task. 

At present, the interpreter shown in Appendix 3 only carries out patching 

at a rudimentary level. 

A teacher does not operate only when the student makes an error. There 

must be a means to collect information during the execution of an expression. 

This information can be used to decide what to tutor and to refer to concrete 

instances of various issues. 

The method applied in this system is somewhat similar to the use of a 

trace package in a normal language intepreter. In an interpreter, tracing 

information is normally generated at entries and exits of language statements. 

In this system the tracing is at the level of semantic primitives. 

As an example, consider a discussion of evaluation. Within this 

discussion it would be useful to provide an illustration. Suppose that the 

pupil has recently executed the expression 

(CONS (QUOTE A) (CAR (QUOTE «8 C) D»» 
(A 8 C) 

The system has information associated with its representation of 
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evaluation which indicates that "do" and "out($value$,M)" are relevant to 

discussions of evaluation. Repeating the execution of the above expression 

while "tracing" these primitives would produce; 

CONS: 
do(quote(a) ) 

QUOTE: 
out($value$,a) 

do(car(quote(**list(**list(b,c),d»») 
CAR: 

do(quote(**list(**list(b,c),d») 
QUOTE: 

out($value$,**list(**list(b,c),d» 
out($value$,**list(b,c» 

out($value$,**list(a,b,c» 

Figure 20 - Tracing output. 

The information shown here could be used to generate output for the pupil 

such as; 

" CONS evaluates its first argument, (QUOTE A), to get A. It 

evaluates its second argument, (CAR(QUOTE«B C) D») to get (B C)." 

The language generation problem will be discussed in the next section. 

The sort of "tracing" information associated with each topic will be discussed 

in the section on interaction. 

As has been shown in the previous section, the semantic interpreter can be 

used to generate information about expressions in the lan~uage. These can be 

reasoned about by the system, but ultimately there comes a point at which 

information of this type must be presented to the pupil. This involves 

providing some language generation mechanism based upon the formal semantic 

representation. 
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There has been some detailed research on the problems of language 

generation (e.g. [Davey 1978]). It is beyond the scope of the current 

project to attempt to make a new contribution to this area. Instead. the 

system is provided with a simple method of producing highly stylised English. 

The description of this system is included for the sake of completeness. 

Two related problems will be discussed - generating help information and 

describing program behaviour. 

A simple package for generating help information has been implemented. 

Appendix 4 shows some sample output. It operates by taking a canned phrase 

associated with a particular primitive. and filling in any undetermined 

components with the corresponding arguments of the particular instance which it 

is attempting to describe. For instance. by combining the description of QUOTE 

in figure 19 with the following canned phrases. 

(type A B) => " It checks that A is of type B" 

(out A B) => " It returns a A which is B" 

we can produce a description of the general behaviour of QUOTE which reads; 

It checks that ARG1 is of type $SEXPR$. 

It returns a $VALUE$ which is ARG1. 

If we had a specific instance of QUOTE. such as (QUOTE HANGOVER). exactly 

the same mechanism would produce 

It checks that HANGOVER is of type $SEXPR$. 

It returns a $VALUE$ which is HANGOVER. 
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This technique produces reasonably acceptable descriptions, although they 

are sometimes rather obtuse, as the following summary of COND illustrates; 

It checks that ARG1 is of type $SEXPR$. 

It checks that ARG2 is of type $SEXPR$. 

It checks that ARG3 is of type $SEXPR$. 

It checks that ARG4 is of type $SEXPR$. 

It evaluates ARG1. 

It retrieves the $VALUE$ and calls it VARG1. 

At this point one of two things happens: 

EITHER A test is made to see if VARG1 is the same as T 

It evaluates ARG2. 

It retrieves the $VALUE$ and calls it VARG2. 

It returns a $VALUE$ which is VARG2. 

OR, It evaluates ARG3. 

It retrieves the $VALUE$ and calls it VARG3. 

At this point one of two things happens: 

EITHER A test is made to see if VARG3 is the same as T 

It evaluates ARG4. 

It retrieves the $VALUE$ and calls it VARG4. 

It returns a $VALUE$ which is VARG4. 

OR, It returns a $VALUE$ which is NIL. 

This is clearly an inadequate mechanism for generating teaching 

statements, since these must be controlled by the current state of the pupil 

and the overall teaching strategies as well as simple domain knowledge. Some 

indication of the way that these links are achieved is given in chapter 12. 
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If the mechanisms described in the previous section can be relied upon to 

select the relevant information from a particular execution, the problem of 

describing aspects of a program is only slightly more difficult than providing 

help information. Applying the canned phrase technique to the set of 

primitives shown in figure 20 would produce 

" It evaluates (QUOTE A). It returns a value which is A. It 

evaluates (CAR(QUOTE((B C)D». It evaluates (QUOTE((B C) D». It returns 

a value which is ((B C) D). It returns a value which is (B C). It 

returns a value which is (A B C)." 

It can be seen that this is not an adequate description since it misses 

something vital about the relationships which hold between the components. 

There is a need to incorporate some contextual information, giving a 

description such as; 

" In order to evaluate (CAR(CDR X» we need a value for (CDR X). In 

order to evaluate (CDR X), we need a value for X. X is evaluated. It 

returns the value (A B C). (CDR X) returns the value (8 C). (CAR (CDR X» 

returns the value B." 

This higher level of language generation has not been provided in IMPART. 

The area of automatic programming is very large. It is not possible to 

survey the relevance of all this work within the current system, and such an 

activity would not be central to the design in any case. 

Instead, this section describes the task which a problem-solver must 

tackle within a tutoring system. The links between problem-solving and 
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problem-generation are discussed. Finally. a simple problem-solving program 

which uses the formal semantic representation is described. 

As was mentioned earlier, the problem-solver must generate solutions of a 

form which the pupil can understand. This requires the problem-solver to make 

use of the pupil model in order to decide which currently focussed information 

may be applied to the problem. The problem-solver must also use techniques of 

solution which the pupil understands if the output is to be directly used as a 

tutoring aid. 

In this section an illustration of the behaviour of a problem-solver which 

uses the semantic representation will be given. This example applies the 

problem-solving techniques to a correct description of LISP. For a given 

pupil, the problem-solver may be applied to the semantic definition which that 

pupil currently believes corresponds to LISP (see chapter 11 for the derivation 

of this definition). This provides a method for adapting problem solutions to 

the current state of the pupils knowledge. 

A program to generate problem-solutions is listed in appendix 5. This 

makes use of the formal semantics together with some annotations in order to 

generate a problem-solution. To show its operation, consider the following 

simple problem; 

Write an expression which extracts the third element of the list (A 

B C)." 
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The first task is to solve the problem at the semantic level. A formal 

version of the problem specification would be 

element(3,**list(a,b,c),RESULT) 

To determine which semantic primitives are available in this language, the 

language definition is examined for functions containing items which appear in 

the problem specification. In the above case, with the definition of LISP in 

appendix 2, we find that CAR is the only relevant function, and that it only 

allows "element(l ... )" to be selected. Now one of the annotations of "element" 

contains a rewrite rule which specifies that 

element(N,X,M)==after(J,X,K),element(N-J,K,M) 

so this suggests that language statements containing "after" may also be 

relevant. Scanning the language definition for these statements produces CDR 

which allows "after(l ... )". 

At this point the problem has become finding a combination of 

"element(l ... )" and "after(l ... )" which corresponds to "element(3 ... )". The 

rewrite rule allows us to produce the expression; 

element(3,**list(a,b,c),M) 

==after(l,**list(a,b,c),**list(b,c», 

element(2,**list(b,c),M) 

Reapplying the rewrite rule to the second element of this description 

produces the semantic level solution; 

element(3,**list(a,b,c),c) 

==after(l,**list(a,b,c),**list(b,c», 

after(l,**list(b,c),**list(c», 
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element(l,**list(c),c) 

The problem which remains is to express this in terms of the language 

statements from which the semantic primitives were taken. This involves 

establishing communication channels between the constants in the description -

either as explicit channels or via variables. 

The definition of CDR is 

effect(cdr(ARGl), 

[type(ARGl, '$sexpr$')], 

[do(ARG1), 

in('$value$' ,VARG1), 

type (VARG1 , '$list$'), 

after(l ,VARGI ,VAL) , 

out('$value$' ,VAL)]). 

Since an "after" acts directly on the original data we may begin by 

instantiating the "after" primitive. This leads us to the conclusion that the 

data must be received by CDR on the $value$ channel. This is equivalent to 

saying that CDR must have an argument which evaluates to **list(a,b,c). This 

leads to searching for a solution to this new problem, which results in the 

expression (QUOTE (A B C». This will be inserted as the argument to CDR. 

Similar methods can be applied to instantiating the other function 

descriptions, and eventually a solution will be generated: 

(CAR (CDR (CDR (QUOTE (A B C»» 

If the LISP definition had included a semantic description of the LAST 

function, the program would (also) have generated 

(LAST (QUOTE (A B C») 

It should be borne in mind that this program is simply a demonstration of 
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an approach to problem-solving. It has not been shown to be capable of solving 

many problems. It should be the case, however, that since this approach 

searches for solutions using the semantic primitives, changing the semantic 

description will allow the problem-solver to produce solutions in other 

programming languages. 

The teacher should be able to generate problems for the pupil to solve 

which give practice in particular areas or bring certain features of the 

language to the pupils attention. This involves producing a problem 

specification which can then be filled out to give a complete problem which can 

be presented to the pupil and a solution for that problem. 

The generated problems must have solutions which are within the current 

capabilities of the pupil. For this reason it seems sensible to use the 

problem-solver as part of the problem generation process. A proposed mechanism 

is to allow the problem solver to insert "typical" problem components in a 

partial problem specification until a problem which it can solve has been 

produced. 

As an example, suppose we wish our pupil to practice addition. Our 

problem specification would be that we wish to use instances of the PLUS 

primitive. The problem-solver may scan the language definition for statements 

which include this (ADDl and PLUS2 in the case of LISP). Since our problem 

placed no constraint on the primitive arguments, we may generate problems such 

as; 

" Write an expression which adds 3 and 4" 

or 

Write two different expressions which add 1 to 23" 
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and the solution which has been generated by the system can be compared 

with the attempts of the pupil to solve the problem. 

In this section a brief illustration will be given of the way in which 

program slicing can be implemented as a debugging aid. An attempt will also be 

made to show how these techniques can be applied to linking program structures 

with the semantics of individual statements. 

Weiser defines a slice in terms of a particular variable in a particular 

statement of a program. The slice corresponds to an executable program from 

which all those expressions which do not affect the current state of the 

variable have been deleted. This deletion is achieved by performing a data­

flow analysis on the program. Zislis uses a similarly abstract approach based 

upon manipulations of a directed-graph form of the program. 

Within our formalism a "slice" can be produced without eliminating parts 

of the program, by simply focussing on certain aspects of the system. For 

example, where Weiser requires a large amount of computation to slice with 

respect to a variable X at a particular point, we can, at the simplest level, 

Simply look for occurences of CREATE,DELETE,CHANGE and SEE within our program. 

Consider the following example; 

Mark E-C 

(PROG (X L) 

(SETQ X Y) 

(SETQ L NIL) 

LOOP (COND«ZEROP X) 

(RETURN L») 
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(SETQ X (SUBl X» 

(SETQ L (CONS 'Q L» 

(GO LOOP» 

a slice with respect to variable L would give 

(PROG (X L) 

(SETQ L NIL) 

(COND((ZEROP X) 

(RETURN L») 

(SETQ L (CONS 'Q L») 

This slice is executable, but its relation to the overall program is not 

clear. If, on the other hand, our program monitors the relevant primitives 

during execution of the complete program then a more meaningful behaviour 

results. This is more directly explicable to the pupil. 

The slicing mechanism used by IMPART is not constrained to slicing upon 

variables: for example, dataflow slices could be made by monitoring IN and OUT 

statements, while control flow slicing could be achieved by monitoring DO 

statements. 

The extent to which the slicing mechanism is operational within IMPART is 

limited by the fact that higher level structures than program statements are 

not currently well represented (see below). The implementation does not make 

use of slicing techniques. I wish to suggest that slicing is an important 

mechanism which can relate low-level semantic knowledge to knowledge at the 

level of algorithms. This should form a focus for further research. 

In any programming language there exist commonly used groupings of 
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statements intended to achieve particular goals. These higher level structures 

may be regarded as general purpose algorithms which may be instantiated in 

particular ways to solve particular problems. Being able to recognise and 

apply such constructs is part of learning to use a language. 

These structures are often too complex and difficult to be discovered by 

experiment alone. If we wish to teach effectively then we must be able to guide 

our pupil towards finding these structures. We must consider how to represent 

them and how to guide the pupil towards them. 

It is possible to provide the system with a built in set of plans which it 

may tutor. such as those used by the Programmers Apprentice [Rich 1981] . 

Alternatively. we could attempt to provide the system with mechanisms which 

allow it to recognise good plans when it sees them. and to create abstract 

plans by analysing particular solutions to problems. The latter task seems 

extremely difficult if the system has no guidance as to how plans are 

generated. 

It has already been pointed out that the teacher should avoid simply 

stating a rule without being able to explain it. One advantage of the second 

technique is that the derivation of the plan incorporates information which can 

form the basis of an explanation to the pupil. 

In general. then. we would like to provide the system with rules which it 

can use to derive language structures. These rules should build upon a 

knowledge of the language semantics. The derivation should form the basis of a 

"psychologically reasonable" explanation of the purpose of the structure. The 

system may be provided with plans of actual structures in order to guide its 

plan search. but it should be able to produce a derivation for these plans even 

if it knows the result. 

An example would be that iteration should be derivable from the following 
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piece of code by appealing to some goal of achieving parsimony of code; 

write ( 'hello') ;write( 'hello') ;write( 'hello') 

becomes 

for i:=l to 3 do write('hello') 

The goal of deriving plans from lower level information about the language 

is a difficult one to fulfill. It has not been possible to tackle it within 

the scope of this project. Since the process of deriving plans is considered to 

be important there has been no attempt to produce a large library of 

unexplained plans such as that which exists in the Programmers Apprentice. 

Instead, one plan has been produced to illustrate the sort of information which 

the system is expected to handle. This is an area which requires further 

investigation. 

In this section we will consider a simple three clause recursive Lisp 

function and show how it relates to a general plan for such functions. 

(DE DOWHAT (A L) 

Mark E-C 

(COND «NULL L) **1** 

NIL) **2** 

«EQUAL (CAR L) **3** 

A) 

(OOWHAT (CDR L») 

(T **4** 

(CONS (CAR L) **5** 
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(DOWHAT (CDR L»» » **6** 

**1** is known as the stopping condition. This is a case for which a 

definite result can be given without having to do any more recursion. The 

clause with the stopping condition always appears first. The type of stopping 

condition is related to the type of arguments and the form of the 

simplification function (see below). For example, taking a list apart with CDR 

requires a NULL function for a stopping condition, while counting down a 

sequence of numbers would require ZEROP. 

**2** is the stopping value. This is the value which is returned from the 

deepest invocation of the function when the recursion terminates. The type of 

value returned here must be suitable for the building function (see below) 

since it will become an argument to that function. For example, 

is being built with CONS then the stopping value must be a list. 

is being built with PLUS then the stopping value must be a number. 

if the result 

If the result 

**3** is a clause dealing with a special case. It carries out some action 

if its test succeeds. Not all functions have a clause like this, but some may 

have lots of them. 

**4** is the clause which operates when none of the special cases succeed. 

It is generally used to break up the problem and rebuild the solution. 

**5** indicates the CONS function which is the function used to build the 

solution in this particular case. 

**6** is the recursive call (i.e. the call to the function currently being 

defined). Note that the recursive call must include a simplified version of the 

original argument to the function. In this case the simplifying function is 

CDR. The simplifying function must be such that repeatedly applying it to an 

example will eventually produce an expression that will satisfy the stopping 
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condi tion. 

The following corresponds to a first attempt at representing the 

relationships between these components in a plan. 

ROLES: stopping-condition, stopping-action, 

simplifying-action,result-building-action, 

recursive-step 

INPUTS: argumentl,argument2 ... 

OUTPUTS: value 

RELATIONS: 

1) Repeated application of simplifying-action to argumentN results in 

stopping condition becoming true. 

2) Stopping-action produces a value which is a legitimate argument to 

result-building-action. 

3) The value of simplifying-action applied to argumentN must occur as 

argumentN of the recursive step. 

A method of representing the semantics of a programming language has been 

described. This representation maps directly into PROLOG. Mechanisms to 

tackle the problems outlined in chapter 9 have been discussed. Some issues, 

involving high level representations of programming structures and "conceptual 

slicing" of programs, have been raised without being solved. This chapter has 

outlined the core of the domain-specific reasoning facilities in IMPART. 
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Chapter 11. 

User-modelling 

and 

Machine Learning. 



The central part of a model of the pupil is a model of the learning 

process. In this chapter, the mechanisms used by the teacher to represent the 

learning process will be discussed. Following this, brief outlines will be 

given of other points in the system at which information about the user is 

stored. 

In this system we will attempt to move PI •• from an expert-based to a 

learner-based paradigm" [Goldstein 1982] . An expert-based paradigm would 

involve giving a central position to an "overlay" model of the learner, and 

attempting to equate this model with some predetermined "expert" level. As has 

been shown, such an approach is inadequate for achieving a high level of 

individualised tuition. To operate within a learner-based paradigm, we must 

concentrate on the problem as seen by the user, and apply a theory of learning 

to the task of expanding the users ability to control the environment. 

Our aim is to provide the pupil with a predictive model of the environment 

which is derived from observations which the pupil can make. This process is 

achieved by learning mechanisms, and it is these mechanisms which the teacher 
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must model and guide. 
Predictive 

model. 

~ ~ ~ ~ 

• ~ 

Observat1ons. 

Figure 21 - A learner based pupil model. 

Le amlng 
mechanisms. 

More specifically, we wish our pupil to apply inductive reasoning to 

concrete examples in order to produce a model of the domain. It should be 

possible in turn to apply deductive reasoning to this model in order to 

generate concrete predictions about the domain. 
=.;...---~-

Observations 

Figure 22 - Reasoning with the pupil model. 

Model Of 

OOmaJn 

Predictiats 

By taking this approach, our teacher is prevented from stating results 

which the pupil must memorize without understanding. The pupil is gaining 

knowledge rather than facts. Our teacher must aid this learning process in 

three basic ways; 

1) PERCEPTION. The pupil must learn to perceive the environment in a 

structured way. Certain things are important and others are irrelevant. 

A novice will perceive "(CONS A B)" as a string of characters which is not 

significantly different from "(CONS (A B". An expert will perceive the 
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expression in terms of functions and arguments with brackets as 

delimiters: this immediately makes the latter example senseless. 

2) GENERAL LEARNING. There are certain general techniques of learning 

which may be applied in many environments. It may be necessary to 

instruct the pupil in how to apply these techniques in a given 

environment. For example, if the student knows how to turn constants into 

variables, she should learn that this method may reasonably be applied to 

all arguments to a LISP function, but will not yield sensible results if 

applied to a function name. An example of this would be that generalizing 

from 

(QUOTE ALICE) 

ALICE 

to predict 

(QUOTE FRED) 

FRED 

is reasonable. but to predict 

(ADDl ALICE) 

ALICE 

is clearly not a sensible generalization. Heuristic guidance of this 

kind may be associated with both inductive and deductive reasoning. 

3) DOMAIN SPECIFIC LEARNING. Some techniques of learning may be 

available which apply only in the restricted domain being tutored. The 

teacher should introduce the pupil to these techniques. In our case, 

where our goal is to make the pupil independent of the teacher, we wish 

the pupil to continue learning from a normal language 

interpreter/compiler. This requires us to tutor the strategies necessary 

to acquire useful information from simple error messages. 
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In the following sections we will make use of three major objects in our 

learning framework; Facts, Concepts and Predictions. If we refer back to 

figure 22, these items may be associated with different areas on the diagram. 

FACTS are observations about the world. They need not be derived from 

anything else, and do not embody any predictions about the way that the 

world operates. They could be held as a table of events to look up. This 

is the lowest level of understanding which can exist. "(QUOTE FRED) 

returns the value fred." is a fact - it corresponds to a description of an 

event in the world (where the world is a programming environment). We 

cannot answer the question WHY in terms of any more primitive units (for 

example" An opening bracket appeared on the screen, a letter Q appeared 

on the screen ... "). The expression returns a value because that is the 

way things are in Lisp. If asked why the value is FRED, we would actually 

appeal to a more complex piece of information, by offering the general 

rule that QUOTE returns its first argument as its value. In practical 

terms, not all facts can be derived from a non-intelligent environment. 

In the above case, for example, the pupil would discover what is returned 

by an expression, but would not know that such a statement is 

conventionally called a value. If this secondary sort of fact is 

considered necessary (which it would be if our pupil is to talk to others 

about Lisp) then such facts must be imparted by the teacher. In figure 22 

facts are descriptions of the concrete events which occur in the 

environment. 

CONCEPTS are abstractions which represent sets of facts in a more concise 

form. They may be regarded as organisers of the domain. "Lisp functions 

return values" is a concept because it explains part of the behaviour of 

every function, whereas storing these as separate observations is less 

efficient. Concepts provide a generative representation for pieces of 

domain knowledge. The pupil model consists of a set of concepts which the 
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pupil may be using to describe the domain. 

PREDICTIONS are like facts in that they represent concrete events in the 

world. The difference is that they are derived from the pupil's 

conceptual model of the world, and as such must be validated by comparison 

with the FACTS. When a prediction is validated it gives more weight to 

the abstractions on which that prediction was based. 

In order to tutor according to this model of learning it is necessary to 

find a formal representation capable of expressing the derivation of "concepts" 

from "facts" by various routes. 

In this case, our "facts" consist primarily of observations which the 

pupil can make about the behaviour of the language interpreter. These facts 

are augmented by statements made by the teacher. If we identify "facts" with 

directly observable features of language expressions and their consequences, we 

may identify "concepts" with abstracted representations of the behaviour of 

particular language statements or abstractions whose predictive power spans 

several such statements. 

The representation used for facts and concepts is essentially an augmented 

version of that used to describe the semantics of the language being tutored. 

Each interaction step is represented by describing observable features in this 

formalism. Individual statements are described by building a formal semantic 

description of the language the user thinks she is using. More general 

concepts are constructed from combinations of the semantic primitives. 

The relationships between facts and concepts are determined by a model of 

the learning process which seeks to link them via a combination of general 

learning rules guided by domain-specific heuristic knowledge. 

In the following sections we will discuss inductive and deductive 
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mechanisms for reasoning. These mechanisms are used to link facts to concepts 

and concepts to predictions, respectively. 

As was discussed in chapter 4, there is no existing theory of learning 

which would adequately describe the behaviour of a human LISP learner (although 

this area is currently being explored [Anderson 1982]). Rather than 

attempting to produce such a theory, the approach which has been taken here is 

to adopt some recent Artificial Intelligence research on learning and to focus 

on the role of a learning model rather than on its detailed structure. The 

model of concept acquisition which is applied is fairly simple, and cannot be 

expected to correspond to a model of what goes on in human learners. It is 

simply claimed that, in this restrictive domain, it is capable of making 

inferences which are similar in effect to those of a human, and provides some 

bounds to the set of hypotheses which the pupil may hold. The differences 

between real pupils and this learning mechanism may provide an interesting area 

of study. 

Inductive reasoning provides a means of going beyond the predictions which 

a rigorous logical system would make from a given set of data. In inductive 

generalisation a hypothesis may be produced which is falsity-preserving (i.e. 

if the data was false then the hypothesis is false), but does not necessarily 

preserve the truth of the original data. To quote Dietterich [Dietterich 

1983] "A generalization rule does not guarantee that the obtained description 

is useful or plausible." 

The task which we must approach is to generate hypotheses about the 

behaviour of Lisp expressions from observations, and to provide some assessment 

of the usefulness and validity of these hypotheses. The formalism chosen to 

tackle this problem is drawn from Artificial Intelligence work on "Machine 
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learning". 

More specifically, the system described here may be seen to have much in 

common with Michalski's Annotated Predicate Calculus [Michalski 1983] 

It may seem unreasonable to apply a model developed for achieving learning 

in machines to the modelling of human learning. This is not the case since the 

ultimate yardstick by which such models are assessed is their similarity to 

human learning. As Michalski observes; 

" The results of computer induction should be symbolic descriptions 

of given entities, semantically and structurally similar to those a human 

expert might produce observing the same entities. Components of these 

descriptions should be comprehensible as single "chunks" of information, 

directly interpretable in natural language, and should relate quantitative 

and qualitative concepts in an integrated fashion." 

A further objection that might be raised is that Machine theories of 

learning are not yet in a sufficiently advanced state to support this type of 

application, and have not been shown to have any psychological validity. The 

bounded user-modelling technique described here requires only that the theory 

is sufficiently powerful in the range of hypothese it can generate; it need not 

be identical with the actual method of learning used. It is not clear that 

human teachers always have appropriate models of the learning mechanisms of 

their pupils. As Simon [Simon 1983] points out, 

It is a salient characteristic of human learning procedures that 

neither teacher nor learner has a detailed knowledge of the internal 

representation of data or process." 

The learning task which we wish to model is rather simpler than that 

tackled by large learning programs such as AM [Lenat 1983] . We have several 

simplifying conditions; 
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1) The pupil will only proceed in small steps from her current state 

of knowledge. Vast and complex inductions are beyond the scope of our 

pupil so we may drastically restrict the search space of possible 

hypotheses. If the teacher could make such inductions then she could plan 

on a larger time-scale, whereas short look-ahead plans may result in both 

teacher and pupil exploring a blind alley. This consideration will 

actually lead to a trade-off between complexity and simplicity in the 

look-ahead strategies. 

2) There will normally be a "focus" to the learning activity. A 

particular problem will be central over a period of time, and during that 

time it will be a major component of all generated hypotheses. An example 

would be learning to extract elements from lists. In this case the focus 

is clearly defined as the ordered-set access functions of the semantics. 

3) There exists a frontier of student knowledge. Certain concepts 

will be stable and well understood while some will be in a more tenuous 

state. The latter define a "frontier" of student knowledge and the 

teacher will typically involve the student in work which is upon that 

frontier. 

Selective generalization involves representing a domain in terms of a 

given set of primitives. The selection comes in deciding which of these 

primitives are important in a particular situation as organisers of the input 

knowledge. 

As an example, suppose we present a system with a red square, a red triangle 

and a red circle. The system might represent these as 

1) shape(square),colour(red) 
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2) shape(triangle),colour(red) 

3) shape(circle),colour(red) 

This is simply a description of each item - a set of facts about the 

world. Our system might apply an inductive reasoning rule to these facts, such 

as dropping a condition if it does not occur more than once. In the above case 

all the shapes are different, so the rule would give the result "colour(red)". 

This corresponds to the suggestion that the only unifying thing about these 

examples is their colour. 

Constructive generalization is the process of generating new descriptions 

which have primitive elements which are new - being derived from simpler 

primitive elements. For example, given three rectangles of sides 2*6, 4*3 and 

1*12, respectively, we could describe them in terms of sidelength primitives 

as; 

i) sidelength(2),sidelength(6) 

ii) sidelength(4),sidelength(3) 

iii) sidelength(I),sidelength(12) 

but this description does not seem amenable to any unifying 

generalizations. If we could construct a new descriptor "A", such that any 

object of sidelength(X),sidelength(Y) could be redescribed as A(X*Y), then the 

above events would ALL be instances of A(12). In effect we have discovered the 

concept of area. 

It will be observed that this process involves two steps. The first is 

designing a new descriptor and the second is applying it to the actual data. 

It seems likely that the two processes are related. In the above case our 

search for a new descriptor would be driven by a goal of explaining all the 
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observations. 

IMPART actually generates new descriptors by applying pattern matching to 

sets of complete descriptions which it has produced. In IMPART this mechanism 

has only been provided at a rudimentary level. The system has succeeded in 

generating one new descriptor. It found that many descriptions of Lisp 

functions of the form (fn argl argn) involve the sequence of statements 

"do(argl) ... do(argn)". A new descriptor was generated to represent this. This 

corresponds to "discovering" the concept of an eval-spread function in LISP. 

We will now apply rules of inductive reasoning to the sort of observations 

a student could make when interacting with a language environment. The 

primitives on which the rules operate are the same as those used in the formal 

semantics of the language. 

There are three basic steps to the learning strategy. The first of these 

is perceiving the available information, the second is generalizing to produce 

abstractions from the representation, and the third is transforming those items 

which are inadequate descriptions using domain specific knowledge. 

Perceiving the events which occur is not necessarily as simple as it 

appears. Part of the problem of understanding a new domain is learning how to 

classify observations. For a novice Lisp programmer (QUOTE AUNTIE) is not 

obviously a function call; she has no reason to perceive AUNTIE and QUOTE as 

different sorts of object. In this mechanisation the problem is overcome by 

providing some rules to aid the program, but such rules are not available to 
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the pupil. The teacher must impart this knowledge to the student. As an 

example, consider the following instance of the QUOTE function; 

(QUOTE (A B C» 

(A B C) 

The system notes everything it can perceive. In our representation this 

corresponds to inserting instances of OUT,CHANGE,DELETE and CREATE; 

quote(**list(a,b,c» 

[out($value$,**list(a,b,c»] 

A heuristic indicates that typing information is always a relevant part of 

the perception of an expression (this must be taught), so every possible item 

is assigned a type (in general, any item which can be named is given a type); 

quote(**list(a,b,c» 

[type(quote(**list(a,b,c»,sexpr), 

type(**list(a,b,c),list), 

out(value,**list(a,b,c»] 

"The function QUOTE was applied to the argument (A B C). This is an 

sexpression. (A B C) is a list. A value (A B C) was returned." 

This corresponds to a complete description of the observed event. 

The above description only represents the behaviour of a particular 

observed event. Its predictive power is only sufficient to tell us what will 

happen if we execute an identical expression. If we wish to produce a more 

powerful representation of the domain than an enumeration of every possible 
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event, we must attempt to derive a more general rule from the specific one. 

In the above case we may apply the rule for turning constants into 

variables to every constant which occurs more than once. This gives the 

following generalization; 

quote(ARG1) 

[type(quote(ARG1),sexpr), 

type (ARGl, list), 

out(value,ARG1)] 

" The function QUOTE is applied to an argument. This is an 

sexpression. The argument is a list. The argument is returned as a 

value." 

This is almost a correct description of the action of QUOTE. It is a 

slight specialization in that ARGl may be any s-expression. If a further 

example which took an atom were given, the system would produce the following 

generalization; 

(QUOTE A) 

A 

quote(ARG1) 

[type(quote(ARG1),sexpr), 

type (ARG1, atom) J 

out(value,ARG1)] 

Comparing the generalizations of these two events, we find that they 

differ in the permissible type for the first argument. Since the system is 

provided with a hierarchy of language datatypes (which must be taught 

directly), it is possible to apply the "climbing generalization tree" rule to 

show that these may be generalized to type SEXPR. 
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The relationship between constants of a description is not normally as 

clear as in the above example. If we are to produce the most general possible 

description, then we must be prepared to search for more devious relationships 

between components. This involves using domain knowledge to decide which 

primitives of the representation can transform their arguments, what sort of 

argument can be transformed, and when such a transformation is appropriate. 

For example, addition is a transformation which may be applied to numeric 

arguments if you are seeking to relate an unexplained number to some existing 

numbers. In another case, the same number may be related to a list by 

extracting an element from that list. This sort of information is kept in the 

annotation associated with each descriptor. 

To illustrate this consider an example of SETQ, where we assume that our 

system already knows about evaluating atoms; 

(SETQ Z B) 

5 

Observation of this produces a more complex description than in the 

previous case, because our system can "see" the side-effect of assigning 5 as 

the value of Z, which results in the use of a "change" statement. 

setq(Z,B) 

[type(setq(Z,B),sexpr), 

type(Z, atom), 

type(B,atom) , 

change ( Z ,5) , 

out(value,5)] 

We may apply the generalization rule for constants to variables, as in the 
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previous example; 

setq(ARGl,ARG2) 

[type(setq(ARGl,ARG2) ,sexpr) , 

type (ARGI ,atom) , 

type (ARG2 ,atom) , 

change(ARGl,RES) , 

out(value,RES)] 

Because 5 was a repeated constant, it has been into a variable (the name 

RES is arbitrary). At this point we notice a problem because we have 

introduced a variable which is unrelated to anything. There are two possible 

courses of action. The first is to turn RES back into a constant, leaving SETQ 

as a function which always returns 5 (and assigns 5 to its first argument). 

The second is to attempt to transform the constants of the original problem in 

order to establish a link between RES and some other constant. We find that 

the "do" descriptor is a prime candidate for such a transformation. If we 

return to the specific instance and apply this transformation to the 

description, we produce a new description; 

setq(Z,B) 

[type(setq(Z,B),sexpr), 

type(Z,atom) , 

type(B,atom), 

do(B), ** change 

in(value,5), ** change 

type(5,number), ** change 

change(Z,5) , 

out(value,5)] 

We may now repeat the generalization stage, which will produce a 

reasonable guess at the behaviour of SETQ. It is not actually correct, because 

it does not include information about variable declarations, but it provides a 
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basis for tutoring such difficulties. 

Let us assume that our system has now mastered some basic expressions and 

we provide the following example of COND; 

(COND (X Y) 

(T Z» 

If, in our first example X is true, then we would expect the system to 

hypothesise 

cond(ARG1,ARG2,ARG3,ARG4) 

[do(ARG2),out(ARG2)] 

Giving the system an example in which X fails would produce the 

description, 

cond(ARG1,ARG2,ARG3,ARG4) 

[do(ARG4),out(ARG4)] 

Our system clearly has a problem in combining these. The simplest 

strategy is to link them using a disjunction; 

cond(ARG1,ARG2,ARG3,ARG4) 

or([do(ARG2),out(ARG2)]. 

[do(ARG4).out(ARG4)]) 

This may become a working hypothesis about the behaviour of CONDo It is 

apparent that the behaviour of this statement would require the system to 

observe many events before a correct hypothesis could be generated. This 

illustrates the way in which errorful student hypotheses can be included in the 
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pupil model. 

The list of rules which are actually used by the learning system is given 

in this section. They are a subset of a taxonomy provided by Michalski 

[Michalski 1983] 

1) DROPPING CONDITION - Given a description of an event, a more 

general representation can be reached by simply eliminating one component 

of the description. In the domain in which we are interested the 

application of this rule may be constrained by heuristics which recognise 

circumstances in which the rule can be appropriately used. 

2) ADDING ALTERNATIVE - If two alternative events belong to the same 

category, then they may be combined by using the disjunction operator to 

link them. For example, given these events; 

i) if_then_else(ARG1,ARG2,ARG3) 

[do(ARG1),in($value$,VARG1) ,equall(VARG1,t) ,do(ARG2)] 

ii) if_then_else(ARG1,ARG2,ARG3) 

[do(ARG1) ,in($value$,VARG1) ,equall(VARG1,nil) ,do(ARG3)] 

we may combine them by noting the differences in the description and 

inserting a disjunction, resulting in the description 

[do(ARG1),in($value$,VARG1),or([equall(VARG1,t),do(ARG2)], 

[equall(VARG1,nil),do(ARG3)])] 

3) CLOSING INTERVAL - if two descriptions have different values for a 

linear descriptor, then we may combine them by suggesting that all values 

between those given are applicable. If we have descriptions for (ADD1 2) 

and (ADDl 9) we may propose the description applies for numbers between 2 

and 9. 
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4) CLIMBING GENERALIZATION TREE - if an item in a descriptor is known 

to have a hierarchical ordering, and two descriptions have constants which 

share a parent node in that hierarchy, then we may "climb the tree" and 

suggest that the parent node is an appropriate descriptor. For example, 

if we have seen the function "explode" work on numbers and booleans, we 

could look at the parent datatype node to suggest that it works for all 

atoms ( which would introduce alphanumeric atoms as well). This involves 

including some domain specific knowledge in the system. In the existing 

system the only generalization tree provided is that for datatypes. 

5) CONSTANTS TO VARIABLES - The fewer the number of arbitrary 

constants in a description, the more general it will be. For example, a 

prediction that QUOTE returns its argument as its value is more general 

than a prediction that (QUOTE ALICE) returns ALICE as a value. This rule 

suggests that any constant may be replaced by a variable. In the pupil 

model this has been constrained slightly such that only constants which 

occur more than once may be turned into variables. 

6) CONJUNCTION TO DISJUNCTION - If a description includes two 

descriptors joined by a conjunction, then a more general form would be to 

link those descriptors via a disjunction. For example, consider NIL which 

is both an atom and a list; 

atom(nil),list(nil) becomes 

or([atom(nil)],[list(nil)]) 

7) INDUCTIVE RESOLUTION - Given a condition P, such that when it is 

present with a condition Cl, or absent while a condition C2 is present, 

then the event belongs to a particular class, we may reduce this to the 

statement that the presence of Cl or C2 indicates that the event belongs 

to that class. The following example illustrates this rule, but the 

result is not what we would expect; 

american(X),lives(X,england) is an event "exile". 
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not american(X),lives(X,america) is an event "exile". 

This results in; 

or([lives(X,england)],[lives(X,america)]) is an event "exile". 

As has been described above, the model of the pupil relies on the presence 

of deductive reasoning methods which the pupil uses to make concrete 

predictions about the behaviour of the domain. It is only through these 

predictions that information about the state of the model can be obtained. 

There has been a large amount of research on the nature of deductive 

reasoning, much of it appropriate for a computational model (e.g. see 

[Robinson 1979]). Unfortunately, time has not permitted the review of this 

literature within the current work. The lack of an adequately explored model 

of deductive reasoning is a major deficiency of this program design. 

The process of deriving concrete predictions from the model of the domain 

is tackled by the problem-solving mechanisms (see above). In the absence of a 

suitable theory of deductive reasoning which could be used to model and develop 

the pupil's problem-solving skills, the system relies on its own problem-solver 

to determine predictions which the pupil is likely to make. This is not a 

satisfactory solution in the long-term, since the problem-solver is essentially 

a black-box expert, which should not be used as part of the student model: the 

end results are valid but the mechanisms for achieving those results are not 

like those of a human. This was discussed in chapter 5. 
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The mechanisms of learning which have been described up to this point 

provide the basis for a program which could learn LISP from observation. This 

is not the same as a model of our pupil, so we may ask what contribution the 

learning model makes to the pupil model. 

For any given expression which the pupil tries out, the learning model can 

produce a set of possible hypotheses which the pupil could build about the 

behaviour of that expression. The set of possible hypotheses may be infinite, 

but for practical purposes we will assume that the learning model only 

generates a finite set. Each of these hypotheses can be used to provide 

predictions about other expressions in the language. The teacher may use these 

predictions to determine which hypothesis the student actually believes, and to 

generate counter-examples or confirmatory evidence as appropriate. Since this 

process of validation may take some time, IMPART keeps a note of the possible 

hypotheses which the pupil may be currently entertaining. In essence this 

forms the basis of the pupil model. 

Since the hypotheses are essentially semantic descriptions of programming 

language statements, we may regard the set of hypotheses which the pupil holds 

at any given time as a definition of the language which the pupil thinks she is 

using. Because the semantics form a closed domain, one goal of the teacher is 

to make this language description equivalent to (not necessarily identical 

with) the correct definition of the language. 

It is not generally possible to store all the hypotheses which a pupil 

could make throughout her history of interaction with the machine. It has been 

pointed out [Carbonell 1983] that a set of hypotheses is defined by giving the 

maximally-specifiC and minimally-specific elements of that set. All others can 
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be generated from this. 

In our case, we represent each interaction step by providing a maximally­

specific description (essentially a statement of what occurred) and the 

minimally-specific CORRECT description which the pupil could achieve (i.e. 

incorrect generalizations are disregarded). These provide sufficient 

information to enable the teacher to guide the pupil towards the best 

generalization, while retaining the possibility of discussing more 

idiosyncratic interpretations. For example, 

EVENT: 

(SETQ Z B) 

5 

[ 

type(Z,atom) , 

type(B,atom), 

change(Z,5) , 

out(value,5)] 

i.e. Z and B are atoms. (SETQ Z B) gives Z a value of 5 and returns a 

value 5. 

[ 

Mark E-C 

type (ARGl ,atom) , 

type (ARG2 ,atom) , 
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do(ARG2) , 

in(value,VARG2) , 

type (VARG2 ,number) , 

change(ARG1,VARG2), 

out(value,VARG2)] 

i.e. SETQ takes 2 arguments which are atoms. It evaluates the first 

and gets that value. The value must be a number. It changes ARGI to have 

a value which is a number, and returns that number as the value of the 

expression. 

All the examples given so far assume that the pupil has no knowledge of 

the language. In general we will be dealing with compound statements of which 

parts are already well understood by the pupil (if they aren't then the system 

should help the pupil to subdivide the problem). This can be handled by 

permitting the learning system to use (and reference) other hypotheses which 

the pupil currently holds. 

It is not assumed that the hypotheses which the system generates 

correspond directly to those of the pupil. Instead, they are regarded as upper 

and lower bounds to the hypotheses which the pupil has made. The teacher can 

attempt to "home in" on the actual beliefs of the pupil by looking for evidence 

which will enable the distance between the bounds to be reduced. For this 

reason the process may be described as "bounded user-modelling". 

All the information discussed so far is derived from the activities of the 

pupil. The teacher has high-level goals and the degree to which those goals 

have been achieved also constitutes part ot the model of the pupil. For 

example, if the tutor wants the pupil to understand variable binding, then she 
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will have some model of the pupil's level of understanding of variables. 

This sort of information is closely linked to the interaction between 

pupil and teacher. In the following chapter the nature of the teacher's goals 

will be discussed and the user modelling associated with them will also be 

mentioned. For the present, it is sufficient to say that procedures for 

assessing the pupils' knowledge of each goal and maintaining the pupil model 

are associated with these goals. 

The idea of "bounded user modelling" has been introduced. A method for 

deriving such a model from events in the environment has been described. This 

involves the application of a machine-learning paradigm to these events. 
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Chapter 12. 

Discourse control for 

tutoring. 



We have now examined all the sources of information available to the 

teacher during the course of the educational experience. We may turn our 

attention to the methods by which these may be utilised to produce a useful, 

structured, teaching interaction. One major component of this task is the 

general one of examining the nature of any interaction. The second major 

component is outlining the "teaching strategies" which embody the application 

of the educational theory in this domain. 

The basic problem confronting the interaction systems is to take a set of 

hypotheses about items to teach (from the learning model), some top-down domain 

specific goals (the curriculum), some rules about educational style, some rules 

about "good interaction", and to blend them into an integrated discourse 

between pupil and teacher which satisfies the needs of each. 

This chapter commences with a brief summary of some work on discourse 

structure which is relevant to this system. This is followed by a description 

of the actual architecture of the discourse systems used in IMPART. The 

section concludes with an example of the way in which the mechanisms operate. 

There are several areas which may be relevant to the design of a mechanism 

intended to support a structured educational interaction. Three areas will be 

examined in greater detail. The first is work from the Intelligent Teaching 

System literature itself, the second is Educational research into classroom 

interaction, and the third is psycholinguistic models of discourse. 
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In WEST [Burton 1982] , the dialogue comprises canned speech produced in 

response to a particular action of the pupil. The domain knowledge is 

represented as ISSUES (which are general items to tutor) and EXAMPLES (which 

are concrete instances of issues). When the pupil carries out an action each 

ISSUE tests whether it has been mentioned, and if so assesses (by examining the 

student model) whether it should contribute to the system's response. If the 

result is affirmative then a canned message linked to the issue is presented to 

the pupil. To prevent boredom the system is provided with several canned 

messages for each issue, from which one is selected on a random basis. Burton 

points out that this aspect of the system was not a major focus of research and 

identifies various useful modifications, such as providing a facility to 

combine messages from issues into a single succinct comment. It should be 

noted, however, that the system is essentially reacting to input on an event by 

event basis with no long-term interaction structure, and no facility for 

handling direct queries from the pupil. 

GUIDON [Clancey 1979] attempts to support a mixed initiative dialogue 

with the student. In this it has dialogue goals, which are basically the same 

as the goals of a problem-solver tackling the case which GUIDON is attempting 

to tutor. The system can only attempt to satisfy one goal at a time, but it can 

maintain a sub-goal hierarchy. The top goal may be selected by the pupil but, 

rather than following the pupils goal structure, the system thereafter uses the 

sub-goal tree provided by MYCIN. Clancey identifies three knowledge sources 

which contribute to the interaction; 

1) Conversational Knowledge. 

The problems here are with general methods for directing and focussing 

the interaction. GUIDON uses "action patterns" which embody methods of 

achieving goals in a conversation. An equivalent structure for 

comprehending utterances is the "interpretation pattern". This follows 

work by Faught [Faught 1977] . 
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2) Domain knowledge. 

A hierarchical structure is imposed upon the domain knowledge and this 

affects the decisions about relevance of particular items to the current 

discussion. 

3) Knowledge of the communication situation. 

In effect this models the dynamic aspects of the interaction which 

provide the context in which conversational knowledge can be applied. 

There are three major components; 

i) Overlay model of student. 

ii) Case syllabus this is a list of important topics to discuss during 

a particular case. It is built into the system by the designer. 

iii) focus record - this provides a simple representation of topics which 

were recently discussed. 

The system operates by invoking a discourse procedure whose purpose is to 

select those domain-rules which may be relevant to the current discussion. 

These rules are then passed to the tutoring strategies which decide which rules 

to follow up and how to present them to the pupil (essentially choosing the 

details of content and style). The tutoring strategies invoke "discourse 

patterns" to present information to the pupil. 

Figure 23 - Discourse control in GUIDON. 

A difficulty with the design of GUIDON is that the interaction tasks seem 

to be divided between discourse procedures, domain rules, tutoring strategies 
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and discourse patterns in a rather adhoc way. 

In designing SCHOLAR, Collins attempted to produce a structured teaching 

interaction. In particular he pointed out that the interaction should build on 

previous knowledge of the student, should direct the response to student errors 

and support interactive diagnosis of problems. In developing the system, 

Collins took a set of preconceptions about the sort of discourse which his 

system could support and used this as a framework to analyse the teaching 

methods of several human teachers. The work focuses on Socratic learning 

methods. 

The issues which Collins felt were of central importance were; topic 

selection, blending questions and presentation of material together, 

questioning on basic concepts, reviewing material, hinting and responding to 

errors. In this and subsequent work, a theory of teaching interactions has 

evolved which contains four main components; 

1) Goals and sub-goals of an effective teacher. These are associated 

with presenting domain knowledge to the pupil and ensuring that she has 

techniques appropriate to use it. A taxonomy of these goals from 

[Collins 1982] is shown in Figure 24. At any given time the teacher is 

only satisfying one goal, but there may be others pending. In a given 

domain these rules are applied to domain specific knowledge. 

2) Strategies to realize these goals. 

3) Control structure to select and pursue various goals. If the 

system has multiple goals there must be some way of deciding which should 

be satisfied next. In another paper [Collins 1980] Collins subdivides 

this aspect into four components; 

i) Strategies for choosing cases. In this terminology a case is a 

particular example to illustrate a point. These strategies identify 

examples which are appropriate to a given point. 
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ii) Student model. 

than of the student. 

In Scholar this is more a model of the interaction 

A note is kept of things which have been said and 

questions which have been correctly answered. Collins does not explore 

the nature of this model in great detail. 

iii) Agenda. This is a list of the current goals and subgoals of the 

tutor. It is kept as a pushdown stack of topics. It is here that the 

clearest link to the interaction structure is seen. The current goal is 

the most recent thing on the stack. When the system decides that enough 

has been said about this goal, the system pops this goal and reverts to 

discussing the previous goal. 

iv) Priority rules. The goals on the agenda are not added as they 

crop up in the interaction. Instead each goal is assessed for its 

importance and assigned a place on the agenda linked to that importance. 

The length of time assigned to discussing a particular topic is also 

determined by these rules. 

Goals and subgoals of teachers. 

1) Learn a general rule or theory. 

la) Debug incorrect hypotheses. 

lb) Learn how to make predictions in novel cases. 

2) Learn how to derive a general rule or theory. 

2a) Learn what question to ask. 

2b) Learn what is the nature of a theory. 

2c) Learn how to test a rule or theory. 

2d) Learn to verbalize and defend rules or theories. 

Figure 24 - Tutoring rules in WHY. 
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In general, educational research on classroom interaction has focussed on 

analysis of general features of the interaction. Various scales are used 

to sample the type of discussion which is taking place at short intervals. 

This allows categorization of general teaching styles (see e.g. [Bennett 

1976] ), but does not make any contribution to understanding the decisions 

taken with regard to details of topic presentation. Direct classroom 

observation is important for understanding teaching methods, but the 

current methodology is not appropriate for embodying such information in 

the precise way required by a tutoring system. 

The analysis of conversation structure is a fairly recent field within 

pscholinguistics. It is more difficult to approach than problems of 

syntax and parsing within an utterance since a conversation includes large 

amounts of domain-specific knowledge which make it difficult to abstract 

"general features of conversation". Some work has been done [Robinson 

1982] on extending strict syntactic rules to structures larger than a 

single utterance, but in general these techniques have not been shown to 

transfer adequately. 

More fruitful approaches to conversational analysis involve dividing the 

interaction into units which have a specific purpose, linked to the goals 

of the speaker or hearer, or a division based on changes in topic. 
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Levin and Moore [Levin 1980] looked at conversation with a view to 

dividing an interaction into a set of primitive units. This work begins 

from observations such as "a question is often followed by an answer". A 

number of these "adjacency pairs" have been identified [Schegloff 1973] . 

Power [Power 1979] pointed out that an interesting feature of these pairs 

is that they need not be adjacent. Consider the following conversation; 

1 a: How many sugars do you want? 

2 b: Is it tea or coffee? 

3 a: tea. 

4 b: One please. 

In this, utterances 1 and 4 constitute an adjacency pair, though they are 

not adjacent. The intervening material is relevant to establishing the 

response. Levin and Moore extended this idea by analysing a dialogue into 

multisentence units according to the function which they are intended to 

fulfill. The function of a unit is related to a goal of the speaker. 

They call these units "dialogue games" and describe them as "frequently 

recurring established patterns of interaction which span several turns in 

a dialogue". From an analysis of a number of conversations via teletype 

between users of a large computer, they produce a set of common "games" 

(these are not intended to be a complete taxonomy). 

1) Helping (person 1 wants to solve a problem, interacts with person 2 

to reach a solution). 

2) Action-seeking (person 1 wants some action performed and interacts 

with person 2 to get him to do it) 

3)Information-seeking (Person 1 wants to know some specific 

information and interacts with person 2 to learn it) 
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4) Information-probing (Person 1 wants to find out if person 2 has 

some particular information, and interacts with him to find out) 

5) Instructing (Person 1 wants person 2 to know some information and 

interacts with him to impart it) 

6) Griping (Person 1 is unhappy about some state of affairs and 

interacts with person 2 to convey that unhappiness). 

It is worth noting that these games are essentially defined in terms of 

the goals of the participants. Some of these are more obviously relevant 

to an educational interaction than others (e.g. 3,4,5) and it seems 

likely that there exist more specific games which directly embody 

educational goals. 

A dialogue game is defined in terms of three sub-units; some parameters, 

some specifications and some components. 

PARAMETERS represent the information other than function which must be 

available to a particular game. In the games listed above Levin and Moore 

found that only three parameters were required; two ROLES to identify the 

speaker and hearer in a particular interaction, and a TOPIC. 

SPECIFICATIONS are restrictions upon the parameters which determine 

whether the state of the world is appropriate for the initiation of a 

particular game. For example, in the HELPING game, our specification 

would be that the person requesting help wants to achieve something, is 

unable to achieve that thing, and is permitted to achieve that thing, 

while the Helper must be willing and able to facilitate the person needing 

help in achieving that thing. 

COMPONENTS control the actual detail of the gaae. They may be 

regarded as sub-goals towards achieving the goal defined by a particular 

game. In the case of helping they could be: 1) explain what was expected 
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2) describe what happened 3) helper offers explanation. These components 

may be simple utterances or they may invoke another game in order to 

achieve their goal. 

The following is an example of the game for seeking information. 

Game: INFO-SEEK 

Parameters: SEEKER SOURCE INFO 

Specifications: 

SEEKER doesn't know INFO 

SOURCE knows INFO 

SEEKER wants to know INFO 

SOURCE is willing for SEEKER to know INFO 

Components: 

SOURCE wants SEEKER aware of INFO 

SEEKER wants SOURCE aware that 

SEEKER is obligated to SOURCE 

The mechanism for dialogue proposed by Levin and Moore regards the game­

description above as a knowledge structure which may be acted upon by 

three cooperating processes to produce a dialogue. These processes are 

concerned with initiating a game, comprehending and producing utterances 

within a game, and terminating a game, respectively. These combine to 

produce a five step model of the discourse process; 

NOMINATION - This is the process of activation a particular game. A 

toy version could simply announce that it intends to embark upon game X 

(Power's system does this, for example), but in real conversation this 

process is often implicit. Attempting to establish the parameters may 

result in nominating a particular game. In the system provided by Levin 

and Moore there are two detailed mechanisms for nominating games - one by 

a "spreading activation" model which brings games related to currently 

active concepts into focus, and one rule-based transformation of the input 
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intended to propose goals for the speaker which can be matched against 

game-specifications. 

RECOGNITION - The described mechanism includes a representation of 

Long-term and Working memory. The recognition phase involves resolving 

any conflicts produced at the nomination stage by referring to supporting 

evidence in memory. 

INSTANTIATION - Once a particular game has been established it may be 

the case that some of its parameter specifications do not have 

corresponding entries in memory. For example, if someone invokes the 

info-seek game by saying "Will you tell me the height of the Eiffel 

Tower?", we can infer that the speaker wants this information, but does 

not have it. The instantiation phase simply takes inferences which can be 

made from the parameter specifications and notes them in working memory. 

In this way, even if the game fails to achieve its goal, we have updated 

our model of the goals of the speaker. 

CONDUCT - Conducting the game corresponds to carrying out each of the 

components. These are built in to the game in such a way as to satisfy 

the ultimate goal of the game. There is typically a temporal ordering to 

these components. 

TERMINATION - Termination may happen in several ways. A game may 

achieve its goal and exit conventionally or the other participant may 

interrupt. As soon as a parameter specification ceases to hold the game 

is deemed to be no longer relevant (e.g. If someone wants you to help her 

achieve a task, and that task is achieved or she decides that she no 

longer wants to achieve it, then there is no need to continue helping her 

to achieve it. 

The goal-oriented nature of dialogue games is very important and 

distinguishes them from most other approaches to describing natural 

language. 
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Each Dialogue game can be seen as a problem-solving operator selected 

to accomplish some given high-level goal and then specifying a set of 

subgoals to pursue." 

Levin and Moore list some generalizations about language which follow from 

their theory. It is worth noting how many of these refer to goals of the 

participants in the interaction. 

l)Part of the comprehension of any utterance is to associate particular 

functions with it, inferring that the speaker is using the utterance as a 

means to accomplish one or more particular identified goals which he 

holds. 

2) The speaker ordinarily holds multiple goals, and these are related in 

highly constrained ways. 

3) The goals held by the two participants of a dialogue are not 

independent but rather are closely related in ways which strongly and 

systematically constrain co-occurence of goals. 

4) These related sets of participants goals underly a significant amount 

of dialogue behaviour and the knowledge of these recurrent goal patterns 

is essential for language comprehension. 

5) People use their knowledge of goal structures in dialogue to effect 

implicit communication of various kinds, including the performance of 

indirect speech acts and the implicit communication of assumptions about 

each other. 

6) Changes of topic in dialogue are directly dependant upon changes in 

the participants goal structures, and are accomplished as side effects of 

goal structure changes. 

7) Indirect communication, including indirect questions and requests, 

arises out of the part of language comprehension which associates 
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functions with utterances. 

Richard Power has taken a similar approach to Levin and Moore in 

attempting to impose a structure on conversation. He produced a program 

in which two robots with different goals can converse in order to achieve 

those goals. The robots exist in the world described in chapter 7. 

The major difference between Power's work and that of Levin and Moore is 

that since it is a model of conversation generation it must make some 

statements about the way in which an agent develops a set of goals and how 

these goals are linked to an interaction. As Power says " ... there has 

been a good deal of work on language understanding and goal-directed 

behaviour; but the two have not got together." The robots have goals of 

achieving states in the world and they operate by building a planning tree 

to achieve those goals. In this program the robots communicate to keep 

each other informed about the state of their plan and their beliefs about 

the world. The robots may also ask each other to perform tasks. 

Adding planning to the discourse involves Power in extending the idea of 

"discourse games" (which he calls "conversational procedures") such that 

they contain statements about the expected course which a particular game 

will follow. and the way in which the utterances are linked to the goal of 

that game. While Levin and Moore take it for granted that the components 

of a game will satisfy the goal of that game, Power attempts to justify 

every utterance within a game in terms of its relevance to the current 

state of the speakers plan. Power also introduces "planning procedures" 

which correspond to private thoughts. Planning procedures and 
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conversational procedures may call each other in a reasonably unrestricted 

fashion. In this way a blend of reasoning and discussion is achieved. 

The following example of a conversation procedure from Power's program 

should be compared with INFO-SEEK above, which is designed to achieve the 

same thing. The parameters are the same in both cases, comprising two 

ROLES and a TOPIC, but the body of Power's procedure appears to be less 

completely formalised. 

Game: ASK 

Parameters: SPEAKER-ONE,SPEAKER-TWO,STATE-OF-AFFAIRS 

Actions: 

1) SPEAKER-ONE composes a SENTENCE which expresses STATE-OF-AFFAIRS as 

a QUESTION, and utters it. 

2) SPEAKER-TWO receives the SENTENCE and determines the STATE-OF­

AFFAIRS to which it refers. He records that SPEAKER-ONE cannot see the 

object mentioned in STATE-OF-AFFAIRS, and then inspects his world model to 

see if STATE-OF-AFFAIRS is true. If he finds no information there he says 

I DON'T KNOW, otherwise YES or NO as appropriate. 

3) SPEAKER-ONE reads SPEAKER-TWO's reply. If it is YES or NO he 

updates his world model appropriately. If it is I DON'T KNOW he records 

that SPEAKER-TWO cannot see the object mentioned in STATE-OF-AFFAIRS. 

The sort of interaction which this unit would generate is as follows; 

SI: Are you inside? 

S2: No. 

It is important to note that apart from specifying the content of this 

trivial interaction, the procedure also describes its effect on both 

hearer and learner. When both participants are using the same game it not 

only provides a framework within which to generate utterances, but also a 
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context within which to understand them. 

Power criticises his program for its lack of flexibility in dialogue. If 

something unexpected happens within a game, then that game is completely 

abandoned. Levin and Moore probably proceeded further on this aspect of 

the problem with the INSTANTIATION step which keeps provides a general 

method for keeping track of assumptions in dialogue. Power attributes 

this limitation of the program to the weakness of his representation of 

the current dialogue state - many of the utterances are understood by his 

system simply in terms of the previous remark; they are not related to a 

wider context. 

In order to rectify this, Power proposes that a dialogue state should be 

represented by a structure which grows from the main goal. Every 

utterance should be comprehended in terms of its effect upon this 

structure. Power suggests the following necessary components for this 

representation; 
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Goals 

Plans 

Candidate plans 

Goal-directed procedures 

Inference rules 

Justifications of; 
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Plans 
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Rather than divide a conversation into units based upon function, 

Reichmann [Reichmann 1978] looked for topic-linked structures in recorded 

conversations. The basic supposition behind this work is that a 

conversation is "a structured entity whose utterances can be parsed into 

hierarchically related context spaces". These "context spaces" are groups 

of utterances which refer to a single issue or event. The analysis builds 

upon earlier work by Grosz [Grosz 1979] on task-related dialogue, which 

showed that the a task-related dialogue has an underlying structure that 

parallels the structure of the task being discussed. Grosz groups 

utterances in terms of the concept of a "focus space". Any explicitly 

mentioned item is in "explicit focus", while items linked to explicitly 

focussed items are brought into "implicit focus". During a conversation 

there may be many focus spaces in operation. A distinction is drawn 

between "active" focus spaces, which represent the current focus of 

conversation, "open" focus spaces, which represent focuses which are not 

current but which may again become current, and "closed" focus spaces 

which have been discussed and will not become active again. 

Reichmann analyses an interaction into a sequence of "context spaces" 

together with some formal relationships between them. There are two types 

of context space, "issue context spaces" and "event context spaces". 

Issues refer to generalized activities while Events refer to particular 

instances (c.f. Issues and Examples as used in WEST (see above». It is 

suggested that "The underlying structure of a conversation is the set of 

relationships that hold among its constituent context spaces". 

An issue context space concerns; 

1) A general issue of concern (the topic). 

2) The actors and objects participating in the issue (if any). 

3) The time of occurence of the issue (if any) 

4) The duration period of the issue (if any) 

5) Focus level assignments to each of the above. 
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6) State of the context space at a given time in the conversation. 

An event context space concerns; 

1) A particular episode and the events that occurred therein. 

2) The actors and objects participating in the episode (if any). 

3) The location at which the episode occurred. 

4) The time of occurence of the episode. 

5) The duration period of the episode. 

6) Focus level assignments to each of the above. 

7) A topic of, or point being expressed by, the event context space. 

8) State of the context space at a given time in the conversation. 

The content of these "context spaces" seems worryingly adhoc. They were 

derived to provide a formalism to represent each context which arose in 

two specific dialogues which were examined in detail. For the moment we 

will overlook this point and consider two examples from the taxonomy of 

relationships between contexts which Reichmann produced. 

ILLUSTRATIVE AND RESTATEMENT RELATIONS. 

This represents the case where some general issue is discussed, one or 

more specific instances on that issue are introduced, and then the 

original issue is restated. Consider an example; 

" If you evaluate a LISP variable you get back the value associated with 

that variable {ISSUE}. When you evaluated A you got the value APPLE 

{EVENT I}, and when you evaluated B you got the value BANANA {EVENT2}. 

These are the values associated with these variables {restatement of 

ISSUE}." 

In this case our Issue is values of variables. This arises in the first 

sentence, and is restated in the final sentence. Between these are 

Mark E-C 27 - 2 - 85 Page 261 



references to two events - evaluating A and evaluating B - which 

illustrate the general issue. In general this relation has the form; 

State an ISSUE. 

State one or more EVENTS. 

Restate the original ISSUE. 

The illustrative relation is subdivided into "reference illustrative" 

(which occurs when the hearer already knows the event context space) and 

"full illustrative" (when the hearer has no knowledge of the event context 

space and the speaker must give a full description of it. 

GENERALIZATION RELATION. 

A generalization relation is one in which a particular instance of 

something is discussed, and this is followed by a statement of an Issue 

(presumably some general case which follows from the specific case). For 

example, 

" Before taking the first element of it, CAR evaluates its argument 

{EVENT}. Most Lisp functions evaluate their arguments before doing 

anything to them {ISSUE}." 

State an EVENT. 

State an ISSUE. 

The major issues which Reichmann identifies in producing a coherent 

conversation are topic and focus. 

An overall goal of a listener is to maintain a model of the current topic 

which adequately explains all utterances of the speaker. This involves 

assessing the relevance of each utterance to the current topic and either 
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integrating it within that context or switching context to provide a new 

topic with which the utterance is compatible. Reichmann attempts to 

formalize this behaviour by distinguishing five types of "state" which a 

context space may be in, and providing some "Semantic relational rules" 

for assigning these states to particular spaces and guiding transformation 

between these spaces. 

Focus is used to assign importance to individual entities within a 

conversation. It is not independent of topic; Choice of focus may affect 

topic and vice-versa. Reichmann represents this with a "focus level" 

assigned to each entity by "focus assignment rules". It is pointed out 

that these focuses are subjective and it is possible for the speaker and 

listener to have different focuses within the same interaction. 

The theory outlined above provides an adequate framework for representing 

the dialogues studied by Reichmann. It is not clear how much extension 

would be necessary to deal with other instances of dialogue. Another 

point to bear in mind is that this is essentially a descriptive theory -

it offers no method for linking these structures to the underlying 

intentions of speaker and hearer. Finally, we see throughout this work a 

central position given to the ISSUES/EVENTS distinction. This seems to be 

a specific case of a generalization-specialization relationship. 

Replacing issues and events with a spectruJR of "generality levels" would 

not adversely affect the theory. It is not immediately clear that this is 

the only dimension controlling topic changes in conversation. 

In a teaching situation there are two major driving forces controlling the 

interaction: the goals of the teacher and the state of the pupil. The 

architecture of the discourse system atteJRpts to reflect various aspects 

of real discourse. In this section we will describe the features which we 
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are attempting to model, then give details of the actual mechanism used in 

IMPART. 

One aspect of interaction control Is that which is external to the 

teacher. This involves direct statements by the pupil and situations 

which arise as the result of actions of the pupil. Such occurences 

interact with the teacher's plans. A poor teacher will override this part 

of the educational interaction, ignoring the opportunities which are 

offered. In some sense this is no better than providing the pupil with a 

passive aid such as a text book. A good teacher should make use of these 

events, incorporating them into her plans to produce a richer interaction. 

This type of opportunistic tutoring is characteristic of Intelligent 

teaching. 

A major component of this aspect of interaction is the set of goals held 

by the pupil. It is important to try and deduce what these goals are. 

These goals alone do not provide a sufficient representation of the 

factors external to the teacher. The behaviour of the environment often 

differs from the pupils expectations. This must be monitored since many 

useful tutoring steps can be taken at precisely those points where the 

pupils expectations differ from the behaviour of the environment. 

The application of a theory of learning to observations which the pupil 

can make provides all the basic information for opportunistic tutoring 

based on events which occur in the environment. As was shown in the 

previous section, this theory produces a set of possible hypotheses which 
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the pupil could hold, which in turn indicate a set of possible items to 

tutor in any given situation. Deciding what to actually tutor and how to 

teach it involves considering the relevance of each item to the current 

state of the interaction. 

It is very valuable to provide the pupil with the facility to interact 

directly with the teacher by asking questions. This encourages the pupil 

to take control of the interaction and supplies a valuable feedback 

mechanism which allows the teacher to discover which features of a problem 

are actually worrying her pupil. 

The teacher knows various abstractions which make the language easier to 

understand. Where an explanation is necessary the teacher should couch it 

in terms of these concepts. A decision must be taken about the relevance 

of a particular discussion to the current interaction, and this assessment 

is of major importance in deciding what to teach. In some sense tutoring 

these concepts corresponds to a goal of the teacher. These concepts may 

be regarded as an embodiment of the curriculum. 

Let us consider how the goals of the teacher affect the interaction. If a 

teacher wishes the pupil to understand the origins of coal she will plan a 

method of presenting this information to the student. This might be 

thought of as part of the long-term structure of the interaction. This 

corresponds to a type of goal which is not in general satisfiable, but 

which may be reduced in importance by repeated action. As an example of 

this, if we wish a pupil to understand about integration of mathematical 

functions, we cannot expect to offer this information once and expect it, 

and all its consequences, to be understood. Satisfying such a goal may 

begin in junior school with counting squares under a graph to determine 
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the area. This can gradually be extended via methods of approximation 

until we are able to present a mathematical proof of the method of limits. 

Even now it may be many years before the pupil fully understands 

integration - and that goal may never be completely satisfied. Each of 

these stages may be regarded as an attempt to satisfy the goal of teaching 

integration. They use very different methods, and none can be said to 

have finally satisfied the goal. This is reminiscent of the earlier 

discussion of when to teach things, which suggested that there is an 

appropriate way to teach anything to a pupil at any stage of development. 

It is important to try and represent the domain specific knowledge in such 

a way that it can be presented to the pupil and used to guide the course 

of the interaction. It is also important to keep this domain knowledge 

separate from any general mechanism used to control the conversation, 

although presentation methods will depend upon the knowledge being taught. 

Examining the work reviewed above, we find that attempts have been made to 

structure a dialogue by dividing it into units selected with respect to 

content (e.g. SCHOLAR, Reichmann) or with respect to function (e.g. 

Power). It seems likely that the structure of any real dialogue wil 

depend upon both these issues. It is also worth noting that a major 

division of content used by most researchers is the abstractness of the 

material being taught. WEST uses concrete INSTANCES to illustrate 

abstract ISSUES, Reichmann uses concrete EVENTS to illustrate abstract 

ISSUES and so on. I would propose that the binary division of subject­

matter into concrete and abstract units is artificial. Concreteness is a 

relative property of pieces of subject matter. I wish to suggest that 

smooth transitions along a dimension of concreteness are of great 
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importance in maintaining smooth discourse structure. 

Another major feature of discourse which should be modelled is the idea of 

Conversational Focus. This term is used to describe the way in which 

certain pieces of subject matter may be more relevant to the current 

discussion than others at a given time. The set of things which are 

currently "in focus" affect the interpretation of utterances. 

In IMPART the dialogue will be structured by the combination of high-level 

components (corresponding to goals of the teacher) and low-level 

components (corresponding to events external to the teacher). The 

resulting dialogue should be appropriate to the current situation, and 

should achieve smooth transitions in topic and focus of interaction. 

There are four major constituents of the discourse system; a 

"conversational context", a set of "topic controllers" which can invoke 

"discourse games", a "bidding mechanism" and a high level "conversational 

controller". Each of these will be described separately. 

Continuity and consistency within the interaction is maintained by 

introducing the idea of a "conversational context". As in the work of 

Grosz [Grosz 1979] , this corresponds to a set of iteMs which are 

implicitly or explicitly at the focus of the current conversation. Items 

which have been brought into focus decay in importance over time unless 

they are mentioned again. 
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The context contains three major components. The first of these has the 

obvious function of noting what has been recently said. This is done by 

associating a focus rating with each topic controller (see below). The 

pupil model also acts by affecting the conversational focus, since the set 

of possible hypotheses which the pupil may retain bring topics associated 

with those hypotheses into focus. The third context component, currently 

unimplemented in IMPART, should be the set of items referred to in pupil 

initiated interaction steps. 

The approach to representing domain-specific knowledge which will be taken 

here is to attempt to rationalise the idea of "issues" introduced in the 

WEST system. These issues are useful ways to group knowledge according to 

topic, but they are essentially terminal items which can simply present 

themselves to the pupil as canned pieces of text. Advice from WEST 

consists of a sequence of terminal items. 

We will introduce the idea of a " topic controller " which contains a 

chunk of domain-specific knowledge. Instead of being a terminal piece of 

text, each Topic Controller is an active item with associated declarative 

and procedural knowledge, capable of controlling a dialogue in its 

specialist area. A controller may be invoked when its specialist subject 

appears, and it may be invoked with anyone of a variety of goals to 

achieve. The controller may produce interactions with the pupil and it 

may call other controllers to talk about dependant issues within that 

interaction. A controller may also invoke games to achieve specific 

goals, providing those games with domain-specific information. As well as 

providing a means for generating interaction, the topic controller also 

provides a context within which interaction may be understood. When a 

controller has achieved its current goal, or decisively failed to do so, 
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control will be returned to the unit which called it. 

~nversati~ 
Overlord 

General Do.aln-specIfIc 
Ga.es Ga.es 

Figure 25 - Structure of discourse meChanisms. 

This "topic controller" based structure may be seen to support many of the 

dialogue features which are being modelled. 

A topic controller is essentially a topic-based unit of interaction, but 

within that unit there may be differing goals to be achieved which 

correspond to function~based interaction units. This supports both forms 

of discourse analysis described above. For example, context changing 

rules [Reichmann 1978] become rules for changing topic controllers, while 

functional units are represented by the set of discourse games which may 

be called in a particular context. 

The actual dialogue games used are essentially the same as those of 

Richard Power [Power 1978] . 

1: Info-seek. Attempt to get information from the other participant in 

the dialogue. 

2: Info-probe. Check whether the other participant has some information 

of which you are already aware. 

3: Illustrate. Give a more concrete discussion of some topic. 

4: Impart-info. Offer information to the other participant. 

5: Request-action. Try to get the other participant to do something. 
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The major difference is the addition of a game called "illustrate". This 

provides a mechanism for increasing or decreasing the concreteness of the 

discussion. In this way it removes the need for a distinction between 

events and issues which was mentioned earlier. 

As was mentioned above, the mechanism keeps some collection of topics" in 

focus" during the conversation. There are two mechanisms involved here. 

The first is a RECENCY TAG associated with each controller which maintains 

the implicit focussing described by Grosz. A second mechanism is the 

subconcept ordering imposed upon the controllers. Since one controller may 

invoke another (or recursively invoke the entire conversation mechanism), 

there will be a hierarchy of controllers in action at any given time. All 

these controllers are in conversational focus, either as active context 

spaces or as open context spaces. This mechanism corresponds to a push­

down stack model of conversational focus. It was mentioned above that 

this is not adequate to describe all the features of topic change found in 

human conversation, but it accounts for many of those features. 

Apart from sectioning the domain knowledge, it may be observed that a 

topic controller or conversational controller need not know how a unit 

which it invokes achieves the goal which it was given. This allows the 

contollers to blend linguistic and non-linguistic methods within an 

interaction. 

The mechanisms which govern the conversation are clearly domain 

independent, but involve decisions on issues such as the relative 

importance of topics which require some domain knowledge. This is 

reflected in this system by allowing the control strategies to take 
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decisions based upon simple numeric "bids" which are generated by topic 

controllers. In this way the domain knowledge is kept separate from 

general control strategies. 

The bid made by a controller is based upon several components; 

1) Intrinsic importance. A measure of the importance of each topic is 

built into the curriculum. If all other things are equal, the topic which 

is talked about is that which was considered most important by the 

curriculum designer. 

2) Extrinsic importance. The relevance of the topic with respect to the 

current conversational context is assessed. This involves combining the 

RECENCY TAG for the topic controller with an assessment of its relevance 

to the current set of hypotheses which the pupil could hold. 

The RECENCY TAG is simply a number indicating the last interaction step on 

which the controller was invoked. The larger the difference between this 

and the current step tag, the more time has elapsed since the controller 

was invoked. In essence we may consider that the controller gradually 

decays in relevance as time passes since it was mentioned. Given that 

this is the case, there are several possible ways in which the bid could 

depend on this tag; we might try to keep issues in focus by restating 

them, or we could adopt the strategy of focussing on those items which 

have dropped from view. It seems likely that a real conversation involves 

a complex dependence on this parameter. The RELEVANCE is assessed by 

examining the set of hypotheses produced by the learning model. If the 

TRIGGER associated with a particular component is present, then the bid 

carries greater weight. The RELEVANCE may be 1 or 0 depending on whether 

the trigger is present or absent. 

A more sophisticated form of bidding would involve similar examinations 

for sub-concepts of a particular topic. 

Mark E-C 27 - 2 - 85 Page 271 



3) Level talked and tested. Within a particular topic controller, there 

is a set of levels of complexity at which the controller can talk. 

Associated with each of these is a set of procedures intended to test the 

pupils understanding at that level. It is clear that a teacher should 

attempt to increase the level of understanding of her pupil, but that 

progress to a more complex level should not be made unless the current 

level is well understood. For this reason, the bid includes a component 

which is based on both the difference between the current level and the 

maximum level of complexity, and the difference between level talked and 

level assessed. The bid is proportional to the difference between current 

level and maximum level. The link to level tested is more complex, since 

we do not wish to introduce new material if the current level is untested, 

but we would wish to carry out tests. This means that the bid should be 

linked to the goal which the controller will attempt to satisfy. More 

will be said about this later. 

4) Sub-concepts. The topics are ordered according to a useful 

precondition structure. The length of time for which a topic will hold 

the conversation is partially determined by the number of sub-concepts 

which it calls. This information may also be part of the bid. 

The actual dependence on these factors which the system uses is somewhat 

adhoc, being based on personal views about the effect of these factors. 

The following bidding function is applied; 

BID= INTRINSIC*EXTRINSIC*LEVEL*SUBCONCEPTS 

where EXTRINSIC = (CURRENT STEP - RECENCY TAG) (l+TRIGGER) 

LEVEL (TESTED+l/TALKED+l)*(MAXLEVEL - TESTED) 

It is clear that the importance of a topic is in some sense directly 

proportional to the components mentioned above. Some clarification should 
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be made, however, of the nature of the EXTRINSIC and LEVEL components. 

Since EXTRINSIC is proportional to the difference between the CURRENT STEP 

and the RECENCY TAG, topics will increase in importance if they are not 

discussed for a long time. This ensures a wider discussion than would 

occur if the most recently mentioned things continued to be discussed. 

The TRIGGER factor causes a large change in the importance of the topic; 

this is reasonable since it is expected that things which are currently in 

context will be more relevant to the discussion than those which are not. 

The TESTED/TALKED component of the LEVEL bid enSures that the system 

doesn't go far beyond the current known level of understanding of the 

pupil. Basically, the system cannot talk about something more complex 

unless it believes that the student has a reasonable grasp of the things 

which have already been discussed. The second component of the LEVEL 

ensures that new topics will be introduced, and ones which have been 

thoroughly discussed will gradually drop out of the conversation. 

The high level control strategies must blend the output of individual 

topic controllers into a smooth interaction. This involves preventing 

interference between controllers, and performing general functions such as 

marking topic boundaries. It is also claimed that a large component of 

the tutoring strategies operate at this domain-independent level. 

The control structure consists of an algorithm for collecting bids from 

topic controllers and subjecting them to a filtering process governed by 

the tutoring rules. The Conversation Controller is then responsible for 

passing control to the appropriate topic controllers in the appropriate 

order. 
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1) Get bids from all issues. 

2) Choose issues which may be given control. 

3) Order and filter the selected issues, imposing any necessary 

presentation constraints. 

4) Carry out an interaction step based on this ordering. 

5) Go to number 1. 

The first step involves collecting bids from each of the topic 

controllers. These bids should embody many of the fluctuating aspects of 

the interaction in a domain independent manner. They are numbers. 

A subset of the bids will be chosen based on a simple mathematical 

selection rule. This step eliminates those topics which are not 

sufficiently in focus to discuss. 

The topic controllers which have been chosen are examined by the tutoring 

strategies to decide which will actually be given control of the 

conversation. This may involve negotiation between controllers and 

tutoring knowledge in order to determine what specific goals the 

controller wishes to satisfy. The result of this stage is an ordered set 

of topics to discuss which may include constraints to be set upon each. 

At this point the conversation controller may also insert items of its 

own, such as " Thats enough about that, now lets talk about this", to 

delimit topic boundaries. 

The course of action selected in the previous step is executed. Since 

this involves interaction with the pupil, unexpected things may happen. 

For this reason it is important to permit unconventional exits from the 

interaction. If control is unexpectedly returned to the conversational 
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controller, it moves on to the next step in the algorithm. 

The final step is to return to step 1, which means that an interaction is 

based upon an iteration of this algorithm. 

It should be noted that this mechanism does not involve any domain­

specific knowledge. It is also worth observing that the opportunistic 

components of the interaction are dealt with through the effect which 

conversational context has upon the overall bid. 

The task which the tutoring rules must complete is that, given a 

preliminary set of topics to be discussed, they should link the separate 

issues to produce an interaction plan (a structured set of goals), which 

is in accordance with the educational constraints upon the system. A set 

of rules adequate to describe a particular educational approach fully has 

not been developed, but it is hoped that the following examples will 

illustrate the flavour of these rules. 

1) Linked precondition. If two topics share a subconcept. which 

would be invoked by each rule individually, then the subconcept should be 

invoked independently before the topics are discussed. 

e.g. "Function-call" and "evaluation" have the joint SUb-concept 

"value". Where they would produce i) below if treated separately, 

applying this rule would produce ii); 

i) " This is a function call to QUOTE with argument FRED, which 

returns value FRED. LISP is described as evaluating something, when it 

executes a statement. Evaluation always produces a value, and sometimes 

has other effects as well." 
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ii)" In this example, FRED is the value of this expression. A value 

is returned when any Lisp expression is evaluated. Evaluating an 

expression involves determining the effects of a statement. The statement 

here is a function-call, in which a function (QUOTE) is applied to an 

argument (FRED)." 

2) Avoid repetition. If several topics share the same functional goal 

(which may be discovered by a direct interaction between tutoring rules 

and domain controllers), then they should not appear consecutively. This 

may involve preventing one or more topics from being discussed. This rule 

will prevent interaction segments such as; 

" What is the function-name in the above example? What is the value 

in the above example? What is the argument in the above example?" 

3) Generalize wherever possible. If two or more topics appear which 

are a subconcepts of another topic, present the more general topic with 

references to the subconcepts. An example would be if "lists" and "atoms" 

are both possible topics. They are subconcepts of "datatype", and so the 

interaction should feature datatypes with reference to lists and atoms. 

4) Hinting. If a topic has a small difference between level talked 

and level tested, and is not going to talk to a higher level, restrict the 

topic to an indirect statement. For example, if a pupil has been 

successfully giving lists to an APPEND statement, and then gives it an 

atom this will be "unexpected" in the sense that level talked and tested 

should be fairly similar. A simple "Did you mean to do that?" may well be 

sufficient to prompt the pupil to follow up this action. 

Figure 26 - Sample interaction rules from IMPART. 

It is proposed that a production-rule formalism is well suited to the task 

of representing these rules in the conversation controller. Such a 

representation would allow domain-dependent and domain-independent rules 

to be added separately and modified easily. 
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controller has been implemented. 

To illustrate the mode of operation of the dialogue systems, this section 

outlines the way in which some topic controllers would interact to produce 

a structured discussion. Most of the internal details of the controllers 

are unprincipled and uninteresting, but the bidding and constraining 

process is worth examination. The following three tables show the states 

of three topic controllers (we will assume the rest are irrelevant); 

******** 

Topic controller: EVALUATION 

Trigger: (do ARGl) 

Level talked: 5 

Intrinsic importance: 50 

Recency: 4 

Level tested: 3 

Sub-topic controllers: VALUE FUNCTION-CALL ATOM 

******** 

Topic controller:VALUE 

Trigger: (out $value$ ARGl) 

Level talked: 3 

Intrinsic importance: 20 

Sub-topic controllers:() 

******** 

Topic controller: ATOM 

Trigger: (type ARGl $atom$) 

Level talked: 3 

Intrinsic importance: 20 
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Sub-topic controllers: () 

Suppose that the pupil has evaluated the expression "(QUOTE FRED)". The 

possible set of things to talk about in this instance (as shown in chapter 

11 ), include functions, values. datatypes and evaluation. If it is 

assumed that the current interaction step is number 5, then the three 

topic controllers shown above would bid as follows; 

evaluation: 50.(5-4)(1+0). (4/6)(10-3).3 = 630 

value: 20. (5-2)(1+1).(4/4)(8-3).1 600 

atom: 20.(5-4). (1+1).(4/4)(8-3).1 200 

These bids would produce an ordering of these topics according to current 

importance. Filtering this list would eliminate "atom" as being 

insufficiently relevant. The resulting pair of topics is passed to the 

tutoring rules. The only rule which fires is that which identifies 

"value" as a subconcept of evaluation. In consequence, the list is 

replaced by an item indicating that "evaluation" should be given control 

of the conversation, with a goal of describing the subtopic of "value". 

If "atom" had not been mentioned since step 1, then its bid would have 

been 800, and hence it would have been the major conversational topic. 

Experimenting with the bids clearly demonstrates the way in which the 

topic structure is dependent upon the current conversational context. 

The mechanisms described here are still at a very rudimentary level. In 

particular the means of linking these topic choices to natural language 

generation has not been explored. This presents an interesting area for 

further research. 
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A mechanism which is intended to support a structured interaction has been 

described. Its link to the pupil model has been discussed. Connections 

to current work on conversation structure have been outlined. 
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An intelligent tutoring system to tutor programming languages has been 

described. A PROLOG representation for formal language semantics has been 

introduced. A programming environment has been described. A learner­

based pupil model has been discussed. A mechanism for maintaining a 

structured interaction has been outlined. 
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Part 4-

Conclusions. 



Chapter 13. 

Conclusions. 



The final part of the thesis will present an example of a tutoring 

interaction which the system can actually support. This should be compared with 

the hypothetical interactions which were given earlier. Following this, the 

major themes of the thesis will be summarised, the limitations of the tutoring 

system acknowledged, and some directions for further research proposed. 

In this section we will show an example of an interaction with the system. 

A table will be used to show the state of the relevant topic controllers, the 

relevant conversation rules and the discourse games which are used. Visible 

steps in the interaction are numbered and placed in boxes for clarity. For 

simplicity, the sub-topic part of the bid has been omitted (it will always 

assumed to be 1). The bids depend primarily on variations in the "recency", 

"talked", "tested" and "trigger" components. 

A new pupil sits down at the system and indicates her presence by pressing 

a help key. 
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Name !Recency!TalkedITested!Intrinsic!Maxlevels !Trigger!Bid 
---------[-------1------1------1---------1------------1-------1---

atom 1 0 1 0 1 0 ! 20 1 5 1 0 1 100 
list I 0 1 0 1 0 1 25 ! 5 1 0 1 125 
sexpr 1 0 ! 0 1 0 1 40 1 8 1 0 1 320 
eva 1 ua ti on 1 0 1 0 1 0 I 50 ! 10 1 0 ! 500 
argument 1 0 1 0 1 0 1 40 I 5 1 0 1 200 
function 1 0 I 0 1 0 40 1 10 ! 0 1 400 
val ue 1 0 I 0 1 0 20 I 7 1 0 1 140 
intro 1 0 ! 0 I 0 1 600 I 1 1 1 ! 600 

Discourse-games: IMPART ACTION-SEEK 
Conversation rules: none. 

The presence of it's trigger situation (all other controllers have 0 for 

all parameters i.e. nothing has been done) causes the special topic controller 

"intro" to put in the largest bid. This presents a canned introduction to the 

pupil. Since it only has 1 level to talk at, the "intro" subsequently becomes 

inactive. The final action of the "intro" controller is to invoke an "action-

seek" dialogue game which is responsible for the final sentence in the 

introduction. This game remains active until it is satisfied. 

******************************************************************* 
* 1) TEACHER: Welcome to IMPART. There are two menus, * 
* one with FUNCTIONS (things which carry out actions in lisp) * 
* and one with editor operations. Use these menus to produce * 
* an EXPRESSION (something understood by LISP) on the screen, and * 
* then EVALUATE (find out what lisp does with it) it. I suggest * 
* you start with the QUOTE function - try filling the slot with * 
* your name. * 
******************************************************************* 

Name !RecencYITalkedlTestedlIntrinsiclMaxlevels I Trigger IBid 
---------1-------1------1------1---------1------------1-------1---

atom 1 0 1 0 I 0 1 20 1 5 1 0 ! 200 
list I 0 1 0 I 0 I 25 1 5 I 0 I 250 
sexpr 1 0 1 0 I 0 1 40 I 8 I 1 1 1280 
evaluationl 0 I 0 1 0 1 50 1 10 I 1 I 2000 
argument 1 0 I 0 I 0 I 40 1 5 I 0 I 400 
function ! 0 1 0 I 0 I 40 1 10 I 1 I 1600 
value 1 0 1 0 ! 0 1 20 I 7 I 0 I 280 
intro I 1 I 1 I 1 I 600 1 1 I 0 I 0 

Discourse-games: none. 
Conversation-rules: none. 

The speech placed triggers in the conversational context for "sexpr" 

"evaluation" and "functions". "Evaluation" and "function" made large bids, but 

a tutoring rule indicates that no controllers should be allowed to control the 
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interaction immediately after the initiation of an action-request (i.e. If 

you've asked the pupil to do something, give her time to have a go before 

interfering again). If the pupil did not respond to the request after a 

reasonable time, then the bids shown above would be used in deciding how IMPART 

should react. 

****************************************************************** 
* * * 2) PUPIL: enters (QUOTE FREDA) and evaluates it to get FREDA. * 
* * 
****************************************************************** 

Name IRecencYITalkedlTestedlIntrinsiclMaxlevels ITriggerlBid 
---------I-------I------!------I---------I------------1-------1---

atom 1 0 1 0 1 0 1 20 I 5 I 1 I 600 
list I 0 I 0 I 0 I 25 I 5 I 1 I 750 
sexpr I 2 I 0 I 0 I 40 I 8 I 1 I 640 
evaluationl 2 I 0 I 0 I 50 I 10 I 1 I 1000 
argument I 0 I 0 I 0 I 40 I 5 I 1 I 1200 
function I 2 I 0 I 0 I 40 I 10 I 1 I 800 
value I 0 ,0 I 0 I 20 ,7 I 1 '840 
intro I 1 I 1 I 1 I 600 I 1 I 0 I 0 

Discourse-games: ILLUSTRATE IMPART ACTION-SEEK 
Conversation-rules: 

1} Remove topics with unmentioned preconditions. 
2} Combine topic/sub-topic pairs into a single unit. 
3} Order topics by size of bid. 

The recency level have been affected for those topics whose triggers were 

present at step 2. The learning model has generated a hypothesis-pair; 

quote(freda) [type(freda,atom),out($value$,freda)] 

quote(ARGl) [type(ARGl,sexpr),out($value$,ARG1)] 

which sets triggers for "atom", "function", "value", "argument" and 

"sexpr". The bids are collected and filtered, leaving "evaluation", 

"argument", "function", "sexpr" and "value" (as shown above). The conversation 

controller takes this set and applies its conversation rules to decide which 

should actually control the discourse. "Sexpr" is eliminated since it's 

trigger was set with a "climbing generalization tree" rule, and the 

preconditions for introducing this topic have not been satisfied. The 

conversation controller recognises "value" as a sub-topic of "evaluation", and 
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"argument" as a sub-topic of "function". Hence it rewrites the structure to 

call each major topic in turn, constraining it to invoke the sub-topic. It 

orders the two major topics such that the one with the highest combined bid is 

mentioned first. The final list of controllers is 

«FUNCTION ARGUMENT) (EVALUATION VALUE» 

i.e. Invoke FUNCTION with a goal of talking about ARGUMENTS, and EVALUATION 

with a goal of talking about VALUES. If we insert the choice of dialogue games 

into this list, we get the following structure; 

«FUNCTION ILLUSTRATE IMPART (ARGUMENT ILLUSTRATE ACTION-SEEK» 

(EVALUATION IMPART (VALUE ILLUSTRATE») There is a direct correspondence 

between this structure and the structure of the following speech; 

*************************************************************************** 
* * * 3) TEACHER: In the example you have just produced, QUOTE is a lisp * 
* FUNCTION; that is, an action which can be performed upon some ARGUMENTS.* 
* In this case FREDA is the argument. Why not try changing the ARGUMENT * 
* to QUOTE and seeing what happens. EVALUATING a FUNCTION means finding * 
* out what lisp does when it carries out that action. In this case, QUOTE* 
* returned a VALUE FREDA. * 
* seeing what happens. * 
*************************************************************************** 

Name IRecencYITalkedlTestedllntrinsiclMaxlevels ITriggerlBid 
---------1-------1------1------1---------1------------1-------1---

atom 1 0 1 0 1 0 1 20 I 5 1 0 1400 
list 1 3 I 0 1 0 1 25 1 5 1 0 1125 
sexpr 1 3 I 0 I 0 1 40 1 8 1 0 1320 
evaluation I 3 1 2 1 0 I 50 1 10 1 0 1167 
argument 1 3 1 1 1 0 1 40 I 5 1 0 1100 
function 1 3 1 2 I 0 1 40 I 10 1 0 1133 
value 1 3 1 1 I 0 I 20 1 7 I 0 170 
intro 1 1 I 1 I 1 1 600 I 1 I 0 1 0 

Discourse-games; none. 
Conversation-rules: none. 

All the triggers have been turned off, and the corresponding recency tags 

have been modified. All the bids are below the cutoff threshold, and we are 

again waiting for an action-seek game to be satisfied, so nothing is done by 

the teacher. The topic controllers which have just been active produce very 

low bids because they have "talked" without testing that their information has 

been understood. 
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*************************************************************** 
* 4) PUPIL: replaces FREDA with JOE. Evaluates (QUOTE JOE) * 
* to get JOE. * 
*************************************************************** 

Name IRecency TalkedlTestedlIntrinsiclMaxlevels ITriggerlBid 
---------1------- ------1------\---------\------------1-------1---

atom 1 0 0 I 0 1 20 1 5 1 1 J 1000 
list I 3 0 1 0 I 25 I 5 I 0 1250 
sexpr : 3 0 I 0 I 40 ! 8 I 1 11280 
evaluation I 3 2: 0 I 50 I 10 I 0 1333 
argument I 3 1 I 0 I 40 I 5 I 1 1400 
function I 3 2 I 0 I 40 I 10 I 1 1533 
val ue 1 3 1 I 0 I 20 I 7 I 1 1280 
intro I 1 1 I 1 I 600 I 1 I 0 10 

Discourse-games: ILLUSTRATE IMPART 
Conversation-rules: 

1} Remove topics with unmentioned preconditions. 

The learning model has produced the hypotheses; 

quote(joe) [type(joe,atom),out($value$,joe)] 

quote(ARG1) [type(ARG1,sexpr),out($value$,ARG1)] 

which sets triggers for "atom", "function", "argument", "value" and 

"sexpr" as in the previous case. "Atom" and "sexpr" make large bids, but 

"sexpr" is eliminated because it's preconditions have still not been discussed. 

"Atom" gains control of the dialogue. It uses the dialogue-game sequence 

"illustrate", "illustrate", "impart". 

******************************************************************** 
* 5) TEACHER: JOE is an ATOM. In the previous example, FREDA was * 
* an ATOM. An ATOM is a sequence of letters. * 
******************************************************************** 
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Name RecencylTalkedlTestedlIntrinsiciMaxlevels ITriggerlBid 
--------- -------1------1------1---------1------------1-------1---

atom 5 I 1 I 0 I 20 I 5 I 0 150 
list 3 1 0 I 0 I 25 1 5 ! 0 1375 
aexpr 5 1 0 I 0 I 40 I 8 I 0 1640 
evaluation 3 I 2 I 0 I 50 I 10 I 0 1500 
argument 5 I 1 I 0 I 40 I 5 1 0 1100 
function 5 ! 2 \ 0 I 40 I 10 I 0 1133 
value 5 1 1 I 0 I 20 1 7 I 0 170 
intro 1 1 1 1 1 I 600 1 1 I 0 I 0 

Discourse-games: none 
Conversation-rules: none 

After presenting this speech, all topic controllers are below the 

threshold level for bids, so nothing is done. If the pupil continued to work 

with the environment, or to query the teacher, then this would affect bids and 

may result in IMPART taking some action. Instead, let us assume that the pupil 

does nothing. After waiting for a reasonable length of time, IMPART forces a 

new interaction step. 

Name IRecencYI Talked I Testedl Intrinsic I Maxlevels I Trigger IBid 
---------1-------1------1------1---------1------------1-------1---

atom I 5 I 1 1 0 1 20 I 5 1 0 1100 
list I 3 I 0 I 0 I 25 I 5 I 0 1500 
sexpr 1 5 1 0 I 0 I 40 I 8 1 0 11280 
evaluation I 3 I 2 1 0 1 50 I 10 I 0 1667 
argument 1 5 1 1 1 0 1 40 1 5 1 0 1200 
function 1 5 I 2 1 0 I 40 1 10 I 0 1267 
value 1 5 1 1 1 0 1 20 1 7 1 0 1140 
intra 1 1 1 1 I 1 I 600 I 1 I 0 10 

Discourse-games: ILLUSTRATE IMPART ACTION-SEEK 
Conversation-rules: none. 

The strongest bid is from "sexpr". Its preconditions have now been 

(partially) satisfied, since atoms have been discussed. This topic controller 

gains exclusive control of the interaction. It invokes subconcepts "atom" and 

"list". The former with an "illustrate" goal, and the latter with an 

"impart/illustrate" goal (since it is a new topic). 
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*************************************************************** 
* 6) ABC is an ATOM. A LIST is a * 
* sequence of ATOMS and LISTS enclosed in a pair of brackets. * 
* (A B C) is an example of a list. ATOMS and LISTS are * 
* both types of S-EXPRESSION. Anything which can legally be * 
* a LISP expression is an S-EXPRESSION. Try giving a LIST as * 
* an argument to QUOTE. * 
*************************************************************** 

This section has given a brief view of the way in which IMPART maintains 

an interaction structure. It should be borne in mind that, while the 

mechanisms for moving between topic controllers (as described here), have been 

systematically designed and implemented, the internal workings of the topic 

controllers are still somewhat ad-hoc in nature. This area requires further 

research. 

The overall intention of this thesis has been to outline a framework 

within which tutoring systems can be implemented. There has been a discussion 

of general background issues. The detailed design of a tutoring system for 

LISP has been discussed. This tutoring system is intended to provide a 

concrete instance of a design within the given framework. 

IMPART has not been fully implemented, but a series of programs intended 

to demonstrate the feasibility of the system has been described. In 

conclusion, the main points which have been established will be re-iterated. 

The computer provides a tool which enables us to radically rethink our 

views on the nature of education. It is suggested that the use of computers 

will require developments away from the current mainstream of educational 

thought. It is extremely important to ensure that any actual tutoring system 

which is produced is designed with due consideration given to the educational 
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perspective into which it must fit. A system which does not emphasise these 

issues will never be suitable for use as an educational aid in a realistic 

setting. 

It is proposed that it is necessary to think of computers in terms of 

educational theories based upon one-to-one interaction and individual tuition. 

In particular, it is suggested that the work of Jean-Jacques Rousseau forms a 

suitable basis from which to start investigating these issues. 

A syntax-directed editing environment aimed specifically at novices has 

been described and implemented. It has been observed that the constraints on 

such environments when intended for novices are very different from the 

constraints on syntax-directed editors for experts. A case has been made for 

the use of such environments as a first introduction to a new language. 

A generic structure for tutoring systems has been proposed. This is based 

upon the idea of guided discovery learning as the starting point for all 

educational interactions. It is suggested that this may suitably embrace all 

teaching styles, since the freedom of this method allows pupil or teacher to 

move towards a more constrained interaction if it is considered appropriate. 

This is in contrast to tutoring systems which begin with a particular 

constrained style of interaction, since they lack the flexibility to change to 

a more appropiate style. 

IMPART is an attempt to move towards a "Learner-oriented" tutoring 

paradigm. It moves away from expert-based designs. The proposed tutoring 
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structure specifies the way in which a model of the learning process, some 

domain-specific knowledge, and some conversational knowledge may be combined in 

a teaching interaction. 

The system implemented here has been set up as a flexible framework for 

tutoring. None of the components (e.g. the learning model, the discourse 

mechanisms) are in a definitive form, but the design allows them to be 

developed independently and plugged together. Alternative versions of the 

various components should be developed and tested (for example, to see how 

other models of learning would affect the interaction). In this sense the 

system also provides a framework for exploring the nature of teaching. 

A unique feature of IMPART is the use of "bounded user-modelling". By 

describing the way in which a model of the learning process can be used to 

assign bounds to the current knowledge state of the pupil, the system offers a 

genuine alternative to the "expert-based" approaches of subset and perturbation 

modelling. 

The application of current machine-learning methods to the user-modelling 

tasks has demonstrated the way in which "bounded user-modelling" can operate 

without a complete, psychologically valid model of the learning process. 

A formal semantics for programming languages has been described in detail. 

This semantics is directly representable as PROLOG clauses, and consequently is 

eminently suited to automated reasoning about programs. 
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A language interpreter, trace package, and problem-solver based around 

this formalism have been described. These tools have not been fully developed, 

and each requires further exploration. In particular, the use of an annotated 

semantics as the basis for problem-solving deserves further investigation. It 

is proposed that this is an important part of developing a "glass-box" 

deductive reasoning mechanism which can be shown to the pupil. 

The semantics is not yet complete. There are some language features which 

it is unable to handle, and it is less pure mathematically than could usefully 

be. It should be further developed, preferably to the point at which its 

equivalence with other semantic representations of programming languages can be 

proved formally. It is suggested that this is a suitable area for further 

research. 

A mechanism for maintaining a structured interaction has been described. 

It is intended to be fairly general in nature. and to allow easy separation of 

domain-dependent and domain-independent knowledge involved in the interaction. 

As it is currently implemented. the discourse mechanism is closely tied to 

the tutoring system. and lacks certain features which it needs for more general 

interactions (such as the ability to recognise pupil-initiated topic changes). 

Attention has not been paid to the details of generating individual utterances 

within this framework. It is suggested that the discourse mechanisms could 

usefully be explored in further detail, and that applying these ideas to the 

design of a stand-alone discourse package, which could discuss many domains, 

would be a fruitful reasearch topic. 
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APPENDICES 
========== 

There are six appendices, as follows; 

1) Summary of semantic primitives. 

2) A semantic definition of LISP. 

3) An interpreter for the semantics. 

4) Output from a simple help package. 

5) A problem solver. 

6) A learning program. 
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Appendix 1 - Formal specification of semantic representation. 

This appendix lists the basic units of the semantic representation in a 
concise form, with a brief description of each. 

Overview. 
======== 

Each statement in the language is represented by an "effect" predicate 
which corresponds to a semantic schema. For a particular instance of a 
statement the schema can be instantiated to provide a representation of the 
effect of that statement. The "effect" predicate provides an abstract syntax 
for the statement, a list of preconditions for the statement, and a body. The 
preconditions and body comprise a sequence of "primitive" operations, which may 
be regarded as component procedures or as declarative assertions about the 
state of the language processor. A semantically correct program is one in 
which all assertions can be shown to be true. 

This basic representation may be reasoned about in a variety of ways. 
Some reasoning requires extra domain-specific knowledge. This is incorporated 
in the form of annotations associated with each primitive. These primitives 
and annotations are listed here. 

Primitives. 
=========== 

** MISCELLANEOUS ** 

PRIMITIVE:TYPE(OBJECT,TYPE) 
HELP-TEXT: " It checks that OBJECT is of type TYPE." 
ERROR-TEXT: " OBJECT is not a TYPE" 
INPUT: (1 1) 
TYPE: (any tag) 
REWRITE: () 

This predicate must be defined as part of the target language 
specification. It defines each target language type in terms of the primitive 
datatypes of the semantics (identifier,number,ordered-set). It is true 
provided that "object" is of type "type". 

PRIMITIVE:DO(EXPRESSION) 
HELP-TEXT: " It evaluates EXPRESSION." 
ERROR-TEXT: " Cannot evaluate EXPRESSION" 
INPUT: (1) 
TYPE: (any) 
REWRITE:() 

This predicate determines the effect of its argument. 

PRIMITIVE:OR(LIST1,LIST2) 
HELP-TEXT: " At this point one of two things happens: EITHER (help-each LIST1) 

OR, (help-each LIST2)." 
ERROR-TEXT: " Cannot LIST1 or LIST2" 
INPUT:(1 1) 
TYPE: (o-set o-set) 
REWRITE: () 
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PRIMITIVE:OR{LISTl,LIST2,LIST3) 
HELP-TEXT: "At this point one of three things happens: 

1: (help-each ARGl) 
2: (help-each ARG2) 
3: (help-each ARG3)" 

ERROR-TEXT: " Cannot LIST1 or LIST2 or LIST3" 
INPUT:(1 1 1) 
TYPE: (o-set o-set o-set) 
REWRITE: () 

Two versions of "or" which expects list of primitives for arguments. "or" 
only fails if all it's arguments fail. 

PRIMITIVE:EQUALL(ARG1,ARG2) 
HELP-TEXT: "A test is made to see if ARG1 is the same as ARG2." 
ERROR-TEXT: "ARG1 is not the same as ARG2" 
INPUT: (1 1) 
TYPE: (any any) 
REWRITE: () 

Succeeds if both arguments are the same. 

PRIMITIVE:DONOTHING 
HELP-TEXT: " Nothing else is done." 
ERROR-TEXT: () 
INPUT: () 
TYPE: () 
REWRITE: () 

Does nothing. 

** COMMUNICATION ** 

PRIMITIVE:IN(CHANNEL,VARIABLE) 
HELP-TEXT: " It retr ieves the ARG1 and call s it ARG2." 
ERROR-TEXT: " Cannot find a CHANNEL" 
INPUT: (1 0) 
TYPE: (tag id) 
REWRITE:() 

Get an item from the communication stream called "channel" and give it the 
name "variable". 

PRIMITIVE:OUT(CHANNEL,ITEM) 
HELP-TEXT: " It returns a ARGI which is ARG2." 
ERROR-TEXT: " Cannot put VARIABLE on CHANNEL" 
INPUT: (1 1) 
TYPE: (tag any) 
REWRITE:() 

Put "item" onto "channel". 

** NUMERIC OPERATIONS ** 
All arithmetic functions provide integer operations only. 

PRIMITIVE:GREATER(NUM1,NUM2) 
HELP-TEXT: " It tests whether ARG1 is larger than ARG2." 
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ERROR-TEXT: " ARGI is not greater than ARG2" 
INPUT: (1 l) 
TYPE: (number number) 
REWRITE:() 

Succeeds if numl>num2 

PRIMITIVE:DIFFERENCE(NUMl,NUM2,RESULT) 
HELP-TEXT: " NUM2 is subtracted from NUMl to give RESULT." 
ERROR-TEXT: " Cannot subtract NUM2 from NUMl" 
INPUT:(l 1 0) 
TYPE: (number number number) 
REWRITE:() 

result=numl-num2 

PRIMITIVE:PLUS(NUMl,NUM2,RESULT) 
HELP-TEXT: " NUMl and NUM2 are added together to give RESULT" 
ERROR-TEXT: " Cannot add NUM1 to NUM2" 
INPUT: (1 1 0) 
TYPE: (number number number) 
REWRITE: () 

result=num1+num2 

PRIMITIVE:DIVIDE(TOP,BOTTOM,RESULT) 
HELP-TEXT: " TOP is divided by BOTTOM to give RESULT." 
ERROR-TEXT: " Cannot divide TOP by BOTTOM" 
INPUT: (1 1 0) . 
TYPE: (number number number) 

result=top/bottom 

PRIMITIVE:TIMES(NUMl,NUM2,RESULT) 
HELP-TEXT: " NUMl is multiplied by NUM2 to give RESULT" 
ERROR-TEXT: " Cannot multiply NUMl by NUM2" 
INPUT: (1 1 0) 
TYPE: (number number number) 
REWRITE: () 

numl*num2=result 

** SET OPERATIONS ** 
The ordered-set is the only structured datatype. Particular ordered-sets 

may have target-language types, but these do not affect the semantic 
processing. 

PRIMITIVE: SETLENGTH(SET, NAME) 
HELP-TEXT: " The length of ARGl is determined. It is ARG2." 
ERROR-TEXT: " Cannot determine the length of NAME" 
INPUT: (1 0) 
TYPE: (o-set number) 
REWRITE:() 

Given an ordered-set "set", this assigns "name" to be the length of that 
set. 
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PRIMITIVE:ELEMENT(N,SET,NAME) 
HELP-TEXT: " The ARGl element of ARG2 is found. It is ARG3" 
ERROR-TEXT: " Cannot extract the N element of SET" 
INPUT:(l 1 0) 
TYPE: (number a-set any) 
REWRITE:(element(N+X,S,M)==after(X-l,S,T),element(N,T,M» 

Assigns the name NAME to the Nth element of SET. 

PRIMITIVE:BEFORE(N,SET,NAME) 
HELP-TEXT: " Those elements of ARG2 which come before the ARGl element are 

found, and called ARG3." 
ERROR-TEXT: " Cannot find the elements of SET which precede the Nth" 
INPUT:(l 1 0) 
TYPE: (number o-set any) 
REWRITE: () 

NAME becomes a set of those elements which precede the Nth element in SET. 

PRIMITIVE:AFTER(N,SET,NAME) 
HELP-TEXT: " Those elements of ARG2 which come after the ARGl element are 

found, and called ARG3." 
ERROR-TEXT: " Cannot find the elements of SET which follow the Nth" 
INPUT:(l 1 0) 
TVPE:(number a-set any) 
REWRITE:() 

NAME becomes a set of those elements which follow the Nth element in SET. 

PRIMITIVE:ADDELEMENT(N,ITEM,SET,NAME) 
HELP-TEXT: .. ARG2 is added as the ARGl element of ARG3. The result is called 

ARG4." 
ERROR-TEXT: " Cannot add ITEM as the N element of SET" 
INPUT: (1 1 1 0) 
TYPE: (number any a-set a-set) 
REWRITE:() 

NAME is a new set, like SET but with an additional element ITEM in the Nth 
posi tion. 

PRIMITlVE:ADDBEFORE(N,NEWSET,SET,NAME) 
HELP-TEXT: " The elements of ARG2 are added before the ARGl element of ARG3. 

The result is called ARG4." 
ERROR-TEXT: " Cannot add NEWSET before the N element of SET" 
INPUT:(l 1 1 0) 
TYPE: (number o-set o-set o-set) 
REWRITE: (addbefore(X,A,B.C)==addafter(X-l,A,B.C» 

NAME becomes a set, like SET but with the elements of NEWSET added before 
the Nth position. 

PRIMITIVE:ADDAFTER(N,NEWSET,SET,NAME) 
HELP-TEXT: " The elements of ARG2 are added after the ARGl element of ARG3. 

The result is ARG4." 
ERROR-'-TEXT: " Cannot add NEWSET after the N element of SET" 
INPUT:(l 1 1 0) 
TVPE:(number a-set a-set o-set) 
REWRITE: (addafter(X,A.B.C)==addbefore(X+l,A,B,C» 
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Like ADDBEFORE, but the new elements appear after the Nth position. 

** MEMORY OPERATIONS ** 
These primitives maintain representations of side-effects such as changing 

the value of a variable. 

PRIMITlVE:CREATE(IDENTIFIER,TAGFIELD) 
HELP-TEXT: " ARG1 is declared as a ARG2 variable." 

OR "ARG1 is assigned a new value ARG2." 
ERROR-TEXT: " Cannot declare ARGI as an ARG2 variable" 

OR "Cannot assign a value to ARG1" 
INPUT:(l 1) 
TYPE: (id any) 
REWRITE: () 

Produces a new item in environment with id and tagfield. 

PRIMITIVE:DELETE(IDENTIFIER,PATTERN) 
HELP-TEXT: " ARG1 is no longer a ARG2 variable." 

OR " The current value of ARG1 is forgotten." 
ERROR-TEXT: " Cannot undeclare ARG1 as an ARG2 variable" 

OR "Cannot remove the value of ARG1" 
INPUT: (1 10) 
TYPE: (id any) 
REWRITE:() 

Removes the first matching expression. Often needs wildcarding. 

PRIMITIVE:SEE(IDENTIFIER,PATTERN) 
HELP-TEXT: " ARGI is tested to see if it is a ARG2 variable." 

OR " The value of ARGI is found to be ARG2." 
ERROR-TEXT: " ARGI is not an ARG2 variable" 

OR " CAnnot find the value of ARGl" 
INPUT: (1 0) 
TYPE: (id, any) 
REWRITE: () 

Attempts a prolog pattern match on items in environment. 

PRIMITIVE:CHANGE(IDENTIFIER,PATTERN) 
HELP-TEXT: " The value of ARGI is changed to ARG2." 
ERROR-TEXT:" Cannot assign a value to ARG1" 
INPUT:(l 1) 
TYPE: (id any) 
REWRITE: (change(A,B)==delete(A,_),create(A,B» 

Removes the first matching pattern and replaces it with this one (I haven't 
specified this properly!). 

An Example definition. 
====================== 

Appendix 7 gives a (fairly) complete description of the semantics of Lisp. 
It uses some special identifiers (surrounded by $ signs) to represent 
particular constants. These identifiers are listed here; 
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****** Channels ****** 

"$value$" 
"$input$" 
"$output$" 

These are names for channels of communication. $value$ is the channel 
along which expressions communicate, while $input$ and $output$ are side-effect 
channels used by READ and PRINT statements. 

****** Types ****** 

"$sexpr$" "$number$" "$list$" "$atom$" "$boolean$" 

These identifiers correspond to the lisp datatypes. They are defined in 
the "type" predicate. 

****** Mise ****** 

"$expr$" 

This is used to store user-defined functions. It also indicates that they 
are eval-spread. 

"$prop$" 

All property list additions are prefixed with this identifier. 

"$global$" 
"$fluid$" 
"$local$" 

These identifiers represent particular types of variable scoping. They are 
primarily used by assignment statements. 

"$newline$" 

This identifier can be placed on the output channel. It delimits lines of 
output. 
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Appendix 2 - Semantic description of Lisp. 
/* This file contains axiomatic definitions of the semantics of */ 
/* lisp functions together with the language dependant support */ 
/* routines. */ 
/* Clean semantics version. */ 

/* ABS */ 

effect(abs(ARGl}, 
[type(ARGl, '$sexpr$'}], 
[do(ARGl} , 
in('$value$' ,VARGl}, 
type(VARGl, '$number$'}, 
or([greater(VARGl,O},out('$value$' ,VARGl}], 

[difference(O,VARGl,RES},out('$value$' ,RES}])]}. 

/* ADDI */ 

effect(addl(ARGl}, 
[type(ARGl, '$sexpr$'}], 
[do(ARGl}, 
inC '$value$' ,VARGl), 
type(VARGl, '$number$'), 
plus(l,VARGl,RES}, 
out('$value$' ,RES)]). 

/* AND */ 

/* APPEND *1 
effect(append(ARGl,ARG2), 

[type(ARGl, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARGl), 
in('$value$' ,VARGl), 
type(VARGl, '$list$'), 
do(ARG2) , 
inC '$value$' ,VARG2), 
type(VARG2, '$list$'), 
addbefore(1,VARGl,VARG2,RES), 
out('$value$' ,RES)]). 

/* APPLY */ 

/* ASSOC */ 

1* ATOM *1 

effect(atom(ARGl), 
[type(ARGl, '$sexpr$')], 
[do(ARGl), 
in(' $value$' , VARGl) , 
or([type(VARGl, '$atom$'),out('$value$' ,t)], 

[out('$value$' ,nil)])]). 

1* CAR */ 

effect(car(ARGl), 
[type(ARGl, '$sexpr$')], 
[do(ARGl), 
in('$value$' ,VARGl), 
type(VARGl, '$list$'), 
element(l,VARGl,VAL), 
out('$value$',VAL)]). 
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/* CDR */ 
effect(cdr(ARG1), 

[type(ARGI, '$sexpr$')], 
[do(ARGI), 
in('$value$' ,VARGI), 
type(VARGI, '$list$'), /* what about empty lists? */ 
after(I,VARGI,VAL), 
out('$value$' ,VAL)]). 

/* CONS */ 
effect(cons(ARG1,ARG2), 

[type(ARGI, '$sexpr$'), 
type(ARG2, '$sexpr$')], 

[do(ARGI), 
in('$value$' ,VARG1), 
type (VARGI, '$sexpr$'), 
do(ARG2), 
in('$value$' ,VARG2), 
type (VARG2, '$list$'), /* what about empty lists? */ 
addelement(1,VARGl,VARG2,RES), 
out('$value$' ,VAL)]). 

/* COND - simple version, fixed arity; true booleans */ 

effect(cond(ARG1,ARG2,ARG3,ARG4), 
[type(ARGl, '$sexpr$'),type(ARG2, '$sexpr$'), 
type (ARG3, '$sexpr$').type(ARG4. '$sexpr$')], 

[do(ARGl), 
in('$value$' ,VARGI), 
or([equall(VARG1,t),do(ARG2). /* not right! */ 

in('$value$' ,VARG2),out('$value$' ,VARG2)], 
[do(ARG3). 
in('$value$',VARG3). 
or([equall(VARG3,t),do(ARG4), /* not right! */ 

in('$value$' ,VARG4),out('$value$' ,VARG4)], 
[out('$value$' ,nil)])])]). 

/* DE */ 
effect(de(ARG1.ARG2,ARG3), 

[type (ARGI, '$atom$'),type(ARG2. '$list$').type(ARG3, '$sexpr$')], 
[create(ARGl,['$expr$' ,ARG2,ARG3]), 
out('$value$' ,ARGl)]). 

/* DIFFERENCE */ 

effect(difference(ARGl,ARG2), 
[type(ARGl, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1), 
in('$value$' ,VARGI), 
type(VARGI,'$number$'), 
do(ARG2), 
in('$value$' ,VARG2), 
type(VARG2,'$number$'), 
difference(VARGI,VARG2,RES) , 
out('$value$' ,RES)]). 

/* EQUAL */ 

effect(equal(ARGl,ARG2), 
[type (ARG1, '$sexpr$'),type(ARG2,'$sexpr$')], 
[do(ARGl), 
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in('$value$' ,VARGl), 
type(VARGl, '$sexpr$'), 
do (ARG2) , 
inC '$value$' ,VARG2), 
type(VARG2, '$sexpr$'), 
or([equall(VARG1,VARG2),out('$value$' ,t»), 

[out ( '$val ue$' , nil ) ] ) ] ) . 

/* EVAL */ 

effect(eval(ARGl), 
[type(ARGl, '$sexpr$')], 
[do(ARGl), 
in('$value$' ,VARG1), 
type(VARgl, '$sexpr$'), 
do(VARG1), 
in('$value$' ,VVARG1), 
out('$value$' ,VVARG1)]). 

/* GET */ /* Argl is variable, arg2 is indicator. */ 
effect(get(ARG1,ARG2), /* is records & properties together a problem? */ 

[type(ARG1, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1) , 
in('$value$' ,VARG1), 
type(VARG1, '$atom$'), 
do(ARG2) , 
inC '$value$' ,VARG2), 
type (VARG2, '$atom$'), 
see (VARGl , ['$prop$' ,VARG2,RES]), 
out('$value$' ,RES)]). 

/* GLOBAL - wrong arity */ /* Only declare if not already there. */ 
effect(global(ARG1), 

[type(ARG1, '$sexpr$')], 
[do(ARG1), 
inC '$value$' ,VARG1), 
type (VARGl, '$atom$'), 
create(VARG1, '$global$')]). 

/* GLOBALP */ 

effect (globalp(ARGl), 
[type(ARG1, '$sexpr$')], 
[do(ARG1), 
in('$value$' ,VARG1), 
or([see(VARG1, '$global$'),out('$value$' ,t)], 

[out('$value$' ,nil)])]). 

/* GREATERP */ 
effect(greaterp(ARG1,ARG2), 

[type (ARGl, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1) , 
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in('$value$' ,VARG1), 
type (VARGl, '$number$'), 
do (ARG2) , 
in('$value$' ,VARG2), 
type (VARG2, '$nu.ber$'), 
or([greater(VARG1,VARG2),out('$value$' ,t)], 

[out('$value$' ,nil)])]). 
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/* LENGTH */ 
effect(length(ARG1), 

[type (ARGl, '$sexpr$')], 
[do(ARGl) , 
in('$value$' ,VARG1), 
type (VARGl, '$list$'), 
setlength(VARG1,RES) , 
out('$value$' ,RES)]). 

/* LIST - wrong arity */ 
effect(list(ARG1,ARG2), 

[type(ARG1, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1), 
in('$value$' .VARG1). 
type (VARGl , '$list$'). 
do (ARG2) , 
in ( '$value$' , VARG2) , 
type(VARG2, '$list$'), 
addelement(1.VARG1,NULSET.LST), /* whoops */ 
addelement(2,VARG2,LST,RES), 
out('$value$' ,RES)]). 

/* MAPCAR */ 

/* MAPLIST */ 

/* MAX2 */ 

effect(max2(ARG1,ARG2). 
[type(ARG1. '$sexpr$'),type(ARG2, '$sexpr$')], 
[do (ARG1) , 

in('$value$' ,VARGl), 
type (VARGl , '$number$'). 
do (ARG2) , 
in('$value$' ,VARG2), 
type (VARG2 , '$number$'), 
or([greater(VARG1.VARG2),out('$value$' .VARG1)], 

[out('$value$',VARG2)])]). 

/* MIN2 */ 

effect(min2(ARG1.ARG2), 
[type(ARG1. '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1), 

in('$value$' ,VARG1), 
type(VARGl. '$number$'). 
do(ARG2) , 
in( '$value$' .VARG2). 
type(VARG2. '$number$'), 
or([greater(VARG2,VARG1),out('$value$' ,VARGl)], 

[out('$value$' ,VARG2)])]). 

/* NOT */ 

effect(not(ARGl), 
[type(ARG1. '$sexpr$')]. 
[do (ARG1) • 
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In('$value$' .VARG1), 
or([equall(VARgl.nl1).out('$value$' ,t)], 

[out('$value$' ,nil)])]). 
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/* NULL */ 
effect(null(ARGl), 

[type(ARGl, '$sexpr$')], 
[do(ARGl), 
in('$value$' ,VARGl), 
or([equall(VARgl,nil),out('$value$' ,t)], 

[out (' $value$' ,nil)])]) . 

/* NUMBERP */ 

effect(numberp(ARGl), 
[type (ARGl, '$sexpr$')], 
[do(ARGl) , 
inC '$value$' ,VARGl), 
or([type(VARGl, '$number$'),out('$value$' ,t)], 

[out('$value$' ,nil)])]). 

/* OR */ 

/* PLUS2 */ 
effect(plus2(ARGl,ARG2), 

[type(ARGl, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARGl), 
in('$value$' ,VARGl), 
type(VARGl, '$number$'), 
do(ARG2) , 
in('$value$' ,VARG2), 
type (VARG2, '$number$'), 
plus(VARGl,VARG2,RES), 
out('$value$',RES)]). 

/* PRINT */ 

effect(print(ARGl), 
[type (ARGI, '$sexpr$')], 
[do(ARGl), 

inC '$value$' ,VARGI), 
type(VARGl, '$sexpr$'), 
out('$output$' ,VARGl), 
out('$output$', '$newline$'), 
out('$value$' ,VARGI)]). 

/* PROG */ 
/* Test case! One variable declaration and one bit of body! */ 
effect(prog(ARGl,ARG2), 

[type(ARGl, '$atom$'), 
type (ARG2, '$sexpr$')], 

[create (ARGI, '$local$'), 
create(ARGl,['$value$' ,nil]), 
do(ARG2) , 
in('$value$' ,VARG2), 
delete(ARGI,['$value$', ]), 
delete(ARGI, 'Slocal$'),­
out('$value$',VARG2)]). 

/* PROGN */ 

/* PUT */ /* problem -what if it already exists? (it does!) */ 
effect(put(ARGI,ARG2,ARG3), /* 1 is atom, 2-ind,3-data */ 

[type (ARGI, '$sexpr$'), 
type (ARGI, '$sexpr$'), 
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type(ARGl, '$sexpr$')], 
[do(ARGl), 

inC '$value$' ,VARGl), 
type(VARGl, '$atom$'}, 
do (ARG2) , 
in('$value$' ,VARG2), 
type (VARG2 , '$atom$'), 
do(ARG3) , 
in( '$value$' ,VARG3}, 
type (VARG3 , '$sexpr$'}, 
change(VARGl,['$prop$' ,VARG2,VARG3])]). 

/* QUOTE */ 

effect(quote(ARG1), 
[type (ARGI, '$sexpr$')], 
[out('$value$' ,ARGl)]). 

/* QUOTIENT */ 
effect(quotient(ARGl,ARG2), 

[type (ARGI, '$sexpr$'},type(ARG2, '$sexpr$')], 
[do(ARGl), 
in(' $value$' ,VARGl), 
type (VARGI, '$number$'), 
do(ARG2) , 
in ( '$value$' ,VARG2) , 
type (VARG2, '$number$'), 
divide(VARGl,VARG2,RES) , 
out('$value$' ,RES)]). 

/* READ */ 
effect(read, 

[]. 
[inC '$inputS' ,VAL}, 
out('$value$' ,VAL)]). 

/* REVERSE */ 

/* SET */ 
effect(set(ARGl,ARG2), 

[type (ARGI, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARGl), 
in ( '$value$' ,VARG1) , 
type (VARGI, '$atom$'), 
or([see(ARG1, '$global$')], 

[see(ARG2,'$fluid$')], 
[see(ARG3, '$local$')]), 

do(ARG2) , 
in ( '$value$' ,VARG2) , 
change(VARGl,['$value$' ,VARG2]), 
out('$value$' ,VARG2)]). 

/* SETQ */ 

effect(setq(ARG1,ARG2), 
[type (ARGI, '$atom$'), 
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type (ARG2, '$sexpr$'), 
or([see(ARGl, '$global$')], 
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[see(ARG2, '$fluid$')], 
[see(ARG3, '$local$')])], 

[do(ARG2) , 
in('$value$' ,VARG2), 
type (VARG2, '$sexpr$'), 
change(ARGl,['$value$' ,VARG2]), 
out('$value$' ,VARG2)]). 

/* SUBl */ 

effect(subl(ARG1), 
[type(ARG1, '$sexpr$')], 
[do (ARGl) , 
in('$value$' ,VARG1), 
type (VARGl , '$number$'), 
difference(VARGl,l,RES) , 
out('$value$' ,RES)]). 

/* TIMES */ 
effect(times(ARG1,ARG2), 

[type (ARGl, '$sexpr$'),type(ARG2, '$sexpr$')], 
[do(ARG1), 
in('$value$' ,VARGl), 
type (VARGl, '$number$'), 
do(ARG2) , 
in('$value$' ,VARG2), 
type (VARG2, '$number$'), 
times (VARGl ,VARG2 ,RES) , 
out('$value$' ,RES)]). 

/* ****** More general matches ********** */ 

/* Numbers and noeval atoms */ 

effect(NUM, 
[], 
[out('$value$' ,NUM)]) 
:-('&type'(_,_,~, '$number$'); '&type'(_,_,NUM, '$boolean$'». 

/* Atoms */ 

effect (ATOM, 
[or([see(ARG1, '$global$')], 

[see(ARG2, '$fluid$')], 
[see(ARG3, '$local$')])], 

[see(ATOM,['$value$' ,VAL]), 
out('$value$' ,VAL)]) 

:- '&type'(_,_,ATOM, '$atom$'),not('&type'(_,_,ATOM, '$boolean$'». 

/* ****** Object types ************* */ 
/* These look funny for the interpreter. */ 

'&type' (ENV,ENV,X, '$number$'):-integer(X). 
'&type'(ENV,ENV,t, '$boolean$'). 
'&type'(ENV,ENV,nil, '$boolean$'). 
'&type'(ENV,ENV,X, '$alpha$'):-atomic(X). 

'&type'(ENV,ENV,X, '$atom$'):-'&type'(ENV,ENV,X, '$number$'); 
'&type'(ENV,ENV,nil. '$boolean$'); 
'&type'(ENV,ENV,X, '$alpha$'). 
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'&type' (ENV,ENV,COMPOUND,X):-functor(COMPOUND, '**list', ), 
X='$list$'. -

'&type' (ENV,ENV,X, '$sexpr$'). 
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Appendix 3 - Interpreter for semantic definition. 
/* A new pretty interpreter for the semantics. */ 
/* This must have a file of primitives and the semantics */ 
/* vis; ['fullisp.cp' ,shotl,priml] */ 

/* Set up default actions */ 
/* tracing on. */ 
bugged. 
/* debug things */ 
/* debugger. */ 
/* report failures - if this isn't on it just continues -turned off inside or */ 
report. 

/* Simple invocation for problems without environment */ 
/* e.g. do(quote(3),K). */ 
do(X,M):-do_in_env([],M,X). 

do in env(PREENV,POSTENV,STMT):- effect (STMT,PRETEST ,POSTTEST), 
- - execute each(PREENV,PRETEST,EENV), 

execute-each(EENV,POSTTEST,POSTENV), 
«bugged, 

display_full(effect(STMT,PRETEST,POSTTEST) , 
POSTENV»; 

true). 

/* This one does each argument in turn. If report then */ 
/* it prints error information via display_report. */ 
/* invoke like execute each([],[do(3),in(value,VAL)],M). */ 
execute each(ENV, [],ENV). 
execute-each(ENV,[HIT],PENV):-H= .. [FUNCIARGS), 

- secretname(FUNC,SFUNC), 
SEC= .. [SFUNC,ENV,EENVIARGS) , 
careful call(SEC) , 
execute:each(EENV,T,PENV). 

/* This gets a single predicate and executes it like careful_call(do(3» */ 
careful call(X):-call(X). 
careful-call(X):-report,display report(X), 

- «debugger,debugcall(X»;true). 
careful_call(X):-not(report),true. /* continue on error! */ 

debugcall(X):-X= .. [FUNCIARGS], 
debugname(FUNC,DFUNC), 
DCALL= .. [DFUNCIARGS), 
call(DCALL). 

/* ************ Boring low level bits ****************** *1 

/* A secret name is & on the front of the old name. */ 
secretname(X,Y):-name(X,XLIST), 

name('&' ,[AND]), 
name(Y,[ANDIXLIST]). 

/* A debugname is debug on the old name. */ 
debugname(X,Y):-name(X,XLIST),name('debug' ,DLIST), 

append(DLIST,XLIST,YLIST),name(Y,YLIST). 

1* *************************** DISPLAY ROUTINES *********** */ 

display_full(A,B):-write('STATEMENT: '),write(A),nl, 
write('ENVIRONMENT: '),write(B),nl,nl. 
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/* The test has failed if it gets here. */ 
display_report(X):-write('cannot satisfy; ') .nl. 

write(X),nl. 

/* ************************************** */ 
/* **** Some examples of the system running */ 

I ?- do(quote(mary),M). 
STATEMENT: effect(quote(mary) , 

[type(mary,$sexpr$)],[out($value$.mary)]) 
ENVIRONMENT: [[$value$,mary]] 

M = [[$value$,mary]] 

yes 
I ?- do(car(quote('**list' (jellyfish,eat,toast»),M). 
STATEMENT: effect(quote(**list(jellyfish,eat,toast», 

[type(**list(jellyfish,eat,toast),$sexpr$)], 
[out($value$,**list(jellyfish,eat,toast»]) 

ENVIRONMENT: [[$value$,**list(jellyfish,eat,toast)]] 

STATEMENT: effect(car(quote(**llst(jellyflsh,eat,toast»), 
[type(quote(**llst(jellyfish,eat,toast»,$sexpr$)], 
[do(quote(**list(jellyfish,eat,toast»), 
in($value$,**list(jellyfish,eat,toast». 
type(**llst(jellyfish,eat,toast),$listS), 
element(1,**list(jellyfish,eat,toast) ,jellyfish) , 
out($valueS,jellyfish)]) 

ENVIRONMENT: [[$value$,jellyfish]] 

M = [[SvalueS,jellyfish]] 

yes 
I ?- do(car(quote(marY»,M). 
STATEMENT: effect(quote(mary), 

[type(marY,$sexpr$)],[out($value$,mary)]) 
ENVIRONMENT: [[$value$,mary]] 

cannot satisfy; 
&type([],_258,mary,$list$) 
cannot satisfy; 
&element( 258, 303,1,mary, 17) 
STATEMENT~ effect(car(quote(mary», 

[type(quote(marY),$sexpr$)], 
[do(quote(mary», 
In($value$,mary). 
type(mary.$list$). 
element(1.mary. 17), 
out($value$. 17)]) 

ENVIRONMENT: [[$value$._17] 1_303] 

yes 
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Appendix 4 - Output from 

4 lisp> (=> quote help) 
It checks that ARGI is of type $SEXPR$. 
It returns a $VALUE$ which is ARG1. 

NIL 

5 lisp> (=> car help) 
It checks that ARGI is of type $SEXPR$. 
It evaluates ARGI. 
It retrieves the $VALUE$ and calls it VARGI. 
It checks that VARG1 is of type $LIST$. 

The 1 element of VARGI is found. It is VAL 
It returns a $VALUE$ which is VAL. 

NIL 

6 lisp> (=> cons help) 
It checks that ARGI is of type $SEXPR$. 
It checks that ARG2 is of type $SEXPR$. 
It evaluates ARGI. 
It retrieves the $VALUE$ and calls it VARGI. 
It checks that VARGI is of type $SEXPR$. 
It evaluates ARG2. 
It retrieves the $VALUE$ and calls it VARG2. 
It checks that VARG2 is of type $LIST$. 

VARGI is added as the 1 element of VARG2. The result is called RES. 
It returns a $VALUE$ which is VAL. 

NIL 

7 lisp> (=> cond help) 
It checks that ARGI is of type $SEXPR$. 
It checks that ARG2 is of type $SEXPR$. 
It checks that ARG3 is of type $SEXPR$. 
It checks that ARG4 is of type $SEXPR$. 
It evaluates ARGI. 
It retrieves the $VALUE$ and calls it VARG1. 

At this point one of two things happens: EITHER A test is made to see if VARGI 
is the same as T 
It evaluates ARG2. 
It retrieves the $VALUE$ and calls it VARG2. 
It returns a $VALUE$ which is VARG2. 
OR, It evaluates ARG3. 
It retrieves the $VALUE$ and calls it VARG3. 

At this point one of two things happens: EITHER 
A test is made to see if VARG3 
is the same as T 
It evaluates ARG4. 
It retrieves the $VALUE$ and calls it VARG4. 
It returns a $VALUE$ which is VARG4. 
OR, It returns a $VALUE$ which is NIL. 

NIL 
% CONn is not exactly the clearest description in the worldl 

8 lisp> (=> de help) 
It checks that ARGI is of type $ATOM$. 
It checks that ARG2 is of type $LIST$. 
It checks that ARG3 is of type $SEXPR$. 

ARGI is assigned a new value ($EXPR$ ARG2 ARG3) 
It returns a $VALUE$ which is ARG1. 

NIL 
% DE is not very good. It is too close to being 
% implementation details. 
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9 lisp> (=> prog help) 
It checks that ARGl is of type $ATOM$. 
It checks that ARG2 is of type $SEXPR$. 

ARGl is declared as a $LOCAL$ variable. 
ARGl is assigned a new value ($VALUE$ NIL) 
It evaluates ARG2. 
It retrieves the $VALUE$ and calls it VARG2. 
The current value of ARGl is forgotten. 

ARGl is no longer a $LOCAL$ variable. 
It returns a $VALUE$ which is VARG2. 

NIL 

% This is the same package applied to the 
% real expression (ATOM (CAR X», where X=(FRED IS DEAD). 
% It doesn't look at the works of CAR, but it could. 
11 lisp> (=> expression help) 
It checks that (CAR X) is of type SEXPR. 
It evaluates (CAR X). 
It retrieves the VALUE and calls it FRED. 

At this point one of two things happens: EITHER 
It checks that FRED is of type 
ATOM. 
It returns a VALUE which is T. 
OR, It returns a VALUE which is NIL. 

NIL 
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Appendix 5 - Lisp problem solver. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PROBLEM - SOLVER AS DESCRIBED IN SECTION 3.2 % 
% IMPLEMENTED BY IAN CARR. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

(global '(!#rewrite» 

% EXAMPLE OF REWRITE RULES. 
(setq !#rewrite '( «element #x #a #b) 

«after #X-n #a #z)(element #n #z #b» » ) 

% e.g. (element 2 (a b c) b) == «after 1 (a b c) (b c» 
% (element 1 (b c) b» 

(GLOBAL '(!#STACK» 

(DE PROBLEM_SOLVER (PROBLEM) 
(PROGN (SETQ !#STACK NIL) 

(PROBLEM_LIMITER PROBLEM) » 

(DE PROBLEM_LIMITER (PROBLEM) 
(COND ({NULL PROBLEM) (PROGN (PRINT I#STACK) NIL» 

(T (SEARCH_FN_PRIMS (LIST_FN_PRIMS (CAR PROBLEM) !#LISP) 
PROBLEM» » 

(DE SEARCH_FN_PRIMS (FN_PRIMS PROBLEM) 
(COND «NULL FN_PRIMS) NIL) 

(T {PROGN {SOLVE (CAR FN_PRIMS) PROBLEM) 
(SEARCH_FN_PRIMS (CDR FN_PRIMS) PROBLEM) » » 

(DE SOLVE (FN PRIM PROBLEM) 
(COND «MATCH_PRIMS FN_PRIM PROBLEM) 

T ) 
«CAN REWRITE (CAR PROBLEM) I#REWRITE) %ONE REWRITE ONLY 

{PROBLEM_LIMITER (APPEND {CAN_REWRITE (CAR PROBLEM) !#REWRITE) 
(CDR PROBLEM» » 

(T NIL) » 

(DE MATCH_PRIMS (FN_PRIM PROBLEM) 
(PROGN 

(PUSH 
(PUSH 
(COND 

(CAR PN PRIM» % CAR 
(CAR (CAR PROBLEM») % ELEMENT 
«MATCH EACH (CDR(CAR(CDR FN PRIM») 

- (CDR (CAR PROBLEM») % ( A B #C) 

(POP) 
(POP) » 

T » 

(DE MATCH_EACH (PRIM_ARGS PROB_ARGS) 
(COND «NULL PRIM_ARGS) (PROBLEM_LIMITER (CDR PROBLEM») 

«MATCH_BIT_ANS (CAR PRIM_ARGS) 
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(PROGN 
(PUSH 

(CONn 

(CAR PROB_ARGS» 

(LIST (CAR PRIM ARGS) 
(CAR PROB-ARGS») 

«MATCH_EACH (CDR PRIM_ARGS) 
(CDR PROB ARGS» 
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T) 
(T (PROGN (POP) NIL»») 

(T 
NIL) ) ) 

(DE POP NIL 
(SETQ !#STACK (CDR !#STACK») 

(DE PUSH (X) 

(DE 

(SETQ !#STACK (CONS X !#STACK») 

CAN REWRITE (PRIM REWRITE RULES) 
(COND «NULL REWRITE_RULES) NIL) 

«MATCH REWRITE PRIM (CAR REWRITE RULES» (CAR REWRITE RULES» 
(T (CAN-REWRITE PRIM (CDR REWRITE-RULES») » -- -

(DE MATCH_REWRITE (PRIM RULE) 
(COND «LIST ANSWER PRIM (CAR RULE» T) 

(T NIL) » 

%this function takes two primitives. if the second maps as a solution 
%of the first, then it returns a list of the first, otherwise nil. 
%NB. below her doesnt take elements containing embedding, ie OR ... yet. 
(DE LIST_ANSWER (PRIM SOLN?) 

(COND «NULL (EQUAL (LENGTH PRIM) 
(LENGTH SOLN?») NIL) 

«MATCH ANSWER PRIM SOLN?) (LIST PRIM» 
(T NIL)-» 

%this function takes two primitives. if the second maps as a solution 
%to the first it returns T, otherwise nil. 
%from here on down errors enter if not picked up by the equal elements 
'test above, eg extra soln? elements undetected, and the checkvars fire t 
%on locating a variable - they dont check if its present or not. 
(DE MATCH_ANSWER (PRIM SOLN?) 

(COND «NULL PRIM) T) 
«NULL (MATCH_BIT_ANS (CAR PRIM) (CAR SOLN?») NIL) 
(T (MATCH_ANSWER (CDR PRIM) (CDR SOLN?») » 

%this function takes elements of two primitives. if the second is a 
%possible instantiation of the first then t, otherwise nil. 
(DE MATCH_BIT_ANS (BIT_PRIM BIT_SOLN?) 

(COND «AND (CHECK_VAR BIT_PRIM) (CHECK_VAR BIT_SOLN?» T) 
«AND (NULL (CHECK VAR BIT PRIM» (CHECK VAR BIT SOLN?» T) 
«EQUAL (NULL (CHECK_VAR BIT_PRIM» (NULL(CHECK_VAR BIT_SOLN?») T) 
(T NIL) » 

(DE MATCH_BIT_ANS (BIT_PRIM BIT_SOLN?) 
(COND «CHECK_VAR BIT_PRIM) T) 

«CHECK_VAR BIT_SOLN?) T) 'want to instantiate bit_soln? 
%as bit~rim 

«EQUAL BIT_PRIM BIT_SOLN?) T) 
(T NIL) » 

'this function takes an s-expression. if it is given a variable (start with #) 
%it returns t. if a constant, nil. if a list, it recursively hands it to CANT 
(DE CHECK_VAR (BIT) 

(COND «EQUAL (CAR (EXPLODE BIT» II) T) 
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(T NIL) » 

%this function takes a primitive, and a list of 
%function definitions. It returns a list of those function 
, names whose definitions contain one (or more) of the given 
% primitives, together with their located primitive. 

(DE LIST_FN_PRIMS (PRIMITIVE FUNCTIONS) 
(COND «NULL (CAR FUNCTIONS» NIL) 

(T (APPEND (MATCH FN PRIMITIVE (CAR FUNCTIONS» 
(LIST_FN_PRIMS PRIMITIVE (CDR FUNCTIONS» » » 

%This function takes a primitive, and a function definition. 
%It returns a list of lists of the function name and any primitive 
% with the same name as the given primitive contained 
% in its function body, and nil otherwise. 

(DE MATCH_FN (PRIMITIVE FUNCTION) 
(MAPCAR (MATCH BODS (CAR PRIMITIVE) (CDR FUNCTION» 

'(LAMBDA (X) (LIST (CAR FUNCTION) X» » 

%this function takes a primitive name, and a list of bodies and recurses 
%along them checking the elements of the bodies for matches. 

(DE MATCH_BODS (PRIMITIVE BODIES) 
(COND «NULL BODIES) NIL) % atom may be safer if bad list? 

«MATCH PRIM PRIMITIVE (CAR BODIES» 
(APPEND (MATCH_PRIM PRIMITIVE (CAR BODIES» 

(MATCH BODS PRIMITIVE (CDR BODIES» » 
(T (MATCH_BODS PRIMITIVE (CDR BODIES» » ) 

%this function takes a primitive name, and the body of a function definition. 
'It returns the found primitive if a match with the given primitive name 
%can be found in the definition, otherwise NIL. 

%good start (DE MATCH_PRIM (PRIMITIVE FN_BODY) 
(COND «NULL FN_BODY) NIL) %NULL stopping condition 

«EQUAL PRIMITIVE (CAAR FN BODY» 
(APPEND (LIST (CAR FN BODY» 

(MATCH_PRIM PRIMITIVE (CDR FN_BODY» » 
«EQUAL 'OR (CAAR FN BODY» 

(APPEND (MATCH BODS-PRIMITIVE (CDAR FN BODY» 
(MATCH=PRIM PRIMITIVE (CDR FN_BODY» » 

(T (MATCH_PRIM PRIMITIVE (CDR FN_BODY» ) » 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
SOME EXAMPLES 

% This corresponds to requesting an expression which 
% would return the first element of a list. 
% The solution identifies the proposed function(s) 
% in the solution, identifies the relevant primitive 
% in that function, and presents a correspondence 
% between items in the problem and items within the 
% function. The solution should be read right to left. 

» (PROBLEM_SOLVER '«ELEMENT 1 M IE ) » 

'detect match 
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«#VAL #E) (#VARG1 M) (1 1) ELEMENT CAR) 
NIL 

% This is a slightly more complex problem. There are two 
% components to the problem; extracting an element and 
% returning everything following the first item of that 
% element. This solution 
% corresponds to (CDR (CAR X» 

» (PROBLEM_SOLVER' «ELEMENT 1 #F #0) (AFTER 1 #F 0») 

«#VAL 0) (#VARG1 #F) (1 1) AFTER CDR 
(#VAL #0) (#VARG1 #F) (1 1) ELEMENT CAR) 

NIL 

% In this problem the system offers two methods of adding 
% something to the front of a list - CONS and LIST. 

» (PROBLEM_SOLVER '«ADDELEMENT 1 #M #E #C) » 

«'RES #C) (#VARG2 #E) (#VARG1 #M) (1 1) ADDELEMENT CONS) 
«'LST #C) (NULSET #E) (#VARG1 #M) (1 1) ADDELEMENT LIST) 
NIL 
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Appendix 6 - A simple learning program. 
/* givell an expression and a resulting environment, hypothesise */ 
/* a semantic description. ONE SHOT */ 

describe(EXPRESSION,RESULT,DESCRIPTION}:- perceive(EXPRESSION,RESULT, 
effect(XP,PP}}, 

generalize([XPIPP],DESC), 
DESCRIPTION= .. [effectIDESC). 

1* perceiving involves inserting OUT for any channel used */ 
1* type for any subexpression, and changememory for any side-effect. */ 

perceive(EXP,RES,effect(EXP,PEXP»:- side effects(RES,SE EXP), 
outputs(RES,OUT_EXP), -
append(SE_EXP,OUT_EXP,SO) , 
typing(EXP,EEXP), 
append(EEXP,SO,PEXP). 

/* add a change statement for each environment point other than channels */ 
side_effects([),[). 
side_effects([['$value$' ,_] IT],K):- side_effects(T,K). 1* no channels */ 
side_effects([[A,B]IT],[change(A,B)IK]):- side_effects(T,K). 
side_effects([_IT],K):- side_effects(T,K}. 

/* Add an OUT statement for each channel *1 
outputs([],[]). 
outputs([['$value$' ,B] IT],[out('$value$' ,B)IK):- outputs(T,K). 

/* no channels *1 
outputs([_IT],K):-outputs(T,K). 

1* type arguments only *1 
typing(EXP,TYPES):-EXP= .. [STMNTIARGS], 

type_each(ARGS,TYPES). 

type_each([),[). 
type_each([HIT],[type(H,X)IZ]):-type(H,X),type_each(T,Z). 

1* generalize by applying a rule to what you've got. *1 

generalize(EXP,DESC):-gen_rule(NAME,EXP,DESC). 

1* Actual rules *1 

1* pick out constants which are repeated, replace with variables. *1 
1* RLIST looks like [[x,_23],[y,_25]] etc. *1 
gen_rule(const_to_variable,EXP,RESULT):- find repeats(EXP,RLIST), 

con to var(EXP,RLIST,RESULT). 

1* find repeated elements by listing all constants and extracting doubles */ 
find_repeats(X,Y):-list_constants(X,CLIST), 

flush(CLIST,CCLIST), 1* remove system tags *1 
doubles(CCLIST,DLIST), 
var_pair(DLIST,Y). 

1* append args to each predicate. *1 
list constants([],[]). 
list:constants([XIY],M):-X= .. [_IARGS] , 
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list_constants(Y,YM), 
append(ARGS,YM,M). 
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/* flush eliminates all terms beginning $ */ 
/* fix bug for non-atomic items (specially numbers) */ 

flush([),[]). 
flush([H!T),Y}:-name(H,[36!_]),flush(T,Y). /* 36=$ */ 
flush([HIT),[HIY]):-flush(T,Y). 

1* produce a list of duplicates only. */ 
doubles( [), [)}. 

/* no duplicates */ 
doubles([HIT),[HIM):-member(H,T}, 

doubles (T, M) , 
not(member(H,M)}. 

doubles(f_IT],M):-doubles(T,M). 

/* is this the way to generate variable refs? */ 
var pair([),[]). 
var=pair([XIT),[[X,XVAR] IM]):-var_pair(T,M}. 

/* pick off each predicate and c_to_v on it */ 
con to var ( [], ,[ ] ) . 
con=to=var([XIP],RLIST, [FIRIRES]):-X= .. [FUNCIARGS] , 

c to v(ARGS,RLIST,RARG), 
FYR=~.[FUNCIRARG], 
con_to_var(P,RLIST,RES). 

/* single set of args converted to variables. */ 
c_to_v( [] ,_, []). 
c_to_v([XIT],RLIST,[BIY]):-member([X,B],RLIST), 

c to v(T,RLIST,Y). 
c_to_V([XIT],RLIST,[XIY]):-c=to=v(T,RLIST,Y). 

/* Trivia */ 

member( ,[]):-!,fail. 
member (X, [XI_]). 
member(X,[_IT]):-member(X,T). 

append ( [ ] , z , Z) . 
append([XIY],Z, [XIM]):-append(Y,Z,M). 

type(t, '$boolean$'). 
type(nil, '$boolean$'). 
type(X, '$number$'):-nonvar(X),lnteger(X). 
type(X, '$atom$'):-nonvar(X),atomlc(X). 
type(COMPOUND,X):-nonvar(COMPOUND},functor(COMPOUND,FUNC,_), 

type(X, '$sexpr$'). 

name('*' ,[STAR]), 
name ( '$' , [DOLLAR] ) , 
name(FUNC,[STAR,STARIFL]), 
name(X,[DOLLARIFL]). 

/* ******** BEYOND THIS POINT ARE EXAMPLES ****** */ 

?- perceive(quote(9),[['$value$' ,9]],M). 

M effect(quote(9),[[type(9,atom)],[],out($value$,9)]) 

yes 

I ?- descrlbe(quote(5),[['$value$',5]],K). 
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K = effect(quote(_179) ,type(_179,$atom$),out($value$,_179» 

yes 

! ?- perceive(setq(x,3) ,[[x, ['$value$' ,3]],['$value$' ,3]],M). 

M = effect(setq(x,3), 

yes 

[[type(x,atom),type(3,atom»), 
[change(x,[$value$,3)),out($value$,3)]) 

?- describe(setq(x,5) ,[[x, ['$value$' ,5]],['$value$' ,5]],R). 

K effect(setq( 330, 336), 
type(-330,$atom$), 
type(-336,$atom$), 
change( 330, 336), 
out($value$,=336» 

yes 

1* To show there is nothing up my sleeve, here */ 
/* is something called CONS which is nothing like LISP */ 

! ?- percelve(cons(t,6), 
[[x, '**list' (t,3)], ['$value$', '**list' (t,66»)) ,M). 

M = effect(cons(t,6) , 

yes 
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[[type(t,boolean),type(6,atom)], 
[change(x,**list(t,3}}],out($value$,**list(t,66»]) 
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