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Abstract

Stress responses in plants can be defined as a change that affects the homeostasis of pathways,
resulting in a phenotype that may or may not be visible to the human eye, affecting the fitness
of the plant. Crosstalk is believed to be the shared components of pathways of networks, and
is widespread in plants, as shown by examples of crosstalk between transcriptional regulation
pathways, and hormone signalling.

Crosstalk between stress responses is believed to exist, particularly crosstalk within the responses
to biotic stress, and within the responses to abiotic stress. Certain hormone pathways are known
to be involved in the crosstalk between the responses to both biotic and abiotic stresses, and can
confer immunity or tolerance of Arabidopsis thaliana to these stresses. Transcriptional regulation
has also been identified as an important factor in controlling tolerance and resistance to stresses.

In this thesis, networks of regulation mediating the response to multiple stresses are studied. Firstly,
co-regulation was predicted for genes differentially expressed in two or more stresses by develop-
ment of a novel multi-clustering approach, Wigwams Identifies Genes Working Across Multiple
Stresses (Wigwams). This approach finds groups of genes whose expression is correlated within
stresses, but also identifies a strong statistical link between subsets of stresses. Wigwams identi-
fies the known co-expression of genes encoding enzymes of metabolic and flavonoid biosynthesis
pathways, and predicts novels clusters of co-expressed genes. By hypothesising that by being co-
expressed could also infer that the genes are co-regulated, promoter motif analysis and modelling
provides information for potential upstream regulators.

The context-free regulation of groups of co-expressed genes, or potential regulons, was explored
using models generated by modelling techniques, in order to generate a quantitative model of
transcriptional regulation during the response to B. cinerea, P. syringae pv. tomato DC3000 and
senescence. This model was subsequently validated and extended by experimental techniques,
using Yeast 1-Hybrid to investigate the protein-DNA interactions, and also microarrays. Analysis
of mutants and plants overexpressing a predicted regulator, Rap2.6L, by gene expression analysis
identified a number of potential regulon members as downstream targets.

Rap2.6L was identified as an indirect regulator of the transcription factor members of three po-
tential regulons co-expressed in the stresses B. cinerea, P. syringae pv. tomato DC3000 and long
day senescence, allowing the confirmation of a predicted gene regulatory network operating in
multiple stress responses.
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Chapter 1

Introduction

1.1 The model plant organism A. thaliana

Arabidopsis thaliana is the model organism for genetic research of plants, and occasionally, other

eukaryotic organisms (200). The move of researchers to study this organism gained speed when

the analysis of the genomic sequence of A. thaliana was published in 2000 (14). The main ad-

vantages to using A. thaliana for genomic analysis are its short generation time, small size, small

genome, and the ability to grow the plants in many different environments, such as petri dishes,

greenhouses or under fluorescent lights in the laboratory (200). With the development of trans-

genic lines carrying T-DNA insertions from Agrobacterium tumefaciens (56), using mutant lines

to study how the absence of a gene effects a biological system has proved to be straightforward.

Using A. thaliana as a model organism can allow sequence comparisons which would be beneficial

for genetic analysis in commercially important crop species. However, due to the diploid nature

of the A. thaliana genome, and given most staple crop species are monocots, mainly the ‘cereal’

wheat, rice and maize, comparative genomics may be complex (207). Despite this, there is a gen-

eral belief that beneath the variation, there is a genetic, developmental and physiological structure

that is intrinsic and conserved amongst all plants, which can be understood when studying any

plant species (91).

Findings from studying processes in A. thaliana have profound relevance to processes such as tol-

erance to environmental stress and disease, providing hypotheses on the functions of homologs of
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candidate genes in commercially important plants (91). Although the tomato is an established

model organism for studying pathogen infection, the availability of the complete A. thaliana

genome allowed Mysore et al. to investigate functional analysis of tomato genes using map-based

cloning, on the assumption of chromosomal synteny between the two plant species (215). Sev-

eral articles explore using A. thaliana for genetic analysis of stress responses as an alternative

to crop species, as there is a lack of field and laboratory screening tests, and physiological and

molecular markers for understanding stress responses are available for crop species (345, 111,

312). These failures in crop species make A. thaliana an attractive option for analysis. Much re-

search has shown that stress responsive genes found in crop species have isologs or paralogs in A.

thaliana (345): Wilkinson et al. observed that A. thaliana possessed an identical ethylene receptor

which usually mediates fruit-ripening response in tomatoes (320). Zhang and Blumwald also noted

that increased expression of the membrane Na+/H+ antiporter, AtNHX1, resulted in increased salt

tolerance in A. thaliana (340). Ohta et al. furthered this work to show that the rice ortholog of

AtNHX1 increased the tolerance of Oryza sativa rice plants when exposed to salt (221).

1.1.1 Motivation for studying plant defence responses

Crop yields have increased throughout the 20th century, mainly due to the introduction of new

farming practices and cultivars (204). The Broadbalk classical experiments at Rothamsted, which

started in the late part of the 19th century, demonstrated an increase in the yield of wheat from

1940 due to the introduction of herbicides and fungicides. These practices are now common-place

in farming (204), and an increase in crop yields has brought about greater food security.

However, with greater availability of food comes an increase in population: the current world

population stands at approximately 7.038 billion individuals (United States Census Bureau), which

is estimated to increase to 8.3 billion individuals by 2030 (United Nations). The availability of

food therefore is likely to become a limiting factor, and due to the increase in demand for food,

prices will rise. The ability to produce larger quantities of food, therefore, depend on a variety of

crops that can produce higher yields, availability of arable land, environmental conditions and the

prevalence of diseases that can affect crop yield.

Abiotic stresses, such as salt, cold and drought stress can significantly affect crop yield. Indeed,

drought stress is responsible for losses of up to 60% in cereal crops worldwide (45): 15 million
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km2 of land surface is dedicated to growing crops (239), however, only 16% of this area has proper

irrigation (264). Therefore, drought stress in the remaining 84% is inevitable. The prevalence of

drought stress is likely to increase further due to climate change and competition for water supplies,

making the demand for drought tolerant crop species higher.

Pathogen infection by fungi and bacteria is responsible for 16% potential yield loss in com-

mercially important crops worldwide annually (220). Infection of plum trees by Pseudomonas

syringae pathovar (pv.) syringae has been reported to cause up to 30% mortality in Germany

alone (123). P. syringae is particularly problematic for crops, due to the large number of pathovars

within the syringae species that are pathogenic to over 180 plant species (42). Each pathovar has

a high level of variation among strains and a broad host range, with a capacity to cause significant

yield loss to many crop species (148).

Botrytis cinerea, the necrotrophic fungal pathogen responsible for grey mould, has a host range of

over 200 crop species worldwide (300, 321). The mode of infection of young tissues of crop plants,

where it stays dormant initially, followed by the degradation of tissues post-harvest is catastrophic,

causing massive financial losses (321). B. cinerea is particularly difficult to control, due to the mul-

tiple modes of attack used against the host (300). Growth of B. cinerea was previously controlled

by fungicides: however, resistant strains of B. cinerea have been isolated, which is though to be

due to the high genetic variability of B. cinerea (171, 170, 162). Therefore, a grasp of the host

mechanisms employed during infection is essential.

For the reasons mentioned here, it is important to investigate the mechanisms of stress responses

in plants: traditional methods of farm management, such as the use of pesticides and herbicides

are expensive, and are being met with increasing resistance from target pest species. The chang-

ing climate, changing geographical location of pathogens and increased demand from a growing

human population also create extra pressure to tackle abiotic stresses. Due to the sessile nature of

plants, they are also often met with multiple stresses, whereas current research has focused mainly

on plant responses and adaptations to single stresses. Plants are often subject to multiple stresses

at once: plants under high light intensities are more prone to dehydration or extreme changes in

temperature (235).
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1.1.2 Motivation for studying the role of gene regulatory networks in plant defence

Due to the recent advances in ‘omics’ technologies, researchers have realised that stress responses

are not controlled solely by single genes and gene products, but by complex regulatory networks

controlling gene expression (295). Integrated transcriptome, genome-wide transcription factor

binding, and proteome analyses have been used to infer functional interactions between genes and

proteins (211), in order to formulate gene regulatory networks underlying important biological

processes, such as stress responses. Researchers have also begun to understand that regulatory

networks involved in plant stress responses are complex, and require genome-scale analyses to

elucidate them.

Many stresses affecting crop plants are under transcriptional control (341). Therefore, transcription

factors provide ideal targets for research in A. thaliana, with a view to understanding the roles

of transcription factors in the regulatory network controlling stress tolerance and resistance (64).

Research into translating knowledge gained in A. thaliana into crop species has been applied to

rice, maize and barley (139, 79, 269), allowing the genetic engineering of regulatory networks in

crops.

Dembinsky et al. generated a map of global gene expression of the A. thaliana root using fluoresecence-

activated cell sorting (FACS) of different root cell type via protoplasting cell-type specific promoter

fused to GFP. Different cell types were analysed by microarray hybridisation. These experiments

provided candidate genes involved in pericycle specification, which, with the identification of ho-

mologs in maize, enables the analysis of a network of genes involved in pericycle specification

and lateral root initiation (79).

Sreenivasulu et al. used a novel way to translate research from A. thaliana into barley crop species:

the A. thaliana data evaluation tools MapMan (297) and PageMan (298), which were developed

to map A. thaliana transcriptome data into functional categories, to analyse time course data into

functional gene groups and to map functional categories onto pathways, were adapted to map

barley transcriptome data (269).

More recently, investigations into the architectural structure of the root of A. thaliana has led to

advancements in increasing the lateral root branching, and therefore increase the surface area of

the root system, in maize and rice crop species (267): genes in maize Zea mays and rice Oryza
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sativa (rocs and arl1/crl1 respectively) were found to be closely related to the A. thaliana genes

LBD16 and LBD29, whose functions are involved in lateral root branching (222, 263). However,

recent focus has shifted to studying more complex biological organisation and processes within A.

thaliana (165): this approach has been chosen due to the realisation that the relationship between

a genotype and phenotype is not linear, and phenotypes are often dependant on environmental

conditions. Therefore, results for certain genes seen in A. thaliana will not necessarily translate to

the field because of our lack of understanding of the complexity within plants.

1.2 Crosstalk between multiple plant defence responses

Crosstalk, whereby components of different signalling pathways can influence or interact with each

other (41), is thought to provide the plant with the necessary regulatory mechanisms to adapt to

multiple changes in their environment (159). It is favourable for plants to allow crosstalk between

multiple response pathways, as defence is costly and reduces plant fitness (120). Therefore, plants

have evolved the ability to induce responses only in the presence of stress, and to promote crosstalk

between signalling pathways (280). In this section, the aspects of crosstalk between phytohormone

signalling pathways, and known gene regulatory network employed in multiple stress responses

will be discussed. Firstly, however, a brief overview of the plant defence to pathogens and how

there is basis for crosstalk in the biotic stress responses, will be given.

1.2.1 The plant defence response against pathogens

Plants, unlike humans, rely solely on their innate immune system i.e. they do not have an adaptive

immune system, which generates antibodies to fight infection. Plants defend themselves against

pathogen infections (such as viruses, bacteria, fungi and oomycetes) using their basal defence

response (26). However, plants have evolved a sophisticated immune system comprising of a two-

branched response: one branch makes use of transmembrane pattern recognition receptors (PRRs);

the other branch uses protein products encoded by R-genes (142).

PRRs recognise microbial- or pathogen-associated molecular patterns (MAMPs and PAMPs re-

spectively), a consequence of which is PAMP triggered immunity (PTI) in the plant. Bacterial

flagellin, which is decognised by the plants as a PAMP, is capable of triggering PTI in a variety of

plants (110). Previous research has shown that application of the peptide flg22, which represents
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flagellin, is capable of inducing defence-related genes and trigger resistance to pathogenic bacteria,

such as P. syringae in A. thaliana (347).

Pathogens have evolved ways to suppress host defences by secreting effectors which dampen PTI,

causing effector triggered susceptibility (ETS) (26) which seeks to suppress PTI. Some bacterial,

fungal and oomycete species are known to suppress effectors, such as P. syringae and Phytophthora

infestans (115). P. syringae secretes effectors which aim to suppress the MAPK signalling pathway,

thereby suppressing the expression of genes required for plant immunity (40).

The plant R genes offset this attempt of the pathogen by recognising the effector, thereby causing

effector-triggered immunity (ETI) (142). This ‘arms race’ between plant and pathogen is known as

the ‘zigzag model’ (142). Activation of R-genes by the recognition of a pathogen effector signals

crosstalk between different response pathways (108), particularly the salicylic acid (SA), jasmonic

acid (JA) and ethylene (ET) pathways: for example, ETI represses salicylic acid-dependant cell

death in cells adjacent to sites of infection (290).

This initial defence response described here illustrates the mode of pathogen detection undergone

by the plant. The subsequent activation of R-genes leads to the induction of different response

pathways under the control of various phytohormone signalling pathways. Plants are known to co-

ordinate their defence response to many different pathogens via crosstalk between these signalling

pathways (164). It is this crosstalk between signalling pathways that could provide initial candidate

targets for genes working across biotic stresses. Previous genomic studies have shown compara-

ble responses of plants to pathogens and environmental stresses, therefore suggesting crosstalk is

common between biotic stress and abiotic stress responses (240). For example, Reymond et al.

carried out a set of time series microarray experiments under mechanical stress identified differen-

tial expression of PR1, PR2 and PR3 genes (242) which are known to be involved in the defence

response (107).

1.2.2 Crosstalk of phytohormone signal transduction in the role of multiple plant

stress responses

As mentioned in the previously crosstalk exists within the biotic stress response in the form of

hormone signalling pathways. Plant hormones (also referred to as phytohormones) are chemicals

that regulate a number of processes in plants, such as growth and development, but also play an
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important role in the defence response to not only pathogen attack, but all insect herbivory, drought

cold and heat stress (92). Multiple hormone pathways can interact to form regulatory networks,

which ultimately influence a plants defence response to stress (77). Although many hormone

pathways are capable of crosstalk, the genetic interactions between the SA, JA and ET pathways

are the most studied, and hence will be the main topic in this section. Therefore, the study of

crosstalk of phtyohormone signalling pathways, and the genes involved in these processes, provide

a logical starting point for identifying a gene regulatory network capable of being expressed in

multiple stress responses.

The JA signalling pathway is vital for the plant response to wounding (such as that caused by

insects), but is also implemented in the response to biotic and abiotic stress responses, such as

osmotic stress and drought (92). During the stress response to pathogens, namely necrotrophs

such as B. cinerea, JA signalling causes the expression of two groups of genes: genes regulated

byMYC2, a MYC transcription factor, which suppress resistance to pathogens (85); and genes not

regulated by MYC2, which promote resistance to pathogens (107). The response to abiotic stress,

however, relies heavily on the COI1 complex, with Skp1, Cul1 and RBX1 (102, 107).

Levels of SA increase in the plant following pathogen infection. The expression of pathogenesis-

related (PR) genes are dependent on SA (164), thus rendering SA as an important mediator of the

plant response to pathogens. The PR gene PR1 is an important component of the SA signalling

pathway, which confers resistance to the bacterial pathogen P. syringae, by limiting the growth

of this pathogen (107). Other genes important in the SA signalling pathway include EDS1 (1),

PAD4 (344), EDS5 (247), SID2 (217) and NPR1 (109, 256).

The ET signalling pathway has roles in senescence (55), programmed cell death (193), and also in

the detection and initial response to stress and pathogens (311). Ethylene is recognised by a family

of receptors, which include ETR1/ETR2 (249), ERS1 (128) and EIN4 (129). Members of the EIN

family are positive regulators of the ethylene response, and act downstream of CTR1, which itself

interacts with ETR1 and ERS1 (114). The transcription factor EIN3 regulates ERF1, a transcription

factor capable of binding to the GCC-boc present in ethylene-inducible defence genes (117).
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1.2.2.1 Interactions of the Salicylic acid, Jasmonic acid and Ethylene signalling pathways

are important in the responses to both biotic and abiotic stresses

Previous research has suggested that there is extensive crosstalk between SA and JA: SA has been

shown to target the JA pathway downstream of JA biosynthesis (159), as well as being antagonistc

to the JA defence pathway (251). Also, the activation of R genes results in crosstalk in the hor-

mone pathways activated, in order to distinguish between different pathogens, such as biotrophs or

necrotrophs (108). As shown in Figure 1.1, SA signalling is effective against biotrophic pathogens,

such as P. syringae, whereas the JA- and ET-mediated defined response is mostly effective against

necrotrophic pathogens, such as Botrytis cinerea (285, 108).

Figure 1.1 highlights but a small portion of our current understanding of hormone signalling in A.

thaliana. Recent investigations into the role of WRKY33 have shown this transcription factor to

have a key role in regulating multiple hormone signalling pathways (38). Previous studies shoed

that WRKY33 was required for resistance to B. cinerea, and therefore positively regulates JA- and

ET-responsive pathways, whilst negatively regulating SA-mediated signalling (343). However,

Birkenbihl et al. demonstrated that the early stages of JA signalling are independent of WRKY33

regulation (38).

The regulation of signalling pathways in plants is extremely complex, and is not yet completely

understood. It is thought that plants prioritise SA induction over JA, which causes the downreg-

ulation of JA-responsive genes, such as PDF1.2 and VSP2 (169). However, since the ET and JA

signalling pathways are not antagonistic, as demonstrated by SA and JA signalling pathways, if the

ET signalling pathway is prioritised, the JA response is also activated (168). ET is also a crucial

component for SA suppression of JA: the presence of ET signalling can suppress JA, but only in

the presence of SA (280). When ET is not present, SA can suppress JA via the gene NPR1 (280).

Many genes are involved in the orchestration of the antagonism between SA and JA, including

WRKY70 (173) and MYC2 (146): WRKY70 is activated in an NPR1-dependent manner by SA and

repressed by JA (173). In transgenic plants that were unable to accumulate SA, the expression of

WRKY70was not induced, confirming thatWRKY70 expression requires direct regulation by NPR1,

and indirectly, SA. However, by testing coi1mutant plants, which fail to accumulate JA, expression

of WRKY70 was unaffected (173), confirming that regulation of WRKY70 is not dependant on JA.
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Figure 1.1: Network of hormone signalling in A. thaliana important in different necrotrophic (example: B. cinerea) and biotrophic (example: P. syringae) stress responses, adapted from
Thomma et al. (285), Birkenbihl et al. (38) and Adie et al. (6). Here, the SA pathway is required for the response to P. syringae, whereas a JA/ethylene-dependent pathway is required for
the response to B. cinerea (284). The SA and JA pathways are mutually antagonistic, whereas the JA and ET pathways exhibit extensive crosstalk. Transcription factors, and transcription
factor families, activated in the relevant hormone pathways are shown.
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CORONATINE INSENSITIVE 1 (COI1), a protein required for wounding-induced JA regulation

of stress response genes, is the principal target of JA signalling (as shown in Figure 1.1) (331):

when bound by active JA, the JA-COI1 complex recruits members of the jasmonate ZIM-domain

(JAZ) family as co-receptors (146). The JAZ proteins are transcriptional repressors of MYC2, a

transcriptional activator, at low levels of JA (146). MYC2 itself is a hub in the crosstalk between

many phytohormone signalling responses, namely JA, ET and ABA. Its role in Abscisic acid-

mediated responses, which will be discussed later, is mainly involved in the response to abiotic

stress (11). Anderson et al. completed in-depth research into the role ofMYC2 in JA/ET-mediated

signalling during biotic stress responses, revealing that Methyl-JA treatment induced MYC2 ex-

pression, whilst ET treatment suppressed MYC2 expression (11). Coupled with data from myc2

mutant screen, which revealed decreased susceptibility to a necrotrophic fungal pathogens (183),

it can be concluded that MYC2 is a negative regulator of plant defence (11).

MYC2 becomes repressed when JA-mediated defence is required to be activated: JAZ proteins

interact with the co-repressors NINJA and TOPLESS (TPL) (15), where NINJA subsequently re-

presses MYC2 activity (229) by suppressing the activity of the RNA polymerase II-Mediator com-

plex (280).

JAZ proteins are also a crucial component of the mediation of antagonistic effects seen between

SA and JA. Two transcription factors, EIN3 and EIL1 are repressed by a JAZ protein/HDA6 com-

plex (146). EIN3 and EIL1 in turn repress SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2),

which encodes an enzyme required for the biosynthesis of SA (59). At low JA levels, the COI1-JAZ

complex inhibits EIN3 and EIL1, which allows the biosynthesis of SA. However, in the presence

of necrotrophic pathogens, JA levels rise, and JAZ proteins are degraded (144), allowing EIN3

and EIL1to inhibit SID2, and thereby down regulating SA biosynthesis. EIN3 and EIL1 are also

capable of up regulating the expression of JA and ET responsive genes, such as ORA59 and ERF1.

Therefore, JAZ proteins also function as regulators of the synergistic JA/ET crosstalk (246). It is

likely that EIN3 and EIL1 are the hubs of the crosstalk between these two pathways (146).

1.2.2.2 The role of Abscisic acid, and its crosstalk with JA and ET, in the stress response

Abscisic acid (ABA) is involved in the regulation of leaf senescence, abiotic stress responses

(such as drought, cold, heat, high light and salt stress) (262), and also the negative, and sometimes
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positive, regulation of plant defence against both biotrophs and necrotrophs (6).

ABA has previously been shown to enhance susceptibility of plants to disease, however, its in-

teraction with the JA and ET signalling pathways have implications in the expression of genes

important in plant defence and resistance to pathogen stress (6). Previous research has shown that

wounding can induce several genes involved in the JA, ABA, and ET pathways (66). As mentioned

previously, MYC2 is involved in the ABA-mediated response to abiotic stresses, and is a positive

regulator of ABA signalling (3), as well as regulating the interaction between JA and ET in the

defence response (26).

Overall, ABA is a negative regulator of the plant defence response to pathogens. Mutations in

the ABA DEFICIENT 2 (ABA2) gene in A. thaliana rendered the plant less susceptible to the

necrotrophic fungus Fusarium oxysporum (11) and the oomycete pathogen Hyaloperonospora

arabidopsidis (210). The aba2 mutants also exhibited significantly higher transcript levels of

defence genes which are regulated by the JA/ET pathways (11), highlighting the crosstalk between

these three hormones. Similarly, mutations in genes important for the synthesis of ABA also

increased the resistance of A. thaliana to Pseudomonas syringae pv. tomato (76) and B. cinerea (6).

However, examples of ABA acting as a positive regulator of plant defence have also been reported,

where mutants in genes affected by the ABA defence pathway were less resistant to the fungal

pathogens Pythium irregular and Alternaria brassicicola (6). This suggests that although ABA is

a negative regulator of defence responses to the majority of pathogens, ABA can also be a positive

regulator of plant defence.

ABA induces a number of genes important in the stress response, and tolerance, of abiotic stresses.

Seki et al. found evidence of crosstalk between ABA and JA when investigating ABA-inducible

genes using microarrays: genes involved in the metabolism of JA, and genes known to be regulated

by JA were found to also be inducible by ABA (255), emphasising the link between these two

hormone signalling pathways.

Plants can manipulate the relationship between the ABA and JA/ET-synergistic pathways in order

to reduce the overall fitness cost when dealing with either biotic or abiotic stress (11, 120).

11



1.2.2.3 Summary of the role of phytohoromone signalling in plant stress responses

In summary, there is substantial crosstalk exhibited by the hormone signalling pathways in A.

thaliana. Much of the crosstalk is mediated at the transcriptional level: Abe et al. demonstrated

thatMYC2was involved in the ABA-mediated response to abiotic stresses (3), with Bari et al. iden-

tifyingMYC2 as a regulator of the JA and ET interaction in the defence response to pathogens (26).

Figure 1.1 illustrates that a number of genes encoding transcription factors are important for the

regulation of stress responses, via the hormone signalling pathways: WRKY33 regulates compo-

nents of the SA, JA, and ET signalling pathways, whereas ORA59, a member of the ERF transcrip-

tion factor family, is known to be regulated by JA and ET signalling pathways. In view of this,

transcriptional regulation can be seen to provide a convergence point in the networks of hormone

signalling in A. thaliana.

1.2.3 Gene regulatory networks involved in multiple stress responses

As mentioned previously, the main focus of research has moved away in recent years from in-

vestigating single genes in specific responses and pathways, to investigating regulatory networks

involved in stress responses (295). However, by using genome-scale analysis in A. thaliana, the

function of regulatory networks can be investigated on a whole-system scale, identifying how

genes potentially work together (211).

Gene regulatory networks (GRNs) consist of a set of genes which are expressed in a specific spa-

tial and/or temporal pattern or process, such as development or stress. In living systems, genes do

not work independently: groups of genes work together, and can interact indirectly, through their

protein products, and these interactions create a network of genes (281), illustrating the complex

interactions of transcription factors and their target genes, for example. GRNs allow the organ-

ism to respond to altering conditions through the dynamic co-ordination of expression of gene

members of the network (287, 74).

A number of GRNs have subsequently been identified as important to the response, or tolerance,

of individual stresses. However, it has become increasingly evident that plants employ crosstalk

between response mechanisms to adapt to different environmental changes (159), and in order to

improve plant fitness (120). Therefore, identification of GRNs employed over multiple stresses is
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required.

From the perception of the stress signal to the expression of genes important in the response to the

stress, transcription factors and cis-acting regulatory elements in the promoters of stress-responsive

genes have been identified as having important functions in the plant response to stress (330). Gene

regulatory networks, particularly transcriptional regulatory networks, involved in the response to

multiple plant stresses will be discussed here.

Genes induced during the stress conditions have been classified into two groups (255, 161). The

first group contains genes which function in stress tolerance, such as chaperones and mRNA-

binding proteins. The second group contains proteins involved in the regulation of gene expression

involved in the stress response, such as transcription factors (330).

Plants are widely affected by the abiotic stresses drought, osmotic and cold, severely limiting plant

growth and ultimately, the production of crops. For these reasons, much investigation has been car-

ried out not only on these individual stresses, but crosstalk between them. The methods employed

to realise the genes under the influence of multiple stresses, such as microarray experiments, has

led us to apply these methods to other combinations of stresses (265, 189, 216). Studies investi-

gating the crosstalk in abiotic stresses have identified transcription factors as important in stress

responses (22, 37), and also as points of convergence in multiple stress responses (99).

Figure 1.2 shows the crosstalk and points of convergence (i.e. genes involved in multiple stress

responses) between osmotic and cold stress responses. Here it can be seen that a number of

transcription factors (DREB1, CBF4 and DREB2) involved in the response to osmotic and cold

stress all regulate rd29A via the cis-acting element DRE/CRT, found in its promoter (260). The

ABRE element is also found in the promoter of rd29A, but this is targeted by members of the ABF

and AREB transcription factor family. The binding of different transcript factors to these different

cis-acting elements allows the distinction between different signals in response to cold and osmotic

stresses (179). The subsequent induction of rd29A leads to the expression of genes involved in the

stress response (260).

A number of transcription factor families are also highlighted as having a role in the response to

either the osmotic or cold stress individually, notablyMYC,MYB and ANAC families. Within these

families, a number of transcription factors have roles within individual responses. For example,
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Figure 1.2: A proposed regulatory network of transcription factors and cis-acting regulatory elements (CAREs) involved in osmotic and cold stress, modified from Yamaguchi-Shinozaki
and Shinozaki (330). Transcription factors involved in these stress responses are shown in coloured ovals. Crosstalk between the two stress responses occurs at the CARE (DRE/CRT),
found in the promoter of the gene rd29A, where multiple DREB transcription factors bind.
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MYB2 and MYC2 are known to be required for the regulation of RD22 and ADH1 during osmotic

stress (2), and ANAC072 (also known as RD26) is required for positively regulating the expression

of the glyoxalase-encoding gene GLY during drought stress (98).

Elements of the ABA-independent pathway also exhibit crosstalk between the response to salt

stress (261). A. thaliana plants over expressing genes encoding DREB transcription factors exhib-

ited an increased tolerance to freezing (179). DREB proteins contain two subclasses, DREB1 and

DREB2, which both control a large number of genes involved in stress tolerance (260). Overex-

pression of DREB1A also showed increased tolerance to drought stress (104). Microarray analyses

carried out on A. thaliana leaf tissue over expressing DREB1A identified more than 40 genes as

downstream targets (255). A number of genes functioned in stress tolerance, whilst some down-

stream genes also included transcription factors, such as STZ and AP2/ERF transcription factors.

Expression of STZ is strongly induced in response to drought and cold stresses: A. thaliana trans-

genic plants over expressing STZ exhibited growth retardation and increased drought tolerance,

suggesting STZ acts as a transcriptional repressor (250).

Since ABA only plays a part in the response to drought, and not cold stress (260), it can be seen that

the crosstalk between the drought and cold stress responses is at the transcriptional level, through

the DRE/CRT CARE and the DREB transcription factors.

The drought specific part of the GRN shown in Figure 1.2 has also been seen to exhibit crosstalk

with the response to biotic stresses via theMYB2,MYC2 and ANAC072 transcription factors, which

are targets of the JA signalling pathway (261). Both the MYC2 and MYB2 transcription factors

have been found to bind to cis-elements in the promoter of RD22 (3), a gene regulated by ABA,

and involved in the response to cold stress, osmotic stress and salt stress. Microarray analysis

carried out on A. thaliana plants over expressing MYB2 and MYC2 identified a number of ABA-

and JA-inducible genes. Overexpression of these two genes also conferred an ABA-hypersensitive

response and decreased drought susceptibility in plants (3). ANAC072 is seen to be induced by

both ABA and JA, whereas the downstream targets of this gene are JA-inducible. Typical ABA-

inducible genes are not regulated by ANAC072 expression (98).

The network illustrated in Figure 1.2 was generated via the accumulation of many experimental

findings. However, with the generation of gene expression datasets, various modelling tools have
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Figure 1.3: A generated network model containing genes enhanced by senescence using variational Bayesian state space modelling (VBSSM), adapted from Breeze et al. (43). This model
was generated using time series expression data during the senescence response to elucidate a gene regulatory network involved in the response to this stress. This model predicts that STZ
is regulated by ANAC092, a transcription factor known to be involved in the senescence stress response (22). STZ, here seen to act as a hub gene in this response, has also been identified
experimentally as inducible by drought and cold stresses by Sakamoto et al. (250).
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also been developed to mine this data for signals of regulation, in order to infer a models of gene

regulation, without the laborious process of experimentation. Such methods will be described in

greater detail in Section 1.3.

Breeze et al. (2011) (43) presented a predicted network model for a small set of genes, generated

using a the modelling technique, variational Bayesian state space modelling (VBSSM)method (30)

on senescence time series data. The resulting model (shown in Figure 1.3) demonstrated that

STZ is regulated by ANAC092 (43), drought and cold stress, and also indirectly by senescence.

Senescence has previously been shown to enhance the expression of ANAC092, and this regulation

is thought to be transcriptional (22). However, the network downstream of ANAC092 remains

unknown (22): the predicted network shown in Figure 1.3 provides hypothesised downstream

targets of ANAC092 in the senescence stress response. Indeed, a number of the genes predicted

to be downstream of ANAC092 in this network model (ANAC083, ARR16 and ANAC084) were

identified as being differentially expressed in a microarray experiment using an overexpressor line

of ANAC092 (22).

The networks mentioned here are mainly devoted to abiotic and developmental stress responses.

The interaction between abiotic and biotic stress responses in plants is still a relatively new area of

research (124), however, recent studies have shown that ABA does influence the temporal regula-

tion of the pathogen defence system (289). It seems that ABA is involved in the response to many

pathogen stresses, as ABA crosstalks between the stress response and developmental processes.

However, the exact gene regulatory network involved in the biotic/abiotic crosstalk has yet to be

deciphered.

1.3 Theoretical methods for discovering genes important to multiple

plant stress responses and constructing gene regulatory networks

The elucidation of GRNs can be costly and time-consuming using laboratory based techniques

alone. For example, the discovery of the circadian clock in A. thaliana took many years and many

laboratory-based experiments in order to confirm its existence: genomic analysis to identify clock

components was not feasible until the 1970s, and experiments were laborious (196). The first plant

clock mutant was not generated until 1995, when Miller et al. (205) produced a toc1 transgenic

17



line. With the advent of a computational model of the circadian clock network in 2006 (180), the

research in this field has rapidly expanded. Consequently, there is a great need for computational

approaches to predict GRNs, in order to reduce both the time and effort spent on experimental

validation by predicting candidate groups of genes to analyse.

Many theoretical methods are now freely available to analyse gene expression data to infer GRNs,

and to identify genes important to multiple stress responses (30, 272, 150, 95, 230). Mjolsness

et al. conducted extensive research into which essential steps should be completed for predicting

GRNs using expression data from microarrays (209). In order to identify transcriptional regu-

latory mechanisms, such as co-expression and co-regulation, data should be clustered by their

expression into sets of co-expressed genes, and time-courses should be modelled in each condi-

tion the data is measured in (209). Integration of co-expressed genes, inferred regulation from

modelling techniques, gene ontology (GO) annotations and promoter motif information provides

a logically inferred network of genes with specific biological functions (302). Some clustering

and biclustering approaches for inferring co-expressed genes in single and multiple stresses, and

modelling approaches used for inferring GRNs will be discussed here.

1.3.1 Predicting gene regulatory networks using modelling techniques

Modelling algorithms aim to describe the transcriptional events occurring within a biological sys-

tem in a graphical manner, using gene expression transcriptome data from microarrays. Modelling

methods use data to infer the regulatory interactions (edges) between genes (nodes) (211). Al-

though modelling techniques have been successfully applied to data from mammalian and human

systems (7, 306), the situation is more complex in plants: a lack of information on transcription fac-

tors, and the promoter motifs they are capable of binding to, means this prior information cannot

be incorporated into modelling techniques.

Recently, a comparison study between various theoretical approaches for GRN construction was

completed (231). In this study, ordinary and stochastic differential equations (ODEs and SDEs

respectively) were compared with Bayesian and dynamic Bayesian network (BNs and DBNs re-

spectively) methods. Penfold et al. found that DBNs, such as VBSSM (30), and Casual Structure

Identification (CSI) (Penfold, C.P., University of Warwick, in preparation) outperformed other

GRN construction methods, such as ODEs and SDEs, when handling time-series datasets. It was
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also concluded that the ‘best’ networks were recovered using time-series data, confirming the pre-

vious results of Bansal et al. (23), which suggests that time-series observations are the appropriate

choice for inferring gene regulatory network structure.

DBNs have been used to model time-series gene expression data, as they present an advantage in

the form of managing hidden variables (such as protein levels or mRNA decay) to infer network

models of interacting components. However, there are also disadvantages to to using DBNs to

model time-series expression data: the direction of regulation is difficult to determine; and the

incorporation of prior information can be difficult, and would have to be included manually.

The VBSSM (30) algorithm can be applied to high resolution time series gene expression datasets.

Advantages of VBSSM over other modelling methods is the ability to model combinatorial regula-

tion, and also the ability to detect feedback loops. Figure 1.4 describes the state-space model used

for time series gene expression data, where the outputs from the previous time step are used as an

input for the current time step, in order to infer interactions between genes over time.

VBSSM is limited, however, by the number of genes it is capable of modelling together. Therefore,

a method to select which genes should be modelled is required. Selection criteria can be based

on pre-existing data, such as genes with known function in the stress response. However, due

the evidence stating that stress responses are governed at the transcriptional level (341), including

transcription factors would be a prudent choice. By limiting the group of genes to be modelled to

transcription factors which are differentially expressed over time to a stress, previously unknown

cases of transcriptional regulation may be uncovered by the resulting predicted model.

1.3.1.1 Graph theory as a basis for modelling time series gene expression data

DBNs are a class of modelling approaches that have a basis in graph theory (30). Since GRNs can

be described using parameters from graph theory (17), using DBNs to model gene expression data

is a logical choice for a modelling approach.

In graph theory, a ‘graph’ is a set of nodes (which, in the context of GRNs would represent genes),

which are connected by ‘edges’ (which, in the context of GRNs would represent regulation) (25).

Graphs can be ‘non-directional’, where no definition is given between the nodes associated with an

edge, for example, in a protein-prontein interaction network (25, 252). In directed graphs, the edge
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Figure 1.4: The VBSSM feedback model, adapted from Beal et al. (30), where outputs feed back into the inputs. At
time t, gene expression levels are defined as yt, whereas hidden variables are defined as xt

between modes of the graph has a defined direction, which, in the context of GRN, will represent

the direction of regulation from a transcription factor to its target gene (25).

VBSSM was developed to approximate the marginal likelihood of Bayesian dynamical systems,

using variational methods, with the intention of applying it to microarray data to elucidate interac-

tions between regulatory transcription factors and their target genes (29). Beal et al. incorporated

directionality into VBSSM, so that the direction of regulation could be inferred. This means

VBSSM differs from other modelling techniques, such as Markov random fields (MRFs) mod-

els (214, 319), which do not distinguish which direction the edge trajectory is facing. However,

by incorporating directionality, VBSSM becomes a more complex and computationally intensive

modelling technique to employ (214).
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1.3.2 Inferring regulation using clustering

Cluster analysis, or clustering, is used when one wishes to assign a set of objects into groups,

which are called ‘clusters’. Objects in the same cluster are similar to each other, but are dissimilar

to objects in other clusters. Ultimately, clustering algorithms aim to organise a set of observa-

tions, allowing the researcher to develop an understanding of the data being studied. Clustering

algorithms are primarily used to organise gene expression data by grouping similar expression

profiles together (277). This requires a mathematical definition of similarity in order to measure

the behaviour of two genes, based on their expression profiles. Suitable measurements include the

Euclidean distance and Pearson’s Correlation Coefficient, which are the most widely used.

The Euclidean distance, d, is a measure of distance between two points, and is based on the Eu-

clidean norm. The Euclidean distance defines the distance between pairs of expression profiles by

the length of the distance between gene expression points. The Pearson’s Correlation Coefficient

is a similarity measure which scores pairs of expression profiles as highly correlated if they are

linearly similar. Both Pearson’s Correlation Coefficient and Euclidean’s distance score genes that

are functionally related highly (334).

Eisen et al. published a highly significant paper, which has since become the standard for gene

expression data clustering (88), and as such, clustering has become a routine feature of analysis

of gene expression data. There are many advantages to the clustering of gene expression data: the

function of an unannotated gene can be predicted if the functions of the remaining genes in the

cluster are known, as functionally similar genes are often co-expressed (88); by clustering the ar-

rays themselves, rather than the genes, classes of samples can be identified; co-expressed genes are

likely to share a common regulatory mechanism, allowing the identification of transcription factor

binding sites (116); finally, clusters of genes can be mapped onto metabolic networks, allowing

the detection of overrepresented metabolic pathways (299).

Transcriptional regulation can be inferred from gene expression: promoters of co-expressed genes

may share regulatory elements, suggesting a common regulator; also, expression profiles of target

genes may be correlated to the expression profile of the regulator, but there may be a time-shifted

delay between the expression of the regulator and its target (237). Also, if a transcription factor

negatively regulates its targets, the expression profiles may be inversely correlated (237). The Tem-
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poral Clustering by Affinity Propagation (TCAP) algorithm (151) infers transcriptional regulation

of genes using time series expression data, by analysing complex temporal events which may not

be identified using standard clustering techniques. This technique will be discussed in more detail

in the subsequent sections.

1.3.2.1 Hierarchical clustering

This method of clustering analysis seeks to generate a hierarchy of clusters, by one of two ap-

proaches: ‘bottom-up’ (agglomerative), where each observation, or gene expression profile, starts

in its own cluster, followed by pairs of clusters merging; a ‘top-down’ approach (divisive), where

all gene expression profiles start in one cluster, and clusters splinter off from this cluster as the

algorithm moves down the hierarchy. Both approaches generally result in the production of a

dendrogram to demonstrate the clusters.

Hierarchical clustering of gene expression data demonstrates a lack of robustness when analysing

data that contains a level of noise, however (187). Hierarchical clustering methods are also unable

to re-evaluate the results it generates, making clusters difficult to interpret when a large amount of

gene expression data is involved (187).

The Self-Organising Tree Algorithm (SOTA) is an unsupervised hierarchical clustering algorithm

based on the self-organising map (SOM) (158) and growing cell structures (96), which was devel-

oped in order to achieve robustness when analysing noisy gene expression data (86). The SOTA

method was also at an advantage to other hierarchical clustering methods due to its divisive nature:

by clustering ‘top-to-bottom’, the highest levels of clusters were resolved before the details of the

clusters at the lowest levels of the hierarchy. SOTA also allowed the user to stop the growing of the

‘tree’ at a desired hierarchical level (86). Luo et al. applied SOTA to gene expression data of 3000

yeast cell cycle genes, which were originally described in (68): SOTA identified 25 clusters which

were functionally enriched when mapped to the functional category of the MIPS database (203),

and contained between 88 and 276 genes (186). The clusters were functionally enriched for cat-

egories such as ‘cell cycle’, ‘DNA processing’, and ‘Organisation of the cytoplasm’, suggesting

SOTA is capable of detecting ‘real’ functionally similar clusters (186).
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1.3.2.2 Time-series data clustering

Time-series experiments have become a increasingly popular method to analyse the temporal pro-

cess of gene expression (24). Time-series experiments differ to static gene expression experiments,

where a single snapshot of the gene expression in different samples are measured. Static data is

also only measured from a sample population, and are assumed to be independently and identically

distributed. Time-series data, on the other hand, generates gene expression data where there is a

strong similarity between consecutive data points, which can be observed as a function of the time

separation between data points (otherwise known as autocorrelation) (24). Therefore, autocorre-

lation can be defined as the correlation between the values of gene expression at different time

points.

Time-series expression datasets provide challenges also: the larger the number of genes, the greater

the computational effort to discover co-expressed genes is needed; there is also an issue of how

great the temporal resolution should be. Although the microarray experiments needed to generate

the time-series gene expression data are expensive, as there are multiple arrays needed for each

time point measured (89), the temporal resolution gained has high value, as gene expression is

itself a temporal process (24).

Eisen et al. performed clustering of time-series gene expression data using both a similarity mea-

sure (a variation of the Pearson’s Correlation Coefficient), and hierarchical clustering (88). Multi-

ple time-series data from the budding yeast Saccharomyces cerevisiae, including sporulation (70),

and the diauxic shift (82), were analysed. Using both clustering methods, Eisen et al. found that

genes represented by two or more probes on the microarray, or genes with high sequence similarity,

were clustered next to each other, concluding that the location on an array does not affect the gene

expression profile observed. Also, when cluster were examined more closely, it could be seen that

the gene members shared a common role or cellular process. In the diauxic shift dataset (82), 126

genes clustered together were seen to be strongly down regulated. 112 of the gene members of the

cluster were genes encoding ribosomal proteins, as well as other genes encoding proteins involved

in translation, such as initiation and elongation factors, and tRNA synthetases (88).

Time series expression data can also be used to infer transcriptional regulation: by identifying

similarly expression genes, which are co-expressed, the regulator may too be co-expressed to its
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target genes, but with a time delay in expression (237). Standard static and time-series clustering

algorithms have the advantage of identifying cases of simultaneous co-regulation, but are not ideal

at identifying genes which regulate each other. The task of identifying the regulating transcription

factor is also a challenge. TCAP (151) is an approach for finding gene clusters, or ‘modules’,

which incorporate temporal features, such as time lags and inversions, by exploiting Affinity Prop-

agation (AP; (94)), and the Qian similarity measure (237). Whilst this method is capable of de-

tecting transient co-expression, it is not as sensitive as biclustering algorithms to expression events

that occur in a short window of time, due to the approximate nature of the Qian similarity measure.

However, by applying TCAP to a time-series dataset of gene expression in A. thaliana leaves

during infection by B. cinerea (Windram et al. 2012, in press), 338 clusters were identified. A

cluster, where the genes were seen to have a circadian rhythm, contained two genes encoding

the circadian clock components LHY and GI: GI was observed to have a delayed and inverted

expression profile to LHY. Another member of this cluster, At1g56300, also demonstrated a similar

expression profile to that of GI. At1g56300 is a member of the Rapid Wounding Response (RWR)

genes, which were identified by (309) to be regulated by the circadian clock.

1.3.3 Identifying genes important in multiple stress responses using biclustering

Biclustering algorithms, sometimes referred to as ‘co-clustering’ or ‘two-mode clustering’, mine

time series gene expression data by clustering both the rows (genes) and columns (conditions) of a

data matrix simultaneously. The biclustering of gene expression data is a relatively new method of

analysing time series datasets in multiple conditions, first introduced by Cheng and Church (65).

Previously, the term ‘biclustering’ was used by Mirkin, but not in the context of gene expression

data (172).

A biclustering algorithm will generate ‘biclusters’, which are subsets of rows with similar be-

haviour, such as similar expression profiles, across subsets of columns (or vice versa). Subse-

quently, biclusters can possibly form overlapping groups of genes. Genes belonging to the same

bicluster are hypothesised to be regulated in the samemanner (co-regulated), usually by a transcrip-

tion factor, and subsequently these biclusters can be used to form transcriptional networks (211).

Biclustering methods overcome the disadvantages of standard clustering methods to yield groups

of genes that are co-expressed under subsets of conditions. However, biclustering algorithms do
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produce limitations of their own: methods can generate overlap between clusters; and not all of

the algorithms are deterministic, due to a lack of a ‘gold-standard’, and the unsupervised approach

many of the algorithms employ (190).

Biclustering differs from standard clustering algorithms, which partition the genes or conditions

into groups that are mutually exclusive from each other, based on a high similarity score of genes

or conditions in an expression matrix. The aim of biclustering is to identify the role of a gene or

condition in multiple pathways (65). Given the importance of identifying subsets of genes that are

functionally related by the exploratory analysis of time-series data in recent years, this challenge

has since been extended to include identifying functionally related genes that are co-expressed

together in multiple datasets. Hence, biclustering algorithms have become more sought after.

The leading biclustering algorithm is the Extended Dimension Iterative Signature Algorithm (EDISA) (272),

an extension of the ISA algorithm (132, 131). EDISA generates initial biclusters, or ‘modules’,

which are refined by removing genes and conditions until the module fits a ‘definition’. EDISA

covers three such module definitions: single response, coherent and independent response.

Single response modules aim to identify genes associated with one condition in order to discover

specific mechanisms employed in the response to that condition (illustrated in Figure 1.5, bottom

row). Coherent modules identify genes that are co-expressed in multiple conditions (illustrated in

Figure 1.5, top row). The modules identified in the single response and the coherent response could

potential be co-regulated by a common transcription factor. The independent response identifies

modules where the regulatory mechanism is hypothesised to be different for each condition the

module is co-expressed in (illustrated in Figure 1.5, middle row).

EDISA was used in an initial analysis of the PRESTA time series datasets (see Section 4.1.3).

However, due to the limitations of EDISA in the number of genes it is capable of analysing, we

were restricted to analysing a set of genes which were differentially expressed in response to

B. cinerea infection, short day and long day senescence. These genes (2774) were found to be

differentially expressed in all three datasets. Non-differentially expressed genes were not included

in this analysis, as if they are not differentially expressed in a particular stress they are not likely

to form a part of the response to that stress.

Eight modules were identified by EDISA as being significantly co-expressed in a combination of
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Figure 1.5: EDISA module definitions: coherent, independent response and single response. Adapted from Supper et al. (272). Coherent modules identify co-expressed genes in multiple
conditions. The single response defines modules as gene associated with just one condition. The independent response identifies modules where the regulatory mechanism is hypothesised
to be different for each condition the module is co-expressed in.
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Figure 1.6: EDISA module of a set of 68 genes significantly co-expressed in long and short day senescence. Here,
expression profiles of the 68 genes are shown in each of the stresses: B. cinerea, short day and long day senescence.
EDISA has identified these genes are significantly co-expressed in short and long day senescence only (indicated by
the coloured expression profiles). These genes are not significantly co-expressed in B. cinerea, as indicated by the grey
expression profiles.

these three stresses. An example of the output from EDISA, and one of the modules, is illustrated

in Figure 1.6. EDISA identified 68 genes as significantly co-expressed in short day and long day

senescence (as indicated by coloured expression profiles in Figure 1.6), but not in response to B.

cinerea stress (as indicated by grey expression profiles in Figure 1.6). However, the expression

profiles of these genes in response to B. cinerea infection in Figure 1.6 suggest that there is an

interesting biological event taking place: the expression profiles of the majority of the genes are

being down regulated in response to B. cinerea. This raises the question: why aren’t these genes

co-expressed in all three stresses?

Wigwams (see Chapter 3) analysed the same 68 genes in an attempt to establish whether this

EDISA module was a false negative, and should have been identified as co-expressed in all three

stresses. Wigwams identified these genes as significantly co-expressed in all three stresses, as
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shown in Table 1.1, which shows the p-values associated with each pairwise comparison of stresses.

Table 1.1: p-values associated with each pairwise comparison of stresses, calculated by Wigwams using the hypergeo-
metric test

Pairwise stress combination p-value
B. cinerea and long day senescence 8.13e-03
B. cinerea and short day senescence 2.51e-03
Long day senescence and short day senescence 3.98e-57

The disadvantages of EDISA include a lack of p-values assigned to the resulting modules, to

state the significance of the level of co-expression observed. In addition, although EDISA is

also capable of searching for three categories of modules, the user has to state which type of

definition they wish to use for the analysis of the time series expression data. Therefore, EDISA

does not provide evidence of all three definitions in one execution of the algorithm. EDISA is also

limited to the number of genes the number of conditions and time points it capable of mining for

biclusters. These drawbacks present an opportunity to develop a biclustering algorithm that does

not possess the limitations on the gene expression data it is capable of mining for significantly

co-expressed genes across multiple time-series datasets, which also presents evidence for coherent

and independent responses.

1.3.4 Comparison of the theoretical methods available for the construction of GRNs

A number of theoretical methods, which can be used to infer and predict GRNs from gene expres-

sion data, have been described in this chapter. To summarise, these findings are presented in Table

1.2 below, which describes the limitations and advantages of modelling techniques (VBSSM (30)),

clustering techniques (TCAP (151)) and biclustering approaches (EDISA (272) and BIGA (273)).

VBSSM (30), the dynamic Bayesian modelling approach to time-series expression data, is ex-

tremely advantageous in that it can identify combinatorial regulation and feedback loops. However,

this approach is limited to modelling approximately 70 genes over approximately 20 timepoints

(with fewer timepoints, more genes can be modelled). This obviously raises the issue of selection

of genes to initially model, which is a major drawback. Whilst VBSSM has the advantage over

other DBNs in that it can infer the direction of regulation (30, 29, 231), it cannot, however, dis-

tinguish between direct and indirect regulation. Figure 1.7 illustrates how the transcription factor

encoded by gene A indirectly regulates gene C via gene B. VBSSM, however, may not interpret
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Figure 1.7: VBSSM cannot distinguish between direct and indirect regulation. Gene A encodes a transcription factor
which regulates the expression of gene B. Gene C is regulated by the transcription factor encoded by gene B. Therefore,
the gene A product indirectly regulates gene C, as shown by the blue arrows. However, VBSSM may not distinguish
gene B as an intermediate, and would instead provide an output where the transcription factor encoded by gene A
directly regulates gene C, as shown by the red arrow. Therefore, when observing output from VBSSM, it is important
to consider that inferred regulation can be direct or indirect.

this indirect regulation, and would instead provide an output where the transcription factor encoded

by gene A is seen to directly regulate gene C. Therefore, when observing output from VBSSM, it

is important to consider that inferred regulation can be direct or indirect. It is important to also

consider that although VBSSM infers the direction of regulation, this is still a predicted inference,

and would need experimentation to be confirmed.

TCAP (151) is a temporal clustering approach for time series gene expression data, which can

take time delays and inversions into account, and therefore infer regulatory relationships. This

method is computationally inexpensive, and was shown to correctly cluster together members of

gene regulatory network (151). TCAP also provides candidate genes which suggest hypothesises

to analyse experimentally. However, TCAP can only analyse one condition dataset at a time, so

therefore cannot identify regulatory relationships across multiple conditions.

Standard hierarchical clustering approaches usually achieve a lack of robustness when analysing

noisy gene expression data (187). SOTA, however, was developed to overcome this issue, and

gave robust clusters when analysing noisy gene expression data (86). Despite this, SOTA still

experiences the same limitations as other hierarchical clustering methods, namely that any results

generated are difficult to interpret, due to being unable to re-evaluate results (187).
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Both EDISA (272) and BIGA (273) are biclustering approaches for gene expression data. EDISA

outperformed its predecessor, ISA (132, 131), when it was developed in 2007, and was seen to be

the leading biclustering algorithm at that time, as this approach allowed for a comprehensive view

of gene expression responses in different conditions by identifying three biologically relevant mod-

ule types (coherent, independent and single response modules) (272). However, EDISA is based

on calculating the similarity between two genes, using Pearson correlation coefficient r, to identify

co-expressed genes, and does not take into account time-delayed or inverted expression profiles,

which would infer regulation. BIGA (273) aimed to overcome the reliance on similarity measures

in biclustering methods by employing an iterative genetic algorithm to search for biclusters. How-

ever, BIGA is computationally intensive, and does not utilise time-series data, ruling out its use on

the PRESTA datasets.

From Table 1.2 it can be seen that each approach to generating a GRN has its limitations. Therefore,

it seems logical to perform analyses using more than one method to uncover biological relation-

ships (273).

1.3.5 Integration of gene expression data and promoter motif data

The previous sections have described some current methods available for generating hypothesised

regulatory links between genes, and subsequently form a transcriptional network, from transcrip-

tome data, as well as methods for identifying co-expressed genes in single and multiple stresses.

However, networks generated by modelling techniques do not discriminate between direct and in-

direct regulation, nor the direction of regulation. Although experimental techniques such as ChIP-

Seq would enable this distinction to be made, these techniques are expensive and time-consuming

(see Section 5.1 for a more detailed comparison of ChIP-based methods, and their drawbacks).

Promoter motif prediction methods would identify transcription factor binding motifs located in

the promoter sequences of genes, and assist the understanding of transcription regulation (211).

By integrating data from transcriptional network modelling and promoter motif analysis, direct

and indirect targets of transcription factors can be clarified.

However, promoter motif analysis does not provide information on the expression changes that

occur when a transcription factor is bound to the promoter of a target gene: a large amount of

genes with a regulatory transcription factor bound respond transcriptionally by altering the level
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Table 1.2: Comparing various theoretical approaches available for elucidating GRNs using gene expression data, highlighting input data needed; whether the approaches can utilise single
or many datasets; and limitations and advantages of each method

Type of method Input data Single or multi-dataset Limitations Advantages
VBSSM (30) Dynamic Bayesian net-

work modelling using hid-
den states

Time-series gene expres-
sion data

Single Limited to modelling 70
genes over 20 time points,
computationally intensive

Identifies combinatorial
regulation and feedback
loops

TCAP (151) Time-series clustering Time-series gene expres-
sion data

Single Not as sensitive as biclus-
tering methods to events
occurring in short periods
of time

Infers regulation, little
user input, computation-
ally inexpensive

EDISA (272) Biclustering Time-series gene expres-
sion data

Multi Limited to 2500 genes
over 3 datasets (total
of 54 time points), no
p-values associated with
output, false negatives

Computationally inexpen-
sive

BIGA (273) Biclustering based on ge-
netic algorithm (GA)

Gene expression data Multi High gene overlap (gene
found in many biclusters),
cannot utilise time-series
data, computationally in-
tensive

Large gene coverage

SOTA (86) Hierarchical clustering Gene expression data Single Cannot re-evaluated gen-
erated results

Achieves robustness
with noisy data, ‘top-to-
bottom’ approach
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of expression (211): it is thought that less than 10% of directly bound genes exhibit a significantly

altered expression level (166). This suggests that binding of transcription factors to their respective

targets may be silent, which leads to another avenue of investigation to discover the function of

these silent regulatory events.

1.4 Aims

This thesis will present the method development of a tool to analyse multiple large-scale time

series datasets in order to identify genes important to stress responses in A. thaliana. The aims of

each chapter are as follows:

Chapter 3 - Method development of Wigwams (Wigwams Identifies Genes Working Across

Multiple Stresses) To develop a new method which is capable of discovering groups of co-

expressed genes in subsets of multiple time series gene expression datasets, which are hypothe-

sised to also be co-regulated. These groups of co-expressed genes are predicted to have a shared

regulatory mechanism, which is activated in multiple stresses. This method will be validated by

identifying known examples of co-expressed and co-regulated genes, as well as being applied to a

simulated dataset of randomly generated data.

Chapter 4 - Applying Wigwams to multiple time course gene expression datasets To apply

the Wigwams to high resolution time series microarray datasets generated by the PRESTA group

to investigate the effect of stress on gene expression changes over time. Wigwams will identify

potential regulons found to be significantly co-expressed in subsets of these datasets. By using

bioinformatical analyses, such as motif analysis and gene ontology (GO) term analysis, it can be

inferred whether these potential regulons have a common regulator or function, respectively, and

are therefore likely to be truly co-expressed and co-regulated.

Chapter 5 - Biological validation of a theoretically predicted gene network To integrate mod-

elling techniques with potential regulons identified as significantly co-expressed over time, using

the PRESTA time series datasets, in order to find potential transcription factor regulators of pre-

dicted co-expressed and co-regulated genes. Experimental validation of these predictions will be

established using high throughput matrix Yeast 1-Hybrid (Y1H) and microarray analysis. These

results will subsequently be used to produce a common gene regulatory network which is activated
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in multiple plant stress responses.
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Chapter 2

Experimental methods for the

elucidation of gene regulatory networks

2.1 Growth conditions of A. thaliana plants

A. thaliana plants were grown in a climate controlled environment with the following conditions:

constant temperature of 20 ◦C; fluorescent tungsten irradiation of ∼110 µmols photons·m-2·s-1;

8:16 hour light: dark cycle; and a relative humidity of 70%. A. thaliana seed was stratified for

three days in 500 - 1000 µL of sterile 0.1% (w/v) agar at 4 ◦C. Stratified seed was sown on soil

suitable for A. thaliana, mixed to a ratio of six parts Scotts Levingtons F2s compost, one part silica

sand and one part fine grade vermiculite (Horticultural Services, Wellesbourne Campus, University

of Warwick).

2.2 Phenotyping screens of A. thaliana mutant lines

2.2.1 Phenotyping screens of A. thaliana using the necrotrophic fungal pathogen B.

cinerea

2.2.1.1 B. cinerea growth and isolation

B. cinerea strain pepper (80) was subcultured biweekly onto sterile tinned apricot halves (Tesco’s

own) in deep petri dishes. Subcultures were incubated in constant darkness at 25 ◦C. B. cinerea
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spores were isolated two weeks post subculture for an infection. Spores were harvested from

subcultures in 3 mL of sterile ddH2O, and were separated from fungal hyphae by pipetting the

water containing the spores into a sterile syringe, which contained glass wool. The spores were

then filtered through the glass wool. The number of spores per mL was calculated by pipetting 17

µL onto a haemocytometer slide, and counted using a light microscope. Spore suspensions were

prepared by diluting B. cinerea spores to a concentration of 1 x 105 spores/mL, using sterile half

strength grape juice (Tescos own).

2.2.1.2 B. cinerea infection of A. thaliana leaves

After 4 weeks (28 days) of growth, one leaf per plant was detached and placed on 800 mL of

0.8% agar that had set in the base of a propagator tray. The leaves were inoculated with one 10

µL droplet of either a mock or B. cinerea spore suspension. Mock solution consisted of sterile

half strength grape juice. B. cinerea spore solution similarly consisted of half strength grape juice,

but also contained B. cinerea spores pepper strain. Leaves were covered with propagator lids and

placed in a Sanyo SGC970 growth cabinet, set to a constant temperature of 20 ◦C, fluorescent

tungsten irradiation of ∼120 µmols photons·m-2·s-1 (16 hour light-dark cycle with the light period

starting at 2am and ending at 6pm), 350 ppm CO2 and 70% relative humidity. Digital photographs

of each tray were taken at 24, 48, and 72 hpi (hours post infection).

2.2.1.3 Analysis of B. cinerea infection

Photographs taken at each timepoint were analysed using image analysis software ImageJ (4) in

order to determine the lesion area of each leaf. The average lesion area of 20 leaves from individual

plants of T-DNA knockout or overexpressor lines were compared to Col-0 wild type (or other

suitable background to mutation) using a two-tailed t-test, assuming equal variance. Phenotypes

were noted that had a p-value < 0.05 at 72 hpi.

2.2.2 Dark induced senescence phenotyping screen of A. thaliana plants

2.2.2.1 Senescence screen

Three replicate petri dishes per line (labelled A, B and C) were prepared, with filter paper in the lid,

wet with 3 mL sterile ddH2O. Nine representative rosettes per line were cut at the base, along the
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Figure 2.1: Image of the arrangement used in senescence screens: three A. thaliana rosettes are arranged on a petri dish
and stored in complete darkness. In order to measure the progression of senescence over time, petri dishes were placed
on a piece of white paper and photographed in the same position each day.

level of the soil, using scissors and arranged three per plate. Plates were stored in complete dark-

ness, in a plastic container with a lid, in the 20 ◦C room to maintain constant temperature. A pure

white piece of paper was prepared with a selection of coloured spots, measuring approximately 1

cm in diameter per spot. A circle was drawn onto the paper to ensure subsequent dishes can be

placed in the same position. This arrangement is illustrated in Figure 2.1. Digital photographs of

each plate were taken every day until the all the rosettes were completely yellow in a photo studio

using an incandescent light rig.

2.2.2.2 Analysis of senescence screen

Image analysis software ImageJ (4) was used to analyse the photographs and generate red/green

ratios for each line compared to wild type. For each photo, the RGB values for a circle in a white

area of the paper was measured. The RGB values of leaf 5 on each rosette were also measured.

RGB values were obtained using the ‘colour histogram’ option within ImageJ.

The RGB values were transformed using an R (279) script written by Stuart McHattie (University

of Warwick, unpublished). This script normalised the data using the RGB values for the white
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area of the paper, and transformed over the whole image. Subsequently, the red/green ratios for

each leaf were generated using a second R (279) script written by Stuart McHattie (University

of Warwick, unpublished), which provide a ratio indicating the degree of senescence. The ratio

between the average red and the average green measurements of a leaf allows a direct comparison

of senescence between two rosettes in the experiment. A ratio of one is approximately 50% of the

way through to full senescence.

The ratios are used to plot curves of the progress of senescence against time. Where a difference

between the curves of mutant and wild type lines can be seen by eye, this indicates an altered

phenotypical response compared to the control.

2.3 Cloning

2.3.1 Promoter fragment cloning using Gateway technology

Oligonucleotides were designed to amplify overlapping promoter fragments of approximately 400

bp, to cover 1000 bp upstream of the transcriptional start site (TSS), with 100 bp overlap between

fragments. attB sites needed to be incorporated into these oligonucleotides (see Appendix A), and

are shown by lower case letters in the oligonucleotides (see Appendix A, Table A.1).

Promoter regions were amplified from genomic DNA (Col-0) using the aforementioned oligonu-

cleotides and KOD polymerase master mix (Roche, Welwyn) according to the manufacturer’s

instructions using a two-step PCR approach (PCR conditions can be found in Tables 2.1 and 2.2).

Amplification of template (genomic) DNA was completed using specific primers (shown in Table

A.1, Appendix A). Step 2 of the PCR involved amplifying the product of the first step using uni-

versal attB adapter primers (shown in Table A.1, Appendix A). 5 µL of PCR product was loaded

onto 2% agarose gels to confirm the size of the product. Once the correct product size was con-

firmed, the PCR products were purified with the QIAquick PCR purification kit (Qiagen, West

Sussex) according to the manufacturer’s instructions, to remove any remaining attB primers or

attB primer-dimers.

Once the promoter fragments were purified, entry clones were created using the recombination

reaction method. The BP recombination method, illustrated in Figure 2.2, allowed the transfer of

the promoter fragment in the attB PCR product into an attP containing vector. In this case, the
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Table 2.1: PCR conditions for multistep Gateway cloning using KOD master mix: Step 1
95 ◦C 2 minutes
95 ◦C 15 seconds
55 ◦C 15 seconds 11 cycles
68 ◦C 2 minutes

Table 2.2: PCR conditions for multistep Gateway cloning using KOD master mix: Step 2
95 ◦C 2 minutes
95 ◦C 15 seconds
45 ◦C 15 seconds 5 cycles
68 ◦C 2 minutes
95 ◦C 15 seconds
55 ◦C 15 seconds 35 cycles
68 ◦C 2 minutes
68 ◦C 5 minutes
4 ◦C 15 minutes

pDONRZeo entry vector (Invitrogen, Paisley) was used. The recombination reaction, took place

at 25 ◦C overnight, and contained 1 µL of BP Clonase enzyme mix (Invitrogen, Paisley), 1 µL of

pDONRZeo entry clone (concentration 150 ng/µL), 1 µL attB PCR product (final concentration

150 ng/µL) and 2 µL of sterile ddH2O.

The BP reaction mixture was then transformed into gold standard DH5α competent E. coli cells

(Bioline, London). Competent cells were defrosted on ice for 10 minutes. 1 µl of BP reaction

was added to 10 µl of competent cells, and incubated on ice for 30 minutes. The cells were then

heat shocked at 42 ◦C for 30 seconds, followed by incubation on ice for 2 minutes. 250 µl of

SOC media (see Table 2.3) was added to the cells, which were then incubated, with shaking, at

37 ◦C for an hour. These cells, which contain the pDONRZeo entry vector (Invitrogen, Paisley)

containing the promoter fragment of interest, were plated onto selective media containing Zeocin

at a concentration of 30 ng/µL, in order to select for cells containing the entry clone, and incubated

overnight at 37 ◦C.

The plasmids of successfully transformed cells are then extracted from overnight cultures grown in

liquid selective media using the QIAprep R© spin miniprep kit (Qiagen, West Sussex) and sequenced

(see Table A.3 for sequencing oligonucleotides) by GATC Biotech (Konstanz, Germany).

Once the entry clone had been successfully generated and confirmed as being correct using se-

quencing, the LR recombination reaction, illustrated in Figure 2.3, was performed to transfer the
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Promoter fragment
a" L

Entry clone

ccdB
a" R

Des4na4on vector

Figure 2.2: The BP reaction, catalysed by BP Clonase enzyme mix, allows the recombination of an attB PCR product
with an attP donor vector to create an attL entry clone. Oligonucleotides designed to amplify promoter fragments have
the attB sites incorporated (see Appendix A, Table A.1).

Table 2.3: SOC media
Reagents (Sigma-Aldrich, Gillingham)
2% (w/v) bacto-tryptone (20 g)
0.5% (w/v) bacto-yeast extract (5 g) 8.56 mM NaCl (0.5 g)
2.5 mM KCl (0.186 g)
10 mMMgCl2 (0.952 g)
20 mM glucose (3.603 g)
ddH2O to 1000 mL

promoter fragment into an attR-containing destination vector. The pHis2Leu2 vector was con-

verted into a Gateway compatible destination vector using the Gateway Vector Conversion System

(Invitrogen, Paisley), and will now be referred to as pHis2Leu2GW (conversion by Claire Hill,

University of Warwick). The recombination reaction took place, according to manufacturer’s in-

struction, at 25 ◦C overnight, and contained 1 µL of LR Clonase enzyme mix (Invitrogen, Paisley),

1 µL of pDONRZeo entry clone (concentration 150 ng/µL), 1 µL destination vector pHis2Leu2GW

(final concentration 150 ng/µL) and 2 µL of sterile ddH2O.
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Figure 2.3: The LR reaction, catalysed by LR Clonase enzyme mix, allows the recombination of an attL entry clone
containing the promoter fragment of interest, with an attR substitute (destination vector) to create an attB expression
clone.

The LR reaction mixture was then transformed into gold standard DH5α competent E. coli cells

(Bioline, London) using the same method as described for transforming the BP reaction. Cells

containing the destination vector pHisLeu2GW, which contains the promoter fragment of interest,

are plated onto selective media containing Kanamycin at a concentration of 50 ng/µL, in order to

select for cells containing the destination clone, and incubated overnight at 37 ◦C. Plasmids from

successfully transformed cells were extracted and sequenced as described above.

2.4 Yeast-1-Hybrid (Y1H) (307)

Differential gene expression drives development, and is mainly controlled by transcriptional regu-

lation, via transcription factors binding to cis-regulatory elements in promoters of genes (182). By

using microarray technology to capture the expression profiles of genes over time, and then using

clustering analyses to group genes with similar profiles together we can identify genes involved in

common biological processes (88). It can be hypothesised that if genes have a shared expression
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profile then they also may share elements in their promoters, such as transcription factor binding

motifs (254). Therefore, it is likely that these genes would be regulated by common upstream

transcription factors. This is termed as ‘co-regulation’, and the clustered genes are referred to as

‘co-expressed’ genes (254). Techniques have been developed (ChIP, DNase I foot-printing) to es-

tablish whether certain genes form a co-ordinated response. Y1H allows the investigation of which

transcription factors bind to a particular section of a promoter (182). Additionally, Y1H is more

applicable for discovering regulatory elements within the promoter regions of genes that may have

been predicted bioinformatically using motif analysis, for example (182). Y1H is primarily used

to investigate protein-DNA interactions, rather than protein-protein interactions, which are found

using Y2H (308).

In the last decade, Y1H has been made compatible with Gateway technology (81), which reduces

the need for a transcription factor library biased towards highly expressed genes, seen in libraries

constructed using cDNA from total RNA. Cloned libraries using the Gateway technology can be

pooled to make the process high-throughput.

2.4.1 Transformation of yeast strain Y187 with pHisLeu2GW plasmid

Yeast Saccharomyces cerevisiae strain Y187 was grown overnight in 10 mL of yeast peptone dex-

trose adenine (YPDA) liquid media at 30 ◦C at 400 g. 1 mL of this culture (sufficient for ten

transformations) was centrifuged at 400 g for 5 minutes. Cells were resuspended in 1 mL of 0.1

mM LiAc, centrifuged a second time, and resuspended again as before. Cells were then incubated

in a 30 ◦C water bath for one hour.

3 µL of the pHis2Leu2GW plasmid containing a promoter fragment (concentration between 500ng

and 1000ng) was added to 4 µL of boiled single-stranded carrier DNA (Clontech, Saint-Germain-

en-Laye, France), and mixed with 290 µL of 50% (v\v) PEG 3350. This mixture was heated

to 30 ◦C. 100 µL of cell suspension was added to the PEG mix and incubated in a 30 ◦C water

bath for 50 minutes. Cells were subsequently heat shocked for 15 minutes at 42 ◦C, followed by

centrifugation at 1000 g for five minutes. The resulting supernatant was removed, and pelleted

cells were re-suspended in sterile water and plated onto SD-Leu (minimal SD and amino acid DO

supplements from Clontech, Saint-Germain-en-laye) agar plates. These plates were incubated at

30 ◦C until colonies appeared.
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Table 2.4: YPDA liquid media

Reagents
20 g glucose
20 g peptone
10 g yeast extract
100 mg adenine
up to 1 L ddH2O

2.4.2 Transcription factor library

The transcription factor library was generated by Dr. Claire Hill and Alexandra Tabrett (both Uni-

versity of Warwick), as described in Windram (2010) (323). The libraries contain 1037 transcrip-

tion factor clones (808 full length ORFs and 229 partial ORFs) with N-terminal GAL4 activation

domain fusions in the pDEST22 vector (Invitrogen, Paisley), which were provided by Franziska

Turck (University of Cologne). Using Gateway technology (Invitrogen), an additional 332 full

length ORFs in the pDEST22 vector were generated by Claire Hill and Alexandra Tabrett (both

University of Warwick). The vectors were transformed into the yeast S. cerevisiae strain AH109.

The libraries are arranged so 24 clones are pooled into each well in a 96-well plate. There are two

alternative arrangements, to account for spatial bias, giving two 96-well plates in total.

2.4.3 Transcription factor clone transformation

The S. cerevisiae α strain was kindly provided by Claire Hill (University of Warwick). For indi-

vidual one-on-one Y1H screens (as outlined in Sections 2.4.6 and 2.4.7), the pDEST22 (Invitro-

gen, Paisley) plasmid, kindly provided by Alison Jackson (University of Warwick), containing a

Rap2.6L cDNA clone, was transformed into an α strain of yeast, AH109. Transformations took

place as described in Section 2.4.1, with the exception to the yeast strain used being AH109 as

opposed to Y187 strain and cultures were grown on SD-Trp (minimal SD and amino acid DO

supplements from Clontech, Saint-Germain-en-Laye, France).

A pDEST22::GFP plasmid, kindly provided by Steve Kiddle (University of Warwick), was used

as a control and was transformed into AH109 as mentioned above.
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2.4.4 Transcription factor library subculture

For each 96-well glycerol stock library, 500 µL of SD-Trp (minimal SD and amino acid DO

supplements from Clontech, Saint-Germain-en-Laye, France) was added to each well in a 2.2

mL deep 96-well plate (see Table 2.5). The 96-deep well replicator (V and P Scientific Inc.,

San Diego) was sterilised using 70% ethanol and used to subculture the library onto the plate

containing SD-Trp (minimal SD and amino acid DO supplements from Clontech, Saint-Germain-

en-Laye, France). These plates were sealed with a gas permeable cover, and incubated in a 30 ◦C

incubator for 96 hours on a vigorous shaker to promote yeast growth.

Table 2.5: SD-Trp liquid media

Reagents
26.7 g minimal SD base
0.74 g -Trp DO supplement
up to 1 L ddH2O

2.4.5 Matrix high-throughput Y1H by mating and auxotrophic selection

Cultures of yeast strain Y187 that had been transformed with the pHis2Leu2GW plasmid contain-

ing promoter fragments were grown up in 10 mL of SD-Leu (minimal SD and amino acid DO

supplements from Clontech, Saint-Germain-en-Laye, France) overnight (see Table 2.6) at 30 ◦C

at 400 g. 3 µL of overnight culture was spotted onto a YPDA master plate in a 96-well plate

matrix layout. Each spot contained 3 µL of yeast strain Y187 that had been transformed with the

pHis2Leu2GW plasmid containing promoter fragments in SD-Leu. Once the spots were dry, 3 µL

of each well of the transcription factor library was spotted on top of the Y187 overnight culture

spot, to allow mating to occur. Plates were incubated overnight at 30 ◦C.

Table 2.6: SD-Leu liquid media
Reagents
26.7 g minimal SD base
0.69 g -Trp DO supplement
up to 1 L ddH2O

YPDA master plates (see Table 2.7) were replica plated using velvets the following day onto the

following plates: SD-LT (Table 2.8), SD-LTH (Table 2.9), and SD-LTH with various concentra-

tions of 3AT (predominantly, 25 mM, 50 mM, and 100 mM concentrations were used). These
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Table 2.7: YPDA plates. Poured in a lamina flow cabin and allowed to dry for 1 hour

Reagents
20 g glucose
20 g peptone
10 g yeast extract
100 mg adenine
18 g agar
up to 1 L ddH2O

Table 2.8: SD-LT plates. Poured in a lamina flow cabin and allowed to dry for 1 hour

Reagents
26.7 g minimal SD base
0.64 g -Leu/-Trp DO supplement
18 g agar
up to 1 L ddH2O

plates were incubated overnight at 30 ◦C. The following day, each plate was replica cleaned using

three velvets per plate. The plates were then incubated at 30 ◦C for 96 hours.

Photos of each plate were taken using a G:BOX imager (SynGene, Cambridge) after 96 hours

incubation, using upper white light, in order to visualise any growing colonies. Successfully grow-

ing colonies were patched onto new plates of the same selection as the original growth had been

observed, in order to confirm colony growth.

Colonies growing on SD-LTH and SD-LTH 3AT agar plates were picked into 10 µL of 20 mM

NaOH. Colony PCR was performed using Taq polymerase (see Table A.4 for primers; Taq from

Invitrogen, Paisley), according to the manufacturer’s instructions. PCR products were cleaned up

using a MultiScreen HTS PCR 96-well plate (Millipore, Watford) according to the manufacturer’s

instructions. Cleaned PCR products were sequenced by GATC Biotech (Konstanz, Germany) in

order to identify the interacting transcription factors using the forward oligonucleotide in Table

A.4.

2.4.6 Individual one-on-one Y1H by mating and auxotrophic selection

Individual transcription factor-promoter interactions can be tested one-on-one. Overnight cultures

of S. cerevisiae strain Y187, which have already been transformed with a promoter fragment con-

taining the pHis2Leu2GW plasmid, were grown in 10 mL of SD-L. These cultures were incubated
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Table 2.9: SD-LTH plates. Poured in a lamina flow cabin and allowed to dry for 1 hour

Reagents
26.7 g minimal SD base
0.62 g -Leu/-Trp/-His DO supplement
18 g agar
up to 1 L ddH2O

at 30 ◦C on a vigorous shaker. As a control, S. cerevisiae strain AH109 was transformed with

pDEST22::GFP. Overnight cultures of AH109 were made using 10 mL of SD-Trp liquid media

(see Table 2.5), and incubated at 30 ◦C at 400 g. 3 µL of Y187 culture was spotted onto YPDA

plates (see Table 2.7) in a 96-well grid format. Once dry, 3 µL of AH109 culture was spotted on

top of the Y187 spot, and allowed to dry. Plates were incubated overnight at 30 ◦C for mating to

occur.

The following day, YPDA plates were replica plated using velvets onto the following plates: SD-

LT (Table 2.8), SD-LTH (Table 2.9), and SD-LTH with various concentrations of 3AT (predom-

inantly, 25 mM, 50 mM, and 100 mM concentrations were used). These plates were incubated

overnight at 30 ◦C. The following day, each plate was replica cleaned using three velvets per plate.

The plates were incubated at 30 ◦C for 96 hours. Photos of each plate were taken using a G:BOX

after 96 hours incubation, using upper white light, in order to visualise any growing colonies.

2.4.7 Individual Y1H by co-transformation and auxotrophic selection

Co-transformation is another method, like the method outlined in Section 2.4.6, that allows tran-

scription factor-promoter interactions to be tested one-on-one (35). A yeast strain Y187, which has

already been transformed with pHis2Leu2GW containing a promoter fragment, was transformed

again with a pDEST22 plasmid, which contains a transcription factor clone. As a control, a Y187

strain can also be co-transformed with a pDEST22::GFP plasmid to act as a control. This transfor-

mation was carried out as described in Section 2.4.1. Once yeast were transformed, cultures were

grown in SD-LT liquid media (see Table 2.10).

An overnight culture of the co-transformed strain of Y187 was incubated at 30 ◦C on a vigorous

shaker in SD-LT (see Table 2.10). The concentration of cells in the culture was determined using

optical density and an OD600 table. Cultures were adjusted to give a final concentration of 108
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cells per mL. Serial dilutions of each culture were made using 96-well plates, by taking 20 µL of

culture and adding 180 µL of H2O and mixing. This step was repeated until a concentration of

104 cells per mL was obtained. 3 µL of each dilution was spotted on the following plates: SD-Leu,

SD-Trp, SD-LT, SD-LTH, and SD-LTH with various concentrations of 3AT (predominantly, 25

mM, 50 mM, and 100 mM concentrations were used). These plates were incubated at 30 ◦C for 2

to 3 days, or until colonies appeared. Photos were taken of the plates using the upper white light

in a G:BOX.

Table 2.10: SD-LT liquid media

Reagents
26.7 g minimal SD base
0.64 g -Leu/-Trp DO supplement
up to 1 L ddH2O

2.5 Analysis of gene expression changes using microarrays

Microarray analysis using CATMA slides was carried out on plants overexpressing Rap2.6L, as

well as the background control, A. thaliana ecotype WS (both kindly provided by Dr. Nataraj

Kav, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton,

Canada). This line is originally described in (163).

2.5.1 RNA extraction

A. thaliana leaf samples were snap frozen in liquid nitrogen and stored at -80 ◦C. Leaf samples

were ground for 1 minute in 2 mL tubes (Eppendorf) using a Dremel drill. tRNA was extracted

from ground leaf tissue using TRIzol R© (Invitrogen, Paisley) according to the manufacturer’s in-

structions. Total RNA (tRNA) was purified using the RNeasy R© Mini Kit (Qiagen, West Sussex),

following the manufacturer’s instructions, and eluted in 50 µL of DEPC-treated nuclease free wa-

ter. The concentrations of each tRNA sample were measured using the nano drop. Approximately

1.5 µL of each tRNA sample was run on an Agilent 2100 bioanalyser using RNA 6000 Nano Chip

kit (Agilent) to assess the integrity of the extracted RNA. Total RNA was amplified using the

MessageAmpTMaRNA Amplification Kit (Ambion Biosystems), according to the manufacturer’s

instructions.
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2.5.2 RNA sample labelling and CATMA array hybridisation

Table 2.11: Pre-hybridisation buffer

Reagents
10 mg/mL bovine serum albumin (BSA)
5x SSC
0.1% (w/v) SDS

Three amplified RNA (aRNA) samples per line were pooled. Approximately 5 µg of pooled aRNA

was reverse transcribed, using 0.5 µL of random nonamers (2 µ g/µL) (Invitrogen), 0.5 µL of

RNaseOUTTMInhibitor (Invitrogen), and nuclease free water added to give a total of 10.5 µL per

sample. This solution was incubated at 70 ◦C for 10 minutes. 4 µL of 5x SuperScriptTMII First

Strand Buffer, 2 µL 0.1 M of dithiothreitol (DTT), 1 µL of dNTP mix (10 mM dATP, 10 mM

dGTP, 10 mM dTTP, 2 mM dCTP), 1 µL of SuperScriptTMII Reverse Transcriptase (all Invitrogen),

and 1.5 µL of 25 nmol Cy3- or Cy5-dCTP (GE Healthcare) was added to the denatured aRNA

samples. Labelling reactions were incubates for 2 hours and 30 minutes at 42 ◦C. Labelled samples

were purified using the QIAquick R© PCR purification kit (Qiagen), according to the manufacturer’s

instructions, and eluted in 30 µL of Elution buffer.

Table 2.12: Wash solution 1
Reagents
2x SSC
0.1% (w/v) SDS

40 pmol of purified labelled cDNA were mixed i.e. Cy3-35S:Rap2.6L with Cy5-WS, including

a dye swap, and concentrated using freeze drying. The samples were re-suspended in 50 µL of

pre-hybridisation buffer (see Table 2.11 for reagents). This mix was incubated for 5 minutes at

95 ◦C, before being applied to CATMA version four slides (8). Technical replicates were used to

control for variation in dye, printing and spatial variations. Arrays were covered with a cover slip

(Sigma Aldrich, Gillingham) and placed in a high humidity environment and incubated at 42 ◦C

for 16 hours in a hybridisation oven.

Arrays were washed in three wash solutions: wash solution 1 (see Table 2.12), preheated to 42 ◦C

for 5 minutes on a shaker; wash solution 2 (see Table 2.13) for 10 minutes on a shaker; and wash

solution 3 (see Table 2.14) four times for 1 minute each on a shaker. Finally, arrays were briefly
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Table 2.13: Wash solution 2
Reagents
0.1x SSC
0.1% (w/v) SDS

washed in isopropanol, and spun dry for 1 minutes at 2000 g.

Table 2.14: Wash solution 3
Reagents
0.1x SSC

2.5.3 Array scanning

Arrays were scanned on a 428 Affymetrix scanner at wavelengths of 532 nm and 635 nm for Cy3

and Cy5 respectively. The ‘gain’ setting (laser power) was optimised to give the most favourable

spot saturation and minimal background fluorescence. Both scans for Cy3 and Cy5 were combined

and processed using ImaGene version 8.0 (BioDiscovery) in order to extract the raw intensity data

values for each spot on each array. Six CATMA v4 slides were processed, as three samples were

hybridised to six arrays in a pairwise manner.

2.5.4 Data processing of CATMA arrays

Expression values for individual spots were processed using LimmaGUI (318) in R (279). Data

was normalised using print tip Loess within-array normalisation, which eliminates spatial effects

that can occur during hybridisation. Between array quantile normalisation was also used to ensure

the data was more evenly distributed. By fitting a linear model to the data, using the least square

method, differentially expression genes in the 35S:Rap2.6L and WS comparison were identified.

A Benjamini and Hochberg FDR (34), to eliminate false positives, and a maximum p-value of 0.05

was applied to generate a list of differentially expressed genes.

2.6 Extraction of genomic DNA from A. thaliana plants

Genomic DNA was extracted from two A. thaliana cotyledons (see Section 2.1 for plant growth

conditions) using the Extract-N-AmpTMTissue PCR Kit (Sigma Aldrich, Gillingham), according

to the manufacturer’s instructions.
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2.7 Discovering differentially expressed genes in high-resolution time

series datasets

In order to understand specific gene responses to stress, genome-wide perception of gene expres-

sion is required (227). Microarrays provide a means of investigating regulation and interactions

of genes. An important output from microarray experiments is the identification of genes whose

expression levels are differential in response to a condition of interest (87). By measuring gene ex-

pression in time series expression, a temporal process of expression change is measured, which is

preferential to static, single time point experiments, which do not provide information for changes

in differential gene expression over time (24).

The PRESTA group sought to investigate changes in A. thaliana gene expression in response to

pathogen stress (by the necrotrophic fungal pathogen Botrytis cinerea and the hemibiotrophic bac-

terial pathogen Pseudomonas syringae pathovar tomato), senescence, drought and elevated light

conditions (hereby referred to as ‘high light’ stress). The differential gene expression changes were

analysed using custom CATMA (Complete Arabidopsis Transcriptome MicroArray) arrays. These

custom-built arrays were designed to include high quality gene-specific sequence tags (GSTs) cov-

ering the majority of the A. thaliana genome. Each stress response was investigated as a temporal

response, where samples were taken at equal time intervals to analyse the changes in gene expres-

sion. Thus, differential gene expression over time in response to each individual stress could be

deciphered. The time points for each stress investigated are listed in Table 2.15. The time points

of relevance (i.e. those which are deemed most important to observing changes in gene expression

in response to a particular stress) are also listed in Table 2.15.

2.7.1 Experimental plans for capturing differential gene expression over time in

response to stress

The microarray hybridisation experiments were designed using two-channel arrays to compare the

samples (stress-treated and mock-treated) collected at each time point, and also included biolog-

ical replicates for each combination of treatment and time point. The experimental designs for

the B. cinerea and long day senescence time series are described in the Supplementary Informa-

tion in Windram et al. (322) and Breeze et al. (43) respectively. The designs for the experiments

50



Table 2.15: Information of time points for each of the stress conditions investigated by the PRESTA group, including
number of time points, scale (i.e. days or hours) of temporal resolution, the interval at which time points were taken,
and number of replicates for each experiment. The timepoints of relevance are also listed for each stress condition,
deciphered from personal research.

B.
cinerea

P. syringae Drought High light Long day
senes-
cence

Short day
senescence

Number of time points 24 13 13 12 11 19
Scale hours hours days hours days days
Interval 2 hrs 1 hr 1 day 30 mins 1 day 1 day
Timepoints of relevance 24-48

hrs
1-5 days 10 days + 1-5 hours 5 days + 13 days +

Mock samples? Yes Yes Yes Yes No No
Number of replicates treated 4 4 4 4 4 4
Number of replicates mock 4 4 4 4 N/A N/A

investigating the responses to P. syringae, drought, high light and short day senescence follow

similar designs to B. cinerea and long day senescence, whereby a complex loop design allowed

the comparison between time points with biological replicates for the stress-treated samples and

mock-treated samples separately. A second design allowed the comparison between stress-treated

and mock-treated samples, with further comparisons between neighbouring time points. This de-

sign guaranteed that combinations of stress-treated, mock-treated and time points were replicated

equally over the whole experiment, and allowed the prominent effects of stress-treatment and time

point to be reliably seen.

2.7.2 7036 genes are differentially expressed between high light stress and mock-

treated A. thaliana plants over time

From the MAANOVA (326) high light data output every 100th gene, based on GP2S (270). rank-

ing, was plotted and false positives marked. A rough cut-off was decided at which false positives

seemed to increase. The 1000 genes either side of this cut-off were plotted individually, and false

positives marked. From the false positives marked, a threshold for the GP2S ranking was decided,

which was 7154 genes. This number was rounded up to 7200 genes. This list, containing genes

considered to be differentially expressed was then compared to the list of genes found to be sig-

nificantly differentially expressed over time by the F-Test (326). 76 genes were considered to be

differentially expressed in the F-Test list, but not in the GP2S list, and were checked by eye to

decide whether they should be included in the final list of differentially expressed genes in re-

51



sponse to high light stress. These 76 genes were deemed to be differentially expressed, and so

were included in the list. 240 probes did not hybridise to an open reading frame when the CATMA

probes were mapped to A. thaliana gene loci. These probes were removed, as were probes found

to duplicate a gene matched by another differentially expressed probe. This yielded a list of 7036

genes differentially expressed in high light stress over time.

2.7.3 1761 genes are differentially expressed between drought stress and mock-

treated A. thaliana plants over time

The same process was used as described in Section 2.7.2 to identify genes differentially expressed

in drought stress over time. From the false positives marked, a threshold for the GP2S ranking

was decided, which was 1600 genes. 975 genes were considered to be differentially expressed in

the F-Test list of genes identified as differentially expression over time, but not in the GP2S list.

814 probes did not hybridise to an open reading frame when the CATMA probes were mapped to

A. thaliana gene loci. These were removed, as were probes which were found to duplicate a gene

matched by another differentially expressed probe. This yielded a list of 1761 genes differentially

expressed in drought stress over time.

2.7.4 Using Gene Ontology (GO) term analysis to identify overrepresented biologi-

cal functions in gene clusters

BiNGO (191) is a Java-based tool used to determine which GO terms are statistically overrepre-

sented in a set of genes. It is implemented as a plugin for Cytoscape (72).

To analyse the genes for significantly overrepresented GO terms, the AGI identifiers of these genes

were copied and pasted into the BiNGO GUI (version 2.44), a plugin in Cytoscape version 2.8.1.

These genes were given a name, in the ‘Cluster name’ input box. Overrepresentation was tested,

and ‘no visualisation’ was selected. Overrepresentation was tested using a hypergeometric test.

p-values were corrected using Benjamini and Hochberg FDR. A maximum p-value of 0.05 was

applied to generate a list of GO terms that were deemed significantly overrepresented.

Wigwams was completed only on genes that are differentially expressed in two or conditions.

Therefore, the universe used in the GO term analysis could not be the standard universe of the

whole A. thaliana genome. A custom annotation file, containing only the GO term identifiers
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of the genes differentially expressed in two or more conditions, was used as the reference set.

This reference set was chosen as we are only interested in the overrepresentation of functional

categories in the clusters with respect to genes that are differentially expressed in two or more

conditions, which is the same universe used initially when running Wigwams on differentially

expressed genes.

In instances where the genes being tested for significantly overrepresented GO terms were not

produced using Wigwams, the whole genome annotation was used as the reference set.

The organism ‘Arabidopsis thaliana’ was chosen in all instances, and all GO terms were used for

the ontology files to search for overrepresented GO terms.

2.7.5 Motif analysis of promoter regions

2.7.5.1 Hypergeometric test for overrepresentation of promoter motifs

The method outlined in this section was originally described in Baxter et al. (28).

For a given promoter, the 500 bp sequence upstream of the transcriptional start site (TSS) is ex-

amined, and a matrix similarity score (147) is generated for both strands, at each position, for

all PSSMs, as originally described in (43). A third order Markov model is trained on the whole

A. thaliana genome, which generates a random sequence of 100 million bases in length. Subse-

quently, p-values generated for each promoter are computed from a score distribution, which is

obtained by applying the PSSM to the aforementioned randomly generated sequence.

A binomial test is performed for the occurrence of the top k non-overlapping sites with observed

n values within a sequences of length 500 bp upstream of the TSS. The parameter k is optimised

within the range 1 to 5 for a minimum binomial p-value, which allows the detection of motifs

without a fixed threshold per motif.

Using a threshold of p < 0.05, the presence or absence of a PSSM is scored for each promoter,

based on the binomial probability. The frequency of each PSSM in promoters of genes in each

cluster is compared with the frequency of occurrence of each PSSM in all promoters in the entire

genome. Motif enrichment is calculated using the hypergeometric distribution (phyper function

in the R stats package (279)). Hypergeometric p-values are corrected for the number of clusters
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tested using Bonferroni correction. Corrected p-values < 0.05 are considered significant, indicat-

ing that associated PSSM is statistically overrepresented within the promoters of that particular

cluster. Sequence logos are generated using code modified from Lenhard and Wasserman (167).

All sequence analysis is performed within the APPLES software framework (28).

Using the hypergeometric motif analysis tool The hypergeometric motif analysis method men-

tioned in the previous section was subsequently developed as a web tool, and was the primary

means of analysing promoter sequences for statistically significant overrepresentation of motifs

in this thesis. In order for any user to analyse the promoters of genes found to be co-expressed

for statistical overrepresentation of known plant promoter motifs, a tab separated file containing

the cluster ID, followed by the AGI identifier of a gene on each line was uploaded. A maximum

promoter length of 500 bp was selected, along with A. thaliana as the species in which to test. The

motif clustering threshold was set to 10, which reduces the redundancy among known promoter

motifs. A maximum of five motif occurrences in a single promoter was selected.

For the hypergeometric testing, all genes were considered for the universe size (i.e. the whole

A. thaliana genome). Finally, as we were interested in statistically significant overrepresentation

of promoter motifs, the option for large overlap testing was selected. Significantly large overlaps

signify that a given motif is significantly overrepresented in a promoter, which could not have

occurred by chance.
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Chapter 3

Genome-wide inference of shared

regulatory mechanisms from multiple

gene expression time-series

DNA microarrays are a high-throughput technology which allows the concurrent monitoring of

gene expression levels for thousands of genes. The transcriptome of an organism can be anal-

ysed under various conditions, providing evidence to reveal the genes involved in regulating the

response to specific stresses. By clustering gene expression data generated by these microarrays,

one can elucidate patterns within the dataset, with a view to understanding the regulation of genes

with similar expression (138).

Clustering methods partition data into groups based on a certain attribute. In terms of clustering

gene expression data, this attribute is usually similar expression profiles, as shown in Figure 3.1

c), where two genes are shown to have highly correlated expression profiles (32, 88, 299). This

level of correlation is determined by a similarity measure, such as Euclidean distance. Therefore,

members of a group will be more similar to each other than to members of another group. Multi-

clustering methods, which allow clustering over multiple gene expression datasets, also partition

the data based on a defined attribute, again, usually similar expression profiles within the dataset.

Multi-clustering algorithms mine and partition subgroups of genes and conditions, where the genes

share a common attribute, such as being similarly expressed, for every condition (190, 49).
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Figure 3.1: Common modes of transcriptional regulation represented by motifs, modified from Yu et al. (339). a) Single
input motif, where the three genes (represented as squares) are co-regulated by a single transcription factor (represented
as a circle). b) Multi-input motif, where the four genes (represented as squares) are co-regulated by a common set
of three transcription factors (represented as circles). c) The blue and red gene expression profiles exhibit similarity,
suggesting co-expression.

However, co-expression does not guarantee co-regulation of genes: a co-regulated set of genes

is controlled by the same regulatory factor. Figures 3.1 a) and b) are examples of transcriptional

co-regulation, whereby a set of genes have their expression controlled by a single transcription

factor, or multiple common transcription factors, respectively (339).

3.1 Mechanisms of regulation of gene expression

The regulation of how information, stored as genetic code, is turned into gene products, is termed

regulation of gene expression. Transcriptional regulation is a very important component of gene

regulation at which expression will occur due to the involvement of a number of processes (20),

such as defence responses and development (266). As the name suggests, the regulation of tran-

scription controls when transcription takes place, and the amount of mRNA generated. Transcrip-

tion factors are proteins capable of binding to the promoter regions of genes, and affect the rate of
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transcription of this gene by promoting or obstructing the action of RNA polymerase. Specific fac-

tors such as co-repressors or co-activators can alter the affinity which a transcription factor binds to

a promoter, and therefore influence whether transcription takes place, and ultimately, the amount

of mRNA produced. Figure 3.1 shows basic schematics of transcriptional regulation. However,

although transcriptional regulation in A. thaliana is complex (243), this type of regulation does

not account for all gene regulation. Transcriptional regulation of gene expression is also limited

by post-transcriptional regulation and mRNA degradation (233).

Gene expression can be regulated in other forms, such as post-transcriptionally, or by chromatin

remodelling. However, we are interested in transcriptional regulation, which has been shown to

control a number of processes, such as plant development and stress responses in plants (43).

Transcriptional regulation is important in the immune response in humans, where gene expression

needs to be regulated in order to control the response to inflammatory disease (39, 177, 103).

Transcriptional regulation of gene expression influences and controls many processes, such as the

cell cycle, maintaining physiological processes, as well as response to environmental changes and

pathogen attack (243). The interaction of transcription factors on their target genes, via binding at

sites in gene promoters (194), is extremely complex and poorly understood (258).

Breeze et al. (43) discovered that groups of transcription factors were active at different stages of

development and senescence, suggesting that the process of senescence was dependent on an un-

derlying network. By analysing the promoters of co-expressed genes, potential regulators could be

identified to suggest co-regulation was an important part of the stress response (43). The discovery

of the importance of transcriptional regulation in the senescence response is not unique: networks

of transcriptional regulation are also important in the plant response to pathogens (5). Therefore, a

gene regulatory network is defined as a set of genes, where the directionality of regulation within

the network can represent transcriptional regulation. An example of a gene regulatory network

exhibiting transcriptional regulation is the circadian clock model in plants, where the original; and

most basic version of this is shown in Figure 3.2.

A collection of co-regulated genes are termed a ‘regulon’ (277). Therefore, regulons can be under

the control of the same transcription factor in multiple conditions. This differs from co-expressed

genes, which merely have correlated expression. Co-expression, therefore, does not infer a shared
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Figure 3.2: The original and standard double loop model of circadian regulation in plants, modified from Locke et
al. (180). This example of a gene regulatory network involving transcriptional regulation of gene expression, where
arrows depict the directionality of the regulation.

regulatory mechanism, and a shared regulatory mechanism does not infer co-expression. A new

tool has been developed to detect evidence of these regulons, when applied to multiple time series

of gene expression. Unlike existing multi-clustering algorithms, this tool is capable of detecting

regulons across subsets of conditions: current multi-clustering tools generally require a feature to

be present in all conditions before it can be considered a significant results.

3.1.1 Transcriptional regulation is important in stress responses

Transcriptional regulation is at the basis of many stress responses in A. thaliana, suggesting that

a core network of genes is involved in the response to multiple stresses (152). By identifying

gene members of a regulon, a possible method of co-regulation can be hypothesised. If a common

regulator, or regulators, can be identified, a regulatory network that is active in the response to

multiple conditions can be determined around this group of co-expressed genes. A network with

homologous genes to this common regulatory network can be identified in commercially important
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crop species. By altering the regulatory gene, or genes, which control the expression of many

downstream targets, this network can be targeted in order to generate crops genetically engineered

to withstand the effects of multiple stresses simultaneously. Recent studies have shown that sets

of co-expressed WRKY genes in A. thaliana are also co-expressed in rice (Oryza sativa), and are

likely to be part of the same signal transduction pathway (36). However, other studies have shown

how different plant systems can yield different results: the A. thaliana genes CDPK1 and CDPK2

are induced in salt and drought stress signalling (257, 296), whilst a gene member of the same

family in O. sativa, OsCDPK7, is induced by cold or salt stress (248). Furthermore, although

identifying candidate genes in A. thaliana does yield genes to study in crop species, extensive

analysis in various stress conditions in the crop plant would need to be carried out before a crop

that was stress resistant or tolerant could be used in the agricultural industry.

3.2 Wigwams: identifying genes working across multiple stresses

Functionally similar genes are usually co-expressed (138), and more likely to be bound by a com-

mon regulatory transcription factor (9). Therefore, identifying genes that are co-expressed across

multiple stress responses, and share a similar function, is an important task in the discovery of a

core regulatory network in A. thaliana. Multi-clustering is capable of discovering co-expressed

genes across multiple gene expression time series (190); however, current multi-clustering algo-

rithms can be limited by the large size of gene expression datasets (127). Also, the nature by

which standard methods cluster usually involves the partitioning of data across all conditions (138).

Therefore, the output from such methods requires genes to be significantly co-expressed in all con-

ditions. The main challenge, however, with existing multi-clustering methods is that co-expression

across multiple conditions does not infer a common regulatory mechanism: the genes may be co-

expressed in several conditions, but the regulatory mechanisms by which they are controlled may

be independent (52). Therefore, the genes are co-expressed, not co-regulated. In light of these

issues, a new tool, Wigwams (Wigwams Identifies Genes Working Across Multiple Stresses), was

developed to discover potential regulons which may have a common regulatory mechanism in

multiple stresses. Wigwams takes into consideration multiple gene expression time series datasets,

and searches for regulons working over subsets of these conditions, in order to provide evidence

for a possible shared regulatory mechanism for these sets of co-expressed genes.
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3.2.1 Wigwams method: detecting co-expressed genes

The aim of Wigwams is to detect co-expressed genes, or ‘potential regulons’, that are working

over subsets of stress responses using gene expression time series data. These regulons may have

a shared regulatory mechanism. Wigwams is implemented in MATLABR©, and utilises statistical

packages in R (279) by exploiting the Java foundations in which MATLABR© is written. The

Wigwams source code is available to download at http://www2.warwick.ac.uk/fac/sci/

systemsbiology/staff/ott/tools_and_software/wigwams.

3.2.1.1 Wigwams screening: mining gene expression data for potential regulons

This section describes the initial screening method, which mines gene expression time course

data for pairwise potential regulons. Multiple time course expression datasets are supplied to

Wigwams, along with a list of genes, whose expression values are included in these datasets, to

test for evidence of shared regulatory mechanisms. Along with this list of genes and these data, a

list of values stating in which datasets these genes are differentially expressed is also required. If

a gene in this list is differentially expressed in two or more stresses, this gene is now referred to as

the ‘seed gene’, and is considered for further analysis. If a gene is differentially expressed in one,

or no stresses, then it is not considered for further analysis, as we are only interested in detecting

co-expressed genes in multiple datasets, and any potential shared regulatory mechanism that may

exist.

The process of selecting genes that are similarly expressed to the seed gene is described in Figure

3.3. In Figure 3.3 the seed gene, which for purposes of this example is At2g02740 (AtWHY3), is

differentially expressed in two or more stresses. The expression profiles of this gene are shown

for B. cinerea (where red is the infected profile and green is the mock infected profile), short day

and long day senescence are shown in Figure 3.4. Wigwams performs a correlation test between

the whole expression profile of AtWHY3 and the expression profiles of genes in the dataset per

stress. Pearson’s product moment correlation is used for this analysis; however, other methods of

correlation testing can be substituted.

These correlation values are ranked, with the most similar gene per stress ranked the highest in this

list of correlated genes, as shown in Figure 3.4. Once this is completed for each stress, Wigwams
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considers the overlap in gene membership of these correlated genes in a pairwise manner, as shown

in Figures 3.5 and 3.6. The user specifies a number, or set of numbers, which states that only this

number of genes in the correlated gene list will be considered for this overlap testing.

To test whether these pairwise overlaps are significantly large and could not have occurred by

chance, the hypergeometric test is used. Figure 3.7 shows the p-values calculated using AtWHY3

as the seed gene, which was used as an example of how lists of correlated genes were generated in

Figures 3.3 to 3.6. The equation for this calculation for the overlap between the datasets B. cinerea

and long day senescence is shown in Equation 3.1. To calculate the p-value of pairwise overlaps

using the hypergeometric test, a number of variables are required: the size of the overlap (k); the

size of both lists of correlated genes that have generated this overlap (n); and the universe size,

which is the number of genes in the dataset being tested (m).

P(k, n, m-n, n)

= P(11, 250 , 30336 - 250, 250)

= 2.45e-08

(3.1)

Notation of inputs required for Wigwams screening

1. For each seed gene g ∈ G and each time course C a boolean value indicating whether gene

g is differentially expressed in condition C.

2. A set of time course expression measurements for all genes in set G in conditions C

3. A range of numbers to be used for the gene list sizes S

The Wigwams screening method, as illustrated in Figure 3.9, can use lists of differentially ex-

pressed genes, in order to only consider genes whose expression is differentially expressed for

detection of a potential regulon. If g is differentially expressed in two or more conditions, then g is

considered for further testing in the Wigwams screening. However, if g is differentially expressed

in one, or no conditions, then g is not considered any further.
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AT5G62270
AT4G60270
AT1G69770
AT3G13860
AT2G22330
AT5G13220
AT5G24840
AT3G41750

Figure 3.3: The Wigwams screening method: selecting genes with most similar expression profiles in one stress. The seed gene shown here, At2g02740 (AtWHY3), is differentially
expressed in two or more stresses, and as such, is considered for further testing. Wigwams performs a correlation test between the whole expression profile of the seed gene AtWHY3 and
the expression profiles of genes in the dataset. These correlation values are ranked, with the gene with the most similar expression profile ranked highest.
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AT2G25230
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Figure 3.4: The Wigwams screening method: selecting genes with most similar expression profiles in all stresses. The seed gene is also differentially expressed in long day and short day
senescence stresses. Wigwams also performs a correlation test between the whole expression profile of the seed gene AtWHY3 and the expression profiles of genes in the each dataset,
before identifying genes with the most similar expression profile to the seed gene by ranking the correlation values (as described in Figure 3.3).
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Figure 3.5: The Wigwams screening method: considering the overlap in gene membership in a pairwise manner. The genes highlighted in red are common to both the top ranked list of B.
cinerea and long day senescence. A hypergeometric test is performed to calculate the p-value associated with this overlap in gene membership.
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Figure 3.6: The Wigwams screening method: gene overlap comparison for each pairwise combination. Wigwams compares the overlap in gene membership for each pairwise combination
of stresses. Genes highlighted in green are common to both the top ranked list of short day and long day senescence. Genes highlighted in blue are common to both the top ranked list of B.
cinerea and short day senescence. A hypergeometric test is performed to calculate the p-value associated with this overlap in gene membership.
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Figure 3.7: Calculating significantly large pairwise overlaps. Using seed gene AtWHY3, which was used previously
in Figures 3.3 to 3.6, this illustrates the p-values calculated using the hypergeometric test. Only the pairwise overlaps
between lists of correlated genes are considered here.

Non-differentially expressed genes Sets of the most similarly expressed genes are generated by

picking the top S correlated genes in each condition to the seed gene. Non-differentially expressed

genes can still contribute to a set of correlated genes. Some genes are not differentially expressed in

a condition when their expression is compared to the expression profile during the mock treatment,

however, this expression is still changing over time (perhaps circadianally regulated, for instance).

The contribution of non-differentially expressed genes is minimised by randomly permuting the

expression values of non-differentially expressed genes. If a gene is not differentially expressed in

a stress condition dataset, all expression values for this gene in this dataset are randomly permuted

with the expression values of another non-differentially expressed gene in the same dataset, as

shown in an example in Figure 3.8. Therefore, if a non-differentially expressed gene does become

a member of a list of the most correlated genes to a test gene, it does not contribute significantly to

the result calculated using the hypergeometric test, due to the permuted expression profile values.
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2 hrs 4 hrs 6 hrs 8 hrs 10 hrs 12 hrs 14 hrs 16 hrs 18 hrs 20 hrs 22 hrs

AT1G01453 -1.92 -2.13 -2.65 -2.09 -1.56 -1.82 -1.74 -1.52 -2.22 -1.75 -1.58

AT1G01490 -1.24 -0.59 -1.01 -0.83 -1.41 0.55 0.65 1.64 1.44 1.44 0.63

AT1G01500 0.403 -1.03 -0.49 -0.85 -0.57 -1.25 -1.75 -1.57 -0.95 -1.54 0.41

AT1G01520 1.57 1.63 1.89 1.70 1.84 1.76 1.69 1.44 1.59 1.51 0.98

AT1G01540 4.17 3.93 3.91 4.13 4.12 4.40 4.34 4.60 4.23 3.70 2.75

a)

b)

2 hrs 4 hrs 6 hrs 8 hrs 10 hrs 12 hrs 14 hrs 16 hrs 18 hrs 20 hrs 22 hrs

AT1G01453 -1.92 -2.13 -2.65 -2.09 -1.56 -1.82 -1.74 -1.52 -2.22 -1.75 -1.58

AT1G01490 0.403 -1.03 -0.49 -0.85 -0.57 -1.25 -1.75 -1.57 -0.95 -1.54 0.41

AT1G01500 -1.24 -0.59 -1.01 -0.83 -1.41 0.55 0.65 1.64 1.44 1.44 0.63

AT1G01520 1.57 1.63 1.89 1.70 1.84 1.76 1.69 1.44 1.59 1.51 0.98

AT1G01540 4.17 3.93 3.91 4.13 4.12 4.40 4.34 4.60 4.23 3.70 2.75

Figure 3.8: Describing the permutation of expression values for non-differentially expressed genes. The expression values for eleven time points of five genes from the B. cinerea dataset
are shown. Genes highlighted in red indicate they are not differentially expressed in response to B. cinerea infection. a) The expression values of the two genes At1g01490 and At1g01500,
which are not differentially expressed in response to B. cinerea infection, will be swapped with each other. b) The swapped expression values of the two non-differentially expressed genes
in the B. cinerea dataset.
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Generation of sets of most correlated genes In order to generate the lists of the most correlated

genes, Pearson’s product moment correlation coefficient is used to find the genes whose expression

profiles are most similar to seed gene g in each stress. Calculation of the Pearson product moment

correlation coefficient r is performed for the seed gene g against all other genes in G per time

course Ci, based on the value of gene expression at each time point. The genes are then ranked

based on the value of r. A list L of the genes which have the most similar expression to the

expression profile of seed gene g is compiled for each dataset in turn. The size of the list L is

dependent on the user-defined parameter S. Therefore, list L1 will contain the top S most similarly

expressed genes to the seed gene in dataset C1. This will also be calculated analogously for list L2

in dataset C2.

The correlation function ‘corr.m’ is included in the MATLABR© package. However, Dafyd Jenk-

ins wrote a new function, entitled ‘fastcorr.m’, which reduces the computational time taken to

calculate the correlation test of seed gene g against all other genes in G per time course Ci.

Finding statistically large overlaps of genes working across pairs of conditions Two lists L1

and L2 are compared in a pairwise manner to determine the overlap in gene membership, as shown

in Figure 3.10. A p-value is attributed to the size of this overlap using the ‘phyper’ function in

R (279), which calculates the hypergeometric distribution to test for significantly large overlaps.

This function requires the size of the overlap, the list size S and the universe size G as inputs.

The log p-value is returned to maintain the higher order of magnitudes. The overall minimal p-

value for g over all list sizes in S is determined and used as the p-value associated with g. The

non-significant genes are removed, along with the lists L of most correlated genes, if the minimal

p-value does not meet the significance criteria defined by the user. For example, the p-value for the

overlap in gene membership of the lists of genes with similar expression to AtWHY3 (as shown

in Figure 3.7) in B. cinerea and long day senescence was calculated to be 2.45e-08. If this p-value

was higher than a cutoff defined by the user, the seed gene AtWHY3, along with the set of most

correlated genes to this seed gene, would be removed, and not used in any further analysis.

3.2.1.2 Summary of Wigwams screening

Wigwams will iteratively test each gene, in a given list of genes, that is differentially expressed in

two or more conditions of multiple gene expression datasets, to generate sets of correlated, and co-
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Input

Pick next gene
gi from G

Loop
over G

Is gi dif-
ferentially
expressed
in at least
two time
courses?

Pick pair of time
courses C1,C2
∈ C | (C1!C2)

Loop over
all pairs
C1, C2

Pick gene set
size s from S

Loop
over S

Make list L1 of s
genes that have
most correlated
expression
to gi in time
course C1;

similarly, make
list L2 for C2

Compute overlap
of lists L1 and
L2; Compute
hypergeometric
test statistic

Output single p-
value for the set size
s minimising the
p-value: p(C1,C2)

Output overall mini-
mal p-value for gene
g:p(g)=minC1 ,C2

p(C1,C2)

Finish

Yes

No

End of loop

End of loop

End of loop

Figure 3.9: Flowchart illustrating the Wigwams pseudocode and methodology, complementing the screening method
description given in Figures 3.3 to 3.6. By taking all time course experiments and all genes into consideration, the
opportunity to detect all possible regulons arises. Refer to Section 3.2.1.1: Notation for definitions of the symbols used
in this figure. A gene g differentially expressed in two or more stresses is considered for testing. The user decides upon
a range of values S for the size s of the sets of genes with the most correlated expression to the seed gene g. These sets
of correlated genes are defined as L. The overlap in gene membership between lists L of two stresses is used to calculate
a p-value using the hypergeometric test.
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List L1 List L2
Overlap of 
L1 and L2

Universe

Set size S Set size S
Size of 
overlap

Size of universe G

Figure 3.10: Calculating significantly large pairwise overlaps using the hypergeometric test. To calculate the whether
the overlap of Lists L1 and L2 is significant, and could not have occurred by chance, the sizes of the variables are needed
(labelled in blue).

expressed genes in pairwise stress combinations. At this stage, each set of pairwise co-expressed

genes is associated with the gene that seeded this group. A list of these genes that have generated

these groups of co-expressed genes is required for the subsequent stage of Wigwams.

3.2.1.3 Wigwams pruning

The list of genes that are associated with groups of co-expressed genes returned from theWigwams

screening method are subsequently subject to further assessment, in order to select the most biolog-

ically meaningful and significant pairwise regulons. Firstly, all non-significant pairwise regulons,

based on their overall p-value, are removed.

Notation of inputs required for Wigwams pruning

1. A list of genes N returned by Wigwams screening stage

2. Set of time course expression measurements under C conditions and for all genes in set N.

70



a)

AT1G80920
AT3G15150
AT1G01650
AT5G57870
AT4G14920
AT1G73030
AT3G11070
AT2G38152
AT3G04700
AT1G04900

i = 1

Prunes

b)

AT1G80920
AT3G15150
AT1G01650
AT5G57870
AT4G14920
AT1G73030
AT3G11070
AT2G38152
AT3G04700
AT1G04900

i = 2

Prunes

Figure 3.11: How the Wigwams pruning process compares pairwise potential regulons. All genes returned from the
Wigwams screening method are ranked on overall p-value. The top ranked gene, highlighted in red in a) is compared
to the next top ranked gene, AT3G15150. If all the criteria (which will be mentioned below) are fulfilled, then the
top ranked gene is then compared to the next gene, AT1G01650, and so on. However, if criteria are not fulfilled, and
the gene and its corresponding group of co-expressed genes share similar expression profiles to the top ranked gene,
this gene and its group of co-expressed genes are removed from the list, as indicated by a strikethrough for genes
AT1G73030 and AT3G04700 in b). Once the top ranked gene is compared to all the genes returned from the Wigwams
screening method, the next top ranked gene becomes the ‘top ranked gene’, as shown in b), and this process is repeated.
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3. A set of gene list sizes S.

4. A similarity measure r for time course measurements for pairs of genes.

5. A single p-value for the set size S minimising the p-value for each gene p(n, C1, C2)

6. The overall minimal p-value for each gene n ∈ N | p(n)=minC1,C2 p(C1,C2).

7. A user defined cut-off for significance, above which, p-values are deemed non-significant.

8. A user defined cut-off for similarity measure r, above which, expression profiles of the two

genes being compared are considered similar.

9. A user defined value to state by how much a p-value has to be significantly stronger than

another p-value before the potential regulon with the weaker p-value can be discarded.

Pruning Figure 3.11 shows that all genes which are returned from the Wigwams screening

method are ranked on their overall p-value. The gene with the strongest p-value is the top ranked

gene, and is compared to the next ranked gene (as illustrated in Figure 3.11 a). If the next ranked

gene does not have a similar expression profile in all time courses, then this gene is not removed,

and the top ranked gene is compared to the next ranked gene, and so on. Once the top ranked gene

is compared to all the genes returned from the Wigwams screening method, the next top ranked

gene becomes the top ranked gene, as shown in Figure 3.11 b), and this process is repeated.

As Wigwams has the ability to complete a comprehensive analysis, and detects all evidence of co-

regulation within multiple datasets, it is probable that one gene may be a member of many pairwise

regulons. For example, if gene a had a similar expression profile to gene b in time courses C1 and

C2, then gene b will be selected as a member of the pairwise regulon when gene a is the seed

gene, and vice versa. Therefore, there is an issue of the pairwise sets of correlated genes generated

having redundant gene membership.

To address this, we consider similar gene expression profiles (as illustrated in Figure 3.12), which

is computationally less intensive, as a substitute for similar gene membership. An example of

this is shown in Figure 3.13: the datasets used for this figure show gene expression profiles in A.

thaliana in response to stress conditions (see Section 4.1.3). The pairwise regulons have similar

gene membership, as shown in Table 3.1. Fifteen of the 24 genes in the pairwise regulon shown

in Figure 3.13 a) are identical to genes found in the pairwise regulon shown in Figure 3.13 b). If
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Rank genes in
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Loop
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Remove
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Loop
over ni

Yes

Yes

No

End of loop

End of loop

End of loop

No

No

Yes

Figure 3.12: Selecting the most informative regulons by pruning. Wigwams provides a comprehensive output, however,
in order to highlight the regulons that are most informative in terms of significance and expression pattern, this algorithm
removes regulons that exhibit redundant expression profiles. Decision nodes in blue indicate where a user defined
parameter is needed. Parameters to be defined include: p-value cutoff; correlation coefficient r cutoff; a value by which
one p-value is significantly stronger than another before the potential regulon with the weaker p-value can be discarded.
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one considers the same condition in both pairwise regulons in Figure 3.13, then it can be observed

that the expression profiles of the gene members in these pairwise regulons are similar in both

conditions. The pairwise regulon in Figure 3.13 b) has a more significant p-value than the pairwise

regulon in Figure 3.13 a), therefore, the pairwise regulon in Figure 3.13 b) will be retained in favour

of the less significant pairwise regulon.

Referring to Figure 3.13, the gene which seeded the set of co-expressed genes shown in Figure

3.13 a) is defined as nj, which is the notation used in Figure 3.12, and therefore, the gene which

seeded the set of co-expressed genes shown in Figure 3.13 b) is defined as ni. If ni and nj have

similar expression profiles, we wish to keep the set of co-expressed genes with the more significant

p-value. Therefore, if ni has a more significant p-value than nj, then nj will be removed, as ni is

more informative with regards the potential co-regulation of these particular genes.

In order to decide whether nj has a similar expression profile to ni, a test to compare the expres-

sion profiles of ni and nj using Pearson’s product moment correlation is performed between the

expression values of ni and nj in each time course. The r values generated by this correlation test

are compared in a pairwise manner: the expression values of ni and ni+1 are compared in time

course C1, a process which is repeated in C2. If the pairwise r-values generated by comparing the

expression values of nj to ni are above the cut-off for the similarity measure (Notation point 7), the

expression profiles for nj and ni are deemed similar, and are likely to have redundant, or partially

overlapping gene membership.
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Figure 3.13: Removing pairwise regulons with redundant gene membership, using gene expression as a proxy. The
expression profiles in both a) and b) shown in blue are similar in the same conditions. As shown in Table 3.1, the
majority of genes in the pairwise regulon shown in a) are the same as the genes in the pairwise regulon shown in b).
Therefore, we use the pruning algorithm described in 3.2.1.3 to remove regulons with redundant gene membership. a)
A significant pairwise regulon, highlighting genes that are significantly working across P. syringae DC3000 infection
and short day senescence. The p-value associated with this pairwise regulon is 3.16e-22. b) A significant pairwise
regulon, highlighting genes that are significantly working across P. syringae DC3000 and short day senescence. The
p-value associated with this pairwise regulon is 2.00e-59. As this pairwise regulon has a more significant p-value than
the pairwise regulon shown in a), we wish to keep this regulon, and remove the pairwise regulon shown in a)
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Table 3.1: Gene membership of pairwise regulons shown in Figure 3.13 a) and b) to illustrate that using similar
expression profiles as a proxy for similar gene membership is valid. 15 out of 24 genes in pairwise regulon shown
in Figure 3.13 a) are the same to genes in pairwise regulon shown in Figure 3.13 b)

Genes of pairwise regulon shown in Figure 3.13

a)

Genes of pairwise regulon shown in Figure 3.13

b)

ATG identifier Gene name ATG identifier Gene name

AT1G08390 AT1G01080

AT1G09340 CRB AT1G03130 PSAD-2

AT1G12900 GAPA-2 AT1G08390

AT1G14290 SBH2 AT1G09340 CRB

AT1G15820 LHCB6 AT1G12900 GAPA-2

AT1G60600 ABC4 AT1G15820 LHCB6

AT1G62510 AT1G15980 NDF1

AT1G74730 AT1G18060

AT1G75690 AT1G21500

AT2G05100 LHCB2.1 AT1G22850

AT2G22800 HAT9 AT1G32550

AT2G22990 SNG1 AT1G42970 GAPB

AT2G30790 PSBP-2 AT1G50730

AT3G08920 AT1G52230 PSAH2

AT3G27690 LHCB2.3 AT1G60600 ABC4

AT4G02680 EOL1 AT1G74730

AT4G03470 AT1G75690

AT4G38820 AT2G20890 PSB29

AT5G14740 CA2 AT2G29180

AT5G21920 AT2G30790 PSBP-2

AT5G45680 AT2G34860 EDA3

AT5G54270 LHCB3 AT2G35500

AT5G64460 AT2G43030

AT5G64470 AT2G48070 RPH1

AT3G08920
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AT3G13120

AT3G21055 PSBTN

AT3G27690 LHCB2.3

AT3G53190

AT3G63410 APG1

AT4G03470

AT4G15510

AT4G20760

AT4G21280 PSBQA

AT4G25080 CHLM

AT4G39710

AT5G08050

AT5G13510

AT5G14910

AT5G17870 PSRP6

AT5G21920

AT5G24314 PTAC7

AT5G45680

AT5G48790

AT5G52100 crr1

AT5G53490

AT5G57440 GS1

AT5G64460

AT5G64470

AT5G66055 AKRP

Observing both the pairwise regulons in Figure 3.13, it can clearly be seen that the expression

profiles of the genes significantly co-expressed in P. syringae DC3000 and short day senescence

are very similar. Also, by observing the gene membership of these two pairwise regulons, shown in
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Table 3.1, it can be seen that similar gene expression provides a proxy for similar gene membership.

However, in order to make this comparison automated, a correlation test between the expression

profiles of the two pairwise regulons is performed, using the expression profile of both seed genes

g, which were used to first generate both regulons (see Figure 3.9). If the correlation values r

for both conditions in which the genes are co-expressed is greater than the threshold value given,

the expression profiles are deemed similar. Consequently, the pairwise regulon with the more

significant p-value is retained, along with the lists of most correlation genes L associated with this

gene.

If the pairwise regulons are found to have similar expression profiles, the difference in the order of

magnitude of the p-values is also compared, as one final check. For instance, a pairwise regulon

with a p-value of order of magnitude -24 will not be considered more significant than a pairwise

regulon with a p-value of order of magnitude -23. It can be hypothesised that this co-expression,

and perhaps common regulatory mechanism, is demonstrated by both pairwise regulons, and there-

fore, they should both be retained.

3.2.1.4 Extending beyond pairs of conditions

An extension of Wigwams allows the identification of a potential regulon working over three or

more conditions. For example, if three potential regulons, all significant in the pairwise combina-

tions over three conditions, could be consolidated into one potential regulon, it would be biolog-

ically interesting to keep the potential regulon significant over three conditions (as illustrated in

Figure 3.14), in favour of the pairwise regulons. Also, by identifying potential regulons working

over three or more stresses, this would aid our identifying of a core regulatory network. This

process can be repeated for pairwise regulons significant over four, five, or more conditions, in or-

der to identify one potential regulon significant over those conditions, in favour of the constituent

pairwise regulons.

Some information will be lost, however, if this decision is made, as the overlap in gene membership

over three conditions, for example, is likely to be smaller than the overlap in gene membership over

pairs of conditions. To accommodate this, certain criteria, such as a minimum size of the overlap,

are assigned when selecting a potential regulon working over three conditions for retention in

favour of its constituent pairwise regulon.

78



a)

0 20 40 60
−2

−1

0

1

2

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Botrytis cinerea

0 5 10 15
−3

−2

−1

0

1

2

3

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Drought

0 2.5 5 7.5
−3

−2

−1

0

1

2

3

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

High light

0 5 10 15
−4

−3

−2

−1

0

1

2

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Pseudomonas syringae DC3000

0 5 10 15
−3

−2

−1

0

1

2

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Long day senescence

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Short day senescence

b)

0 20 40 60−2

−1

0

1

2

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Botrytis cinerea

0 5 10 15−4

−2

0

2

4

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Drought

0 2.5 5 7.5−4

−2

0

2

4

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

High light

0 5 10 15−4

−2

0

2

4

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Pseudomonas syringae DC3000

0 5 10 15−2

−1

0

1

2

3

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Long day senescence

0 10 20−4

−2

0

2

4

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Short day senescence

c)

0 20 40 60−4

−2

0

2

4

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Botrytis cinerea

0 5 10 15−4

−2

0

2

4

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Drought

0 2.5 5 7.5−4

−2

0

2

4

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

High light

0 5 10 15−4

−2

0

2

Time (hours)

L
o

g
2

 e
xp

re
ss

io
n

Pseudomonas syringae DC3000

0 5 10 15−2

−1

0

1

2

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Long day senescence

0 10 20−4

−2

0

2

4

Time (days)

L
o

g
2

 e
xp

re
ss

io
n

Short day senescence

d)

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

Time (days)

Lo
g2

 e
xp

re
ss

io
n

Short day senescence

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (hours)

Lo
g2

 e
xp

re
ss

io
n

Botrytis cinerea

0 5 10 15
−3

−2

−1

0

1

2

3

Time (days)

Lo
g2

 e
xp

re
ss

io
n

Drought

0 2.5 5 7.5
−3

−2

−1

0

1

2

3

Time (hours)

Lo
g2

 e
xp

re
ss

io
n

High light

0 5 10 15
−3

−2

−1

0

1

2

3

Time (hours)

Lo
g2

 e
xp

re
ss

io
n

Pseudomonas syringae DC3000

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (days)

Lo
g2

 e
xp

re
ss

io
n

Long day senescence

Figure 3.14: Extending beyond pairs of conditions. The pairwise regulons shown in a), b) and c) can be consolidated into one potential regulon working over three conditions, as shown
in d), in favour of the constituent pairwise regulons. Criteria are applied before a potential regulon working over three conditions, for example, is kept in favour of its constituent regulons.
Such criteria can be the size of the three-way overlap.
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3.2.2 Algorithm summary

Previous sections have described the Wigwams algorithm in full. Wigwams is computationally

inexpensive, taking approximately 5 seconds to compute the initial screening method (described

in Section 3.2.1.1) per gene, per condition. Therefore, the greater the number of conditions (or the

greater the resolution of time points for conditions), the more time is needed to complete the initial

screening per gene.

3.2.2.1 Standard output from Wigwams

Upon completion of extending beyond pairs of conditions, three files are created for the most

significant and informative potential regulons, as described below.

Graphical output One file, containing encapsulated postscript figures of the most significant

and informative potential regulons, is created. Each figure shows the expression profiles of the

gene members of potential regulons in all datasets. Conditions in which these potential regulons

are significantly co-expressed are highlighted in blue.

Data output Two text files are created for the most significant potential regulons. One text file

contains the size of each potential regulon, along with the p-values associated with any potential

regulons significant over two conditions. A second text file contains the gene membership of each

potential regulon.

3.2.3 Wigwams identifies known biological examples of co-regulation

Gene expression time series were used to validate the ability of Wigwams to identify known co-

expressed genes. In order to illustrate this, the following examples are given, where the biology

behind the co-expression seen is relatively well understood.

Time series datasets in multiple conditions used to uncover known examples of co-regulation

Kilian et al. (152) performed a series of microarray experiments of A. thaliana shoots grown

under the same conditions but treated to different environmental stresses, including heat, cold,

drought, genotoxic, salt, oxidative, osmotic stress, UV-B light and wounding. Control kinetics

were generated from non-stressed plants which were grown in the same conditions but were not
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subject to stress conditions. This resulted in a multiple datasets of gene expression over time for

2395 genes in nine conditions, all of which will be used in this section. For this analysis, the

relative intensity of expression was calculated as described in the paper (152), by applying the

following formula to all time points:

Relative intensity = signal strength of gene A in sample X
average signal strength of gene A in control samples

(3.2)

These datasets can be mined for known examples of co-regulation working over multiple condi-

tions. Genes encoding components of metabolic pathways have been extensively studied, leading

to the discovery that genes connected by a similar metabolic function are likely to show the same

expression pattern, and therefore, be co-expressed (133, 315), and perhaps co-regulated. There-

fore, genes whose products are components of the indole glucosinolate and flavanoid biosynthetic

metabolic pathways were considered as seed genes, to identify other components of these path-

ways as co-expressed.

3.2.3.1 Wigwams identifies the co-expression of genes encoding enzymes of metabolic path-

ways

We sought to investigate whether Wigwams could identify genes that were known to be co-expressed

in the indole glucosinolate pathway (101), using CYP83B1 as the seed gene g, and time series mi-

croarray datasets in various conditions (152).

The Trp-metabolising genes CYP79B2, CYP79B3 and CYP83B1 encode enzymes involved in the

production of indolic glucosinolate, and are seen to be commonly regulated by ATR1 (also known

as MYB34), a MYB family transcription factor: an atr1 mutant displayed elevated expression

of CYP79B2, CYP79B3 and CYP83B1, suggesting that downstream the Tryptophan metabolic

pathway is transcriptionally regulated (53). Gachon et al. also saw CYP79B2, CYP79B3 and

CYP83B1 cluster over multiple stress condition datasets (cold and heat stress, drought, osmotic

stress, salt stress, oxidative stress, UV and wounding), suggesting co-expression (101).

Figure 3.15 shows that CYP79B2, CYP79B3 and CYP83B1 are significantly co-expressed (with a

p-value of 2.19e-03 across all three conditions) in the conditions drought, wounding and cold stress,

confirming the findings of Gachon et al. (101) and Celenza et al. (53). Interestingly, CYP79B2,
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CYP79B3 and CYP83B1 are also co-expressed in these three conditions with ASA1, an anthrani-

late synthase, which was also found by Gachon et al. (101) to be co-expressed with these three

cytochrome enzyme-encoding genes.

3.2.3.2 Wigwams identifies co-expressed genes encoding members of the flavonoid biosyn-

thetic pathway

Flavonoids are secondary metabolic products that are distinguished as the red, blue and purple an-

thocyanin pigments in plant tissue (324). Research over the past decade has pointed to flavonoids

having varied functions in the stress response (301), particularly in the role of UV protection (324).

The first research completed on the role of flavonoids in the response to UV came by cloning the

flavonoid-biosynthetic enzyme chalcone flavanone isomerase (CHI) and flavanoid-specific chal-

cone synthase (CHS) from Petunia hybrida (301). Van Tunen et al. discovered that CHI and CHS

were co-expressed and co-ordinately regulated in a light-dependant manner.

By using CHS as the seed gene g to complete the Wigwams analysis and search for potential

co-regulated genes, CHI was found to be co-expressed, and potentially co-regulated with CHS.

This confirms experimental data which shows these two genes to be co-expressed. Figure 3.16

shows 32 genes, including CHS and CHI, to be co-expressed under UV-B, oxidative, and heat

stress (expression profiles are shown in blue in these two conditions). By identifying CHS and

CHI as co-expressed in UV-B stress, this confirms findings by Winkel-Shirley et al. (324) and van

Tunen et al. (301) that these two genes have roles in the UV stress response, as well as roles in the

biosynthesis of flavonoids (84).

Mutants deficient in CHS and CHI have been found to have a protective role against oxidative

stress (90), confirming that both of these genes remain co-expressed in oxidative stress, as pre-

dicted by Wigwams. Transcript levels of CHS have been shown to decrease by 50% after heat

treatment (78). Although a similar reduction of transcript levels of CHI has not been published,

the discovery of CHS and CHI co-expression by Wigwams in heat stress is novel.

Mehrtens et al. (199) discovered by using quantitative real time reverse transcription-PCR that

MYB12, a member of the MYB transcription factor family, activates the promoters of CHS and

CHI, along with flavanone 3-hydroxylase (F3H) and flavonol synthase (FLS) (335). Both FLS

and F3H were found to be co-expressed with CHS and CHI in response to UV-B stress, as well
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Figure 3.15: Wigwams identifies CYP83B1, CYP79B2 and CYP79B3 as co-expressed in drought, wounding and cold stress. The genes are significantly co-expressed with three additional
genes (expression profiles shown in blue). This finding confirms previous results from Gachon et al. (101). Expression profiles shown in black are not significantly co-expressed in those
particular stresses.
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Figure 3.16: Wigwams identifies CHS and CHI as co-expressed in response to UV-B, oxidative, and heat stress. These genes are significantly co-expressed with 30 other genes (whose
expression profiles are shown in blue). The p-value associated with this group of co-expressed genes in these three conditions is 2.349e-23.
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as oxidative and heat stress, which substantiates Wigwams as a tool for discovering potentially

co-regulated genes. Interestingly, a recent paper shows that the NAC family transcription fac-

tor ANAC078 directly regulates the expression of CHS, CHI, and F3H in response to high light

stress (212). Although high light stress is not investigated here, this finding does provide published

evidence that CHS and CHI are co-expressed in an additional stress, as well as oxidative and heat

stress.

3.2.4 Wigwams on simulated gene expression data

In order to demonstrate that Wigwams only detects evidence of co-expression if this evidence is

really there, a simulated dataset was generated to confirm this. The hypothesis was that given a

random set of gene expression data, Wigwams should not detect any significant potential regulons.

Simulated, or ‘in silico’ data, allows a researcher to inspect the performance of an algorithm: ‘real’

gene expression data is imperfect, due to a lack of control over noise levels (23).

3.2.4.1 Generation of a simulated dataset

All variables were generated randomly. The dataset consisted of 15762 ‘genes’. This number was

arrived at using a random number generator, and the identifiers for the ‘genes’ were randomly

assigned. Scores stating which conditions these ‘genes’ were differentially expressed in were also

randomly assigned, as shown in Table 3.2. Five conditions were randomly selected, along with

randomly assigned time points for each condition. The gene expression data was simulated on a

‘gene-by-gene-by-condition’ basis, where the expression value was randomly selected between 0

and 1, in order to simulate normalised gene expression data.

Table 3.2: The number of differentially expressed genes unique to each simulated condition dataset. Numbers in
parentheses state the number of genes for that stress which are included in the genes found to be differentially expressed
in two or more stresses, and are then analysed using Wigwams

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
7970 (7455) 7845 (7380) 7981 (7466) 7825 (7340) 7930 (7457)

3.2.4.2 Results

12808 potential pairwise regulons were generated in the Wigwams screening method. The pair-

wise potential regulon with the most significant overall p-value removed 12807 potential pairwise
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regulons in the pruning step. This result validates that Wigwams is a critical clustering algorithm,

and only provides evidence of co-expression across subsets of conditions if the evidence is really

there to detect.

3.3 Discussion

In this chapter, the development of a novel tool, which aims to provide evidence of co-regulation,

has been described. Limitation and suggested improvement, along with general conclusions will

be discussed here.

3.3.1 Wigwams pruning

Whilst the pruning step is crucial for providing the most statistically significant and non-redundant

potential regulons, the method itself is asymmetric in design: for example, the top ranked gene

ni can prune the second ranked gene nj, but nj cannot prune ni. This issue is apparent when

using the simulated ‘in silico’ dataset to validate that Wigwams only detects real evidence of co-

expression (as discussed in Section 3.2.4): it was hypothesised that given a random set of gene

expression data, Wigwams should provide a critical output and not detect any significant potential

regulons. Indeed, all pairwise regulons generated in the Wigwams screening method using the ‘in

silico’ were pruned in the subsequent pruning section, leaving only the ‘top ranked gene’ and its

corresponding set of co-expressed genes. This one remaining potential regulon was not pruned

due to the asymmetric nature in the design of the pruning method. This potential regulon is also

expected not to be significantly co-expressed. However, there is no way to prune and remove

this potential regulon, as all other evidence generated in the screening method has been removed.

Therefore, this potential regulon would need to be critiqued by eye to discern whether it is truly

showing evidence of co-expression.

3.3.2 Generalised hypergeometric distribution with three sets

As mentioned previously, the format in which Wigwams is currently written only allows the gener-

ation of p-values for overlaps between pairwise-compared sets of genes. Although Wigwams iden-

tifies potential regulons working across three or more stresses (as described in Section 3.2.1.4), the

hypergeometric test does not calculate p-values for overlaps in gene membership in three or more
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conditions. This presents a problem when we wish to assign p-values to overlaps of genes between

three or more conditions. By using a generalised hypergeometric test, which allows the calculation

of p-values of overlaps of genes for three or more conditions, this problem can be overcome.

The urn analogy is used as a classic metaphor for the hypergeometric distribution. If an urn

contains black and white marbles, then drawing a white marble can be defined as a failure, and

drawing a black marble can be defined as a success. N describes the number of all marbles placed

in the urn, with m describing the number of black marbles in the urn, and N - m describing the

number of white marbles in the urn. k then describes the number of balls drawn from the urn.

By using a generalised hypergeometric test, p-values can be calculated for overlaps in three or

more conditions. Then, by selecting a p-value threshold, a potential regulon significant over three

or more conditions can be picked in favour of its constituent pairwise regulons. We use the urn

analogy again, with the white and black marbles in the urn. The generalised hypergeometric

distribution calculates the probability of drawing at least n black balls twice. Here, the number of

black balls drawn twice represents the overlap between the three sets. If you consider the Venn

diagram shown in Figure 3.17 the generalised hypergeometric test works by first calculating the

overlap of two lists of genes in a universe.

In order to calculate whether the overlap between the three lists is significant, the overlap between

List 1 and 2 (shown in Figure 3.17 and described in Equation 3.6) is now considered as the ‘List’

which is compared against List 3 (shown as the black hashed area in Figure 3.18). This part of

the generalised hypergeometric test is calculated in Equation 3.7, and is considered the ‘second

drawing’ of black balls. Equation 3.7 aims to calculate the probability that out of the black balls

drawn in the first draw, how many are drawn again in this second draw? In terms of the List of

genes, how many of the genes found in the overlap of List 1 and 2, are also found in List 3?

3.3.2.1 Notation

P(2)(X ≥ n) : the probability that at least n black balls were drawn twice (3.3)

P(Y = o) : the probability that exactly o black balls were drawn in first draw (3.4)
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List 1

Universe

List 2

List 3

Figure 3.17: Calculating the overlap between three sets using the generalised hypergeometric test. The generalised
hypergeometric test ultimately aims to calculate whether the overlap of the three lists is significantly large. In order
to do this, the overlap of Lists 1 and 2 must first be calculated (indicated as the black hashed overlap between the two
lists).

P(X = n | Y = o) : the probability that out of o black balls drawn in the first draw, at least n are drawn again

(3.5)

3.3.2.2 Solution

P(2)(X ≥ n) =
min{k,l}
∑

o=n
P(Y = o) · P(X ≥ n | Y = o) (3.6)

=

min{l,k}
∑

o=n
Hd(o, l,N − l, k) · H(n − 1, o,N − o,m) (3.7)

Note that Equation 3.6 will equal 1 for n = 0.

where Hd refers to the density of the hypergeometric distribution (‘dhyper’ function in R (279)),
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Universe

List 3

Overlap of 
List 1 and 2

Figure 3.18: Calculating the overlap between three sets using the generalised hypergeometric test. In order the calculate
whether the size of the overlap between three lists is significant, the overlap between List 1 and 2 is compared against
List 3 (indicated by the black hashed area).

and H refers to the hypergeometric distribution (‘phyper’ function in R (279)).

When dealing with overlaps over larger number of lists (i.e. four and above), the process is analo-

gous to the one described here, adding an extra step for each additional list.

3.3.3 Distance metrics

Wigwams takes advantage of Pearson’s product moment correlation coefficient, in order to calcu-

late which genes have the most similar expression profile to the seed gene, in each stress individu-

ally. However, there are different methods of calculating the similarity of expression profiles. Yona

et al. completed a study to analyse the usefulness and robustness of different distance metrics in

detecting co-expression in time series datasets. Yona et al. evaluated the quality of various simi-

larity measures to resolve which measure was the best for uncovering functional links, given gene

expression data. The results showed that Pearson correlation was the most effective at detecting

co-expression, closely followed by Spearman rank correlation, in time series datasets (334). There-
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fore, it was justified to use the Pearson correlation measure for the correlation test in the Wigwams

screening method. In spite of this, it is possible for the type of distance metric in Wigwams to be

exchanged in favour of another distance metric.

3.3.4 Programming language selection

Whilst Matlab is a relatively easy programming language to use, and is quite powerful in terms of

the built-in functions available, there are perhaps more appropriate languages that could improve

on the computational time it takes for Wigwams to complete analysis. Part of Wigwams is written

in Java, in order to communicate with the statistical programming language package R, as R calcu-

lates the p-value using the hypergeometric test to more significant figures than Matlab is capable.

By re-writing Wigwams in Java, the computational time needed to complete the analysis could be

reduced, as only two languages, instead of three, would be used. One advantage to using Matlab

over Java, however, is the large library of mathematical functions Matlab possesses (225, 121),

which Java does not possess.

3.3.5 Gene expression data types

Although Wigwams has been described in the context of using gene expression data generated

by microarrays, Wigwams is also capable of searching for evidence of potential regulons in gene

expression data generated by other methods. Recent developments in the technologies used to

capture gene expression changes over time have meant that methods such as RNA-seq are now

more commonplace, and are becoming increasing popular, in favour of microarray technology.

RNA-seq improves on microarray limitations, by having low background signal and also greater

sensitivity for genes expressed at low or very high levels (314).

mRNA abundance and gene expression changes can be measured using a variety of other methods,

such as serial analysis of gene expression (SAGE) (304), nuclease protection (181) and differential

display (175). All these techniques, including RNA-seq have the ability to measure gene expres-

sion changes in response to varying conditions. Since clustering methods have been used on gene

expression data not produced by microarrays (232, 32), it is plausible to assume that Wigwams

has the ability to utilise other forms of gene expression data.
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3.3.6 Conclusions

In conclusion, Wigwams, a novel method developed to discover statistically significant genes

that potentially share a common regulatory mechanism over multiple conditions, is capable of

re-discovering known examples of co-expression, thus validating this method. Extensive research

has been completed on metabolic pathways in Arabidopsis, and how these pathways differ in their

function under certain conditions. Much experimental work and effort has been devoted to dis-

covering how they differ, which has required substantial amounts of time. Wigwams was able to

correctly uncover known examples of co-expression and co-regulation in a short space of time.

This highlights the potential for uncovering new relationships between genes in stress conditions

quickly, with the added bonus that experiments can be directed specifically at a small number of

genes in specific conditions, rather than using large-scale reverse genetics approaches, which are

time consuming and inefficient, as a means of discovering gene regulatory elements.

The main advantages of Wigwams are that it is capable of detecting evidence for potential regu-

lons working across subsets of time series datasets, and does not require the potential regulon to

fulfil the criteria of being significant in all datasets supplied. Wigwams also provides a concise

output that is biologically meaningful, by only producing non-redundant and significant potential

regulons. The method itself is computationally inexpensive. Limits on the size of datasets to be

analysed will only be influenced by the practical restrictions of Matlab.

The generalised hypergeometric test, as described in Section 3.3.2, provides a means of extending,

and therefore improving, Wigwams. As Wigwams currently stands, when extending pairwise

regulons beyond two conditions (as described in Section 3.2.1.4), the size of the potential regulon

must fulfil a specified criteria i.e. a potential regulon working over three conditions must contain at

least 10 genes. By incorporating the generalised hypergeometric test into Wigwams, this approach

to subsetting can be replaced by p-value criteria.
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Chapter 4

Using multiple plant stress high

resolution time series datasets to find

potentially co-regulated genes

4.1 Introduction

Gene expression data, generated by tools such as microarrays, provide evidence for deciphering

the regulatory codes that dominate expression changes under specific external conditions. By pre-

dicting co-regulated genes computationally, much time and effort can be saved from searching for

these genes experimentally. Gene expression data can be mined for the identification of regula-

tory sub-networks that work across multiple conditions. By identifying genes whose expression is

regulated by a common mechanism, and are therefore co-regulated, a common regulatory network

that is active in the response to multiple conditions can be determined. A network with ortholo-

gous genes (i.e. genes which have the same function but occur in different species) (268, 100) to

this common regulatory network can be identified in commercially important crop species. This

network can be targeted in order to generate crops genetically engineered to withstand the effects

of multiple stresses simultaneously.

Functionally alike genes are often co-expressed (133), therefore by considering genes with sim-

ilar expression profiles, we can infer common functions of these genes, and common regulatory
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mechanisms (82). However, these co-regulated genes must first somehow be discovered.

4.1.1 The role of transcriptional co-regulation in stress

Instances of transcriptional co-regulation have been extensively studied in other model organisms,

such as Drosophila melanogaster and Saccharomyces cerevisiae. However, the modes of tran-

scriptional co-regulation in A. thaliana, specifically in terms of stress responses, are less studied

providing an opportunity to explore these responses in more depth. By integrating transcriptional

regulatory information from motif analysis and network inference with gene expression data from

time series microarrays, one can deduce the changes in network architecture, caused by transcrip-

tion factors altering their interactions in certain conditions (188).

Co-regulation of gene expression is influenced by at least one common transcription factor binding

to a cis-acting regulatory element (CARE) (333). For example, in S. cerevisiae, the transcription

factors ADR1 and CAT8 co-regulate multiple pathways, mainly various forms of metabolism, such

as ethanol and glycerol metabolic pathways (336): a small number (approximately 200) of ADR1-

dependent genes are also CAT8-dependent, which include ADH2 and ACS1, two genes involved in

ethanol metabolism. Other genes that are co-regulated by CAT8 and ADR1 include JEN1, ADY2,

PUT4 and ALP1. Fourteen of the genes that are ADR1- and CAT8-dependent are also co-regulated

during glucose depletion (274), confirming that the regulatory mechanism of ADR1 and CAT8 is

shared across conditions, and fulfils the regulon criteria.

In A. thaliana, Clifton et al. found that the expression of alternative oxidase AOX1a and alternative

NADH dehydrogenase NDB2 was not only co-expressed, but was also co-regulated in Arabidop-

sis (71). Due to the presence of six similar sequence elements with a comparable arrangement

within the promoter region of both AOX1a and NDB2, it was concluded that these two genes were

likely to be co-regulated (125). Although the co-expression of AOX1a and NDB2 has been seen

to be maintained in response to various stresses, to date, no common regulator has been identified.

It has been hypothesised that perhaps ARR2 (71) or members of the TCP transcription factor fam-

ily (206) could bind to CAREs found in the promoters of both AOX1a and NDB2, however, this has

not been confirmed. Therefore, AOX1a and NDB2 are potentially members of a regulon. Experi-

mental techniques, such as Yeast-1-Hybrid, or network inference, would enable the identification

of the transcription factor protein responsible for the co-regulation of AOX1a and NDB2.

94



4.1.2 Motivation

By applying the method described in Chapter 3 to high resolution time series data in Arabidopsis,

potential regulons, which are genes under the control of the same transcription factor in multiple

conditions, can be discovered. Gene members of regulons therefore have a common method of

regulation. There is a lack of evidence for the role co-regulation has to play in the response to

multiple stress in plants. By analysing these data using Wigwams, evidence for co-regulation in

multiple plant stress responses can be found. However, Wigwams extracts information from gene

expression data and provides information on which genes are co-regulated; Wigwams does not

provide information on what is regulating these genes. Various methods are available to mine for

examples of potential regulators.

If potential regulons are indeed co-regulated, there is likely to be a binding site motif within the pro-

moter sequences for which the regulatory transcription factor can bind. The promoter sequences of

gene members of potential regulons can be mined for statistically overrepresented promoter motifs,

in order to identify a potential transcription factor binding site, as they are hypothesised to be under

the control of the same regulatory mechanism. Motifs are conserved regions of DNA, consisting of

a small number of nucleotides (dependant on the species), to which a regulatory protein can bind.

Certain methods can be used, such as Multitple EM for Motif Elicitation (MEME) (19), which

searches promoter sequences for overrepresented de novo or known motifs. If a motif is found

to be statistically overrepresented in the promoter sequences of genes forming a potential regulon,

this suggests co-regulation (82). If the motif is known in literature, this aids the identification of the

regulatory protein binding to these promoters. Motif analysis results can be combined with results

from network analysis tools, which are applied to time series gene expression data to predict regu-

lators and infer connections between gene members of potential regulons (83). Network inference

requires no prior knowledge of transcription factor binding motifs in the aforementioned genes,

but can be combined to provide another facet of information, as shown in Figure 4.1. Potential

regulons are analysed (using the hypergeometric analysis for motif finding in promoter sequences,

as described in Section 2.7.5.1) for overrepresented plant promoter motifs. If a statistically sig-

nificant motif is identified, and is a known binding site for the predicted regulatory transcription

factor, then it is likely that this transcription factor is truly regulating the expression of this gene.
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Regulon members

motif motifmotif

Figure 4.1: Motif analysis results are combined with network inference to provide further information on the likely
transcription factor regulation of potential regulons. Here, network inference has predicted a transcription factor (blue
circle) to co-regulate transcription factor members of a potential regulon (red squares). Motif analysis (using the hyper-
geometric test outlined in Section 2.7.5.1) which has been completed on the promoters of all potential regulon members
has identified an overrepresented motif for this potential regulon. If the motif is a known binding site for the predicted
regulatory transcription factor, then it is likely that this is a substantial method of regulation.

4.1.3 Datasets

The PRESTA group used microarray analysis to obtain high resolution time-course profiles of

changes in gene expression during response to stress in A. thaliana leaves. These datasets were

used to identify differentially expressed genes in response to each individual stress. Six stress

responses were investigated in this way: responses to biotic stress caused by the pathogens B.

cinerea (Windram et al. (322) and P. syringae pathovar tomato DC3000; responses to abiotic

stresses drought and high light; and developmental stresses long (43) and short day senescence.

For the biotic and abiotic stresses the microarray design included both treated (i.e. stressed) and

mock (i.e. unstressed) samples. Both mock and treated experiments each included four biological

replicates over the whole time course, with the exception of long day senescence, which had
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eight replicates. In the case of senescence, where there were no mock samples, there were four

biological replicates for the senescence samples. For the purposes of analysis using Wigwams,

the MAANOVA (326) output that combined biological replicates by taking the average (mean)

expression value at each time point over all four replicates was used for each treated dataset, at

each timepoint.

CATMA ((8); www.catma.org) version 3 microarray slides were used for the B. cinerea and

senescence time course experiments, whereas CATMA version 4 microarray slides were used for

the remaining experiments. Due to the differences in the number of probes on version 3 and

version 4 slides (version 4 has 2242 additional probes compared to version 3 slides), Wigwams

was completed on the 30,366 probes common to both version 3 and version 4 slides in all datasets.

Only stress-treated datasets for each stress were considered (i.e. the mock expression values were

not considered in Wigwams analysis).

4.2 Application of Wigwams to multiple time-series of gene expres-

sion during stress

Wigwams (see Chapter 3) was applied to genes that were differentially expressed in two or more

of six time series gene expression datasets (as explained in detail below in Section 4.1.3), in order

to identify potential regulons sharing a common regulatory mechanism over a subset of stress con-

ditions. By subsequently integrating motif analysis and predicted gene regulatory networks, more

evidence that the gene members of potential regulons may be co-regulated can be inferred. GO

term analysis, completed using BiNGO (191), identifies statistically overrepresented biological

functions within the potential regulons, further lending weight to these genes being functionally

similar.

A discussion on the parameters used for applying Wigwams to these datasets, followed by potential

regulons found using this method on these datasets, and significant motifs and GO terms found

to be overrepresented within these potential regulons will be presented. These findings will be

integrated with literature available on motifs, in order to predict common upstream regulators of

these potential regulons.
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4.2.1 Wigwams considers only genes whose expression is differentially expressed in

two or more conditions

For each dataset, a boolean vector of ones and zeros (where one means this gene is differentially

expressed in this particular stress, and zero is false) was generated to identify genes whose expres-

sion is changing over time in response to these stresses. If a gene exhibits a differential expression

profile in response to treatment (stress) compared to expression during mock treatment, then there

is a significant difference in expression between treatment and mock, which cannot have occurred

by chance. A gene must show a difference in expression, compared to mock expression, for two

consecutive time points in order to be considered differentially expressed. This allows the inclu-

sion of the curated lists of differentially expressed genes, generated for each dataset (see Sections

2.7.2 and 2.7.3 for details on how the lists were generated for high light and drought respectively).

The curated lists of differentially expressed genes were generated as described in Table 4.1. Figure

4.2 describes the process of generating the time series datasets by means of a PERT chart, detailing

the main stages in dataset construction in the project in relation to each other. Different analyses to

identify lists of differentially expressed genes were used in some datasets. This is due to advances

in analyses of time series dataset becoming available at different times. Also, due to the time at

which the microarray experiments were carried out, different versions of CATMA (8) had been

developed, as illustrated in Figure 4.2.

Table 4.2 shows the number of genes found to be differentially expressed in each stress individually.

11263 genes were found to be differentially expressed over time in response to two or more stresses,

and only these genes were considered in theWigwams analysis, as we are only interested in finding

genes with a common regulatory mechanism across two or more stresses.

4.2.1.1 Normalisation of gene expression data

Gene expression data for each stress, using the MAANOVA (326) output where all four biolog-

ical replicates had been combined, was transformed in order to make the overall amplitude of

expression comparable. This allows the comparison of shapes of gene expression, rather than the

absolute expression values. In order to do this, the gene expression data per stress was normalised

separately with a mean µ of zero, with a standard deviation of one.
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Table 4.1: Comparative table detailing the generation of differentially expressed genes for each time series dataset,
including: reference to paper and researcher who carried out analysis to identify differentially expressed genes; version
of CATMA (8) slides; method used to identify differentially expressed genes

P. syringae pv.
DC3000

B. cinerea Short day
senescence

Long day
senescence

High light Drought

Reference Dr. Laura
Lewis (Uni-
versity of
Warwick)

Dr. Oliver
Windram
(University
of War-
wick) (322)

Emily Breeze
(University of
Warwick)

Emily Breeze
(University
of War-
wick) (43)

Myself - Sec-
tion 2.7.2

Myself - Sec-
tion 2.7.3

CATMA (8)
version
slides

v4 v3 v3 v3 v4 v4

Method
of identi-
fying DE
genes

MAANOVA
F-Test (326),
BATS (12)
and
GP2S (270)

GP2S (270)
and
MAANOVA
F-Test (326)

MAANOVA
F-Test (326)

MAANOVA
F-Test (326)
and Time-
Course (275)

GP2S (270)
and
MAANOVA
F-Test (326)

GP2S (270)
and
MAANOVA
F-Test (326)

Duplicated
genes re-
moved?

Yes Yes Yes Yes Yes Yes

Non-
hybridising
probes re-
moved?

Yes Yes Yes Yes Yes Yes

Table 4.2: The number of differentially expressed genes unique to each PRESTA stress condition dataset. Unless
otherwise stated, lists of differentially expressed genes were generated by myself (as shown in Sections 2.7.2 and 2.7.3).
Numbers in parentheses state the number of genes for that stress which are included in the 11263 genes found to be
differentially expressed in two or more stresses, and are then analysed using Wigwams

High light P. syringae
DC3000 (L.
Lewis, Uni-
versity of
Warwick)

B. cinerea (322) Short day
senescence
(E. Breeze,
University of
Warwick)

Long day senes-
cence (43)

Drought

7036 (5624) 5632 (4850) 9838 (7536) 6241 (5568) 10258 (7780) 1761 (1690)

4.2.2 Parameters

As initially described in Section 3.2.1.1, and illustrated in Figure 3.9, Wigwams first screens a

given list of genes for evidence of potential regulons, by firstly generating pairwise potential regu-

lons. The inputs, in terms of using the datasets mentioned in Section 4.1.3 above, are as follows:

1. Set of time course expression measurements under C conditions and for all genes in set G.

The six datasets described in Section 4.1.3 were used for analysis.
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Start of
PRESTA
project

B. cinerea

One
year

Two
years

P. syringae High light Drought LD
senescence

SD
senescence

RNA
extraction

RNA
extraction

RNA
extraction

Hybridisation to
CATMA v3 slides

Hybridisation to
CATMA v3 slides

Hybridisation to
CATMA v3 slides

Identify differentially
expressed genes:

GP2S and MAANOVA
F-Test

Identify differentially
expressed genes:
MAANOVA
F-Test

Identify differentially
expressed

genes: MAANOVA
F-Test and
TimeCourse

RNA
extraction

Hybridisation to
CATMA v4 slides

Identify differentially
expressed genes:
GP2S, BATS and
MAANOVA
F-Test

RNA
extraction

Hybridisation to
CATMA v4 slides

RNA
extraction

Hybridisation to
CATMA v4 slides

Identify differentially
expressed genes:

GP2S and MAANOVA
F-Test

Identify differentially
expressed genes:

GP2S and MAANOVA
F-Test

Figure 4.2: PERT chart for the construction of each of the PRESTA time series datasets, in relation to time. The major
stages in generating the datasets are shown, along with the different versions of CATMA (8) slides used for each time
series, and the statistical methods used to generate lists of differentially expressed genes in each dataset.

2. For each gene g ∈ G and each time course c ∈ C a boolean value indicating whether gene

g is differentially expressed in condition C. The lists described in Section 4.2.1 were used

to manually create a matrix of Boolean values, indicating whether a gene was differentially

expressed in a particular dataset.

3. A similarity measure of time course expression values for pairs of genes. Here, Pearson

product moment correlation was used.

4. A set of gene list sizes S. A range of S values were chosen between 50 and 250, at intervals

of 50.

The lists of genes that are most correlated to g in each time course C were chosen to range between

50 and 250, at intervals of 50. Choosing smaller interval sizes would increase the computational

intensity of Wigwams. It was anticipated that any regulatory network of genes working across

multiple stresses was unlikely to be larger than 250 nodes (genes). However, intervals of 50 were
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chosen as overlaps in gene membership may be more significant at certain sizes than others, which

can be refined at a later stage. For instance, an overlap of 26 genes out of a top correlated gene

list of 50 would provide a stronger p-value than those same 26 genes overlapping in a larger

top correlated gene list of 100 genes. Therefore, we wish to capture this particular evidence of

potential co-regulation, rather than it being discarded for being non-significant at larger sizes of

top correlated gene lists.

In order to select for significant potential regulons (as illustrated in Figure 3.12), three parameters

were required: A p-value cutoff of 1.000e-05 was chosen, based on using Bonferroni Multiple

Testing Correction of 30,336 genes over six datasets (as shown in Equation 4.1). Bonferroni

MTC was chosen to counteract the problem of multiple comparisons: when using microarrays,

expression levels of thousands of genes can be measured, which may not be found in a second,

repeat experiment. Bonferroni MTC can counteract this. The significance level was required to

be 0.05 at most, therefore, by considering each probe in the datasets (30,336), the threshold was

decided as:

(

0.05
30, 336

)

× 6 ≈ 1.000e-05 (4.1)

The correlation threshold was chosen to be 0.75, above which, the correlation coefficient r is

deemed to represent two similar expression profiles. We arrived at this value by performing the

following test, whereby a gene was chosen at random, and correlation tests using Pearson’s product

moment correlation (PPMC) were performed against the expression profile of this gene and the

expression profile of other randomly selected genes, in the same stress condition dataset. An r

value below 0.75 is deem to represent two dissimilar expression profiles. This is illustrated in

Figure 4.3, which shows the r-values associated when comparing two expression profiles.

Figure 4.4 a) shows the expression profiles of the randomly selected probe, CATMA5a57110

(shown in red). The subsequent Figures 4.4 b) - d) show the expression profiles of randomly se-

lected genes (in red). The Pearson’s correlation test was performed per stress between CATMA5a57110

and each of the randomly selected genes shown in Figures 4.4 b) - d), and the resulting r values

are shown in Table 4.3.
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r ≥ 0.75

Time Time Time
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onr ~ 0.5 r = -1

Figure 4.3: Pearson’s product moment correlation coefficient r-values associated with different comparisons of two
expression profiles. Here, two expression profiles are represented as red and green points on a scatter plot. When these
two expression profiles are similar, the corresponding r-value is greater or equal to 0.75. Expression profiles calculated
as having an r-value of around 0.5 are moderately correlated. Expression profiles that are highly anti-correlated generate
an r-value of -1.

By comparing the expression profiles of the genes in the drought and high light conditions shown

in Figure 4.4 b) to the gene expression profiles in the same conditions in Figure 4.4 a), it can be

noted that the intra-condition expression profiles are dissimilar. This is supported by the correlation

values shown in Table 4.3, generated by performing a correlation test of the gene expression of

probe CATMA1a50250 to the expression of probe CATMA5a57110 in each condition, where the

r values are 0.4918 and 0.5655 respectively. This can be interpreted as ‘medium’ correlation.

Comparing the expression profiles of the gene probes in Figure 4.4 c) in both Short Day and Long

Day Senescence, with those of the expression profiles of the genes in the same conditions in Figure

4.4 a), you can see that the expression profiles are very similar in both Short Day Senescence

profiles. This is supported by the correlation r value given in Table 4.3 (0.9183), which confirms

that the gene expression profiles of the seed gene are very similar. Conversely, take into account
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Figure 4.4: a) Expression profiles of randomly selected seed gene probe CATMA5a57110 (shown in red) in each of
the six time course datasets, as described in Section 4.1.3. Pearson’s product moment correlation (PPMC) test was
performed per stress between these expression profiles and each of the randomly selected gene probes shown in b) - d),
in order to decide upon a value for the correlation threshold. b) Expression profile of randomly selected gene probe
CATMA1a50250 (here shown in red) in each of the six time course datasets, as described in Section 4.1.3. c) Expression
profile of randomly selected gene probe CATMA1a50080 (here shown in red) in each of the six time course datasets,
as described in Section 4.1.3. d) Expression profile of randomly selected gene probe CATMA1a50890 (here shown in
red) in each of the six time course datasets, as described in Section 4.1.3.
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the expression profiles of Long Day Senescence in both Figures 4.4 a) and c): the correlation r

value given in Table 4.3 is 0.7892, suggesting the expression profiles are similar, but do not have as

strong a correlation as witnessed in Short Day Senescence. By looking at these expression profiles

by eye, we can see that there are differences in the profiles in Figure 4.4 a) and c) in Long Day

Senescence.

Comparing the expression profiles of the genes in both Short Day and Long Day Senescence in

Figure 4.4 d), with those of the expression profiles of the probe in the same conditions in Figure

4.4 a), you can see the profiles are very similar i.e. the expression profiles of the genes in Short

Day Senescence in Figure 4.4 c) are very similar to those gene expression profiles in the Short

Day Senescence in Figure 4.4 a). Also compare this to the correlation values associated with

these two conditions (Table 4.3): the correlation r values between probes CATMA5a57110 and

CATMA1a50890 in Short Day and Long Day senescence are 0.8188, and 0.9822 respectively.

These values suggest the gene expression profiles of these two probes are very similar in their

respective conditions.

From Figures 4.4 a) - d) and Table 4.3 we can conclude that the optimum value to use for the

correlation cut-off parameter in the pruning algorithm is 0.75. This was chosen due to correlation

values of 0.8 and higher corresponding to intra-condition gene expression profiles between sets of

correlated genes being highly similar, as seen in Figure 4.4 d). Consider the expression profiles

of the gene probe subject to long day senescence stress in both Figures 4.4 a) and d): both sets

of expression profiles are highly similar, a fact reflected with the high r value shown in Table 4.3

(0.9822). However, correlation r values less than 0.75 show that intra-condition gene expression

profiles between conditions can be dissimilar (shown in Figure 4.4 b)): for example, the expression

profiles of genes subject to B. cinerea stress in both Figure 4.4 a) and b) are dissimilar, and the

r value for the correlation between these two sets of expression profiles is 0.6676. This suggests

that different regulatory processes are occurring in these two seed genes, and should be taken into

consideration in the pruning step.

For the final parameter, in order for two p-values to be significantly different, and for both regulons

to be kept, the p-value had to differ by an order of magnitude of 10 or more. If two potential

regulons had a p-value that did not differ by an order of magnitude of 10, then it could be assumed

that the potential common regulatory mechanism identified by these two regulons is the same or
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Table 4.3: Correlation r values generated using PPMC for gene expression data of CATMA probe CATMA5a57110 in
each condition against randomly selected probes.

Randomly
selected probe

B. cinerea Drought High Light P. syringae
DC3000

Long Day
Senescence

Short Day
Senescence

CATMA1a50250 0.6676 0.4918 0.5655 -0.2656 0.6105 0.6036
CATMA1a50080 0.3087 0.7209 -0.5804 0.2914 0.7892 0.9183
CATMA1a50890 -0.7619 0.7467 0.6329 -0.2214 0.9822 0.8188

very similar. Therefore, the potential regulon with the less significant p-value will be discarded.

Potential regulons were subject to thresholds based on either the overall p-value (for regulons

significant in two stresses) or the number of genes in the regulon (for regulons significant in three

or more stresses). The thresholds were as follows:

1. Two conditions: p-value of 1.0000e-05, as discussed above and summarised in Equation 4.1.

2. Three conditions: minimum regulon size of 10 genes.

3. Four conditions: minimum regulon size of 8 genes.

4. Five conditions: minimum regulon of 5 genes.

5. Six conditions: minimum regulon size of 5 genes.

These numbers were chosen in order to prioritise potential regulons found in subsets of greater

numbers of stresses, and identify greater numbers of genes co-expressed over many stresses. For

example, identifying a potential regulon working over six conditions, but only having two gene

members would provide less evidence, and a lower chance of identifying a core gene regulatory

network than a potential regulon working over six conditions and having five gene members. This

will provide greater gene candidates for identifying predicted regulatory transcription factors of

potential regulon gene members via network inference.

4.3 Wigwams identifies 465 potential regulons co-expressed across

subsets of stresses

2679 significant pairwise regulons were identified on completion of the Wigwams algorithm (as

illustrated in Figure 3.9) and selection of informative regulons (as illustrated in Figure 3.12). By

applying thresholds to extend beyond pairs of stresses, as described in Section 4.2.2 previously,
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465 significant regulons were identified as working across subsets of the six datasets, represented

by 3417 unique genes. A. thaliana allocates 5% of its genome to encode solely for transcription

factors (243). It seems reasonable, therefore, that 5% of all gene members of all the potential

regulons encode proteins annotated as transcription factors or to be involved in transcriptional

regulation (according to annotation by TAIR9), demonstrating that transcription factors have been

fully represented in these potential regulons.

The breakdown of how many potential regulons were found per number of stress combinations,

along with mean gene membership size of potential regulons, is shown in Table 4.4.

Table 4.4: The number and average (mean) size of potential regulons found per number of stress combinations

Number of conditions a singular
potential regulon is co-expressed
in

Number of potential regu-
lons

Mean number of genes
per potential regulon

Two 412 22
Three 35 15
Four 17 14
Five 1 7
Total 465

4.3.1 Analysis of potential regulons

Out of the 465 potential regulons identified by Wigwams, we wanted to identify any particular

stress condition combinations that occurred more frequently than others, to discover if regulatory

mechanisms were more likely to be shared between specific subsets of stresses. For example, it

is reasonable to assume that regulatory mechanisms will be shared between the biotic stress re-

sponses B. cinerea and P. syringae pv. DC3000, due to both being infectious agents. However, we

wish to address whether there is crosstalk between biotic, abiotic and developmental stresses: were

any potential regulons identified as having a common regulatory mechanism in a biotic and abiotic

stress response? Are potential regulons more likely to be identified as working within the confines

of biotic or abiotic stress, for example? This is of particular interest, due to the limited amount

of literature available on crosstalk between biotic and abiotic stresses (99): currently, literature is

focused on identifying crosstalk within biotic (246) or abiotic stresses (261, 262, 47).

Table 4.5 shows the frequency of all combinations of stress conditions. Co-expression of genes in

the conditions long and short day senescence provide the highest occurrence of pairwise-condition
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potential regulons, with 18% of the occurences (85 occurrences out of the total 465). This finding

is not surprising, as long and short day senescence induce similar stress responses, with subtle

differences: for example, systems responsible within the plant for recognising day length interact

with the regulation of redox signals. During short day senescence, redox-mediated acclimation sig-

nals are redirected, which enables efficient usage of light, whereas in long-day conditions, priority

is given to systems required to prevent oxidative damage (31).

There were 75 occurrences of potential regulons with genes significantly working across both B.

cinerea and P. syringae DC3000, which accounts for 16% of the total 465 potential regulons iden-

tified by Wigwams. Although B. cinerea and P. syringae DC3000 are both pathogens, their modes

of infection are substantially different to each other, due to B. cinerea being a necrotrophic fungus

and P. syringae DC3000 being a hemibiotrophic bacteria: B. cinerea actively decomposes the host

tissue for its survival (300); P. syringae DC3000, on the other hand, being a biotroph, secretes ef-

fectors that signal the plant to direct nutrients to P. syringae lesions growing in the apoplast (283).

Both mechanisms of infection can cause different responses within the plant, with downstream

responses having opposite phenotypes (159). For example, overexpression of WRKY33 has been

seen to enhance susceptibility to P. syringae, whereas wrky33 mutant plants showed enhanced sus-

ceptibility to B. cinerea (343). However, there has been research that suggests that both infections

are linked via the ABA signalling pathway (76), confirming that there is crosstalk between these

two stresses. Other modes of crosstalk between B. cinerea and P. syringae include the changes in

plant secondary metabolite accumulation. B. cinerea is thought to produce signals capable of reg-

ulating metabolite levels in the lesion, and the signal will disperse through uninfected tissue (156).

This effect on metabolite levels has also been seen in P. syringae infections. The P. syringae patho-

var tomato DC3000 strain uses its type III secretion system to block the secretion of antimicrobial

secondary metabolites, however (21). Given this literature evidence that B. cinerea and P. syringae

pv DC3000 are capable of influencing the levels of metabolites within the plant, it seems reason-

able for Wigwams to discover a large number of significant potential regulons exhibiting crosstalk

between these two stresses.

Potential regulons found at larger combinations of conditions have a lower frequency of occurrence

than the frequency of pairwise regulons. This may be due to the unlikely event that plants have

evolved a shared regulatory mechanism that is involved in the response to three or more stresses.
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As the number of conditions increases, the smaller the number of genes differentially expressed in

those conditions becomes. Therefore, fewer regulons will be found as the number of conditions

in which they are significantly co-expressed over increases. This is to be expected, as Seki et

al. found only 22 genes to be differentially expressed over cold, high salinity and drought, when

analysing the expression of 7000 A. thaliana genes using microarrays (255).

The high occurrence of potential regulons in certain stresses highlights that the response to these

particular conditions is a complex one: the pruning algorithm has been completed correctly, so all

of these potential regulons exhibit none, or very little, gene membership redundancy. Therefore,

certain stress responses involve more genes than others.

These results provide evidence for genes that are capable of operating in multiple stress responses,

and provides evidence for a complex regulatory response system to abiotic and biotic stresses.

However, it also highlights the possibility that the regulons in combinations of conditions with a

low frequency have a less complex response to multiple conditions, with fewer genes in the reg-

ulatory network. Genes found to be potentially co-regulated using Wigwams provide one level

of information in terms of a regulatory network capable of working across many stress responses.

Wigwams provides information on sets of genes that are co-regulated, but does not provide infor-

mation on the common regulator, or regulators, of these genes. These regulators need to be identi-

fied, using motif analysis and network inference, in order to infer a regulatory network around the

gene members of potential regulons.

Table 4.6 describes the complexity of the various multi-stress combinations that Wigwams is ca-

pable of identifying. An interesting observation is the subtle differences between long day and

short day senescence. Although, as previously stated, these two stresses are very similar in their

responses, they do have small differences which lead to different genes being involved in the re-

sponse to each senescence condition. By referring to Table 4.6 we can see that there are only

seven significant potential regulons working over long day senescence and drought. Compare this

to the 31 regulons working over short day senescence and drought, and it can be seen that there

are differences between the two senescence processes. It is known that drought conditions can

accelerate the onset of senescence (255, 31), however, these findings suggest that it is a specific

type of senescence, which has a distinct set of genes dedicated to its stress response, rather than

the genes shared between the short day and long day senescence response.

108



Table 4.5: Frequency of significant potential regulons. The number of conditions is listed in ascending order, and
for each group of numbers of conditions are listed the frequency of potential regulons found for each multi-condition
combination (highlighted in grey). Combinations with zero frequency are not listed.
Number
of condi-
tions

B.
cinerea

Drought High
Light

P. sy-
ringae
DC3000

Long
Day
Senes-
cence

Short
Day
Senes-
cence

Frequency

2 85
2 75
2 54
2 49
2 39
2 31
2 17
2 12
2 10
2 7
2 6
2 4
2 2
2 2
3 21
3 19
3 5
3 3
3 2
3 2
3 1
3 1
4 16
4 1
5 1

Whilst considering the combinations of stresses in Table 4.6 we can see the frequency of certain

combinations is influenced, to a certain extent, by the numbers of differentially expressed genes

in Table 4.2. For example, there are more regulons containing long day senescence than any

other combination of stresses. Long day senescence provided the greatest number of differentially

expressed genes (10258), of which 7780 of these differentially expressed genes were also differen-

tially expressed in at least one other stress. Therefore, it is to be expected that this stress should

contribute the most to potential regulons.

Although drought stress generated the fewest differentially expressed genes over time, there were

fewer regulons containing high light than there were drought: approximately five times more genes
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Table 4.6: The combinations of conditions covered by significant regulons is complex. Here, the combinations of
stresses are shown, with the frequency of regulons with this combination of stresses. Each stress condition is abbreviated
in the first column, and in subsequent columns plus one, two, three and four other stress conditions. The total number
of regulons significant in all quantities of conditions (i.e. co-expressed over two conditions, or three conditions etc.) is
shown at the bottom of this table. The total number of potential regulons found to contain the common stress per row
is given in the last column. Abbreviations are as follows: B - B. cinerea; D - Drought; H - High light; P - P. syringae
DC3000; L - Long day senescence; S - Short day senescence.

+1 +2 +3 +4 Total

B

D - 6 D, H - 1 D, L, S - 1 H, P, L, S - 1 239
P - 75 D, L - 1 P, L, S - 16
H - 19 P, S - 3
L - 54 P, L - 2
S - 39 L, S - 21

P

B - 75 B, S - 3 B, L, S - 16 B, H, L, S - 1 167
D - 2 B, L - 2
H - 2 L, S - 5
L - 49
S - 12

H

B - 19 B, D - 1 B, P, L, S - 1 54
D- 10
P - 2
L - 4
S - 17

D

B - 6 B, H - 1 B, L, S - 1 61
H - 10 B, L - 1
P - 2 L, S - 2
L - 7
S - 31

L

B - 54 B, D - 1 B, D, S - 1 B, H, P, S - 1 248
P - 49 B, P - 2 B, P, S - 16
D - 7 B, S - 21
H - 4 D, S - 2
S - 85 P, S - 5

S

B - 39 B, P - 3 B, D, L - 1 B, P, H, L - 1 233
P - 12 B, L - 21 B, P, L - 16
D - 31 D, L - 2
H - 17 P, L - 5
L - 85

Total 412 35 17 1
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were found to be differentially expressed in response to high light stress than drought stress over

time. This finding may be due to high light not sharing a common regulatory mechanism with the

other stresses being investigated here. Indeed, previous research has shown genes involved in high

light stress to also be co-expressed in oxidative and freezing stresses (99), neither of which are

investigated here. However, ten potential regulons were found to be co-expressed in drought and

high light: crosstalk between these two stresses has been proven previously, providing confidence

in the results seen here (154). Kimura et al. found, using microarray analysis on stresses plants,

that a number of heat shock proteins and factors (HSPs and HSFs respectively) were induced by

both high light and drought stress (154). Wigwams identified eight members of the HSF and HSP

families to be co-expressed, along with other genes, in drought and high light.

Whilst there is a clear preference towards a developmental (long and short day senescence) stress

split, there does not appear to be an abiotic and biotic stress split in terms of the frequency of

potential regulons observed. 357 potential regulons are co-regulated in at least one of the senes-

cence stresses, demonstrating that there is a developmental stress split. Despite 75 instances of

potential regulons being co-regulated in B. cinerea and P. syringae DC3000, there is still a consid-

erable number of potential regulons bridging the biotic, developmental, and abiotic stresses. There

appears to be a lack of an abiotic stress split, as there are three times more potential regulons co-

regulated in drought and short day senescence than there are co-regulated in drought and high light.

Similarly, there are nineteen potential regulons co-regulated in high light and B. cinerea compared

to ten potential regulons co-regulated in high light and drought. These numbers do not provide

sufficient evidence to conclude there is an abiotic stress split in the number of potential regulons

identified by Wigwams.

4.3.1.1 Bioinformatical analysis of potential regulons to reveal functionally related genes

The identification of overrepresented motifs within promoters of genes in potential regulons aids

the identification of co-regulated genes, and also the potential regulatory transcription factor (or

the family of transcription factors). However, in order to discern whether these potential regulons

are truly co-expressed, these genes can be analysed, using GO term analysis, to reveal whether

they share a common function: genes that are truly co-expressed are more likely to share a regula-

tory mechanisms (and therefore, be co-regulated) (116). In order to determine whether Wigwams
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identifies functionally related genes, a number of bioinformatical analyses were applied to the re-

sulting 465 potential regulons. Wigwams provides evidence for a set of genes being co-expressed

over multiple conditions, and to predict whether these co-expressed genes are co-regulation, vari-

ous bioinformatical analyses can be performed.

Gene Ontology analysis reveals potential functions of co-expressed genes Functionally alike

genes are often co-expressed (133). By using the GO term tool BiNGO (191), the potential regu-

lons can be analysed to identify significantly overrepresented biological functions. If a potential

regulon has a statistically significant overrepresented function, then it is more likely these genes

are co-expressed than a potential regulon not identified to have any common function. A custom

annotation file containing only genes found to be differentially expressed in two or more stresses

was used for this GO term analysis. All p-values mentioned henceforth have been corrected using

Benjamini and Hochberg false discovery rate, using a significance level of less than, or equal to,

0.05, as part of the BiNGO (191) analysis tool.

Table 4.7 shows only the most significantly overrepresented GO terms for each potential regulon.

Only 219 potential regulons were found to have at least one significantly overrepresented GO

term. The remaining 246 potential regulons may have gene members that did not match a GO term

annotation, and were simply not significantly overrepresented for a given function. These potential

regulons may not be co-expressed, due to a lack of evidence supporting the gene members being

functionally alike. However, this may be due to the GO annotation of A. thaliana genes being out

of date. Therefore, these potential regulons, which do not have gene members overrepresented for

a GO term, may have been identified as false negatives for co-expression.

Table 4.7: Frequency of significantly overrepresented GO terms in 219 potential regulons, ranked in decreasing
order. Only GO terms with most significant corrected p-value are considered.

GO term function Total potential regulons with

function as most significantly

overrepresented function

Structural constituent of ribosome 28

Plastid 23

Chloroplast thylakoid 18

112



Chloroplast 13

Chloroplast part 11

Plastid part 11

Thylakoid part 7

Photosystem 6

Chlorophyll binding 5

Chloroplast thylakoid membrane 5

Photosynthetic membrane 5

Thylakoid 5

DNA metabolic process 4

Gene expression 4

Iron ion binding 4

Light-harvesting complex 4

Organelle subcompartment 4

Plastid thylakoid 4

Amino acid activation 3

Autophagy 3

Chloroplast stroma 3

Mitochondrion 3

Photosynthesis 3

Plastid stroma 3

Translation 3

Anchored to membrane 2

Anchored to plasma membrane 2

Apoplast 2

Cellular catabolic process 2

Cellular macromolecule biosynthetic process 2

Cellulose biosynthetic process 2

Glucosinolate biosynthetic process 2

Glycosinolate biosynthetic process 2
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Intrinsic to plasma membrane 2

Macromolecule metabolic process 2

Oxidoreductase activity 2

Oxygen binding 2

Pigment biosynthetic process 2

Plastid thylakoid membrane 2

Protein complex 2

Response to chitin 2

Response to heat 2

S-Glycoside biosynthetic process 2

Thylakoid lumen 2

Thylakoid membrane 2

tRNA aminoacylation for protein translation 2

tRNA metabolic process 2

tRNA processing 2

Zinc ion binding 2

Acetyl CoA catabolic process 1

Amine-lyase activity 1

Anti-apoptosis 1

ATP binding 1

Autophagy vacuole 1

Auxin homeostasis 1

Biosynthetic process 1

Carbon-sulphur lyase activity 1

Catalytic activity 1

Cell cycle arrest 1

Cellular biosynthetic process 1

Cellular protein metabolic process 1

Cellular response to JA stimulus 1

Cellulose metabolic process 1
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Cellulose synthase activity 1

Chloroplast thylakoid lumen 1

Chromatin assembly 1

Chromosome organisation 1

Cysteine-type peptidase activity 1

Cytoplasm 1

diaminopimelate biosynthetic process 1

DNA replication 1

Electron transport chain 1

Extracellular region 1

Fructose-2,6-bisphosphate 2-phosphatase activity 1

Glutamine family amino acid biosynthetic process 1

Glutamine metabolic process 1

Glycerophospholipid metabolic process 1

Golgi apparatus 1

Heterocycle metabolic process 1

Hydrolase activity 1

Indolalkylamine biosynthetic process 1

Indolalkylamine metabolic process 1

Intracellular bound organelle 1

Intracellular lumen 1

Intrinsic to membrane 1

JA mediated signalling pathway 1

Large ribosomal subunit 1

Macromolecular complex 1

Macromolecule biosynthetic process 1

Membrane-enclosed lumen 1

NAD(P)H dehydrogenase complex assembly 1

NADH dehydrogenase complex 1

NADH dehydrogenase complex assembly 1
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ncRNA metabolic process 1

Negative regulation of apoptosis 1

Negative regulation of cell cycle 1

Negative regulation of homeostatic process 1

Negative regulation of RNA metabolic process 1

Negative regulation of telomere maintenance via telomerase 1

Negative regulation of transcription, DNA-dependent 1

Non-membrane bound organelle 1

Nucleoid 1

Nucleotide-sugar metabolic process 1

Organelle lumen 1

Peptidyl-amino acid modification 1

Peroxiredoxin activity 1

Plastid envelope 1

Positive gravitropism 1

Promoter binding 1

Protein import into chloroplast stroma 1

Protein Serine/Threonine kinase inhibitor activity 1

Protein-DNA complex assembly 1

Receptor binding 1

Regulation of glucan biosynthetic process 1

Regulation of multi-organism process 1

Regulation of response to biotic stimulus 1

Regulation of systemic acquired response 1

Respiratory chain complex I 1

Response to carbohydrate stimulus 1

Response to dessication 1

Response to endogenous stimulus 1

Response to JA stimulus 1

Response to stress 1
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Response to water 1

Ribonucleoprotein complex 1

Ribonucleotide binding 1

RNA metabolic process 1

Signal transmission 1

Signalling process 1

Small conjugating protein activity 1

Small ribosomal subunit 1

Sterol biosynthetic process 1

Sterol metabolic process 1

Strictosidine synthase activity 1

Sugar transmembrane transport activity 1

TCA cycle 1

Tryptophan biosynthetic process 1

Tryptophan metabolic process 1

Tryptophan synthase activity 1

Ubiquitin-protein ligase activity 1

Xyloglucan:xyloglucosyl transferase activity 1

By observing the results in Table 4.7, ‘Structural constituent of ribosome’ is the most frequent

significantly overrepresented GO term in the potential regulons. All of the potential regulons

with this annotation as their most significant GO term have a majority of gene members which

encode ribosomal subunits, and are annotated (TAIR9) as ‘structural constituent of ribosome’.

Upon further investigation of the potential regulons with this GO term as the most significantly

overrepresented annotation, Table 4.8 shows potential regulons significantly co-expressed over

senescence and high light are more likely to have this function overrepresented. This suggests that

the process of translation, and possibly the regulation of translation, may have an important role in

the response to high light and senescence stresses. Previous studies have shown that environmental

stress on A. thaliana plants has an impact on the regulation of mRNA translation (145), suggesting
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that the stress response is not limited to transcriptional regulation, as previously stated in this

thesis.

Table 4.8: Frequency of potential regulons with ‘Structural constituent of ribosome’ as most significantly overrepre-
sented GO term, in descending order, and the stress combinations the gene members are significantly co-expressed
in.
Stress combination Frequency of potential regulons
High light and short day senescence 8
Long and short day senescence 6
Drought and short day senescence 3
B. cinerea and short day senescence 3
Drought and high light 2
B. cinerea, long and short day senescence 2
B. cinerea, P. syringae DC3000, long and short day senescence 1
B. cinerea and drought 1
B. cinerea and high light 1

Considering only GO terms associated with stress responses in Table 4.7, Figure 4.5 shows the

functional annotations of 20 potential regulons with significantly overrepresented functions refer-

ring to ‘Response’, ‘Regulation’, or a plant hormone signalling pathway. ‘Response to chitin’ and

‘Response to heat’ were the most frequent significantly overrepresented functions found in these

potential regulons (represented as yellow and red sections in Figure 4.5, respectively).

The ‘Response to chitin’ function was found to be overrepresented in one potential regulon with

gene members co-expressed in P. syringae DC3000 and long day senescence, and another potential

regulon with gene members co-expressed in both long and short day senescence. Chitin is a PAMP,

which is recognised through plants through an unknown receptor, to initialise PAMP-triggered

immunity (PTI) (346). Therefore, it is likely that the potential regulon with gene members co-

expressed in P. syringae DC3000 and long day senescence are involved in the same downstream

response that can be triggered by chitin via an unknown receptor: a component in the long and

short day senescence stress response may also trigger the co-expression of these genes via the

unknown receptor. However, due to the influence of literature in creating GO annotations for

genes (73, 51, 50), these genes may only be currently known to belong to a process involved in the

response to chitin. Therefore, the identification of these genes co-expressed in long and short day

senescence also potentially acting downstream of the chitin-binding unknown receptor suggests a

point of crosstalk between these stresses.

Interestingly, both of the potential regulons found to be overrepresented for the function ‘Response
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to heat’ are co-expressed in conditions drought and high light. Gene expression has been shown

to change when tobacco plants are affected by drought and heat stress simultaneously, including

altered expression of a homolog of A. thaliana WRKY4 (244). This suggests that there is a link,

perhaps in the form of a regulatory network which is activated by both heat and drought stresses:

the responses to these stresses have genes in common. WRKY4 was not found in these potential

regulons co-expressed in drought and high light conditions; however, co-expression of WRKY4 in

heat and drought stress may be identified by Wigwams if gene expression data for heat stress was

included. Rizhsky et al. analysed the Arabidopsis transcriptome by dual stressing the plants with

both drought and heat stress, subsequently discovering 454 differentially expressed transcripts in

response to this combinatorial stress (245). A large number of transcripts encoding members of

the HSP family were differentially expressed in this dataset: 39 members of the HSP family are

also found to be differentially expressed in response to high light in the PRESTA dataset. Both

potential regulons found to be overrepresented for this function contain different members of the

HSP family, providing further evidence that these two groups of genes are co-expressed.

Motif analysis of promoters of genes in potential regulons reveals transcription factor bind-

ing sites that suggest co-regulation Transcriptional regulation is an important process in the re-

sponse to stress in plants (67). Transcriptional regulation that occurs in non-stress conditions will

most likely have to undergo change in order to provide the correct stress response. This change

occurs via the interaction of transcription factors and cis-regulatory elements, or motifs (348),

which are short, conserved sequences of DNA. Co-expressed genes may have similar regulatory

control (277), such as the same transcription factor, or set of transcription factors, regulating their

expression. Such co-expressed genes are said to be ‘co-regulated’.

To identify groups of co-expressed genes as being co-regulated, the promoters of the gene members

can be analysed for the presence of a conserved motif. If a motif is found to be significantly

overrepresented in the promoters of genes in potential regulons, it is likely that these genes have

a common transcription factor, or transcription factors, regulating their expression. It is possible,

once the motif is known, to identify the transcription factor regulating the expression of these genes

in the literature. If a potential regulon has a significantly overrepresented motif in the gene member

promoter sequences, then it is likely that these genes share a common regulatory mechanism over

multiple stresses, and are therefore co-regulated.
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Cellular response to JA stimulus

JA mediated signalling pathway

Negative regulation of apoptosis

Negative regulation of cell cycle

Negative regulation of homeostatic process

Negative regulation of RNA metabolic process

Negative regulation of telomere maintenance via telomerase

Negative regulation of transcription, DNA−dependent

Regulation of glucan biosynthetic process

Regulation of multi−organism process

Regulation of response to biotic stimulus Regulation of systemic acquired response

Response to carbohydrate stimulus

Response to chitin

Response to dessication

Response to endogenous stimulus

Response to heat

Response to JA stimulus

Response to stress

Response to water

Figure 4.5: Functional annotations of 20 potential regulons with significantly overrepresented GO terms referring to ’Response’, ’Regulation’, or a plant hormone signalling pathway (i.e.
Jasmonic Acid). ’Response to heat’ and ’Response to chitin’ were the most abundant GO terms found using this search criteria.
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As Wigwams provides a facet of information for potential co-regulation, all significant potential

regulons were submitted to the hypergeometric motif test (as mentioned in Section 2.7.5.1). This

hypergeometric test scans the 500 bp sequence upstream of the transcriptional start site (retrieved

from TAIR) of potential regulon members against 349 PSSMs. Each PSSM is a representative of

that particular motif (43), after clustering of PSSMs from the TRANSFAC database (195), and the

PLACE database (122). Using Bonferroni MTC, a p-value of less than, or equal to 0.0001 was

deemed significant.

Using this p-value cut-off of 1.000e-04, 89 of the 465 (19%) potential regulons had known plant

motifs significantly overrepresented within the promoters of the gene members. Motifs may have

been present in the promoters of gene members of the remaining potential regulons, which have

not been formally identified as a potential binding site. Another hypothesis is that the remaining

potential regulons are regulated in another manner, that is not transcriptional: though the gene

expression profiles appear co-expressed, this does not infer transcriptional regulation. For example,

the plant hormones JA and MeJA are known to alter gene expression by inducing polypeptides

called jasmonate-induced proteins (JIPs) (241). Of the 349 known plant promoter motifs, 61 non-

redundant motifs were identified as significantly present and overrepresented within the promoters

of gene members of the potential regulons.
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Table 4.9: p-values of motifs found to be significantly overrepresented in the promoter regions of the genes
present in potential regulons. Shading denotes the p-value cut-off used, based on Bonferroni MTC, to select
these motifs i.e. the darker the shade, the more significant the p-value of that motif being statistically over-
represented in the gene promoters in that particular potential regulon. No shading denotes a p-value cut-off of
≤1.000e-07. Grey shading denotes a p-value cut-off of ≤1.000e-09. Gene membership and expression profiles
for each potential regulon presented, along with the conditions these genes are co-expressed in, are given in Ap-
pendix B. Abbreviations are as follows: B - B. cinerea; D - Drought; H - High light; P - P. syringae DC3000; L
- Long day senescence; S - Short day senescence. PLACE database or TRANSFAC database identifiers for each
motif are given.

Potential regulon number and stress combination

Motif
197 168 457 365 199 320 408 117 344 280 416 456 29 166 23

H, S B, P,

L, S

L, S B, P B, S L, S H, S L, S B, S B,

H

H, S H, S B,

L, S

L, S B, P,

L, S

M00182

1.84e-08

M00375 (135)

3.27e-08

M00399 (69)

7.07e-08 3.71e-08

M00942

3.36e-08 6.25e-10 6.06e-08

M00367 (135)

2.89e-08

M00441

9.61e-08
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M00442

4.78e-08 7.23e-09

M01584 (166)

2.17e-08

S-000474 (317)

1.78e-09 3.73e-09 1.83e-09 3.28e-08 3.59e-11

S-000476 (303)

6.33e-09

S-000472 (276)

2.16e-09 2.72e-11 3.32e-10 4.67e-09 1.03e-08

S-000345 (106)

7.34e-08

Table 4.9 shows which motifs (shown by their logos in the first column, which represent the PSSM)

are significantly overrepresented in the promoters of gene members of potential regulons. Only

the most stringent examples (with p-values of 1.000e-07 and increasing in stringency) of overrep-

resented motifs, and the regulons they were found in. The gene members of the potential regulons

shown in Table 4.9 can be found in Tables B.1 - Table B.15 in Appendix B.

Two important observations are highlighted in Table 4.9: firstly, that potential regulon 29, has

genes significantly acting in the B. cinerea and short and long day senescence responses, and has a

high proportion of motifs significantly overrepresented in its promoters. One of the motifs found to

be significantly overrepresented for potential regulon 29, with a corrected p-value of 1.84e-08, has
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the conserved sequence of ‘ACGT’. This symmetrical motif is recognised by bZIP proteins (294),

and the flanking sequence to this core motif (i.e. the nucleotides present on either side of the core

sequence) give this motif the specificity to bind certain transcription factors (93).

The other motifs found to be significantly overrepresented within the promoters of gene members

of potential regulon 29 all have the ‘ACGT’ core, emphasising the previous statement which stated

that the flanking sequences around this core are what give the motif its specificity to bind certain

transcription factors. This is also the reason why so many apparently ‘non-redundant’ motifs have

this ‘ACGT’ core: the sequences flanking this core affect DNA-binding specificity (93). Foster et

al. investigated the limitations of binding specificity using different combinations of nucleotides

flanking the ‘ACGT’ core. Two subfamilies of G-Box Binding Factors (GBFs) were discovered

binding to 13 different flanking sequences (93), highlighting the importance of recognising the

flanking sequences around the ‘ACGT’ core, as shown in the motifs in Table 4.9 with a core

‘ACGT’ sequence, but varying flanking sequences.

One motif found to be significantly overrepresented in potential regulon 29 is the palindromic,

hexameric G-Box motif (5’-CACGTG-3’) (202). Members of the bZIP transcription factor family

in plants have been shown to bind to this promoter motif. Experimental investigation has led to

the discovery of certain transcription factors that are capable of binding the G-Box motif: ABI5

and ABI3, which encode ABA-insensitive transcription factors; GBF1, GBF2 and GBF3, which

encode G-Box Binding Factors, which have been shown to be induces by ABA during stress (184);

and HY5, which encodes a transcription factor whose binding to the promoter of ABI5 is enhanced

by ABA (60). These transcription factors are potential co-regulators of this particular regulon.

Although the hypergeometric test used to discover overrepresentation of known plant promoter

motifs within the potential regulons should correct for redundant motifs, the remaining motifs

found to be significantly overrepresented in potential regulon 29 all have the conserved sequence

of the ABF motif (5’-ACGTGGC-3’). Transcription factors identified as binding to the ABF motif

(ABRE binding factors) belong to a subfamily of the bZIP transcription factor family (69), and

have been shown to activate a large number of genes involved in the ABA response to stress.

Table 4.10, which is modified from a paper by Kim et al. (153), shows the phenotypes both plants

over expressing members of the ABF family and ABF mutants have in response to abiotic stress.
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Table 4.10: Abiotic stress phenotypes of plants over expressing ABFs or ABF mutants, as originally described in Kim
et al. (153)

ABF1 - At1g49720 ABF2 - At1g45249 ABF3 - At4g34000 ABF4 - At3g19290
Expression ABA- and cold-

inducible
ABA- and salt-
inducible

ABA- and salt-
inducible

ABA-, cold-,
drought- and
salt-inducible

Overexpressionn/a Drought (mixed),
salt, cold, heat and
oxidative tolerance

Salt (mixed),
drought, cold,
heat and oxidative
tolerance

Salt hypersensitive,
drought, cold, heat
and oxidative toler-
ance

Knockout
phenotypes

n/a glucose insensitive ABA, salt and
drought insensitive

ABA, salt and
drought insensitive

Drought is not represented in Table 4.9 as a stress condition in which gene members of a potential

regulon are co-expressed in, and also have overrepresented motifs in their promoters. It is possible,

due to literature evidence, that ABFs are not responsible for the regulation of these particular

potential regulons.

Table 4.11: Identifying possible transcription factor regulators of potential regulons overrepresented for ‘ACGT’ motifs
in promoters of gene members. Members of the bZIP family that are differentially expressed in the same stress condi-
tions as the potential regulon gene members are co-expressed in (indicated as abbreviations: B - B. cinerea; H - High
light; P - P. syringae DC3000; L - Long day senescence; S - Short day senescence.)

168 - BPLS 365 - BP 280 - BH 29 - BLS 23 - BPLS
ABF1 ABF1 ABF1 ABF1 ABF1
AtbZIP25 AtbZIP18 AtbZIP14 AtbZIP25 AtbZIP25
AtbZIP51 AtbZIP22 AtbZIP19 AtbZIP26 AtbZIP51

AtbZIP25 AtbZIP20 AtbZIP34
AtbZIP51 AtbZIP22 AtbZIP40
AtbZIP9 AtbZIP23 AtbZIP51

AtbZIP24 AtbZIP53
AtbZIP27 AtbZIP54
AtbZIP37 AtbZIP60
AtbZIP51
AtbZIP56
AtbZIP69

Table 4.11 shows the members of the bZIP family that are differentially expressed in the same

stress conditions as the potential regulon gene members are co-expressed in; with the aim to

identify possible transcription factors capable of binding to the ‘ACGT’ core, these groups of

co-expressed genes have overrepresented within their promoters. The list of bZIPs was acquired

from TAIR (http://www.arabidopsis.org), compiled using the AGRIS database. It can be

seen from Table 4.11 that although literature evidence does not support ABF1 regulating the ex-
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pression of these regulons in stresses other than drought, ABF1 is differentially expressed in all

five stress conditions represented in this table. Therefore, ABF1 is a likely regulator of the genes

in these potential regulons in novel stress responses.

As the G-Box, ABF and ‘ACGT’ core motifs have been identified as significantly overrepresented

within the potential regulon 29, and these motifs are known to have involvement with ABA sig-

nalling and bZIP proteins, we can assume that these two findings have repercussions for under-

standing the senescence response. Indeed, Breeze et al. (43) identified that senescence results

in an increase in the levels of ABA in leaves. They also discovered that genes involved in the

response to ABA stimulus were upregulated in response to senescence stress.

The role of ABA is somewhat controversial in terms of its role in the B. cinerea response, as

it is poorly understood. However, ABA-related mutants were shown to be more resistant to B.

cinerea by Adie et al. (6). The presence of these motifs in the promoters of the gene members

of potential regulon 29 suggest a role for this potential regulon in ABA signalling. However, the

gene expression profiles are down regulated during all three stress responses (see Figure B.13 in

Appendix B), suggesting that their role is not protective against B. cinerea and long and short day

senescence stress.

The second observation to note is that two motifs, the Site II motif and the TELO-box motif are

the most abundant motif found to be statistically overrepresented in these potential regulons. Very

little literature evidence exists for Site II motifs, despite being one of the most ubiquitous plant

promoter motif, along with the G-box motif. However, the literature that does exist surrounding

the Site II motif suggests that it is capable of binding TCP20 (292), a transcription factor member

of the TCP family. It is also believed that Site II motifs are conserved promoter elements that

control the co-ordination of ribosomal protein genes (292).

Table 4.9 shows that the Site II motif is found in potential regulons with genes co-expressed only

in B. cinerea and short day senescence or long and short day senescence. Similarly, the TELO-box

motif is only found in potential regulons with genes co-expressed in long and short day senescence

or high light and short day senescence. It can be hypothesised, therefore, that these particular stress

responses may be regulated through these motifs and the predicted regulators capable of binding

to promoters of genes containing these motifs.
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Potential regulon 457, which is identified as working across short day and long day senescence

conditions, is the only group of co-expressed genes identified as having both the Site II motif

and the TELO-box motif strongly overrepresented within the promoters of the gene members.

A strong topological association between the Site II motif and the TELO-box motif is observed

in A. thaliana, where the TELO-box enhances the expression of genes found to have a Site II

motif in their promoter (292). Both of these promoters are commonly found in the promoters of

ribosomal proteins: out of 216 promoters of genes annotated as encoding a ribosomal protein of

the 40S or 60S ribosomal subunits, 174 contained at least one TELO-box. In 153 of these cases the

TELO-box was associated with one or several Site II motifs (293). Out of the 58 gene members

of potential regulon 457, fifteen genes were identified by Trémousaygue et al. (293) to contain

the TELO-box motif in their promoters (as shown in Table 4.12). It may come as no surprise to

discover that the majority of the genes found in this particular regulon encode ribosomal proteins:

out of the 58 members constituting this regulon, only 17 were not annotated as being involved

with any ribosomal process (shown in Table 4.12). The remainder were largely annotated as 60S

and 40S ribosomal proteins. This potential regulon was also significantly overepresented for the

biological function of structural constituent of ribosomes, with a corrected p-value of 3.29-06 when

performing a GO term analysis using the plugin BiNGO in Cytoscape (see Section 2.7.4).

Table 4.12: Gene members of potential regulon 457 are involved in ribosomal processes. Genes annotated (using
TAIR9) as being involved in any ribosomal process are highlighted. Gene members identified by Trémousaygue
et al. (293) to contain the TELO-box motif in their promoters are shown using an asterisk.

ATG Identifier Gene description

AT1G07070 60S ribosomal protein L35a (RPL35aA)

AT1G14410 WHIRLY 1 (WHY1)

AT1G18440 peptidyl-tRNA hydrolase family protein

AT1G26880 60S ribosomal protein L34 (RPL34A)

AT1G31660 FUNCTIONS IN: molecular function unknown

AT1G48830 40S ribosomal protein S7 (RPS7A)

AT1G72370 P40*

AT1G77750 30S ribosomal protein S13, chloroplast, putative

AT1G77940 60S ribosomal protein L30 (RPL30B)*

AT2G02450 Arabidopsis NAC domain containing protein 35 (ANAC035)
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AT3G09630 60S ribosomal protein L4/L1 (RPL4A)

AT2G31610 40S ribosomal protein S3 (RPS3A)*

AT2G31725 unknown protein

AT2G32060 40S ribosomal protein S12 (RPS12C)

AT2G36620 ribosomal protein L24 (RPL24A)

AT2G38300 DNA binding / transcription factor

AT2G19670 PROTEIN ARGININE METHYLTRANSFERASE 1A (PRMT1A)

AT2G27710 60S acidic ribosomal protein P2 (RPP2B)

AT2G37270 RIBOSOMAL PROTEIN 5B (ATRPS5B)

AT3G04840 40S ribosomal protein S3A (RPS3aA)*

AT3G05560 60S ribosomal protein L22-2 (RPL22B)

AT3G14390 diaminopimelate decarboxylase, putative / DAP carboxylase, putative

AT3G21300 RNA methyltransferase family protein

AT3G23940 dehydratase family

AT3G23990 HEAT SHOCK PROTEIN 60 (HSP60)

AT3G47370 40S ribosomal protein S20 (RPS20B)

AT3G51190 structural constituent of ribosome

AT3G56340 40S ribosomal protein S26 (RPS26C) *

AT3G60245 60S ribosomal protein L37a (RPL37aC)

AT3G06680 60S ribosomal protein L29 (RPL29B)

AT3G07110 60S ribosomal protein L13A (RPL13aA)

AT3G16780 60S ribosomal protein L19 (RPL19B)*

AT3G25520 A. THALIANA RIBOSOMAL PROTEIN L5 (ATL5)

AT3G28900 60S ribosomal protein L34 (RPL34C)

AT4G10480 nascent polypeptide associated complex alpha chain protein, putative / alpha-NAC, putative

AT4G12600 ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

AT4G13170 60S ribosomal protein L13A (RPL13aC)

AT4G16141 sequence-specific DNA binding / transcription factor/ zinc ion binding

AT4G17390 60S ribosomal protein L15 (RPL15B)*

AT4G25890 60S acidic ribosomal protein P3 (RPP3A)
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AT4G31700 RIBOSOMAL PROTEIN S6 (RPS6)

AT4G31710 ATGLR2.4

AT4G16720 60S ribosomal protein L15 (RPL15A)*

AT5G02870 60S ribosomal protein L4/L1 (RPL4D)

AT5G09510 40S ribosomal protein S15 (RPS15D) *

AT5G10920 argininosuccinate lyase, putative / arginosuccinase, putative

AT5G16130 40S ribosomal protein S7 (RPS7C)

AT5G20720 CHAPERONIN 20 (CPN20)

AT5G22440 60S ribosomal protein L10A (RPL10aC)

AT5G23535 KOW domain-containing protein

AT5G47700 60S acidic ribosomal protein P1 (RPP1C)*

AT5G52650 40S ribosomal protein S10 (RPS10C) *

AT5G58420 40S ribosomal protein S4 (RPS4D)*

AT5G59850 40S ribosomal protein S15A (RPS15aF)*

AT5G60390 elongation factor 1-alpha / EF-1-alpha*

AT5G60670 60S ribosomal protein L12 (RPL12C)*

AT5G61170 40S ribosomal protein S19 (RPS19C)

AT5G63050 embryo defective 2759 (EMB2759)

4.3.1.2 Wigwams identifies potential regulons involved in novel multiple stress responses

Much literature is available on the crosstalk of responses to multiple stresses. However, cer-

tain multiple plant stress responses have very little literary evidence supporting the existence of

crosstalk. Here, we discuss the findings of Wigwams, which has identified potential regulons

involved in the novel responses to multiple plant stresses.

B. cinerea and drought stress response Six potential regulons were discovered as having gene

members significantly co-expressed in the B. cinerea and drought stress responses. There is little

literary evidence supporting crosstalk between these two stresses, apart from single gene stud-

ies: bos1 knockout plants exhibit reduced susceptibility to B. cinerea and decreased tolerance
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to drought (189). Mittler described some cases where plants exhibit an increased tolerance to

pathogens upon exposure to abiotic stress (208).

These six potential regulons are significantly overrepresented for the ‘Plastid’ GO term, except

for one, which is significantly overrepresented for ‘Translation’. Neither functions have been

associated with the response to B. cinerea or drought stress before. The majority of the gene

members in the potential regulon overrepresented for translation encode structural components

of the ribosome, with the exception of one gene, which encodes the ANAC035 transcription factor.

ANAC035 does not have any known literary evidence to support a role in the B. cinerea and drought

responses, however, this novel finding presents an avenue of investigation.

The expression of the genes in all six potential regulons is down regulated in response to both

B. cinerea and drought stress. Since these potential regulons are significantly enriched for genes

linked to the plastid and translation, this suggests that these genes and functions are required in an

unstressed leaf. However, during the response to B. cinerea and drought, these functions are down

regulated, perhaps in favour of redirecting energy to pathways important in the stress response.

Drought is known to affect chloroplasts via photosynthesis, by limiting the opening of the stomata,

which is mediated by hormones, and also by general alterations of the leaf photochemistry (57). In

contrast, B. cinerea promotes the generation of reactive oxygen species, which target the electron

transport chain, thus affecting chloroplast function (201).

B. cinerea and high light stress response Nineteen potential regulons were discovered as hav-

ing gene members significantly co-expressed in the B. cinerea and high light stress responses.

Crosstalk has been hypothesised between these two stresses via the production of reactive oxygen

species (201, 13), however, this is the only link, with circumstantial evidence behind it.

The expression profiles for gene members in all potential regulons are down regulated in the

B. cinerea response. In the high light response, gene members of ten of the potential regulons

have down regulated expression profiles, and the other nine have upregulated expression profiles.

There does not seem to be an obvious pattern to explain why groups of genes exhibit these dif-

ferences. However, potential regulons identified as having genes enriched for ‘Photosystem’ or

‘Photosynthesis’ GO term functions all have down regulated gene expression profiles in both stress

responses.
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Interestingly, the two potential regulons with contradictory expression profiles (i.e down regulated

expression profiles in response to B. cinerea and upregulated expression profiles in high light) are

significantly overrepresented for the GO terms ‘Mitochondria’ and ‘Respiratory chain complex I’.

Since biotic stresses are known to cause disruptions in respiratory homeostasis via the induction

of SA (10), it seems logical for the plant to down regulate genes which may function in respiration,

in order to preserve the respiration process. However, respiration, by its own merit, produces

reactive oxygen species in mitochondria, which ultimately cause damage to protein and DNA (13).

Since high light stress causes the production of reactive oxygen species by its method of stress, the

purpose of these genes having upregulated expression during the high light stress response may be

as a direct downstream activation of the stress, in order to promote itself further.

High light and P. syringae DC3000 stress response Only two potential regulons were found

to be co-expressed in the high light and P. syringae DC3000 stress responses. Lesion in lsd1

mutant plants can be induced by both high light environments and infection by Pseudomonas

syringae pathovar maculicola (Psm) (155). LSD1 is involved in the signalling pathway that induces

CuZnSOD proteins, a member of the superoxide dismutase protein family, upon perception of

SA (157).

The expression profiles for gene members were down regulated in the high light response, but

were down regulated, and were immediately upregulated after a few hours of infection by P. sy-

ringae DC3000. Only one potential regulon was found to be enriched for GO terms, specifically,

‘Chloroplast thylakoid’ function. The P. syringae effector HopI1 is targeted to the chloroplast, and

causes the structure of the chloroplast thylakoid to change, which suppresses the accumulation of

SA (137). This process could explain the down regulation and subsequent up regulation of these

genes found to be co-expressed in both high light and P. syringae DC3000 infection: the effector

HopI1 causes the down regulation of these genes, which are enriched for term ‘chloroplast thy-

lakoid’, in P. syringae DC3000 infection, in order to promote the re-structuring of the thylakoid.

However, as the expression of these genes subsequently becomes upregulated, it is plausible that

this effect of HopI1 is suppressed by the plant in a bid to return the chloroplast thylakoid to its

‘normal’ state.
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4.4 Discussion

In this chapter, the application of Wigwams, a novel tool that mines gene expression datasets in

multiple conditions for evidence of potential co-regulation, has been applied to six high resolution

time course datasets. These data, which have captured the gene expression changes in response to

biotic, abiotic and developmental stresses, have provided the means to discover evidence of shared

regulatory mechanisms working across multiple plant stresses. Here, improvements and possible

limitations on these approaches will be discussed.

465 potential regulons were identified by Wigwams as co-expressed, and possibly co-regulated,

across these datasets. We discovered that, as expected, there was significant crosstalk within the

biotic, abiotic and developmental stresses. However, there was also significant evidence to suggest

that crosstalk between biotic and abiotic stresses exist.

GO term analysis, using the BiNGO (191) plugin for Cytoscape (72) allowed the investigation of

which of the 465 potential regulons had gene members enriched for similar functions, and con-

sequently suggesting these genes were co-expressed. 219 potential regulons had gene members

which were enriched for a specific GO term, whereas the remaining 246 potential regulons re-

turned no GO terms. A possible reason for this may be due to the custom annotation file used for

completing the GO term analysis: the file contained only genes found to be differentially expressed

in two or more stresses. It is likely that some of these 246 potential regulons may have returned

significant GO terms had the analysis been completed using the standard whole annotation. How-

ever, using the whole annotation as the reference set would provide a different universe of genes

than was used in the initial Wigwams analysis to generate the potential regulons. This would skew

the resulting p-values, as all the genes in the genome are considered when calculating the p-values.

An attractive feature of BiNGO is the ability of the researcher to choose the correction method for

p-values: BiNGO supports not only Benjamini and Hochberg FDR (which was used in this anal-

ysis), but also Bonferroni Family Wise Error Rate. Whilst investigation of this different method

of correction to provide significantly different p-values would be an avenue of exploration, it is

known that Bonferroni correction can become conservative if more than 50 functional categories

are involved (149). Since 59 of the potential regulons, out of a total of 465, were identified as hav-

ing over 50 functional categories in GO term analysis using BiNGO, another form of correction
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should be considered, for comparison. For example, S̆idàk correction, which is often confused

with Bonferroni correction due their similarity, does not experience the same conservativeness at

which Bonferroni suffers (126).

To identify groups of co-expressed genes as being co-regulated, the promoters of the gene mem-

bers were analysed for the presence of a conserved motif. 89 of the 465 (19%) potential regulons

had known plant motifs significantly overrepresented within the promoters of the gene members.

Motifs may have been present in the promoters of gene members of the remaining potential reg-

ulons, which have not been formally identified as a potential binding site. To address this issue,

the 500 bp sequence upstream of the transcriptional start site of potential regulon members could

be submitted to a de novo motif search algorithm, such as MEME (18). This would allow the

discovery of overrepresented motifs that were not included in the hypergeometric test used for the

initial motif analysis.
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Chapter 5

Generation and confirmation of a

predicted gene regulatory network

operating in multiple stress responses

Literature is available on the co-expression of genes and whether this co-expression is main-

tained during the response to single stresses (101, 53, 301), however, literature on whether the

co-regulation of genes is maintained during specific stress responses is more difficult to come by,

due to the lack of context-specific (i.e. stress-specific) nature of transcriptional regulation. How-

ever, understanding the transcription regulation of genes which have been identified as significant

to the stress response is important, due to the very nature of this sparse knowledge. By using

modelling techniques to predict a gene regulatory network that is working over multiple stress

responses, these predictions can be used as a basis of experimental validation in non-stress condi-

tions. If these predictions are substantiated in non-stress conditions, the methods of transcriptional

regulation can be transferred to infer the dynamics of regulation during the stress response.

During this chapter, a model of gene regulation will be developed using evidence of potential reg-

ulons from Wigwams. The aim is to identify a gene regulatory network that is involved in the

responses to multiple plant stresses. Therefore, to fulfil this aim, all transcriptionally regulated

components of the network need to be identified, using evidence from Wigwams. Transcriptional

regulation of the genes in potential regulons identified as co-expressed across subsets of stresses
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by Wigwams will be inferred using modelling techniques. Literature on current knowledge of

any regulation within this predicted network will be collected to validate components of the net-

work. Subsequently, validation of novel predicted regulation within this predicted network will

be carried out using experimental techniques in non-stress conditions, which will aim to confirm

the regulation of genes in potential shared regulons. This network will then be investigated us-

ing bioinformatical methods to demonstrate this model is one possible common gene regulatory

network working in response to multiple plant stresses.

5.1 Experimental techniques for the confirmation or elucidation of

transcriptional regulation in GRNs

In Chapter 3 Section 3.1, various mechanisms of regulation, including transcriptional regulation,

were discussed. There are several techniques available for the elucidation, or confirmation of

predicted, transcriptional regulation in gene regulatory networks.

5.1.1 High throughput Yeast-1-Hybrid assay to detect transcription factor binding

to promoters of interest

Y1H, as discussed in Section 2.4, is primarily used to investigate protein-DNA interactions, rather

than protein-protein interactions, which are found using Y2H. Y1H allows the investigation of

which transcription factors bind to a particular section of a promoter. Additionally, Y1H is capa-

ble of discovering regulatory elements within the promoter regions of genes that may have been

predicted bioinformatically using motif analysis, for example. In the last decade, Y1H has been

made compatible with Gateway technology (81), which reduces the need for a transcription fac-

tor library biased towards highly expressed genes, seen in libraries constructed using cDNA from

total RNA. Also, by only using a library containing transcription factor cDNA clones reduces the

background noise experienced when using a library consisting of transcription factors and non-

transcription factors. Using a cDNA library consisting solely of transcription factors also reduces

the cost of detecting protein-DNA interactions (305). Cloned libraries using the Gateway tech-

nology can be pooled so that multiple cDNA clones occupy one well in order make the process

high-throughput (307).
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Y1H screens have been used extensively in the study of protein binding in A. thaliana: by using

Y1H, CHE, also known as TCP11 (At5g08330), was discovered to directly interact with TOC1,

adding a new component to the A. thaliana circadian clock model (236). Liu et al. created cus-

tom cDNA libraries using drought-stressed, cold-stressed and unstressed A. thaliana leaves for

use in Y1H screening. Using the Y1H screening method and these libraries created from drought-

stressed, cold-stressed plants, and unstressed plants, two cDNAs, DREB1A and DREB2A were

identified as directly interacting with the DRE sequence involved in dehydration and low temper-

ature response gene expression (179). The DRE (dehydration-responsive element) element is a

conserved sequence (TACCGACAT), which was found to be essential for the regulation of dehy-

dration responsive gene expression (179). This study, along with others, has made Y1H a viable

choice when studying transcriptional regulation in terms of stress responses. However, these stud-

ies did not use the matrix Y1H method mentioned above, and also required extensive analysis of

the promoter regions before Y1H could be carried out to identify which regions the transcription

factor could bind to.

5.1.2 In vivo detection of transcription factor binding using Chromatin Immuno-

precipitation (ChIP)

The chromatin immunoprecipitation assay is used to investigate the binding of transcription fac-

tors to DNA in vivo (316). Cells are treated with formaldehyde to cross link proteins to DNA,

and then an antibody against a transcription factor of choice is used to immunoprecipitate the

chromatin fragments (141). By subsequently using PCR, the immunoprecipitated DNA can be

amplified (141), hybridised to a microarray (ChIP-chip) (48), or sequenced (ChIP-Seq) (140) to

reveal the sequence occupied by the transcription factor.

However, ChIP-based methods require high-quality antibody, and since the A. thaliana genome

contains over 2000 transcription factors (113), ChIP-based methods for the elucidation of transcrip-

tion regulation on the genome-scale would be expensive and far-fetched. However, ChIP analysis

using antibodies to single transcription factors have been reported in A. thaliana: Zheng et al.

used ChIP-chip to map all binding sites of AGL15, identifying many downstream targets, such as

WRKY18 andMYB4 (342). To investigate the effect of added salicylic acid to the binding of TGA2,

Thibaud-Nissen et al. used ChIP-chip and ChIP-PCR to confirm downstream targets of TGA2.
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Many salicylic acid induced genes were found to be significantly overrepresented among genes

downstream of TGA2 binding sites, suggesting involvement of TGA2 in the stress response (282).

The maturation of ChIP-based technology has yielded a methodology with numerous advantages:

high base-pair resolution of transcription factor binding sites can be achieved using ChIP-Seq (27);

also ChIP-Seq generates data with lower quantities of noise seen in other methods (226).

However, there are a number of disadvantages to ChIP-based methods: firstly, antibodies are ex-

pensive to produce, and this cost is passed on to researchers (327). For high-resolution profiling,

a customised microarray would yield as much biological data for a substantially lower cost. The

amount of starting material needed is also considerably larger than material needed for array and

Y1H methods, and requires significant amounts of amplification of ChIP-enriched DNA (134).

Therefore, due to the limitations of ChIP methods, Y1H will be used in this chapter: Y1H is easily

an easily automated method (310), and with the development of the matrix-Y1H method (305),

allows for high-throughput analysis of many promoters against many transcription factors.

5.2 Integrating potential regulons, gene expression data and predicted

gene regulatory networks

Section 5.1 described two experimental techniques used to elucidate and confirm transcriptional

regulation. However, these methods are time-consuming, expensive, and often do not take the

dynamics of the whole system into account, potentially missing crucial interactions. Indeed, in-

vestigating the A. thaliana system as a whole would prove to be too complex using modern day

experimental techniques. For example, the identification of the regulation of microRNA (miRNAs)

transcription alone in A. thaliana is experimentally challenging, due to tissue- and time-specific

expression, and the low abundance of some miRNAs (313). Despite intensive laboratory research

to determine miRNA function, little is known about miRNA regulation. However, by using compu-

tational methods, miRNAs and their targets mRNAs can be predicted, and subsequently confirmed

using experimental techniques (313), limiting the amount of laboratory-based work, thus reducing

time and effort taken, needed to find such results.

Since cDNA microarrays are powerful techniques for profiling genome-wide mRNA expression,

large amounts of gene expression data can be generated relatively quickly (62). However, as a
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source to study transcriptional regulation, gene expression data is not sufficient: gene expression

is controlled by a number of factors, such as transcription factors, but also post transcriptional,

translational regulation and protein degradation (33) (as described in Section 3.1). These variables

can be modelled as ‘hidden’ state variables, as their values are not known (or we simply do not

have the measurements for these variables) (214).

5.2.1 Predicting gene regulatory networks using gene expression data

A number of models generated using time series gene expression data in response to single stresses

are described below. These models use only transcription factors that are differentially expressed

in response to a stress: it is more likely that these transcription factors are involved in transcrip-

tional regulation in this stress, being as they have altered expression in response to the stress, than

transcription factors not differentially expressed in response to a stress.

5.2.1.1 Network inference

Variational Bayesian State-Space Modelling (VBSSM) (30) is a quantitative modelling approach

which outperforms other network inference tools that do not incorporate hidden states when analysing

time-series data (231). However, this modelling approach is limited by the amount of gene expres-

sion data it can model: the greater the number of time points or genes, the more computationally

expensive the modelling process becomes. Therefore, the question of how to select genes for

modelling is raised.

Christopher Penfold (University of Warwick, unpublished) developed a Metropolis-Hastings ver-

sion of the VBSSM modelling software (30): this Metropolis-Hastings version probabilistically

selects subsets of genes to model from a gene list, as shown in Figure 5.1. N genes are randomly

swapped from the gene list, and one VBSSM model (30) is generated for each set of genes. The

marginal likelihood is used to determine if the updated set of genes is better than the previous ran-

dom selection of genes. This model can be accepted or rejected based on this marginal likelihood.

Another N genes are swapped randomly from the gene list, and this process continues.

A series of networks, where each gene in a dataset is kept systematically in turn in order to generate

a model, was produced for each of the PRESTA time series datasets (described in full below).

Multiple networks were then combined into one single stress-specific network, which will now be
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Pool of genes

Randomly select N genes

Produce model of N genes
usingVBSSM

Figure 5.1: Describing the Metropolis-Hastings extension of the VBSSMmodelling software (30). A pool of genes (for
example, all differentially expressed genes in response to a singular stress) is represented here as blue circles. N genes
(red circles) are randomly selected from this pool of genes, and VBSSM (30) is used to generate a predicted model of
gene regulation for these N genes (here represented as the red circles joined via black lines, which represent edges, or
inferred regulation). This process is repeated for another set of N randomly selected genes. The marginal likelihood is
used to determine if the updated set of genes is better than the previous random selection of genes. This model can be
accepted or rejected based on this marginal likelihood.

termed as a ‘consensus network’, by considering the pairwise intersection of genes. The z-score,

which indicates how many standard deviations an observation is above or below the mean, was

set to 1.65 for each network. A z-score of 1.65 equates to a threshold with 95% confidence in the

interactions between nodes detected. The modelling for each stress-specific dataset was carried

out for approximately 2000 iterations the ensure that the marginal likelihood converged, and a

final consensus model was chosen. Table 5.1 details the number of nodes (i.e. the number of genes

encoding transcription factors) and the number of edges (i.e. the number of interactions between

nodes) for each consensus model. For the purpose of this integrative analysis with Wigwams

potential regulons, consensus networks were filtered on genes which appeared in two or more

stress-specific models.
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Table 5.1: The number of nodes (genes encoding transcription factors) edges (interactions between genes) included in
each stress-specific consensus model

B. cinerea Drought High light P. syringae pv. tomato DC3000 Senescence
Nodes 572 165 538 634 501
Edges 10565 1907 9511 18572 10208

The PRESTA consensus networks were only modelled on transcription factors differentially ex-

pressed in a particular stress, in order to reduce the computational time taken to generate the

models. Therefore, although these networks predict transcriptional regulation, they do not con-

sider non-transcription factors in the models. However, Wigwams do include both transcription

factors and non-transcription factors, making these two approaches complementary. By observing

the number of nodes in each consensus model in Table 5.1, it can also be seen that each network

model is relatively large. Therefore, by integrating the information from Wigwams, one can limit

which interactions predicted by the modelling to validate experimentally.

PRESTA time-series datasets The PRESTA group used microarray analysis to obtain high res-

olution time-course profiles of changes in gene expression during response to stress in A. thaliana

leaves. These datasets were used to identify differentially expressed genes in response to each indi-

vidual stress. Six stress responses were investigated in this way: responses to biotic stress caused

by the pathogens B. cinerea (Windram et al. (322)) and P. syringae pathovar tomato DC3000 (un-

published); responses to abiotic stresses drought (unpublished) and high light (unpublished); and

developmental stresses long (43) and short day senescence (unpublished). A summary of the time

points taken for each experiment, along with the number of replicates, is summarised in Table

2.15.

For the purposes of analysis using Wigwams, the MAANOVA (326) output that combined biolog-

ical replicates was used for each treated dataset, at each timepoint.

5.2.2 Combining network inference findings with experimental results confirms co-

regulation of Wigwams potential regulons

As stated in Section 4.3, 5% of gene members of the total 465 potential regulons were transcription

factors. As 5% of the A. thaliana genome is dedicated to encoding transcription factors (243), this

highlights that transcriptional regulation plays an important in the adaptation and response to plant
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Potential regulon members

Figure 5.2: Illustrating common regulation of transcription factor members of potential regulons. Nodes outlined in
black are potential regulon members, whereas nodes in colour are genes in consensus models. Circular nodes are
non-transcription factors, whereas square nodes are transcription factors. The blue node is a common regulator of the
transcription factor members of the potential regulon, whereas the red and green nodes are not common regulators:
they only regulate one or two transcription factor members of the potential regulon, respectively. Therefore, only the
blue node, which represents a transcription factor also, is a common regulator of this potential regulon, and will be
considered for further analysis.

stress, and that Wigwams is capable of detecting this response proportionally. By identifying the

common regulatory transcription factor of the gene members of a potential regulon, the network

architecture for a shared response to plant stress can be deciphered.

The construction of the single stress response consensus networks, as described in Section 5.2.1.1,

were limited by the amount of gene expression data as an input. It is hypothesised that transcrip-

tion factors form a large component of the stress response (43, 63, 161, 265). Therefore, only

transcription factors differentially expressed in response to a particular stress were considered for

modelling.
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5.2.2.1 The integration of predicted transcriptional regulation from modelling and Wig-

wams potential regulons

The output from applying the VBSSMmodelling algorithm to singular time series datasets consists

of a Cytoscape file, in order to visualise the nodes and edges, and a text file, which consists of

two columns: the left-hand column contains the ATG identifier of a transcription factor, and the

right-hand column contains the ATG identifier of the target gene (also a transcription factor) of the

aforementioned transcription factor. The gene members ofWigwams potential regulons are filtered

for transcription factors only. Identifying predicted regulators of transcription factor members of

potential regulons consists of a simple use of the ‘vlookup’ function in Excel (325).

Since only transcription factors were used for generating the consensus models, only regulation

of transcription factor members of potential regulons can be inferred from the modelling. In order

to investigate whether co-expressed gene members of potential regulons were indeed co-regulated,

the predicted regulators of transcription factor members were considered. Figure 5.2 shows that

if any regulator was predicted to regulate all transcription factor members of a potential regulon,

this was a ‘common’ regulator. This analysis was completed for all 186 potential regulons that

contained transcription factors, out of an original 465 potential regulons detected, as mentioned

previously in Section 4.3. 72 potential regulons were found to have a common transcription fac-

tor regulator, identified from the consensus models. Table 5.2 shows the common regulators of

transcription factor members of all potential regulons, as inferred from consensus models. Poten-

tial regulons with no common regulators of transcription factor members, or with no transcription

factor members, are not included.

Table 5.2: Predicted upstream regulators of transcription factor members of potential regulons. Abbreviations for
which conditions potential regulons are co-expressed are as follows: B - B. cinerea; D - Drought; H - High light;
P - P. syringae DC3000; L - Long day senescence; S - Short day senescence. Regulation of transcription factor
members of potential regulons is also within the same conditions as stated.

Potential regulon number Conditions Regulon TF member Common predicted regulator(s)

5 P, L

MYB2

WRKY45, RHL41, DREB2AERF1

ANAC055

6 B, S
At2g28200

ERF1,WRKY45
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At1g62370

8 B, L
DREB19

WRKY45
At1g62370

15 B, L

STOP1

ANAC092
At5g55970

ANAC092

ANAC083

17 B, P

MYB2 AXR3,WRKY45, ANAC047, ANAC046,

SIGA, RHL41, ANAC092,MYB2,

Rap2.6L, PDF2,MYB15, DREB2A,

HY5, bZIP1, bZIP25, At4g32800,

At3g46080, At4g17810, At3g16350

ANAC055

18 P, L
WRKY6

ANAC092
TCP13

35 B, P

Rap2.6L PMZ, AGL18, bZIP1, DREB2A, ERF1,

ANAC046, ANAC052, PDF2, Rap2.6L,

SIGA,WRKY45,WRKY75, At4g17810ANAC046

36 L, S
At4g13110

AXR3, bZIP25, At3g46080
At1g21000

43 P, L

ANAC046

Rap2.6LATHB-7

TGA1

44 B, L
ANAC029

LIL3:1, ANAC046, At2g28200
At3g51960

64 B, P
WRKY28 AXR3, HY5,MYB112, MYB7, PDF2,

WRKY45ANAC072

87 B, P

ANAC029

RHL41,WRKY45
At-HSFB2A

AGD12

ANAC055
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101 B, L
At5g07580

SIGA
At1g25440

102 B, P
IAA11

AGL18, ANAC046
LIL3:1

117 L, S
WRKY4

ANAC092
HDA3

127 P, L, S
WRKY45 At1g10586, At3g46080, bZIP25, HB-7,

MYB112, ANAC047, APRR5, Rap2.6LANAC047

132 B, L
LIL3:1 HAM4, bZIP1, DREB2A,

ANAC092, RHL41, SIGAATML1

134 B, L
MYB3

AXR3
At1g21000

147 L, S

WRKY45

WRKY45

MYB2

At2g28200

AGL18

ANAC055

At1g62370

178 L, S
MYB15

WRKY75
BLH1

198 L, S
At2g38300

ANAC092
HDA3

208 P, L

PMZ

ANAC092WRKY6

TCP13

216 B, L
WHY3

DREB2A
ATAUX2-11

228 B, L
Rap2.6L PMZ, PDF2, Rap2.6L, SIGA,

WRKY45,WRKY75ANAC003

255 L, S

AtIDD7

SCL3
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ATHB-7

MYB7

271 B, P
LIIL3:1 PMZ, bZIP1, At4g17810, JAZ8

(TIFY5A), ANAC092, ANAC046, SIGASIGA

276 B, L

ANAC046

ANAC092, PDF2, SCL3, WRKY45ANAC002

At3g52800

285 L, S
HDA3

ANAC092, APRR5, SCL3
WRKY75

296 B, P
DREB19

PDF2
ANAC003

304 B, S
ANAC002

ANAC092, PDF2, SCL3, WRKY45
At3g52800

309 L, S

MYB2

WRKY45, PDF2AZF2

ANAC055

310 B, L

MYB2 At4g17810, At3g16350, At3g46080,

At4g32800, AXR3, bZIP25, bZIP1,

DREB2A, HY5,MYB15,MYB2,

ANAC092, ANAC046, ANAC047,

PDF2, Rap2.6L, RHL41, SIGA,

WRKY45

ANAC055

312 B, P
ERF1

PMZ, ANAC092, ANAC046, SIGA
WRKY75

336 B, P

WRKY28

At1g73870, AXR3, HY5, HDA3, PDF2ANAC019

At4g13110

345 L, S
HDA3

ANAC092
At2g38300

378 B, S
LIL3:1 HAM4, bZIP1, DREB2A, ANAC092,

SIGA, RHL41
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ATML1

401 L, S
TRFL8

Rap2.6L
At4g16141

418 L, S

At3g04930

ANAC092, DREB2AANAC019

At-HSFB2A

446 B, P

STOP1

WRKY45

WRKY28

JAZ1 (TIFY10A)

At2g42350

ANAC019

450 B, L

ANAC046

Rap2.6L, At2g28200MYB3

bZIP24

451 L, S

ANAC046

bZIP25At1g21000

At4g13110

71 unique nodes in the consensus models were identified as common regulators of transcription

factors in potential regulons. The transcription factor ANAC092 was predicted to regulate the

most gene members of potential regulons (43 genes). The number of target genes predicted to the

regulated by each transcription factor is shown in Table 5.3.

As can be seen from Table 5.2, the stresses drought and high light are not represented. Although

potential regulons found to have gene members co-expressed in drought and high light conditions

did have transcription factor members, they did not share a common regulatory protein, which

would infer they are not co-regulated, or were not predicted to have any upstream regulators in the

consensus models. An obvious implication of the lack of representation of drought and high light

is that no candidate genes (via the detection of potential regulons) have been identified for further

experimental analysis. Whilst drought and high light have not been seen to be co-regulated with the
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other stresses tested here, this does not mean they are not co-regulated: this analysis relies on the

assumption that the network inference has identified all regulatory behaviour between transcription

factors and their targets. Therefore, if the network inference method is subject to false-negatives,

then it is possible that predicted regulators of potential regulons working in drought and high light

stress will not have been identified.

Table 5.3: The frequency of occurrences a predicted regulated is seen to interact with a target gene

Predicted regulator Occurrences of regulation of targets

ANAC092 43

PDF2 40

WRKY45 38

ANAC046 36

AXR3 31

SIGA 31

bZIP1 30

DREB2A 29

Rap2.6L 28

bZIP25 22

RHL41 22

ANAC047 17

HY5 16

PMZ 15

SCL3 15

MYB112 14

AGL18 13

NF-YB4 12

JAZ10 11

LIL3:1 11

MYB15 9

MYB2 8

TBP1 7
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ANAC052 6

APRR5 6

ATHB7 6

WRKY66 6

WRKY75 6

ERF1 5

ANAC078 4

HDA3 4

HSFB2A 4

PTF1 4

SIG5 4

STZ 4

AGL24 3

ANAC091 3

ARF5 3

ATHB16 3

HAM4 3

TCP14 3

TCP3 3

TCP4 3

TCP8 3

WHY1 3

ANAC070 2

bHLH093 2

JAZ8 2

MYB7 2

SCL13 2

LIIL3:1 1

RGL1 1

TBP1 1
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WRKY28 1

Figure 5.3 illustrates the hypothesis of a transcription factor, predicted to regulate other transcrip-

tion factors, which are members of a potential regulon, also regulating the non-transcription factor

members of the same potential regulon. Publicly available microarray data generated on plants

with the predicted regulatory transcription factor either knocked out or over expressed will iden-

tify downstream targets due to their altered expression. If the transcription factor members of the

potential regulon are seen to have altered expression in the microarray data for the mutant pre-

dicted regulator, it is likely the edges of the model (i.e. the transcriptional regulation) is correct.

Furthermore, if the non-transcription factor members of the potential regulons can be also be seen

to have altered expression, then it is likely the predicted regulatory transcription factor is a com-

mon regulator of all genes in that particular potential regulon. Therefore, the gene members of this

potential regulon are said to be co-regulated.

5.2.2.2 Summary of combining network inference with experimental results to confirm up-

stream regulation of Wigwams potential regulons

Seventy-two potential regulons have transcription factor gene members. Network models con-

structed to predict the transcriptional regulation occurring in each stress were used to identify

common regulators of transcription factor members of potential regulons. 71 unique transcrip-

tion factors were identified in the consensus models as common regulators of transcription factor

members of potential regulons. Validation of predicted regulation can now be attempted.

5.3 Integrating experimental results from gene expression data with

network inference models confirms co-regulation of co-expressed

genes identified by Wigwams

The edges of a network models, which are the interaction between two nodes (in this case, genes),

can be confirmed via experimental data, such as microarray gene expression data, Y1H and ChIP.

By using publicly available data, these interactions shown in Table 5.2 can be confirmed. The
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Predicted 
regulatory TF

Potential 
regulon

TF TF TF

Figure 5.3: Hypothesising that a transcription factor predicted in the consensus model to regulate the transcription factor
members of a potential regulon can also regulate the non-transcription factor members of the potential regulon. The
regulatory transcription factor (in red) is predicted to regulate the transcription factor members (solid blue box) of a
potential regulon. Does the predicted regulatory transcription factor also regulate the non-transcription factor members
(blue outline) of the potential regulon? By using microarray and Y1H data, the edges (i.e. arrows), which represent
transcription regulation, can be confirmed.

data may also confirm the regulation of the non-transcription factor members of the potential

regulons, as hypothesised in Figure 5.3, which were not included in the consensus models. Data

may not be available to confirm these interactions in the specific stress, or stresses, they have been

predicted in, however. By also searching for plant promoter motifs enriched in gene members (both

transcription factors and non-transcription factors) of potential regulons (see Methods 2.7.5.1),

potential binding sites for predicted regulators can be identified. If the motif does not match the

predicted regulator, this data also provides means for identifying a potential common regulator

from known examples in literature.

Hub genes (genes with high connectivity (185)) are likely to be more important for stress tolerance

than genes exhibiting less connectivity (218). The top three largest hubs, found to regulate a

large proportion of transcription factor members of potential regulons, as shown in Table 5.2 were
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considered for further analysis. These three hub genes, WRKY45, ANAC092, and Rap2.6L, for

which microarray gene expression data was available for, were predicted to regulate 38, 43 and 28

unique transcription factors found in potential regulons respectively.

5.3.1 ConfirmingWRKY45 as a common regulator of potential regulons

WRKY45 was predicted to be a common regulator of the transcription factors of 38 potential regu-

lons co-expressed in combinations of the stresses B. cinerea, P. syringae pv. tomato DC3000, long

day senescence and short day senescence. It is hypothesised that if WRKY45 does indeed regulate

the transcription factor members of these potential regulons, then WRKY45 is also capable of co-

regulating non-transcription factor members of these potential regulons. By integrating data from

a microarray experiment carried out on A. thaliana plant over expressing WRKY45, these potential

regulons may be confirmed as direct or indirect targets of WRKY45. These potential regulons are

also more likely to be direct targets of WRKY45 if gene members are enriched for the presence of

a W-Box motif in their promoters.

Table 5.4: Potential regulons with the highest percentage of predicted WRKY45 targets confirmed in 35S:WRKY45
microarray. Abbreviations for which conditions potential regulons are co-expressed are as follows: B - B. cinerea; P -
P. syringae DC3000; L - Long day senescence; S - Short day senescence.

Potential regulon number Conditions Percentage of gene members confirmed
by microarray experiments

275 B, L 33% (10/30)
446 B, P 24% (9/38)
35 B, P 19% (6/32)
147 L, S 13% (6/46)
304 B, S 13% (2/16)

Table 5.4 shows the percentage of gene members of potential regulons confirmed as regulated by

WRKY45 using microarray data (unpublished). The microarray experiments were completed by

Thomas Vigrass (University of Warwick), to find genes differentially expressed in a 35S:WRKY45

line compared to wild type. The microarray was carried out on six week old A. thaliana leaves, us-

ing CATMA v4 arrays (8). The expression data was analysed by Dr. Katherine Denby (University

of Warwick) using LimmaGUI (318). Using Benjamini and Hochberg FDR to correct p-values,

a cutoff of p < 0.05 was used to acquire a list of 1332 differentially expressed genes in response

to 35S:WRKY45 compared to wild type. Whilst this is a reasonable number of differentially ex-

pressed genes (around 5% of all A. thaliana genes), using FC-ranking as well as a non-stringent
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p-value cutoff would generate a more reproducible list of differentially expressed genes (259).

WRKY45 was predicted to regulate 38 potential regulons. However, from Table 5.4, it can be seen

that only five of these potential regulons were confirmed, using the 35S:WRKY45 microarray re-

sults, as having gene members under the regulation of WRKY45. Nine of the 38 genes in potential

regulon 446 were confirmed as being regulated byWRKY45 using the 35S:WRKY45microarray re-

sults, after being predicted to have this transcription factor as a common regulator in the consensus

network models.

The W-Box (PSSM ID S-000390 (337)) was found to be significantly overrepresented in the pro-

moters of gene members in potential regulon 446, with a p-value of 7.955e-04. However, only one

of the nine genes was found to contain a W-Box in its 500 bp promoter sequence upstream of the

transcriptional start site, suggesting that WRKY45 is an indirect regulator of this potential regulon.

The remaining potential regulons shown in Table 5.4 were overrepresented for either the G-Box

motif (PSSM ID M00942 (202)) or the ABF motif (PSSM ID M00442 (112)), neither of which

are preferred binding sites of the predicted regulator of these potential regulons, WRKY45. This

suggests that WRKY45 is an indirect regulator of these potential regulons, and the direct regulator

was unidentified by modelling. Due to the way in which this particular modelling approach works,

direct and indirect regulation cannot be distinguished.

From Figure 5.4 it can be assumed that given the slight time delay of expression of gene members

of potential regulon 446, compared to the expression profile of WRKY45, these genes are indeed

regulated by WRKY45 in response to B. cinerea. However, the expression profiles of the gene

members of potential regulon 446 in response to P. syringae DC3000 infection is more complex:

the initial peak in the expression of the potential regulon gene members may not be differentially

expression due to infection by P. syringae DC3000, but rather a wounding response: infection

by P. syringae primarily triggers a wound response, and it is difficult to tease apart wounding

and pathogen infection (228, 61). Therefore, it can be seen that WRKY45 drives the decrease in

expression of the potential regulon members, suggesting WRKY45 is a negative regulator of these

genes in response to P. syringae DC3000 infection.
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Figure 5.4: Expression profiles of gene members of potential regulon 446 significantly co-expressed in B. cinerea and
P. syringae DC3000 (in blue) and predicted regulator WRKY45 (in red). Nine of the 38 members of potential regulon
446 were found to have altered expression in response to 35S:WRKY45 compared to wild type.

Table 5.5: Potential regulons with the highest percentage of predicted ANAC092 targets confirmed in anac092 and
Est:ANAC092 microarray. Abbreviations for which conditions potential regulons are co-expressed are as follows: B -
B. cinerea; P - P. syringae DC3000; L - Long day senescence; S - Short day senescence.

Potential regulon number Conditions Percentage of gene members confirmed
by microarray experiments

15 B, S 38% (5/13)
310 B, S 27% (8/30)
18 P, L 8% (3/36)
208 P, L 7% (2/27)
304 B, S 6% (1/16)
202 L, S 6% (1/18)
17 B, P 4% (1/25)
271 B, P 3% (1/39)

5.3.2 Confirming ANAC092 as a common regulator of potential regulons

Table 5.5 shows the percentage of gene members of potential regulons confirmed by two inde-

pendent, publicly available, microarray datasets. An estradiol-inducible Est:ANAC092 seedling

overexpressor line was analysed five hours post-induction, compared to Col-0 wild type using

Affymetrix ATH1 microarrays (22). Balazadeh et al. (22) analysed the expression data using

LimmaGUI (318) to identify 170 differentially expressed genes. Balazadeh et al. (22) also per-

formed expression analysis on leaf 11 of anac092 T-DNA mutant (SALK 090154) knockout line,
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compared to Col-0 wild type, 38 days after sowing. These sample were analysed in an identi-

cal manner to the estradiol-inducible Est:ANAC092 overexpressor line expression analysis. Using

both overexpressor and knockout lines enables the researcher to gain a true understanding of the

role of ANAC092: because of gene redundancy, is a gene is knocked out using T-DNA insertion,

for example, the effect of this may be masked by the redundancy in gene function of another gene.

Using overexpressor lines overcomes this issue.

ANAC092 was predicted to regulate 43 potential regulons. However, from Table 5.5, it can be seen

that only eight of these potential regulons were confirmed, using the Est:ANAC092 and anac092

microarray results, as having gene members under the regulation of ANAC092.

Potential regulon 15, which had the highest percentage of gene members confirmed as targets of

ANAC092 using both microarray datasets (22), was found to be significantly overrepresented for

a NAC binding motif in the promoters of gene members. The NAC binding motif (PSSM ID

M01055), with conserved core sequence CGT(GA) as shown in Figure 5.5 b), had a corrected p-

value of 9.366e-03. Olsen et al. confirmed the presence of this motif in the promoter of ANAC092

using EMSA (223). In addition, the core sequence of the NAC binding site was also found in the

promoters of At2g48010, At4g25690 and At4g30390, which, although predicted to be regulated by

ANAC092, were not confirmed as such in the microarray data.

Given the correlated nature of the expression profiles of the predicted regulator ANAC092 to its

potential targets, it is difficult to decipher whether this transcription factor does indeed regulate the

gene members of potential regulon 15.

Potential regulons 18 and 310, which had three and 8 gene members confirmed as targets of

ANAC092 in both microarray experiments respectively, were both found to be significantly over-

represented for the W-Box motif in the promoters of their gene members. Potential regulon 310

was predicted to be co-regulated by WRKY45, providing an alternative, and perhaps more likely

regulator, given the presence of the W-Box motif in the promoters of gene members. Potential

regulon 18, however, is only predicted to be regulated by ANAC092; given the low percentage

of confirmed targets of ANAC092 in this regulon, this transcription factor may not be the correct

regulator, therefore, invalidating this modelling prediction.
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Figure 5.5: ANAC092 regulates a potential regulon co-expressed in B. cinerea and long day senescence. a) Members of
potential regulon 15, with predicted regulator ANAC092. Transcription factor members of potential regulon as shown
as squares, whereas non-transcription factors are shown as circles. Genes whose predicted regulation by ANAC092 has
been confirmed by anac092 or Est:ANAC092 microarrays are shown as red arrows. b) NAC binding motif (223) found
to be significantly overrepresented in promoters of gene members of potential regulon 15, with a corrected p-value of
9.366e-03. c) Expression profiles of gene members of potential regulon 15 significantly co-expressed in B. cinerea and
long day senescence (in blue) and predicted regulator ANAC092, also a gene members of potential regulon 15 (in red).
Five of the 13 members of potential regulon 15 were found to have altered expression in response to Est:ANAC092
compared to wild type, and anac092 mutant compared to wild type.
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5.3.3 Confirming Rap2.6L as a common regulator of potential regulons

Table 5.6: Potential regulons with the highest percentage of predicted Rap2.6L targets confirmed in rap2.6L microar-
ray (58). Only potential regulons with at least 50% of gene members confirmed as targets of Rap2.6L by microarray
data are shown. Abbreviations for which conditions potential regulons are co-expressed are as follows: B - B. cinerea;
P - P. syringae DC3000; L - Long day senescence; S - Short day senescence.

Potential regulon number Conditions Percentage of gene members confirmed
by microarray experiments

378 B, S 72.88% (43/59)
296 B, P 66.67% (10/15)
132 B, L 63.41% (26/41)
271 B, P 61.54% (24/39)
310 B, L 60% (18/30)
309 L, S 56% (13/23)
126 B, L, S 53.33% (8/15)
297 B, L 52.77% (19/36)
48 B, L 51.72% (15/29)
216 B, L 51.52% (17/33)
133 B, S 50% (7/14)
102 B, P 50% (16/32)

Table 5.6 shows the percentage of gene members of potential regulons confirmed by a rap2.6L

mutant array (58). Rap2.6L was predicted to regulate transcription factors in 27 potential regulons;

Table 5.6 shows the top 12 potential regulons with 50% or more of gene members confirmed as

Rap2.6L targets. Two independent mutant lines, generated by T-DNA insertion into the Rap2.6L

gene, were compared against three independent wild type lines using Affymetric ATH1 microar-

rays. Che et al. (58) analysed the expression data to identify 5744 differentially expressed genes.

Rap2.6L was predicted to regulate 28 potential regulons: 27 of these potential regulons were con-

firmed, using the rap2.6L microarray results, as having gene members under the regulation of

Rap2.6L.

APETALA2 (AP2) transcription factors, which include Rap2.6L, are predicted to bind to GCC-box

motifs (197, 97) (PSSM ID S000430 (44)) or the CACCTG sequence (219) (PSSM ID S000315 (143)).

However, none of the potential regulons listed in Table 5.6 were found to have either of these mo-

tifs significantly overrepresented within the promoters of gene members. Due to the lack of a

known binding site identified for Rap2.6L in the promoters of gene members of these potential

regulons it can be concluded that either Rap2.6L binds to an uncharacterised binding domain, or

that Rap2.6L is an indirect regulator of these potential regulons.
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5.3.4 Summary of validating regulation inferred through network inference using

microarray gene expression data

To summarise, the edges of network models seen to show a common regulator of transcription

factor members of potential regulon were attempted to be validated using microarray gene expres-

sion data: if these potential regulons are indeed targets of a common regulator, as predicted, the

gene members should be differentially expressed in response to altered expression of the regulator.

By searching for plant promoter motifs enriched in gene members (both transcription factors and

non-transcription factors) of potential regulons, binding sites for predicted regulators could also

be identified.

The three largest hub genes, WRKY45, ANAC092 and Rap2.6L were considered in this analysis, as

they were seen to regulate a larger than average number of targets, and array data for these genes

was available. 33% of gene members in potential regulon 275, which is co-expressed in conditions

B. cinerea and long day senescence, were differentially expressed in a microarray completed on

35S:WRKY45 A. thaliana leaves compared to control. On closer analysis, none of these genes

were found to contain the W-Box motif in their promoters. However, potential regulon 446, which

is co-expressed in conditions B. cinerea infection and P. syringae DC3000 infection was found

to be enriched for the W-Box motif. Comparing the expression profiles of WRKY45 to those of

the potential regulon gene members in B. cinerea infection and P. syringae DC3000 infection

suggested it was plausible WRKY45 could be a common regulator. The gene members of the

potential regulon were enriched for the W-Box, however, out of the nine found to be differentially

expressed in response to the 35S:WRKY45 microarray, only one gene had the W-Box present in

its promoter. This suggests that WRKY45 is an indirect regulator of these potential regulons: the

modelling technique used does not distinguish between direct and indirect regulation, making this

a plausible conclusion.

38% of gene members of potential regulon 15, which is co-expressed in conditions B. cinerea and

short day senescence, were differentially expressed in both a microarray completed on Est:ANAC092

overexpressor lines and anac092 T-DNA mutant lines, compared to control. The gene members

were also significantly enriched for a NAC binding motif: this motif was also identified in three

additional gene members of the potential regulon which were not identified as differentially ex-
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pression in either microarray. However, the expression profiles of ANAC092 and of its predicted

targets are tightly correlated in both conditions, making it difficult to confirm this regulation.

72 potential regulons were found to have gene members differentially expressed in response to

rap2.6L in microarray analysis. However, none of the potential regulons were found to have a

suitable binding site for the AP2 transcription factor, such as a GCC-box, in the promoters of the

gene members. Althought Rap2.6L could bind to an unknown site, it is possible that Rap2.6L is

an indirect regulator of these potential regulons.

5.4 The role of the ERF transcription factor Rap2.6L as a regulator

of genes involved in multiple stress responses

Rap2.6L has been implicated as having a role in the drought and salt stress responses (163), but

previous studies do not suggest any role in crosstalk between biotic, abiotic and developmental

stress responses. However, using qRT-PCR after independent treatment of A. thaliana plants with

stress hormones SA, JA, ABA and ET showed that Rap2.6L transcript abundance was significantly

increased 6 hours post-exposure (163). Transcript abundance of Rap2.6L remained significantly

increased 24 hours post-exposure to JA and ET, although transcript abundance exhibited no signifi-

cant change 24 hours post-exposure to SA and ABA (163). Although ABA is known to have a role

in abiotic stress response, JA, SA and ET are involved in the biotic stress response (99), suggesting

contribution of Rap2.6L in both abiotic and biotic stress responses.

In the previous section, combining potential regulons found using Wigwams on time course gene

expression data with inferred network models had shown Rap2.6L to be a predicted regulator of

28 groups of co-expressed genes (see Table 5.3). Microarray analysis on rap2.6L mutant lines

provided over five thousand differentially expressed genes, identifying direct and indirect targets

of Rap2.6L (58). Despite a high frequency of potential regulon gene members being identified as

down regulated in rap2.6L mutant lines, a potential binding site for Rap2.6L in the promoters of

the gene members could not be identified.

Of the 28 potential regulons predicted to be co-regulated by Rap2.6L, none were co-expressed in

the stress conditions drought or high light. Previous studies have shown that over expression of

Rap2.6L can prevent premature senescence due to water logging (178), and also enhances drought
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tolerance (163). In terms of biotic stress responses, rap2.6L mutants have been seen to have

reduced susceptibility to P. syringae pv. DC3000 (271). However, the role and downstream targets

of Rap2.6L in a gene regulatory network, and the influence of Rap2.6L on biotic and senescence

stresses have not been investigated in great depth. Since all 27 potential regulons predicted by

network modelling to be co-regulated by Rap2.6L were found to be co-expressed in combinations

of B. cinerea infection, P. syringae pv. DC3000 infection, short day and long day senescence (see

Table 5.6), it seems prudent to investigate the role of Rap2.6L in these stresses.

A 35S:Rap2.6L line with WS ecotype background was acquired from Dr. Nataraj Kav (Univer-

sity of Alberta). This line was used in Krishnaswamy et al. (163) to investigate the effect over

expression of Rap2.6L on the response to abiotic stresses.

5.4.1 Network inference predicts a gene regulatory network around Rap2.6L

Since the 28 potential regulons in Section 5.3 were not significantly overrepresented for a known

AP2 binding motif in the promoters of regulon gene members, three additional potential regulons,

which were initially discarded in the pruning stage (see Chapter 4) were selected for further anal-

ysis. These potential regulons were initially discarded due to another potential regulon having

similar expression profiles, and was overall more significant than the potential regulons we wish

to study now. These new potential regulons also yielded additional evidence for a possible binding

site for the predicted regulator Rap2.6L, as shown in the section below.

5.4.1.1 De novomotif analysis yields potential binding sites for transcription factors

In order to identify a possible binding site for the Rap2.6L transcription factor in the promoters of

gene members of potential regulons shown in Table 5.7, a motif analysis was performed to identify

conserved motifs. By identifying the presence of a conserved motif, this substantiates the choice

of using these potential regulons in further analysis, and will increase the likelihood of these genes

being co-regulated by a common transcription factor, or factors.

Using the hypergeometric test (outlined in Section 2.7.5.1) as described in Section 4.3.1.1, no

significantly overrepresented motifs were discovered in the promoters of gene members of the po-

tential regulons. Therefore, MEME (19), which does not use PSSMs representing known plant pro-

moter motifs, was used to identify a potential binding site for a common regulatory transcription
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Figure 5.6: Promoter motifs significantly overrepresented in the promoters of all gene members of potential regulons
listed in Table 5.7. a) The (G)GACCAC motif is the preferred binding site of TCP4 (253). The p-value associated with
this motif is 1.51e-07. b) The ACCGCC motif is a variant of the GCCGCC motif, which is the preferential binding site
of AP2-domain transcription factors. AP2-domain proteins, such as Rap2.6L are also found to bind to this motif (329).
The p-value associated with this motif is 1.000e-06.

factor of the gene members of the potential regulons. The 500bp promoter sequences upstream

of the transcriptional start site of the gene members were acquired from TAIR and submitted

to MEME, which searches the sequences for similarities, and produces a motif for each pattern

MEME discovers.

The MEME analysis was completed twice using the promoter sequences of the gene members

of the potential regulons: once searching for motifs with an optimum width between four and

eight nucleotides, and second searching for motifs with an optimum width between six and 12

nucleotides. Plant motifs are believed to have an optimal width of between four and 12 nu-

cleotides (136, 328, 176).

One motif per search was identified as a possible binding site for a common regulatory transcrip-

tion factor in the promoters of the gene in the potential regulons listed in Table 5.7. These motifs,
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shown in Figure 5.6, were likely to be true motifs significantly overrepresented in the promoters

of these gene members due to the location of the motif being skewed towards the transcriptional

start site (130, 198): McGrath et al. noted that DNA binding motifs were more likely to be iden-

tified near the transcriptional start sites of genes, and as the positioning of motifs is precise (130),

it is more likely that motifs close to transcriptional start sites are responsible for the regulatory

transcription factor binding there and initiating transcription of that particular gene (198).

Figure 5.6 a) shows the (G)GACCAC motif, which is the preferred binding site of TCP4 (253).

Schommer et al. found that miR319, a plant microRNA, regulates the translation of TCP4, which

was discovered to have a role in negatively regulating leaf growth, and positively regulating leaf

senescence (253). Due to TCP4 being identified as capable of binding to the promoters of tran-

scription factor members of the potential regulons, this is a likely candidate for a direct regulator.

Figure 5.6 b) shows a variant of the GCC-box promoter motif, an ethylene responsive element,

which is the preferred binding site of AP2-domain transcription factors (260), such as Rap2.6L.

The ACCGCC motif has been shown to bind AP2 protein transcription factors in barley: the bind-

ing of these proteins to this ACCGCC motif was enhanced by ABA and drought treatment (329).

Yang et al. showed that AtERF4 was capable of binding to the ACCGCC motif using elec-

trophoretic mobility shift assays, hypothesising that these regulon genes may also have a role in

the ethylene response (332). The presence of this motif in the promoters of gene members of these

potential regulons suggests Rap2.6L is capable of directly regulating these genes, and substantiates

the need to investigate the regulation of these potential regulons further.

5.4.1.2 Predicted regulation of potential regulons working across multiple stresses

The gene members of these potential regulons are shown in Table 5.7. Regulators of the tran-

scription factor members of the three potential regulons were inferred from the consensus network

models, originally described in Section 5.2.1.1. By identifying likely co-regulators of the transcrip-

tion factor members of the potential regulons, we can hypothesise that these co-regulators will also

regulate the non-transcription factor members. Figure 5.7 illustrates the predicted gene regulatory

network around the transcription factor members of these three potential regulons.

Figure 5.7 shows the predicted gene regulatory network around genes encoding transcription fac-

tors which are members of three potential regulons (see Table 5.7) found to be co-expressed in B.
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Table 5.7: Gene members of potential regulons predicted to be co-regulated by Rap2.6L. Abbreviations for conditions
potential regulons are co-expressed are as follows: B - B. cinerea; P - P. syringae DC3000; L - Long day senescence.

Stress combination ATG identifier Gene name
B, P AT1G01480 ACS2
B, P AT1G63720
B, P AT1G70300 KUP6
B, P AT1G71520
B, P AT1G22400 UGT85A1
B, P AT2G33710
B, P AT2G47190 MYB2
B, P AT3G50310 MAPKKK20
B, P AT3G06490 MYB108
B, P AT3G21700 SGP2
B, P AT3G25250 AGC2-1
B, P AT5G14700
B, P AT5G15160 BANQUO 2
B, P AT5G24600
B, P AT5G63130
B, P AT5G39920
P, L AT1G01480 ACS2
P, L AT1G01725
P, L AT1G05100 MAPKKK18
P, L AT1G14420 AT59
P, L AT1G15430
P, L AT1G71520
P, L AT1G52565
P, L AT2G25460
P, L AT3G02150 PTF1
P, L AT3G06490 MYB108
P, L AT3G21700 SGP2
P, L AT3G53600
P, L AT4G21440 ATMYB102
P, L AT4G39670
P, L AT5G04540
P, L AT5G13880
P, L AT5G15160 BANQUO 2
P, L AT5G24600
P, L AT5G34930
P, L AT5G45900 APG7
P, L AT5G16830 SYP21
B, P, L AT1G01480 ACS2
B, P, L AT1G71520
B, P, L AT3G06490 MYB108
B, P, L AT3G21700 SGP2
B, P, L AT5G15160 BANQUO 2
B, P, L AT5G24600
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Figure 5.7: Predicted gene regulatory network around genes encoding transcription factors in potential regulons found to be co-expressed in B. cinerea, P. syringae DC3000 and long day
senescence. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P. syringae DC3000 and long day senescence.
Genes highlighted in purple are co-expressed in all three stresses. Other genes present encode transcription factors predicted by VBSSM modelling to regulate transcription factors in
potential regulons presented here. Edges of regulation are labelled as ‘VBSSM’, which represents predicted regulation, or ‘Y1H’, where this regulation has been confirmed by Y1H
experimentation.
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cinerea, P. syringae DC3000 and long day senescence. The edges, i.e. the arrows, represent tran-

scriptional regulation, and are predicted by the consensus network modelling. However, the arrow

does not infer direction, for example, MYB108→ ANAC019, which has been confirmed by Yeast

1-Hybrid, was predicted to have the opposite regulation. VBSSM infers regulation between two

genes, but not necessarily the correct direction. Therefore, these regulations need to be confirmed

experimentally. Two edges in the network in Figure 5.7 (MYB108 → ANAC019, and MYB2 →

ANAC055) have been confirmed previously by Richard Hickman (University of Warwick) using

Y1H, supporting the notion to investigate this particular set of potential regulons.

Figure 5.7 also shows predicted regulators of transcription factors which are members of the po-

tential regulons (Table 5.7), in addition to Rap2.6L. These genes, WRKY45, ANAC092, PDF2 and

ANAC047 were included in this model due to the availability of microarray data for ANAC092 and

WRKY45, which can confirm downstream predicted targets, and phenotype evidence to suggest

roles for PDF2 and ANAC047 in stress responses: ANAC047 knockout transgenic lines showed

reduced susceptibility to B. cinerea infection, whilst A. thaliana plant over expressing ANAC047

exhibited increased susceptibility to B. cinerea and an early senescence phenotype; PDF2 is cru-

cial for the induction of the JA-dependent response (174), which is crucial for the response to

necrotrophic pathogens, such as B. cinerea. ANAC019 and ANAC055 were included due to their

mediator-role of regulation between Rap2.6L and the transcription factor members of the poten-

tial regulons. Microarray data is available for both ANAC055 and ANAC019. These two NAC

genes may also be identified as differentially expressed in Rap2.6L microarray data, which would

confirm Rap2.6L indirect regulation of potential regulons via ANAC055 and ANAC019.

Figure 5.8 shows the hypothesis that the non-transcription factor members of the potential regu-

lons (shown in Table 5.7) are also regulated by Rap2.6L: this prediction was not included in the

consensus models, as due to computational constraints, only transcription factors were included in

the modelling. Therefore, it is hypothesised that if Rap2.6L is predicted to regulate transcription

factor members of the potential regulons, it may also be a common regulator for all gene members

of the potential regulons, including non-transcription factors.

By validating this quantitative model experimentally, a network underpinning the response to mul-

tiple stresses can be identified. This has considerable impact on the development of commercially

important crop species to be resistant to multiple stress responses by the incorporation, or alteration
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Figure 5.8: Hypothesising that Rap2.6L is the upstream regulator of non transcription factors found in potential regulons co-expressed in B. cinerea, P. syringae DC3000 and long day
senescence. Since the VBSSMmodels only included transcription factors, we hypothesise that Rap2.6L is also a common regulator of these genes encoding non transcription factors found
in potential regulons, along with genes encoding transcription factors in Figure 5.7. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted
in red are co-expressed in P. syringae DC3000 and long day senescence. Genes highlighted in purple are co-expressed in all three stresses.

166



of key components of this network.

Figure 5.9 shows the expression profiles of the gene members of the potential regulons shown in Ta-

ble 5.7, which are significantly co-expressed in a combination of the stress B. cinerea infection, P.

syringae DC3000 infection and long day senescence, along with the expression profile of Rap2.6L,

which is predicted to regulate the transcription factor members of these potential regulons. As can

be seen from Figure 5.9, the expression profile of Rap2.6L is correlated to the expression profiles

of the potential regulons in each stress condition: the rapid increase in expression of the poten-

tial regulons’ gene members in P. syringae DC3000 infection may be due to wounding, and not

necessarily due to differential expression because of infection. Therefore, Rap2.6L expression pos-

itively regulates the expression of potential regulon members in P. syringae DC3000 infection; the

expression of the potential regulons in response to B. cinerea infection seems to drive the expres-

sion of Rap2.6L, due to the slight time delay of the predicted regulators expression, compared to

the expression of gene members of the potential regulons; the expression profiles of gene members

of the potential regulons exhibit a time delay compared to the predicted regulator Rap2.6L in long

day senescence, suggesting Rap2.6L is indeed a potential positive regulator of these genes in this

particular stress.

Confirmation of co-regulation of these potential regulons in Table 5.7 by Rap2.6L will be two-fold:

firstly, using microarray analysis of 35S:Rap2.6L to observe whether the gene members, both tran-

scription factors and non-transcription factors (shown in Figure 5.8) of the potential regulons are

differentially expressed. One would expect to see the a majority of predicted transcription factor

targets and non-transcription factor targets as differentially expressed in response to 35S:Rap2.6L.

However, microarray experiments are capable of generating false negatives (234), and therefore

not all truly differentially expressed genes will be identified as such. Therefore, it is expected that

not all genes identified as targets of Rap2.6L will be confirmed using microarray technology alone.

Secondly, using Y1H to screen the promoters of transcription factor members of the potential

regulons for binding of Rap2.6L. The gene members of the potential regulons which encode tran-

scription factors will also be analysed using phenotype testing to confirm their importance in the

defence response. Knockout and overexpressor mutant lines of genes encoding transcription factor

members of the potential regulons will be screened for phenotypes against the stress conditions

the genes are predicted to be co-expressed.
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Figure 5.9: Gene expression profiles of potential regulon members in the conditions B. cinerea infection, P. syringae pv. DC3000 infection and long day senescence, along with the
expression profile of predicted regulator Rap2.6L (shown in red). Gene expression profiles in blue are significantly co-expressed in those conditions. Gene expression profiles in black are
not significantly co-expressed in those conditions.

168



5.4.1.3 Identifying genes important in the response to multiple stresses by phenotype testing

If the expression of a gene encoding a transcription factor is altered by mutation (such as knockout

or over expression), then a phenotype may be seen when studying a specific biological process.

If a phenotype is observed, then it can be hypothesised the transcription factor is important in

the response to that particular biological process. Therefore, by altering the expression of the

transcription factor, the downstream targets are no longer regulated in the same manner as observed

in wild type plants.

However, since many components of signalling pathways are functionally redundant, by using

knockout mutants (75), a phenotype based on the altered expression of the gene of interest may

not be seen. Overexpressor mutations aim to overcome this redundancy (338).

Figure 5.10 shows a developmental and growth phenotype of the 35S:Rap2.6L plants compared to

their background control A. thaliana ecotype WS plants. As can be clearly seen, the 35S:Rap2.6L

have bolted and flowered much earlier than their control counterpart. Krishnaswamy et al. in-

vestigated the role of Rap2.6L in plant growth and development, and saw earlier flowering phe-

notypes in the 35S:Rap2.6L line compared to wild type, suggesting a role for Rap2.6L in flower

development (163). Literature has suggested, however, that AP2 gene family members negatively

regulate flowering time: the microRNA miR172 has been shown to regulate a subfamily of AP2

genes. Overexpression of miR172 down regulates the target AP2 genes, and subsequently encour-

ages early flowering (16). Despite this, early flowering phenotypes have been observed in plants

over expressing important stress-related genes, suggesting that the early flowering phenotype of

35S:Rap2.6L may be due to the up regulation of stress-related genes (163).

Table 5.8 shows the results of phenotyping experiments, on mutant and overexpressor A. thaliana

lines with the appropriate background (see Section 2.2 for methods), during the application of var-

ious stresses. Table 5.8 also includes results obtained from literature. Unless stated as a phenotype

observed in the literature, all phenotyping screens were carried out as initial described in Methods

section 2.2.

Both the Rap2.6L mutant line and the 35S:Rap2.6L transgenic line provide novel phenotypes in

response to B. cinerea and dark induced senescence, as previous studies have focused on the role of

Rap2.6L in abiotic stress responses (163). The B. cinerea and P. syringae pv. DC3000 phenotypes
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Figure 5.10: Developemental and early flowering phenotypes of 35S:Rap2.6L (right) compared to its background control, Wassilewskija (left). 35S:Rap2.6L showed accelerated growth
compared to its background control, A. thaliana ecotype WS.
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Table 5.8: Phenotypes of mutant plants (either knockout or plants over expressing) genes encoding transcription factors
in network described in Figure 5.7. Phenotypes with * represent experiment carried out by myself. The remaining
results were found by a member of the PRESTA group or through literature.

Gene Mutant type B. cinerea P. syringae
DC3000

Dark induced
senescence

Rap2.6L Overexpressor Reduced
susceptibility*

Rap2.6L Knockout Increased sus-
ceptibility*

Reduced sus-
ceptibility (271)

Mixed pheno-
type

MYB108 Knockout Reduced
susceptibil-
ity (201)

Wildtype (201) Early

ANAC019 Overexpressor Increased
susceptibil-
ity (46)

ANAC019 Knockout Wildtype* Late
ANAC055 Overexpressor Reduced

susceptibility*
Late*

ANAC055 Knockout Reduced
susceptibility*

Late

ANAC092 Overexpressor Reduced
susceptibility

Reduced sus-
ceptibility

ANAC092 Knockout Reduced
susceptibility

Reduced sus-
ceptibility

ANAC047 Overexpressor Increased sus-
ceptibility*

Early

ANAC047 Knockout Reduced
susceptibility*

WRKY45 Knockout Increased sus-
ceptibility

Late

PDF2 Knockout Wildtype
At1g17520 Knockout Wildtype

observed in the myb108 mutant line have previously been seen by Mengiste et al., and reproduced

by members of the PRESTA group. However, the phenotypes observed by the MYB108 knockout

mutant is at odds with literature phenotypes: Mandaokar and Browse observed delayed senescence

in myb108 mutant lines (192).

NAC transcription factors have been heavily implemented in the response to abiotic stresses (255,

238, 224), meaning the majority of the phenotypes observed by NAC family member mutant lines

during phenotyping experiments (Section 2.2), excluding the phenotypes from literature, are novel.

The phenotypes observed for both WRKY45 and PDF2 are also novel.

By observing these phenotypes of components of the network shown in Figure 5.7, this suggests
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that this network does have a role in the stresses B. cinerea, P. syringae DC3000 and long day

senescence, which the potential regulon components shown in Table 5.7 are predicted to be co-

expressed and co-regulated in. The regulators are also predicted in the modelling to regulate these

potential regulons in the same combinations of stresses.

5.4.1.4 Analysis of 35S:Rap2.6L by microarray to identify differentially expressed genes

As previously stated, the microarray analysis of 35S:Rap2.6L is used to observe whether the gene

members, both transcription factors and non-transcription factors (shown in Figures 5.7 and 5.8

respectively) of the potential regulons shown in Table 5.7 are differentially expressed. Transgenic

plants over expressing Rap2.6L were not subject to stress treatment, as Rap2.6L is already ex-

pressed, and expression does not need inducing via application of a stress.

Three biological replicates of amplified RNA (aRNA) were pooled for 35S:Rap2.6L leaf samples

and wild type WS leaf samples. Both the leaf samples for the 35S:Rap2.6L line and the WS control

were 28 days old at harvesting. Details of plant growth conditions were originally described in

Methods section 2.1. This comparison between 35S:Rap2.6L and WS included three technical

replicates, including dye swaps. Therefore, six arrays were completed in total. All protocols for

labelling, hybridisation and scanning of array slides are discussed in Section 2.5.

Raw expression data was processed using LimmaGUI (318), using no background correction, and

normalised both within (using print tip loess normalisation) and between arrays (using quantile

normalisation) for each 35S:Rap2.6L versus control WS comparison. A least squares linear model

was used to identify 94 differentially expressed genes, using a Benjamini and Hochberg FDR, and

considering all genes with a corrected p-value ≤ 0.05.

None of the gene members of the three potential regulons shown in Table 5.7 were differentially

expressed in the 35S:Rap2.6L array. This suggests that Rap2.6L may be an indirect regulator of

these potential regulons, with a direct regulator driving the expression of the gene members of

these potential regulons. However, 13 unique genes (10 non-transcription factors, three transcrip-

tion factors) were identified as differentially expressed in the rap2.6L microarrays conducted by

Che et al. (58), which are shown in Table 5.9.

The original network models shown in Figures 5.7 and 5.8, illustrating the predicted and hypothe-
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Table 5.9: Gene members of all three potential regulons identified as differentially expressed in rap2.6Lmicroarray (58).
Abbreviations for conditions potential regulons are co-expressed are as follows: B - B. cinerea; P - P. syringae DC3000;
L - Long day senescence.

Stresses ATG identifier Gene name
B,P AT1G63720
B,P AT1G70300 KUP6
B,P AT2G33710
B,P AT3G50310 MAPKKK20
B,P AT5G63130
P,L AT1G15430
P,L AT4G21440 ATMYB102
P,L AT5G04540
P,L AT5G13880
P,L AT5G16830 SYP21
B,P,L AT1G01480 ACS2
B,P,L AT5G15160 BNQ 2
B,P,L AT5G24600

sised regulation of transcription factor and non-transcription factor members of potential regulons

shown in Table 5.7, respectively, by Rap2.6L have been modified to show the edges which have

been confirmed by rap2.6L array data (58). Figure 5.11 illustrates the confirmed predicted edges

of regulation of transcription factor members of potential regulons by Rap2.6L, and Figure 5.12

illustrates the confirmed hypothesised edges of regulation of non-transcription factor members of

potential regulons by Rap2.6L.

5.4.1.5 Combining publicly available microarray data to confirm further edges of a gene

regulatory network

The predicted gene regulatory network shown in Figure 5.7 also contains predicted regulators

WRKY45, ANAC047, PDF2, ANAC055, ANAC019 and ANAC092. These genes were predicted

to regulate the expression of transcription factor members of potential regulons co-expressed in

combinations of the stresses B. cinerea, P. syringae DC3000 and long day senescence (shown

in Table 5.7). They were included in this network due to mutant lines and transgenic lines over

expressing these genes exhibiting phenotypes in response to B. cinerea, P. syringae DC3000 and

long day senescence, and also the availability of array data forWRKY45, ANAC092, ANAC019 and

ANAC055. It is hoped that Y1H on transcription factor members of the three potential regulons

will identify PDF2 and ANAC047 as direct regulators, confirming this predicted regulation.
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Figure 5.11: Edges of regulation of transcription factor members of potential regulons confirmed using rap2.6L array data (58). Based on the original network shown in Figure 5.7,
where a predicted gene regulatory network around genes encoding transcription factors in potential regulons co-expressed in combinations of B. cinerea, P. syringae DC3000 and long day
senescence. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P. syringae DC3000 and long day senescence.
Genes highlighted in purple are co-expressed in all three stresses. Edges confirmed by rap2.6L array data are shown as a thick green line, and labelled ‘MA’.

174



Figure 5.12: Edges of regulation of non-transcription factor members of potential regulons confirmed using rap2.6L array data (58). Based on the original network shown in Figure 5.8,
where it was hypothesised that Rap2.6L regulated non-transcription factor members of potential regulons co-expressed in combinations of B. cinerea, P. syringae DC3000 and long day
senescence. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P. syringae DC3000 and long day senescence.
Genes highlighted in purple are co-expressed in all three stresses. Edges confirmed by rap2.6L array data are shown as a thick green line.
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Array data is available for four of the predicted transcription factor regulators shown in Fig-

ure 5.7: 35S:WRKY45 (unpublished, Thomas Vigrass, University of Warwick), anac092 and

Est:ANAC092 (22), 35S:ANAC055 (291) and 35S:ANAC019 (291), which provide a list of dif-

ferentially expressed genes in response to one of these transcription factors having they expression

knocked out or over expressed. Therefore, these differentially expressed genes are directly, or

indirectly, regulated by the transcription factor in question. By integrating these differentially ex-

pressed genes with the predicted edges observed in Figures 5.11 and 5.12, additional edges of

regulation can be confirmed.

The anac092 array data (22) did not identify the four predicted transcription factor targets,MYB102,

TCP13, At2g33710, and At1g71520, which are shown in Figure 5.7, as differentially expressed.

The Est:ANAC092 array data (22) only identified one non-transcription factor member, At4g39670,

of the potential regulon co-expressed in stresses P. syringae DC3000 and long day senescence, as

differentially expressed. This regulation was not predicted by the modelling, as only transcrip-

tion factors were included in the network models. The regulation was not hypothesised either,

as ANAC092 was not identified as a common regulator of all transcription factor members of the

potential regulons. A NAC binding site (223) was not identified in the 500 bp upstream of the

transcriptional start site of At4g39670 however, indicating ANAC092 is an indirect regulator of

this gene.

Two non-transcription factor members, At1g22400 and At5g14700, of the potential regulon co-

expressed in B. cinerea and P. syringae DC3000 infection (shown in Table 5.7) were identified as

differentially expressed in the 35S:WRKY45 array data (unpublished, Thomas Vigrass, University

of Warwick). Again, this regulation was not predicted by the modelling, as only transcription

factors were included in the network models, and was not hypothesised, as WRKY45 was not

identified as a common regulator of all transcription factor members of the potential regulons. W-

Box motifs (337) were not identified in the 500 bp upstream of the transcriptional start site of

At1g22400 and At5g14700, suggesting WRKY45 is an indirect regulator of these genes.

The predicted regulation ofMYB2 by both ANAC019 and ANAC092was validated in the 35S:ANAC019

and 35S:ANAC055 array data (291). The confirmation of the predicted regulation of MYB2 is

shown in Figure 5.13. However, the regulation of MYB108 by ANAC019 and ANAC055 was not

confirmed, which can be explained by a number of reasons: there could be errors in the designs of
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the microarray experiment (such as flaws in the collection of samples, analysis, or interpretation

of the resulting data), which would lead to the wrong genes being identified as differentially ex-

pressed (286). It is also possible that the regulation predicted by the modelling approach used was

incorrect.

The predicted regulation of BANQUO 2, At1g71520 and At2g33710 by ANAC055 was also not

confirmed in the 35S:ANAC055 array, suggesting that this predicted regulation may be indirect. An

interesting observation is the confirmed regulation of MYB2 by ANAC055, which is the opposite

interaction seen in the Y1H results (where MYB2 is seen to bind to the promoter of ANAC055).

This suggests a feedback loop in the regulation in this GRN.

5.4.1.6 Summary of the integration of microarray data to confirm predicted gene regula-

tory networks

Figure 5.13 shows the edges which have been confirmed by microarray analyses from litera-

ture. Microarray analysis completed on 35S:Rap2.6L leaves yielded 94 differentially expressed

genes. However, none of these differentially expressed genes were predicted targets of Rap2.6L.

Therefore, microarray data on a rap2.6L mutant line was used to validate thirteen edges of reg-

ulation of Rap2.6L to predicted transcription factor targets (see Figure 5.11) and hypothesised

non-transcription factor targets (see Figure 5.12). Microarray data available on ANAC019 and

ANAC055 also confirmed their regulation of the potential regulon member MYB2.

The 35S:Rap2.6L and rap2.6L (58) arrays have not confirmed the regulation of MYB2, MYB108,

TCP13, At1g71520 or AT3G53600 transcription factors by Rap2.6L; however, Y1H may confirm

this regulation. Therefore, Y1H will be performed, testing the promoters of the genes encoding

MYB2, MYB108, TCP13, At1g71520 and AT3G53600 against a library of transcription factors.

This Y1H experiment aims to identify Rap2.6L as a direct regulator of these genes, or identify an

alternative common transcription factor regulator of these genes.

The arrays also did not confirm the regulation of thirteen non-transcription factor members (shown

in Table 1.7) of the potential regulons shown in Table 5.7 by Rap2.6L either. These predicted

regulations may still be real, yet were not identified on the microarrays as the regulation of the

expression of these genes may require additional mechanisms or genes other than Rap2.6L (e.g.

combinatorial regulation). Therefore, the expression levels of these genes will have stayed con-
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Figure 5.13: Edges of regulation of transcription factor members of potential regulons confirmed using rap2.6L (58), 35S:ANAC019 and 35S:ANAC055 array data (291). Based on the
original network shown in Figure 5.7, where it was predicted that Rap2.6L regulated transcription factor members of potential regulons co-expressed in combinations of B. cinerea, P.
syringae DC3000 and long day senescence. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P. syringae
DC3000 and long day senescence. Genes highlighted in purple are co-expressed in all three stresses. Edges confirmed by rap2.6L, 35S:ANAC019 and 35S:ANAC055 array data are shown
as a thick green line.
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sistently expressed despite the over expression of Rap2.6L. Alternatively, the statistical power of

the microarray experiments may not have been sufficient to identify these genes as differentially

expressed.

5.4.1.7 Y1H analysis to identify regulator(s) of transcription factor members of potential

shared regulons

Y1H was used to identify transcription factors capable of directly binding to the promoters of tran-

scription factor members of the potential regulons shown in Figure 5.7. Previously, it was shown

that a common transcription factor regulator of the genes MYB2, MYB108, TCP13, At1g71520

and AT3G53600 has not been identified using microarray experiments. However, network infer-

ence has predicted Rap2.6L to be a common regulator of these genes. Therefore, Y1H will be

performed to identify Rap2.6L as a direct regulator of these genes. Promoter fragments of these

genes of interest were screened against a cloned library of transcription factors (described in Sec-

tion 2.4.2), and colonies were grown on SD-LT, SD-LTH, and three levels of 3AT, in order to

eliminate auto-activation and select for an interaction.

At1g71520 Three promoter fragments, each 400 bp in length, with 100 bp overlap between the

fragments, were designed to cover 1000 bp upstream of the TSS of At1g71520. Transcription

factors confirmed to interact with these fragments are summarised in Table 5.10, and illustrated in

Figure 5.14.

Table 5.10: Matrix high-throughput Y1H screen of At1g71520 promoter fragments using pooled transcription factor
library and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with *
were found in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP1, TCP2, TCP3, TCP4, TCP5, TCP6, TCP7, TCP9,

TCP10, TCP11, TCP12, TCP13, TCP14, TCP15, TCP16,
TCP17, TCP18, TCP19, TCP20, TCP21, TCP22, TCP23,
TCP24

2 TCP1, TCP3*, TCP4, TCP7, TCP8*, AGL88, ERF15,
At5g18450, bZIP4, ILR3, ANAC102, BPE

3 TCP1, TCP2, TCP3, TCP4, TCP8*, TCP14, TCP15, TCP24,
At4g35280, At5g18450, ARF17,WRKY8,WRKY21,WRKY53,
ABF3,MYB26, GBF1,WRKY15

Figure 5.14 illustrates the presence of a TCP4 motif (253) in Fragment 2 and a W-Box (337) in

Fragment 3 of the promoter of At1g71520. Y1H identified that TCP4 is capable of binding to
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Figure 5.14: 1 kb promoter of At1g71520 upstream of the transcriptional start site, with the interactors identified by Y1H for each promoter fragment, and motifs present. Transcription
factor binding motifs: WRKY-box (337); MYC2 (3, 291); E-box (bHLH motif) (288), where N can be any nucleotide; TCP4 binding site (253).

180



Fragment 2. With the presence of the TCP4 motif, it is likely the binding takes place at this site.

Y1H also identifiedWRKY15,WRKY8,WRKY21, andWRKY53 binding to Fragment 3, suggesting

these WRKY transcription factors are capable of binding to the W-Box motif identified in this

fragment.

At2g33710 Three promoter fragments, each 400 bp in length, with 100 bp overlap between the

fragments, were designed to cover 800 bp upstream of the TSS of At2g33710. Transcription factors

confirmed to interact with these fragments are summarised in Table 5.11, and illustrated in Figure

5.15.

Table 5.11: Matrix high-throughput Y1H screen of At2g33710 promoter fragments using pooled transcription factor
library and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with *
were found in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP1, TCP2, TCP3, TCP4, TCP13, TCP14, TCP20, TCP23
2 TCP1*, TCP2*, TCP3*, TCP4*, TCP5, TCP6, TCP8,

TCP13*, TCP14*, TCP15*, TCP16, TCP18, TCP20, TCP23*,
TCP24*, WRKY8, WRKY28, WRKY41, ATHB13, At1g76110,
GLABRA 2, HB40, HB23*

3 TCP1*, TCP3*, TCP4, TCP7, TCP14*, TCP15*, TCP16,
TCP20, AGL78, bZIP5, At3g24120, At2g16210, ASML2,
ERF15*, At5g53420, At4g31060, At5g06250, At1g63840*,
At2g35310, At4g01580, At1g80580, TGA1,DOF1.5,GATA17,
ATXR5, bZIP61, MYB55, ANAC003, KNAT7, bHLH25,
At1g31310, At4g38900, PI, SAL2, At4g18650, At3g49950,
At3g56220*, DOF4.6, ARR5, DOF4.4, IAA7, CBF4, IAA19,
ATK5, ATHB5, At5g44180, CCA1, APRR2, At1g69580,
ANAC069, ERF11,MYB96, ATHB14, AGL61, TBP1,HMGB5,
MYB45, MYB51, AS1, MYB78, CBF1, MYB19, MYB17,
WRKY43, WRKY31, LFY, ARF4, REM1, IAA7, IAA12, IAA13,
RMR1, bZIP12, SVP, bZIP75, At2g17600, ERF2, NFY-C4,
MYB26, GATA14, AGL24, TBP2, At5g25475, ERF9, RMA1,
WOX12, ANAC097, WRKY49, ATL41, ATAF2, At3g12730,
ATK5, GBF2, ANAC036, RHA2B, ANAC006

Figure 5.15 shows the presence of aW-Box (337) in the 100 bp sequence shared by both Fragments

1 and 2 in the promoter of At2g33710. Three WRKY transcription factors, WRKY8,WRKY28 and

WRKY41were identified by Y1H as capable of binding to Fragment 2, suggesting they are binding

at theW-Box present in this sequence. Although noWRKY transcription factors were seen binding

to the same sequence in Fragment 1, this may be due to a weak interaction which was not observed

on stringent selection (e.g. concentrations of 3AT).
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Figure 5.15: 1 kb promoter of At2g33710 upstream of the transcriptional start site, with the interactors identified by Y1H for each promoter fragment, and motifs present. Transcription
factor binding motifs: WRKY-box (337); E-box (bHLH motif) (288), where N can be any nucleotide.
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At3g53600 Three promoter fragments, each 400 bp in length, with 100 bp overlap between the

fragments, were designed to cover 800 bp upstream of the TSS of At3g53600. Transcription factors

confirmed to interact with these fragments are summarised in Table 5.12, and illustrated in Figure

5.16.

Table 5.12: Matrix high-throughput Y1H screen of At3g53600 promoter fragments using pooled transcription factor
library and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with *
were found in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP3*, TCP4*, ERF11, PIF3, SOC1, ERF10*, TBP1,

MYB53, MYB92, HMGB1, MYB58, LAF1, MYB19, MYB118,
MYB26*, TT2, AGL96, WRKY40, AGL56, ANAC038, IAA4,
IAA13, GBF4, RMR1, DREB1A, IAA18, At1g63040, bZIP75,
ERF15, ATL68, At3g43430, ERF84,DOF1.5, CBF1,GATA17,
ATL18, HEC1, HSFB2A, YABBY1, DDF1, WRKY49, TFIIIA,
SHL1, At2g39900, WOX7, WOX5, ATHB21, ATHB20, HAT2,
AGL14, bZIP8, DOF4.6, PAT1, At3g56220, TAF6, NFY-
B6, At5g41920, WRKY24, GATA13, At1g16640, WRKY59,
At2g34450, HAT9, NGA2, WRKY75, ATHB17, HAM3,
ANAC088, AIP3, MBF1C, ATL5, ANAC029, ATCTH,MYB14,
At2g34000, RMA1, GI, bHLH51, AGL36, At2g33720, ARF3,
bHLH83

2 TCP4, TCP13
3 TCP3*, TCP4, TCP8, ANAC038, YABBY1

From Figure 5.16 it can be seen that a GATA promoter motif (278) and a NAC core binding

site (291) were identified in Fragment 1 of the promoter of At3g53600. GATA17 was identified by

Y1H to be capable of binding to Fragment 1, suggesting binding takes place at the GAT promoter

motif present in this fragment. Three NAC transcription factors were also seen to bind to Fragment

1, ANAC088, ANAC029 and ANAC038, suggesting they are capable of binding to the NAC core

binding motif present in this fragment. Two NAC core binding motifs were also identified in Frag-

ment 3, with one of the motifs located in the 100 bp sequence shared with Fragment 2. ANAC038

was also identified as binding to Fragment 3, but not Fragment 2, by Y1H. The Site II motif, which

has been identified as a potential binding site the TCP transcription factor family (105), was iden-

tified in Fragment 3, where Y1H also confirmed the direct binding of TCP3, TCP4 and TCP8.

The Site II motif was not located in Fragments 1 and 2, despite TCP binding to these fragments

identified by Y1H.
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Figure 5.16: 1 kb promoter of At3g53600 upstream of the transcriptional start site, with the interactors identified by Y1H for each promoter fragment, and motifs present. Transcription
factor binding motifs: NAC core binding site (291); GATA promoter motif (278); WRKY-box (337); E-box (bHLH motif) (288), where N can be any nucleotide; Site II motif (105); MYB
binding motif (2)

184



TCP13 Three promoter fragments, each 400 bp in length, with 100 bp overlap between the

fragments, were designed to cover 800 bp upstream of the TSS of TCP13. However, only one of

these fragments, the fragment closest to the TSS, was successfully cloned in yeast strain Y187.

Transcription factors confirmed to interact with this fragment are summarised in Table 5.13, and

illustrated in Figure 5.17.

Table 5.13: Matrix high-throughput Y1H screen of the TCP13 promoter fragment using pooled transcription factor
library and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with *
were found in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP2, TCP3, TCP4, TCP5, TCP10, TCP13

Whilst three different motifs, the W-Box, the NAC core binding site and the E-Box, were identified

in Fragment 1 of the promoter of TCP13, none of the transcription factors identified as directly

binding to this fragment are known to be capable of binding to these motifs.

MYB2 Four promoter fragments, each 100 bp in length, with 30 bp overlap between the frag-

ments, were designed to cover 310 bp upstream of the TSS of MYB2. A fifth fragment, of 120 bp

in length, and overlapping 30 bp with the previous fragment, was designed to cover 281 bp to 401

bp upstream of the TSS. However, only two of these fragments, the fragments closest to the TSS

and a fragment covering 141 bp to 241 bp upstream of the TSS were successfully cloned in yeast

strain Y187. Transcription factors confirmed to interact with these fragments are summarised in

Table 5.14, and illustrated in Figure 5.18.

Table 5.14: Matrix high-throughput Y1H screen of MYB2 promoter fragments using pooled transcription factor library
and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with * were found
in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP2, TCP4, TCP10, TCP13
3 TCP1, TCP2, TCP3, TCP4, TCP8, TCP13, TCP14, TCP15,

TCP16, TCP20, TCP23, TCP24

Of the two promoter fragments of MYB2 successfully cloned and transformed into yeast, neither

had known transcription factor binding motifs present in their sequence. Therefore, although

a number of TCP transcription factors were seen to directly bind to Fragments 1 and 3 of the

promoter of MYB2, a potential binding site could not be identified.
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Figure 5.17: 1 kb promoter of TCP13 upstream of the transcriptional start site, with the interactors identified by Y1H for the promoter fragment, and motifs present. Transcription factor
binding motifs: E-box (bHLH motif) (288), where N can be any nucleotide; NAC core binding site (291); WRKY-box (337).
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Figure 5.18: 500 bp promoter of MYB2 upstream of the transcriptional start site, with the interactors identified by Y1H for each promoter fragment. No transcription factor binding motifs
were identified in these two fragments.
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MYB108 Four promoter fragments, each approximately 400 bp in length, with 100 bp overlap

between the fragments, were designed to cover 1000 bp upstream of the TSS of MYB2. However,

only two of these fragments, the fragments closest to and furthest away from the TSS, and the

fragment covering nucleotides 601 to 1000 upstream of the TSS, were successfully cloned in yeast

strain Y187. Transcription factors confirmed to interact with these fragments are summarised in

Table 5.15, and illustrated in Figure 5.19.

Table 5.15: Matrix high-throughput Y1H screen of MYB108 promoter fragments using pooled transcription factor
library and 3AT selection. Fragment 1 covers the promoter sequence closest to the TSS. Interactors labelled with *
were found in both arrangements of the library.

Fragment number Transcription factor confirmed to interact with fragment
1 TCP4, TCP14, TCP15*, ANAC102, MYC2, AHL1, BEE2,

At3g57800, ILR3, AGL56, ATHB52, ZCW32, At4g33280,
TBP2, Rap2.6L, VRN1, At3g23220, ZFP2, At4g33280

3 TCP3, TCP14, TCP15, TCP16, GATA14

From Figure 5.19 it can be seen that the MYC2 binding site (3, 291) was identified in Fragment 1

of the promoter ofMYB108, whereMYC2was also seen to be directly binding by Y1H. The GATA

binding site (278) was also identified in the 100 bp overlap in sequence between Fragment 1 and

2, and was also identified twice in Fragment 2. Y1H identified GATA14 as directly binding to

Fragment 2, suggesting it binds preferentially to the two binding sites located solely in Fragment

2.

5.4.1.8 Comparison of expression profiles of TF-target pairs in multiple stresses

Y1H generated a list of regulators seen to be capable of directly binding to the promoters of the

genesMYB2,MYB108, TCP13, At1g71520, At2g33710 and At3g53600 (as shown in Tables 5.10 to

5.15). However, these interactions were not observed in the context of a stress response; therefore,

by observing the expression profiles of the interactor and its target during B. cinerea infection, P.

syringae DC3000 infection and long day senescence, which are the stresses these six genes are

predicted to be co-expressed in, one can identify which targets are the most likely to be regulated

in these particular stresses. Figure 5.20 to 5.23 show the expression profiles of interactors that

would most likely to binding to the promoters of the genes MYB108, At1g71520, At2g33710 and

At3g53600, due to presence of a motif in the promoters, which is recognised by the interactors.

The expression profiles of At1g71520, and the transcription factors TCP4, WRKY8, WRKY21,
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Figure 5.19: 1 kb promoter of MYB108 upstream of the transcriptional start site, with the interactors identified by Y1H for each promoter fragment. Transcription factor binding sites:
MYC2 (3, 291); MYB binding motif (2); GATA promoter motif (278); NAC core binding site (291); E-box (bHLH motif) (288), where N can be any nucleotide.
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Figure 5.20: Expression profiles of Y1H interactors, that had a confirmed binding site motif present in the promoter of At1g71520, during multiple stress responses. The top row shows
expression profiles in response to B. cinerea; the middle row shows expression profiles in response to P. syringae DC3000; the bottom row shows expression profiles in response to long
day senescence. Expression profiles of At1g71520 in each stress response is shown in red, with the interactor expression profile (the name of which is given as the title of each plot) is
shown in blue.
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WRKY53 and WRKY15, which were found to directly bind to its promoter in a Y1H screen, are

shown in Figure 5.20, in the stresses B. cinerea infection, P. syringae DC3000 infection and long

day senescence. A potential TCP4 binding motif (253) and a W-Box motif (337) were located in

the promoter of At1g71520, so only the expression profiles of these interactors are shown, as they

are the most likely candidates for ‘real’ interaction. The possible regulation by each interactor will

be discussed in the context of each stress response.

B. cinerea infection By observing the top row of Figure 5.20, it appears that the regulation of

At1g71520 in response to B. cinerea infection is positively regulated by WRKY8, WRKY53 and

WRKY15. TCP4 appears to be a negatively regulator of expression of At1g71520: as expression

of TCP4 increases around 22 hours, the expression of TCP4 levels off. Observing the expression

profiles of WRKY21 and At1g71520, it is difficult to infer regulation during this stress response.

P. syringae DC3000 infection By observing the middle row of Figure 5.20, the regulation of

At1g71520 in response to P. syringae DC3000 infection appears to be negatively regulated by

TCP4, WRKY21, and WRKY53: ignoring the initial increase in expression, which could be due

to wounding, the expression of At1g71520 increases as the expression of TCP4, WRKY21, and

WRKY53 decreases. The expression profiles of At1g71520 and interactors WRKY8 and WRKY15

appear positively correlated with each other, respectively, suggesting positive regulation of At1g71520.

Long day senescence By observing the bottom row of Figure 5.20, the expression of At1g71520

appears to be positively regulated by WRKY8, WRKY53 and WRKY15. The expression profile of

WRKY21 in relation to the expression profile of At1g71520 is interesting: whilst an initial increase

in expression of WRKY21 appears to positively regulate the expression of At1g71520, the expres-

sion profile ofWRKY21 decreases, suggesting WRKY21 itself is regulated by another transcription

factor. However, the expression of At1g71520 does not appear affected by this decrease in expres-

sion of WRKY21.

Figure 5.21 shows the expression profiles of At2g33710 and the transcription factors WRKY8,

WRKY28, and WRKY41 in response to B. cinerea infection, P. syringae DC3000 infection and

long day senescence stresses. These transcription factors were found to directly bind to the pro-

moter of At2g33710 in a Y1H screen (see Table 5.10). A W-Box motif (337) was located in the

promoter of At2g33710, so only the expression profiles of these interactors are shown, as they are
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Figure 5.21: Expression profiles of Y1H interactors, that had a confirmed binding site motif present in the promoter of At2g33710, during multiple stress responses. The top row shows
expression profiles in response to B. cinerea; the middle row shows expression profiles in response to P. syringae DC3000; the bottom row shows expression profiles in response to long
day senescence. Expression profiles of At2g33710 in each stress response is shown in red, with the interactor expression profile (the name of which is given as the title of each plot) is
shown in blue.
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the most likely candidates for ‘real’ interaction. However, by observing the expression profiles of

WRKY8,WRKY28, and WRKY41, compared to their target, At2g33710, it is difficult to tease apart

evidence for likely regulation of At2g33710 in each stress. The expression profiles of all three

interactors and At2g33710 are correlated, and exhibit no time delay in expression, which could

infer regulation.

The expression profiles of the Y1H-identified interactors and At3g53600 during B. cinerea infec-

tion are difficult to infer regulation from in Figure 5.22. An interesting observation is the ex-

pression profile of Y1H-identified interactor TCP3 with its target At3g53600 during P. syringae

DC3000 infection: the expression profiles are highly anti-correlated to each other, suggesting neg-

ative regulation of At3g53600.

The expression profiles of MYB108, and the transcription factors MYC2, GATA14, and Rap2.6L,

which were found to directly bind to its promoter in a Y1H screen, are shown in Figure 5.23, in

the stresses B. cinerea infection, P. syringae DC3000 infection and long day senescence. A MYC2

motif (2), and a GATA binding site motif (278) were located in the promoter of MYB108, so only

the expression profiles of these interactors are shown. Rap2.6L was included due to the prediction

of its regulating MYB108. However, by observing the expression profiles of MYC2, GATA14,

and Rap2.6L, compared to their target, MYB108, it is difficult to tease apart evidence for likely

regulation of MYB108 in each stress, with the exception of the regulation of MYB108 by MYC2 in

response to B. cinerea infection: the expression of MYC2 appears to decrease as the expression of

MYB108 increases.

5.4.1.9 Summary of validation of TF-DNA interactions identified by Y1H

As can be seen from Tables 5.10 to 5.15, Rap2.6L is only found to bind to the promoter ofMYB108.

However, TCP4 was found to bind to the promoters of the transcription factor gene members

tested here, providing an alternative, albeit non-predicted by the network modelling, regulator of

the potential regulons. By observing Figure 5.24, we can see that the expression of TCP4 is down

regulated in comparison to the expression of the transcription factor members of the potential

regulons. Therefore, TCP4 may negatively regulate the expression of these genes under non-

stress conditions, only to be itself repressed in stress conditions, to allowed the expression of

the potential regulons to occur. A potential TCP4 binding site motif was located in the promoters
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Figure 5.22: Expression profiles of Y1H interactors, that had a confirmed binding site motif present in the promoter of At3g53600, during multiple stress responses. The top row shows
expression profiles in response to B. cinerea; the middle row shows expression profiles in response to P. syringae DC3000; the bottom row shows expression profiles in response to long
day senescence. Expression profiles of At3g53600 in each stress response is shown in red, with the interactor expression profile (the name of which is given as the title of each plot) is
shown in blue.
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Figure 5.23: Expression profiles of Y1H interactors, that had a confirmed binding site motif present in the promoter of MYB108, during multiple stress responses. The top row shows
expression profiles in response to B. cinerea; the middle row shows expression profiles in response to P. syringae DC3000; the bottom row shows expression profiles in response to long
day senescence. Expression profiles of MYB108 in each stress response is shown in red, with the interactor expression profile (the name of which is given as the title of each plot) is shown
in blue.
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of one transcription member of the potential regulons At1g71520, along with five non-transcription

factor members of the potential regulons.

ERF15 was found to bind to the promoters of three of the six transcription factors tested using

Y1H. Although there is current literature on a stress response role for ERF15, it contains an AP2

domain, and its closest homologs are ORA59 and ERF1, based on sequence similarity (197, 54).

Given its ability to bind to promoters of three members of the potential regulons, and a potential

binding site significantly overrepresented within the gene members, ERF15 is a potential regulator

of these potential regulons. Figure 5.25 shows the expression profiles of gene members of the

potential regulons and that of ERF15 (shown in red). In B. cinerea, and possibly in long day

senescence, the slight time delay of the potential regulon gene members (shown in blue) compared

to the expression profile of ERF15 (shown in red) suggests positive transcription regulation of the

potential target genes. However, in P. syringae pv. DC3000 the opposite in true: the expression of

ERF15 is sharply down regulated within the first few hours of infection, whilst the expression of the

potential regulon gene members are upregulated. This suggests that ERF15 negatively regulates

the expression of these genes under non-stress conditions. In P. syringae pv. DC3000, however,

the expression of ERF15 appears to be repressed, allowing the expression of the potential regulons

to occur.

Y1H provided a context-free, that is to say, stress-free idea of regulation of transcription factor

members of potential regulons co-expressed in B. cinerea infection, P. syringae DC3000 infection

and long day senescence. By observing the expression profiles of transcription factors identified

by Y1H to directly bind to the promoters of gene members of potential regulons (Table 5.7) during

stress responses (in Figures 5.20 to 5.25), it can be seen which of the regulations are still occurring

in B. cinerea infection, P. syringae DC3000 infection and long day senescence. The potential

of regulation during the stress response appears to be higher when a binding site motif for the

interactor is present within the promoter of the target gene.

5.4.1.10 Integrating Y1H results into the predicted network model

Figure 5.26 details the confirmed edges of the original network described in Figure 5.7. Rap2.6L

was only identified as directly regulating two transcription factor members, MYB102 andMYB108

using Y1H. Other edges have been confirmed using microarray data, which suggests that Rap2.6L
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Figure 5.24: Expression profiles of potential regulon gene members and regulator TCP4. Y1H has shown TCP4 (shown in red) to be a common regulator of the transcription factor members
of the potential regulons (shown in blue) shown in Table 5.7. Expression profiles shown in black are those of potential regulon members, but are not significantly co-expressed in those
particular stress conditions.
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Figure 5.25: Expression profiles of potential regulon gene members and potential common regulator ERF15. Y1H has shown ERF15 (shown in red) to be a common regulator of three
transcription factor members of the potential regulons. The expression profiles of these transcription factors, along with other members of the potential regulon that ERF15 may regulate
(shown in Table 5.7) are shown in blue. Expression profiles shown in black are those of potential regulon members, but are not significantly co-expressed in those particular stress
conditions.
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Figure 5.26: Incorporating data acquired from Y1H screens on transcription factor member of potential regulons, with the data summarised in Figure 5.13, to yield a partial gene regulatory
network operating in response to multiple stresses. Genes highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P.
syringae DC3000 and long day senescence. Genes highlighted in purple are co-expressed in all three stresses. Edges confirmed by array data or Y1H are shown as a thick green line.
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could indirectly regulate the potential regulons which are co-expressed in combination of B. cinerea

infection, long day senescence and P. syringae DC3000 infection.

If transcription factors identified as binding to the potential regulon members MYB2, MYB108,

TCP13, At1g71520, At2g33710 and At3g53600 by Y1Hwere differentially expressed in the rap2.6L (58)

and 35S:Rap2.6L array data, these interactors could be the intermediates that allow Rap2.6L to in-

directly regulate the potential regulons. Table 5.16 shows the interactors, which were identified in

Y1H screens as directly binding to the promoters of potential regulon gene members, which are

differentially expressed in the rap2.6L array (58).

Table 5.16: Identifying genes differentially expression in rap2.6L array (58), which were also found to directly bind to
the promoters of transcription factor members of potential regulons

Interactor identified as differentially expressed Interaction promoter
TCP5 At1g71520
TCP5 At2g33710
At1g63040 At3g53600
TCP5 TCP13
TCP10 MYB2
TCP15 MYB108

As can be seen from Table 5.16, all the transcription factor members of the potential regulons

co-expressed in B. cinerea infection, long day senescence and P. syringae DC3000 stresses (Table

5.7) are seen to be indirectly regulated by Rap2.6L, by a transcription factor which was identified

via Y1H. This data has been combined with the original predicted network shown in Figure 5.7,

along with edges confirmed by Y1H and microarray data, to yield a final network operating in

response to multiple plant stresses, as shown in Figure 5.27.

The network shown in Figure 5.27 incorporates the finding in Table 5.16, which shows Rap2.6L

indirectly regulates transcription factor members of potential regulons via TCP5, TCP10, TCP15,

and At1g63040, a member of TINY transcription factor family. These four transcription factors

were found to be differentially expressed in the rap2.6L array (58), suggesting that their expression

is regulated by Rap2.6L. TCP5, TCP10, TCP15, and At1g63040 also bound directly to promoters

of potential regulon members (as shown in Tables 5.10 to 5.15), highlighting their role as an

intermediary between Rap2.6L and its predicted targets, the potential regulons originally described

in Table 5.7.
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Figure 5.27: A gene regulatory network operating in response to the plant stresses B. cinerea infection, long day senescence and P. syringae DC3000 infection. This network incorporates
the interactions shown in Table 5.16, which shows Rap2.6L indirectly regulates transcription factor members of potential regulons via TCP5, TCP10, TCP15, and At1g63040. Genes
highlighted in blue are co-expressed in B. cinerea and P. syringae DC3000. Genes highlighted in red are co-expressed in P. syringae DC3000 and long day senescence. Genes highlighted
in purple are co-expressed in all three stresses. Edges confirmed by array data or Y1H are shown as a thick green line.
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5.5 Discussion

In this chapter, a network model was tested experimentally using expression and binding assays to

confirm transcriptional regulation of genes predicted to be co-expressed in B. cinerea infection, P.

syringae pv. tomato DC3000 infection, and long day senescence. The transcription factor mem-

bers of three potential regulons co-expressed in combinations of the stresses B. cinerea infection,

P. syringae pv. tomato DC3000 infection, and long day senescence were predicted by modelling

to be commonly regulated by Rap2.6L. This regulation was tested using publicly available array

data (58) using a knockout line of rap2.6L to identify differentially expressed genes, and therefore,

genes regulated by Rap2.6L; discovering differentially expressed genes in a 35S:Rap2.6L array;

and elucidating direct regulators using a ‘bottom-up’ approach in a Y1H screen of transcription

factor members of potential regulons.

The 35S:Rap2.6L array yielded 94 differentially expressed genes, none of which were predicted

targets of Rap2.6L. Although, by integrating rap2.6L array data (58) and confirmed interactions of

potential regulon members from Y1H, it could be seen that Rap2.6l indirectly regulates the tran-

scription factor members of the potential regulons through TCP5, TCP10, TCP15, and At1g63040.

However, these approaches confirmed the regulation of these potential regulons in a stress-free

context. By observing the expression profiles of interactors of potential regulon members identified

via Y1H in the stresses B. cinerea infection, P. syringae pv. tomato DC3000 infection, and long day

senescence, one can infer which regulations are real. It was observed that if a binding site motif

for the interactor was located in the promoter of the potential regulon member, the regulation was

more likely to be real than if the motif was not present.

5.5.1 Binding assays detect transcriptional regulators

In Sections 5.4.1.4 and 5.4.1.7, microarray analysis and Y1H were used to confirm predicted edges

of transcription regulation inferred by network modelling. Ra2.6L was predicted to regulate the

expression of potential regulons (Table 5.7) identified by Wigwams as being co-expressed in B.

cinerea, P. syringae pv. DC3000 and long day senescence.

The Y1H screen of the potential regulon membersMYB108, TCP13,MYB2, At3g53600, At1g71520

and At2g33710 identified many different transcription factors capable of binding to their promot-
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ers. Members of the TCP transcription factor family were found to interact with all of the promoter

fragments tested, suggesting that their role in regulation is ubiquitous. However, transcription fac-

tors associated with stress responses were found to interact with specific promoter fragments, such

as members of the ERF transcription factor family binding to single promoter fragments (the ex-

ception being ERF15 and ERF12which bound to three and two fragments respectively). This data

provides specific information about direct gene regulation that may be involved in stress responses

for the genes MYB108, TCP13,MYB2, At3g53600, At1g71520 and At2g33710.

A novel protein-DNA interaction of TCP13 binding to its own promoter is strengthened by the

literature: it was thought that TCP family members could form homo- or heterodimers via one of

two consensus binding sequences (160). Using interactome data generated in the A. thaliana using

Y2H, TCP13was also found to form a homodimer (15, 213). However, literature on exactly which

TCP family members form dimers is scarce.

5.5.2 TCP4 and Rap2.6L are common regulators of genes important to the response

to multiple plant stresses.

Combining microarray completed on 35S:Rap2.6L with publicly available array data on rap2.6L

confirmed the regulation of fifteen predicted targets of Rap2.6L, out of thirty unique gene members

across the three potential regulons, shown in Table 5.7. The Y1H screen only confirmed the

regulation of MYB108 by Rap2.6L which was predicted by the network modelling. Since the

modelling predicts both direct and indirect regulation, the Y1H screen may not have identified

the potential regulons as direct targets of Rap2.6L due to Rap2.6L being an indirect regulator.

This indirect regulation of the potential regulons by Rap2.6L was confirmed when transcription

factors identified as directly binding to promoters of potential regulon members were differentially

expressed in the rap2.6L array data (58). This indirect regulation was summered in Figure 5.27.

The Y1H screen identified TCP4 as a common regulator of six transcriptional factor members

of the three potential regulons: MYB108, TCP13, MYB2, At3g53600, At1g71520 and At2g33710.

The presence of a preferred binding site for TCP4, with the sequence (G)GACCAC (253), further

adds to the likelihood of TCP4 potential being a common regulator of these regulons. Further

testing of regulon members by Y1H, to confirm direct regulation, or microarray analysis of TCP4

mutants would confirm this.
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Figure 5.27 shows the final gene regulatory network predicted to be involved in the response to

B. cinerea, P. syringae DC3000 and long day senescence. The network presents a complex set of

transcriptional regulation, with microarray analysis also confirming the co-regulation of potential

regulon members by ANAC055 and ANAC019 also. This network may also potentially be involved

in hormone signalling pathways: Rap2.6L and ERF15, members of the ERF family, are responsive

to ethylene; ANAC019 and ANAC055 have been shown to be induced by methyl-jasmonate (46);

and a number of WRKY transcription factors have been shown to have altered expression upon

treatment of A. thaliana plants with methyl-jasmonate (197).

5.5.3 Conclusion

Binding assays, such as Y1H, and microarrays are ‘bottom up’ and ‘top down’ approaches, respec-

tively, and have the capability of providing a detailed view of transcriptional regulation. Microar-

rays allow the detection of direct and indirect targets, whilst Y1H screens allow the identification

of direct regulators of genes of interest. However, Y1H does not allow the investigation of direct

binding under stress conditions; therefore, the regulation on the potential regulons in Table 5.7

may alter during the stress response. Microarrays allow the researcher to study transcriptional

regulation in the context of stress, providing a supportive method to Y1H to study regulation both

in terms of stress and non-stress responses.

Rap2.6L was identified as an indirect regulator of the transcription factor members of three po-

tential regulons co-expressed in the stresses B. cinerea, P. syringae pv. tomato DC3000 and long

day senescence: the transcription factors TCP5, TCP10, TCP15 and At1g63040, a members of the

TINY family, were identified as differentially expression in the rap2.6L array data (58), and were

also seen to directly bind to the promoters of the potential regulon members TCP13, At3g53600,

MYB2,MYB108, At1g71520 and At2g33710.

Microarray analysis also confirmed the regulation of ten out of 23 non-transcription factor mem-

bers of the three potential regulons also. Although, due to the indirect regulation of the transcrip-

tion factor members by Rap2.6L, it is likely that the regulation of the non-transcription factor

members are also indirectly regulated by Rap2.6L also.

In light of these results, it can be concluded that Wigwams contributes greatly to the transcription

factor-only modelling approach used: the non-transcription factor targets of Rap2.6L, although
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they may be indirect targets, were not predicted by the modelling. Given the confirmation of

the indirect regulation of the transcription factor members of the potential regulons by Rap2.6L,

Wigwams is a computational less-intensive approach which can be used to incorporate the non-

transcription factor targets of genes included in the consensus models.

Although the basis of this work was to identify a common regulator of the potential regulons, the

elucidation of a common indirect regulator is not a disadvantage against Wigwams: the consensus

models generated were used to infer regulation of transcription factor members of potential regu-

lons. Due to the modelling approach not distinguishing between direct and indirect regulation, this

was not discovered until further experimental analysis was completed.
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Chapter 6

General conclusions

The overall aim of the research carried out within this thesis was to generate and validate a gene

regulatory network operating in multiple plant stress responses. Here, this and other aims will be

addressed to provide conclusions on whether they have been successfully met.

6.1 Genome-wide inference of shared regulatory mechanisms from

multiple gene expression time-series

Due to the shortcomings of other predictive methods, such as modelling, standard clustering and

existing biclustering methods, Wigwams was developed to provide clear statistical evidence for

groups of co-expressed genes that were hypothesised to have a common regulatory mechanism.

The development and results of Wigwams will be summarised below.

6.1.1 Wigwams

Wigwams was developed to provide evidence that a core gene regulatory network could exist, by

inferring co-expression and co-regulation across subsets of high resolution time series datasets

generated under multiple stress conditions in A. thaliana.

Benchmarking exercises were completed to confirm Wigwams is capable of uncovering known

examples of co-expression and co-regulation from the literature. Wigwams analysed the publicly

available AtGenExpress array data (152), which investigated the changes in gene expression in
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response to multiple environmental stresses, including heat, cold, drought, genotoxic, salt, oxida-

tive, osmotic stress, UV-B light and wounding, to identify known examples of co-expression and

co-regulation. Wigwams identified the Tryptophan-metabolishing genes CYP79B2, CYP79B3 and

CYP83B1 as co-expressed and potentially sharing a common regulatory mechanism. Indeed, mu-

tant analysis of ATR1 demonstrated the CYP genes were targets of this MYB family transcription

factor (53). Wigwams also correctly identified components of the flavonoid biosynthesis pathway,

CHS, CHI, F3H and FLS as co-expressed in the response to UV-B, heat, and oxidative stress. Lit-

erature has identified two possible transcription factors, ANAC078 andMYB12, as common regula-

tors of these genes, further substantiating Wigwams as a tools for discovering co-expressed genes

in subsets of stresses which are hypothesised to have a share regulatory mechanism. Wigwams

was applied to multiple time series expression datasets of genes differentially expressed over time

in response to two or more of the following conditions: B. cinerea infection (322); drought stress;

high light stress; P. syringae pv. tomato DC3000 infection, long day senescence (43); and short

day senescence. 465 potential regulons were identified as co-expressed across subsets of stresses.

Upon analysis of these potential regulons using GO term analysis tool BiNGO (191), 219 poten-

tial regulons were found to have at least one significantly overrepresented GO term. 89 of the 465

potential regulons also had known plant motifs significantly overrepresented within the promoters

of the gene members. The results from the GO term and motif analyses show that Wigwams is

capable of detecting functionally similar, and therefore co-expressed, and potentially co-regulated

groups of genes.

There are many extensions which could be made to improve Wigwams: making the tool avail-

able as either a graphical user interface (GUI) or web tool would prove beneficial and more user-

friendly, especially to pure biologists. However, making the tool available on the web could prove

difficult, as the website would be required to hold multiple datasets of time series gene expression

data. As mentioned previously, a method for generating p-values for three or more sets of genes

needs to be integrated into the Wigwams code to make this automated. Currently, Wigwams uses

Pearsons’s correlation as a similarity measure to find groups of co-expressed genes. This method,

however, is interchangeable with other methods, such as a time-course model. Wigwams could

also be altered to detect time delayed correlation, in order to infer transcriptional regulation across

subsets of stresses.
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These extensions would serve to improve Wigwams. However, Wigwams in its current form does

provide a valuable contribution to the field of research into crosstalk over multiple stresses in

plants.

6.1.2 Wigwams is based on identifying similarly expressed genes, which are likely

to be functionally similar

The basis of Wigwams is identifying genes with similar expression profiles, which are likely to

be functionally similar and share a common regulatory mechanism. Genes with similar functions

and similar expression profiles are hypothesised to be regulated by a common mechanism, via

a cis--regulatory element in their promoter (9). However, a study by Allocco et al. discovered

that this only occurs at high levels of expression similarity, and calculated that for co-expressed

genes to have a greater than 50% chance of being regulated by the same transcription factor, or

transcription factors, the correlation between expression profiles must be greater than 0.84 (9).

When Wigwams was applied to the PRESTA time-series datasets (see Chapter 4), although an

extensive investigation was carried out to decide the optimum value to use for the correlation cut-

off in the pruning algorithm (see Section 4.2.2 of Chapter 4), ultimately, the value chosen was 0.75.

This value is considerably less than advised by Allocco et al.. Therefore, some of the potential

regulons identified byWigwams are less likely of being co-regulated than potential regulons whose

intra-condition correlation values of gene expression profiles are higher than 0.84. By re-analysing

the PRESTA datasets using Wigwams, and using the advised correlation cut-off of 0.84, although

fewer potential regulons will be identified post-pruning, these potential regulons are more likely

to truly be co-regulated.

6.1.3 The importance of correlation methods

An assumption of Wigwams is that similarly expressed genes are the consequence of an underlying

biological process, namely a common regulatory mechanism, and that co-expression of a set of

genes is fundamental to that process (334). Yona et al. completed a study to determine which of

the different similarity measures was most effective for detecting functional links: it was found that

combining similarity measures (especially Euclidean and Pearson correlation) performed better

than distance metrics used on their own (334).
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Due to design of Wigwams, different distance metrics for identifying similarly expressed genes can

be used in place of Pearson correlation (which was used in this application of Wigwams). Also,

correlation-based methods can be substituted for time-series clustering, such as the time-series

model used in SplineCluster (118): the SplineCluster algorithm uses Bayesian model-based hierar-

chical clustering to investigate mechanisms of regulation by fitting splines to expression profiles in

time series datasets, and takes time dependancies of the observations into account, unlike standard

correlation-based methods (118).

6.2 Experimental validation of a predicted gene regulatory network

during multiple stress responses

Results from Wigwams were integrated with predicted network models of multiple stress re-

sponses, and motif analysis results, which identify transcription factor binding sites for regulators

of potential regulons.

6.2.1 Microarray analysis

In Chapter 5 microarray analysis of A. thaliana plants over expressing the gene encoding the

ERF transcription factor family member Rap2.6L, which has been identified as being involved in

the response to drought and salt stress (163). Rap2.6L was predicted to be a common regulator

of transcription factor members of potential regulons co-expressed in the B. cinerea infection, P.

syringae pv. tomato DC3000 infection, and long day senescence stress responses.

The microarray analysis identified 94 differentially expressed genes in response to the over expres-

sion of Rap2.6L. However, none of the predicted targets of Rap2.6L were differentially expressed.

A microarray analysis on an A. thaliana transgenic rap2.6L line was carried out by Che et al. (58),

does identify 13 of the potential regulon members as targets of Rap2.6L.

The modelling approach used to predict the regulation of the potential regulons does not distin-

guish between direct and indirect interactions, however. Therefore, Rap2.6L may be a direct or

indirect regulator of the potential regulons.
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6.2.2 Yeast 1-Hybrid

In Chapter 5 Yeast 1-Hybrid (Y1H) was used to confirm the binding of transcription factors to

the promoters of potential regulon gene members. Transcription factors were predicted to bind to

potential regulon gene members using an extended version of the variational Bayesian state space

modelling approach, which was used to generate a consensus model of transcriptional regulation of

the response to each of the following stresses: B. cinerea infection (Windram et al. (322)); drought

stress; high light stress; P. syringae pv. tomato DC3000 infection, long day senescence (43); and

short day senescence. These models utilised the time series gene expression data generated in

response to each of these stress by the PRESTA project group.

Y1H identified that TCP4 was a direct regulator of the transcription factors MYB108, TCP13,

MYB2, At3g53600, At1g71520 and At2g33710. To confirm these interactions in plant, the binding

of TCP4 to the promoters of these genes could be tested using ChIP, or during the B. cinerea

infection, P. syringae pv. tomato DC3000 infection, or long day senescence, to confirm the co-

regulation of these genes during multiple plant stress responses.

By incorporating the Y1H and rap2.6L array data, Rap2.6L was identified as an indirect regula-

tor of the transcription factor members of three potential regulons co-expressed in the stresses B.

cinerea, P. syringae pv. tomato DC3000 and long day senescence: the transcription factors TCP5,

TCP10, TCP15 and At1g63040, a members of the TINY family, were identified as differentially

expression in the rap2.6L array data (58), and were also seen to directly bind to the promoters of

the potential regulon members TCP13, At3g53600, MYB2,MYB108, At1g71520 and At2g33710.

Microarray analysis also confirmed the regulation of ten out of 23 non-transcription factor mem-

bers of the three potential regulons also. Although, due to the indirect regulation of the transcrip-

tion factor members by Rap2.6L, it is likely that the regulation of the non-transcription factor

members are also indirectly regulated by Rap2.6L also.

6.2.3 Integration of many data types is required to uncover GRNs

Chapter 5 has shown that the integration of many different sources of data is required to uncover

mechanisms of transcriptional regulation: the integration of Wigwams potential regulons, network

models, and experimental data from microarrays and Y1H uncovered evidence of transcriptional
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regulation. This confirms that researchers today cannot rely on one data analysis tool alone to

analyse data, and uncover the complex biological processes occurring in response to stress (273).

However, with the recent maturation of sequencing technology, the incorporation of additional

datasets, such as genome sequence and protein-DNA interaction datasets would prove advanta-

geous for the inference of GRNs (119). Microarrays are popular for measuring the abundance of

mRNA, however, the data produced can be inherently noisy and subject to a high degree of vari-

ability (286). This can be overcome by incorporating real-time quantitative PCR assays to obtain

precise transcript levels of genes (119).

6.3 Overall conclusions

This thesis presents various bioinformatical, modelling and experimental approaches to investigat-

ing the gene regulation events involved in the response to multiple plant stresses in A. thaliana.

A multi-clustering method, Wigwams, was developed to analyse multiple time series gene expres-

sion datasets, to mine for potential regulons, where the gene members were co-expressed across

subsets of stresses. These potential regulons were hypothesised to share a regulatory mechanism.

Due to the inability to infer transcription regulation using Wigwams, the potential regulons were

integrated with predicted network models generated for a number of stress responses in A. thaliana.

Wigwams and the VBSSM models were complementary: VBSSM was limited by the number of

genes which could be modelled, therefore, only differentially expressed transcription factors were

used. However, Wigwams has no such limitations, so the potential regulons generated contained

both transcription factors and non-transcription factors. From this integration of network models

and potential regulons, predicted transcription factor regulators of potential regulons were iden-

tified, and a quantitative model of regulation in response to the stress B. cinerea, P. syringae pv.

tomato DC3000 and long day senescence was constructed.

This quantitative model of transcriptional regulation during multiple stress responses was validated

experimentally using Yeast 1-Hybrid and microarray analysis. The microarray analysis confirmed

that Rap2.6L was an indirect regulator of potential regulons co-expressed in the B. cinerea, P. sy-

ringae pv. tomato DC3000 and long day senescence stress responses. Additionally, Y1H identified

TCP4 are a direct regulator of the transcription factor members of the potential regulons. Both the

microarray and Y1H analyses proved to work well in combination to validate predicted regulation
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with a GRN and explained upon the predicted structure.
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M.-I. Zanor, B. Köhler, and B. Mueller-Roeber (2010, January). A gene regulatory network

controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted

senescence. The Plant Journal 62(2), 250–264.

[23] Bansal, M., V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo (2007, February). How

to infer gene networks from expression profiles. Molecular Systems Biology 3, 1–10.

[24] Bar-Joseph, Z. (2004, October). Analyzing time series gene expression data. Bioinformat-

ics 20(16), 2493–2503.

[25] Barabási, A.-L. and Z. N. Oltvai (2004, February). Network biology: understanding the cell’s

functional organization. Nature Reviews Genetics 5(2), 101–113.

[26] Bari, R. and J. D. G. Jones (2008, December). Role of plant hormones in plant defence

responses. Plant Molecular Biology 69(4), 473–488.

217



[27] Barski, A., S. Cuddapah, K. Cui, T.-Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev,

and K. Zhao (2007, May). High-Resolution Profiling of Histone Methylations in the Human

Genome. Cell 129(4), 823–837.

[28] Baxter, L., A. Jironkin, R. Hickman, J. Moore, C. Barrington, P. Krusche, N. P. Dyer,

V. Buchanan-Wollaston, A. Tiskin, J. Beynon, K. Denby, and S. Ott (2012, October). Con-

served Noncoding Sequences Highlight Shared Components of Regulatory Networks in Di-

cotyledonous Plants. The Plant cell 24(10), 3949–3965.

[29] Beal, M. (2003, July). Variational Bayesian Linear Dynamical Systems. Thesis, 1–47.

[30] Beal, M., F. Falciani, Z. Ghahramani, C. Rangel, and D. Wild (2005). A Bayesian approach

to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349.

[31] Becker, B., S. Holtgrefe, S. Jung, C. Wunrau, A. Kandlbinder, M. Baier, K.-J. Dietz, J. E.

Backhausen, and R. Scheibe (2006, January). Influence of the photoperiod on redox regula-

tion and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day

conditions. Planta 224(2), 380–393.

[32] Becquet, C., S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon (2002). Strong-

association-rule mining for large-scale gene-expression data analysis: a case study on human

SAGE data. Genome Biology 3(12), 1–16.

[33] Beelman, C. A. and R. Parker (1995). Degradation of mRNA in eukaryotes. Cell 81(2),

179–183.

[34] Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B

(Methodological) 57(1), 289–300.

[35] Berger, B., R. Stracke, R. Yatusevich, B. Weisshaar, U.-I. Flügge, and T. Gigolashvili (2007,
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[217] Nawrath, C. and J. P. Métraux (1999, August). Salicylic acid induction-deficient mutants

of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen

inoculation. The Plant cell 11(8), 1393–1404.

[218] Nikiforova, V. J. (2005, April). Integrative gene-metabolite network with implemented

causality deciphers informational fluxes of sulphur stress response. Journal of Experimental

Botany 56(417), 1887–1896.

237



[219] Nole-Wilson, S. and B. A. Krizek (2000, October). DNA binding properties of the Arabidop-

sis floral development protein AINTEGUMENTA. Nucleic acids research 28(21), 4076–4082.

[220] Oerke, E. C. (2005, December). Crop losses to pests. The Journal of Agricultural Sci-

ence 144(01), 31–43.

[221] Ohta, M., Y. Hayashi, A. Nakashima, A. Hamada, A. Tanaka, T. Nakamura, and

T. Hayakawa (2002, December). Introduction of a Na+/H+ antiporter gene from Atriplex

gmelini confers salt tolerance to rice. FEBS letters 532(3), 279–282.

[222] Okushima, Y., H. Fukaki, M. Onoda, A. Theologis, and M. TASAKA (2007, January).

ARF7 and ARF19 Regulate Lateral Root Formation via Direct Activation of LBD/ASL Genes

in Arabidopsis. The Plant cell 19(1), 118–130.

[223] Olsen, A. N., H. A. Ernst, L. L. Leggio, and K. Skriver (2005, October). DNA-binding

specificity and molecular functions of NAC transcription factors. Plant Science 169(4), 785–

797.

[224] Oono, Y., M. Seki, T. Nanjo, M. Narusaka, M. Fujita, R. Satoh, M. Satou, T. Sakurai,

J. Ishida, K. Akiyama, K. Iida, K. Maruyama, S. Satoh, K. Yamaguchi-Shinozaki, and K. Shi-

nozaki (2003, June). Monitoring expression profiles of Arabidopsis gene expression during

rehydration process after dehydration using ca 7000 full-length cDNA microarray. The Plant

journal : for cell and molecular biology 34(6), 868–887.

[225] Papadimitriou, S. (2007). Scientific programming with Java classes supported with a script-

ing interpreter. IET Software 1(2), 48.

[226] Park, P. J. (2009, September). ChIP–seq: advantages and challenges of a maturing technol-

ogy. Nature Reviews Genetics 10(10), 669–680.

[227] Park, T., S. G. Yi, S. Lee, S. Y. Lee, D. H. Yoo, J. I. Ahn, and Y. S. Lee (2003, April). Statis-

tical tests for identifying differentially expressed genes in time-course microarray experiments.

Bioinformatics 19(6), 694–703.

[228] Pautot, V., F. M. Holzer, J. Chaufaux, and L. L. Walling (2001). The induction of tomato

leucine aminopeptidase genes (LapA) after Pseudomonas syringae pv. tomato infection is pri-

238



marily a wound response triggered by coronatine. Molecular Plant-Microbe Interactions 14(2),

214–224.

[229] Pauwels, L., G. F. Barbero, J. Geerinck, S. Tilleman, W. Grunewald, A. C. Pérez, J. M.
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Appendix A

Oligonucleotides for cloning promoter

fragments

Table A.1: Oligonucleotides for Y1H promoter fragments with Gateway cloning

a)

MYB102 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TAT-CAT-CTT-GGA-AAT-ATA-AAA-

TGT-AAA-CAC-G - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-AGG-GTC-CGT-AAG-GGG-AAG-TAC-

AAA-GTA-TTT-ATA-GGG - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TTA-ACA-AAA-CTG-CAC-TTT-TTT-

CAA-CGT-CAC-AGC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-GAT-AGT-GTT-TTA-GTC-TTT-GGA-

AAT-ATA-GAA-ATA-TAG-ATG-C - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TTG-AAT-GTA-CAA-TGA-AAC-TAC-

ATA-TTT-CTA-C - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-TAC-GAA-ACC-TTG-AAA-CAA-ATG-
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TC - 3’

b)

TCP13 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TAT-TAT-ATA-TAA-CTT-CAC-GTC-

AAT-GTA-TGT-TTG-ATT-TTG-GC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-AGA-AAG-AAG-AAG-ATG-CTT-

TTG-GAA-GTG-AAT-ATG-AGA-ACC-C - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TAG-ATC-CAA-CTT-CAT-TTC-AAT-

ATA-TCA-CGA-GTG-C - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-AAG-AAG-AAA-ATC-CCA-AAA-

AAA-GTA-TAC-GCG - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-CCA-TAT-ACT-GTG-TGT-ATA-TTA-

TAT-ATT-ACC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-TAT-ATT-ATT-TAT-GAT-CCT-TGA-

TTT-TTT-TTT-TTG-CTC - 3’

c)

BANQUO2 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TCT-GAA-TAT-AAG-AAA-ATA-

GAA-GAT-ATA-TAT-CTA-TCT-TCG-G - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-AAG-AAA-GAA-GGA-GAA-GAA-

ATG-GTG - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TAA-CAG-ATA-TTA-TAA-TGT-

TAC-TAA-TTA-AC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-TGT-CTA-ACT-TTT-ATC-TAT-
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TTA-CTT-TAA-AAA-AAG-ACA-GC - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TCT-AAC-AAG-ACA-TAT-TAG-

TCG-AGC-TTT-TGG - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-ATT-ATA-ATG-CTA-TTA-TAT-

TTT-TAA-TAT-TGT-AG - 3’

d)

At1g71520 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-GTT-TTC-TTT-TCA-AGT-TTC-

AGC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-TCA-AGT-CCG-AAT-AAA-TTG-

AAT-GAA-TG - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-CAT-TGT-AGA-GAC-TAG-AGA-

GTA-CAT-TGC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-ACG-ACT-TGA-TTC-AAA-AAG-

TCT-G - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TGT-ATT-TGA-CAT-ACA-ACA-

CCT-C - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-GTG-GTA-CTC-AAA-TTT-AAC-

AC - 3’

d)

At2g33710 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TGT-TCA-GGA-TGA-AAA-TAA-TTA-

TTT-AAA-TCC-ACC - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-GTC-TAT-TCT-CTG-CAT-CTA-TGT-
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TAT-ATA-TAG-ACG-C - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-TGC-TAT-TTT-ATT-TAT-GTG-ATT-

TAT-ACA-GTA-CG - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-ATG-ATC-CAA-GTC-TTG-TGT-TAA-

TTA-CGG - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-AAA-TGG-CAC-GAA-TCG-TCC-AAA-

TTG-C - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-ATA-TAT-ATA-TAT-ATA-TAT-ATA-

TAT-AGA-TAC-ATA-TGT-GTT-TTG-C - 3’

e)

At3g53600 promoter

Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-ATA-ATA-TTA-AAC-ATG-TTA-GAC-AGA-

CG - 3’

Reverse oligo 5’ -caa-gaa-agc-tgg-gtc-GTT-TTT-ACG-GTT-GTA-TTT-CGA-AAA-

GAG-AAA-AGA-GC - 3’

Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-GAC-TTT-CAA-CTC-TTT-AAT-CTA-AAG-

TCT-AAA-CCA-CAA-TCT-AAA-TCC-GG - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-CTT-GCC-ATA-TTT-TAT-TTT-GTT-TGG-

TAA-CCG - 3’

Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-GAC-GGC-GTC-GCG-CCT-CCT-TTG-

TCG-G - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-CTA-TGT-GTG-TGA-TAT-AAG-ACA-

TCA-TCA-ATG-ATG-G - 3’

Generic oligos
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Forward oligo 5 - GGG-GAC-AAG-TTT-GTA-CAA-AAA-AGC-AGG-CT - 3

Reverse oligo 5 - GGG-GAC-CAC-TTT-GTA-CAA-GAA-AGC-TGG-GT - 3

Table A.2: Oligonucleotides for Y1H promoter fragments of MYB2 with Gateway cloning, where the fragments pro-
duced will be 100bp in length, with the exception of Fragment 5, which is of length 120bp

MYB2 promoter
Fragment 1

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-ATA-TCC-TTT-TTA-TAA-AAT-ACT-AC - 3’
Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-AGA-TTT-GAA-GTG-ATT-AAG-CAA-TGT-

GCG - 3’
Fragment 2

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-AAA-AAA-TAA-AAA-TTG-AAC - 3’
Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-TTT-AAA-AGT-AGT-ATT-TTA-TAA-AAA-

GG - 3’
Fragment 3

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-AAA-TGG-AGA-GCT-AAT-TAT-GTT-TAG-
C - 3’

Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-CAT-AAG-TGT-TAT-GTT-C - 3’
Fragment 4

Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-GTG-TTA-CTA-TAC-ATC-TGA-AC - 3’
Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-ATT-ATG-CTA-AAC-ATA-ATT-AGC - 3’

Fragment 5
Forward oligo 5’ - aaa-aaa-gca-ggc-ttc-ATA-ACT-TAC-GTC-TGC-GAT-AC - 3’
Reverse oligo 5’ - caa-gaa-agc-tgg-gtc-CCT-TTG-ACT-TGT-TCA-GAT-GTA-TAG-

TAA-CAC-GC - 3’

Table A.3: Oligonucleotides for sequencing entry clones into pDONRZeo

Forward oligo 5’ - GTAAAACGACGGCCAG - 3’
Reverse oligo 5’ - CAGGAAACAGCTATGAC - 3’

Table A.4: Oligonucleotides for performing colony PCR on growing colonies from Y1H screens

Forward oligo 5’ - CTA-ACG-TTC-ATG-ATA-ACT-TCA-TG - 3’
Reverse oligo 5’ - GAA-GTG-TCA-ACA-AVG-TAT-CTA-CC - 3’
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Appendix B

Gene members and expression profiles

of potential regulons presented in Table

4.9

All ATG identifiers and gene names presented in the subsequent tables are correct according to

TAIR9 release of the CATMA probe annotation mapping version 8.
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Figure B.1: Potential regulon 197 presented in Table 4.9. Expression profiles of genes significantly co-expressed in high light and short day senescence stress conditions. Gene membership
is presented in Table B.1
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Figure B.2: Potential regulon 168 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea, P. syringae DC3000, long day and short day senescence
stress conditions. Gene membership is presented in Table B.2
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Figure B.3: Potential regulon 457 presented in Table 4.9. Expression profiles of genes significantly co-expressed in long day and short day senescence stress conditions. Gene membership
is presented in Table B.3
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Figure B.4: Potential regulon 365 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea and P. syringae DC3000 stress conditions. Gene membership
is presented in Table B.4
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Table B.1: Gene members of potential regulons presented in Table 4.9, showing ATG identifiers and common gene
name, where applicable

Potential regulon 197, where genes are co-expressed over high
light and short day senescence stress conditions
ATG identifier Gene name
AT1G77940
AT1G04480
AT1G12960
AT1G70600
AT2G32220
AT2G35240
AT2G41650
AT2G25210
AT2G31140
AT2G37270 ATRPS5B
AT3G23940
AT3G44590
AT3G61100
AT3G06680
AT3G07110
AT4G15000
AT4G25740
AT4G30800
AT4G38100
AT4G18100
AT5G02870
AT5G23900
AT5G53070
AT5G60670
AT5G67510
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Table B.2: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 168, where genes are co-expressed over
B. cinerea, P. syringae DC3000, long day and short day senes-
cence stress conditions
ATG identifier Gene name
AT1G03600
AT1G06680 PSBP-1
AT1G15820 LHCB6
AT1G21500
AT1G30380 PSAK
AT1G74730
AT1G75690
AT2G30570 PSBW
AT2G30790 PSBP-2
AT2G39470 PPL2
AT3G08920
AT3G54050
AT4G17560
AT4G24750
AT4G28750 PSAE-1
AT5G36700 PGLP1
AT5G38410
AT5G51110
AT5G53490
AT5G64040 PSAN
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Table B.3: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 457, where genes are co-expressed over
long day and short day senescence stress conditions
ATG identifier Gene name
AT1G07070
AT1G14410 WHY1
AT1G18440
AT1G26880
AT1G31660
AT1G48830
AT1G72370 P40
AT1G77750
AT1G77940
AT2G02450 ANAC034/ANAC035
AT3G09630
AT2G31610
AT2G31725
AT2G32060
AT2G36620 RPL24A
AT2G38300
AT2G19670 PRMT1A
AT2G27710
AT2G37270 ATRPS5B
AT3G04840
AT3G05560
AT3G14390
AT3G21300
AT3G23940
AT3G23990 HSP60
AT3G47370
AT3G51190
AT3G56340
AT3G60245
AT3G06680
AT3G07110
AT3G16780
AT3G25520 ATL5
AT3G28900
AT4G10480
AT4G12600
AT4G13170
AT4G16141
AT4G17390
AT4G25890
AT4G31700 RPS6
AT4G31710 ATGLR2.4
AT4G16720
AT5G02870
AT5G09510
AT5G10920
AT5G16130
AT5G20720 CPN20
AT5G22440
AT5G23535
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Table B.4: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 365, where genes are co-expressed over
B. cinerea and P. syringae DC3000 stress conditions
ATG identifier Gene name
AT1G03600
AT1G06680 PSBP-1
AT1G12900 GAPA-2
AT1G18460
AT1G30380 PSAK
AT1G32060 PRK
AT1G50900
AT1G52230 PSAH2
AT1G74470
AT1G75690
AT1G16460 ATRDH2
AT2G21330
AT2G30790 PSBP-2
AT3G08940 LHCB4.2
AT3G12345
AT3G50685
AT3G55800 SBPASE
AT3G56910 PSRP5
AT3G56940 CRD1
AT3G63520 CCD1
AT4G01800
AT4G02920
AT4G25050 ACP4
AT4G25080 CHLM
AT5G13630 GUN5
AT5G14910
AT5G16400 ATF2
AT5G17870 PSRP6
AT5G19940
AT5G23060 CaS
AT5G51110
AT5G57345
AT5G58250
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Table B.5: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 199, where genes are co-expressed over
B. cinerea and short day senescence stress conditions
ATG identifier Gene name
AT1G07070
AT1G22780 PFL
AT1G70600
AT2G02450 ANAC034/ANAC035
AT2G05120
AT2G32060
AT2G33370
AT2G35240
AT2G38300
AT2G41650
AT2G44120
AT2G37190
AT2G39390
AT3G05560
AT3G05590 RPL18
AT3G09500
AT3G47370
AT3G57490
AT4G25740
AT4G34555
AT4G36130
AT5G02450
AT5G09510
AT5G23535
AT5G23740 RPS11-BETA
AT5G45775
AT5G56710
AT5G58420
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Figure B.5: Potential regulon 199 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea and short day senescence stress conditions. Gene membership
is presented in Table B.5

268



Table B.6: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 320, where genes are co-expressed over
long and short day senescence stress conditions
ATG identifier Gene name
AT1G02770
AT1G14410 WHY1
AT1G17560 HLL
AT1G26880
AT1G44960
AT1G48570
AT1G48830
AT1G54690 GAMMA-H2AX
AT1G60770
AT1G77750
AT2G02450 ANAC034/ANAC035
AT2G02740 WHY3
AT2G31610
AT2G31725
AT2G32060
AT2G33210 HSP60-2
AT2G19670 PRMT1A
AT2G27710
AT3G04840
AT3G23830 GRP4
AT3G23940
AT3G47370
AT3G51190
AT3G54090
AT3G60245
AT3G06680
AT3G07110
AT3G28900
AT4G10480
AT4G12600
AT4G13170
AT4G16141
AT4G25630 FIB2
AT4G25890
AT4G31710 ATGLR2.4
AT5G07090
AT5G11340
AT5G15520
AT5G16130
AT5G20720 CPN20
AT5G22440
AT5G23535
AT5G27820
AT5G47700
AT5G52650
AT5G60390
AT5G60670
AT5G64670
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Figure B.6: Potential regulon 320 presented in Table 4.9. Expression profiles of genes significantly co-expressed in long and short day senescence stress conditions. Gene membership is
presented in Table B.6
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Table B.7: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 408, where genes are co-expressed over
high light and short day senescence stress conditions
ATG identifier Gene name
AT1G09690
AT1G26910
AT1G04480
AT1G70600
AT2G35240
AT2G41650
AT2G19670 PRMT1A
AT2G27720
AT3G23940
AT3G44590
AT3G53740
AT3G61100
AT3G04920
AT3G07110
AT4G00620
AT4G30800
AT4G38100
AT4G18100
AT5G02870
AT5G23900
AT5G60670
AT5G61170
AT5G67510
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Figure B.7: Potential regulon 408 presented in Table 4.9. Expression profiles of genes significantly co-expressed in high light and short day senescence stress conditions. Gene membership
is presented in Table B.7
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Table B.8: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 117, where genes are co-expressed over
long and short day senescence stress conditions
ATG identifier Gene name
AT1G07070
AT1G13960 WRKY4
AT1G18440
AT1G26880
AT1G35550
AT1G48830
AT1G72370 P40
AT1G77940
AT2G02450 ANAC034/ANAC035
AT2G33370
AT2G36620 RPL24A
AT2G47570
AT2G37190
AT2G37270 ATRPS5B
AT3G04350
AT3G04840
AT3G05560
AT3G44750 HDA3
AT3G47370
AT3G51190
AT3G56340
AT3G60245
AT3G06680
AT3G07110
AT3G16780
AT3G28900
AT3G49910
AT4G13170
AT4G15000
AT4G31700 RPS6
AT5G02870
AT5G09510
AT5G52650
AT5G58420
AT5G59850
AT5G60390
AT5G60670
AT5G61170
AT5G63510 GAMMA-CAL1
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Figure B.8: Potential regulon 117 presented in Table 4.9. Expression profiles of genes significantly co-expressed in long and short day senescence stress conditions. Gene membership is
presented in Table B.8
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Table B.9: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 344, where genes are co-expressed over
B. cinerea and short day senescence stress conditions
ATG identifier Gene name
AT1G22780 PFL
AT1G24793
AT1G48830
AT1G70600
AT2G32060
AT2G33370
AT2G35240
AT2G41650
AT3G05560
AT3G05590 RPL18
AT3G09500
AT3G11250
AT3G53870
AT3G57490
AT3G24830
AT3G58700
AT4G34555
AT4G16720
AT5G02450
AT5G09510
AT5G23740 RPS11-BETA
AT5G23900
AT5G27850
AT5G45775
AT5G56710
AT5G58420
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Figure B.9: Potential regulon 344 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea and short day senescence stress conditions. Gene membership
is presented in Table B.9
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Table B.10: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 280, where genes are co-expressed over
B. cinerea and high light stress conditions
ATG identifier Gene name
AT1G06680 PSBP-1
AT1G29930 CAB1
AT2G30790 PSBP-2
AT3G16140 PSAH-1
AT3G46780 PTAC16
AT3G61470 LHCA2
AT4G00400 GPAT8
AT4G15560 CLA1
AT4G28750 PSAE-1
AT4G33220 PME44
AT5G46110 APE2
AT5G64040 PSAN
AT5G66570 PSBO1
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Figure B.10: Potential regulon 280 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea and high light stress conditions. Gene membership is
presented in Table B.10
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Table B.11: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 416, where genes are co-expressed over
high light and short day senescence stress conditions
ATG identifier Gene name
AT1G02830
AT1G26910
AT1G48830
AT1G77940
AT1G12960
AT1G74060
AT2G05220
AT2G19730
AT2G21580
AT2G32220
AT2G25210
AT2G37270 ATRPS5B
AT2G39460 RPL23AA
AT2G40590
AT3G44590
AT3G06680
AT3G07110
AT3G55280 RPL23AB
AT4G00100 ATRPS13A
AT4G15000
AT4G33070
AT4G34555
AT4G18100
AT4G31985
AT5G02870
AT5G50810 TIM8
AT5G60670
AT5G25757
AT5G62300
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Figure B.11: Potential regulon 416 presented in Table 4.9. Expression profiles of genes significantly co-expressed in high light and short day senescence stress conditions. Gene membership
is presented in Table B.11
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Figure B.12: Potential regulon 456 presented in Table 4.9. Expression profiles of genes significantly co-expressed in high light and short day senescence stress conditions. Gene membership
is presented in Table B.12
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Figure B.13: Potential regulon 29 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea, long day and short day senescence stress conditions. Gene
membership is presented in Table B.13
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Figure B.14: Potential regulon 166 presented in Table 4.9. Expression profiles of genes significantly co-expressed in long day and short day senescence stress conditions. Gene membership
is presented in Table B.14
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Figure B.15: Potential regulon 23 presented in Table 4.9. Expression profiles of genes significantly co-expressed in B. cinerea, P. syringae DC3000, long day and short day senescence
stress conditions. Gene membership is presented in Table B.15
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Table B.12: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 456, where genes are co-expressed over
high light and short day senescence stress conditions
ATG identifier Gene name
AT1G70600
AT2G32220
AT2G35240
AT2G19670 PRMT1A
AT2G31140
AT2G37270 ATRPS5B
AT3G23940
AT3G44590
AT3G44750 HDA3
AT3G61100
AT3G07110
AT5G49590
AT4G13170
AT4G24780
AT4G25740
AT4G30800
AT4G38100
AT4G18100
AT5G02870
AT5G23900
AT5G60670
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Table B.13: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 29, where genes are co-expressed over
B. cinerea, long day and short day senescence stress conditions
ATG identifier Gene name
AT1G03600
AT1G06680 PSBP-1
AT1G08380 PSAO
AT1G15820 LHCB6
AT1G20340 DRT112
AT1G30380 PSAK
AT1G50900
AT1G52230 PSAH2
AT1G55670 PSAG
AT1G67090 RBCS1A
AT1G74970 RPS9
AT1G29930 CAB1
AT2G06520 PSBX
AT2G30570 PSBW
AT2G30790 PSBP-2
AT3G08030
AT3G08920
AT3G08940 LHCB4.2
AT3G56910 PSRP5
AT4G03470
AT4G28750 PSAE-1
AT5G01530
AT5G38410
AT5G53490
AT5G64040 PSAN
AT5G38430
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Table B.14: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 166, where genes are co-expressed over
long and short day senescence stress conditions
ATG identifier Gene name
AT1G14410 WHY1
AT1G28580
AT1G47210 CYCA3;2
AT1G66620
AT1G69770 CMT3
AT1G77750
AT1G23030
AT2G02450 ANAC034/ANAC035
AT2G10940
AT2G21790 RNR1
AT2G24490 RPA2
AT2G31725
AT2G36620 RPL24A
AT2G24170
AT3G06880
AT3G14740
AT3G14900
AT3G18730 TSK
AT3G23740
AT3G23940
AT3G24495 MSH7
AT3G25100 CDC45
AT3G54560 HTA11
AT3G25520 ATL5
AT3G27360
AT3G28900
AT3G53580
AT4G12970
AT4G16141
AT4G25890
AT4G28310
AT4G28780
AT4G31710 ATGLR2.4
AT5G08020 RPA70B
AT5G66005
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Table B.15: Gene members of potential shared regulons presented in Table 4.9, showing ATG identifiers and common
gene name, where applicable

Potential shared regulon 23, where genes are co-expressed over B.
cinerea, P. syringae DC3000, long day and short day senescence
stress conditions
ATG identifier Gene name
AT1G03600
AT1G06680 PSBP-1
AT1G08380 PSAO
AT1G15820 LHCB6
AT1G30380 PSAK
AT1G29930 CAB1
AT2G30570 PSBW
AT3G54050
AT3G55800 SBPASE
AT3G56940 CRD1
AT3G47470 LHCA4
AT4G10340 LHCB5
AT4G25080 CHLM
AT4G28750 PSAE-1
AT5G38410
AT5G51110
AT5G64040 PSAN
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