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We highlight some links between molecular dynamics and Monte Carlo algorithms used to
simulate condensed matter systems. Special attention is paid to the question of sampling the
desired statistical ensemble.

1. Introduction

The intention of this paper is to point out some connections between commonly
used algorithms in molecular simulation: broadly speaking, methods that are inter-
mediate between Monte Carlo and molecular dynamics. Although the methods are
prominent in the molecular simulation literature, and links between them are occa-
sionally pointed out, these inter-relationships do not seem to be as widely known as
they should be. More specifically, the properties of various classes of algorithms may
often be found in the mathematical and computational literature (see for example
[1–3]) while not becoming widely known amongst practioners of the techniques. We
shall consider two common classes of methods: those designed to sample states from
the canonical ensemble, and those aimed at flat-histogram sampling.

2. Canonical Ensemble Sampling

We shall confine our interest to modelling the configurational properties of a system
of N atoms, interacting by a potential energy U(r). Here, and henceforth, r stands
for the complete set of coordinates {r1, r2, . . . , rN}. Our interest in the momenta
p = {p1,p2, . . . ,pN}, and in dynamical properties of the system, will be restricted
to the possibility of using them to explore configuration space in an efficient way.
Suppose that we wish to sample configurations from the canonical ensemble, i.e.
the Boltzmann distribution

%(r) ∝ exp
(
−βU(r)

)
(1)

where β = 1/kBT , kB is Boltzmann’s constant and T is the chosen temperature.
Standard Monte Carlo methods are based on a Markov chain connecting successive
states with a transition matrix π satisfying detailed balance [4–6]

%(rold)πold→new = %(rnew)πnew→old . (2)
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where

πold→new = αold→newP old→new
acc , (3)

αold→new being the probability of randomly selecting a trial move and P old→new
acc the

probability of accepting it. Applying eqn (2) gives the acceptance criterion

P old→new
acc = min

(
1,
%(rnew)

%(rold)

αnew→old

αold→new

)
= min

(
1, e−β∆U α

new→old

αold→new

)
(4)

for new 6= old, where ∆U = U(rnew) − U(rold), and a residual probability for
rejected moves πold→old = 1−

∑
new π

old→new [7, 8].
The Hybrid Monte Carlo (HMC) method [9] uses a technique based on molecular

dynamics to sample this ensemble. An auxiliary set of momenta p is introduced,
and selected at random from the Maxwell-Boltzmann distribution:

pold =
√
mkBT G , (5)

where G is a set of 3N independently sampled Gaussian random numbers with zero
mean and unit variance, and m is the mass (assumed the same for all atoms). The
standard molecular dynamics velocity Verlet algorithm [10] advances the configu-
ration by one timestep as follows:

rnew = rold + (∆t/m)pold + 1
2(∆t2/m)fold , (6a)

pnew = pold + 1
2∆t

(
fold + fnew) . (6b)

Here f = −∇U , ∆t is the timestep, and we set rold = r(t), rnew = r(t+ ∆t), and
similarly for p, f . It is convenient to introduce the kinetic energy K = |p|2/2m =∑

i |pi|2/2m, and it is easily shown that the ratio of probability densities for select-
ing forward and reverse moves may be written as

αnew→old

αold→new = exp(−β∆K) , ∆K = K(pnew)−K(pold) . (7)

The symplectic nature of the velocity Verlet algorithm means that phase-space
volume elements drdp (which in principle should appear in this expression) cancel.
Consequently, eqn (4) becomes

P old→new
acc = min

(
1, e−β∆Ue−β∆K

)
= min

(
1, e−β∆H

)
, (8)

where H = U +K, and this generates the desired distribution of eqn (1).
Eqn (6) does not exactly conserve H, but because of the existence of a con-

served ‘shadow hamiltonian’ H‡ [11], differing from H by O(∆t2), the change
∆H = Hnew − Hold is expected to be of the same order. Therefore, as ∆t → 0,
P old→new
acc → 1, and the Metropolis step becomes unnecessary. Omitting this step

gives a form of molecular dynamics incorporating the thermostat of Andersen [12].
If the acceptance/rejection step is included, it can be described as ‘Metropolised’
thermostatted molecular dynamics. There is a fair degree of flexibility in devising
schemes that interpolate between the extremes of randomizing all the momenta,
and preserving some of them from one step to the next [13–15].
Quite commonly, the acceptance/rejection step is omitted, but doing this will

result in incorrect sampling, to an extent depending on ∆t. To illustrate this, we

2
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simulate a system of particles in cubic periodic boundary conditions, interacting
through the simple interaction potential:

U =
∑
i<j

u(|ri − rj |) , (9a)

u(r) =

{
1
2α(1− r)2 r ≤ 1

0 r > 1
. (9b)

This represents a soft repulsive interaction between fluid elements or particles, as
commonly used in dissipative particle dynamics (DPD) simulations [16, 17]. The
unit of length is chosen equal to the range of the potential, and the particle mass
is also taken to be unity. We choose a repulsion strength parameter α = 25 and
temperature kBT = 1, with a number density N/V = 3, all characteristic of DPD
simulations of water under ambient conditions [18]. For this test, a small number
of particles N = 30 is sufficient, and simulations were performed over a total run
time of 500 reduced units, with timesteps between ∆t = 0.005 and ∆t = 0.06,
encompassing the values in common use for this kind of system.
As a measure of deviation from the desired canonical distribution, we consider

the configurational temperature Tc defined by [19, 20]

βc =
1

Tc
=

〈
∇2U

〉〈
∇U ·∇U

〉 , (10)

where the angle brackets represent a simulation average. In the canonical ensem-
ble, Tc = T . Fig. 1 shows the results of implementing thermostatted molecular
dynamics, with and without the Metropolisation step, as a function of timestep.
The results are in greement with earlier DPD studies [21]: without Metropolisa-
tion, Tc/T ≈ [1− (1

2Ω∆t)2]−1 where Ω represents a mean-field (effective) harmonic
vibration frequency. This function, with Ω treated as a fitting parameter, is shown
in Fig. 1. It is clear that errors in configurational properties can increase rapidly
with ∆t, and the results confirm earlier concerns regarding the size of timesteps
commonly used in DPD simulations [22, 23].
Nearly a decade before the introduction of HMC, Rossky et al. [24] proposed the

Smart Monte Carlo (SMC) method. They primarily considered the implementation
of single-particle moves, but also discussed N -particle moves, which we focus on
here. In this case, the trial move is written

rnew = rold + β∆tDfold + R , R =
√

2∆tDG (11)

where again all vectors have 3N components, and G was defined earlier. The single
parameter of the method, written as the combination (∆tD), deliberately highlights
that the proposal step is identical with the standard Brownian Dynamics (BD)
advancement algorithm [25]. D represents the diffusion coefficient in the absence of
any interactions, in which case the distribution of random displacements satisfies
〈RR〉 = 2∆tD1, where 1 is the 3N×3N unit matrix. Applying standard methods,
Rossky et al. derived the move attempt probability ratio to take account of the bias
introduced by the forces f :

αnew→old

αold→new =
exp

{
−
∣∣(−∆r)− β∆tDfnew

∣∣2/4∆tD
}

exp
{
−
∣∣∆r − β∆tDfold

∣∣2/4∆tD
} (12)

3
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Figure 1. Configurational temperature Tc for non-Metropolised (circles, black) and Metropolised (squares,
red) Andersen-thermostatted dynamics using the DPD potential, with T = 1. The fitted line is discussed
in the text. Also shown is the acceptance ratio φ (diamonds, blue) of Metropolis steps in the latter case;
error bars for these values are smaller than the symbol size, and the line is a guide to the eye.

This ratio is used in eqn (4); therefore, Rossky et al. [24] established that SMC is a
Metropolised BD method. However, they also pointed out that the algorithm can
be considered in the context of molecular dynamics, setting

β∆tD = 1
2

(
∆t2/m

)
,
√

2∆tD =
√
mkBT

(
∆t/m

)
(13)

in which case eqn (11) becomes identical with eqn (6a), combined with the Andersen
prescription for selecting momenta, eqn (5). Eqn (12) may be written more simply,
by recognising the denominator as exp(−βKold), and using eqn (6b) to define pnew,
in terms of which the numerator becomes exp(−βKnew). Hence eqn (12) is the same
as eqn (7). Although Ref [24] predated the velocity Verlet algorithm [10], and did not
base its derivation on the evolution of a hamiltonian system, the SMC algorithm is
exactly equivalent to HMC [9]. In the same way, the non-Metropolised advancement
algorithms (BD, and MD with Andersen thermostatting at each step) are identical:
essentially eqn (13) replaces the diffusion coefficient by an inverse mass. Although
these links have been noted before [14, 26], they seem not to be widely known.
We note a further extension of the two equivalent descriptions that may be of

interest. BD simulations frequently use a configuration-dependent diffusion tensor
D(r) to approximate the effects of hydrodynamics [27]:

rnew = rold + ∆t∇ ·D + β∆tD · fold + R (14)

where now the random displacements R are selected from the 3N -dimensional cor-
related Gaussian distribution, with zero means, and 3N × 3N covariance matrix〈
RR

〉
= 2∆tD. Usually D is composed of an N × N set of 3 × 3 block ma-

trices for each pair of atoms, for example the Oseen or Rotne-Prager tensor [28],

4
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which depend on the separation vector between them. The generation of the corre-
lated random displacements R is a nontrivial numerical problem: D, while being
symmetric, is not usually sparse, band-structured, or otherwise simple to handle.
Various approaches to this problem have been proposed [29, 30]. Reformulating this
as HMC is straightforward and instructive: a configuration-dependent mass tensor
is introduced by

M−1(r) = (2β/∆t)D(r)

and is used to define a kinetic energy K = 1
2p ·M(r)−1 · p. A reversible, symplec-

tic, algorithm for solving the equations of motion derived from the corresponding
hamiltonian has been given [13]. The correct sampling of correlated momenta in
the Andersen thermostatting step is non-trivial, if M is non-diagonal, but can be
tackled in the same way as the random displacement in Brownian Dynamics with
hydrodynamic interactions. The idea of adjusting the masses, to improve the ef-
ficiency of molecular dynamics, goes back to Bennett [31], and there has been a
recent revival of interest in this approach in the biomolecular simulation commu-
nity [32–35]. It would be instructive to test deviations from the canonical ensemble
(and possibly correct them by adding a Metropolisation step), when using these
approaches.

3. Flat Histogram Sampling

We now turn to methods for sampling flat histograms, based on molecular dynamics.
Once more, we confine our interest to configurational properties. A key quantity
is the density of states W (U), defined such that W (U)dU is proportional to the
number of accessible states of the system having potential energy between U and
U + dU . This is related to the configurational entropy, and hence to the inverse
temperature β(U) through

β(U) =

(
∂S/kB
∂U

)
V

=

(
∂ lnW (U)

∂U

)
V

(15a)

S = kB lnW (U) = kB

∫ U

dU ′ β(U ′) . (15b)

An ensemble whose energies occur with a distribution function p(U) will correspond
to a configurational distribution of states %

(
U(r)

)
satisfying p(U) = W (U)%(U),

and so for a flat energy distribution

pflat(U) = constant ⇒ %flat
(
U(r)

)
∝W (U)−1 ∝ e−S(U)/kB .

A Monte Carlo algorithm for sampling %flat
(
U(r)

)
is to choose trial moves rold →

rnew, in an unbiased way, and accept/reject them with probability

P old→new
acc = min

(
1,
W (Uold)

W (Unew)

)
= min

(
1, e−∆S/kB

)
,

where ∆S = S(Unew)− S(Uold). If the function S(U) is not known ahead of time,
it must be built up progressively during the simulation. Multicanonical sampling
[36] and entropy sampling [37] provide possible methods of doing this, but here
we specialize to the approach of Wang and Landau [38]. A running histogram of

5
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values S(U) is updated S(U) → S(U) + δS for each value of U visited during the
simulation, thereby reducing the acceptance probability of future moves to that
energy, and the increment δS is progressively reduced in a way that is intended to
lead to a converged, flat, histogram of energies visited.
Various methods based on molecular dynamics may be devised to generate flat

histograms with respect to prescribed order parameters [39–42]. The dynamical
sampling of flat energy distributions was originally proposed by Hansmann et al.
[43] (see also [44]). The original papers describe (separately) BD (termed Langevin
dynamics in Ref. [43]), MD, and HMC algorithms. Here we focus on HMC. As in
Sec. 2, a kinetic energy K = |p|2/2m is defined in terms of auxiliary momenta p,
and used in a formal hamiltonian

Hflat = T0S
(
U(r)

)
+K(p) (16)

where T0 is an arbitrary temperature. The system may be sampled by thermostatted
molecular dynamics based on Hflat, which now take a form involving scaled forces
(see also [45]):

ṙ = p/m (17a)

ṗ = −∇
(
T0S(U)

)
= −T0

(
∂S

∂U

)
∇U(r) = (β(U)/β0)f . (17b)

Here β0 = 1/kBT0. These are solved step by step. The Andersen thermostat re-
selects all initial momenta pold from a distribution at temperature T0. Then the
advancement step proceeds

rnew = rold + (∆t/m)pold + 1
2(∆t2/m) kBT0β

oldfold , (18a)

pnew = pold + 1
2∆t kBT0

(
βoldfold + βnewfnew) . (18b)

where βold = β(Uold) etc. Finally, the Metropolis criterion may be applied:

P old→new
acc = min

(
1, e−∆K/kBT0e−∆S/kB

)
, (19)

although this step is often omitted. It is important to realize that the value cho-
sen for T0 has no physical significance at all: the scaling T0 → χ2T0 (and hence
pold → χpold) together with ∆t → χ−1∆t, leaves the above equations completely
unchanged. The combination of T0, m, and ∆t simply serves to generate trial dis-
placements with a physically reasonable variance. It follows that the generated
distribution is not a canonical one corresponding to the reference temperature T0.
These equations must be combined with a prescription for refining β(U) towards

the thermodynamically correct inverse temperature. The simplest approach is to
follow the Wang-Landau Monte Carlo prescription. Tabulate the entropy on a reg-
ular grid in U , of spacing δU . At each step, identify the bin k corresponding to the
current value of U , and update the entropy histogram Sk → Sk + δS. When val-
ues of β(U) and S(U) are required for eqns (18), (19), use a suitable interpolation

6
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formula, for example:

S(U) ≈ Sk +

(
Sk+1 − Sk−1

2δU

)
(U − Uk) +

1

2

(
Sk+1 − 2Sk + Sk−1

δU2

)
(U − Uk)2

⇒ β(U) =

(
∂S

∂U

)
≈
(
Sk+1 − Sk−1

2δU

)
+

(
Sk+1 − 2Sk + Sk−1

δU2

)
(U − Uk)

where Uk is the nearest tabulated value. At intervals, depending on the flatness of
the sampled potential energy distribution, the increment δS is reduced, just as in
Wang-Landau. A slightly different approach [46, 47], termed Statistical Temper-
ature Molecular Dynamics (STMD), stores β(U) or T (U) in a table, rather than
S(U). This may be more convenient, and is commonly used (see e.g. [48]), but
close examination reveals that the numerical method is the same as that obtained
by storing S(U), so we refer to this as STMD as well. Of course, there is plenty
of scope for applying different interpolation and smoothing algorithms, whichever
method is used to tabulate the histograms.
The function β(U) = (∂S/∂U) is equivalent to the microcanonical ensemble

configurational temperature [19, 49–52]

βc =

〈
∇ ·

(
∇U

∇U ·∇U

)〉
=

〈
∇2U

∇U ·∇U
− 2

∇U∇U :
(
∇∇U

)
(∇U ·∇U)2

〉
,

The expression ∇∇U is the 3N × 3N Hessian matrix, which is doubly contracted
with ∇U , to give the second term. This extra term (compared with eqn (10)) is
O(1/N) for an N -atom system. As a simple illustration, following [53], we consider
a set of 2N atoms of unit mass in three dimensions, linked into N independent
pairs ij by harmonic springs of energy u(rij) = 1

2r
2
ij . The density of states, entropy,

and configurational temperature, for this system are exactly known functions of U :

W (U) ∝ U (3N/2)−1 (20a)

S(U) = kB

(
3N

2
− 1

)
lnU + constant (20b)

β(U) =

(
3N

2
− 1

)
U−1 (20c)

where the O(1/N) terms are evident. Figure 2 shows the results of STMD carried
out with the (normally omitted) Metropolisation step. We used a flatness criterion
at each stage that the minimum entry in the ‘visits’ histogram shall be at least 95%
of the mean of all the nonzero entries, a spacing δU = 0.2, a reference temperature
T0 = 1, and restricted interest to the range 0.2 < U ≤ 5. The timestep was ∆t = 0.1.
The STMD method typically converged with each iteration taking less than 106

molecular dynamics steps. The exact results are well reproduced, confirming the
consistency between the measured microcanonical entropy function S(U) and its
derivative (whether numerical or analytical). Interestingly, the acceptance rate for
the Metropolisation step (19) was seen to decrease from about 0.9 at U = 4.5 to
around 0.5 at U = 5.0, suggesting that this might be an issue in STMD.
Our final observation concerns the very interesting suggestion of Rathore et al.

[54], to estimate β(U) from the configurational temperature βc(U), calculated and
averaged at each tabulated energy, and use this in the algorithm instead. Their
suggestion, in fact, was to numerically integrate βc(U) according to eqn (15b), and

7
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Figure 2. STMD simulations of independent harmonic oscillators in 3D: N = 1 (circles, black), N = 2
(squares, red), N = 3 (diamonds, green). Above: entropy S(U), normalized by N . Below: microcanonical
average configurational temperature kBTc = 1/βc, multiplied by N . Also shown are the exact functions,
including finite-size terms (solid lines), and the N →∞ limits (dashed lines, blue).

use the resultant estimate of S(U) in a biased Monte Carlo simulation, thus avoid-
ing the Wang-Landau process. An obvious extension of the idea is to employ this
averaged βc(U) directly in an algorithm for solving the equations of motion (17),
for instance eqns (18). In principle, this would give a way of generating a flat his-
togram without explicitly measuring the flatness and using it in a feedback loop,
which is essentially what the Wang-Landau method does. This approach appears
to be closely related to the adaptive biasing force method of generating flat distri-
butions with respect to a chosen order parameter [42]. We have tested this method,
on Lennard-Jones clusters of various sizes, and on the bulk Lennard-Jones system
employed by Kim et al. [46]. It proves to be possible to obtain good consistency
with the β(U) curves generated by STMD, and indeed to generate very broad dis-
tributions in U , but these are sensitive to numerical details of the procedure. A
truly flat distribution is difficult to reproduce, without the feedback provided by a
Wang-Landau-like refinement.

8
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4. Conclusions

In this paper we have highlighted some connections between some sampling methods
that are intermediate in some sense between Monte Carlo and molecular dynam-
ics. One general conclusion is that it is sometimes helpful to mix a little Monte
Carlo into a molecular dynamics algorithm. We have not attempted to create a
comprehensive list of methods of this kind, as the field is extremely diverse and fast
moving. To keep track of these developments, and avoid re-inventing techniques,
close contact between the mathematical, computational, and physical science com-
munities is highly desirable. Such activities, of course, have been promoted over
many years by the Centre Européen de Calcul Atomique et Moléculaire (CECAM),
whose growth into an international network of nodes has been strongly motivated
by Giovanni Ciccotti.
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