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Abstract 

The thesis explores applications of optimisation in investment management and risk 
measurement. In investment management the information issues are largely concerned 
with generating optimal forecasts. It is difficult to get inputs that have the properties 
they are supposed to have. Thus optimisation is prone to 'Garbage In, Garbage Out', that 
leads to substantial biases in portfolio selection, unless forecasts are adjusted suitably 
for estimation error. We consider three case studies where we investigate the impact of 
forecast error on portfolio performance and examine ways of adjusting for resulting bias. 

Treynor and Black (1973) first tried to make the best possible use of the informa­
tion provided by security analysis based on Markovitz (1952) portfolio selection. They 
established a relationship between the correlation of forecasts, the number of independent 
securities available and the Sharpe ratio which can be obtained. Their analysis was based 
on the assumption that the correlation between the forecasts and outcomes is known pre­
cisely. In practice, given the low levels of correlation possible, an investor may believe 
himself to have a different degree of correlation from what he actually has. Using two 
different metrics we explore how the portfolio performance depends on both the antici­
pated and realised correlation when these differ. One measure, the Sharpe ratio, captures 
the efficiency loss, attributed to the change in reward for risk. The other measure, the 
Generalised Sharpe Ratio (GSR), introduced by Hodges (1997), quantifies the reduction 
in the welfare of a particular investor due to adopting an inappropriate risk profile. We 
show that these two metrics, the Sharpe ratio and GSR, complement each other and in 
combination provide a fair ranking of existing investment opportunities. 

Using Bayesian adjustment is a popular way of dealing with estimation error in portfo­
lio selection. In a Bayesian implementation, we study how to use non-sample information 
to infer optimal scaling of unknown forecasts of asset returns in the presence of uncertainty 
about the quality of our information, and how the efficient use of information affects port­
folio decision. Optimal portfolios, derived under full use of information, differ strikingly 
from those derived from the sample information only; the latter, unlike the former, are 
highly affected by estimation error and favour several (up to ten) times larger holdings. 

The impact of estimation error in a dynamic setting is particularly severe because of the 
complexity of the setting in which it is necessary to have time varying forecasts. We take 
Brennan, Schwartz and Lagnado's structure (1997) as a specific illustration of a generic 
problem and investigate the bias in long-term portfolio selection models that comes from 
optimisation with (unadjusted) parameters estimated from historical data. Using a Monte 
Carlo simulation analysis, we quantify the degree of bias in the optimisation approach of 
Brennan, Schwartz and Lagnado. We find that estimated parameters make an investor 
believe in investment opportunities five times larger than they actually are. Also a mild real 
time-variation in opportunities inflates wildly when measured with estimated parameters. 

In the latter part of the thesis we look at slightly less straightforward optimisation 
applications in risk measurement, which arise in reporting risk. We ask, what is the most 
efficient way of complying with the rules? In other words, we investigate how to report 
the smallest exposure within a rule. For this purpose we develop two optimal efficient 
algorithms that calculate the minimal amount of the position risk required, to cover a 
firm's open positions and obligations, as required by respective rules in the FSA (Financial 
Securities Association) Handbook. Both algorithms lead to interesting generalisations. 

IX 
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Chapter 1 

Introduction 

1.1. Overview 

The work contained within this thesis explores some of the applications of optimisation 

both in investment management and risk measurement. 

Modern portfolio management typically employs many financial theoretical concepts and 

advanced academic techniques. The use of formal optimisation models in finance goes back 

to the roots of modern finance with the world of Markovitz (1952). Today the technology 

of portfolio selection has advanced considerably from the static framework (e.g. Black and 

Scholes (1973)). Efficiency of optimisation models in investment management rests entirely 

upon forecasts and information. It is difficult to get inputs that have the properties they are 

supposed to have as the historical data do not constitute a good representation for deriving 
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Information and Optimisation in Investment and Risk Measurement Chapter 1 

reliable estimates for model parameters (see, for example, Campbell, Lo and MacKinlay 

(1997)). Thus optimisation is prone to the problem of 'Garbage In, Garbage Out', that 

reduces model efficiency and leads to substantial biases in portfolio selection, unless models 

/ forecasts are adjusted suitably for estimation error. In the investment part of the thesis 

we consider three case studies where we investigate the impact of forecast error on portfolio 

efficiency from various perspectives and examine different ways of adjusting for bias. 

In risk management we look at slightly less straightforward applications which arise in 

reporting risk. We consider two risk measurement rules from the FSA (Financial Securities 

Authority) Handbook (2001) and develop original optimal algorithms that calculate the 

smallest risk exposures in settings of respective rules. One of the algorithms generalises to 

the Theorem on Convex Optimisation, formulated and proved in the thesis. 

This introductory chapter surveys the relevant literature. To embed our work within 

existing research, we will give pointers to how these ideas are developed in the body of the 

thesis. 

The rest of this chapter is structured as follows. We start with a general discussion of 

information issues in investment (Section 1.2) and move on to the problem of estimation 

error in mean-variance optimisation (Section 1.3). In Section 1.4 we analyse different im­

plementations of the Bayesian approach to adjusting for estimation bias in forecasts in a 

mean-variance framework. Section 1.5 explores the portfolio selection model of Treynor and 

Black (1973) and subsequent generalisations to their model. We explain how we extend the 

Treynor-Black analysis to account for forecast errors in Chapter 2 of the thesis. Section 1.6 

describes briefly how we implement our Bayesian adjustment to infer optimal scaling of for~ 

casts of expected returns under incomplete information on asset returns. This problem is 

addressed in Chapter 3. Section 1.7 describes other (non-Bayesian) approaches to adjusting 

2 
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for estimation error in inputs of optimisation models. In Section 1.8 we discuss the inference 

issues in long-term portfolio selection in presence of stochastic and predictable investment 

opportunities. Dynamic optimisation with parameters estimated from limited historical 

data introduces estimation bias in the model. We describe how we quantify the extent of 

such bias which appears to be substantial indeed (for rigorous treatment see Chapter 4). 

Section 1.9 discusses the risk measurement and capital adequacy issues, in the context of 

requirements by financial regulators. We discuss the optimal algorithms we developed to 

calculate minimal capital risk required within two FSA rules. These algorithms and their 

generalisations form Chapters 5 & 6 of the thesis. Section 1.10 concludes with the outline 

of the thesis. 

1.2. Information in Portfolio Theory 

As P. Bernstein (1992, p.75) recalls in his "Capital Ideas", the question, "Do you beat the 

market?" used to be insulting to portfolio managers about four decades ago, as it was taken 

for granted that all managers outperformed the market. "The only room for argument was 

over which professional manager's returns were furthest above average." The equilibrium 

model well known as the capital asset pricing model (CAPM) of Sharpe (1964), Treynor 

(1965), Lintner (1965), and Mossin (1966), proved them wrong. CAPM concludes that the 

stock market itself is the optimal portfoliol and holding the market is the optimal strategy 

for an average investor. Empirically, Treynor (1965), Sharpe (1966) and Jensen (1968) were 

the earliest papers to analyse the performance of professional investment managers and 

suggest that they have not been very successful. In a more recent work Gruber (1996) and 

Carhart (1997) make a similar point. So, who beats the market? 

1 It is optimal in the sense that no other portfolio can offer a larger return for same risk, or less risk for 
same expected return. 
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Today it is well understood that tracking the market portfolio is already good enough 

and only a relatively small number of managers with superior investment skills (e.g. as-

set allocation skills, stock picking skills2), and the ability to optimally use these skills can 

actually beat the market (Cochrane, 1999). The finance community is still in search of 

intelligent answers on how to deliver above-average returns. In the light of limited infor-

mation provided by financial markets, the importance of analysing this information in the 

most efficient way can never be overestimated. 

The literature on information analysis started with work of Treynor and Black (1973), 

Hodges and Brealey (1973), and Ambachtsheer (1974). Other references, using a similar 

approach and Bayesian statistics, include Blume (1971, 1975), and Vasicek (1973). Ideas 

suggested by these papers remain intuitively appealing today and have largely inspired this 

thesis. The information issues in long- and short-term portfolio optimisation differ. Long-

term, or strategic asset allocation decisions relate to relative amounts invested in different 

asset classes over the long term while short term portfolio decisions are associated with 

tactical asset allocation3 • These two therefore complement each other - strategic asset 

allocation defines a broad picture of investments, subject to long-term market forecasts, 

and tactical asset allocation 'tilts' holdings between active and passive (market) portfolios, 

depending on short-term forecasts of market movements and, at the same time, complying 

with risk/reward constraints defined at the strategic allocation levels. We start with the 

analysis of forecast errors in a single-period MV portfolio selection framework and then move 

onto more complex setting of continuous-time long-term portfolio management. However 

this separation is rather conditional. The approaches to adjusting for estimation error (e.g. 

2 Asset allocation skills tend to playa more important role in investment management, reducing the 
possibility of obtaining substantial gain through stock picking alone (see Brown and Harlow (1990), Brinson, 
Hood, and Beebower (1986), and Brinson, Singer, and Beebower (1991)). 

3 According to Haugen (2001), the time horizon for TAA is limited to one year. 
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Bayesian adjustment, robust optimisation) surveyed in the context of MV optimisation rep-

resent essential means of resolving uncertainty in more complicated settings too. Similarly, 

many of the models referenced in the beginning are continuous-time (e.g. Cvitanic, Lazrak, 

Martellini and Zapatero (2003)) and few are not on mean-variance optimisation at all (e.g. 

Maenhout (2004)). We hope such presentation will not cause any confusion. 

1.3. Estimation Error in l\1V Approach 

Markovitz's (1952) mean-variance (MV) portfolio optimisation model is the most quoted 

quantitative model in the investment literature. Given estimates of expected return, stan-

dard deviation or variance, and correlation of returns for a set of assets, MV efficiency 

provides the investor with an exact prescription for optimal allocation of capital. MV opti-

misation problem is given by 

max 
w 

, 1 \ '" f.1.W- -"w L..JW 
2 

(1.1) 

where w is the N x 1 vector of portfolio weights, f.1. is the N x 1 vector of expected returns, 

~ is the N x N covariance matrix of returns, and .x denotes risk aversion. In each period 

the investor chooses his portfolio w· (w* = ~.x~-1f.1.) to maximise the value of the objective 

function, trading expected portfolio return, f.1.'W, against portfolio variance, w'~w. 

There is considerable literature on the strengths and limitations of MV analysis (e.g. 

Markovitz (1987)). Markovitz's mean-variance optimisation model is simple and intuitive 

but is widely criticised for its sensitivity to the inputs: the first two moments of the distri-

bution of future asset returns, and the matrix of expected future correlations of all returns. 

In the classical implementation of (1.1), f.1. and ~ are replaced by their estimates p, and t 

respectively, changing (1.1) to the following: 

5 
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'I 1 \ If., max J.L W - -AW.t..JW 
w 2 

Not surprisingly, estimation error is known to have a huge impact on MV optimised 

portfolios. They are unbalanced and fluctuate widely over time. The extreme sensitivity 

of a mean-variance portfolio to replacing unknown parameters by estimated sample values 

was first reported by Hodges and Brealey (1973). Other references include Michaud (1989), 

Best and Grauer (1991), Chopra and Ziemba (1993), Chopra (1993), Ziemba and Mulvey 

(1998), and Litterman (2003) who present some empirical and theoretical results on the 

sensitivity of optimal portfolios to changes in means, variances and covariances. 

Solution to (1.1) overweights those assets that have large estimated expected returns, 

low estimated variances and low estimated correlations to other assets. According to Chopra 

and Ziemba (1993), out of all the parameters, estimates of expected means have greatest 

impact on a MV portfolio. They find that errors in means are about ten times as important 

as errors in variances, and errors in variances are about twice as important as errors in 

covariances. Best and Grauer (1991) note that "a surprisingly small increase in the mean 

of just one asset drives half the securities from the portfolio." The difficulty of statistical 

estimation of mean returns (see Merton (1980)) means that the model often allocates the 

highest portion to the asset class with the largest estimation error. 

There are several approaches to dealing with estimation error in portfolio optimisation. 

One approach is to correct for errors in the inputs, using Bayesian inference. Under different 

implementations of Bayesian adjustment, the sample estimates are shrunk to some prior 

values in order to reduce the effect of sampling error. Another popular approach is robust 

optimisation. To account for parameter uncertainty, an estimation robust investor considers 

a set of plausible parameters and chooses the worst case (see Section 1.7.1). Other less 
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popular approaches are discussed in Section 1.7.2. 

1.4. Bayesian Adjustment 

As argued above, using the information available within a sample alone is not sufficient 

to generate reliable portfolio rules. Examples of outside of sample information include 

eqUilibrium models, the expertise and views of investors or financial analysts, and results 

of unrelated experiments. External information can be formally modelled using Bayesian 

analysis. 

Zellner (1971) and Berger (1985) give a general introduction to Bayesian analysis and 

Bawa, Brown, and Klein (1979) to its application to portfolio theory. Using Bayesian 

estimates is the most popular way of dealing with estimation error in portfolio management. 

The Bayesian approach may be implemented in several ways. 

In one implementation, a number of papers, including Barry (1974), Klein and Bawa 

(1976), Bawa, Brown, and Klein (1979), and Brown (1979), use either a non-informative 

diffuse prior or a predictive distribution obtained by integrating over the unknown parameter 

rather than using the historical estimate of the parameter value. The advocates of a diffuse 

prior argue against imposing an informative prior due to difficulties in justifying a particular 

informative prior. 

To deal with estimation risk, another stream of papers, such as Korkie and Ratti (1979), 

Jobson and Korkie (1980), Jorion (1985, 1986), Frost and Savarino (1986), Dumas and 

Jacquillat (1990), and Chopra, Hensel, and 'Thrner (1993), uses empirical Bayes estimators, 

which are equivalent to weak informative priors. For example, Jorion (1985, 1986) develops 

the Bayes/Stein estimator that a priori assumes equal expected returns for aU assets and 

hence shrinks the MV optimised portfolio towards the minimum-variance-portfolio (MVP). 

7 
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MVP excludes the sample information on expected returns and uses only the covariance 

matrix of returns. 

In a third implementation of the Bayesian approach, authors use the equilibrium im-

plications of an asset pricing model to establish a prior. Important papers on this subject 

include Black and Litterman (1990, 1991, 1992), Jorion (1991), Pastor (2000), and Pastor 

and Stambaugh (2000). We will give detailed analysis of the Black and Litterman model 

later in the chapter, in Section 1.5.2. 

In the next section we discuss how we account for parameter uncertainty in the model 

of Treynor and Black (1973), and how we adjust for forecast error. 

1.5. Forecast Errors in Portfolio Selection: 
Treynor and Black (1973) Perspective 

Treynor and Black (1973) first tried to make the best possible use of the information 

provided by security analysis based on Markovitz portfolio selection. In this section we 

provide a brief description of their methodology and findings. We discuss their results in 

the light of estimation error and quantify the extent of bias in optimised portfolio, caused by 

the estimation error. We provide an alternative analysis that better accounts for available 

information as well as unknown parameters, and gives a fair picture of existing investment 

opportunities (see Chapter 2). The last section of this paragraph discusses the literature 

related to the work of Treynor and Black. 

1.5.1. Asset Allocation by 'Ireynor and Black (1973) 

Sharpe (1966) proposed a measure of fund performance that incorporated the ratio of 

excess return to the standard deviation of return J-L/u. The higher the Sharpe ratio, the 

8 
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more risk-adjusted return the investor expects. Theynor-Black accepted that definition and 

first stressed the analysts' role in portfolio management (Theynor and Black, 1973). They 

showed that the optimal holding of an individual stock should not depend on the investment 

manager's expectations regarding the general market. An investment manager is assumed 

to optimise his portfolio by combining n independent assets (active portfolio) and a market 

(passive) portfolio. Two managers with radically different expectations regarding the general 

market will select the active portfolios with the same relative proportions. For the optimal 

holdings hi = ±~ the portfolio manager obtains the highest Sharpe Ratio J.lp/up. Its square , 

(1.2) 

where Pp' p/s and up, u;'s are expected excess returns and standard deviations of the port-

folio and assets respectively, M is the market Sharpe ratio. Therefore the positions in 

securities are taken purely on the basis of expected independent returns and variance. Un-

less the analyst is able to anticipate all the events affecting the price, hence the return, 

some portion of the independent return variance remains unexplained by his forecasts. Let 

us assume that the correlation between the portfolio manager's predictions of excess return 

and the realisations is p. Then the squared Sharpe ratio becomes: 

Scalings of Pi and Wi depend on what p is. As in reality an investor works with his 

anticipated correlation which may differ from the actual one, the interesting question is, 

how vulnerable is the Sharpe ratio to changes in investor's prior beliefs about the market? 

Particularly, the investor thinks that the correlations between his forecasts and the realised 

9 
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outcomes are R, but actually those correlations are p's. 

In our analysis, we extend the Treynor-Black classical setting to incorporate such a 

discrepancy between the anticipated and actual correlations. We quantify how much the 

investor's actual Sharpe ratio differs from the one he anticipates and what the cost of the 

forecast error is. Interestingly, the Sharpe ratio we derive, that accounts for the difference in 

correlations, asymmetrically treats under and overestimation errors in forecasts - generally 

overestimation of the forecasts gives a larger Sharpe ratio rather than underestimation. We 

explain this paradox of success of overconfidence by the inability of the Sharpe ratio alone to 

take a full account of portfolio efficiency loss which, except for the wrongly assumed reward 

for risk, is attributed to the utility loss that comes from adopting an inappropriate risk 

profile. The following figure, taken from Chapter 2, provides an insight into the portfolio 

performance reduction due to forecast error: 

E[r] 

z 

so 

Figure 1.1 

The investor thinks the opportunity set (optimal Sharpe ratio) is Rf - Y and chooses 

(what he thinks is optimal) portfolio A on indifference curve 1 (see Figure 1.1). The actual 

opportunity set is Rf - Z and if he knew that he would choose B on indifference curve 2. 

Instead he takes the risks of A, but gets a lower E[R] as at C, which is only on indifference 

curve 3. 
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In light of the above argument, we extend our analysis to the utility based portfolio 

performance measure, the Generalised Sharpe Ratio (GSR), introduced by Hodges (1997), 

which reflects the reduction in the portfolio efficiency due to utility loss. We show that these 

two measures, the Sharpe ratio and GSR, in combination give a better account of portfolio 

quality. 

1.5.2. Accounting for Uncertainty in Active Portfolio 
Management 

Treynor-Black findings, essential to active portfolio management, have been unjustly 

neglected for many years. They have not lost their significance today, over three decades 

after publication, and recently started enjoying revived interest in the finance community. 

The simplicity of Treynor-Black ideas makes them highly influential among practitioners (see 

Taggart (1996» as well as academics - recently published leading investment textbooks 

provide their detailed analysis (see Grinold and Kahn (1999), Bodie, Kane and Marcus 

(2001». 

Cvitanic, Lazrak, Martellini, and Zapatero (2002) extended the work of Treynor and 

Black to a dynamic setting, taking into account the hedging demands of an investor and 

learning during the investment horizon. While trying to optimise a dynamic portfolio, they 

rely heavily on estimated parameters that bring extra sources of bias into the model. 

Treynor-Black's idea was refined by Black and Litterman (1991, 1992) by introducing 

uncertainty about the model in a Bayesian framework. Black and Litterman's asset allo­

cation model combines market equilibrium with subjective views of investors about market 

opportunities. Instead of a single vector of expected excess returns as in the classical MV 

optimisation, a Black-Litterman investor is asked to specify as many views as he wishes, 
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where each is an expectation of the return to a portfolio of his choosing. Each portfolio is 

referred to as a "view portfolio" (see Litterman (2003». Besides view portfolios, the in-

vestor also specifies a degree of confidence as a standard deviation around the expectation. 

After such reformulation of the investor's problem, in an unconstrained optimisation Black-

Litterman's optimal portfolio is a weighted combination of the eqUilibrium portfolio and the 

view portfolios (see He and Litterman (1999». The optimal portfolio would tilt towards 

view portfolios with projected higher magnitude and confidence, and away from view port-

folios with projected lower magnitude and confidence. The implementation of the model, 

especially the translation of uncertainty around the investor's view into the covariance ma-

trix, is far from straightforward and has been studied by many authors. Most important 

papers among those are: Bevan and Winkelmann (1998), He and Litterman (1999), Satchell 

and Scowcroft (2000), Lee (2000). 

These papers are different from ours. We identify a specific source of uncertainty and 

adjust the Treynor-Black formula for the inherent estimation error, based on almost as little 

information as the original formula had. At the same time, we explain the shortcomings 

of the original measure of portfolio performance and complement it with the utility-based 

measure. 

1.6. Inferring Optimal Scaling of Forecasts 
of Expected Returns 

This section presents some of the findings of Chapter 3 where we study the problem of 

inferring optimal scaling of forecasts of asset returns in the presence of uncertainty about 

the quality of our information. In Chapter 3 we look at the cross-section of asset returns 

where assets possess predictability but up to an unknown scale function. This is a corollary 

to the Treynor and Black model in an idealised world. 
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Consider a single period investor who faces financial market with n independent risky 

assets. Assume that the asset returns Xi come from the following model: 

(1.3) 

i = 1, ... , n 

where Ci "'-' N (0, 1) is a random noise, scaled by the known volatility (J that is constant across 

assets. Unobservable 6; '" N (0,1) represent the prior information on expected returns, but 

only up to an unknown scale function s. We are unsure what scale function should be 

applied. Assuming stability in the return generating process already given, we investigate 

how best to use historical data to infer the optimal scaling of our expected return forecasts. 

Then we solve the investor's portfolio problem in a mean-variance framework. 

Based on the sample information only, the scale function is computed using a maximum 

likelihood estimation (MLE) which, due to finite sample limitations, is affected tremendously 

by the estimation error and cannot offer a satisfactory estimate of scaling. To help forecast 

expected returns we turn to Bayesian inference and use the prior that comes from outcomes 

of unrelated experiments. Our prior is the historical forecasting skill of an investor, modelled 

by a distribution reflecting the investor's historical correlation between forecasts and returns. 

The distributions are chosen so that they project into either normal s '" N(m, v) or uniform 

s I'V [~, 5J prior of the scaling. Additional information that updates prior scaling is the sample 

of observed returns. 

After having estimated the scaling, we solve the investor's portfolio problem in a mean­

variance framework. We find that, to fully exploit available information, an investor needs 

only the first two moments of the posterior distribution on his forecasting skills. Portfolio 
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holdings, derived under efficient use of information, strikingly differ from the holdings de­

rived from the sample information only (i.e. based on classical MLE). Ignoring the prior 

and optimising on observed returns only results in either several (up to 10) times larger 

holdings, or no investments at all. The analysis is extended to a multi-manager portfolio, 

where each manager works on a particular class of assets (each class of assets has its own 

unknown scale function). Besides being a more plausible setting, this framework offers new 

insights into investment under uncertainty. 

With a modified assumption of observable systematic returns Oi, our model is a gener­

alisation to Ambachtsheer (1977) which provides a "IC ("Information" correlation) adjust­

ment" that converts ex-ante alpha ai into ex-post Ai, scaled input for optimisation. His 

scaling d equals the following: 

d = lea (A) /a (a) 

where 

Ie = cross-sectional "information" correlation of ex-ante and ex-post alpha, 

a (A) = cross-sectional standard deviation of ex-post alpha, 

a (a) = cross-sectional standard deviation of ex-ante alpha. 

dai afterwards can be interpreted as the excess return associated with forecast alpha, ai. 

In our model we introduce uncertainty around the correlation (Ie) and show analytically 

its impact on optimal MV portfolio. 

Our model bears some similarities to the Black and Litterman approach (see Section 

1.5.2). For a prior, they use the equilibrium returns and update them with an investor's 

views. OUf prior instead is a measure of an investor's long-term investment performance 

(IC), which is transformed into his asset-specific forecasting skill using observed returns. 
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The optimal portfolios, analytically expressed for both models, are highly diversified and 

less sensitive to estimation error. We scale unobservable alpha, while Black and Litterman 

compute alpha based on equilibrium implications and use it as a neutral prior for expected 

returns. Our adjustment applies directly to the scaling of expected-return forecasts, i.e. to 

the model parameter, rather than to the expected-return forecasts the model produces. 

Another paper that also refines the model parameters instead of forecasts, is Connor 

(1997). In his empirical study, Connor examines the impact of Bayesian adjustment on 

portfolio weights in a multi-period model where rt is a time t return on the asset and Xt-l a 

variable observable at time (t - 1) that the investor believes can be used linearly to predict 

the time t return rt: 

The unexplained return is distributed normally with known variance Ct f'V N (0, 0';). To 

adjust for the OLS estimate of b, Connor too applies a Bayesian adjustment. In his im-

plementation, Connor sets the prior expected value of b to zero (b rv N (0, o'~)) which "is 

equivalent to weak-form market efficiency because it implies that the forecasting model has 

no ability to predict returns"4 (see Connor (1997), p.44). He claims this is similar to the 

assumptions of Black and Litterman who "imposed their prior on expected returns based 

on the efficient markets hypothesis." Unlike Connor, our prior distributions on scaling have 

non-negative means since we expect a skilled investor to trade profitably on the difference 

between his expectations and those of the market. In the meantime, we do not exclude 

Connor's weak-form market efficiency since the posterior estimate of scaling can be zero. 

There is a difference in formulation between our models: Connor's predictable variable Xt is 

4This analysis is similar to the ,B-adjustments of Blume (1971, 1975) and Vasicek (1973), where ,Bs are 
shrunk towards the market beta of 1. 
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observable, unlike our unobservable Oi. We also note that our implementation of Bayesian 

adjustment differs from that of Connor. The Bayesian estimation in Connor's work is based 

on the solution to a standard Bayesian regression problem (see Chow (1983)). We solve ex­

plicitly for optimal holdings while Connor presents numerical solutions only. Despite these 

differences, Connor too finds that the portfolio weights based on the unadjusted forecasting 

model are extremely aggressive. 

1.7. Non-Bayesian Approaches 

Recent growth of non-Bayesian approaches has been so striking that there is a sufficient 

reason for us to provide a brief introduction to the corresponding literature even though 

none of our work is of this type. 

1.7.1. Robust Portfolio Choice 

Robust optimisation is another approach that offers vehicles to incorporate estimation 

risk into the decision-making process in portfolio selection. In robust optimisation an in­

vestor is assumed to be aware that an estimated model is only approximately true. To 

account for the model uncertainty, he considers a set of all plausible models. Unlike a 

Bayesian investor, a robust investor has too little information to assign probabilities to 

alternative models and instead considers the least favourable model. The size of the set de­

pends on the degree of required robustness - the larger the set the poorer the worst case. 

Extreme robustness in portfolio selection results in highly conservative portfolio strategies. 

For example, Maenhout (2003) finds that introduction of robustness drastically reduces the 

demand for a risky asset. 
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In the presence of uncertainty about model parameters, investors may consider multiple 

priors about the mean and the variance of asset returns instead of a single prior. Anderson, 

Hansen and Sargent (1999) is a key reference that develops a model of decision making that 

allows for multiple priors and where the decision maker is not neutral to uncertainty5 (see 

also Chen and Epstein (2002), and Uppal and Wang (2003». Such a framework is consistent 

with the ambiguity-aversion known to be experienced towards having multiple priors (see 

Ellsberg (1961». 

A few important papers that study robust portfolio choice besides those already listed, 

include Gilboa and Schmeidler (1989), Hansen and Sargent (2003), Rustem, Becker and 

Marty (2000). Robust portfolio rules in the context of input parameter uncertainty is 

examined by Goldfarb and Iyengar (2003), Lutgens and Schotman (2004), Tutuncu and 

Koenig (2003), Halldorsson and Tutuncu (2003), Garlappi, Uppal, Wang (2004). 

Goldfarb and Iyengar (2003) proposed a robust portfolio selection model, based on Ben-

Tal and Nemirovski (1998, 1999)6. They assume that the unknown market parameters lie 

in a known and bounded uncertainty set, and the robust portfolio is computed by solving a 

max-min mean-variance problem assuming worst case behaviour of parameter values within 

the set. The uncertainty sets here can be interpreted as confidence regions around the point 

estimates of the parameters. Depending on the degree of confidence there is a probabilistic 

guarantee on the performance of the robust portfolio. 

The following is an example of robust optimisation in the face of input/model uncer-

tainty. If a robust investor obtains advice from J experts about the inputs of MV model 

(flj' Ej ) , j E J, and believes that one of them is right, he will consider the worst case by 

5In contrast, a Bayesian investor is neutral to uncertainty. 
6 Ben-Tal and Nemirovski (1998, 1999) represent most important references to the optimisation 

techniques. 
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reformulating the MV optimisation problem: 

I 1 \ I max min J.L·W - -AW E·w 
w jEJ J 2 J 

This corresponds to the model with the rival return and rival risk scenarios of Rustem, 

Becker and Marty (2000). In Lutgens and Schotman (2004), each expert supplies a set 

of uncertainty Uj around his estimates of the mean and/or variance. If investors consider 

uncertainty in the estimator of the expected return only, the estimation and model robust 

portfolio is found by 

I 1 \ I~ max min min J.L W - -AW L;'W 
w j p.EUj 2 J 

Expert j believes the uncertainty set Uj to contain all the plausible parameter values for J-lj' 

A critical aspect of the analysis is specifying the sets of uncertainty. In general multi-prior 

model takes the following form: 

I 1 I max min J.L W - -AW Ew 
w p. 2 

subject to 

Robust optimisation is a relatively new and fast-growing area of optimisation and is 

being applied successfully to various areas of finance. The main characteristic of robust 

optimisation is that it takes a pessimistic view, based on the assumption of ambiguity 

aversion, related to Ellsberg-style experiments (see Ellsberg (1961)). Some believe this 

assumption to be non-rational. 
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1.7.2. Other Approaches 

To smooth the estimation error, papers like Grauer and Shen (2000), Frost and Savarino 

(1988) advocate imposing arbitrary portfolio constraints (see also Jaganathan and Ma 

(2003)). 

Michaud (1998) proposes a method of resampled efficiency, by drawing repeatedly from 

the return distribution based on the original optimisation inputs and finds efficient frontier 

portfolios based on these resampled returns. His method, however, is rather arbitrary as 

he provides no statistical justification for choosing an interval for resampling. Although his 

method generally obtains a better answer than raw MV optimisation, we have no grounds 

to believe this method is at least 'locally optimal'. Applying meaningful Bayesian prior 

instead would be more reasonable. Scherer (2002) discusses pros and cons of Michaud's 

theory of resampled efficiency. 

Scenario-based stochastic programming models have also been proposed for handling the 

uncertainty in parameters (Ziemba and Mulvey (1998) give a survey of this research). This 

approach becomes very inefficient as the number of assets grows. 

1.B. Long-Term Portfolio Choice 

1.8.1. Predictability in Long-Term Asset Returns 

The problem of estimation error is not limited to the mean-variance framework although, 

for its simplicity and analytical tractability, the MV framework best illustrates the extent 

of inefficiencies that an optimised portfolio may suffer from. Since MV utility, concerned 

with only the mean and the variance of investor's final wealth, is not rich enough to provide 

a satisfactory match to market participants' priorities in multiperiod and continuous-time 
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models, more complex utility functions (e.g. power utility, Epstein-Zin utility) are favoured 

for long-term portfolio management models. 

The investor's time horizon has a significant effect on the composition of the optimal 

portfolio. The process of portfolio management in long-term continuous-time models be-

comes dynamic where an investor seeks to dynamically maximise expected utility function 

over a horizon and will choose a portfolio, which is optimal for this objective. This involves 

both static optimisation in each period and dynamic allocation over time. It consists of 

continuously readjusting portfolio portions so as to take the evolution of the market into 

account. Now optimisation depends on several parameters that are continuously reevalu-

ated and fed back into the optimisation model. We know that even in a simple setting the 

limited size of historical data does not allow for unbiased estimates of parameters that drive 

the asset returns process. The continuous time setting inevitably complicates the problem 

of accounting for bias in optimisation with a long horizon. Here, in the presence of several 

interrelated and independent sources of bias, the optimality of portfolio is closely tied to 

how efficiently the available information is being analysed and processed. 

Based on seminal work by Merton (1969, 1971) and Samuelson (1969), it has been 

understood that intertemporal portfolio problems would not reduce to a straightforward 

sequence of single-period problems unless 

• Investors have no labour income and investment opportunities are constant (or uncor-

related with asset returns) over time7; 

and / or 

7The opportunity set summarises investor's information on the distribution of asset returns over the 
remaining investment horizon. This assumption eliminates either uncertainty regarding his opportunity 
set, which the investor may wish to hedge against or speculate on, or the investor's ability to profit from 
hedging/speculation. 
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• Investors have logarithmic utility8. 

That means, if either assumption given above holds, it is optimal for an investor with a 

20-year-horizon to hold the same portfolio as for an investor with a l-year-horizon (ceteris 

paribus). The conventional wisdom suggests that long-term investors should hold more of 

the risky asset than their short-horizon equivalents. If this is true and both investors have 

power utilities, the assumption of constant investment opportunities cannot be realistic. 

On the theoretical side, it has been known since Merton (1973) that variation in expected 

returns over time can potentially introduce horizon effects. 

There is now a consensus in empirical finance that the asset class returns are to some 

extent predictable. Papers that found significant evidence of predictability in the long-

term asset return (Le. systematic component of return), include Keirn and Stambaugh 

(1986), Campbell (1987), Campbell and Shiller (1988), Fama and French (1989), Ferson 

and Harvey (1991), and Bakaert and Hodrick (1992). The explanatory variables as well as 

their significance vary across studies but all agree that the explanatory power of detected 

predictive relationships is statistically weak but economically significant. 

Predictable time-variation in expected asset returns makes it possible to time the market. 

While theoretical formulae in the dynamic case are available in general contexts, their 

implementation under realistic assumptions gives rise to complex terms that do not have 

explicit forms and are difficult to evaluate numerically. Under incomplete information on 

expected asset distribution, to what extent does the evidence of predictability affect optimal 

portfolio rules? 

Kim and amberg (1996) analytically examined the long-term portfolio decision in the 

presence of predictability in the market, for HARA utilities. In their model, the investor 

8With logarithmic utility the optimal portfolio strategy is myopic even in the presence of time-dependent 
market opportunities. 
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trades two assets, a riskless bond and a risky asset, in a complete market. The riskless rate 

r is constant and the price Pt of the risky asset follows a diffusion process 

where !-it = r + Xt(Jt. The state variable X t is the risk premium on the risky asset and 

follows the Ornstein-Uhlenbeck process 

dXt = -A (Xt - X) dt - (Jxdzx 

where A, X and (Jx are positive constants. The correlation between the asset-return and 

risk-premium processes is given by 

E [dzdzxl = pdt 

Kim and Omberg explicitly solve the non-myopic portfolio problem under different as-

sumptions on interrelations between the parameters. They demonstrate how diverse are the 

expectations that market participants can have, depending on their beliefs about parame-

ters. They find that such model specification permits for various biases in the process that 

lead to overprediction of returns. For example, given constant O't, the sign of correlation 

p results in a bias towards higher expected returns after price rises and vice versa. The 

extreme sensitivity of expected returns to the model inputs demonstrates that the process 

Kim and Omberg use for modelling long-term expected returns is inadequate and some 

adjustments to the model and/or parameters are required to get plausible results. 

Brennan, Schwartz and Lagnado (1997) made an empirical attempt to solve the optimal 

portfolio problem based on a drift-driven model when the world dynamics was governed by 
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three state variables: short-term risk rate Tt, console bond yield it, and the dividend yield 

Ot. The asset choice consisted of stock, bonds and cash, and expected asset returns were 

predictable. They used the following joint stochastic process to model the market evolution: 

dSt 
(all + a12Tt + a13it + a14t5t) dt + 0'1dz1 = 

St 

dTt = (a21 + a22Tt + a23it + a240t) dt + Tt0'2dz2 (1.4) 

dit = it (a31 + a32Tt + a33it + a340t) dt + lt0'3dz3 

dOt = (a41 + a42Tt + a43lt + a440t) dt + Ot0'4dz4 

where St is the stock price, the variance covariance matrix is constant as are all aij coeffi-

cients in drifts. The model parameters were estimated from fitting regressions to 20-year-

data on corresponding market observations. The investor in the model has power utility 

defined over terminal wealth with a risk aversion of (-5). Based on these estimated para-

meters, Brennan, Schwartz and Lagnado solved the portfolio choice problem in a dynamic 

setting. 

In their numerical solution to strategic asset allocation Brennan, Schwartz and Lagnado 

found extraordinarily large predictable investment opportunities, accompanied by extreme 

sensitivity of holdings to parameter estimates. Merton (1980) pointed out that an observer 

of a continuous price path can estimate a constant volatility with arbitrary precision over an 

arbitrary short period of calendar time, provided he has access to arbitrarily high-frequency 

data. The estimate of expected returns, by contrast, depends on the length of the sample 

period rather than the frequency of the data available. 20-year-data can provide a set of 

satisfactory estimates for volatilities and correlations, but it is too short to reliably estimate 

expected returns, even under the assumption that the historical data constitute a good 
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representation of forthcoming periods9 • 

Part of the investment opportunities, predicted by Brennan, Schwartz and Lagnado, 

comes from estimation error but to what degree, has not been quantified so far. The sub-

sequent literature has advanced considerably from the assumption that coefficients are es-

timated with certainty. However it has not yet realised the dangers associated with the 

portfolio selection approach pioneered by Brennan, Schwartz and Lagnado -long-term op-

timisation based on parameters estimated from short samples. In subsections 1.8.2 - 1.8.3 

we discuss the related literature that studies the long-term portfolio problem in the pres-

ence of parameter uncertainty (learning and uncertainty about predictability) but has not 

addressed the kind of bias we investigate in this thesis. 

1.8.2. Inference Issues in Presence of Learning 

about Parameters 

The optimal portfolio solution changes when we allow for uncertainty about model pa-

rameters. Researchers, investigating the impact of learning on portfolio allocation decision, 

assume that as investors observe asset returns over time they will learn about the true pa-

rameter values; and the anticipation of learning has an impact on their earlier investment 

decision. It implies that the portfolio choice problem can be solved in two steps: parame-

ters first estimated, and then portfolios are chosen conditional on these parameter estimates. 

This separation of the estimation and optimisation steps is optimal only when the property 

of certainty equivalence applies10 . Early contributions to the topic of portfolio selection 

with learning include Williams (1977), Gennotte (1986), Detemple (1986), and Dothan and 

9The assumption of constant covariance matrix over 20 years remains questionable. 
lOIn particular, certainty equivalence states that unknown state variables can be replaced in the optimi­

sation problem by their least squares estimators. It applies when the objective function is quadratic and 
the process is a linear function of unobservable state variables (See Lucas and Sargent (1981}}. 
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Feldman (1986). Under the Gaussian-Markov structure, they demonstrate that a separation 

principle holds. Namely, agents can solve the inference problem to form their expectations, 

and then solve their optimisation problem based on this set of expectations which is equiv-

alent to their original optimisation problem. Their findings enable an investor to derive 

optimal estimators for the unobservable expected instantaneous returns using observations 

of past realised returns and use those for utility maximisation. For example, Gennotte 

(1986) establishes a separation theorem that extends the discrete-time (quadratic-linear) 

certainty equivalence principle to continuous time without restrictions on utility functionll
. 

Based on the separation result, Gennotte (1986) analyses the impact of estimation error 

on portfolio selection. He finds that in continuous time models with diffusion the effects 

of parameter uncertainty are different from those found in single-period models. Gennotte 

shows that for non-logarithmic preferences, the level of investments and the term structure 

depend upon future variations of the derived opportunity set, which arise from randomness 

in both the true opportunity set and in the estimation error12 . As a result, a risk-averse 

investor (with non-logarithmic utility) reduces his investment in a risky asset when the un-

certainty around its expected return increases, which is consistent with the literature (see, 

for example, Black and Litterman (1992)). 

In more recent work, Brennan's (1998) learning model assumes constant investment 

opportunities and his investor has to learn only the long-term mean of the risky asset. 

In a simple illustration we scratch the surface of how the learning works. Consider 

an investor with the power utility (-y risk aversion), who maximises his terminal wealth. 

Investment opportunities are fixed and there is a riskless and a risky asset in the market. 

Instantaneous returns on the riskless asset follows 

lIThis result is based on Liptser and Shiryayev (1977). 
12 An investor with logarithmic utility optimally ignores stochastic variation in the future investment 

opportunity set. 
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and on the risky asset -

dBt -=rdt 
Bt 

dPt - = fLdt + (jdz 
Pt 

Chapter 1 

All parameters r, j.t and (j are assumed to be constant. We know, that if they are known, 

the investor would put portion x· of his wealth in risky asset, x· = (j.t - r) h(j2. Following 

the argument in 1.8.1, an investor is not likely to know the true value of j.t. Therefore he 

makes his investment decision based on his current beliefs about j.t and in the light of future 

learning about this parameter. Standard assumption for j.t at time 0 is a normal prior, 

updated in a Bayesian way. It is notable, that if underlying parameters are constant, the 

investor eventually (t ~ 00) learns true j.t (see Gennotte (1986)). The described process 

suggests that learning creates a positive correlation between realised returns and revisions 

in return forecasts. 

Brennan and Xia (1998) is another interesting paper in this stream which, like other pa-

pers in this section, studies the impact of learning on portfolio choice without predictability. 

The learning considered here does not solve the estimation problem we posed earlier. 

We discuss more complex learning papers in the following subsection which examines effects 

of learning when returns are to some degree predictable. 
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1.8.3. Predictability in the Presence of Estimation 

Error 

A pioneering work by Kandel and Stambaugh (1996) studied the impact of predictability 

in the portfolio choice problem in the presence of estimation error. They consider a multi-

period setting but their investor is assumed to have a single-period horizon. They find 

that predictability remains economically significant even if it is uncertain - the empirically 

observed predictability in the market still allows the investor to make superior returns even 

if the market is timed correctly only lout of 100 times. 

Barberis (2000) extends the analysis of Kandel and Stambaugh (1996) and investigates 

the impact of parameter uncertainty in a dynamic asset allocation framework. Relaxing 

Brennan, Schwartz and Lagnado (1997)'s assumption, that investors know the parameters 

of the stochastic process generating asset returns with certainty, he introduces parameter 

uncertainty in the portfolio choice. Barberis (2000) assumes uncertainty surrounding the 

predictive relation of returns and predictive variables and derives a dynamic strategy for a 

Bayesian investor in a discrete time setting, considering estimation error. Barberis finds, 

that even in the presence of parameter uncertainty, a long-term investor allocates to risky as-

sets more than does a myopic investor but significantly less than an investor using Brennan, 

Schwartz and Lagnado's strategy. 

Xia (2001) examines the combined impact of learning and predictability on portfolio 

decision, drawing on the earlier work on learning (e.g. Gennotte (1986))13 as well as pre-

dictability in the presence of parameter uncertainty (e.g. Barberis (2000)). In her model 

the investor knows the true long-term mean stock return, but does not know the short-term 

dynamics of expected return. As a result, revisions in the estimated parameter are no longer 

13The separation theorem established in Gennotte (1986) is not affected by the predictability (see Xia 
(2001) for more details). 
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perfectly positively correlated with innovation in stock returns (which is the case with learn-

ing without predictability; see Section 1.8.2.). Now the correlation can be either negative 

or positive, depending on other factors. This implies another intertemporal hedging term in 

the demand for stocks which offsets already existing positive intertemporal hedge term.14 

Another important paper on parameter uncertainty that a long-term investor faces, is 

Avramov (2002) who considers a model with many risky assets. Other contributions on 

the optimal decision rules in the presence of returns with differing degrees of predictability 

include Campbell and Viceira (1999), and Brandt (1999). 

The optimisation approaches in these papers, investigating the impact of parameter 

uncertainty and learning that started with Barberis (2000) and Xia (2001), are still liable to 

create bias in the spirit of Brennan, Schwartz and Lagnado (1997). They optimise portfolios 

with the parameter estimates derived from fitting the historical data to regressions. Given 

the small explanatory power of these regressions, and a limited time-span for learning, 

estimated (and updated) parameters cannot be relied upon. In Chapter 4 we conduct a 

Monte Carlo simulation analysis where we take Brennan, Schwartz and Lagnado's model and 

show how misleading the whole procedure followed by these authors can be. The problem 

of bias is so severe, that even allowing for uncertainty in predictability, or learning cannot 

resolve it, given that the methodology of optimisation remains the same. Prior literature on 

parameter uncertainty has missed the point we address here and the analysis presented in 

this thesis is, to our knowledge, the first attempt to highlight the degree of bias in long-term 

optimisation with parameters estimated from historical data. 

14Barberis (2000), which ignores learning about predictability, finds only positive intertemporai hedge 
term. 
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1.8.4. Bias in Long-Term Portfolio Optimisation 

Models with Estimated Parameters 

In this section we describe our Monte Carlo analysis and show that the way in which 

Brennan, Schwartz and Lagnado estimated their model parameters leads to massively biased 

inputs for the optimisation model. 

We assume that the true return generating process is (1.4), the one used in Brennan, 

Schwartz and Lagnado. To make the model realistic, the parameters are calibrated so that 

an instantaneous Sharpe ratio, measuring the market opportunities, is within its real-life 

range with the average of 0.5 at each instant over 20 years. With this model, we simulate 

a 20-year returns sample similar to that used by Brennan, Schwartz and Lagnado as their 

dataset. We assume that an investor knows the true model as well as true volatilities and the 

correlation matrix of the return/predictor variables, but has to estimate drifts of the true 

model from the simulated data using regression estimates, as was done in Brennan, Schwartz 

and Lagnado. Since historical datasets as long as this are usually used for inferring model 

parameters for long-term portfolio decisions, it is essential for us to know to what degree 

true and inferred parameters match each other. For reasons of accuracy, we conduct 10,000 

independent simulations and produced a distribution of 10,000 estimates for each parameter 

that had to be estimated. The actual parameter estimates we use for the estimated model 

are averages of the corresponding distributions. For a new model with estimated parameters 

we calculate expected investment opportunities measured by an instantaneous Sharpe ratio, 

given that the real world dynamic follows the true model. We find that the estimated model 

promises outstanding investment opportunities corresponding, on average, to the Sharpe 

ratio of 2.2, as opposed to the true Sharpe ratio of 0.5! The difference between the two 

is attributed solely to the estimation error. Moreover, a scarcely noticeable actual time-
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variation in investment opportunities inflate significantly once measured with least squares 

estimates, derived through regressions - the average Sharpe ratio varies between 1.85 and 

2.45 during twenty years. 

Our Monte Carlo simulation analysis showed that the distributions of parameter estima­

tors are rather large. Each individual estimate in this distribution is a least squares estimate 

for the corresponding path which is believed to be the best possible historical prior for that 

parameter. A Bayesian investor will attempt to infer these parameters over time but the 

investment horizon (say, 20 years) is not sufficient for the prior estimate to reach the true 

parameter value. In our experiment, it took 10,000 years for all estimates to converge to the 

true values of their parameters respectively. Our parameters were assumed constant, while 

in real-life continued shocks and structural shifts may prevent investors from ever resolving 

the uncertainty. 

We argue that our results, striking as they are, are bound to be less biased compared 

to those of Brennan, Schwartz and Lagnado. Firstly, in our simulated world we eliminate a 

few sources of bias which exist in the Brennan, Schwartz and Lagnado model (e.g. model 

misspecification). Also knowing the true dynamics of the world, we fairly 'discount' in­

flated expected opportunities. In the optimiser's view, placing his faith in the estimated 

model, these opportunities are several times larger. Another reason we believe our picture 

is more moderate than that of Brennan, Schwartz and Lagnado, is that our reported results 

(all individual coefficient estimates as well as the Sharpe ratio) are averages over 10,000 

simulations, while in real-life we are limited to one path of realisations only. 
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1.8.5. How Can We Adjust for Bias in Dynamic Port­

folio Management? No Answers ... 

After having overviewed existing optimisation models, we conclude that there is a need 

for radical and meaningful adjustment in the models of long-term portfolio returns. Unfor­

tunately, there is no straightforward way of doing this. Grinold and Kahn (1999) suggest 

Bayesian refinement to the parameter estimates, but there is no obvious way of implement-

ing them in a complex environment of continuous-time portfolio selection. 

The solution to the problem may lie in making adjustments so that the forecasts, gen-

erated by a return-generating model, are consistent. The role forecast evolution in time 

may play in portfolio selection has not been fully understood so far. By the definition 

of forecasts, the model efficiency is strongly tied to forecast optimality which is especially 

apparent when modelling long-term returns. 

We regard this problem of adjusting for bias as a generalisation of ,B-adjustment problem, 

examined by Blume (1971, 1975), Vasicek (1973). With,B however, there is prior information 

on cross-sectional distribution of (3s and in their setting implementation of the Bayesian 

approach is straightforward. In continuous-time asset returns models we have a class of 

assets which is not even a homogeneous group and we cannot consider their mean and 

dispersion as we did for ,B. 

Alternatively, incorporating an asset-pricing model into the analysis, as done by Black 

and Litterman (1990, 1992), Pastor and Stambaugh (2000), and combining the results of 

optimisation with the implications of an asset-pricing model by using Bayesian inference, 

can give a reasonable treatment to the problem. 

More research is required to come up with sensible ways of adjusting model parameters 
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for estimation error. At present we have limited ourselves to only general suggestions around 

the topic. 

1.9. Optimisation in Risk Measurement 

1.9.1. Risk Measurement and Capital Adequacy: 
Regulatory Issues 

Risk measurement forms an important part of the complex and multi-stage process of 

risk management (see Jorion (2003), Gallai (2003), Marrison (2002), Rustem and Howe 

(2002)). 

Sound risk control is essential to the prudent operation of a financial institution and 

to promoting the stability of the financial system as a whole. The efficient functioning 

of markets requires participants to have confidence in each other's stability and ability 

to transact business. Capital rules help foster this confidence because they require each 

member of the financial community to have, among other things, adequate capital. This 

capital must be sufficient to protect a financial organisation's depositors and counterparties 

from the institution's on- and off-balance sheet risks. Top of the list are credit and market 

risks; not surprisingly, firms are required to set aside capital to cover these two main risks. 

Capital standards are designed by regulators, like the Financial Securities Authority 

(FSA), in order to allow a firm to absorb its losses, and in the worst case, to allow a firm 

to wind down its business without loss to customers, counterparties and without disrupting 

the orderly functioning of financial markets. Minimum capital standards are thus a vital 

tool to reducing systemic risk. They also play a central role in how regulators supervise 

financial institutions. 
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Capital requirements have been criticised for being simple mechanical rules rather than 

applications of sophisticated risk-adjusted models (see, for example, Marrison (2002)). That 

fairly raises issues about the optimality of current rules but we do not aim to study that. 

Instead, we investigate how we can report the smallest exposure within a rule in the most 

cost-effective and capital-efficient way; this is a legitimate interest of banks (see Gallai 

(2003)). To cope with moderations in rules, the ways of calculating minimal exposures 

must not only be optimal but also flexible to accommodate future changes. 

We have picked two independent rules in the FSA Handbook and developed the optimi­

sation algorithms that calculate minimal capital requirements in their settings. To do so, 

we found optimal ways to offset a large number of individual positions or obligations. The 

next section describes them in more detail. 

1.9.2. Description of Algorithms 

Both algorithms we developed are sufficiently general to account for reasonable modifi­

cations to rules and remain optimal and efficient. Chapter 5 describes them in detail. All 

algorithms and theorems in the thesis are original. To derive them, we used a wide range 

of optimisation/mathematical programming techniques (see, for example, Ahuja, Magnanti 

and Orlin (1993), Rockafellar (1996)). Rustem and Howe (2002) provides algorithms for 

computing the best decision in view of the worst-case scenario. The main tool they use 

is minimax, which ensures robust policies with guaranteed optimal performance that will 

improve further if the worst case is not realised. Our work however is not on minimax 

optimisation and our algorithms are not related to those described in Rustem and Howe. 

In fact, our risk capital minimisation is actually minimising the sums of absolute values of 

exposures, so it is in the Ll norm, not the Loo norm. 
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Risk Offsetting Algorithm 

The Risk Offsetting Algorithm minimises the required capital held by a firm to cover its 

positions in commodities with different maturities. Offsetting opposite positions of different 

maturities incurs additional cost. The smallest risk exposure results from netting all opposite 

positions in the most cost-efficient way. 

Using combinatorial optimisation and backward induction, we develop an efficient alga-

rithm that yields all optimal solutions to the problem in closed form and is easy to implement 

with a standard optimisation package. The optimality of the algorithm follows from the 

Theorem on Convex Optimisation that we formulate and prove in Chapter 6. This the-

orem delivers all solutions for a specific combinatorial optimisation problem (including the 

risk offsetting algorithm in question). More precisely, if Xl(t), X2(t), ... , xn(t) are continuous 

convex functions on [a, bj C R, the theorem finds all sets of points {tl, t2, ... , tn} from [a, b]' 

n 

arranged in the ascending order, so that L Xi(ti) were minimal. In notation, it solves 
i=l 

n 

Min LXi(ti) 
i=1 

S.t. a 

where the optimisation is with respect to t l , t2, ... , tn variables. 

The main contribution of this theorem is that it transforms an n-variable convex opti-

misation problem into a one-variable convex optimisation problem. 

The theorem is proved using three lemmas, also given and proved in Chapter 6. 
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Optimal Grouping Algorithm 

The other rule we consider here requires calculating the minimal interest rate risk by 

finding the optimal grouping of bonds with different maturities. We develop the Optimal 

Grouping Algorithm that finds the minimal interest rate risk within the rule, using a linear 

programming approach. 

Next we consider a modified setting of the above problem, which is appealing for its 

economic insight, and solve this explicitly using dynamic programming techniques. The 

problem is as follows: 

\If (.) is a risk-measuring function of one-variable, which maps a (possibly negative) 

exposure to a non-negative risk measure. Ci's (j = 1, ... ,n) are given exposures (cashflows) 

that may be partitioned into K (or more) groups of length not greater than L for" offset" 

purposes. Find the grouping which minimises reported risk as 

lj 

s.t. L Ci = gj; j = 1, ... , K 
i=lj_l +1 

1 ~ lj -lj-1 ~ L; j = 1, ... , K 

lo = 0, ... , lK = N 

Ci E R 
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In other words, we find the best way to position the indices into the sets G I , ... , Gk , so 

that each set contains no more than L entries. k :? K to ensure at least K groups. Similarly, 

the constraint Ij -Ij-l ~ L guarantees at most L elements in each group. 

The grouping problem is solved using the dynamic programming approach, based on 

the principle of optimality. It is notable that no restrictions are placed on the risk function 

w{.). This algorithm with complexity of at most (NN21) efficiently identifies the optimal 

solution among a finite set of (2N-I) alternatives. 

1.10. Structure of the Thesis 

This thesis analyses information and optimisation issues in portfolio selection and risk 

measurement. 

The impact of estimation error on portfolio selection and suboptimality of the 'optimised' 

portfolio has long been recognised in the finance literature. Such failures are often driven 

by inefficient use of available information. The associated problems vary depending on the 

optimisation horizon an investor faces, as well as on the underlying model. The thesis starts 

with analysing forecast errors in a mean-variance framework. In Chapter 2 we re-examine 

earlier work by Treynor and Black (1973) who give a portfolio selection prescription in 

the presence of relatively little information. Retaining the simplicity of their analysis, we 

adjust their formula for forecast error and give a clearer picture of how to rank investment 

opportunities. Chapter 3 investigates how to use information from the outside of the model, 

to help infer the optimal scaling of forecasts of expected returns. The estimate of scaling 

derived using the sample information only, gives an inadequate portfolio which responds to 

unobservable estimation error with either overly aggressive allocations, or no risky holdings 

at all. In Chapter 4 we move from the inference issues in a static setting to continuous-time 
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long-term portfolio selection models. Many authors model long-term asset returns with 

drift-driven diffusion processes where parameters are estimated from the historical data 

and, based on such models, attempt to solve the long-term dynamic portfolio management 

problem. Due to estimation error, this way of optimisation is bound to lead to substantial 

forecast error and, therefore, suboptimal portfolio rules. We quantify the degree of bias 

in a particular setting and find that it is indeed overwhelming. In Chapter 5 we consider 

two risk measurement problems from the FSA Handbook and develop original algorithms to 

calculate minimal position risk required under these rules. Both algorithms have interesting 

generalisation. One of them leads to the Theorem on Convex Optimisation, formulated 

and proved in Chapter 6; the other to a risk management problem, solved using dynamic 

programming techniques. Final remarks as well as suggestions for future work appear in 

the concluding Chapter 7. 
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Chapter 2 

Overconfident Forecasts and Active Portfolio 
Performance 

2.1. Introduction 

This chapter examines the problem of portfolio selection based on imperfect forecasts 

in a mean-variance framework. Early work by Treynor and Black (1973) established a rela­

tionship between the correlation of forecasts, the number of independent securities available 

and the Sharpe Ratio which can be obtained. 

Under the assumption of the Sharpe's diagonal model of security covariances (Sharpe, 

1963) with the added assumption that direct investment in the market index is possible, 

they showed that the square of the Sharpe ratio (SR) provided by the optimal portfolio is 
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equal to: 

(2.1) 

where J.lp and a; respectively are the portfolio expected excess return and its variance, M 

is the market (Sharpe) ratio, J.li is the expected abnormal return on security i (Le. expected 

deviation from CAPM) and a~ is the residual variance for security i. 

Assuming the correlation between the investor's forecasts on expected abnormal return 

of the particular securities and subsequent returns is known to be p, the squared Sharpe 

ratio could be rewritten as1 

(2.2) 

It seems that (2.2) allows an investor to rank his investment opportunities assuming 

that he has some control over the parameters in (2.2). Given the near efficiency of security 

markets, we know that the correlation p will be low. For example, for M = 1/2 and n = 75 

a value of p as low as 0.10 (so p2 = 0.01) would be sufficient to increase the portfolio Sharpe 

ratio from a passive (market) figure of 0.50 to 1.00 (which would delight most portfolio 

managers and their clients). 

Correlations as low as this are difficult to make inferences about. Rather than assume 

that the investor knows his correlation coefficient, we assume that he believes it to be R 

when in fact it is p. 

This will enable us to model the cost of not knowing exactly what the correlation is. 

The issue is examined in context of the Sharpe ratio and a measure of expected utility. 

Acting according to an erroneous assumption about forecast correlation has two disad-

lWe will derive equations (2.1) and (2.2) later on. 
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vantages. First, since the relative holdings of active stocks and the market are no longer 

optimal, the Sharpe ratio is reduced. Second, since the investor's estimate of expected 

return is now biased, he is unable to take the optimal risk exposure given this modified 

opportunity set. 

The investor thinks the opportunity set (optimal SR) is Rf - Y and chooses portfolio 

A on indifference curve 1 (see Figure 2.1). 

E[r] . 

y 

z 

SD 

Figure 2.1 

The actual opportunity set is Rf - Z and if he knew that he would choose B on indif­

ference curve 2. Instead he takes the risks of A, but gets a lower E[R] as at C, which is 

only on indifference curve 3. 

It is therefore useful to describe the effects of the Sharpe ratio reduction and the utility 

reduction separately. 

We measure the expected utility obtained in the following way: We assume the investor 

has utility function _e-AW • Given that we are working with normal distributions, expected 
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utility is _e-A[l'p-~<T~J with /-Lp differing from his expectation /-Lf' This figure is then re­

interpreted as an equivalent Sharpe ratio - that of the known opportunity which would 

provide the same level of expected utility. This is the same principle as in Hodges (1997), 

introducing the Generalised Sharpe Ratio (GSR). The generalisation is based on the ex­

pected utility to investors with constant absolute risk aversion (CARA). Given an investor 

with CARA, the GSR measures the extent of market opportunities irrespective of his level 

of risk aversion. 

Here is a preview of the results of this chapter. We explore the properties of the Sharpe 

ratio and GSR and draw a number of conclusions for these two measures of portfolio per­

formance. As expected, both of them are optimised when the investor knows precisely 

where his forecasting skills lie. For overconfident forecasters the Sharpe ratio, surprisingly, 

stays close to the optimum, while the underconfident investor significantly underperforms 

the overconfident one. On the other hand, the GSR is almost symmetric to the degree of 

over/underestimation and the smaller the deviation is between R and p, the better value 

it assigns to the forecast. Using these two different metrics we explore how portfolio per­

formance depends on both the anticipated and realised correlations when these differ. The 

Sharpe ratio captures the efficiency loss caused by the change in reward for risk, while GS R 

reflects how the welfare of a particular investor is affected by adopting an inappropriate risk 

profile. Therefore, the Sharpe ratio and GSR complement each other and, in combination, 

provide a better measure of portfolio performance. This result is emphasised by examining 

the comparative statics with respect to the market price of risk and a number of securi­

ties in the portfolio. We also examine the worst-case scenario portfolio performance under 

the Sharpe ratio and GSR and conclude that a significant uncertainty around relatively 

high assumed correlation yields much smaller level of the 'guaranteed' utility, than a lower 

correlation with smaller uncertainty. 
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The rest of the paper is organised as follows. Sections 2.2-2.5 explore how the Sharpe 

Ratio and GSR depend on p and R, derive their properties and explain the 'paradox' 

of successful overestimation. Section 2.6 provides comparative statics with respect to the 

market price of risk and the number of securities in the portfolio. In Section 2.7 we compute 

the worst-case SR/GSR given an investor's certainty about his correlation. In Conclusion 

the results are summarised and a few suggestions for further work made. 

Technical details appear in Appendices AI-A4 at the end of the paper. 

2.2. How the Sharpe Ratio & GSR Depend 
on p and R 

We provide a generalisation to the Treynor-Black's analysis of mean-variance portfolio 

selection. The procedure, used by Treynor-Black to derive (2.1) and (2.2) , can be outlined 

as follows. They optimise the mean-variance utility with respect to hi portfolio holdings of 

n independent risky assets and a market index, which stands for (n + l)st asset: 

n+l ). n+l 

Max L hil1-i - 2" L a~h~ 
i=l i=l 

where expected abnormal returns on every ith asset (and the market index) are distributed 

normally with N (l1-i, an, ). is a risk aversion coefficient. The portfolio is optimised for hi, 

and abnormal return I1-p and standard deviation a p of the corresponding portfolio are 

n+l 2 

11- =)." l1-i. ap = ). 
p L.J a~' 

i=l t 

n+l 2 

" l1-i L.J O'~ 
i=l ' 

It is straightforward that the squared Sharpe ratio of the portfolio is 
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2 n+1 2 
J.-lP_~J.-li 
0 2 - L...J 0 2 ' 

P i=1 • 

which is the same as (2.1) where M denotes the market Sharpe ratio. Assuming that an 

analyst's degree offorecasting ability, correlation p, is constant across n assets, (2.1) is easily 

rewritten as (2.2).2 

Following our assumptions, the investor, whose actual correlation p is different from his 

anticipated correlation R, wrongly thinks that he has obtained the Sharpe Ratio of 

(2.3) 

We derived that the Sharpe ratio actually obtained by this investor is the following (see 

Appendix AI): 

(2.4) 

We perform similar analysis for a measure of market opportunities, the Generalised 

Sharpe Ratio (GSR). It was introduced by Hodges (1997) as 

GSR = J -21n (-U*), 

where U· is the optimal utility, for an investor who maximizes E [U(W)] with 

If the investor's forward investment opportunity set (for a myopic investor) has future 

2See Appendix Al for details. 
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outcomes distributed as N(J.I" (72), then 

When h = ~, optimal U* is 

The GSR, a measure of expected utility, is expressed through p and R (see Appendix 

A2) as 

GSR= M2 + (2 npR _ _ n_R_2(;.....1_-_p,-;;2-,-») 
1 - R2 (1 _ R2)2 . 

(2.5) 

It is notable that the risk aversion measure does not participate in either expression 

(2.4) or (2.5). Neither measure will be affected by the introduction of cash in the model. 

We will use these formulae to estimate the effect of over and underconfidence errors on 

the portfolio performance. 
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Figure 2.2 

2.3. Properties of the Sharpe Ratio 

Chapter 2 

In Figure 2.2 the indifference curves of the Sharpe ratio (for M = 0.5 and n = 20)3 are 

plotted, where each curve represents the Sharpe ratio of a certain level for corresponding 

combinations of p and R. Inclusion of negative correlation quadrants pre ents a clearer 

picture of the world as well as the functional form of SR, and i of some interest when 

investigating the effect of negative p correlation, but negativity of R is unlikely to be true. 

As anticipated, for given p, the harpe ratio is optimal when R = p. The optimal Sharpe 

3Dnless specified otherwise, we assume that M=O.5 and n=20. 
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ratios appear in red in Figure 2. To see the degree of bias coming from misestimation of skills, 

we investigate the Sharpe ratio's dependence on R. In Figure 2.3 the Sharpe ratio is plotted 

against R, for several realisations of p. The concavity of the curves that correspond to most 

likely values of parameters p&R, implies that overconfidence beats underconfidence, except 

when the true correlation p is very close to zero. In such a case, overestimation becomes a 

losing strategy. 

1.2 

O.B 

SR 

0.4 

The Sharpe Ratio for ARer n alive Values of P. when M .. 0.5. n = 20 

po().25 

p=O.2 

p=O.1 

0.2L_---.-__ ...--.-2~==::::::::::;:=; P=O 
o 0.1 0.2 0.3 0.4 0.5 

R 

Figure 2.3 

The shaded area of Figure 2.4 presents the combinations of (p, R) that generate a market-

beating Sharpe ratio. The level curves of the Sharpe ratio move further away from the axes 

as skills improve. It means that investors with some forecasting skills (non-zero p) may be 

better off by holding an active portfolio, as far as they have a fair knowledge or even overesti-

mate their forecasting skills. Meanwhile, even exceptionally good forecasting abilities (large 

p) may lead to a miserable Sharpe ratio if these abilities are substantially underestimated 

(small R). Solid curves in Figure 2.4 separate not only the market beating parameters (p, R) 

from those underperforming the market (p, R), but also act as a boundary between the pairs 

(p, R) which achieve a larger Sharpe ratio with aggressive R, and those that give a better 

Sharpe ratio with moderate R. In particular, in the shaded area, overconfident forecasts are 
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superior to underconfident ones, in the nonshaded area - the relationship reverses. Solid 

curves represent the locus of (p, R) whose Sharpe ratio equals the market Sharpe ratio M. 

Sharpe Ratio = Mariet Ratio (solid curves). wi1h Other hdlfference CUrves. M = 0.5. n = 20 
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Figure 2.4 

Based on (2.4) , we can compute what true correlation p corresponds to a target Sharpe 

ratio BRtgt , for a given R : 

P (SRtgt , R) 

M 2n (R2 - 1) + SRtgtfoJ[(n + Bmgt) [M2 (1 - R2)2 + nR2] - M4 (1 - R2)2] 

(n + BRigt) nR 

SRtgt may represent any level curve in Figure 2.4 which separates (p , R) giving a Sharpe 

ratio better than BRtgt , from those giving a Sharpe ratio worse than BRtgt . A higher target 

shrinks the set of (p, R) that leads to a better than the target Sharpe ratio. 
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2.4. Properties of the Generalised Sharpe 
Ratio 

The Generalised Sharpe Ratio's behaviour contrasts with the Sharpe ratio's asymmetric 

response to under/overestimation of forecasting power. 

The indifference curves in Figure 2.5 represent GSR at different level , for corresponding 

combinations of Rand p. Like the Sharpe ratio, this measure attains its maximum at R = p 

(drawn in red in Figure 2.5) , other things held equal. Furthermore, GSR = SR if and only 

if R = p (see Appendix A2) . 
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There is, however, a difference between how GSR and SR respond to forecast errors. 

Figure 2.6, where GSR is plotted against R for alternative realisations of p, demonstrates 

this difference. The GSR curves are almost equally sensitive to both under and overestima-

tion errors in forecasts. In other words, unlike SR, the penalty for the overestimation with 

GSR is as significant as for the underestimation. It is worth noting that GSR is not even 

defined for a big gap between Rand p, hence the sparsely populated quadrant of positive 

correlation pairs (p, R). 

The GSR for ARernatlve Values 01 p. when M = o.e. n = 20 

0.4 

0.2 

0.4 D.S 
R 

Figure 2.6 

For given R, the correlation p corresponding to a target value GSRtgt , is solved from 

(2.5) as follows: 

Figure 2.7 highlights (p, R)'s, when GSRtgt = M. The interpretation is similar to that 

of Figure 2.4. 

49 



Information and Optimisation in Investment and Risk Measurement Chapter 2 

GSR = Market Ratio (soNd curves). with Other Indifference Curves. M = 0.6. n = 20 
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2.5. Paradox of Success of Overconfidence 

Although the expected utility measure and the Sharpe ratio are optimal and equal when 

p = R, they have different properties with respect to misspecified forecasts. The Sharpe 

ratio penalises for the underconfidence substantially but forgives the overconfidence almost 

fully. On the contrary, GSR is synm1etric in penalising for both over and underconfidence. 

This section explain this difference between th two measures of portfolio performance, and 

its implications. 

An investor, who e R '" p, los s not only in the Sharpe ratio that measures his reward for 

risk, but also in his utility for adopting an inappropriate ri k profile. Therefore the portfolio 

efficiency loss is attributed to both misspecifi d exp ted reward for risk and taking a wrong 

risk profile. If R > p, th Sharp ratio is slightly r duced while the corresponding utility 

decreases significantly. On th other hand, for R < p, the Sharpe ratio go s down fast , but 

not the respective utility. These two effects offset ach other in either R > par R < P case 
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and, therefore, the portfolio efficiency is equally affected by both under and overconfident 

forecast errors. 

As the Sharpe ratio fails to signal the overconfident forecasts, it becomes misleading 

even though its value may be adequate. The other measure of portfolio performance GSR, 

based on the expected utility maximisition, shows the utility loss due to choosing a wrong 

indifference curve on the efficient frontier. Examining the portfolio performance with both 

the Sharpe ratio and the GSR fully captures the aggregate effect of both the reduction 

in reward for risk and the utility change. Therefore, these two measures complement each 

other and in combination provide a better ranking of investment opportunities. 

2.6. Comparative Statics on the Size of the 
Market Risk Premium and the Number of Se­
curities 

The Sharpe ratio and GSR are differently affected by the variation in the market risk 

premium. It is interesting to explore this issue as the specialists cannot agree what the 

actual size of the market risk premium is4. 

The Sharpe ratio's discriminating sensitivity to overconfident forecast error is magnified 

by a small market risk premium and a large number of securities in portfolio (see Figure 

2.8) while GSR shows robustness to these changes (Figure 2.9). Furthermore, for small M 

and large n, the Sharpe ratio becomes insensitive to changes in R. The sensitivity of SR 

to the anticipated correlation increases with a bigger marker risk premium and/or fewer 

securities in the portfolio. Simultaneous changes in M and n emphasise/offset each other's 

effects. 

4See, for example, Dimson, Marsh and Staunton (2002). 
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The number of independent assets n is an important parameter in the portfolio's per-

formance. In general, the smaller the p, the easier it becomes to find more assets so that 

the correlation between the expected and realised returns equals p. According to expres-

sion of the Sharpe ratio, investing in many securities even in the presence of low forecast 

correlation, can be highly rewarding - the Sharpe ratio becomes unbounded for large n, 

irrespective of the value of R; such an investment is a luxury, that we cannot expect in 

reality. Unlike the Sharpe ratio, no n can eliminate R from the formula of GSR. Even with 

a large number n of stocks and positive p, utility can easily diminish with n, if R > 2p. 5 

This section confirms our intuition about the significance of the investor knowing what 

his forecasting skills are, and shows the importance of estimating portfolio performance with 

both the GSR and SR. 

2.7. The Worst-Case Scenario Sharpe Ratio 
and GSR 

In the previous sections we examined how the measures of portfolio performance, the 

Sharpe ratio and GSR, change in the presence of forecast errors. Their modified expressions 

are of little practical importance to an investor who at no point can be certain about his true 

correlation coefficient, unless he is able to estimate the downside potential of his portfolio. 

In this section we give an estimate of the worst-case portfolio performance under the as-

sumption of discrepancy between the actual and expected SR/GSR. To proceed, we assume 

that a rational investor can provide an interval estimate of his true p, around his anticipated 

R. Suppose the investor is certain that his p is bounded by R - e from below, for some 

positive e. The worst-case Sharpe ratio and GSR are the minimal Sharpe ratio and GSR 

5See details in Appendix A3. 
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that an investor may obtain over the specified interval of uncertainty around his expected 

R. min SR and min GSR denote the minimal Sharpe ratio and GSR respectively. 
p~R-~ p~R-~ 

Both measures, the Sharpe ratio and GSR, represent increasing functions of p and 

achieve their minimums over the given interval at (R - c). The further R is from p, the 

worse the performance. Thus, c is a measure of investor's certainty about his skills which (c) 

influences the worst-case portfolio performance. Assuming that c ~ ~ and considering that 

the GSR and the Sharpe ratio are equal when R = p, we get the following (see Appendix 

A4): 

min SR ~ min GSR (2.6) 
p?R-. p?R-e 

~ 
M2 n(R-c)2 

+ l-R2 

As formula (2.6) suggests, great uncertainty around relatively high expected correlation 

yields much smaller level of the 'guaranteed' utility, than a lower correlation with smaller 

uncertainty. It confirms that the practical value of either portfolio performance measure is 

closely tied to adequate knowledge of forecasting abilities. 

2.8. Conclusion 

This chapter examined the problem of portfolio selection based on over /underconfident 

forecasts in a mean-variance framework. Early work by Treynor and Black (1973) established 

a relationship between the correlation of forecasts, the number of independent securities 

available and the Sharpe ratio which can be obtained. Their analysis was based on the 

assumption that the correlation between the forecasts and outcomes is known precisely. In 
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practice, given the low levels of correlation possible, an investor may believe himself to have 

a different degree of correlation from what he actually has. 

The current paper therefore described how the portfolio performance depends on both 

the anticipated (R) and realised correlation (p) when these differ. The portfolio performance 

was assessed according to the Sharpe ratio and a measure of expected utility obtained from 

investing on the basis of the forecasts, Generalised Sharpe Ratio (GSR). The Sharpe ratio 

measures the efficiency loss, attributed to misetimation in reward for risk. The reduction in 

the utility, the other source of the portfolio efficiency loss, is measured with the GSR which 

quantifies the utility obtained under this information set (i.e. different R and p) in terms 

of the Sharpe Ratio that would give the same utility. 

The portfolio performance is assessed according to these two metrics - the Sharpe ratio 

and GSR. We found that the investor's degree of self-confidence plays an important role 

in the performance obtained. Provided that his actual forecasting skills are not too bad, 

an overconfident forecaster (R > p) attains almost as good Sharpe ratio as one who knows 

precisely where his forecasting skills lie (R = p), while an underconfident strategy (R < p) 

results in a significantly lower Sharpe ratio. Therefore, the Sharpe ratio alone is unable to 

capture all the efficiency loss which, except for the change in reward for risk, is attributed 

to the loss of utility due to chasing an inappropriate portfolio. Meanwhile, the Generalised 

Sharpe Ratio, the measure of expected utility reflects the reduction in the welfare of a 

particular investor, due to adopting a wrong risk profile. Interestingly, GSR stays almost 

symmetric to both over and underestimation errors. These two measures balance each 

other and, in combination, fully explain portfolio efficiency loss and provide a fair ranking 

of investment opportunities. 
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We explored the comparative statics of these two metrics with respect to the market 

risk premium and the number of securities in the portfolio; it confirmed the importance of 

evaluating portfolio performance jointly with the Sharpe ratio and GSR. We also showed 

that the level of uncertainty about the anticipated correlation coefficient plays a crucial role 

in estimating the worst-case scenario portfolio performance. 

In future work the model may be extended to a multi-period setting. Another suggestion 

is to classify assets in several groups according to their degree of predictability, instead 

of considering them in a single homogeneous group with constant correlation p between 

forecasts and realisations. Then alternative p's would have different 1l"S and a Bayesian 

analysis would be applied. 
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Appendix A 

AI. Derivation of the Sharpe Ratio 

We followed Treynor-Black's analysis of mean-variance portfolio and adopted their no-

tation to derive formulae for the Sharpe ratio. Symbols are defined as: 

(3i is market sensitivity of the ith security; 

fLi is the expected abnormal return on the ith security (i.e. expected deviation from 

CAPM) and a~ is the residual variance for security i; 

(fLm, a~) and (fLp , a;) stand for the expected return and variance of the market portfolio 

and the investor's portfolio respectively. 

Treynor-Black derived that for the optimal holdings hi (i = 1, ... , n) of n securities and 

the market portfolio hm 

the Sharpe Ratio achieves its maximum: 

(2A.l) 

2 

>. = ~ (a risk-aversion measure) does not participate in (2A.l) which means that for the 

optimal portfolio the proportions of positions are constant for all investors and do not 

depend on the risk aversion. 

Investor takes positions in the securities according to his personal (subjective) expec-
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tations of abnormal asset returns (~). Suppose that the correlation between the investor's 

forecasts on these particular securities and actual returns is p. The relevant measure of 

risk is the fraction of the variance (1~ in abnormal returns not anticipated by the investor. 

Therefore we have 

(2A.2) 

Note that investors, following the Treynor-Black model, cross-sectionally scale their fore-

casts (~) so that 

n 

E [~l = 0, i = 1, ... , n; L~=O (2A.3) 
i=l 

~2 = p2(1~, i = 1, ... , n; 

Substituting expressions (2A.2) into (2A.l) returns: 

JL~ JL~ np2 -=-+--
(12 (72 1 _ p2 

p m 

Suppose that an investor expects the correlations between his forecasts iii and realised 

abnormal returns to be R's whilst in reality they are p's. Therefore, he wrongly thinks he 

has attained 

having taken the positions 
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(2AA) 

as implied by (2A.3) when the correlation is R. Instead, given his prediction skills, he should 

be expecting 

Choosing the iii'S instead of the g's changes expected returns on the portfolios. The 

returns on the active and passive portfolios respectively become: 

J-lactive 

J-lpassive 

This makes the portfolio return equal to 

(
J-l:n nPR) 

J-lp = J-lpassive + J-lactive = A a~ + 1 _ R2 

The variances of active portfolio and the whole portfolio are: 

2 
a active 
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The squared Sharpe Ratio becomes: 

The Sharpe Ratio is a square root of the above, as follows: 

A2. Derivation of the Generalised Sharpe Ratio (GSR) 

Hodges (1997) introduced the Generalised Sharpe Ratio GSR as a measure of market 

opportunities as 

GSR= y'-2ln(-U*) 

where is the optimal utility, for an investor who maximizes E [U(W)] with 

U -AW = -e 

If the investor's forward investment opportunity set (for a myopic investor) has future 

outcomes distributed as N(J.l, (]"2), then 

When , h = ~, optimal U· is 

61 



Information and Optimisation in Investment and Risk Measurement Appendix A 

and GSR = SR. 

Considering the difference between the forecast and actually obtained portfolio, we will 

assume the distribution of portfolio's returns to be N(I-LF' o'~), as expected by the investor, 

and by N(I-Lp , (j~), as it is in reality. According to Appendix AI, they are as follows: 

J.lp = ,\ (J.l~ + npR ) 
0';' I - R2 

(j2 = 
,\2 (J.l~ + nR2(I - p2)) 

p 0';' (1 - R2)2 

J.lF = (J.l~ nR2) 
,\ 0';' + I - R2 

0'2 = ,\2 (I-L~ + nR2 ) F 0';' I - R2 

As expected, the investor optimises his expected utility with h = -3- and, instead of 
AUF 

expected U* = - exp { - ~;; }, he obtains 

U* {J.lF I 2 I-L~} { I-LF ( 1 2 I-LF) } = -exp -J.L - + -ap - = -exp -- J.l - -O'p-
p o'~ 2 a} (j} P 2 o'~ 

= - exp { -~GSR2} 

GSR= 

In terms of p and R, GSR is expressed as 

GSR= 
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G8R and 8R are equal if and only if R = p : 

A3. The Sharpe Ratio and GSR for Large n 

When n --+ 00, the Sharpe Ratio becomes unlimited if p is not too small: 

lim 8R2 
1/2 (M2 + npR)2 M4 + 2M2 npR + ( npR_)2 

I, "-p I' I=R2 I' I=R2 I=R2 1m - = 1m 2 2 = 1m R2( 2) 
n-+oo n-+oo (72 n-oo M2 + nR (1-p ) n-+oo M2 + n1-p 

p (1_R2)2 (I_R2)2 

( 
n R 2 n 2p2 R22 2 

I' 5) I' (1-R2) I' np = 1m R2( 2) = 1m 2( 2) = 1m ,,2 n-+oo n1-p n-+oo nR1-p n-+oo (1 - fJ ) 
(1-R2)2 (1-R2)2 

Similar conclusion could not be reached for the G8R, As shown below, it increases in n 

provided that, approximately, p > R/2 : 

2 npR 
1- R2 

A4. Estimating the Worst-Case Sharpe Ratio/GSR 

In this appendix we express the Sharpe Ratio and GSR at p = R - c as the Taylor series 

expansion, 
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The first differential of the squared Sharpe Ratio is 

d(SR2) (M2 +~) nR ( (M2 +~) Rp ) ---,-..,..-------'-(p) = 2 l-R 1 + l-R 

dp (M2 + nR2(1-,02)) (1 _ R2) (M2 + nR2(1-,02)) (1 _ R2) 
(1_R2)2 (1_R2)2 

Its value at p = R is the following: 

d (S R2) nR ( R2) 
dp (R) = 2 (1 _ R2) 1 + (1 _ R2) 

Similarly, the second order derivative with respect to p and its value at p = R are 

respectively 

and 

We can assume that c E [0, R/2]' given that R itself is relatively small. With c and R 

being of the same order of magnitude we are able to ignore the 3rd and higher order terms 
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as insignificant. It simplifies the expression for SR(R - c) to the following: 

Similar result obtains for GSR2(R - c) too. I.e.: 
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Chapter 3 

Inferring Optimal Scaling of Forecasts of 
Expected Returns in Presence of Uncertainty 

About the Quality of Your Information 

3.1. Introduction 

The work within this chapter is a corollary to the Treynor-Black model in an idealised 

world. 

One of the central issues in portfolio optimisation is, how to deal with the error in 

estimating expected asset returns. The effects of estimation error in expected returns are 

especially evident in a mean-variance portfolio optimisation, causing substantial fluctuations 

in optimal weights (for the literature review see Section 1.3). 
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In this chapter we investigate the ways of reducing the impact of estimation error on 

portfolio selection in a particular MV setting. We consider the cross-section of asset returns 

where assets possess predictability but up to an unknown scale function. Assuming stability 

in the return generating process, how can we best use historical data to infer the optimal 

scaling of our expected return forecasts? Based on the sample information only, the scale 

function is computed using a maximum likelihood estimation (MLE) method. Although it 

is an unbiased ordinary least squares estimate, in a small sample like ours the ML estimator 

cannot scale the forecasts of expected returns in a consistent way. 

To filter the unknown scaling of unobservable predictable components from the sample, 

it is desirable to use whatever information is available, which can be formally modelled 

using Bayesian analysis. A review of different implementations of the Bayesian approach in 

the portfolio theory are given in Sections 1.4 - 1.6. 

In our implementation of the Bayesian procedure, to help forecast expected returns 

we use the prior that comes from outcomes of unrelated experiments. Our prior is the 

historical forecasting skill of an investor, modelled by a distribution reflecting an investor's 

historical correlation between his forecasts of returns and the corresponding realisations l
. 

The distributions are chosen so that they project into either normal or uniform prior of the 

scaling. Bayesian learning updates a prior, by incorporating observed returns into it, and 

turns it (the prior) into the posterior distribution of the scaling which describes the model-

specific forecasting ability of the investor. Afterwards we discuss the ways of inferring the 

optimal scaling from the posterior distribution, and constructing the optimal portfolio. 

We express the optimal amount of money put at risk as a complicated function of a prior 

I The distribution is centered at the correlation coefficient between forecasts and realisations. Its standard 
deviation may be derived from the standard error of the correlation coefficient. Later in the chapter we 
show that it is the existence of uncertainty about the correlation that matters the most in portfolio decision, 
rather than its precise level. 
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on investor's forecasting skills and observed returns. We find that the optimal portfolio 

holdings of investors, who fully account for available sample and prior information, are 

based on the first two moments of the posterior distribution of correlation. When investors 

only partially exploit the sample and prior information, their optimal holdings are based 

on the mode of the ex-post distribution of correlation. Portfolios optimised without a prior 

depend on conventional MLE of the scaling. We regard mean-based estimates efficient and 

mode-based (with or without a prior) ones naive. 

We examine the differences in portfolio performance arising from estimation with/without 

prior, uniform/normal prior, and naive/efficient use of information. The benchmark for 

comparisons is the MV optimal portfolio without prior, based on conventional maximum 

likelihood estimate (MLE). Optimal investment decisions, corresponding to the efficient use 

of prior, dramatically differ from those based on the MLE. Optimisation in the efficient way 

with prior recommends concentrated portfolio holdings. Since concentrated holdings con­

tribute to portfolio risk, fund managers can afford not to be conservative on small holdings 

but should treat bigger holdings with caution. Ignoring the prior and optimising on observed 

returns only result in either several (up to 10) times larger holdings, or no investments at 

all. 

Under efficient use of information, an investor in our framework is less sensitive to the 

luck of the draw of error. In this respect, the strategies using available information efficiently 

sharply contrast with the strategies based on conventional MLE. 

We find that more able forecasters take larger holdings compared to less able ones. An 

investor, whose average prior expected value of the correlation between forecasts and returns 

is 15%, takes 50% larger holdings than the investor with the correlation of 10%. Despite 

such an increase, the more able forecaster's holdings remain up to eight times smaller than 
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those found under the MLE-based strategy. We find that efficient portfolios under both 

normal and uniform prior give almost identical performance. These conclusions make it 

easy to test whether a fund manager applies adjustments to his forecasts or not. 

The analysis is extended to a richer setting of multi-manager portfolio, where each 

manager works on a particular class of homogeneously predictable assets. Under the same 

mean-variance framework and iid assets, we solve the problem of optimal portfolio. We 

find that the optimal portfolio is a combination of optimal sub-portfolios of homogeneously 

scaled assets. 

The papers from previous literature closely related to our work include Black and Litter­

man (1990, 1991, 1992), Connor (1997), and Ambachtsheer (1977). For detailed discussion 

of similarities between these papers and our analysis see Section 1.6. 

We proceed as follows. In Section 3.2 we present the returns model and demonstrate 

how the conventional MLE fails to deliver a consistent estimate of unknown scaling. In 

Section 3.3 we introduce a prior on investor's forecasting skills and discuss how naively and 

efficiently derived scalings of forecasts compare to each other, and to the scaling derived 

using conventional MLE. The section also explains shortcomings of individual estimates. 

Section 3.4 solves MV optimisation in the framework of our model, expressing optimal 

holdings as a function of prior (if any) and observed returns. In Section 3.5 we examine 

the portfolio performance under different estimation strategies and draw our conclusion in 

favour of methods making efficient use of prior. The portfolio performance is analysed in 

the context of Sharpe ratio. Section 3.6 extends the analysis to a multi-manager case of 

non-homogeneously predictable asset classes. Section 3.7 concludes with the summary of 

findings and suggestions for future research. Technical details appear in Appendices B1-B8 

in the end. 
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3.2. Model Description 

Consider a single period investor who faces financial market with n independent risky 

assets. Assume that the asset returns Xi come from the following model: 

(3.1) 

i 1, ... ,n 

where Ci '" N (0,1) is a random noise, scaled by the known volatility (7 that is constant 

across assets. Unobservable2 <5i '" N (0, 1) represent the prior information on expected 

returns, but only up to an unknown scale function s. We are unsure what scale function 

should be applied. 

Assuming stability in the return generating process already given, how best we use 

historical data to infer the optimal scaling of our expected return forecasts? 

<5 and C are assumed orthogonal <5 .1 c. 

3.2.1. Failure of Classical NILE 

Conventional maximum likelihood estimation (MLE) offers a simple formula to estimate 

unknown s2 as 

(3.2) 

Appendix Bl gives the details of derivation. 

2The assumption of observable systematic returns 6i would change the optimisation problem to the 
scaling problem as in Ambachtsheer (1977). See Section 1.6. 
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The unbiased ordinary least squares estimate in (3.2) however becomes biased, when 

conditioned on a finite sample. Due to small samples, return realisations may be such that 

~ L: x~ < (72 which, according to (3.2) , implies negative 82. Thereafter, the scaling is not 

even defined for small return variation (i.e. when ~ L: x~ < (72). Figure 3.1 illustrates our 

point: 

10 

+----~~--------- L,X12 

Figure 3.1 

Replacing negative values of 82 by zero resolves a mathematical shortcoming of (3.2), but 

does not make the estimate economically meaningful. It is hard to believe that attractive 

investment opportunities disappear (8 = 0) and reappear (8 > 0) as soon as the average 

variation ~ L: x~ hits (72. Given a statistical similarity between £5 (predictable part of returns) 

and c (random noise), it is possible that small sample variation, characterising a significant 

portion of possible returns3 , signals an unlucky draw of error rather than no forecastable 

variation. Note that none of these problems would be there if either the sample size (n), or 

the observation interval of returns were infinite to satisfy the assumptions of MLE. For a 

real-life sample of returns observed over a reasonably short period of time the conventional 

MLE is not able to infer an optimal scaling of expected return forecasts in a consistent way. 

Therefore we explore other ways of estimating the scaling to obtain better forecasts. 

3 According to the tables of N2 distribution, with our model parameters such realisations may account 
for about 40% of all outcomes (see Subsection 3.3.1). 
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3.3. Estimating the Scaling Using a Bayesian 
Procedure 

Subsection 3.3.1 explains how to use a prior distribution on investor's forecasting skill 

to predict the correlation between forecasts and returns in our framework. It also relates 

the scaling to the correlation and derives posterior distribution of the scaling. Subsections 

3.3.2 and 3.3.3 analyse the procedure for inferring the optimal scaling from the posterior 

distribution in the naive and efficient ways respectively. The ex-post correlation is discussed 

in subsection 3.3.4. 

3.3.1. Introducing a Prior on Forecasting Skills 

Expected returns S6i are optimal forecasts of the next period's returns. The size of 

s therefore suggests how much we know about expected returns, or, equivalently, what 

the correlation between the forecasts s8i and realisations Xi is. The unknown correlation 

coefficient p measures explained variation in returns as given by the following expression 

relating p to the model parameters: 

s 
p = = Corr (x, 8) JS2 + (1"2 

(3.3) 

See Appendix B2 for rigorous derivation. 

Equation (3.3) would give us s if the investor's correlation p were known. To help 

forecast the model-specific p, we use the prior information that reflects an investor's general 

forecasting potential, and update it with the returns information. The historical distribution 

of the correlation between the investor's forecasts and returns comes as a natural choice for 

the prior, since a rational investor is able to accurately specify the range of his historical 
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forecasting skills. Prior distributions of correlation are chosen so that they map into either 

normal or uniform prior distribution on s via (3.3). Bayesian procedure updates a prior on 

s with the observed returns Xi and turns it into a posterior on the sample-specific scaling 

for that investor. Correctly anticipated posterior can predict what ex-post scaling and 

correlation a particular forecaster should expect for given realisations Xi. 

The Normal prior s "" N(m, v) implies that the manager centers his skills at m, with 

a standard deviation of ..jV. Uniform prior s rv [§., sJ specifies §. and s as boundaries of 

his confidence level. Without loss of generality, §. ~ 0 and m - 2..jV ~ 0 4. Both prior 

distributions permit for Xi being the random noise by including zero in the distribution. By 

choosing normal and uniform distributions as priors, we are able to examine the implications 

of both unbounded (normal) and bounded (uniform) priors and at the same time take 

advantage of the simplicity and intuitiveness of these distributions5 . 

For the purposes of graphical illustration and numerical procedures we provide numeric 

values for the model parameters. The residual volatility a is set at 40%. Prior scaling of 

forecasts of expected returns is centered at 4%, in order to get the real-life average correlation 

p between forecasts and returns of approximately 10% (see Ambachtsheer (1974), Grinold 

and Kahn (2000)), via p = ~. With a standard deviation of 2%, the Normal prior on 
VS"+U" 

S rv N(0.04,0.022
) provides an ex-ante distribution of scaling s. Under the uniform prior, 

S rv [§.,5J. The choice of §. = 0, 5 = 0.08 guarantees parameter consistency under uniform 

and normal priors. 

The number of assets n is set at 100. 

Next we look at the range of potential return variation for the calibrated parameters. 

'iNegative prior on 8 would reverse the optimal holdings found in Section 3.4, 
5Note that the uniform prior on 8 is equivalent to the ~-distribution prior on 8 2 (for some parameters 

that define .B-distribution), 
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According to the model, returns Xi'" N(O, 82 +0"2) and s2la2 L: xt '" X~. It means that with 

our parameters (0" = 40%, n = 100) the expected range of L: xt varies roughly between 10 

and 50 (in accordance with statistical tables). 

Analysing how likely we are to get the returns we actually observed if our historical prior 

correctly anticipated the scaling s, delivers the posterior on s by the conditional Bayesian 

analysis6 : 

pdf (xis) pdf (s) 
pdf (six) = J pdf (xis) pdf (s) ds' 

Posterior distribution on s gives the investor's updated beliefs on what scaling to expect. 

Figures 3.2 and 3.3 give the plots of posterior distributions for several levels of variation in 

realised returns. 
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3.3.2. Estimating the Scaling with Partial Use of In­
formation 

One estimate of s, that comes from the posterior distribution on scaling, is the mode of 

s's posterior distribution. We call this function of the prior scaling and observed returns the 

modified maximum likelihood estimate with corresponding prior and label it M M LE[slPriorJ 

as applicable. 

Both modified maximum likelihood estimates M M LE [slUnifl and M M LE [siN ormF 

are presented in Figure 3.4, next to MLE [sJ:/I 

7See Appendix B4 for details. 
8The benchmark MLE[s] is J~M-::-L=-CE=["""s2=], which was derived earlier in Subsection 3.2.1. Negative values 

of M LE[S2] are replaced by zero. 
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equals zero for ~ E x~ < a-2 (conventional M LE of s was not even defined there). With 

the increase in return variation, it soon reaches the upper boundary of the manager's con-

fidence level 8 to which MMLE[sIUnifl's upside potential is limited. The behaviour of 

M M LE [slUnifl is explained by s's posterior distribution, shown in Figure 3.2. Here the 

mode is placed on the boundaries of the prior for almost all return realisations. It would be 

foolish to believe that the optimal estimate gains in value as much as [8 - §.l within a unit 

growth in the realised return variation around (12. Therefore we have sufficient grounds to 

question the credibility of M M LE [sIUnifl. 

Another estimate of s, the posterior MLE under normal prior denoted M M LE [siN orml , 

is excessively optimistic (see Figure 3.4). Notably, it keeps the scaling of ex-post returns 

positive even for the smallest return variation of zero. The plots of the posterior in Figure 3.3 

confirm that M M LE [siN orml is overly sensitive to growth in return variation. Explaining 
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this much variation in the financial market (the scaling of 50% corresponds to the correlation 

of 90% when (J = 40%) is beyond the rational expectations of any investor. Hence we deem 

M M LE [siN orm] too inadequate. 

The inability of the estimates considered above to deliver reasonable performance shows 

the inadequacy of their estimation method in our framework of a finite sample. Despite 

using Bayesian learning, M M LE [sINorm] and M M LE [sIUnif] remain essentially naive 

or single-point estimates (like the conventional maximum likelihood estimate M LE[s]) and 

are inconsistent when conditioned on small samples. We argue, these methods fail because 

they make only partial use of information. In the rest of the chapter, we refer to the 

MMLE[.IPriorJ's as the naive estimates. 

3.3.3. Estimating the Scaling with Full Use of Infor­
mation 

It has been understood that a mean of a distribution is a more informative statistic than 

its mode. 

Here we look at an alternative estimate of ex-post scaling, the mean of the posterior on 

s, calculated as 

E [six, Prior] = J s * pdf (six) ds. (3.4) 

Unlike the mode estimates considered before, posterior means account for the entire 

posterior distribution pdf (six) and are less affected by individual outcomes in the poste­

rior. Depending on the prior they use, we denote posterior mean estimates E [sIUnif] and 

77 



Information and Optimisation in Investment and Risk Measurement Chapter 3 

E [sINorm]9 and express them as follows: 

For detailed derivation, see Appendix B5. 

Figure 3.5 below plots the mean estimates of scaling next to the benchmark M LE-based 

scaling: 
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Figure 3.5 suggests that both posterior-mean estimates efficiently solve the problem of 

an unlucky draw of error, implying the presence of predictable returns even for small L x~. 

Moreover, the mean estimates remain moderate throughout different return realisations and 

smoothly and slowly increase with growing return variation. 

9For simplicity, we leave out conditioning on x returns in the notation of E [sIUnif] and E [siN arm] , 
as well as MMLE[sINarm] and MMLE[sIUnif]. 
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More consistent performance of the mean-based ex-post scaling (i.e. E [sIPrior]) com-

pared to the mode-based (i.e. M M LE [slPriorJ and M LE[s]) scaling is explained by the 

fact that the mean summarises all the available information, while the mode only partially 

exploits it. We regard the posterior mean-based estimates as efficient. 

3.3.4. Ex-Post Correlation between Forecasts and Re­
turns 

To estimate what ex-post correlation an investor should expect between his forecasts 

and returns in the framework of our model, we use the distribution of ex-post scaling and 

formula (3.3) , derived earlier, that establishes a relationship between scaling and correlation 

p = ~ = Corr (x, 8). Y8-+"-

Correlation estimates p, a function of scaling 5, differ across different methods of es-

timation but due to (3.3), the shapes of individual p's are similar to the shape of their 

corresponding s, as confirmed by Figure 3.6. For consistency, in the rest of the chapter 

we use similar notation for estimates sand p that correspond to each other. For instance, 

E[plUnifl denotes the correlation corresponding to E[sIUniJ] . 
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As expected, conventional M LE[pl and M M LE[pIN ormall are both explosive and 

promise unbelievably high correlations. The uniform prior-based M M LE[pjUnifl too is 

inadequate - zero correlation is almost instantly followed by the largest correlation al­

lowed under this scheme, which stays constant for subsequent growth in Ex;. 

On the other hand, E[plUnifl and E[piNormJ both start off at a reasonable level and 

slowly increase with rising Ex; - a likely signal of improving investment opportunities. 

However their paths diverge at some point - the uniform prior-based correlation E[plUnifl 

becomes practically insensitive to further growth in the return variation as it asymptoti­

cally approaches M M LE[pIUnifJ, while the average ex-post correlation under normal prior 

E[piNormJ keeps increasing. This shortcoming of E[plUnifl implied by uniform prior is not 

likely to affect its real-life performance. Given limited sample variation in returns, L: x; is 

not expected to grow so much that the difference between uniform and normal prior-based 

estimates becomes significant. It is worth noting that the efficiently estimated correlation 

under normal prior E[pIN orm] is free from the kind of deficiencies described above. 

3.4. The Optimal Portfolio Solution 

How does the optimal portfolio depend on the posterior distribution of s? It is unlikely 

to use just the mode or the mean that we have considered so far. In Section 3.3 we discussed 

different ways in which an investor may estimate his ex-post correlation between forecasts 

and returns. Below, for each estimate we present the portfolio weights that maximise the 

expected MV utility of the portfolio. 

Given p = .;l+u2' the parameters of classical mean-variance optimisation are expressed 

80 



Information and Optimisation in Investment and Risk Measurement Chapter 3 

as 

E[Rplx] = J w'x s * pdf (six) ds 
v'S2 + (j2 

= J W'Xp * pdf (six) ds = E [pi Prior] w'x 

_ Var [pi Prior] (xx') (w'w) + (j2 (w'w) 

where w is a vector of optimal holdings, x - a vector of realised returns. 

The expressions given above lead to the following maximisation problem, under corre-

sponding prior: 

max 
w 

E [pi Prior] w'x - ~ [Var [pi Prior] (xx') (w'w) + (j2 (w'w)] (3.5) 

where "I is a coefficient of risk aversion (see detailed derivation of (3.5) in Appendix B6). 

The optimal stock allocation does not depend on the value of wealth (a feature of CARA 

utility functions). Optimal holding of the ith asset under efficient use of information is 

denoted w _ ef ficienti and equals the following function of corresponding prior and observed 

ff
' . E [pi Prior] Xi 

W e 2C2enti = ::-:-----;-:-::::-"-:''--;--=--'-n-~ 
V ar [pi Prior] I: x? + (j2 ')' 

(3.6) 

where 

00 

.r v'l+ud (s) 
E[pIPrior] = -00 ds 

00 

.r f(s)ds 
-00 

Var [pIPrior] 

00 

J 82~ud (s) 
= -00 ds-

00 

.r f (s) ds 
-00 

( 
j v'l+u2 f (s ) ) 2 

-00 d 
00 s 
.r f (s) ds 

-00 

IODetaiis appear in Appendix B6. 
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where f (s) under the normal prior s rv N(m, v) and uniform prior s rv [.§., s] is respectively 

normal: 

uniform: 

An alternative set of solutions is offered for an investor, who uses information in the naive 

way (Le. uses the mode-based estimates M LE [p] , M M LE [pIUnif] , M M LE [piN arm]). 

He ignores the estimation error and a point-estimate p is treated as the true value. As a 

result, instead of (3.5) he maximises 

m!x pw'x - ~(J2 (w'w) 

and chooses the following holdings (labeled w _ naivei to keep consistency with other naively 

derived estimates)l1: 

. P Xi 
W namei =--

- a 2 'Y 
(3.7) 

which in the case of conventional MLE-based scaling becomes 

Xi MLE[s] 
w conveni = -,======== 

- "'(a
2 V M LE [S]2 + (J2 

It is clear that (3.7) is a special case within (3.6). Equation (3.6), the expression for 

w _ e f f icient i , is the main finding of this section which states: To fully use the available 

information, we only need the mean and the variance of the posterior distribution on scaling. 

llSee details in Appendix B6. 
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3.5. Implications of the Optimal Portfolio 

3.5.1. Comparing Different Portfolio Strategies 

Figure 3.7, given next, presents the optimal weights under different parameter estimation 

strategies, when Xi varies in proportion with the average variation in sample, i.e. Xi = 

,. 
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Figure 3.7 

Weights based on full Bayesian posterior are strikingly different to those from point es-

timates (with or without prior). All three point-estimate-based weights vary largely subject 

to return variation, while the weights based on full posterior remain moderate throughout 

return realisations. 

In particular, benchmark MLE-based w_conven, like w_naive_uniJ, is zero until the 

average variation ~ L: x~ reaches 0'2. Immediately afterwards, the conventional strategy 

recommends large-size investments in risky assets. The holdings corresponding to naive 

estimator with normal prior are overly optimistic. Weights as fluctuating as these in the 

presence of moderate prior on skills, provide evidence of the inadequacy of the corresponding 

estimation methodology. 
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Meanwhile, within the range of our interest, portfolio holdings under efficient strategies 

with normal and uniform prior closely track each other and gradually but steadily incor-

porate signals on better returns. Optimal holdings under efficient use of information are 

several times smaller than those recommended by the benchmark MLE-based strategy, as 

confirmed by Figure 3.8. 
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Figure 3.8 

Moderate holdings of the efficient strategies guard us against sample error. This way 

a manager adjusts against underestimating investment opportunities when E x~ is small 

(possibly due to the unlucky draw of error), as well as against overestimating investment 

opportunities when a large E x~ may not be a signal of superior returns but merely the 

sample error. When the information is used efficiently in our framework, investors choose 

concentrated holdings. As these contribute to the portfolio risk, fund managers can afford 

not to be conservative on small holdings but should treat larger holdings with caution. 

Ignoring the prior and optimising on observed returns only, can result in either several 

times (up to ten) as extreme investments as when optimising with efficient use of prior, or 

no investments at all. 

The flip-side of our findings regarding efficient money allocation strategy is using actual 
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investment levels as a performance criteria to select fund managers. Regardless of the 

manager's confidence level, risk aversion kept equal, it is easy to distinguish between the 

naive and efficient strategies he may follow - the efficient way of optimisation always results 

in conservative holdings. 

3.5.2. Analysing Portfolio Performance Using the 

Sharpe Ratio 

We have now seen how the way in which information is used affects the portfolio weights. 

In this section we will look at how it affects the portfolio performance, as measured by the 

Sharpe ratio. 

The Sharpe ratio of portfolios selected under efficient use of information, is expressed as 

follows: 

SRejjicient = E [pi Prior] VL x~ 
JVar [pi Prior] ~ x; + a2 

(3.8) 

With point estimates (i.e. MLE[.J/MMLE[.I.]-based estimates) of p, the above formula 

changes to 

S Rconven / naive = ~ VL x~ (3.9) 

where p is one of M LE[.] or M M LE[.IPrior] with corresponding prior. See details in 

Appendix B6. 

Formulae (3.8) and (3.9) measuring the portfolio performance are similar to the optimal 

holdings formulae (3.6) and (3.7), hence the similarity between Figure 3.9, displaying the 

Sharpe ratios, and Figure 3.7, displaying the optimal portfolio weights. 
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Figure 3.9 

Because the Sharpe ratio measures expected portfolio mean with respect to associated 

volatility, portfolios with proportional mean-volatility attain equal Sharpe ratios. That 

is why this measure of portfolio performance ranks naive and conventional MLE-based 

strategies higher than the efficient ones and is not able to spot the efficiency loss attributed 

to exaggerated holdings in risky assets. However, the sizes of the Sharpe ratio achieved 

by partial use of information are mostly suspiciously high. A rational forecaster cannot 

expect to get such a high Sharpe ratio (as in Figure 3.9), and therefore cannot trust these 

strategies. On the other hand, portfolios derived via accounting for prior information in 

the efficient way, offer a much lower but reasonable-size Sharpe ratio that grows adequately 

with the variation in the data. 

The true Sharpe ratio, meanwhile, remains indifferent to estimation methods and equals 

SRtrue = ;; ~~~~, due to homogeneous predictability of all assets assumed in the model. 

The assumption will be relaxed in Section 3.6. 
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3.5.3. Implications of the Assumed Distribution: Uni­
form Versus Normal Prior 

This section examines marginal differences in holdings implied by normal V s uniform 

prior, as well as the impact of changing the parameters of assumed distributions. We 

consider optimal weights derived under full use of information. As noted earlier, the optimal 

weights as well as the Sharpe ratio are almost identical under both priors. We vary the 

parameters as follows. In the already analysed uniform distribution s f"V [§. = 0, s = 0.08J, 

we shift s by ±0.02; §. stays fixed at zero to allow for no predictability in the sample. In the 

normal s f"V N(m = 0.04, v = 0.022 ) the mean changes to 0.03 and 0.05.12 

As illustrated in Figure 3.10, the efficient weights, corresponding to different levels ofs in 

the uniform prior, move very close to each other at the start but diverge widely afterwards. 
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s • 0.06 

s .. 0.10 

s = 0.08 

Efficient weights for normal priors with different means, on the other hand, diverge from 

the very start and this divergence between them increases proportionally with the return 

12 Altering v does not give any extra insight into the behaviour of asset holdings. Therefore we keep JV 
fixed at 0.02. 
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variation. (See Figure 3.11.) Overall, a smaller confidence level (lower m and ~) results in 

a flatter curve of optimal weights for both priors. 
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Such behaviour agrees with our expectations regarding normal and uniform priors. 

Someone, well aware of his forecasting skill, projects its average level into the mean of 

a normal prior distribution, with due uncertainty. This way the marginal difference in hold-

ings between more and less able forecasters is proportional to their holdings at all times. 

Uniform prior, on the other hand, is less informative compared to the normal and equally 

favours all of its possible realisations within a specified range. Thus, under uniform prior 

the performance of less confident forecasters is similar to that of more confident forecasters, 

unless the return variation is quite large. During large L x~ better forecasting means more 

bullish investments. It is another confirmation of our early conclusion that larger positions 

(implied by large L x~) should be treated with caution. 

Figure 3.12 plots the ratios of efficiently derived weights under normal and uniform priors 

for the three pairs of priors considered above. Throughout the uncertainty ..;v remains 

constant at 2% and ~ = O. 
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The ratio corresponding to our default parameters (m = 0,04, s = 0.08) shows the 

most balanced performance of the weights derived efficiently under different priors. The 

balance changes with varying parameters of two distributions. Depending on the size of 

return variation, either normal or uniform prior gives slightly more aggressive holdings. 

Because the scaling and correlation are so small, we are in no position to favour either 

prior. Nor have we aimed to provide their ranking. We have just pointed out several dif-

ferences between portfolio decisions arising due to a prior choice, which an investor should 

be aware of when making distributional assumptions. However, regardless of the minor in-

consistencies, efficiently derived optimal holdings with either prior with a reasonable degree 

of confidence stay several (about eight) times smaller than holdings under the conventional 

MLE. Thereafter, in terms of reducing the impact of the estimation error, the superiority of 

the efficient use of information with prior over conventional ways of optimisation is beyond 

any doubt, for either normal or uniform priors. 
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3.5.4. Effects of Uncertainty on Weights and the 

Sharpe Ratio 

Earlier in the chapter we derived that naive/conventional investors are more optimistic 

about their portfolios than those efficiently using available information. The following 

partly explains such performance. Investors, using MLE/MMLE-based methods, assume 

they know their skills (the correlation p) to a single estimate although their expectation 

may well be misleading. Efficient optimisation, to the contrary, allows for parameter uncer-

tainty (uncertainty in p, in this case) which lowers corresponding ex-post correlation and, 

consequently, portfolio holdings and expected utility to reasonable levels. 

Measuring the uncertainty around forecasting skills may be problematic and an investor 

may wish to ignore it. Then the formula of optimal weights changes from (3.6) to the fol-

lowing (w _ ef fie _ approx; denotes the efficient portfolio weight without uncertainty about 

p): 

E [pi Prior] Xi 
w ef ficient; ~ w ef fic approx; = 2 - - - u 1 

(3.10) 

Note that (3.10) is similar to naive portfolio weights (3.7) but here the maximum likeli-

hood estimate is replaced by the posterior mean. 

Although portfolio holdings increase once uncertainty is ignored as in (3.10), these hold-

ings remain substantially smaller than their counterparts based on the MLE. It is straight-

forward that the ratio of optimal weights (as in (3.6)) to approximately optimal weights (as 

in (3.10)) is slightly less than 1: 

w _ e f f icienti u 2 
= ~ 1 

w_effic_approxi VaT [pi Prior] LX~ + u2 

The implication of the above is that, if an investor has to choose a point estimate for 
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correlation p, he would be better off using a posterior mean estimate E [pi Prior] instead of 

the maximum likelihood estimates, i.e, M LE [p] and M M LE [pi Prior] ' 

3.6. Generalisation to Multi-Manager Port­
folio 

Up to now we have been studying the problem of inferring the optimal scaling in a setting 

of homogeneously predictable assets, Next we extend the setting to several asset classes of 

likewise predictable assets where each class possesses its own degree of predictability but 

again up to an unknown scaler (scale functions differ from one asset class to another), This 

is equivalent to combining efforts of several, say m, managers with the jth manager making 

a portfolio decision for the jth class of nj assets (Xij, i = 1, ... , nj, j = 1, ... , m) for which he 

possesses some forecasting ability Pj' j = 1, ... , m. The overall setting remains mean-variance 

as before, with no short-sales restriction and all assets being iid. In notation, 

(3.11) 

i = 1, .. " nj; j = 1, .. " m 

where Cij '" N (0,1) is random noise, scaled by the known volatility O'j that is constant 

within the jth class of assets. As before, unobservable 6ij '" N (0,1) represent the prior 

information on expected returns, but only up to an unknown scale function Sj which is 

constant for each class. 

Under both naive and efficient ways of using the information, optimal asset positions, 

chosen by individual managers for their own class of assets, will simply be combined to 

form an optimal portfolio of all assets considered. The risk aversion 'Y is assumed con-

stant for all managers, The following formulae of asset positions in the optimal portfo-
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lio, w _ ef ficient _genii and w _ naive _genii under efficient and naive use of information 

respectively, are straightforward generalisations of the similar formulae for a single-class 

ff
.. t E [PjIPrior] Xij 

w _ e zezen _genij = [I.] "nj 2 2 -::;;-
Var Pj Prwr ~i Xij + a j I 

1 ~ 
= -p·x·· "fa; J OJ 

i - 1, ... , nj; j = 1, ... , m 

The following are the Sharpe ratios of the combined portfolio as expected by managers: 

SRefficient_gen = 

SRnaive_gen = 

Meanwhile, the true Sharpe ratios in the case of several managers with different fore-

casting skills become 

S Ref /icient gen true = 

~2 "m !:i. "nj 2 
~i O"~ ~i Xij 

J 

13 All formulas in this section are derived in Appendix 88. 
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which are apparently distinct from each other, unlike the true Sharpe ratio for homoge-

neously predictable assets which was constant at .! 5 x;6'2· for all analysed ways of estimation. 
q Ex; 

3.7. Conclusion 

In this chapter we examine how to infer the optimal scaling of forecasts of expected 

returns in presence of uncertainty about the quality of our information. 

We consider a model of returns where returns possess predictability but up to an un-

known scale function. Predictable parts of returns are unobservable. Assuming stability in 

the return generating process, we investigate how best we can use historical data to infer 

the optimal scaling of the expected return forecasts. 

The conventional maximum likelihood estimation (MLE) is one way of inferring the 

scaling but in small samples like ours this method is largely affected by the estimation 

error and fails to deliver an adequate scaling. To help forecast the scaling, we turn to 

outside-of-sample information to get Bayesian prior. For the prior we use an investor's 

forecasting skills, modelled as a distribution of his historical correlation between return 

forecasts and realisations. Bayesian learning updates the prior with observed returns. The 

posterior distribution on correlation helps us solve the mean-variance optimisation problems 

of an investor. We consider two alternative ways of estimating true correlation: one is via 

partial use of information - based on the MLE of the posterior (called naive estimates with 

uniform/normal prior); the other is via efficient use of information - based on the mean 

of the posterior distribution (respectively called efficient estimates with uniform/normal 

prior). Naive estimates behave inadequately and are largely sensitive to return variation. 

The efficient estimates, on the other hand, give reasonable and balanced performance. These 
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diversities are explained by the ability of a mean to summarise the entire distribution in 

one number much better than is done by a mode. 

We solve the MV portfolio selection problem and express the optimal amount of money 

put at risk as a complicated function of a prior and observed returns. 

Investment decisions, corresponding to efficient strategies, dramatically differ from those 

based on the MLE method. MLE-based portfolios are overly optimistic and their holdings 

are several (up to ten) times larger than the holdings under efficient strategies. Efficient 

strategies favour concentrated holdings. Since concentrated holdings contribute to the port­

folio risk, an investor can afford not to be conservative on small holdings but should treat 

larger holdings with caution. 

Furthermore, during the times of low realised returns the efficient portfolio strategy still 

recommends investment in risky assets allowing for the possibility that the small variation 

may be due to the unlucky draw of errors, which overshadows the predictive variation of 

returns. This is contrary to the conventional MLE-based advice, which is not even defined 

for small return variation. Meanwhile, so called 'small variation' constitutes a large portion 

of all return realisations. 

Investors with better forecasting skills have larger holdings and therefore higher Sharpe 

ratio. Despite the increase in a holding arising due to better forecasting skills these holdings 

remain several times smaller when compared to the holdings suggested by conventional MLE 

strategies. Therefore, regardless of assumed forecasting skills, the size of efficiently derived 

portfolio holdings should remain moderate. This finding can help rank fund managers' 

performance, and select them. Differences in portfolio holdings, arising due to assuming 

normal or uniform prior on scaling, are negligible. Although we highlight a number of 

deficiencies associated with the uniform prior, in our framework of limited return variation 
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and moderate scaling both give almost identical results. 

The findings are generalised to a non-homogeneous setting when informative parts of 

assets are not being scaled by the same risk factor. We solve the mean-variance portfolio 

selection problem in the presence of several categories of assets when assets in each category 

are equally predictable. This is equivalent to considering a multi-manager scenario, where 

each manager works on one class on assets and their efforts are combined to form optimal 

portfolio. Provided that all assets are iid, optimal weights are the same as they would 

be for 'sub-portfolios' made up of assets within individual categories. The expressions of 

the Sharpe ratio however change and the true Sharpe ratio becomes dependant on how 

efficiently the information is being used. This result differs from the case of homogeneously 

scaled assets, where the true Sharpe ratio was constant for all ways of optimisation because 

all assets were scaled equally. 

Throughout the analysis, we restricted ourselves to positive correlation coefficients be­

tween forecasts and returns. Allowing for negative correlation would simply reverse the 

holdings. Also we assumed that systematic returns di were unobservable. If they were 

observable, the problem would change to finding their optimal scaling following the same 

Bayesian approach. This kind of posterior scaling would be an improvement over the exist­

ing work on scaling the forecasts by Ambachtsheer (1977) who suggests a point estimate to 

scale known alpha (See Section 1.6 for more details). 

Our model is similar to the Black and Litterman model (1990, 1991, 1992) but the im­

plementation of our model is much more straightforward. Connor (1997) takes an approach 

similar to ours in refining model parameters rather than the forecasts produced by this 

model. Section 1.6 compares our work with theirs in detail. 

An interesting question arising from this work is, to what extent can we use external 
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information to predict model-specific-parameters? We assumed that investors have the 

distributional knowledge of their forecasting skills. It will be interesting to investigate the 

utility loss due to misestimation of forecasting skills. Modelling of utility loss caused by 

misestimation is left for future research. 
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Appendix B 

Bl. Classical J\1LE 

Consider the classical MLE estimate of the parameter s. In (3.1) the density will be: 

FOC: 

which results in (3.2) : 

Note that (3.2) is an unbiased OLS estimate. However due to sampling error, s may go 

negative if the realisations are such that 

1 
- '"' x~ < (J"2 n~ , 

It is obvious that such a possibility exists in a finite sample of asset returns. 
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B2. Relating Forecasts and Returns 

Assume that 9 (.,.) is a function that takes observations Xi and returns optimal forecasts 

--for the next period's return SlSi. In other words, 9 (s, Xi) is an estimate (SlSi) : 

---(SlSi) = 9 (s, Xi), i = 1, ... , n. (3B.l) 

This also means, that 9 (s, Xi) extracts means from sample observations. 

We denote the next period's return for the ith asset that is to be estimated Yi, next 

period's error realisation - Uj. (We bring in new variables in order to avoid adding time 

subscripts to those already in use.) 

Yi = 9 (s, Xi) + CTUi 

Using the Taylor series expansion, 

---(88i ) = 9 (S, Xi) = 9 (s, s8i + CTUi) 

, ( .r ) 0'2U~" ( 8 ) ~ 9 (8, s8i ) + O'Uig 8, SUi + -2-9 8,8 i (3B.2) 

i - 1, ... ,n. 

Assume 9 (.,.) is a linear function of its second argument. That means, 

9 (s, s8;) = ao + al (s8 i ) , i = 1, ... , n. (3B.3) 

In equality (3B.2) sample variations of two sides are equal. Below we calculate them, 
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considering that 9 (S, Xi) is linear: 

Var [58] 

Var[g(5,s8 i )] 

Next we equalise the sample variations of two sides in (3B.2) : 

5 
(3BA) 

It is straightforward that 9 (s, Xi) = ~Xi' vs-+".-

Fraction ~ is the correlation between observed return X and extracted means IS and vs-+".· 

summarises the predictive power of an investor. We denote it p : 

s 
p = = C orr (x, 8) Js2 + (72 

The next period's returns become: 

s 
Y· = X· + (7U' = px' + (7U' • v' 2 2' • • • S + (7 

(3B.5) 
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B3. Bayesian Approach: Posterior PDF of 8 Given 

Data 

The following is the Bayes rule for probability density functions: 

pdf (six) pdf (x) = pdf (xis) pdf (s) (3B.6) 

Let pdf (s) be a prior on s. Then pdf (xis) is 

i.e. x'" N (0, ((12 + 82) c), where c is a vector of 1's. 

pdf (x), unconditional distribution of n-dimensional x vector, is expressed as 

pdf (x) = f pdf (xis) pdf (s) ds (3B.7) 

s 

Then, using (3B.6) , 

pdf (six) 

(3B.8) 

{s} represents the support of s. Let us make sure that (3B.7) is a pdf indeed. Consider 

its integral 
00 00 

f··· J pdf (Xl) ... pdf (xn ) dXl···dxn 

-00 -00 
~ 

n 
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00 00 

(Here we change the multi-integral J ... J to a single 2, and dXl ... dxn to dx which is 

-00 -00 

~ 
n 

an abuse of notation but simplifies the formulae.) 

00 

= J J pdf (xis) pdf (s) dsdx 

-oo{s} 

= L [Zpdf (xis') dX] pdf (s) ds 

= J 1 * pdf (s) ds = 1 (3B.9) 

Is} 

(3B.9) confirms that (3B.7) defines a pdf correctly as claimed. 

B4. Modified Maximum Likelihood Estimates 

In this appendix we derive the Modified Maximum Likelihood Estimate M M LE (s I.) 

for the uniform and normal priors on s. 

When the prior on s is uniform [~, 5J , M M LE (sl U nif) is derived as follows: 

Assume that s is distributed uniformly14 over [~, 5] : 

1 
pdf(s) = -_ -

s-§.. 

14 Note that uniform prior of pdf (8) implies Beta distribution prior for pdf (82). 
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Rewrite (3B.8) : 

pdf (six) = 

= (3B.1O) 

Note that the denominator j :q 1 OJ exp [ 
11 (211") (002+82) 

Ex2 
] d· t f t· f ·t· 2(u2+~2) S IS no a une Ion 0 s, 1 IS 

just a scaler for pdf (six) . Therefore 

1 [Ex? ] pdf (six) ex (211")~(oo2+82)~ exp -2(002+82) and maximum likelihood estimate of s depends on 

the numerator only. 

Maximum likelihood estimate of s solves the following: 

(3B.ll) 

Derivative of pdf (six) is proportional to 

8
s 

(pdf (six)) ex ( s (- 2: x; + n (S2 + (12» ) 
- exp [-2(!i:~2)] J(21Tt (s2 + (12)2 J(S2 + (12t 

ex -s ( - LX; + n (82 + (12)) 

which implies that (3B.1l) has three solutions, if the expression under the root is positive: 

s = 0; s = -J2:nx~ - (12; s = J2:nx~ - (12 

Analysis of the second derivative shows that the pdf is maximised either for s = 0 
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(when ~ L x; < ()2), or for 8 = J ~ L x'f - ()2 (when ~ L x'f > ()2). Therefore, we es­

timated 8 to be J max (~ L x~ - ()2, 0). It is worth noting that although the choice of 

[~, 5j parameters does not affect the maximum likelihood estimate through (3B.ll) they 

must be considered nevertheless, because J max (~ E x'f - ()2, 0) should be within [~, 5j , or 

J max (~ L x'f - ()2, 0) < 5. In fact, for growing E x'f upper bound 5 is the only restriction 

that is supposed to keep 8 estimate under control. Thereafter, we present the following 

modified maximum likelihood estimate M M LE [8 J: 

MMLE[sIUnifJ = min (Jmax G L xl- u"o)'s) (3B.12) 

Next we derive M M LE (siN arm) , a Modified Maximum Likelihood Estimate 

of 8 given the normal prior N( m, v) on 8 

Assume that a priori s is distributed normally with N(m, v). Then pdf (8) = ke_!S-;:;-)2 . 

Plug it into (3B.8) : 

(3B.13) 

pdf (8Ix) ex: n n exp - • --e- 2v 
1 [E x2 

] 1 (._m)2 

(27r) 2" ()2 + 82) 2" 2 ()2 + 8 2) y'27rV 
(3B.14) 

To find the maximum we solve 8s (pdf (six)) = o. 
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A derivative of pdf (six) is proportional to the following: 

as (pdf (six)) 

exp [_(m;.,s)2 _ 2(S::0"2)] (m (s2 + (j2)2 - s (s4 _ v x2 + n v(j2 + 0-4 + s2 (nv + 2 (j2») 
ex: 

J(21r)l+nv~ (S2 + (j2)2 J(S2 + (j2t 

Or, 

To find a new estimate of s, based on modified maximum likelihood method, we maximise 

its posterior pdf (six), or find a maximum of real solutions to as (pdf (six») = O. We denote 

it MMLE(sINorm). 

It is straightforward that to provide a reasonable prior for s, m should be positive. 

However, closed-form solutions to the 5th order polynomial as (pdf (six)) = 0 are not readily 

available for non-zero m. Therefore, we have to restrict ourselves to numerical solutions and 

graphical output for non-zero mean m of the Normal prior distribution. 

Note that for positive m, MMLE(sINorm) > 0, for any Lxr 

B5. Posterior Means of s and p 

We start with calculating posterior moments of s and p, given the normal 

prior N( m, v) 

104 



Information and Optimisation in Investment and Risk Measurement Appendix B 

For s rv N(m, v), posterior on s satisfies (3B.13) and E [six] in (3.4) becomes: 

00 

E [six] = J s * pdf (six) ds 
-00 

(3B.15) 

Here we calculate E [pix] and Var [pix] under assumption of normal prior on s f"V 

N (m, v). E [pix] is as follows: 

E[plx] 

(3B.16) 

Next is the expression of Var [pix]: 

Afterwards we calculate the posterior moments of s and p, given the uniform 

prior [§,s] 
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Rewrite (3.4) for s rv [~,s] using expression (3B.1O) for pdf (six) : 

E[slx] 

(3B.18) 

Next we calculate E [pix] and Var [pix] , given the uniform prior [~,s]: 

E[plx] 

(3B.19) 

(3B.20) 
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B6. MY Optimisation: Optimal Weights and Corre­

sponding Sharpe Ratios 

Given that the asset returns follow (3.1), the mean-variance optimisation is expressed 

as follows: 

(3B.21) 

where E [Rplx] is the expected portfolio return, Var [Rplx] the portfolio variance and w the 

vector of portfolio weights. 

As shown in (3B.5), the next period's returns are 

(3B.22) 

The expectation E [Rplx] equals 

E[Rplx] = J w'xp * pdf (six) ds 

= w'x J P * pdf (six) ds 

= E [pix] w'x (3B.23) 

The variance Var [Rplx] is 

Var [Rplx] = E [R;lx] - E [Rplx]2 (3B.24) 

where 
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E [R~lx] = J (w'xp)2 pdf (slx)ds+(]"2 J (W'U)2 Ndist(u)du 

= (W'X)2 J p2 * pdf (six) ds + (]"2w'E [uu'] w 

= E [p21x] (x'x)(w'w) + (]"2 (w'w) 

Back to the variance in (3B.24) : 

E [p21x] w' (x'x) w + (]"2 (w'w) - E [plx]2 W' (x'x) W 

Var [pix] (x'x) (w'w) + (]"2 (w'w) 

Plugging (3B.23) and (3B.25) into (3B.21) yields: 

'Y m:x E [Rplx]- "2Var [Rplx] 

= maxE [pix] w'x - '1 [Var [pix] (x'x) (w'w) + (72 (w'w)] 
w 2 

The above is optimised when portfolio weights are the following: 

E[plx] Xi 1 
Var [pix] (xx') + (]"2 'Y 

E [..;l+u5 Ix] Xi 
= 

Var [Jl+u2Ix] E x~ + 0'2 'Y 

1 

Appendix B 

(3B.25) 

(3B.26) 

= xiJ~pdf(slx)ds 1 

(J s2~u2pdf (six) ds - (J ..;l+usPdf (six) ds r) E x~ + 0'2 'Y 
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The expected Sharpe ratio under efficient use of information is: 

SRefficient = 

= 

= 

E [Rporttle! !icientJ 
SD [Rporttlef ficient] 

'" EleJx]x; E [ I J 
L..J Var[pJx] L>~+0'2 P X Xi 

Therefore, we get (3.8) : 

E[plx] JEx~ 
SRefficient = JV [I ] E 2 2 ar p X Xi + a 

Appendix B 

With point-estimates, the correlation is assumed to be constant. Ignoring uncertainty 

around it simplifies MV optimisation problem (3B.26) to 

max pw'x _1a2 (w'w) 
w 2 

which is solved by: 

. 1 ~ 
w na~vei = -2 PXi 

- "W 

With point estimates the expected Sharpe ratio is: 

SRnaive = 

= 
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Therefore, 

S Rnaive = ~ VL xr 

B7. Formulas for Portfolio Weights and Associated 
Sharpe Ratios 

This appendix gives explicit expressions of portfolio weights and associated Sharpe ratios 

under different methods of estimating the scaling. 

Weights/The Sharpe Ratio are as follows under the efficient use of informa-

tion with normal prior on s : 

Explicitly, the optimal portfolio weights with normal prior and efficient use of information 

are derived after substituting out E [pix] and Var [pix] in (3.6) by the expressions (3B .16) 

and (3B .17) respectively. 

w _ e f f icient _ normi 

= 

(3B.27) 

Plugging the same E [pix] and VaT [pix] into (3.8), gives us the corresponding Sharpe 

ratio SRefficient_normal. 
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Weights/the Sharpe ratio are as follows under the efficient use of information 

with uniform prior on s : 

{3B.28} 

The corresponding Sharpe ratio SRefficient_uniform is obtained in a similar way. 

Weights/the Sharpe ratio under naive use of information are given below: 

In the formula of the naive Sharpe ratio (3.9), P is based on M M LE is/Prior] , given 

the corresponding prior: 

__ M M LE is/Prior] 
p = -,=========== V M M LE [s/PriorJ2 + (12 

(3B.29) 

Explicitly, optimal weights are as follows: 

Under naive use of information with uniform prior, 

. ., Xi MMLE[s/Unifl 
w nazve unZJi = -2 ; 

- - ,(1 J M M LE [s/Unif1 2 + (12 

Under naive use of information with normal prior, 
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. Xi M M LE [siN arm] 
w nawe normi = -2 . 

- - ,a J M M LE [sINorm]2 + 0'2 

Depending on Normal and Uniform prior, expressions for the Sharpe ratio respectively 

change. 

Under the conventional MLE-based approach, optimal weights satisfy (3.7) where the 

correlation is as follows: 

~ MLE[s] 
p = --;======== 

VMLE[s]2 +a2 

The Sharpe ratio in (3.9) changes respectively, depending on p. 

B8. Formulas for Non-Homogeneously Predictable 

Asset Returns 

The solution to the portfolio optimisation problem with several asset classes remains 

looks similar to the case with a single asset class: 

1 ~ 
= -p·x·· 

,a~ J tJ 

i = 1, ... , nj; j = 1, ... , m 

The expected Sharpe ratio under efficient use of information becomes the following: 
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SRefficient_gen = 

= 

The true Sharpe ratio (denoted SRejjicient_gen_true) however is different provided that 

the actual returns and the variance of the ijth asset are sjJij and oj respectively: 

SRelficient gen true = 

= 

'2:7 '2:~j w_efficient_genij * SjDij 

Jr.:; '2:~j (w_ef ficient_genij * {!j)2 

The expected Sharpe ratio under naive use of information is expressed in the following 

way: 

The true Sharpe ratios in this case becomes 

"m p. "nj r 
L.Jj ~Sj L.Ji XijUij 

S Rnai'IJe gen true = _-;==J======,-
- - -2 

'2:~ ~ '2:~j X2. 
J tT

j 
0 oJ 
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Chapter 4 

Bias in Dynamic Asset Allocation Models 

4.1. Introduction 

In previous chapters we investigated estimation error in the context of a single-period 

portfolio selection. Now we look at it in the context of dynamic portfolio strategies. The 

impact of estimation error in a dynamic setting is particularly severe because of the com­

plexity of the setting in which it is necessary to have time varying forecasts. We take 

Brennan, Schwartz and Lagnado's structure (1997) as a specific illustration of a generic 

problem and investigate the bias in long-term portfolio selection models that comes from 

estimating parameters from short-sample historical data. 

Brennan, Schwartz and Lagnado (1997) proposed a solution to the Strategic Asset Ai-
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location 1 problem when the asset choice consisted of stock, bonds and cash, and expected 

asset returns were predictable. They found extraordinarily high levels of predictable invest-

ment opportunities. It has been understood that part of these investment opportunities 

comes from estimation error, but to what degree has not been quantified so far. We inves-

tigate how much bias could come from the portfolio selection procedure they followed -

estimating parameters of the stochastic return process from the historical data and, based 

on the estimated parameters, optimising their utility. 

We conduct a Monte Carlo simulation analysis in the setting of Brennan, Schwartz and 

Lagnado (1997) to quantify the degree of bias created by their kind of portfolio alloca-

tion model. We adopt a return generating stochastic process from Brennan, Schwartz and 

Lagnado and assume that it is the true return generating process. The parameters in the 

process are calibrated so that over 20 years an instantaneous Sharpe ratio2, measuring the 

market opportunities, is within its real-life range with the average of 0.5. With this model, 

we simulate a 20-year returns sample similar to the one used by Brennan, Schwartz and 

Lagnado as their dataset. We assume that an investor knows true (constant) volatilities as 

well as the correlation matrix of the innovations in return/predictor variables, but has to 

estimate constant drifts of the true model from the simulated data using regressions, as it 

was done in Brennan, Schwartz and Lagnado. To guarantee a high level of accuracy in esti-

mated parameters, we simulate 10,000 independent datasets, and for each dataset estimate 

the set of unknown parameters. Each estimated parameter of the new model represents 

the mean of the distribution of 10,000 estimates where each is derived from one simulated 

dataset using regression analysis. Given that the real world dynamic follows the true model, 

IThe jargon strategic asset allocation in the context of a long-horizon investor was proposed by Brennan, 
Schwartz and Lagnado (1997), as opposed to the tactical asset allocation of a short-horizon investor. 

2Note that in this chapter by the Sharpe mtio we always refer to an instantaneous Sharpe ratio which is 
not affected by investment horizon. 
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we find that the investment opportunities expected by a Brennan, Schwartz and Lagnado's 

investor with his estimated drift terms are outrageously large - the average cross-sectional 

Sharpe ratio varies between 1.85 and 2.45 over twenty years. 

We argue that the degree of bias detected in our model is more moderate than that in 

Brennan, Schwartz and Lagnado because we assumed the true world dynamic was known 

and we had to estimate eight parameters only. Instead Brennan, Schwartz and Lagnado 

had to estimate sixteen from data, covering a similar period of time, and end up with a 

single set of parameter estimates. Our estimates were averaged over 10,000 simulations. 

Histograms of 10,000 estimates of individual parameters, estimated from regressions across 

each of 10,000 simulation paths, show a wide variation in estimates across simulations. 

What is even worse, state variables with wild estimated parameters produce even wilder 

expected investment opportunities when conditioned on slightly changing real investment 

opportunities. A hardly visible upward trend in the true Sharpe3 ratio over 20 years changes 

to a large difference in expected market opportunities between the start (the Sharpe ratio 

of 1.85) and the end (the Sharpe ratio of 2.45) of the 2o..year-period, when measured with 

estimated parameters. 

The bias in optimisation with parameters estimated from noisy data is a common prob-

lem in the dynamic portfolio selection literature and, in general terms, any application where 

estimated parameters are used for optimisation, unless an explicit way is found to adjust 

for bias. There is considerable literature on dealing with the estimation error in portfolio 

selection, but the kind of bias we address here has not been acknowledged by other finance 

researchers so far. However prior literature has tackled related problems, associated with 

long-term portfolio management models4• 

3The Sharpe ratio here is the cross-sectional average of instantaneous Sharpe ratios calculated at each 
instant for 20 years. 

4For a thorough review, see Section 1.8. 
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Kandel and Stambaugh (1996), Barberis (2000), Xia (2001), and Avramov (2002) are 

some of the key papers on learning/parameter uncertainty when returns are predictable. 

These papers adopt a Bayesian setting to incorporate the information revealed through the 

investment horizon. Although they report spectacular reduction in risky asset holdings in 

the optimal portfolio due to introduction of uncertainty and learning about parameters in 

the model and offer a valuable insight into how the long-term investor should behave, they 

do not solve the problem of bias we tackle in this chapter. Their priors on parameters come 

from historical data and neither the length of their investment horizon nor the sample giving 

the prior is sufficiently large to provide reliable estimates. Given the complex dynamics of 

their models, the priors they use cannot guarantee consistent evolution of expected returns 

through time when resolution of uncertainty is expected in such a short period of time. 

Neither is the learning these Bayesian investors undertake sufficient to reveal the true para-

meters of the return generating process5 . In other words, their models too create the kind 

of bias we address here although to a lesser extent than the models without uncertainty like 

Brennan, Schwartz and Lagnado (1997).6 

There is a need for more radical adjustments to the estimated parameters to avoid 

the bias associated with optimisation based on estimated parameters, leading to inflated 

expectations. However we argue there is no straightforward way of adjusting for bias in 

continuous time portfolio selection models and it is not obvious even what prior should be 

applied for successful Bayesian adjustment. 

We proceed as follows: The next section reviews the long-term portfolio optimisation 

5In a much simpler setting of constant but unknown investment opportunities, Gennotte (1986) shows 
that learning eventually resolves parameter uncertainty as t -- 00. See Section 1.8. 

6For detailed discussion of papers on long-term portfolio optimisation in the face of learning and uncer­
tainty about parameters, see Section 1.8. 
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problem of Brennan, Schwartz and Lagnado; then we describe our Monte Carlo simulation 

framework and report our findings, followed by the discussion of the statistics of the esti-

mated parameters and their reliability; following section examines the difficulties associated 

with adjusting the model parameters for bias; Section 4.5 concludes. Technical details on 

the Monte Carlo simulation analysis are given in Appendix C. 

4.2. A Review of Brennan, Schwartz and 
Lagnado's Model 

Investment opportunities in Brennan, Schwartz and Lagnado (BSL) are governed by 

three state variables, the short-term interest rate Tt, the rate on long-term bonds It, and 

the dividend yield on a stock portfolio 8t , which are all assumed to follow a joint Markov 

process. An investor can invest in stock, bonds and cash. 

The stock return 1:- is modelled as 

(4.1) 

The dynamic of the state variables is governed by the following system: 

(4.2) 

(4.3) 

(4.4) 

The consol bond return (1:1; + ltdt) is modelled as 
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(4.5) 

which simplifies to 

BSL consider an investor with initial wealth W who is interested in maximising the 

expected utility of wealth at the end of a twenty year horizon. His utility function is 

assumed to be of the iso-elastic family (with the risk aversion 'Y of (-5)): 

U(W) = !W'Y 
'Y 

They define x as the proportion of the investment portfolio that is invested in stock, y the 

proportion that is invested in the consol bond, and V (r, l, W, r) the expected utility under 

the optimal policy when there are r periods to the horizon. The Bellman equation is: 

Max E[dV] = 0 (4.6) 
X,Y 

The first-order conditions imply that the optimal controls x· == x· (r, I, 6, r) and y. == 

y. (r, l, 0, r) are given as functions of the parameters of the stochastic processes (4.1-4.5) for 

the state variables. 

BSL assume the volatilities 0"1,0"2,0"3 and 0"4, the correlation matrix (Pij) , and the drift 

coefficients aij are constant and estimate them from the historical data. According to 

them, liThe joint stochastic process was estimated by using a discrete approximation to the 

continuous process, and using monthly data for the period January 1972 to December 1991. 

The stock return was taken as the rate of return on CRSP value weighted market index. 
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The short rate was taken as the yield on a one month Treasury Bill which was taken from 

the CRSP Government Bond File. The long rate was taken as the yield to maturity on the 

longest maturity taxable, non-callable government bond, excluding flower bonds; bond yield 

data were from the CRSP Government Bond File. The dividend yield was defined as the 

sum of the past 12 months' dividends on the CRSP value weighted index, divided by the 

current value of the index" (BSL, pp. 1387-1388). They estimated the system of equations 

by regressions, based on the data. 

In solving the control problem BSL note that it is not possible to evaluate formally the 

stability of the stochastic differential equation system on account of the non-linearity enter­

ing through the equation for 1. Instead they "followed the empirical procedure of starting 

the system at points corresponding to historical joint realizations of the state variables, and 

then simulating the system forward while setting the innovations equal to zero: in all cases 

the system converged." 

Once the parameters in (4.1-4.5) have been estimated, BSL substitute x" (r, l, 8, r) and 

y" (r, l, 8, r) (which depend on estimated parameters) in the Bellman equation (4.6) and solve 

numerically the resulting non-linear partial differential equation for the value function. They 

conclude that an investor with a twenty year horizon should invest very aggressively in a 

risky asset. Overall, they report extraordinarily high predictable time-variation in returns. 

4.3. 
work 

The Monte Carlo Simulation Frame-

The financial markets would not clear if the results of BSL were plausible. As empirical 

findings suggest otherwise, the investment opportunities found by BSL must be exaggerated. 

We want to quantify to what degree their results are misleading. We adopt their setting (4.1-
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4.5), and assume that these are true processes that generate asset returns and state variables. 

We calibrate parameters in (4.1-4.4) so that the investment opportunities offered by this 

model are within reasonable bounds. The size of investment opportunities is measured with 

an instantaneous Sharpe rati07 • The calibrated drift coefficients (aij) are reported in Table 

4.1, the volatilities O'i - in Table 4.2 and the correlations (Pij) - in Table 4.3:" 

bJj 1 2 3 4 

i 

1 -0.028 0.5 0 1.7 

2 0.01 -0.2 0 0 

3 0.018 0.24 -0.3 -0.3 

4 0.02 0 0 -0.5 

Table 4.1 

ld j 1 2 3 4 

i 

0'1 0.085 1 1 -0.037 -0.33 -0.995 

0'2 0.2 2 -0.037 1 0.33 0.032 

0'3 0.037 3 -0.33 0.33 1 0.298 

0'4 0.1 4 -0.995 0.032 0.298 1 

Table 4.2 Table 4.3 

7See Appendix C for the expression of an instantaneous Sharpe ratio. 
8We took the variance-covariance matrix (i.e. Tables 4.2 & 4.3) from the BSL model. 
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In particular, we simulated 10,000 datas ts using mod 1 (4.1-4.4) with true coeffici nts 

from Tables 4.1,4.2 & 4.3. For every simulation path at ea h point in time the instantaneou 

Sharpe ratio was evaluated and then averaged across the path (Le. over 20 years). Figure 

4.1 presents the histogram of 10,000 average Sharpe ratios over 20 years, that measures 

average investment opportunities offered by model (4.1-4.4) with true coefficients during 

this period: 

A""rage Sharpe Ratio oler 20 years. a t @rthe True Model 

Figure 4.1 

Figures 4.2 & 4.3 plot the histogram of the average Sharpe ratios ov r the fir t 10 

and second 10 years resp ctively, and d t ct a carcely visible tim variation in exp t d 

investment opportunities. 
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A1erage S harpe Ratio o\er the Fi rst 10 years. at er the True Model 
350 r--,...---,,....---,---,---.----.---,---,---,--

300 

250 

200 

150 

100 

50 

0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.11 1.1 

Figure 4.2 
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hapter 4 

Assuming that (4.1-4.5) with calibrated parameters (given in Tab I s 4.1 - 4.3) is the 

true return generating model, we simulate (10,000 times) a twenty-year-long datas t on 

returns and state variabl s, which is similar to the data u e I by th BSL' . Ea h datas t 

will be used as the hi torical data for inferring the unknown param ters of th to hasti 

system by r gre ions (as it was don by BSL). If th re W 1'e n e timation ITOI' , th 

9 Actually, these are datasets for which th average Sharpe ratio was evaluated b fore (8 Figur s 4.1, 
4.2 & 4.3) . 
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parameters estimated from the simulated twenty-year-Iong dataset would coincide with true 

parameters from Tables 4.1 - 4.3 that were used for generating the dataset. Without loss 

of generality, the volatilities 0'1,0'2,0'3 and 0'4, and the correlation matrix (Pij) are known 

to an investor with certainty. He also knows the true return generating process (we ignore 

model uncertainty) and uses our simulated dataset to estimate unknown parameters (Uij), 

by fitting respective regressions to the data. His regressions predict increments in state 

variables and stock returns as functions of the three state variables Tt, it, and bt , over a 

twenty-year-horizon. So, the BSL investor estimates 16 parameters (G.ij) from the data 

and measures investment opportunities based on these estimated parameters. We, on the 

other hand, know that the actual world dynamic follows (4.1-4.5) with true coefficients from 

Tables 4.1 - 4.3. This implies that the market opportunities evolve as they should in the 

real world, but at each instant the BSL investor measures them with his (Uij) estimates. For 

our purpose of measuring what the BSL investor's expectations of investment opportunities 

are, we need to estimate parameters for two regressions only in the above system, those for 

dl:tSt and d:lt
• Therefore, our task is simpler than that of the BSL investor as we estimate 

eight parameters only in the following equations: 

dlnSt 

dt 
dIn It 

dt 

(4.7) 

(4.8) 

Taken separately, the two equations have the stochastic structure of the classical linear 

model; which is to say that the disturbances are independently and identically distributed 

with an expected value of zero and a common variance. The two contemporaneous distur-

bances in the vector of residuals have nonzero covariances for all t. It transpires that the 
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efficient system-wide estimator amounts to nothing more than the repeated application of 

the ordinary least-squares procedure to generate the regression estimates (aij). 

Here is a brief summary of what we have done so far: First, we generated 10, 000 datasets 

where each is the data on the evolution of the state variables over twenty years; second, for 

each dataset we estimated unknown sets of (aij) parameters using regression analysis. As a 

result, we derived 10, 000 estimates for every (aij) in (4.7-4.8). Table 4.4 reports the mean 

values of estimated parameters averaged over 10, 000 simulations: 

~j 1 2 3 4 

i 

1 -0.51 0.3 2.47 10.16 

3 0.37 0.31 -6.27 -0.45 

Table 4.4 

A BSL investor thinks that the world evolves after (4.1-4.5) with estimated (aij) para-

meters from Table 4.4 in drifts, and true volatilities and correlations. Hence he measures 

future investment opportunities based on his estimated model. The discrepancy between 

estimated (aij) in Table 4.4 and true (aij) in Table 4.1 leads to the bias in expected mar­

ket opportunities. We measure the opportunities he expects with an instantaneous Sharpe 

ratio, given that the actual world dynamic evolves according to (4.1-4.5) with true coeffi­

cients from Tables 4.1-4.3 (with the Sharpe ratio of 0.5, on average). In other words, at 

each instant the BSL investor measures true opportunities with his (aij) estimates instead 

of the actual (aij). The distribution of 10,000 average Sharpe ratios (each is the average of 

instantaneous Sharpe ratios over 20 years across a particular simulation path), as expected 
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by the BSL investor is given in Figure 4.4: 

Au.rage Sharpe Riltio o,.;,r 20 years, As ExpeC1led bYlhe B SL hU!stor 
140 

4 4 . ~ 6 

Figure 4.4 

The difference between the true and expected mark t opportuni ties which corresponds 

to the BSL way of optimisation, is alarming (compar Figure 4.4 to Figur 4.1). We plot the 

average market opportunities expe ted by th BSL investor in th first and second halves 

of the estimation period, and find a substantial tim bias there: 

A\erage Sharpe Riltio o,.;,rlhe first 10 Years, as Expected bylhe BSL hlestor 
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Figure 4.5 
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Chapter 4 

It is also interesting to compare the cross-sectional mean SR's over a 20-year-horizon 

with true coefficients to those with estimated coefficients, as plotted in Figure 4.7 (at each 

instant both SR, true and expected under BSL, are av raged across 10,000 simulations): 

0 

~ .. e-
"' .c 
'" .. 
f= 

Cross-sectional Sharpe Ratio . ;""raged o",r Simulations 
2.5r.===~~~==~=o~---r---r---r--~--~==~ 

11- The Estimated SR J -
II The True S R 

1.:5 

0.5 ~ ______ 

°0~--~--~4--~6--~8--~10~~1~2--~1~4--~16--~18~-7.20 
Time 

Figur 4.7 
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The two plots in Figure 4.7 differ not only for their Sharpe ratio, but for their shape 

as well. The true Sharpe ratio has a tiny upward trend (better seen in Figures 4.2 & 

4.3, displaying the distributions of a true Sharpe ratio in the first 10 and last 10 years 

respectively). The trend of the average Sharpe ratio, expected by the BSL investor, is 

sharper and linearly increases from less than 2 at the start to about 2.5 in the end. For a 

given model the wilder the state variables we put in the model, the greater the opportunities 

are. Furthermore, if these are conditioned on slightly time-dependent opportunities, the bias 

in expected Sharpe ratio is a compound effect of two things: the regression estimation and 

the actual time-variation in the Sharpe ratio. 

4.4. Analysis of Results 

Let VaT (SRk) be the variation of the distribution of 20-year-averages of the Sharpe 

ratio, given in Figures 4.1 & 4.4. VaT (S Rk ) is found as the variation of the distribution of 

T 
~ :L: SRkt, where T is the number of instances in 20 years, i.e. T = 250 x 20 = 5,000. Let 

t=l 
10,000 

Vk be the variance of the Sharpe ratio across each simulation path; 10 ko :L: Vk will be the 
, k=l 

average variation of the Sharpe ratio, associated with simulations. 

Table 4.5 summarises the statistics of the average Sharpe ratio under both sets of para-

meters: 
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With With 

True (aij) Estimated (aij) 

The Sharpe Ratio 

1 20-year-average 0.501 II 2.218 II 

first 10-year-average 0.474 2.093 

second lO-year-average 0.528 2.343 

The Var of the Sharpe Ratio over 20 years 

I Var (SRk ) II 0.017 II 0.272 
II 

I 10,000 

II 
0.065 

II 
0.333 

II 1O~00 E Vk 
, k-1 

The Ratio of Var's 

0.815 
II 

Table 4.5 

10,000 

The ratio Var (SRk ) / lO~OO E Vk for the true parameters is 27.1%. This means there is 
, k=] 

a lot of cross-sectional variation in the Sharpe ratio, but investment opportunities are mean 

10,000 

reverting in time. According to Table 4.5, both Var (S Rk) and ]0 ~ E Vk as well as 
, k=l 

their ratio substantially increase for the model with estimated parameters. Moreover, their 

ratio triples to 81.54% which indicates that investment opportunities are largely affected 

by some sets of parameters giving a larger Sharpe ratio than others; this kind of variation 
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• 

dominates the variation in estimated investment opportunities. 

Table 4.6 reports the parameter statistics. The standard error is measured in two alter-

native ways: one based on the standard deviation of the distribution of 10,000 independent 

(o'ij)k (k = 1, ... , 10,000), where each (~j)k is estimated in the respective regression across a 

simulation path; the other as a standard error of a given coefficient in respective regression. 

There are eight different standard errors of the first kind, and 8 x 10,000 different standard 
\ 

errors of the second kind (Le. one for each coefficient in each simulation). The t-value we 

compute measures the 'significance of the deviation of estimated coefficient from real one. 

For every coefficient we compute two different t-values - the first is based on the standard 

deviation of the distribution of estimates ~i-ai. ,the second is the overall t-value, 
10.000 s.d.(aij) . 

depending on 10,000 standard errors of the given coefficient ......,.,.~_a.6i '=-;;,;ai,,==~_ 
10,000 

10 \mo E s.e.2(a'j)k 
, k=1 

Parameter Estimated Value aij St.Dev. s.d. (aij) First Second 

Population (mean of 10,000 (s.d. of 10,000 t-value as t-value as 

Value ols estimates) ols estimates) a,~-ai2 11;'-"" 

v'w:hoos.d.(ii;;) J 10,000 
lOka 1: ... e·~(1I;j)k 

• k=l 

au -0.028 -0.51 0.61 -79.88 . -2.84 

a12 0.5 0.30 3.00 -6.60 -0.52 

al3 a 2.47 10.21 24.25 3.63 

a14 1.7 10.16 8.18 103.32 13.17 

a31 0.018 0.37 0.29 120.95 3.19 

a32 0.24 0.31 1.30 5.68 0.26 

a33 -0.3 -6.27 4.97 -120.07 -13.29 

a34 -0.3 -0.45 3.52 -4.18 -0.35 

Table 4.6 
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These overwhelmingly high t-values indicate the degree of bias associated with this 

estimation procedure which is adopted by most people. 

It is worth noting that the bias we show here is much more moderate compared to the 

one arrived at using the BSL method of estimation. Unlike us, they estimate 16 parameters 

instead of 8. They cannot apply standard ols regressions as we do which increases sources 

of bias in their estimates. Depending on realisations, their coefficients of state variables 

may end up anywhere in the distribution of (aij) (for distributions of (aij) considered here, 

see Figures 4.8 - 4.11 for the estimates of parameters in the regression of dl~/!, and Figures 

4.12 - 4.15 for the estimates of parameters in the regression of d:l!). What is even worse, 

they think the world evolves according to their model with wild estimates, which further 

increases the expected Sharpe ratio to extraordinary heights. It takes 10,000 years for all 

parameter estimates (aij) to get reasonably close to their respective true parameter values 

(aij) . 

4.5. Adjustment for Bias: Issues 

Our Monte Carlo simulation analysis highlights the dangers associated with optimisation 

that uses a model with parameters estimated from noisy data. Even though we ignored the 

model uncertainty and kept parameters of predictable state variables constant, estimating 

drift terms from a limited-size sample had produced market opportunities up to five times 

larger than those implied by the true model. 

It is straightforward that the problem of bias is not limited to estimating parameters 

using linear regressions. A non-linear regression specification would further magnify the im­

pact of estimation error and produce even wilder state variables and, therefore, investment 

opportunities. Papers, studying long-term portfolio selection with regression-estimated pa-
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rameters but incorporating the Bayesian learning of uncertain parameters and/or model, 

report reduced investment opportunities compared to BSL (see, for example, Xia (2001)). 

However, because their prior on parameters comes from a similar-size dataset and Bayesian 

adjustments are based on market realisations over a limited investment horizon, their models 

too are prone to creating substantial bias. 

There is a need for a more radical adjustment for bias but what adjustment can we 

make? 

The role forecast evolution in time may play in portfolio selection has not been fully 

understood so far. By the nature of model construction and development, its efficiency is 

strongly tied to the corresponding forecast optimality. Adjusting for estimation error in a 

model of long-term asset returns is inseparable from making consistent end-of-date return 

forecasts with this model at different times. Previous chapters discuss different ways of 

dealing with estimation error. Grinold and Kahn (1999) suggest Bayesian refinement to 

the parameter estimates, but there is no obvious way of implementing them in a complex 

environment of continuous-time portfolio selection, as single-period forecast errors inflate 

uncontrollably over a long horizon. 

We regard this bias adjustment problem as a generalisation of t3-adjustment problem, 

examined by Blume (1971, 1975), and Vasicek (1973). There is however prior information 

on cross-sectional distribution of t3s and in their setting implementation of the Bayesian 

approach is straightforward. In continuous-time asset returns models we have a class of 

assets which is not even a homogeneous group and we cannot talk about their mean and 

dispersion as we did for t3. 

A main kind of prior we can use is some sort of distribution of plausible Sharpe ratio; 

so that the Sharpe ratio is a controllable number when we make an adjustment to the 
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parameters. Meanwhile there is no obvious projection to making this adjustment. A possible 

adjustment would be to work out what kind of scaling would take us back to lower Sharpe 

ratio. Then we could scale the forecast drifts either separately or altogether back towards 

the zero risk premium. 

This kind of adjustment can be misleading though. Suppose we have a true return 

generating structure with a weak dividend effect. Then, if a new model has a significant 

dividend effect and we scale back, we bet on spurious signals. The more we keep the 

mUltiple dimension and complicated regression terms, the more that can go wrong with the 

new model. Overall, this way of separating what's spurious from what's actually there can 

lead to a new kind of bias. 

4.6. Conclusion 

This chapter has addressed the issue of bias in dynamic portfolio selection models arising 

from the estimation of parameters from a limited-size historical data. We took Brennan, 

Schwartz and Lagnado (1997)'5 long-horizon portfolio optimisation model as a specific il­

lustration of a generic problem in long-term portfolio optimisation. Based on Brennan, 

Schwartz and Lagnado's strategic asset allocation model, using a Monte Carlo simulation 

analysis we quantified the degree of bias inherent in applications that include optimisation 

with estimated parameters. 

We started off with a return generating process giving at each instant investment op­

portunities at a size of 0.5 of the instantaneous Sharpe ratio (on average). The stochastic 

process as well as state variables were adopted from Brennan, Schwartz and Lagnado. With 

this model we simulated the data covering 20 years of returns/state variables and, based on 

the simulated sample, estimated back the 'unknown' parameters of the true return generat-
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ing process that produced this sample. Since historical datasets as long as this are often used 

for inferring model parameters for long-term portfolio decisions, it is essential for us to know 

to what degree true and inferred parameters match each other. For reasons of accuracy, we 

conducted 10,000 independent simulations and produced a distribution of 10,000 estimates 

for each parameter that had to be estimated. The actual parameter estimates we used for 

the estimated model were averages of the corresponding distributions. For a new model 

with estimated parameters we calculated expected investment opportunities measured with 

an instantaneous Sharpe ratio. We found that the estimated model promises outstanding 

investment opportunities corresponding, on average, to the Sharpe ratio of 2.2, as opposed 

to the true Sharpe ratio of 0.5! The difference between the two is attributed solely to the 

estimation error. 

We pointed out that papers investigating the impact of learning and predictability on 

portfolio decision are also liable to create the kind of bias addressed in this chapter, although 

to a lesser extent. We argue there is a need for consistent adjustment for bias in estimated 

parameters however there is no straightforward way of making such adjustment. 
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Appendix C 

C1. The Setting of the Monte Carlo Simulation 

We use a variance-stabilising transformation of a state variable. 

BSL uses the following processes for state variables (the riskfree rate Tt, the consol bond 

rate It and dividend cSt): 

(40.1) 

the stock return 

(4C.2) 

and, the consol bond return: 

dBt 
B

t 
+ ltdt = [It - (a31 + a32Tt + a33lt + a34b't) + O"~J dt - 0"3 dz3 

= [( O"~ - a31) - a32Tt + (1 - a33) It - a34t5t} dt - 0"3 dz3 
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Using the Ito calculus we transform dOt as follows: 

dln5t 

Similar transformation applies to drt. 

Next we rewrite (4C.l) for log's. It is a variance stabilising transformation procedure 

of the state variables that changes stochastic volatility terms to constants. As a result, 

it improves the reliability of simulation-based inferences and decreases standard errors. 

This procedure has been used in prior literature (see, for instance, Detemple, Garcia and 

Rindisbacher (2003)). 

dIn rt 
a21 + (a22 - ~O'D rt + a23lt + a245t d d 

= t + 0'2 Z2 
rt 

dln1t = (a31 - ~O'~) dt + (a32rt + a33lt + a341St) dt + 0'3dz3 (4C.3) 

a41 + a42rt + a43lt + (a44 - ~O'~) 1St d d 
- 1S

t 
t + 0'4 Z4 

(4C.3) - (4C.2) are used to simulate the log state variables and the log stock process. 

An instantaneous Sharpe ratio S Rt at time t is calculated as 
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where expected excess return et is 

and the variance-covariance matrix V is 

V= 
[ 

2 ] 
lTl -P13lT I lT3 

-P13lTllT3 a~ 

Note, that V is constant here. 

The Monte Carlo simulation follows the Euler scheme. For, say, dIn Tt it evolves in the 

following way: 

(dlnT)~i) 

(i) In Tt+l 

= (a21 + (." - ~q!~: t + ""I, + a"o, dt) ") + q, (dz,) ('1 

= lnr~i) + (dlnr)!i) 

The actual value of the interest rate is found as 

(i) (i) ) rt+l = exp In Tt+l 
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Chapter 5 

Optimisation in llisk Measurement 

5.1. Introduction 

Banks and other financial institutions need to meet regulatory requirements for risk 

measurement and capital. The regulators, like the Financial Services Authority (FSA), want 

to be sure a firm's/bank's potential for catastrophic net worth loss is accurately measured 

and that their capital is sufficient to survive such a loss. 

Regulators establish levels of risk based capital requirements which each institution must 

maintain. The optimal allocation of funds raises the question, how small can the regulatory 

capital required be given that it passes the regulations? We consider two particular rules 

from the FSA Handbook and develop efficient algorithms to calculate corresponding minimal 

capital required. The algorithms give optimal solutions in closed form and are easy to 

implement. 

142 



Information and Optimisation in Investment and Risk Measurement Chapter 5 

Frequent reporting of risk exposures in a dynamic market environment calls for efficient 

algorithms in risk measurement that give reliable estimates of future capital requirement 

under different scenarios. The algorithms developed here fall in this category. They can 

easily deal with changes in rules, which is an important aspect of the risk management 

with time dimension. Both algorithms lead to interesting generalisations. The following 

paragraphs give a detailed description. 

The "Risk Offsetting Algorithm" minimises the required capital held by a firm to cover 

the risk arising from its open positions in commodities with different maturities. The 

algorithm gives all optimal solutions to the problem and is easy to implement with a standard 

optimisation package. The algorithm motivated our intuition to formulate and prove the 

Theorem on Convex Optimisation (see Chapter 6), which delivers all optimal solutions 

in closed-form for a specific combinatorial optimisation problem. The optimality of the 

solution given by this algorithm is accepted as a special case of the Theorem on Convex 

Optimisation. 

The "Optimal Grouping Algorithm" calculates the minimal interest rate risk by finding 

the optimal grouping of bonds with different maturities. We formulate the problem and 

solve it using a linear programming approach. Next we consider its modified version that 

is interesting for its economic insight, and solve this explicitly using dynamic programming 

techniques. 

These two problems, as well as their methods of solution, are not interrelated and are 

analysed separately. The chapter is organised as follows: In part one we present the risk 

offsetting problem, in part two - a problem of optimal grouping of risk. Conclusion gives 

the summary of the chapter. Technical details appear in Appendices D1-D2 in the end. 
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PART 1 

5.2. The Risk Offsetting Problem 

In this part we address the problem of efficient calculation of the Position Risk Required 

(PRR) in commodity portfolios based on the documentation of the FSA Handbook l . Ac­

cording to the regulations, a firm must calculate the PRR on all positions in commodities 

following one of its four approaches. We developed an algorithm that calculates the minimal 

PRR within the FSA rule. 

The algorithm delivers all the optimal solutions to the problem in closed form. It can 

also cope with a few interesting modifications to the rules and remain optimal. 

The outline of Part 1 is the following. The next section describes the risk offsetting 

problem from the FSA Handbook and discusses approaches to calculating the required cap­

ital. Sections 5.3 & 5.4 formulate the problem mathematically and solve it using the linear 

programming approach. In Section 5.5 we develop the risk offsetting algorithm that de­

livers the minimal PRR, and express all solutions analytically. The discussion of possible 

extensions to the model concludes Part 1. 

5.2.1. Summary of the Corresponding FSA Rule 

The FSA sets a Position Risk Required (P RR) on positions in the firm's commodities. 

According to the FSA regulations, a firm must calculate the P RR on all positions in the 

commodities, following one of four approaches: 

lSee FSA Handbook (2001) 
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o A Simplified Approach 

o A Maturity Ladder Approach 

o An Extended Maturity Ladder Approach 

o The Firm's Own Internal Model. 

Internal models are subject to a number of qualitative and quantitative requirements 

and are subject to the FSA approval individually. The other three are standard external 

approaches. The Simplified Approach should be abandoned as unreasonably expensive in 

favour of Maturity/Extended Maturity Ladder Approaches that allow a firm to minimise the 

P RR by offsetting contracts in the same commodity against each other, subject to certain 

conditions. The next section provides a description of these methods. 

5.2.2. Maturity/Extended Maturity Ladder Approach 

A commodity is defined as a physical product which is or can be traded on the secondary 

market. Commodities include precious metals (except gold, which is to be treated as a 

foreign currency), agricultural products, minerals and base metals, oil and other energy 

products. 

As explained in the guidelines, a firm must calculate the P RR for each commodity 

separately, except that 

(a) different sub-categories of the same commodity that are deliverable against each 

other may be treated together; and 

(b) with the FSA's prior written permission, commodities which are close substitutes for 

each other, and whose price movements over a minimum period of one year can be shown by 

the firm to exhibit a stable and reliable correlation of at least 0.9, may be treated together. 
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All positions in each commodity or commodity derivatives must be expressed in terms 

of the standard unit of measurement for that commodity (such as tonnes, barrels or kilos). 

A firm must allocate net positions on any given day to the appropriate maturity band in 

Table 5.1 below. Physical stock must be assigned to the first band. 

Maturity BandsforMaturity Ladder Approach 

0-1 month 

1-3 months 

3-6 months 

6-12 months 

1-2 years 

2-3 years 

over 3 years 

Table 5.1 

The objective of the firm is to offset long and short positions within and between maturity 

bands, in accordance with the following guidelines: 

(a) for each maturity band, the firm must sum all the open long positions, and sum all 

the open short positions. The firm may then subtract the shorts from the longs to form 

the overall net position. The amount subtracted is the" matched amount". The firm must 

multiply twice the matched amount by the spread rate of 1.5%, and then by the spot price 

for the commodity to arrive at the spread risk charge. 

(b) the firm may then carry backwards or forwards all or part of the overall net position 

within a band to an adjacent maturity band for further netting allowances. Where this is 

the case, the firm must calculate: 

(i) a carry charge, by multiplying the amount carried by the carry rate of 0.6%, and 
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(ii) a spread charge, in accordance with (b) above, where the carried position is matched 

against a position in an adjacent maturity band. 

The firm may repeat the procedure for carrying positions through to other maturity 

bands as appropriate. An additional carry charge and spread charge must be calculated at 

each stage of the process. 

(c) The firm must multiply any positions remaining after the permitted offsetting by the 

outright rate of 15%, and then by the spot price of the commodity, to arrive at the outright 

charge. 

(d) The total PRR for each commodity is the sum of the spread risk charge, the carry 

charge, and the outright charge converted to the firm's reporting currency at current spot 

rates. 

An Extended Maturity Ladder Approach is the same as a Maturity Ladder Approach, 

except that it can assign different, more relaxed charges to different commodities such as 

precious metals, base metals, soft commodities and other commodities. 

We propose an algorithm that minimises the regulatory capital required for both ap-

proaches. 

5.3. Problem Description and Mathematical 
Formulation 

We start by introducing some notation. 

As explained in the rule, offsetting positions within a group is free. Hence, assume the 

open position of a single band is represented by one real number; i.e. let at, a2, ... , an be open 

n 

positions in the corresponding n bands. Without loss of generality, assume that L ai ~ O. 
i=l 
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The P RR (risk capital) is defined as the swn of the outright charge, the carry charge 

and the spread risk (matched amount) charge with the rates of oe, ee and se per unit 

respectively. Here, oe = 15%, ee = 0.6% and se = 1.5%. These charges should be con-

verted into currency by multiplying them by the corresponding spot price. For simplicity, 

we assume that price = 1 unit in the firm's reporting currency and omit it from the subse-

quent analysis. As noted above, the spread risk charge and the carry charge are insignificant 

compared to the outright charge, which makes it optimal to offset opposite positions across 

all bands under the realistic assumption that the potential length of the ladder n < 45 

(see Appendix Dl). This asswnption may be relaxed depending on an individual case. In 

notation the condition is n < [2(O~CSC) + 1] . Offsetting opposite positions is accomplished 

by carrying the desired portion of the open position to the desired band. Following the 

argument of optimality of complete offsetting, we conclude that all open positions that re-

main after offsetting, must have the same sign as the overall sum of ai positions. Following 

n 

our assumption l: ai 2:: 0, all remaining positions will be non-negative (long). 
i=1 

Next we discuss how to model the flows of positions between bands. According to 

regulations, the order of offsetting has no effect on the P RR calculation. The P RR is 

affected by the number of units moved from a band to a band, and the distance between 

these bands2• The firm pays for both the distance and the quantity moved. For instance, 

moving 5 units from band 1 to band 3 costs 5x(3-1)x(the cost of a unit move to the next 

band). This flow can be broken down into two flows: 5 units from band 1 to band 2, and 5 

units from band 2 to band 3. The charge for the two submoves equals exactly the charge 

for the original move. Without loss of generality, in the rest of the chapter we will consider 

only the flows between adjacent bands. 

2The distance is measured as a difference between the ordinal positions of the corresponding two bands. 
For example, the distance between band 3 and band 1 is 2 = 3 - 1. 
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Before proceeding further, we introduce more notation. Let the final (optimal) dis-

n n 

position be denoted bt,~, ... , bn where, as expected, E bi = E ai ~ o. All the b/s are 
i=1 i=1 

non-negative, with zero b/s corresponding to the initial non-positive positions of the ai's 

(see Appendix Dl). Also, 0 ::; bi ::; lail. The connection between the ai's and the b;'s is 

illustrated in Figure 5.1. Here each at is broken down into two terms, bi and It, where the 

latter represents the optimal flow (amount transferred) from the ith band to the (i + l)st 

band. 

al~ a2+ ft~a3+ f2~···~an+ fn-l 

~ ~ ~ ~ 

Figure 5.1 

earlier, Hows are defined for the neighbouring bands only and are directed. Hence, negative 

Ii means positive flow from the (i + 1)st band to the ith. 

The objective is to calculate the minimal risk capital (PRR) so that the capital adequacy 

standards are satisfied. The risk capital minimisation problem is as follows: 

Min PRR 
Ii,'" 

(5.1) 

For non-negative bt,~, ... , bn , the PRR consists of the following: the outright charge 

of (E bi ) * OC, the carry charge of (E IltD * CC, and the spread risk (matched amount) 

charge of (E lai - bil) * SC. The outright charge and the spread risk charge are uniquely 
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defined for the optimal disposition of the bi's and cannot be minimised. On the other hand, 

the cost associated with carrying the amount between the bands is controllable and can 

be minimised for an optimal allocation of the bi's. Expressing it mathematically, optimal 

n 

PRR = Const}3+Const2 * 2: Ifil· 
i==1 

As the term by term breakdown of P RR shows, its minimisation is equivalent to the 

n 

minimisation of its carry charge 2: Ifil. Subsequently, the risk minimisation problem (5.1) 
i=1 

may be rewritten as 

n 

Min:Ll/il 
ii,bi i=1 

i i 

s.t. Ii = Laj - Lbj, i = 1, ... ,n 
j=1 j==l 

b}, b2 , ... , bn > 0 

Ii sign free 

n n 
Notice that bn is solved from the constraint E bi = E ai (Le. once b1 , b2 , ... , bn - 1 are 

i=1 ;==1 
n n-l 

found, then bn = E ai - E bi)' This makes bn a redundant decision variable. Following 
;=1 ;=1 

this argument, the above problem is equivalent to the following 

3Constl is the fixed cost associated with both the outright charge and the spread amount charge. 

150 



Information and Optimisation in Investment and Risk Measurement 

n-1 

MinLl/il 
f;,bi i=1 

i ; 

S.t. Ii = La; - Lb;, i = 1, ... ,n-l 
;=1 ;=1 

n n-1 

bn = L a;- Lb; 
i=1 i=1 

Ii sign free 

5.4. Linear Programming Approach 

Chapter 5 

(5.2) 

This optimisation problem can be formulated as a linear programming problem. To 

remove the module of Ii, we present it as a sum of 'in' and 'out' flows to/from the ith to 

the (i + l)st band. An 'in' flow from the ith to the (i + l)st band is an 'out' flow from the 

(i + l)st to the ith. Let Xi be the amount flowing from the ith to the (i + l)st band and Zi 

- from the (i + l)st to the ith. Then the net flow from the ith to the (i + l)st band will 

be Ii = Xi - Zi (see Figure 5.2). 

Figure 5.2 

Xn-l 
~a 
~ n 

-Zn-l 

After rearranging the terms, the new disposition will be a sequence of b/s, as shown in 

Figure 5.3: 
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bI ............ . b3 -.-.. _...... ... -_._ .... bn 

bI = al - Xl + Zl 

b2 = a2 + Xl - Zl - X2 + Z2 

b3 = a3 + X2 - Z2 - X3 + Z3 

btl = an + Xn -1 - Zn - 1 

Figure 5.3 

The objective function to be minimised will be an algebraic sum of the absolute values 

of all positive and negative flows 2::=1 (Xi + Zi). The non-negativity requirement for the 

bi's, and for the combination of xi's and Zi'S will form the constraints. This gives 

n 

Minw = L (Xi + Zi) 
Zi,S. i=l 

s.t. - Xl + Zl > -al 

Xi-l - Zi-l - Xi + Zi ~ -a;, i = 2, ... ,n - 2 

Xn-l - Zn-l ~ -an 

Xi, Zi > 0, l$i$n 

This approach can also take into account different carry charges from· one band to an-

other. 

5.5. Algorithm for the Risk Minimisation 
Problem 

In this section we reformulate (5.2) and describe the algorithm that gives all optimal 

solutions to the problem in closed form. Furthermore, it has all the benefits of the linear 

152 



Information and Optimisation in Investment and Risk Measurement Chapter 5 

programming solution and is easy to implement as a regulatory requirement constraint to 

the portfolio risk management problem. The algorithm will be generalised to the Theorem 

on Convex Optimisation (see Chapter 6). 

5.5.1. 'fransformation of the Problem 

In this section we transform (5.2) to make combinatorial manipulations easier. 

i i 

Define Si = L aj and ti = L bj • After setting to = 0, (5.2) can be rewritten as 
j=1 j=1 

i 
Define Si as Si = L ISj - tjl. It is obvious that Si = Si(t1, t2, ... , ti ). For simplicity, let 

j=1 

S denote Sn-1. Then the optimisation problem becomes: 

(5.3) 

The functions Si play a key role in optimisation. The following section analyses them 

in detail. 

5.5.2. Properties of the FUnctions Si 

Si as a Function of One Variable 

Before describing the optimisation algorithm, we investigate properties of the functions 

Si and provide an insight into optimisation of such functions. 
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Consider real numbers (c}, C2, ... , Cn-l) such that 0 ~ CI ~ C2 ~ ... ~ Cn-l ~ C. We claim 

that the following inequality holds4: 

Min S(tl' t2, ... , tn-I) ~ Min S(c}, t2, ... , tn-I) 
tl ,t2, . .. ,tn-l t2,' .. ,tn-l 

s.t. 0$t1$t2$ ... $tn-1$C s.t.0$C1$t2$ .. ·9n_1$C 

The above is obvious because setting the variable tl to the constant tl = CI in 

Min S(c}, t2, ... , tn-I), restricts tl from assuming any value different from Cl that 
0$C1$t2$···$tn-1 $C 

may yield a smaller value for S. Meanwhile, Min S( tt, t2, ... , tn-d is free of similar 
0$t1 $t2$'''$tn -1 $C 

restrictions and its tl variable may take on any value, including Cl' In short, the difference 

between the LHS and the RHS in the above inequality is the difference between the solutions 

to unconstrained and constrained optimisation problems. 

For simplicity, we denote MinSi (tl' ... , t1) by Min 81 (tl' ... , tl), and apply similar no-
t1 091$8n 

s.t. 0$t1$Sn 

tation in the rest of the chapter. 

with delicately as there is a tendency of mixing the functions. Also, it is important which 

variable is the argument of a one-variable Si(tj, tj, ... , tj), but introducing new notation in a 

consistent way may have brought in the model a new set of S tildes and S hats. Thereafter, 

to avoid confusion we keep using the same notations. 

The Shape of Si 

Since all ISj - tl's have similar shapes, all Si(t, ... , t)'s are continuous convex piecewise 

linear functions5
• Therefore Si'S are almost everywhere differentiable and the differentials are 

4We sacrifice notational precision for simplicity of expression. 
5Here t = tj, j = 1, ... , n -1. The Si'S are one-variable functions and do not depend on the tj's sequential 

order, hence notation Sj (t, ... , t) . 
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constants across the segments. The differentials are not defined at the kinks and endpoints, 

i.e. for t E {81o 82, ... , 8i-1o 8i; 0, 8n-l}' According to the optimisation rules, these are critical 

points for minimisation along with the solutions to dSi(~~ ... ,t) = 0, if any. 

Note that if the s/s are different from one another, a solution to the FOC exists for 

even i's only, and it is a whole segment excluding its endpoints6. This is made clear in 

Figure 5.4, which shows the sums of modules, or S/s for i = 1,2,3,4. Derivatives dSi~~ ... ,t) 

are defined and constant across each segment excluding its endpoints. They are zeros only 

across mid-segments of S/s (with even subscripts i), as these segments have zero slopes. 

5.5.3. Describing the Algorithm 

Solving the minimisation problem means finding values of the variables tl = ti, t2 = 

t2, ... , tn - 1 = t~_l which will minimise (5.3), subject to 0 ~ ti ~ t2 ~ ". ~ t~_l ~ 8n . We 

find the elements of the optimal sequence {ti, til, ... , t~_l} one by one starting from ti and 

finishing with t~_l' 

Step 1: Optimisation with respect to t17 

Through finding ti, this section explains the intuition behind the solution. Subsequent 

choices are analogous and derived via induction. 

Choice of ti is crucial for subsequent values of t2, t3, .'" tn - 1 as they cannot go below 

the limit fixed by ti. The choice of ti should not cease the decreasing potential of any 

6To express these endpoint analytically, later we introduce the concepts of the Upper Median and the 
Lower Median. 

7For the purposes of illustration only, we assume that all Si'S are different for these solutions at these 
starting stages of induction only. For a general case we drop this assumption. 
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t2, t3, ... , tn_I-dependent Si function, that eventually affects the objective S function. Not 

ceasing the S/s minimisation potential by choosing tr means avoiding the values oftl where 

Si (tr, ... , ti) increases. If there is such Si that increases when its argument equals ti, it 

has already skipped its minimum and can never go back to it for any values of remaining 

controls t2 , t3 , ... , tn-l' In other words, such ti has already incurred irrecoverable loss on the 

objective function which contains Si as an addend. Therefore we must restrict tl variable 

to the region where none of the Si functions is increasing, i = 1, ... , n - 1. Choosing t; under 

such constraints will optimise the objective function (the total sum) but not necessarily the 

individual sums (it may well happen that no individual sum is optimised when the argument 

is set to ti). But the given scheme guarantees that the sums will be optimised for remaining 

control variables if it is going to benefit the objective function. 

According to the above, we minimise each of Si (i = 1, ... , n - 1) with respect to tl 

independently, and set the minimum of these solutions to ti as follows: 

In detail, 

ti = min 

functions of tl for a special case, when Si 'f Sj, i, j = 1, ... ,4. 
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S, S,'I1J 

Figure 5.4 

First, 8 1 = lSI - tIl is minimised. If SI is positive, 8 1 will be optimal for tl = SI· 

If SI is non-positive, 81 will be minimal for tl = 0 (since every ti ~ 0). If tl(8j ) = 

Min 8j (tl' ... , t1), j = 1, ... , n-l denotes the optimal tl for 8j, then tl(8t} = max {O, stl· 
O~tl~Bn 

Second, we choose tl (82), The sum of two modules 8 2 is constant and, therefore optimal 

(minimal) along [SI, S2] . For tl ~ 0, 82 will be optimal for all non-negative tl's drawn from 

[S'(I), Si(2)] segmentS, or zero, whichever is greater. Thus tl (82 ) E [0,00] n [Si(I), Si(2)] , or 

Next we find tt(8a). AB a sum of three modules, 8a is optimal at one of the sa's (i = 1,2,3) 

located between the other two (at, say, 8i(2) in the ascending sequence of 8,'S), or zero. 

Consequently, tl (8a) = max {O, S'(2)} . 

Figure 5.5 

Similarly, the other 8;'s are optimised with respect to t} and for odd j's the optimum 

is the maximum between zero and the median of the sequence {S'(I), Si(2), ... , Si(j) }, when 

Si(.} is a permutation of {I, 2, ... , n - I} that arranges {Sl' S2, .'" sn-d in ascending order. 
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the latter is arranged in ascending order; in other words, for even j's the optimum is the 

non-negative part of the segment [Si(jf2) , Si((j/2)+1)] where Si(jf2) and Si((j/2)+1) are j 12th and 

((j 12) + 1)st points respectively9 from {Si(I), Si(2), ... , Si(j)} sequence arranged in ascending 

order. For odd j the optimum t l (Sj) = max {0,Si((j+1)/2)} ; For even j, t l (Sj) E [O,ooJ n 

As shown above, the optimal tl will be the minimum of the values of tl that optimise 

This completes the first step of optimisation. 

Remark 1 Note that the process of replacing all ti 's by tl will neither affect the subsequent 

choice ofti 's, nor restrict the functions Si, because tl ~ t2 ~ ... ~ tn- 1 and 

MinSi(t}, t}, ... , h) exceeds Si(t}, t2, ... , ti ) for any values of variables. 

Step 2: Optimisation with respect to t2 

Note that when tl = ti, the sum SI(tj) = lSI - til becomes constant, like all first 

addends of the other sums lSi - til, i = 1, ... , n - 1, and the ith sums Si(tj, t2, ... , ti ) become 

the functions of the (i - 1) controls. 

Step 2 is the same as Step 1 apart from changing the control variable from tl to t2 and the 

... , Sn-l(ti, t2, ... , t2)' As SI(ti') has been fixed by the previous step, at this stage there are 

only (n - 2) functions S;'s to optimise, i = 2, ... , n - 1. 

9 As j /2 and (j /2) + 1 are the indices of two points in the middle, later we will introduce the concepts 
of the Upper Median and the Lower Median to refer to such medians and distinguish between them. 
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Keeping the same assumption as above regarding distinct kinks, and similar notation 

have solutions at one point, and Min S/s with odd indices may have solutions across 
O~ ... ~Sn 

entire segments 10 • Having optima at one point or across a segment depends on the number 

of remaining control variables in Si function at the time of optimisation. At the even (e.g. 

2nd) stage of optimisation even i-indexed functions give point solutions to the FOCs and, 

similarly, at the odd (e.g. 1st) stage of optimisation the odd i-indexed functions give point 

solutions to the FOCs. A similar rule of thumb applies to the segment solutions to FOCs, 

with apparent modifications. The rest is as in Step 1. 

For even j, t2(Sj) = max {ti, Si(j/2+1)} ; For odd j, t2(Sj) E [ti, oo]n [SiU+1/2) , SiU+l/2+1)] , 

Step k: Optimisation with respect to tk (1 ~ k ~ n - 1)11 

At the kth step we calculate the solution tk as a minimum of 

lOHere i is a permutation of {2, ... , n - 2} that arranges {82, 83, ... , 8n -d in the ascending order. 
II As this is a general step, here we allow for equal kinks 8k = 8j, 1 :s k, j :s n - 1. 
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Figure 5.6 offers another graphical insight into the algorithm. We assume the following 

ordered sequence of real numbers {Sk, SHl, ... , sn}. In Figure 5.6, the solid horizontal line 

corresponds to t = tk-l' Points s;'s, j = k, ... , n are placed in a sequential order above/below 

---------------------------------------------~ 

Sk+l 

Sn-2 

Figure 5.6 

tk is defined as tk = tk-1 +c, C ~ O. The dashed horizontal line in Figure 5.6 corresponds 

to t = tic. If Sic > tk_1, tic will approach Sic from left until one of 8;'s starts increasing (j ~ k). 

It is equivalent to the requirement that for any j ~ k, the number of Sk, ... , 8j located below 

the line t = tic is not greater than the number of Sic, ... , Sj located above the t = tic border 

Once all tjs are found, the corresponding value of the function 

S = Sn-l(ti, t~, ... , ti_2' t:_1) is the optimal solution to the risk minimisation problem (5.2). 

In the next section we express the solutions tks in closed form. 

12 Sj'S are drawn wrt imaginary vertical axis. The horizontal axis only guarantees that the sequential 
order {k, k + 1, ... , n} is maintained. 
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5.5.4. Expressing Solutions Mathematically 

Upper and Lower Medians 

The following definitions will help us express the optimal values of tiS and, subsequently 

the optimal flows from one group to another, through rigorous mathematical notation. 

Definition 1 Let {Xi, i = 1, ... , n} C R. Without loss of generality, assume Xi s are arranged 

in ascending order {Xl ~ X2 ~ ." ~ Xn} C R {if not, re-index them}. 

The Upper Median U M of the set {Xi, i = 1, ... , n} is defined as 

{ 

Xk+b if n = 2k 
UM{Xi, i = 1, ... ,n} = k 

Xk+l, if n = 2 + 1 

Definition 2 Let {Xi, i = 1, ... , n} C R. Without loss of generality, assume XiS are arranged 

in ascending order {Xl ~ X2 ~ ... ~ Xn} C R {if not, re-index them}. 

The Lower Median LM of the set {Xi, i = 1, ... , n} is defined as 

LM{Xi,i = 1, ... ,n} = { 

Xk, if n = 2k 

Xk+l, if n = 2k + 1 

As it is clear from the definitions, there are at most the same number of points above 

the Upper Median as below it, and the other way around for the Lower Median. For odd 

n, LM = U M and both are conventional medians. 
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Explicit Solution to the Minimisation Problem 

Theorem 1 The full set of solutions to the optimisation problem 

(3') 

is given by any ascending sequence of tt s {(tr ~ t2 ~ , , , ~ t~), tt E DJ from D, 

where 

Max{t i _ b Min{LMf' LM'f, "" LM~-l, C}}, 
CR 

Max{ti _ 1, Min{UMf' UM'f, "" UM~-l, C}} 

Proof. The theorem is a special case of the Theorem on Convex Optimisation formulated 

and is proved in Chapter 6, • 

The following are the explicit expressions for one set of the optimal solution: 

ti = Max{O, Min{UMI, UMr, '''' UMi'-l, C}}, 

t'k = Max{O, Min{UMf' UM'f, "" uMr-l, C}}, k = 1, ".,n - 1. 
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5.5.5. Finding the Optimal PRR 

Let the Its denote the optimal flows. After finding all tis, we solve the optimal flows 

its from the following equations: 

ft = Si - t;, i = 1, ... , n - 1. 

Once Its are found, bI , b2 , ••• , bn are calculated from the following relationships: bi = 

al - fi, b2 = a2 + fi - f;, b3 = a3 + f; - fi,'" , bn = an + f~-l - f~· The optimal PRR"' 

is found after substituting the optimal Its and biS in the expression of the P RR: 

where, according to the regulations, ac = 15%, SC = 0.15% and CC = 0.6%. 

A numerical example on optimisation will be given in Chapter 6, after having proved 

the Theorem on Convex Optimisation. 

5.5.6. Extensions to the Model 

The algorithm is sufficiently general to take into account a carry charge which varies from 

a band to a band, by assigning different weights to the corresponding flows. This extension 

is not required under current FSA regulations. 
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PART 2 

5.6. Optimal Grouping of Risk 

The Optimal Grouping of the Risk Problem, similar to the Risk Offsetting Problem, 

comes from the FSA Handbook and addresses the problem of optimal grouping in the context 

of calculating minimal interest rate risk. We formulate the problem and solve it using a 

linear programming approach. Next we consider its modified version and solve it using 

dynamic programming techniques. Enhancements and applications are discussed in the 

end. 

5.6.1. Summary of the Corresponding FSA Rule 

Here is a brief summary of the FSA rule, from the FSA Handbook (2001). 

In measuring its positions, a bank may net, by value, long and short positions in the 

same debt instrument to generate the individual net position in that instrument. 

Instruments are considered to be the same where the issuer is the same, they have the 

equivalent ranking in a liquidation, and the currency, the coupon, and the maturity are the 

same. 

A bank may net by value a long or short position in one tranche of a debt instrument 

against another tranche of the same instrument where the relevant tranches: 

(a) rank pari passu in all respects, and 

(b) become fungible within 180 days and thereafter the debt instruments of one tranche 

can be delivered in settlement of the other tranche. 
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Where a bank does not have a relevant recognised pre-processing model,trading book 

positions in derivatives (other than options), and all positions in repos, reverse repos and 

similar products should be decomposed into their components within each time band prior 

to the calculation of individual net positions for general market risk. 

Where a bank does not have a relevant recognised model, it may nevertheless choose 

to net notional positions in government bonds (i.e. notional bond legs) that arise from 

the decomposition of foreign currency forwards, deposit futures, FRAs, swaps and other 

derivatives. 

For the netting of notional government bond positions to be recognised, 

(a) the positions should be in the same currency; 

(b) their coupons, if any, should be within 15 basis points; and 

(c) the next interest fixing date, or residual maturity, should correspond with the limits 

given in Table 5.2: 

Maturity JInterest fixing date Permissible mismatch 

Less than one month hence 

One month to one year hence 

Same day 

Within seven days 

Over one year hence Within thirty days 

Table 5.2 

Interest rate exposures arising from cash borrowing and lending and from cash legs of 

repo/reverse repo may also be netted against one another (on the same basis as above), but 

they should not be netted against positions in notional government bonds. 
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5.7. Problem Description and Mathematical Formu­

lation 

Let ai (i = 1, "" n) be the open positions where i stands for the maturity/interest fixing 

date. Without loss of generality, let an .open position ai stand for one particular date i. If 

n ~ 30, the risk of holding corresponding ai's is the algebraic sum L:~~1 ai. For 30 < n the 

risk of holding positions aiS could be minimised by netting long and short positions within 
I. 

permissible periods - one week for n ~ 365, and one month for n > 365. 

al a2 apj<k '" ajok<j<n-k ... aj,k<n-k '" a. 

Xu + x~ + .. ' + x" i '" -'" -." '" 
XZ2 + X21 + Xn + ... + X2,k + J - Z22 - 21 - Z23 - ... - 2.1+ 1 

Xjj+XjJ_I + ... +Xj.l +XjJ+I + ... +XjJH-I- Zjj- Zj -1- ... - Zj,I-Zjj \- ... - ZjJH 1 

Xjj+ Xjj':"\ + ... + XjJ-H\ + XjJ+I + ... + XjJH-\ - Zjj- ZjJ_1 - ... - ZjJ HI - ZjJ+\ - , • - ZjJH-1 

x"" + X" ... -l + ... + x,.",-k+1 - ZltII- Z .... -I-· .. - Z"",.-k+l 

Figure 5.7 

Without loss of generality, let the SUbscripts of al, a2, ... , an stand for the maturity/interest 

fixing date and k be the number of days, within which the permissible mismatch is allowed. 

In order to determine the optimal netting strategy, we partition ais into positive Xij and 

negative -zii portions, whichever applicable. Xii and Zij represent respectively the absolute 

values of positive. and negative parts of ai, given that Xi,i-j is the positive portion of ai, 

that is offset by the the negative -Zi-j,i portion of a;-i' Xi,Hi is the positive portion of ai, 

that is offset by the negative portion "-zHi,i of ai+i' As follows, -Zi,Hj is a negative portion 

of ai, that is offset by the Xi+j,i - positive portion of aHj, -Zi,i-j is a negative portion 
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of ai, that is offset by the Xi+j,i - positive portion of ai-j' Clearly, j < k. According to 

the formulation, the mismatched position at the ith maturity/interest fixing date is either 

Xii or Zii. In case of k 2:: i or j + i > n the process of partitioning into Xi,i-j, Xi,i+j and 

(-Z" .) (-z··+·) terml'nates when i - J' = 1 (Cor x·· . and z·· .) and J' = n - i (for X· '+' '1.,'1.-.1' t.,t J 11 I,I-J 1.,'1-3 '&,a. J 

The linear programming model will minimise the objective function which is the sum 

of absolute values of all positive and negative mismatched positions Xii and Zii. The n 

constraints ensure that the sum of Xij and -Zij is indeed ai. Also, a set of constraints f~rces 

XijS to be equal to ZjiS. To make sure that ai is not partitioned into positive and negative 

parts which cancel each other but may exceed ai in absolute value, we require that sum of 

positive/negative parts of ai be smaller than the module of ai' 

The risk minimisation problem is formulated as follows: 

(5.4) 

s.t. Xij - Zji = 0, 1 :5 i,j :5 n, i:f j, Ii - jl < k 

min(i+k-l,n) 

L (x· . - z· -) I,) t,) = ai, i = 1, ... ,n 
j=max(i-k+1,l) 

min(i+k-l,n) 

L Xij < lail, i = 1, ... ,n 
j=max(i-k+l,l) 

min(i+k-l,n) 

L Zij < lail, i = 1, ... ,n 
j=max(i-k+l,l) 

Xij, Zji > 0, 1 :5 i,j :5 n 

For a given set of positions, problem (5.4) is easily solved in any linear programming 
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software. 

5.8. Dynamic Programming Approach for a Modified 

Version 

In this section we consider a modified version of the above problem, which will be 

interesting from the risk management perspective. The problem is solved using the dynamic 

programming approach. 

Let \lI (.) be a risk-measuring function of one-variable, which maps a (possibly negative) 

exposure to a non-negative risk measure. C/s (j = 1, ... , n) are given exposures (cashflows) 

that may be partitioned into K (or more) groups of length not greater than L for" offset" 

purposes. Find the grouping which minimises reported risk as 

(5.5) 

lj 

s.t. L Ci = 9j; j = 1, ... ,K 
i=lj_1+1 

1 < lj -lj-1 ~ L; j=l, ... ,K 

to = 0, ... ,IK = N 

Ci E R 

In other words, we want to find the best way to position the indices into the sets 

G1 , ... , Gk , so that each set contains no more than L entries. k ~ K to ensure at least 

K groups. Similarly, the constraint lj - lj-1 ~ L guarantees at most L elements in each 

group: 
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o 1 N 

Note that no restrictions are placed on the one-variable function III ( .). 

The grouping problem is solved using the dynamic programming approach. The dynamic 

recursive relationship is defined in the following way: 

fen, k) - the optimal risk (as in (5.5» for exposures (Cn , ... , CN ), when they are arranged 

in k groups; 

[fen, k)] - an optimal decision associated with fen, k). Note that there may be more 

than one optimal decision yielding the same f (n, k) . 

The dynamics of the process are given by the following equations: 

N 

f(n,N+l-n) = LIlI(Ci ) (5.6) 
i:=l 

f(n,O) = 0 

{ (

n+i-l ) } 
fen, k) = i:=I, .. ¥}::+i$N III ~ Ci + f (n + j, k -1) ,n + k 5, N (5.7) 

The optimum of (5.5) is found as 

Min {J(I, k)} 
K$k$N 

(5.8) 

To make the problem easier to visualise, we organise optimal solutions in a NxN trun-
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cated matrix, which has a triangular form. The (n, k)th entry of the matrix is fen, k), with 

the corresponding (f(n, k)J. This helps us find optimal values at every following stage as 

well as allows us to trace back the chains of optimal groupings. 

Following the system dynamics given by (5.6-5.8), we start filling the decision matrix 

from the last row, and at each subsequent stage of optimisation we will use the optimal 

decisions that have been made at earlier stages (Le. the entries from the lower rows). 

The Nth row considers only the Nth exposure, hence delivers the trivial solution feN, 1) = 

\II (CN) and [f(N,I)J = [CNJ. In the (N - I)st row the optimal grouping of Nth and 

(N - I)st exposures is found from alternative ways of grouping: when grouped together (in 

the (N -1, I)th entry) and separately (in the (N -1, 2)th entry). In general, the (N - p)th 

row gives the optimal groupings of {N - p, N - p + 1, ... , N}th exposures, subject to the 

smallest number of groups varying from 1 to (p + 1). The first row gives optimal groupings 

of all elements, for permitted numbers of groups and the elements within the group. 

f(l,l), 

[f(I,I)J 

fen, I), 

[f(n,I)J 

f(N,I), 

[f(N,l)J 

f(1,K -1), 

[f(I, K - I)J 

f(n,K -I), 

[fen, K - I)J 

K 

f(l,K), 

[f(l,K)J 

fCn, K), 

[fCn, K)J 

f(l,N), 

[f(l, N)J 

n 

Notice that for each (n, k)th entry, k denotes not only the column index of that entry 

but also the smallest number of groups considered for the optimal decision at this stage. 
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The final decision is based on the entries where the minimal number of groups is K, i.e. 

the decision is based on the first row entries that come from the k-indexed columns, where 

K ~ k ~ N (shown in bold in the matrix). 

The algorithm gives all optimal groupings, based on the same decision matrix, if the cur-

rent constraint "At least K groups" is replaced by either "At most K groups" and "Exactly 

K groups". The optimal solution for "At most K groups" will become Min {J(l, k)}, and 
19$K 

for "Exactly K groups" - f(l, K). 

Note that the elements on the main diagonal are described by (5.6), and the first column 

(k = 1) corresponds to (5.7), when f (n + j, k - 1) = o. 

The complexity of the algorithm is n (NN21). 

5.8.1. Numerical Illustration with a Quadratic Risk 
FUnction 

Here we illustrate on a simple function that the dynamic principle of optimality holds 

K K 
for the algorithm, described above. Let 2: III (gj) from (5.6) be 2: gJ - the sum of squared 

j j 

sums gJ of exposures within individual buckets. 

Let N = 10 and the cashflows Gi , i = 1, ... , 10 be the following sequence of long and 

short exposures: 

5, - 6, - 8, 5, 3, 2, 5, 4, - 5, 2 

Let the minimal number of buckets be K = 3 and the number of cashflows within a 

bucket be restricted to L = 10. 
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We rewrite (5.5) as 

Ij 

s.t. L Ci = 
i=lj_l +1 

1 :S 

lo = 

C1 = 

C6 = 

9j; 

K 

MinL9; 
j 

j = 1, ... ,3 

lj - lj-1 :S 4; j = 1, ... ,3 

0, ... ,lK = 10 

5, C2 = -6, C3 = -8, C4 = 5, Cs =3, 

2, C7 =5, C8 =4, C9 = -5, C10 = 2 

Chapter 5 

To construct the solution matrix for this problem, we calculate f(n, k) functions for the 

problem, with corresponding decisions [fen, k)]. 

fen, 1) entries in the first column are (L:~:tl Cn ) 2 for corresponding n, n+j :::; N, n = 

1, ... , N. These are the one-group optimal solutions. 

f(10, 1) =. Min. {w (L:~:~-l Ci ) + f (n + j, k - I)} , hence 
3=1, ... ,L; n+rS:N 

f(1O, 1) = (ClO)2 = 22 = 4, decision [f(1O, 1)] = [10J; 

f(9, 1) = (C9 + ClO)2 = (-5 + 2)2 = 9, decision [f(9, I)J = [9, lOJ; 

f(l, 1) = (C1 + ... + ClO)2 = (5 + ... + 2)2 = 49, decision [J(1, l)J = [1,10] 

The remaining entries are found in a similar way. The decision matrix is presented 

below: 
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f(l, 2) =29, f(1,4) =25, S 
f(l, 1) =49 [I)[f(2,1)] f(1,3) =21, [1, 2)[f(3, 3)] f(1,5) =25, f(1,6) =35, f(1,7) =53, f(1,8) =93 f(1,9) =153 f(1,10) =233 0-.... [1-10] [1 - 9][f(1O, 1)] [1 - 6][f(7, 2)] [1 - 5][f(6, 3)] [1, 2)[f(3, 4)] [1, 2)[f(3, 5)] [1, 2)[f(3, 6)] [1, 2][f(3, 7)] [I)[f(2,8)] [1] (J(2, 9)] 8 

~ o· 
f(2, 4) =46, ::l 

'" f(2, 1) =4 f(2,2) =2, f(2,3) =6, [2 - 6][f(7, 3)] f(2,5) =60, f(2,6) =70, f(2,7) =88, f(2,8) =128 f(2,9) =208 ::l 
~ [2 -10] [2 - 7][f(8, I)J [2 - 7][f(8, 2)] [2 - 7][f(8, 3)J [2][f(3,4)] [2][f(3,5)] [2][f(3,6)] [2][f (3, 7)] [2] [f(3, 8)J 0 

'"0 ... 
f(3,2) =40, S· 

f(3,1) =64 [3 - 6][f(7, I)J f(3,3) =24, f(3,4) =24, f(3,5) =34, f(3,6) =52, f(3,7) =92, f(3, 8) =172 00· 

'" ... [3 -10] [3 - 9][f(1O, 1)] [3 - 6][f(7, 2)] [3 - 5][f(6, 3)J [3 - 5][f(6, 4)] [3, 4][f(5, 5)] [3, 4][f(5, 6)J [3) [f(4, 7)) o· 
::l 
S· 

f(4,1) =256 f(4,2) =128, f(4,3) =86, f(4,4) =70, f(4, 5) =58, f(4,6) =68, f(4,7) =108, IS iii [4-IOJ [4, 5][f(6, 1)) (4)[f(5,2)) [4][f(5,3)) (4)[f(5,4)) [4][f(5,5)) [4) [f(5, 6)) ~ 
8 
CD 

~ 
f(5, 1) =121 f(5,2) =61, f(5,3) =45, f(5,4) =33, f(5,5) =43, f(5,6) =83, '" ::l [5-10) [5, 6][f(7, 1)) [5, 6)[f(7, 2)) (5)[f(6,3)) (5)[f(6,4)) (5)[f(6,5)) ~ .... 

~ -I 
en t.> f(6,2) =40, :>;" 

s::: f(6, 1) =64 (6)[f(7,1)) £(6,3) =24, f(6,4) =34, f(6,5) =74, 
CD 

[6-10) [6 - 9][f(lO, 1)) (6)[1(7,2)) (6)[f(7,3)) (6)[f(7,4)) ~ 
c! .... 
CD 

8 
f(7, 1) =36 f(7,2) =20 £(7,3) =30 f(7,4) =70 I[ 

[7 -10) [7 - 9)[f(lO, 1)) (7)[f(8,2)) (7)[f(8,3)) 

f(8,1) =1 f(8, 2) =5 f(8,3) =45 
[8-10) [8 - 9)[f(lO, 1)) (8)[f(9,2)) 

f(9,1) =9, f(9,2) =29, 
[9-10) (9)[f(10,1)) 

I 
0 

f(1O.1) =4. If (10) 
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The optimal solution is the minimum of the first raw entries that come from columns 

3,4, ... , 10 - Min {f(l, k)} . This is f(l, 3) = 21. The corresponding optimal grouping is 
3990 

[f(1,3)] = [1 - 6] [1(7,2)] , where [f(7, 2)J was identified at (7, 2)th stage of optimisation as 

[1(7,2)] = [7 - 9][f(10, 1)]. Similarly, U(10,1)] = [10]. 

Therefore, for K = 3, L = 10 the optimal grouping of exposures is given by [1-6], [7-9], 

[lOJ. 

If K = 4, L = 10, the optimal risk would be given by either f(l, 4) =25 or f(l, 5) =25, 

and the number of optimal groupings would increase to 3, where 2 solutions contain 4 

buckets and 1 contains 5 buckets: 

__ {[I, 2), [3 - 6], [7 - 9], [10] 
[J(1,4)J 

[1 - 5], [6], [7 - 9], [10] 

[f(1,5)J = [1,2]' [3 - 5], [6J, [7 - 9], [lOJ 

If the value of L, the maximum number of exposures within a bucket, changes, a few 

entries in the decision matrix should be modified in order to find the optimal solution to 

the same risk measurement problem. 

5.8.2. Applications of the Dynamic Programming Al­

gorithm 

The proposed algorithm with complexity n (N N21) identifies efficiently the optimal 

solution among a finite set of (2N-l) alternatives. 

As mentioned above, the algorithm may lend itself to different applications in optimisa-

tion, including those in the area of financial risk management. 
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The algorithm is important in an environment where there is a need for maintaining the 

sequential order of elements, that have some risk structure. For example, it can be used for 

asset /liability management. 

5.9. Conclusion 

In this chapter we have considered two rules from the FSA Handbook (2001) and de­

veloped optimal algorithms that calculate minimal capital requirements within these rules. 

The first algorithm leads to the Theorem on Convex Optimisation, formulated and proved 

in Chapter 6. A modified version of the second rule is solved using a dynamic program­

ming algorithm with complexity n (NN;l) ,which efficiently identifies all optimal solutions 

among a finite set of (2N - 1) alternatives. This algorithm may have a number of applica­

tions in the financial risk management. The optimisation methods considered in this chapter 

are computationally cheap and can effectively deal with modifications in the corresponding 

rules. 
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Appendix D 

Dl. Properties of Optimal bl,~, ... ,bn 

With given rates of charge, non-zero positions in the final disposition incur the highest 

outright charge. The flows from one band to the next band cost only 0.6% per unit carried 

over which makes it optimal to offset all opposite positions (Le. short versus long). 

The following is an example of an extreme allocation and illustrates our point. Assume 

we are in the setting of Section 5.3. Let bl , b2 , ... , bn be the optimal allocation, where bi is 

negative, and the subsequent bis are zeros except for the last bn which is positive and greater 

n n 

than the absolute value of b1 - bn ~ Ibil (following the assumption I: ai = I: bi ~ 0). 
i=1 i=1 

The outright charge for the disposition bt, b2, ... , bn is PI = Ibil * De + bn * DC. If bi 

was to be moved to the nth band, the outright charge PI would be replaced by P2 = 

(lbil * 2 * se + (bi + bn ) * De + Ibll * (n - 1) * Ce)13. Let us compare PI to P2 : 

2 .. (OC-SC) + 1 V n 
cc 

As the last comparison shows, for any value of negative bl , PI is not worse than P2 if 

n < 2 .. (Og~SC) + 1. Given that De = 15%, ee = 0.6% se = 3%, this condition is satisfied 

if the length n does not exceed 45, or n < 45. Taking into account the potential length of the 

maturity ladder, also the prices of a unit of the commodities, we conclude that a realistic 

13 As before, we assume that the gross flow corresponding to the move of a one-unit-position from ith to 
(i + j)th band is j. 
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n does actually fall within the specified range l 4, P2 < PI and the disposition bI , b2, ... , bn 

in not optimal in the sense of minimal P RR. Therefore, the assumption of optimality of 

bb~, ... , bn with sign-varying entries has led us to the contradiction which proves that all 

opposite positions should be offset in order to optimise the P RR. As a result, all optimal 

n 
non-zero b/s should be positive or, in general, have the same sign as L: ai. Also note that 

i=l 

zero b/s will correspond to the non-positive ai's since carrying the positive amount of r 

to the ith band will not improve anything but only increase the carry charge by at least 

r * 0.006. For the same reason, all bi ~ lail. 

D2. Analysis of the PRR 

Following our notation, the optimal outright charge is 0::: Ibi l)*0.15, the carry charge 

(L: Ifil) *0.006, and the spread risk (matched amount) charge - (L: Il ail-lbdl)*hO.015. 

Therefore, the risk minimisation problem is 

Min PRR 

14Note that the case considered here is extreme and in particular cases (when the opposite positions are 
not that distant) the restrictions on n can be relaxed. 
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As b},b2, ... ,bn are positive, the outright charge component of the optimal PRR is 

uniquely defined for a given a1, a2, ... , an and is equal to the sum of the ai's times a constant: 

(~Ib;/) *0.15 = (~bi) *0.15 = (E ai) *0.15. Another term in the PRR, the matched 

amount represents the absolute value of the gross negative positions expressed as 

n n n 

L Ilail-ibill = L Ilail- bil = L lai - bil 
i=1 ;=1 i=1 

n n n n n 

= L lail + L lail- Lbi = Llail- Lbi = Llail- Lai 
ai<O ai~O i=1 i=1 i=1 i=1 i=1 

which, similar to the outright charge, is fixed and cannot be minimised. In contrast to it, 

the carry charge varies depending on the total Ii flows between the maturity bands. 

The above minimisation problem becomes equivalent to the minimisation of its carry 

charge component. After ignoring the constants in P RR, the problem is rewritten as 

;=1 

i i 

s.t. I; = L:aj - L:bj , i = 1, ... ,n 
j=1 j=} 

bI , ~, ... , bn > 0 

Ii sign free 
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n n n n-1 
As argued in the main body, In = E aj - E bj = 0, and E Ilil = L: IIil· This delivers 

j=1 j=1 i=1 i=1 

the following problem: 

i=1 
i i 

s.t. Ii = Laj - Lbj , i = 1, ... ,n-1 
j=1 j=1 
n n-1 

bn = Lai- Lbi 
i=1 i=1 

Ii sign free 
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Chapter 6 

Theorem on Convex Optimisation 

6.1. Introduction 

Chapter 6, the Theorem on Convex Optimisation, was inspired by the risk offsetting 

algorithm in Chapter 5. The theorem delivers a closed-form solution for a specific combi­

natorial optimisation problem. It is remarkable, that this optimisation problem imposes no 

restriction on the sequence of continuous convex functions whose SUm is being minimised. 

The theorem is accompanied ty the three lemmas that ensure all technicalities in the 

proof are explicitly dealt with. These lemmas also help us to understand the bigger picture 

of the optimisation problem. 

It is straightforward, that the result can be rewritten as a theorem on concave optimi­

sation (namely, maximisation) in a similar setting. 
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Overall, the theorem has potential for interesting applications in the area of the finance 

and operational research. 

The chapter is structured in the following way. We start by providing technical prelimi­

naries regarding convex functions. Next the Theorem on Convex Optimisation is formulated, 

followed by Lemma 1 that develops the intuition behind the Theorem. The result is illus­

trated with a simple numerical example in Section 3. Discussions of further extensions 

conclude. The proof is given in Appendix A with all supporting Lemmas. 

6.2. Preliminaries 

Let x(t) be a convex function, defined on [a, b]. We can classify the points t E [a, b] 

according to the behaviour of x (.) in some neighbourhood Ct of the point t. 

To proceed, we give the definition of a neighbourhood of t E R (see, for example, 

Rockafellar, 1996). The set {7 E R: It - 71 < p} is called the open ball, B (t;p) , ofradius p 

about the point t. A set tt C R is called a neighbourhood of tEet if B (t; p) C et for some 

p> O. The definition extends to the definitions of left and right neighbourhoods (Ct and ct 
respectively) in a straightforward way. 

C1 = {t E [a, b] : x is strictly decreasing in et for some p > O} 

C2 = {t E [a, b] : x is strictly increasing in Ct for some p > O} 

C3 = {t E [a,b] : x is constant in tt for some p> O} 

C4 = {t E [a,b] : x is strictly decreasing in Ct and x is constant in ct for some p> O} 

Cs = {t E (a, b] : x is constant in t't and x is strictly increasing in et for some p > O} 

C6 = {t E (a, b] : x is strictly decreasing in tt and x is strictly increasing in ct for some 
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p > O} 

Since qs are convex, they obey the following arrangement rules: 

C4C3CS 
C l { }C2 , possibly with some empty CiS. 

C6 

Based on the definition of convexity, below we give inequalities (6.1) and (6.2), which 

are used in the proof of the theorem. If X(7) is convex and 71 < 72 < 73, then 

(6.1) 

(6.2) 

6.3. Theorem on Convex Optimisation 

Before formulating the theorem, we introduce some notation. 

k 
Note, that ifxI(t),X2(t), ... ,xn(t) are convex, then all sums EXi(t) are also convex, for 

i=j 
k 

1 ~ j ~ k ~ n. Denote the set where the convex function E Xi (t) strictly decreases by Dj; 
i=j 

k 
the set where the convex function E Xi (t) strictly increases by Ij. 

i=j 

Theorem 1 (The Theorem on Convex Optimisation) Let Xl (t), X2(t), ... , xn(t) be con-

tinuous convex functions on [a, b) c R. 

Consider the following optimisation problem: 

i=1 

182 



Information and Optimisation in Investment and Risk Measurement Chapter 6 

where the optimisation is with respect to tt, t2, ... , tn variables. 

The full solution to this minimisation problem is given by 

n 
{b}, if bEn Dr 

k=l 

ti E (6.3) 

where ~ = a and 1 = 1, ... ,n. 

Proof. For full proof see Appendix E1. • 

Here we provide the intuition behind the proof of the Theorem. First we will state 

Lemma 1, which will help us to explain the Theorem on Convex Optimisation. 

Lemma 1 Assume that we are in the setting of the Theorem on Convex Optimisation. Let 

Xl(t), X2(t), ... , xn(t) be any n convex junctions, tj ~ t2 ~ ... ~ t~ be given by (6.3), and 

t~+1 = b. Consider the above sequence of junctions extended by a constant junction, i. e. 

XI(t),X2(t), ... ,xn(t),Xn+1(t) = O. For any 0 < I ~ n+ 1, let t;,t;+I, ... ,t~,t~+1 be any or-

dered sequence of (n + 2 -1) points from [a, bJ such that a ~ t; ~ t;+l ~ '" ~ t~ :::; t~+l = b. 

Denote gel) = min(l, n) and consider the following (i)-(ii)-(iii) conditions: 

n 

(i) bEn D;(l); 
k=g(l) 

(ii) t/ ~ t;; 

(iii) t/ < ti and ti E [ti-l' b]\ [( n D!(l») U ( U 1;(1))]; 
k=g(l) k=g(l) 

If one of the above listed (i)-(ii)-(iii) conditions holds, then the following inequality is sat-

isfied: 
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n+l n+l 

2: Xi(tr) - 2: Xi(t~) :S 0 
i=l i=l 

or, equivalently, 
n+l n+l 

L Xi(t;) :S L xi(tD (6.4) 
i=l i=l 

Moreover, given that at least one of the points {tl' ~+l' ... , t~} is not given by (6.3), then the 

inequality (6.4) is strict. 

Proof. See Appendix E1. • 

Lemma 1 tells us that the tail of the sequence given by (6.3) is optimal in the sense 

of the Theorem on Convex Opimisation (i.e. it minimises the corresponding tail sum of 

the convex functions). We have had to resort to the concept of best tail in order to apply 

backwards induction. The best tail of m (m-tail) means that there is no other sequence of 

n 

(ti)~m points from [a,b) region that gives a 'tail' solution to Min L Xi(ti) superior to 
i=n-m 

the tail ofm of the solution obtained by (6.3) (For the sake of simplicity, here we talk about 

n elements instead of (n + 1) as in Lemma 1. However it should not cause confusion as the 

full proof in Appendix EI specifies correctly the length of every sequence). 

The induction method imposes no bounds on the length of the 'tail', thus allows us to 

consider the whole sequence of points chosen through (6.3) as the largest I-tail which is 

optimal. After having proved Lemma 1, we accept the optimality ofm-tail, for m = 1, ... ,n. 

Thus we accept the superiority of the I-tail which, indeed, is the full sequence of the solution 

given by (6.3). 

Note that, for technical reasons, we compliment the set of n arbitrary convex functions 

Xi(t) with a constant function on [a, b). Without loss of generality, assume this strictly 
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decreasing function is 0 identically. This extra function helps us to anchor the sequence 

of Xi(t) functions and conduct the first step of backward induction when m = n + 1. In 

Appendix El we will show that introducing this extra function in the original set of Xi(t)S 

has no influence over optimality of the solution given by (6.3). 

Also note that Lemma 1 proves the optimality of m-tail when (i)-(ii)-(iii) conditions 

listed above are satisfied. Lemma 2 in Appendix E1 states that one and only one of (i)-(ii)-

(iii) conditions can be satisfied for a full sequence. Possible overlaps for smaller 'tails' cause 

no confusion due to the structure of the proof of Lemma 1. Indeed, in the proof we discuss 

three mutually exclusive cases that closely relate to (i)-(ii)-(iii) conditions and all possible 

overlaps are successfully dealt with. Lemma 3 shows the equivalence of two lots of optimal 

n+l 
solutions: on one hand, the solution set {tj, t;+l' ... , t~, t~+l} to the problem Min L Xi (tn 

i=l 
n 

and, on the other hand, the solution set {ti, ti+l' ... , t~} to the problem Min L Xi(tr). 
i=l 

6.4. Numerical Example 

A simple example of the convex optimisation problem given here illustrates how the 

Theorem on Convex Optimisation works in practice. 

Let t E (a,bJ = (0,3J 

Xl(t) = (t - 1)2 

We have to find {tl' t2, t3}, 0 $ tl $ t2 $ t3 $ 3 that minimise the following sum: 
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According to the definitions of D1 and If, 

Dt = (0,1) If = (1,3) 

Di = (0,1.5) If = (1.5,3) 

D~ = (0,1.25) If = (1.25,3) 

D~ = (0,2) Ii = (2,3) 

D~ = (0, 1.5) I~ = (1.5,3) 

D~ = 0 Ii = (0,3) 

It is straightforward, that to = a = 0. Also, 

k=l 

The theorem suggests that 

3 

= (0,1); n D~ = (0,1.5) ; Dg = 0 
k=2 

3 

= (1,3); U I; = (1.5,3) ;Ii = (0,3) 
k=2 

3 

to = a = 0 ~ U If = (1,3) j 

k=l 
3 

b = 3 ~ n Dt = (0,1) j 

k=l 
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So, 

Similarly for t; : 

So, 

For tj : 

t; E [a,b]\ [(OD~) U (~I~) 1 
t; E [O,3]\[(O,1)U(1,3)]={1} 

3 

ti = 1 ¢ U I; = (1.5,3) ; 
k=2 

3 

b = 3 ¢ n D~ = (0,1.5) ; 
k=2 

t; E [0,3]\ [(0, 1.5) U (1.5,3)] = {1.5} 

=? ta = t; = 1. 5 

Chapter 6 

We verify that the conditions, given in (11), are mutually exclusive. The following shows 

that the conditions do not overlap indeed: 

b=3¢D~=0 
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6.5. Conclusion 

In this chapter we proved the Theorem on Convex Optimisation that gives all optimal 

solutions in closed form for a particular minimisation problem. 

It is straightforward, that the Theorem easily extends to the Theorem on Concave Opti­

misation (namely, maximisation). It can also deal with the reversed {tl' t2, .... tn } sequence 

(Le. the sequence put in descending order b = to ~ tl ~ t2 ~ ... ~ tn ~ a). 
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Appendix E 

El. The Proof of the Theorem 

The proof of the Theorem on Convex Optimisation will follow from proving the three 

lemmas given here. We start with Lemma 1. 

Lemma 1 (formulated in the main body, section 6.3) 

Remark 1 In the lengthy proof of the lemma, we highlight the 'plot' of the proof in bold 

font which will make it easier to follow. 

Proof. The Lemma is proved by backwards induction. 

At first, we prove that the Lemma 1 is true for I = (n + 1) (Step 1). Next 

assume the correctness of the result for all I > m (so that 1 ~ I ~ n) and, based 

on that, prove the result for I = m (Step 2). I is the induction variable. 

Step 1: 

Let I = (n + 1) . For any t~+1 S b we have Xn+1 (t~+1) = Xn+1 (t~+l)' Therefore Xn+1 (t~+1) 2: 

Xn+1(t~+1) and (6.4) holds. 

Step 2: 

Consider the following: 

m is any fixed number between 1 and n: 1 1 ~ m S n; 

{ t~, t~+11 ... , t~} is an arbitrary sequence where a S tf S t1+1 S .. , S t~ S t~+1 S b; 

and one of the conditions (i)-(iii) is satisfied. 

1 Remember that here the induction variable is l. 
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The induction assumption is that (6.4) holds for any 1 > m, under the above listed 

conditions. Then we have to prove that (6.4) holds for any 1 = m.2 We consider three 

mutually exclusive cases3 . 

Case 1. 

n 

Case 1 asswnes bEn D~ and proves (6.4) for this assumption. 
k=m 

n 

Let bEn D!. => tt = b, m ~ i ~ n. 
k=m 

n j 

According to the definition of set n D!., all sums E Xi (.) are strictly decreasing. This 
k=m i=m 

means, for any {'Tl' 'T2} E [a, b], 'Tl < 'T2 and any m ~ j ~ n we have 

i j 

2: Xi('T2) < 2: Xi('Tl)' 
i=m i=m 

For any a ~ t~ :S t:n+l :S ... :S t'n+l :S b consider 

n+l n+l n+l n+l 

L Xi(t;) - L Xi(t~) = L x;(b) - L Xi(t~). 
i=m i=m i=m i=m 

Note, that t~ ~ t~+1 => 

j j 

L x;(tj) ~ L Xi(tj+l) for all 1:S j :S n (6E.1) 
i=m i=m 

n+l n+l 

2: Xi(t~+l) ~ L xi(b) (6E.2) 
i=m i=m 

2Since m < n + I at this stage of the proof, gem) = min(m, n) = m. 
3Here we prove the lemma for three cases suggested by conditions (i)-(ii)-(iii). To avoid any confusion 

regarding any overlap between the sets in conditions (i)-(ii)-(iii), we make the Cases mutually exclusive 
states of the world that span the whole world. 
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In the inequalities (6E.l) the right hand side of the i-th inequality differs from the left 

hand side of the (i + 1)-th inequality only by the term Xi+l{t~+l)' 

Therefore, by adding up the LHSs and RHSs of all inequalities from (6E.I) respectively, 

we get 
n n 

E Xi(tj) ~ E Xi(t~+l) (6E.3) 
i=m i=m 

Combining (6E.3) and (6E.2) returns: 

n+l n+l 

L Xi(t~) ~ L xi{b) (6E.4) 
;=m i=m 

n+l n+l n 
or E x;(b) - E Xi(t~) $ 0, which is the inequality (6.4) for the case bEn D~. 

i=m i=m k=m 

To complete the proof for Case 1, we need to show the strict inequality in (6E.4) if 

at least one of tj is not given by (6.3). If we assume tj is not given by (6.3) for some j, 

then tj < b for that j, i.e. either (6E.3) or one of (6E.2)s is strict. Thus (6E.4) too becomes 

strict. 

The lemma is proved for Case 1. 

n 

For the rest of the proof we assume b ¢. n D~. 
k=m 

Case 2. 

In Case 2 we let t' > t* • m- m 

First consider the subcase when t~ = t:r,. Then xm(t:r,) = xm(t~). The LHS of the 
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inequality (6.4) simplifies to the LHS of inequality (6.4) for 1 = m + 1. 

n+l n+l 

L Xi(t;) - L Xi(t~) 
i=m i==m 

n+l n+l 

= xm(t~) + L Xi(t;) - xm(t~) - L xi(tD 
i=m+l i=m+l 

n+l n+l 

= L Xi(t;) - L Xi(t~), 
i=m+l i=m+l 

According to the induction assumption, the last expression is non~negative/strictly pos-

itive. This proves (6.4) for this particular sub-case. 

n 

For the rest of this case assume t:,. > t~. Since t;,. rJ. n D:", there exists q 
k==m 

q-l 

(m ~ q ~ n + 1), such that t;,. EnD:" and t;,. rJ. D'!n; If m = q, then assume D~-l = 0, 
k==m 

and t;,. rJ. D:. 

Next we introduce an integer r for which (t;" = t~+1 = ... = t;_l ~ t;) is true. 

This expression will be used later in this case. 

Denote by r the smallest integer r > m such that4 

t; E [t;_l,b]\ [( n D;(r») U ( u I;(r»)] 
k=g(r) k=g(r) 

It is straightforward that 

We can show that r 2: q + 1. 

4 Its existence is guaranteed, unless all sums are strictly increasing. If they are, then the rest of the proof 
becomes trivial. 
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Indeed, (t;" ::; t; and t;,. ¢ D'in) ~ t; ¢ D'in. But t; ¢ l~ ~ t;,. ¢ l~. 

Thus t;,. ¢ D~-l ~ r - 1 ~ q. In particular, r ~ 2.5 

j 

The assumption that t~ > t;,. implies, there exists p: m ~ p ::; q such that E Xi (t:;") 2: 
i=m 

j p p 

E Xi(t~) for all m ~ j < p but E Xi(t~) < E Xi(t~). 
i=m i=m i=m 

We want to show (6E.9). 

Rearranging above given two inequalities, we get 

j 

L[Xi(t~) - Xi{t~)J ~ 0 for all m::; j < p (6E.5) 
i=m 

and 
p-l 

xp(t~) - xp(t~) > 2)Xi(t~) - Xi(t~)J 2: a (6E.6) 
i=m 

From (6.1) 

(6E.7) 

From (6.2) 

(6E.8) 

Where Qi = t~i~~,,: . Notice, that a ~ Q m ~ Q m +l ~ .,. ~ Q p • 

'" '" 

To proceed, we consider and relate the following relationships: 

applying (6E.7) 

!) Also note that for r = 2 either condition (ii) or condition (iii) holds, and for r > 2 only condition (ii) 
holds. 
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applying (6E.6) 

p-1 
> O:p * ~)Xi(t:n) - Xi(t~)J 

i=m 
~l ~l 

= O:p-l * ~)Xi(t;') - Xi(t~)J + (O:p - O:p-d * L[Xi(t:n) - Xi(t~)J 
i=m i=m 

applying (6E.5) 

p-l 
> O:p-l * L[Xi(t;') - Xi(t~)J 

i=m 
p-2 

= O:p-1 * [Xp-1(t:n) - Xp-l(t~)J + O:p-l * L[Xi(t;') - Xi(t~)J 
i=m 

applying (6E.8) 

p-2 

> Xp_l(t~) - Xp-l(t~_l) + O:p-l * L[x;(t;') - Xi(t~)J 
i=m 

p-l p-2 

= L [Xi(t~) - xi(tDJ + O:p-l * L[Xi(t:n) - Xi(t~)J ... 
;=p-l i=m 

continue these iterations, 
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p-l j 

> L [Xi(t~) - xi(t~)l + O!j+l * L[Xi(t~) - xi(t~)l 
i=j+1 i=m 

p-l j 

= L [Xi(t~) - xi(tDJ + aj * L[x;(t;") - Xi(t~)J 
i=j+l i=m 

j 

+(aj+l - aj) * L[Xi(t;") - xi(t~)l 
i=m 

applying (6E.5) 

p-I j 

> L [Xi(t~) - xi(tDl + aj * L[Xi(t~) - Xi(t~)J 
i=j+l i=m 

p-l i-I 

= L [Xi(t~) - Xi(t~») + aj * L[Xi(t;") - Xi(t~») 
i=j+l i=m 

applying (6E.B) 

p-I j-I 

~ L [Xi(t~) - Xi(tD] + aj * L[Xi(t;") - Xi(t~)J 
i=i+l i=m 

+[Xj(t~) - Xi(tj)] 
p-I j-l 

= L[Xi(t~) - Xi(t~)l + ai * L[Xi(t;") - Xi(t~)J ... 
i=j i=m 

p-l 

> L[Xi(t~) - Xi(t~»). 
i=m 

Relating the last expression to the first, we have 

p-I 

Xp(t~) - Xp(t~) ~ L[Xi(t~) - xi(t~)l· 
i=m 
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Summing this inequality and (6E.6) delivers 

p-l 

xp(t~) - xp(t~) > L[Xi(t~) - Xi(t~)J. 
i=m 

After grouping all terms in the right hand side of the above inequality, we get 

p-l 

[xp(t~) - xp(t~)l- 2)Xi(t:,) - Xi(t~)] > 0 
i=m 
p-I 

[xp(t~) - xp(t~)J + L[Xi(t;) - Xi(t~)J > 0 
i=m 

p 

L[Xi(t~) - Xi(t:.)] > 0 (6E.9) 
i=m 

We have just shown the correctness of (6E.9). 

(

n+l n+l) 
Now consider i~ Xi(ti) - i~ xi(tD and show it is non-negative, based on 

(6E.9) and properties of r. 

n+l n+l 

LXi(t;) - LXi(tD 
i=m i=m 
n+l p n+l 

= L Xi(t;) - LXi (tD - L xi(tD 
i=m i=m i=p+l 

~X;(';) - {~X'(':') + ~ [x,(f;) - x,(,:.)]} - '~I x,(f;) 

n+l p P n+l 

= L Xi(t;) - L Xi (t:,) - L [xi(tD - Xi(t:,)] - L: Xi(t~) 
i=m i=m i=m i=p+l 
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applying (6E.9) 

n+l p n+l 

< L Xi(t;) - L Xi(t~) - L Xi(t~) 
i=m i=m i=p+l 

n+l p n+l n+1 

= LXi(ti) - LXi(t~) + L Xi(t;) - L Xi(t~) 
i=m i=m i=p+l i=p+1 

n+l n+l 

= L Xi(t;) - L Xi(t~) 
i=p+l i=p+l 

Since r ~ p + 1 and (t~ = t~+l = ... = t;_l ~ t;) holds, the above expression becomes: 

n+l n+l 

L xi(ti) - L Xi(t~) 
i=p+l i=p+l 

n+l P n+l 

= L xi(ti) - L Xi(t~) - L Xi(t~) 
i=m i=m i=p+l 

p n+l P n+l 

= LXi(ti) + L xi(ti) - LXi(t~) - L Xi(t~) 
i=m i=p+1 i=m i=p+1 

p n+1 p n+1 

= L Xi(t~) + L xi(ti) - L Xi(t~) - L Xi(t~) 
i=m i=p+l i=m i=p+l 

n+1 n+l 

= L Xi(ti) - L Xi(t~) 
i=p+l i=p+1 

The rest follows from the induction assumptions. 

If r > p + 1, then t~l = t~ < t~+l' hence condition (ii) holds for l = p + 1 The last 

n+1 71+1 
expression .E Xi(ti) - .E xi(tD is non-positive because of the induction assumption for 

i=p+l i=p+l 

(6.4). Going back to where we started these iterations, yields 

n+1 n+l 

LXi(ti) - LXi(tD ~ 0, 
i=m i=m 
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which was to be proved. 

If r = p + 1, then condition (iii) holds for l = p + 1. Thus, we can use the induction 

assumption, i.e. the correctness of (6.4), and claim 

n+l n+l 

L Xi(t;) - L Xi(t~) ::; 0 
i=p+l i=p+l 

Again, using the induction assumption of strict inequality for l = p + 1 immediately 

delivers a strict version of the inequality (6.4). 

The above proves Lemma 1 for Case 2 fully. 

Case 3. 

t;" > t~. There may exist p: m::; p ::; n such that tj ::; t;" for all m ::; j ::; p and 

t~+l > t;". If not, assume p = n + 1. 

n 
These two relationships t;" ¢. U I!., on one hand, and on the other hand, tj ::; t;" for 

k=m 
n 

all m ::; j ::; p, imply tj, tj+l ¢. U I!.. The latter, combined with tj ::; tj+l' delivers: 
k=m 

j j 

L Xi(tj) ~ L Xi(tj+l) for all m:::; j :::; p - 1 (6E.1O) 
i=m i=m 

p p 

LXi(t~) ~ LXi(t~) (6E.ll) 
i=m i=m 

In (6E.I0), the right hand side of the j-th inequality differs from the left hand side of 

the (j + l)st inequality only by Xj+l(tj+l) term. Therefore, by adding up all inequalities 
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from (6E.1O) we derive 
p-l p-l 

L Xi(t~) ~ L Xi{t~) (6E.12) 
i=m i=m 

n 

Remark. Ifanyoftj is not given by (6.3) => tjE nDtforthatj,Le. either (6E.12) 
k=l 

or one of (6E.11)s is strict. 

Adding (6E.11) and (6E.12), we get 

p p 

L Xi(t~) ~ L Xi(t:r,) (6E.13) 
i=m i=m 

or 
p 

~)Xi(t~) - Xi(t;')] ~ 0 (6E.14) 
i=m 

Consider the LHS of (6.4): 

n+l n+l 

L x.(t;) - E Xi(t~) 
'=m i=m 

n+l P P n+l 

L Xi(t;) - L x.(t~) - E[Xi(t~) - x.(t;')] - E Xi(t~) 
'=m i=m i=m i=p+m 

Applying (6E.14) gives: 

n+l n+l n+l P p+l 

L Xi(t;) - L Xi(t~) ~ L Xi(tn - L Xi(t;') - L Xi(t~) (6E.15) 
i=m i=m i=m i=m i=m 

Proving the RHS of (6E.15) is non-positive is equivalent to proving (6.4). 

Introduce r: 
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Denote by r the smallest integer r > m such that 

t;E[t;_I,b]\[( n n;(rJ)U( U I;(r»)] 
k=g(r) k=g(r) 

Below we show that the RHS of (6E.15) is non-positive for both r ?: p + 1 

and r < p + 1 that, once shown, will prove (6.4) for Case 3. 

If r ?: p + 1, then {6E.15} simplifies to 

n+l p n+l 
LXi(ti) - LXi(t;") - L xi(tD 
i=m i=p+l 

p n+l P n+l 
= L xi(ti) + L xi(ti) - L Xi (t;") - L Xi(t~) 

i=m i=p+l i=m i=p+l 

because all t;, for the r's from m to p are equal, 

p n+l p n+l 
= L Xi (t;") + L Xi(ti) - L Xi (t;") - L Xi(t~) 

i=m i=p+l i==m i=p+l 
n+l n+l 

= L Xi(ti) - L xi(tD 
i=p+l i=p+l 

For r > p + 1, t~l = t;,. < t~+l' hence condition (ii) holds for l = p + 1. 

For r = p + 1, either condition (ii) or condition (iii) holds for l = p + 1. 

Thus, when r ?: p + 1 we can use the assumption of the induction (i.e.(6.4)) and claim 

n+l n+l 

L xi(tD - L Xi(t~) ::; 0 
i=p+l i=p+l 

which immediately delivers inequality (6.4): 

n+l n+l 
L Xi(t;) - L Xi(t~) ~ 0 
i=m i=m 
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Next we prove the same when r < p + 1. 

If r < p + 1, then RHS of (6E.15) becomes: 

n+l P n+l 

L Xi(t;) - L Xi (t;") - L Xi(t~) 
i=m i=m i=p+l 
r-l n+l r-l n+l 

- L Xi (t;) + L Xi(t;) - L Xi (t;") - L Xi(t~) 
i=m i=r i=m i=r 

following the same argument as above, 

r-l n+l r-l n+l 

= L Xi(t;") + L Xi(t;) - L Xi (t;") - L Xi(t~) 
i=m i=r i=m i=r 

r-l n+l r-l n+l 

= Xi(t;") + L Xi(t;") + L Xi(t;) - Xi(t;") - L Xi(t;") - L Xi(t~) 
i=m+l i=r i=m+l i=r 

r-l n+l r-l n+l 

= L Xi(t;") + L Xi(t;) - L Xi(t;") - L Xi(t~) 
i=m+l i=r i=m+l i=r 

r-l n+l r-l n+l 

= L Xi(t;) + L Xi(t;) - L Xi(t;") - L Xi(t~) 
i=m+ 1 i=r i=m+ 1 i=r 

(23) 

We change notations as t7 = t;,. if m + 1 ~ i ~ P and t'/ = t~ if p < i ~ n + 1. The 

new sequence {t'.(, m + 1 ~ i ~ n + I} is ordered as well. The change of notation yields: 

n+l n+l 
(6E.16) is equal to E Xi(ti) - E Xi(t~/), which is the RHS of inequality (6.4) for 

i=m+l i=m+l 

1 = m + 1. According to .the induction assumption, 

n+l n+l 

Lx;(t;) - LXi(tD ~ 0 
i=m i=m 
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From the derivation it is obvious that if either (6E.13) or (6E.14) are strict, then so is 

(6.4). 

If t'm is not given by (6.3), then (6E.14) is strict ===> (6.4) is strict too. 

If any of f; (m < i < n + 1) is not given by (6.3), then Case 1 yields strict inequality 

===> (6.4) is strict. 

Lemma is proved for Case 3. 

Hence the lemma is proved. _ 

Remark: Lemma 1 is valid for any m, satisfying 0 ~ m < l ~ n. Hence it is valid when 

m = 1, meaning 

n+l n+l 

L Xi(t;) ~ L Xi(t~) 
i=l i=l 

The latter implies the optimality of (6.3) under conditions (i), (ii) and (iii). Next we 

show that conditions (i), (ii) and (iii) cover all possible states of the world. 

Lemma 2 Conditions (i), (ii) and (iii) given in Lemma 1 cover all possibilities. 

Proof. Consider 1 = 1. It is straightforward to see that conditions (i), (ii) and (iii) 

cover all possibilities and they are mutually exclusive. _ 

Thus, solution to (6.3) delivers the validity of (6.4) for any other ordered sequence 

It remains to be proved that removing the last function in Lemma 1 does not affect the 

optimality of the solution to (6.3). 
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Lemma 3 Assume we are in the setting of Lemma 1. Consider the set of functions given 

in Lemma 1: 

Let {ti, t2, ... , t~, t~+l = b} be a problem solution given by (6.3) and extended by t~+l = b 

as in Lemma 1. 

Next consider 

and {ti, t2, ... , t~}, which is a problem solution given by (6.3). 

We claim that, for any arbitrary sequence {t~, t~, ... , t~, t~+l} from Lemma 1, the follow-

ing inequalities are equivalent to each other: 

n n 

L Xi(t;) ~ L Xi(t~) (6E.16) 
i=l i=l 

and 
n+l n+l 
LXi(t;) ~ LXi(tD (6E.17) 
i=l i=l 

Proof. The equivalence follows from the fact that the last function xn+l(b) = (b - b)2 = 

xn+l(t~+d = Xn+l(t~+1) and the fact that Xn+l does not affect conditions (i), (ii) and (iii). 

Lemma 3 is proved. _ 

The validity of the Theorem on Convex Optimisation directly follows from Lemmas 1, 

2, 3. 
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Chapter 7 

Conclusion 

7.1. General Remarks 

Many studies have illustrated the sensitivity of the mean-variance optimisation method 

of Markovitz (1952) to the data and how this method can emphasise data errors and lead 

to an incoherent allocation (e.g. Hodges and Brealey, 1973). The sensitivity of the optimal 

proportions to the mean return values are magnified by the mean returns being difficult to 

estimate statistically (see, for example, Merton (1980». Today it is still problematic to get 

the inputs that have the properties they are supposed to have for optimally translating the 

historical data into efficient forecasts. 

Treynor and Black (1973) were first to raise issues about using a little available infor­

mation efficiently. In investment management the information issues are largely concerned 
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with generating optimal forecasts. We investigate, what the cost of forecast error is and how 

we can adjust for it. When exploring forecast errors in both simple (one-shot) and complex 

(continuous-time) framework, we draw attention to several problems related to estimation 

bias. The thesis starts with extending the Treynor-Black model to the case of an unknown 

correlation coefficient; the following chapter studies how to retrieve parameters from the 

noisy data using Bayesian techniques; then we move on to the input problems in long-term 

portfolio management where, in a multi-variate continuous-time environment, mathemati­

cal techniques, all meaningful on their own right, may in combination lead to biased results 

and new puzzles, unless treated with caution. 

In risk measurement the optimisation applications are less straightforward. We focus 

on minimising reported risk within the requirements of regulatory bodies. The rest of the 

section gives a summary of the work contained within the thesis. 

The introductory Chapter 1 provides a critical review of the relevant literature and 

embeds our work within existing research. 

Chapter 2 examines the problem of portfolio selection based on over /underconfident 

forecasts in a mean-variance framework. Early work by Treynor and Black (1973) established 

a relationship between the correlation of forecasts, the number of independent securities 

available and the Sharpe ratio which can be obtained. Their analysis was based on the 

assumption that the correlation between the forecasts and outcomes is known precisely. 

In practice, given the low levels of correlation possible, an investor may believe himself to 

have a different degree of correlation from that which he actually has. Using two different 

metrics, we explore how portfolio performance depends on both the anticipated and realised 

correlation when these differ. One measure, the Sharpe ratio, captures the efficiency loss, 

attributed to the change in 'reward for risk. The other onc, the Generalised Sharpe Ratio 
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(GSR) introduced by Hodges (1997), measures how the welfare of a particular investor 

is affected by adopting an inappropriate risk profile. More precisely, GSR quantifies the 

utility obtained under this information set (i.e. different correlation coefficients) in terms 

of the Sharpe ratio that would give the same utility. We show that these two metrics, the 

Sharpe ratio and GSR, complement each other and, in combination, provide a fair ranking 

of existing investment opportunities. 

Chapter 3 explores different ways of inferring optimal scaling of forecasts of unobservable 

expected returns when the quality of our information is uncertain. In a small sample 

of observed returns, the maximum likelihood estimate of the unknown scaling produces 

inconsistent and unreliable return forecasts, heavily influenced by the estimation error. 

Using a Bayesian implementation, we combine the sample information with the investor's 

forecasting skills to infer the scaling and derive portfolio holdings for the assumptions of 

uniform and normal prior distributions on the scaling factor. We find that under full use 

of information, optimal portfolio holdings depend only on the mean and the variance of the 

posterior distribution of investor's forecasting skills. These holdings remain conservative 

through changing cross-sectional variation in returns, in which (the variation) the extent 

of error is unknown. Such a portfolio decision dramatically differs to the one based on the 

sample information alone. The latter favours either overly aggressive holdings (up to 10 

times larger than the holdings under efficient use of information), or no investments at all; 

it fluctuates largely, depending on unobservable error terms. Our results in this chapter are 

consistent with others' work who, using different ways of Bayesian refinement, also reduce 

asset holdings after implementing Bayesian adjustment. 

In Chapter 4 we move on to the analysis of forecast errors in long~term continuous­

time portfolio optimisation problems. The impact of estimation error in a dynamic setting 
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is particularly severe because of the complexity of the setting in which it is necessary to 

have time varying forecasts. We take Brennan, Schwartz and Lagnado's structure (1997) 

as a specific illustration of a generic problem and investigate the bias in long-term portfolio 

selection models that comes from optimisation with (unadjusted) parameters estimated 

from historical data. Based on a Monte Carlo simulation analysis, we quantify the degree 

of bias associated with the optimisation approach in the spirit of Brennan, Schwartz and 

Lagnado. We find that in their setting the estimation bias may make an investor believe 

in five times larger investment opportunities compared to reality. According to our results, 

minor time-variation in investment opportunities inflates substantially when measured with 

estimated parameters. This kind of bias has not been recognised by the literature and, to 

our knowledge, our work is the first attempt to raise issues about the extreme degree of bias 

inherent in this kind of optimisation approach. 

Chapter 5 explores optimisation issues in risk measurement. Regulatory bodies set min-

imum capital standards to protect a financial organisation's depositors and counterparties 

from the institution's on- and off-balance sheet risks. Chapter 5 investigates how to report 

the smallest exposure within a rule. The question is answered for two independent rules 

from the FSA Handbook (2001). Using a wide range of mathematical programming tech-

niques, we develop optimal and efficient algorithms that calculate the minimal required risk 

capital. Both algorithms have interesting generalisations. One leads to the Theorem on 

Convex Optimisation (see Chapter 6), the other to the elegant risk minimisation problem, 

which is solved using dynamic programming techniques. 

Chapter 6 formulates and proves the Theorem on Convex Optimisation. The theorem 

n 

applies to n ordered convex continuous functions x,(t) whose sum E x.(t.) is being optimised 
.=1 

with respect to the t, 's. The t,'s are drawn from a given interval and are arran god in 
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ascending order. The theorem finds all optimal solutions in closed form. In the course of 

the proof, we formulate three original lemmas and prove them. The optimality of one of the 

algorithms, developed in Chapter 5, follows from the Theorem on Convex Optimisation, as 

its special case. The theorem is interesting from the optimisation perspective and can be 

used when dealing with uncertainty in a non-stochastic environment. It is easily modified 

to a theorem on concave maximisation for n ordered concave continuous functions under 

similar conditions. 

7.2. Suggestions for Future Work 

This thesis demonstrates that there is much work still to be done in assessing the impact 

of information processing and optimisation approaches on portfolio selection as well as risk 

management. The statistical resolution of the problem of bias, coming from optimisation 

with noisy estimates, would require hundreds of years of market returns data; this inevitably 

raises the inference issues and requires further research on how to make the best use of the 

little available information. In this thesis we were able to identify several estimation-related 

inefficiencies in the area that had been overlooked before. Until many more similar puzzles 

are uncovered and resolved, we will keep maximising the estimation error without even 

suspecting we are doing so. 

During the course of this research a number of ideas about further work came to light 

that were not pursued. We outline some of these below. 

The Treynor-Black Model 

We extended the Treynor and Black (1973) framework to account for a discrepancy btl­

tween anticipated and true correlation coefficients between forecasts and realised r(!turns. 
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However, we kept their original assumption that all assets were equally predictable (hence, 

one correlation coefficient p). Introducing non-homogeneity in assets would result in alterna­

tive p's having different ?T's. This framework would require a Bayesian analysis. Extending 

the model to a multi-period setting, with our moderations as in Chapter 2, is another 

suggestion for future work. 

Inferring the Optimal Scaling of Forecasts of Expected Returns in Pres­

ence of Ucertainty about the Quality of Our Information 

In the framework of our returns model in Chapter 3, several modifications may be made 

that would enrich the model and make a valuable contribution to the literature on Bayesian 

learning. Extending the analysis to the discrete-time framework is the most straightforward 

generalisation of the model. 

Adjustment for Bias in Long-Term Portfolio Management 

We showed that long-term portfolio optimisation with noisy parameter estimates, as in 

Brennan, Schwartz and Lagnado (1997), results in substantial bias. None of the current 

approaches in the literature seems to provide a suitable answer to this puzzle. As we argued 

earlier, there is no obvious way to adjust for estimation error and further research is required 

to shed a light on this problem. 

7.3. Final Comments 

In extending the literature on information analysis and optimisation in thtl coutnxt 

of portfolio selection and risk measurement, we have revealed some of the problems t.lw 
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forecasts have both in a single-period and long-term framework, and provided results that are 

consistent with prior literature such as demonstrating that unadjusted forecasts are overly 

aggressive. Adjusting the portfolio performance measure for forecast errors in the Treynor­

Black model, explains why expected portfolio performance differs from the realised one. 

Bayesian refinement of an unknown risk factor in a one-period returns model dramatically 

changes the portfolio decision made under the sample information only. The latter largely 

fluctuates with error realisation, while the former stays irrelevant to errors and favours 

conservative holdings throughout. 

In long-term portfolio selection with continuous-time asset returns models, the literature 

widely uses the optimisation method, pioneered by Brennan, Schwartz and Lagnado (1997). 

This thesis provides the first quantification of the degree of estimation bias, inherent in 

such approach, optimisation with parameters estimated from short-term sample, and aims 

to persuade other researchers to change this approach to long-term portfolio optimisation. 

In application of optimisation to risk measurement, we found the smallest reported risk 

capital within two rules from the FSA Handbook. The solution led to interesting generali­

sations (e.g. the Theorem on Convex Optimisation). 
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