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Abstract

First observations of the B0
s → ψ(2S)η, B0 → ψ(2S)π+π− and B0

s → ψ(2S)π+π− decays are made
using a dataset corresponding to an integrated luminosity of 1.0 fb−1 collected by the LHCb experiment in
proton–proton collisions at a centre-of-mass energy of

√
s = 7 TeV. The ratios of the branching fractions

of each of the ψ(2S) modes with respect to the corresponding J/ψ decays are

B(B0
s → ψ(2S)η)

B(B0
s → J/ψη)

= 0.83 ± 0.14 (stat) ± 0.12 (syst) ± 0.02 (B),

B(B0 → ψ(2S)π+π−)

B(B0 → J/ψπ+π−)
= 0.56 ± 0.07 (stat) ± 0.05 (syst) ± 0.01 (B),

B(B0
s → ψ(2S)π+π−)

B(B0
s → J/ψπ+π−)

= 0.34 ± 0.04 (stat) ± 0.03 (syst) ± 0.01 (B),

where the third uncertainty corresponds to the uncertainties of the dilepton branching fractions of the J/ψ
and ψ(2S) meson decays.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Decays of B mesons containing a charmonium resonance, J/ψ or ψ(2S), in the final state play
a crucial role in the study of CP violation and in the precise measurement of neutral B meson
mixing parameters.

✩ © CERN for the benefit of the LHCb Collaboration.
0550-3213/ © 2013 CERN. Published by Elsevier B.V. All rights reserved.
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The B0
s → J/ψη decay was observed by the Belle Collaboration and the branching fraction

was measured to be B(B0
s → J/ψη) = (5.10 ± 0.50 ± 0.25+1.14

−0.79) × 10−4 [1], where the first
uncertainty is statistical, the second systematic and the third due to the uncertainty in the number
of produced B0

s B0
s pairs. This decay has also recently been reported by LHCb, including the

decay B0
s → J/ψη′ [2].

The B0
(s) → J/ψπ+π− decays, where B0

(s) denotes a B0 or B0
s meson, have been studied

previously and the π+π− final states are found to comprise the decay products of the ρ0(770)

and f2(1270) mesons in case of B0 decays and of f0(980) and f0(1370) mesons in case of B0
s

decays [3–5]. The B0
s modes have been used to measure mixing-induced CP violation [6,7]. The

decays B0
s → ψ(2S)η and B0

(s) → ψ(2S)π+π− have not previously been studied.

The relative branching fractions of B0 and B0
s mesons into final states containing J/ψ and

ψ(2S) mesons have been studied by several experiments (CDF [8,9], D0 [10] and LHCb [11]).
In this paper, measurements of the branching fraction ratios of B0

(s) mesons decaying to ψ(2S)X0

and J/ψX0 are reported, where X0 denotes either an η meson or a π+π− system. Charge con-
jugate decays are implicitly included. The analysis presented here is based on a data sample
corresponding to an integrated luminosity of 1.0 fb−1 collected with the LHCb detector during
2011 in pp collisions at a centre-of-mass energy of

√
s = 7 TeV.

2. LHCb detector

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream. The combined tracking system has momentum resolution �p/p

that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of
20 µm for tracks with high transverse momentum (pT). Charged hadrons are identified using two
ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

The trigger [13] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage where a full event reconstruction is applied.
Candidate events are first required to pass a hardware trigger which selects muons with a trans-
verse momentum, pT > 1.48 GeV/c. In the subsequent software trigger, at least one of the final
state particles is required to have both pT > 0.8 GeV/c and impact parameter > 100 µm with
respect to all of the primary pp interaction vertices (PVs) in the event. Finally, two or more
of the final state particles are required to form a vertex which is significantly displaced from
the PVs.

For the simulation, pp collisions are generated using PYTHIA 6.4 [14] with a specific
LHCb configuration [15]. Decays of hadronic particles are described by EVTGEN [16] in which
final state radiation is generated using PHOTOS [17]. The interaction of the generated particles
with the detector and its response are implemented using the GEANT4 toolkit [18,19] as de-
scribed in Ref. [20].
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3. Event selection

The decays B0
(s) → ψη and B0

(s) → ψπ+π−, where ψ denotes J/ψ or ψ(2S), are recon-
structed using ψ → μ+μ− and η → γ γ decay modes. Pairs of oppositely-charged tracks
identified as muons, each having pT > 0.55 GeV/c and originating from a common vertex, are
combined to form ψ → μ+μ− candidates. Track quality is ensured by requiring the χ2 per
number of degrees of freedom (χ2/ndf) provided by the track fit to be less than 5. Well identified
muons are selected by requiring that the difference in logarithms of the global likelihood of the
muon hypothesis, � logLμh [21], provided by the particle identification detectors, with respect
to the hadron hypothesis is larger than zero. The fit of the common two-prong vertex is required
to satisfy χ2/ndf < 20. The vertex is deemed to be well separated from the reconstructed pri-
mary vertex of the proton–proton interaction by requiring the decay length significance to be
larger than three. Finally, the invariant mass of the dimuon combination is required to be be-
tween 3.020 and 3.135 GeV/c2 for J/ψ candidates and between 3.597 and 3.730 GeV/c2 for
ψ(2S) candidates. These correspond to [−5σ ;3σ ] intervals around the nominal masses to ac-
commodate QED radiation.

The pions are required to have pT > 0.25 GeV/c and an impact parameter χ2, defined as
the difference between the χ2 of the PV formed with and without the considered track, larger
than 9. When more that one PV is reconstructed, the smallest value of impact parameter χ2 is
chosen. In addition, to suppress contamination from kaons, the difference between the logarithms
of likelihoods of the pion and kaon hypotheses, � logLπK [22], provided by the RICH detectors,
has to be larger than zero.

Photons are selected from neutral clusters in the electromagnetic calorimeter with transverse
energy in excess of 0.4 GeV. The η → γ γ candidates are reconstructed as diphoton combi-
nations with an invariant mass within ±70 MeV/c2 of the η mass [23]. To suppress the large
combinatorial background from the decays of neutral pions, photons that form a π0 → γ γ candi-
date with invariant mass within ±25 MeV/c2 of the π0 mass are not used to reconstruct η → γ γ

candidates.
The B0

(s) candidates are formed from ψX0 combinations. In the ψη case an additional re-
quirement pT(η) > 2.5 GeV/c is applied to reduce combinatorial background. To improve the
invariant mass resolution a kinematic fit [24] is performed. In this fit, constraints are applied on
the known masses [23] of intermediate resonances, and it is also required that the candidate’s
momentum vector points to the associated primary vertex. The χ2/ndf for this fit is required to
be less than 5. Finally, the decay time, ct , of the B0

(s) candidate, calculated with respect to the
primary vertex, is required to be in excess of 150 µm.

4. Observation of the B0
s → ψ(2S)η decay

The invariant mass distributions of the selected ψη candidates are shown in Fig. 1. The
B0

s → ψη signal yields are estimated by performing unbinned extended maximum likelihood
fits. The B0

s signal is modelled by a Gaussian distribution and the background by an expo-
nential function. In the J/ψη case a possible contribution from the corresponding B0 decays
is included in the fit model as an additional Gaussian component. The resolutions of the two
Gaussian functions are set to be the same and the difference of their central values is fixed
to the known difference between the B0

s and the B0 masses [23]. The contribution from the
decay B0 → ψ(2S)η is not considered in the baseline fit model. The mass resolution of the
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Fig. 1. Mass distributions of (a) B0
(s) → J/ψη and (b) B0

(s) → ψ(2S)η candidates. The total fit function (solid black) and

the combinatorial background (dashed) are shown. The solid red lines show the signal B0
s contribution and the red dot

dashed line corresponds to the B0 contribution. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

B0
s → ψ(2S)η decay mode is fixed to the value σ

ψ(2S)η

DATA = σ
J/ψη

DATA × σ
ψ(2S)η

MC /σ
J/ψη

MC , where
σDATA and σMC are the widths of the corresponding channel in data and simulation, respec-
tively.

The fit results are summarised in Table 1. In all cases the positions of the signal peaks are con-
sistent with the nominal B0

s mass [23] and the resolutions are in agreement with the expectations
from simulation. The measured yield of B0 → J/ψη is 144 ± 41 events (uncertainty is statisti-
cal only), which is consistent with the expected value based on the measured branching fraction

of this decay [25]. The statistical significance in each fit is determined as S =
√

−2 ln LB
LS+B

,

where LS+B and LB denote the likelihood of the signal plus background hypothesis and the
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Table 1
Fitted values of signal events (NB), signal peak position (MB) and reso-
lution (σB). The quoted uncertainties are statistical only.

Mode NB MB
[MeV/c2]

σB
[MeV/c2]

B0
s → J/ψη 863 ± 52 5370.9 ± 2.3 33.7 ± 2.3

B0
s → ψ(2S)η 76 ± 12 5373.4 ± 5.0 26.6 fixed

Table 2
Fitted values of signal events (NB), signal peak position (MB) and resolution (σB).
The quoted uncertainties are statistical only.

Mode NB MB
[MeV/c2]

σB
[MeV/c2]

B0 → J/ψπ+π− 2801 ± 85 5281.1 ± 0.3 8.2 ± 0.3
B0

s → J/ψπ+π− 4096 ± 86 5368.4 ± 0.2 8.7 ± 0.2

B0 → ψ(2S)π+π− 202 ± 23 5280.3 ± 1.0 8.4 ± 1.1
B0

s → ψ(2S)π+π− 178 ± 22 5366.3 ± 1.2 9.1 ± 1.4

background only hypothesis, respectively. Taking into account the systematic uncertainty related
to the fit function, which is discussed in detail in Section 6, the significance of the B0

s → ψ(2S)η

signal is 6.2σ .
To demonstrate that the signal originates from B0

s → ψ(2S)η decays the sPlot technique [26]
has been used to separate the signal and the background. Using the μ+μ−γ γ invariant mass
distribution as the discriminating variable, the distributions for the invariant masses of the in-
termediate resonances η → γ γ and ψ(2S) → μ+μ− have been obtained. In this procedure, the
invariant mass window for each corresponding resonance is released and the mass constraint is
removed. The resulting invariant mass distributions for γ γ and μ+μ− from B0

s → ψ(2S)η can-
didates are shown in Fig. 2. Clear signals are seen in both η → γ γ and ψ(2S) → μ+μ− decays.
The distributions are described by the sum of a Gaussian function and a constant. The fit shows
that the constant is consistent with zero, as expected.

5. Observation of the B0
(s) → ψ(2S)π+π− decays

The invariant mass distributions for the B0
(s) → ψπ+π− candidates are shown in Fig. 3. The

narrow signals correspond to the B0 → ψπ+π− and B0
s → ψπ+π− decays. The peak at lower

mass corresponds to a reflection from B0 → ψK∗0(→ K+π−) decays where the kaon is misiden-
tified as a pion. The contribution from B0

s → ψK∗0 decays [27] is negligible.
The invariant mass distributions are fitted with two Gaussian functions to describe the two

signals, an asymmetric Gaussian function with different width for the two sides to represent
the reflection from B0 → ψK∗0 decays and an exponential function for the background. The fit
results are summarised in Table 2. The statistical significances of the signals are found to be
larger than 9 standard deviations.

For the B0
(s) → J/ψπ+π− decays, the π+π− mass shapes have been studied in detail using

a partial wave analysis in Refs. [4,5]. The main contributions are B0 → J/ψρ0(770) and B0
s →

J/ψf0(980). However, due to the limited number of signal events, the same method cannot be
used for the B0 → ψ(2S)π+π− decays. The sPlot technique is used in order to study the dipion
(s)
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Fig. 2. Background subtracted (a) γ γ and (b) μ+μ− mass distributions in B0
s → ψ(2S)η decays. In both cases the blue

line is the result of the fit described in the text. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

mass distribution in those decays. With the ψ(2S)π+π− invariant mass as the discriminating
variable, the π+π− invariant mass spectra from B0

(s) → ψ(2S)π+π− decays are obtained (see
Fig. 4).

To check that the background subtracted π+π− distributions have similar shapes in both chan-
nels, the distribution obtained from the ψ(2S)π+π− decay is fitted with the distribution obtained
from the J/ψπ+π− channel, corrected by the ratio of phase-space factors and by the ratio of the
efficiencies which depends on the dipion invariant mass. The p-value for the χ2 fit is 30% for
B0 → ψπ+π− and 7% for B0

s → ψπ+π−, respectively. As seen in Fig. 4, B0 → ψ(2S)ρ0(770)

and B0
s → ψ(2S)f0(980) decays are the main contributions to B0

(s) → ψ(2S)π+π− decays. De-

tailed amplitude analyses of the resonance structures in B0 → ψ(2S)π+π− decays, similar to
(s)
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Fig. 3. Mass distributions of (a) B0
(s) → J/ψπ+π− and (b) B0

(s) → ψ(2S)π+π− candidates. The total fit function (solid

black) and the combinatorial background (dashed) are shown. The solid red lines show the signal B0
s contribution and the

red dot dashed lines correspond to the B0 contributions. The reflections from misidentified B0 → ψK∗0, K∗0 → K+π−
decays are shown with dotted blue lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Refs. [4,5], will be possible with a larger dataset. This will allow the possible excess of events in
the region M(π+π−) > 1.4 GeV/c2 to be investigated.

The narrow peak around 0.5 GeV/c2 in Fig. 4(a) is dominated by K0
S → π+π− from B0 →

J/ψK0
S decays. The contributions from K0

S decays are taken into account by the fit function
described in Ref. [2]. The resulting yields are 129 ± 26 in the J/ψ channel and 11 ± 6 in the
ψ(2S) channel. In the calculation of the final ratio of branching fractions, the number of K0

S
events is subtracted from the corresponding B0 → ψπ+π− yields. The yield from B0

s → ψK0
S

decays is negligible [28].
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Fig. 4. Background subtracted π+π− mass distribution in (a) B0 → ψ(2S)π+π− and (b) B0
s → ψ(2S)π+π− (black

points). The red filled area shows the expected signal spectrum for the ψ(2S) channel derived from the measured spec-
trum of the J/ψ channel (the fit has one parameter—the normalisation). The width of the band corresponds to the
uncertainties of the distribution from the J/ψ channel. In case of B0 → ψ(2S)π+π− , the blue vertical filled area shows
the K0

S region that is excluded from the fit. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

6. Efficiencies and systematic uncertainties

The ratios of branching fractions are calculated using the formula

B(B → ψ(2S)X0)

B(B → J/ψX0)
= Nψ(2S)X0

NJ/ψX0
× εJ/ψX0

εψ(2S)X0
× B(J/ψ → μ+μ−)

B(ψ(2S) → μ+μ−)
, (1)

where N is the number of signal events, and ε is the product of the geometrical acceptance, the
detection, reconstruction, selection and trigger efficiencies. The efficiency ratios are estimated
using simulation for all six decay modes.
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The efficiency ratios are 1.22 ± 0.01, 1.03 ± 0.01 and 1.02 ± 0.01 for the B0
s → ψη, B0 →

ψπ+π− and B0
s → ψπ+π− channels, respectively (uncertainties are statistical only). Since the

selection criteria for the decays with J/ψ and ψ(2S) are identical, the ratio of efficiencies is
expected to be close to unity. The deviation of the overall efficiency ratio from unity in case
of B0

s → ψη is due to the difference between the pT spectra of the selected J/ψ and ψ(2S)

mesons, when the pT(η) > 2.5 GeV/c requirement is applied. For the B0
(s) → ψπ+π− channels

this effect is small since no explicit pT requirement is applied on the dipion system.
Most systematic uncertainties cancel in the ratio of branching fractions, in particular, those

related to the muon and ψ reconstruction and identification. Systematic uncertainties related to
the fit model are estimated using a number of alternative models for the description of the invari-
ant mass distributions. For the B0

s → ψη decays the tested alternatives are a fit model including
a B0 signal component (with the ratio N(B0 → ψη)/N(B0

s → ψη) fixed from the J/ψ channel),
a fit model with a linear function for the background description, fits with signal widths fixed or
not fixed to those obtained in simulation, a fit with the difference between the fitted B0 and B0

s
masses allowed to vary within a ±1σ interval around the nominal value [23], and a fit model with
Student’s t-distributions for the signals. For each alternative fit model the ratio of event yields is
calculated and the systematic uncertainty is then determined as the maximum deviation of this
ratio from the ratio obtained with the baseline model. For B0

(s) → ψπ+π− decays the tested
alternatives include a fit with a first or second order polynomial for the background description,
a model with a symmetric Gaussian distribution for the reflection and a model with the difference
of the mean values of the two Gaussian functions fixed to the known mass difference between the
B0

s and the B0 mesons [23]. The maximum deviation observed in the ratio of yields in the ψ(2S)

and J/ψ modes is taken as the systematic uncertainty. The obtained uncertainties are 8.0% for
the B0

s → ψη channel, 1.0% for the B0 → ψπ+π− channel and 1.6% for the B0
s → ψπ+π−

channel.
The selection efficiency for the dipion system has a dependence on the dipion invariant mass.

The ratios of efficiencies vary over the entire π+π− mass range by approximately 40% and
24% for B0 → ψπ+π− and B0

s → ψπ+π− channels, respectively. The systematic uncertainties
related to the different dependence of the efficiency as a function of the dipion invariant mass
for J/ψ and ψ(2S) channels are evaluated using the decay models from Ref. [5] for B0

s and
Refs. [2,4] for B0 decays. The systematic uncertainties on the branching fraction ratios are 2%
for both channels.

The most important source of uncertainty arises from potential disagreement between data
and simulation in the estimation of efficiencies. This source of uncertainty is studied by varying
the selection criteria in ranges corresponding to approximately 15% change in the signal yields.
The agreement is estimated by comparing the efficiency corrected ratio of yields with these
variations. The resulting uncertainties are found to be 11.5% in the B0

s → ψη channel and 8% in
the B0

(s) → ψπ+π− channel.
The geometrical acceptance is calculated separately for different magnet polarities. The ob-

served difference in the efficiency ratios is taken as an estimate of the systematic uncertainty and
is 1.1% for the B0 → ψπ+π− channel and negligible for the other channels.

The trigger is highly efficient in selecting B meson decays with two muons in the final state.
For this analysis the dimuon pair is required to trigger the event. Differences in the trigger ef-
ficiency between data and simulation are studied in the data using events that were triggered
independently of the dimuon pair [11]. Based on these studies, an uncertainty of 1.1% is as-
signed. A summary of all systematic uncertainties is presented in Table 3.
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Table 3
Relative systematic uncertainties (in %) of the relative branching fractions.

Source B0
s → ψη B0 → ψπ+π− B0

s → ψπ+π−

Fit model 8.0 1.0 1.6
Mass dependence of efficiencies – 2.0 2.0
Efficiencies from simulation 11.5 8.0 8.0
Acceptance < 0.5 1.1 < 0.5
Trigger 1.1 1.1 1.1

Sum in quadrature 14.1 8.5 8.5

7. Results

With data corresponding to an integrated luminosity of 1.0 fb−1, collected in 2011 with the
LHCb detector, the first observations of the B0

s → ψ(2S)η and B0
(s) → ψ(2S)π+π− decays

have been made. The relative rates of B0
(s) meson decays into final states containing J/ψ and

ψ(2S) mesons are measured for those decay modes. Since the dielectron branching fractions of
ψ mesons are measured more precisely than those of the dimuon decay modes, invoking lepton

universality, the ratio B(J/ψ→μ+μ−)

B(ψ(2S)→μ+μ−)
= B(J/ψ→e+e−)

B(ψ(2S)→e+e−)
= 7.69 ± 0.19 [23] is used. The results

are combined using Eq. (1), to give

B(B0
s → ψ(2S)η)

B(B0
s → J/ψη)

= 0.83 ± 0.14 (stat) ± 0.12 (syst) ± 0.02 (B),

B(B0 → ψ(2S)π+π−)

B(B0 → J/ψπ+π−)
= 0.56 ± 0.07 (stat) ± 0.05 (syst) ± 0.01 (B),

B(B0
s → ψ(2S)π+π−)

B(B0
s → J/ψπ+π−)

= 0.34 ± 0.04 (stat) ± 0.03 (syst) ± 0.01 (B),

where the first uncertainty is statistical, the second systematic and the third from the world
average ratio [23] of the J/ψ and ψ(2S) branching fractions to dileptonic final states. The
branching fraction ratios measured here correspond to the time integrated quantities. For the
B0 → J/ψ(ψ(2S))π+π− channel the measured ratio excludes the K0

S → π+π− contribu-
tion. The dominant contributions to the B0

(s) → ψ(2S)π+π− decays are found to be from

B0 → ψ(2S)ρ0(770) and B0
s → ψ(2S)f0(980) decays.

These results are compatible with the measured range of relative branching fractions of B
decays to ψ(2S) and J/ψ mesons. The B0

s → ψ(2S)η and B0
s → ψ(2S)π+π− decays are par-

ticularly interesting since, with more data becoming available, they can be used to measure CP
violation in B0

s mixing.
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