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Abstract

We study Persistent Mutual Information (PMI), the information about the past that
persists into the future as a function of the length of an intervening time interval. Partic-
ularly relevant is the limit of an infinite intervening interval, which we call Permanently
Persistent MI. In the logistic and tent maps PPMI is found to be the logarithm of the
global periodicity for both the cases of periodic attractor and multi-band chaos. This leads
us to suggest that PPMI can be a good candidate for a measure of strong emergence, by
which we mean behaviour that can be forecast only by examining a specific realisation.

We develop the phenomenology to interpret PMI in systems where it increases in-
definitely with resolution. Among those are area-preserving maps. The scaling factor Γ for
how PMI grows with resolution can be written in terms of the combination of information
dimensions of the underlying spaces. We identify Γ with the extent of causality recoverable
at a certain resolution, and compute it numerically for the standard map, where it is found
to reflect a variety of map features, such as the number of degrees of freedom, the scaling
related to existence of different types of trajectories, or even the apparent peak which we
conjecture to be a direct consequence of the stickiness phenomenon. We show that in gen-
eral only a certain degree of mixing between regular and chaotic orbits can result in the
observed values of Γ. Using the same techniques we also develop a method to compute PMI
through local sampling of the joint distribution of past and future.

Preliminary results indicate that PMI of the Double Pendulum shows some similar
features, and that in area-preserving dynamical systems there might be regimes where the
joint distribution is multifractal.

vi



Chapter 1

Introduction
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1.1 Complexity Science

The scientific method relies on the fact that reality is distinctly tractable (read predictable)

on a number of levels. Here we do not mean Comte’s layered separation of the subjects

of human thought, though the history of emergence as a concept can certainly be traced

along those lines. Rather by levels we mean categories of material substances defined by

the particular manner of their interactions (Anderson [1972] or Marvin [1912] for a view

that also includes the Logical).

Objects on a level of higher order are typically taken to be aggregates of objects of lower

orders. The key questions here are about the extent and nature of this horisontal connected-

ness. They raise philosophical issues of the ontological and causal nature of level elements.

Conversely these considerations could yield answers as to how to define a level in the first

place.

Emergence is a phenomenon by which the difference between levels becomes in some ways

fundamental, at least as far as the eye can see. This is expressed in the qualitatively differ-

ent nature of element interactions, which in turn means that higher order behaviour cannot

be predicted or explained using knowledge of lower-level processes.

Such conclusions are relevant in the scientific sense insofar as the limitations they place on

the process of discovery. At the heart of Complexity Science are attempts to quantify the

extent of unpredictability arising out of the differing nature of relations between conglomer-

ates. Subjects of such studies that encompass distinct types of interactions or entities and

that potentially display an extent of unexplainability are labelled Complex Systems.

Weaver [1948] made a point of differentiating between complex and complicated behaviour.

The problem with defining a complex system exactly is linked to not knowing when and if

a system would display emergent behaviour, which of course lies at the heart of the issue.

This semantic interrelation between the two contexts is dangerous in the sense that defining

one should not merely shift the weight on the other, as Bedau is criticised for by Thorén

and Gerlee [2010].

Research presented here concerns a quantity that could potentially measure the extent of

unpredictability and hence the level of emergence. We are not so much concerned with

finding an appropriate semantic balance since we do not introduce any new philosophical

definitions. For our purposes it is emergence, rather than complexity, that becomes the

prism through which to view Complexity Science. This provides a framework in which to
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view the discipline. We therefore first review the history of the emergence concept and the

reason behind the recent revival of scientific interest and only then talk about systems and

languages in which notions from the theory of complexity are discussed, and in which our

work will be based.

1.1.1 Emergence

One of the perceptions connected to emergence is of a new behaviour that was not obviously

displayed by the components. There are so many ways in which objects can be combined -

that detecting for example a pattern, which is of course a way of phrasing new relatedness -

leads to the supposition of some predeliberation. The system must have already contained

the notion of the pattern, of how things should be arranged at this higher level. The pro-

cess of realising this, of something emerging, was perceived as being akin to magic - closed,

inexplicable (Goldstein [1999]). The questions of “how” were replaced with speculations

on “why”. Philosophical considerations of emergence have always been at least partially

theological1.

Its roots go back to the beginnings of natural philosophy itself. There is a level on which

this is not surprising, since it is postulates about the nature of reality that lie at the origin

of science. Emergence as a thread running through the history of human thought is a se-

quence of ideas linking the appearance of order, Life, and Mind, to the mechanisms behind

the universe as they appeared in contemporary understanding.

Ancient concepts linked to modern emergence are those involving a direction or potentia-

tion. Aristotle is often misquoted to have said the whole is greater than the sum of its parts

- but that is misleading. The context of this line from Metaphysics is an offered solution

to Zeno’s paradox, with the suggestion that the whole comes before the parts, whose being

springs from the whole. Aristotle argued that all development is the processes of actuali-

sation, the unfolding of some universal potential that is already contained as a seed in all

things. Later on Plotinus had a similar notion related to an impersonal potential.

By the 19th century the world, and in particular life, was increasingly seen as being ul-

timately explainable. The old order was swept away, and according to Comte knowledge

entered the third, positivist stage. As reductionism was taking hold, sciences were branch-

ing out and becoming more specialised. In this setting a new concept of an essentially

1In best of soviet traditions here we refer the reader to Engels. The argument of the transition of the
quantitative into the qualitative, so preemptive of the ontological view of emergence, continues to resonate
even today (see McGarr [1994] for a possibly politically-biased review).
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immanent emergence was introduced by G.H.Lewes.

In Problems of Life and Mind Lewes bridged reductionism and Kant’s transcendentalism by

referring to one’s perception of oneself as essentially non-dualist in nature. The force that

combines elements of the Body to make up the Mind need not be external; and yet we do

not need drop the apparent mystery altogether. Lewes juxtaposes two types of aggregates,

the Resultant and the Emergent. Resultants arise out of simple aggregations; Emergents

are outcomes of processes that resist description.

This was the origin of the term “emergence” and the basis for emergentism as a philo-

sophical discipline. Further developments involved concepts differing based on whether any

ontological or causal weight was attached to the aggregates, possible direction of causality,

etc. These next major contributions came from an early 20th century group of mostly

British scientists and philosophers; the context, similar to Lewes, was evolution.

These emergentists occupied a stance halfway between vitalists and reductionists, who were

then referred to as mechanists. Vitalists like Bergson posited an elan vital, an external

driving force as a major organisational principle. One of the first texts that offered an

alternative position was The Mind and its Place in Nature by C.D.Broad. Broad recognises

these organisational tendencies of organisms but rejects the necessity of bringing in a deus

ex machina. Living beings are not machines; the aggregates of various orders that make

them up display behaviour fundamentally different to that of the constituents. This was a

statement of features and relatedness, and did not require a break with monoism. Interest-

ingly his views single out the Mind as possessing an organisational centre, an ontological

mental substance that gives rise to various mental processes. This is not dualistic in that

this other kind of substance is not taken to preexist. Neither is it reductionist since by

‘emergent’ Broad means behaviours that are in principle not deducible but only recognis-

able.

This proto-emergent trend was picked up by C.L.Morgan. By today’s more-scientific stan-

dards Morgan’s philosophy is firmly in the camp of the ‘strong’ emergence. Clayton [2006]

criticises his lack of parsimony in attributing the strongest possible, ontological connota-

tions to higher-level objects, while insisting that the actual novel features can be expressed

as statements of relatedness. Morgan makes several conjectures that could be viewed with

the same reservations, such as allowing for downward causality, or considering evolution as

4



a sequence of discrete jumps2. Nevertheless his claims “there is increasing complexity in

integral systems as new kinds of relatedness are successively supervenient”, or “there is an

ascending scale of what we may speak of as richness in reality” read like the motivation

typically accompanying research that places itself firmly under the umbrella of Complexity

Science.

By mid-twentieth century the hype had gone down. Optimising strategies for the fir-

ing of machine guns led to the realisation of the importance of feedback loops, and building

the model of the Mind became but a matter of time: “seeing Man through the lens of logic,

information and communication theory as transparent, with no hidden depths”, Goujon

[2006]. Yet at the string of Macy conferences that followed the cyberneticists became in-

creasingly confounded by psychologists presenting evidence from tighter, better controlled

experiments in which human behaviour substantially differed from that of a robot. To

quote Ludwig von Bertalanffy,“We may consider individuals as robots, and even transform

them more and more into robots of consumption, of politics and of the industrial-military

complex. But we pay for this dearly by moving nearer to Brave New World and 1984 ; by

neuroses, hippies, drug addiction, riots, wars and other symptoms of a sick society”.

This was said in, not surprisingly, 1968, at the Alpbach symposium organised to vent the

frustration felt by the scientific community at the mechanistic approach that was increas-

ingly perceived as failing. The answer, systems theory, was emergentist in that it called

for “a change in basic categories of knowledge” (Arthur Koestler and John R. Smythies

(editors) [1968]), noting that organised structures can be viewed as ‘wholes’ that show a

different, new range of behaviour. The emphasis here was on the relations between the

constituent parts that was seen to be independent of their ‘position’ in the ontological lay-

ered structure. This “isomorphism” is exactly what was picked up by the later proposals of

universality in theories such as self-organised criticality. Yet another ‘emergence rule’ that

is being proposed by A. Barabasi was foreseen in the lecture - that of similar behaviour of

graph variables.

Alongside cybernetics it was information theory that was being challenged. Information the-

ory was formalised by Shannon in 1948. Its birth can once more be attributed to wartime

need, though this time the aim is that of reliable signal transmission. One of the measures

2His system of reality levels, called here ‘logical strata’, curiously places the mathematical at the foun-
dation and the Mind at the top, while still maintaining pyramidal structure.
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was that of the spread of the probabilities of possible outcomes. Shannon constructed a

function that fit the specifications and on suggestion from (von Neumann) labelled it entropy

(section 1.2.2). Comparing it to Boltzmann’s entropy, we see that the information-theoretic

entropy is a composite concept3. Thus a function effectively expressing the average infor-

mation in a message became operationally equivalent to a purely thermodynamical measure

of disorder. An easy to spot juxtaposition lies in the objective nature of one, and the very

subjective nature of another. It is exactly this disassociation of information theory from

meaning that started the questions about the suitability of using it to describe the more

‘human’ aspects. “Every culture creates a world by selecting from the background noise

of events, certain signals which it treats as messages by giving them meaning” (cited in

Goujon [2006]).

The growing trends thus stressed the more holistic approach. There were a number of fields

in the second half of the twentieth century that fall broadly under the auspices of complexity

science, and that brought about once more philosophical speculations about the nature of

complexity and emergence; so much so that, to quote J. Goldstein,“Emergence functions

not so much as an explanation but rather as a descriptive term pointing to patterns, struc-

tures, or properties that are exhibited on the macro-level.[...] An appeal to emergence is

thus a way to describe the need to go to the macro level and its unique dynamics, laws, and

properties in order to explain more adequately what is going on. The construct of emer-

gence is therefore only a foundation on which to build an explanation, not its terminus”.

Thus complexity and emergence mean different things depending on one’s background - and

can range from the existence of phase transitions in many-body systems to the functioning

of organisms. We illustrate this plurality of settings by an image from “Arts and Science

Factory”, see figure 1.1.

Current Understanding As complexity science gained footing, so too did the philo-

sophical speculations return. The semantic distinction that has been applied most in the

recent years is that between strong and weak emergence. The term weak was coined by

Mark Bedau in an effort to find an appropriate operational definition to a concept already

in use. In Bedau [1997] the description is that of behaviour resulting in a macrostate that is

derivable only by simulations from the dynamical and the external (and initial) condition4.

3This entropy of a stochastic process is fundamentally different to the entropy introduced by Kolmogorov
and Sinai as a function of measurable dynamical systems.

4The phenomena covered by this description appear to be one the topics in the Santa Fe school.
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Figure 1.1: Schematic illustration of the history of ideas usually associated with Complexity
Science (“Complexity Map” as published online by the “Arts and Science Factory”).
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In Paul Davies and Niels H. Gregersen (editors) [2010] the editors observe that our con-

ceptions of reality readily model themselves on the latest technological advances. Bedau’s

definition appears to fit the same trend - recent scientific progress relied heavily on the new-

found ability to simulate behaviour. Consequently weak emergence views reality through

this particular prism.

These are metaphysically noncommittal, scientifically comfortable stances. One does

not need to reject the monoistic structure to admit unpredictability: the simple fact that

equations are not analytically solvable means that there is a limit to how much can be

forecast. There is thus a distinction between predictability in principle and in practice.

A lot of the theoretically deducible phenomena can thus be called emergent. The prime

examples here are deterministic cellular automata (Games of Life), behaviour of networks,

or various aspects of evolution. Thus this description does not single out outcomes based

on whether they are in any way interesting or surprising; but rather by indicating systems

that we cannot (yet?) solve, it seems to have an operational-based support: most emergent

macro phenomena are discovered only with the use of simulation. However, we do not know

that in some years’ time there won’t be a new mathematics capable of giving the analytic

result. Thus Grelling (as mentioned in Hempel and Oppenheim [1948]) points out that this

view of weak emergence is more of a provisional construct.

In this respect it is half way to the more safe approach of doing complexity science without

taking a metaphysical stance. From Thorén and Gerlee [2010]: “Contemporary accounts

typically strive for weaker formulations trying to salvage some part of the concept whilst

giving others up”. Chalmers [2006] gives a slightly different definition. Here weak emer-

gence concerns truths that are unexpected (in contrast Chalmers’ strong emergence is about

truths that are not deducible). Thus too deterministic cellular automata are weakly emer-

gent - even if one would need to resort to calculations the general behaviour could still

be deduced. Weak emergence becomes more of a statement of our understanding of the

propagation of causality; giving our epistemological position relative to that of Laplace’s

demon.

Chalmers is also careful to mention that in general weak emergence should say something

about the level of difficulty with which the inference takes place, as well as the difference

between the complexity of the combination rules and the overall behaviour. The opti-

mal definition of weak emergence thus seems to be a highly subjective operational concept
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achieved by including all the aspects desired intuitively. A phenomenon is weakly emergent

if complex, interesting high-level function is produced as a result of combining simple low-

level mechanism in simple ways. (Ibid.)

Strong emergence, on the other hand, tends to place itself in direct opposition to reduc-

tionism5. Accepting this hypothesis means allowing for the existence of laws other than

the ones inferable from the scientific methodology, which in turn essentially involves a new

kind of science. Here once again there are different schools based on what assumptions or

consequences the authors are comfortable with ascribing to this concept. Thus for example

Davies [2004] attributes to emergents novel causal powers, and admits downward causation,

typically a problematic concept for scientists, one that is most required to be taken on faith.

Kim [2006], on the other hand, suggests that philosophical coherence makes it not as simple

as just picking attribute - and that admitting some may lead to undermining the whole

concept, which is what happens with the circularity of downward causation6.

Strong emergence is a philosophical conjecture, which for example for Kim [1999] should con-

tain both irreducibility and supervenience. Starting from that approach the main question

becomes whether strongly emergent phenomena exist, and if so, what they are. Chalmers

supports the view that consciousness is exactly that. Depending on one’s theological lean-

ings God could also be ‘analysed’ in this way (Peacocke [2010], Gregersen [2010]). Though

of course since the answers depend on the definition the results are possibly incomparable.

We will be attempting to quantitatively describe the extent to which initial infor-

mation persists across in time. We too will use the distinction between the strong and

weak notion in the loosest possible sense, focusing on epistemology rather than ontology

even in the ‘strong’ case. That part of the thesis that refers back to it does so not because

it claims to have found a phenomenon that we claim to be strongly emergent, but rather

to notice that a certain statistical function can be used to differentiate between the two

concepts given they are defined in a certain way. The data used is from chaotic dynamical

systems, but our function sees chaos as such as a completely uninteresting (giving nothing

in terms of forecastability) background noise, looking instead for global structures. The

crucial conceptual link between low-dimensional dynamical systems and high-level complex

5Everyday usage had a diluting effect on the notion of ‘strong’. If ‘very strong’ (Clayton [2006]) is already
in literature, the next step is naturally some form of scale. Bauchau [2006] tentatively proposes one that
places chaos somewhere low down, the top being defined by the class of universal computation.

6Chalmers also talks about downward causation as a phenomenon in its own right, not necessarily con-
nected to strong emergence. This distinction allows one to view quantum wavefunction collapse as the
former, whilst not necessarily supporting the strongly emergent view.
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systems can be drawn in a number of ways, defining the ‘higher’ level at an arbitrary, sub-

jective degree of complexity. One such is to consider the trajectory as a ‘complex’ object,

which can be characterised by some aggregate variables - e.g. the Lyapunov exponent -

but comes about as a result of, simply, applying the map. Alternatively the dynamical

system itself, with the related quantities characterising the geometry, say, of the underlying

strange attractors, can be thought of as an ‘aggregate’, whose succint properties can best

be understood not by looking at the equation, but indeed by the aforementioned variables.

In the next section we will see that according to our definition of emergence, a chaotic

attractor with no interesting structure would not be considered as giving rise to emergent

behaviour. This will be the case for the fully-developed chaos at the r = 4 regime of the

logistic map. By contrast the intermediate r values, and in general area-preserving maps,

would yield a richer set of results.
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1.2 The Probabilistic Framework

We now review a common language in which various correlation, complexity and emergence

measures are typically expressed.

The usual aim of physical sciences is to establish a link between observations and

reality via an idealisation (a model). The distinction is that reality results in our observa-

tions that, in turn, lead to statements about the idealisation. Logic builds a reverse link

and allows predictions from the model to be tested against new observations. Consider an

archetypal process of tossing a fair coin. Without making a statement about reality we can

successfully model the process by random variables. The key word here is ‘successfully’,

which means that there do exist functions of results that are predictable by the model.

Development of probability theory can be traced in the correspondence of Pascal and Fer-

mat, established after Pascal’s friend Chevalier De Méré brought to his attention the issues

facing gamblers at dice; especially the Autumn 1654 series. Along with establishing the

basic rules of the calculus of probabilities, Pascal introduces probability as a value between

0 and 1 that is in some way “attached” to an event (rather than being dependent on the

mind of the observer, as M. Miton (see Renyi [1972]) would have it). It expresses the extent

of certainty that the event will happen, which Pascal identifies with the actual likelihood of

an event coming to pass. The term “probability” is chosen especially so that its numerical

value corresponds to our intuitive conceptual use of it7.

Pascal also suggests that measuring the probability is equivalent to observing relative fre-

quencies of occurrences in long trials. Probability is thus a fixed value around which the

relative frequency oscillates in a random fashion. This leads to an effective two-level ran-

domness - uncertainty in how sure one is in an event happening.

This put a start to both the mathematical and the scientific discipline. Probability can be

approximated by observations, and subsequent manipulations using the calculus of prob-

abilities allow for prediction, at least statistically. Pascal stresses that partial knowledge

about the likelihood of an event occurring or not still constitutes some kind of knowledge

about the event, even though the event might not actually come to pass.

7Nowadays Pascal would have even less reason to worry that the meaning of “probable” - as a theological
conjecture the Vatican is yet to pronounce on - would be the first to spring to mind.
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That these statements can be made scientifically rigorous8, and can be put on a

firm mathematical basis, has been postulated only relatively recently. It was Doob and

Kolmogorov that proved that the rules of chance constitute a mathematical framework -

see Getoor [2009] for a review.

We state the formal probability framework. Let (Ω,F,P) be a probability space,

and (E,E) a measurable space. We interpret Ω as the space of all possible realisations of

the given process. The σ-algebra F on Ω is then the respective event space, and P is the

probability measure. We take E to be a subset of Rn for some integer n, and associate it

with a measurable state space of the system.

A motivation in separating Ω from E, the space of possibilities from the potential results

of measurements, can be traced to the wish to be more exact about the meaning of mea-

surement. Consider performing any experiment, by which we mean some interaction with a

system. It is more usual to measure some feature of the system. In this case it is more obvi-

ous that the result of the measurement would be a function of the actual state, X : Ω→ E.

Measuring the temperature of gas in a box falls in this category9.

Our observations thus fall in E. Let e ∈ E. Since we identify what we observe with a

function of the state of the system,

e = X(ω), (1.1)

where ω ∈ Ω is the state of the system. We call function X a random variable, or a variate,

or chance variable.

1.2.1 The Concept of Probability

Suppose we take the frequentist approach of associating the likelihood of seeing an outcome

with the relative frequency with which this outcome has already been observed in systems

of this kind. In this approach relative frequency serves the purpose of creating a measure

on E. A random variable was setup as a link between observations in E and some “true”

states in Ω. So the probability of seeing e ∈ E can be thought of as resulting from some

probability of the system being in those states that lead to observing e. Hence the common

definition of probability: given a random variable X, the probability of observing it take a

8ignoring the ‘truth’ contained in them for a moment - see Diaconis et al. [2007]
9We make the optimistic assumption that there is a correspondence between reality and state of the

system.
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value A ⊆ E,

P (A) = P (X ∈ A) = P{ω ∈ R : X(ω) ∈ A}. (1.2)

In information theory/computation mechanics literature the sets Ω and E are often identi-

fied with each other, and the random variables that question the state become the identity

functions (although most of the time Ω is not being considered at all).

1.2.2 Entropy and Entropic Concepts

Entropy was introduced as an experimentally determinable quantity expressing the way a

system absorbs heat at a given temperature. It was associated with the lack of organisation

or order. The second law of thermodynamics posited that in a closed system entropy

increases. Boltzmann attempted to justify the second law by replacing the imperative

with, simply, vast differences on the scale of improbable. In his framework thermodynamic

entropy measured the number of possible configurations of constituent parts that made up

some distinct observable state.

Let X : Ω → E be a random variable, and P defined by 1.2. The Shannon information of

discrete-valued random variable X, introduced in Shannon [1948] 10 is

H(X) = −
∑

x∈E
P (x) logP (x). (1.3)

In a countably infinite support space entropy is defined only if the series converges.

We will also use the differential Shannon entropy defined when p(x), x ∈ E is probability

distribution, and given by

H[p] = −
∫

x∈E
dx p(x) log p(x) (1.4)

but we will mention the difference between the two later in the text, in a particular context.

Whatever information and uncertainty are, conceptually uncertainty is often understood to

be the absence of information, and vice versa. Consider a random variable. Before obser-

vation there is some uncertainty as to the outcome. Observation corresponds to obtaining

an amount −logP (x) of information. Thus entropy is defined as the average information of

a message. Note that even information content in a message doesn’t depend on the specific

10The probability P is understood to be given; the implication is that the variable is associated with
only one probability. This interpretation is one where the variable is an outcome of a process, and so some
‘natural’, perhaps frequentist, probability can be assigned to it.
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message itself, but rather on its probability, a property conferred on it by the system (or

by the observer’s knowledge of the system). Thus entropy is a function of the measure P

and not of the support space.

Relative and Conditional Entropies Given two random variables X and Y ,

X,Y : Ω→ E we define the joint entropy

H(X,Y ) = −
∑

x,y∈E
P (x, y) logP (x, y), (1.5)

where P (x, y) is the joint probability. The conditional entropy is then

H(X|Y ) = H(X,Y )−H(Y ). (1.6)

Conditional entropy measures the amount of uncertainty in the outcome of one variable

(here X) given that the outcome of another (Y ) is known. Here we always use P to express

the notion of probability. The way we defined it earlier rests on the assumption that each

random variable comes with a probability we tacitly understand to be its own. Thus P (x)

is actually equal to the measure PX{X−1(x)}, and P (y) is PY {Y −1(y)}, where PX and PY

are for example given by the relative frequencies of the variables and are not necessarily the

same. Thus P stands for a loose sense of ‘probability of a random variable’.

The form 1.6 is the functional form of a ‘distance’ in the space of measures: if Let P, P ′ be

measures on the space of measurable outcomes, then the relative entropy, or the Kullback-

Leibler (KL) divergence between P and P ′, is defined to be

KL(P ||P ′) =
∑

x∈E
P (x) log

P (x)

P ′(x)
. (1.7)

Here we separate P from P ′ because we view them in their capacities as probability mea-

sures.

The logarithm is defined to be equal to zero whenever P ′(x) = 0 or P (x) = 0. KL is not

symmetric, and is not technically a metric. Also 1.6 is not symmetric - the information

about one outcome given another is not necessarily the same as the reverse.
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Mutual Information The mutual information (MI) between X and Y is

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (1.8)

As entropy is extensive, the sum of entropies of independent variables should be the same

as the entropy of the system made up of these variables. If the joint entropy is less than

the sum of marginals it is understood that reduction in uncertainty is at the expense of

some interdependence. Mutual information measures the deficit, and thus the degree of

interdependence between two variables. It is zero if the two variables are independent (since

the joint measure becomes the product of the marginals), is also completely symmetric and

always positive.

MI can also be written as

I(X,Y ) = H(Y )−H(Y |X). (1.9)

This form expresses MI as the difference between uncertainty in one outcome (here Y ) and

the uncertainty in that outcome given that we know the result of another outcome (X). It

is thus the information about one variable stored in the other, and is, too, symmetric11.

Writing MI in terms of probabilities,

I(X,Y ) =
∑

x,y∈E
P (x, y) log

P (x, y)

P (x)P (y)
, (1.10)

we see that mutual information between two variables is actually the relative entropy be-

tween the joint distribution and the product of the marginals. If the two variables are

independent the joint becomes equal to the product of the marginals, and so the divergence

between two elements that are actually the same point is zero (here the support space is

actually E xE).

1.2.3 Stochastic Processes: adding time

The framework into which this brings us is that of stochastic processes, i.e. systems where

predictability of evolution can be treated using probabilistic tools. A stochastic process is

11The information-theoretic framework lends itself to verbal abstractions of the intensity limited only by
the author’s imagination. Thus in Prokopenko et al. [2009] mutual information is described as

mutual information = receiver’s diversity - equivocation of receiver about the source.
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defined as a sequence of random variables:

{Xt, t ∈ T}. (1.11)

Some care must be taken when introducing time. The mathematical framework for discrete

processes, otherwise known as sequences, (T = Z) was established by Kolmogorov, and

Doob did the same for T = R which presented more difficulties.

There are several ways of expressing the random variables. Behind the ideas are

essentially three spaces: outcomes Ω, states E and time set T . X(ω) is the random variable

independent of time. Including it produces X(ω, t), or Xt(ω), the latter notation being

more common in the discrete time case.

The strength of this framework is that it allows to formulate dependencies between

variables, which in this case are states at different times. It is a language of choice for

models where evolution is probabilistic.

The mathematical object encoding any apparent causal structure between states at times

in some set T is the joint probability of events indexed by elements of T .

Suppose that we have a discrete clock (which we take to be represented by Z) that

ticks from −∞ to ∞, and that at every given time i ∈ Z a system yields a value from some

alphabet A. Thus a specific bi-infinite run of the system gives us a sequence (an element

of space AZ). We want to consider a random variable connected to a fixed time i, or more

generally to a block of times from a to b. We can construct a probability space (Ω,F,P),

where Ω = E =AZ, F is a σ-algebra of cylinder sets, and P is a probability measure of Ω.

These random variables can be thought of as blocks, or subsequences. The above con-

struct allows us to talk about probability over blocks of arbitrary length. Let Sba =

(Sa, Sa+1, ..Sb), b, a ∈ Z, b≥a be a block of length b − a + 1 s.t. Sa := Saa ; and let
→
Sa

to be the semi-infinite block starting at a,
→
Sa = (Sa, Sa+1, Sa+2..), and

←
Sa = (..Sa−2, Sa−1)

to be one ending at and not inclusive of a. We define a stationary process as one whose

marginals depend only on the length of the subsequence. No major global changes occur in

such processes, changes that influence the relative frequency of subprocesses. Stationarity

is defined as system with

P
(
Sa+N
a = A

)
= P

(
Sb+Nb = A

)
, (1.12)

∀a, b,N ∈ Z+ and A ∈ AN+1. As such we will talk about probabilities of block with length
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N , which we call SN , N ∈ Z+.

Entropy Rate and related quantities

Consider the the uncertainty inherent in the system. A way of quantifying the amount

(rather than perhaps the role) of chance is to view the data as an outcome of a stochastic

process detailed above, and enquire after the entropy per symbol, where by symbol we mean

an element of the alphabet A. This quantity is also called the entropy rate. We follow the

methodology established in Shannon [1948] and define Shannon entropy per block of length

N , HN , as

HN = H
[
SN
]

:= −
∑

A∈AN
P (SN = A) logP (SN = A). (1.13)

The block entropy is always nonnegative, HN ≥ 0, and grows monotonically with N , HN ′ ≥
HN ,∀N ′ > N, N,N ′ ∈ Z+. Shannon defines two quantities, the entropy per symbol in a

block of N random variables (starting at zero),

GN := − 1

N
H[SN−1

0 ], (1.14)

and the average entropy of a new symbol given some past,

FN := −H[S1 |S0
−N+1], (1.15)

This is a function of random variables related to each other by the relative time of occur-

rence, so that the index of the block beginning is by itself arbitrary and is here shown as

zero by default (see Cover and Thomas [2006]).

For stationary processes the limits for both GN and FN as N → ∞ exist and coincide

(Shannon [1948]). Hence the definition of the entropy rate h of a stochastic process S

(considering that GN is of course just the normalised block entropy):

h = lim
N→∞

− 1

N
HN . (1.16)

To illustrate features h picks up on consider:

• No causal link between the variates, and the process not necessarily stationary. Si
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become independent and hence

h = lim
N→∞

1

N

N∑

i=0

H[Si].

Here existence of h is assured unless H is a function of i, which is of course the

blueprint of non-stationarity.

• Si are independent and identically distributed (i.i.d.), then

h = H[S0],

where the index is again arbitrary. The average entropy per symbol is the entropy of

a symbol, since all symbols have the same uncertainty. This is not usually true, as

h is a property of the system as a whole, a function of the information source rather

than of the outcome at some single point in time. That the two are the same here

shows that the information source does not store time dependencies.

• If, additionally, each i.i.d. Si has a uniform measure of a support space of cardinality

M , H[Si] = logM , and hence

h = logM.

Thus for a coin toss modelled as a stochastic process with i.i.d. outcomes the alphabet

would consist of two entries, giving the entropy rate of log 2.

Any skewness in the measure towards a particular outcome of any variate would

decrease the entropy rate of the process. Any dependency between variables would reduce

the uncertainty per symbol and hence decrease the entropy rate even further. h measures

both effects. As we have seen above, it is maximal for i.i.d. variates with uniform measure.

1.2.4 Symbolic Dynamics: linking Deterministic and Stochastic Frame-

works

Consider a map F : X → X and a partition P on the state space X =
⊔
i∈C Xi, PM : X →

{1, 2, ..,M}, where
⊔

stands for the disjoint union.

PM (x ∈ X) gives the index of a cell that contains the point. A corresponding map, which
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for convenience we here label with the same letter, turns each orbit O

O =
(
x, F (x), F 2(x), ..

)
(1.17)

into a symbolic orbit sequence:

PM : O→ ΣF (1.18)

(x, F (x), .. ) 7→ (PM (x), PM (F (x))..) , (1.19)

where O is the set of all orbits. Thus ΣF is the set of all possible, or admissible, symbolic

orbit sequences associated with the partition PM of X, and map F . Note that orbits are

defined as being bi-infinite: s = (st)
∞
t=−∞. Orbit sequences are thus sequences of integers

labeling the position of the orbit in the coarse-grained version of the state space.

The symbolic dynamical system is defined as (ΣF , σ), where the subshift σ is equivalent to

the evolution operator, mapping each symbol to the next one (and is as such a function of

the entire sequence itself, rather than the symbols):

σ : ΣF → ΣF (1.20)

σ (PM (x), PM (F (x))..) 7→ σ (PM (F (x)), PM (F (F (x)))..) . (1.21)

This shows the process by which one can contextualise the study of dynamical systems in

stochastic processes. In the next section we review the two archetypal dynamical systems.
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1.3 Toy Models

1.3.1 The Logistic Map

The initial motivation was a model describing population growth. It is clear that in order

to allow for some form of stability the system would have to be nonlinear. Interestingly

enough, applying the same arguments behind parameters and form of dependencies to

a continuous version produces a rather straightforward and unsurprising result, one that

certainly does not admit chaos: one-dimensional iterative maps can exhibit a much broader

range of behaviour then the corresponding one-dimensional ODE. Yet the map is only one

of the possible ways to discretise the logistic equation, some of which produce quite different

results. Behavioural richness of this particular version, the logistic map, was first noted in

May [1976].

The logistic map f is a one-dimensional dissipative system displaying the period-doubling

route to chaos. For 0 ≤ r ≤ 4, f : [0, 1]→ [0, 1], and for r > 4 the trajectories are no longer

confined. If xn+1 = f(xn),

xn+1 = rxn(1− xn). (1.22)

For small r the motion is periodic. With increased r the periodicity successively doubles

until what is known as the period-doubling accumulation point at rc< 4. The underly-

ing pitchfork bifurcation produces unstable periodic points, making the attractor at rc be

nowhere dense. It can be shown that then the attractor is a Cantor set, with a variety of

computable fractal dimensions (see for instance Grassberger and Procaccia [1983a], Grass-

berger and Procaccia [1983b]). At 4 > r > rc motion is confined to chaotic bands. These

then merge in a symmetric way until at r = 4 the attractor fills [0, 1] and motion is mixing,

in the terminology of Collet and Eckmann.

Figure 1.2 shows the bifurcation diagram. On this scale it would not matter if it was

produced by following single trajectories, or taking a number of certain initial conditions

and recording the iterates at a specified time. The only persistent feature of the map is the

clock. Chaotic motion conforms to this by making every T th iterate be located in the same

band (if T is the number of bands), but leaves the location of the point within the band to

be varied with a certain positive Lyapunov exponent λ(r). Lorenz called this motion ‘noisy

periodicity’.

Figure 1.3 shows the variation of the Lyapunov exponent (of which there is only

one, since the system is one-dimensional) across r. The gaps where λ(r) = 0 correspond
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Figure 1.2: The standard bifurcation diagram of the logistic map. For lower values of r the
trend continues, the attractor x having a periodicty one (source: wikipedia).

Figure 1.3: The Lyapunov exponent of the logistic map (taken from Luo et al. [2009]).
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to windows of regular motion. On the bifurcation diagram these are regions with distinct

lines. The biggest window is around r = 1 +
√

8, where the attractor is a period-3 limit

cycle. These bursts of periodicity happen at all scales of rc < r < 4. Moreover, they do

not necessarily then lead to chaos in the same way. Period-tripling, and other combinations

and mergers can be detected if only the r resolution is large enough.

The logistic map lies in the broad class of one-dimensional unimodal maps which

all share the qualitative features of the bifurcation pattern (to be more precise, through

kneading theory they can be shown to be topologically equivalent). These maps are pro-

jections of higher-dimensional systems to lower planes, and as such are not invertible (for

example through having several of higher-dimensional orbits happening to have an equal

coordinate). One of the reasons behind their generality is that often the dynamics of these

original systems happens only on a small subset of the state space, and as such motion

can effectively be described by simpler lower-dimensional maps. The general theory of 1D

maps is limited: it is for instance not possible to find all ranges of (to use our example)

r corresponding to motion of a particular type. Something similar is possible in reverse

(Singer [1978]): satisfaction of a certain condition on the Schwarzian derivative (a function

of the derivates of various orders) can demonstrate a limit on the number of stable periodic

orbits. The opposite means the attractor is either infinite (a cantor set), or motion is mixing

with all the traits of chaos. In this respect the logistic maps belongs to the class of maps

with an everywhere-negative Schwarzian derivate, labelled S-maps.

The existing general result concerns the types of motion possible, and is in fact the reason

the logistic map displays both mixing, periodic and ‘ergodic’ (infinite attractor) behaviour.

It is that subsets of r that result in these three motion types are all of positive Lesbe-

gue measures. Another interesting result is the Sarkovskii sequence, which says that if an

observed period is present in the given sequence, then the system also has motion with ar-

bitrarily long periods. The lowest periodicity in the sequence is three, which is exactly the

value mentioned above for the logistic map. This result also proves that an infinite range

of other periodicities can indeed be detected. In fact since for low values of r the period

doubles, it implies that the periodic windows (which do not have to have period equal to

2n) can be infinite in number. That is indeed the case. In fact the sequence does not limit

the number of windows with the same period.

There are three main routes to chaos present in the logistic map. It is in a universal class of
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systems defined by flip bifurcations. Periodicity doubles every ri, leaving behind unstable

fixed points, so that if

δi =
ri − ri+1

ri+1 − rr+2
(1.23)

then the Feigenbaum constant δ∞ = 4.6692 defines a certain class of maps. Another way

chaos sets in is through intermittency. This is a direct effect of the tangent bifurcations

that are the underlying reasons behind the attractor suddenly turning periodic. This pro-

cess leaves trajectories for some finite time stuck near specific points. This is the effect that

makes us see the pattern of folded shadows in the bifurcation diagram: these specific regions

are exactly ones which, after a small increase in r, become the stable periodic limit cycles.

Inside these periodic windows after periodicity increases (in a manner that is not necessarily

doubling the period) noisy periodicity occurs again, until an ‘explosion’ happens. This - or

the ‘interior crisis’ coined by Grebogi - is the sudden jump in the size of the attractor.

At r = 4 under a change of variables the motion is equivalent to the Bernoulli shift

map (bit shift map) (and also to the behaviour of the Tent map at µ = 2, see later section),

given by

xn+1 = 2xn mod [1] (1.24)

If we represent x in binary form then points are sequences composed of two symbols. Itera-

tions can then be viewed as shifting the sequence (which is to the right of the decimal point)

one step to the left. One of the ways in which this shift in framework is useful is in how it

helps to understand the effects of chaos, represented in the logistic map by mixing motion.

Chaos is often characterised by sensitive dependence on initial condition. In practice this

means that finite information about an initial condition will soon be lost. Any finite infor-

mation is represented by a finite binary string. Hence after the number of iterations becomes

greater than the length of the initial string no information about the original string would

be left. More exactly, if two trajectories differ by some finitely-specified amount, there is a

time after which this difference would be nullified12.

This is one the reasons we use chaotic dynamical systems in our study of how information

gets preserved across time. We do not view chaos as the emergent phenomenon; we are only

partially interested in its phenomenology. From the perspective of this work chaotic motion

12Initial conditions that are rational numbers would thus be repeated ever finite number of steps, since
their binary expansion contains repeated regions that will get moved forward. Irrational number are dense;
hence chaotic motion at r = 4 is simply more ‘likely’.
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merely serves as a mechanism that after a finite time makes computing the true final state

impossible. Note, however, that that does not mean that we cannot say anything about

where trajectories are likely to end up. The invariant measure is a beta function and is

not flat. That means that independent of the initial condition there are guesses about the

position at some arbitrarily far future, guesses which are more likely to be correct than not

(for same subset size). Accordingly, in our investigations we focus not on prediction but on

‘forecastability’ (the difference is clarified in the section on PMI).

As such the interesting features we find stem from other persistent features of the system,

or from a variety of motion, not just chaotic; or else from the different ways in which chaotic

motion can happen. The latter two are explored by a different system which we give in the

section below. Unlike the logistic map it is not dissipative but rather admits coexistence of

various types of trajectories, exhibiting a different route to chaos and is thus accompanied

by a range of new phenomena.

1.3.2 The Standard Map

The standard map, also sometimes called the Chirikov standard map, was considered by

Bryan Taylor, and introduced by Boris Chirikov in Chirikov [1979]. A two-dimensional

area-preserving map with a single parameter, it is a Poincaré cross-section of a Hamilto-

nian system that demonstrates the now-classic route to the onset of chaos described by the

KAM framework. As such it has been found useful in such a wide variety of situations (see

Zaslavsky [2012]) that its common name has come to reflect its applicability. The classical

interpretation of the associated Hamiltonian system is that of a kicked rotor. The quantum

version of the Hamiltonian behind the map is used to test the Anderson Localisation.

The map is paradigmatical in its demonstration of Hamiltonian chaos (according to Cambell

[1987], it plays the same role for Hamiltonian chaos the logistic map did for chaos in dissi-

pative systems). What makes this map so tractable as a toy model is that there is only one

parameter that essentially controls the system regime. The fact that the map is iterative

also means computations can be performed relatively fast, with potential errors stemming

only from numerical approximation and not the necessarily inexact solver algorithms.
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The standard map is given by

pn+1 = pn +K sin θn (1.25)

θn+1 = θn + pn+1. (1.26)

Without loss of generality we take K to be positive, and since here we will be considering

the dynamics on a torus, both variables are confined to the fundamental domain [0, 2π],

and taken mod [2π]. A negative K corresponds to a translation of angle to [−π, π], and

graphically it merely shifts the position of the main structure surrounding the stable fixed

point. The map is reversible and has a number of symmetries.

The extent of chaos increases with K, so that at K = 0 all the orbits are either periodic

or quasi-periodic, and at K = 2π the system is ergodic, at least on the level of available

resolutions (finding the measure of these islands of regular motion for large K is one the

open problems - see Sinai [2010]). We will restrict our interest to 0 ≤ K ≤ 2π.

The original Hamiltonian for the kicked rotor, with kicks of strength K, is

H(θ, p) =
1

2
p2+K cos θ

∞∑

n=−∞
δ

(
t

T
− n

)
, (1.27)

where p is the canonical momentum, and δ represents instantaneous kicks at frequency

2π/T . It is clear that while θ is continuous throughout, p gets changed by a finite amount.

Therefore one can look at the Poincaré plane defined by the t just before successive kicks.

These difference equations are equivalent to the standard map, and can be derived from

Hamilton’s equations associated with eq.(1.27)

In this respect the state space of the standard map can be interpreted as the phase space

of the Hamiltonian, and momentum p and angle θ as polar coordinates of the trajectory as

it goes through the Poincaré plane.

The range of map behaviour is demonstrated in figure 1.4 that traces the evolution

of a number of trajectories for three different K. Broadly speaking, circles correspond to

regular orbits and absence of structure indicates chaos. These graphs show one of the more

striking (Zaslavsky [2012]) features of Hamiltonian chaos - the coexistence of regions of

regular and chaotic motion.

This dependence of motion type on the initial condition is made possible by the lack of
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(a) K = 0.6 (b) K = 1.1 (c) K = 2

Figure 1.4: Evolution of a number of trajectories using the standard map with increasing K
(here the axes are (θ, p), −π ≤ θ ≤ π). Orbits are tagged by colour. Notice that at K = 2
no single area (apart from maybe near the resonances) is dominated by a single trajectory.
This is not the case at K = 1.1, where for large enough times trajectories are still seen to
stick in subsets of the broad chaotic area. See figure 1.5 for more of this effect.

attractors. The volume (say the set of trajectories) does not contract to a small subset of

the initial state space. Hamiltonian systems by definition conserve energy, or the phase space

volume, which in terms of the standard map translates to area-preservation. Varying K

therefore changes the general type and the specifics of motion given by an initial conditions.

Thus the absence of kicks modelled by strength K = 0 renders the original Hamiltonian

integrable. Just by looking at the equations shows that this is because momentum is now

a conserved quantity (along with energy). If θ had not been confined the system would

simply be describing free motion. As it stands the invariant manifolds are described by

circles, each defined by a winding number ω(p0) = p0:

pn+1 = p0 (1.28)

θn+1 = θ0 + p0n. (1.29)

This regular motion, which involves trajectories confined to horizontal lines on the phase

diagram, comes in two types. If ω is rational then after a finite number of iterations the

trajectory begins to retrace its steps. Thus in periodic motion for some initial angle the

horizontal lines fill in to a greater extent (with smaller gaps) depending on the specifics of

ω. They do so without any gaps, densely covering the circle, if ω is irrational, in which case

the motion is quasi-periodic. Hence (0, 0) is a fixed point, every point on the ω = π is a

period-2 fixed point, etc.

As K increases by a small amount some fixed points disappear, and the winding number
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is no longer equal to p0. For example at ω = π the θ = 0 and θ = π are now stable fixed

points between which lie hyperbolic fixed points. Point stability can be tested by compar-

ing the trace of the Jacobian to 2 in order to compute Greene’s residue. The stable fixed

points become surrounded by elliptic orbits, and the hyperbolic fixed points are associated

to hyperbolic orbits and thin stochastic bands. All these have an associated periodicity so

that ellipses around the period-two fixed points are populated by trajectories alternating

between them at every time step. Thus the horizonal frequency of these elliptic islands can

easily be predicted. These ellipses come in what can be described as ‘islands’, or resonances.

Circles associated with periodic motion - rational ω - typically break down first, at K = 0.

According to the Poincaré-Birkhoff theorem for every ω = m/n there will be at least two

periodic orbits left, with period n (Meiss [2005]). This appears as n islands, the chain called

a resonance. At least one of those will be on the p = 0 line, the ‘dominant’ symmetry line

(ibid.). As K increases new elliptic orbits are created around each elliptic orbit based on

the associated ω. Thus structures form on all scales, though this is still not proven. In

terms of universality, MacKay [1983] used renormalisation group techniques to show that

the island structure around the golden curve is the same for all smooth maps (twist maps).

The arrangement of islands of periodic motion is non-trivial. A single chaotic orbit will

encounter obstacles on all scales, which corresponds to there being a specific distribution

of island sizes. The area occupied by a single chaotic orbit will be finite (Umberger and

Farmer [1985]), turning the orbit into a ‘fat fractal’. If it is computed by for example

breaking up the state space and counting the visited squares then this number will have

definite scaling regime with resolution. The reverse holds too and the regular motion also

occupies a finite area (Cambell [1987]). Growing K is generally associated with deformation

of the horizonal lines, or rotational circles (the circles seen as circles in the state space do

not actually encircle a torus, and are called librational circles). As these encroach on each

others’ spaces the stable manifold of one crosses the unstable manifold of the other in a

‘resonance overlap’. This produces a homoclinic intersection, and therefore an infinity of

homoclinic intersections. Partially motivated by the study of motion in plasma, Chirikov

[1960] computed the criteria for the overlap of the resonances. If the state space is viewed

as a cylinder then the destruction of the final barrier allows the ‘particle’ to escape, i.e.

momentum to increase indefinitely. This gives an estimate of some K = Kc.

It is possible to determine existence of a rotational circle by looking at convergence of

residues of the orbits remaining after the destruction of the m/n orbit MacKay [1992].
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Thus with increase in K fewer and fewer circles are left. This relationship between the

winding number associated with the remaining circle and the K value can be made exact.

Works such as Black and Satija [1989] show the ‘fractal’ nature of this dependency. The

last circles to be destroyed correspond to ones with ω = γ±m, m ∈ Z, where γ is the ‘most’

irrational (the criteria assigning the extent of ‘irrationality’ is related to the asymptotic tails

in the fraction expansion) number, the golden mean. MacKay and Percival [1985] proved

that no circles are left for K > 63/64. We use the notation Kg to denote the exact point of

the breakdown of the golden circle. Although no analytic expression exists, numerically it

is found to be K ≈ 0.97. Kc ≥ Kg, and the two values are usually associated.

All the above is usually phrased in terms of flows in the state space of the original Hamil-

tonian, so that invariant circles are cross-sections of the invariant tori, called the KAM

(Kolmogorov-Arnold-Moser) tori. The KAM theorem is then exactly the statement about

persistence and breakdown conditions of these KAM tori (and hence cantori). Also in this

framework K can be viewed as perturbation away from integrability, in at least one meaning

of the word.

Transport in the Standard map Stochastic motion occurs between the invariant ro-

tational circles. A region that is bordered by them and containing nothing inside to limit

the chaotic motion is called a ‘zone of stability’. Mather [1991] showed the existence of

orbits that get asymptotically close to the regions’ borders. These regions may be difficult

to pinpoint when K ≈ Kc since then the structures are self-similar and appear on all scales.

According to the Aubry-Mather theory irrational winding numbers are associated with tra-

jectories dense on either the circle or a Cantor set. Since the circles stop existing after some

finite K, it follows that what remains must become a cantor set. These ‘cantori’ will thus

contain holes which then admit movement to the other side, and chaotic trajectories can

pass through.

Figure 1.5 shows the consequence of this method of freeing up the space. Since

passing through the obstacles that are cantori is difficult, there are time scales (possibly

location-dependent) at which trajectories are essentially stuck in specific regions. While

there they mimic the rotational motion that characterised those regions before the circle

breakup. MacKay et al. [1984] showed that the local flux of trajectories through a cantorus
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(a) t1 (b) t2 > t1 (c) t3 > t2

Figure 1.5: The same run of the standard map showing the evolution of trajectories at
K = 0.971635 up to some ti. As before a trajectory has its own colour, and the colour of a
pixel is determined by the same orbit sequence across all pixels. Therefore if there are two
areas that change in colour, but are at some time coloured differently with no mixing, it
means that there is a time period in which at least one signed trajectories is not entering a
particular subset.
Notice how occupation of the different areas of the graph fluctuates, the most uniformly
colour areas being near the separatrices - and the distinct change in colour of the two bands
that appear to be symmetric about the golden circle, which lies roughly in the middle.

can be written as

∆W ∝ (K −Kc)
a , (1.30)

a ≈ 3. This is roughly in line with the prediction in Chirikov [1979] expressed in terms of

time of transitions between regions. These results can be expressed in terms of the diffu-

sion coefficient, calculated using the Fokker-Planck framework in which it makes sense to

consider passing through a barrier as a probabilistic phenomenon.

A global picture with analysis integrating diffusion across the different trajectories suggests

anomalously slow relaxation due to the cantori. Poincaré recurrences (Chirikov and She-

pelyansky [1999]) and for instance the number of trapped particles in a region then decay

algebraically in t. In Bensimon and Kadanoff [1984] there is an algebraic decay in the escape

area with n at Kc.
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1.4 Quantifying Complexity

The existing measures of complexity and emergence all vary depending on the mathemati-

cal framework one considers, the system in question, and of course on what one’s intuitive

notions about the extent of ‘emergence’ in this system are. Broadly speaking there are

measures based on single realisations and multiple realisation, or ensembles. To the former

category belongs the algorithmic Kolmogorov complexity (see below). We hold the view

that randomness should not be equated with complexity or emergence, and so our proposed

measure is a function of probabilities. As seen above, in that setting the order-disorder

relation is usually phrased in terms of entropies, which is exactly our aim.

The measure in existing literature to which our function comes closest is Effective Measure

Complexity (EMC, otherwise known as the excess entropy). This quantity is usually con-

ceptually twinned with the entropy rate, in the sense that defining one can define the other,

and certainly understanding one helps with having a clear picture of the other. Entropy

rate was already introduced in eq. (1.16) in the context of sequences. Thus EMC and

entropy rate are measures of systems with a discrete alphabet (and by extension discrete

time). Excess entropy is usually applied to sequences obtained from symbolic dynamics or

probabilistic cellular automata, whereas the EMC incarnation (the original) was studied in

formal languages and grammar.

Symbolic dynamics then looks at the map as a potential means of randomisation. The same

notions can be defined in terms of continuous state spaces to obtain metric entropy and its

measure-free counterpart, topological entropy. These are standard quantifiers in dynamical

systems theory.

In our work we use data from dynamical systems without any discretisation. There is still

a notion of resolution, but that is now related to the depth of sampling, and is therefore

phrased in terms of varying the measures of subsets rather than their linear size. Our initial

aim is to test a function that could detect shared information between the past and future

of a distribution over the attractor, with a variable time gap, and understand what features

of the system would qualify it for being labelled, in this definition, as ‘strongly emergent’.

In the following section we set the mathematical context of the various quantifiers of

order and disorder mentioned above, and then review the toy models that we will use. These

are the logistic map - a one-dimensional dissipative dynamical system, and the Standard
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Figure 1.6: Venn diagram where the extent of overlap of two variables measures the degree
of their interdependence on each other, in other words their Mutual Information (denoted
here by I(X;Y ). H(X,Y ) is the joint entropy of X and Y . Source: wikipedia.) Some
systems that we will study have the constant marginal entropies, which means that looking
at the cross-section is equivalent to looking at the joint entropy of the system.

map, a two-dimensional area-preserving map. Both are maps with one-parameter, changing

which affects the extent of chaos in the trajectories. Chaos is a standard setting in which

to talk about ‘weak’ emergence. In general in dynamical systems attractors are sometime

said to ‘emerge’ as parameters are varied. We view chaos as a mechanism that results in

the loss of initial information. In the language of dynamical systems that is described (and

defined) by the rate of exponential divergence of nearby trajectories, and the quantity that

measures it is related to the metric entropy. Yet in the section below it will be seen how

the initial motivation behind the various entropy-related concepts in dynamical systems

was actually at least partially pure information-theoretical. Kolmogorov, who developed

some of these concepts, also worked on information - Kolmogorov [1965]. In that area,

apart from introducing the aforementioned algorithmic complexity measure taken up by G.

Chaitin, he also stressed the importance and use of mutual information. His method was not

probabilistic - it was simply to count the proportion of filled squares in the joint distribution,

which implied the setting of a sequence along with uniform measure. Mutual information

and its variants are one of the primary measures of choice for nonlinear correlations, at least

partially because it can be understood rather intuitively in terms of the ‘extensive’-entropy

framework - see figure 1.6. Using it to quantify various complexity concepts is in line with

the tacit understanding that the emergence can be viewed as some form of interdependency

between the variables, that is not present in ‘simple’ systems.

These correlations can be searched for among more than one variable. For a example

adding an conditional dependency of the variable pair would give the Conditional Mutual

Information. This measure is sometimes used to infer network structure, as for example is
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done in the recent work by H. Jensen’s group (Jensen and Razal [2012]), who were looking

at electroencephalography data to investigate causal connectivity of the brain.

Conditional mutual information can itself be extended as a measure of stochastic interde-

pendencies on all scales. Considering subsets of all sizes it can be shown in Studeny and Ve-

jnarová [1998] that this is a valid way to decompose multi-information. Multi-information,

or the ‘total cohesion function’ looks at the difference between the joint entropy and the sum

of marginal entropies, except for, unlike in the case of mutual information, the marginals are

now defined on the underlying power set. Approching this problem from the information

geometry point of view, Erb and Ay [2004] motivates multi-information by showing it can

be decomposed into a sum of mutual information between distributions that differ only by

the extent to which their marginals agree. The authors prove that in the thermodynamic

limit the multi-information for the 2D Ising model is maximised at the phase transition,

whereas the 1D Ising model shows only a steady increase with β. However the same can be

shown by simply considering mutual information between two neighbouring spins (Matsuda

et al. [1996]). Yet the idea of measuring level-specific dependencies can be extended to give

a vector-valued measure of complexity. The motivation, according to Kahle et al. [2009],

is to “quantify complexity by measuring how far it is from being reducible to a theory

of k-interactions.” Consider the distance (here using the KL metric) between the original

distribution and the set of distributions generated by a Hamiltonian with only k-particle

terms. An element in the complexity vector is then the difference between the kth and the

(k−1)th such distance. It represents the optimal improvement in understanding the system

by including interactions one order higher that were not present in the original k-order

subsystem. This is very much an ongoing research, since computation is costly; moreover,

results for the couple chaotic systems (Galla and Gühne [2012]) still require clear interpre-

tation.

The lack of symmetry in ‘distance’ measures computed using the KL metric may be a

conceptual impediment to clarity of definition. It is possible to move away from desiring

the what is essentially a distance quantifier to have the clear interpretation of relative en-

tropy, and consider proper metrics. For example in MacKay [2009] a range of metrics are

compared through behaviour with respect to parameters, and a solution, Dobrushin met-

ric, is proposed as a candidate. MacKay also proposes definitions of emergence in terms

of space-time phases (Diakonova and MacKay [2011]). Here, emergence is the Dobrushin

distance between a phase and the product measure of individual components, whereas since
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strong emergence is characterised by more than one phase, measuring it could be a matter

of evaluating the diameter of the set of phases.

1.4.1 Some Probabilistic Order/Disorder Measures and Related Quanti-

ties from Dynamical Systems.

Probabilistic Measures v Algorithmic Complexity Chaitin [1975] gives a nice moti-

vation for defining complexity in terms of pattern. Consider tossing a coin a (large) number

of times. We would expect to see a sequence of heads and tails with no discernible order. If

we achieve a perfect alternating sequence we would be surprised - it seems that outcomes

could be predicted. Yet both of these outcomes have an equal chance of coming up. We

therefore want to distinguish them not via some source, but simply by considering them as

given, and looking for one with the most pattern, or predictability.

Algorithmic complexity, or Kolmogorov-Chaitin complexity, is the length of the shortest

computer program that could produce the sequence. If there is absolutely no discernable

patter, no way of compressing the sequence, then the shortest program would simply be

given the values themselves, and its length would be the length of the sequence. This is

how randomness is here defined - probability in the Pascal sense does not come into it at

all.

Consider tossing a coin and obtaining a sequence of just heads. This will happen with the

same probability as any other sequence. The point is it is easy to store this outcome in our

head, just as it is easy to store an alternating sequence: they would all be distinguishable.

But complicate the sequence by reversing a few outcomes and already the result would be

hard to memorise, and hence hard to compare with the result obtained if we had reversed

another subset of tosses. It is arguably easier to memorise predictable patterns, so when

thinking about algorithmic complexity the notion of a reproducible algorithm could be sub-

stituted for ease of commiting a sequence to memory.

It should be noted that difficulty in forecasting is not necessarily related to correctness,

or possibility, of the forecast result. As Grassberger notes, a random string is impossible

to predict correctly, but the best prediction is just guesswork. Correspondingly, Bennett

[1988] introduces the concept of logical depth, which measures the effort taken to make a

prediction (contrast it with Kolmogorov Complexity, which measures the amount of in-

formation associated with recreating system output). The drawbacks of using algorithmic

complexity as a measure of our intuitive understanding of the concept was mentioned by
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Atlan whilst introducing the concept of self-organisation (Atlan [1986]), and in Huberman

and Hogg [1986]. Grassberger [1986] motivates the need for a statistical description of com-

plexity based on the fact that many observables in physics are statistical by their nature,

such as temperature and pressure. The ideal gas situation, which arguably is an excellent

example of emergent phenomenon in the sense of possessing a small number of observables

capable of accurately describing the general properties, would thus be untractable using

the deterministic, algorithmic notions of complexity above. Grassberger puts forward the

notion that our intrinsic processing is also done in terms of ensembles (this made it possible

for the recent learning algorithm by Google to identify the concept of cat without knowing

what to look for - see Le et al. [2012]). A solution to Chaitin’s example is thus that although

all three sequences would have the same probability of being produced, the fully random

example would be indistinguishable from another fully random one (to use our language,

because it would be harder to memorise), so when we mention the complexity of something

we are actually defining an ensemble of observations (see below).

Statistical Complexity and ε-machines

Grassberger [1986] mentions that Kolmogorov’s complexity is an intuitive quantifier of ran-

domness, not complexity. A complex system is thus a system producing a pattern somewhere

between perfectly ordered (trivial) and completely random (P.G. actually uses the standard

map as an example) - see figure 1.4.1. In a later paper Crutchfield and Packard [1983]

back this notion up, mentioning that while the ordered case is entirely predictable, the

random one admits a compact physical description, and hence complexity lies somewhere

in between on the spectrum of predictability. The two extremes are both computationally

simple - and hence what one needs to consider is a measure based on the system’s internal

computation. Note that to treat these two examples as computationally simple we need

to assume a distribution over ensembles, which means the second case is a matter of using

a random number generator; otherwise the Kolmogorov complexity would be high for the

second case.

Thus statistical complexity requires the ensemble to be reduced in some systematic

way. One such measure uses symmetry based on predictive properties. Specifically, Grass-

berger [1986] sees the system (stationary, discrete) as a formal language. The rules defining

combination of symbols from some alphabet is a “grammar”, and the probabilities over
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Figure 1.7: Intuitive understandings of various complexity measures, where type II is the
one under investigation here, and an example of a type I measure is algorithmic complexity
(taken from Parrott [2010]).

“words” (strings of arbitrary length) a “style”. The resultant reduction is a deterministic

finite automaton (DFA). The former adjective refers not to the process, but to the repre-

sentation.

DFA is a graph where nodes are states defined by the same probability of future outcomes.

From each node to another node are links that stand for the possible symbols. A path on

this graph is thus a word, and the probability over the links defines the style. Minimal

graph corresponding to a language is one with the smallest number N of nodes. Grass-

berger in (ibid.) called log(N) the algorithmic complexity AC, but notes that in Wolfram

[1984] the same quantity is called the complexity of regular languages. The deterministic

part refers to the property that a labelled link stemming from a node is associated with

only one other node. Grassberger also refers to these structures as Unifilar Hidden Markov

Chains (UHMC). Attaching a frequency measure p(i) to nodes that are now labelled by i,

statistical complexity is defined by

SC = H[p]. (1.31)

Here we assume stationarity, and associate p to the stationary measure.

It also clear that SC ≤ AC. Both SC and AC play roles similar to topological and metric
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entropies. The former counts the number of distinct sequences normalised by their size,

whereas AC measures the number of nodes on a graph. Grassberger mentions that if the

grammar is known then the minimal graph, and hence AC, can be found. However a mini-

mal graph does not necessarily correspond to a graph with the smallest SC. Larger graphs

can produce nodes that are visited less frequently. For the purposes of computation, i.e.

complexity, the support space should be allowed to become large, so that the only variability

is the measure - that way the universal computer would have a setup that allows for easier

execution.

Crutchfield and Young [1989] reinvent statistical complexity in the context of dynamical

systems by discretising the state space and building a language using symbolic dynamics.

The DFA construct is labelled the ε-machine, and complexity of the original system is de-

fined in terms of the processing capacity of the ε-machine, which is phrased in terms of

the complexity of the graph; that, in turn, is expressed in terms of generalised Renyi en-

tropies Cn of the asymptotic vertex probabilities p(i). Using the same notation as above,

C0 = log(N) is clearly the AC of Grassberger, yet here it is named probabilitistic algo-

rithmic complexity, and C1 is just SC. However, all of this is heavily dependent on the

original partition (the examples used a simple halfway cutoff point in the state space of the

logistic map).

Modelling a system in terms of what are effectively causal states (evident even in Grass-

berger’s description) represents accessing the structure of a system’s intrinsic computation.

It is in this context that questions about internal processing, the memory required by the

system to statistically reproduce a state, the information storage and transfer, are answered

(Feldman and Crutchfield [1998]). This is the basis of the broad designation of the work

around the field of statistical complexity as Computational Mechanics.

A sequence of only 1s will have one node in the DFA (or probabilistic finite-state machine,

a term used by the Santa Fe school), a period-two sequence two nodes. Statistical repro-

duction means that distributions over subsequences of any length are the same. Consider a

sequence of alternating ones and zeros, and two graphs (fig.1.4.1). The first has one node

and two circular links to itself, each representing different symbols, and each associated with

probability of a half. The second machine has two nodes, with two links forming a loop,

each corresponding to a symbol but this time with a probability of 1. Even though the first

graph is minimal, only the second will have reproduced the probabilities over subsequences,

a distribution giving zero on anything non-alternating. A random sequence would have only

36



10
1

0

10011010100101 10101010101010

Figure 1.8: Illustrations of DFA and samples of their output. Note that nodes do not
necessarily correspond to the different symbols. The nodes are causal states, the numbers
in black are outputs, and the smaller numbers in light red are the probabilities.

one node but two links. Thus AC would be small for both the entirely random and the

extremely memorable (not diversified) sequence, and would increase with the periodicity

(or pattern), behaviour detailed in section 1.4.1.

Crutchfield and Young [1989] and their later works detail the method for constructing the

ε-machine (for reviews see works by D. Feldman). The construction method utilises pre-

dictability of equivalence classes. A method was given by P.Grassberger in Zambella and

Grassberger [1988], and later in various publications by C.Shalizi (e.g. Shalizi et al. [2004],

Shalizi and Shalizi [2004]). The latter algorithms assume the UHMCs do not retain the

transient states, though without metioning it explicitly.

Metric and Topological Entropies

Metric and Topological Entropies in Symbolic Dynamics The most straightfor-

ward way of understanding topological entropy is through the n-cylinder framework (Parry

[1964]; see also Crutchfield and Packard [1983]). Consider a symbolic dynamical system

(ΣF , σ) induced by F : X → X on the partition P (now we use P in the sense of par-

tition, not partitioning) as described above. We define an n-cylinder equivalence class on

ΣF by comparing the first n symbols. Label the elements of the resultant partition of ΣF

according to the first n elements of the sequences belonging to that equivalence class: let

the n-cylinder sn be a set of (permissable first n) symbols (sn0 , ..s
n
n−1), in other words, the

set of all admissable n-element sequences.

This equivalence class also induces a partition on X. To each n-cylinder corresponds a set

of initial conditions x ∈ X, each the (practical) start of an orbit whose first n symbols in a

corresponding sequence are the same as of the n-cylinder - or, put more simply, the set of
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all initial conditions resulting in a particular n-symbol sequence for its first n symbols.

An n-cylinder partition on X is a way of grouping elements of the state space into sets that

result in similar orbits. The extent of similarity is expressed by the n integer (all of this, of

course, has an intrinsic dependence on P ). Increasing n is a refinement of the partition in

the string sense, i.e. the cardinality of this partition cannot decrease.

In fact the cardinality of this partition, in other words the number of different equivalence

classes given a refinement n, N(n), is essentially a measurement of the number of trajecto-

ries distinguishable using P and n. Given some P , the number of equivalence classes given

the limiting case of infinite refinement corresponds to the ultimate number of trajectories

distinguishable with partition P . If it were postulated that the number of such trajectories

grows in a specific fashion, namely exponentially, then the rate of growth can be written as

hσ(P, F ) =
logN(n)

n
. (1.32)

This limit is proven to exist (Parry [1964]). Maximising N(n) over the partition gives

hσ(F ) = sup
P
hσ(P, F ). (1.33)

hσ(F ) is a function of the number of maximal number of different trajectories that can be

found by partitioning the state space.

If we use this dynamical system to send signals (i.e. as an information source), how many

distinguishable messages will there be? We can associate an orbit to a signal. The reception

has errors, so each point will be decoded with an error. The size of this error is related to

the strength of the coarse-graining. A message, or orbit, is thus transmitted as a sequence of

symbols from the finite alphabet (whose size depends on the error magnitude). Given this

setup, we ask the question of how many messages will the receiver be able to distinguish.

Since we do not put a time limit on it, the number of iterations is taken to infinity. hσ(F )

then measures the exponential rate of growth of the number of discernable messages. Its

motivation is the same as that behind topological entropy.

Kolmogorov and Tihomirov [1959] linked information-theoretic considerations to an arbi-

trary set A in a metric space (with some conditions on compactness) by either viewing A

as a set of all possible messages, or all possible signals. This leads to two parametric frame-

works with three main notions, all functions of error - or effective coarse-graining strength

- ε. It was mentioned in Adler et al. [1965] as being the inspiration behind the notion of
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topological entropy.

If A is the set of messages, then any x ∈ A is considered recoverable from another point at

most ε away. Thus every point in a neighbourhood is obtainable from some reference point.

• The ε-spanning set is a set such that every element of A is at most ε away from some

element in the set. Let NRε (A) be the minimal cardinality of ε-spanning sets of A.

Define HR
ε (A) = log2 NRε (A), which is thus the (number - 1) of different binary signals

there should be in order to recover any element of A given some embedding space R.

This is called the ε-entropy of A w.r.t. R.

• An unreferenced notion of ε-entropy of A, Hε(A), is obtained by constructing an ε-

cover, a cover of A by a collection of sets with diameter not greater than 2ε. Let

Nε(A) be the smallest number of sets in an ε-cover of A. ε-entropy of A is then

Hε(A) = log2 Nε(A).

Treating A as a set of signals is equivalent to the framework where any point in a neigh-

bourhood is associated with some reference point (signal). In effect we have an agreed-upon

alphabet, similar to a coarse-grained one. The question is then how many distinguishable

signals are recoverable? This is answered through the notion of an

• ε-separated set, that is, one in which any two points are at least ε away from each

other. The number of all possible distinct signals is then the maximal cardinality of

an ε-separated subset of A, Mε(A). Its logarithm is the ε-capacity of A, and is equal

to the length of binary signal that we wish to transmit using the signals available in

A (with a subtelty about adding 1).

In (ibid.) the authors’ main results are then the relations between the notions.

Adler et al. [1965] introduced topological entropy of a dynamical system through

refinement. Refinement of two covers U and V is

U ∨ V = {U ∩ V : U ∈ U, V ∈ V}.
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If U is a subcover of minimal cardinality of the above set X, F−nU := {F−nU : U ∈ U}
for any n ∈ Z+ is another, and

Un = U ∨ F−1U ∨ ..F−nU,

then the limit

htop(U) = lim
n→∞

log |Un|
n

exists, and topological entropy is defined as

htop = sup
U

lim
n→∞

log |Un|
n

. (1.34)

Dinaburg and Bowen apply the notion to metric spaces. Dinaburg [1971] relates the

link Kolmogorov makes between topological entropy and the ε-entropy mentioned earlier.

It is based on extending the notion of a distance between two points to that of the maximal

distance between those points during any n iterations of the map. Given some continuous

F on the metric space X0 = (X, ρ), define Xn = (X, ρn), where

ρn(x, y) = sup
i∈0,1,..n−1

ρ(F ix, F iy)

As before, let

Hε(Xn) = log |Nε(Xn)| (1.35)

Then the limit limn→∞
Hε(Xn)

n exists, and

htop(X) = lim
ε→0

lim
n→∞

Hε(Xn)

n
.

Bowen [1971] extends Kolmogorov’s notion of ε-separated to (n, ε)-separated set, which,

intuitively, is just a subset of X (as defined above) whose every pair has at some (possibly

different) point in n time steps separated by at least ε. Write maximal cardinality as

Mn,ε(X). Similarly extending the ε-spanning set gives NRn,ε(X). It can then be proved that

htop(X) = lim
ε→0

lim
n→∞

logMn,ε(X)

n
, (1.36)

as well as

htop(X) = lim
ε→0

lim
n→∞

logNRn,ε(X)

n
,

40



The n-cylinder construction led to the notion of a set of orbits which, after some

time, can be distinguished with a certain resolution. Given a certain relation between a

partition P of X and ε, we see that this set is exactly the (n, ε)-separated set. Hence the ex-

ponential rate of growth of trajectories distinguishable by cylinders, as defined in eq. (1.33),

should be equivalent to Bowen’s quantity ((1.36)), which is just the the topological entropy

of X. Note that whilst the topological entropy as defined through counting n-cylinders

involves taking a supremum over all partitions of the state space, the two definitions above

contain a limit of small ε. Since ε is effectively inversely proportional to the cardinality

of the partition, and since increasing that latter cannot decrease the number of resolvable

orbits, then to all ε however small correspond partitions, and the given limit of small ε is

equivalent to taking the supremum over all ε.

Link to Information Theory Consider a dynamical system with some topological en-

tropy htop, realised by a finite partition P of the metric space X. Vieweing the orbit as

message received with some error in the signal the system becomes a stochastic process,

and the orbit in the coarse-grained space is a sequence, with P defining the alphabet. The

number logN(n) of all possible sequences of length n can be thought of as entropy of some

distribution that assigns equal weight to all sequences. The topological entropy of (X,F )

can be computed as

hn = logN(n)− logN(n− 1). (1.37)

Practical estimation of topological entropy would involve constructing sequences

with some initial condition. Implicit in the definition is the requirement that these are

sampled uniformly from X. Thus hT can be thought of as a specific quantity, with an

existence of some more general notion that would depend on the initial distribution.

These are precisely the considerations behind the Kolmogorov-Sinai, or metric, entropy. In

fact, in Adler et al. [1965] the functional entropic form is said to be “merely a delicate

method of counting the number of sets in a partition in such a manner that the measures

of the sets are given their appropriate weight in the tally”. Adler et al. [1965] conjectured

that given a dynamical system (X,F ) with regular Borel measures µ, invariant w.r.t. the

map,

htop(X,F ) = sup
µ
hµ,F (X,F ), (1.38)
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hµ,F = sup
P
hµ(X,F, P ), (1.39)

and

hµ(X,F, P ) = lim
n→∞

Hµ(Un)

n
, (1.40)

given the Hµ is the Shannon entropy of measure µ. Invariant measure of X is such that the

measure of each measurable subset of X is equal to the measure of its preimage under F .

The metric entropy of (X,F ) is computable (Crutchfield and Packard [1983]) through

hµ = HN −HN−1, (1.41)

given block entropy of lenth N defined on the generating partition of X, which could in

turn be defined through this. Any other partition would correspondingly give be a lower

bound.

Effective Measure Complexity and Excess Entropy

Crutchfield and Packard [1983] introduced the term excess entropy in the context of noisy

symbolic dynamical systems, as a relative difference between deterministic entropy rate

(metric entropy) and its finite-length noisy approximation. The marginal scaling at either

infinite-length sequences or no noise both scale as power-laws with the noise and conver-

gence exponent respectively; these can be estimated for various dynamical systems (and

would be dependent on the partition of the state space).

The same terminology was used in Crutchfield and Young [1989](p.213) to define the mea-

sure of fluctuations in free information, H(L)− hL (h is the dynamic entropy, which could

be understood as the entropy rate), though no follow up on this definition, or examples of

its uses, were given. The relationship between names and the appropriate quantites is also

not made very clear.

When considering prediction measures on stationary system producing strings drawn from

a finite alphabet (exactly the stochastic process described here), Grassberger [1986] asks

about the additional information needed to predict a new symbol, given the previous N are

known already:

hN = HN+1 −HN . (1.42)

This can be shown to be the same as eq. (1.15), and is interpreted as the apparent ran-

domness of strings of size N . Since addition of information about the past, i.e. lengthening
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of the block, can only decrease the uncertainty involved in predicting the new symbol, hN

should decrease with N . Hence the entropy rate can be defined as the limit

h = lim
N→∞

hN , (1.43)

where it exists. Grassberger [1986] also defines a related quantity, called Effective Measure

Complexity (EMC):

EMC =
∞∑

N=1

(hN − h). (1.44)

EMC is the normalised Riemann sum of hN , the finite approximations to the entropy rate.

It exists if hN converge to h at an exponential rate, whereas an infinite EMC is suggestive

of other, for example power-law, scaling (see Grassberger [1986]).

Consider the graphical representations of excess entropy as is used in the more

recent publications of J. Crutchfield, D. Feldman and C. Shalizi, shown in fig.1.9. In their

framework entropy rate is often referred to as entropy density. Using the monotonic growth

property of HN , h ≥ 0. It is seen to be the asymptotic slope of block entropy as it grows

with block size. The slope at any finite N is hN , the randomness left when factoring out

information present in strings of length N . The limit, entropy rate h, is interpreted as the

irreducible randomness present in the information source; the inherent unpredictability per

symbol of a string.

Figure 1.9 clearly demonstrates that the quantity E referred to by the authors as

excess entropy is equivalent to Grassberger’s EMC, as the process is that of equation (1.44).

When Feldman and Crutchfield [2003] differentiate between types of excess entropy they

single out the EC , the excess entropy from (1.9), as a measure of convergence. It measures

the randomness only apparent due to considering parts of the system - essentially not taking

into account all the possible correlations. This is the randomness that can be ‘explained

away’ as the entropy rate of finite-sized blcoks converges to its true value.

The reason why excess entropy appears in both subfigures is because for one-dimensional

systems (i.e. systems with an unambiguous way of increasing block size by one) EC is equal

to ES , the subextensive excess entropy, given by

H(L) = ES + hL, (1.45)
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Figure 1.9: Block entropy, entropy rate and excess entropy E, from Feldman and Crutchfield
[1998]. Here H(L) is equivalent to HL, and hµ is h (the µ in the subscript refers to the
measure we have as P ).

in the limit of L→∞.

This interpretation sees excess entropy through the assumption of convergence of block

entropy to linear behaviour with block size. The linear slope is given by the entropy rate;

the height of the intercept has some information about the how much or how fast the

monotonically increasing block entropy would have changed.

The third interpretation of excess entropy, EI , was given in Li [1991], where the author

notes that since (1.45) holds, then for two blocks of size M and N , excess entropy is just

C = lim
N,M→∞

[HM +HN −HM+N ]. (1.46)

Here C stands for complexity, which is the framework in which in Li looks at symbolic

sequences. Both blocks can be infinite, and since there is no overlap, the original sequence

is actually assumed to be bi-infinite.

Hence excess entropy, or complexity, measures the information about one half of the se-

quence stored in the other. If the first half is termed the past, and the second the future,

then excess entropy is the total information the past has about the future (and the other

way around). Using the terminology developed above,

C = I(
←
S0,

→
S0). (1.47)
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In Feldman and Crutchfield [2003] C is seen to be different from EI when considering 2D

nearest and next-nearest Ising model. Whereas EI is found by simply partitioning the plane

into two halves, there is an ambiguitiy to the way block sizes increases (of which only one

possible way was examined).

Here we talk about introducing causal measures by separating conceptual past from

conceptual future: Alternatively, without being so restrictive, we can allow the past, or the

future, or both, to spread over a set of times. In fact since T is one-dimensional and hence

can be ordered, any time interval I ⊆ T would by definition contain a selection of pasts and

futures and hence their causal relation.

This separation leads on to the notions of predictability, which implies existence of link

between excess entropy, or the EMC, and the ε-machines. A method to compute the EMC

from this deterministic Markov model of the process is given by Grassberger et al. [1988].

In fact Grassberger [1986] proves

EMC ≤ SC. (1.48)

In Kolmogorov [1965] it is mutual information that is given precedence over entropy

as a useful quantity. Entropy can be infinite and thus uninformative; whereas mutual infor-

mation is more likely to be finite since it is bounded by the extent of connections between

the systems in question. In this vein in the computational mechanics literature EMC is

simply called complexity. There it is common to plot complexity - entropy diagrams for a

variety of systems, though the results are interpretationally confusing - see 1.10(b). This is

done using symbolic dynamics of the logistic map, however there is not much investigation

into the effect of changing the (single) point of (binary) partition. Consequently the dia-

gram for the excess entropy for the logistic map is rather uninformative (1.10(a)).

A variety of other Venn ‘information diagrams’ is now in existence, the same authors attach-

ing a range of conceptual meanings to the various subsets. In the same manner statistical

complexity is being calculated for a range of systems - but here, too, it seems to be more

of potential categorisation tool.
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(a) Excess Entropy

(b) Excess Entropy v Entropy Rate

Figure 1.10: Measures of complexity using symbolic dynamics generated by the logistic
map, from Feldman et al. [2008].
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Chapter 2

Persistent Mutual Information
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2.1 Settings and Definitions

Consider as before a discrete time stochastic process. Let A be the system alphabet, a

countable finite set. Let Si be the variable taking values in A and corresponding to the

state at time i.

We anticipate potential correlation between the past and the future. For that reason,

similar to the procedure behind several statistical mechanics measures, we consider two

distinct subsets of T = Z. Specifically, let p, f ⊂ T be non-empty and non-overlapping,

and min(f) > max(p). The quantity of interest that we choose to look at is a probability

measure µ supported on a σ-algebra of some Ωp x Ωf , where some Ωb is the space of

outcomes noted consecutively at elements of p or f .

With this in mind we first consider the case where the past p = {−T1 + 1, .., 0}, and future

f = {1, .., T2} for some T1, T2 ∈ Z+. Using the notation introduced in section 1.2.3, the

‘past’ variate is hence S0
−T1+1, while the ‘future’ becomes ST21 . The ‘joint’ variate is easiest

denoted by SJ where J = p ∪ f .

In this framework the mutual information between the system’s past and its future is

I(S0
−T1+1, S

T2
1 ) = H[S0

−T1+1] +H[ST21 ]−H[SJ ]. (2.1)

If the alphabet A is a finite, countable set, then H is the block (discrete) Shannon entropy,

the same as defined in the section earlier in the context of stochastic processes. If the

outcomes are continuous variates H becomes an integral with respect to some measure.

Taking the limit of semi-infinite block lengths,

I(
←
S1,

→
S1) = lim

T1,T2→∞
I(S0
−T1+1, S

T2
1 ) (2.2)

which of course is the excess entropy as defined by eq. (1.47).

Here it should be mentioned that in line with the stochastic setting in all these cases we

assume stationarity: the probability of seeing a sequence is invariant under time-shifts. This

allows moving either the future forward or the past backward to be an arbitrary matter of

choice.

There are several ways in which a measure over the ‘past’ can be defined. In maps with

a clock we randomise the start time of the measurement. If the systems we look at are

ergodic this will be equivalent to the initial measure having equal weights on all elements
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of the attractor. In this sense it is conceptually welcome since it maximises our uncertainty

in the sense described by Jaynes. Alternatively one could work with a flat measure over

the initial state space, but that would depend on the choice of coordinates, and for example

in the logistic map could reflect properties of the map such as the relative weight of the

basins of attractions. This would result in a different measure over the attractor and hence

necessarily lower the PMI. Another issue is the absence of the attractor altogether. In the

standard map we consider the flat initial distribution over the state space. For the Double

Pendulum, however, we sample from the microcanonical ensemble.

We now propose introducing a time gap between the future and the past. For that purpose

we keep the reference point of 0 and define ‘remote future’ as {τ+1, .., τ+1+T2}. Consider

the mutual information between some past and future separated by a gap of size τ :

I(τ, T1, T2) = I(S0
−T1+1, S

τ+1+T2
τ+1 ). (2.3)

We define Persistent Mutual Information (PMI) as

I(τ) = lim
T1,T2→∞

I(τ, T1, T2), (2.4)

where the limit exists (though if the limit is infinite we can still talk about ‘PMI’ in the

context of how the argument is changing with parameters). At τ = 0 PMI is equal to excess

entropy. It is, however, a more general quantity, since the τ parameter imposes an effective

minimum on the length scale of correlations we pick up on. This is particularly useful for

discovering the global causal structures that exclude short term dependencies.

The properties of PMI can all be traced to properties of mutual information. The only

differences between MI and PMI stem from the ‘temporal’ position of the marginal distri-

butions, which as such are not detected by mathematics. Consequently, like MI, PMI can

detect nonlinear inter-relation and in this sense is an improvement on covariance. Like MI it

is zero only when absolutely no correlation can be found (given some resolution) - provided

of course that we do not ask after inter-relations occurring in the gap between the past and

the future. PMI is thus a parametric measure of nonlinear dependence.

Consider starting from a uniform distribution over the state space. Although in real-

ity only a finite number of copies of the system is available, nevertheless we must admit the

possibility of an infinite number, and assume that they can sample a continuous probability
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distribution. Starting with the latter also makes more sense when studying evolution of

points in some state space where a uniform initial distribution is possible.

The H in eq. (2.1) is then the continuous entropy. Consider defining the joint prior as

ρpJ = ρppρ
p
f . Then the priors cancel from the mutual information expression, and eq. (2.1)

can be rewritten in the usual Kullback-Leibler form of

I(ρpρf |ρJ) =

∫

x,y∈E
dxdy ρJ(x, y) log

[
ρJ(x, y)

ρp(x)ρf (y)

]
.

Here the marginals are ρp(x) =
∫
y∈E dyρJ(x, y) and ρf (y) =

∫
x∈E dxρJ(x, y). The fact that

priors can be made cancel render PMI much less dependent on the specifics of the under-

lying spaces - the particulars of these can be made to not influence the result, which after

all is only about the extent of correlation between the past and future. We thus view it as

a necessary part of the PMI definition, since otherwise it is possible that PMI would not

give zero for independent variables.

Incidentally, we see that Mutual Information corresponds to the entropy of the joint distri-

bution where the product of the marginals functions as a reference measure, i.e.

I(ρpρf |ρJ) = −H [ρJ | ρpρf ] . (2.5)

Or, in terms of marginal and joint distributions of discrete random variables,

I(µpµf |µJ) =
∑

i,j

µJ(i,j) log

[
µJ(i,j)

µpiµ
f
j

]
, (2.6)

where i, j are indices over the elements of the past, future, and joint partitions.

Graphical Interpretation Figure 2.1 shows the subject of PMI, which is the joint dis-

tribution. If the shapes of the joint support are taken to somehow represent the weight of

the joint, then it is clear that the picture on the left is indicative of a much more random

process than the figure on right, since the initial condition does not seem to constrain the

future outcome in any way.

This graph points to other variables that can potentially differentiate between the

pictures. One is the dimension of the joint distribution. It is clear that the most ‘causality’

is present when the joint is as little spread out as possible, which in the conservative system

of this example means that its dimension has to be at least equal to the dimension of the
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Figure 2.1: The two axes here are to be understood as the marginal spaces with some
underlying metrics. The shapes represent the support space of the joint distribution in the
product space. Although both the marginals in the two cases can be the same, the joint,
if one assumes a proportionality to the support space, would be different, giving a much
larger joint entropy for the first case.

marginals itself - ‘a point for a point’. On the other end of the scale is the completely

random process which would produce the joint distribution that reaches to all parts of the

product space, and as such has the dimension equal to the sum of individual dimensions of

the marginals.

An even more complex picture is when the joint distribution is fractal or even multifractal.

Unless imperfect resolution is assumed this case is not pictured in the figure above. On the

face of it the object here drawn in blue would change shape depending on the resolution

of the image. We deal with this case in the next section where for the period-doubling

accumulation point of the logistic map the estimated PMI is seen to increase indefinitely, or

at least as far as practical resolution can take us. We will see that as long as the visibility

is limited by resolution PMI can appear to increase even if the joint is not fractal, in the

limit of infinite resolution.

51



2.2 Persistent Mutual Information in Dynamical Systems

PMI is fundamentally a probabilistic notion. The need for something fulfilling its role arises

naturally in the context of stochastic systems, where descriptions of states at different times

are done on the level of measures over the state space. The future is not fully determined

by the present, and so uncertainty enters the system through the evolution rule. It is this

factor that invites exact statements and leads to quantities such as PMI, entropy rate, ex-

cess entropy, and others.

Deterministic systems, on the other hand, do not allow for any doubt in evolution. In order

for PMI to make sense in this setting we need to let some aspect of the system admit uncer-

tainty. On the more philosophical ground this introduction of probability can be interpreted

as working with incomplete knowledge about the given aspect.

The usual definition of a dynamical system as a state space combined with an evolution rule

gives at least two levels where this uncertainty may enter (Crutchfield and Packard [1983]),

plus a combination of the two. The first leads to ‘noisy’ systems defined by evolution rule

supplemented with an error, studied in for example White et al. [1981]. This could also,

of course, be interpreted as incomplete resolution of the state space. We take up a similar

idea, but consider this partial knowledge as being a feature of the observer, and not the

map. In short, we ask the question of what information a limited resolution of the initial

state can provide about the final outcome, defined with the same level of uncertainty. In this

second level uncertainty enters the dynamical system at the level of knowledge of the initial

condition. This notion is supported in Farmer et al. [1980]: “prediction must be discussed

in terms of ensembles of initial conditions rather in terms of the behaviour of individual

points”.

We now define these concepts more rigorously. Let (X,F ) be a (discrete) dynamical

system. Let P be a partition on X into M cells C such that P = {Ci : i = 1..M} and

X =

M⊔

i=1

Ci. (2.7)

With some suitable σP define a measure space (P, σP , µ).

We also admit a prior measure µp. This allows the definition of measure of the evolved

system as follows.
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Let

µ(Ci) := µp(Ci). (2.8)

The evolved measure µτp is defined for all A ⊆ X through

µτp(A) := µp
(
F−τA

)
. (2.9)

Then

µτ (Ci) := µτp(Ci) (2.10)

We define the joint measure µJ through the conditional, such that for any (A,B) ⊆
XxX,

µJ (A,B) = µ(A)µτp (F τ (A) ∩B) . (2.11)

In the cases we study the state space X ⊂ Rd, and prior measures will be the

Lebesgue measures. This means that the joint prior is indeed the product of the marginal

priors, and the two will cancel. PMI will then be a function of the ‘past’ marginal only.

We begin with N i.i.d. points X0
i ∼ ρ0 (where ρ0 is the density associated with ‘past’

measure defined at a certain resolution), and evolve each with F τ to obtain Xτ
i (below we

talk about the methods used to estimate PMI using the set of Xi =
(
X0
i , X

τ
i

)
, i = 1..N as

data).

In this methodology we essentially reduced the semi-infinite block defined by the stochastic

process approach as the ‘past history’ onto a single variable. It is possible because PMI be-

ing the function of entropies, it does not manipulate values from support spaces, rather the

measures of the subsets defined on the latter. Here the fully-deterministic system ensures

that a point X0
i ∈ X is associated with a unique orbit which, if a symbolic block variable is

required, can be rewritten in terms of indices of cells housing its consecutive elements, in a

manner similar to the process of finding the metric entropy described in the Introduction.

Metric entropy and other functions of blocks of variables are based on the fact that there

is not a unique correspondence between the initial block and consecutive blocks. Here, on

the other hand, we rely on the block corresponding to the initial point. This ensures that

the measures we sample by considering only the initial and final points are the same as we

would have sampled had we considered sequences of points or their symbolic representation.
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Interpretation Fig. 2.1 earlier provides a visual explanation of what it means to discuss

PMI in the ostensibly deterministic context of dynamical system. Without loss of gener-

ality we can view the graphs by imagining the pictured axes as discretised state spaces of

some deterministic map, the very setting of symbolic dynamics (and the ‘effective’ symbolic

dynamics of our method). Consider a system whose marginal spaces are the same, and with

the same partitioning, such that the flat past measure induces a flat future measure - as

will be the case with the standard map. Simply looking at the marginal measures gives no

indication of the extent to which the map loses initial information. This is exactly what the

joint captures (or rather a function related to the lower limit of the rate of information loss.

Orbits can be different in the intervening times but close together at some time τ , whereas

if orbits differ at τ any differences in the intervening times will not ‘lessen’ the difference

noted by PMI).

Consider a subset of the past marginal with some measure. We populate the subset with

points whose relative number is defined by the measure of that value, and is either equidis-

tributed, or, if a further partitioning exists, subdivided again. The points then get evolved

by the map for τ times, and their final positions go towards contributing to the ‘future’

marginal measures. If the motion is somehow predictable or ‘causal’, then the points that

were close together will tend to stay close together. Their relative distances will not de-

crease. That is indeed the case in the right hand side of the figure, under the assumption

that the thickness of the line is somehow indicative of the size of cells.

If, on other hand, trajectories diverge in a chaotic manner, so that any knowledge of the

initial condition is lost, it is likely that there will be a much greater variation in the distri-

bution of the points initially in one subset. That is what the first subfigure shows. So even

when evolution is deterministic it is still possible to ask the question of how drastic a small

inexactitude in the initial condition will, on average, turn out to be.

In the framework usually employed by Tsallis et al (see the next few citations for example),

PMI can be viewed simply as an aggregate related to entropy production. In works such

as Baldovin et al. [2003], Añaños et al. [2005], incidentally also focusing on the standard

map, a number of points start equidistributed in a cell and their evolution is traced. Their

positions at some τ is then added to make up the overall distribution at that time, obtained

by also averaging over the location of the initial cell, which is made to be arbitrary in the

state space. Evolution of the individual cell then corresponds to the horizontal movement

in the figure given. The difference between approaches is also clear - whereas the authors
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marginalise by averaging in the horizontal direction to get the future distribution, here we

look at the evolution without losing track of the relative location of the joint points.
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2.3 Permanently Persistent Mutual Information

We would now like to draw a distinction between the variables related to the transient

process of settling down and existing in some stationary state. Works like the ones just

mentioned by Tsallis study the evolution in the entropy of the marginal distributions. The

information in these measures, being related to the differences in mean values of observa-

tions, thus concerns the change brought about by the actual settling process. On the other

hand the causal inter-relations between the past and the future are only preserved in the

joint, however small its dimension (with PMI we of course disregard the intervening time

bulk). PMI is a function of the joint distribution, and so includes hidden information in

the settled dynamics.

We choose to view the difference using the terminology of weak v strong emergence. The

original, emergentist definition is due to Broad [1925]:

We must wait till we meet with an actual instance of an object of the higher

order before we can discover such a law; and [...] we cannot possibly deduce it

beforehand from any combination of laws which we have discovered by observing

aggregates of a lower order.

The implication behind this is that looking at a collection of histories in some ways smoothes

the particular features of each one, and that conversely by not doing so we gain something

of the forecastability of the individual realisation.

Linguistically one could also make the distinction between predictability and forecastability,

and use the most natural example these words conjure up. Predictability usually refers to

the extent to which global behaviour is understood after seeing the system multiple times,

e.g. this is a concept related to climate. Asking after the future of a specific ‘instance’ is

the action of forecasting, which is naturally associated with weather. The implication in

the latter being that to make the forecast in an optimal manner one exploits the data from

the recent past of this specific instance.

In modern phraseology this is summarised by Chalmers [2006]:

We can say that a high-level phenomenon is strongly emergent with respect

to a low-level domain when the high-level phenomenon arises from the low-

level domain, but truths concerning that phenomenon are not deducible even in

principle from truths in the low-level domain.
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In the context of chaos it is common to consider time separation as an analogue to the

conceptual level separation. Thus lower-level and higher-level domains become trajectory

positions in the past and the future respectively. The flat initial measure over some partition

of the support space of the attractor represents the truth known about the initial condition:

it can be in any of the sets in the partition with equal probability. Here we consider the

truth about an initial condition to be equivalent to the statement of our knowledge of the

initial condition. This knowledge gives us some information about the system, which we

can use to deduce the final position. This latter truth will also take the form of a measure.

The information common to these two measures can then be viewed as the information

from the past that remains relevant and constraining about the far future. We call this

quantity Permanently Persistent Mutual Information. We also propose that in its guise as

the ultimate lower limit of forecastability that is possible given a specific realisation of a

system, PPMI thus measures the extent of strong emergence1.

Specifically, Permanently Persistent Mutual Information is

I(∞) = lim
τ→∞

I(τ), (2.12)

where I(τ) is given by eq. (2.1). Note that the limits are taken to correspond to first

examining the bi-infinite sequences, and only then separating them. It is an interesting and

perhaps to some extent philosophical question of whether changing the order of limits has

an effect on I(∞). In practice it is perhaps easier to take the τ limit first, since it is the

length of data one misses out on.

1Here we relax the notion of ‘not deducible even in principle’, since such a definition precludes any
possibility of quantification.

57



2.4 Estimating PMI

We wish to estimate mutual information between two densities, the ‘past’ and the ‘future’.

Our dataset consists of i = 1..N pairs of d-dimensional points Xi =
(
X0
i , X

τ
i

)
, d ∈ Z+.

X0
i are understood to be realisations of X0, distributed according to the ‘past’ ρp; X

τ
i of

Xτ ∼ ρτ= ρf , and Xi of X. The distribution of X is the joint distribution ρJ . Because the

initial samples are i.i.d, Xi are i.i.d. as well.

The mutual information is a function of the ρ densities. As we do not have direct access to

these, we need to use estimators which take as input variables sampled from the underlying

distributions. The different ways of expressing mutual information means estimations can

be performed on a variety of levels, and outcomes manipulated algebraically to get the

answer.

Approximating the Measures At the more straightforward end of the spectrum is ap-

proximating the distributions by flat-intervalled versions based on some partition of S and

S
′

(the support space of Xτ ), defined indirectly through requiring uniform sampling of the

attractor with some given number of points N . The measure of each partition element is

associated to the relative number of points that fall within that cell, so for example the

measure of the (i, j)th cell of the partition of SxS
′

is the number of Xi whose first element

is the ith cell of the partition of S and whose second element is the jth cell of the S
′

par-

tition. With this the formula for mutual information becomes the usual discrete Shannon

entropy version given in eq. (2.6), where µ become defined on the partitions by frequency

counting. As long as the underlying distributions are smooth enough the estimate converges

in the limit of first, large N , and second, small cell size. There is some scope of variation

in this method, rooted in the motivation behind the partitioning. The two more common

approaches are division of S into cells of the same linear size, and cells of the same measure.

Estimating Entropy The next level up involves estimating individual entropies and

finding the deficit of the outcomes to arrive at mutual information. However, as we shall

see in the future sections, one of the cases we will be looking at will involve constant - at

least analytically - marginal entropies, so PMI will only be dependent on the joint entropy.

We are therefore also interested in estimating entropy in its own right.
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Kozachenko and Leonenko [1987] introduced an estimate of continuous entropy from a set

of vectors in a metric space of arbitrary dimension d based on statistics of nearest neighbour

distances εi, i = 1..N . For the Euclidean metric the authors prove that

H = lim
N→∞

d

N

N∑

i=1

ln εi + ln c1(d) + ln γ + ln(N − 1) (2.13)

is an unbiased estimate of the continuous entropy, and that the mean of HN converges to

the true entropy as well. Here ln γ is Euler’s constant and rdc1(d) is the Euclidean volume

of the unit sphere in d dimensions. The bulk of the paper contains the proof.

The basis of the estimate is in the switch between the framework with a probability distri-

bution over the position of points to one with a distribution describing interpoint distances.

Here we follow the methodology as expostulated by Kraskov et al. [2004]. We will call the

latter estimate the K-G estimate to emphasise that here the depth of probability resolution

can be changed by considering the distance to kth nearest neighbour.

Consider again the formula for the continuous entropy of a distribution ρ of a variate X

taking values x,

H(X) = −
∫
ρ(x) log ρ(x)dx. (2.14)

As this can be interpreted as the mean of log(ρ), Ĥ(X) is then an unbiased estimator of H:

Ĥ(X) = − 1

N

N∑

i=1

̂log ρ(xi), (2.15)

where ̂log ρ(xi) is some unbiased estimator of log ρ(x).

Let pi(ε) be the ‘weight’ of some ith ball of radius ε, pi(ε) =
∫
x∈ball ρ(x)dx. Then by the

mean value theorem there exists xi s.t.

pi(ε) = ρ(xi)Vd, (2.16)

where the volume of the ball Vd = εdc(d), and c(d) is the (not necessarily Euclidean) volume

of the unit ball in the support space of ρ.

Therefore the expected value of log ρ(x) is, from (2.16), just

̂log ρ(x) = ̂log p(ε) + log c(d) + dl̂og ε. (2.17)
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The next key point is that pi the distribution of ‘weight’ of the ith ball, can be used to

express the probability Pk(ε)dε of a point having its kth nearest neighbour in the thin shell

of linear size dε centered at the radius ε/2 away from it. Interest in this quantity was

motivated as far back as 1940s Chandrasekhar [1943]. Bhattacharyya and Chakrabarti

[2008] gives a clear explanation of the methods by which Pk(ε)dε can be derived. A simple

consideration that yields it is combinatorial in nature: we look for the number of ways in

which k − 1 out of N − 1 points can be arranged strictly inside the ball and the way in

which the remaining N − 1− 1− (k + 1) = N − 1− k points can be arranged outside it, to

end up with the trinomial formula. Thus Pk(ε) is a function of N , k, and pi(ε), and

E log pi =

∫ ∞

0
dεPk(ε) log pi(ε), (2.18)

yielding

E log pi = ψ(k)− ψ(N), (2.19)

where ψ = Γ−1(x)dΓ(x)/dx is the digamma function. Since the estimate of entropy, equal

to negative the expected value of log ρ(x), is just

Ĥ(X) = −ψ(k) + ψ(N)− log c(d) +
d

N

N∑

i=1

log εi. (2.20)

Here we are looking at the probability with cells of resolution defined by the kth nearest

neighbour, whose distance from point i is εi/2. According to Kraskov et al. [2004], the

errors are maximum of order k/N , but naturally vary as the distributions deviate from

uniform and eq. (2.16) becomes a less accurate statement. The K-G estimator can be seen

to coincide with eq. (2.13) for k = 1, since Ψ(1) = −γ, and for large N , in whose limit

these converge, Ψ(N) aligns with ln(N).

Estimating Mutual Information Errors stemming from the marginal and joint en-

tropies may be of different order, and so may not necessarily cancel, leading to systematic

deviation in mutual information. Problems like this are common when, for example, the

same linear cell size is used for both the product and marginal spaces. Over/under-sampling

could then be different for these probability distributions, leading to an imbalance that may

have an effect on the estimate of mutual information. This is exactly what happens when

eq. (2.20) is used to estimate both the marginal and joint entropies using the same k, which
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let all bin sizes tend to zero, if all densities exist as proper
(not necessarily smooth) functions. If not, i.e., if the distri-
butions are, e.g., (multi)fractal, this convergence might no
longer be true. In that case, Eq. (2) would define resolution-
dependent mutual entropies which diverge in the limit of
infinite resolution. Although the methods developed below
could be adapted to apply also to that case, we shall not do
this in the present paper.
The bin sizes used in Eq. (2) do not need to be the same

for all bins. Optimized estimators [7,8] use indeed adaptive
bin sizes which are essentially geared to having equal num-
bers n!i , j" for all pairs !i , j" with nonzero measure. While
such estimators are much better than estimators using fixed
bin sizes, they still have systematic errors which result on the
one hand from approximating I!X ,Y" by Ibinned!X ,Y", and on
the other hand by approximating (logarithms of) probabilities
by (logarithms of) frequency ratios. The latter could be pre-
sumably minimized by using corrections for finite nx!i" and
n!i , j", respectively [9]. These corrections are in the form of
asymptotic series which diverge for finite N, but whose first
two terms improve the estimates in typical cases. The first
correction term—which often is not sufficient—was taken
into account in [6,10].
In the present paper we will not follow these lines, but

rather estimate MI from k-nearest neighbor statistics. There
exists an extensive literature on such estimators for the
simple Shannon entropy

H!X" = !# dx!!x"log !!x" , !3"

dating back at least to [11,12]. But it seems that these meth-
ods have hardly ever been used for estimating MI (for an
exception see [13], where they were used to estimate transfer
entropies). In [12,14–19] it is assumed that x is one-
dimensional, so that the xi can be ordered by magnitude and
xi+1!xi→0 for N→". In the simplest case, the estimator
based only on these distances is

H!X" $
1

N ! 1
%
i=1

N!1

log!xi+1 ! xi" + # !1" ! # !N" . !4"

Here, # !x" is the digamma function, # !x"=$!x"!1d$!x" /dx.
It satisfies the recursion # !x+1"=# !x"+1/x and # !1"=
!C, where C=0.577 215 6. . . is the Euler-Mascheroni con-
stant. For large x, # !x"$ log x!1/2 x. Similar formulas exist
which use xi+k!xi instead of xi+1!xi, for any integer k%N.
Although Eq. (4) and its generalizations to k&1 seem to

give the best estimators of H!X", they cannot be used for MI
because it is not obvious how to generalize them to higher
dimensions. Here we have to use a slightly different ap-
proach, due to [20] [see also [21,22]; the latter authors were
only interested in fractal measures and estimating their infor-
mation dimensions, but the basic concepts are the same as in
estimating H!X" for smooth densities].
Assume some metrics to be given on the spaces spanned

by X ,Y and Z= !X ,Y". We can then rank, for each point zi
= !xi ,yi", its neighbors by distance di,j= &zi!zj&: di,j1'di,j2
'di,j3

'¯. Similar rankings can be done in the subspaces X

and Y. The basic idea of [20–22] is to estimate H!X" from the
average distance to the k-nearest neighbor, averaged over all
xi. Details will be given in Sec. II. Mutual information could
be obtained by estimating in this way H!X", H!Y", and
H!X ,Y" separately and using [1]

I!X,Y" = H!X" + H!Y" ! H!X,Y" . !5"

But this would mean that the errors made in the individual
estimates would presumably not cancel, and therefore we
proceed differently.
Indeed we will present two slightly different algorithms,

both based on the above idea. Both use for the space Z
= !X ,Y" the maximum norm,

&z ! z!& = max'&x ! x!&,&y ! y!&( , !6"

while any norms can be used for &x!x!& and &y!y!& (they
need not be the same, as these spaces could be completely
different). Let us denote by (!i" /2 the distance from zi to its
kth neighbor, and by (x!i" /2 and (y!i" /2 the distances be-
tween the same points projected into the X and Y subspaces.
Obviously, (!i"=max'(x!i" ,(y!i"(.
In the first algorithm, we count the number nx!i" of points

xj whose distance from xi is strictly less than (!i" /2, and
similarly for y instead of x. This is illustrated in Fig. 1(a).
Notice that (!i" is a random (fluctuating) variable, and there-
fore also nx!i" and ny!i" fluctuate. We denote by )¯* aver-
ages both over all i! +1, . . . ,N, and over all realizations of
the random samples,

)¯* = N!1%
i=1

N

E+¯!i", . !7"

The estimate for MI is then

I!1"!X,Y" = #!k" ! )#!nx + 1" + #!ny + 1"* + #!N" . !8"

FIG. 1. Panel (a): Determination of (!i", nx!i", and ny!i" in the
first algorithm, for k=1 and some fixed i. In this example, nx!i"
=5 and ny!i"=3. Panels (b),(c): Determination of (x!i", (y!i", nx!i",
and ny!i" in the second algorithm for k=2. Panel (b) shows a case in
which (x!i" and (y!i" are determined by the same point, while panel
(c) shows a case in which they are determined by different points.

KRASKOV, STÖGBAUER, AND GRASSBERGER PHYSICAL REVIEW E 69, 066138 (2004)

066138-2

Figure 2.2: From Kraskov et al. [2004] illustrating the relation between ε and number of
nearest neighbours in the marginal space, where the authors have used x for p, and y for f .

would be the natural place to start in order to lessen the computational load. (Although

we have to add that here the reverse happens. k by definition controls the estimate of

probability according to (2.4), so it would not be that a different weight is sampled, but

rather that the uniformity assumption might have to be lessened for the joint more than the

marginals. Nevertheless the effect of disproportionate errors is the same.) Having said that,

there is no problem adapting eq. (2.20) to work in the joint space, the only difference being

that the volume of the unit ball is now the product of the respective volumes in marginal

spaces; and that the multiplicative factor from the average interpoint distances is the sum

of the dimensions of the marginals, dJ = dp + df .

Kraskov et al. [2004] introduces a mutual information estimator that finds the entropic

deficit by combining the K-L estimates where the marginals and the joint entropies have

variable resolution. As a result it is less prone to non-uniformity based errors. The aim is

to cancel, through the addition and the subtraction, the d
N

∑N
i=1 log εi term. It is possible

since, as we have just noted, the dimensions are additive. All that is required is that the

linear cell size ε is kept the same for the marginals and the joint.

Recall that the εi is defined through the number of neighbours the ith point contains within
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a ball of that diameter. Therefore, if it is kept constant, the k in the K-G estimator of the

marginals can be rewritten as np(i) + 1 (for the number of neighbours situated within that

ball in the ‘past’ marginal) and nf (i) + 1 for the second marginal. We thus have an estima-

tor effectively parametrised by the resolution of the joint distribution. Fixing a k we then

compute εi by looking at the less dense distribution of points in the joint space, and from

this distance find the marginal numbers np and nf of points falling into those cells. Thus

the k in the marginal formulae vary with individual points and the first terms have to be

replaced by −1/N
∑N

i=1 ψ(np/f + 1). Thus, from eq. (1.2.2) in the previous chapter, the

estimator for mutual information is given by:

Î(X,Y ) = ψ(k) + ψ(N)− 1/N

N∑

i=1

(ψ(np + 1) + ψ(nf + 1)) . (2.21)

Computational Method Implicit in the K-G-based estimators of entropy and mutual

information is the requirement to find the kth nearest neighbour of a vector of arbitrary di-

mension. The mutual information estimator requires, in addition to that, to do the reverse

and find other vectors given a certain distance from the first. These searches form the basis

of the computational load. Both problems can be solved by a ‘dumb’ search, but that begins

to be unfeasible for any reasonable parameter range. Interestingly enough, both problems

are actually also tractable in a simple and related manner as functions of a kdTree2. We

now briefly outline the possible methods.

Any ‘dumb’ algorithm of the kind will be of order N2. Any possible improvement will

involve a balance in the difficulty in implementing a new algorithm and the range of param-

eters which we wish to use. Methodologies which begin be advantageous towards the higher

end of the reasonable parameter range often do so at the expense of structures which require

some minimum setup time. This is exactly what happens with the kdTree. For small values

of (d,N, k) it thus makes more sense to use the most primitive N2 search (hereafter called

the ‘dumb’ method) which will - though arguably for unusably small parameters - be faster

than the more advanced methods.

We considered three possible methods, each one offering some advantage depending on the

perspective. At the simplest and the most easily (double loop) implemented end of the

scale is the ‘dumb’ method. Optimised for large N is the kdTree setup. For the range in

2A kdTree is a nested way of storing data that yields logarithmic, rather than exponential, search times.
See Üngör [2013](url in references) for a tutorial - alternatively, Press et al. [2002] for implementation and
by necessity an introduction to the subject.
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between we introduce the recurrent method.

Recurrent Method The recurrent method is optimised for a nearest neighbour search

of a given index. The algorithm first looks at the number of points, and if it is less than

a certain threshold a, performs the ‘dumb’ search to find the knn (kth nearest neighbour)

distances. For a large number of points the dataset gets split into two based on the median

in the direction with the largest range. The process then continues recursively until the

subset has fewer than b points left (here we take b = a). It is at this level that the knn

search is actually performed, here using the simple ‘dumb’ method.

The key feature of this algorithm is the error checking that becomes necessary when one

considers that for a point near the boundary of the split only the points to one side of

the boundary are checked for their distances, and as such some overestimation is bound

to happen. Points contained in the other set may actually lie closer to a point near the

boundary. The saving feature is that that should only be the case for points from the other

set that are themselves close to the boundary. Not all the points from the other set need to

be checked. The natural way to simplify this is to sort the two subsets first and then error

check simply by going along the indices.

Thus the algorithm recursively splits the set into subsets small enough to apply the standard

search procedure, and once that is done, begins the reverse process of combining the subsets

together by pairs, building up the original set. Each recombination involves an error check

for knn distances for points on the boundaries, for which the pair needs to be sorted along

some direction. The sorting needs to be repeated with every step backwards, since the

split may have been done in different directions for each of the subsets. The metacode for

d = 2 is presented below. The algorithm is easily adaptable to periodic settings and higher

dimensions. Comparison for running times between the three methods is shown below.

1 template <int DIM> void NND ( myPoint <DIM> ∗ l i s t , int s i z e i n , int ∗part1 , int

k in , double Period , double∗ d i s t a n c e s a d d r e s s , int TRIVIAL IN) {
2 i f ( s i z e i n < TRIVIAL IN) {
3 dumb NN( l i s t , s i z e i n , k in , Period , d i s t a n c e s a d d r e s s ) ; //The Dumb

Algorithm

4

5 // par t1 c on t r o l s by which v a r i a b l e the l i s t was so r t ed − here s e t them as

OPPOSITE s ince no s o r t i n g i s a c t u a l l y done in the dumbNN method ; t h i s

ensures l i s t s are d e f i n i t e l y so r t ed l a t e r
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6 ∗part1 = (∗ part1 + 1) % DIM;

7

8 } else {
9 int d i r e c t i o n = 0 ; // d e f a u l t f o r 1 s t dimension

10 int l i s t l e n g t h = 0 ;

11

12 s p l i t l i s t ( l i s t , s i z e i n , &l i s t l e n g t h , &d i r e c t i o n ) ; //USE THE SAME

SPLITTING PROCEDURE FOR PERIODIC DATA

13

14 int l 1 = d i r e c t i o n ;

15 int l 2 = d i r e c t i o n ;

16

17 NND( l i s t , l i s t l e n g t h , &l1 , k in , Period , ( l i s t −> get p kd ( ) ) ,

TRIVIAL IN) ;

18 NND( l i s t + l i s t l e n g t h , s i z e i n − l i s t l e n g t h , &l2 , k in , Period , ( ( l i s t

+ l i s t l e n g t h ) −> get p kd ( ) ) , TRIVIAL IN) ;

19

20 // s o r t the two par t s o f the l i s t in the same d i r e c t i o n − i f they are not

so r t ed in t ha t d i r e c t i o n a l r eady

21 comp dir = d i r e c t i o n ;

22

23 i f ( l 1 != d i r e c t i o n ) s o r t ( l i s t , l i s t + l i s t l e n g t h , cmp <DIM>) ;

24 i f ( l 2 != d i r e c t i o n ) s o r t ( l i s t + l i s t l e n g t h , l i s t + s i z e i n , cmp <DIM>) ;

25

26 ∗part1 = d i r e c t i o n ; // v a r i a b l e t h a t keeps t rack a long which dimension the

two par t s are now sor t ed

27

28 e r ro r check ( l i s t , l i s t + l i s t l e n g t h , l i s t l e n g t h , s i z e i n − l i s t l e n g t h ,

d i r e c t i o n , k in , Period ) ;

29 e r ro r check ( l i s t + l i s t l e n g t h , l i s t , s i z e i n − l i s t l e n g t h , l i s t l e n g t h ,

d i r e c t i o n , k in , Period ) ;

30 }
31 }

The more common way to do operations on relative distances between a set of points

is to set up a kdTree. Conceptually this is an object containing a vector of original points

(not an array, but something which allows points to be added and removed) supplanted

on a partitioning of the space that these points induce, along with information about the

structure of the resulting boxes and their locations within each other. Computationally,

along with a kdTree object and some object holding a d-dimensional point (and in our
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Figure 2.3: Running time of the search of kth nearest neighbour in a sample of N points
equidistributed in a box of dimension D. The lines of proportionality, N2 and N logN ,
were each scaled down to fit in the graph.

code we store metric as a functor), it requires a box and a boxnode. A box is a rectangle

defined by two corners, so called because the partitioning is along the directions defined by

the dimensions, and a boxnode is there to store indices of boxes and allow for the retrieval

of parent and daughter boxes. The smallest box contains two points. The knn search is

a simple traversal upstream that starts by opening the box containing the upper bound

on k. This gives a candidate for ε(k). Further boxes are ‘opened’ and its points checked

for proximity to the point in question only if the distance to another box is smaller than

the candidate. Similarly, finding the number of points within a given distance would mean

opening all boxes that are within the value given. This is where the functor comes in useful.

This is a general procedure applicable in any dimension. It does not require knowing the

boundaries of the space, though in all the cases we look at this is in fact known. It is easily

adaptable to systems with periodic boundary conditions.

Press et al. [2002] contains the basic algorithm for C + +, which is the platform we used.

Figure 2.3 shows the comparison for running time for all the three knn search algorithms

for N points on a non-periodic box of dimension d. Since we never seriously consider the

point-by-point search the only reason for comparison is to show that there are parameter

regimes where the recurrent method fares better.

From figure 2.3(a) the first thing to notice is that the obvious method does indeed

run as N2, and that changing the dimension merely gives it a different proportionality

constant. The same multiplication is evident when the kdTree method is run for higher
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dimensional data, keeping both roughly proportional to N ∗ logN . That is not the case for

the recurrent method. There changing the dimension alters the manner in which the curves

increase, so that increasing the sample size in a higher dimension would give a dispropor-

tionately larger running time than the same increase in a low-dimension space. This causes

there to be a crossover between the plots for kdTree and the recurrent method in 4D: in

that space after increasing N beyond a certain point it makes sense to switch to the kdTree

method. The point this comes in at is, still, towards the larger end of the average scale. In

terms of sample size the recurrent method is seen to behave well, being even more optimal

than the kdTree in 2D, though showing some signs of a potential crossover with the kdTree

2D method.

The main problem, of course, is that the error checking procedure should be relatively short

when the distribution is uniform as is the case above. The moment there is a change from

uniformity the recurrent method may not be faster than the kdTree. In practice, however,

the recurrent method on the joint distribution of the standard map performed in reasonable

times.

Figure 2.3(b) shows precisely the computational price for having to set up the kdTree struc-

ture in order to compute distances indexed by k. For k less than approximately 200, at

least in 2D, it is actually faster to use the recurrent method (for this very small N). Only

at smaller resolutions does the kdTree structure begin to pay off.

In practice we began our work by computing PMI for the logistic map using the

simple binning strategy, for both equidistance and equidistributed bins (see next section).

The main hurdle turned out to be not the computational length but rather a high sensitivity

to under and over-sampling, which we were able to see for parameters where an analytical

answer was known. Yet when the underlying distributions became fractal the outcomes

using these methods were telling in so far as the fractal dimension was concerned. For the

standard map with a four-dimensional joint we used the K-G entropy estimator and the

kdTree method. Once it was setup, it became straightforward to continue with the method

even for low-dimensional systems and abandon binning altogether.
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Chapter 3

Persistent Mutual Information and

Permanently Persistent Mutual

Information in the Logistic Map
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Persistent Mutual Information is a measure of correlations that persist above a time

gap. Varying this can shift the focus from short-term causality to finding the trends less

affected by the repeated application of this (discrete) map. In dissipative systems that

possess an attractor, like the logistic map, the short-term behaviour of any trajectory will

in some sense invariably involve movement towards that attractor. Our investigations into

long-term correlations correspond therefore to analysing the dynamics on the attractor.

The individual systems we will be looking at are therefore attractors of the logistic and

the tent maps. The setup in which we analyse it presupposes an ensemble of these, with a

uniform initial ensemble distribution ρ0. Under F τ iterates it evolves to ρτ , and, keeping

track of the conditional probabilities, we compute the mutual information between the two

to obtain the Persistent Mutual Information I(τ).

This is done through feeding the dataset (sampling the joint pdf) generated by this setup

into a mutual information estimator. It forms the beginning of our discussion. This ad

hoc approach forgoes for the moment discussions of whether, for example, the attractor

admits a probability distribution - and the MI estimator will simply assume a distribution

behind the input set of points (since in a lot of cases the distribution will simply not exist,

this discussion will also prove a test of how well the estimator deals with these situations).

In this we anticipate potentially starting with a time series from an unknown source, and

asking what features PMI picks up. We do at some point cheat by using our knowledge of

the attractor at a given logistic Map parameter r, but only for the purposes of getting the

most out of the computational setup.

The logistic map is a good toy model since for some regimes we can analytically

compute the PMI. This allows us to assess behaviour of both different estimators and vari-

ous parameters. We therefore structure the discussion as follows: first we find the optimal

methods for computing the PMI by comparing our results to the analytic predictions. We

then investigate variation of PMI with τ . We note that some regimes admit PMI that

increases indefinitely with resolution, and derive an expression for this variation. Lastly

we compute Permanently Persistent Mutual Information (PPMI) as a candidate for the

measure of strong emergence in both the logistic and tent maps.
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3.1 Persistent Mutual Information in the Logistic Map

Let X ⊆ R be the state space of the logistic map defined by

xn+1= f(xn) = rxn(1− xn), (3.1)

where x ∈ X. We confine our analysis to 0 ≤ r ≤ 4, for which X = [0, 1].

The main behaviour of the map was discussed in the Introduction. Briefly, for some r < rc

the attractor Ar consists of a finite number of points p = |A(r)| that doubles successively

as r increases to rc, rc ≈ 3.57. For rc < r ≤ 4 there is a reverse process of halving the

global periodicity down to 1. After the period-doubling accumulation point rc the motion

becomes chaotic, with only occasional periodic windows. But global periodicity is still

present in chaotic motion, where it enters through the chaotic bands, so that when Ar

consists of p nonzero-sized bands, the trajectory visits each band every pth step: and the

description of chaotic refers to the effective motion within the bands themselves.

Analytical Limit Consider the logistic map for some value of r that results in regular

motion with period p. At any point in time the trajectory can then be found in one of p

points. Let µp be the measure on Ar giving every element a weight of 1/p. As before, let

µf be the evolved measure at some time τ on Ar, and µJ the corresponding joint measure.

PMI is then given by

I(τ) =
∑

i,j

µJi,j log

[
µJi,j

µpiµ
f
j

]
, (3.2)

where the indices i, j = 1..p.

The evolved measure clearly retains the same weights and the joint measure only has p

nonzero elements, so that each must have the of weight 1/p. There are hence p nonzero

terms in the double sum, each of which is equal to (1/p) log p, and so for period-p motion

the PMI in the logistic map is

I(τ) = log p. (3.3)

The same solution applies for regimes when the attractor contains non-zero intervals with

the same periodicity, i.e. when r > rc and motion is not necessarily regular.
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Figure 3.1: Kraskov-Grassberger estimate of PPMI for a typical and computationally op-
timal set of parameter values (analogous to the ranges in the subsequent graphs), for the
logistic map F (r) with added noise of order 10−12.

PMI in the Logistic Map Figure 3.1 shows the Persistent Mutual Information for the

logistic map for some typically large τ , and the corresponding bifurcation diagram, as a

function of the parameter r. Just as predicted PMI increases at period-doublings in steps

of size log 2 until the accumulation point, after which the global trend is to decrease. As the

bands merge PMI becomes a background of zero in no way different to the fully-developed

chaos. Periodic regimes show themselves as structures visible on top of the band layers.

There are two parameters that are responsible for what is seen in figure 3.1. First,

this graph is computed with a finite resolution - eq. (3.5) puts a limiting value on the

observed resolution in terms of the number of points N . There thus exists a set of r values

for which the PMI at perfect resolution could be larger than what is visible (and may be

infinite).

The second is the set of r for which PMI is computed in the first place. The set of r in

which to detect higher periodicities is small. Around rc, for the given set of values we see

a period of order 10, and then chaotic motion with a similar trend, simply because of the
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relatively large size of ∆r = 0.001. ‘Regular’ (nonchaotic) peaks at r > rc are finite for the

same reason, that is, the resolution of r rather than k/N . The finiteness of the abscissa

resolution thus makes the range of observed PMI finite and the graph readable.

3.1.1 Methodology

To compute PMI at r and τ we require a set of N data points sampling the joint distribution,

X = {
(
X0
i , X

τ
i

)N
i=1
}, (3.4)

X0
i ∼ ρ0, X

τ
i = F τX0

i ∀i, ρ0 uniform over the attractor.

Consider uniformly sampling the unit interval N times and evolving the outcomes for some

‘settling time’ t = ts. Let ρts be the resultant distribution. As ts → ∞ the support space

of ρts begins to get closer to the attractor Ar. And yet unless the basins of attraction of

different components of Ar are equal in size, which in all likelihood will not be the case (and

is definitely known to not be the case for some r), then ρts will not approximate a uniform

measure µp over the attractor.

Instead we make use of the fact that in the logistic map the attractor is ergodic. The time

average of a single trajectory over the attractor will produce a uniform distribution over its

elements, since the time spent in each point will just be inversely proportional to the total

number of points, p = |Ar|. We can therefore sample µ1 by taking the time average through

an uncertain ts. In terms of measurements this means that the first element x0 (which

will always be 0.5) is iterated for some large, t = ts time steps, and only then do the data

points start being recorded. The fact that for τ < N this means looking at two overlapping

sets in which points in the ‘future’ also double as ‘pasts’ only becomes a problem when the

attractor is fractal (see later section).

Problems can arise if the attractor does not admit a density and yet we still want to use an

estimator that assumes a sufficiently smooth distribution. Suppose the points are located

ideally on the attractor. If the preferred strategy is binning then there is no problem since

making the switch between probability distribution over a set and its measure is implicit

within the procedure itself. If, however, the data is not perfectly converged, there will

be some finite distances between the data points. A large number of bins or simply the

equiprobable binning strategy with the wrong bin parameter will not see the ‘true’ future
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measure, and lead to oversampling errors.

We also consider the Kraskov-Grassberger (K-G) estimator that requires distances between

k nearest neighbours. If some of the data is on top of each other the distances will be zero,

and it would depend on the arbitrary choices made in the way these cases were defined in

the algorithm. In terms of the theory behind the estimator, this is a statement about the

smoothness of the distribution which coincident points thus break. At all events the answer

should not vary with k unless k is large enough to be greater than N/p.

For that purpose we dilute our data with noise. This solves the problem, since here the

K-G estimator is seen to work well, giving correct log p answers with a small enough error.

The noise is added after all the evolution has finished and before distances are computed;

it is distributed uniformly across a small interval.

In reality the extent to which the data has converged depends on x0 and ts (as well as τ and

p). Without adding noise it is possible (and realistic enough) to run into problems where

the points are indistinguishable from each other as far as the double machine-epsilon is

concerned. Practically, due to only a finite number of values accessible to a finite-precision

computer, after a long time trajectories will settle on either being scattered on, or fluctuating

among, a few points around the elements of the attractor. The number of these available

points is small enough to lead to data points being incidental. But because of this finiteness

it does not take a large enough k to decrease the PMI closer to its true value. For instance

the average of the first error in fig. 3.2(a) goes down by half when k = 20 is considered

instead of k = 4.

Fig. 3.2(a) shows that for the K-G estimator there are in general three error regimes

depending on the magnitude of noise. When too little noise or no noise is added then for the

periodic regimes PMI begins to significantly deviate from its true value, since the estimator

relies on the assumption on smoothness of the density. Banded chaos is insensitive to small

noise as expected. When there is too much noise it threatens to smooth over the geometry

of the attractor. For period 2 its magnitude is 0.1. It effectively turns points into whole

regions but PMI still gives the correct answer (albeit with the small systematic error easily

attributable to N) since it looks only for the global periodicity. In this case the gap between

the attractors was greater than 0.1.

The danger to close the gap is greater for banded chaos where a large proportion of the

state space is already occupied, and errors set in at much smaller values, as shown in figure

3.2(b). Zooming in it is easily seen that errors begin even earlier. The visibility of this error
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Figure 3.2: Absolute error v noise level of PMI computed using the Kraskov-Grassberger
estimator with k = 4, plotted for 10 realisations. N = 5000, ts = 1010, τ = 105. The
machine-epsilon is circa 10−13.

will increase at smaller noise levels as bands of higher periodicity might be closer together.

Figure 3.3 shows how PMI changes as two strips of random numbers move closer (to be

read right to left) and begin to overlap. Increasing k would make the change occur further

to the right of zero. The plots show the effect that an increasingly large region of higher

density has on the joint distribution.

We thus use a noise level of 10−12, a reasonably small value higher than machine

precision that makes periodic motion tractable, and yet low enough to still detect period-

icities in banded chaos of a higher order.

At the opposite end of the spectrum is the issue of stationarity that arises when ts is

not made high enough. Here points are so far away from each other that there is little indi-

cation of the details of the actual attractor. This happens when convergence is particularly

slow, for example when r is just above the period doubling points. ts should therefore kept

large, and in our examples it goes up 1010. This problem is not related to estimation but

rather to the question of whether the initial data actually samples the desired distribution.

We mention it here to justify the need to dilute the data with noise - since this then allows

us to raise ts as much as needed.
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Figure 3.3: PMI between bands of uniformly distributed random numbers plotted as a
function of their relative separation. Negative numbers correspond to an overlap. The
dotted line is drawn at log 2. PMI is computed using the K-G estimator, k = 4, N = 5000.

It is clear that any numerically-computed I(τ) will be bounded from above by the

logarithm of the maximal resolvable period. The resolution used to compute PMI effectively

introduces a partition that defines the observed measure. We will not be able to detect

interdependency between the past and future when the motion is inside that partition.

This limits from below the spatial resolution of dependency in a way that any temporal

ones are limited by τ .

For the K-G estimator with k nearest neighbours this limit is the effective number of cells,

N/k. Periodicities p > N/k will be left undetected. Therefore for periodic motion with

period p the measured PMI can be written as

I(τ) = log (min [p,N/k]) . (3.5)

We now test two estimator strategies for regimes with known global periodicities p,

where the analytical value of PMI is given by the logarithm of p.

Binning We first try the default method of binning the marginal and joint state spaces

to compute PMI directly. We consider two strategies of partitioning with n bins: the first
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(b) 4-Band Chaos (r = 3.58)

Figure 3.4: PMI in the Banded Chaos logistic map regimes v number of bins used to estimate
PMI through eq. (3.2). Normal bins have same linear size, and equibins contain the same
amount of ‘probability’. Settling time and τ equal to 104.

is based on each bin having an equal linear size equal to 1/n, and the second, equibinning,

results in bins of equal weights.

Equibins are seen to do worse. Errors will come in if the number of bins or the

number of points is not a power of 2. Another possible reason is that some bins might be

forced to straddle more than one chaotic band. It is possible to circumvent that to some

extent by having a hybrid criteria putting a limit on the distance at whose expense equal

frequencies are maintained, but we simply use a different method.

Figure 3.4 shows some sources of error the binning method is prone to. For this range of

parameters there is a small region of n, the number of bins, where the graphs plateau before

beginning the systematic increase. These plateaus happen at values equal to the logarithm

of the overall periodicity, and we associate them with what the ‘true’ PMI should be.

From these graphs we see that there is a small range of (n,N) values that give the correct

results. These depend on the binning strategy used as well as the underlying behaviour of

the map. Thus, the higher the periodicity of the map, the higher needs to be the sample

size N in order to be able to resolve it. The plateaux are much more cleanly defined in the

2-band chaos (fig. 3.4(a)) than in the 4-band chaos (fig. 3.4(a)). Notice the latter case also

sees a low-end N increasing at an ever-growing rate and not going through a plateau at all.

The location of the optimal n range also tends to shift. For low values of n the equibinning

strategy gives correct answers when n is a multiple of the periodicity, but other than that,

low n is simply not able to resolve the true PMI, and is very sensitive to changes by every
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Figure 3.5: Kraskov-Grassberger estimate of PMI across τ = 106 iterations for 6 regimes
of the logistic map after settling time of 1010, with noise of order 10−12. Varying nearest
neighbour index k was done at fixed sample size N = 104(a), while the reverse held k = 3
(b).

extra cell.

The higher end of the n scale is characterised by undersampling which almost instantly

produces a drastic systematic increase in the estimated mutual information. It begins when

the total number of bins (especially in the joint, as there we have n2 bins) is large enough

to render any statistics done with that finite number of points essentially meaningless. In-

creasing N shifts the offset to higher values of n.

Undersampling sets of at roughly the same values of n for both normal and equibinning

methods, but its effects are felt more drastically in the latter case where the errors shoot

up with increasing n at a higher rate.

We see that with binning, apart from the large running time, there are systematic errors

that begin at parameter values that are related to the map behaviour. This, therefore, is

not the optimal methodology to use for blind regimes. It does yield correct answers if N

is pushed to the limit (and with a reasonable n ≈ 30), and it suffices here, but for systems

with d > 4 the methodology would have to be reconsidered.

Kraskov-Grassberger Method We now compute the K-G estimate of PMI, adding to

final data a small noise of order 10−12. Figure 3.5 shows how PMI at different regimes varies

with estimator parameters of sample size N and nearest neighbour index k.

We see that for all regimes the K-G works rather well, though with more fluctuations
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at smaller values of N . There does not seem to be as strong a preference for k. Chaotic

motion results in higher fluctuations, but that is to be expected, since the deviation from

the uniform distribution is much larger in those regimes where the addition of uniform noise

does not change the relative location of points to such an extent. For the range of (N, k)

values we do see a systematic small bias but the absolute error is so small to render it

invisible on the scale of the graphs above. This bias could become more evident at larger

periodicities, but practically we do not graph results with p roughly of order greater than

10.

We conclude that the K-G estimator fares better than the binning strategy, and works well

for both periodic and chaotic motion. For reasonable (N, k) values it does not contain

over/under sampling and invariably picks up the correct periodicity (a good test is the

analytic value of PMI at fully-developed bandless chaos at r = 4. Whilst binning with large

n undersampled, the K-G estimator gave the correct answer of zero). It is optimal in terms

of computation time and can easily be adapted to other systems. We therefore use it for

both the logistic map and the tent map.

Thus we compute PMI using the K-G for low values of k and and N of order at

least 103. We also note the necessity to be very careful with parameters. The given choices

put an effective limit on the resolution. That means that any PPMI graph will be of finite

height. Jumping ahead, it could also potentially contain peaks of different character: if ts

is not high enough there will be peaks for r < rc that will result in not sampling from the

attractor - as opposed to ‘true’ peaks where the settled system has a good memory. Both

are then limited by the resolution, which is in our case the estimator parameter.

3.1.2 PMI v τ

Here we investigate behaviour of I(τ). We assume the system is settled, otherwise if ts

is too small some of the settling will happen during the time gap, and I(τ) will pick this

up. We also assume the limit of perfect resolution and leave the variation of I with τ at

accumulation points for a later section.

Increasing τ raises the effective upper limit on the timescale of visible correlations. For

periodic motion with finite p there is nothing to remember other than periodicity, so we

expect I(τ) to be equal to log p ∀τ ∈ Z+. This is indeed supported by the graphs below

where plots in green show I(τ) for periods 2 (3.6(a)) and 8(3.6(b)). Indeed we expect
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Figure 3.6: Variation of PMI with τ for the logistic map parameters corresponding to motion
with different periodicities. PMI computed using with k = 5, with N = 104, settling time of
105, and noise of order 10−12. (Here there are no error bars as this is a single run. However,
from numerous experimentation there is no reason to suppose this shows anything but the
average behaviour. In addition to that, future plots estimate the gradient of the initial
descent for varying r, and from figure 3.7 and later analysis we see that any variation in
the individual runs will not overwhelm the general trend - though this might not be true
for higher band chaos.)

this to be the case with any periodic motion independent whether it happens after the

period-doubling accumulation point.

Chaotic motion is a different case. As the trajectory moves through the bands of

some global periodicity p it still retains some information about its location within the band.

We expect short term correlations to be present, but to die off as τ →∞ and I(τ)→ log p.

This is indeed the case and the same periodicities as in the regular case are shown in figure

3.6 above.

Looking at the way I(τ) approaches the asymptotic value in the chaotic cases one can

conjecture existence of a region where I(τ) varies linearly with τ (periodic r can then be

considered as slopes with gradient zero).

We estimated the slope using a small constant τ interval up τ < 10 as a function of r. The

result, without error bars, can be found in figure 3.7.

Notice the striking similarity with the shape of the Lyapunov exponent, shown in

figure 3.8. In both plots troughs occur when there are windows of periodic motion. The

plot in 3.7 is computed at slightly lower r resolution, and so does not contain that many

troughs.
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Figure 3.8: Lyapunov Exponent for the logistic map, taken from Luo et al. [2009].
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Notice also that the range of the abscissa in fig. 3.6(b) is four that times that of

fig. 3.6(a) and yet I(τ) has still not converged to its expected value that is in line with the

green plot.

Let ∆I = I(τ)− I(0). Then using the entropy deficit expression for PMI,

∆I = Hτ
p +Hτ

f −Hτ
J −H0

p −H0
f +H0

J , (3.6)

where the indices are self-explanatory. By definition H0
p = Hτ

p , so

∆I =
(
Hτ
f −H0

f

)
+
(
H0
J −Hτ

J

)
. (3.7)

In equilibrium the distribution defined by the single trajectory would render the entropy of

the past equal to that of the future, so the first term disappears.

We now express the second bracketed expression using the K-G entropy estimator, H ≈
ψ(N)− ψ(k) + dE[log 2x], where d is the state space dimension (here 2 in the joint space),

x = ε/2 is the distance to kth nearest neighbour, and here we write E for the average over

N points. Then for a fixed k, canceling the factor of 2 in the logarithm and using the K-G

estimator,

H0
J −Hτ

J ≈ 2E[log xJ0 ]− 2E[log xJτ ]. (3.8)

Distance xJ in the joint at τ = 0 is just x0, the distance between two k n.n. in the past.

We now conjecture that there exists an interval of τ where the distance in the joint will be

realised almost exclusively by the distance in the future, xτ . If the motion is chaotic with

Lyapunov exponent λ,

log xτ ≈ λτ + log x0, (3.9)

so

H0
J −Hτ

J ≈ 2E[log x0]− 2λτ − 2E[log x0], (3.10)

and hence

H0
J −Hτ

J ≈ −2λτ. (3.11)

So ∆I ≈ −2λτ . Approximating the gradient of I with τ at τ = 0 we derive the bound

d(I(τ))

dτ
≈ ∆I

τ
≈ −2λ. (3.12)
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In other words, the negative linear approximation should be roughly equal to twice the Lay-

punov exponent, for small time separations τ . That is what we indeed see when comparing

figures 3.7 with 3.8.

There is an interesting point to be made here. The less global periodicity there

is, the faster PMI converges to its asymptotic value. Here we used the same range of τ to

estimate the gradient, independent of r. Therefore the errors at relatively small r values are

significantly larger (compare subgraphs of 3.6). This analysis could therefore be made much

more precise by simply estimating the gradient from the entirety of the linear range. Since

this involves finding the upper limit of the latter it could also then be used to investigate

the speed of convergence as a function of r.
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3.2 Resolution-Dependent PMI

It is clear that at all times I(τ) depends on the resolution. We have seen how it effectively

puts an upper limit on the observed periodicity. It does not matter so much in the three

simple cases we have observed: periodic behaviour, fully-mixing behaviour at r = 4, and

the hybrid case. However, for the accumulation points PMI, which we have seen to be the

logarithm of the overall period, thus becomes simply infinity. New way of interpreting the

results is needed. The manner in which I(τ) changes with resolution is directly related to

the information dimension of the underlying spaces. Here we derive this and express our

results in terms of a new quantity, the Information codimension, which we introduce in

order to express the resolution in terms most appropriate to the preferred estimator.

PMI for Fractal Measures

The differential entropy H is defined as

H[ρ] = −
∫

x∈E
log ρ(x)ρ(x)ddx, (3.13)

where E be Lebesgue-measurable, and ρ is a normalised continuous measure density on E.

This implies that E is a subset of Rd, and is either bounded or has finite measure. We can

also partition E into cells of size v =
∫
x∈cell d

dx, and define a discrete measure µ on the

partition P through

µi =

∫

x∈Ci
ρ(x)ddx,

where P = {C1, C2, ..Cm}.
The number of such cells is then m =

∫
x∈E d

dx/v.

The Shannon (discrete) entropy of µ is then

S(µ) = −
m∑

i=1

µi logµi. (3.14)

To emphasize the fact that µ is a result of a partition, and that hence S depends on the

partition P , we will sometimes write Sε, where ε = v−d.
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Linking Discrete and Continuous Entropy forms

By the Integral Mean Value Theorem, assuming ρ is continuous, there exist points xi ∈ Ci
such that µi = ρiv, where ρi = ρ(xi). For v > 0

S(µ) = −
m∑

i=1

ρiv log(ρiv) = −
m∑

i=1

(ρiv log ρi + ρiv log v)

Then from (3.13), for v small we have

S(µ) ≈ H[ρ]− log v.

If, however, ρ is not assumed to be continuous, then µi = ρiv defines the effective value of

ρi as an approximation of µi for that box. We can then define

H[ρ] = S(µ) + log v.

Since in a d-dimensional space v gets replaced by εd, this can be written as

H[ρ] = S(µ) + d log ε. (3.15)

Thus H[ρ] can diverge with resolution.

Entropy in terms of resolution

Information dimension D of a distribution ρ is defined as

D = lim
ε→0

∑
i µi logµi
log ε

or

D = lim
ε→0

−S(µ)

log ε
. (3.16)

Factorising (3.15),

H[ρ] = − log ε

(−S(µ)

log ε
− d
)
,

so that, substituting in (3.16), we get

H[ρ] ≈ (d−D) log ε, (3.17)
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as a statement of the manner in which H[ρ] changes with resolution for small ε limit. The

same is obtained through

H[ρ] = −
∑

i

µi log
[µi
εd

]
= d log ε−D log ε+ const. (3.18)

Recall Persistent Mutual Information is defined as

I(τ) = H[ρ0] +H[ρτ ]−H[ρ0,τ ]. (3.19)

Let the support spaces of the marginal distributions ρ0 and ρτ be partitioned by boxes of

linear size ε, as above. Then

H[ρ0] = d− log ε−D− log ε+ const, (3.20)

H[ρτ ] = d+ log ε−D+ log ε+ const, (3.21)

and

H[ρ0,τ ] = d−+ log ε−D−+ log ε+ const. (3.22)

Then

I(τ) = (d− + d+ − d−+) log ε− (D− +D+ −D−+) log ε+ const. (3.23)

Here d is the box-counting dimension of the embedding space. Since d−+ = d− + d+, we

have

I(τ) = − (D− +D+ −D−+) log ε+ const. (3.24)

Hence PMI scales with the logarithm of the characteristic partitioning size of the support

spaces.

There can potentially be some ambiguity in both notation and concepts for this case when

PMI increases with resolution indefinitely. One option is to say that the actual PMI is

then not defined, and I(τ) merely characterises the manner in which PMI tends to infinity.

Another is to consider the limit of I(τ)/ log(ε), which does exist. It is perhaps easiest to

do the former, especially since the marginal and joint D as defined in the limit of infinite

resolution will always be equal, an not very interesting limit. Therefore we keep in mind

when talking about I(τ) that we actually mean I(τ, resolution), and that the information
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dimensions merely express the manner in which quantities increase.

This can be rewritten in terms of another partitioning that better reflects the process

through which we obtain the results - through equipartioning of the probability distribution.

Entropy in terms of probability resolution

In the sections above we partitioned the space E into cells of equal volume. Since ρ is

arbitrary the µi need not be equal. Alternatively we can require the µi to all be equal, and

partition redE accordingly. The measure of every cell is then the reciprocal of the total

number of cells m, µi = µ̂ = 1/m ∀i.
Since cells are now allowed to vary in size, ε = εi, and eq (3.17) for entropy does not hold.

Recall that it was

H[ρ] = −
∑

c

µc log
[µc
εd

]
= d log ε−D log ε+ const (3.25)

It can be rewritten in terms of µ̂ through inverting eq (3.16):

log ε≈−S(µ)

D
.

Since µ is now an equidistribution, its discrete entropy S(µ) is equal to the logarithm of

the number of underlying cells, logm, and so

log ε ≈ − logm

D
,

leading to

H[ρ] ≈ −(d−D)

D
logm.

The number of cells m can be though of as controlling the resolution of probability ρ.

PMI through Local Probability Resolution

It follows that

I(τ) =

(
D− +D+ −D−+

D−+

)
logm+ const. (3.26)

Here m is the number of cells that contain equal probability. The K-G estimator we use

for Shannon entropies has for a parameter the number k of nearest neighbours to which

each point looks. Thus a set k corresponds to an effective partitioning of the probability
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distribution into N/k cells of weight k/N . Hence PMI can be rewritten as

I(τ) = I(τ0) + Γ log

(
N

k

)
, (3.27)

where we define

Γ(N, k) =
(D− +D+ −D−+)

D−+
(3.28)

as the information codimension. Note that here we admit the possible dependence of the

relevant information dimensions on τ , which implicitly defines the underlying measures.

Thus for systems whose joint information dimension is not just the sum of the

marginal ones Persistent Mutual Information should scale logarithmically with probability

resolution. This is in contrast to ‘simple’ regimes of dissipative systems like logistic map

studied above. When the attractor consists of a finite number of points as is the case for

period-p cycle, information dimensions of all the support spaces are the same (which also

happen to be zero). For any τ , which due to our definition of PPMI does not have to be

finite, higher sample sizes only ensure PMI converges to log(p) in a manner specific to the

estimator used.

This can be interpreted in terms of ensembles. Flat initial distribution sampled with N

points can be considered as being equivalent to starting with N closed systems. By the

optimal ‘lack of information’ argument we then assume that the distribution out of which

the systems were picked was flat. PMI then corresponds to the average information about

the future that would be obtained should one of the systems be examined. For non-fractal

attractors increasing the number of samples becomes, after some N∗ e.g.> p pointless, in

the sense that this average value would not change. PMI dependency on sample size of

this form would manifest itself in the average information about the possible future state

increasing without end at a logarithmic rate.

3.2.1 Resolution Dependency at the Accumulation Point

We now compute the PMI at the period-doubling accumulation point rc. Figure 3.9 shows

the result for a variety of resolution ranges that we control by varying k (computationally

faster than increasing N , it at the same time lowers the errors).

The expected slope is that of unity. The attractor is a Cantor set with some infor-

86



2 4 6 8 10 12 14

2

4

6

8

10

12

Resolution

P
M

I

 

 
N = 100

N = 200

N = 500

N = 1000

N = 2000

N = 5000

N = 10000

N = 20000

N = 50000

N = 100000

N = 200000

N = 500000

Figure 3.9: Kraskov-Grassberger estimate of PMI as a function of the resolution Ψ(N)−Ψ(k)
at the accumulation point rc of the logistic map, with added noise of order 10−12. Settling
time and time gap τ are all 104; nearest neighbour index 1 ≤ k ≤ 20.

mation dimension D, D = D− = D+ = D−+. Therefore the information codimension Γ,

which controls the slope, is simply unity.

We do indeed see that the trends follow the slope of unity, but then begin to decline. This

is unexpected in that an apparent decline can be interpreted as the start of convergence

towards some finite PMI value. By definition at rc the periodicity is infinite and thus PMI

should not stop increasing.

A possible reason is that the (floored) finite precision value with which we approximate rc

will necessarily give a finite periodicity. Yet when this is tried for the very low approxima-

tions to rc, associated with periodicities visible on the scales given above, PMI converges in

an abrupt manner, very different to the one observed in figure 3.9. Also here rc is given to

94 decimal places, which by trial and error we know to give the period (whether regular or

chaotic) higher than the range of observed ordinate values.

Neither is it the case that our resolution limits the ‘visible’ periodic dependencies, since

then PMI would settle with resolution in the same sudden manner as described above.

In order to understand what factors effect the change in slope we vary several pa-

rameters. Figure 3.10 shows results for higher values of ts, and τ . Plots are seen to follow

the expected slope for longer, and from examining further variations we conclude that the
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Figure 3.10: Same details and legend as for figure 3.9, but settling time and time gap τ are
all 109.

main cause of this is τ .

The reason why increasing τ leads us to resolve higher periodicities lies in the specific way

we collect data. The methodology section above justified using a single trajectory and tak-

ing consecutive time steps as independent initial positions on the attractor. We thus have

at most (N + τ) sequential datapoints, of which we collect, again, at most 2N .

The way the trajectory arranges itself on the attractor is related to its fractal nature. Ev-

ery second point of the trajectory will be in some portion of the state space. Every fourth

point will come back closer. Every eighth point will be even closer. Thus to detect higher

periodicities a longer and longer trajectory is needed. As a result the maximum resolvable

periodic will be a function of (N + τ). The further the ‘past’ and ‘future’ are separated,

the better will be the resolution of the underlying attractor. In order to see the plots begin

to deviate from the expect slope a higher resolution range is needed for a higher τ .

It is also interesting to see the step-wise manner in which the plots increase for the low end

of the resolution scale. To some extent this is equivalent to the oversampling part of the

plots when PMI was computed using the binning strategies. Here increasing the resolution

only changes the PMI when the effective neighbourhood size is small enough to only resolve

the higher periodicities. The fact that the jump appears discontinuous indicates that there

is a spatial gap between points that are near to each other every pth step and those that
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are near to each other every (p + 1)th step. Especially in the first figure 3.9 it is possible

to see that the jumps correspond to I(τ) = log(p), as expected from the period-doubling

behaviour.
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3.3 Permanently Persistent Mutual Information

PPMI, or permanently persistent mutual information, is defined as

I(∞) = lim
τ→∞

I(τ). (3.29)

It represents the information that does not get eroded away but is ultimately preserved

across time. We consider PPMI in the context of measures of (strong) emergence. This

section relates the observed PMI for the logistic map to PPMI, and concludes with the

corresponding analysis of the tent map as another 1D example.

For the majority of the logistic map regimes I(τ, ts, resolution) decayed with τ to

some constant asymptotic value. The speed of this is varied but was generally much slower

at values of r corresponding to chaotic bands of high periodicity. Also, unless the settling

time was high enough PMI would display (otherwise transient) peaks after period-doublings.

Convergence speed also varied between chaotic and regular regimes - being almost instan-

taneous in the latter. We conclude that for most regimes the limit defined in the equation

above does in fact exist, though when the underlying measures are fractal the definition

above needs to be supplemented by some (finite) resolution at which the infinite τ limit is

taken. We make the same assumption for the tent map.

3.3.1 Example 1: the Logistic Map

We associate the plot in figure 3.1 with PPMI, since it is done for a τ value large enough

for PMI to have converged (checked heuristically). As expected, for each r it reflects the

extent of the overall periodicity. Figure 3.11 shows the main qualitative result in the PPMI

of the logistic map: the symmetry with which periodicity is picked up on both sides of

the period-doubling accumulation point. We clearly see the doubling of the period as r

approaches rc. Equally well we see PPMI decreasing in steps of the same magnitude. These

represent the bands merging together.

PPMI also picks up an interesting feature in the manner these mergers happen. Looking at

the bifurcation diagram it is not unreasonable to assume that there exists an overlap region

between one merger and the next where more and more of one band pair covers the same

state space as another. In other words, that the range of trajectory motion will, for that

band, increase with r.
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Figure 3.11: Kraskov-Grassberger estimate of PMI across τ = 105 iterations for the logistic
map after settling time of 105, with noise of order 10−12. Sample size N = 5000, estimate
done at nearest neighbour index k = 4. The dotted line is drawn at ≈ rc, the onset of chaos.
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Figure 3.3 shows that when two bands (albeit of random numbers, but here PMI

treats chaos as noise) increase their overlap the PMI changes to zero also smoothly. An-

alytically this is accounted for through a region of the joint supports the overlap region

and hence has double the weight. That is not what happens after bands merge together.

PMI immediately jumps to a value corresponding to half the periodicity, indicating that

the amount of new ‘space’ available to the trajectory is, if not the entire other band itself,

at least constant throughout that r range.

This analysis also allows us to see that the chaotic regime is infinitely rich in its

behaviour. Figure 3.12 illustrates what PPMI can pick up by focusing on two ranges of

r > rc values.

The green section is very narrow. To appreciate its position fully we show it again

in fig. 3.12(c), which is a more detailed picture of the chaotic regime. The period-three

structure is clearly visible. It is now plain that our section of interest lies on the right-

hand, ‘chaotic’ side of the period-three structure. Before moving on note that the left-hand

side of the structure displays period doubling, jumping from 3 to 6 (in a periodic manner,

though that of course is not evident from PMI). Figure 3.12(d) shows PMI of the section

in question, normalised by log(3). The background of 1 corresponds to the period-three

regime. We then observe one period tripling (to log(9)) followed by two period doublings

(to log(18) and log(36)).

This trend of periodicity tripling on the right-hand side of a peak is also observed in fig.

3.12(c), which shows a structure built on a band-two chaos. The two initial steps corre-

spond, just as above, to a tripling followed by a doubling of the period.

PPMI is thus a powerful tool for detecting such periodicities. There is no increase in

computational cost, the only limit being the width of the increment δr. Its lower (unob-

tainable) bound is given by the machine-epsilon, but in practice the numerical nature of

each step in the algorithm that makes the sampled map many-to-one will somewhat raise it.
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(b) Zooming in on the Period 3 structure to better see the
blue delineation.
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(c) Inside the section delineated by green above.
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(d) Inside the section delineated by blue in the two plots
above.

Figure 3.12: Kraskov-Grassberger estimate of PMI across τ = 106 iterations for 6 regimes
of the logistic map after settling time of 1010, with noise of order 10−12. Unless stated
otherwise the drawn lines are normalised by the same unit (log(2) or log(3)) as the data,
making the argument in the logarithm equal to the periodicity.
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Figure 3.13: The Divergence and the Bifurcation Diagrams for the tent map, taken from
Rickert and Klebanoff [1999]. Here µ = 2c.

3.3.2 Example 2: the Tent Map

The tent map is a linear approximation to the logistic map that displays some similar

features such as period-doubling.

xn+1 =




µxn, xn < 1/2

µ(1− xn) xn ≥ 1/2,

(3.30)

The parameter µ can be positive or negative. For 0 ≤ µ < 1 all orbits are attracted to zero,

at µ = 1 the attractor is [0, 1/2]. For 1 ≤ µ < 2, xi ∈ [0, 1]∀i. Excluding 1 also excludes any

periodic motion, and until µ = 2 the periodicity of the bands halves in the same manner as

in the logistic map. At higher µ trajectories are no longer confined.

Negative µ shows a qualitatively similar picture of period-doubling, with two key differences.

The first is that for −2 < µ ≤ −1 all orbits are contained within [µ/2, µ2/2], which is easy

to see by considering the cone that represents that map and is produced by negative µ. The

second difference is that now at µ = −1 there is a set of points that converges to zero, and

the second set that is periodic with period 2.

Here we study values of µ for which the trajectories do not diverge. This corresponds to

the regions that the Divergence diagram in figure 3.13 shows in black.

Figure 3.14 shows PMI for the tent map for a range of positive and negative µ-

parameter values where trajectories do not diverge. As expected it picks up the global

periodicity p, rendering I(∞) = log(p).

When µ is in the interval between the two figures, −1 < µ < 1, all orbits are attracted to
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(a) −2 < µ ≤ −1 (b) 1 ≤ µ < 2

Figure 3.14: Kraskov-Grassberger estimate of PMI for the (symmetric) tent map F (µ) with
the respective bifurcation diagrams. The latter computed at t = settling time = 104. Time
gap τ = 104, sample size N = 104, PMI found as nearest neighbour index k = 5, as an
average of three runs (errors miniscule compared to plot). Added noise is of order 10−12.
PMI I(τ, µ = −1) = log(2) is circled. Note the relatively small number of points used for
each µ in the bifurcation diagrams rendered the µ = −1, 1 attractors as having holes on the
visible scale, which is not the case. The size of the attracting domain varies.

fixed point at 0, and PMI (as logarithm of a unit period) would, respectively, be also equal

to 0. It is also 0 when all the chaotic bands have merged together and any periodicity is no

longer resolvable. We do not anticipate existence of any periodicity at such, since it must

then, as mod(µ) increases, occur suddenly and be of at least log(N).

Consider behaviour of the tent map at µ = −1 and µ = 1. There the bifurcation

diagram shows seemingly similar behaviour, yet PMI values differ. The would-be continuous

lines covering different intervals do in fact result from two different behaviours: at µ = 1

almost all points below x = 1/2 are attracting points. This lack of periodicity gives the

observed PMI of 0. µ = −1, on the other hand, forces the existence of an (observably large)

range of points with period 2, which corresponds to a log(2) we see in the PMI plot below.

Other than that, there is an almost exact correspondence between the PMI for positive and

negative µ - notice that the magnitude of µ at stepping values coincide.

As an aside, the log(2) point at µ = −1 can be thrown away if for negative µ the map gets

substituted by two consecutive iterations. The result in shown in figure 3.15. First, all the

period-two behaviour now gives a PMI of zero. Second, we obtain extra evidence for the

conjecture that once the bands merge there is mixing on the full-scale - that the entirety of

the state space accorded to the other ‘arm’ is no available to the original trajectory. This

creates the non-smooth change in the bifurcation diagram.
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Figure 3.15: Same as figure 3.14(a) but only registering every second iteration.

This is the key feature that separate the bifurcation diagram from the PMI - the

former is essentially a marginal quantifier, whereas PMI is able to pick out the dependencies

present in the attractor.

We can associate the PMI shown in the figures above to PPMI. The caveats here are the

same as in the logistic map case, that is, the range of µ values for which PMI is computed

does not cover the higher periodicities (close to µ = −1, 1), and so to associate the graphs

with PPMI the steps have to be, in logarithmic fashion, mentally continued up to infinity.

Variation of parameters such as settling time, τ , or resolution does not alter the figures,

neither are they obscured by peaks of slow relaxation that were present in the logistic map

parameters around period-doubling values.

3.3.3 PPMI as a measure of Emergence

We now discuss the difference between PMI and mutual information between the past and

future of a system that is not yet settled, i.e. where the initial ensemble distribution is over

the domain of the logistic map. This we do through considering a simplest case of a period

2 attractor.

Let B(A) be the basin of attraction of point x = A at some n = τ , and its complement
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B(A′) = X/B(A) that of x = A′. Then

I(τ) = S(µ0 (B(A)) , (3.31)

where µ0 is the initial measure, and S(a) = −a log(a) − (1 − a) log(1 − a) is the binary

entropy function. If the initial measure is uniform over the attractor - as ranged by a single

trajectory - then, as we have seen, µ0 (B(A)) = µ0 (B(A′)) = 1/2, and I = log 2 indepen-

dent of τ . If, however, our initial state of absolute lack of knowledge is about the unsettled

system, the initial distribution will be over the whole map domain. As such, it will depend

on the Borel measure of the basins.

In the logistic map µ0 (B(A)) does not in general equal to µ0 (B(A′)); given absolute inital

uncertainty more orbits will end up in one phase than another. As such I(τ) will, in accor-

dance with the concave S, decrease to below log 2.

As such, for any period-p regime, I(τ) would not give the overall periodicity, but rather -

especially if p > 2 - a complex entanglement of the weights of the basins of attraction.

On the one side this is a valid measure for this scenario. It is our choice to focus on the

settled system, and more importantly to presume to extract the information from a single

trajectory only. This is in line with the definition of strong emergence we choose to adopt,

that is, forecastability rather than predictability. On this level the periodic behaviour is

directly comparable to the banded chaos regimes, since what they have in common is the

phase.

Chaos is sometimes defined as motion that loses information about the initial con-

dition in a very specific manner. The way it happens a finitely resolved past should hold

absolutely no information about the future that is removed by some finite τl. PMI, with

its emphasis on distributions over ensembles, places an uncertainty on the initial condition,

effectively changing a perfectly resolved past into points with finite resolution. PPMI then

considers the future removed further than τl. We know that causal correlations that are only

the result of chaos will not persist for longer than this limit. Therefore PPMI, independent

of the resolution, does not see chaos, and treats it as noise. Resolution begins to matter

when there are structures the trajectories remember for all times.

In contrast to the bifurcation diagrams PPMI is thus directly informative about the clock.

In the tent map, it differentiates between the ostensibly similar µ = −1 and µ = 1 cases,

97



but does not do so for a broader set of µ values. Contrast PPMI to the clearly different

bifurcation diagrams in figure 3.14 which neverless, by this measure, turn out to be of sys-

tems with the same forecast power. We conclude that in the Tent map PPMI would be a

good measure of strong emergence.

In general, in the maps where the attractor essentially introduces a phase difference, it is

exactly that information that could be potentially of use in order to forecast the future.

Any information about a finite initial condition will be lost after a finite number of itera-

tions. Thus, given some uncertainty in the knowledge of the system in the first place, it is

the periodicity that renders prediction possible. For any system with no structure in the

motion other than regularity/chaos and some periodicity, PPMI is thus the logarithm of

the total number of available phases.
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Chapter 4

Persistent Mutual Information in

the Standard Map
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4.1 General Behaviour and Error Analysis

Our aim is to estimate Persistent Mutual Information for the system evolving under the

standard map. In the Introduction we described the main features of this map that often

functions as a toy model, an archetype of area-preserving dynamical systems. Here we

conceive of an ensemble of such systems whose states at time t are distributed according

to ρt. We will assume a uniform ρ0 and use the entropy deficit expression for the PMI (eq.

(2.1)), which is thus defined as

I(τ) = H[ρ0] +H[ρτ ]−H[ρ0,τ ], (4.1)

where H is the Shannon entropy of eq. (1.4) and ρ0,τ the joint distribution.

More formally, let X = [0, 2π)2 be the state space of the standard map, where we associate

the sides and consider dynamics on a torus. This can be turned into a measurable space,

and since X is continuous these measures can be expressed through densities, or probability

distributions, and associated with the probability distribution over the ensemble. Let ρ0

and ρτ be the initial and final densities on X,

ρτ = F τρ0, (4.2)

where F is the standard map evolution operator on densities. The joint distribution ρ0,τ is

then obtained through considering the conditional.

Eq. (4.1) is particularly suitable for area-preserving systems such as the standard map. A

flat initial distribution stays flat for all times, which means that normalising the linear size

of X makes contribution from the marginal entropies disappear, leaving

I(τ) = −H[ρ0,τ ]. (4.3)

Thus Persistent Mutual Information in normalised, area-preserving (Hamiltonian) continu-

ous systems is simply the entropy of the joint distribution.

The joint distribution ρ0,τ cannot be obtained analytically. Entropies and the various other

mean values of interest have to be additionally estimated using samples drawn from ρ0,τ .

In this sense eq. (4.3) simplifies computation of PMI as far as current estimator research is

concerned: unbiased entropy estimators are more common and their properties understood

better than estimators of mutual information with their potentially additive errors. Thus,
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Figure 4.1: PMI found using the K-G estimator with nearest neighbour indices 1 ≤ k ≤ 5
for various sample sizes N . Here K = 0.97≈ Kc, τ = 100.

given joint data

X0,τ ∼ ρ0,τ , (4.4)

X0,τ = X0,τ (N, τ), and an unbiased estimator Ĥ,

H[ρ0,τ ] = lim
N→∞

Ĥ(X0,τ ), (4.5)

and hence

I(τ) = − lim
N→∞

Ĥ(X0,τ ). (4.6)

Thus PMI is computed by estimating the entropy from a set of ordered pairs of points and

their corresponding τ th mappings.

We estimate PMI at K ≈ Kc for several sample sizes N and some τ . Figure 4.1 shows

the result computed for the first five nearest neighbour indices k. As resolution is increased

PMI does not converge to some asymptotic value but instead increases indefinitely. The

framework for situations where this occurs was given in the previous section, where it was
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found that PMI can be expressed as:

I(τ) = I0 + Γ log

(
N

k

)
. (4.7)

The resolution variable in the K-G estimator is expressed as Ψ(N)−Ψ(k), where Ψ is the

digamma function - the logarithmic derivative of (n − 1)! for some argument n. Here for

convenience we adopt the same notation, bringing out the intrinsic dependency of nearest

neighbour statistics on resolution, and avoiding errors due to conflicting representations.

The plots in figure 4.1 are in line with each other, confirming that I(N, k) ≈ I(Ψ(N)−Ψ(k)),

and hence that eq. (4.7) can be written as I(N, k) ≈ I0 − Γ(Ψ(N) − Ψ(k)) (the small

variation at the lower end of the resolution range is due to small size fluctuations, which

makes different realisations with same N deviate further than the minor deviation seen for

the different N plots).

The information codimension Γ is the slope of PMI with resolution,

Γ(N, k) =
(D− +D+ −D−+)

D−+
. (4.8)

The marginal and joint information dimensions Dm/J are defined in eq. (3.16) by assuming

a linear relation between the partition-induced (discrete) Shannon entropy and the effective

partition cell size. Here the marginal information dimensions will always be assumed to be

equal to their box-counting dimensions (in the next section we check that it is reasonable

to take the marginal entropies to be zero), and so

Γ(N, k) =
(4−D−+)

D−+
. (4.9)

Thus for information dimensions D to be defined the PMI has to scale linearly with

resolution in the limit of high resolution. If PMI is nonlinear, then D are not defined, and

hence neither is Γ. However, we will see that the high resolution limit of PMI scaling is,

though indeed linear, entirely non-interesting (corresponding to the fully-causal system),

and that all the curious changes occur at finite resolutions. Therefore in this work we

compute Γ as simply the linear gradient, whilst being careful to distinguish cases when

this assumption is valid to cases when it is not, and actually the PMI scaling is nonlinear.

Just as stated before, we take Γ and the information dimensions to be indicative of the

manner in which PMI increases, and thus we can talk about these quantities for a range of
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Figure 4.2: Persistent Mutual Information in the standard map at τ = 100 for different
nonlinearity parameters K (K = 0 corresponds to the fully-integrable case, K = 2π to
the fully-chaotic case at resolvable scales, and the critical value Kc ≈ 0.97). The legend is
arranged first by ‘+’ (sample size 1000 ≤ N ≤ 49000, nearest neighbour count 1 ≤ k < 5),
then ‘o’ (sample size 1000 ≤ N ≤ 29000, 5 ≤ k ≤ 50). The yellow and green circles are the
continuation of the respective ‘+’ lines with K = 3 and K = 4.
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resolutions.

Figure 4.2 shows Persistent Mutual Information in the standard map at τ = 100. A range

of N and k values are used, and all coincide to confirm the scaling of PMI with resolution.

For this τ the rates with which PMI increases with resolution vary with K. When K = 2π

the map is, as far as we can see, fully chaotic, and PMI is zero. This is in line with what

was observed for the logistic map at r = 4, and it implies that at τ = 100 even for largest

resolution on the graph the correlations have all decayed to zero.

There does not seem to be a value of K < 2π for which PMI converges with resolution. This

means that the given scales do not contain any globally stable behavioural trend that would

lead to some aspects of trajectories persisting over time. Instead PMI appears to increase

indefinitely, with a rate that can be approximated by the logarithm of the probability

resolution (corresponding to the effective number of boxes with which the estimator views

the joint probability distribution).

The interesting manner in which PMI varies with resolution for different K is better seen

through considering Γ directly as a function of K. Increasing resolution is equivalent to

specifying the past and future positions in less uncertain terms. Better knowledge of the

past can only improve the guesses made about the future, that is to say that PMI cannot

decrease with resolution. For the chaotic case a Γ(K) of zero rightly means that however

much one improves the level of resolution with which the initial position is specified, after

some finite time it would still not make any difference for the purposes of prediction. By

implication, for any K and finite τ there exists a resolution beyond which Γ(K) is greater

than zero. This would be true for any deterministic dynamical system.

A higher Γ(K) means that the system better converts the same gain in the knowledge of

initial conditions to information about the future, in other words that it retains predictive

information better. Coming back to the standard map, as K increases the KAM tori begin

to break down. The size of the chaotic region increases as the number of quasi-periodic

trajectories goes down. If one naively associates the ‘amount’ of chaos with the extent of

unpredictability we would expect Γ(K) to decrease with higher K.

That is indeed what we see when K increases beyond some K∗ ≤ 1.5, when Γ(K) falls

down to zero. The surprising feature is that as K increases up to K∗, Γ(K) rises as well.

This is equivalent to saying that knowledge about the system evolution obtained from a

certain sample size would be greater the more nonlinear a system is. We interpret this

statement by recalling the caveat that system evolution refers to the state at a specific time
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τ in the future. It is also known that the increase in the level of chaoticity at subcritical K

is accompanied by abnormally slow relaxation times. The increase in the number of chaotic

trajectories that comes about by breaking up the KAM tori is thus offset by a general mode

of stickiness that stops the - lethal to the memory of initial state - exponential divergence.

In reality chaotic trajectories spend a long time barely moving apart (being stuck), then

diverging with some Lyapunov exponent, then being stuck again.

This apparent peak in Γ that occurs at some K∗ < Kc is the first of the two main features

that will be the focus of this chapter. The second concerns the linearity of PMI plots itself,

i.e. the extent to which our linear approximations capture the more ‘in-depth’ behaviour

of mutual information. In the resolution range of figure 4.2 the slopes of PMI only appear

linear for both very small and very large values of K. Around Kc - this is better seen in

figure 4.1 - PMI is convex. This could of course be suggestive of the existence of more than

one linear regime. Moreover, all these features could, and do, vary with τ . PMI can thus

be investigated through Γ, which becomes a function of K, N , and τ .

Before proceeding we investigate the errors implicit in our assumptions and methodology.

Methodology and Errors

There are several levels at which errors could come into this procedure, but these will not

necessarily be carried through or cause large deviations from the true answers. The first

concerns the validity of eq. (4.4), i.e. being certain, to within some error, that the numeri-

cally obtained data samples ρ0,τ . This implies an assurance that it is indeed the standard

map that is being investigated, and not some other evolution rule (although not strictly

true, the implication of eq. (4.4) not holding is that the averages computed with respect to

the actual distribution will be different than the averages computed with respect to ρ0,τ ). A

side product of this failure could be the breakdown of eq. (4.3), though that is not strictly

necessary, since two different distributions may have equal marginals. If eq. (4.3) does not

hold, eq. (4.4) does not either, but again that does imply that some averages are not equal

(hence eq. (4.6) might still stand). The final point concerns the behaviour of the estimator,

i.e. eq. (4.5). This includes fractal cases when the Shannon entropy scales as logarithm of

the resolution, and broadly speaking concerns predictability of estimator behaviour for the

range of distributions considered.

Section 4.1.1 focuses on the validity of statement (4.4). It attempts to clearly identify
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the assumptions we will take for granted. Subsection 4.1.1 investigates some alternatives,

at the same time confirming reasonability of eq. (4.3).

4.1.1 Sampling the Joint Distribution of the Standard Map

The procedure for computing PMI detailed above contains a step that requires a dataset

sampled from the joint distribution of the standard map (with the implied dependency on

a flat prior and the τ th iterate), ρ0,τ . Yet other steps indicate that the correspondence

between ρ0,τ and the effective distribution being sampled, ρ̂0,τ , need only go so far as to

produce comparable entropies (it is unlikely that different datasets with otherwise similar

joint and marginal entropies would actually give different entropies if the latter are esti-

mated using a numerical procedure; but would depend on the specifics of the estimator).

The marginal entropies of ρ0,τ are known analytically to be zero, in fact a requirement in

eq. (4.3). It is hence possible to check whether the same is true for marginal entropies of

ρ̂0,τ . Here, in the event of a successful outcome, the straightforward method of obtaining

assurance stops, and in order to understand the extent to which ρ̂0,τ could be different to

ρ0,τ we must examine in depth the process that generates the dataset.

Using the same notation as for the logistic map, let X0 = {X0
i : i = 1 .. N} be a set

of initial configurations of the standard map F , X0
i ∼ ρ0 ∀i. If the ‘future’ dataset consists

of the iterated points

Xτ (N) = {Xτ
i : Xτ

i = F τX0
i ∀X0

i ∈ X0}, (4.10)

and the ‘joint’ of a set of ordered pairs

X0,τ (N) = {
(
X0
i , X

τ
i

)
: Xτ

i = F τX0
i ∀X0

i ∈ X0}, (4.11)

then X0,τ
i ∼ ρ0,τ (N, τ).

The two main reasons why the obtained joint data could fail to be distributed ac-

cording to ρ0,τ involve first, the set of obtainable initial points, and second, the numerical

representation of the process that makes up F . In other words, that the ‘wrong’ points may

be chosen to start with, and then evolved under a mapping slightly different to the original.

These two notions, especially the first, are not that problematic if the purpose is to under-
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stand how PMI behaves given some data that is at least partially understood, since after

all X0 will be drawn from ρ0, just as required. These issues only begin to be important if

we then wish to relate the observed PMI to features of the map derived analytically.

Typicality of Numerical Trajectories

We examine the first of these. Our aim is to use PMI in order to quantify aspects of map

behaviour as realised through typical trajectories (the distribution of their starting points

being ρ0, the initial distribution). Yet it is not obvious that the set of actual initial points

X0 is in any way representative of the ‘true’ trajectories initialised in X = [0, 1)2, the map

domain. Assumptions have to be made first. Here we review sources of potential differences.

Let (Xn
r )n∈Z be an expanding family of sets contained in X, where Xn

r is a set of rational

numbers defined by n decimal places, and Xn′
r ⊂ Xn>n′

r . Specifics of implementation

impose a limit m ∈ Z on the ‘precision’ of starting conditions s.t. the set of initial points

X0 becomes wholly contained within Xm
r ,

X0 ⊂ Xm
r . (4.12)

m depends on the choice of available architecture.

There will also be an additional limitation arising out of the particular sampling method

used: the set of available starting conditions will be determined by the random number

generator:

X0 ⊂ Xm
RNG. (4.13)

Xm
RNG will vary depending on the seed, the size of X0, and possibly other parameters. The

equality can be exact if |X0| exceeds the RNG periodicity.

Hence there is a series of nested sets,

X0 ⊂ Xm
RNG ⊂ Xm

r ⊂ X, (4.14)

where X0 is some set of realisable initial conditions, and X is the map domain.

The second inequality is unavoidable but perhaps not drastic since the set on the LHS can

be changed by changing the RNG used. No single RNG will produce an equality, but a

combination is likely to explore a substantial range of Xm
r .

It is the last inequality that is problematic. Forgetting for the time being that the discrete
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Xm
r does not admit a probability density, estimated entropies computed from points sampled

uniformly in Xm
r and X are likely to be the same, since the distribution of rational numbers

with n decimal places is unlikely to constrain such relatively small sample sizes (N will not

go higher than order of millions, whilst n will at all times exceed 6 and will, in fact, be

closer to the double precision machine epsilon of 10−16). Yet we do not know whether the

selected orbits are typical of the standard map behaviour. Since this representability is the

reason behind the flat ρ0 requirement, what we would in fact end up analysing (had we a

perfect numerical representation of F ) is a map defined by its typicality as given by Xm
r .

This in a way is inescapable and forms a common tacit understanding when using dynamical

systems data. In our work we take it as given and proceed to associate these trajectories

with ones typical of the standard map. As we shall see this limitation still preserves at

least some properties of the standard map, such as area conservation and co-existence of

various trajectory types, so the typicality argument does not, at least on first glance, fail

the reasonability test.

Precision in Implementation of the Standard Map

The second reason why the data may fail to be sampled from ρ0,τ is a consequence of the

inevitable errors associated with approximating F : X → X by a map on a set of rationals,

F̂ : Xm
r → Xm

r . These will be compounded through a large number of iterates τ , and

as a result, especially in chaotic regimes, the final iterate may be significantly different to

its analytical counterpart. In this section we examine the source of these errors as well as

conjecture that possible shadowing properties might still save statistical averages.

We wish to approximate the standard map with double-precision operations. Let

F̂ = Fp be the standard map machine affected using floating-point arithmetic of precision p.

Because of the nature of the map, whose regular regions are interwoven with chaotic ones,

we cannot say that out of two values of p the approximation Fp with the higher one will

map the point more closely to the true iterate. Such a statement would also fail because of

the periodic boundaries that might wrap a large enough error around. Yet it is instructive

to see whether the precision p makes a difference to the required averages, and if so, at what

number of iterations.

Consider first the entropy of the marginals, which for F should be zero. We examine the

marginal entropies for a range of sample sizes N and estimator parameter k that controls
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(b) Entropies of the Marginal Distributions. In
green, superimposed upon purple, are entropies of
the initial distribution in both double and long dou-
ble representations. Future entropies are shown in
sky blue (double) and red ( long double).

Figure 4.3: Effect of precision on the entropies for K = 1, τ = 104 and two sample sizes
N = 25000 and N = 500000 as a function of probability resolution where 1 ≤ k ≤ 50
is an estimator parameter that defines the neighbourhood in terms of number of nearest
neighbours. Results are averages over 3 runs (in 4.3(a) error bars are too small to be visible).
Same initial dataset was used for both precisions, correspondingly giving superimposed
initial entropies. Estimating schemes used same precision as iterating schemes.

depth of sampling. This is done for K = 1, the value around which the Golden KAM

torus breaks down. The τ value considered - 104 - is located roughly in the middle of the

reasonable computational range.

Effect of precision on iteration and estimation was tested by creating two datasets,

Dd and Dld, of varying precision. These contain N pairs of initial and final (τ -iterated)

points. The set of initial points was chosen using a double random number generator

(Mersenne Twister), and depending on the precision of iteration the points were then cast

as long doubles and iterated with all the variables recast accordingly. For a given standard

map parameter K, sample size N and a τ , three pairs of each dataset are produced. Entropy

of each dataset is then estimated twice, using methods of different accuracies.

Figure 4.3(a) shows that precision of the estimating procedure does not play a role (at

least for this sample size range). The lack of change in neighbour statistics implies that

few points are that close to each other, i.e. some area is still being preserved (at least in

places). This is of course backed up by the fact that the ‘future’ entropies are very close to

zero.

We take it as a premise (which will be shown to be true later on) that implementing the

map with a higher precision scheme gives a better indication of the true trajectory (at least
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before the periodic boundaries begin to wrap the error around). This suggests existence of a

set of parameters for which Fld should produce a distribution that is closer to ρ0,τ than the

equivalent one produced by Fd. Comparing mean values of the two resultant distributions

would give an indication whether loss of information about particular trajectories neces-

sarily leads to a change in some global statistical properties. A negation of this statement

constitutes additional support for the assumption on which all our subsequent analysis relies

on, should we wish to relate our results to the standard map - that shadowing allows ρ̂0,τ

to retain significant information about the underlying dynamics.

This supposition is supported by fig.4.3, from which we can conclude that there exists a

regime and a time gap for which, as far as the given means are concerned, two standard map

implementation schemes that differ on precision sample some identical variant ˜ρ0,τ of the

joint distribution, and that as this distribution also happens to conserve the area-preserving

feature of the map, we might presume on it to do the same with other features of interest.

The fact that certain averages taken with respect to distributions modelled by maps imple-

mented with different precisions agree with each other points to some map property that

allows for the existence of a family of maps that give same averages.

Numerical route to Exact Solutions

We postulate that there exists a procedure to compute the true iterate of the standard

map given some starting conditions that is well defined in terms of the machine being used.

This process is computationally intensive and would only work for orbits whose complexity

(character combined with its length) does not in some way exceed the available machine

memory. We will show that it exists and then use it to assess the accuracy of floating-point

iteration schemes (since so far it has not been shown how the roughly three-digit gain that

long-double type gives reflects in the final outcomes).

The standard map F consists of a sequence of operations (O)j on a point in the state space

X = [0, 1)2. These can be performed to any desired accuracy using arbitrary precision

arithmetic. Let AP l,m be an arbitrary precision operator that performs these operations,

rounding each outcome to l decimal places, then rounding the final answer to m ≤ l decimal

places. F l,mAP then corresponds to the arbitrary precision version of the standard map.

The motivation behind rounding is to ensure that results are at all stages reproducible

independent of the machine architecture.
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Let Y l,m,τ = F l,m,τAP Y 0. We conjecture (true if F is continuous) that for all initial condition

X0 = Y 0, for any number of iterations τ , the ‘true’ iterate of the standard map F , Xτ =

F τX0, is given by

Xτ = lim
l,m→∞

Y l,m,τ , (4.15)

and, moreover, that given some ε we can find an m∗ such that for any l = m > m∗

d
(
Xτ , Y l,m,τ

)
≤ ε (4.16)

for all X0, where d is any (true if F is again, continuous.) metric on X. We take the

diagonal increase of l at the same time as m as the optimal way of taking the limit, given

unlimited resources but a cap on l and m. In practice we will only consider m = l, so the

arbitrary precision version of F can be written as F lAP .

Some justification for the above conjectures can be found in differences d(l,X0) between

iterates F lAP and F l+1
AP for some initial condition X0. Figure 4.4 shows the logarithm of d

plotted against l, the number of rounding digits after each operation.

From figure 4.4,

log10 d ≈ min
(
O(10−1),−l + c(τ,K)

)
, (4.17)

since the slopes appear constant and equal to unity. So at least for the trajectories (initial

conditions) that behave in this manner the distance d between the F l,τAP iterate and the true

solution of the F τ iterate is, by triangular inequality,

d ≤ Σ∞l d(l) ≤ Σ∞l 10−l10f(τ,K).

Here f is positive and incorporates both the min and c. Hence

d ≤ 10f(τ,K)10−l ln 10. (4.18)

Equation (4.18) suggests that for any positive f a precision l can be found so that the result

of the iterative map F l,τAP will be within d of some limiting point, which we identify with

the true solution.

Before proceeding further it is worth noting that the graphs shown in figure 4.4 already
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Figure 4.4: Differences using the maximum metric between outcomes of arbitrary precision
methods where operation rounding differs by one digit (lower value on the abscissa). Shown
for standard map K corresponding to increasing chaoticity. Each graph corresponds to one
initial condition.
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provide a hint about orbit complexity. The difference in the final error between iterates

with the same l but different τ can be interpreted as the separation of trajectories originally

of order 10−l apart. This turns eq. (4.17) into the usual statement

∆x(τ) ≈ ∆x(0) + c(τ,K), (4.19)

where logarithm of the final separation ∆x(τ) is just log10 d and logarithm of ∆x(0) is l.

There is therefore a sense in which c(τ,K) relates to the speed of trajectory divergence.

Qualitatively this statement is indeed supported by the graphs: consider K = 0. There the

change of c with τ is almost negligible. The trajectory the plots refer to (random initial

condition) is not chaotic, and the fact that plots do not collapse shows a potential differ-

ence between the Lyapunov exponent and c - the latter takes into account all cumulative

algebraic errors, and the former is a statement about the behaviour of the map itself. With

higher K the plots start to separate. The intercept, which we identify with c, thus changes

with τ , and as a further exercise it would be interesting to see exact rate of change. From eq.

(4.19), a linear dependency would mean c is proportional to the Lyapunov the exponent.

The main variables to look out for here are hence both the qualitative and quantitative

manner of the dependence of the intercept c on τ .

The trends shown in figure 4.4 provide us with an algorithm that for some initial

condition and number of iterates outputs the solution that is within a desired error d. The

underlying procedure increases l until the remaining cumulative error is less than d. This l

is thus dependent on trajectory complexity.

We now use this setup in order to gauge the extent to which the usual floating point arith-

metic fails to reproduce trajectories ostensibly associated with the given initial point - and

the consequent hope that it actually entails some other, unseen trajectory, thus retaining

some fundamental character of the map.

Consider the resolution range for some typical N = 105, k = 1. Under these parame-

ters the logarithm of the average distances between nearest neighbours at some t = τ is

log10(1/2)− (5/2). So if the distance between a solution and its true solution is d = 10−5,

then relatively speaking the error is larger than the average interneighbour distance between

two points in the ‘future’. We ask the question of roughly how large does the arbitrary pre-

cision accuracy l need to be in order to have the solution be closer to the true answer than
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d. Since the character of the trajectories may differ this can be made general by averaging
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Figure 4.5: Frequency count of precision l at which distance to true solution is less than
10−5 for N = 100 initial conditions.

over the trajectories. Figure 4.5 shows a sample spread h(l) of precision values required to

bring N = 100 solutions to within 10−5 of their true values.

The range of τ in these examples is limited by the computational effort that increases with

l. That in itself is indicative of how fast trajectories deviate from their true values - that

largest τ used is 100, far to the lower end of the typical range. At this τ computation of

true iterates has to be done with roughly 50 decimal places after each operation implicit in

the mapping. In some ways this is the worst case scenario, since here K = 2π, and there are

no regular trajectories. It becomes clear by implication that trajectories estimated using

floating point precision with its mere 16 d.p. will after τ that is of order 10 begin to deviate

from their true values.

K = 1 presents a slightly more optimistic picture. The mean value of l does not change
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much with τ , or rather it does but in a very slow manner. We will later see that K ≈ Kc is

characterised by very slow relaxation times, which is what is responsible for the apparent

stationarity with l. However, the mean is likely to shift to the right for any reasonable

value of τ . Also as we move away from Kc we expect, a posteriori, l to move faster, in both

K < Kc and K > Kc directions.

From these results it seems that the only possible gain from switching to long double

precision would be offset very quickly by τ . These results point to the conclusion that,

assuming floating-point arithmetic does preserve some features of the original map, then

the only reason why it would do so is if the deviations from ‘true’ orbits are somehow

systematic. After all PMI is only interested in the relative distances and not the absolute

values. Preservation of at least such features as the entropies of the marginals leads us to

suspect either shadowing, or systematic errors, or simply that the computational standard

map Fd is in some ways similar to the original. We thus accept the latter and assume

existence of a correspondence with the analytic standard map.

We established the main assumptions behind numerical computations of PMI in the

standard map. Throughout this work we will associate the range of behaviour evident in the

numerical trajectories with some ‘true’ system behaviour. This is done in spite of both the

finite range of the computationally available initial conditions, and the errors accumulated

from finite-precision arithmetic. From working with arbitrary-precision algorithms we see

that the accumulated errors of floating-point arithmetic accumulate so fast that the exact

precision of the variables makes no realistic differences; and hence that the only reason why

some functions of the distributions are conserved has to do with the resultant map somehow

having the same characteristics. Therefore we proceed using the double precision, for which

at least eq. (4.3) is true. We also use the K-G estimator and assume it is well-behaved so

that eq. (4.5) holds, and leave any discussion about that to the concluding sections.
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Figure 4.6: Information Codimension Γ in the standard map vs nonlinearity parameter K.
Computed from nearest neighbour count 1 ≤ k ≤ 5 and averaged over three runs.

4.2 Features of Γ

We are now in a position to investigate Γ with some degree of certainty in our computations.

We approximate Γ with a linear slope of PMI with Ψ(N)−Ψ(k). The latter can be varied

either by increasing k or decreasing N . Although here the effect would be the same, it need

not be so (depending on the metric), and we operationally define Γ = Γk as the gradient of

PMI with Ψ(N)−Ψ(k) where k is allowed to vary in some fixed range.

A variable slope does not invalidate eq. (4.7) - the scaling of PMI with resolution will be

seen later to be broken only by the particular behaviour of the metric, and for clear reasons

(figure 4.1 that was used to demonstrate the scaling is actually specifically computed at

parameters where Γ is non-linear and PMI transitions from the fully-causal limit to some

finite value).

We now compute Γ(K) and plot it as a function of K for some (N, τ). Results for two sets

of parameter values are shown in figure 4.6.

Γ varies between 0 and 1, which corresponds to the joint information dimension

lying between the value for the marginal dimension and their sum. The blue plot has

similar parameters to the data shown in figure 4.2, and just as expected we see a peak at

some K∗.

The second plot in fig. 4.6 shows the effect of variation of parameters. The peak still exists,
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Figure 4.7: The variation of Γ with τ for the lower range of standard map parameter K
for N = 100000 (fig. 4.7(a)) N = 500000 (fig. 4.7(b)). Γ computed from three runs at
1 ≤ k ≤ 5.

but the result is significantly different to the τ = 100, N = 50000 plot. Time gap and

sample size are the only changes that were made. It is reasonable to assume that since

there exists a certain scaling with N that the reason for the change is only due to τ .

In order to understand how Γ(τ) changes with parameters we therefore focus on the

peak, and investigate K ≤ 1, which heuristically is a better bound on the possible peak than

the K = 1.5 guess mentioned above. Figure 4.7 focuses explicitly on the Γ(τ) dependency.

In figure 4.7(a) we observe that in the majority of cases increasing τ causes the peak to

become lower.

In terms of predictability this is sensible since the higher the number of iterations the more

information from the original resolution needs to be obtained in order to understand the

future in the same way as for a low τ . We now check if this is true for a different range of

resolution.

Results are shown in figure 4.7(b). Depending on N , different values of Γ are observed

for the same τ . Hence for any τ there does not exist a single unique scaling of PMI with

resolution, and Γ(τ) = Γ(τ,N) (all this under the implication that we are actually measuring

Γk(τ,N)).

We also see that in 4.7(a), for low K, Γ(τ,N) actually increases with τ . The fact that the

fully-integrable case of K = 0 is also prone to this behaviour suggest examining Γ(K = 0)

in order to explain this and disentangle the interdependency.
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Figure 4.8: PMI as a function of probability resolution for K = 0 for τ = 50 (4.8(a)) and
τ = 80 (4.8(b)).

4.2.1 Fully-Integrable Case of K = 0

At K = 0 the standard map becomes

p′ = p (4.20)

x′ = x+ p, (4.21)

(4.22)

where dynamics is once again wrapped around the torus. No chaotic trajectories are present

in this fully-integrable case. If viewed on a square, orbits make sideways jumps whose length

is proportional to their height (giving (0, 0) as the stable point). In fact all orbits stay on

the invariant tori, suggesting that the dimension of the support space of the joint is 3.

Figure 4.8 shows PMI for two different τ values. Both display two distinct scaling regimes

at which point Γ is defined in its proper sense (though not in the infinite resolution limit).

Making a mental transition between the two τ values would show us a movie where the

transition point moves to the right and the screen becomes occupied by the lower, slow

plot. Since here τ values are below the τ = 100 plot of fig. 4.2, so we can infer that the

slope seen on the latter graph corresponds to the left-most (or lower) of the two seen on

the graph above1.

The result of combining all the information about K = 0 is shown in figure 4.9. For

all sample sizes N , Γ decreases from 1 to roughly 1/3, dipping to some point below the large

1When the slopes are defined Γk corresponds to ΓN
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Figure 4.9: τ dependency of Γ for different sample sizes N in the fully-integrable case of
K = 0. Logarithmic gradients of PMI computed from 1 ≤ k ≤ 5 and averaged over 3 runs.

τ limit. The dip is merely a result of the wave-like transition with an overshoot between

the two slopes that was observed in figure 4.8. Given that only two values of Γ actually

correspond to the linear approximation of the slope, the underlying information dimensions

are defined only for the two limits of Γ = 1 and Γ = 1/3.

These can be understood in terms of the joint information dimension:

D−+ =
4

Γ + 1
. (4.23)

When Γ = 1 the information dimension of the joint distribution is equal to the information

dimensions of the marginals, i.e. in the limit of τ → 0, D−+ → D−/+. On the other hand

Γ = 1/3 corresponds to D−+ = 3, the three degrees of freedom associated to (past,future)

of regular motion.

Information dimension is a result of entropy scaling with the logarithm of resolution. Lack

of change between marginal and joint distributions implies that nearest neighbour statistics

stay the same with time (using the framework implicit in the estimator). Points that were

close have not yet moved far enough to disrupt the average interpoint distances. Hence the

Γ = 1 limit is one of absolute causality - when the deterministic nature of the map fully

defines the future, and uncertainty does not get blown up by iterations.

This framework allows for an explanation of the regularity with which the plots in the figure
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Figure 4.10: Γ(f(N, τ)) for the fully-integrable case of K = 0. Logarithmic gradients of
PMI computed from 1 ≤ k ≤ 5 and averaged over 3 runs. The range of N is the same as in
figure 4.9, and the legend stands.

translate to the right as N increases. Figure 4.10 shows the collapsed picture, indicating that

at least for K = 0, Γ(τ,N) has the functional form of τ3/N . We associate this scaling with

regular motion. It can be interpreted through the interpoint statistics: let ∆x0 and ∆p0 be

the initial separations in the two directions at τ = 0. Then at τ , ∆pτ = ∆p0, and ∆xτ ≈
∆x0 + τ∆p0. The past is constrained by ∆x0∆p0 ≈ 1/N , since the information dimension

is equal to 2. All ∆x0, ∆p0 and τ∆p0 have to be less than ε, where ε is the interpoint

distance of uniform mixing. Hence ε ≈ (τ/N)1/2. When the information dimension is equal

to three, ε ≈ N−1/3, and so (τ/N)1/2 ≈ N−1/3, or τ3 ≈ N .

4.2.2 Γ at intermediate values of K

We have found that in the fully regular K = 0 regime PMI has two distinct linear scaling

regimes with resolution (the definition of resolution absorbs the logarithm). The transition

between the two occupies a short, finite resolution range that can be expressed as a function

of both N and τ . We do not anticipate this to be the case for other values of K < 2π.

The main graph of PMI v resolution showed that for these regimes the plots were distinctly

curved. In figure 4.6 Γ is seen to vary smoothly with N and τ , hinting at the lack of linear
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Figure 4.11: Information codimension scaling with sample size N and τ for subcritical
standard map parameters K. Graphs on the right are rescaled with τ3/N .

PMI scaling for these parameters. In this section we investigate this in terms of Γ by varying

K, N and τ .

There are three main features we wish to bring out. The first is whether, and if so then

under which conditions does PMI have a clear linear scaling with resolution and hence a

well-defined joint information dimension. The second is to do with the actual values of Γ,

particularly at those times, but also generally across (K,N, τ). Recall that Γ indicates the

extent of perceived causality. Finally the third aspect is the manner in which those values

change across (K,N, τ).

We anticipate qualitatively different behaviour for subcritical K, K ≈ Kc, and large K.

Small K Figure 4.11 shows behaviour of Γ for two values of K when K < Kc. By analogy

with the K = 0 case we identify the regions of τ where the plots are coincident with a linear
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Figure 4.12: Rescaled Γ with τ3/N for the fully-integrable case of K = 0. Logarithmic
gradients of PMI computed from 1 ≤ k ≤ 5 and averaged over 3 runs.

PMI scaling. This happens at small τ , and - we conjecture - in the limit of large τ , but

convergence towards these values is slow, and grows slower with K.

Before proceeding to discuss the intermediate scaling we note that the relation between N

and τ defined for regular trajectories above continues to hold for subcritical K, the average

interpoint distance statistics undergoing a qualitative change when τ3 ≈ N .

Coming back to the apparent pause in the decrease of Γ with τ , it is tempting to identify

the intermediate region of τ with another well-defined linear PMI regime. However, in our

attempts to explain the Γ dip present at subcritical values of K this kink was found to be

a direct consequence of the metric. If Euclidean metric is used instead, all the subcritical

Γ no longer looks like it consists of two distinct parts, one for lower and one for higher τ

values. It also turns out to be responsible for the dip in Γ, which is deepest at K = 0,

rising higher while at the same time becoming shallower with higher K, and disappears

completely as Γ becomes roughly linear with log(τ) at K ≈ Kc.

Its origins can be found in the non-uniqueness of PMI at those (N, τ) ranges. I(N, τ) itself

depends not only on the resolution but on the metric used to compute interpoint distances.

All the graphs above are done with the maximum metric. Recomputing them for K = 0

case with the Euclidean metric gives what we claim to be a smooth variation (figure 4.12).

It can be confirmed by doing the same for other values of subcritical K (figure 4.13).
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Figure 4.13: Same as figure 4.12, but varying K. Here N = 25000.

The dip is hence fully explained by the overshoot that results from using the relatively

drastic maximum metric (plotting it for other K values confirms this). There are differ-

ences in the way Γ decreases, not just the lack of overshoot, such as the slightly slower

convergence of Γ with τ . In fact we continue to use the maximum metric because it is much

more computationally efficient. We can see that the metric would not change the global

qualitative features of Γ(N, τ).

The dip is thus seen to be the effect of the ‘strength’ of the maximum metric. The fact

that the dip smoothes out with higher K is directly related to the fact that in state space

motion is no longer uniformly longitudinal. The extent of this curvature also increases with

K, and the PMI computed using the different metrics converges (figure 4.13(b)).

While computationally optimal, the maximum metric can and does fail to give PMI

that is uniquely defined by resolution. This is exactly what happens for subcritical K

around the region where two linear PMI regimes converge. The dip is a direct outcome

of defining Γ through variation with k. Looking back at figure 4.8 we see that Γ would

move between the two limiting values much more abruptly had it been defined through the

gradient of PMI taken w.r.t. N , keeping k = 1, and looking only in the required direction

that changes depending on where N is in relation to τ .

K around Kc It is hard to draw any conclusions from similar graphs around Kc. As K

increases to its critical value the (N, τ) rescaling becomes impossible, and indeed it is hard

to find resolution ranges for which Γ is well-defined other than small τ and sufficiently large

N . Figure 4.14 shows Γ for K ≈ Kc. As N increases it approaches a straight line, the
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Figure 4.14: Information codimension scaling with sample size N and τ for K = Kc. Graphs
on the right are rescaled with τ3/N .

two parts of the earlier graphs becoming similar in shape. There are no longer two distinct

regimes as defined by τ3 less or greater than N . Instead it looks as though for τ < 103,

Γ ∝ log (τ−α) (after some τ this behaviour will stop since Γ cannot go below zero, and any

change is assumed to be continuous).

Large K Figure 4.15 shows Γ for large (supercritical) K. This range is characterised by

two distinct Γ scaling regimes, and as a result the Γ plots look like a superposition of two

parts. It is in the second, larger τ range that Γ scales as τ3/N . This was the scaling related

to simple shear, and naturally enough it occurs at a larger τ range than the one that would

result from some symmetries in the chaotic trajectories. To these we attribute a smaller

exponent that one could find heuristically by collapsing the plots.

In terms of PMI scaling we again conjecture existence of some small and large τ linear limits.

Yet here the slowing down of Γ decrease that happens between the two Γ scalings also implies

that there is a (necessarily) finite range of N during which PMI displays an apparent linear

scaling with resolution. Thus for large K we anticipate three finite linear scaling regions.

The intermediate one, between two smooth transitions in Γ, suggests an interpretation that

is based on a degree of spatial separation between chaotic and regular orbits. This will lead

us to suggest the mixture hypothesis that views the joint information dimension as simply

a result of an appropriate ratio of the information dimensions of components. In terms of

convergence the large K regimes do well, with Γ appearing to level at some small finite τ

value that decreases with increasing K.
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Figure 4.15: Information codimension scaling with sample size N and τ for standard map
parameter K > Kc. Graphs on the right are rescaled with τ3/N .
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Figure 4.16: Limit of large τ for N = 50000. The number of runs Γ is estimated from varies
from point to point, but is of order 3. The extent to which plots are populated for small τ
varies, and so the dip is only seen on the densely covered K = 0.1.

Convergence at the high τ limit

We now investigate convergence further, since especially around Kc it was difficult to form

any conclusions. The high τ limit,

Γ̄(K,N) = lim
τ→∞

[Γ(K,N, τ)] , (4.24)

can be motivated by Permanently Persistent Mutual Information, I(∞), defined as

I(∞) = lim
τ→∞

I(τ).

Given a sample size N , I(∞) is thus

I(∞) = lim
τ→∞

I0(τ) + Γ̄(K,N) log(N/k). (4.25)

Here it entirely possible that I(∞) is resolution-dependent.

Figure 4.16 shows behaviour of Γ for a typical sample size when the time gap is

pushed to a computational limit. From this we gauge that for some K, for large regions of

τ , Γ does not vary significantly (see later graphs for close-up versions of those regions). Γ

is observed to plateau for both rather low (K = 0.1, 0.5) and the “fully” chaotic (K ≥ Kc)
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regions. Convergence of Γ with τ is markedly nonexistent for K = 0.9 and K = 1, with

what looks like a linear character in the latter case. However, for K = 1.2 and K = 1.5,

though the figures do not have enough data to be shown, the graphs look flat; so does K = 2

and K = 4.

For K = 0 and large K we therefore associate values of Γ at, say, the largest τ considered,

with Γ̄(K,N). Whilst there is little doubt that this can be done for K = 0 and K = 2π

the intermediate cases are less obvious. The error that would appear if we were to do the

same for all values of K is directly related to the rate and qualitative manner in which the

Γ plots flatten as the time gap grows large.

At K = 0, Γ took its large τ limit value at a finite τ value. For small K, what for K = 0

was a straight line starting from τ3 ≈ N , now becomes a curve. We infer that even if it has

the appearance of a straight line, as in figure 4.11(b), it will after some τ begin to level off,

since Γ cannot decrease below zero. The upper limit of Γ stays 1, but the lower limit seems

to be almost beyond the visibility in this τ range. It points to the fact that Γ converges

to some limiting value at rates dependent on K (so for example it would do so faster at

K = 0.1 than at K = 0.5). In fact as K increases beyond some point (not necessarily Kc)

the speed of convergence begins to once again increase, as even in these ranges for large K,

Γ appears to have reached some limiting τ value.

Let r(N,K, τ) = dΓ(N,K,τ)
dτ . Based on figure 4.17 that represents Γ at some N we

conjecture that

r(N,K, τ) = r (N,K∗c , τ + f(|K −K∗c |)) (4.26)

In the next chapter we will find that for a particular N , the linear approximation to the

gradient of I,
dI(N,K, τ)

dτ
≈ c1

dI(N,Kc, τ)

dτ
+ c2|K −Kc|a, (4.27)

where for Kc ≤ K < 4, a ≈ 0.8, and for a region on the other side of Kc, a ≈ 0.65. We note

that for K > Kc the change is abrupt, and after roughly K = 4 the slope of PMI with τ

stays zero.

There is still the uncertainty about the asymptotic existence of a peak for the small K

range - it was present in fig. 4.6 and was then seen to be brought down if higher τ values

were considered by examining Γ v τ behaviour for several K. In all the cases Γ is seen to

decrease to 1/3 by the time K ≈ Kc, suggesting that the apparent elevation peaks at some
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Figure 4.17: Interpretative sketch of Γ(K, τ), showing that for the visible resolution ranges
there is a difference between peak location Kp and the regime ≈ Kc at which, for that τ
range, Γ shows the most rapid decrease. In this picture it is easy to imagine that increasing
τ has an effect of making mass flow to both sides away from the peak, so that subsequent
rescaling would give the needed value.

Kp that is not the same as Kc. Indeed from the standard map literature we know that

nothing special is observed at Kc other than the breaking down of the Golden KAM torus.

The peak seems to reflect another phenomenon that is responsible for the increase in the

PMI rate with nonlinearity.

Consider again the statistics of nearest neighbour distances. At K = 0 all the trajectories

are regular and increase at a rate that scales as power law (confirmed below). If at a small

and finite K a proportion α of the trajectories has become chaotic, they would still be in

regions layered by cantori that are considered ‘sticky’ in the sense of making trajectories

stick by them for a long period of time (which could go up to 1010). As K increases further

more regions are freed up, more ‘sticky’ regions are created, and yet more formerly ‘sticky’

areas become less restrictive. Indeed all restriction possibly disappear by the time K is

comparable to 2π. We infer that if PMI increases faster with K that there exists a level

of stickiness such that trajectories diverge slower than in regular quasi-periodic motion. It

looks like after the ‘peak’ parameter value Kp there is simply more free space.

For some N , there seem to be two separate K values that characterize Γ(τ,K).

Γ(τ,K) reaches its maximum at Kp; but the greatest rate of change with τ is at K∗c ≈ Kc.

Although these two values may depend on τ , there is at least some τ range for which they
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are distinct.

This suggests Γ(τ,K) is a combination of two opposing effects. It is possible that both are

related to stickiness; that on the one hand there is the proportion of trajectories affected,

and on the other, the effective slowing down that it imposes on them.

We conjecture that the mechanism responsible for the peak is the stickiness of trajectories

to the cantori. A higher Γ at those K values means that this behaviour preserves informa-

tion about the initial condition even better then the periodic and quasi-periodic motion at

K = 0. After trajectories get ‘unstuck’ they once again begin to loose information about

the past at the rate associated with the chaotic motion in that part of the phase space. The

process then repeats. If we therefore assume that this behaviour simply delays the destruc-

tive effect of chaos on initial correlations, then only out of this analysis in the infinite time

limit the peak should not exist, and Γ should decreases monotonically with K.

The reason this might not be the case is the arrangement of the regular/chaotic regions

in the phase space. We know that these two are associated with their own specific rates

in the limit of infinite τ with which information about the future is destroyed (Γ = 1/3

and Γ = 0). However, it is possible that simply where the trajectories are - on the scale

where only the regions are seen, and not particular trajectories - also contributes towards

what the past knows about the infinitely remote future. This structure is not related to

level of stickiness but rather to the arrangement of these regions in phase space. Because

of this there might be a valid peak, possibly even dependent on the resolution with which

we resolve the phase space.

How does the graph of Γ v K look at the largest τ possible? To minimise error we

find, for each K, the average Γ over some τ range defined as the largest set of τ values so

that the gradient of the line of best fit through Γ(τ) is within some small error of unity, and

where we start by considering the largest τ available for that N and move backward. Thus

if there Γ still decreases this set would most likely consist of one point. Figure 4.18 shows

the result.

From what is observed here Kp is the same for a range of N , but that may of course

be simply due to the slow lowering. Another point to make relates to the final asymptotic

shape of the (Γ v K) plot. For K ≥ 0.9, Γ̄(K,N) is less than 1/3. Hence if Γ in K is a

stepping down function, the step occurs at K < Kc.
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Figure 4.18: Γ averaged over a variable range of relatively large τ (starting backwards from
τ = 106, see text for details). Errors are standard deviations from the mean over the above
range. Colour key the same in both figures.

Variation at finite N and τ

From figure 4.18 we see that dependency on τ changes with N . The final asymptotic

values may be independent of sample size, but we have already seen that the (τ,N) inter-

dependency indicate existence of the specific trajectory types. In this section we investigate

how Γ changes with N when τ is pushed further towards the asymptotic limit, to see

whether any new scaling emerges in these regions. We do not anticipate anything other

than a growing influence from sticky trajectories, and hence the only differences we will see

will be at intermediate K.

From the high τ figures, if we do see what appears as Γ̄(K,N), then it is independent

of N , i.e. limN→∞ limτ→∞ Γ(K,N, τ) = limτ→∞ limN→∞ Γ(K,N, τ). We associate this to

Γ̄ = Γ̄(K), the infinite resolution PPMI. Since therefore in effect Γ̄(K,N) does not change

with N , it is also the PPMI scaling that is independent of resolution. We can hence conjec-

ture that PPMI is associated with necessarily linear resolution scaling (for this K range). In

the fully-integrable case of K = 0, Γ asymptotes to 1/3, independent of N . This is implied

in the conclusion that the plots collapse. As K increases the lines corresponding to sample

sizes separate, Γ decreasing with increased N . After K > Kc the lines begin once again to

merge together.

At this point we conjecture that Γ̄(K) exists either for all sample sizes, or for none. We

also note that the extent to which Γ tends to a final value seems to correlate with how

independent of N it is. For example for K = Kc the three plots are quite distinctly sepa-
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Figure 4.19: Γ v τ for small K. Method of calculation is the same as in figure 4.9.

rated (naturally this depends on the sample sizes themselves since the error bar sizes are

correlated). Thus we postulate that a well-defined Γ̄ does not depend on N .

The Crossover Consider variation of Γ with N at some log τ < 3 in figure 4.20(c).

Higher N results in larger Γ values. This corresponds to the PMI continuously increasing

with resolution until the slope, after some finite value of N (justification for existence of this

limit is shown in the next chapter) becomes equal to unity. For smaller N in that region

the slope is technically nonlinear, which is directly equivalent to plots of different Γ(N)

appearing disjoint. We also conjecture that because there are correlations at any finite τ ,

that the small N limit Γ(Nsmall,K, τ) could exist.

Now consider PMI at τ = τc(N,K), when all Γ(N) plots meet. At that particular τ , PMI

scales linearly with N with the gradient given by Γ∗. The question is whether this is indeed

true for all N and not just the ones visible in the plots. Since we postulate that it is

reasonable to assume that given any τ , an N exists such that all the causal relations are

preserved, and also if quite reasonably we then do not expect Γ to jump from unity to Γ∗

in no time at all, we must then conclude that for that τ this region of linear scaling of PMI

with resolution is of finite length, and that at some point, however abruptly, the gradient

of PMI will change and tend to unity.

The questions are then whether τc is characterised by an actually linear slope of PMI with

resolution, or whether the slope is just changing very slowly. Another consideration is

whether, for a different τ , a region of resolution exists that appears to give a linear scaling
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(b) K = 0.8. Higher τ region.
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(d) K = 0.9. Higher τ region.
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Figure 4.20: Γ v τ for intermediate K. Method of calculation is the same as in figure 4.9,
colour codes for subfigures 4.20(a) through 4.20(d) same as in figure 4.19.
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Figure 4.21: Γ v τ for large K. Method of calculation is the same as in figure 4.9.

(inverting to obtain N(τc)).

Let

τc(N,K) :=

{
τ :

dΓ

dN

∣∣∣∣
τ

= 0

}
, (4.28)

where we identify N with resolution - unless the maximum metric is playing up, PMI at

K, τ is uniquely defined by log(N/k). Since in this resolution region Γ is equal for all N ,

this is actually a contour line (see contour plots later on).

At τ > τc(N,K) raising N lowers Γ. This visible trend coupled with the already stated

assumption that Γ = 1 should be Γ̄(K, τ) for any τ , including τ > τc(N,K), confirms the

requirement that at large N the τc(N,K) line curves.

It might not be obvious how this Γ = 1 could be achieved - especially when looking at

4.20(d). What one should imagine is the meeting point of the Γ(N) lines moving to the

right, collecting the plots around it. Thus, for a particular τ , increasing N first lowers Γ,

but then, after the increase in N made τ smaller than τc, Γ begins to rise.

In terms of visualisation, on the landscape of Γ(N, τ), increasing N involves going down,

towards the τc line, after crossing which an increased N also increases Γ.

What happens in the opposing limit of small N? Since Γ cannot increase with τ (the

dip is an anomaly resulting from a relatively non-smooth metric), Γ(N, τ > τc(N,K)) ≤
Γ(N, τc(N,K)). For smaller τ , Γ(Nsmall,K, τ) ≥ Γ(N, τc(N,K)). It is likely that there is a

sample size such that even for τ order of units Γ is very far from unity.

For the visible resolutions τc coincides with a constant Γ, but at other N values this need

not be so.
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Before the crossover, to measure the same information dimension of the joint one has to wait

for longer the more trajectories there are to start with. This happens at small timescales,

and can be thought of as more trajectories needing more time to spread sufficiently away

from each other - the fewer points there are, the sooner this will happen, because the initial

distance is then correspondingly larger. After the crossover the opposite happens. Thus, for

large time scales, starting with fewer trajectories means having to wait for longer to observe

the same information dimension. This is compounded by the fact that chaotic trajectories

spend at least some of their time being stuck near cantori, and not exploring the space at

all. Thus for large τ at smaller resolutions we see a space of a lower dimension (higher

Γ), and at small τ (and therefore temporarily) at smaller resolutions the joint has a higher

dimension.
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4.3 Summary: Scaling of PMI and Γ through Contour Plots

In this section we summarize the three issues raised earlier: existence of PMI scaling, in-

terrelation of (τ,N) in their effect on Γ, and asymptotic Γ values. Γ to some extent tries

to quantify the effect produced by two opposite variables: the growing τ that destroys cor-

relation, and the increasing N that relates to the amount of information available to start

with. The last two questions are addressed together by looking at surfaces in the (N, τ)

space. Although these contour plots hide the absolute height of the surface they are still

useful in assessing the way N and τ are interrelated, and also through the realisation that

regions flat in the N direction betray a well-defined PMI scaling.

PMI scaling For every K, for every τ , there exists a finite N beyond which Γ(N, τ,K) =

1. Hence Γ̄(K, τ) = 1. However, not every N can achieve the Γ = 1 limit. N can be so

small that points wrap around within the first few iterations (and hence at small τ on the

typical Γ graphs the lower N limit that does not admit Γ = 1). Hence at all times PMI has

at least one well-defined linear scaling.

At K = 0 it is also possible to see another linear scaling regime, associated with the Γ = 1/3

limit of regular motion. Hence for some τ , PMI will have two coexisting linear regimes, the

higher one occurring at a higher range of N . The transition between the two will be during

a finite N range. If, however, τ is small enough, it is possible to not see the smaller gradient

at all.

At all values of K taking a small τ will limit the possible range of PMI behaviour. Thus

for example for subcritical K at a relatively small τ (say, before the crossover) PMI would

consist of at least one scaling and a long region of N where it is convex. We do not know

if Γ associated with the small N scaling is of a finite length, but we conjecture that the

second scaling does exist as long as a large enough τ is taken.

Consider a subcritical K, or a K around Kc, for a large enough τ . We postulate that there

will be three linear PMI scaling regimes, two of which are of finite length. At large N this is

the usual Γ = 1 limit. Then after a convex region there is an intermediate scaling associated

with the cross-over. It is followed by a concave region that will be of finite length if τ is

large enough.

At high K we should have at least two linear slopes. The possible third slope is an interme-

diate one, related to the time of regular-chaotic scaling switch. It is visible for only a short

135



τ

N

Γ = 1

N ∝ τ3

N ∝ τa

τ

N

Γ = 1

N ∝ τ3

Γ =
1

3

τ

N

Γ = 1

K = 0 K ≈ Kc

τc

K ≈ 2

τc

Figure 4.22: Contour plots of Γ, the linear approximation to the gradient of PMI with
resolution. Observed range of values is shadowed. The vertical τc line is here also a contour
line. a < 3.

range of N . Its potential existence motivates the mixture hypothesis that we introduce in

the next section, and that based on the perceived linearity of PMI tests whether there exists

a clear separation between the regular and chaotic components. Coming back, at this high

K there might be remnants of the crossover which would add a barely perceptible concave

nature to the way PMI converges to a linear slope (but for it it would have done so from a

convex region that would give the ‘regular’ Γ scaling).

Our understanding of the underlying process can be expressed as contour plots of

Γ in (τ,N). It is possible to draw these plots automatically using the data behind the

various Γ figures, but the result would want clarity in terms of presentation, and we use

interpretative sketches instead.

In all the contour plots the top half of the plane will have as a limit the plateau corresponding

to Γ = 1 that begins at a finite N that grows with τ . Additionally, the speed with which

the landscape of Γ changes will, for small K, depend on the metric used (which will change

the PMI) and the choice of approximation method to the gradient.

Figure 4.22 (a) shows the Γ contour plot for K = 0. Since for any τ there will be a Γ = 1

scaling, that region stretches away to infinite τ as well. The line should be interpreted as

a dividing point: no Γ = 1 scaling to its right, no Γ = 1/3 scaling to its left. Exactly

how close to the line these two can come to depends on both the metric and whether Γ

is defined through varying k or N . From the section above we saw that in the usual Γ v

τ graphs the change is slow, so the contour plots can have many lines. If, however, the

gradient is one-sided and defined by varying N at k = 1, the change will be much faster if

not instantaneous. Therefore there is a haziness about the neighbourhood of the line.
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The blue (dashed) line in figure 4.22(b) defines τc, the function of N at which the

derivative of Γ with respect to resolution is zero. Here it is shown as a finite interval, indi-

cating the range of resolutions for which it was observed. It will always be locally a contour

line, but globally many contour lines may pass through it, since the values of Γ at τc may

slowly change. Therefore at higher N it will likely curve to the right along with the black

contour lines.

These contour lines are curved in unpredictable ways to reflect the lack of clear scaling that

happens around Kc. One could imagine them to be made up of lines with regular scaling,

chaotic scaling, and scaling that somehow reflects the sticky behaviour. This is a sort of

‘crunch zone’ when as K increases further the chaotic orbits go from being ones that relax

slower than the regular ones to ones that do so faster.

As K increases up to Kc ‘regular’ scaling shown in red on the subgraph on the left breaks

up and the deviations become more pronounced (note that on the first subgraph only one

line is drawn; but if the Γ is considered through variation in k we will have a family of lines

just like in the other two subgraphs). On the other hand, as K increases beyond Kc, the

wavy lines split into two distinct classes, corresponding to the black and red plots in the

final subgraph.

The reverse trend with N that happens after the crossover is shown in green. The fact that

the three lowest green curves appear equidistant reflects the appearance of scaling present

in the plots at high τ , for both N and τ (though we do not have sufficient data to make

strong conclusions about the nature of this scaling).

At some point as K increases from 0 the green lines will appear. At the apparent peak of

Γ we still see what looks like scaling, but a much slower one. So a contour plot at those

values of K will have fewer green lines that are also more widely spaced - both reflecting

the higher values of estimated Γ. Thus with K the green plots move in from the left and

crowd the black curves, resulting in the region defined as τc. The squashed green curves

can then be considered as a single curve - with only a few, if any, green curves left on the

right side of the plane. If there exists a unique, N -independent value of PPMI for high K

then this would correspond to a finite number of green curves that should have infinite for

the upper and zero for the lower N limits.

Another interesting issue is the value of Γ at lower N , the lower portions of the plots. The

only thing we know for certain is that it will be finite and decreasing with τ , but whether

as a step function, or in a continuous manner, is unknown.
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Now consider a larger K at which there are two types of scaling. Again, it is entirely

possible that if the resolution is large enough the time will wash away correlations due to

chaos almost instantaneously, so the shallower curves meet the ordinate. Here the main

questions are: how do the different curve types meet, and what happens as τ → ∞. In

terms of the contour lines, if the limit of the red contour lines is not finite then the Γ̄(K,N)

is independent of N . This is shown in figure 4.22 (c).

At K = 2π, since there are at least two regimes, we also anticipate scaling, but only the

chaotic one shown in the figure 4.22(c) above. We also note that as K approaches Kc, the

‘regular’ scaling stops working. Thus we anticipate, with increasing K, that one type of

lines gets broken up, then two types appear, and in the end only the second type is left.
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4.4 The Mixture Hypothesis

The general trend of decreasing Γ with K, at least for K > Kc, suggests an intrinsic

dependency on a feature of the dynamics that becomes less pronounced as the nonlinearity

parameter is increased. A natural guess for what this would be is the proportion of regular,

quasi-periodic orbits in our sample. Given this function we formulate what we call the

mixture hypothesis, which can be summarized as follows: the information dimension of the

joint distribution is a linear combination of the information dimensions of the spaces defined

by the regular and chaotic trajectories, in proportion to the weight of such trajectories.

The mixture hypothesis is introduced on the basis that at high K values we see an apparent

linear PMI scaling with resolution at intermediate values of τ , between the regular and

chaotic scalings of Γ with N . This suggests that there is a time when, for a sample size,

the chaotic trajectories are sufficiently mixed, and the regular ones will start mixing after

that time. In other words, the mixing processes are distinct, and so trajectory types can

clearly be segregated into distinct spatial regions that are well-defined on the scale given

by N ; components do not appear to mix.

Any point x in the standard map state space X will give rise to a trajectory T (x) =

(x, Fx, F 2x, ..). Let us postulate existence of certain (finite) trajectory characteristics which

allow partitioning of the set of all trajectories into ones that are chaotic and ones that are

not - for example existence of a necessarily finite time t, which might be different for each

T (x), but for which T (x), as truncated after t elements, definitely falls into one of the two

categories. This leads to a corresponding partition of X: define the chaotic component as

Xc = {x ∈ X : T (x) is chaotic}. (4.29)

Xc is, by definition, closed under the action of the map. Thus the regular component is

Xr = X/Xc, the complement of the chaotic one.

Let µ be a measure over some suitable σ-algebra on X. Define α = α(K) as the weight of

the regular component of the standard map at parameter K:

α = µ (Xr) . (4.30)

It should be noted that here we are making implicit the K-dependency of F , and hence the

Xr/c partitioning, and α, just as we are dropping the µ dependency of α. This is because
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we will always assume µ to be the measure corresponding to the uniform distribution over

the X. Thus α depends on both K and µ.

Let µr/c be the (normalised) regular/chaotic measures restricted to the power sets of Xr/c,

such that

µ(A) = αµr(A) + (1− α)µc(A) ∀A ⊆ X. (4.31)

Then if the Xr and Xc are sufficiently disjoint,

S[µ] = αS[µr] + (1− α)S[µc]− α lnα− (1− α) ln(1− α). (4.32)

From the usual definition of the information dimension this is then

S[µ] = αDr ln ε+ (1− α)Dc ln ε, (4.33)

and so the information dimension of the joint µ is

Dm = αDr + (1− α)Dc. (4.34)

The mixture hypothesis then is that D(µJ) = Dm. We also for now assume that in the

standard map, D(µrJ) = 3, and D(µcJ) = 4. This gives

Dm = 3α+ 4 (1− α) = 4− α. (4.35)

Moreover, if
D(µ) +D(F τµ)−Dm

Dm

defines Γm, then

Γm =
α

4− α, (4.36)

where we have used the fact that the marginals have information dimensions equal to two.

Thus Γ is dependent on K and µ through α, but not on τ . This dependency was hidden

in the specific choice of information dimensions of the regular/chaotic joint distributions,

about which more needs to be said.

Regular and chaotic trajectories are different in character. We used this to assume that the

space of all orbits can be partitioned. Attributing a definite information dimension to the

joint distribution of a class is trickier, simply because D(µ
r/c
J ) will be a function of the time
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gap τ between the initial and final iterates. Here we assume not only that D(µ
r/c
J ) exists

for all τ , but that for all K there exists a limiting information dimension, limτ→∞D(µ
r/c
J ),

which will be 3 for the regular and 4 for the chaotic trajectories.

In practice this translates to a statement about the infinite τ limit of the computed Γ (which

is also the definition of PPMI). If the mixture hypothesis and the linear scaling of PMI with

resolution holds, then

Γ̄(K,N) = Γm, (4.37)

Γ̄(K,N) =
α

4− α. (4.38)

This is supported (and partially motivated) by the fully-chaotic and the fully-integrable

scenarios. At K = 0 all the orbits are regular, so α = 1 and Γm = 1/3. This is in

agreement with Γ̄(K = 0, N) = 1/3, after Γ moved down from the fully-causal limit of 1.

When K = 2π we only resolve chaos, so both α and Γm are zero, once again in agreement

with the experimental results. So at least for these limits eq. (4.38) holds.

Implementation and Analysis

The aim of this section is to explain the strategy for testing eq. (4.38) for arbitrary K

values. We introduce a method to obtain α numerically by considering distributions of

evolved distances between trajectory pairs. We then compare Γm to our best estimates of

Γ̄(K,N), shown in figure 4.18.

We do this by using divergence rates as an equivalence relation on the chaotic/regular

classes. Consider a pair of trajectories a distance εt=0 apart. If both are chaotic then

εt ≈ ε0 expλt, (4.39)

where λ is the Lyapunov exponent, whereas for regular ones

εt ≈ Ctν . (4.40)

Hence tracing the evolution of εt allows us to classify the pairs as belonging to either of the

classes. Note that if the pair has one of both kinds, then the separation is unlikely to be

increasing at a regular rate, and hence we assume that the exponential divergence can also

be indicative of a regular-chaotic pair.

The next step is to find the proportion of, for example, the exponentially divergent pairs
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out of a large sample of pairs, that are characterised by always having one of each pair’s

initial points being sampled from a flat distribution over the configuration space. Thus we

sample the required initial distribution, create a nearby point for each element, and examine

the rates of their divergence to classify the element. In other words let the set of sampled

pairs be {(X = x, Y = y)|X ∼ µ, Y ∼ p(y, ε, d) s.t. p is flat , d(x, y) = ε0}. This introduces

a distribution ρt for ε, the distance between orbit pairs. At t = 0, ρ0 is a delta function

centered on ε0. At times t, ρt is defined through d
(
(F t(X = x), F t(Y = y)

)
∼ ρt.
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Figure 4.23: Histogram of distance between τ th iterates initially separated by 10−12. N =
10000 points were considered; standard map parameter K = 1.5. Trajectories are seen to
be split into two types depending on the rates of divergence.

It is the clear bimodal shape of subsequent ρt, and the fact that the two peaks evolve

at different rates, that makes it possible to classify the underlying distances as either being

associated with a chaotic or regular orbit pair. In figure 4.23 we see three instances of

histograms corresponding to ρt for K = 1.5, when the phase portrait of the standard map
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shows islands of quasi-periodic motion surrounded by the chaotic sea.
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Figure 4.24: Evolution of peaks corresponding to regular 4.24(a) and chaotic 4.24(b) tra-
jectories. K = 1.5, N = 10000, initial separation 10−12. Parameters are the same as in
4.23, though the time ranges involved, as well as the binning methods may differ.

The initial peak is seen to split into the slow- and fast-moving regions, which we

associated with regular and chaotic pairs by tracing the rate of evolution of regional peaks

(fig. 4.24). Here, for example, we find that the Laypunov exponent at K = 1.5 is found to

be ≈ 0.33. Accurate measurements would attach an error based on the bin width, number

of elements in the sample of the distribution, number of time measurements, and possibly

the initial separation (see later), but here we are interested in merely in showing that expo-

nential divergence does indeed happen for some trajectories, rather than in exact numerical

quantification of its manner.

Hence we see that by introducing a cutoff distance εc and a time τc the following can

be assumed: the relative number of trajectory pairs whose separation ε < εc for some τ > τc

(or a range of such τ values) corresponds to µ(Xc), the weight of the chaotic component of

the map at some K. Underlying this is the assumption that distance between trajectories

is a valid equivalence relation.

There are several sources of error in the estimate of α obtained in this manner. Wrongly

classifying trajectories temporarily stuck amongst the cantori debris will tend to overesti-

mate α. The magnitude of this problem will vary with K, since it is safe to assume that

some regimes are more likely to result in stuck trajectories than others. This, on the other

hand, will also be dependent on the initial separation - the cantori will come with char-
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acteristic sticky widths. A relatively large initial separation would increase the likelihood

of picking trajectories of different character, and thus overcounting the chaotic ones and

underestimating α. Underlying it all is the assumption that unless both trajectories are

regular the distance between them increases faster than a power law - which might not be

the case if both are stuck - but then larger τc might prove of help. Larger τc might, however,

decrease distances between points, since the exponential divergence is only true for short

time scales - which would increase α.

There is another consideration halfway between these conceptual hurdles and the more nu-

merical obstacles en route to sampling a dynamical system. It is that we classify trajectories

based on the divergence rates of their arbitrary element with a very specific set of points

around that element, as defined by a distance and a metric. Now, Lyapunov exponents de-

fine the rate of expansion and contraction of subspaces. By picking a distance and a metric

we limit ourselves to only a subset of local neighbourhoods, and there is no guarantee that

the deformation of that subset will be representative of the subspaces. The problem may

be remedied slightly by considering a variety of initial displacements.

The more numerical considerations rest on the tacit understanding that all this is an analy-

sis of the double-precision version of the standard map. Its ‘many-to-one’ nature may result

in effective trajectories that are made up of parts of chaotic and parts periodic sections,

since the inevitable approximation to a subset of the rationals intrinsic to every step may

move the point to a region with a different character. This, however, is something that we

take for granted as not influencing the outcome.

Information Dimensions We first check whether our assumption about the regular/chaotic

information dimensions are valid by computing α and then estimating the respective infor-

mation dimensions using the K-G estimator.

It is tempting to estimate α by inspection alone. At K = 2, 50 evenly spaced bins on a

logarithmic scale between 10−15 and 1/2 result in histograms suggesting that for τc = 90

and εc = 10−7 the chaotic peak has become sufficiently separated from the regular one,

for a particular ε0 (parameters in figure below). We therefore track those trajectories and

estimate their information dimension. Once again, we associate the information dimension

with the linearized slope of the curve of the estimate of Shannon entropy with resolution

in the form of Ψ(N) − Ψ(k), for a particular value of N and the first five values of k, just

144



1 2 3 4

2

2.5

3

3.5

4

log
10

τ

 

 

D
c

D
r

D(α = 0.28805)

Figure 4.25: K = 2. Information Dimensions of the joint distribution (at τ) of trajectories
whose separation from their neighbour at τ = τc = 90 was less than εc = 10−7. Average is
over 3 runs. The weight of these (‘regular’) trajectories is denoted by α, though technically
at this point it is α̂, an approximation. D stands for the information dimension that is the
sum of the regular and chaotic information dimensions weighed by α, and is the same as
Dm in the analysis above. Initial separation ε0 = 10−12.

as in the PMI analysis above. Only when the slope is linear with the resolution does the

gradient correspond to the information dimension, though we use the name more generally.

Figure 4.25 shows the regular, chaotic and the composite information dimension for

K = 2 using the cutoff parameters for α found by inspection. From above, we expect the

regular information dimension to be 3, and the chaotic one to be 4. The computed infor-

mation dimensions for both show a small systematic error that lowers the values, more so

for the chaotic case. We also see that the it takes time for both trajectory types to ‘cover’

their respective subsets, and for the measured information dimension to even begin to get

closer to the expected value. Naturally enough chaotic trajectories take less time. In fact

the almost steady value of the regular information dimension at lower τ can be attributed

to motion ‘before’ the wrapping, where the fully-causal limit is realised.

It is exactly this difference in the manners in which the plots increase that produces the

kink at the joint information dimension seen at midrange time scales. This analysis con-

firms our supposition in the section above that this kind of two-stage behaviour for large

K reflects the transition between chaotic and regular scaling. We would therefore see plots

of information dimensions for different N scale with those two distinct laws.
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It is possible that estimation of α parameters by inspection is the reason behind the slight

offsets of information dimensions. We therefore need a more systematic way with which to

find the time and distance cutoff parameters.

Another source of error is a computational one. In practice we sample the set X0 of ini-

tial conditions that is a proper subset of X. Yet if some trajectories are unavailable for

numerical study it should be reflected in both the PMI and the observed α. Therefore any

discrepancy between Γ and Γm will not stem from the impossibility of sampling the state

space of the standard map. If, however, α were to be obtained analytically from theoretical

investigations of the mapping, then an error could potentially arise.

This consideration points to a procedure that could test the extent to which X0 represents

the map in terms of containing different types of trajectories: a theoretical αt could be

compared with a measured one. However the use of a such a comparison is only clear if the

MH were to hold: the PMI for the ‘true’ standard map could be expressed as a function of

αt. Yet this would also greatly reduce the necessity to write down PMI in the first place, at

least insofar as its role in understanding the map is concerned: since it would then be αt,

and not the derivative PMI, that would be used to examine the standard map, and which

would have been already performed. Hence carrying out the test only makes sense if we

want to extend the validity of our results to the ‘true’ standard map, in which a positive

outcome, whilst being a prerequisite, would not be the only requirement.

Testing α

We desire to obtain a best estimate of α, the uniform measure of a set of elements of regular

trajectories of a double-precision version of the standard map defined on a subset of the

rationals attributed to some standard computer architecture. The method described above

has six parameters:

N The number of trajectory pairs. Limited only by the computation speed.

ε0 Initial pair separation. We take the smallest value to be around 10−12, significantly

higher than the machine-epsilon for double precision. Its largest value is dependent

on both εc and τc, since the three can need to be such so as to allow for sufficient

separation between regular and chaotic distances. It is defined by

d the metric, which we keep to be the maximum one, to correspond with one used in the
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Figure 4.26: Relative number of 50000 trajectory pairs whose separation using the maximum
metric at τc does not exceed εc. Initial separation of ε0 = 10−12, for standard map parameter
K = 2. Each value is an average over 10 runs.

PMI calculations.

M The number of runs, which in some sense overlaps with N , but the presence of which

allows calculation of the standard error of the mean. This shall be varied.

εc The maximal distance two trajectories can be separated by in order to still be classified

as both being regular, and

τc The time at which the distance is calculated.

All these variables are interdependent. In all cases a suitable range of possible ε0, εc

and τc is best judged by inspection. As an example we consider K = 2, the case discussed

above, with N = 50000, ε0 = 10−12 (the parameters used), M = 10, and a range of εc and

τc values to compute the mean fraction of trajectory pairs whose separation at τc does not

exceed εc.

Figure 4.26 shows these results for a range of τc. The decrease at short timescales

corresponds to the chaotic distances leaving the allowed range. Downward slopes at large

τc are due to regular distances increasing beyond the εc limit. We conjecture that α is some

average over the plateau of α̂.

The number of trajectory pairs considered is adequate, giving small enough errors for (M =)

10, 5, or even 2 runs (results not shown). This leaves the only untested parameter as the
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Figure 4.27: Relative number of 50000 trajectory pairs whose separation using the maximum
metric at τc does not exceed εc. Initial separation of ε0 = 10−12, averaged over 10 runs,
for standard map parameter K = 2. The graphs with o show the same but for the initial
separation of ε0 = 10−9 (averaged over 5 runs).

initial orbit separation, at least for K = 2.

From the analysis above we expect a certain N, τ scaling for regular trajectories.

As such the initial orbit separation, which is a function of the sample size N used in PMI

calculations, should also have a clear scaling relation to τ (see next section). We therefore

anticipate that for each ε0, there exists a combination of εc, τc that cause a graph with a

different ε0 to overlay the former. This would mean that the average over the plateau stays

the same, and that α does not depend on ε0, which is to be expected. Figure 4.27 shows

a graph supporting this notion, where some plots of ε0 = 10−9 lie on top of the previous data.

The lower limit on εc is given by the largest distance that could, at the given time,

separate two regular trajectories. If εc is below this limit then α would be underestimated.

In practical terms a decrease in α̂ due to this effect is clearest when the regular and chaotic

trajectories are separated in two clear peaks, as is the case for K = 2. The regular peak

begins to traverse εc, which explains the drastic drop on the right hand side of fig. 4.26.

This limit can be made more precise in anticipation of the case around K ≈ Kc, when

relaxation is slow and the separation distribution may not be bimodal and hence clear. In
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Figure 4.28: Relative number of the 50000 trajectory pairs whose separation using the
maximum metric at τc does not exceed εc. Initial separation of ε0 = 10−12, for standard
map parameter K = 2. Each value is an average over 10 runs. The + symbols are positioned
at the analytically-estimated maximal separation of regular trajectories at τc.

the next section the maximal separation for regular trajectories is derived to be

εmin
c = log10(ε0) + log10(τ + 1). (4.41)

We check this on the already-familiar data for K = 2. Figure 4.28 shows the same

information as figure 4.26, but now the plots correspond to different τc values. The plot is

zoomed in on the + signs. Each is positioned at a εmin
c value corresponding to the τc of the

same colour. As such each provides an effective left cutoff, so that points to the left of the

+ of the same colour are weights of only part of the regular trajectories. As expected, we

see that the values below the intuitive leveling at around α̂ ≈ 2.4 can thus be disregarded.

Effect of α on regular and chaotic information dimensions We are now in a posi-

tion to assess the correctness of the plot of information dimensions of regular and chaotic

components shown earlier in figure 4.25. The τc and εc values were, respectively, 90 and

10−7. From fig. 4.26 above, which corresponds to the same ε0, this would give α̂ ≈ 0.288,

agreeing with the value obtained as an aside during the procedure itself. However, the truer

value of α is ≈ 0.24, when the weight plateaus. Since τc should be made as low as possible

we consider two τc and εc values that would give an α that is reasonably close to the plateau,

that of ≈ 0.242, and calculate the information dimensions of the trajectories so defined.
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Figure 4.29: Information Dimensions of the regular and chaotic components for K = 2.
Same as in figure 4.25, but supplemented by data in (o) obtained with a better estimate of
α computed at τc = 1000 and εc = 10−8.

The result, superimposed on the earlier data, is shown in figure 4.29. Contrary to

moving the information dimensions to their expected values of 3 and 4 the effect is actually

the reverse. The reason behind it is the same reason that causes the blue plot at low values

of τ to come down: we see that if we allow more pairs to escape, making less mistakes

in trajectory categorization, that for a range of τ the information dimension of the joint

chaotic component appears smaller. This is because we added trajectories that do not range

over the space as fast as the chaotic ones, bringing down the average interpoint distance

and hence the information dimension. After some time this is remedied, however, and at

large τ , Dc does not change. The same effect brings down the information dimension of the

regular component in the joint - by removing pairs that would otherwise result in interpoint

distances large enough to raise Dr.

Our expectations of the values of Dc and Dr are based on the assumption that in the

marginal the chaotic and regular components have certain integer information dimensions.

When the structure of the state space becomes complicated this may not necessarily be

true. However the actual values are not computationally obtainable - here we relate D to

the slope of measured entropy with resolution; doing the same in the marginal cases does

not give a well-defined slope for either of the components, at least at K = 2. For the joint

the case is clearer, though rather expectedly the chaotic component gives a slope with more
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Figure 4.30: K = 2. Information Dimensions of the joint distribution at τ = 104 of
trajectories whose separation from their neighbour at τc was less than εc = 10−8 (denoted
by r), and their complement (c), as well as the averaged quantity D(α) = Dm, where α is
the weight of the former, computed for each τc. This curve does not decrease as much as Dr

since the weight of the regular contributions decreases with τc according to the respective
graph in fig. 4.26. Technically α is α̂, an approximation.

errors than the regular one.

Consider a relatively high τ = 104, for which the dimensions have - roughly - reached

equilibrium. For the two different cutoff parameters shown in the graph above the chaotic

dimension is seen to stay the same, while the regular one decreases to below 3 as more time

is given for the chaotic trajectories to leave. In figure 4.30 we show the dimensions for a

range of cutoff values, effectively following the marine curve in figure 4.26. The chaotic

dimension is found to stay roughly constant, yet below 4. The regular dimension, however,

is seen to continue decreasing below 3 and then level off. This points towards considering a

regular dimension of 3 as not the true dimension of regular trajectories, but rather merely

a value obtained by including some chaotic trajectories in the sample, which raises the ef-

fective dimension.

We therefore treat the slower chaotic trajectories that leave the regular component as having

the same dimension as the main chaotic component, since their presence does not change

the dimension of the latter, but certainly alters the regular dimension. The fact that D(α) is

almost level indicates that the decrease in the regular dimension is in line with the decrease

in the weight of those trajectories that make up the regular distribution (and which, before

α settles, would include some chaotic ones).
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We have seen that without establishing a plateau with τc the discretization procedure

alone is prone to various errors. However, the difference between regular/chaotic informa-

tion dimensions due to a different α gets somewhat lessened when the same α changes the

proportion of their altered contributions to the Dm. Thus for K = 2 the error from using

the wrong α is seen to be relatively small.

Figure 4.31 shows the resultant Γ plots. We first note that if we wish to include

time-invariant dimensions of the joint components then we would have to talk about the

limit of Γ as τ →∞. For finite τ the shape of Γ is seen to be the result of the combination of

information dimensions of spaces that have so far been explored by the regular and chaotic

trajectories. Yet, more importantly, even in this case when we are sure of α and Dr/c to

relatively small errors, the Γm still underestimates the measured Γ (errors are not shown

here, but they are smaller than the distance between the plots). Information dimension

of the joint is thus, albeit by a small amount, smaller than the proportionate information

dimensions of components.

The only way in which it is possible is if in the computation of the joint the neighbour dis-

tances were sometimes realised by trajectories of different character. This in turn suggests

that the difference between the two values can reflect the extent of ‘interlocation’ of the

regular/chaotic parts. It is interesting that time wise the largest difference happens when

the scaling with resolution changes from chaotic to regular.

We now consider a different K, K = 0.9. From the standard map theory here we

expect α to be larger than at K = 2. We also expect Γm to be further away from Γ, since

we assume that the extent of spatial mixture of regular and chaotic trajectories is greater

around Kc.

Figure 4.32 shows the pdf of distances for K = 0.9. What is immediately sticking is

that here it looses its bimodality, the exact feature that made this framework so amenable

to obtaining α. There is no longer a clear peak corresponding to the chaotic trajectories

moving to the right. What is shown here is that these no longer have a distinct typical speed

of separation. Instead the distances between chaotic pairs leave the peak gradually and at

varying times (though whether it is a combination of these effects is an open question).

In terms of estimating α this means looking for a combination of cutoff points that is both
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Figure 4.32: Histogram of distance between τ th iterates initially separated by 10−12. N =
10000 points were considered; standard map parameter K = 0.9. It is arguable whether
trajectories can be split into two types depending on the rates of divergence.

computationally reasonable and does not allow any regular trajectories to be mistaken for

chaotic ones. Plotting the same graphs of α vs the cutoff parameters, the measured α is

seen to plateau, but slowly, without reaching the asymptotic value even in the relatively

large τc range.

Thus the problem of slow convergence that we saw happen with PMI in the section above

translates directly to the problem of computing the weight of chaotic component. In the

next chapter we will see that it is exactly the elements making up these marginal pdfs that

can be manipulated to give the PMI value. Moreover, there is a possibility that it would

not be computationally solvable at all, since typical intermittency times could be larger

than the time when trajectories will start to diverge because of error in the finite precision

method (although the computational standard map is observed to preserve some features

expected of theoretical system, this is not guaranteed to happen for arbitrarily large number

of iterations).
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Figure 4.33: The same as figure 4.18(a) but with the mixing Γ obtained with Dc = 4 and
Dr = 3, and the proportions specified by α, where the latter is computed at arbitrary cutoff
parameters constant across K.

Thus there are regions, primarily coincidental with regions where convergence of PMI is

itself problematic, where the mixture hypothesis is not testable at least by this method and

with this categorization of trajectories. We can nevertheless set arbitrary cutoff parameters

and compute Γm under the assumption that it will be with a large error.

Results are shown in figure 4.33. The first interesting point is that unlike that direct

from the PMI, this Γm does not peak. The absence of a peak is not merely computation,

since we assume that the fraction of chaotic trajectories increases monotonically. Thus the

error between the measured Γ and the PMI comprises of a) the over/under-estimation of

Γm, though the same effects should be responsible for the overestimation of Γ, and b)the

difference between considering orbits in isolation from others of different types.

While the first is related to dynamics, the second is to do with the relative spatial arrange-

ments of regions with regular and chaotic motion. The work on the mixture hypothesis

suggests that it is the latter that plays an integral part in the change of predictability with

resolution. It raises Γ, making the system more predictable for the same price of increased

resolution than it would have been had the regular and chaotic regions not been separated.

Thus the mixture hypothesis was only qualitatively successful. It showed that for any finite

K, there will always be areas where the regular and chaotic trajectories are arbitrarily closer

to one another (at least on the range of scales tested by the estimator).

155



Chapter 5

PMI and Information Codimension

from Trajectory Separations

Statistics
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We have already seen that distributions of evolved distances between pairs of points

initially close together, that started out scattered randomly across the state space, can

reveal such features of the map as existence of two types of orbits, clearly different in char-

acter, which we class as chaotic and regular. In the previous section this setup was used

to identify the proportion of regular component as a function of map parameter K. Here

we ask the question of whether this framework can be used to predict and/or explain such

features of Γ as the possible transience of the peak and its position. The far reaching aim

is to find aspects of this picture that directly result in the fractal scaling of PMI, which

would then pave the way for forming strong conclusions about existence of such scaling at

otherwise computationally-inaccessible limits.

The reason the trajectory separation framework could offer insights into limiting behaviour

is twofold. First it enables us to obtain statistical data on much smaller scales than the

effective distances one works with when sampling the initial distribution with N points

(the average initial separation ε0 ≈ 1
2
√
N

. So for computationally large sample sizes of

N = 500000, ε0 ≈ 10−3.) Since some of the unresolved PMI issues concern the limit of

large resolution this method offers an advantage, given that even allowing for the double-

precision version of the map, initial separation could be set as low as machine-epsilon which

for doubles is ≈ 10−16, many orders of magnitude less.

The second advantage is the decoupling of sample size from probability resolution. Mea-

surement of PMI at low resolution could be skewed due to a worse estimator convergence.

We first show that tracing trajectory separations in time does yield an algorithm for com-

puting the joint entropy, and hence PMI, for area-preserving systems. We then interpret

the joint information dimension using the variables implicit in this framework, and use ex-

amples to clarify the interrelation of information dimension with time and sample size.
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5.1 Methodology

For area-preserving maps with a normalised state space Persistent Mutual Information at

τ is obtained from the K-G entropy estimator:

I(τ) = −ĤJ = −Ψ(N) + Ψ(k)− 4

N

N∑

j=1

log(2εj), (5.1)

where εj is the distance from jth point to its kth nearest neighbour in the joint space.

Here N is the number of points considered, or the sample size. The sum can be written

as an expectation value w.r.t. some (whose existence can perhaps be only approximated)

distribution ρ of the random variable ε:

I(τ) = −Ψ(N) + Ψ(k)− 4E [log(2ε)]ρ . (5.2)

The maximum metric would pick for ε the largest of the initial and final distances. PMI

can thus be thought of as a statistical description of the interpoint distances in the joint

space.

In this section we review the traditional way of sampling ρ, and introduce a new method.

The traditional method iterates the sample itself; part of the computational effort is spent

in creating the evolved, future set of distances. The main procedural emphasis is on then

combining the initial and evolved samples to create and order the set of distances in the

joint.

On the other hand, the method here labelled TS (for trajectory separation) manipulates

two sets of marginal distances. Here the emphasis shifts away from ordering the joint points

and onto a procedure that combines these sets in a specific manner. The new method com-

pensates for the more complicated procedure by recognising that it requires only a finite

number of elements (for each point in the sample) from the second set to complete it. Thus

the TS method begins to become advantageous in terms of running time the moment this

latter number of elements can be made small enough.

After mentioning the traditional method, we demonstrate that there exists a finite, deter-

ministic procedure for obtaining the joint interneighbour distance from families of initial

and evolved distances. We then conjecture that sampling the distance sets and the associ-

ated variables independently is equivalent to sampling ρ.
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Let S be the state space of a continuous, area-preserving dynamical system, and P

a set of probability distributions corresponding to measures defined over some σ-algebra on

S. We sample the initial distribution withXi ∼ ρinit ∈ P to produceX = Xi ∈ S : i = 1..N .

Traditional Method Consider the calculations involved in finding the mean interpoint

distance in the joint as done by the tradition PMI methods in the previous chapter. The

set X gets evolved under F for τ times (w.l.o.g. assume F is an iterated map), to Y .

To each trajectory indexed by i we associate a family Di(X,Y ) of first, second, .. kth

nearest neighbour distances in the joint space referenced by two time elements, 0 and τ :

Di(X,Y ) = (Di(k,X, Y ))N−1
k=1 , where

Di(k = 1, X, Y ) = min
j 6=i

[d((Xi, Yi), (Xj , Yj))] . (5.3)

εi(X) is then just Di(k = 1, X, Y ).

5.1.1 New Method

Consider instead associating a nearest neighbour distances family Di(X) to each point i in

the original sample X. Let D(X) be the set of all Di(X).

Trajectory separation method traces the evolution of distances between specific points. The

outcome is held in the ordered set Dτ (X) of families Dτ
i (X), where each kth element is the

new distance between the ith trajectory from X and the trajectory that was its kth nearest

neighbour in the past,

Dτ
i (k,X) = d(F τXi, F

τXj) s.t. d(Xi, Xj) = Di(k,X) (5.4)

We now show that for each i there exists a finite, local algorithm (which we call procedure

P) to compute the ith minimum joint interneighbour distance εi from the families Di(X)

and Dτ
i (X).

Procedure to compute εi Consider N trajectories pi, i ∈ I = [1, 2, ..N ]. Let dtij =

d(pi(t), pj(t)), where d is the maximum metric. The joint distance between two trajectories

is then dJij = max(d0
ij , d

t
ij).
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Figure 5.1: Procedure to compute joint interneighbour distance. Here a stand for distances
to nearest neighbours from point i.

For trajectory i we label other trajectories based on the proximity to i at time t = 0. This

creates a set Ii indexing the elements of Di, a family of nondecreasing distances between

trajectory i and others:

Di =
(
d0
ik

)
k∈Ii

. (5.5)

Let ak be the kth shortest distance between trajectory i and some other, ak = Di(k). Let

a
′
k be the distance between respective trajectories at a future time τ , a

′
k = dτik. We look for

the trajectory that is pi’s nearest neighbour in the joint space by considering successively

larger neighbourhood in the past. Figure 5.1 demonstrates the general principle: the joint

distance between trajectories i and k is

dJik = max(ak, a
′
k). (5.6)

The distance between trajectory i and its nearest neighbour in the joint space, dJi , is realised

by such trajectory j∗ ∈ Ii that

dJij∗ ≤ aj∗+1, (5.7)

with

dJi = min
j∗

dJij∗ . (5.8)

Because candidate distances are bound by interpoint distances in the past (at time

τ), it is straightforward to construct a search by considering marginal nearest neighbours

of increasing index, computing distances between the respective trajectories in the future

time, and each step checking for completion. The algorithm is a simple update of candidates
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(joint distances) and cutoffs (marginals distances) :

1 nnmax = tr ia lM ; // s e t s e s t imated l im i t w i th in which to l ook amongst the

neare s t ne ighbours in the pas t f o r the po in t forming the c l o s e s t

connect ion in the j o i n t space

2

3 past nnDis tances = getnnDistancesFromKDtree ( th i spo in t , nnmax) ;

4

5 int nncount = 0 ; \\ index o f a from the graph

6

7 c u t o f f = past nnDis tances ( nncount ) ; \\ a 1

8 candidate = e v o l v e d i s t a n c e ( th i spo in t , cu to f f , map ) ; \\a ’ 1 = max( a 1 , a ’ 1 )

9

10 while ( candidate > c u t o f f )

11 nncount++;

12

13 c u t o f f = past nnDis tances ( nncount ) ;

14 newcandidate = e v o l v e d i s t a n c e ( th i spo in t , cu to f f , map ) ;

15

16 candidate = min ( candidate , newcandididate ) ;

17

18 i f ( nncount == nnmax ) . . // r e s e t t r ia lM to a l a r g e r va lue and repea t

proces s

19

20 end

21

22 e p s i l o n = candidate ;

5.1.2 Sampling

Practical computation of PMI entails taking averages over samples. This allows us to

attribute meaning to ρ.

The K-G estimator is unbiased because rather than being multiplicative it involves a sum

of terms. The fact that the terms, which are the joint interneighbour distances, are not

independent of each other (since need to have N points distributed uniformly in state space)

means the errors will not be independent.

Hence we get an unbiased estimate of log ρ (for nearest neighbour index k of one) by

sampling local marginal interpoint densities, localising them randomly and evolving the

respective points, and then applying the deterministic argument above to both the initial
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and the evolved counterparts. Because we use independent sampling, it is possible that

singular events will not be seen. In this respect we to some extent assume that here smooth

(in the sense of non-singular) marginal interpoint distributions would give a smooth joint

interpoint distribution. The marginal interpoint distances for two random points would

likely not be independent. Hence the lower the sampling depth the more independent our

distances become.

Localisation is an interesting problem. Dτ
i cannot be computed from Di(X) alone; evolved

distances are entirely dependent on the position of the initial separation vector, not just its

length. To obtain Dτ we also require the absolute, not just the relative, position of the set

of separation vectors.

Consider the combination procedure. Each evolved separation family Dτ (i, k,X) is a result

of a deterministic function that depends only on the initial location of the kth trajectory

pair:

Dτ (i, k,X) = f (D(i, k,X), Xi, Lk, F, τ) , (5.9)

where Lk is the information about the arrangement of the separation vector for point i,

and Xi is the position of point i. Consider a random variable V = (D,L,Xpos), where

the variates inside the brackets stand for Di(X), Lk and Xi. The above equation states

that there is a function of V that results in a value identified with Dτ (i, k,X). A further

procedure (all deterministic) then gives the inter-neighbour (k = 1) distance associated with

that point i. This constitutes the TS method - we sample V and use a specific algorithm

to get ε. Taking averages with respect to the sampled V should give the correct averaged

log ε.

The main issue here is of course that the v values come in specific configurations, whereas

we assume independent sampling of V . Moreover, we ignore the specific interdependencies

of elements of V . Specifically, we orient ourselves to sample the correct marginals of its

elements. We propose:

• Sampling M random points. Thus elements of Xpos would be distributed with ρinit.

• The marginal of the location of separation vectors is by symmetry an equidistribution.

If point pairs are defined by the lower/left-most point, sampling from its marginal

involves (recalling that the metric is a maximal one) picking randomly the axis where

separation is some given number a, and creating the second point higher/to the right,

shifted by b ∼ U[0, a].
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• Finally, we sample from the marginal of the ‘past distances’ vector D by drawing

individual Di from some table (effectively computing them from a kdTree)- that way

relative sizes of first, second, .. kth distances are preserved.

A natural extension of the method would be to sample Di theoretically. The sam-

pling technique itself is not straightforward, since the probability of having the kth nearest

neighbour at a certain distance would be dependent on the obtained values for the previous

k − 1 ones. However, in practice retrieval of the ‘past’ distances, especially if a kdTree

method is available, is not a computational burden, especially if M is low. Jumping ahead,

for the average (N, τ) used in the section above the highest k index is of order hundreds.

Considering that M does not need to be much higher than that to achieve correspondence

between TS PMI and the true value, the factor that contributes most towards running time

is τ .

Errors would stem from how likely we are to miss something singular in terms of dependen-

cies. However, we claim that in practice the typical dependency is only on close points.
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5.2 PMI Scaling: Information Codimension from Trajectory

Separations

The key step now is to understand how to use trajectory separation distributions to say

something about statistics of nearest neighbour distances in the joint space. Specifically,

linear PMI scaling with resolution can be understood from the trajectory separation picture.

Given two sample sizes, N and AN , A > 1, and some k,

Γ =
−Ψ(AN) + Ψ(N)− 4

AN

∑AN
j=1 log(2ε

′
j) + 4

N

∑N
j=1 log(2εj)

Ψ(AN)−Ψ(N)
, (5.10)

and hence, rewriting the above in terms of the mean values and canceling the log(2), we get

E [log(ε)]ρAN (ε) ≈ E [log(ε)]ρN (ε) −
Γ + 1

4
log(A), (5.11)

5.2.1 Fully-integrable case of K = 0, Γ = 1 limit

From (5.11), when Γ = 1, for large sample sizes N ,

E [log(ε)]ρAN (ε) ≈ E [log(ε)]ρN (ε) −
1

2
log(A), (5.12)

i.e. the mean distance to kth nearest neighbour in joint space associated with sample size

AN will be smaller by 1
2 log(A) than the respective mean distance associated with sample

size N . This is reasonable since a larger sample size means smaller initial separation, so

we expect smaller interpoint distances in general. We are now in a position to show that

decreasing the sample size by a factor of A shifts the expected value of x = log ε by 1
2 logA.

We are going to argue that for K = 0 and Γ = 1,

E [log ε]ρN ≈ E
[
log ε0

]
ρN

+ f(τ), (5.13)

where f is manifestly not a function of N . If (5.13) is true, then since marginalising ρN

gives the mean distance to kth nearest neighbour in the past to be 1
2

√
(k/N), eq. (5.12)

reduces to

log

(
1/2

√
k

AN

)
≈ log

(
1/2

√
k

N

)
− 1

2
log(A), (5.14)

where the LHS is equal to the RHS since the two N -independent f functions cancel from
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both sides.

Consider computing ε from trajectory separation. Using the new terminology this

corresponds to

ε = fdet (D(k,X), X, L, F, τ) (5.15)

where fdet is some procedure. Implicit in that procedure is the computation, at least partial,

of the respective evolved distances Dτ (k,X).

We first rewrite the above equation in terms of a shift G applied to an arbitrary function

of D(k,X), which we choose to be the initial interpoint distance D(k = 1), which would

render G necessarily positive, due to the maximum metric (we also rewrite in log basis):

log ε = logD(0, X) +G (logD(k,X), logDτ (k,X)) . (5.16)

The important thing to notice is that the shift only concerns the relative values, i.e. dis-

tances between points in the past and in the future. It does not take into account localisation

of the separation vectors (if manipulations of finite separation vectors is how we choose to

visualise the process). The four other variables contributed towards creating the respective

future separations vector (similar to eq. (5.9) from the previous section)

Dτ (k,X) = fdet (D(k,X), X, Lk, F, τ) , (5.17)

where fdet is some (different) procedure.

In other words, the interneighbour distance (for some point) in the joint space consists of

starting with the nearest separation in the past, noting the vector of nearest neighbour

distances from that point, evolving it, and manipulating the two resulting vectors to in-

crease the starting distance by a certain amount. We now argue that for K = 0 an evolved

interpoint distance does not depend on the location of initial points.

Let K = 0, τ = 20, and N = N1 = 50000. From fig. 4.9, this sample size gives the

required Γ = 1. We look for the first nearest neighbour, and initialise M = N1 trajectory

pairs separated by ε1(N1) = −1
2 log10(50000) ≈ 0.004 and evolve for t = τ .

Figure 5.2(a) shows the distribution of distances between trajectory pairs that were

initially ε1 away. Aided by figure 5.2(b) we identify two subsets on which ρt is relatively
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Figure 5.2: Frequency count corresponding to ρt, the distribution of trajectory separations
for t = 0 (blue peak at ε1) and t = 20 (in green). Maximum metric is used throughout.

flat, but varies dramatically in magnitude.

This is a consequence of the metric (maximum) used to compute (and define) separation

of points in the standard map state space. We initialise a pair of points separated by ε0

through 1) identifying the variable (θ or momentum) that will be ±ε0 away, and then 2)

picking the remaining coordinate of the second point to lie a distance ±δ, δ ≥ ε0 of the first

one (uniform distribution). Since the designation of first and second point is arbitrary we

use a positive ε0 and a positive/negative δ. For K = 0 the mapping is a translation of θ

by the amount corresponding to momentum. So if the initial separation as the maximum

of the θ and momentum distances is realised by momentum, then the tth iterate would give

the distance between two points as

εt = δ + tε0, (5.18)

and those pairs separated through θ will have

εt = ε0 + tδ. (5.19)

The momentum-separated trajectories, which as expected form roughly half of the total,

would then give a flat ρt = ρ1 centered on tε0, of width 2ε0. This is indeed what we see

in figure 5.2, where the middle of the high step happens at 20 ∗ 0.0045 ≈ 0.09, and is

0.009 wide. The wider lower region of ρt should be ρ2 = 2a high between ε0 and tε0, ρ2/2

high between 0 and ε0 and ρ2/2+ρ1 high tε0 and tε0 +ε0. Since 1/2 = 2ε0∗ρ1, ρ1 = 1/(4ε0).
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Both ε0 and δ are of similar orders of magnitude. Hence as t increases, εt →∝ tε0.

Since the implication of the final distance not depending on the location of the initial point

is also that any kth neighbour distance evolves independently of the initial location, then

this is true for whole family:

logDτ (k) ≈ logD(k) + log(τ). (5.20)

Thus eq. (5.16) can be rewritten as some

log ε = logD(0, X) +G′ (logD(k,X), τ) , (5.21)

The shift G
′
, which is a procedure of combining elements of logD and logDτ to

produce ε, does not depend on the absolute values of the elements. The key point here is

that only the relative configurations of distances determine the location of the value taken

to be ε. We know that in the limit of large N the logarithmic positions of elements of D

indexed by k are, on average, 1
2 log(k)− 1

2 log(N). Therefore the difference between family

elements does not depend on the sample size. There can be errors when small N samples

do not follow Poissonian statistics, but it will hold in the limit of large N (see figure 5.4).

The RHS of the equation above becomes split between parts dependent respectively

only on N and τ , which allows generalisations to be made. The distribution of ε can be

sampled with the appropriate distribution of D(0), which does depend on N . Since G′ is

independent of N we associate it with f introduced in eq. (5.13), which thus holds. Thus

we see that using the TS framework we can recover the infinite-resolution Γ = 1.

5.2.2 Transition to Γ = 1/3 in the Fully-integrable case of K = 0

From empirical observations we infer that for any sample size N there exists a time τmin

such that for any τ > τmin Γ will be 1
3 . Equivalently, given a time t we conjecture that

there exists a sample size Nmax such that Γ will be 1
3 for any N < Nmax. The intuitive

explanation is that this is due to wrapping effects which to some extent destroy initial cor-

relations (but not completely, since the map is not chaotic). This occurs at a time that is

dependent on the initial separation.

We also infer that there exists a time below which the information codimension is equal to
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x0 x0 + log(t + 1) log

(
1
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)
x = log(ε)

Figure 5.3: Reasoning behind the wrapping time/sample size relation (here t = τ). The
curve in blue is the evolved distribution of distances between points that were closest neigh-
bours at t = 0, with distance x0. The combination procedure G′ will take into account
evolved distances up to, at most, x0 + log(t + 1). A reflected evolved distance may begin
to participate if it starts ‘under’ the curve and has time to come back. Maximum metric
ensures that G′ cannot consider evolved distances that started to the right of the curve.

unity, and that this time also depends on the sample size. Here we attempt to infer the

interrelation between the two.

As before, we start with the distribution of initial points, which is associated with a fam-

ily of k = 1, 2... nearest neighbours distances in the state space. The evolution rule and

number of iterates τ gives rise to another family, this time of distances between iterated

subjects and evolved points that were kth nearest neighbours in the past. As the underlying

distances increase, the support set of the second family moves to the right towards the

reflective ε = 1/2 boundary.

In the trajectory separation framework wrapping happens when the relevant future

separation distributions hit and get reflected off the ε = 1/2 boundary. After some settling

period the support space becomes [0, 1/2], with the momentum-separated trajectory pairs

still giving a peak. That peak, however, is bounded by [ε0, 1/2]. The direction of its travel

is a simple function of the evenness of the remainder of τε0 and 1/2.

Consider an initial position x0 = −1
2 logN . After time τ the peak will be at xτ =

x0 +log(τ+1). The support S of the distribution of nearest neighbour distances in the joint

space will be a subset of
[
x0,min

(
xτ , log

(
1
2

))]
. When either τ is large enough, or N is small

enough, some of the weight resulting from evolved distributions of separations whose initial

value was in S would have been in S after having been reflected off the log
(

1
2

)
boundary.

The peaks originating in the upper most limit of S will re-enter S first. Therefore a lower

limit of t below which no re-entry is possible will be given by the time for which the final
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position of the ‘most likely’ wrapping candidate is outside the right hand limit of S, i.e.

xτ + log(τ + 1) < log

(
1

2

)
+

(
log

(
1

2

)
− xτ

)
, (5.22)

or

2x0 < log

(
1

2

)
+ 3 log(τ + 1). (5.23)

which is equivalent to
(τ + 1)3

N
<

1

2
. (5.24)

In other words, there comes a point (N, τ) when

logDτ (k) ≈ logD(k) + log(τ) (5.25)

no longer holds. When, in addition to that, the element of the D(k) family that does not

get evolved according to this rule could potentially be an input into G′, the combination

procedure, then the Γ = 1 scaling will break down.

Eq. (5.24) states that periodic boundary conditions could only begin to affect the

joint interneighbour distances, and hence the PMI, when τ3 ≥ N . This is indeed the scaling

at which plots of Γ for different N collapse, as observed in the previous section. Moreover,

it provides a cutoff point that can be confirmed through figure 4.9. There Γ begins to

decrease from its plateau of unity when τ3/N ≈ 0.3, close to 1
2 . Correction of τ by one,

though stemming from the maximal metric as well as an exercise when initial interneighbour

distances are all the same, does bring the cutoff point closer to the one observed. In the

same figure 4.9, but taking a particular sample size N = 150000 as an example, Γ begins

to fall when τ3/N ≈ 0.43, whereas this value is 0.46 for (τ + 1)3/N . Hence we see that TS

logic is useful for deriving the mixing properties, at least for K = 0.
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Figure 5.4: Unnormalised distribution of distances to kTh. nearest neighbour, given N
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, the mean w.r.t. the expected Poissonian statistics.

5.3 Implementation

Initial interpoint Distances As N increases both the support, and the shape, of these

distributions changes (in a qualitatively different way than would happen by sampling a

different set of N points). The deviation from normality is a result of the interdependence

of its components. Neither do the means correspond to the expected
√
k

2
√
N

, though the

fact that actual values are smaller is at least partially due to the maximum metric used to

compute them.

The statistics we require is a set of M interneighbour distances in the joint space.

Each such value is obtained from some point x ∈ X, and a set of distances to its k′ near-

est neighbours. The specific k′ depends on the map dynamic. We start with an array of

distances to nnmax closest points that we obtain by building a kdTree, picking a random

point on it and retrieving the distances. The substance of the trajectory separation method

is, however, in evolving these distances themselves, i.e. by assigning them to pairs localised

somewhere in the state space. There are several ways this can be done, and in our imple-

mentation we distinguish three of these.

• Method 1. Out of the three this method resembles the original, traditional construc-

tion most closely. Here the spatial location of the point pairs that represent the

distances is such that one the points corresponds to the entry in the kdTree that was
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used to retrieve the distances. The second of the pair is picked at random, still using

maximum metric.

• Method 2. In this method the point on which all the pairwise distances are centered

does not correspond to any particular point of a KDtree, but instead is sampled from

an flat distribution over the state space.

• Method 3. Here every first point of a pair is picked from a random distribution over the

state space. This means that the shortest distance could be between points located in

a chaotic region, and the second shortest distance could be between points somewhere

else entirely. The value of ε obtained this way no longer reflects the action of the map

on some neighbourhood; instead it is in some sense already averaged across the state

space.

5.3.1 Results

Results could potentially differ based on the method used, the effective map parameters

K and τ , the sampling strength M (sometimes expressed here either as percentage of true

sample size), the resolution N , and the function in question, since some consistent errors in

PMI do not necessarily imply a false Γ.

We first consider the non-chaotic case of K = 0, and examine two regimes, first ones where

PMI displays well-defined scaling of Γ = 1 and Γ = 1/3, and then look at the transition. The

far-reaching motivation is to see if there is a link between the validity of the assumptions

behind TS PMI (specifically, independence of components of V ), and Γ, whether in its

existence or in the quantitate sense.

For each of the three TS methods PMI is compared with the value obtained using the

traditional (here called “conventional” method), at k = 1. This value was chosen since in

the section above the least ambiguous Γ was one defined as the gradient with respect to a

varying N and k = 1.

K = 0. In the first graph 5.5(a) the TS PMI for each resolution N is computed with

sampling depth M = 0.01N ; in 5.5(b) this value is kept at M = 1000. As a result, the

first four values in 5.5(a) for TS PMI are computed with much less data, and are hence
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Figure 5.5: K = 0, Γ = 1 regime. PMI v resolution at τ = 10 using three trajectory sepa-
ration methods (sampling initial distances), and the traditional method (k = 1), averaged
over three runs. The dotted line indicates the slope of unity.

much more prone to statistical errors, than the respective entries in 5.5(b) (the first value

is M = 63). Other than that, we see that here TS PMI picks up the correct slope of Γ = 1,

and that the actual PMI values are roughly in line with ones computed by the traditional

method.

There are, however, some errors, and a bias towards lowering PMI is apparent in 5.5(b) for

method 2. If these are errors stemming not from some inherent bias, they should go away

with either more runs, or with higher M . We therefore check whether varying M makes a

difference to the PMI values.

Results for the same parameters as above are shown in fig. 5.6(a). First it should be noted

that the error bars are computed from three runs, and as such do not give an indication of

the actual spread of data. Indeed not only can the relative size of the error bar change if

the simulation were run again, the mean values for the trajectory separation methods also

display a significant variation. What is evident from several runs is that to each method

corresponds some ‘true’ PMI value that the results fluctuate around to a greater or lesser

extent depending on the sampling size (here sampling size M is distinct from sample size

N). For the Γ = 1 the TS PMI for methods 1 and 3 is almost coincident with the true

PMI for the traditional method; whereas PMI for method two is lower by a relative error

of about 2%. For Γ = 0 all true values appear to be within an error that in absolute terms

is ten times less than the former case.

In other words, results shown in figure 5.5 would not change if a larger M was used; we
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Figure 5.6: PMI using three trajectory separation methods (sampling initial distances),
and the traditional method, computed at N = 25000. Values of the former are plotted as
a function of the sampling size used, expressed here as a function of N , and going down to
250.

detect a bias in TS PMI when Γ = 1 (for this K = 0 at least). This bias goes away when

Γ = 0, a case of absolute mixing. We thus conclude that for the fully-resolvable case TS

PMI does a good job, with a small absolute bias that does not change with N , giving the

right Γ.

We conjecture that TS PMI is sufficiently close to true PMI at other (N, τ,K) regimes that

correspond to Γ = 1. We also note that these values are obtainable with sufficiently low

errors by a small enough, fixed M .

Now consider another well-defined Γ regime, that of Γ = 1/3. Figure 5.7 shows PMI

v resolution computed at a fixed M = 1000, for two different τ values (from the previous

section we know that at these parameters Γ = 1/3, and the plot of Conventional PMI

confirms this).

We will see that for small K there is a range of small τ when the methods differ, albeit

by a rather small amount, from the traditional PMI. We do not yet have an explanation for

these errors. They seem to be smaller when τ is large, perhaps when the system is better

settled. Nevertheless in all these cases it would seem that method 1 fares much better than

the other two, which is to be expected.

Figure 5.8 shows that the error is indeed a bias, i.e. the error is consistently low-

er/higher. The smallest bias is in method 1, which by design contained the least uncertainty.

We thus conclude that there could be bias that differs at least on Γ; but that for K = 0,
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Figure 5.7: K = 0, Γ = 1/3 regime. PMI using three trajectory separation methods with
M = 1000(sampling initial distances), and the traditional method (k = 1), computed v N
(averaged over three runs)
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Figure 5.8: K = 0, Γ ≈ 1/3 regime. PMI using three trajectory separation methods
(sampling initial distances), and the traditional method, computed at N = 25000, τ = 100.
Values of the former are plotted as a function of the sampling size used, expressed here as
a function of N , and going down to 250.
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Figure 5.9: K = 0, Γ in transit between the two stable limits. PMI using three trajec-
tory separation methods (sampling initial distances), and the traditional method (k = 1),
computed v τ (averaged over three runs)

Γ = 1 it is relatively insignificant for all three methods, and that method 1 gives a relatively

close PMI. There is more bias for Γ = 1/3, but it depends on (N, τ) and not on M . We now

examine how TS PMI changes as the system makes the transition between the fully-causal

and the fully-mixing (no chaos) case.

Figure 5.7 above showed that TS PMI can vary with quite a large bias as τ grows

larger, depending on N . These variations correspond to the large τ end of figure 5.9(a),

which displays the behaviour of PMI with τ . The former are seen to occur after a significant

deviation from the true PMI value that happens when Γ is changing. A zoomed in version

on this low τ region is shown in figure 5.9(b). Although N is different there, several sample

sizes N and sampling depths M (up to M = N) were tested and the qualitative differences

are the same, independent of either. Hence for K = 0 the TS PMI displays a bias at the Γ

transition point. We therefore conclude that from the fully regular case, the assumptions

behind TS methods seem to be valid when the system is fully-causal, close enough when

the system has settled into the fully-mixing regime, but appear to break down in the state

of transition. The next paragraph will test these conclusions across different K regimes.

Large K We now examine two regimes at large K > Kc, for which we the asymptotic,

N -independent Γ exists. Figure 5.10 shows the variation of PMI with resolution.

It can clearly be seen that TS method 1 performs well, with little to no bias (that

does not appear to change with N - neither, from test runs, with M). The performance of
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Figure 5.10: PMI v resolution for large K. PMI computed using three trajectory separation
methods with M = 1000 (sampling initial distances), and the traditional method (k = 1).
τ = 1000, averaged is over three runs.

method 2 is variable, and depends on the parameters, whereas method 3 is unreliable. The

bais in method 1 does not prevent it from giving the correct slope of Γ.

In figure 5.11 we examine the transition of Γ, and by extension the τ dependency of the TS

methods.

Since in the τ interval considered Γ changes dramatically from some value close to

unity to one near the asymptote, the figure above actually shows that TS PMI does not

necessarily deviate from the true PMI when Γ is in transition. Methods 2 and 3 display

significant variation, not only in the transitive Γ state. Most importantly, the bias in method

1 that was present at K = 0, transitive Γ regimes, appears to be absent at high K values.

At large τ values not shown on the graph it was observed that method 1 continues to be

in line with the true PMI, while methods 2 and 3 do not consistently converge or diverge;

but rather that behaviour depends on K. Since there is nothing special about this N , we

conjecture that for K > Kc TS PMI using method 1 is close enough to the true PMI,

independent of M .

K < Kc regimes Figure 5.12 shows that for a sample low K TS method 1 is still close

enough to the true values, giving the correct Γ; method 3 consistently deviates, and method

2 varies in its bias.

Figure 5.13(a) displays variation of PMI with τ for the same K value. The bias in

method 1 does not change with τ , unlike in the K = 0 case. Figure 5.13(b) shows that

a variable bias does appear as K is lowered, in particular at K = 0.1. It is not, however,
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Figure 5.11: PMI v τ for large K. PMI computed using three trajectory separation methods
with M = 1000 (sampling initial distances), and the traditional method (k = 1). N =
25000, averaged is over three runs.
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(b) τ = 1000

Figure 5.12: K = 0.7. PMI using three trajectory separation methods with M = 1000
(sampling initial distances), and the traditional method (k = 1), computed v N : Γ = 1/3
regime (averaged over three runs)
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Figure 5.13: Low K. PMI using three trajectory separation methods with M = 1000
(sampling initial distances), and the traditional method (k = 1), computed v τ : Γ = 1/3
regime, N = 25K (averaged over three runs)

consistent. At K = 0, TS PMI using method 1 is lower than the true value; at K = 0.1 it

is higher; and lower for K = 0.5 and K = 0.7. However, independent of K, as τ increases

to above the range shown here, any bias in method 1 present at low τ disappears.

5.3.2 Running time

The traditional method for calculating PMI involves the following: 1) evolution of N points

τ times (Nτ steps) 2) construction of a 4-dimensional kdTree (4N logN steps), and 3)

finding k nearest neighbours for each point (N logN steps for k = 1). The total running

time for the traditional method is then

Ttrad ∝ Nτ + 5N logN. (5.26)

It is the first term that causes problems when sampling for the large (N, τ) asymptotic (by

typically large values we mean that each of N and τ go up to order of 105). It is therefore

desirable to find methods that circumvent this dependency on the product.

Consider a variation on the traditional method, one that involves finding the joint nearest

neighbour distance by trying to find the nearest neighbour in the joint through first testing

whether points in some neighbourhood in the marginal have evolved to stay close enough.

In this method all the points are ones from the original sample. The difference is that one

does not need to construct a kdTree in the joint space.

Here we would first construct a kdTree in the marginal space to find the interpoint distances
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associated with each point. Then for each point we evolve it and its nearest neighbour. We

accept if the final distance between the two is close enough (see cutoff above). If not, evolve

the second nearest point, etc, populating some evolved array. This need only be done once,

so doing the same process for another initial point may require simply looking up the evolved

distance in the array. We thus evolve some Ne ≤ N points.

Since the mean joint interpoint distance is an estimate, one could use only M ≤ N samples

to find it. Accepting the TS conjecture means that this procedure could therefore stop

after M steps (providing points are sampled randomly). Let k′ be the average number of

interpoint distances in the future that one has to check for each initial point before the

candidate distance is accepted as the inter-neighbour one in the joint. Then the running

time for this method is

Tnew ∝ 2N logN +Mk′ logN +Neτ, (5.27)

where M ≤ Ne ≤ N .

If a smaller sample M 6= N was considered as part of the tradition method, the proportion-

ality of the traditional method running time on Nτ would not change, since to do a selective

search on a joint kdTree would still mean a full N -node kdTree has to be constructed first,

and all N points have to be evolved for that. Here Ne would depend on M , and of course

on the extent of mixing (in a non-technical sense) that τ iterations of F result in. The

latter should also have an effect on k′: hence for each given N , and a picked M , we have

Ne = Ne(K, τ,N) and k′ = k′(K, τ,N).

So at large (N, τ) we aim to obtain a sample of joint nearest neighbour distances by se-

lectively sampling the marginal and assuming that some small neighbourhood size will be

sufficient for determining the mixing behaviour. If, however, M = N , the running time

with τ for both algorithms is the same, with Tnew increasing its dependency on logN by

at least an order of magnitude, depending on the map (since it is not reasonable to expect

k′ to stay of low order, and in our simulations we do see it increase by several orders of

magnitude at least). The only reason to use the new method would thus be with a low

enough M .

A further variation would start with initial inter-neighbour distances, and evolve pairs of

trajectories with the second element drawn from a random distribution, given some set

distance to the initial point. The change in the running time is in the number of evolved
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(b) M = 1000

Figure 5.14: Running Time for PMI computation in figure 5.5 using three trajectory sepa-
ration methods (sampling initial distances), and the traditional method (k = 1), computed
v N : Γ = 1 regime, K = 0 (averaged over three runs).

distances, which in this case is not bound from above by N , since repetition is not possible:

T2 ∝ 2N logN +Mk′ logN +M(k′ + 1)τ. (5.28)

This running time does not change depending on whether the initial point is drawn from

the original set, or randomly from ρ.

The TS methods in the section above were all variations on the latter procedure, and so

we expect the running time to scale as shown in eq. (5.28). We now test the validity of

this claim, by first examining variation of running time with M , N , and τ , bringing out the

significance of k′.

Runtime v M and N Consider fig. 5.5 that showed that TS PMI for the fully-resolvable

case of Γ = 1, K = 0, was relatively close to the true values for both fixed and varying

sampling size M . Figure 5.14 displays the respective running times for each of the subfigures

in fig. 5.5. From the section before we expect that if M = N , the running time for TS

methods would be significantly higher, depending on the order of magnitude of k′. Making

M to be a small percentage of N lowers the running time, while preserving the overall

qualitative dependency on the sample size.

Another way to reduce the running time is to use a fixed M . Figure 5.14(b) shows

that when M is greater than roughly 2% it presents a significant decrease in running time.

In fact the running time appears to stay almost constant (same order of magnitude). Since
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Figure 5.15: Running time comparison for τ = 10 (circles) and τ = 200 for the PMI
computation partially in figure 5.14(a) (M = 0.01N) using three trajectory separation
methods (sampling initial distances), and the traditional method (k = 1) (averaged over
three runs).

M is kept fixed, this must be due to k′. This is not surprising, since k′ is ultimately linked

to the mixing properties of the map, and this range of N (given a τ) was chosen for its

fixed Γ regime, where no qualitative change occurs. We therefore expect running time for

TS method 1 to change, even for a fixed M , when the (N, τ) parameters are in one of the

intermediary regimes of Γ (see section below on τ dependency).

How would the above figures change with τ? We examine the variation of the first

subfigure: the second is looked at in the next section. That is because the best way to

examine k′ dependency on the parameters of the joint distribution is to use fixed M . For

the variable M , on the other hand, we compute a counterpart of figure 5.14(a) but for the

τ corresponding to Γ = 1/3, and plot it on a N(logN − const) scale. The result for both τ

values is shown in figure 5.15.

A higher τ results in lower PMI, and so in higher running times for both methods.

The plots also show the expected dependency on sample size N . On the other hand, while

the running time for the traditional method will continue in the same manner as N goes up

to infinity, the TS methods will show a change if at some point the parameter space (which
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includes N) results in a transition to a different Γ. Hence these results should be used with

care.

We also see that the running times of different TS methods begin to differ at large τ . Given

the tentative link between running time and PMI itself, we should expect the PMI values

for the methods to differ as well. The respective PMI measurements were shown in fig.

5.7(a), where indeed TS method 3 followed was significantly off from the trends in methods

1 and 2, which deviated from each other only at the larger N .

Runtime v τ

This section examines how the running time of TS methods varies with τ . From eq. (5.28),

running time is proportional to M(k′+ 1)τ , where M is the sampling depth of V , and k′ is

what we will call ‘effective neighbourhood’, i.e. the size of the neighbourhood out of which

all the points have moved out of by the time t = τ . In other words, it is the index of the

first nearest neighbour in the past that is further than the nearest neighbour in the joint

(using the terminology in fig. 5.1, k′+ 1 is just j∗ averaged over the M sampled points). In

metric terms the neighbourhood size could be estimated using the average point separation,

a function of N .

We have already noted that k′ potentially depends on (N, τ,K), and the description above

supports the notion that k′, while expressing the level of difficulty in computing TS PMI,

is by doing so indicative of the level of mixing (in the non-technical sense) of the map. The

purpose of this section is hence not so much to find the regimes where TS calculations offer

an advantage in terms of running time, but rather to better understand the mechanisms

involved.

Figure 5.16 displays the running time behind calculations for K = 0, and K = 1.

Comparing it to the variation of PMI values in time, we a) cannot assume that the running

time of the conventional PMI method does not also to some degree reflect the PMI value

- since the variation is smooth in both cases, and b) can conclude that the sensitivity of

TS to map behaviour translates, to a large extent, to the time it takes to perform these

computations (compare the figures displaying values and the corresponding running times

for an almost exact mimicking of the trends). A stronger statement would regard the

running time itself as being a good indicator of map behaviour (see below).

We now look at the global trends. Figure 5.17 shows the running time for traditional PMI,

as well as the three TS methods, for the fully-regular, and primarily chaotic, motion. In
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(a) K = 0, N = 50000 (for fig. 5.9(a))
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(b) K = 1, N = 25K (for fig. 5.11(b))

Figure 5.16: Running time for PMI computation for the three trajectory separation methods
(sampling initial distances), and the traditional method (k = 1), computed v τ (averaged
over three runs). M = 1000.

both cases the traditional PMI running time shows, as expected, a linear behaviour with τ .

Its slope changes with N and would, in fact, purely in graphical terms be equal to that of

TS PMI for method 3, if N = 50000 (in the K = 0 case). We also see that, especially for

large τ , the TS methods (we focus on method 1, which gives the smallest error between TS

PMI and traditional PMI) display a constant slope, suggesting a certain constant, or slowly

varying, k′ (in all these plots we keep M = 1000).

Given that the slope should be directly related to k′, and we posited that the latter

has a direct relation to PMI, it is informative to look at the variation of estimated slope

< k′ > of method 1 running time with τ . Let Iτ = [100, 1000]. For each sample size N

we estimate < k′ > in Iτ for various K parameters. The number of points from which the

estimation was done is relatively low (below ten) due to the almost exact alignment with

a straight line that can be drawn through them. This is true for all the K values tested.

The error shown is a 95% confidence interval, which as we see is small enough to give an

indication of the general trend.

Results for three sample sizes that are middle range as far as conventional PMI cal-

culations are concerned are shown in figure 5.18. In this picture N , as before, represents the

resolution of the distribution; the level of visibility of the effects of the map. < k′ > is the

factor by which a neighbhourhood, of some size defined by N , expands during an iteration.

We see that that this rate is, on average, greater on smaller scales. Following individual

N behaviour, we also see that at small K regimes this expansion rate is the same - the
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(b) K = 4

Figure 5.17: Running time for PMI computation three trajectory separation methods (sam-
pling initial distances), and the traditional method (k = 1), N = 25K, computed v τ
(averaged over three runs). M = 1000.
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Figure 5.18: Each value represents the slope < k′ > of method 1 running time (averaged
over 3 runs) v 100 < τ ≤ 1000, at that particular sample size N (M = 1000 throughout).
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Figure 5.19: Collapsed plots for < k′ >, the slope of the running time for TS PMI method
1, N = 25K, 50000 and 100000, computed v τ (averaged over three runs, M = 1000)

extent of chaos does not change it much. Then after K ≈ 0.6 the rate begins to increase

dramatically. What is interesting is that this change happens on all scales - all the N plots

begin to curve upwards roughly at the same K. In this picture Kc does not appear to be at

all significant - nothing qualitatively new happens at the break down of the last KAM torus.

The difference between plots of different N also changes with K. Figure 5.19 shows

that scaling by N1/2 collapses plots at large K, whereas at small K values that factor looks

more like N1/3. Zooming in on the plots it becomes clear that the cutoff point circa Kc

between the two regimes is only an apparent threshold related to the visible scale of the

graph below; the real change over begins at smaller values of K.

This suggests that < k′ >, the average neighbourhood expansion rate (as found through

looking at the gradient of running time v τ) scales as Na(K,τ). We also see that there exists

a region of τ where a(K, τ) ≈ a(K). From the graphs, we infer that for large values of K,

a(K) ≈ 1/2, and for small K, a(K) ≈ 1/3.

We do not yet have an interpretation of this. It would be tempting to see if these results

can related to the possible multifractal nature of the joint.

In the calculations above we estimated the slope and assumed a link to the number

of nearest neighbours considered. It is also possible to compute the latter directly. We

examine the k′av, or k′ averaged over its M values. Figure 5.20 below shows both the

running time and k′av for two K values featured on the previous graph.
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Figure 5.20: Running time, and k′av for TS PMI method 1, N = 50000, computed v τ
(averaged over three runs, M = 1000)

In both cases running time appears to increase linearly with slope < k′ > which we

take to be equal to k′av. However, while true for some map values (5.20(a)), it is manifestly

not so for others (5.20(b)). We thus understand that < k′ > would also vary depending on

which τ subinterval is used to compute it.

We first disregard the variation with τ and check that the global behaviour of which both

k′av and < k′ > are indicative of is the same. Just as < k′ > is a function of the τ interval,

so we take the second average of k′av with respect to it. We use the same letter under the

understanding that a function of K would always encompass averaging over Iτ .

Figure 5.21 shows a transform of < k′ >, scaled up for better comparison with k′av.

Also shown in the figure is a plot of the linearly transformed PMI. The actual PMI

graph is of course inverted, to some extents mimicking the Γ plots with their parameter-

dependent peak location. The reverse dependency stems from the fact that a growing k′av

is indicative of a wider distribution, which in turns implies higher joint entropy, and hence

a lower PMI. We see that a linear transform allow us to align PMI with k′av almost exactly;

but that this logic breaks down for small values of K.

The graph above contains no information about whether trends will change with τ , in other

words, the PMI and k′ are averaged over τ with no regard for whether they are stationary

or not. Yet figure 5.20 leads us to expect interesting interdependies on K.

Instead of averaging PMI and k′av with respect to τ , we can examine their stationarity by

looking at the slope over Iτ . The values fluctuate, so we increase the number of measure-

ments to bring the error bars lower. Figure 5.22 shows the resulting slopes for a range of
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Figure 5.21: k′av, and linear transforms of both TS PMI and averaged slope < k′ > of
running time v τ , for N = 50000 (M = 1000 throughout, three runs for each (N, τ,K)
value).

K.

Slopes of k′av and PMI behave, as expected, in opposite ways. Maxima of absolute

values for both are reached at roughly the same point, close to Kc. This is interesting

because until now Kc did not herald any qualitative change. Whereas here, for a particular

N the linear approximation to the gradient of I is

dI(N,K, τ)

dτ
≈ c1

dI(N,Kc, τ)

dτ
+ c2|K −Kc|a, (5.29)

where using the data behind figure 5.22(a) we find that for Kc ≤ K < 4, a ≈ 0.8, and

for a region on the other side of Kc, a ≈ 0.65. We note that for K > Kc the change is

abrupt, and after roughly K = 4 the slope of PMI with τ stays zero. Of course these are

linear approximations, whereas for example for K = 1, plotting k′av with τ does not give

linear behaviour with errors. So rather the above graph should be used as an indication of

nonlinear behaviour, rather than noisy linear behaviour. This scaling, however suspect, is

interesting, because this is the common scaling form in literature for behaviour of various

functions off Kc. Future research could test whether PMI captures some already-known

numerical scalings in the standard map.
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Figure 5.22: Slope of PMI and k′av measurements w.r.t. τ , for a range of K values, with
N = 50000, M = 1000. Each I(τ,M,N,K) is an average over 6 runs; tau is still in Iτ , but
the number of values has increased to bring the 95% confidence intervals down.

Concluding Remarks Our considerations of PMI led us to expect that evolution of fu-

ture interpoint distances could be indicative of some map features. Here we took this idea

further and showed that by combining the past and future interneighbour distances for each

trajectory it is possible to derive the joint interneighbour distance ε, the key ingredient in

the K-G entropy estimate used for computing PMI. The basis of this method lies in a local

perspective of the effects of the map, where we assume that ε is more likely to be realised

by an orbit originally in the vicinity of the orbit in question. This forms the basis of the

search stategy. The advantage of this method is that it allows sampling of the joint distri-

bution formed by N points without actually having to compute all the interpoint distances

in the joint space - rather only the needed ones. We conjectured that sampling these initial

distances would produce the correct PMI.

We have seen that the TS framework, through treating time and sample size as variables

that influence the separation of localised marginal interpoint distributions, can accurately

predict dependencies which lead to a qualitative change in Γ. This was done for the fully-

regular K = 0 regime when Γ reduces from unity. An interesting analytical extension would

be to derive the large τ limit of Γ = 1/3. In that case the shape of the final distribution

is known, and if a variable initial separation is assumed it would lead to a more smooth

final curve, with less travelling peaks. An even further extension is to see how this picture

leads to the chaotic scaling observed for the two-staged Γ plots for the larger K. A naive

separation of linearly and logarithmically moving regular and chaotic distance peaks does
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not yield the correct scaling. We conejcture that at least part of the reason lies in the fact

that at nonzero K the initial distance does not simply translate, but is varied, especially

since the maximum metric, as we have seen, tends to obfuscate behaviour between points

that are both on a curved trajectory. This would alter the relative positions of distances in

the evolved Dτ family, to an extent defined by K. And in fact when we get closer to Kc we

do observe that the original τ3/N scaling breaks down. As a result successfull analytical

treatment of the TS method would more explicitly relate these properties of the map to the

change in the relative positions of Dτ with τ , and potentially use the former to derive Γ for

other regimes.

For practical PMI computation using the TS method we successfully decoupled the depth

of sampling of the state space, N , from M , the strength of sampling of the joint distribution

for nearest neighbour distance. We investigated three possible variations of the TS method,

and found that the one that keeps track of both the positions of the initial separation family

and the actual initial interneighbour distances, which we sampled from a marginal kdTree,

works best (though we also saw that there are regimes where the methods coincide). This

optimal TS PMI was found to coincide, with relatively small errors, to the value found using

the traditional method where the nearest neighbour parameter k was set to one. We found

that certain regimes introduce a small consistent bias that does not change with N , but

that is within reasonable limit of the true PMI. We also found that that bias is not a result

of sampling strength M and thus could not be decreased by considering a larger amount

of neighbourhoods. On the positive side this means that for practical purposes M does

not have to be proportional to N but can be chosen to be a constant. Enough information

about the joint distribution is obtained even with M decreasing to less than one percent.

The only regimes where TS PMI deviates from the true values are in the small K regions,

during the transition from Γ = 1 to Γ = 1/3.

Having shown that, particularly for large τ , TS PMI is a successfull candidate for the true

PMI, we looked at whether this method could present an advantage in terms of practical

calculations. We find that there are regimes for which running time is significantly de-

creased. If the sampling depth (M) is kept fixed, which the previous section demostrated

to be a feasable solution, with small enough errors, then we have shown that the running

time can be kept under control as the resolution of the map increases. The main problem

with the method is that decoupling the strength of sampling from the state space resolution

comes at the expense of having the execution time become dependent on the details and
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mixing properties of the map. We showed that there is a variation of the method where the

execution time is limited above by a factor proportional to the resolution N ; though this was

not utilised since the aim was to test if the method works with known map parameters. We

also saw that for some parameters the length of the running time comes to reflect directly

(through linear transfroms) the features of the map picked up by PMI. It is an interesting

question of why small K values force a deviation between the two notions. Thus the TS

method can be used with a significant running time advantage when the map regimes are

more or less predictable, which of course is the case with slow relaxation near the critical K

value. PMI values for higher and higher N could thus be found for higher τ , while keeping

M at a low level, without expecting a qualitatively different rate of running time increase.

Due to the nature of the method, however, the problem of finding the regimes when TS

is advantageous is tied in with the problem of knowledge of mixing properties of the map

itsef.

We can see by the TS construction that k′, the effective neighbourhood weight that has

escaped by τ , while directly responsible for the running time, is also an indicator of map

behaviour. Its variation with time mimics that of PMI, and is most nonlinear near the

critical K value. Preliminary results for pdfs (not displayed) show that their shape un-

dergoes a qualitative change as K passes through Kc. Looking at this could provide an

understanding of averaged behaviour, and an interesting test would yield comparisons to

variation of averages with time between pair distributions in the previous section.
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Chapter 6

Conclusions and Future Work
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6.1 Conclusions

In this work we introduced Persistent Mutual Information I(τ), a probabilistic measure of

nonlinear inter-relation between the past and future ensemble distributions separated by a

time gap τ . The initial motivation was the possibility that a quantifier of this type could

potentially detect dependencies persisting over time, and that there is thus a sense in which

it could be said to have detected strong emergence.

We used data generated by attractors of several dynamical systems in an attempt to un-

derstand whether there are specific features of these systems that make them qualify to be

strongly emergent. The conceptual idea behind using deterministic dynamical systems to

generate ensembles is the uncertainly in the specification of the initial condition.

For the simple archetypal examples of one-dimensional chaotic systems, the logistic and tent

maps, PMI picked out the existence of a global clock. That is in line with the expectation

that the only persistent features possessed by the attractors are the different phases, given

that no initial uncertainty can withstand the ‘mixing’ effects of chaos. By conjecturing

that it is the limit of I(∞), the Permanently Persistent Mutual Information, that can be

considered a signature of the strong emergence, we find that for systems with global pe-

riodicity T , I(∞) = log(T ), independent of the chaotic overlayer. This holds for both maps.

PMI does not require the arbitrariness of a finite partition, which is exactly where a

number of symbolic dynamics measures with similar functional form fail to give a universal

answer potentially applicable to systems with differing state spaces. This also sweeps away

the major computational difficulty of empirically computing the distribution over block

variables. In addition to that, the initial condition is uniquely associated with the distribu-

tion over the infinite past, so the main object becomes the joint distribution embedded in

the space with box-counting dimension equal to the sum of those of the marginals. In our

computations we used the parameteric K-G estimators of entropy and information, where

varying the parameter allowed us to change the depth of sampling. For instances of infinite

periodicity, and generally those where PMI grows indefinitely with resolution, such as the

period-doubling accumulation point of the logistic map, we extended the phenomenology

and demonstrated that PMI grows with the logarithm of probability resolution at a rate

Γ, dependent on the information dimension of the underlying spaces. This allowed us to

make sense of PMI in a variety of systems, including area-preserving ones with no defined
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attractors.

To the best of our knowledge no measure currently exists that quantifies the amount

of emergence in the behaviour of these dynamical systems in a way that corresponds to

shared intuition as much as PPMI does (though of course a lot of it is by design). Unlike

excess entropy or the entropy rate it picks up intrinsic persistent features of the maps. As

such, it is essentially a categorization tool. It has all the potential to become useful, and

indeed it should be tested on a wider range of dissipative systems to see what features,

other than clocks, it picks up on. These could then be assessed in terms of whether or not

we want to count them as strongly emergent.

A possibly interesting extension here is to revise the way uncertainty enters into these dy-

namical systems. For instance the distribution over the initial conditions could be replaced

with the distribution over the past by considering a map with noise. The down point is

that calculations would now have to involve distributions over block variables, with the

assumption of infinite block lengths. However, the end result would be seeing whether by

this measure a noisy map displays the same extent of emergence as the fully deterministic

one. It should be practically testable, and results could prove interesting in terms of spec-

ulations about how emergence should be defined. Also we notice that in the Logistic map

the linear gradient of PMI with τ shows the qualitative features of the Lyapunov exponent.

This idea could be put of a firmer foundation. Thus there is in general scope for extending

the phenomenology of PMI in terms of stochastic processes, with work in this field already

being done by Gmeiner [2012].

We then computed the PMI in the standard map. This allowed us to move away

from systems with clocks, and into the territory where there were no obvious, intuitively

expected results. The standard map was the natural next choice as an area-preserving map

with a different route to chaos, one nonlinearity parameter, and very rich behaviour. Since

here PMI was shown to increase indefinitely with resolution our analysis was done in the

language of fractal methodology, and results were expressed in terms of Γ. Γ was shown

to be useful in describing the extent of causality, where by causality we mean lack of dis-

tortion of the initial conditions. As expected by the phenomenology of the standard map

we found that in the fully regular case with no chaos Γ saturates to a value that gives the

joint information of 3. Moreover, we found that regular trajectories result in a particular
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scaling of Γ with resolution and τ . This scaling persists at large K values, and is purely the

result of the existence of regular trajectories. Likewise, at those K a new, chaotic scaling

emerges. It would be the next step to relate that to the Lyapunov exponent.

The manner in which causality in the standard map changes with resolution and time

separation can be viewed on the (τ,N) contour plots of Γ. These are interesting in that

they unite the resolution and time variables, and hence could also be used for comparisons

between different systems. Based on preliminary results for the Double Pendulum shown

further on we suggest that that would be a good first comparison. We see some similar Γ

behaviour, which implies that a phenomenology of the KAM breakdown route to chaos in

terms of causality could possible be developed.

We then investigated whether the joint distribution can be decomposed into distinct sub-

sets stemming from the regular or chaotic evolution. This was formulated in a mixture

hypothesis. To test it we developed a method to find the (assumed existing) proportion of

regular trajectories by tracing the evolution of interpoint distances. The bimodality of these

distributions could clearly be seen to vary across K, so much so that around Kc the chaotic

component did not have a ‘typical’ average divergence rate. This is a clear demonstration

of the slow relaxation times around the golden KAM breakdown.

Tracing the separate evolution of regular and chaotic trajectories (where these were defined

as equivalence classes based on a neighbourhood expansion rate) we showed that for at

least one K value where α appears to be clearly defined, Γ = ΓJ > Γmixture, with little

indication of convergence with τ . A higher Γ means that as one looks at a higher resolution

of the map one would obtain more information about the future state than would have been

possible if the orbits were clearly disjoint. In the mixture hypothesis the new orbits one

would see would be of the same type. We thus conjecture that this is not so in the standard

map; that there is at least a substantial subset of the state space where the chaotic orbits

and regular orbits come arbitrarily close together. We do not see it as being the effect of

stickiness since no change seems to occur with time separation. The multifractal meth-

ods shown further could potentially be of help in determining whether and at what K the

joint is a true multifractal. We also proposed to use the difference between the ‘true’ and

‘mixture’ Γ values to quantify the extent of this spatial interlinking of orbits of different type.

We then used the pair-wise separation distances to express Γ(k = 1). In traditional
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PMI calculations the resolution N that defines the joint probability distribution was equiv-

alent to the depth of sampling of the joint, M = N . We noted that for any point in the

sample the joint nearest neighbour distance can be computed from a set of local marginal

interpoint distances, and used this to show the correct exit time from the Γ = 1 regime for

the integrable case. We then decoupled N from M , developing a method that samples the

joint with any M . It was experimentally shown to converge well in most cases, and showed

a qualitative and quantitative improvement on runtimes. This can be particularly useful

in testing the (τ,N) asymptotics, since in the standard map literature ‘settling’ times over

which trajectories can be expected to be seen as unstuck can go up to 1010.

The runtime of this method is, however, implicitly dependent on the way (loosely defined

by k′) in which the map mixes up the neighbourhoods. It could be possible to link this

rate to a bound on the metric entropy by considering the distinguishability of trajectories

arguments motivating the latter. We also noticed that the K ranges where k′ very closely

aligns with PMI are primarily for K ≥ Kp. The fact that there is a qualitative difference

at small K values could hint at the way in which map dynamics influences PMI.

Computations were much simplified through the use of the kdTree routine. It has

shown itself to be readily adaptable to both a change of metric and a relatively large di-

mensionality - the largest tested was eight for the joint space of the Double Pendulum. Our

preliminary results suggest that the Double Pendulum shares at least some Γ phenomenol-

ogy with the standard map. Both of these systems could also be tested for multifractality

of the joint, which once again was made computationally feasible by the kdTree construct

admitting a variety of routines that can find either the distance to kth neighbour, or num-

ber of neighbours within a certain distance, a fact that came especially useful when testing

reliability of the (q, τq) variables in the multifractal analysis.

The next two sections show some preliminary evidence that the joint distribution of the

standard map around Kc does appear to be a true multifractal. Around that regime we

also see that stickiness, the particular mode of transport introduced by the cantori, results

in an apparent peak in Γ, which corresponds to higher causality and consequently better

predictive regimes, peaked around some K = Kp. Interestingly for the observed range of

data Kp 6= Kc. At Kc we observe logarithmic decays of Γ with τ , and a breakdown of the

regular and chaotic scalings. Such behaviour is qualitatively in line with the slow decay in

correlations around Kc.
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Preliminary results for the Double Pendulum indicate that a similar peak occurs at E = 1.

We propose testing the joint distribution of the Double Pendulum for a variety of E values.

By comparison with the standard map those ‘anomalous’ peaks in Γ could be associated

with the change in the fractal nature of the joint distribution. Thus our research leads us

to suggest there there is a level on which area-preserving maps can be discussed in terms

of multifractal phenomenology.

The focus of this work was to test a quantity describing the preservation of correla-

tions in time on data from various types of dynamical systems. The natural extension of

this effort is to use PMI on real-world datasets, and see whether it succeeds in accurately

identifying the number of choices available to the underlying system, in other words the

extent of ‘strong’ emergence. The main computational hurdle in our methodology is the

time to estimate mutual information of the joint, which involves a nearest neighbour search

in a 2d space, where d is the dimension of the (past and future) data. The runtime in

the straightoward kdTree method scales linearly with d, so reasonable computation times

can be achieved for much higher dimensional systems albeit at the expense of the number

of datapoints. We therefore propose PMI as a good candidate to measure emergence in

real-world systems.
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6.2 Ideas for Future Work

6.2.1 Multifractal Analysis

Consider area-preserving maps. There Persistent Mutual Information was found to scale

with resolution as a function of the information dimension of the joint. Yet if the focus

shifts away from prediction and towards understanding the system through properties of

the joint distribution then one could study D1 as an element of the spectrum of generalized

dimensions Dq. In joints with simple fractal support all these would be equal. We propose

asking whether the joint is fundamentally a multifractal, and if so, at what regimes.

Our motivation was the notion behind the mixture hypothesis, the possibility that the ob-

served behaviour is just a result of linear mixing from two competing distributions (the

joint of regular and chaotic trajectories). If that is true, nothing fundamentally new or

different would be seen by increasing the resolution. The effect would be the same as would

be produced by moving from one region to another. In other words, do we explore the

whole ensemble by just zooming in?

From Halsey et al. [1986] where τq(q) is defined as the separatrix in the Zs(q, τq)

variable, we have

Zs =
∑

boxes

(δµi)
q (bi)

−τq , (6.1)

where δµi is the integrated measure of ith box, and bi its linear size. We used a variety of

methods to compute the spectrum, since it is notoriously prone to errors. Direct estimation

of α (Badii and Broggi [1988]) did not do so well. Fortunately, the kdTree routine can

easily be adapted to find the weighted radius given some neighbour index k, to be used in

fixed-size procedures. However as noted in Grassberger [1990] in terms of kdTree computing

box lengths was naturally the easiest, following the fixed mass approach from for example

Grassberger et al. [1988].

Having ready access to k allows us to rewrite q(τq) along similar lines to the correction

introduced by PG in Grassberger [1985]. If Z =
∑

boxes (bi)
τq , Z = Z(k) since boxes

are defined by weight k/N , this argument views the rate of change of logZ as being the

approximation to the real ‘difference’ function which we use to get q(τq):

1− q =
k [Z(k + 1)− Z(k)]

Z(k)
. (6.2)
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To get the q(τq) value in practice we take the mean over measurements at different k.

For each k and τq we use the standard kdTree neighbour-distance finding routine

to obtain the weighted box Z(k,N, τq) = 〈b−τq〉. Figure 6.4 shows the graphs implicit in

computing q(τq) in the traditional ‘slope’ method, and the ‘difference’ method, the latter

being careful to ignore the small k < q− 1 range. Although not shown, the resultant (q, τq)

graphs are almost identical. The multifractal spectrum is shown in figure 6.2, where since

the straight lines are to be ignored as being the consequence of the slight concavity in the

(q, τq) picture and a minimizing procedure, the joint is shown to be monofractal with, as

expected for those parameters, a dimension of 3.

The ‘difference’ methodology algorithm can be used to capture several q(τq) plots at

given ranges of k. This presentation immediately allows us to see differences in the spread

of q values, which could bely a varying information dimension. Figure 6.4(a) shows the

multifractal equivalent of the Γ dip observed at K = 0 (at least we conjecture it is so.

The alternative explanation is the commonly given lacunarity, but we do know whether the

highest information dimension computed at curved Z regions could even theoretically be

higher then the embedding dimension, which is what we see here).

Computing the multifractal spectrum at the low range of k shows that at these high

resolutions the joint is monofractal with dimension equal to two (figure 6.4(b)). This agrees

with the Γ limit of one.

In order to see the joint dimension of three τ needs to be large enough; for small values the

tip of the triangle in figure 6.2 does not reach the line with the slope of unity.

At low enough τ we observe the lack of clear convergence in the ‘difference’ plots. The

same effect can be seen in the more traditional logZ picture (see figure 6.4 for comparison),

where in Theiler [1990] it was mentioned as having come as a result of lacunarity. Figure

6.5 shows that with increased τ the oscillations (whether viewed in on the logZ plot, or in

terms of the ‘difference’ picture) become more frequent, yet it is possible for the averages

not to change. Hence to get to the result of D = 3 one then needs to increase either τ or

the range of resolution.

As K approaches Kc the joint starts resembling a true multifractal with a range of

well-defined point wise dimensions α (figure 6.6). We do not know whether it is the presence

of sticky trajectories that turns the distribution into a multifractal (which would mean that

it is actually monofractal in the infinite τ limit), or whether it is the arrangement of the

spatial locations of the regular/chaotic trajectories. In this respect it does not help that

198



0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

6

8

10

k

q
(τ

q
)

 

 

 τ
q
 = −20

 τ
q
 = −15

 τ
q
 = −10

 τ
q
 = −5

 τ
q
 = −2

 τ
q
 = −1

 τ
q
 = −0.5

 τ
q
 = −0.3

 τ
q
 = −0.1

 τ
q
 = 0.1

 τ
q
 = 0.3

 τ
q
 = 0.5

 τ
q
 = 1

 τ
q
 = 2

 τ
q
 = 5

 τ
q
 = 10

 τ
q
 = 15

 τ
q
 = 20

(a) The Difference Method

0 1 2 3 4 5
−100

−50

0

50

100

150

200

log(k/N)

lo
g
Z

 

 
 τ

q
 = −20

 τ
q
 = −15

 τ
q
 = −10

 τ
q
 = −5

 τ
q
 = −2

 τ
q
 = −1

 τ
q
 = −0.5

 τ
q
 = −0.3

 τ
q
 = −0.1

 τ
q
 = 0.1

 τ
q
 = 0.3

 τ
q
 = 0.5

 τ
q
 = 1

 τ
q
 = 2

 τ
q
 = 5

 τ
q
 = 10

 τ
q
 = 15

 τ
q
 = 20

(b) The Slope Method

Figure 6.1: K = 0. Two methods for computing q(τq), at resolution k. N = 10000, τ = 100.
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Figure 6.2: The multifractal spectrum at K = 0, for N = 100000, τ = 100.

the two phenomena are intrinsically linked.

In Chapter IV we proposed using the difference between Γ and mixing Γ to quantify the

extent of spatial mixing of various types of trajectories. Multifractal spectra provide a much

more multi-faceted description of the structure of the joint. It now seems possible to use

for this purpose the quantities typically associated with it, such as D∞, or D−∞. An even

simpler quantity is the box-counting dimension of the support of the joint, the peak of the

curve. Analogously one could measure the spectrum of the double pendulum at around

E = 1, where we see a similar peak in Γ. A further point of interest is the long stretch of

higher energies where Γ seems stable at a non-integer joint dimension.
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(b)

Figure 6.3: K = 0. The multifractal spectrum (6.6(b)) and the variation of q(τq) with
resolution k (6.6(a)). N = 50000, τ = 10.
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Figure 6.4: K = 0. Variations in the q(τq) in the two multifractal methodologies. N = 1000,
τ = 10.
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(b) τ = 100
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(c) τ = 500

Figure 6.5: K = 0. Variation of q(τq = −7) with τ for N = 10000, showing the effect of
lacunarity or the metric.
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(b) K = 0.97

Figure 6.6: Multifractal spectra at midrange K, for N = 25000, τ = 100.
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6.2.2 Persistent Mutual Information in the Double Pendulum

The classic study of a planar double pendulum by Shinbrot et al. [1992] demonstrated

through physical experiment that minute variations in initial conditions can lead to expo-

nentially diverging orbits. It can be modelled as a continuous time Hamiltonian system

with a four-dimensional configuration space, with a rich spectrum of behaviour. Coupled

oscillators are of great interest in applied sciences, and thus any insight PMI can provide

about the forecastability of individual trajectories can be a bonus.

It also provides a further test of the PMI formalism. In some ways similar to the standard

map, with chaos setting in via the break-up of the KAM curves, it is nevertheless a continu-

ous Hamiltonian system with an eight-dimensional joint state space. These factors challenge

both our numerical solvers at large τ , and the algorithms for the nearest neighbour search

(both of which proved reliable, particularly the kdTree construction that easily adapts to

higher dimensionality and periodicities in various dimensions).

Unlike the standard map here there are many ways of even approaching the problem. The

Hamiltonian functional partitions the state space so that dynamics are confined to one sub-

set whose topological nature, interestingly enough, changes with their energy value. Some

can be similarly partitioned even further.

There are two integrable limits. High energy nullifies the effects of gravity turning

the pendula into coupled rotators, whereas low energy does the same with coupling, resulting

in two relatively independent systems (in the first case the other conserved quantity is the

total angular momentum L, and in the second these are energies of the separate arms).

There are therefore two ranges where increasing/decreasing E effectively drives the system

to be more chaotic, so in this sense regions of E can be likened to the nonlinearity parameter

K from the standard map. Yet here each E comes with a different phase space, of possibly

different sizes. An ideal study would couple results (for example PMI) across the energy

spectrum with understanding how variations in initial conditions affect predictability, since

after all in practice it might be more natural to express uncertainty in terms of a δ in the

initial configuration. An example of this type of study is the recent note by Heyl [2008]

where the author investigates the subset of the angle Poincaré section defined by the first

time a pendulum arm flips. There is a sense in which this framework can be likened to the

Divergence diagrams shown earlier for the Tent map. The configuration of these boundaries,

naturally dependent on a variety of arbitrary choices and parameters, is shown to be fractal.
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Ohlhoff, A.; Richter, P. H.: The double pendulum 5

Figure 2: Poincaré sections φ = 0, φ̇ > 0 of nine energy surfaces for the standard double pendulum. The
individual pictures show L vs. ϕ1, with ranges −π ≤ ϕ1 ≤ π and −Lmax ≤ L ≤ Lmax. The energy values are
a: E = ∞, b: E = 50, c: E = 10, d: E = 8, e: E = 6, f: E = 4, g: E = 2, h: E = 1, i: E = 0.5.

resonances whereas irrational tori survive until about E = 10. The last torus to survive before the two chaotic
regions merge at E = 10.352... [6], can be shown to possess the golden winding ratio ∆ϕ1/2π = (

√
5−1)/2. Around

E = 4, all stable resonances have disappeared; as far as numerical analysis can tell, the motion seems to be ergodic.
When E decreases further, new resonances emerge from the chaos, and below E ≈ 1, invariant tori dominate the
picture again.

4 Limits to the forces of constraint

Before we study the time development of the forces of constraint λi, we shall determine the maximum values λmax
1 ,

for given values of ϕ1, in the stretched configuration ϕ1 = ϕ2. To this end, we consider the energy

E = 1
2Aϕ̇2

1 + 1
2 ϕ̇

2
2 + α ϕ̇1ϕ̇2 + (α+ β)(1 − cosϕ1) (27)

and the force λ1 as given by (18):

λ1 = (µ1 + µ2) cosϕ1 + β ϕ̇2
1 + α ϕ̇2

2. (28)

Figure 6.7: The effect of energy on the nature of trajectories. Figure taken from Ohlhoff
and Richter [2006]. Poncaré sections of L v the angle of suspension of the first pendulum
(see Ohlhoff and Richter [2006] for other specifications). Energy decreasing in the usual
order, the top row corresponding to E = ∞, E = 50 and E = 10, the middle to E = 8,
E = 6 and E = 4, the bottom row to E = 2, E = 1 and E = 0.5.

Our preliminary work focused on computing PMI for a given energy by having initial data

uniformly sampled from the microcanonical ensemble. We used standard parameters that

allowed us to reference back to approximate values of E notable for specific behavioural

features. This demonstrated the usefulness of PMI in capturing global behaviour. It would

make for an interesting project to instead give PMI in terms of some Poincaré variables,

obtaining a value that could for example be related to the fractal dimension of the joint and

the marginals, since these are implicit in the definition of PMI. Indeed the Matlab code used

to evolve the trajectory can readily be adapted to spot crossings of a user-defined plane.

Focusing on this would significantly lessen the computational burden on the estimator which

currently has to search an eight-dimensional space.

In our work we followed the setup in Ohlhoff and Richter [2006]. The two pendula become

unit masses attached to ends of massless rods of unit length, and through further rescaling

the original seven parameters become four. Figure 6.7 from Ohlhoff and Richter [2006]

shows the effect the decrease in energy has on the trajectories.

As energy is lowered down from ∞ periodic motion ceases to exists and only resonances

and quasi-periodic orbits corresponding to irrational winding numbers are left. At about

E = 10 the last KAM torus breaks down. Chaotic regions spread and at about E = 4 the
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Figure 6.8: Γ v E in the Double Pendulum, for a variety of sample sizes N . Orbits computed
using fourth order RungeKutta with both absolute and relative tolerances set to 10−6.

system is fully chaotic and ergodic, at least on resolvable scales. Moving closer to the other

integrable limit regular motion begins to once again dominate, especially lower than E = 1.

This is exactly what we see for low E when measuring Γ for small τ values. In figure

6.8 Γ is shown to be one for small E, corresponding to the fully-causal system. Plots then

decrease to zero at about E = 41, close to where according to the predictions above the

system is ergodic. Then there is an increase and a plateau, which corresponds to some stable

rate of change of PMI with resolution for a range of E values. We nevertheless expect Γ to

increase back to unity as E goes up. The apparent small decrease here is yet unexplained,

and could be either related to the underlying dynamics, or/and to the loss of information

as the trajectories drift off the energy shell (the latter can be tested even without doing

specialized calculations by simply seeing whether there is an worsening with τ).

Figure 6.9 shows that for large τ , Γ does appear to lower. This process happens both on

the high E scale and the low E end. Figure 6.9(b) shows a peak in Γ appearing around

E = 1. The same might be true for the higher E range, but it was not tested in such detail.

Its appearance is certainly reminiscent of a similar feature in the standard map, where we

associated the peak with existence of sticky trajectories. Thus PMI seems to suggest that

1Γ at E = 5 appears to overshoot and give a value slightly smaller than zero. We do not yet know how
to interpret this.
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Figure 6.9: Γ v E in the Double Pendulum, for a variety of sample sizes N .
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the same phenomena are present in the double pendulum, at least around E = 1.

The variation of Γ with τ is also rich in the variety of behaviour. Figure 6.10 shows results

for a variety of energies. The lowest Γ at E = 5 is seen to be an overshoot into the negative

half-plane, whereas E = 4 gives values much closer to the expected zero. Just as in the

standard map we see a drastic difference in the speed of convergence. First, energies on both

sides of E = 1 change their behaviour, whereas at E = 1, Γ does not even hint at slowing

down. If N is lowered then at E = 0.5, Γ appears to briefly plateau at around 0.5, which

corresponds to the joint information dimension of 4. It is once again tempting to recall the

mixture hypothesis, which conveniently separates trajectories based on the nature of their

dynamics, and a marginal D of 2 can then be attributable to chaotic orbits. At larger E

the decay of Γ seems to be well described by a power-law with a relatively small exponent.
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Figure 6.10: Γ v τ in the Double Pendulum, for N = 10000. Orbits computed using fourth
order Runge-Kutta with both absolute and relative tolerances set to 10−6. Energies below
and including E = 5 are in circles.

In chapter IV we proposed using the difference between mixing Γ and measured Γ

as a measure of entanglement of orbits of different character. Our analysis of the double

pendulum, especially the plateaus of Γ, leads us to suppose that by looking at trajectory

separations a similar quantity can be found here. If it is made more specific and allowed

to focus on particular ranges of the state space it might prove an interesting measure of

stability, especially if it is used in the more practical areas like engineering.
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Appendix A

Simulating the Double Pendulum

A.1 Setup

S1

S2

A2

A1

g

a

g

φ1

φ2

Figure A.1: The inner pendulum with mass m1 is suspended at point A1. A2, the point of
suspension of the second mass m2, is on the same plane as the first centre of mass S1. This
is at angle φ1 with the direction of gravitational pull. The distance between A1 and A2 is
a, and the respective centre of mass S2 plane of the outer pendulum is at angle φ2 with the
pull.

Following Ohlhoff and Richter [2006] we define a general setup in the following way:

There are two conditions attached to making (φ1 = 0, φ2 = 0) the point of desired stable

equilibrium: that s1, the displacement between S1 and A1, as well as m1s1 +m2a both be

positive.
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In polar coordinates the Lagrangian reads:

L =
1

2

(
Θ1 +m2a

2
)
φ̇2

1 +
1

2
Θ2φ̇

2
2 +m2s2aφ̇1φ̇2 cos(φ2 − φ1)

−(m1s1 +m2a)g(1− cosφ1)−m2s2g(1− cosφ2)

(A.1)

Suspension distances are absorbed in the expressions for moments of inertia (i = 1, 2):

Θi = Θs
i +mis

2
i (A.2)

At this point we reduce the number of parameters by only focusing on systems where both

pendula are suspended by their ends (Θs
1,2 = 0). It is also convenient to stop differentiating

between a and the length l1 of the inner pendulum. The resultant Lagrangian is:

L =
1

2

(
Θ1 +m2a

2
)
φ̇2

1 +
1

2
Θ2φ̇

2
2 +m2s2aφ̇1φ̇2 cos(φ2 − φ1)

−(m1s1 +m2a)g(1− cosφ1)−m2s2g(1− cosφ2)

(A.3)

Suspension distances are absorbed in the expressions for moments of inertia (i = 1, 2):

Θi = Θs
i +mis

2
i (A.4)

Under suitable rescaling the Lagrangian can be expressed in terms of the following dimen-

sionless quantities:

A =
m1s

2
1 +m2l

2
1

m2s2
2

, α =
l1
s2
, β =

m1s1l1 +m2l
2
1

m2s2
2

. (A.5)

Then the potential energy

V (φ1, φ2) = β(1− cosφ1) + α(1− cosφ2) (A.6)

and kinetic energy

T (φ1, φ2, φ̇1, φ̇2) =
1

2
Aφ̇2

1 +
1

2
φ̇2

2 + αφ̇1φ̇2 cos(φ2 − φ1) (A.7)
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Standard Scenarios There are two standard scenarios. The first involves solid pendula

with an equidistribution of mass along the lengths. Hence li = 2si, and

A =

(
m1 + 4m2

m2

)
l21
l22
, β =

(
2m1 + 4m2

m2

)
l21
l22
, α = 2

l1
l2
. (A.8)

In the case of equal lengths and masses

A = 5, β = 6, α = 2 (A.9)

In the second framework all the mass is concentrated at the end of what are now weightless

rods. Here li = si, giving

A = β =

(
m1 +m2

m2

)
l21
l22
, α =

l1
l2

(A.10)

which, in the case of equal masses and lengths, reduces to

A = β = 2, α = 1 (A.11)

We will use the latter scenario throughout.

Hamiltonian of the Double Pendulum

Anticipating our interest in variations of behaviour as a function of total energy we want

to write down the Hamiltonian. The Lagrangian is currently in terms of the generalized

velocities:

L(φ1, φ2, φ̇1, φ̇2) = V (φ1, φ2) + T (φ1, φ2, φ̇1, φ̇2). (A.12)

These need to be transformed into the associated momenta: (φ̇1, φ̇2) −→ (pφ1 , pφ2). Since

we would need to invert this transformation it is more convenient to work with matrices.

In this form the Lagrangian is

L = −V (φ1, φ2) +
1

2
φ̇ · Iφ̇, (A.13)
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where φ̇ =


φ̇1

φ̇2


, and

I =


 A α cos(φ2 − φ1)

α cos(φ2 − φ1) 1


 (A.14)

Writing momenta as p =


pφ1
pφ2


, the expression

pφi =
∂L

∂φ̇i
(A.15)

becomes

p = ∇φ̇L. (A.16)

Differentiating the Lagrangian gives

p = Iφ̇. (A.17)

We can now write the Hamiltonian:

H =
∑

i

φ̇ipφi − L = φ̇ · p + V(φ1, φ2)− 1

2
φ̇ · Iφ̇

= φ̇ · p + V(φ1, φ2)− 1

2
φ̇ · p

= V (φ1, φ2) +
1

2
φ̇ · p.

The Hamiltonian can now be written in terms of momenta. Using φ̇ = I−1p,

H = β(1− cosφ1) + α(1− cosφ2) +
1

2
p · I−1p, (A.18)

where

I−1 =
1

A− α2 cos2(φ2 − φ1)


 1 −α cos(φ2 − φ1)

−α cos(φ2 − φ1) A


 (A.19)

A.2 Mutual Information of the Double Pendulum

Let the state of the system at any given time be described by x = x(φ1, φ2, pφ1 , pφ2). Let

PE define a set of states with some energy E, PE = {x : H(x) = E}. The evolution of
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the system under Hamilton’s equations of motions is equivalent to movement of x in PE

under some corresponding evolution operator Ot. Conservation of energy ensures that if at

time 0 x ∈ PH0 , then Otx ∈ PH0∀t > 0. Thus motion is confined to an ‘energy shell’ , a

3-dimensional surface in the a 4-dimensional space.

Let thus some energy E define such a surface. Denote by xt1 and xt2 the states of the

system at those time. Then the mutual information between the system at some time 0 in

the past and at time t in the future is

I[xt1, xt2] = H[xt1] +H[xt2]−H[xt1, xt2]. (A.20)

These quantities are functions of measures over the phase spaces. Consider some initial

distribution ρt1 on PE . In some time t2− t1 the evolution operator will evolve this distri-

bution into ρt2 = Ot2−t1ρt1. It will also generate a joint distribution ρt1,t2 on PE ×PE . So

the mutual information will be change based on the choice of the initial distribution ρt1.

We will be considering the case where ρt1 is flat by sampling the microcanonical ensemble.

As such it will be preserved, and the marginal entropies will stay constant. In fact checking

the conservation of energy will be a good test of the performance of the particular evolution

strategy. Although across varying energy these terms will not be same, since the underly-

ing state space will have different size and other characteristics, this will not matter when

looking at Γ since the terms cancel. Therefore there is no need to search marginal spaces

(we do it to test entropies are the same, and get positive answers to within the expected

errors in all cases). We will therefore look at the PMI by measuring the entropy of the joint

using the K-G estimator, the same as was done for the PMI.

A.2.1 Generating Data

Sampling from Energy Shell - the Algorithm

Given an energy E, we want to sample from a flat distribution on the energy shell. This

means that the probability of obtaining an x from some subset s of PE should be propor-

tional to some natural measure on s. Another way of phrasing this is that given we want

N samples from a flat distribution ρflat on PE , the latter needs to be split into N subsets

of equal weight (which would hence be 1
N ), and that as N → ∞ the counting measure on

the sample we obtain should converge to the above.
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From the form of eq.(A.18) it is clear the uniform sampling of any three variables will not

lead to a distribution that is uniform on the energy shell. We use the following algorithm:

1. Pick φ1 and φ2 randomly, so that φ1 = α1, φ2 = α2. Call this point φα. Accept if

V (φα) ≤ E. Though anticipating the next step this should be strict inequality.

2. Accept further with probability proportional to some natural measure of the set sα =

{x ∈ PE : x(1) = α1, x(2) = α2})

3. if accepted, obtain p1 and p2 by uniform sampling of the set sα

Thus the allowed angles are picked first, and accepted based on the relative weight of

the subset of states which have that potential energy (a function of those angles), and

subsequently a certain kinetic energy. Note that this is not the same as uniform sampling of

potential energy with subsequent acceptance/rejection. Doing the latter would misrepresent

the distribution of the underlying arguments (the angles).

The second step in the sampling algorithm involves a measure of a set of states with

a given φα. Call this number W (φ1, φ2). α also defines a kinetic energy T . It can be written

as

W (φ1, φ2) =

∫
dp1dp2 δ

(
1

2
p · I−1p−T

)
(A.21)

Let q = I−
1
2 p. Then

p · I−1p = p · I−1
2 q = I−

1
2 p · q = q2, (A.22)

where the second to last equality follows from the fact that I−1 is symmetric, hence(
I−

1
2

)T
= I−

1
2 . Since the transformation is linear the Jacobian matrix is just I−

1
2 , and we

can use the properties of determinants to see that

W (φ1, φ2) =

∫
dq1dq2 |I|−

1
2 δ

(
1

2
q2 − T

)
(A.23)

This has the form of an integral over a circle of radius r =
√

2T . Changing to polar

coordinates the integral becomes

W (φ1, φ2) =

∫
r dr dθ |I|− 1

2 δ

(
1

2
r2 − T

)
(A.24)
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Let q = 1
2r

2. Then dq = r dr, and

W (φ1, φ2) =

∫
dq dθ |I|− 1

2 δ (q − T ) (A.25)

The weight of this ellipse is thus 2π |I|− 1
2 , and it is defined by having a radius that of

√
2T .

The first fact will be used in computing the probability of acceptance of a given set of

angles. The second will help sample uniformly from this set.

Optimal sampling is achieved if the set of allowed angles is accepted with a probability

correctly normalised its maximum:

pacpt =
W (φ1, φ2)

Wmax
. (A.26)

From (A.14), |I|− 1
2 =

(
A− α2 cos2(φ2 − φ1)

)− 1
2 is maximal when φ1 = φ2, giving Wmax =

2 π(A− α2)−
1
2 . Hence,

pacpt =

√
A− α2

A− α2 cos2(φ2 − φ1)
. (A.27)

The last stage of the algorithm requires p1 and p2 be sampled uniformly from the manifold

characterised by 1
2q2 = T. As mentioned above, in (q1, q2) coordinates this is a circle of

radius
√

2T . Uniform sampling on a circle can be achieved by picking θ ∼ U(0, 2π], giving

q1 =
√

2T cos(θ) and q2 =
√

2T sin(θ). Momenta is obtained by p = I
1
2 q.

Simulating the Motion

If D is the determinant of the matrix I, then the Hamiltonian is

H =
1

2 D
(p2
θ − 2αpθpφ cos(φ− θ) +A p2

φ) + β(1− cos θ) + α(1− cosφ). (A.28)

The momenta evolve according to

ṗi = − ∂H
∂φi

= − ∂V
∂φi
− ∂T

∂φi
(A.29)
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Partial derivatives of V are straightforward, and for contribution coming from the kinetic

energy we can write

∂T

∂φi
=

1

2
p · ∂I−1

∂φi
p =

1

2D2
p ·
(

D
∂Iadj

∂φi
− Iadj

∂D

∂φi

)
p (A.30)

Hence, if we use θ and φ to denote the respective components of φ, and write ∆φ for φ− θ,
then Hamilton’s equations of motion are:

θ̇ =
∂H

∂pθ
=

1

D
[pθ − αpφ cos ∆φ] (A.31)

φ̇ =
∂H

∂pφ
=

1

D
[Apφ − αpθ cos ∆φ] (A.32)

ṗθ = −∂H
∂θ

= −β sin θ − 1

D2

[
α2 sin ∆φ cos ∆φ(p2

θ +Ap2
φ)− αpθpφ sin ∆φ(A+ α2 cos2 ∆φ)

]

(A.33)

ṗφ = −∂H
∂φ

= −α sinφ+
1

D2

[
α2 sin ∆φ cos ∆φ(p2

θ +Ap2
φ)− αpθpφ sin ∆φ(A+ α2 cos2 ∆φ)

]
.

(A.34)

Using the Matlab platform

In Press et al. [2002] there is a readily available code that allows for different ODE solving

schemes. Although C++ is undoubtedly faster, there are several reasons why we start with

Matlab:

a) we can use a pre-built ODE solver (in this case ode45, a fourth-order Runge-Kutta

method), which is faster to implement. b) it is easier to visualise the motion (no need to

transfer data between programs), and this can be useful to gauge the ‘shape’ of distributions

and the underlying phase space. We can also get estimates of the timescales of motion (i.e.

by plotting variations of angles with time), which are needed to understand reasonable

timescale to model large τ for persistent mutual information.

As with any scheme, iterations will lose accuracy, and motion may drift off the energy shell.

We can observe this on an energy v time plot (we expect this to depend on the energy itself

but also on the region of the shell, since for most energies motions of different type coexist).

Note that being with some error on the energy shell does not imply being accurate with the

same error. In terms of speed things can be improved by using the Lagrangian framework

to evolve the points instead of the Hamiltonian. The current computation time is O(τN).
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Errors

Naively the cumulative error is of order (number of steps*error in each step). But this is

only true if the distances between nearby points, whether on or off the energy shell, are

preserved by the flows. If that doesn’t happen, then the true point and the approximated

point can be the starting points of two diverging trajectories. The approximated point can

flow further away from the energy shell, and also at a different, possibly higher, rate. There

are two types of motion to consider here - that of nearby trajectories on the energy shell,

and off it. The character of the divergence of trajectories on the energy shell will go hand

in hand with whether the system (and the region of the energy shell) is in the chaotic phase

or not. The difference in the motion between the different energy shells is partially to do

with the way the shells are layered in space.

Without finding one or another signature of chaos we cannot speak of divergence of trajec-

tories on the energy shell. But we can calculate the Hamiltonian function of the estimated

coordinates, which will correspond to the total energy of a system that contains the point

x̂T .

Hence the accuracy of the method can be tested by seeing how far solutions move off the

energy shell. Let the difference between the starting energy (energy of the system) and

the value of the Hamiltonian function of a point xt obtained by our numerical solver, i.e.

xt = Ψt
H(x0) as before, be

ηt = H
(
Ψt
H(x0)

)
− E, (A.35)

and the relative error

ηtrel =
H
(
Ψt
H(x0)

)
− E

E
. (A.36)

This will depend on:

1. The starting point of the flow, which we take to signal time 0: x0. This depen-

dency reflects the possibility that the flow is not homogenous, so that the number of

discretization steps needed to approximate different trajectories may vary.

2. The energy shell, as labelled by the value (E) of the Hamiltonian for points on that

shell. Trajectories will drift off the shell and their behaviour will be partially deter-

mined by the structure of the shells in the phase space.
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(a) E = 1 (b) E = 5 zoom in

Figure A.2: Logarithm base 10 of the average relative error in energy, when both toler-
ance levels in the fourth order Runge-Kutta method are kept at some number of decimal
places. Average is over 100 runs whose initial conditions are distributed according to the
microcanonical ensemble.

3. The two Runge-Kutta parameters controlling the accuracy of the solver, the absolute

and relative tolerance levels, a and r.

4. The solver algorithm, i.e. Ψ. In this section this is assumed to be the fourth order

Runge-Kutta.

So the error can be written as

ηt = ηt(x0, a, r). (A.37)

It was found that error levels are tolerable. Figure A.2 shows that they can be

minimized at the expense of the running time.

Other graphs for different E value display the same broad character, though the

relative positions of the plots may differ.

We used the K-G algorithm to find the entropy of the joint distribution. The kdTree class

had to be adapted to admit a metric on eight-dimensional cylindrical spaces.

Figure A.3 shows that joint entropy first of all still scales with δΨ, and second that are

regions where that scaling is linear. Notice in figure A.3(b) how all the plots have converged

to Γ = 0 even for the minimum τ considered. Therefore there is some justification in trusting

the iterative process.
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(a) E = 2. Increasing τ raises the entropy with the same
legend as figure A.3(c).
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(b) E = 5
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(c) E = 10

Figure A.3: Entropy of the Joint as a function of resolution for several energies of the double
pendulum. Note that to get from the rate of change to Γ one needs to normalize, since the
marginals distributions do not fully occupy the four-dimensional marginal spaces.
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