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Abstract

This research covers the fabrication of piezoelectric ceramics using a sol gel

method. Commercial high temperature transducers are typically fabricated by a

milled oxide method. The sol gel method presented here produced purer samples that

can be prepared at lower temperatures than conventional milled oxide preparations.

The performance of the samples as piezoelectric transducers was also investigated,

with the samples produced by sol gel method exceeding the piezoelectric response of

the commercial samples.
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1. Introduction

Non destructive testing (NDT) is a discipline that focuses on the evaluation of

physical samples without causing damage or wear to the samples being examined [1-

9]. It can also allow inspections to be carried out in-situ on components which are in

active use [4], though in many cases machinery must be shut down to perform testing

[5]. High temperature, usually above 200°C, non-destructive testing (HTNDT) is an

expanding field which provides numerous advantages over ambient temperature

NDT, but has many challenges as well [4, 6-9].

In situations such as those in factories and power plants the ability to examine

components in real time, potentially at high temperature, allows critical safety checks

to be carried out without reducing productivity or causing expensive shutdowns. In

addition to these applications, more novel uses can be expected to develop as the

field matures, such as permanently fixed flaw detection devices being placed inside

jet turbines to allow maintenance checks to be carried out quickly and remotely.

In this research a new, low temperature method of preparing high temperature

piezoelectric transducers has been developed. The transducers prepared using this

method have also been characterised chemically and ultrasonically. These have the

potential to be used at temperatures of over 500°C.

1.1 High Temperature Applications

High temperature NDT is extremely useful in several industries, such as the

manufacturing industry, the power generation industry and the petrochemical

industry, but the applications extend beyond those. In manufacturing of steel billet,

for example, HTNDT allows products to be inspected early in the process, when
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recycling of failed components is easier. This requires operating temperatures of up

to 1000°C [10]. In the power generation industry HTNDT allows inspection of high

temperature, high wear components, usually up to 550°C, without requiring

expensive shutdowns. The petrochemical industry has similar requirements for high

temperature inspection. The eventual goal of this research is to produce transducers

capable of operating at up to 550°C, making it ideal for some of the industries

described above. This value is limited by the type of piezoelectric material being

investigated.

1.2 NDT Techniques

There are many different techniques used in NDT, each with advantages and

disadvantages. The following is a brief summary of the more common methods

which can be used, both at ambient temperature and in high temperature applications.

1.2.1 Thermography

Thermography uses the flow of heat in a material to detect and identify flaws

[11]. There are two main subdivisions of thermography; active and passive. Active

thermography involves the application of thermal energy to the sample being

investigated. This is usually performed with high intensity lamps pulsed for a very

brief period, followed by the monitoring of heat dissipation from the surface of the

sample. A hotspot indicates an area where the heatflow is obstructed, for example by

a void or an inclusion, or possibly a delamination in composite materials [12]. This

technique is known as flash thermography. In recent research thermography been

combined with another form of NDT, namely laser ultrasound, where the laser can be

used as a source of ultrasound as well as a heat source [3]. The transmission of heat
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through a metal is a well defined process, so if a sample is heated from a single point

and the spread of heat measured using a thermal imaging camera, any anomalies in

the pattern of the heatflow will be detected and assigned to the presence of defects or

flaws. This method can accurately size and locate surface and bulk defects by

analysing when a hotspot appears, and how large it is [11]. The remote nature of the

technique means that it is well suited to high temperature measurements, with the

effective operating temperature of the thermal imaging cameras ranging from -20 C

to 2000 C [13].

In passive thermography no additional thermal energy is applied to the sample.

In HTNDT this can be used to examine a high temperature component during

operation to check for hotspots or coldspots, indicating operation outside of accepted

parameters [11]. Passive thermography is also often used to examine the thermal

efficiency of buildings.

1.2.2 Eddy Current Techniques

Eddy current testing uses electrical currents to examine the surface or near-

surface of a material. A common setup of this method is shown in figure 1.1. Eddy

current testing operates by passing an alternating current (AC) through a coil of wire.

When held near an electrically conductive material induction will cause eddy

currents to flow in the test material, as shown in figure 1.1 [14]. These currents can

then be detected using a secondary search coil, by measuring the impact the eddy

currents have on the primary generation coil, or by using a Hall probe, giant

magnetoresistor or other sensor [14]. The penetration of eddy currents into a material

is limited by the material’s skin depth δ, the depth of penetration for electromagnetic 

radiation [15], as given by:
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where μ0 is the permeability of free space, μr is the relative permeability of the

sample, σ is the electrical conductivity of the sample and f is the frequency of the

signal. As the depth of detection is clearly limited by the frequency of the AC signal,

this can be varied to examine different depths into the sample [16].

Figure 1.1. Eddy current coil and the effect of a defect. The coil creates an induced

current in the sample, which is forced to flow under the surface breaking defect.

Alternatively, pulsed eddy currents can be used to overcome this requirement.

In pulsed eddy current testing a step function AC signal is used instead of a

sinusoidal AC signal [16]. This step function will contain many different frequencies

and allows information from multiple depths to be collected simultaneously [15].

The non-contact nature of the technique makes it useful in high temperature

applications, although the signal is sensitive to liftoff, limiting the distance the probe

can be from the sample.
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1.2.3 Ultrasound

One of the most widely used forms of NDT is ultrasonic testing, due to its

versatility, simplicity and cost effectiveness. Ultrasound can be used to examine both

the surface and the bulk of samples to find defects [17, Ch 5-9]. Thickness

measurements can also be made using ultrasound for a range of samples, from sub-

millimetre thick sheets such as those used in drinks cans manufacturing [18], to

plates tens of centimetres thick used in ships [19]. The process of using ultrasound

for NDT has no theoretical limit in terms of the behaviour of the sample at high

temperature, although the melting point of the sample is usually an experimental

limit. This limit, however, is usually far in excess of the temperature at which the

ultrasound transducers are capable of generating and detecting the signals, as

discussed below.

Ultrasonic transducers can be divided into two broad categories; contact and

non-contact. Contact transducers are the most frequently used and commonly use

simple piezoelectric elements. Contact methods typically have greater full cycle

efficiency, from generation and detection efficiencies due to improved coupling

when compared to non-contact techniques. Non-contact methods, such as laser

ultrasound, are generally easier to use at high temperatures due to their ability to

operate remotely from the sample and therefore at a standoff from the high

temperature component [20], but these methods are not yet widely used in industry.

The following is a summary of some of the methods of ultrasound generation

and detection.

1.2.3.1 Electromagnetic Acoustic Transducers

An electromagnetic acoustic transducer (EMAT) is a non-contact transducer

for generating and/or detecting ultrasound in either electrically conducting materials,
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magnetic materials, or materials which are both. They are usually composed of a

permanent magnet and a coil of wire as shown in figure 1.2 [21].

Figure 1.2. A diagram of an EMAT and the ultrasound it generates in the sample,

shown as a blue arrow.

An alternating current, typically from a discharging capacitor, is pulsed

through the coil, creating an induced current in the sample. For an electrically

conducting material this acts in conjunction with the magnetic field to exert a

Lorentz force F on the electrons in the sample.

ࡲ = ×࢜)ݍ (࡮ (1.2)

where q is the charge of the electron, v is its velocity and B is the magnetic field. The

force on the electron causes it move in the at right angles to both the magnetic field

and current flow. The electrons move the lattice by the Coulomb attraction, causing

the propagation of ultrasound [22]. The motion of the electrons corresponds to the

electrical signal used to drive the EMAT coil. In EMAT detection the motion of the

particles in the sample in a magnetic field causes a current to flow in the sample,

which causes an induced current to flow in the coil. This current can then be detected
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by an oscilloscope. Different arrangements of coils and magnetic fields will generate

and detect different wavemodes of ultrasound [20].

In non-electrically conducting, magnetic materials, the ultrasound generation is

by magnetostriction [23]. This effect is caused by the change in strain in a magnetic

material when a magnetic field is applied to it, and is illustrated in figure 1.3. The

changing magnetic field produced by the current flowing in the EMAT coil will

cause a changing strain in the sample, causing the generation of ultrasound in the

sample.

The distance of an EMAT from a sample, known as its liftoff, can affect the

transducer’s ability to generate or detect ultrasound of suitable amplitude in the

sample. This is because as the sample moves further from the transducer the strength

of the induced current in the sample and the static field decrease [24].

Figure 1.3. The effect of an applied field on a ferromagnetic material. Note the

change in shape of the sample due to the rearrangement of the magnetic dipoles.
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EMATs operating at high temperature are limited by the Curie temperature of

the magnet used, for example, 300°C for a neodymium (NdFeB) magnet [25]. This is

often overcome by using active cooling such as water cooling, although some recent

work has focused on using a pulsed electromagnet [9], allowing higher temperatures

to be reached without any active cooling.

1.2.3.2 Laser Ultrasound

Generation of ultrasound using a laser is a non-contact technique which uses a

pulsed laser focused on a small spot on the sample. Laser generation of ultrasound

works in two regimes; thermoelastic and ablative generation [26]. When operating in

the thermoelastic regime the thermal expansion caused by heat in the sample due to

the pulsed laser creates an ultrasound pulse in the sample. In this regime the sample

is undamaged as the energy of the laser is conducted away from the point of

generation as heat [27]. The ablative regime is not strictly speaking non-destructive

due to the laser transmitting such high energy that a small portion of the surface is

damaged by the laser [27]. The laser heats a small portion of the sample, forming a

plasma, which as it expands exerts pressure on the sample creating an ultrasonic

pulse. Operation in the ablative regime produces a much stronger ultrasound pulse

than in the thermoelastic regime, as the expansion is a superposition of ablative and

thermoelastic generation [27].

Laser detection of ultrasound requires the use of an interferometer or

vibrometer [26], but can often measure the exact out-of-plane surface displacement.

With standard interferometers only out-of-plane vibration can be detected. A “knife

edge” interferometer is usually required to detect in-plane vibration [28].

Laser ultrasound is ideal for high temperature applications due to the large

stand-off distance for generation. The ability of the generator to remain several
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A large volume of the transducer is made up of the backing material. The

primary purpose of this is to damp the active element when the generated pulse has

been transmitted, or after a pulse has been received. The wear plate is the part of the

transducer placed in contact with the sample to be measured. It may be designed to

be hard wearing and to protect the active element from damage that might be

incurred due to direct contact with the sample. Additionally, the wear plate should

have an acoustic impedance that is as close to the geometric mean of the transducer

and the prospective sample as possible [29], to maximise transmission (see section

2.3.4). The grounding cage serves a dual purpose of encasing the transducer,

ensuring that the high voltage required for operation is safely isolated and reducing

the effect of electromagnetic noise on the transducer. Note that the ground electrode

is attached to this, as is the ground from the coaxial cable. In this case the coaxial

attachment to the transducer is at the top of the transducer. The exterior of the

transducer is usually made of an electrically insulating substance, although if the

transducer is properly grounded it can be made from metal [17].

Piezoelectric transducers differ from EMATs or lasers in the need for physical

contact and couplant between transducer and sample. This is done to ensure efficient

transmission of the ultrasound from the transducer to the sample, as is explained

further in section 2.3.4.

The piezoelectric material used in the active element for generating and

detecting ultrasound can be in one of two forms. The first is a single crystal, for

example a naturally occurring material such as quartz, and consists of a macroscopic

crystal structure which arises as a consequence of long range order in the

microscopic crystal structure [19, ch 7]. Naturally occurring piezoelectrics were the

first to be discovered and characterised [30]. Single crystal materials can be hard to
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fabricate, although some, like quartz, are more simple to manufacture [19, ch 7].

Single crystals can also be angle cut to produce different wavemodes.

The second form of piezoelectric elements are ceramic materials, such as lead

zirconate titanate (PZT) which are much easier to manufacture than single crystals

but have their own drawbacks. PZT is the most commonly used piezoelectric

material for ultrasound transducers, but it performs poorly at high temperatures, with

a Curie temperature of only 350°C [7], and its lead content makes it environmentally

unfriendly. Ceramics are generally less piezoelectrically active than single crystals

[2], as their domains are not uniformly oriented, and also require polarisation [1],

explained further in section 4.3, in order to be made active. These drawbacks are

mitigated by the versatility in the shapes and sizes in which ceramics can be

fabricated, as well as their methods of production. Additionally the active direction

of a ceramic piezoelectric is chosen when it is polarised, as opposed to single crystals

which must be cut and prepared along the crystal axes in order to be effective in the

correct direction [31].

There are many different types of piezoelectric materials, with PZT being the

most widely used for NDT, although there are few suitable for high temperature use.

Specific high temperature piezoelectrics include bismuth titanate (Bi4Ti3O12), lithium

niobate (LiNbO3) and aluminium nitride (AlN) [32]. The reason that these materials

are specifically mentioned as high temperature transducers is due to their high Curie

temperature (Tc), which is the temperature at which a material is no longer

piezoelectric, and this is discussed in section 2.2.

A number of piezoelectric materials and their Curie temperatures are detailed

below:
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Material Curie Temperature [32]

Lead Zirconate Titanate 350°C

Bismuth Titanate 670°C

Lithium Niobate 1210°C

Aluminium Nitride None known

Table 1. The Curie temperatures of several high temperature piezoelectric materials,

using lead zirconate titanate as a comparison of the limits of more widely used

transducers.

As can be seen in table 1, bismuth titanate has a relatively low Curie

temperature when compared to lithium niobate and aluminium nitride. However, it is

simpler to fabricate and more chemically stable and is still suitable for use in the

petrochemical and power generation industries. Further motivation for the use of

bismuth titanate in this project is due to its relative ease of production and lack of

other drawbacks. Lithium niobate loses oxygen from its crystal structure at

temperatures above 800°C [33], well below its Tc, causing the destruction of the

transducer. While aluminium nitride has no known Curie temperature it is extremely

difficult to manufacture, as it is only piezoelectric in very thin film form [32]. It also

has similar problems to lithium niobate, notably oxidation at temperatures of

approximately 700°C [34]. The most common method of manufacture for these films

is chemical vapour deposition [8], a very expensive and difficult method of

manufacture.
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One drawback of piezoelectrically generated ultrasound is that, excluding

immersion testing, it is a direct contact method, meaning that the operating

temperature of the transducer will be the same as the temperature of the sample being

inspected. Working at this high temperature produces its own difficulties with

couplants, namely finding one that remains in the correct form across the entire

operating range to conduct the ultrasound from the transducer to the sample.

Other lower temperature piezoelectrics can be adapted to high temperature

operation by using active cooling or baffle rods [35]. Both of these steps decrease the

temperature of the active element of the transducer. Active cooling is a simple

process that uses a substance, usually air or water, to carry heat away from the

transducer. Baffle rods can be attached to transducers to increase their separation

from the hot sample under investigation, to allow the element to remain cool. These

methods allow the transducer to continue operating in environments above the Tc of

the active element of the transducer.
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2. Production and Operation of Piezoelectric Transducers

In this chapter the theoretical and practical background to this research will be

presented. The focus of this research is the fabrication of high temperature

transducers of bismuth titanate (Bi4Ti3O12) using a sol-gel method. In order to cover

the relevant information the chapter will be split into three sections; sol gel theory,

the piezoelectric effect and finally the theory behind the proposed ultrasonic testing

techniques.

2.1 Sol Gel Techniques

The material being fabricated in this research is bismuth titanate, which is

usually fabricated in industry using a milled oxide method, where oxide powders are

milled together. Sol gel describes a method of chemical preparation in which a sol

transforms into a gel, and is commonly used for preparing ceramic materials,

particularly film coatings and extremely fine powders [1].

A sol is a colloidal suspension of a solid in a liquid. Broadly speaking, there

are two types of sol; particulate sols, which are a suspension of nano-sized particles

in a liquid, and polymeric sols, which are a suspension of branched macromolecules

in a liquid. A gel is a two phase compound composed of an interlinking network and

a liquid. By weight gels are mostly liquid, although their behaviour is closer to that

of a solid [2].

This method has some advantages compared to other methods (such as the

milled oxide method) for example, the final product is more homogenous due to the

mixing of the precursors in a liquid state, which leads to higher quality ceramic

transducers. Additionally, the firing temperatures required to produce the ceramics
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are lower than when other methods are used, as the smaller particle size requires less

heat to crystallise.

In this project two sols are mixed to form a single gel; a titanium sol and a

bismuth sol, both of which are are polymeric sols. The process of gelling occurs due

to the expansion of the polymer network within the mixed sol [2]. While both metal

oxide compounds are known to form polymer networks, it is unknown whether they

form two separate homopolymers or a single copolymer. However, it is known that

both alkoxides form polymer chains by the process of step polymerisation, which

means that multiple smaller chains form individually before crosslinking into larger

chains while approaching the final gel state, shown in figure 2.1a.

This is in comparison to chain polymerisation where only a single monomer is

added at a time to the chain, as shown in figure 2.1b.

The method of polymer growth in the sols used in this project is by

condensation, where two active sites join by the production of a water molecule.

Titanium is an atom with four active sites while bismuth has only three. This implies

(a) (b)

Fig 2.1. Figures showing (a) step polymerisation and (b) chain polymerisation.

These figures show two different processes by which polymer growth occurs.
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that there is a significantly higher order of complexity in a titanium homopolymer

than exists in a bismuth homopolymer [2].

It should be noted that the titanium and bismuth sols were prepared from stock

chemicals of titanium propoxide and bismuth nitrate pentahydrate. Titanium

propoxide is a metal alkoxide suitable for the sol gel method, although its gelling rate

in air was found to be too rapid to allow sufficient mixing with the bismuth

precursor. Bismuth nitrate is a crystal with a very low solubility, being insoluble in

water, ethanol and acetone. Additional steps are taken to modify these precursors.

To reduce the reactivity of the titanium propoxide (Ti(OC3H7)4) the

coordination of the titanium ion is increased by forming a complex with acetate ions

through a nucleophillic addition reaction [3];

2ܶ ସ(଻ܪଷܥܱ݅) + (ܱܱܥଷܪܥ)2 → ܶ ଶ݅(ܱܥଷܪ଻)ସ(ܱܪܥܱܥଷ)ଶ (2.1)

This is done by the addition of acetic acid to the titanium propoxide in a ratio of 4:1.

This stabilises the compound sufficiently for it to be exposed to air without gelling.

The structure of this chemical is shown in figure 2.2.

The bismuth nitrate crystals are dissolved in acetylacetone to form another

stable complex. Although the nature of the molecule produced is unknown, its exact

structure is beyond the scope of the research presented here.
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Figure 2.2. The chemical structure of the titanium complex described in equation

2.1, where R refers to the alkyl group (OC3H7).

Both the sols gel by a process of step polymerisation through condensation. For

this to occur, however, an intermediate step of hydrolysis must first occur. This

happens when one of the ligands on an active site is replaced by a hydroxyl (OH)

ligand. This is shown for titanium acetate in equation 2.2.

ܶ ସ(ଷܪܥܱܥܱ݅) →�ଶܱܪ�+ ܶ ܪଷܱ(ଷܪܥܱܥܱ݅) + ܪܱܱܥଷܪܥ (2.2)

These hydrolysis reactions are an intermediate step in the process of

polymerisation. After an alkyl group, such as the (OCOCH3) group above, has been

replaced with a hydroxyl group it can interact with another hydroxyl group on a

different atom in the process known as condensation.
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. The general case of a condensation reaction, where M is a metal ion, R
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Figure 2.4. The inverse piezoelectric effect; when an electric field is applied to a

piezoelectric material stress is induced within the material, casing its shape to

change. The scale of the shape change has been exaggerated in this figure. The red

arrows represent the expansion resulting from the piezoelectric effect and the blue

arrows are the contraction required to maintain the volume of the material.

Figure 2.4 shows the effect of applying an electric field to a piezoelectric

crystal. The simple form of the equation governing the direct piezoelectric effect is

[6]:

ܲ = ߪ݀ (2.3)

where P is the polarisation, d is the piezoelectric modulus and σ is the stress. For the

reverse piezoelectric effect it is as follows [6]:

߳= ܧ݀ (2.4)

where ϵ is the strain and E is the Electric field. It will be demonstrated later that

while these equations are approximately true, a degree of accuracy is lost by treating

the quantities involved as scalars rather than tensors.

In many piezoelectric crystals the lack of central symmetry arises in a type of

crystal structure called a perovskite. This causes the formation of an electric dipole in
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the material. Barium titanate (BaTiO3) is a commonly used piezoelectric that has a

perovskite structure, and this is shown in figure 2.5.

Below its Curie temperature, Tc, the crystal is tetragonal and contains an

electric dipole due to the off-centre position of the unit cell’s titanium atom. As the

temperature rises to Tc, 120°C [7, p.10], the titanium atom shifts to the centre of the

unit cell as the crystal structure becomes cubic, and the asymmetry leading to

piezoelectricity is lost.

2.2.1 Tensor Treatment of Piezoelectricity

The analysis of piezoelectricity given by equations 2.3 and 2.4 is a scalar

simplification of an effect which should ideally be described using third order

tensors. Tensors are a mathematical notation well suited to describing complex

physical phenomena. A 0th order tensor is a scalar and a 1st order tensor is a vector. A

Figure 2.5. The perovskite structure of barium titanate below and above its Curie

temperature. Note the asymmetry in the image of the crystal below its Curie temperature. It

is this asymmetry that is responsible for the piezoelectric effect.
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2nd order tensor can be represented as a matrix and a 3rd order tensor can be

represented as a three dimensional matrix. It is important to note that, while a matrix

is a convenient way of representing a second order tensor, a matrix itself is not

necessarily a tensor. Equation 2.3 can be rewritten using tensors [6]:

௜ܲ= �݀ ௜௝௞ߪ௝௞ (2.5)

where the stress in a material, σjk, is now described by a second order tensor

containing both shear and axial stress and the polarisation, Pi, is a first order tensor.

The subscript i is used to denote a polarisation direction in the crystal, and j and k are

used to describe directions in the stress tensor. The piezoelectric modulus that relates

them, dijk, must therefore be a third order tensor. Similarly, the equation for the

reverse piezoelectric effect can be rewritten using tensors;

௝߳௞ = �݀ ௜௝௞ܧ௜ (2.6)

where ௝߳௞ is the strain tensor and Ei is the electric field.

A third order tensor, such as dijk, can be expressed as a set of three matrices;

൭
ଵ݀ଵଵ ଵ݀ଵଶ ଵ݀ଵଷ

ଵ݀ଶଵ ଵ݀ଶଶ ଵ݀ଶଷ

ଵ݀ଷଵ ଵ݀ଷଶ ଵ݀ଷଷ

൱��������൭
ଶ݀ଵଵ ଶ݀ଵଶ ଶ݀ଵଷ

ଶ݀ଶଵ ଶ݀ଶଶ ଶ݀ଶଷ

ଶ݀ଷଵ ଶ݀ଷଶ ଶ݀ଷଷ

൱��������൭
ଷ݀ଵଵ ଷ݀ଵଶ ଷ݀ଵଷ

ଷ݀ଶଵ ଷ݀ଶଶ ଷ݀ଶଷ

ଷ݀ଷଵ ଷ݀ଷଶ ଷ݀ଷଷ

൱ (2.7)

This third order tensor has 27 components, although these can be reduced using

arguments of symmetry for the strain and stress tensors, σjk and ௝߳௞, making dijk

symmetrical in the j and k indices [8]. The symmetry of dijk leads to relations such as;

ଵ݀ଵଶ = ଵ݀ଶଵ (2.8)

This symmetry in j and k allows the 27 components to be reduced to 18, giving;

൭
ଵ݀ଵଵ ଵ݀ଵଶ ଵ݀ଵଷ

ଵ݀ଵଶ ଵ݀ଶଶ ଵ݀ଶଷ

ଵ݀ଵଷ ଵ݀ଶଷ ଵ݀ଷଷ

൱��������൭
ଶ݀ଵଵ ଶ݀ଵଶ ଶ݀ଵଷ

ଶ݀ଵଶ ଶ݀ଶଶ ଶ݀ଶଷ

ଶ݀ଵଷ ଶ݀ଶଷ ଶ݀ଷଷ

൱��������൭
ଷ݀ଵଵ ଷ݀ଵଶ ଷ݀ଵଷ

ଷ݀ଵଶ ଷ݀ଶଶ ଷ݀ଶଷ

ଷ݀ଵଷ ଷ݀ଶଷ ଷ݀ଷଷ

൱ (2.9)

There is a reduced notation, or matrix notation, which is designed to simplify the

process of representing the tensors on paper. The relationship between the j and k
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suffixes in the full tensor notation and the new suffixes from the matrix notation is

shown in table 2.

Tensor notation 11 22 33 23, 32 31, 13 12, 21

Reduced notation 1 2 3 4 5 6

Table 2. The relationship between the j and k indices in tensor notation and the

single index used in reduced notation to replace them.

Hence the component d112 now relates to d16. This reduced notation is simplified

further by defining the following substitution:

ଵ݀ଵଶ + �݀ ଵଶଵ = �݀ ଵ଺ (2.10)

and similarly for the other off-diagonal terms. This substitution allows the off-

diagonal terms in the matrix to be rewritten using:

ଵ݀ଵଶ = �݀ ଵଶଵ =
ଵ

ଶ ଵ݀଺ (2.11)

giving the following definition of the tensor:

⎝

⎜
⎛

ଵ݀ଵ
ଵ

ଶ ଵ݀଺
ଵ

ଶ ଵ݀ହ

ଵ

ଶ ଵ݀଺ ଵ݀ଶ
ଵ

ଶ ଵ݀ସ

ଵ

ଶ ଵ݀ହ
ଵ

ଶ ଵ݀ସ ଵ݀ଷ ⎠

⎟
⎞

⎝

⎜
⎛

ଶ݀ଵ
ଵ

ଶ ଶ݀଺
ଵ

ଶ ଶ݀ହ

ଵ

ଶ ଶ݀଺ ଶ݀ଶ
ଵ

ଶ ଶ݀ସ

ଵ

ଶ ଶ݀ହ
ଵ

ଶ ଶ݀ସ ଶ݀ଷ ⎠

⎟
⎞

⎝

⎜
⎛

ଷ݀ଵ
ଵ

ଶ ଷ݀଺
ଵ

ଶ ଷ݀ହ

ଵ

ଶ ଷ݀଺ ଷ݀ଶ
ଵ

ଶ ଷ݀ସ

ଵ

ଶ ଷ݀ହ
ଵ

ଶ ଷ݀ସ ଷ݀ଷ ⎠

⎟
⎞

(2.12)

This tensor can now be rewritten in a single matrix of 18 components in order to

simplify its representation on paper:

൭
ଵ݀ଵ ଵ݀ଶ ଵ݀ଷ

ଶ݀ଵ ଶ݀ଶ ଶ݀ଷ

ଷ݀ଵ ଷ݀ଶ ଷ݀ଷ

ଵ݀ସ ଵ݀ହ ଵ݀଺

ଶ݀ସ ଶ݀ହ ଶ݀଺

ଷ݀ସ ଷ݀ହ ଷ݀଺

൱ (2.13)

In order to be consistent the tensor σjk must be rewritten as well;

൭

ଵଵߪ ଵଶߪ ଵଷߪ
ଶଵߪ ଶଶߪ ଶଷߪ
ଷଵߪ ଷଶߪ ଷଷߪ

൱�→�൭

ଵߪ ଺ߪ ହߪ
଺ߪ ଶߪ ସߪ
ହߪ ସߪ ଷߪ

൱ (2.14)

Equation 2.5 can now be rewritten to take advantage of this reduced notation:
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௜ܲ= �݀ ௜௝ߪ௝ (2.15)

The inverse piezoelectric effect (equation 2.6) can also be written using matrix

notation. However, it requires that ϵjk be rewritten in a similar way to dijk. Looking at

a single portion of the tensor, ϵ12 :

ଵ߳ଶ = ෍ ௜݀ଵଶܧ௜

ଷ

௜ୀଵ

(2.16)

which, using the new notation becomes:

ଵ߳ଶ =
1

2 ଵ݀଺ܧଵ +
1

2 ଶ݀଺ܧଶ +
1

2 ଷ݀଺ܧଷ (2.17)

To write equation 2.17 fully in reduced notation ϵ12 is defined:

ଵ߳ଶ = ଶ߳ଵ =
1

2 ଺߳ (2.18)

with ϵjk rewritten as:

൭
ଵ߳ଵ ଵ߳ଶ ଵ߳ଷ

ଶ߳ଵ ଶ߳ଶ ଶ߳ଷ

ଷ߳ଵ ଷ߳ଶ ଷ߳ଷ

൱�→

⎝

⎜
⎛

ଵ߳
ଵ

ଶ ଺߳
ଵ

ଶ ହ߳

ଵ

ଶ ଺߳ ଶ߳
ଵ

ଶ ସ߳

ଵ

ଶ ହ߳
ଵ

ଶ ସ߳ ଷ߳ ⎠

⎟
⎞

(2.19)

This allows equation 2.6 to be rewritten in matrix notation:

௝߳ = �݀ ௜௝ܧ௜ (2.20)

This step is a standard step taken in many published works considering

piezoelectricity [9], with the most notable example of the use of reduced notation

being that of the value d33. This is widely used as a measure of the effectiveness of a

longitudinal wave ultrasound transducer. The corresponding value in tensor notation

is the d333 value, which is a measure of the deformation of a piezoelectric material in

an axial direction corresponding to the electric response in that same axial direction.
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2.2.2 Piezoelectric Effect in Bismuth Titanate

Piezoelectricity in bismuth titanate is due to a triple pseudo-perovskite

formation known as an Aurivillius structure [10]. This has three sub-structures which

approximate to perovskite structures and is shown in figure 2.6.

Figure 2.6. Structure of bismuth titanate, image taken from reference [10].

These sub structures will each produce a piezoelectric response, and, although

two of the structures are at an angle to the crystal axis, their lateral responses should

cancel each other out. These pseudo-perovskites exist along the b axis of the crystal

and as the crystal approaches Tc the asymmetry is lost, as this axis changes to

become the same length as the a axis, changing the crystal structure to tetragonal

[10].
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Bismuth titanate also exhibits ferroelectricity. This describes a material that

produces a spontaneous and reversible electric polarisation when an external electric

field is applied to it [11]. This is in direct analogy to the magnetic polarisation of

ferromagnetic materials, and is where the phenomenon received its name (most

ferroelectrics do not contain iron in their structure). Like a ferromagnetic material, a

ferroelectric material will show a distinct hysteresis when a reversing electric field is

applied to it. The ability of the three dipoles in bismuth titanate to be reversed by the

application of an electric field make it a ferroelectric.

In conjunction with its piezoelectric and ferroelectric behaviour, bismuth

titanate is also pyroelectric [12]. This means that when the crystal is heated an

electric field will be produced within the crystal. If there is a temperature gradient

across a pyroelectric material there will also be a voltage gradient. However, for

reasonably constant temperatures this will simply manifest as a DC offset in the

measured voltage signal. The equation for pyroelectricity is [6];

ߜܲ ௜= ߜ௜ܶ݌ (2.21)

where Pi is the spontaneous polarisation vector, pi is the coefficient of pyroelectricity

and T is temperature. The subscript i indicates the direction of the effect, which must

be considered in anisotropic crystals.

2.3 Ultrasound Propagation

Ultrasound is, simply, the propagation of vibrations with a frequency greater

than 20 kHz through media. These vibrations travel through the medium via

interactions between the basic particles that form the medium. As each particle

vibrates it passes the vibrations on to its neighbouring particles, which in turn pass

the vibrations to their neighbouring particles, and thus ultrasound propagates through
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measurements, described in section 2.3.5.

2.3.1 Ultrasonic Transducers

The most common type of transducers

as discussed in section 1.2.3.3, where

the piezoelectric element

they are most efficient at producing ultrasound

standing waves inside the transducer

The resonant frequency of the transducer is the fundamental mode of the

standing wave within it

Figure 2.7. Harmonics in a piezoelectric transducer.

will not form as it would require both sides of the transducer to be at the same

voltage.

The transducers in this research will be used to perform pulse

measurements, described in section 2.3.5.

ransducers

The most common type of transducers for NDT are piezoelectric transducers

as discussed in section 1.2.3.3, where ultrasound is generated through oscillation of

the piezoelectric element. Transducers generally have a resonant frequency

they are most efficient at producing ultrasound [14]. This is due to the formation of

standing waves inside the transducer [15], as shown in figure 2.7.

The resonant frequency of the transducer is the fundamental mode of the

anding wave within it [15]. The transducer will also have higher harmonics which

Harmonics in a piezoelectric transducer. The second

will not form as it would require both sides of the transducer to be at the same
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be used to perform pulse-echo

are piezoelectric transducers,

ted through oscillation of

have a resonant frequency at which

. This is due to the formation of

The resonant frequency of the transducer is the fundamental mode of the

he transducer will also have higher harmonics which

second harmonic wave

will not form as it would require both sides of the transducer to be at the same
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will also produce ultrasound efficiently; however, as can be seen in figure 2.7, only

the odd harmonics can satisfy the boundary condition that opposite sides of the

transducer must be at different voltages.

2.3.2 Ultrasonic waves

There are two main types of ultrasonic wave; surface waves and bulk waves.

As their name suggests bulk waves propagate within a sample, while surface waves

propagate on the exterior of the sample. Surface waves are actually a superposition

of bulk waves that satisfy the boundary conditions present when propagating at the

surface.

Bulk waves are subdivided into two types of wave motion; shear and

longitudinal. Longitudinal waves propagate in the same direction as the motion of the

particles that make up the wave, with the best known example being that of sound

waves in air.

Figure 2.8. The propagation of longitudinal and shear waves and their particle

motion.
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Shear waves propagate perpendicular to the particle motion of the wave, and

are also known as transverse waves. In solid media both shear and longitudinal

waves are common, but shear waves will only propagate in the most viscous of fluids

[13]. This is due to the ability of fluids to move freely when subjected to pressure,

forming compression waves in preference to shear waves [13].

One of the surface waves used in NDT is a Rayleigh wave. This type of wave

propagates with an elliptical particle motion, and has a mix of both longitudinal and

shear type propagation [13]. Figure 2.9 shows a diagram of the particle motion and

propagation. Although Rayleigh waves are a surface wave, there is some penetration

into the bulk of a sample. This penetration is dependent on the frequency of the

wave, with the amplitude of the wave falling away exponentially as the depth of

penetration increases. The majority of the wave energy is within one wavelength of

the sample surface.

Figure 2.9. The propagation of a Rayleigh wave and its particle motion taken from

[16].
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where k is a measure of the anisotropy of the system (adjusts the mean linear

dimension based on the anisotropy of the granular structure), D is the mean linear

dimension of the grains and λ is the wavelength of the ultrasound [13].

2.3.4 Transmission of Ultrasound between Media

One of the key considerations in ultrasound propagation is the transmission of

ultrasound between two media. When an ultrasonic wave strikes an interface a

portion of the wave will be reflected and a portion will be transmitted. If the wave is

incident on the surface at an angle, instead of orthogonal to it, a portion of the wave

may also be mode converted into a different type of wave [13, p24]. The equation

governing the propagation of ultrasound across an interface is as shown;

௥ߙ ≥௧ߙ�+ 1 (2.23)

where αr is the coefficient of reflection, αt is the coefficient of transmission and the

less than or equal to one accounts for both loss and mode conversion at the interface.

These are further defined in relation to the characteristic impedances [13] of media 1

and 2:

௥ߙ =
(௓మି�௓భ)మ

(௓మା�௓భ)మ
(2.24)

where Z1 is the characteristic impedance of the first medium and Z2 is the

characteristic impedance of the second medium, and

௔ܼ = ఈܿߩఈ (2.25)

where cα is the speed of sound in the medium and ρα is its density. For transmission

with no loss using equations 2.23 and 2.24 it can be shown that:

௧ߙ =
ସ௓భ௓మ

(௓భା�௓మ)మ
(2.26)
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The coefficient of transmission is a measure of the efficiency of a boundary in

allowing ultrasound to propagate across it. Coupling is a term often used to describe

the transmission efficiency of an interface between media [13, p.21].

In order to maximise the usefulness of a transducer the coupling between it and

the sample medium must be as high as possible. When a transducer is placed on a

sample the microscopic picture of their boundary can be starkly different to what is

observed by the human eye, as shown in figure 2.11.

The apparently close bond between transducer and sample is seldom smooth.

Many miniscule pockets of air can exist between the two, causing poor coupling. In

many situations this is overcome with the use of couplants; materials designed to fill

the gaps between transducer and sample and to provide much better transmission of

sound through better coupling. This occurs because the characteristic impedance of

the couplant is much closer to both the sample and transducer than the air is. Often,

for boundaries between media with vastly different impedances, a medium of

intermediate impedance is used, and the process is known as impedance matching

Figure 2.11. Image showing roughness at microscopic level at a boundary between

two media.
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[19]. At high temperatures the couplants used have a very short operational lifespan

[20], leading to the suggestion of alternative solutions, such as thick film transducers

bonded to the sample.

The use of thick films, as described later, can eliminate the need for couplants

by filling the microscopic gaps when the transducer is grown directly onto the

sample [20]. This allows inspections to be carried out “dry”, without couplant. This

is highly desirable in high temperature ultrasound due to the scarcity of materials

capable of acting as couplants beyond 200°C [20].

2.3.5 Using Ultrasound for Thickness Testing

The uses of ultrasound in NDT are varied, but one common use is in thickness

gauging [13, ch.6.3]. This quantatively examines the thickness of a sample, allowing

effects like corrosion to be monitored. It can also provide quality assurance in

industrial processes such as the manufacturing of metal billets or pipe. It is usually

performed with one transducer and relies on using the arrival time of a reflected

ultrasound pulse to work out the thickness of the sample, using equation 2.27.

2ℎ = ݐܿ (2.27)

where h is the thickness of the sample, c is the velocity of the ultrasound in the

medium and t is the time taken for the ultrasound to travel the path shown in figure

2.12. Although the standard technique usually only examines the arrival time of the

first reflected pulse, enhanced accuracy can be obtained in less attenuating samples

by averaging the time taken for multiple echoes to travel along the path.
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Another use of ultrasound is in the detection and sizing of flaws and defects.

Ultrasonic detection of flaws in the bulk can often performed using a single

transducer setup. In this setup the single transducer acts as both transmitter and

receiver, sending ultrasound into the sample and detecting the ultrasound reflected

from any defects, as shown in figure 2.13 [13].

Figure 2.12. Setup for thickness gauging using pulse-echo method.
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Figure 2.13. Ultrasonic flaw detection, which uses a similar setup to thickness

measurements. A flaw can be identified by the presence of an echo arriving before

that of the back wall.

Detection of defects can be done in a similar way to thickness gauging, where

reflections recieved by the transducer before the first backwall echo are attributed to

flaws, which can then be positioned using the time delay of the echo and the speed of

sound in the sample. The lateral dimensions of the defect can be determined by

moving the probe and denoting the location where the defect reflection first appears.

However, this assumes that the ultrasound beam is the same size as the transducer at

all depths, which is often untrue [21]. With a transducer of known beamshape a

correction can be applied based on the defect depth. The method also assumes that

the transducer is smaller than the defect to be sized, an assumption not present in the

6 dB drop method, which sizes the edge of the flaw at the point where the reflected

signal is half what it was in the centre of the flaw [13, ch.8.2.1].
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3. Material Characterisation Techniques

In the course of the research one of the key results to achieve was to characterise the

materials which were fabricated, both to validate the fabrication techniques and to

assess the quality of the fabricated materials. In this chapter the processes by which

the bismuth titanate samples were characterised, thermally and crystallographically,

will be explained.

3.1 Thermal Characterisation

Thermal characterisation shows the thermal response of a sample to variation

in temperature. Several samples of bismuth titanate were examined using a

combined differential scanning calorimetry and thermogravimetric analysis

(DSC/TGA) setup. This involves the measurement of a sample’s weight and the

heatflow into it as the sample is heated [1]. These measurements are then compared

to an empty crucible in order to eliminate effects such as airflow under the sample

lightening the weight measurement, or the heatflow into the crucible interfering with

the measurement of the sample.

The sample is placed into a platinum-rhodium crucible and weighed to provide

an initial reading for the scales of the machine. The machine then heats the sample

continuously to temperatures of up to 1200°C and outputs the heatflow and weight

data to a computer.

The heatflow measurements allow the temperature at which changes occur in

the sample, such as a glass transition or crystallisation, to be identified. The weight

change allows points where samples have undergone certain chemical changes, like
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oxidation, to be identified; in an oxidation reaction the sample reacts with oxygen in

the atmosphere, and this will increase the weight of the sample.

The profile of the heatflow data can allow for precise identification of the types

of transitions taking place in the sample. Exothermic (where heat is given out by the

sample) and endothermic (where heat is absorbed by the sample) changes are easy to

differentiate, as they are represented by dips and spikes in the data respectively. In

addition to the orientation of the peak, its profile will give additional information

about the transition occurring. A crystallisation transition can be identified by a

typically sharp exothermic peak, when compared to the broader exotherm typical of a

glass transition.

In these experiments the samples, weighing between 30mg and 60mg, were

heated to 900°C at a rate of 10°C per minute in a combined DSC/TGA machine.

3.2 Crystallographic Characterisation

X-ray diffraction is a technique which examines the crystal structure of

materials by using x-rays of wavelength comparable to the lattice spacing of the

material. The random orientation of the crystals in a powder sample ensures that all

crystal positions are represented evenly. The lattice spacing of the crystal acts as a

diffraction grating, providing constructive interference at given angles. The values of

these angles allows the size and shape of the crystal lattice to be identified [2]. This

allows the purity of the samples to be assessed. In the x-ray diffractometer used here

the kα emission peak of copper is used [3]. The monochromatic light, at 0.154 nm,

produces peaks in the pattern which are sharp and well defined. The sample is placed

in the centre of a beam of x-rays and a detector records the diffraction pattern. The



43

sample itself is rotated in the diffractometer as the detector moves around it in order

to produce a scan, as shown in figure 1.

The detector on the powder diffractometer is a 255 channel CCD detector

spread over an angle of 3.347° [4]. Each individual element of the detector moves

through the 2θ angle and their counts are summed to produce the total count for that 

angle. The sample was prepared as a pellet, but ground into a powder and packed

into a holder, typically containing a few grams of powder.

In addition to the room temperature experiments, several characterisations took

place at high temperatures. This is performed by attaching an Anton Paar furnace and

sample stage to the diffractometer. The sample is heated by the furnace, allowed to

stabilise at a given temperature, then a diffraction pattern is obtained as it would be

for a room temperature measurement. This results in a series of diffraction patterns,

each obtained at different temperatures. The maximum temperature the furnace can

operate at is 1200°C, though that was not reached in this research [5].

The samples for the high temperature experiments were prepared in a similar

manner to those for the low temperature experiments, although the sample holder

Figure 3.1 The arrangement of sample and its motion through θ, and the detector 

and its motion through 2θ.   
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was smaller to reduce the size of the furnace. Several high temperature experiments

were performed, with different temperature steps, equalisation times and scan

lengths. The smallest temperature difference between steps was only 1°C, while the

largest was 100°C. The time allowed for the sample to reach thermal equalibrium

varied similarly, with the shortest being only 5 minutes, while the longest was one

hour.
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4. Experimental Techniques Developed for Preparing

Bismuth Titanate Transducers

In addition to the standard experimental techniques detailed in the previous

chapters, this project explored several novel techniques in sample preparation.

Additionally, a novel technique to induce electrical polarisation was also

investigated. These new techniques are described in detail, as are several more

standard techniques.

4.1 Sample preparation.

Several novel methods of sol-gel preparation of bismuth titanate were

developed during the research, although all had common aspects. None of the

methods used prefabricated bismuth titanate powder as a precursor [1]. Four slightly

different preparations were made, coded for the chemical precursors titanium

propoxide (TiP), bismuth nitrate (BiN) and solvents used to prepare the bismuth

nitrate;

 acetic acid (CH3COOH)

 nitric acid (HNO3)

 nitric acid with water added later in the process (HNO3 Hydrated)

 acetylacetone (Acac).

The progression in the methods was the result of attempts to improve the

quality of the final sample and to reduce the use of hazardous chemicals.
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4.1.1 First preparation; TiP/BiN CH3COOH

The first step in the fabrication of the bismuth titanate piezoelectric transducer

was the production of a homogenous powder which could be fired to produce a

bismuth titanate ceramic. The first attempt at making such a powder followed a non-

standard method developed by altering a method from the literature to utilise

available chemicals and used the common precursors of titanium propoxide and

bismuth nitrate [2]. These precursors were chosen due to their use in similar research

and relatively low cost. The titanium propoxide was decanted into a conical flask and

then sealed using a suba-seal in a dry nitrogen glovebox. After being removed from

the glovebox, glacial acetic acid was added to the titanium propoxide in the molar

ratio of 4:1 using a syringe and hypodermic needle. This created a titanium complex,

Ti2(OC3H7)4(OCOCH3)2, a more stable chemical which could be used outside of a dry

nitrogen atmosphere.

The bismuth nitrate crystals were also dissolved in acetic acid, although due to

bismuth nitrate’s low solubility a large quantity of acid was used without achieving

total dissolution. The amount of bismuth atoms present exceeded the stochiometric

ratio, by 5%, to titanium atoms to compensate for diffusion of bismuth atoms at high

temperature. This was added to the titanium complex in the suba-sealed conical

flask, again using a syringe and needle. The suba-seal was then removed and the

mixture exposed to air to promote gelling.

While the viscosity of the sol did increase, showing some polymerisation,

gelling did not occur. The mixture was dried in an oven, firstly for two hours at

85°C, then for 8 hours at 100°C and finally dried at 300°C for four hours to remove

all remaining solvents.
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At this point the sample was given the batch code TiP/BiN CH3COOH to

denote its precursors and its method of preparation. The sample was wet milled in a

vibromill with a plastic container and agate beads, using methanol as a solvent. This

was dried and then passed through a 125μm sieve in order to ensure sufficiently 

small particle size for good sintering. The sample powder was subjected to thermal

analysis, but the results of this were inconclusive.

The powder was pressed into three pellets which were fired for 6 hours at

temperatures of 500°C, 600°C and 700°C respectively to obtain information on the

optimum firing temperature. These tablets were ground up using a mortar and pestle

for examination using the X-ray powder diffractometer, and the results are shown in

Chapter 5. The samples were shown to have a low purity of bismuth titanate crystals,

so the method was refined.

4.1.2 Second preparation; TiP/BiN HNO3 (Hydrated)

The second attempt at fabricating a bismuth titanate powder followed the

method developed by Sedlar and Sayer more closely [2]. Titanium propoxide was

again chelated, however, this time methoxyethanol and acetylacetone were used in a

molar ratio of one part acetylacetone to four parts methoxyethanol to one part

titanium propoxide. Bismuth nitrate crystals were dissolved in nitric acid with four

times as much nitric acid as bismuth nitrate crystals by weight. Again the ratio of

bismuth atoms to titanium atoms exceeded the stochiometric ratio, to compensate for

the diffusion of bismuth at high temperature. The solutions were mixed and the result

was then divided, with one half of the resulting solution having water added to it in

the ratio of 10:1 when compared to the original amount of titanium propoxide used,

with the other half left unaltered. Both solutions were left uncovered and heated
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while stirring was maintained. Though the viscosity of the sols increased, no gel

formed. The sample without added water, coded TiP/BiN HNO3, was dried for 60

hours at 70°C, then 12 hours at 300°C, forming a powder, and vibromilled to reduce

particle size and produce a finer powder, to improve the sintering characteristics of

the sample. After this it was passed through a 125μm sieve and calcinated at 400°C 

for 6 hours. The sample with added water, coded TiP/BiN HNO3 Hydrated, was also

dried for 12 hours at 300°C, vibromilled, passed through a 125μm sieve and 

calcinated at 400°C for 12 hours. The powders were both subjected to thermal

characterisation, the results of which provided the firing temperatures of the pellets

prepared for examination using the X-ray powder diffractometer. The results of the

X-ray characterisation for these were an improvement over those of the first

preparation and are presented in Chapter 5.

Due to the hazardous nature of the chemicals involved in this method of

preparation, particularly the methoxyethanol and nitric acid, an alternative method

using safer chemicals was developed.

4.1.3 Third preparation; TiP/BiN Acac

The final preparation was designed to overcome the drawbacks of the previous

method, namely the use of methoxyethanol and nitric acid, both extremely hazardous

substances. As with the previous methods, an excess of bismuth was added to

compensate for the diffusion of bismuth at high temperature. The titanium propoxide

was again chelated with acetic acid, in a molar ratio of 1:4. The bismuth nitrate was

dissolved in acetylacetone with a weight ratio of 1:2. The sols were then mixed and

the result covered and left to stir. This was then left for 2 weeks to gel, but this did

not occur, possibly due to steric hindrance resulting from the comparatively large
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size of the bismuth atom or the complexes formed, which reduces the possibility of

crosslinking. The sol, which had increased in viscosity without gelling, was dried for

12 hours at 50°C and 6 hours at 100°C. The drying process produced an unexpected

result in the expansion of the very viscous sol, shown in figure 1.

Figure 4.1. Result of dying the viscous sol in a standard 115mm diameter dish. As

the solvents in the sol evaporated and expanded they were unable to break the

surface tension, resulting in an expansion of the sol.

This formation is thought to be the result of bubbles of gas effervescing from

the sample, but being unable to break the surface tension of the viscous sol. This

material was extremely fragile and collapsed when touched, so the sample was

broken down into a powder using a mortar and pestle, before drying for 6 hours at

300°C. The resulting powder was wet milled using a vibromill with agate beads and

methanol. The powder was dried before being passed through a 38μm sieve to ensure 

that the particles would be suitable for screen printing. The powder was then

calcinated at 400°C, prompting a colour change from grey to yellow as the impurities
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in the sample are burned out. Pellets of the powder were uHNO3xially pressed at a

pressure of 37.69 MPa and then fired at 715°C for between 6 and 24 hours in

preparation for thermal and crystallographic characterisation. The results from this

sample were very promising, exceeding both the previous preparations, and are

presented in Chapter 5.

4.2 Poling

Polarisation, or poling, of the pellets produced is necessary to orient the electric

dipoles of the material before it can be used as a piezoelectric and is generally done

by applying a high voltage and temperature [4]. The core requirements of heat and

high voltage are simple to apply separately, but difficult to apply simultaneously.

Two common methods of poling are parallel plate poling and corona discharge

poling [5,6]. Apparatus to perform either of these methods was not available so

alternative methods were used. Several attempts using different methods were made

before the results were successful.

4.2.1 Furnace Poling

The higher the temperature of a ceramic, the lower the voltage required to

polarise it. The use of a furnace would allow very high temperatures to be reached,

minimising the risk of using high voltage. The initial method used a long probe to

hold the sample in the centre of a tube furnace that would both provide heat and act

as a Faraday cage. The probe was made of steel and was hollow, allowing wires to be

used to apply a voltage to the sample, and a schematic is shown in figure 4.2.
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The end of the probe was plugged with a Macor fitting that acted as both a

platform for the sample and a fitting for attaching wires to the sample [7]. Two

copper wires were threaded through dual-bore alumina tubes down the centre of the

probe, to electrically insulate them from each other and from the probe itself. The

wires were then threaded through holes in the Macor fitting to bring them in contact

with the sample. The wire was clamped to the sample to provide good electrical

contacts for the high voltage. Prior to the poling attempts the samples were sputter

coated on both sides with a gold-palladium electrode. The initial operational

temperature of this method was 700°C, above the Curie temperature of bismuth

titanate, with the temperature decreasing while the field was maintained. The plan

was that, initially, poling would be attempted with a voltage in the region of 5 kV on

samples between one and two millimetres thick, with modifications being made

based on the quality of the poling.

In the initial poling experiments the straight contact wires were found to

damage the electrodes coated on the samples. This was corrected by forming the

Figure 4.2. Schematic of furnace poling device. The length of the probe and furnace

has been omitted, as has the fitting on which the sample and wires rest.
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ends of the wires into coils to decrease the risk of damage to the sample and to

further improve the electrical contact.

During initial poling tests a short circuit developed within the probe, due to a

twist in the wires as they entered the Macor plug. This was corrected and stainless

steel discs added to the assembly to prevent copper contamination of the sample from

the wires and to evenly spread the pressure from the clamp.

Following these modifications the probe was re-inserted into the furnace and

again an electrical short developed. The probe was disassembled and reassembled

with Kanthal wire [8], as the copper wire had become brittle due to the high

operating temperatures of the probe. The alumina tube taking the wires to the Macor

plug was fixed in place with alumina cement in order to eliminate any shorts that

may have occurred due to the wires twisting and crossing as they entered the plug;

however, the probe continued to develop short circuits at high temperature that were

absent at ambient temperature. Ionisation of the nitrogen gas in the furnace was

identified as a possible cause for this, so the probe was inserted into the oven with no

sample. This “dry run” found no short circuit, leading to the conclusion that

ionisation of gas was not to blame for the short circuit, and that the sample itself was

responsible. The diffusion of gold in the electrodes on the sample was identified as

being a possible source of the electrical short. This hypothesis was given further

weight by the presence of gold on the Kanthal wires and the stainless steel discs. The

discs were removed, the sample replaced and the wires reversed to remove any gold

contamination. However, the probe still short circuited at high temperature implying

the continued presence of gold. An alternative hypothesis is that the conductivity of

the bismuth titanate is too high at the temperatures used for poling to occur [9]. The

metal part of the probe was abrasively cleaned using a silica blaster and the clamp
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was removed entirely. The wires were stripped out and replaced, with the

replacements holding the sample without need of a clamp. This setup was used to

attempt poling of a sample but a defect in the power supply caused the attempt to

fail. Although the method appeared promising time constraints forced the focus of

the project onto a more standard method.

4.2.2 Oil-Bath Poling

An alternative method of polarisation, oil-bath poling [10], was also

investigated. Due to the large amount of experimental difficulty encountered in the

initial poling method and the good initial progress into oil-bath poling the focus of

the poling trials was shifted.

In oil-bath poling the sample is placed in a bath of heated oil, usually some

type of silicone oil, and a voltage is applied to it, as shown in figure 4.3.

Figure 4.3. Schematic of oil bath poling, with the oil level represented by the dashed

blue line. The thermal conduction between the hotplate and the oil bath was quite

poor, resulting in sub-optimal poling temperatures.
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Transformer oil was identified as a safe and reliable form of silicone oil, with

high electrical resistance and thermal stability to approximately 180°C [11]. A high

voltage DC power supply was used, capable of generating up to 60kV, although this

high a voltage was not used. The heat was supplied by a high temperature hotplate,

with temperature limitation due to partial solidification of the oil at temperatures

above 180°C and chemical break down at temperatures above 220°C.

As with the previous poling method the samples were sputter coated with gold-

palladium electrodes. In addition to this, however, the electrodes were also painted

with silver paint in order to attach wires to the sample. Several trials measuring the

resistivity of the sample were performed at room temperature using up to 20kV on a

1.76mm thick sample of bismuth titanate. These resulted in the partial destruction of

a test sample where arcs formed at the edge of the sample and removed pieces from

the edge. As a result the damaged areas of the sample were removed and the

electrodes removed from near the edge of the sample. This allowed several

successful room temperature characterisations, and finally a polarisation attempt was

made. This attempt proved successful, despite lower than optimum poling

temperatures. The thermal contact between the hotplate and the Pyrex glass was very

poor, so while the hotplate temperatures reached over 300°C the temperature of the

oil did not exceed 125°C. The voltage used in the successful poling attempt was

15kV, resulting in a field across the sample of 85kVcm-1. The success of the attempt

is discussed in section 6.2.2.



55

4.3 Fabrication and Characterisation of Thick Films

In addition to the work on fabricating bismuth titanate tablets for use as

piezoelectric transducers, growth of thick film transducers for permanent installation

was also investigated. The thick films were created by mixing the unfired bismuth

titanate powder with a binder and diluant [12] and then applying them to a substrate

using a screen printer. The binder is a polymer which binds the powder together and

the dilutant is used to regulate the viscosity of the ink, giving a pseudoplastic paste.

The screen printing itself uses pressure to force the ink through a very fine mesh onto

the substrate [13]. The size of the mesh is dictated by the maximum size of the

particles in the powder. In this case a pre-existing mesh required the filtering of the

powder to a maximum particle size of 38µm.

The thick films were screen printed onto a stainless steel substrate, dried at

150°C to remove the binder and dilutant, and fired in a belt furnace instead of a

conventional furnace [13], due to their much lower comparative mass. A six zone

furnace was used with temperatures as shown in the table 3 in order to reduce the

time spent waiting for a conventional furnace to reach the selected temperature.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

300°C 480°C 730°C 730°C 730°C 220°C

Table 3. The temperatures used in the belt furnace, with the sample spending the

same amount of time in each zone.

The belt speed was set to 100mm per minute, resulting in a total firing time of

approximately 40 minutes. The temperatures in zones three to five were set higher

than required as the heat from these zones tends to bleed into the cooler surrounding
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zones, reducing their temperature. Measurements of these films are presented in

Chapter 5.
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5. Characterisation of Bismuth Titanate Samples Produced

Using Sol Gel Techniques

This chapter presents some of the results of the research; those focused on

characterisation of the materials produced. This includes the results from the

methods outlined in chapter 3; the results of thermal characterisation, the results of x-

ray characterisation and the results of examining the thick films using a microscope.

5.1 Thermal Characterisation

The thermal characterisation used for these materials consists of two distinct

methods; differential scanning calorimetry and thermogravimetric analysis. These

analyse the heat capacity and the weight of the sample as temperature varies and are

described in section 3.1. All of the samples examined in this section have been

calcinated at 400°C. These measurements were done using small amounts of powder,

in the region of 0.03g. Before being placed in a platinum-rhodium crucible this

powder was tested to 900°C on a scrap piece of platinum-rhodium to ensure that the

platinum was not damaged by the sample. The sample to be characterised was then

heated to 900°C at a rate of 10°C per minute and cooled back to room temperature at

the same rate. The powder used for this characterisation was not recoverable.

5.1.1 Thermogravimetric analysis

Figure 5.1 shows the weight loss for the sample coded TiP/BiN HNO3,

described in section 4.1.2.
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Figure 5.1 Weight loss against temperature for the TiP/BiN HNO3 sample, showing a

gradual initial weight loss up to 450°C followed by a sharp weight loss.

This graph shows a gradual weight loss on heating until the sample reaches

450°C, above which a rapid weight loss occurs. This weight loss stabilises again

when the sample reaches approximately 700°C and remains stable for the remainder

of the heating data, and through all of the cooling data. The initial weight loss below

200°C indicates loss due to solvents, such as alcohol and water, evaporating from the

sample. The subsequent weight loss from 450°C implies that a chemically bound

heavier organic has been burned out of the sample. The relatively stable weight of

the sample at temperatures above 700° and during the cooling phase of the data

acquisition indicates that whatever process caused the weight loss in the sample

starting at 450°C had finished, with the slight variation in weight being due to

experimental error in the measurement. The total weight loss in the sample was

0.172mg, or 0.5% of its initial weight.
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The weight loss graph for the sample coded TiP/BiN HNO3 Hydrated is similar

in shape to the graph shown in figure 5.1 and is shown in figure 5.2.

Figure 5.2 Weight loss against temperature for the TiP/BiN HNO3 Hydrated sample,

showing a similar, gradual weight loss followed by a rapid weight loss from roughly

400°C.

As with the previous graph there is gradual weight loss before 200°C,

indicating evaporation of water and other organic solvents from the sample. Further,

the more rapid weight loss from 400°C again indicates that chemically bound heavier

organics are burned out in the later stage, although in this sample it occurs at a

slightly lower temperature. This change is most likely due to the changes in sample

composition due to the addition of water when it was prepared. As in the previous

figure the stability past this point indicates that the removal of organic compounds is

complete.
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The total weight loss of the sample is 1.288mg, or 2.2% of the original weight

of the sample. This indicates that the unfired powder of the first sample contained

fewer heavy organics than the second prior to the heating and cooling cycle.

5.1.2 Differential Scanning Calorimetry

The other source of thermal data on the samples is the differential scanning

calorimetry (DSC) carried out simultaneously with the thermogravimetric analysis

detailed in section 5.1.1, and this technique was described in section 3.1. Figure 5.3

shows the results from the TiP/BiN HNO3 sample.

Figure 5.3 DSC data from the TiP/BiN HNO3 sample, showing heatflow against

temperature.

This data shows several interesting characteristics, which are labelled (a)-(d).

The discontinuous feature at 380°C on the cooling data is caused by an error in the

measurement. Figure 5.4 shows enlargements of the plot in the vicinity of these

features.
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(a) (b)

(c) (d)

Figure 5.4(a) Enlargement of a broad peak at approximately 480°C (b) Enlargement

of crystallisation peak at 715°C (c) Enlargement of the crystal transition at 664°C

(d) Enlargement phase change between 840°C and 870°C.

The feature shown in figure 5.4(a) is a peak indicating the formation of

bismuth titanate (Bi4Ti3O12). The broadness of the peak indicates that this process is

gradual, occurring over a range of temperatures [1].

Figure 5.4(b) shows an exothermic peak that indicates the transition of the

bismuth titanate crystal to a different phase and corresponds to the Curie transition,

occurring at 715°C. The features shown in figure 5.4(c) are higher order phase

transitions occurring in both the heating and cooling data which were not

investigated in this work. The feature in figure 5.4(d) is a phase transition on the

cooling data. It corresponds to the transition from a tetragonal structure at high

temperature to an orthorhombic structure at lower temperatures. This is the Curie

transition of the bismuth titanate crystal and occurs at 664°C [1]. The difference
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between the Curie temperatures during heating and cooling is due to the lack of

sintering in the unfired sample.

The second set of DSC data was obtained for the sample coded TiP/BiN HNO3

Hydrated and is shown in figure 5.5. There are several notable features on this graph,

and these are shown enlarged in figure 5.6.

Figure 5.5 DSC data for the sample coded TiP/BiN HNO3 Hydrated
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(a) (b)

(c) (d)

Figure 5.6(a) Enlargement of the formation of bismuth titanate (b) Enlargement of

the change in crystal structure of the bismuth titanate (c) Enlargement of crystal

transition at 646°C (d) Enlargement of the crystal transition peak at 664°C

Figure 5.6(a) shows an enlargement of a peak which appears to be consistent

with the feature shown in figure 5.4(a). As with the TiP/BiN HNO3 sample, the

feature is due to the formation of bismuth titanate [2]. The feature shown in figure

5.6(b) is an exothermic peak which occurs at 516°C, and is likely due to the change

of bismuth titanate of one crystal structure to another, that of Bi2Ti2O7 to Bi4Ti3O12.

This is likely due to the addition of water to the sample during preparation. The

feature shown in figure 5.6(c) corresponds to the Curie transition of the material

which occurs at 646°C. Figure 5.6(d) shows the crystal transition on the cooling data

relating to the Curie temperature of the sample at 664°C. The temperature identified

for this peak is within 1°C of the data from the previous sample.

The results shown in figures 5.3 and 5.5 have many similarities; the formation

of bismuth titanate occurs at similar temperatures in both and the peak indicating the
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Curie transition at 664°C on the cooling data is present in both. The reason for the

difference in temperatures of the Curie transitions on the heating data on both

samples is not known. The agreement between the cooling data of both samples

implies that the most accurate measurement of the Curie temperature from this data

is from the cooling data. This measurement is 664°C, which is slightly lower than the

accepted value of 675°C [1], although the reason for this is not known.

5.2 Crystal Characterisation using X-ray Diffraction (XRD)

The quality of the samples produced during this experiment was assessed using

XRD measurements after the samples had been fired. These measurements were

compared to a reference pattern for bismuth titanate, and this is shown in figure 5.7,

obtained by simulating the pattern using the lattice parameters in reference [3].

The peaks shown in figure 5.7 provide a reference pattern against which the

experimental data can be compared. The reference pattern was obtained at room

temperature, as was all of the data presented in section 5.2.1. As with all XRD data

the angle on the bottom axis corresponds to the value of 2θ as explained in section

3.2.
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Figure 5.7 Reference XRD pattern for bismuth titanate, Bi4Ti3O12 [3].

The samples were fired at a temperature identified by the results of DSC/TGA

measurements, 715°C (section 5.1.2), for a variety of times, ranging from 6 to 24

hours, to compare the effect firing times had on the purity of the tablet. Once fired

the tablets were ground into a powder using a mortar and pestle. The samples were

then packed into an aluminium disc, used as a spacer due to the small volume of

powder, before being mounted into a larger sample holder and placed in the X-ray

diffractometer.

The 2θ parameter was initially varied between 10° and 100°, although this was 

reduced to 10° to 70° in order to maximise the detail of the scans and reduce the time

taken to perform them; none of the data beyond 70° was used and the new range led

to the sacrifice of angular range in favour of accuracy and detail. In addition to the

standard X-ray diffraction, the high temperature nature of this project required the

use of high temperature XRD measurements to examine the behaviour of the sample

at and above its intended operating temperatures. In order to facilitate this, a
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customised furnace was used inside the diffractometer [4]. The furnace allowed the

sample to be heated and to remain at temperature while an x-ray scan was performed.

Initially, samples were ramped to target temperatures of up to 700°C at 5°C per

minute and allowed to stabilise for 10 minutes before beginning an x-ray scan.

Analysis of this data showed that this was insufficient time for the samples to reach

thermal equilibrium, so later samples were left one hour before commencing a scan.

5.2.1 Room Temperature X-ray Powder Diffractometry

The first sample to be examined using this method was the sample coded

TiP/BiN CH3COOH, with preparation described in section 4.1.1. The x-ray pattern

produced is shown in figure 5.8.

Figure 5.8 The x-ray diffraction pattern measured at room temperature of the

TiP/BiN CH3COOH sample, which had been fired at 700°C for 6 hours. The largest

impurity peaks have been indicated, with the blue triangles representing a Bi2O3

impurity and the red crosses representing a TiO2 impurity.
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The figure shows sharp, well defined peaks, indicating good crystallisation in

the sample. Many of the peaks in the sample correspond to Bi4Ti3O12 peaks visible in

the reference pattern. The low angle background, an artefact of the measurement, can

be observed as a gradual slope up to an angle of 20°.

Figure 5.9 Peak splitting due to a shift in the lattice parameters.

Figure 5.9 shows a zoom-in of a section of the data showing three peaks, where

only a single peak is visible in the reference pattern. While only a single peak is

visible in the reference pattern there are in fact 3 peaks which overlap to produce the

single visible peak. That the 3 peaks are distinct in the laboratory produced samples

indicates a small change in the lattice parameters of the sample. This could be due to

stress distorting the structure or impurities enlarging it.

The second sample to be examined using XRD measurements was the sample

coded TiP/BiN HNO3, as described in section 5.1.2, with results shown in figure

5.10.



69

Fig 5.10. X-ray diffraction pattern measured at room temperature of sample coded

TiP/BiN HNO3, which had been fired at 715°C for 24 hours. The impurities have

again been indicated, with the green diamond corresponding to the aluminium

sample holder and the blue triangle to Bi2O3.

The peaks of the pattern are noticeably sharper than those in figure 5.8. This

indicates improved crystallinity of Bi4Ti3O12 when compared to the TiP/BiN

CH3COOH sample. The positions of the peaks are also closer to those shown in the

reference pattern in figure 5.7. The low angle background is still clear in figure 5.10.

The aluminium peaks in the data are due to the sample holder and are not relevant to

the experimental data.

The third sample characterised was the sample coded TiP/BiN HNO3

Hydrated, as discussed in section 4.1.2, with results shown in figure 5.11.
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Figure 5.11 X-ray diffraction pattern measured at room temperature of the sample

coded TiP/BiN HNO3 Hydrated, which had been fired at 715°C for 24 hours. The

impurities have again been indicated, the red cross corresponding to TiO2, the green

diamond to the aluminium sample holder and the blue triangle to Bi2O3.

The diffraction pattern shown in figure 5.11 shows further improvement over

the previous two samples, with improved purity shown by the presence of fewer

peaks which are not present in the reference pattern. The pattern again shows the

distinctive peak splitting observed for the previous two samples, caused by small

changes to the lattice parameters of the crystal when compared to the reference

sample.

The final laboratory prepared sample to be examined in this way is the sample coded

TiP/BiN Acac, as discussed in section 4.1.3, with results shown in figure 5.12.
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Figure 5.12 X-ray diffraction pattern measured at room temperature of the sample

coded TiP/BiN Acac, which had been fired at 715°C for 24 hours. The impurity

peaks have been indicated, with the red cross representing a Bi12O20Ti impurity and

the green diamonds representing the aluminium sample holder.

As with the previous patterns, figure 5.12 shows strong, well defined crystal

peaks, indicating a large proportion of the sample is crystalline bismuth titanate. The

evidence of peak splitting also indicates that the dimensions of the crystal are

different to those of the reference pattern. The largest other phase in this sample is

Bi12O20Ti, indicating that the oversaturation of bismuth in the starting precursors,

described in section 4.1.3, may have been unwarranted.

In order to make comparisons between the quality of the laboratory prepared

powder and bismuth titanate transducers which are available commercially, an x-ray

diffraction pattern was taken of a commercial bismuth titanate transducer. This
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pattern is shown in figure 5.13, along with the reference pattern and the pattern for

sample TiP/BiN Acac.

A very small misalignment of the disc in the centre of the x-ray beam results in

a shift along the x-axis of the x-ray diffraction pattern. In figure 5.13 the x-axis offset

of the commercial sample has been adjusted to compensate for this and the x-ray

patterns have been normalised to the size of the largest peak, present in each sample

at 30°. The positive offset along the x-axis of the commercial sample was due to the

way the sample was measured, as a solid disc, rather than as a powder. Numerous

peaks not visible on the reference pattern are seen in the commercial sample. These

correspond to impurities in the commercial sample, such as titanium oxide.
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The purity of the samples can be estimated by fitting the peaks to existing

patterns and comparing their intensities to determine how much of each substance is
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present. The accuracy of this measurement is quantified by altering the fits to achieve

an extreme value. This is usually done as a preliminary to Rietveld refinement, which

is a much more accurate method of identification and uses the diffraction pattern to

determine the crystal structure of the sample [4]. This can be used as a highly

accurate purity analysis, although the process itself is difficult. Due to the time

constraints on the research only a single sample, the sample coded TiP/BiN Acac,

was submitted for Rietveld refinement [5]. The purity of the samples is shown in

table 4.

Sample Purity (percentage of Bi4Ti3O12)

TiP/BiN CH3COOH 66 ± 10%

TiP/BiN HNO3 79 ± 10%

TiP/BiN HNO3 Hydrated 81 ± 5%

TiP/BiN Acac (by simple analysis) 91 ± 5%

TiP/BiN Acac (by Rietveld refinement) 87 ± 1%

Commercial Sample 60 ± 20%

Table 4. Comparison of the purity of the samples examined in this research.

As is evident from the table the crystal purity of the laboratory grown samples

is significantly greater than that of the commercial sample. However, due to the

offset in the measurements of the commercial sample, its purity could only be

obtained to a very poor accuracy. Nevertheless, the samples prepared in this work are

of a notably higher purity than the commercially available transducer.

Additionally, the Rietveld refinement of the Acac sample provided lattice

parameters for the sample which were different from those obtained from the

reference sample, and are detailed in table 5.
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Crystal Axis
TiP/BiN Acac

Sample
Reference Pattern

Percentage

Difference

a 5.41011Å 5.437Å 0.49%

b 5.44840Å 5.426Å 0.41%

c 32.82648Å 32.683Å 0.44%

Table 5. A comparison of the crystal axes for the TiP/BiN Acac sample and those of

the reference pattern [3].

Although the difference in the crystal lattice, even as a percentage, is slight, it is of

significance. The change in lattice parameters could influence many of the properties

of the crystal, from its Curie temperature to its piezoelectric response [6]. However,

these crystal lattice parameters are in good agreement with other published values

[7].

5.2.2 High Temperature X-ray Powder Diffractometry

In addition to the standard room temperature measurements, several high

temperature XRD experiments were conducted. These were conducted on samples

which had already been fired, and allowed the crystal structure at high temperature to

be examined.
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Figure 5.14 High temperature data of TiP/BiN Acac sample, showing the X-ray

diffraction patterns of the sample at ten degree Celsius intervals on heating and

cooling between 600°C and 700°C.

Figure 5.14 shows the high temperature data for the TiP/BiN Acac sample

described in section 4.1.3, which had already been fired at 715°C, between 600°C

and 700°C at 10°C steps. This data shows a change in the crystal structure between

660°C and 670°C which is consistent with the Curie transition identified in the DSC

measurements presented in section 5.1.2. The data in the region of the Curie

transition is shown enlarged in figure 5.15. This is done to highlight the structural

difference in the crystal below and above the Curie temperature.
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Figure 5.15 Enlargement of the double peaks which form a single peak above the

Curie temperature (between 660°C and 670°C). The transition shows the change in

the structure of the crystal, from orthorhombic below TC, to tetragonal above it.

It can be seen in this data that there is a lateral shift in the position of the peaks

with temperature. This occurs as the thermal expansion of the sample causes the

lattice parameters of the sample to change which results in the lateral shift visible in

figure 5.15. It was noted that at the end of some measurements around the Curie

transition the sample had a markedly different crystal structure to the start of the

scan. This could be due to an insufficient amount of time being left at the end of the

heating cycle to allow the temperature of the sample to stabilise, causing the Curie

transition to occur during the scan itself. Another possibility is that the higher

resolution of the XRD at larger angles allows the peaks to be more clearly resolved.

In order to reduce the possibility of temperature shifts during the scan a longer

stabilisation time was used for the data shown in figure 5.16, a repeat of the previous
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measurement, which also covered a smaller temperature range, from 660°C to 670°C

in 1°C steps.

Figure 5.16. X-ray diffraction pattern of the TiP/BiN Acac sample at one degree

Celsius intervals.

This data again shows a Curie transition occurring as two peaks between 56°

and 57° merge as temperature increases. This region is shown enlarged in figure

5.17. The lateral shift can again be seen in this data, although as the temperature

range is smaller, the shift is less noticeable.
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Figure 5.17. Enlargement of the TiP/BiN Acac sample showing the double peaks

which merge at the Curie transition to form a single peak. This occurs at some point

between 668°C and 670°C

The Curie temperature, 669±1°C found in this method, lies between the

previous measurements of 664°C and the reference value of 675°C [1]. This is likely

due to the different heating rate used in the X-ray diffractometer when compared to

the DSC apparatus. The ±1°C error in the measurement comes from some

uncertainty as to where the two peaks converge, limited by the resolution of the

detector, which does not take account of the accuracy of the furnace temperature.

5.3 Optical Characterisation Results

The final sample, coded TiP/BiN Acac, was used to fabricate some thick films

through screen printing onto a steel substrate. An optical microscope was used to

inspect the films and to measure their thickness. The microscope was focused on the

substrate and the position of the sample stage set to zero. The stage was adjusted so



80

that the highest part of the film was in focus and position of the stage was recorded.

The sample stage was then moved until the lowest part of the film was in focus and

the travel of the stage recorded. The average distance moved by the sample stage

between the substrate and the top of the film, and the substrate and the bottom of the

film was taken to be the thickness of the film, with the error being the difference

between that and the highest value. A diagram of the method is shown in figure 5.18.

Figure 5.18. How an optical microscope was used to measure film thickness. The

position of the sample stage was set to zero when the microscope was focused on the

substrate. This allowed the thickness of the film to be measured as the sample stage

was moved to focus on the film.

The accuracy of this method will significantly depend on the variation in the

thickness of the film. The use of focus to measure the thickness also introduces the

possibility of error based on the ability of the operator to focus on the surface of the

film.

The images in figure 5.19 show the focus of the microscope on (a) the substrate

and on (b) the film.
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(a) (b)

Figure 5.19 (a) Optical microscope image focused on the substrate; (b) Optical

microscope image focused on the film. To give a sense of scale, the grain structure of

the steel substrate is clearly visible in (a).

These images were used to determine a typical value for the thickness of the

sample, which was found to be 21μm. Using the sample stage height adjuster the 

microscope the focus was set to the highest and lowest values where the film, which

were 25μm and 17μm respectively. These images are shown in figure 5.20. From 

these extreme values the thickness of the film can then be stated as 21±4μm. 

(a) (b)

Figure 5.20 (a) Optical microscope image focused on the lowest part of the film; (b)

Optical microscope image focused on the highest part of the film.
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The optical microscope images also show a reasonably homogenous film free

from cracking, although the speckled pattern is unexpected. A possible explanation

for the pattern is that the speckles, which appeared yellow under the microscope,

represent traces of unreacted bismuth oxide, a yellow chemical.
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6. Characterisation of the Ultrasonic Behaviour of Bismuth

Titanate Samples

In addition to the material characterisation results presented in the previous

chapter several ultrasonic characterisations were performed. The ultrasonic

measurements were performed on the TiP/BiN Acac tablets prepared as described in

section 4.1.3, to demonstrate their functionality as transducers.

6.1 Tap Test Measurements

The first test performed on the transducer was a simple tap test, to check the

piezoelectric response of the sample at low frequencies. The sample transducer was

placed on a metal plate attached to the ground wire of a 10x oscilloscope probe. The

main part of the oscilloscope probe was placed on the top of the sample, allowing the

oscilloscope to act as a high precision voltmeter across the sample.

Figure 6.1 The output voltage of a test transducer during a tap-test.
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Figure 6.1 shows the signal from the oscilloscope when the sample was struck

and clearly shows a piezoelectric response in the sample. The data has a low signal to

noise ratio, with a peak of only 13 dB, which could be due to a low piezoelectric

response, or, more likely, that the sample is not sensitive in this frequency region.

It is possible to calculate the resonant frequency of the sample by using a fast

Fourier transform (FFT) on the data shown in figure 6.1. The FFT of the data shown

in figure 6.1 is shown in figure 6.2.

Figure 6.2 Fast Fourier transform or FFT of the data shown in figure 1. This shows

a low frequency signal consistent with a percussion of the transducer. The inset

shows a wider frequency range for the FFT.

As can be expected there is a large pulse at low frequency due to the

percussion. The inset also shows a peak at higher frequencies indicating that the

transducer has an increased sensitivity to noise at that frequency. This increase in

sensitivity corresponds to the resonant frequency (see section 6.2) and is at 3.35 ±

0.10MHz, as this will be the frequency at which, due to its geometry, the transducer

is most sensitive.
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6.2 Use of the Sample Transducer for the Generation and Detection

of Ultrasound

The next set of measurements that were performed on the tablet transducers

were to investigate their functionality as working transducers. The transducers were

placed onto a test block of aluminium. Although the transducers were used without

the casing or wear plate described in section 1.2.3.3 a standard gel couplant was used

between the transducers and the sample. The sample transducer tested had electrodes

applied on both sides using silver paint. The measurements performed were thickness

tests of the aluminium test block 12.77 mm thick.

Initially these tests were performed using a single ultrasound transducer in

pulse-echo mode. However, the transducer failed to produce a reliable ultrasound

signal in this setup, likely due to both the lack of damping and the lack of a matching

layer into the sample. Subsequently two transducers, one test transducer and one

commercially available quartz transducer, of resonant frequency 5 MHz and diameter

12 mm, were used in through transmission mode to allow the sample transducer to

act as either generator or receiver independently. The laboratory arrangement for this

is shown in figure 6.3.
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Figure 6.3 Schematic showing the arrangement of transducers in a through

transmission measurement. The transducers were grounded to the sample using the

electrodes present, with the electrical connection to the signal generator being made

by a BNC cable. Note that the reference transducer here is not the commercial

transducer used in comparison measurements.

The transducers were arranged as shown in figure 6.3 to allow both transducers

to detect the ultrasound signal generated by one of them.

Figure 6.4 shows the response of both transducers as detectors when the

commercially available quartz transducer is used as a generation transducer and

driven with a Matec 6600 signal generator.
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Figure 6.4 The ultrasound data from an oscilloscope obtained from the arrangement

of transducers shown in figure 6.3. The red trace represents the data detected by the

reference transducer and the blue the data from the sample transducer.

The sample transducer response is shown by the blue line and that of the quartz

transducer is shown by the red line. The signal from the quartz transducer was

amplified using the built-in amplifier in the Matec 6600 signal generator, while the

signal from the sample transducer was amplified using a separate amplifier. This, in

addition to the much larger size of the signal, accounts for the presence of clipping in

only the quartz transducer signal. The initial generation pulse appearing on both

transducers is likely due to crosstalk between them. This will arise from electrical

crosstalk through the wires leading to the transducers, or electrical crosstalk through

the sample itself. The offset of the remaining pulses is due to the position of the

transducers on opposite sides of the sample as shown in figure 6.3. The spread of the

signal over time is due to the misalignment of the transducers, one was slightly

higher on the sample than the other. This will result in the transducer detecting the

echoes from the edges of the test sample caused by the spread of the ultrasound
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beam. The decreasing envelope of the signals shows the attenuation of sound in the

medium and the distance between the reflections can be used to calculate the

thickness of the material.

6.2.1 Aluminium Test Block Thickness Measurements

The time elapsed from peak-to-peak between two echoes is 4.47μs, with a path 

length equating to twice the thickness of the sample through which the ultrasound is

propagating. Using the speed of sound in aluminium, 6374ms-1 [1], the thickness of

the sample can be calculated to be 14.7 ± 0.3mm. This is in comparison to the

measured value of 12.77 ± 0.01mm using a micrometer screw gauge.

There are several possible explanations for the discrepancy between these two

values. The most likely cause is the inaccuracy when measuring the time between

peaks as this will be affected by both noise in the data and by any phase changes

during reflection. Another contributing factor is the possibility of a difference in the

speed of sound of the aluminium sample and the reference value, due to the use of an

aluminium alloy with a speed of sound slightly different to that of the reference

velocity, although this would be a very minor effect, as in order to obtain the

thickness measured the speed of sound in the aluminium would have to be 5537ms-1.

6.2.2 Transducer Measurements

The final measurement on the sample transducer was an evaluation of its

quality as a transducer, by way of a d33 measurement. This measurement is a measure

of the physical response of a transducer to an applied voltage and is explained in

section 2.2. The sample transducer was measured in an APC YE2370A d33 meter

which gave a d33 measurement of (20.5 ± 0.7) x10-12 C/N. This was compared to a
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commercially available bismuth titanate transducer, which had a d33 measurement of

(18.5 ± 0.7) x10-12 C/N. This is a favourable result and indicates the success of this

method when compared to the commercial sample. Other work has produced

samples with d33 measurements of up to 26 x10-12 C/N, which indicates that with

further research the quality of the samples can be increased further [2]. However,

exceeding the standard of the commercial sample is an excellent initial result.
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7. Conclusions

This final chapter summarises the key results of the research, an evaluation of

the methods used and possible avenues of future work.

7.1 Results and Discussion

7.1.1 Material Characterisation

The analysis of the TiP/BiN HNO3 and TiP/BiN HNO3 Hydrated samples

(section 4.1.2) via differential scanning calorimetry shows a Curie temperature of

664°C, which is slightly lower than other reported Curie temperatures in the

literature [1]. The difference between these values is likely due to the variation in the

lattice parameters of the sample used, discussed in section (5.2.1). The analysis via

high temperature X-ray diffraction of the TiP/BiN Acac (section 5.2.2) sample shows

a Curie temperature of 670°C. This value is in good agreement with the commonly

accepted value of 675°C [1].

The highest purity sample, the TiP/BiN Acac sample, contains 87 ± 1%

bismuth titanate, in comparison to the commercial sample’s value of 60 ± 20%. The

higher purity of the sample produced in this work indicates that the sol-gel method

has an advantage over the milled oxide method used to produce the commercial

sample. The higher purity sample allows for transducers with higher piezoelectric

response as more of their volume will be the piezoelectrically active material.

A pellet of the TiP/BiN Acac sample was poled in a field of 85kVcm-1 at a

temperature of 125°C, resulting in a sample displaying good piezoelectric response.

The tablet transducer tested had a resonant frequency in the region of 3MHz. The
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piezoelectric response of the transducer was measured using an APC YE2370A d33

meter to find its d33 value [2]. This was found to be (20.5 ± 0.7) x10-12 C/N,

compared to a value of (18.5 ± 0.7) x10-12 C/N for the commercially available

sample. This is a highly promising result as it indicates that the sample prepared in

this work is of a quality that is comparable to commercially available transducers.

Additionally, the preliminary work done on the fabrication of thick films

appears promising. The films adhered well to the substrate and were of a reasonably

consistent thickness.

7.2 Evaluation of Novel Experimental Methods

Several novel methods for preparing the bismuth titanate were developed

during the course of this project. Poling techniques, such as furnace poling, were also

explored, with some being more successful than others. These methods are

summarised in the following sections.

7.2.1 Novel Sol Gel Method

The novel sol-gel method using acetylacetone, described in section 4.1, worked

extremely well in providing fine, homogenous powders that can be fired at lower

temperatures than comparable milled oxide powders, to produce purer Bi4Ti3O12

ceramics. The material characterisation results were given in chapter 5. The second

most common substance in the samples, by percentage, was Bi12O20Ti. This is the

result of an oversaturation of bismuth as a starting precursor and could be corrected

by lowering the amount of bismuth nitrate used.
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7.2.2 Oil-Bath Poling

The method of oil-bath poling explored is widely used in industry as a means

of polarising piezoelectric ceramics. The implementation used in this research

produces poled samples capable of being used as ultrasound transducers, although

there are several improvements that could be made;

The method of attaching the wires to the sample in the oil bath is an area which

could be improved, to increase the efficiency of the method. The wires were attached

with silver paint, creating a conductive bond between the wires and the sample. This

paint takes 24 hours to dry properly and is very delicate when dry, breaking easily. A

possible solution to this problem is to use stiff wires to maintain electrical contact to

the sample in the oil instead of the silver paint. This is possible as the current flow in

the circuit is very low, and the polarisation of the samples is dependant only on the

electric field. Even a poor electrical contact with the sample would be sufficient to

polarise it.

Another area that can be improved in the method is increasing the temperature

the oil bath is capable of achieving. Currently the heat conduction from the hotplate

to the oil is poor, and a hotplate temperature of approximately 300°C is required to

achieve an oil temperature of 125°C. In order to obtain higher oil temperatures a

purpose built oil bath could be used instead of the hotplate and glass dish used here.

However, a maximum temperature is still imposed by the oil itself [3], with higher

temperature oils required to raise the oil bath above 200°C.
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7.3 Future Investigations

In addition to the work completed so far and the avenues of further work

already mentioned there are several paths for further research which could be

explored in a longer research project.

7.3.1 Alternative Poling Methods

In addition to the methods of poling examined in this project several others

exist. The most common is that of corona poling [4,5]. This is performed by passing

high voltage into a needle above a grounded sample. The sample is heated before the

voltage is applied, as with all poling procedures, and cooled while maintaining

voltage. Another common method is that of parallel plate poling [5]. The sample is

placed between two parallel plates and heated. A voltage difference is then applied to

the plates, creating an electric field between them. This field is maintained as the

heat is removed, poling the sample. The limitations of a one year project precluded

the development and implementation of these techniques, although they remain

excellent candidates for further work.

7.3.2 High Temperature Experiments

The aim of this full research project this work forms part of is to examine the

performance of high temperature transducers, specifically bismuth titanate. In

addition to the high temperature characterisation already performed, high

temperature ultrasound experiments must be undertaken. These include the

measurement of the d33 constant for the samples over a range of temperatures to

evaluate the effect of high temperatures on the performance of the transducer. This

involves measuring the force exerted by the sample for a given charge across the



94

sample. If the machine used previously to measure the d33 constant could be adapted

to high temperature use it would be ideal for this; however, this may be extremely

difficult due to the adaptions that must be made to correct for thermal expansion. The

use of a laser interferometer to measure the surface displacement of the sample at

high temperatures as a current is passed through it may be more practical, as the non-

contact nature of the measurement would allow the effects of thermal expansion to

be ignored.

Ultrasonic measurements must also be taken at high temperature to evaluate

the signal to noise ratio of the transducer and to establish a useful upper limit for its

operation. These could be performed inside a furnace, using either high temperature

couplant or with a sample transducer clamped to a metal block. If thick film

transducers were used the need for either couplant or clamping would be removed.

Aging tests must also be performed to evaluate the long-term viability of the

transducers. These could be performed by measuring the d33 value of a sample at

given time intervals while the sample is either held at a high temperature, or cycled

from low to high temperatures. These tests would require heating the transducer up

to its maximum planned operating temperature, 550°C, for possibly weeks at a time.

7.3.3 Thick Film Experiments

The pellet transducers produced so far were the first towards the production of

thick film transducers. The poling of the thick films produced so far must be

performed, followed by the examination of their ultrasonic characteristics over a

range of temperatures to investigate any differences between them and the pellet

transducers. This could be performed in a similar manner to the work described in

the previous section.
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Additionally, methods of attaching the transducers to samples, either by

printing them directly onto the samples to be tested, or by bonding substrates with

transducers printed on them onto the samples, must be explored. This could be

performed by comparing the operation of both options at a range of temperatures.

Field tests using both options should also be performed, to add valuable data on the

performance of the samples in a real environment and to compare their real world

performance.

7.3.4 Doping

Doping is the intentional addition of impurities to a sample. These impurities

can alter the material properties of the sample, altering the Curie temperature or the

piezoelectric constant. Substituting some of the metal atoms in the Bi4Ti3O12

structure for other metal atoms like magnesium [6] or tungsten [7] would be a

promising area for continued research. Doping the samples would ideally produce

transducers with a higher Curie temperature, although this could be at the cost of

making the transducers harder to polarise. The doping agents would be added early

in the preparation, when the materials are mixed as a sol, requiring additional

preparations of the material.
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