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Summarp.

Part A.
We prove existence of smooth invariant circles for area

preserving twist maps close enough to integrable using renormalisation. The
smoothness depends upon that of the map and the Liouville exponent of the

rotation number,

Part B.
Ruelle and Capocaccia gave a new definition of Gibbs states on

Smale spaces. Equilibrium states of suitable function there on are known to be
Gibbs states. The converse in discussed in this paper, where the problem is
reduced to shift spaces and there solved by constructing suitable conjugating
homeomorphisrhs in order to verify the conditions for Gibbs states which

Bowen gave for shift spaces, where the equivalence to equilibrium states is

known.

Part C.
On subshifts which are derived from Markov partitions exists an

equivalence relation which idendifies points that lie on the boundary set of the
partition. In this paper we restrict to symbolic dynamics. We express the
quotient space in terms of a non-transitive subshift of finite type, give a
necessary and sufficient condition for the existence of a local product
structure and evaluate the Zeta function of the quotient space. Finally we give

an example where the quotient space is again a subshift of finite type.
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Judroduction.

This thesis consists of three parts, each of which is self-contained

and has an abstract at the beginning of each part.

In the first part we consider the problem of invariant curves of
cylinder maps. There exists already an impressive list of existence proofs of
invariant curves of mappings of an annulus to itself assuming the map to be
near enough to integrable. In all these proofs Newton's method of approximation
is used at some point. The first part of this thesis focuses mainly on a method
which enables us finally to construct invariant curves in an explicit way, which
to some degree is suitable for numerical exploition. We use a renormalisation
approach which was first introduced to study circle maps but has subsequently
proved popular in the analysis of area-preserving maps of an annulus to itself.

A more detailed description is to be found in the introcuction to part A itself.

The second part deals with Gibbs states in terms of a new definition
which uses conjugating homeomorphisms. Let Q be a compact metric space
with metric d(.,.). A map y from some open Uc Q into Q is called
conjugating, if d(TKey(x), TK(x))+ O for ||+ « uniformlyin xeU.Let F be
a Hblder continuous real valued function on Q and set

g(2) = exp Sy ez (FeTKoy(2) - FTK(2)).
A probability measure v is called a Gibbs state for F if
ufey g dv = yyf dv,
holds true for all bounded and measurable functions <t: y(U) -+ R and all
conjugating homeomorphisms y: U- y(U), for U= Uy some open setin Q.

Let (Q,T) be a Smale space (a compact, metric space with an
expanding homeomorphism and a local product structure), then for any
continous function F:' @ + R the pressure P(T,F) can be defined by the
variational principle

P(TF) = sup,(h(p) + ofF dp),
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where p runs over all T-invariant probability measures over Q. Here hy(p)
is the measure theoretic entropy with respect to T and p. A measure, for
which the supremum is attained, is called an equilibrium state. Equilibrium
states for F are also Gibbs states for F. This is proven in Ruelle's book [4]
theorem 7,18. The converse, there referred to as an open question (cf. [4] p.
170), will be demonstrated in part B of this thesis.

There are several definitions of Gibbs states, for instance in terms
of interactions, which was exploited especially by Ruelle in his famous book
about thermodynamic formalism [4]. On the other hand, restricted to symbolic
formalism, to which level we may ascend by introducing Markov partitions, we
are given a powerful instrument to deal with the question of whether Gibbs
states are necessarily equilibrium states. Our approach is to make the
connection to the work of Bowen and all those who worked in his tradition.

For an nxn-matrix A of O's and 1's we define the (one-sided)

shiftspace

Zat={x€[[o_se0 (1N} AlXiXisql=1 V ieZ'}
For a A € (D,1) we can define a metric on Ip* by d(xy) = AN where n =
n(x,y) = max{m: xi{=yj V 0<ism}. Thecontinuous map 0: Zp* - Zp* given
by (ox)j = Xj,1, 120, is alled the (one-sided) shift. Note, that o is a
bounded to one local homeomorphism. A continuous function f: Zpo*- R is said
to be exponentially decreasing (or hilder continuous) if |fi(x) - f(y)] s Co® for
constants C> 0 and o € (0,1), where d(x,y) < A™. The Ruelle operator If
maps exponentially decreasing functions again into such functions and is
defined by (E¢g)(x) = Zgggx g(y)ef(y).
Ruelle’s Perron-Frobenius Theorem: (See [1]) Suppose Zp* s
topologically mixing (e.g. A" > O for n large enough) and f is hilder
continuous. Then there are 8 » 0, a positive and continuous function h on TA*
and a measure v on Ia* such that Lgh=6h, Ef*v =6v, v(h)=1 and
M0 107M2Mg - v(g)h| = O for all continuous g: Ta* -+ R.

Then p = hv is a probability measure on Zp*: j(g) = v(hg) =



1-8

Jn(x)g(x)dv for all measurable g: Zp* - R, and is invariant under the shift:
H(g) = p(ge0). Furthermore, for a positive constant ¢ and a real P,
satisfies the following inequalities:
(%) e™C < exp(MP - 3 gck<m FeoK(PU(Xg.-% ) < €,
for all x € Zp* and me N, where U(xg.X ) is the cylinder set {ye Zpt: y;
=x; for all O<i<m} Thenumber P is called the pressure of f.Probability
measures satisfying these inequalities are said to be Gibbs states. With the help
of Ruelle’s Perron-Frobenius Theorem it is shown that for every htlder
continuous f there is a unique Gibbs state. In fact, this result holds only in the
case of one dimensional lattice systems.

Let Q be a disjoint cover of Za* by unions cylinder sets, and set
h(v,Q) = -3 qeq W(8)log ¥(3), then h(v) = supg h(v,q) is the measure
theoretical entropy of v, and h(Zp) = sup,, h(v) is the topological entropy of
Za* which coincides with the maximal (positive) eigenvalue of the transition

matrix A.
A measure that achieves according to the variational principle the

suppremum of the following expression
P(f) = sup,, {h(v) + [fdv},
where v runs over all probability measures on Zp*, is called an equilibrium

state.

Theorem: (see [1]) Given that f: Zp*+ R is hilder continuous, then there is a

unique equilibrium state of f. This also satisfies the Gibbs condition («).

This theorem characterises Gibbs states () as equilibrium states.
To get an equilibrium state it is therefore enough to verify (s). This is what
will be done in Part B. There it will turn out to be convenient to use the
two-sided shift instead of the one-sided one introduced here. A hblder
continuous function F defined on the two-sided shift
Ia={x€ [ oo +c0 (1} Alxixisql=1V i€Z}
1s always cohomologous to a function f depending only on the positive

coordinates, i.e. a function on EA*. This means, there is a continuous u: 3 A~
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B (depending on F) so that F = f + ueo - u. Gibbs and equilibrium states are

not affected by adding a coboundary ued - u, they are the same for F as for f.

In the last part we are concerned about a special kind of equivalence
relations which occour in symbolic dynamics. The questions treated there arise
from Markov partitions of Axiom A diffeomorphisms (cf. Bowen [2]). For a
small enough partition one gets a shiftspace and a projection onto the original
manifold where the diffeomorphism acts conjugate to the shift. It is known that
a subshift of finite type can be isomorphic only to an Axiom A diffeomorphism
over a non-wandering set of zero dimension. It is therefore clear that the
boundary set, i.e. the set of points which have a pre-image in the shift
consisting of more than one point preserves the essential structure of the
non-wandering set, despite the fact that it has measure zero for any smooth
measure.

We begin part C by demonstrating that it is enough to consider
strings of some certain length whenever we want to decide whether a relation
induces an equivalence relation on . In the following three sections we
restrict to equivalence relations that have finite equivalence classes. In that
case the quotient space can be described by means of a non-transitive subshift,
which has a partial ordering. Maximal elements with respect to this ordering
correspond to points in the quotient space. This formulation will be used in
section 3 to express the topology on the quotient space in terms of cylinder sets
of this new shift space. In the same section we give 3 necessary and sufficient
condition on the existence of a local product structure on the quotient space. In
section 4 we evaluate the Zeta function under the assumption made that the
equivalence classes are finite. It turns out, that in this more general context
the Zeta function is given by Mannings product formula (see [3]). Finally, in the
last section we investigate a special kind of shift spaces, which have quotient

spaces that are again subshifts of finite type.
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Abstract: We prove existence of smooth invariant circles for area preserving
twist maps close enough to integrable using renormalisation. The smoothness
depends upon that of the map and the Liouville exponent of the rotation number.

1. Introduction.

The existence or not of invariant circles in area preserving maps
is of great importance since it relates directly to problems of stability and
confinement. The first results on this problem are due to Kolmogorov, Arnold
[1] and Moser [6] assuming that the map has a certain twist property, which
roughly means that points on the cylinder which lie on a higher level than
others mover faster. Arnold proved existence of analytic invariant circles for
nearly integrable analytic maps. Moser proved existence of invariant circles if
the map is CP-close enough to integrable, the number p of derivatives required
depending quadratically on the number of derivatives required for the circle.
For example, he proved existence of C! circles for €333 maps close enough to
integrable. Later on the number of derivatives sufficient for C! curves was
lowered to p > 3, by Rlssmann [8]. In the general case one considers
irrational rotation numbers @, which saftisfy a diophantine condition jw - p/g
x Cq™¥2for a positive C, where 7 is called the Liouville exponent. R¥ssmann
also got 3 better relationship between the class CP of the map and the Liouville
exponent Y of the rotation number of the circle; he showed that p > 2y +3 1s
sufficient for existence of a continuous circle, for maps CP-close enough to
integrable. Restricting to numbers of constant type (¥=0) Herman proved

existence of invariant CS-circles for p>s+1, p>3 [3]
In this paper a similar result to Rissmann's will be proven by a

different method, which gives us also differentiability of the invariant curves,

the number of derivatives depending lineariy on p and Y.

In the second section of this paper we present the main result and
introduce the renormalisation operator acting on commuting pairs of twist
maps. The third section treats commutativity and provides a method to get
estimates on the derivatives of the generating functions if bounds on the highest
order derivatives are known. In the fourth part we proof convergence of the
renormalisation. Finally, in the fifth section the invariant curves will be
constructed, first only with Lipshitz continuity which is achieved by ‘pulling



back' a single point on the invariant circle with an increasing number of
iterations, a method introduced by Rand [7). Then, in proposition 16 the
smoothness result is proven by employing a similar procedure which ‘pulls
back' smooth curves. Finally, in lemma 17 the method of proposition 16 is
copted and used to show that the invariant circle may be parametrised in some
smooth manner.

The renormalisation introduced in section 2 can be extended to a
more general class of mappings of the plane into itself. However, in the case
where the rotation number is the golden mean (1 + ¥5)/2, MacKay has proved
the convergence of the renormalisation operator by explicitly evaluating its
eigenvaiues and eigendirctions, [t then turns out that the eigenvalues in modulus
are all strictly less than one, so long as one restricts to area preserving twist
maps.

I am grateful to R. S. MacKay, for without his encouragement and
advice this paper would not exist and to D. A. Rand for reading the manuscript.

2. Renormalisation.

Let ¢ be an area preserving twist map: ¢: SIxR o, (x,y)~ (x,4)
= @(x,y) with x anangle variable and dx'/dy bounded away from zero, either
positive or negative. Area preservingness of ¢ is reflected in the fact that the
Jacebian Dy is nne. Instead of ¢ we will often consider a lift &: RZs, (%)
+ (¥,4) = &(x,y), where now x is a variable with domain R, and & |is
periodic: x'(x-1,y) = ¥'(x,y) - 1. Alternatively, if we set for the shift by one in
the x-direction R: (x.y) » (x-1,y), the periodicity reads @R = Red. Denote
by T, the projection onto the x-axis. If for a point § € RZ the limit o =
limq_,mnx@‘l(f)/q exists, then it is called the rotation number of §. This is the

same as there exist p = p(q) such that
m,38PE = qu - p + 0(q) as Q- co.

If & belongs to a circle on which ¢ 1is topologically conjugate to a rotation,
then we have the stronger statement

(2-1) nxﬁ‘i"]RP[“]g’ -0 & plnjo-qn]-0

as n goes to infinity, for sequences  {(p[n}gn]) € &2 n e N}. Choose an
irrational number w. There is no loss of generality assuming that @ lies in
the unit interval (0,1) since the rotation numbers of a point under different
lifts coincide modulo 1. Let

o = [m[0},m[1),...] = (m[O)+(m[1]+(...))")* € R/Z



be the continued fraction expansion of @ and let pin]/g[n] be the convergents
found in the well-known way by setting p[0] = 0, p[1] = q[0] = 1, q[1] = m[0]
and by using the recursion farmulas

pli+1] = m[ilp(i] « pli-1], qli+1] = m[i]q[i] + qi-1]

for i€ N. From the construction of the convergents of w it seems natural to
introduce a method which in a similar way generates inductively the
expressions $URAM that appear in (2-1). But first let us generalise the
notion of rotation number to pairs of commuting, area preserving twist maps
(U,T), where U and T for the moment are commuting maps of RZ into itself.
We say the point £ € RZ has rotation number w, if for all sequences

{(pIn],qn]) € N2, n € N} one has

nxu‘i“]TP("]/max(p[n],q[n])-»0 &< pln}/gln]» w

for n-oo.
For any natural number m the renormalisation operator Ny, 1s

defined acting on pairs of commuting, area preserving twist maps by Ny (u,T)
+ (ATA1, ATMJAY), for a suitable coordinate transform A. Later on we
shall be more precise about this point, for the time being we remark only thal
A depends on (U,T) and the number m. And indeed, for iterates of the
renormalisation operator we obtain the same expressions as they appear in

(2-1):
Niga=NfofUsT) = (A AP LITHMLA 1 A", Agee AUIPITHRIA A %),

Take an oriented homotopically non-trivial curve € on SIxR.
Then @) is again a homotopically non trivial curve on SIxR and € and
@(€) enclose some area. we count the portion of this area which lies to the
right (as determined by the orintation) of & positive, the one to the left
negative and call the difference the flux of ¢. The flux is independent of the
choice of € and is sometimes called the Calabi invariant. If the flux is
non-zero, then ¢ shifts on average along the cylinder. In that case of course
one cannot expect that there is any @-invariant homotopically non-trivial curve
in SIxR,

Define for y2 0: My) = {w e R\Q: 3 C>0, such that for all
qeN, peZ, quwg-pl>Cq¥} For agiven w the number Y is called
Liouville exponent and C the Liouville constant. Naturally, all y that are
bigger than some Liouville exponent are again Liouville exponents of w.
However, we cannot define the Liouville exponent by the infinimum over all y.
For instance the numbers of type Roth ﬂﬁo X(y) have full Lebesgue measure,
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but W{0), the numbers of constant type (the m{n] in the continued fraction
expansion are bounded) have Lebesgue measure zerg.
We say p 1s a transitive invariant circle of ¢ if
(i)  p isinvariant under ¢, and
(i) p ison SIkR represented by a homotopically non-trivial circle.
We say ¢ isof class CIipshiz if ¢ is j-times differentiable and

the j-th derivative is Lipshitz (of course all the lower ones as well). Let 3= (1
+5)/2=1+[1,1,1,...] be the golden mean and set P = log (1+3"2)/logs. The
main result we shall prove in this paper is the next theorem.

Theorem 1. Let ¢: SIxR © be an area preserving twist map of class Cl,
L4, with zero flux, and let ®© € X(Y), suppose ¥ < ¥*(L), where y*(L) =
(L-8-B)/a+ f [(L-2-B)2/16 + 1/2].

Then if ¢ isinthe Cl-topology close enough to the affine shear (x,y) -»
(x+w+y,y) 1in a neighbourhood of {(x,y) € S!xR: y = 0} (depending on ¥, L and

the Liouville constant C), then
(i) there exists a transitive and invariant circle of rotation number ® and

class CI*Lipshitz for j g W= W) = max(0, [L-3-B -7D e K.
(ii) restricted to this invariant circle, ¢ acts  CHipshitz_conjygate to a
rotationby @ on S! forall j<p.

Observe that the upper bound for the Liouville exponent ¥*(L) in

particular is strictly less than (L-3-8)/2.
Wwe beqgin with a definition.

Definition 2: A pair of twist mappings (U,T) near enough to affine shearings
(near ennugh so that all objects we are talking about are defined), U,T: &+ R?
for aregion @ c RZ, is normalised if

(i)  U(InY =(0,1), where Y=@n{(xy)eR% x=0},

(i) T(¥)nY =(0,0),

{1ii) U(Y) has at the point (0,1) slope one.

{iv) U and T commute in some sense to be described later on.

Finally, in the proof of the theorem, we shall set (U,T) = (AZAY,
A®™ORAY), where A 1s an affine coordinate transformation designed to
normalise the pair (&, ¢moR). of particular interest are the normalised
affine shearings. They form a one parameter family which we call the simple
line

(Ut (%,9) > (xey-1,4), T et (#,4) » (xecy,y)),
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Close but less than 1, depending how near @ is to affine.
Let R be the right halfplane {(x,y) € R: x 2 0}, L be the left
halfplane {(x,y) € RZ x < 0} and define

i uig) if ec@nR
3{§)=L T(g) if Ee@®nl.

The map @ is not continuous at Y, but if we identify U(Y) with T(Y) by
ldentifying U(E) with T(§) for £ €Y, @ can be considered as a continuous
map of acylinder £ to itself. We will need this fact only to define the flux for
a patr of mappings and will not any more refer to it l1ater on. The flux of the
pair (U,T) is defined as the flux of & as a cylinder map.

We say p to be a transitive invariant circle of (U,T) if
(i)  p isinvariant under X,

(i) p ison # represented by a homotopically non-trivial circle.

The renormalisation operator Ny,, m € N, maps normalised maps
to normalised maps, and is defined as Ny (U,T) » (ATA™, AT'UA?), with the
coordinate transform A to get a new normalised pair with R and L
interchanged. A priori A may be any coordinate change. we will use
coordinate transformations that are close to affine (see also MacKay [4]). The
transformations will be introduced in lemma 10, where we show that the
renormalisation operator is a contraction in the neighbourhood of the simple
line. In lemma 9 the non linear part h of A brings AUA™ close to the affine
shear U,

Given a point £ € R, then a natural number m will be associated
to it in the following way: m is determined so that Ut e L, TUE € L,...TME €L
and T"'*IUE € R, provided Uf € L all iterates are defined. The coordinate
transform A normalises the pair (T,T™J), and since AT™J§ € R we are the

position to determine a new number m'. Iterating this process yields a

sequence {m[n] € N: n e Nu{0}} which in general will break off after finitly
many steps, as &, = AApq..Aof for some n leaves the domawn of Uy, =
T (N -+ No(Us 7)), where T,(U,T) = U, if any of the iterates T XU E, isno
longer defined, or \f n,TUZ and mUE are no longer negative. If the
sequence does not break off, then w = [m[0],m[ 1],...] is the rotation number of
. We note here, that later on we will use as well the notation T{U,T)=T and

T,= sz(Nm[n] Nn{O](U’T))‘ .
We fix an irrational number @ and then we search for 3 point on

Y which has w as rotation number. This is in effect the reverse of the
procedure desrcibed in the previous paragraph, where we fixed § and then
went on to determine its rotation number. The operator Ngyg) sends the
rotation number © to ' = w*-m[0] = [m{1],m[2],...] € R/Z, Nyoj acts as a
shift on the components of the continued fraction expansion.

It is convenient to decompose N, Define
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N (U,T)> (TU,T),
N (U,T)-» (ATALAUAY).

Hence N, = N*N"™  write for further use  (U[p],T[p]) = N'KU,T). This
decomposition plays an essential role in lemma 8. The same applies to section
five, where the iterates (U[p],T[p]) are needed to construct approximations of
the invariant curve out of small segments.

Renormalisation by using affine coordinate transforms leaves the
simple line invariant, and N, acts on the parameter by ¢ -+ msc™. It is not
hard to see, that any affine and area preserving map T* RZ R which

commutes with Uy is in fact a shearing parallel to the y-axis, i.e. is of the
rorm x4y - (x+cy+a ,y), wnere a ang C are some Conslanis. we snatt neeg

this fact in section 3. Will return to it shortly in the context of generating
functions.

Now switch to generating functions (v,t) (cf. Mather [S]}. An
area preserving (or any other measure preserving) twist map U: (x,y) » (x.y)
can always be represented by a generating function ¥(x,x'): RZ > R (here the
twist property is important, U need not necessarily be near an affine shear in
some other sense). The arguments x and x' are the x-components of a point
(x4y) and its image (x,y) = U(x,y). The y-components are obtained by
differentiating as follows

3y v(x,X) = -y,
3gov(x,x) = 4.

If Uisin Ct then v is in C!*!, Similarly, T can be expressed by a
generating function T(x,x): R2- R.The decomposition of the renormalisation

operator reads now

N (v,T)» (veT,T),

N (v,T)+ (ATALAVAY),
where (vet)(x,x) = vixx") + T(x",x) for an intermediate coordinate b
chosen to satisfy the stationarity condition

3 (v(x,x") ¢ T(x"X)) = O,

where 3.+ stands for d/dx’. The stationarity condition say in particular that
there is a unique intermediate y-coordinate y" = 3,~v(x,x") = - 3,~T(x",x). Inour
case % will always be defined unambiguously, because the second derivative
with respect to x" will be negative and bounded away from zero for (v,T)
close enough to the simple line.
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let ¢ > 0 some number, and define in the X,% -plane the
rectangles

€={(xx)eRZ 1/4<x-% 3, kX5 5),
¥ = {(xX) € RZ max(-2y3, -3c/4) < x-x' < min(243, 2¢), P+ < 4},

Throughout the paper, (v,T) will be defined in (€#) and », T will commute
in f. Let ('vm,'cm,c) be defined in (€.F), then Uy (xy) - (x+y-1, y), is
defined in

€ = {(xy) e R -3 <y=<3/4, k- (1-y)/2| £ 5/2},

and Tq, e (X,4) > (x+Cy,y) is defined in
1 = {(x,4) € RZ max(-243/c, -2) < y < min(3/4, 2{3/¢), K - y/2c| < 2).

In particular #* c €*, and ¥ is the same for ¢ = /38/3, which in fact is the
more interesting portion of values ¢ may take. In (x,x')-coordinates the
normalising conditions get more concrete:

() 3x'V(><,><')'(o,o) =1,

(i) 3T(%x)0,0) = 0s

(it)) 343y vixX)|g0) = -1, and

(iv) commutativityin £, i.e. (veT)(x,x) = (Tev)(x,x) for (x,x)ef.

The last condition (for (v,T) close enough to the simple line), »(x,%") + T(x",x")
= Tx%"") + ¥(xX), involves in general two different intermediate
coordinates x* and x™". In generating functions the simple line is represented

by
(volx,X) = ((x-¥-1)2/2, Teo %) = (x-x)2/2c)), c>oO.

Let T(x,X) = 8% + bx' + §x2 + 20xx' + ¢x'2 be a map that containes no higher than
quadratic terms and commutes with v, where 4,0, ¢, 3, ¢ are some constants.
According to a remark made above, we have necessarily ¢=-d=¢ We shall use

this fact in the proof of proposition S.

For convenience we write (v[u],T[u]) = N'%v,t), NC=id, for u
€ Nu{0]. At this point we will outline in more detail how the renormalisation
works using affine shearings. Given an irrational © = [m[0],m[1],...] and set
v* and T* for the generating functions associated with U, and To. Let

(v,T) = Nn{n—l]ﬂn{n—z]‘"NN{O](v"T.)'

(There is no index on the +'s and T's to denote the iteration under the
renormalisation operator.) In order to obtain (v',T) = Nyy(v,T) we have to
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apply N m = m[n] - times before interchanging v and T and rescaling to

get finally (+,T). Say, ¢ = c[n-1] is the parameter value after n-1
renormalisations. Then

(VT) = (Ve Tan) = ((x-¥-1)2/2, (x-x)%/ 2c)).
Once applying N* we obtain

(v[1],Tl1]) = ((x-x-1)2/[2(1+c)], (x-%)3/2¢)),
and for arbitrary ue N in general

(wlul,Tlu]) = ((x-¥-1)2/[2(1+uc)], (x-x)2/2c)).

In particular we read off the rescaling factors which determine the linear part
of the coordinate transform A. In the y-direction one must stretch by a factor
-(1+mc) and in x-direction by -c/(1+mc) = -1/(m+c?). Set c = c[n] = & _;*
and let c[0] be the initial parameter value, then one finds

clne1]? = 4, = [m[n],m[n-1],...,c[0]] € R/Z,

and in particular c[n] = m[n-1] + A,_, The Jacobian of the coordinate
transformation A, turns out to be

DAL= | -&,* 0
0 -&y8p "

Additional to that rescaling, A, shifts in y-direction by 1.

Derivatives with respect to the first, respectively second variable
are denoted by d;and 3, and the symbol 3 itself stands for any derivative.
For w in some interval [ c R, with [0,1]c I, write Dy =3 +wd, In
lemma 8 we shall get more precise about the range of w. Finally, before we
restate theorem 1 in the context of pairs of commuting twist mappings we
introduce some notation which will in effect not be used until section 4. We do
it here because for reading section 3 it may be helpful to know that the sizes 7
and A which appear there are the same as those defined here. Define

Ep,u = max“I’Hzp ('azb'k(v[u]'vco)k' lazbﬁk('t[u]—'tmyc)k)’

for 1 <p=x1=L+1, |.| is the supremum norm is as indicated on &
respectively J. The parameter value c is well chosen, for instance so that
alazi-c[u]-rm)l(o’o). 0. Let Ty; = 3;'3,}r, then the derivatives in {tyf 112
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0, 1+]=p} (IPT denotes any one OT them) are certainly contained tn {3, ks

j*k =p and we[0,4]} for 1<ps1 since Dy isjust 8,. Nevertheless, in
lemma 8 it will turn out to be more convenient to work with D, 3, instead of
With 34,3,. Take as abbrevation = £, and to account for the special role
the highest derivative | will take, we set n{n) = ny{n) which is understood to
be 7, after n renormalisations. The main result of section 3, proposition 5,
will show how the lower order derivatives can be estimated by the higher ones,
i.e np(n) semyin), p = 1,...,1-1, for some constants ¢,

Theorem 3. Let (U,T) be a (commuting) pair of normalised maps in cl, L2

4, with zero flux and suppose % defined in some bounded region @c RZ. Let

(v,T) be their generating functions in CL 1=L+1, andlet ehz) for ¥ <

1*(L) an irrational number in the unit interval. If we assume (v,T) in the

cl- ftopology on (&,F) is near enough to the simple line, then

(i)  the sequence of renormalised pairs of (¥,T) converges in the
Cl4opology on (€ to the simple line of affine shearings,

(i)  the pair (U,T) possesses a transitive and invariant curve u of class
CiLipshitz for 311 j< § ), and

(iti) (U,T) actingon p is CPUPNtZ conjugate to  (R_;,R,) on the x-axis
for j<\p where & X » x+w mod 1.

3. Commutativity.

The next lemma generalises the method of comparing coefficients
to the case of Taylor expansions with remainder.

Lemma 4. Let © be a positive number and let P(x) = Yocicy 3iX' DE 3
n with P(x))< @, for x inaninterval I centred at

polynomial of degree
P and on the

0. Then there are numbers d;, depending on the degree n of
interval 1, such that faj] < d;@ for i=0,..,n.

Proof. Set without loss of generality 1 =[-1,1] and decompose P into
Chebycheff polynomials P(x) = D acicy CiTi{x). The T;x) are orthonormal with
respect to a weighted integral. Hence
kll = In-122i‘2_lI*lP(X)Ti(X)(l-Xz)- IIZUXI
s m1222§ [y [+ P(cos y)Pay ¥ [_q[*7(Ti(cos y)Voay]

< 277292321 . 2i-1/2%,
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The coefficient of the highest power of Ti(x) is 1, so we conclude Ianl £

2129 Now replace P(x) by Docieng 3% and 8 by 61 + 2172),
Repeating the argument proves the lemma. 0O

In this section n and A denote some {rather small) positive
numbers. In particular one has to think of N so small that the product nal
is (uniformly) bounded by some small constant. Whenever we write 0(A) or
0(n) the indicated estimates are understood to be uniformly in & respectively
M. This section aims to prove proposition 5, i.e. given bounds on some higher
derivatives the point is then to estimate the lower ones.

Proposition 5. Let A and n be some small, positive numbers and suppose

() v and T commutein

(i) PPvlg =0(n) for p=2,..,1;

(i) Pplely -o(n);

(iv)  BAt-toJlp = 0(4) for p=2,..,1-1

(v} cisa parameter value satisfying [log Ac| < 2, say.

Then there exist positive numbers tp, p = 1,...,1-1, which are independent of A

and m, so that JoX(t-Tq, My < e,

The constants ¢, depend on p, where € > Tor 1<p<l, and
they furthermore depend on 1. In fact, tp increases when 1 increses and
correspondingly the estimates on the derivatives have to be 'pulled back' a
longer way.

In lemma 6 we shall use commutativity to improve the a priori
bounds on aP('t-'too’c) by a factor A. Repeatedly applying lemma 6 finally will
prove the claim made in proposition S for at least third order derivatives of T.
This procedure is often referred to as 'bootstrap’. At this point we use the
commutativity assumption. We expand v and T into Taylor polynomials and
compaire their coefficients. This provides 1(1+1)/2 inequalities for the same
number of coefficients in the Taylor expansion of T. The remainder in the
Taylor expansion is by hypothesis (ii) estimated in terms of 0(7), and the
coerficients in the Taylor expansion of T-Te,e WhICh are of lower than I-th
order, will turn out to be of the same size 0(7). In fact, in lemma 6 we show
smallness of higher than second order derivatives and the second order
derivatives themselves will be dealt with in the proof of the proposition at the

end of this section.

Lemma 6. Let g, 4, y > 0 real numbers, satisfying AlSUn = 0(A), (where

[z] = min(0,2)) and suppose
(i) ¥ and T commutein #



H
(i) BAv-vllg=0(n) for p=2...1;
(iii) la‘-t|'= 0{n);
(iv)  Jortly = o(alt-ty), for p-3,..,1-1;
) Ry =o0(a)
Then foPtly = 0(ale*1-Un), for p = 3,...,1-1.

Proof. The second order derivatives remain untouched throughout the proof.
They only have to be of size & which is exactly the factor by which hypothesis
(iv) gets improved. We consider the commutativity condition

(3-1) VOT - TeV = V(x,X") + T(x",%) - T(%,x™) - v(x™,x) = 0,

where the arguments have to lie in €, §, ¥, € respectively. There are two
intermediate coordianates, x" refers to veT and x™ to <Tev. The

stationarity conditions

3, v(x,x") + T(x",X)] = 0,
I T(%,x™") + V(x™X)] = 0

allows us to consider, for instance, x and % as variables and x" and x'
depending on them. The stationarity conditions for a pair of normalised
generating functions ('vm,'tm'c), where ¢ 2 1 is some parameter, are

-x 4+ X"(1+c?t) -xct+1=0
-xct e x"(1ect) -x-1=0.

We see that x ~ X" and %™ ~ %' and one sees that (x,x™") is a good choice for
coordinates (the other one is (x',x'), we shall return to it in the second part of
the proof). More precisely, x,x™ can vary over some interval which uniformly
in ¢ is boundet from below (and above) so that all arguments that involve x°,x'
will not leave their domain. We expand (3-1) into a Taylor polynomial around
SOMe Xo, X'g X s Xo and denote for the sake of clarity the differences again
by x, ¥, x™, x. The foot points x4 X'g X X May be chosen so that X = 0
and vo (x™gx'g) = 0. Since v is up to an error of U(n) near the simple line

we have X" =1+ 0(n) and therefore -vo{%x X = 0(n). Furthermore y =
because of the

Tor{X"mXo) = Voi(X"eXe) = 0 and therefore % = O
normalistion condition (iii) Teyf,0 = O-
(i) Differentiate (3-1) with respect to x, hence

0 (VOT - T@V) = Vyo(X,X") - Tyolk,% ™) + [Toy(K"X) - vy (x ™, X)1d,X.

We expand each term into a Taylor series and obtain using hypothesis (ii), (iit)
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that

Z(i,i)a(l,O),biq [x"l[vi,jx"l' -t X+ x'i‘l['l:l-’ix'l'— vl-'ix'“'l']dxx'} JOMi-1)1)
= 0(n)

(3-2)

for (xg+x,x"), (%g+x,%o "+x™), efc. lying in &, , etc.. Let us prune away all

those terms that are small by assumption (ii):

Z(i.j)z(l,o),l-bujzz (=5 Fr, e K I0HT (0,00 3/GHD - Tyolxps™o)

+ V1olRoeX o) = X Ty ¢ X(1-Tpg) - X'+ (X™eX T 1-%(1-Tp))d, X = O(R),
(3-2%)
since Vo (X "mX'g) = To (X" eXo) = 0. Here we used that, up to an error of 0(7),
Y11= -1 Vo= +1, vgp=+1 and vy =0(n) for i+j2 3. The term x* causes
the biggest trouble (more than all the rest together).
(A)  We expand x" into a Taylor series (remember X'g=0):

K= D (stx(o0pizsetal (=0 )3t/ (si),

where d denotes total derivatives. we have to compute the derivatives
dy~5d, 15" [(x0,%™"o). The implicit function theorem applied to the first of the two

stationarity conditions yields
3K = =¥ 1/ (Voa + Tag) = (1+Te)* + 0(M),
A" = =T/ (Vos + To) = =T (XX o)/ (14T 2g) + D(AN) = O(4),

where the v's are evaluated at (xgx"y) and the TS at (X'pXp). Our aimis to
take the estimates on the derivatives of T as they are given by hypothesis (iv)
and to improve them by a factor A. Set Vz = maxzg,q (0UTh + 0U»D which is
of order 0(naldl). wnenever possible we shall therefore ignore terms of

order O(AVz). (Observe that Vz=0(4), i.e. V32 =0(AVz))Firstly, we deduce
(3-3) ax.sx" = _'tl’s/(voz + 'tzo) + D(Av3) = -"Cl’s/(lir'tzo) + U(AV3),

for s = 1. Here we used that the remainder 0(&\«‘3) involves products of at
least third derivatives of v and T together with at least second derivatives
of T which are of size & by hypothesis (iv). Using once more the implicit
function theorem we derive from the second of the stationarity conditions:

ek = 0xnx = -[Tol%gpX o) + Vol& " ouk'o)]/¥11 = 1+ Toz + O(V3),

0x =X = -Ty(xeX o)/ v {x"eXo) = Tyy + O(N),
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since, due to hypothesis (ii), v(x™axy) is -1. up toan error of size O(x).
Next we shall show that d,!x" = 3,I" + D(AVz) for tz 2. Clearly dx' = 3,x" +
(dyx)3x", and differentiating once with respect to x provides d,%" = 3,%" +
0(&V3), since products of the form (d%')(3,x") are of size 0(AVz), where one
of the two factors is differentiated at least twice while the other one at least
once. For some t2z 3 letus assume d,!1x" = 3 t-1s" + O(AV3) holds true. Now
we increase the number of derivatives by one, hence

%" = 3,k + (d,x)8,0,171x" + D(AV3) = 3,1 + D(AVy)

1f t is atleast 2. Let t be 2 and it follows for the partial derivative
3,2 = -3, %11/(vop+To0)] + O(AV3)
= V1Vt Too)™? + V¥ oA Vot Top) 2 + 0(AV3) = O(AV3).

The same holds true for higher derivatives, i.e. dx'x'= O(AVzg) for t22 (s=
0), because derivatives of the remainder are again of size 0(AV3). For (s,t)2

(1,2) we claim
4,0, %" = (0,~%)%9,59, %" + O(AV3).

As we have seen, this is true for s=0. Fix t and let us assume the formula is
proven for s-1 for some s = 1. Differentiating once with respect to X

yields
Ay, 1 = (d, k)50, 53, 1" + (5-1)(dy )5 2d, X135 13, 1" + 0(8V3)
= (d,x)%9,53 Ix" + 0{AV3).

Furtherore, since d,~x' is 1+¢1+0(AV3) and is therefore uniformly bounded,
and since the partial derivatives 3. !x" are of size 0(&Vz) for t22, we obtain

d,~%d, " = 0(AV3),

for (s,t) =z (0,2). Inthe cases where s> 1 and t =1 it remains some extra
work to do. We begin with d.x" = 3,x" + (d,X)9,x" and differentiate it once with
respect to x™":

o, X' = (0, ~X)3, D, + (0,0, X )3, %" + (0yx)(d,X)3,2X" = O(AV3).

The same estimate holds true for higher x™"-derivatives. we summarize:
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dy~d, " = 0{AV3)
for all (s,t) 2 (0,1), (s,t) #(0,1). Finally we have to treat the case s =0 and t
= 0. Indeed d,~x" = (d,~x)3.%", and let us assume that d~1x" =

(dex)>"13,5°1x" + O{AV3) for some s 2 2. By way of differentiating once we
obtain

3" = (0, x)53,5%" + (5-1)(d,~x)5 4 d,~2%)3,5~1x" + O(AV3)
= (0,~%")%3,5%" + 0(AV3).

To finish off the last step, we set = (1+Ty) and use (3-3) in conjunction with
dy~x = p+0{AV3), which leads us to

" = - 95711 (X¥Xo) + O(AV3)

for s> 2. Apart from dx‘x' these are the only non-trivial derivatives (a
priori not of size O(AV3)). In the case s = 1 up to a constant the same result
holds true as we shall see in the next line:

dx“"xu = ['Coz(Xo,XMo) + Vzo(xwo,xlo)]'\:ll(x.o,x'o)/(1+T20(X.0,X.0)) + 0(6V3)

= - ,.T“(X-o,x'o) + U(AVS),

where % = (1+Tg0)/(1+47To9) ~ 1. This completes the list of all derivatives of
%', S0 we end up with a polynomial in x and x™

K = )[BTy Ty (1eC) ] - 9057y - og X W ITL ¢ 0(AV),
(with the convention $° = $*) and in particular x" = x+0(4).

(B) We expand X into a Taylor series. Concerning the first order
derivatives we know already

Ay’ = -[ToplRep% o)+ V20X "X 001/ % 13(x " 0¥ o) = 1 + Topl¥ox o) + O(n)
dex' = =Ty1 (3o ")/ Y1y = Tyy{xepX o) + D(AT).

For the higher order derivatives dx-5dx‘x' we derive; firstfor s =0; t21 by
differentiating it follows d/tx' = 'tm(xo,x“o) + 0(n) for t = L..,1-1
Furthermore we derive immediatly by differentiating with respect to X"
Oy ~30, 1% = Ty o1 (KwX o) + O(M) for (s,t) 2 (0,1). We are missing the pure x™
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derivatives. Firstly

By = Toa(XgX ")+ P3o(X "X o)+ V21 (X ¥ )0 X + O(7)

= Tos(XO,xAuo) + U(AVZ,),

since vzo= 0(n) and dx is of order O(A). Similarly for higher derivatives:
dyX' = Tg g + 0(AV3). Summarizing:

dstdxtx' = Tt,s*l + G(AV3)
for (s,t) > (0,0), (s,t) ¢ (0,0), (1,0). Finally, since x'o=0, we get
' = XTXI + X~(1+Toz) + Z(s,t)a'(0,0),lZSﬂZZ XMSxtTt,S,’,l/((Slt') + O(AV3),

where the sum containes only summands of size O(Vz). Inparticular x' = x™ +
0(a) and dx = 0(a), as we would have expected from the affine case. Let us
return to (3-2*) and insert the expressions for %", ¥, in particular we use the

fact K.j'tl"l = X}CL1+D(AV3):
2 i2(1,0,1- 1ok X % Foipy /(1) - X
- Xy + K(1-Top) + (X745 T =X (1-Top)}d, X' + ¥ 1o(RguXe ) = 0(8V3)..

Hence
2. (ip2(0,051-1>ivjz2 ~XX Fiayj /010 + T KW Ty
+ first order terms in % and x™" = 0(AV3).
Lemma 4 once applied to this polynomial in X yields
ZI'i—l>}'20 -XMjTi,,,l,]‘ /]' = U(AV3)
for 1=2,..,l-1. A second time and we obtain
Tisl,j = 0(aV3)

for (i,j) 2 (2,0). Since we differentialted the commutativity condilion with
respect to x we do not get the 'r,o_]-, j=3,.,1-1. As it turns out, the summand
X" in (3-2*) spoils the Ty, fOr J= 2,.,1-2, since they cancel out (up to a

factor A).
(1i) The second part of this proof is devoted to Tip 1= 01, = 3-1u,l-1-1,
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We proceed similarly as in part (i), this time chosing x",X' as coordinates. we
differentiate (3-1) with respect to x' and obtain

d{veT - TeV) = [v{¢(x,x") - Tyo(%,x Ny + Toy(x",X') - voy(x™ %)
It follows by hypothesis (ii), (iii) that

2 Geonfipes (VT - T g+ KTt v /G-1)
=0(n)

(3-4)
for (%gex,X"), (%g+x,%g +x"), etc. in &, f, etc.. Let us prune away all those
terms that are small by assumption (ii) and the first part of this proof:

——

211522 [XFT {d,) ¢ ¥Feo 1] + D1t KTy g + K™ - TyofXeex ™)
(3-4%) + V1% o) - (X7 +x(1-Tp)-X"Ndy) + X'ty - X (1-Tp) = O(7),
since vm(x"‘o,x'o) = Toy{x"wX'o) = 0. Here we used that, up to an error of 0(n),
‘V“ = ‘1, ‘Vzo = +1, v°2= +1 and vl’] = U[TU for l+l > 3.

(A) Similar to (i) part (A), expand x™ into a Taylor polynomial. With the
assistance of the implicit function theorem we deduce from the stationarity

conditions
dx'X = ax"x = ‘('}’02 + 'CZO)/‘V“ =1+ Too t D(n)s
dex = xx = =Tyy /vy = Typ + O(M)y

where the +'s are evaluated at (xn,%"o) and the T's at (x'gXo). Furthermore,
exploiting the stationarity condition that determines x™ we obtain

ax'XM = 'v“/(Toz + 'Vzo) = (1+T02).1 + U(Tl)!
3% = =Ty /(Top + V2q) = -(1+Tgp) Ty + O(AN),

and this time the Ts are evaluated at (xpx™"o) and the v's at (x" X'} We
write the arguments only where necessary. Combining the 1ast equations we get

dx-xA' = ax-x“' + (dx-x)axX~
= (14Tl - (14Top) 114 (X K 0 T4 (XuX o) + O(4V3),

dyex™ = (A}, x™ =~ (%0, % ™) + O(AV ).
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Differentiating with respect to x* yields

2™ = - (dyrx)Tpy + O(AV3) = 0(AV3),

because Ty = 0{AV3z) as aresult of the first part. Hence d»x™ = G(AV3) for
all 52 2. From (3-4%) it is clear that the only derivatives of x™ that are

important are d,<d, %™ for s =0,1, t=1,.,1-s-1. Firstlyfor s=0, we
obtain

2™ = Ao (147000 - (14T 1T (X X )T 1 (XX ™) + O(AV3)}
= (1) Hdyx)Ty2 - (14T0p) [Ty + (de%)T2y] + O(AV3),
= '(14'1:02)'11:12 + U(AV3),

since (dyx) is of size 0(A). As already mentioned earlier, the remainder
0(AV3z) is a sum of products which consists of at least two factors of at least
third derivatives of v and at least second derivatives of <T. This means in
practice that we neglect derivatives of the remainder. Thus

delx™ = - 4Ty (X" X'g) + O(AV3),
for t>2, where ¢-= (1+1:02)“. By the same argument we get
e ™ = -qT (K" X o) + O(AV3) = O(AV3)

for t= 1, because Tyy= O(AVq). It follows readily that dydelx™ = 0(aVs)
for all (s,t) = (1,1). Finally we get for x™ the following expression

X" = XMO + qx'[i - 'C“'Cll] - ZZS] K'htl’]‘ - x.'t“ + D(AV3).
(B)  Additionally to x™ we shall need the Taylor polynomial of x = x(x",x').
We know from (ii) part (A) that dx = T;;(X"X'o) + 0(n) and therefore dy-d,x

= Tis X "pXe) + 0(n) for all (s,1) 2 (0,1). We are missing the pure
xX"-derivatives. The first was computed above:

dex = [vop{xepx'g) + ToolK X0 + O(N)s
and differentiating yields
b2 = [Vo3(RX"g) + Tag(X wX')] + (A %) o XwX"0) + O(M) = D(8V3),

since the vo3, vy = 0(N) and Tz, = O(AVz) as a result of the first part. We
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have therefore d,«x = Ty 4+ 0(AV3), t= 1,..,1-1, and d%d,tx = O(AVS) for s >
1. We summarize
X=Xg+ "‘1:11 + X'( 1+T20) + 21"1>j22 X.j'tl,]‘4 U(6V3).

we now return to (3-4*) and use that (d,) = 0(8), thus
212 X To o1 - AT /1 + X Doy K11 + K0 - Tiolkgek ™) + ¥1olKosko)
+ax[1-7417) ] - (3" #%(1-To0)-%"Ndy ) - X(1-T¢y) = 0(AV).
Lemma 4 applied to this polynomial in %' leads to

(1) 0+ 0(aVs), =1,
(ll) To’]','_l - .tl,j + 'tl']-ﬂx' = O(AV3), ] = 2,...,1‘1,

where 0 is some irrelevant constant (= af1 - Ty T J[1 + TyyT ] - 1+ Ty))
The term i= 0 does not make sense. Inspecting the linear terms in X" we get
Ty,i = 0(aVg) for i=2,.,1-1. The constant terms then obviously lead to To,i =
0(aVvsz) for i=3,..1-1, since ¢ ~ 1. This concludes the proof the lemma 6.

O

Proof of proposition 5. We begin with some q* which satisfies condition
(iv) of lemma 6, i.e. Al8*Un = 0(A). Applying lemma 6 improves q to g+1
until AV3 is of size n (recall Vs = maxze,q (J0%t]+ WD = 0(nalt-th). (q is
not necessarily an integer, and in lemma 6 we ought to have written aVz+ 7
instead of AVz foprevent that Avz mayget smaller than n.) Hence [oPtf=
0{n) p=3,..,1, or ﬂaP't|stpn for some numbers ¥, and T 1S up to an error
of size n a polynomial of degree two. Let T(X,X) = X2To0/2 + XX'Tyy +
X%T4p/2 + Ty + KToy + CONSL.. By the remark made in section 2 it follows that
Too = -Tyy = Toz UP to an error of size 0(n). The parameter C is chosen so
that (T-TCD,C)H,(O,O) = 0 and therefore JoX(t-tp )l = 0(n). This concludes the
proof of proposition 5, i.e. Ht-Tg, Jf=0(n) for p=2,..,1. O

4. Convergence proof.

Proposition 7: Let © = [m[0],m[1],...] be an irrational number and let

(v,T) be a pair normalised generating function. Set A = [m[n],m[n-1],...,c[0]]
and My = Tlocicn &;, where c[0] is determined so that 3,3 T-Te,qoPlio,0) =
0. Then there exist constants 8 > 0 , = > 0 (depending on m[0],c[0]), and a
sequence of coordinate changes {A: ne Ny} that are near to affine, such that
the renormalisation sequence of (v,T) converges in the Cl-topologg on (€
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to the simple line, provided

(i) m[n}°m{n-1] < 8M,* for some o € [0,1-4-B) independent of n,
(i) n(o)s=
Furthermore n(n) < €*n(0)M ¥*F-, for a constant €°.

Recall that ny(n) denotes the sizes of the l-th derivatives of v
and T after n renormalisations. The proof of the proposition splits into three
parts:

(A) Under the assumption that Ni(n) = gioln) = O(my(n)) for 1=<i<1l
uniformly in n we show in lemma 8 that el-[u] are to be estimated by a
polynomial in n and u, in a way that suggests that ¢;,(n) ~ uny(n) for u2>o0.
At this point we use the decomposition of the renormalisation operator
introduced in section 2. In fact, lemma 8 deals only with the iterations of N’
and the estimates of ¢, {n) are deduced inductively on 1.

(B) Recall Ny = N*N"™ Inlemma 8 we did the first part, i.e. N'™ Lemma
10 completes the renormalisation by applying N*, which interchanges v and
T and normlises the new pair using a coordinate transform A. The main part
of A, an affine streching, makes Ny a contraction in the neigbourhood of the
simple line. The non linear part of A will be introduced in lemma 10, and is
designed to bring v close to the affine shear V.

(C) In lemma 11 it will be demonstrated that the new pair of renormalised
maps is well defined on (€,#) and commutesin § .

(D) Finally, to complete the proof of the proposition, we verify the
hypothesis made in lemma 8. In particular it remains to prove that the new T
is close to an affine shear. To this end we use proposition S which chaines T
to v provided they commute in some region, here ¥.

We fix n and drop the index n in the following where there is no
likelihood of confusion. We use furthermore the notation m =m[n] and ¢ =
c[n]. (The numbers ¢, will be the same as in proposition S. In lemma 11 we

shall return to this point.)

Lemma 8: In the definition of 7, let the unit internal [0,1] be the range I

of w. Suppose

(i) there are numbers ¢, so that n,<¢n, for p= 2.
(i) (m+1)%n, < 8%, where * = (54x64) 1

(iii) JoKt- 'l:m‘c)l'< Ny

(iv)  [JoKv- voo"]“: 11
Then there are polgnomlals @ (x), p = 2.1, with @,(0) = 0 and positive

coefficients such that
(4-1) €pu s (uscH(1 + Cp((u+ i)zcn))np

ol-1;



20

for u=0,..,m.

Remark: It the proof of proposition 7 it will turn out that (m+1)2cm (where
¢ ~mfn-1]) is a decreasing exponentially fast for n - co, due to the fact that
& has to be strictly less than 1-4-B. Hence the factor 1 + @,((m+1)%cn) will
converge to 1. In particular, by shrinking ®* the infinite product of them over
neN can be made as close to 1 as we please. The point of lemma 8 is

therefore, that Epu ™ une

Proof. We shall prove the lemma by induction on p. Beginmng with
second order derivatives, p = 2, we obtain for the derivatives of +w{u+1] in

terms of v[u] and T[u]:
D 2v[u+1)(%,x) = D X v[uleT)(x,%)
= voolu] + w2ty + 20X [v5[u] + Ty + (DK volul + Tyl

where u=1,..,m-1, and where the v's are evaluated at (x,x") and the T's at
(x",X). (Because of the stationarity condition vgq[u] + T4o =0 we do not get a
factor involving D,2"). Reordering gives

Dy2v[u+1](x,%) = [8; + (DX")3,12v[u](x,X") + (DX }B, + w(D ") 13512T(x",X),

(4-2)

where 3,, 3,, 93 denote partial derivatives with respect to x, X", X'. When
evaluating the square of 9, + (D)3, the factor D" is regarded as a
constant. Note that N~ does not touch T at all. we will often drop the
arguments of v and T.If c¢ is chosen so that 81232('c-'coc,,c)|(o,0)= 0, then we
Say Ty, 3pproximates T best. Naturally, there are other ways to fix ¢
which are no less suitable to prove the contraction of the renormalisation
operator in the vincinity of the simple hine. The derivatives {vzo, Vit "oz}
can be expressed in terms of {D,%v: w e [0,1]}, explicitly one finds (recall

that Dy =3,)

)

31‘ = 002,
919, = (4D 5% - D42 - 3041/ 2,
322 = 2[012- 01/22 + DOZ]s

and reads off the inequality

(4-3) 2v{u]] < 8P, 2v[ull,
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for we[0,1]. Equipped with that inequality we do a closer look at (Dgx")(x,X).

From the stationarity condition wvg[ul(x,x") + T;o(x",X) = 0 one derives with
the implicit function theorem:

D" = -(vy[u] + wT )/ (vorlul + Too)
= [c/(uce1) + w+ 0%(Beep ) Ixlc/(uc+1) + 1 + 0%(8ee, ) 1
= 1+ (w-Dl(usc?)t + 1] + 0%(4Bce;,)

since  ce, u £ 1/48 by assumption (1) (the denominator 1s expanded into 3
geometric series). The symbol 0® has the following meaning: f(x) = 0%(x) if

Ifr(x)/x| < 1 as % 0. The assumption
(4-4) (w-1)[(usc?)t + 1] < 4,

which will be made here shall be justified later on. We return to (4-2) and
confine ourselves for the moment to pure D,-derivatives. We forget for the
time being about the change of the range or w when passing from u to u+l.
This question will be discussed shortly. Hence

(4-5) €201 S €24+ [2+ 4Bcey JoM, <62, + 9Ny

if 48ce,, < 1. Similar to (4-3) where 3%y was estimated by D,%v for we
[0,1], the mixed 3, and D, derivatives can be estimated. For u =1 we find
€34 < clny + 91, since hypothesis (iv): [o2{v-vll = ¢, Summing over u
we obtain:

(4-6) e,4 < S(u+c )

Let [0,w[u]] be an interval contained in the range of w at the
u-th renormalisation step. Especially in view of the restriction (4-4) we have
to make shure that the domain of w in the (u+1)-st renormalisation step is
included in the range of w in the u-th renormalisation step. More precisely,

we shall show that
0 < Dyjyey " < Wlu]

1s satisfied. In fact this condition holds true for values w for which 0 <D
= w generally. This last inequality is clearly satisfied if D" = [(usc™)* +
whk[(usct)* +1]* + 0%(48ce,,) liesin [Ow], ¥ u =0,..,m. This for example
is true if
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w2z max(1, 1+ 4882’U(UC+1)).
and using (4-6) this follows from
w 2 1+ 8254(u+1)%cn,,

which itself is satisfied by hypothesis (ii). It is not too hard to see, that the last
inequality also implies DX 20 ¥ u = 0,.,m. We have therefore shown that
the unit interval is contained in [O,w[m]] provided [O,w[0]] c [0, 1 +
54x64(m+1)%cn,l. In the sequel we shall assume w[0] = 1 + 54x64(m+1¥cn
In the hypothesis of the lemma np was supposed having been defined with w
running over the unit interval. By the argument elaborated here, the unit
interval [0,1] has to be blown up to the size of [0,w[0]]. Naturally, the Np
then have to be replaced by some 11'“,,, this time w running over [O,w(0]]. We
return to this point at the end of the proof. In the following however we ignore
this fact and assume n, was defined by using [o,w[0]] as range of w.

We have proven the lemma for p = 2. The general case is done via
induction. Let us now assume formula (4-1) holds true for all derivatives up to
p-1, where p is bigger than 2. We shall do the induction step from p to p+1.
To express the p-th order derivatives of v[u+1] in terms of v[u] and <T{u]
we need the following formula {(where ®{s,t) stands for the binomial

coefficient st/((s-t))):

D Pv[u+1] = D A v[uleT)
(4-7)

= EOqup Zoﬁssp_q 352 osteq (3 1+wd) 13, (V[u]eT) (D) (s, )P ¥ u),

where the coefficients qu’s[u] are sums of monomials of the form

Trl$r$s Dui[r]x-’
with i[r]z 2 and 3 (¢ Ur]= p-g. Identity (4-7) is proven by induction on
p as follows. As we have seen in (4-2) the ®s are trivial for p = 2. Assume
{4-7) holds true for p-1 and lower orders, then there are three different ways

for D, toact:
(a) by increasing s - s+1 and sending t » t-1. The summands in the

corresponding # then get one more factor;
(b) as partial derivatives directly on (v[ulet): t-t+1 andthe B

remain the same;
(c) it acts on the P, increasing there the number of derivatives > ilr] by

one.

Note:
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(x)  stationarity makes the term (t,s) = (0,1) vanish,
(B) the summand for (t,s) = (1,1) is zero because D" = -[v,[u] +
wTy;1/[velu] + To), and

(¥)  the only term with trivial ® is (1,s) = (p,0).

In all other cases P has at least one term of at least third derivative and
itself is the coefficent of an at least third order derivative of (v[uleT). Since
third order derivatives of v and Tq ¢ are zero these summands are made up
of products that have at least two factors each of them at least a third order
derivative of wv[u}-v, or 't[u]—'tm,c and are therefore majorized by a

polynomial in 2.

In formula (4-7) contraction of the sum over t gives

(4-8) + (D)9, + (D)1 wazlte, o 1B %ul.

Unlike to the case p = 2 there is one more complication. On the right hand side
of (4-2) appeared no mixed derivative J,D, that was because of the
stationarity condition. For p > 2, additionally to {DP(v[u] - v [ul): we
[0,1], 2<p <1} we need to verify that for the derivatives {3,0LP(v[u] -
volul): we [0,1], 2 = p+q = l] the same estimates hold true as for pure
D,-derivatives. Consider D,P'v[u+1], for some p' < p, and differentiate with
respect to x, then there are two cases:

(1) 3, actson T, then the contribution is of size 0(n), since T remains

the same while u grows;
(i) (8,x")9,~ acts of v[u] and T. We are finished when we can show that

[6,X"| is bounded by 1. Indeed
8x.x" = -T“/(Voz[l]] + TZO) = [(l..l*bl.‘,-i).1 + 1]-1 + 0'(48082’,1),

which by hypothesis (ii) is less than one.
Suppose we were working with 3,, 3, instead of Dy, 3, Using

the chain rule to evaluate the derivatives of v[u]leT, each time we increase u
to u+1, e, has to be multiplied with a factor slightly bigger than one. If we
replace 3; by D, we have instead to shrink the interval for w each time a
bit. This procedure turns out to be technically more accessible.

From (4-7) we now pass on to estimate the €'s:

Epuel S Epy+ [1+(w-D[(usct)t+ 1]+ 43082,u]P11p + 3p,tr

The remainder Rp'u comes from those terms in (4-7) that involve non trivial
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polynomials P. As already noted they are dominated by sums of products with
at least two €ip 3 <1< p. From (4-4) it follows that the second term in the

brackets is less than one, and to estimate the entire coefficient of N, we use
the expression of €2y Which we derived in the first part of the proof. Hence

8p,u+1 Sepyt [1 + 48x9(u+C")C1Iz]pTlp + :p,u
< Epy t [1+ 4BXSBZP(U*C'1)CT[2]TIp + 2p,u’
where, in the second step, we got rid of the exponent p. We sum up over u:

(4-9) Epy [(usc?t) + 7, Xosjq, 48x9eP(j+1)c ]Tlp + Zosjq, R

Before all we finish off with the remainders. By induction hypothesis the €k,
are for k < p majorized by polynomials of the form

(]"'1)8111 + ZP?_Z (j+1)2r-13r(cn)r;

for some coefficients {a. 2 0: r 2 1}. Products which contain at least two
factors are dominated by something of the form

ZPZZ (]+ l)z‘-za.r(cn)r,

with some new {a',. 20: r >2). Summing up over j < u, increases the
exponent of (j+1) by one (and multiplies with a factor (j+1)* < 1). For the

remainder in (4-9) we find
Zosjcu By € Dpap (#1218 (o)

We add to the remaining terms of (4-9) (for simplicity substitute (u+1) by
(u+1)?) and obtain a polynomial dp which has the properties as claimed for
Gp.
As earlier remarked, for initialising the iteration of N° we have
to consider the bounds on the D,-derivatives where w runs gver the interval
[0, 1 + 54x64(m+1¥cn,]. Furthermore, 1t is not too hard to see that there
exists a (positive) polynomial @ satisfying

SUP;+j=p,we(0,9{0]] (Ialiouxv"voo)l! (laliD'KT-Tm'c)D
< (1 + BW([0]-1))5Upi,jop,wefo,1] (B DX V-V )b (P DX T-Te D

We shall abstain from proving this formula. We need this inequality to get an
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estimate on the initial €, = which we have o replace by n = {1+

2(54XS4(m+1)2c112))11p for p = 2,..,1. Without the dependency on m we would
end up with unreasonably bad bounds in the case of small m. We go with this
expression into .' and obtain the claimed polynomial .p. Obviously, l has
the same propertles as G' Positiveness of the coefficients and CP(O)
follows from the constructton This completes the proof of the lemma. D

Before introducing the coordinate transformation A, we shall see
how a map U which is close to Ug, can be ‘flattened using a non linear

coordinate transform.

Lemma 9: Let py> O be a constant and (U,T)) be near enough to the simple
line, and let (v, T’} be their generating functions deftned on (€.f). Suppose

there are p e (0,p¢] and I'y 21 so that
BAV-vo g = pT P
for 1 <p <1. Then there exists a coordinate change h and constants ¥, ¢t> 0
independent of (v,T), but depending on p,, so that
(i) (a) [oP(hoviont-v)lg~ < p#P  for p=1,.,1-1;
(b)  3lhev'sh? - ¥") = 0,
where € is a region in the x,x-plane slightly smaller than € and
converges to € for pgy- 0,
{iil) For T'(x,x") we get
(a) JoR(heton™ - T)fg < tol, P for p=1,..,1-1;
(b  aYheten?-T)=0.

Proof. The coordinate transform h depends entirely on »' and so we

will not talk about T until the end of the proof.
Coordinate transformations h that transform area preserving

maps again into area preserving maps must have constant det Dh, where Dh
is the Jacobian of h. This means that up to some affine stretching, h has to be
area preserving itself, If h has the twist property, then it can be represented
by a generating function. We shall go this way, combining @ non linear
coordinate transform with a shift by some factor close to 1/2 to obtain 3
coordinate transform h which has the twist property and therefore can be
represented using a generating function. The shearing factor 1/2 is chasen so
that the compositions of h and h?! with U and T are again shearings and
possess therefore well defined generating functions.

Set hy: (x,y) - (xX,y) = (x+2ly, y) which has a generating function
Ho(%,X) = (x-X)2 Let hy be a coordinate transform that is generated by
pix,x), then hy' is generated by po*(%,x') = -Ho(x,x). In fact we shall
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determine the generating function of ho,, rather than giving hy in
%,4y-coordinates. Put U™ = hyol'ohy? and introduce variables according to the

diagram:

he U he
() == (X,Y) == (X,Y) = (X)),

where U™ (x,y) » (X,y). In particular we obtain
P(%,%) = po(%,X) + V(X,X) - polx,X)

for intermediate coordinates X,X. To determine pg(x,x}) we shall replace XX
by X*,X* by which we denote the intermediate coordinates in the purely affine

composition
Vo (%:X) = Bo(%,X%) + V(X" X*) - po(¥,X*).

Considering x,X* as variables we obtain X* = X*(x,x), X* = X*(x,x) and since
X*-X* < -4 it follows in particular x'-x < -81 if n 1is small enough. Take
the Taylor expansion of (V'-v)(X*,X*), cut it off at terms of order 1 and call
o(X*,X*) the resulting polynomial of order 1-1. Define

”O(x',x'.) = Pm(X',x'),
]Jo(X,X’) = “cp(xsx.) - D(X',X") for X(X',x'.), xo(x.lx")!

where x+X* = -2. Since X*-X*, x-x ¢ -1/8 there is enough room for

smoothing po(x,X") so that

(i) is cl and

(1) po(%,%*) = Pol%,X*) - V(X X*) - polx,X*),

where (x,X%) = (x(x.X®), X*(x.X*)), sothat (¥*,X*) € €. Note that (i1} defines

Hof%,X") uniquely, provided the smoothing from K+X® = -2 to {(x(x,x®),
X*(x,X*)): x+X* = -2} is done. Unfortunatly the intermediate points X,X' of
V(%K) = PolK,K) + V(XX) - polX,X)
in gerneral will be different from X*,X*, but since
BP(po-Ho)(%,%)] < BPO(x, X < pT' P,

we are already pretty close, namely

X-x*, K-x*| < oo (x,x)] < #pT', .
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for some & > 0 independent of +'. This follows from the stationarity
conditions for X,X' and which can be written as the stationarity codition of the
affine maps plus error terms of size 0(pI',*). From this we get by integration

Hosi %K) = Hor f%,X") + xo % Hosi o1 (%:8)dS,
Foi, %K) = g {K,X%) + ol ¥ Hosi,je1(X,8)dS,
ViAK) = Voo X0X%) + o [¥ 0y (§KTIES + o [X 0354 (45)8,

and in particular since the paths of integration are of length < lp[‘x-l we find
VKD = o 0K") ¢ Ve (X7K®) - oy (XK7) + O (T, T,

where the symbol 0* has the same meaning as in lemma 8, i.e. the remainder
term is estimated by exactly 4921‘;1-1'-1. Therefore

b~ ifxx)] < ap?r, T

for i+j > 2. The norm here is taken over a suitable region in the x,x'-plane.
The corresponding region in the x,y-plane is €* (introduced in section 2)
shifted by hy. This improves the deviation of the derivatives of v-vg from
pr, Vi to apll, V! for v™~-vg by approximately a factor I',*. The final
coordinate transform h is found by iterating this process as follows. Replace
v by v~ and we proceed to construct a second transform hy in exactly the
same way as we determined h, However there will be one difference, unlike
ho which is close to an affine shear with factor -1/2, h; will be close to the
affine shear h_g = (x-4y/2, y). Hence pg = (x-x)2 has to be substituted by p_g
= -(x-x)2. So the composition hyeh, is close to the identity. Similar to the

estimations elaborated above for h, we obtain {since p2 <p)
Khyehgevehgehy ) {x,x)] < (4#p)2pT, 112,

Here one takes the norm over some region &;, which approximately coincides
with & We shall not go into details, but it is clear that tl containes at least
the quatrilateral that one obtaines from € by cutting off on all sides a strip of
size O(pT,*). Going on we find h, close to hy, andingeneral hy, Kk =0,..,l,
which is close to the shear (x,y) » (x,y) = (x+(-1)%y/2, y). If | happens to be
0dd the we set h = hye...ohjoh, and in the case that 1 is an even number we set
h = h,ohye.ohg, where hy,q = (x,y) = (x-Y/2, y) an affine shear designed to
make h itself close to the identity. Clearly, under the transformation with hy,,
one does not affect the non linear parts of v. Furthermore from the remark
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made in the last paragraph it is obvious that hev'eh™ is defined in some region
slightly smaller than €&, and can be made arbitrary close to & itself by

shrinking the constant p,.
The statement (i,b) follows from the fact that the coordinate

transforms hy, are polynomials of order less that 1-1.
To finish off let T be any generating function. Put T = heT'eh™

and we obtain in the same way as above

PP(hgeTohyt - T)lgr < P po-Hole < PT, P,

for p = 2,..,1-1, where & is some region in the x,x'-plane which is
determined by v; and 3 hyeT'ohy - T') = 0 since 3 py-pgp) = 0. We shall be
moe precise about €. First note that saying v' is defined in € is the same
astosay U is defined in €%, where €* is in the (x,y)-plane up to an error of

size 0(pl, 1) the region
{(x,y) e R&Z -3 <y<3/4, k-(1-y)/2| <2}

Let T2 (x,y)» (X.y), (where (y,y) = (~Tg(x,x), Tor(x:X))) be defined in #* <
RZ. Since we are close to the simple line as we wish, we may assume that #* ¢
€ and can therefore replace € by f. Iterating yields

(4-10) foPthoton - T)lg < oI T3 0t (4#p)KT ™ < (1+0)pT, 7V,

where t= 31 4. (4¥po)¥ is a constant independent of (¥, T), and can be made
arbitrary small if p, is small enough. It is clear that dl(heT'h™ - ') = 0 and

this concludes the proof., a

In lemma 8 we examined the effect that N'™ has on (v,T). To
complete the renormalisation N, we have to apply N* which maps (t,v[m]) -
(Aew[m]eA?, AeToA™), where the coordinate change A is designed to bring
(t,v[m]) into normal form. In the following lemma we shall determine A.
This is done in two steps. The first consists in giving the affine part A’, which
up to shifting in y-direction streches in x and y direction. In the second step

v gets ‘flattened whereby we need lemma 3.

Lemma 10: Let A = A, be as in proposition 7 and set &_ =4, , m=mn}, ¢ =
c[n], n=n(n) and o' = n(n+1). Then there exists a coordinate transformation
A {= Ap) close to affine and a constant s* (independent of (v,T), so that

(1) N =1+ mi%cn)-al-4By;
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(i) PAT" -t g = 0(4) for P=2l-1;
(it) JoAv*-volg=0(n) for p=2,..,1-1;
(iv) pltly=-o(n);
(v)  BW'lg=0(an);
where T* = Aev[m]eA?, ¥® = AoTeA? are the transformed generating
functions of U, T.

Proof. The coordinate change A falls apart into two parts, A = hoA/,
where A’ is affine. The affine part normalizes (v[m],t). Its Jacobian looks

in x,y - coordinates like

for positive numbers I, I‘y. ¥fe have in y-direction

(4-10-y) g [(mc+1)* + 0%y ) 1" = (mect)c + 0°(48meey ),
and in x-direction

(4-10-%) Ty = I‘g(c" + 0%(n2)) = m+ ¢+ 0%(B4mee, ).
Set (U,T') = (A'oToA"™, AeU[m]oA"™); we summarize:

(i) U is near to a shearing by factor one,

(ii) T is near to a shearing by c[n], and
(iit) U[m] is up to an error of size €2m close to a shearing by mc+1.

Hence
(x) U= A'“TeA"t is ashearing by one (up to anerror 0%(n'y), where 7', =

n'n+1)),
() T = AsU[m]oA'! shears by
c'= I‘xrg"[mc +14+ 0'(82'",) =[m+ct+ 0"(Bamce, )11 + 0%(36x8e ).
Thus, c' can be approximated by A, more precisely
(4-11) log c'A = 0%(45mce, ) < 1/2
and A’ transforms generating functions like:
T(%,X) » T(X,X) = (A'oToA")(%,X) = l'xl"q'l:(-l"x"x, ~[,1%') + const.(x+x),

where the constant expresses the contribution from shifting in y-direction.
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Similarly for v(x,x) = (A'eveA™). The p-derivatives of the transformed
functions are multiplied by a factor which is in modulus l"gl'xl‘P. We note that
the  v-derivatives turn out to be smaller by a factor Iy! that the
T-drivatives. This is because T remains untouched under the iteration of N",

Le. tu] =t for all u=0,...,m. Hence

(4-12-T) maxm’w:p pzbgk(":"'tm,c)l < rgrxl—psp,m’
(4-12-9)  Maxye e PNV -Vl < T, T, 1P,

for 1<p <1 We shall now determine the non linear part h of the coordinate
transform A. In lemma S put p = I‘gr‘xnp and identify the [y (conspiciously
the same notation). Statement (ii) of lemma 10 follows immediatly. It remains
to check the statement concerning T. Here we use that h changes the Taylor
polynomial of generating function to not higher than (l1-1)st order. In
particular, the I-th order derivatives of +* = hoy'sh™, T* = het'sh are the
same as these of +', T. More precisely (with the constant t from lemma 39)

(i) M3Xyelj+k=p 'az_bwk('[""'oo,c)l s rgrxl-p(ep,m + tT[P) if p<l;
(u) max“[,j-&k:l laZDUk(T.'TCO,c)l < rqrxl'lel,m.

For the sake of completeness we listed (i), it is necessary to persue only the
second case. Put q'; for my(n+1) and estimate &, with the assistance of

(4-1) from lemma 8. We find
(4-13) My s (mec)0 0L + @(mZen)In

To evaluate the factor (m+c“)rgrx‘3 we need (4-10-y), (4-10-y) and (4-11).
Firstly

(mﬂ;-l)rx-l <{m+A_)A + 54m°52,m + 45c32,m <1+AA_+ 108mcez,m.

Furthermore we use the property T,* ~ 4, I';* ~ A more precisely, we
collect from (4-10-y) and (4-10-y):

Ty 2= Tytet + 08012 = [imec e + 0%(3(mecing) ]
= c{m+c?)? + 0%(3cn,) = 1A + 0%(4eny).

From the last two estimates we gather

(M+8_)T T, 73 = A_1A(1+488_) + 0%(121mCep ),
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Y < cAlTA_TA(1+AA )T,
m L

and
for a constant
C=Cp=1+ (.p(mzcn) + 121mce, o + BAmce, ,m)I‘x“.

Since e, < 9(msct)ny, the terms in brackets are all of size mémn and
henceforth there exists a constant £* > 0 so that £=¢; < 1 +£*mZn.

To verify the statement (iv) we shall do a closer ook at the factor
(1+4A_). For that purpose introduce renormalisation indices n. If m{n],
mln-1] are large numbers, A =4; and A_ = 4;_; will be close to zero. In the
case where m[n] increases fast enough for n- co (at least like n® for some
8 > 1/2), the product T[;., (1+4;8;_;) converges to some finite value for n -
co. However this need not necessarily to be true, and in particular is not true if
the rotation number w we are dealing with is of constant type. A priori we can
only say that (1+4;4;_{) is at most 2, since 4; maycome as close to 1 as
one may fear. This, however happens only when m[n}=1 and m[n-1] is some
large number; then 4,y ~ m[n-1]*, & ~ 1 and 4,,; is less than 1/2
whatever m[n+1] happens to be. This argument shows, that subject to some
fluctuations, the products T[ i (1+4;4i_) can be estimated by setting 4;
the inverse of the golden mean % = (1+y5)/2. Hence (1+4;8; ) < (14379
except in the case just described. If P = log (1+372)/log 3 (which is less than
1) we have (1+37937F < 1. The gist of this is the statement (i):

Tl.l £ ml—4-p'r“.

To level out the fluctuations which are caused when in the continued fraction
expansion of ®w when m[n] of too different size are too near, we should
additionally to ¢ introduce one more constant b =b;. As we pointed out in the
last paragraph, the product Tlocicn® remaines close to one for n e N; in
particular is unformly bounded (e.g. by 2). For clarity we shall ignore this
fact as we already did in the statement of the lemma.

In the last paragraph statement (iv) Jolt®] = 0O(n) was proven.
Statement (v), [PW*] = 0(a7'), follows immediately from (4-12-v).
Furthermore, the non linear coordinate transform h brought v tclose to an
affine shear, i.e. Mv"-vg);; therefore RV -valid = o(fo!v*P = o(an), p =
2,..,1-1, and hence statement (iii).

It remains to verify satement (ii), that the derivatives aP('t'—'tW)
are of size 0(4) for p = 2,..,1-1. Recall (4-12-1): PBY(T-Tx s,r‘gl‘x‘zes‘m,
this in conjuction with €5, <qmmn, where §, ¢ are constants independent of m
and n. Without going into detail we use the property I', ~m ~ &A™, Fy~cC~
A_1. By lemma 8 we have cm?n = 0(1). Combine these estimates in the order
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€pm = U(n'p0"mP'2), n = 0(me, ), cm?n = 0(1) and one finds 11'me‘1 = 0(1),

which by far satisfies lap('t'-'l:m’c)l = 0(a) for p=2,.,1-1. Hence the lemma.
0

Remark: Let h= hp..ohy (where I iseither 1 or 1+1) be the nonlinear

part of the coordinate transform A and denote by v[i] the generating function
of hy for i=0,.,I' Then it follows from lemma 9 in conjunction with lemma

10
Porolilf < pI P < I, 1P,

For the non linear coordinate transform h: (x,y) » (x,4) = (x + F{%,y), y + G(x,y))
in the x,y-plane we collect (one uses the implicit function theorem to compute

the derivatives of F, G) the following inequalities
foPrll PGl < (1+87)pr P! < (148°)T [ Prypyy

Y p-=1,..,1-1for some constant t* > 0, independent of (v,T) but depending

on & Inparticular £+ 0 for t-0, i.e. if p, goes to zero, where p, itself
depends on ©®. Hence * can be made arbirtary small for 8* small enough.

Lemma 11: Suppose (v,T) is a normalised pair defined on (€F), Then the
renormalised pair Ng(v,t) is again well defined in (€9, commutes in J*.

Proof. We consider the composition
v[us1](x,x) = v[u)(x,x") + T(x",x).
The stationarity condition for x, ¥, X' is
~(x-x"-1)/(uc+1) + (x"-x)/c = (e N2)-
Regrouping yields

(4-14) x-% = 1 - (2"-x)(u+1+c1) + 0%(10c(u+1)2n5),
=% = ((x-x") - 1)(u+c?)? + 0*(10c(u+1)n,),

where we used ¢, M S(u+1)n, which was proven in lemma 8. Let [su,,l,_,
Su+1.+] e the range of x"-x'. Clearly [So,-+ S04l = [max(-243, -3c/4), min(243,

2c)], and from (4-14) we derive inductively

Syet,s = MIn(243, 2¢, (ry,, - 1){u-1+ct)? - 10cun,),
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Sy~ = Max(-243, -3c/4, (r, _ - 1)(u-1+c™)* + 10cuny),

for u=1,.,m, where [ry- rys] is the range of x-x" (with the notation
introduced for v[u+1] = v[u]et), for which we obtain (also from (4-14))

Pye = 1= sy (urlec?) - 10c{u+1)?n,
Py-= 1 - Sy(uslec?) + 10c(u+1)2n2,

where ['"o,-v"o,+] =[1/4,3). For u=1 we find

s34 = min(2y3, 2¢, 2¢ - 10cny),

s, _ = max(-243, -3c/4, -3c/4 + 100112).

U,
and

ry, = min(1 + 3c/2 - 20c4ny, 1 + 443 - 10c47y,)
ry,- = max(1 - 4c + 20c4ny, 1 - 443 - 10c4n,).

By shrinking the constant 8* which we introduced in lemma 8 we can achieve
in particular that (i) 10c(u+1)2n, is arbirary small, and (ii) ¢ 2 1-i, where
L > 0 (independent of n) can be made arbitrary small. Thus we can assume
that ry, > 2, and ry_< -2. It is not too hard to see that r,, is monotone

increasing, i.e. ry,y 2 Iy, andsimilarly ry,y <r, for u=1,.,m-1. Hence
v[u] is well defined for x-x €[-2,2], u = 1,...,m.

To equation (4-14) we add 2x' = (x"+x) - (x"-x') and obtain
(4-14) %% = 1 - (X-X)ue2+C1) + (x"+x) + 0*(10c(u+1)°n,),

Since u 1s at least 0, and 100(u+1)2112 is arbitrary small, we see (without
further elaborating) that the range of x+x' is at least the range of x"+x". Hence
v[u] is defined for [x+x]<4 ¥ u=1,.,m.

Finally, let v[m] be defined on {(x,x) € RZ [-x|< 2, [+x] < 4],
If [Tz {3 then it is clear that A'ev[m]eA™ 1s defined on # = {(x,x) € RZ
k-x] < 243, [k+x|< 4). (We neglect the transform h since its effect can be
estimated in terms of c{u+ 1)2112, can therefore be made arbitary small by way
shrinking @*.) Futhermore, it is clear that € c A'(#) and § c A'(€) (since 3 <

2/3/3).

The condition [ > 3 causes a problem in the case a large
m{n-1] is followed up by a small mn] = 1. In that case we have 4, =
(1+85.9)* ~ 1, where 4., ~ m[n-1]' is nearly zero. We discussed this
problem in lemma 10. The same argument shows that y3 is a good lower bound

for | except when '  ~ A = (1+A _,)' ~ 1. Inthat case we replace § bya
somewhat smaller region and one renormalisation step later we return to the

full size ¥.
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It is clear, that v[u] and T commute in {(x,X) € RZ k-x]| < 2,

k+x]< 4} ¥ u=1,..m, and therefore, A'sv[mleA'? and A'sTeA'! commute in
f.

By making the constants ©* small enough we can achieve that the
effect of the non linear coordinate transform h on the region € is arbitrary
small. We shall abstain from elaborating this fact, and note only that we are
entiteled to replace A' by A without having to change the statements. Hence

the lemma. 0

Proof of proposition 7. Iterating the statement (i) of lemma 10, we find
m(n) < €M, #F1n(0),

where € = Tlocicn 8- Lt ©% <(S4x64)1 be a constant so that 1+s%@* < 354,
say. Tighten the hypothesis (i) of lemma 8 in a way, so that m[n)?m[n-1]n, <
@ is satisfied. Hence €, tsless than /¢ ¥ neN. Set & =1-4-f-x, then
8> 0 since o is supposed to be strictly less than 1-4-§8. Then

m{nJ2cInInn) < e minlZc[nln(n) < ¢,6* €M, 5n(0),
because m[n}x[n] =< eM,X by hypothesis (i) of the proposition. Since M,
increases at least exponentially, for instance M, 2 3“"2/2 (since we are

allowed to assume &4 < f3' ¥ i e N, see lemma 10), the right hand side
decreases exponentially fast like const.3™/4 for n- co. Hence, the product

€, = Tocicn®i < €xP Xpey 6" min]c[n]n(n)

converges to some finite value €*, €, < €". (One can give an upper bound on [ od
that does not depend on (v,T) but on @) We get the convergence resuit

n(n) < €* (oM, 5L
In particular, to meet the condition m[nFc[nlny{(n) s @* for n =0, we set ==
o*(€*m[0)%c[0])*, dependingon T, and w. Set © = @°(&¢,2)", and using
hypothesis (i) of proposition 7, m[n}2m[n-1]©*'M,"* < 1, we obtain
m{n]Z%[nInyn) < m{n)2m[n-1}€*¢,=M,+*F1 < m{n}em(n-1]6°6"'M, ™ < o*,
which is exactly hypothesis (ii) of lemma 8.

The rest of the proof is devoted to verifying the assumptions made
in lemma 8. To check (i) we need proposition 5. Hypothesis (i), commutativity of
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v and T, wasdone in lemma 11. Hypothesis (ii) is exactly the statements (iv),

(v) of lemma 10. Hypothesis (iii) coincides with statement (iii) of lemma 10
(which was achieved by the non linear transformation h). Finally, proposition S
(iv) is exactly the statement (ii) of lemma 10. This altogether verifies
hypothesis (i) of lemma 8. This and statements (iv) and (v) of lemma 10
(smallness of the 1-th order erivatives of v,T) imply hypothesis (iii) and (iv).
This completes the proof of proposition 7. a

The next lemma links the growth of the M, to the Liouville
exponent of w.

Lemma 12: Let A, and M, be as in proposition 7. Then, if w has Liouville
exponent 7, i.e. mn] < &M%, for some constant & < co (which depends on

c[O]).

Proof. Define o, = q[n]M,*, where q[n+1] = m[nlgln] + q[n-1], are the
denominators in the convergents of w. We derive inductively (recall A, = (m[n]

+ 8p-y)
Oney = MINJopA, + Op_1Bp8y
s [(1+a,/min])? + (1 + mn]/A, )] max(op op-p)s
that is &y, < max(c,, 0p.y). If we put ¢® = max(cy,0,), then qln]s o*M, for
all neN. Itis known {(cf. Hawkins - Schmidt [2]), that:

() bm[n] <b,_, <b,(2+m[n]), where ®,=g[n] - wplnl}
(i) b,y <qln)*<b,_(1+mn)Y), for nz2

By definition of the Liouville exponent, for a positive C: B,z Cq[n]™1"%. Itis
b, > Cqln]~1-¥ > CM,"1-¥e* 177,
and on the other hand
b, <b,_;mn]* < q[n]'m[n]? < M, *m[n]".

The last step follows from the fact M, < g[n]. Hence m[n] < &M, ¥ with & -
Clo*1#y, 0

Remark: ¥e cite the convergence result of proposition 7 in the form
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() ¥1-4-F) < (€*n(0))¥(1-+-Bm -7,

and combine it with lemma 12, m{n] < &M, ¥. Hence
m[n]n(n)¥(-4-P) < g*,

for all ne N, where & = ®(€*n(0))"V(-4+-P) is a constant. We shall use this
formula in the next section frequently.

3. Invariant curves.

Lemma 9. The pair (U,T) possesses an invariant, Lipshitz continuous and
transitive curve p of rotation number .

Proof: We shall do the proof by 'pulling back’ cycles, a method which was
introcuded by D. Rand in [7]. First a definition: A cycle for (U,T) is an orbit
segment p = {pfiJ e RZ ieJ} under & (see section 2 for the definiton of X&)
with pli+1] =&(u[1]) for 1 <i <|u} where JF={1,2,...Ju]} isa numbering
and |u] is the lenth of the cycle (i.e. the number of points). As this definition
suggests, a cycle resembles an invariant set when we look at some limited
number of iterations of & In the following we shall construct cycles with
increasing length and the idea is, that they will converge to an invariant curve
p. We begin with a cycle for {(U,T,) which consists of two points. Out of this
we construct a larger cycle for (U,_;, T,-) and inductively for (UyTy), for i
= n,...,0, the length of the cycles increases at least exponentially fast with i
decreasing. We refer to this procedure as ‘pulling back’ of cycles. wWe always
get eventually a cycle for (U,T). As we increase n, the length of the pulled
back cycle for (U,T) will increase at least exponentially fast, and converges
as a set to a lipshitz continuous curve p, which is invariant under %.

Let L, R be the left respectively right halfplane tn X,y -
coordinates, and define @=|u nL| and b=|u nRL Then we shall say p is of
type @b) for (U,T). In the following we count the y-axis {(xy) € R% x = 0}
alternating to L and to R. If Ni(U,T) has a cycle of type @b), then (U,T)
has one of type (b+ ma, 8), namely

P = A u Ujpgyem UIUIA B n R),

as a set, where R = AL plays the role of the right half plane. The notion of
‘right’ and ‘teft’ half plane cannot be taken so literally as it was introduced in
section 2, because the coordinate change A which has a non linear part maps
the y-axis ¥ = {{x,y) € RZ x = 0} in general to some curve close to Y but not
onto itself. In the sequel we will neglect this subtlety. There is a unique
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numbering that makes p™ to a cycle. Introduce renormalisation indices and let
Hpaey  De a cycle of (Up,,,T,,y) with Lipshitz constant L,,, then p, has
Lipshitz constant L. Let Q = [gy Ay.Ao'(®), which is a single point
because @ is compact, and construct a sequence of pulled back cycles {p(i) €
RZ 1 €N} of (UpTp). Put Q= Ap..AQ We start the construction of (i) =
Roll) with (i) = {T;1Q;, Q;}, which is a two cycle. The Lipshitz constants of
ui(i) are bounded by Am[iln(i), for some constant X\ (since the non
linearities of U, T; are estimated by such an expression), or, due to the remark
to lemma 12, we have k(i) s an(i)I-¥(-4-P) (replacing A by AE*). The
constant X shall be determined shortly. The cycle p,(i) (i-k) - times pulled
back will be denoted by (i), k = 1,...,0. Drop the index i, so that L(i) now
reads § and let us assume } < An(K)I-¥(-4-F) nholds true for k = i,...,n+1,
for some n < i. For the induction step from n+1 to n the Lipshitz constants
change as indicated in the following diagram.

pht DAY DU,ul, Osu<m(n]
by rn 2> I"n S |,

For the first estimate we need that h: (x,y) » (x+F(x,4), y+G(x,y)) (without
introducing an index n) is near to the identity transformation, in particular
Jorl, oG] < (1+t')l'g',,rx,n”n2(n), because of the remark to lemma 10. Hence I",
< hyy + (14T, 4T inp{n), and for the second step one finds Iy < Ty )Ty T
The two inequalities combined yield

[ < Tyl ynhhey + (148)0(n) < (4714, + 1)n,(n)1=¥A-4-P),

{3 is the golden mean) where we used that rx,n"rq,,, is less than 3712 (for
almost all n e N, except in that special case discussed in lemma 10) and the

fact that t* can be made arbitrary small by chosing ©* (i.e. @) small enough,
here we made t* <171/4- 47172 For the last step in the diagram we get

(5-1) k< T[1 - (minlelnl(1 « 0%(Bepupuf(m)) + 1)1 + €240

(Under an affine shear S: (%,Yy) » (x+sy,y), s> 0, derivatives transform like

dy/dx » (dy/dx)/(1 + sdy/dx).) For @ and = small enough (depending on A,
but X does not depend on © and =) we can achieve that

(mnle[n)(1 + Beppyafm) + 1)y s 178,

that is, the denominator in (5-1) is bigger than 5/6. Expand (5-1) into a
geometric series expansion cut of f after the second term. Hence

L<To[1+ (875 (mln]eln](1 + By ) + 111+ €2 a0,
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For @ and = small enough, (assuming X > 3%) the coefficient of "2 is in
modulus less than

2x(6/5){m[n]c[n}{1 + 68%) + 1 )M ¥(-+P s 473 - 1,

using €, nXn) < 2minlny{n) < 6* (because 1 + Cp((m+1)zcn) <2) for ©
small enough). The same argument in conjunction the remark made to lemma 12
provides €, qrofn) < 28%,¥(-4), and furthermore

] < [4 ,/3(’-3/4 S A+ 280 2*;/(1-4—}3)]1-l 2(,,)1-1»’(1—4—}3)_

For X large enough the factor 4y3(371/% + X1) is less than 318 and
furthermore 37178 + 201@%,¥(4) < 1. This determines the constant X and

proves that the Lipshitz constants }; are bounded uniformly for i - co. The
pulled back cycles p{i) as sets form a nested sequence: {j(0}} = ... ¢ {p(i)} c
{u(i+1)} c ... . It remains to show that the limit set p = Ujeo {p(i)}
transitive, i.e. that the closure of 1, is an interval in R. Define

k(i) = max {l‘nxg—nx';l: (8,8) € p(i)xp(i), m,& and m,8§ are neighbours on R}.

Since all the Lipshitz constants are uniformly bounded, to prove that there are
no'gaps’ in y, it1s sufficient to show that k(i) goes to zero for i - oo. Drop

the index i, and we deduce for k,,;-+ &, O<n<i,
k, < kn,lrx,n"[l + 20 (m{n]cn] + 1)]
By by, D' [1+ 2671740+ D)(min]cln] + 1)ng(n)¥/0-4P)]

The second factor in the squared brackets is less than 3174 - 1, say, provided
® is small enough (so that 2(31/H.1)e® < 3% - 1, substituting
men(n)!-¥/1-4-B) py @®, where we used the remark to lemma 12). Hence k,
< Ry, 8714, since I, s (almost always) less than 1~1/2, Hence ko<klg"f4
converges at least exponentlallg fast to zero for i- oo, since the starting &;
are bounded by 2, say. This concludes the proof that p 1s transitive. That p
has under & rotation number o is clear from the construction. 0

Fix some renormalisation index n, set (U,T) = (U, Ty), c=c[n), m
=m[n), m =n(n) and h for the non-linear part of the coordinate
transformation A, Before moving on to the construction of the smooth curves
we shall prove the next two lemmas.
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Lemma 14: Let y(x) be a y-times differentiable, real valued function on some

interval J< R Set ¥ = max;q g (B y(x)ly and let y = yoh, where h = hype...o
he (I'is either 1 or 1+1) is the non linear coordinate transform introduced in

lemma 10. Let »[i] be the generating function of h;, i = 0,..,lI. Then there
are constants 6%, ¥, > 0 so that

B, 'yl < 874y + Prto[0]] +... + PF1o[1]D,

for r = 1,..,y, whenever Jr*1v[0]] +...+ P™*o['f<6% r=1,.,9, and ¥ =<
Yor

Proof. We shall prove this lemma separatly for each of the
transformations h;, i = 0,..,l', which together made h. Let v(x,x) be the

generating function of hy.
we use the chain and product rules for differentiation and get a for

3,7y'(x) an expression similar to the one encountered in (4-8) of lemma 8.
Recall that h: (x,y) » (x,y), where x' = mU(xy) and (y,4) = (-vy4(%,%),
vgy{%,x)). Hence (where M(q,t) stands for the binomial coefficient

9!/ ((q-t)t))
(5-2) 35 =3+ D pcqer 2 osssrq Lostsq BBUVq a1, (03)24) 92

where $,%5 are sums of monomials of the form T g« dxi[b](aqx')ag, for
integers ifb] 2 2 for which }:1% i[b] = r-q. The implicit function theorem
applied to Y = -vielxx(x,y)) yields d' = -vy4(%,x)*. Furthermore, by
Lagranges' formula,

0,108,578 = T gpeiqs) BLbL WA NQETT*1y)

If wz 1 itfollows by the chain rule that there is at least one derivative "y,
w* > 1, which is multiplied with 3ibF¥ 1y  This means that t=0 1is the only

summand that is 'linear’ in dy. Hence there exist polynomials 2 ,(y), B ,(0)
= 0 with positive coefficients, so that

Idxi[bl(aqx')agl s 1+ By (2))

for b = 1,..,5. Observe in{5-2) that t =0 is the only term which is ‘linear in
dy. Furthermore, .5 is trivial (= 1) onlyif s =0, but this is possible only
if @ = r. Hence there 1s a polynomial 2*(y) with positive coefficients and
which begins with quadratic terms in , so that

R, yl = Byl + ora o
¢ Yosqsr Dsssrq PP 15 (1 + Vi) + 2o,
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Given some x > 1, then there exist positive constants 6®, Yo so that
'aer'I R A 'vnl,ols

whenever R¥s*lo) < 6*/1 for g+s = 0,...,r and ¥ <¥, Now choose positive
", ¥ so that x = 3141, we repeat the same argument for h, instead of Py

and 50 on. This concludes the proof of the lemma. o

Lemma 15: Let y“(x) be a real valued, j-times differential function defined
on some interval J™ c R, and let v[u] be the generating function of some
Ulu]. Set ¢ - max.y iYL~ and suppose mey™ <y, for some small
constant ¥, > 0. Then

Byglull = 1 + 6'uZen « ucy™ + B(O'ulen + ucy™),
B,fglulls  ouZn + ucy™ + ®(O'uZen + ucy™),

for r=2,..j, u=1,.m and a positive constant 6, where Xp) is a
polynomial in p without constant and linear terms, and where x = glul(x’) is
the function determined by the implicit function theorem out of y™(x) =

-Violul(x,x).

Proof. Recall that up to some constant v[u] = (x-x-1)2/(2+2uc) + remainder.
The proof is by induction on r. We shall begin with the first derivative. In that
Case we get (write 9 for the differentiation if there is only one argument)

aglul(x) = -vy[ul(, XM vogul(x,x) + Y~ (x)]*

= [(uc+1)® + 0%(3(u+ 1)) J-[(uc+1)* + 0%(S(u+1)m5) + 3y~ (x) ]
=1+ B6'uicn + ucy”).
for a constant &', where ®(y) is a positive polynomial of the form ¥+ c,42+
03!3 + ..., Without constant term and where the linear term has coefficient 1.

In the last estimate we used ¢, L 9(u+1)n,, which we obtained in lemma 8. By
way of differentiating ag[u] once more, r = 2, we obtain explicitly:

3%g[u] = -[vy[uldglu] + v, ful]-[vpefu] + 3y~ ]!
- V11[U][(V3o[u] + 629~)3Q[U] + Vz;[“]]'[vzo[U] + 3U~]'z

= By (uc+1)) + (uc)'o(un)[(uc)? + B(y (uc+1))]% = By (uc+1)),
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for u=1,..,m, where we used that glu] =1 + 2(e'u2c11 + ucy”). As doen here
we shall in the sequel drop the arguments (note that 3, on v[u] acts like
(3g[u])3; + 3,). For simlicity we use the same symbol ¥y) for polynomials
that are in fact different but are all of the same form, the one given in the last
paragraph. For the step from r-1 to r we obtain inductively:

(5-3)  8%glu) = - D geser g Br-1,5)[07 15w, [u]I0 v pu] + 3y~

In case r-1-s > 0, the first factor involves at least third order derivatives
and is henceforth O(un) (by virtue of lemma 8). If r-1-s = 0 we use the
approximation  vyy[u] = -(1+uc)* + O(un). The second factors in (5-3)

decompose into
3T woolu] + YT = Ty cres [Voelul + 3y~ 11T 1q 35w pgfu] + 3y™1),

where the integers s[t] are at least one and Xlstsq s{t] = s. Using the fact
voolu] = (1+uc)? + O(un), for u=1,...,m, the denominator is estimated by

[vpolu] + 3y~1791 = [uc(t + O(uZcn) + B )1 = Ouc)t,
and for the product we derive
"]ng, as[t'[,,zo[u] + 3U~]” < ]TlstSq [oun + 9]
= (6un +¥7)4
for a constant 6. We collect the error-terms from the last two inequalities

and find that the resulting term is of size O(uc(€'u%cm + ucy™)9) for g = 1,....
The second factor on the right hand side of (5-3) therefore is of size 0(6'u3c2n

+ulcy™), whereas (5-3) itself is to estimate like
forglul] = [(1+uc)* + O(un)10(O'u3c2n + uc ™) = B(S'uZcn + ucy™),

for u=1,.,m, where @ isa polynomial of the same kind as those above. Here
we used the assumption that ucy™ is bounded by ¥ ¢ This proves the lemma.
O

After these preparations, we shall prove the main result of this section.

Proposition 16: The invariant curve i is a graph of class CPLPSNEZ, for |
<y-1=[1-4-p-1].
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Proof. We extend the notion of ‘pulling back' to curves that interpolate cycles
similar to those constructed in lemma 13. (The interpolated cycles have to
chosen a bit different from those in lemma 13. This is to get uniform bounds on
the higher derivatives of the initiating curves. We shall show at the end of the
proof, that the pulled back curves converge to p.) The curves will not have an
invariance property apart from the fact that each contains a set which is a
cycle. The idea is, to show that the pulled back curves x(i) are uniformly
smooth for all derivatives up to y = [I-3--¢]). By the theorem of Arzela -
Ascoli the sequence (or a subsequence, to be more precise) converges
uniformty in C¥! to a limit X, which here coincides with .

Fix some index i€ N and set Q% = (0, -3;,(veT)(0,0)), where
(v,T) are the generating functions of (U;,T;). Unlike to the situation in lemma
13 we begin the pulling back with the two-cycle {T;1Q%;, %}. Furthermore, to
this set we add the point U;'Q*;. These three points do not form a cycle but they

will grow up to one, since we identify
UpgImli-100A, 1719% = A 0195

Note, that lengths of the intervals (m,T;'Q%, m&Q%), (mQ*, mu;Q*)
uniformly in n are bounded from above and below. This gives readily uniform
bounds on the derivatives of the curves interpolating the initial points {T;Q"%;,
Q%;, U*Q":}. We connect these three points by a C®-curve X; (which stands for
Xi(1)), so that
(i); Ujx; and T;x; join Cl-up in the point Q%
(i)); U;x; and x; joinupin Q%;
(iii}; Ujx; and X; joinupin Q%
It is clear, that the conditions (ii); and (iii); imply (i);.

Let us demonstrate the induction step n-1 » n. Suppose we got the
curves ¥, for K =n-1,.,i. Put Xp,q= {Ypq(x): x € J} for some interval J.
The coordinate transformation A, brings X, 1o X n = ApXm1oA,?! =
{(xy"()) € RZ x€J™}, for the new interval J™ = I, ,"J. The new curve ¥,

is pieced together from copies of x™, as follows:
Xn = X 0 Y Uogycnn) Unlul(X " 0 R),

where R’ plays the role of the right half plane, i.e. R = AL, where L
represents the 'left half of the plane’ one renormalisation step before. Having
applied the transformation A, the joining up cendition (iii), reads: Tox™,
and X7, joinup at Q% = A YQ%,,,). The points Ufu+1)(Q"), Upful(T Q") are
to be identified because Ufu+1] = TyoU,[u]. Furthermore, by (ii)y,y it follows
that Upfu+1]x™, and Uu]x™, join together at the point Uful(@®). Hence Y,

is a smooth curve in CL
To complete the induction, one has to verify the joining up
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conditions hold true for ..

(iii), By condition (iii),,, it follows that ToX " n and X7, joinup at Q*,, since
Uner = ApeTreAp™;

(i1), By the construction of the renormalised pair it is clear that all iterates
T,,k are well defined for k running up to m[n]. Thus, repeatedly
applying (iii), we get that T,Mrh™ and ¥™, join up at Q*. From
condition (ii},,; it is known that T,Mkyx~  and x~, join up at Q%
and therefore U x™, and Y™, joinup at Q° ,

(i), As we pointed out above, this condition follows from (iii), and (ii),. "

In the following we shall estimate the derivatives of the y,. Set
(il = PByy(x)y, for  j = 1,..,y. As indicated in the diagram the s are
affected by the various operations we apply successively to Xn+t'

Dht DA'? DU,[u], 0<u<m[n]
uml[]‘] S99 g“"[j] e g“'n[j] B o o S S un[j]_

For the first step we prepared lemma 14. Let us assume t,,[j] < ¥y and the

coordinate transform is close enough to the idendity, i.e. qu,5[0]| to |vq,5[l‘]|
< 6" for qes = 1,..,j+1 (where 1 is the number of transformations (either 1

or 1+1) into which we split h in lemma 9). Hence

(5-4) ¢ [j] < 31%w, 5] |n].,,1,0[o]| tou t lvm,o[l']l)

The second step in the diagram involves the affine coordinate transform Ay
(5-5) LA TR )| 9 g

We shall proof that w[j] < ®n(n)!-¥(-4-P), for some constant ®& > 0
whichshall be determined below. To begin with, we note that the distances
between the initiating points  T;*Q*;, %, U;1Q*, are by construction bounded
from below (and above) uniformly in i. It is therefore clear that #[j] <
®n(n)-¥(-4-B), for a positive ® and all j=1,..y, i€ N. This combined
with (5-4) and (5-5) yields

W] < Ty )T 81 4( @0 (ne )W 0-4P) o+ oy o[OT) .en + o0 ol V)
< Tyl o @ 4n(ne 74P o (Le2)n, (),
where we used |°j+1,o[i]| < I‘x’n-l'rgﬁqm(n), i =0,.,l', as was pointed out in

the remark to lemma 10. Using the convergence result of proposition 7 in the
form n(n+1) < n(n)a,1"4-B one finds (observe that 1/(1-4-8) < 1/2)
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u" i) s @B alA, A 5B an(n) 4B (Le2)ny, (n)
-6) < @B g8, VR 4 (12 (n),

for constants B, < (1 + dm[n}2m[n-1]n,) to level out the error we made by
replacing Ty, by 4, and Tyn bY By ‘Ap-1, where ¥ > 0 is some fixed
constant. we used furthermore the assumptwn j < 1-3-B-7, i.e. AP« 1,
We multiply (5-6) on both sides with mc. Hence

mctt'”,,[j] < ""31/46"_‘ Cmn(n)l-"/(l-4—ﬁ) + (l+2)mcflj+l(n)
< WDV 412/ (4Pl s g /2,

where we used that (1+2)cmny, (n) < ¥ ~o/2 if ©° of lemma 8 is small enough
(8® <¥™/(2(142}¢;,y)), and where we replaced A, ,c by 1. The small error,
flog &,_sc| < Umzcnz, for some constant ¥ > 0, is swallowed by the B,, where
¥ will increase slightly. Let B be an upper bound for the B,. Since 27 <
1-4-$, by shrinking =, we can achieve that n(n)1'27/("4‘p)<('hm) W o/2,

whenever 1(0) < Z. Thus
mew™ [j] < ¥

It is now the turn of & [j] to get estimated. In the following we

will drop the renormalisation index n. Set ¥ = X, and let (v,T) the
generating functions of (U,T) = {U,T,). We call ¥"*[u] c Y the piece of curve

that is created using U,Ju):
X"[u] = U ful(x“oR) = {(x,y"[ul(x)) e R% x € J*[ul}

for the interval J*[u] = m,x*[u). (Remember ¥ = (X" nR)u Uo<u<m{n] x"[ul). we
shall use generating functions to express y*[u](x), that is

g*lul(x) = voylul(x,x),

where (x,x) € J"xJ*[u]. The first coordinate x = x(x') has to be determined
from

g (x) = -vlul(*X)-

By the implicit function theorem there exist functions glul: x = glu}(x) for X
€ J*[u]. The derivatives of y®[u)(x) = v¢;[ul(x,x) lead to an expression similar
to (4-8) of lemma 8 and to lemma 14, namely

WUl = D ocqsj 2 osseig Lostq B(, )V 5,111 (D WS,
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where ,j‘%s[u] are sums of monomials of the form ]Tlg,s 8i[b]g[u], for

integers i[b] 22 and Y4, i[b] = j-q. It was shown above that me” [r] =

meP Y ()~ =¥y for 1< < y=[1-3-B-y). We may therefore apply lemma

15. Observe

(1)  s=0 and q<j is impossible, because all j derivatives must act on »
if qu’s[u] happens to be trivial.

(i) (9,5) = (0,1) has the w-derivative wvy;[u] = (uc)? + O(un), which is
multiplied by a factor  $,%u] = 3lglu] = o'uscn + ucy™ + B(Ouen +
mcy™) and

(iii) all the others have #%Tu] = 0(6'u%em + ucy™ + MO'u%en + ucy™)).

Consequently

Biy*[ullys = [(uc)* + 0(un)1o(e'uZen + ucy™ + B(O'uZen + ucy™)) < ®mn

for all u=<m and a constant & > 0. Stressing the dependence on the
iteration index n, this gives w%[j] < ®'mn, (m[n] = m), provided the
hypothesis of lemma 15 is satisfied. As pointed out in the remark to lemma 12
we have m[n]n(n)¥(-4-B) < & and therefore

u,/j] < @& n(n)l-¥(1-4-P),
for all u = 1,..m[n]. In particular, set ® - ®'&*; and the induction

hypothesis, w[j] < 8n(n)1-¥(1-4-p) is satisfied.
Finally, convergence in C® has to be verified, since our initiating

points Q’i differ from Q;, the ones used in the lemma 13. We had to do that
different choice to get uniform boundes on the derivatives of the smooth curves
between m,T,Q%, n,Q% and m,U;'Q". The distances are uniformly bounded
from below (and above). This is not any more true if we replace Q°; by 2

Define
(i) = sup{inf{E—;I: SEAp..Agp}: € 1)}

for k =0,...,i and ie N, where |-| is the usual RZ metric. From the remark
to lemma 10 it is known that Jo2v[i]] < I‘x,k"rq’kn(k). Y i=0,.,l'. Assume that
® and = are small enough so that (1 + 2¢, 0 (K)N1 + Z[0]] +...+ PZ0[ID
is at most 43 Clearly, #;(i)<1 forall i€, and furthermore we deduce

$(1) < (1 + 265 (I 1 (1 + PZO[0]] 40t RZOLUIDI1 (1) S 38y (1),

where we used that T ,* < g* (almost always). Hence, $o(i) decreases
exponentially fast for 1 -+ co. That proves that the pulled back curves x(i)
converge in ClWpshitz1g o
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Lemma 17: Themap % actson p Ci*tshit_conjugate to R x -+ x+w mod
1 on R/Z, for all j<y-1=[L-3-p-1] = [1-4-B-¢).

Proof. The proof goes parallel to proposition 16. Where appropriate we shall
refer to the previous proposition and will not go into much details. For every i
€ N we will construct a map Ii): mx(i) » I = [0,1]. As before, the i), ie
N, are bounded in CY and converge to u in C% Thus B(i) converges for i-
oo in the CH-topologg uniformly to some f np-1=[0,1]. If we set =
berr,, B! = ydr?, then B is the transformation for which & is conjugated to
R, ie. DokoB'=R .
. We start the construction of i) by choosing a B(i): m,x;(i) -
Ii(i) = [0,1], which is y-times differentiable (or C%®) and satisfies the three
glueing up conditions of the previous lemma (i), (ii); and (iii); Suppose we
got B for n<k =i, then b, is constructed as follows:

DA,?
3 [ = rx,n'llmlv
S99 hNn-

Iml
hml

The maps on I, corresponding to U] On X, are translations

V[ul: 17, = I*fu] = I, - "0l - [T aRKm[n] - u),
x - x -7 Ll - 7 nRKmIn] - u)

for 0 <u<m[n], where |.| means the length of the interval. The intervals
I*[u] = I* [u)(i) are uniformly in 'all indices’ contained in a compact subset of

R. Define

B(x) = (Volulob™ peUpful (%, yp(x)) for x € % fu] = 7 x*[u]
Ba(x) = h™ (%) for xel™,

This defines B,(x) on the interval I = "y U Upcyemfn) I*slU]- PUt B R R2
for the linear map with slope c and constant part 0. For h, determine the
parameter ¢ which minimises @[0] = o, %o, )b where the normison Ip. In
the same way we set & [j] for JoX¥, b, )} Then the diagram holds

Dht DAY Dm“'n_) vn[ulou“’eun[u]-l]
0,,,[i] > o [j]o-- & [j] -5 )l

On the right hand side one reads the maximum over 0 < u < m[n]. To execute
the last step we shall need lemma 15. For the sake of completeness we will list
the steps that that are necessary to verify the hypothesis of lemma 13. Suppose
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&[j] < Wn(n)-¥(~4-B) ror some constant W > 0 which shall be determined
below. Analoguously to proposition 16 we obtain under the action of h? the
following estimate

(5-7) W11 = 314w, (1] + RZ0[0]] +...+ BZLUID
provided @,,,[j] <¥, Similarly for the second step one finds
(5-8) 0" ] < W I, gL

It is clear that W&[j] < Wn(m!-¥(1-4F), for all j=1,.,y, ie N (and W big
enough). Thus we are lead to

W[l < rx,,,i-lm“‘*n(nq)l-i/(l-‘*-ﬁ) + (1+2)n,4(n).
This, n(n+1) < n(n)a,4P and A VI-3F¥<1 leads to
W i1 s MR A () FAB) - (1e2)my, (n),

for constants B, which in the following (3s in the previous proposition) will
take account of errors which are dominated by an expression of the form 1 +
dm[n]}2m[n-1]n, The last inequality will be multiplied with mc. Hence

mel™ [j] < S WB 3 n(n) 1 2/14+-P) s 5 /2,

if @ issmall enough (as it was given in proposition 16), where we used Am
<3712 (for almost all ne W) and cn(n)¥/(-4-B) < . By shrinking = we can
achieve that S*WB 3 1/4n(n)1-2¢/(-4-P) < y~/2. Thus W [j] satisfies the
hypothesis of lemma 15: mcl™ [j] < ¥" .

Back in proposition 16 we had  y*[ul(x) = -volul(x,X) (dropping
the index n), from which one finds with the implicit function theorem x' =
glul(x), for functions gfu]: J » J*u). The derivatives of g[u] are estimated
in the same way as it was done for g[u]. Thus we are led to apply lemma 15.
The conditions of lemma 15 are satisfied as we have seen in proposition 16. We

obtain

B, glull < 1+ duZcn + ucy™ + Houden + ucg:),
P glulls  6uZen + ucy™ + B(OuZen + ucy"),

for r = 2,..9 and some polynomial ¥ that begins with quadratic terms. It
follow for the derivatives of the composition h™eg[ul:

AW oglu]) = 31 crer (BY™)ogTul)Lu],
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where y{u] is a sum of products T[ e 905lgTu), with ifs]2 1 and 3jc.q
i[s] = r. In particular, ®[u] containes higher than first order derivatives if t
<r. We therefore get

Br(h~egulj *[u] SOIr]+ X e 0 [11(8UZ%T + ucy™ + B(O'uZen + ucy™))
and therefore
W [j] < (0B /48, n(n) =¥ (4P« q(n))(1 + Wmln]n(n)),

for some constant W" > 0. We may assume that the constants B = 1 +
dm[n)2mn-1)n(n) are less than 31/8 say (if ©* (and hence ©) is small
enough). Thus BAl/4A <3718 since A, <3172 for almost all n e N (the
legitimacy of this replacement was discussed in lemma 10). We estimate

m[n]n(n) roughlyby 6 and set
W= (1. W) -4 1o

Then obviously the induction hypothesis #[j] < Wn(n)!-¥/(-4-F) is satisfied.
The By(i) map p onto intervals I4i) whose length are uniformly bounded
from above and below. By an affine streching I4(i) are normalised to the unit
interval. Denote by B(i) the new functions. We have therefore proven that the
sequence Ii) is contained in a compact subset in C¥ and thus by the theorem
of Arzela - Ascoli converging uniformly in c¥! (if necessary by passing to a
subsequence) to a limit function (x) whose (y-1)-derivative is Lipshitz. It
follows from the construction that T = fomr, is the transformation which

realises the conjugacy Jo%-B* =R, O

6. Proof of the theorems.

Proof of theorem 3. We combine proposition 7 and the lemmas 8 - 17. The
size of the neigbourhood of the simple line depends upon the Liouville exponent
¥ and the Liouville constant C. All that remains to do, is to check that
Condition (i) of proposition 7 agrees with the bound on the Liouville exponent.
By lemma 12 &,;* < &'M,,;% for a new constant & ~ & (to level out the

effect caused through replacing m{n] by A, 1)and M,y = 4,'M,. Therefore
A, +1'26n"11(0)Mn+ l‘kﬁ-l < 3’*2Mn+121+4+ﬁ—lén-l = E"ZAH—(21+5+p—l)Mn2“+4+p-l

< .'-_‘!‘7*27*5’1Mn"(2‘£*5"ﬁ'1)M,,2”‘*4*13".
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We see that poposition 7 (i) is satisfies if = < 2'e®'-7-2v-B (8/2 instead of

© because we used A's instead of m's) and if
2¢2-4(1-7-p)-(1-4-p) < 0

which holds true exactly if y < y*(1) = (1-7-8)/4 + ¥ [(1-3-p)2/16 + 1/2] DO

Proof of theorem 1. Let & be alift of ¢ and set

(U, ) = (290Rp0] sal1lRel1]) - (3, 3MI0LR),

Clearly this is a pair of commuting twist maps and furthermore we can be
normalise them. This can be done fo instance by an affine coordinate transform
A® whose Jacobian has only in the diagonal non zero entries. Thus we set

(UpTo) = (A®UPATLATT A®).

By theorem 2 there exists an [L-3-B-y] - differentiable curve that is invarint
under (UnTqy) and which has rotation number o' = [m[1],m[2],...]. And
therefore @ has an invariant curve in the class of smoothness with rotation
number w© =[m[0],[1],...]). This concludes the proof of the theorem. [
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On Gibbs' and equilibrium states.
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Abhstract: Ruelle and Capocaccia gave a new definition of Gibbs states on
Smale spaces. Equilibrium states of suitable functions there on are known to

be Gibbs states. The converse is discussed in this paper, where the problem
is reduced to shift spaces and there solved by constructing suitable
conjugating homeomorphisms in order to verify the conditions for Gibbs
states which Bowen gave for shift spaces, where the equivalence to

equilibrium states is known.

Let (Q,T) be a Smale space, then for any continous function F: Q-+ R
the pressure P(T,F) can be defined by the variational principle
P(TF) = supp(h(p) + ofF dp),
where p runs over all T-invariant probability measures over Q. Here

hy(p) is the measure theoretic entropy with respect to T and p. A
measure, for which the supremum is attained, is called an equilibrium state.
For every Holder continuous F there is a unique equilibrium state if (Q,T)

is topologically mixing (cf. [1] Theorem 1.22).
Let d(.,-)=dg(-,-) denotea metricon Q. Amap y from some open

UcQ into © is called conugating if d(TXep(x), TK(x))+ O for k| »
uniformly tn x € U. Actually, as one may derive from Lemma 4, the distance

decreases in a uniformly exponential way with a properly chosen metric.

Definition 1: (cf. [2] and [4).) Let F be a Holder continuous real valuea
functionon Q. Aprobability messure v Is called 3 61bbs state lor F 11
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ufToy g dv = yyfT dv,
where
0(2) = exp D yez(FoTKoy(2) - FoTK(2)),

for a1l bounded and measurable functions T yW >R andall co})ji/gaflhg

fiomeomorphisms y: U » yU), where U= UW s an open setin Q.

Equilibrium states for F are also Gibbs states for F. This is proven in
Ruelle's book [4], theorem 7,18. The converse, there referred to as an open

question (cf. [1] p. 170), will be demonstrated in this paper, i.e.

Theorem 2: Ler (Q,T) e a Smale space and F € C&(Q), ror 6 € (0,1), I
e, F Isatolder continous real valued function over Q with exponent @,
and let v be a Gibbs state for F. Then there is a numbér teN such that
VI invariant under Tt and is an equilibrium state for Ft = ZOsrd FoTl

on (Q,TY.

The proof is by a sequence of lemmas. We begin introducing a Markov
partition on the Smale space (Q,T), which gives rise to a shift space (Zp,0).
Most of the proof will be treated on this symbolic level. In order to see that
every Gibbs measue on (Q,T) lifts in a well-defined way to one on (Zp,0) it
is shown that the boundary set of any Markov partition has measure zero.
This is in Lemma S first done for T-invariant Gibbs states and then in
Proposition 6 generalised for non-invariant Gibbs measures. For
constructing conjugating homeomorphisms on (Zp,0) an obvious method
exists, which will be used at three stages in this paper: first in Lemma 7 to
estimate the measure of cylinder sets; secondly in Lemma 9 to show that the
wandering set has measure zero , and finally in Lemma 10 to prove that Gibbs
states on shift spaces (Z5,0) with © acting topologically mixing, are
Invariant under ©. This together (Proposition 11), provided o s
topologically mixing, verifies the definition Bowen gave for Gibbs states (cf.
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[1], Theorem 1.2), for which it is known that they are equilibrium states on

(Zp.0). By standard results the same holds true for (Q,T). To justify the
construction of conjugating homeomorphisms on (Zp.0) we begin in Lemma 4
by proving that they can be ‘pushed down' to conjugating homeomorphisms on
Q).

Fromnow on v denotes a Gibbs state for F on (Q,T).

Let x be any point in Q, then there exist a positive number & and a

number A € (0,1), such that

d(Tiw), Ti) s ealbqyz) i { uzeVv*(8) for j20,

{ yzeVv (8 for j<O,

for a positive constant L and where V*,(8) (V'x(8)) denotes the stable
(unstable) manifold through x cut off at distance &. The constant £ can be
assumed to be 1, d(-,-) is then an adapted metric, which always exists.
Furthermore T is expansive i.e. there exists a positive constant &, such that
for two points x,x' € Q, with x # x' there is an index n € Z for which
d(TN(x),TN(x)) > €. There exist Markov partitions with arbitrary small
diameter (cf. [1]). We choose one, {R[j): j € A} over an alphabet A, such
that diamR[j] <&€/2 for all j€ A . The sets R[j] are called rectangles. Let
A be the corresponding transition matrix and define the shift space

Ia={z: 2={2j: i €2}, Al2j2j,1]=1 forall ieZ},

which, endowed with the metric  dy(xy) = Ak, where k= max{j: xj = y;
for al  [i| < j}, is a metric space. The surjection m: Zp » Q is Lipshitz
continuous with constant, say, L. See also [4] p. 130. The two-sided shift o
on Zp isdefindby o(2) =2 where 2'j=2;,1 forall 1€Z, andcovers T

on Q: Tofl = me0. We will need .

Lemma 3. et g, €1 e expansive constants, then
(1) Given &>0 andlet Mg be the maximal number, such that yy' € Q
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with doluy) <& implies do(TIY).THY)) <eq for al7 [ < Mg, then Mg
3 asd goproaches zero
(i) Given M e N and Jet 8\ be the smallest number, such that . € Q
with do(Ti(y),TiY)) < €y forall [ <M inmplies do(yy) <8y, then 8y

20 35 M9 .

The proof is easy; see e.g. [1].

Lemma 4. /e ¢: U 5 gU), for Uc ZpA  be a uniformly continuous
conjugating homeomorphiism for o, then there are a finite decomposition o
U=Uj Vi and conjugating homeomorphisms wi: Vi = n(U;) » yi(V;), Vic
Q, ror T, whichare projections of ¢ onVj, ie. YT =Toey on Ui for
all 1.

Proof. Thereisa n"eN, suchthat (9(2))j=2; forall [ij2n* and ze
U. Otherwise there would be a sequence {zK: k € N}, such that (tp(zk))i[k] +
ifj for asequence [i[k]» e as k. Or, dx(oiKly(zk), oilkl(2K)) -
1 for all k €N, but this contradicts the fact that dx(cleg(2), 0i(2))

converges to zero uniformly in z.
By uniform continuity there exists a & € (0,1), suchthat ds(xy) <&

implies ds(p(x), p(y)) < AN°, Now set
n = max(n®, [log & /log A + 1]).

If for two points xyeU wehave x;=y; for [ij <n the same is true for
their images under ¢: (9(x)); = (9(y))j for all [i| < n. Select a finite number
of points {yl: 1€d}cU, with [J<co, andset Ui={x %=y Vv [ji<n}
n U. A good choice of this set ytelds U = |Jieg Uj-

The rectangles R[i], R[j] are said to be related if R[i]n R[j] + 2. Denote
by 9*R[j] and ©°R[j] the forward and backward oriented parts of the
boundary of  R[j], and set OR = Uje A (8*R[}] u @7R[j]). Call the entire

boundary set K = Jy ez TK(BR).
The components of two points in T*(K) c Z5 always denote pairs of
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related rectangles. The same is true for their images under p if we

restrictto U; for all i€ J. To see this choose any two points xx' e U; for
which n(x) = m(x'), then R[x]-] and R[x']-] are related for all je Z. By
construction of U; their images have the same components for lil <n andso
Rl(p(x));] and RI(p(x));] are again related for all je Z. Since
do(Tletrep(x), Tlotre(x’)) < diam(RI(9(x));] v RI(Y(xN;])
<E,
for all je Z, we conclude, that mep(x) = ep(xX) since € is an expansive

constant (cf. [3]).
Define on Vj = m(U;)  yi: x - mep(m(x) n Uj). The sets V; are not

necessarily open, but contain open subsets. The maps y; will turn out to be
conjugating and injective maps on Vj. Set B =[1 + [log(e/(4L))/log A|] and
take for each 1 a finite cover {Ujy: k € Xj} of Ui with [Ki| < co, where
Uik = {x: xj=2K; v [if <n+B} for finite subsets {zK:k € X} chosen as
before. It remains to be shown that the maps y; are continuous. This is done
for each Uj k. the regionbeing extended to the closures of the m(Ujy) 1n
m(U;).

Choose any two points x,x' € Ujx with y=m(x) and y = m(x'), te. yy
€ Vi = (cl. m(Uj )) n m(U;). Now we apply Lemma 3 (1) setting eqg = €/2 (and
restrict to 5, so that Mg > n+B). From the construction of the Vjy it is

Clear that Tlomrep(x) and Tlemep(x') travel under T through the same

rectangles for |[j| < n+B. Estimate
dg(Tleyem(x), Tloy;em(x))
< L{dg(olog(x), 0i(x) + d5(0i(x), clep(x))} + dg(Tleni(x), Tlom(x))
sy ez se

if n+p < < Ms. Hence do(Thyi(y), Thyi(y)) se forall [ <Ms andwe
conclude using Lemma 3 (ii) with €4 = ¢, that do(yi(y), ¥i(W)) < &' where
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¥ . .
8> 0 as & approaches zero. Moreover, y; is a continuous homeomorphism

onto the boundaries a("(U\',k» n a(n(um)) n m(Uj) for all k,1.This gives us
the maps y; defined on m(U;) in the desired form. Obviously they are

conjugating.

Lemma 5. /£ V' isa T- invariant Gibbs measure on Q , then Vv*(K) =0,

where K = Ukez Tk(aﬁ).

Proof. Suppose v*K) > 0, then so is V*OR) > O and thus either
v(NienTI@*R) > 0 or v ienT (87R) > O . Assume the first case
holds, and let K* = [Viiy TY(3*R). Denote by B(2) the ball around 2 with
radius C. The set K* is invariant under T and is compact; hence there is 3
point 2z € K*, such that v'(Bg(z) nK* >0 for all § > 0. The points
conjugated to z are dense in Q and for each of them there exists a
conjugating homeomorphism defined in a neighbourhood of 2 (cf. [2]). So
thereisa weQ anda & >0, so that Bog(w) nK* = &, and a conjugating
homeomorphism y defined on Bc(z) for a positive G, such that y(z) €
Bs/2(w) and y(Br(2)) c Bg(w). Set D = y(Bg(2) n K*), then we have v*(D) >
0, because v* 1s a Gibbs state. Since y is conjugating, there exists a n'€
N such that d(Tloy(y), Ti(y) < & for all ye Be(2) and li| 2 n'. So
dist(TYD)K*) < & for K® {s invariant under T. But by construction
dist(DK*) > 8, hence TD)nD =g for all 12 n. The collection {Ti“'(D): i
€ N} consists of pairwise disjoint sets, which have, since Vv* s
T-invariant, the same, positive measure. Hence, the measure of their union

diverges, which contradicts the normalisation vi(Q) = 1.
b

Proposition 6. For 2 Gibbs measure v on (QT) it holds v(K) = 0.

Proof. Assume +v(K) > O, then there must be an integer j so that
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v(T}(3R)) > 0 and thus either V(TIB*R)) > 0 or v(TIB™R)) > 0. Suppose we
have the situation j =0 and v(3°R) > 0. Then define a sequence of new
measures
V= 1 Sogicn VT

Since v is Gibbs it is clear that veT! is Gibbs as well for all 1€ Z. By the
convexity property (cf. [2]) all v, for n € N, are Gibbs measures. Let v
be a limit point of {v,: ne N} and n[j] be a subsequence in N so that
Vn[j] converges to v*. For the backward oriented boundary 9°R c T(0°R)
holds, and therefore v(3°R) < vn[j](a‘R). We may treat "R as a compact
set and have therefore 1im sup; vn[j](a'R) < V*0°R), whichis < v*K)=0

since "R c K.
a

The function F, acting on Q, induces a Holder continuous real valued
function f = Felm on Zp, which is exponentially decreasing with o = A
(0,1). Let

vary f = sup{Jf(x) - f(u)}: xyeZp suchthat xj=ui V [t <k}
and set
Nl = max(ltlo. supez o vary 1)

Restricted to Q\K, the map m* is one to one, that is, by Proposition 6,
m* is defined v-almost everywhere. Define the measure j on Zp by u(v)
=01if VcmyK), and p(V)= p(V n a*(Q\K)) = v(n(V)) for all other Vc
Za. Then y is a Gibbs state for f, since v is one for F and all bounded
and measurable (test)functions T on X can be written as T = T om
almost everywhere with ™ bounded and measurable functions on Q.

The cylinder in Zp determined by the string X, ...%p will be denoted
by U(xa, -.Xp) and for convenience we will write H(Xg, -Xp) = H(U(Xs,

X b))

C e

Lemma 7: Let f be a function on Zp which decresses exponentially rast
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with o € (0,1) and let o be topologically mixing, Then there is a constant
C* € (0,00) s0 that
(1) H(X1s .Xpn)eXp(MP - >y crq m] fooK(x)) € [e~C" e+C"]
forall xeZp and meN. Theresl number P s called the pressure of
f.

Proof. To verify (1) we will construct a sequence of sets of conjugating
homeomorphisms on Zp. Since o is supposed to act topologically mixing,
we have AP > 0 if n is large enough. Let N be the smallest such integer
and let
T°Im] = {(31,.a ) 3j €A, Alaj,ai,11=1 V¥ 1€[1, m)}
for the set of all m-strings. The pressure of f is P = My 300 Py, Where
Pm = m*log Zpy,
and
Zm = 2 aeg*[m] €XP SUP{Zke[1,m] fook(2): 2i=2; V 1e[1,m]}.
Let us first summon a technical lemma.

Lemma 8: 77ere exists a number b, such that [Py, -Plsb/m  foralt m
21

Proof. Set

Z"m = 2 2¢9(m] €XP 2 ke[1,m] fook(2),
where #[m] = {x: 0™(x) = x, x € Zp} 1is the set of all m-periodic points.

Then, using the maximum matrix norm ||| = max; j |A[L]l, 1t follows

ZmeN S ZmlANPexp(2N]flks ).
Furthermore

Zm % 2 monep(2ltl/ (1-00).

Let cq = 2Jff}(N + 1/(1-00)) + 2-10gjAN|l, then these two inequalities combine to
[109(Z" neNZm™)| < C1. As can easily be seen, the pressure may be defined by
limy, m™log Zy, and as well by limy, m*log Z¥y,, which is the same. From
[4] corollary 7.25 we know that |log Z*p, - mP| s cpt™ for constants ¢ > 0
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and te(0,1), thatis [logZ¥y,N-MP[scp+NP. Nowset b=NP+cq+

c2.
0

Recall that AN > 0 since o is assumed to be topologically mixing.
Choose any x € Zp and me N and fix them throughout the rest of the proof.
Now we construct a collection of conjugating maps, which are all uniformly
continuous and which dependon x and m.Set U={z 2j=x; V te[1,m]}
and choose any string w € 9°[m). Now we define a conjugating map ¢
depending on w. Set for all ze U
() (@) =wi forall ie[1,m]

(1)  (9(2))j =2 for all i€ (-co, -N] U [M+N, +c0)

(i) set Uy ={z zj=(p(x))j=w; V i€ [1,m]}, and take a covering of U
by JA2 (not necessarily non-empty) sets: U(st) =Un {1 z_y=s,
ZmeN =t} for all st e A The sets  Uy(st) are defined
analogously. For their measure we obtain
(2) H(U) = X s tea, MUGED) = 2 tea MUk Uy (s,
where UgK(s,t) are at most AN disjoint sets of points with the
same symbols on the places in [-N, m+N]. Altogether they cover
Uy(s,t). Pick out the set Uw"(s,t) which realises the maxy
u(ka(s,t)). This determines the components of ¢( - ) on the places
with indices in the two intervals (-N, 1) and (m, m+N).

The map ¢: U(s,t) » Uw"(s,t) for all s,t € A is therefore completely
defined. It s clear that ¢ is uniformly continuous on U(s,t) for all ste A,
and conjugating, but it is not a homeomorphism. On U(s,t) the map ¢ is
finite but at most (JAJJAN|)2 to one and may therefore be decomposed in at
most (JA}]aNI)2 homeomorphism. Moreover we derive from (2):

(3) H(p(LY) 2 (AtjAND-2peuy).
Finally we put

S[m] = {all ¢ as constructed above with w running over the whole 3*[m]}.
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Let 3= {12, .. s[m]]} be a numbering of S[m] and call the elements g in

1t by an index. Set
gi(x) = exp Dz (foakop i(x) - faok(x))
and consider the following weighted sum:
(4) e"kae[ 1,m] fook(x) ZjGU {Qj(x)
XeXP ke(~c0,1)u(M, +<0) ~(fookey j*) - fook(x))}.

This is the same as

2 jed €XP2 ke[ 1,m] TooKop ix)
= 2 je exp(sup{ ke[ 1,m] fook(@): 2 = (9j()) V ie[Lm]}+ i

where the remainder rj are estimated as |ry s [Iff(1 + 20(1-M)/(1-o0)).
The sum (4) lies therefore in the interval Zy[e C,e€], where c = |f](1 +
2/(1-)). Let Py, = m*log Z,, and set

O = H(Xq, X)) eXP(MPpy = D kel 1, m] TooX(x)).
Observe that replacing Py, by P transforms 6y, into the expression to the
left of (1). We use (4) to get rid of the factor mPp, in the exponential.
Instead it appears a summation over |}, expressing the sum over all
m-strings in the definition of the pressure. So we end up with

Om = P(Xq,.-.X m)dizjeﬂ dz,jgj(x).
where dq e[e~C,e€], and
02,1 = €XP2 ke(~eo, 1)u(m, +00) (fockep i) - fooK(x)) € [e~C eC]

for all jed, with ¢'=2/(1-c). For all yeU and jeJ we estimate

I

flog(gi(x)a;w)*)

S Zke(-oo,l)u(m,mo) {'fooko(p ](X) - fodk(X)' + 'fodko(p ](g) - f.ok(y)l}
+ Tkeq1,m] {If0%ow1(x) - fookon ()] + [feak(x) - feok(y)l}

< 2N + 2/(1-00) + 1 + 20(1-aM)/(1-0x)).
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et ¢ =2f|rfl(N + 1 + 4/(1-00)) and it simplifies to

(S) "~ hoglaixigiw )l s ¢
Define the characteristic function of U
Tm*W) = {1 if yj=x forall ie[1,m],
{ 0 otherwise.

Then wehave U={y: yeZp, Ty*()=1).For 6y we may write
Om = 2 je3 d102,j0i()uf Tm* dp
€ z]eg UIg]me dp[e‘C'c"'c., eC+C'+C.]

- the last step since inequality (5). To evaluate the integral on the right, we
remember u to be a Gibbs state for f. According to the note made when
defining the conjugating maps, we decompose for every j the cylinder U
Into a finite number of sets ULk.f], te U= Ukegrj) Uk.Jl where gl i)
are homeomorphisms and JIj] < (JAMJAN)? for all j. Hence

253 U 95 Tm™ a1 = 3jed Skegid Ulk,j1f 95 Tm* dp
= 2jed 2keglj] JTm™op* A

where the integrals in the 1ast line are taken over (p]-(U[k,j]). This expression
lies in the interval [(JALJAN]-2, (AlJAN]DZ). To see this, observe that the set
{o)): wfj] = ((9x)1, - @j(Npy). J€ 3} is just T°[m], thatis Zp = Uje
Ug(j} But U]'eg ¢;(U) does not cover the whole space Zp, since there was
a choice in (iit) in defining ¢ This and inequality (3) provides the lower
bound. The upper can be explained by the possibility that the maps §; have
to be decomposed in Pj) < (JalAN? homeomorphisms. It is therefore
proven that 6y € [6C, eC] with C = ¢ + ¢ + ¢ + 2:t0g(JANJA] a constant
independent of x € Zp and me N. Finally we replace Py, by P, which is
compensated for by increasing C to C+b, with the same b as in Lemma 8.
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Set C*=C+b and (1) is proven for all x ¢ Zp and meN.

Lemma 9. 7%e wandering set has measure 2ero.

Proof. The lemma is proven for the shift space and clearly holds then in the
case of the underlying Smale space as well. Let A be the transition-matrix.
It may be brought into the form

[A1,1 A2 - Agtl

l 0 Az’z - l

I J— 0 Attl,
where A;; are irreducible rixri-matrices. The alphabet A splits into
(Aq, ....Ap), with |Aj| =ry for all 1. The subshifts Zj generated by A
over A are topologically transitive and decompose into finitely many
subshifts Z;q, on which a power oS of the shift acts topologically mixing.
We renumber the shifts Zjq to call them now Z for ie[1,t] with t' 2t
Let 0 for convenience now be called ¢ andlet N be the smallest number
s0 that Ai’iN>0 for all i€[1,t] (with the new A, ) and denote by P[i]
the pressure of f on Zj. Points x = (xg)kez 1n the wandering set of Zp are
sequences with elements x, not all in one subalphabet A; but in several;
however the indices i[k] of Ajfk] to which the x belong never decrease
as k increases. Suppose the wandering set has positive measure, then there
exists a subset U(C) c Zp, € = (5.0 p with positive measure and for which
U(C) n U(e™(C)) = & for all m e Z\{0}, where U(C) denotes the cylinder in
Zp which is determined by the string €.

Consider the cover U(C) = |J U(C4-1.0)., where Cg_q runs over all
symbols with A[C,_1.051=1.1f {a€ A and §i 1 € Ay for 1<1 andif
H(€a-1.8) > 0 then we replace € =¢[0] by §[1]=Ca-1.8 (again j(Cy-1.0)
stands for p(U(C,_1.0))); otherwise we use for Ca_q any other symbol so
that 1(C5.1,0) > 0. Repeat the same procedure for Cp,1 and increase the
index of the subalphabet if possible or leave it the same. In that way we get
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Cl2] = ¢[1],8p,q with Cp € Aj and Cp,q1 € Ay, where j< [. Iterating this
process one obtains a sequence of strings ([i] of increasing length and
B > 0 for i e Nu{0). At any stage the elements on both sides must
remain in the same subalphabets, that 1s, there exists a number M > max(|a],
b)) and 1,j with 1<i<jst sothat {_, €A and Ck € Aj for all k 2 M.

Set C_M..CM=E and

UME) = {x: x_x € Aj, x¢ €A, for k>M,
xk=Ex for [K|sM and Alxyxg,q1=1 forall keZ}.

The same notation will be used whenever there are cylinders with elements
on the negative side restricted to A respectively .A.]- on the positive side.
By construction p(U™(E)) > 0 and
oMUME) nU™(E) = 2
holds true for all m € Z\{0). Suppose P[i] 2 P[j]. Fix m > 2M+1+N and
denote by {y[p): p e [1,p]}, for a number p, the set of all m-strings in Z;.
Let us construct conjugating homeomorphisms {gp: p € [1,p]}. Select an
m-string @ in Zj then PU™(E...0)) 1s positive, for all choices of ©
since p is Gibbs. The dots denote room for N-1 symbols. Decompose
U*E...8) = Un,n U'(NEM'0),

where T runs over all (2N-1)-strings in Z; and n' over all
(N-1)-strings in Z; Selectapair (n,n’) so that
(6) pU™(n,E.n'.6)) 2 cg™* pU™(E.....0)),
with cg = [AHaNHAZN|

Define gp for p<p andsetfor ze U*(n.E.n'.e):
(1) (pp(2)k = 2 for k € (-c0, -M-2N] u [M+N+m, c0),
(1) (9p(2k =2¢_m for k€[-M+m, Mem],
(it1) ((9p(2))-M-N.-- (P p(2))-M-N+m) = ¥P],
(iv) something fitting up in (-M-2N, -M-N), (-M-N+m, -M+m) and (M+m,

M+N+m), which will be specified in a moment.
Thus it follows for the Radon-Nykodym-derivative
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0g dgp/d(2) = Tyez (fookopp(2) - fook(2))

) Zke('w:‘M‘ZN]U[M'FN#‘m, ®) (fookep p(2) - fook(2))

+ D ke[-MM] (foak*Mop (2) - fock(2)
+Zk€(—M-2N.-M—N)U(-M—N+m,-M+m)u(M+m,M+N+m) f°°k°‘P p(z)

- DKe(-M-2N,-Mpu(MM+N) To0K(2))

+ 2 Ke[-MN,-M-N+m] (Te0Kepp(2) - fook+2(MeN)z)),

The first and second of these four sums are in modulus less than 4f]l/(1-),
and the third and fourth together are less than 3||ff(N+4/(1-00)). Put ¢ =
3|IfliN+8/(1-00)). By construction we made the sets Pp(U™(N.EN'.0))

pairwise disjoint, and furthermore
Pp(UT(1.E.1.8)) ¢ s™U™(E)),
that is, for different m we get disjoint sets. As pointed out in Lemma 7 part
(111), the fitting-up strings in (iv) may be chosen so that
HOEMU™EN) 2 ¢1*u(Upe[1,p] $pU (MENON),
with ¢4 = [A2JaNP. So we have for any z € U™(n,E.n'0):

HO™U™(E))) 2 ¢4 e Cp(U™(N.EN'0))
X 2 pe[1,p] eXP2 ke[ 1,m)] (fook-M-Ney ,(2) - fook+M+N2))

2 cq '1e-C‘P[j]p(u“'(n.g‘nl’e))exp{P[ﬂ _ Zke[l,MJ fook‘FM'l'wz))}
X Zpe[ 1,p] e"PZke[l,m] fook-M-Nog p(2)

The same argument as in Lemma 7 provides a more general form of the

inequalities (1), namely
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H(U™(E,...00exp{mPT] - Dyery m] Fook*MHN2)} € p(uENie-C*, e+C),
for 2 € U™E,....0). To see this, observe that the conjugating homeomorphisms
there are to be constructed in exactly the same way. The result for Zeta-
functions involving periodic points, which is cited in Lemma 8, works the
same in this case too, since the number of periodic points with period h is
the trace of the h-th power of the transitionmatrix, that is here tr(Aj,jh). To
evaluate the pressure in that case we choose only points which are periodic

in the components with index 2 M+N.
By following the argument after inequality (4) the summation over p e

[1,p] gives rise to a factor exp(mPp,[1]). Using (6) we end up with

HO™U™EN) 2 cpcq e=6~C dy p(U™ENexpim(PyliI-PIID],
where dy 1s the same constant as in Lemma 7. Finally, once more Lemma 8,
this transforms to

RO™(U(E)) 2 cg*cq te~C-C -Pay n(U™(E)expIm(PL11-PL{D]

2 Co"ci"e'c'c.'bd1 HE,

since we supposed P[1]-P[§] not to be negative. Summing up over m gives a
contradiction to the normalisation condition p(Zp) = 1, hence p(U™(E)) =
H(C) = 0, and therefore the lemma follows, since the wandering set of
(Za,0) is contained in the one of (Zp,0%). In case P[i] - P[j] happens to be
negative we construct the conjugating homeomorphisms replacing m by -m

and get then the lower bound for p(c™(U™(E))) in the same way as described.
0

Lemma 10: Lol p be a Gibbs state on (Zp,0), then it Is o -invariant, if o
acls lopologically mixing

Proof. Let 9[b-a] be the set consisting of all possible strings xj,....xp of

length b-a for abeZ and a<b.
Assume 1 not to be o-invariant, then there exists a set B ¢ Zp such

that |u(o(B)) - p(B)| > 0 and u(B) > 0. Suppose it is u(a(B)) 2 p-u(B) for a
number p > 1. By a covering argument we conclude that there must be a
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cylinder U(C) determined by the string ¢ = ..., Xg....X p (bold characters
denote the zero position), such that
u(E® 2 p-p(Q),
where C®=xj,.., X9,.,%} is the shifted string C. A partial covering of ZA
will now be constructed, and then it will be shown that p(Za) 2 ¥'p, which

contradicts the normalisation of p.
Let T be an even number such that
16Jlo*/2 < tog p,
and let us construct a cover of U) by cylinder sets of the form
U(B,n.C.n'.B), where BB e 3[t], n,n' € T[N-1). There are strings B, B, 1,
n' so that
ue N Bl 2 p-p(B.n.C.n.B).
One single * means the whole string is to be shifted. For the moment fix B,
B, m, m', and proceed to construct a pair of conjugating homeomorphisms ¢,
¢' as follows. Choose any string w € T[b-a] with = w,,.., wg....wp and
define for all 2 € U(B,n.C.n".B)
(1)  (p(2)j=w; forall 1e[ab],
(1)  (p(2)ij=2; forall 1e(-c,a-N]u[b+N, ),
(iii) any strings 6,6’ € T[N-1] to join up the ends in the intervals (a-N,a)
and (b,b+N).
Secondly we define ¢' on the cylinder U(B,n.C"M'.B) and set for all 2 in it
(1) (¥(@)i=(w"; foral i+1e€[ab),
(1) (9'(2); = 2 for all 1+1 € (-c0, a-N] u [b+N, ),
(iif') the same strings © and @' as in (iii) to i1l the two gaps.
We observe that ¢'e0op™ = 0 on U(B,6,0,6'B). Denote by x(Xj,.... XQ.-.X p)
the characteristic function of U(x,,..., Xg...X p)- Since y 1is by hypothesis a

Gibbs state we conclude for any x € U(B,n,C,n".B):

HUPX)) aN-rpors (9(X)) .- (9(X)) paN4)
= [X(OX))gN-grs (9(%)) 00 (9(X)) baNs-r) K
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= JXPXNaN- g, (X)) 00 (9(X)) pysrIo® EXPY ez ~(ToaKop - fock) ds

This leads to
(7)  n(B.6.0.0.8) 2 (BNLN'BY exp{Dkez -(fookeu(x) - fook(x)) - c},
where

¢ = 4ff|l-oT/2.
In the 1ast estimate we made use of the fact that

2; = %; = (p(x));
for all z € U(B,6,,6,8) and i € [a-N-T, a-N) u [b+N, b+N+T). The same
estimate holds on the shifted sets using ¢ For any y e U(B,n,C%n'.8)
(8)  u(B.0.6"0.8) 2 P(BNL N.B) exp{Skez ~(fookey'ly) - fook(y)) - c}
holds true. Set y = o(x) and (7) and (8) combined to give

H(B.6,w*,8',8) 2 p-u(B,6,0,0,8) expD ez [ (feaKop(x) - fook(x))
- (fooKey'so(x) - feokea(x))] - 2¢}.

Set M" = max(ja-N|, p+N]), choose M > M* and estimate the sum in the

exponential by

< DjaM {Ifeakog'ea(x) - fook*1(x)] + [feckep(x) - feak(x)]
+ [Zjij<M {~(feakop'oa(x) - fookep(x)} + foaM(x) - fool-Mx)|

and since we identify oop(x) with ¢'sa(x), it follows

< 2JffoM+T-M*/(1-00)
+ |-fooM-Log'ea(x) + feol-Mop(x) + feoM(x) - foal-M(x)|

< ZJtfhcoM+T-M"/(1-0) + ocM-M"-1),

This tends to zero as M tends to infinity. By the choice of T we obtain
u(B.6,0%6'8) 2 Yp-u(p.8.0.6'8)

for all w € ¥[b-a] and suitable 6,0’ € F[N-1]. The strings B and B' are

determined by the point x e U(B,6,(,6',8), and therefore only a part of Zp
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gets covered by varying w over the whole 9[b-a). Now we proceed to cover

in the second generation, whereby we partly cover the complement of what
was already covered in the first step. Let the strings B, n, { etc. now be
denoted with an index 1 (By, mq, {1 etc) and set {2 = B1.M1.01.0'1.8'1-
The cylinder U(C2) now gets covered by smaller ones, and again there is at
least one cylinder for which
H(B2M2.82°'2.82) 2 p-u(B2M2.82.'2.82).

where B2,B'2 € T[t] and np,n'2 € T[N-1]. For the second generation wop,
82, 6'2 we proceed as above. Call the union of all cylinders constructed in
the i-th generation Vi for 1€N, then we have VinVj=g if 14} Itis
possible to cover in this manner arbitrarily large subsets of 2. To make it

obvious we will show that
#CWU1<ign Vi) 2 0
for n- co, where [ denotes the complement in Za. In constructing the
cylinders on which ¢ respectively ¢ are defined we keep fixed the
(T+N)-strings at each end of w, and thus we select just one small cylinder
from at most  (JAMJAT*M)2 small cylinders. Their p-measures may be
compared, for example by constructing conjugating homeomorphisms. Since
J 1s Gibbs the ratio of two of them is at most
expl2flfll(T + N + 2/(1-00))].
This allows us to deduce a lower bound for the measure of V, for n 21,
depending on all the previous generations these subsets. If we set
= = (JAHAT+N-Zexpl-2-ffliT + N + 2/(1-00)],
which is a positive constant, we conclude that
#(Vp) 2 EpCWU1gi<n Yid):
for all neN. Since the V; are pairwise disjoint, we have
#(CU1gign Vi) = HCWU1gi<n Vi) - 1(Vp)
< (1 - E)pCWU1gien Vi)
Iteration yields
pCWU1gign Vi) € BV XL - -1,
and this tends to zero as n tends to infinity. By construction it is
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n(o(vi)) 2 ¥ p-p(vy)
for all ie N, and hence
Ho(Zp)) 2 p(oUsgignVid 2 Vp > 1
if n is large enough. This is impossible. In case u(o(B)) < p-u(B) for p e

(0,1) wereplace o by 0*, p by p* and proceed in the same way.

Proposition 11: Ler [ te & fuxtion on Zp which decrésses
exponentially rast with o € (0,1) and let o be topologically mixing If )
s 3 GIbbs state for | then it Is also an equilibrium state

The proof is areference to [1], Theorems 1.2 and 1.22. InLemma 7 we have
checked the conditions for a Gibbs state in Bowen's sense. Lemma 10 shows
o-invariance of y and thus it is an equilibrium state for f on (Z,0). Since

f 1is Hélder continuous it is the unique one.

Lemma 12. Suyppose a Smale space wlth & homeomorphism acting

lopologically mixing implies that a Gibbs stale for a given function has o be

an equiIliorium stale.
Let v be any Gibbs state. Then there exists a mumber s € N, such Iha.

Vv Is an equilibrium state for  Fg = refoe) FoT" o (Q,T5).

The proof is by Smale's spectral decomposition (cf. [1], theorem 3.5). The
non-wandering set of Q 1is a union of finitely many disjoint compact sets
QV, called basic sets, which are invariant under T and on which T acts
topologically transitively. Points which are conjugated lie always in the
same basic set QV, each of which is itself a union of t[v] many disjoint,
compact sets Q¥U on which TV] acts topologically mixing and where we

have THVI QYY) = QYU for all u e [14[v]). Each set QYU has positive

distance from all the others, larger than &, say. For any conjugating
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homeomorphism y definedon Uc Q there is
a(TktVIey(2), ThtVY(2)) < o,

for all ze U and where || 1s big enough. That 1s, ¥ restricted to Un
QYU maps again into QV:U. So we restrict to maps y acting only on QYU

replace T by THV] and F by Fy= 20$r<t[v] FoT'; then
10g g = 3jez (FoTloy - FoT1)
=Yiez ZOsrd[v] (FoTM+itlvLy _ FoTreitlv]y
= Sicz (FyoTtVDoy - FoTitIV])

If v is a Gibbs state for F on (Q,T) then for each v,u the normalisation of
v restricted to QYU is a Gibbs state for F, on (QVY,THV]) and vice

versa. Take s to be the lowest common multiple of the numbers t[v).

Proof of the theorem. It follows immediatly from the Lemmas 9 and 10
that v 1is invariant under some power of T. As noted at the beginning, the
conjugating maps as constructed in Lemma 7 give rise to a finite number of
homeomorphisms on (Q,T). Finally, it is well-known that an equilibrium

state on the shift space Zp corresponds automatically to one on Q (cf. [4]

Theorem 7.9).

We cannot expect v to be an equilibrium state on (Q,T), since that
would require it to be T-invariant. A look at the spectral decomposition as
described in Lemma 12 shows that this is in general not true. The measure v
restricted and normalised to QYU (if w(Q¥:Y) > 0) is clearly Gibbs and is
invariant under THV] but not under T unless t[v] = 1. But T need not be

mixing to have an invariant measure. We have
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Corollary 13: (i) A4 T -invariant Gibbs measure for a Holder continuous

real-valved function over a Smale space is an eqilibrium state,
(1) 7 T acts topologically mixing then, by Lemma 10, 8 Gibbs measure
for a Hblder continuous real-valved function over & Smale space is &.

equiiibrium state.

1 am indebted to Peter Walters for encouragement, advice and especially for

pointing out Lemma S.
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&n equibalence velation on shifts of finite type.

Abstract: On subshifts which are derived from Markov partitions exists an

equivalence relation which identifies points that lie on the boundary set of the
partition. In this paper we restrict to symbolic dynamics. We express the
quotient space in terms of a non transitive subshift of finite type, give a
necessary and sufficient condition for the existence of a local product
structure and evaluate the Zeta function of the quotient space. Finally we give

an example where the quotient space is again a subshift of finite type.

1. Introduction.

In this paper we are concerned with a special kind of equivalence
relations which occur in symbolic dynamics. The questions treated here arise
from Markov partitions of Axiom A diffeomorphisms (cf. Smale [7] p.777 and
Bowen [1]). For a small enough partition one gets a shiftspace and a projection
onto the original manifold where the diffeomorphism acts conjugate to the
shift. It is known that a subshift of finite type can be isomorphic only to an
Axiom A diffeomorphism over a non-wandering set of zero dimension. It is
therefore clear that the boundary set, i.e. the set of points whose pre images in
the shift consists of more than one point, containes essential information about

the structure of the non wandering set despite the fact that it has measure zero

for any smooth measure.
We begin this paper by demonstrating that it is enough to consider

strings of some certain length whenever we want to decide whether a relation
induces an equivalence relation on £, In the following five sections we
restrict to equivalence relations that have finite equivalence classes. In that
Case the quotient space can be described by means of a non-transitive subshift,
which has a partial ordering. Maximal elements with respect to this ordering
correspond to points in the quotient space. This formulation will be used in

section 3 to express the topology on the quotient space in terms of cylinder sets
of this new shift space. In section 4 we reduce each shiftspace with such an
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equivalence relation to the case where transitive points have no ofher
equivalent point except themself. In section 5 we shall give a necessary and
sufficient condition for the existence of a local product structure on the
quotient space. In section 6 we evaluate the Zeta function under the assumption
made that the equivalence classes are finite. It turns out, that in this more
general context the Zeta function can be evaluated by Mannings product formula
(see [S]). Finally, in the last section we give an example of a shift space, for
which the quotient space is again a subshift of finite type independent of the

equivalence relation.

Let (Q,T) be a Smale space (a compact metric space with an
expanding transformation and a local product structure; see [6] p. 125 ff, and
section 3) with metric d(-,-) and homeomophism T with expansive constant «.
Let &- {Rj: j €J}, for some index set J, be a Markov partition. Two rectangles
Ri and R]- are said to be related if they have non-empty intersection, write R;
~ R] We will say relation whenever we mean it to be symmetric and reflexive
but not necessarily transitive. Let A be the 0-1-transition matrix associated
to the Markov partition and set for the shift space

Iy = {(x)iezt Alxi%i] = 1 for all i€ Z}.
Define on X, the relation ~ as: x=xy ifandonlyif %~y forall ieZ. In
the case of a Markov partition with diameter of each rectangle less than ¢£/2,
~ is transitive and therefore an equivalence relation since for any two points
X,y € X, with x x y we have m(x) = n{y). This follows from d( Tke1(x),

Tkemi(y)) <€ ¥ k € Z using the expansiveness of T. The next lemma applies to

an arbitrary X, and relation on A. Let = [P,

Lemma 1: A relation ~ on ® induces an equivalence relationon Z, in the
above manner if and only if for any three Z,-words X g  Yooee-Uoo

Z_--2 Satisfying x;~y; Yi~2; Y lijsx, onehas o~ 2o

Proof. First let us assume that every tripel of strings that are long
enough implies transitivity of ~ on the sections cut off on ‘both sides’ by .

Then it is clear that x is an equivalence relation since the criterion applies to



any finite section.

Secondly, suppose ~ induces an equivalence relation x~ on Zp
and there were three words of length 20c+1, XoooeXoo Yoproloor  ZogeZix
satisfying x;~ y; ~ 2; for [i| < x but for which we have as well %+ 2o We
shall contradict the transitivity of ~. The strings are chosen long enough so
that a tripel (YoXw2) appears twice on the positive side, i.e. we can find
indices 0 sk <1 s o sothat (y,x,2) = (Yyxp2)). IHterating this loop yields
three positively equivalent points. The same argument applied to negative
indices and we obtain three points x,y,z € Z, for which x~ y=x z holds true,

but not x ~ z since we have by construction x4 4 24 Hence the lemma. 0

From this lemma we immediatly deduce the following result.

Corollary 2: Let ~ be an equivalence relation and suppose there are three
strings Xy..X|, Yp--Yy and z,...z; for some k,1, k+20<1 for which x; ~y;~
0

2 1=k,...,l holds true. Then also x; ~ z; for i=k+x,...,l-0.

2. A non transitive subshift.

From now on we assume =x to be an equivalence relation on Z,
Two strings X...x;, Ye..yy (k< 1)in Z, are said to form adiamond if x, =y,
Xy = 4 and a collapsing diamond if additionally x; ~ Y for i = Kk,.,L
Furthermore we will assume the equivalence classes in Z, to be finite, which
is the same as to demand that there are no collapsing diamonds. That is the
situation we are in, if £, is a Markov shift and the partition is fine enough (i.e.
if the diameter of the rectangles covering Q are less than half of an expansive
constant). We refer the reader especially to [1] chapter 2. To prove that the
projection m: X, » Q is bounded to one shows in effect, that £, cannot have
collapsing diamonds and 7 can therefore be at most ”2 to one. From this it
seems reasonable to turn the argument into an assumption, and that is what we

have done here. To verify that ~ does not collapse diamonds it is enough to
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check all possible pairs of strings with length of at most [EP+1. In particular,
as already remarked, the equivalence classes contain at most S elements.
Furthermore we assume Z, is topologically mixing, i.e. A" is positive for n
large enough.

Let &, denote the collection of the (unordered) n-element subsets
{31s-43,)} of &, which contain no symbol twice and satisfy a; ~ 3; for any two
Lj in [1,n]. Introduce an ordering on &, in the following way: {8003y} <
{bys....by} if there are admissible strings of some length me+1: xly..xi ~ with
xly = 3y, Xy =b; for i=1,..,n, and %} ~ xk for anytwo i,j in [1,n] and k=
0,...,m. This generates a decomposition of &, into subsets l,," for k= 1,..k,
in the way that for any two elements 2,2, in the same %X we have it both
ways o<y and §; <8, and in particular §, < £, For elements ¢ and § in
different In" we have either € <8 or § < if these two subsets may be
joined up at all (where we said < if < holds but not ). This ordering process
can be extended to the entire collection {&X k,n}. Two subsets &K & 1 are
either related (e.g. £ <3 for some (,5) e EKxE D), ie. K <F ! or & <
ln" for (n,k) # (m,1), or no element in ln" may be connected via some strings
in the described manner with & ! (or the other way round). In the last case
ﬁn" and !m‘ are said to be separated. Furthermore, it is impossible that there
are £t e &K and S e & ! for some (n,k) + (m,1), with & <§ < &,. The case
n=m is clear,solet n+m. Since §, <§, thechainextendsto §o<T ¥ <
§» which means that there are strings beginning in &, and returning to it. A
string that begins in g, on a particular element does not necessarily end up on
again the same element. Hence, a set of strings that materializes §, <8 < ¢, <
§¢s induces a permutation m on the elements of &, Some power of T is the
identity permutation and would imply collapsing diamonds since £y,8, on the
one hand and § on the other have different cardinality (because n+ m). For n

+ m we have thus always either EX < & 1 or & ! < &¥ if they are not

separated.
Consider {: k,n} as a new alphabet and denote it by €. Delete

all l,,k which may not be extended infinitly forward and backward, i.e. all

these elements for which all possible transitions forward or backward
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inevitably lead to a dead end (For the same effect one can also pass to higher
block systems). Notice that in a subalphabet & that containes at least two
symbols, every sumbol & may at some future time be followed up by it itself,
L.e. § <. Define a transition matrix C for the alphabet € by setting C[Z,2] =
1 if there exist I,-words [aiaj: i,j} of length 2 so that {a}=¢ and {3} -
S where £,5 e {&X k,n}; and C[£,8]=0 otherwise. This defines in the usual
way a (non transitive subshift) T of type two, where, with a suitable ordering
of €, the transition matrix C is of diagonal form

| C(1) o........ 0 |

| 0 C(2) 0..0 |

I — N
| Overereenns0 A(LF)]

for some r =ry We call the subshifts Zg;) the components of Z.. Among the

C(i) is one contains the transitionmatrix A somewhere in the diagonal. We call

that particular sub-C and the associated shift space as the principal component

of Z¢ Call € the subalphabets which determin the subshifts Zy4 ;) and
arrange the indices {decreasing, so that €; >¢j if i>j, or & and Cj are
not separated) so that &€, = & Accordingly the matrices A(k,1) are reindexed

A(i) (with A{0) = A). Observe .

(i)  that every subset of the form {ay,..,a,} with aj~aj forany i,j in [1,n]
appears in exactly one of the &;;

(ii)  the alphabet € is closed under intersections of its elements regarded as
sets;

(iii) the subshifts Zai) are topologically transitive if not empty (Such a
subshift is over a one-element subalphabet consisting of some £ for
which § <& does not hold true.);

(iv) there is an integer function (i) which denotes the cardinality of the



elements in the alphabet € ;, the number i) = ¥(i)-1 is the dimension
of &,

We conclude this section by listing some properties of 2. To
begin with, we define a matrix C™ of the same size as C and which has zeros
at exactly the same places as C. Let £ = {a},...,3p} § = {Dy,eesby} €lements of
€, the entries C™[,35] then are defined as the number of different sets of
2-strings of the form aib]-, 3, b]- € & that materialize the transition £ - &.
Here are some examples to illustrate C™:

C[{a,b,ch{a\,c'}] = 1 if ({a,b}oa, caC);
C[{a,b),{a,b'}] = 2 if ({a,b}>ad, {a,b}b";

Lemma 3: Let .8, beawordin 3. withall § inthe same subalphabet
Cy. Then there is exactly one set of related Z,-strings x%g...x%, S = 1,..., ¥(l),
with g; = {x1;,..., ()} and x5~ x5; for any two s,' € [1,¥(1)] and i = 0,...k.

Proof. we have to show that C™[g,5] is at most one for any two £ and §
belonging to the same subalphabet. Suppose the statement were false then
C7[8,8]12 2 fore some £,§ with € <8 <. Set ¥ ={ay...,3), § = {byyensby), fix
an ordering of the elements and select under possibly several transitions one
linking § to E. We end up having the situation § - § +» §, with two different
transitions in the first position (related to each other because they consist of
only two elements) together with a unique transition in the second place (fixed
once chosen). Hence C™[§,]2 2 induces on £ two different permutations m,

and T, There are integers k,l= 1, sothat mX= 7,'= 1 and by iterating the

loop & » 8-+ ¢ kl-times we get collapsing diamonds, since 1K= m,= 1 on

g. a

Given x in X, then we set (x> = {z: z € I, suchthat z xx}
for the equivalence class of x. Analoguously, we write <x); = [zi: z € <x)
for the collection of the i-th coordinates as a subset of & Clearly (x> is a

point in Z.
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Lemma 4: Let x be a periodic point in Zp Then (x> lies in a subshift T

for some 1.

Proof. Assume <{x)> does not lie entirely in some ZA(I)- However, for some N
€Z wehave (x>;e€ ¥ i <N andsome k. The {x); themself are periodic
for i< N (not necessarily with the same period as x) and therefore may be

extended to a periodic point x™ € £ with x™;€ &, for all i€ Z and with x™;
= <X>; for i < N. All Z,-strings running through x~ are necessarily
equivalent to x (by periodicity) from which follows by corollary 2 that x™; c
<x>; for all i€ Z.By the same argument we have <x>; €€, ¥ i>M some
integer M and some €,. Inthe same way one defines a point x* in X with
x*i € €, for all integers i so that x® = <x>; for i2 M. Ina similar way we

conclude x*;c <x>; for all ieZ and hence x =x*=¢x>. O

On Z; there is a partial ordering by inclusion. For X,y € X we
Say xcy if x;cy; as sets for all integers i. For x out of X, (x> are

maximal elements in Z. and vice versa, maximal elements in Z, correspond

to points in the quotient Z,/x.

Lemma 5: Given x a periodic point in I, then (x> has the same period in

e

Proof. Let n be the (least) period of x an suppose (x> has a period which is
a multiple of n, rn say. Then {x>, # {x>4, for some 0 <s<r, and since x is
a string running through <x> we have X € [logsqr 0%<x%D. Thus we define a
new sequence x* = {x*: i€ 2} by setting x* = Upcser (XDjaspr Then <x> c x*
and <x)> + x* furthermore x is a sequence contained in x* and all other
sequences are equivalent to x and, by virtue of corollary 2, are equivalent to
each other. This shows that x* is a point in 3¢ which contains <xD,

therefore x* = (x> since <x> is maximal. [

The last lemma is not true when ane fixes an nrderina nn the enimhnlc nf &



3. The topology on X,/=.

As in corollary 2 let o = B, and denote X/~ by Q. Define U, =
{(xy) € SpxZg % ~ g for all [i| < 2an). Clearly, each U, contains the
diagonal of QxQ and is symmetric. Furthermore for each n we have UoU,°U,
c Upy, where Upely = {(x,2): 3 ye Z, such that (x,y), (y,2) € U} To see this,
Choose points w, X, Y, z € I, with w; ~ X;~ y; ~ z; for all [i| < 2an. Corollary
2 applied gives firstly w;~ y; for fi| < o(2n-1) and secondly w; ~ z; for all
fil < 2x(n-1). Hence UpeUpeU, c U,y holds true for all n e N, and we may
therefore apply Frinke's metrization lemma (see [4] p. 185) which says that
there exists a pseudo-metric d on Q, with the property U, c {(xy): d(x) <
2N} ¢ U,y for all integers n. Infact, d is a metric since x,4y € X, represent
the same point in Q if andonly if x;~ y; ¥V i €Z, which is the case if (x,y)

liesin Uy, for all n. See also D. Fried [3]).
One would like to consider as distance functicn d*, for d®(x,y) =

AP where p = p(x,y) = max{q: x;~y; ¥ [i|<q} for some X €(0,1). Indeed, for
X =2"2% ¢* isequivalentto d: C*d(.,.) < d*(.,.) = d(.,.), where C= 22%, Set

p= |2’i and for later use we deduce the following lemma

Lemma 6: Let x,y, w be three points in . satisfying (i) x;~ y; for i<k

and (ii) w;~ x; for i <k-B. Then w;~y; for i=k-f.

Proof. Let us assume k-§ is positive and a multiple of 2, k-f = 2nax for
some n> 1, say. we have therefore that (x,w) liesin U,_;, and since U, c
{(y): d(x,y) < 21} c U, it follows that d{x,w) < 2!™ By the same
argument we obtain d(x,y) < 2" We shall construct two equivalent points x',y.
Set (x'uyy) = (xpY;) for i< k-p. Since P=[2® there isan index i€ (k-B,k]
so that {x;y;} lies in some €; for which the associated shift space Zyp s

transitive. Now choose any half infinite word in Zagiy

(Ko HX ke ¥ ke 1 HK koY ke2)er  SBtiSTYing (%)Y} = {XoYy). Since d is a
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metric on Z,/x we have d(y,w) < d(y,x) + d(x,w) < d(Z,w) < 21" which
implies y';~w; ¥ i <k-B, and because y, w did not get changed on positions
less or equal to k-B it follows Yyi~w; Y i <k-p. If k isan arbitrary
integer we use a suitable iterate of ¢ tobring x,y,w into a position so that

the new k-f is positive and a multiple of 2x. Hence the lemma. 0

It is easily seen that the lemma holds true too in the right
asymptotic case: If x,y,w € £, which satisfy (i) xj~y; ¥ i2k and (ii) wy~
Xi Y i2Kk+B, for some k€ Z then w;~ y ¥ i2k+p. A consequence of this

lemma is the following statement:

Proposition 7: Suppose Xy..X| ~ Yg...4) ~ 2.2 are three strings, which are
related in the way indicated, where 1-k is at least f+2x, and {x,Uy }, {*p.Y}

are symbols in €. Then x...x, isrelated to 2y...2.

Proof. By corollary 2 we know already that x; ~ 2; for i = k+X,.,l-x. By

assumption the strings Xy oe-Xj-go Yksoe=-Yi-co Zkeocs-2l- N3ve length at least B.
We may therefore construct three points x',y,2' € Z, with the properties

(1) (Ku¥p2Zy) = (xpYpzy) Tor i=1-oced,ul,

(i) % ~yp %i~2p Yi~ 2 for igl-g

(iii) the symbols X}, y; for i>1 are choosen to make x' and y equivalent

points which is possible by assumption; and 2; for i > 1 may be

anything in Z,.
We have now the situation x;j~y;~2; ¥ i<1 and X ~y. Using Lemma 6

we conclude that x; ~ z; for i= l-a+1,..,1. In the same way one constructs

three right assymptotic points and proves x;~ 2; for i=K,..,k+-1. o

As remarked in the previous section, there is an ordering on Z¢.
The same applies to finite strings: we say $...% c .. if ¥ ¢ W for i-=
K,...,]. Intersections of strings are defined in the obvious way. A basis for the
topology induced by d on Q is the set of all cylinders U®...) = {zezZy z€

B, k<i<l}, where %..% are finite strings in Z.
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For xe Z, define:

Wi xk)={2€Zy 2;~%; ¥V i2-k},

Wixk) = {zeZy zj~%; ¥ i<k}
The union over k turns out to be the stable, W3x), respectively unstable,
wYx), direction through x. The shift ¢ on Z, induces a homeomorphism on Q
which we again denote by ¢. Pick a z € W¥x,k) for some k sothat d*(x,z) <
d(x,y) < 1/2. The homeomorphism ¢ acts on W3x,k) therefore contracting
distances d* by X and ¢* contracts distances on W¥x,k) by a factor A.
Hence the stable and unstable directions through the points of Q are described

exactly by w3x) and w¥x). Clearly, periodic points are dense in Q.

4. Reducing X,

A point x in I, (Zuq) is (doubly) transitive if for every ye %,
(Zyp) and n e N there are positive integers m, m®, so that y; = (6™x); =
(o""x)i for all [i| < n. In other words, every X, -word (Z,q)-word) appears
infinitly often in the past and future dimensions of x. In this section we
discuss the possibility that X, may have transitive points with non-trivial
equivalence classes. We shall show that Z, than can be replaced by another
subshift of finite type in which transitive points have trivial equivalence
classes and whose guotient is isomorphic to Z,/x.

For a Zppy-word XsXsepeXt We set U(XsXsepXp = {8 € Zg
BsfsetoEt = XsXse1-Xt) fOr the cylinder of all points in Zupy which have the
word XsXs.y---Xt On the places between s and t. For a positive integer k we

denote by tX the concatenation TT...T, k-times.
We now pass to a higher block system. Without changing the

notation we replace ® by the set of all (f+2x)-words. The new transition
matrix A" is defined by setting A“[XjXp.Xpize Yt¥z-Ypezod = 1 1
X %2R ge200 Y1Y2-Ypeox are Z,-words satisfying X = Yj-y for i =2,..,B+20G
and O otherwise. The non-transitive subshift constructed in section 2 is now

thought as being derived from this (B+2ux)-system (without introducing new



notation). Naturally, there exists an induced relation on the new alphabet &€:
For 2,8 €&, wesay £~ 8 & a~b for some (ab) € Exf. Set (ab) =
(3).-3p4200 bibpizedi since ({apbyl, {agiowebpezd are pairs of related
symbols that can be prolonged infinitely in backward respectively forward
direction (i.e. are elements of the ancient €) we conclude, using proposition 7,
that the induced relation on the higher block alphabet & reads in fact: & ~ §

& a~b for all (ab) € gx§. It is clear that the relation induces an

equivalence relation on the subshift 24~ From now on we shall call

(F,2,~€,Zc) by (&3,€Z), and the same applies to A(l) etc.. Equivalence

classes in th are denoted by <.), inthe same way as in Zﬁ(l).

Lemma 8: Let x be a transitive point in some Za) Then two sequences §,8

€ {X> are either identical or disagree on all places.

Proof: Let Y be a transitive point in X, We have to show that different
points £,8 e <x> differ on all places,i.e. §;#+85; ¥ 1€ Z. Suppose there
existsa 1€ Z sothat § = andlet k e Z be an integer such that § + §.
Since Y is transitive, there are numbers s,t €2, s < min{k,i) < max(k,i) < t,
so that for any other transitive point X' € U(XsXse1--X¢) there exist §.0° € x>
satisfying (gj,g“}) = (§l-,§]~) ¥ min(k,i) < j £ max(k,i). (Note, that the map ¥ -
<X>o €@ is continuous but not uniformly continuous.) In particular, since ¥ is
transitive, the word YXssp--Xt 3ppears infinitly often, say at intervals of
length m[1], m[2),... (all bigger than t-s). Unfortunatly (§p..8yBiam1p
S-S Skam1p need not to have collapsing diamonds in Z, this is because
strings beginning in g, on the same element do not necessarily end up again on
the same element in Sxem{1} However, since the §ymfi) consist of finitely

many sumbols of &, we can find two numbers p <4, SO that  (Syumipi--Skemiqh

Skem{p}--Skemq) COllapses X, -diamonds. 0

Let €, and €, be two subalphabets satisfying k)= @ (1)+1 and
set @(1) = m. Denote by €, the power-set of € and let us define a map v: ¢

> & as follows: For {x%xl,....x™!} = xy € €, we set
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U(}() = {[xl!"'!xml}! {xosxzvv--nxml}!---, {xosxl!---’xm}] n ‘]-

Lemma 9: Suppose x,x' €& and Y -+ X. Then for every & e o(y) there

exists exactly one § € v(x') sothat §- ¢,

Proof. (i) Choose x » Y for some Y,X € &. It is then clear that every § e
v(X) has at least one successor in v(x'), namely the unique subset of Y which
follows § when we join X and X' up by Z,-strings of length 2.

(i)  Suppose there were two different BnE®, in o(x) and § e v(x) for
some Y,X' €&, X-> X, sothat §+2, § 8", . We shall construct collapsing
diamonds. Since Zxk) 18 transitive we have ) =< X = X and therefore a string
XXX ?. > Xs> X Of some length s, where the ¥; are symbols in &,.
Then we have § » §,- §;»...» §,+ § for a sequence {gt e Bicyp t=
1,...,5]. On the other hand, there exists a similar sequence running through %
and returning to it, namely § - % - &% > ... > §*5 8%, > &% where the
§* are symbols in €, and subsets of the X; Both, the & and the §*, are
subsets of the same Y, but unfortunately (SEqm.. £58%0 58%¢-.. E*E"¢) need
not to provide collapsing diamonds in X, since strings that beginin § on the
same element do not necessarily share again the same element in §*, This
difficulty is overcome by iterating the words G§g.. &5 § ... §'sE o SOMe p 2
1 times; enough to make nP, *P = 1, where m, n* are the permutation on the
element of § respectively £%, which are induced by the Z,-strings running
through 88,... 8.8, E%E";... E*E% This finishes off the proof, since ((EEeE,...
EIPSE" on SE® (2" ... £".8%)P) contains diamonds that collaps in Z4. 0

We write D(ZA(I)) for the subshift over the alphabet »(€,) with
the transition matrix induced by v, ie. for 3,5 € v(€) weset § ¢

whenever Y » X', where (3,%) € o(y)xo(Y) for some X,X € &

Theorem 10:
(1) If v(Zgy) = Zpqy then Q= Q) and
(ii) if v(ZA(k)) # Zpq for all 5 with ¥k) = ¥1)+1, then transitive points in



13

2 have trivial equivalence classes.

Proof. Clearly, »(€,) = €; and it follows by lemma 9 that the transition
matrix induced by v on &, coincides with A(l).

(it) Suppose ¢ is a transitive point in Zyny With non-trivial equivalence
Class. By lemma 8 it follows that &;+§; for any § e <E>. Set §; = {£%.... &™),
8i = {§i%s §;™), where m =1), andlet j: Z » {O,..,m} be indices chosen so
that 8K 425 for s = 0,..,m and ieZ then & = (£0... &M&K)} is an
element in € and lies necessarily in some €, where ¥k) = ¥1)+1. In
particular, since & is transitive it realises every possible transition,
therefore in € exists a £* of one higher dimension so that »(§*) = . But this

means that v(Zyyy) = Zpq) and by the first part of the theorem @ x Q. 0

We call a subshift E,q) or subalphabet & reduced if &€
satisfies the condition in part (ii) of the theorem. We can always find a chain
1[0], 1[1],..., 1[p] of some length p, so that
(i) ¥1[g+1]) = ¥1[q])+1 for g =0,..,p-1,

(i) Zpqe)/> = Zpqqy/~ for q=0,...,p-1 and
(ii1) transitive points in zh(l[p]) have trivial equivalence classes.

By virtue of theorem 10 there exists always a reduced subshift of finite type

whose quotient is isomorphic to Q = Z,/~. For the rest of this paper we shall

assume I, is already reduced, i.e. transitive points in 2, have trivial

equivalence classes.

3. The product structure on Q.

A local product structure is a map [.,.): @x@ » Q@ defined in a
neighbourhood of the diagonal of QxQ and which has the properties
(1) [X,X] = X, [[X,U]sZ] = [x,[U,Z]] = [X,Z], [OK,OQ] = OIX:'J]; whenever these

expressions are defined;
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(ii)  there exist & > 0, X € (0,1) so that

(o) if d(yyx) < & and [ypx] = yp 1= 1,2, then d(c"y;,0"y,) =
)\"d(gl,gz) for n>0;

(B) if d(x,z;) <& and (%] = 2z, 1= 1,2, then d(o"z,0%,) <
)‘Hd(zl,zz) for n < 0;

The point [x,y] lies in the stable direction of x and in the unstable direction

of y. See also [6] p. 125 ff.

Recall that X, is assumed to be mixing, i.e. A"> 0 for large n.
We define the one-sided shift space
Sat = {x € Toewm & Alxp¥ipql=1 Y i€2'},
and similarly
Sy = (%€ o® Alxpxi)=1 ¥ 1€Z}
Denote by R*(a) the set of all words (cylinder) XgXq... € Z5* that begin with
Ko = @ Similarly R7(3) = {..Xx_yXo € Z470 Ko = ). TWO SEQUENCES XgX{...,
YoYs..- in Z,* are related, write XoXq... ~ YolUy...s Whenever x;~y; for all 1
= 0,1,..; and similarly for .. Given § e R*(a) we then put
) -{eest e~
for the set of all half - infinite words that are related to §. Denote by m; the
projection onto the i-th coordinate; in particular
MR (5) = {Ug? Y190 € ()},
TR*(S) = {Uo: Yoy € $*(B)).

In addition to € and Z: let us introduce corresponding one-sided
objects €, €, Z*, 5.~ We take the collection of sub alphabets {8k k,n}
which was introcduced in section 2, and prune away 2all those elements that
cannot extended infinitly in forward direction. This defines &€*. Similarly €
is defined as {&X% k,n} less those & that cannot extended infinitly into
backward direction. Furthermore we define transition matrices C*, C* (and
similarly A*(i), A=(i)) in the same fashion as done in section 2, and call the
associated one sided shift spaces Z.*, Z.~. For convenience we agree on the

notation '+ whenever we would like to write a formula with either of them.
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Observe

(i) €n€ =€

(ii) the transitive subspaces of Z*, I¢~ are the same as those of Z.

(iii) given Mg¥|M,... € Z¢*, then the cut off Uglio, U, o 18 3 half - infinite
sequence that occours in Z, 0 < f < . The same applies to Z¢7: If
WMty € 26, then g Mg Mge 1S 3@ sequence in Zp, -f < f <o0.

Analoguously to the two-sided case, there is a partial ordering on
the elements in =.®. Given § € 3%, then &*(S) consists of the maximal

elements in Z.* that contain §. Define M* as all t, so that there exists a

half infinite word Mgt,... which is maximal in Z¢*. Similarly M = {s: 3

8ot ity maximal in Zc‘}. If we put M for the sub alphabet of € that

containes the symbols out of which maximal strings of Z; are composed, we
have in particular M={n® (& 9)c M =M 7\(2). For ae & set Ma)={t
€ M aew) and define maps p*, p: A - 2% py setting

pi(a) = N e e M(a)).

On has to think of points in, e.g. p*(a) as adhering to a under future

continuation. For a subset @ c & we set generally pi(W) = Uq‘ u(g). Note

that @ c p(w). It takes finitly many steps to construct €*, M* (by checking

strings which length is at most § = 1),
Lemma 11: p op~=p~ and prop* = p*.

Proof. We shall do the proof only for p-, it works exactly the same for p*.

Given some a € & from the definition of yu~ it follows that for be u=(a)

and for every string € € & (a), the intersection &7(5) n ®7(b) is not empty.
Choose ¢ € p~(u=(a)) = Ubep-(a) p~(b), then there exists a b e p=(a) so that for
every choice of £ € R(b) the intersection &7(§) n ®7(c) is not empty. In
particular we choose ¢ e $7(5) nR(b). In other words, given § eR"(a) then
$7(3) n R7(c) + & which by definition of u- proves that c lies in p~(a).
Therefore p~(p~(a))=p-(a). 0O
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We gather from the last lemma
b e p*(a) e pi(b) = pi(a).
Thus, p~, p*, each decomposes & into disjoint subsets. Furthermore, suppose
u~(a) consists of more than one single point. If b e p~(a)\{a} then necessarily
® < {a3,b}. (Using the convention: For w e €, we write w<$ (& < w) if there
exists ce & sothat w <c (c <w). Since I, is topologically mixing this
property does not depend on the particular choice of c.) To clarify the last
statement observe that for any § e ®(a) the intersection #7(3) n R (b) is non
empty. Since transitive points are supposed to have trivial equivalence classes,
there must necessarily be at least one transition xp_; » {%pYp} € C, M < 0,
for some ..x_;Xo € R7(a), and where ..J_jyo € ®(..x_yxo) N R7(b).
Analoguously, if |u*(a)|> 2, then {a,b) <&, for every b e p*(a)\{a). Since no

diamonds in Z, collapse, it is therefore clear that p~(a) and p*(b), a,be &

intersect in at most one point.

Given w = {a,b} € €, then we define relative cylinders R*(ap),
R (ap) as follows:
RB*(ap) = {xg%;.. € B*a): there exists YgYp... € H*(Kexy) N RH(a)
satisfying {XgUe} < ... < {X5Ys) € (X545} for some s > o}.
In the same manner R~(ap) is defined. Obviously on has the inclusion R*(ap) c
R*(a). Some more notation: For § € R*(ap) we set H*(h) = H(S) n Ri(ap)
and define #M*(ap) = {nB*(Ch): & e R¥(ap)]. For a e & define the
predecessor and sucessor sets as indicated
P3)={ce® Alc,al=1]},
fla)={ce & alac]-1).
For ¢ c® asubset, we write Pu) = U.q Mc), and similarly f(w). we now

indroduce functions <T-,t* that are defined on pairs of related symbols and

map into & More precisely:
T*(ap) = ) {Mu): e M*(ab)},
T~(ap) = () {Fu): we M(ab)},
for {a,b} € U (€ ¥(1)=2}. Finally, for w = {a,b} € € define &~ (w) =) {We &
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W - w}, and in the same way &*(w) = |J [we €: W+ w}. Later on we shall

write W\&*(w) instead of tn E\&(w), & asubsetof &
We call w ={a,b} €'© isolated if
(i)  neither E<w nor w< & is satisfied;
(i) at least one of the intersections f{i n % (4,9) € M (ap)x M(bja)} is
empty.
The next lemma is a immediate consequence of this definition.

Lemma 12: There is no local product structure on Q if € has isolated

elements.

Proof: Given some & > 0, and denote by Ug(x) the -ball around x € 3, We
shall construct a sequence of points (x[ql,y[q]) € £4x Z, that converges to the
diagonal in X/~ x Zu/~ and has the property that the local stable direction
through x[q] and the local unstable direction through y[q] have empty
intersection. If we denote by Ugx) the &-ball around x € Z,, where §
desribes the size of the local stable and unstable directions, this means in
particular that on cannot find a positive ¢ so that d(x,y) < € entails
necessarily that Wy) n Ugly) and  WYx) n Ugx) have a non empty
intersection.

we shall construct a sequence of points (x[ql,ylq]) € Z,x Z, so
that d(x[ql,ylql) = 2lr/2x] (for some r = 1) and so that the intersection

w5(ylql,qr) n W¥x[q),qr) is empty. This contradicts the continuity property of a

local product structure. Let w = {a,b} be an isolated element, then in

particular there exist (%,9) € M*(ab)xM (bla) satisfying #nh= 2. Let xgx,...
EZp% U 1Yo € S, 7, (XeUo) = (3,b), be sequences, so that

M (XoXge-) = &

o (...y_1yo) = §.
By definition of M(bla) there exists a Zp-word Ke.X_y X_f X related to
YgUys S <0, s0that {x,y.} < (x5us) Let {XgUsHXs-pUs-i)-{%sls} bE 3
Zc-loop of length 1+1 2 1 and put (V,T) = (Xg_p.eeXg Ys-p-Us)e Similarly, there



exists a Zy-word Yp...yp Yo~ Yy, related to xj..%p t20 so0that {xpy.} <
{xpYy}. Analoguously, let {%pU)er {%apoYta}{%pyy} De 3 Zc-loop and put
(V') = (XpXpopo Ypelpag)- FOP q2 1 put

x[q] = LA PN TS NG TNLIWw

ylal = o ls Mg T Y Yol fore Yy Ty
where bolds characters denote the zero position and the dots to the left of ¥
and to the right of t" denote anything that makes x[ql,y[q] to one - sided

transitive points in Z,. Set
Ul = ﬂé"(Xox1...Xtv'qxt+lxt+2...) cit

9= B (Y Y5 TYsYogYg) € B,
and we have necessarily #invi- g, q2> 1. By construction x[q] and y[q] are

not equialent, and if there were a z € W5(x[q],f) n W¥y[ql,p) then the zero's
coordinate in paricular would have the property

ZoeIn #9,
which is assumed to be empty. On the other hand we have d(x[ql,ylq]) = Aor/2],

where r = min{k,l1}. 0

Lemma 13: Suppose w = {a,b} is an element in & that satisfies either ®<w
or w<& Then

(iy if §<w, if ceP@)nXk(w) then p-(c) and T*(bR) are disjoint;

(ii) if w<® if cef(a)n&k*(w) then p*(c) and T-(bl) are disjoint.

Proof. Wwe shall elaborate only the first part & < w, the second case (ii)
works exactly the same. The proof is by contradiction, we assume the
intersection were not empty, we shall then construct a collapsing diamond. Let
wo = {a,b} € € be a such, that for some c € §a) n & (w,) the intersection
p*(c) nt-(bla) is not empty. Choose d € p*(c) n T™(ba). Clearly, one can find a
Ze-WOrd WWieq... WoWy... W), for some k< 0 <1, <2 for i=k,..1, and
wy € &, wie & for some €, € so that Tyyn Sy are both transitive. We
may assume that there are exactly two Z,-words T,v running through wy...w
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(chosen so that (tgve) = (a,b)). (If there were more than two words, then two

- element w that can be replaced by one - element w restricting the number
of Z,-words running through the transformed Zc-word. This procedure can be
repeated until there are exactly two strings running through the eventual
Wie..w))  Let XoYol{Xp-1lpy} {XeYoh be @ Zpgy-loop satisfying
{X'p'.l.u'p-_l} + W Set (T)W) = (x'ox'l...x'p-_l, y'oy'l...g'p-_l). Similarly there
exists 8 Zyy-loop (Ko o} {Kprp¥p1} (Ko} that satisfies wy -
{XeYo). Set (T°»°) = (x'ox'l...x'p-_l, g'og',...g'p-_l) and define (x,y) =
(TPTT'®, YRy ),

Now shall proceed to construct a collapsing diamond. Set q =
max([p/p] + 1, [B/p"] + 1). By assumption & < wy, and clearly the same holds
true for w,, i.e. & <w,. Hence there exist related Z,-words (of the same
length, naturally) ¥,6 and anelement ge &, sothat gyv'~géT. Let $eZ,”
chosen so that §'gy»' again liesin Z,~. Since d € p~(c), c € Pa), for every
choice of € there exists at least one § € Z,~ satisfying §d € $7(Tgyt'dr-),
where T~ = TTy,q...T-;- (The inset T9 streches related section and enables
us later on to apply lemma 6.) We may assume that § is negatively transitive
in X, Inparticular this entails that §d and §'gyT%t~ agree for large enough
negative indices. Let h' be the first symbol they have in common and set §
X'hT*, & = Yh'E™® for some Y € Z,~ and §*8* finite Z,-words.

For positive coordinates we do a similar construction as follows.
Set v* = vyvy...v; and pick a positively I,-transitive continuation v*'%" e
)t § e b, satisfying nt(v*v"R’) = {(v*¥"%);} for large enough i€ IN.
Since w = m®*(v*v"%'R) € M*(bla), by assumption there exists a transition d
- d* ew. Let d"¢" be anelement in $*(v*v"®"ja), then there one finds h" e &
X € Z,* and finite I,-words §*8* sothat v*v"®' = v*V'E*N'Y" and d*¢"
= d"E*h"Y". We have the following situation, (where (xy) = (T®TT'%,

V' P4 @) )
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One uses lemma 6 (with k = B) on the three points (x,y,w) =
(TgyThT'®, §g8v' v K", E'dd*e") and concludes that T'gv'%v- is related to
§'d. Hence (hWG*gsv'tvv"®™h", K'e*dd®s™h") is a diamond that collapses under

~. This proves the lemma. g

The next propositition will discuss a sufficient and necessary

conditions for the existence of a continuous local product structure on X./x.

Proposition 14: There is a local product structure on Q exactly if

(i)  for all w={ab}e € that satisfy either < w or w <& we have
(A) if Esw, (U a)\&(w), p MD)VE (W) € poT*(bla)xp~T*(ap);
(B) if ws & (u*f(a)\B*(w), u*F(0)\&*(w)) c p*T (ble)xp*T(ap);

(ii) € has no isolated elements.

Proof. (i) Letus first discuss the first half of part (i). Say:

(x) For every c¢ € a)\&(w) and (v,w) € M*(bja)xM(c) the

intersection Pv) n w is not empty.
Consider fv) n w and take intersections over (v,w) € #M*(bja)xM(c), then
(%) reads as T*(bR) n p(c) + &, for c e Pa)\k(w) (since T*{bl) =
{Mu): we M*(bp)}). Say T*(bja)n p(c) =+ 2, inparticular &c p(c) and
since 4 is not empty we have necessarily by lemma 11 p ep~(c) = p7(c) =
H-(#). Hence
p(t*(bl) n p=(c)) € p=T*(bl) n p-ep=(c) = p-T*bR) n pu=(c) = p~(c),

and therefore p=(c) c p~T*(bl). This shows that (x) is equivalent to the first

half of (i,A); the other cases are treated in the same way.
The rest of the first part of the proof consists of verifying the

local product structure on Q. Given x,ye Z, not too far apart, then we shall
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describe how [x,y] is determined. Recall that B = IZ'L and pick X,y € Z,,

d*(xy) < AP, and assume & < {%pyy} for some I € [-B,p]. We begin
demonstrating the case of [y,x]. Let m be the infimum over all p <1 for
which there exist a Z.-word {xp,y'p] {xpﬂ,y'p,,l}... {xp¥yls Yy = yp if the
minimum does not exist then we set m = -c0. This procedure garanties that
W)V ({XrUm}) is not empty. If m = -co set [Yx] = .y p_ N[y Y¥peses aND
incase m is finite there exist by assumption half - infinite sequences
ok 2 me1s Ul e ) € 87 Ceooin X178 (Y g U g Y Yoo )
and a transition x™_; > 4", Then we define
[g,XJ = 'a.x~m_2x~rn_lu.mu.m+loa. .

The restiction to &\&~({a,b}) which was made in the statement of the
proposition is a result of lemma 13. In particular, we see that d([y,x],y) <

d(x,y) and d([y,x],x) < d(x,y). The first inequality is obvious, the second

follows from lemma 6, since [y,x] lies in the stable direction of  y. To

determin [x,y] suppose ® < {x'Ly;}, 1€[-B,B], and let m < I be the infimum
over all p such that there exists a Ze-word {x'p,gp} {x'P,,I,yp+1}... {Xpuh %=
Xp and set in the case jn’|< oo
ERT) R T RS e P
for sequences
(ool -2 mimts X' s 1) € B Corlhpyr M1 )} (K e X o X (R Lo e i)
and [x,4] = ..X[.oX]-1XX[sge- if M =-co. Thecase w < & is dealt with in the
very same manner, except that here m, m' 2 I and we have a suitable transition
from a 2-element symbol in € to a 1-element symbol.
we have to verify the identity [[x,y],2] = [%,2] for points x, y, z
have d* distance A2P from each other. Assume & < {x,y;}, 1€ [-B,B], thenas
was pointed out above
EXT) ERSTSNPTTAPNSL gt S NS T
for some m < I. Consequently d([x,y],x) s d(x,y) < A%P, and suppose {x',2r} <
& for some I € [B,28]. In the same way as above we find an integer m' > I,
sequences (if m’ is finite)
(e Z-2Zmi-1s X % miagees) € Bl oy X e X it B B (X gy
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and a transition Z_;+ %"y, SO that

([%412] = oo 221X X misge -
We have by construction [[x,yl.z}; ~ [x,y) ¥ i2-2B, [xylj~x ¥ i2-2p,
and therefore because of corollary 2 [[x,y),z); ~ % Y 12 -2f+x. The same
argument provides [[x,yl,z}; ~ 2z Y i< 2p-x. Since o < § we conclude
[[x,y],2] ~ [%,2). Next let us assume & =< {x'mzrh T'€[-2p,-Bl, and let m' < I.
In particular m' < m, and if m' = -co, then W%y,m) = WYz,m) and we are
finished. In the case -co <m’, we have

[[%,412] = 02”22 ot X X miagees »
for sequences

(o2 22 =1 XX miageee) € B (o222 1) Uptee Yo 1X X me 1o+ Z i)y
and on the other hand we observe
[%,2] = oe.2” 02 ot X ™K mmegeee s
where
(2" =22 " meots X s geee) € B (o2t 2o B (Rpykepygoonie)-

By the same argument as above one finds [x,2] » [[%,u],2].

(ii) Secondly, there is the possibility of strings with (possibly arbitrary)
length greater that 2 made up of elements that satisfy neither E<wnor w
<% Let xy€ I, d*(xy) < 2B Since € containes no isolated elements it
follows that mo®7(...y_j4o) and TH*(xex;...) have non - empty intersection,
and clearly [x,y] = 2, where (..2_;2o, 22{...) € & (.Y 1Yo)®*(xe%y...). In
exactly the same way one finds [y,x]. In the same way one verifies the formula
[[x,y),2] = [x,z] in the case that there are strings of length grater than 2§ that
consist entirely of elements that satisfy neither & <w nor w < & We shall

not go into details,

(iii) We now proof the 'necessary’ part. Parallel of the proof of lemma 12 we
construct a sequence of points in Z,xZ, that converge in Q to a periodic
point. Suppose there exist w = {z,y%)} € €, % € W2o)\B*(w) and (v,w) €
(X" )xM(y"ofzo) so that Pv) and w have empty intersection. Let
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(ox®_1%% Yu®1..) € I xSt be two half-infinite words satisfying

(e (...x®_1x%0), B (Y*oy® o)) = (v,w).

According to the definition of $* one finds @ Z,-word Zy2;...2,
s 20, related to y*ou®..y";, satisfying {Zey®o} < ... < {Z54%) < {254°)
(possibly s = 0). Pick a Zg-loop {X'pYo)--r {x'p_l,g'p_l} {XpYo} satisfying
{24} » {Xeyo), set (T,v) = (x'ox'l...x'p_l, U'oU'l---U'p-l) and define for g2 1

(remember: x%4 -+ z,)

K[Q) = X yX® (202 e 2 TH Xy T e
g[Q] = sue y’ou'la..y'sv%'o...y.p_l‘Vq-lU's,,ly.s‘,z... ’

where dots to the left of T and the right of v denote anything in Z,, and the
bold characters mark the zero position. From lemmas 4 and 3 it is clear that
o (4 o 14" YW o o YT 4 s ) © OB (U 140 ).

Indeed d®(x[ql,y[q]) < APL If there were a continuous local product structure
on Z,/x, there would exist a ¢ > 0 such that d*(x[ql,ylg]) < ¢ implies
d*([ylql,x[q]],x[q)) < X and in particular d*(c~[ylql,x[q]],07%x[q]) < 25!, s>
0, since [ulglxlql] 1lies on the unstable direction through x[g). By
construction ¢ Pylq] + o Mgl =c ¥ qe N, and thus d*(oP[y(q),x[q]],
6Mx[q]) = 1 2 A while it is obvious that x[q] and y[q] convergeto T®=x'=

y = »®, 0

6. The Zeta function on Q.

Denote by B(n) the number of periodic points in Q = Z,/~ with
period n. The zeta function (See [7] p. 766) then is defined as
§(1) = exppepy N R(NLT,
for t a complex variable in some open set of C. In particular we define for
the individual subshifts Zatiy
Bilt) = exppepy N1 Ry(N)MN,

where J;(n) counts the the periodic points of period n in Z,q). In that case
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one has Ry(n) = trace A(i)" and the zeta functions are explicitly given by G(t) =
[det(1 - tA(i))]*, which are analytic functions for |tf < 1/h, where h; is the
topological entropy of Z,q), i.e. the maximal (positive) eigenvalue of A(i).
Since the projection m: X,+ Q is finite to one, the topological entrapy h(Zy) =
he=h of Z, coincides with that of Q. Furthermore one has h; < h for all 1.

(cf.[2]). First let us prove an arithmetical lemma.

Lemma 15: Let a[i]2 1, i=1,2,..,u, be positive integers with at least one

of them equal to 1, then
S = 3 1geen D1 az)ife) (- DALl . g,

where in the second sum every index i[j] appears at most once.

Proof. We prove the lemma by induction. Set S = S(a[1),a[2],...,a[u]). For u=
1 it is clear that S(a[1]) = -1, since (-1)d1 = -1, a[1] = 1, is the only
summand that appears in the sum. Suppose it is shown that

S(a[1]),3[2],...,a[u-1]) = -1, then

S(a[1),a[2]),...,3[u]) = X 1q<y Zi[l],...,i.[k] (-1) AT iK]]

- st (g (- AT

+ O 1y g (-1LF= D (),

where the first sum consists of terms that do not contain (-1l and the

second of these containing (-1)44}, Hence
S(a[1),3[2]),...,au]) = S(a[1],3[2],-.sa[u-1]) + (-1)A) 1 + S(a[1],a(2],...,a[u-1])]

and therefore S(a[1},a[2],...,a[u]) = -1. O

Theorem 16: log §(t) = >°; (-1%WMog gi(t) for ft| < 1/h, where ¥i) is the

dimension of &;.
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Proof. Pick aperiodic point x in Zy then <x> is a maximal element in Z,
has due to lemma S the same period n as x and lies by virtue of lemma 4 in a
subshift of the form 2py) for some K. This does not imply that all points in
{x> have period n, instead of this <{(x) decomposes into subsets 1,
X%y XY U2 1, where (x)! are sequences in Zc with the same period
n as x, and are minimal in the sense that no (x> can be split into two
nonempty <x>', <x>" which again have period n. One of the (x> is x itself.
Denote by a[i] the number of Z,-strings in O, then a[i] is exactly d'(i[j]),
where ifj] is the index of the subshift me) in which <x)>! lies. We now sum
over all points in I that lie as sets in the equivalence class of % and have the
same period; we count the Z.-points <xp! with weight (+1) if they have even
dimension (¥ = ¥-1) and with (-1) if they have odd dimension. Since at least one
of the numbers ¥(i) = a[i] is one, we are lead to apply lemma 15, and obtain
that the weighted sum is exactly 1.

There is one more complication. Up to now we neglected periodic
points in X that lie in (x> but have a longer period than x. We order the
points y[j] of <x)> with periods bigger than n, so that the period of y[j] is
not less than the one of y[i] if i < j. For XpXoeXy € 3¢ we define
V(X{X2-Xy) as the collection of all possible unions of x; that lie in Z;
(not necessarily all unions lie in Z¢). Set U(0) = V(<x>1,<x>%,...,<x>Y), and
inductively U(m) = \/({ylm]},u(m-1)) (by construction y[m] & U,eym-1) 2)- Let
us assume Xy em) (-1X) = 1, for some m > 0. We have proven this formula
in the case m = 0, and indeed it holds true too for m+1, since

Sty (00 = Ty (1P ¢ (AP 4 1= 1.
The summand 1 on the left hand side comes from the single factor 1 =
(-1)XUmD.  we have therefore shown that on taking the weighted sum the
counting of periodic points which have in Zp an equivalent point with smaller
period cancelles out. Hence R(n) = 3; (-1)XUNy(n) and the theorem follows

(See also [S], theorem in §4.). 0

In particular, this theorem proves rationality of the zeta function

of Q.



7. The subshift X,

Ltet & = 2% pe the power-set of & We proceed to construct a
nested sequence of shift-spaces of finite type and begin for j = 2 by defining
j-dimensional transition matrices as follows:

A,(xl,...,X‘) ={ 1 if there are Xg€ X for 1 <kx<j which forma j-string,i.e.

AlXpRpeg] = 1 for all k = 1,...,j-1;

{ 0 otherwise (including the case in which one of the X is the

empty set),
where xl,...,xje!‘. The A] define over the alphabet ®* subshifts of type j
which we call Z; They form a nested sequence Zj2 Zy,y for j2 2. Define

T = Np2 %

For X € (0,1) there exists a natural metric on Zo; for X,y e I, we set
d(x,y) = A", where n =max{m e N: so that x; =y; ¥ [ij < m}. There is also a
sequence of subshifts Z]-‘ defined by restricting Z]- to the points that have at
least two one-element subsets of & in all j-words. They act like the eye of a
needle, and we have Z] c Zj+1' for j 2 2. Hence Z, can be approximated as

well from the inside: Z = closure of U}-gz 2) To see this, we observe that for
in 2, there exists (at least) one sequence
.X_1XoXq... Can be

every sequence ...X_;X¢Xj...
X X%y In X, for which x;c X;, i€ Z. Clearly,

approximated by points ...X_;XXy... in 22]-', where we set Xj={x;} for (i+})
mod 2j = 0, and X, = X; otherwise. In general Z, will no longer be a subshift
of finite type. The next lemma provides a criteriom which allows to classify

all %4 for which the associated I, is of finite type. We begin with a

definition.

Definition 17: The transition matrix A has the loop property if for every
loop of pairs (v,,wl)...(vm,wm) with
() AlvpviglAlwywi, =1 forall 1<i<m,

(i) (vpWy) = (VW)
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(i) (vywy) # (vow,) forall i+k and 1<ik <m,

there are indices p,q with 1 < p,q < m, so that
A[vp,wM]A[wq,vw] =1,

Lemma 18: The subshift Z, is of finite type (< H2+1) if and only if A has
the loop property.

Proof. First the direction '»: It will be shown that Z = % for j large
enough. Take a string X,..X; where the X; are elements in &, i.e. subsets of
& By assumption Xp--Xiy and Xo...X; are j-words in 3. Hence there are
J-strings vo..v;; and Wi...w; with v eX; and wyeX; for i=0,..,j.If j2
2+1 there must be a pair (v,w,) which appears twice. By the assumption
there exists an index p € [0,j) so that A[vp,wp,,ll = 1. Thus VorYpWpeteneWj isa
(j+1)-word running through XgpeoKie

The second part '€: Suppose Z, is of type n and that there is a
loop of length j as in the statement of the lemma but having A[v;,wi,] = 0 for
all i= 1,..,j~1, then we will construct an {n+1)-string in Z, which satisfies
the criterion on n-strings but fails for that on (n+1)-strings. Set V for the
(i-1)-word {v}..{viy} and ¥ for {w}..{w;({{w}..{W 1}, where k=n
mod (j-1). Set furthermore X, for the sets {v,w;} € A* containing two
elements. Then the string

e VVVRK. XX . KWW,

where the word X = XyXoXjy 18 [n/(j-1)]-times repeated, lies in &, but not
any more in %,,. The case A[w;vi,y] =0 for i=1,..,j-1 is excluded in the

same way. a

The loop property implies mixing: Two elements 3,b € & can be
Joined up by a string of length less than . To see this, choose x4 € Z, two
sequences with xo = a and y, = b, where n = |82 The block (XgYg)-(XpYp)
contains a loop and thus there is a transition Xp =+ Ypyy for some p in [0,n).
The converse in general is not true as the following example demonstrates.

Take the alphabet {1,2,3,4} and define the transition matrix A =



= O s
O = O
R =]

R8
l 1 I
l 0 I
| 1 l
| o 1 1t 1 |.
The subshift 3, is mixing but has not the loop property as is to be seen at
(1,2)(1,2), since that would require the transitions 1-+2 and 2- 1.

If the subhift X, is of finite type the next lemma tells what the

quotient Z,/~ looks like for any equivalence relation =x.

Theorem 19: Suppose =~ is an equivalence relationon X, and Zj, is of

finite type, n say. Then =,/ is isomorphic to a subshift of finite type.

Proof. Asbefore &* denotes the power set of & Define amap @ from I,
into £'Z by
B(y); = {x;: x€ X, and x ~ y}.

This map commutes with the shift and has the property that &(y) = &(z) exactly
if yx 2. Every Z,-word y_...y, whichis related 10 y .y Wi~y ¥ fils
n) can be completed to a point y € X, which is equivalent to y, since by
assumption (E, is of type n) there are transitions y_g» Y_spo Yty Y for
some O < st <n. To determine ®(y), it suffices therefore to know the
components of Yy on the positions in [-n,n] and we conclude that & is a
(2n+1)-block map, thatis @ maps X, continuously into the full [El-shift.
Thus X* = &(Z,) is isomorphic to X,/~. Denote by € the set of all different
subsets ®(x), with x ranging over X, This is the alphabet for a new
subshift, its transition matrix I is defined by
I(%,Y) = {1 if there exist x,y€ Z, such that &(x)o=X, &(y); =Y and X=xy;

{0 otherwise,
for X,YeC. It remains to show that ;= 5,/=:
(i) Choose E € Xy, then there exists by construction a sequence x* in I,
with §(x), = 8, and ¥ =~ ¥*! for ke Z. Hence ¥~ x! for any k,1 € Z, and
®: X/~ Z; is a surjection.
(i) If x,yeZ, but x4 y then also &(x) + &(y) which implies ®(x), + d(y)



for an integer k.

This shows that the map &: Z,/x -+ Z; is an isomorphism. 0
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