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Part A. 

We prove existence of smooth invariant circles for area 

preserving twist maps close enough to integrable using renormalisation. The 

smoothness depends upon that of the map and the Liouville exponent of the 

rotation number. 

Part B. 

Ruelle and Capocaccia gave a new definition of Gibbs states on 
Smale spaces. Equilibrium states of suitable function there on are known to be 

Gibbs states. The converse in discussed in this paper, where the problem is 

reduced to shift spaces and there solved by constructing suitable conjugating 

homeomorphisms in order to verify the conditions for Gibbs states which 

Bowen gave for shift spaces, where the equivalence to equilibrium states is 

known. 

Part C. 

On subshifts which are derived from Markov partitions exists an 

equivalence relation which idendifies points that lie on the boundary set of the 

partition. In this paper we restrict to symbolic dynamics. We express the 

quotient space in terms of a non-transitive subshift of finite type, give a 

necessary and sufficient condition for the existence of a local product 

structure and evaluate the Zeta function of the quotient space. Finally we give 

an example where the quotient space is again a subshift of finite type. 
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lKtwg. 

This thesis consists of three parts, each of which is self-contained 

and has an abstract at the beginning of each part. 

In the first part we consider the problem of invariant curves of 

cylinder maps. There exists already an impressive list of existence proofs of 
invariant curves of mappings of an annulus to itself assuming the map to be 

near enough to integrable. In all these proofs Newton's method of approximation 
is used at some point. The first part of this thesis focuses mainly on a method 

which enables us finally to construct invariant curves in an explicit way, which 
to some degree is suitable for numerical exploition. We use a renormalisation 

approach which was first introduced to study circle maps but has subsequently 

proved popular in the analysis of area-preserving maps of an annulus to itself. 

A more detailed description is to be found in the introcuction to part A itself. 

The second part deals with Gibbs states in terms of a new definition 

which uses conjugating homeomorphisms. Let Q be a compact metric space 

with metric d(.,. ) .A map p from some open UcQ into Q is called 

conjugating, if d(Tkop(x), Tk(x)).. 0 for ýJ -. * vo uniformly in xeU. Let F be 

a HSlder continuous real valued function on Q and set 

g(2)= exp Zk¬Z(FoTkoyi(z) - FOTk(2)). 

A probability measure v is called a Gibbs state for F if 

of trop g dv = ys(U)f ti dv, 
holds true for all bounded and measurable functions ti: p(U) -R and all 

conjugating homeomorphisms p: U -º ip(U), for U=U, some open set in Q. 

Let (Q, T) be a Smale space (a compact, metric space with an 

expanding homeomorphism and a local product structure), then for any 

continous function F: Q -º R the pressure P(T, F) can be defined by the 

variational principle 

P(T, F) a Sup (hT(P) + QIF dp), 
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where p runs over all T-invariant probability measures over Q. Here hT(P) 

is the measure theoretic entropy with respect to T and p. A measure, for 

which the supremum is attained, is called an equilibrium state. Equilibrium 

states for F are also Gibbs states for F. This is proven in Ruelle s book [4) 

theorem 7,18. The converse, there referred to as an open question (cf. [4] p. 
170), will be demonstrated in part B of this thesis. 

There are several definitions of Gibbs states, for instance in terms 

of interactions, which was exploited especially by Ruelle in his famous book 

about thermodynamic formalism [4]. On the other hand, restricted to symbolic 
formalism, to which level we may ascend by introducing Markov partitions, we 

are given a powerful instrument to deal with the question of whether Gibbs 

states are necessarily equilibrium states. Our approach is to make the 

connection to the work of Bowen and all those who worked in his tradition. 

For an nxn-matrix A of 0 's and i's we define the (one-sided) 

shiftspace 
EA+ _ {x E T10... 

+00, {1,..., n}: A[xi, xi+11= 1ViE Z+}. 

For aaE (0,1) we can define a metric on EA+ by d(x, y) = an, where n= 

n(x, y) = max{m: xi = yi V 0. Sis m}. The continuous map o: ZAt 4 EAt given 

by (ox)i = xi+i, ii0, is ailed the (one-sided) shift. Note, that d is a 

bounded to one local homeomorphism. A continuous function f: ZAt -' R is said 

to be exponentially decreasing (or hölder continuous) if ff(X) - f(y)) s Coca for 

constants C>0 and oc E (0,1), where d(x, y) s an. The Ruelle operator Lf 

maps exponentially decreasing functions again into such functions and is 

defined by (L fg)(x) = Jdy_x g(y)ef(y). 

Ruelle's Perron-Frobenius Theorem: (See [1]) Suppose 1A is 

topologically mixing (e. g. An >0 for n large enough) and f is holder 

continuous. Then there are 8>0, a positive and continuous function h on EAf 

and a measure v on EA+ such that Lfh = Oh, Lf*v = 8v, v(h) =1 and 

limm.., Q, 
(I8-mLfmg 

- v(g)hu =0 for all continuous g: 1A+ R. 

Then p= by is a probability measure on I:, qt: P(g) a v(hg) 



1- 0 
jh(x)g(x)dv for all measurable g: EA+ -s R, and is invariant under the shift: 
ji(g) = p(g-a). Furthermore, for a positive constant c and a real P, JA 
satisfies the following inequalities: 
(0) 

e-c s exp(mP - >0sk<m f o(jk(x))l. (U(x0... x m)) f. ec, 
for all xE EAt and meN, where U(0 x... x m) is the cylinder set {y E IV' yi 

= xi for all 0sis m). The number P is called the pressure of f. Probability 

measures satisfying these inequalities are said to be Gibbs states. With the help 

of Ruelle's Perron-Frobenius Theorem it is shown that for every holder 

continuous f there is a unique Gibbs state. In fact, this result holds only in the 

case of one dimensional lattice systems. 

Let Q be a disjoint cover of EA1 by unions cylinder sets, and set 
h(v, Q) _ -Y4EQ v(q)log v(q), then h(v) = supQ h(v, Q) is the measure 
theoretical entropy of v, and h(EA) = supv h(v) is the topological entropy of 
1A+ which coincides with the maximal (positive) eigenvalue of the transition 

matrix A. 

A measure that achieves according to the variational principle the 

suppremum of the following expression 
P(f) = supv {h(v) + ifdv}, 

where v runs over all probability measures on ZA+. is called an equilibrium 

state. 

Theorem: (see [1]) Given that f: 1At -# R is hölder continuous, then there is a 

unique equilibrium state of f. This also satisfies the Gibbs condition (. ). 

This theorem characterises Gibbs states (s) as equilibrium states. 
To get an equilibrium state it is therefore enough to verify (a). This is what 

will be done in Part B. There it will turn out to be convenient to use the 

two-sided shift instead of the one-sided one introduced here. A hälder 

continuous function F defined on the two-sided shift 
IA = {x E -co... +oo {1,..., n}: A[xi, xi+i] =iVie Z} 

is always cohomologous to a function f depending only on the positive 
coordinates, i. e. a function on EA+. This means, there is a continuous u: EA -r 
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R (depending on F) so that F=f+ uoo - u. Gibbs and equilibrium states are 

not affected by adding a coboundary uad - u, they are the same for F as for f. 

In the last part we are concerned about a special kind of equivalence 

relations which occour in symbolic dynamics. The questions treated there arise 
from Markov partitions of Axiom A diffeomorphisms (cf. Bowen [2)). For a 

small enough partition one gets a shiftspace and a projection onto the original 

manifold where the diffeomorphism acts conjugate to the shift. It is known that 

a subshift of finite type can be isomorphic only to an Axiom A diffeomorphism 

over a non-wandering set of zero dimension. It is therefore clear that the 

boundary set, i. e. the set of points which have a pre-image in the shift 

consisting of more than one point preserves the essential structure of the 

non-wandering set, despite the fact that it has measure zero for any smooth 

measure. 

We begin part C by demonstrating that it is enough to consider 

strings of some certain length whenever we want to decide whether a relation 

induces an equivalence relation on Eq. In the following three sections we 

restrict to equivalence relations that have finite equivalence classes. In that 

case the quotient space can be described by means of a non-transitive subshift, 

which has a partial ordering. Maximal elements with respect to this ordering 

correspond to points in the quotient space. This formulation will be used in 

section 3 to express the topology on the quotient space in terms of cylinder sets 

of this new shift space. In the same section we give a necessary and sufficient 

condition on the existence of a local product structure on the quotient space. In 

section 4 we evaluate the Zeta function under the assumption made that the 

equivalence classes are finite. It turns out, that in this more general context 

the Zeta function is given by Mannings product formula (see [3]). Finally, in the 

last section we investigate a special kind of shift spaces, which have quotient 

spaces that are again subshifts of finite type. 
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Abstract: We prove existence of smooth invariant circles for area preserving 
twist maps close enough to integrable using renormalisation. The smoothness 
depends upon that of the map and the Liouville exponent of the rotation number. 

1. Introduction. 

The existence or not of invariant circles in area preserving maps 
is of great importance since it relates directly to problems of stability and 
confinement. The first results on this problem are due to Kolmogorov, Arnold 
[1] and Moser [6] assuming that the map has a certain twist property, which 
roughly means that points on the cylinder which lie on a higher level than 
others mover faster. Arnold proved existence of analytic invariant circles for 
nearly integrable analytic maps. Moser proved existence of invariant circles if 
the map is CP-close enough to integrable, the number p of derivatives required 
depending quadratically on the number of derivatives required for the circle. 
For example, he proved existence of C1 circles for C333 maps close enough to 
integrable. Later on the number of derivatives sufficient for C1 curves was 
lowered to p>3, by Rüssmann [8]. In the general case one considers 
irrational rotation numbers w, which saftisfy a diophantine condition k- p/qI 

_> Cq for a positive C, where I is called the Liouville exponent. Rossmann 

also got a better relationship between the class CP of the map and the Liouville 

exponent I of the rotation number of the circle; he showed that p> 21 +1 is 

sufficient for existence of a continuous circle, for maps CP-close enough to 
integrable. Restricting to numbers of constant type (1=4) Herman proved 
existence of invariant C5-circles for p>s+1, p>3 [3]. 

In this paper a similar result to Rüssmann's will be proven by a 
different method, which gives us also differentiability of the invariant curves, 
the number of derivatives depending linearly on p and 1. 

In the second section of this paper we present the main result and 
introduce the renormalisation operator acting on commuting pairs of twist 

maps. The third section treats commutativity and provides a method to get 
estimates on the derivatives of the generating functions if bounds on the highest 

order derivatives are known. In the fourth part we proof convergence of the 

renormalisation. Finally, in the fifth section the invariant curves will be 

constructed, first only with Lipshitz continuity which is achieved by 'pulling 



back' a single point on the invariant circle with an increasing number of 
iterations, a method introduced by Rand [7). Then, in proposition 16 the 
smoothness result is proven by employing a similar procedure which 'pulls 
back' smooth curves. Finally, in lemma 17 the method of proposition 16 is 
copied and used to show that the invariant circle may be parametrised in some 
smooth manner. 

The renormalisation introduced in section 2 can be extended to a 
more general class of mappings of the plane into itself. However, in the case 
where the rotation number is the golden mean (1 + j5)/2, MacKay has proved 
the convergence of the renormalisation operator by explicitly evaluating its 
eigenvalues and eigendirctions. It then turns out that the eigenvalues in modulus 
are all strictly less than one, so long as one restricts to area preserving twist 
maps. 

I am grateful to R. S. MacKay, for without his encouragement and 
advice this paper would not exist and to D. A. Rand for reading the manuscript. 

2. Renormalisation. 

Let p be an area preserving twist map: p: S1XR b. (x, y) 4 (x', y') 
_ p(x, y) with x an angle variable and dx'/dy bounded away from zero, either 
positive or negative. Area preservingness of p is reflected in the fact that the 
Jacobian Dp is one. Instead of y we will often consider a lift : R2 b, (x, y) 

(x, y') = (x, y), where now x is a variable with domain R, and I is 

periodic: x(x-1, y) = k(x, y) - 1. Alternatively, if we set for the shift by one in 
the x-direction R: (x, y) -' (x-1, y), the periodicity reads ! 1oR = Ro& Denote 
by 11 the projection onto the x-axis. If for a point ýe RZ the limit c) = 
limq+mnx(Pl(g)/q exists, then it is called the rotation number of ý. This is the 

same as there exist p= p(q) such that 

nah$9Pý=qw -p+ o(q) as q4 oo. 

If ý belongs to a circle on which p is topologically conjugate to a rotation, 
then we have the stronger statement 

(2-1) rrxbq[n)Rgnl ,0 44 p[n] - q[n] -+ 0 

as n goes to infinity, for sequences {{p[n], q[n]) E 142, ne N). Choose an 
irrational number w. There is no loss of generality assuming that w lies in 

the unit interval (0,1) since the rotation numbers of a point under different 

lifts coincide modulo 1. Let 

w- [m[oJ, m[i].... ]_ (m[o]+(m[i]+(... E R/Z 



be the continued fraction expansion of w and let p[n]/q[n] be the convergents 
found in the well-known way by setting p[O] = 0, p[1] = q[0} = 1, q[1] = m[0] 
and by using the recursion fnrmulas 

P[i+i] = m[ilp[i] + P[i-fl, q[i+i] = m[i]q[i] + q[i-i] 

for ieN. From the construction of the convergents of w it seems natural to 
introduce a method which in a similar way generates inductively the 
expressions ýDq["1iP('] that appear in (2-1). But first let us generalise the 
notion of rotation number to pairs of commuting, area preserving twist maps 
(U, T), where U and T for the moment are commuting maps of R2 into itself. 
We say the point iE R2 has rotation number w, if for all sequences 
f (p[n], q[n]) E NV, nE N} one has 

srxu9[n]TP[n]/max(p[n], q[nl) 40 44 p[n]/q[n] 4w 

for n4oo. 
For any natural number m the renormalisation operator Nm is 

defined acting on pairs of commuting, area preserving twist maps by Nr,,: (U, T) 

-' (ATA-1, AMA"), for a suitable coordinate transform A. Later on we 
shall be more precise about this point, for the time being we remark only that 
A depends on (U, T) and the number m. And indeed, for iterates of the 

renormalisation operator we obtain the same expressions as they appear in 
(2-1): 

N nj... Nm(4U, T) = (A0... An Uq[n-1)TP(n-1)An'1... A0-1, Ap... AnUtnlTP(n]An-1... Ap'1). 

Take an oriented homotopically non-trivial curve C on S1xR. 

Then p(C) is again a homotopically non trivial curve on S1xR and C and 

q(C) enclose some area. We count the portion of this area which lies to the 

right (as determined by the orintation) of C positive, the one to the left 

negative and call the difference the flux of 9. The flux is independent of the 

choice of C and is sometimes called the Calabi invariant. If the flux is 

non-zero, then 9 shifts on average along the cylinder. In that case of course 

one cannot expect that there is any y-invariant homotopically non-trivial curve 
in S1xR. 

Define for 12: 0: 1(Y) = 
{w e RtQ: 3C>0, such that for all 

qE IN, PEZ, qkq - pi ? Cq-11. For a given w the number is called 

Liouville exponent and C the Liouville constant. Naturally, all that are 

bigger than some Ltouvtlle exponent are again Liouville exponents of w. 
However, we cannot define the Liouville exponent by the infinimum over all T. 
For instance the numbers of type Roth 11>01(y) have full Lebesgue measure, 
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but 1(0), the numbers of constant type (the m[n] in the continued fraction 
expansion are bounded) have Lebesgue measure zero. 

We say µ is a transitive invariant circle of 9 if 
(i) µ is invariant under 9, and 
(ii) u is on S'x represented by a homotopically non-trivial circle. 

We say y is of class Ci*UPShitZ if cp is j-times differentiable and 
the j-th derivative is Lipshitz (of course all the lower ones as well). Let I= (1 
+ 15)/2 =i+ [1,1,1,... ] be the golden mean and set ß= log (1+r'2)/log S. The 
main result we shall prove in this paper is the next theorem. 

Theorem 1. Let p: S1XR b be an area preserving twist map of class C1, 
L>-4, with zero flux, and let wE %(I), suppose I<7 *(L), where f"(L) _ 
(L-6-ß)/4 + [[(L-2-ß)2/16 + 1/2]. 
Then if p is in the CL-topology close enough to the affine shear (x, y) -' 
(x+w+y, y) in a neighbourhood of {(x, y) E SIxR: y= 0} (depending on I, L and 
the Liouville constant C), then 
(i) there exists a transitive and invariant circle of rotation number w and 

class CjfLipshit: for j <_'4= V() = max(O, [L-3-ß -11) e N. 
(it) restricted to this invariant circle, 9 acts CKiP'hitz-conjugate to a 

rotation by w on S1 for all j 
_< p. 

Observe that the upper bound for the Liouville exponent 1*(L) in 
particular is strictly less than (L-3-p)/2. 

We begin with a definition. 

Definition 2: A pair of twist mappings (U, T) near enough to affine shearings 
(near enough so that all objects we are talking about are defined), U, T: 44 R2 
for a region 41 c R2, is normalised if 
(i) U(Y) nY= (0,1), where Y= 41 n ((x, y) E R2: x= 0}, 
(ii) T(Y) nY= (0,0), 
(iii) U(Y) has at the point (0,1) slope one. 
(iv) U and T commute in some sense to be described later on. 

Finally, in the proof of the theorem, we shall set (U, T) = (AIA-1, 
APPIRA-1), where A is an affine coordinate transformation designed to 

normalise the pair % Vm[OIR). Of particular interest are the normalised 
affine shearings. They form a one parameter family which we call the simple 
line 

(UW: (x, y) -' (x+y-1, y), Tm, c: (x, y) 4 (x+cy, y)), 

where c is a real, positive parameter. In the course of the proof of the 
thonror» it tiirnc thot r will plusoo/c ho hinnor then cnmo mlmhor ýrhitrorii t114 V1 . 1n, 49 9"1 11� tIIUI t.. V. 1{l UL7TUýJJ IJ,. r U/yyl, l 111Ul1 �V11111 I. "IIIVt. I UI 11111 UI j 



6 
close but less than 1, depending how near ID is to affine. 

Let R be the right halfplane [(x, y) E R2: x 01, L be the left 
half plane f (x, y) E R2: x< 01 and define 

f U(C) if 'E4nR 
I(C) =l T(C) if CE4nL. 

The map 4 is not continuous at Y, but if we identify U(Y) with T(Y) by 
identifying U(>) with T(C) for CEY, 0 can be considered as a continuous 
map of a cylinder I to itself. We will need this fact only to define the flux for 
a pair of mappings and will not any more refer to it later on. The flux of the 
pair (U, T) is defined as the flux of I as a cylinder map. 

We say ji to be a transitive invariant circle of (U, T) if 
(i) }i is invariant under 2� 
(ii) µ is on I represented by a homotopically non-trivial circle. 

The renormalisation operator Nm, MEN, maps normalised maps 
to normalised maps, and is defined as Nm: (U, T) -* (ATA-1, AT"'UA-1), with the 
coordinate transform A to get a new normalised pair with R and L 
interchanged. A priori A may be any coordinate change. We will use 
coordinate transformations that are close to affine (see also MacKay (4]). The 
transformations will be introduced in lemma 10, where we show that the 
renormalisation operator is a contraction in the neighbourhood of the simple 
line. In lemma 9 the non linear part h of A brings AUA'' close to the affine 
shear U... 

Given a point i; E R, then a natural number m will be associated 
to it in the following way: m is determined so that UC E L, TUC E L,..., TmUC EL 
and Tm+lUý E R, provided UC EL all iterates are defined. The coordinate 
transform A normalises the pair (T, TmU), and since AT°°UC ER we are the 

position to determine a new number m'. Iterating this process yields a 

sequence {m[n] t N: nE Nu{0}} which in general will break off after finitly 

many steps, as C. = A�An-t... AOC for some n leaves the domain of Un = 
Tr1(Nm[n) ... Nn, [o1(U, T)), where TT1(U, T) = U, if any of the iterates TnkUnCn is no 
longer defined, or if nXTnUnC and nyUnc are no longer negative. If the 

sequence does not break off, then w= [m[O), m[i],... ) is the rotation number of 
C. We note here, that later on we will use as well the notation IT2(U, T) =T and 
Tn = ifz(Nm[n1... Nnto](U, T)). 

We fix an irrational number w and then we search for a point on 
Y which has w as rotation number. This is in effect the reverse of the 

procedure desrcibed in the previous paragraph, where we fixed C and then 

went on to determine its rotation number. The operator Nip] sends the 
rotation number w to w' = W-1-m[O] = [m[i], m[2],... ] e R/Z, N�(01 acts as a 
shift on the components of the continued fraction expansion. 

It is convenient to decompose Nm. Define 



N": (U, T) -. (TU, T), 
N": (U, T) (ATA-1, AUA-1). 

Hence Nm = N"oN't'. Write for further use (U[p], T[p]) = N"P(U, T). This 
decomposition plays an essential role in lemma B. The same applies to section 
five, where the iterates (U[p], T[p]) are needed to construct approximations of 
the invariant curve out of small segments. 

Renormalisation by using affine coordinate transforms leaves the 
simple line invariant, and Nm acts on the parameter by c4 m+c'1. It is not 
hard to see, that any affine and area preserving map Ts: R2 -. R2 which 
commutes with UOD is in fact a shearing parallel to the y-axis, i. e. is of the 
rorm rx, ya -+ cx+cy+a uff, wnere a ano c are some consianis. we sna« neea 
this fact in section 3. Will return to it shortly in the context of generating 
functions. 

Now switch to generating functions (v, ti) (cf. Mather [5]). An 
area preserving (or any other measure preserving) twist map U: (x, y) i (x', y') 
can always be represented by a generating function v(x, x'): 11; 2 -. R (here the 
twist property is important, U need not necessarily be near an affine shear in 
some other sense). The arguments x and x' are the x-components of a point 
(x, y) and its image (x', y') = U(x, y). The y-components are obtained by 
differentiating as follows 

exv(x, x) 
ax-V(x, x') = y'. 

If U is in C1 then v is in C1'1. Similarly, T can be expressed by a 
generating function ti(x, x'): P, 2 

-0 R. The decomposition of the renormalisation 
operator reads now 

N': ýV, 'Lý -º (Vý'LrTýý 

N": (v, ti} - (A'LA"1, AVA-L), 

where (v, c)(x, )e) _ ývix, x") + . t(x", x) for an intermediate coordinate x" 
chosen to satisfy the stationarity condition 

3x-(v(X, k") + 1(X», x )1 = 0, 

where dx" stands for d/dx'. The stationarity condition say in particular that 
there is a unique intermediate y-coordinate y° = aX v(x, x") =- 8X z(x", x). In our 
case x" will always be defined unambiguously, because the second derivative 

with respect to x" will be negative and bounded away from zero for (v, t) 
close enough to the simple line. 
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Let c>0 some number, and define in the x, x'-plane the 

rectangles 

I=f (x, x') E R2: 1/4 x-x' <_ 3, f +x < 51, 
t= [(x, x') E R2: max(-24[j, -3c/4) s x-x' < mtn(2j , 2c), f +x'l < 4). 

Throughout the paper, (v, t) will be defined in (0, f) and v, ti will commute 
in f. Let (v0,, t 

,) 
be defined in (4, t), then U.: (x, y) -* (x+y-1, y), is 

defined in 

C= {tx+y) E R2: -3: 5 y< 3/4, Ix - (1-y)/21 :s 5/2}, 

and Tom, : tx, y) 4 (x+cy, y) is defined in 

t" = {(x, y) E R2: max(-2; S/c, -2) cy <_ min(3/4,2, Ij/c), k- y/2cß <_ 21. 

In particular 10 c r`, and f is the same for c >_ . ff8/3, which in fact is the 
more interesting portion of values c may take. In (x, x')-coordinates the 
normalising conditions get more concrete: 
(i) ax v(x, x')I(p, o) = 1, 
(ii) ax, T(x, x')I(ovp) = 0, 
(iii) 8x(ax v(x, x)j(O O) = -1, and 
(iv) commutativity in f i. e. (v®ti)(x, x) for (x, x') et 
The last condition (for (vj) close enough to the simple line), v(x, x") + ti(x", x') 
= ti(x, XA") + v(x"", x'), involves in general two different intermediate 
coordinates x" and xý'. In generating functions the simple line is represented 
by 

(vclz, (x, x) = ((x-x'-i)2/ß, tiCDPC (x, x') = (x-x')2/2c)), c>0. 

Let t(x, x') = ex + bx' + tx2 + 2xx' + tx'2 be a map that containes no higher than 
quadratic terms and commutes with vm, where d, b, t, b, e are some constants. 
According to a remark made above, we have necessarily t= -1= t. We shall use 
this fact in the proof of proposition 5. 

For convenience we write (v[u], -c[u]) = N"u(v, ti), N"o - id, for u 
E Nu{0}. At this point we will outline in more detail how the renormalisation 
works using affine shearings. Given an irrational w= [m[0], m[1].... J and set 
v' and r" for the generating functions associated with Uo and To. Let 

(v, i) = Nm[n-1]Nm[n-2j.. Nnjo)(vs, tis). 

(There is no index on the v's and Z's to denote the iteration under the 
renormalisation operator. ) In order to obtain (v', ti) =N 4v, z) we have to 
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apply NA m= m[n] - times before interchanging v and r and rescaling to 
get finally Say, c= c[n-1] is the parameter value after n-1 
renormaltsations. Then 

(v, ti) _ (vý, ti077) _ ((x-x'-1)2/2, (x-x')2/2c)). 

Once applying N" we obtain 

iv[1), 'ý[i)) = ((x-x'-1)2/[2(1+c)], (x-x')2/2c)), 

and for arbitrary uE IN in general 

(v[u], ti[u]) = ((x-x'-1)2/[2(1+uc)], (x-x')2/2c)). 

In particular we read off the rescaling factors which determine the linear part 
of the coordinate transform A. In the y-direction one must stretch by a factor 

-(i+mc) and in x-direction by -c/(i+mc) = -1/(m+c''). Set c= c[n] = 1-' 
and let c[O] be the initial parameter value, then one finds 

c[n+i]'1 = An = [m[n], m[n-ij,..., c[O]] E R/Z, 

and in particular c[n] = m[n-1] +,. The Jacobian of the coordinate 
transformation A. turns out to be 

DA, = -ä�-t 0 
0 -dn'1Dn-11 

Additional to that rescaling, An shifts in y-direction by 1. 

Derivatives with respect to the first, respectively second variable 
are denoted by 81 and 82 and the symbol a itself stands for any derivative. 
For w in some interval IcR, with [0,1] cI, write Djg = al + W. In 
lemma 8 we shall get more precise about the range of w. Finally, before we 
restate theorem I in the context of pairs of commuting twist mappings we 
introduce some notation which will in effect not be used until section 4. We do 
it here because for reading section 3 it may be helpful to know that the sizes rl. 
and 0 which appear there are the same as those defined here. Define 

ep, u - maxwei, l*k=p (ja2bvýv[u]-vw)jo J82jDKýti[u)-ti(jD, c)j'), 

for 1<p<1= L+1, I. N is the supremum norm is as indicated on E 

respectively f. The parameter value c is well chosen, for instance so that 
a02(TIUI-TýCD, d1(0,0) - 0. Let tiýý = alias, then the derivatives to {til, r 1,1 > 
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a, i+l = p} (aP aenotes any one of them) are certatnly contained in {alb, k t: 
j+k =p and wE [O, i]} for 1sps1 since Do is just al. Nevertheless, in 
lemma 8 it will turn out to be more convenient to work with D., 82 instead of 
with 81,8ý. Take as abbrevation ilP =s, and to account for the special role 
the highest derivative l will take, we set TI(n) =11l(n) which is understood to 
be l after n renormalisations. The main result of section 3, proposition 5, 
will show how the lower order derivatives can be estimated by the higher ones, 
i. e 11 (n) <_ tPrll(n), p=1,..., 1-1, for some constants rp. 

Theorem 3. Let (U, T) be a (commuting) pair of normalised maps in C1, L> 
4, with zero flux and suppose I defined in some bounded region 4cE. Let 
(v, T) be their generating functions in Cl, I= L+i, and let w E! Uj) for x< 
f`(L) an irrational number in the unit interval. If we assume (vj) in the 
C1 - Itopology on (C, f) is near enough to the simple line, then 
(i) the sequence of renormalised pairs of (v, ti) converges in the 

Cl -topology on (1$) to the simple line of affine shearings, 
(ii) the pair (U, T) possesses a transitive and invariant curve A of class 

Cj+"pshitz for all j< l), and 
(iii) (U, T) acting on }i is CJ 4'P itr-conjugate to on the x-axis 

f or j <_ W, where %W: x -* x+w mod 1. 

3. Commutativity. 

The next lemma generalises the method of comparing coefficients 
to the case of Taylor expansions with remainder. 

Lemma 4. Let 8 be a positive number and let P(x) =Z i<n aixi be a 
polynomial of degree n with P(x)I <_ 8, for x in an interval I centred at 
0. Then there are numbers dj, depending on the degree n of P and on the 
interval I, such that fail <_ di8 for i=0,..., n. 

Proof. Set without loss of generality I= [-1,1] and decompose P into 
Chebycheff polynomials p(x) _ ZO: 

5iy, ciT1(x). The Tix) are orthonormal with 
respect to a weighted integral. Hence 

HiH =1 1221-2-1J+1P(x)Ti(x)(1-x2-lex) 

TI"22i-2j[-nJ+ (cos p)di]"J[-n1+'T(Ti(cos ))2dpJ 
.s 22i-2023/2-i = 2i-1128. 
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The coefficient of the highest power of Ti(x) is 1, so we conclude I 
2n-112O. Now replace P(x) by 1 aixi and 8 by 8(i + 2n-1lr-1). 
Repeating the argument proves the lemma. Q 

In this section 11 and d denote some (rather small) positive 
numbers. In particular one has to think of rl so small that the product 1162-1 
is (uniformly) bounded by some small constant. Whenever we write 0(s) or 
0(11) the indicated estimates are understood to be uniformly in a respectively 
11. This section aims to prove proposition 5, i. e. given bounds on some higher 
derivatives the point is then to estimate the lower ones. 

Proposition 5. Let A and il be some small, positive numbers and suppose 
(i) v and tc commute in t; 
(ii) JaPvb = 0(11) for p=2,..., 1; 
Ott) Iltifr = 001); 
(iv) JaP(ti-t ) fr = O() for p=2,..., l-1 
(v) c is a parameter value satisfying flog ecI s 2, say. 
Then there exist positive numbers rp, p which are independent of d 
and 11, so that IaP(ti-ti 

,, 
)J, < tyl. 

The constants 9p depend on p, where vp > rp+i for 1sp<1, and 
they furthermore depend on 1. In fact, rp increases when I increses and 
correspondingly the estimates on the derivatives have to be 'pulled back' a 
longer way. 

In lemma 6 we shall use commutativity to improve the a priori 
bounds on 0P(ti-tiý, ý) by a factor A. Repeatedly applying lemma 6 finally will 

prove the claim made in proposition 5 for at least third order derivatives of ti. 
This procedure is often referred to as 'bootstrap'. At this point we use the 

commutativity assumption. We expand v and i into Taylor polynomials and 

compaire their coefficients. This provides l(l+1)/2 inequalities for the same 
number of coefficients in the Taylor expansion of T. The remainder in the 
Taylor expansion is by hypothesis (ii) estimated in terms of 0(ij), and the 

coefficients in the Taylor expansion of which are of lower than l-th 

order, will turn out to be of the same size 0(11). In fact, in lemma 6 we show 
smallness of higher than second order derivatives and the second order 
derivatives themselves will be dealt with in the proof of the proposition at the 

end of this section. 

Lemma 6. Let q, ß, il >0 real numbers, satisfying 6[tll = O(e), (where 
[z] = mtn(0, z)) and suppose 
(t) v and ti commute in 
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(iij j8P(v-va, ) = 0(rj) for p=2..... 1; 

0(i); 
(iv) ýäPtI, = 0(6(q-1]), for p=3,..., 1-1; 
(v) 0(e). 
Then r3PtI = 0(6[4+1-tja), for p=3,..., 1-1. 

Proof. The second order derivatives remain untouched throughout the proof. 
They only have to be of size 0 which is exactly the factor by which hypothesis 
(iv) gets improved. We consider the commutativity condition 

(3-i) vet - ti®v = v(x, x') + i(x", x) - C(x, x"") - V(x', x') = 0, 

where the arguments have to lie in E, f, f, 9 respectively. There are two 
intermediate coordianates, x refers to v. t and x, " to T®-v. The 
stationarity conditions 

3x4V(x, x') + ti(x', )e)] = 0, 

ax-(ti(x, x~) + v(x', x')] =0 
allows us to consider, for instance, x and x"" as variables and xN and x' 
depending on them. The stationarity conditions for a pair of normalised 

'), 
where c >_ 1 is some parameter, are generating functions (vm, iý'c 

-x + x"(1+c-, ) -x'c-, +1=0 
-xc_l+x^*(i+c'1)-x'- 1 =0. 

We see that x- x" and x"" - x' and one sees that (x, x"") is a good choice for 

coordinates (the other one is (x", x'), we shall return to it in the second part of 
the proof). More precisely, x, x"` can vary over some interval which uniformly 
in c is boundet from below (and above) so that all arguments that involve x", x' 
will not leave their domain. We expand (3-1) into a Taylor polynomial around 
some xo, x"o, x^"p, x'o and denote for the sake of clarity the differences again 
by x, x", x"", W. The foot points xo, x"o, x'O, x'o may be chosen so that x'o =0 
and vO j(x'"o, x'O) = 0. Since v is up to an error of 0(rl) near the simple line 

we have x^'O =1+ 0(11) and therefore -vlo(x-"o, x'& = 0(11). Furthermore y' = 
tiot(x o, X = vot(xý"o, xo) =0 and therefore x"o =0 because of the 

normalistion condition (iii) 'coiI(o, o) = 0. 
(i) Differentiate (3-1) with respect to x, hence 

dX(v. *ti - i®v) = vlo(x, x") - , Clo(x, x') + [tcoi(x', x') - voi(xA, x )ld) 

We expand each term into a Taylor series and obtain using hypothesis (ii), (iii) 
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that 

`(i, 
0->(l, o)l>i+j tij, ý 1+x i-i[Tpx j- výix. '-jjdkx'}/()! 0-i)! ) 

= 0(n) 
(3-2) 
for (xo+x, x'), (xo+x, xo""+x"'), etc. lying in C, f, etc.. Let us prune away all 
those terms that are small by assumption (ii): 

G(41)->(*1,0), 
1-1>i+2 

(-XixA*h 
+1, j +x tX"hbi+1(dxx')f/(j! l! ) - t10(Xq, XANp) 

+ v10(xo, x o) - x'tiii + x(1-tim) - x" + (x'+x"till-X'(1-ti02))dxx = 0(rt), 
(3-2*) 
since vol(x'-'"n, x'p) = tipl(x"ox'o) = 0. Here we used that, up to an error of 0(n ), 
x'11 = -1 v`0 = +19 v02 _ +1 and vij = 0(n) for i+j > 3. The term x" causes 
the biggest trouble (more than all the rest together). 
(A) We expand x" into a Taylor series (remember x"a = 0): 

7(s, t) (O, q, LS+L>j (dx , xtx'V' t/(sit! ), 
where d denotes total derivatives. We have to compute the derivatives 
dx-sdxtx"l(xo, x""o). The implicit function theorem applied to the first of the two 
stationarity conditions yields 

axx. = -v11Av02 + 'C20} = (1+'L20)'l + 0(1), 

. 
9XX" 

_ yllr 
ýv0ý 

+ ti20) -ý11(x"0, 
x ýýf 

ýý+ 
y+7Aý + 0(11) 

= 
O(LS)" 

where the Vs are evaluated at (xd, x"0) and the ti s at (x"p, x o). Our aim is to 
take the estimates on the derivatives of -c as they are given by hypothesis (iv) 
and to impruve them by a factor A. Set V3 = max3. ýu<t (P°1 + PU which is 
of order 0(rl6[9-11). Whenever possible we shall therefore ignore terms of 
order O(LV&. (Observe that V3 = 0(d), i. e. V32 = 0(6V3)) Firstly, we deduce 

(3-3) ax"X" =+ ti20) + o(eV3l = -tii, 3/(l+tiý) + a(ev3), 

for s _z 1. Here we used that the remainder O(AVG involves products of at 
least third derivatives of v and ti together with at least second derivatives 
of r which are of size A by hypothesis (iv). Using once more the implicit 
function theorem we derive from the second of the stationarity conditions: 

dx-x' = aX--°x = -[tioixax'`ý + v2xW"0vX off]/vii =I+ ti02 + 0(V3), 

dxX = axx' s -t11(xo x )/vll(xA"p, x p) _ 'Cil + 0(11), 
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since, due to hypothesis (it), v11(", x'0) is -1. up to an error of size 0(11). 
Next we shall show that d, tx' = 8xtx + O(AV3) for t>2. Clearly dxx' _ 81x' + 
(dxx')aXx", and differentiating once with respect to x provides dx2x' = ax2x" + 
O(AV&, since products of the form (d2x')(aXx') are of size O(AV3), where one 
of the two factors is differentiated at least twice while the other one at least 
once. For some t >_ 3 let us assume dxt-lxM = 8, t-ix' + o(ev3} holds true. Now 
we increase the number of derivatives by one, hence 

dxtx" = axtX + (dxx')8X, aXt-lx + 0(6V3) = axtX + O(E V3) 
if t is at least 2. Let t be 2 and it follows for the partial derivative 

Za 2x" =+ o(ev3) 

_ -v21(,, o2+rzo)-l + y11v12(vo2+ti2o)-2 + O(ev3) = O(ev3). 

The same holds true for higher derivatives, i. e. d, tx'= 0(6V3} for t >_ 2 (s = 
0), because derivatives of the remainder are again of size 0(OV3). For (s, t) 
(1,2) we claim 

dX- 'dxtx" = (dx -x )SaX SaXtx" + ()(6V3)- 

As we have seen, this is true for s=0. Fix t and let us assume the formula is 
proven for s-1 for some sy1. Differentiating once with respect to x"" 
yields 

dx 1-5dxtx` = (dx^«X )58X-58xtx" + (s- 1)(dx-x)s-ýdx., 2x )ax5-13xtx' + O(i V3) 

= (dXý«x )Sax5axtx + o(ev3). 

Furtherore, since dXMx' is i+c"'+O(AV3) and is therefore uniformly bounded, 

and since the partial derivatives BXtx" are of size 0(6V& for ta2, we obtain 

dx dxtx" = O(Av3), 

for (s, t) >_ (0,2). In the cases where s>1 and t=i it remains some extra 
work to do. We begin with dxx" = axx" + (dxx )aXx and differentiate it once with 
respect to x": 

dX-dxx" = (dX- x')a uaxx' + (dX'dxx')axx" + (dx ')(dx )3x2x" = O(DV3}. 

The same estimate holds true for higher x""-derivatives. We summarize: 
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dx^«Sdxtx' = O(tV3j 

for all (s, t) >_ (0,1), (s, t) * (0,1). Finally we have to treat the case s>0 and t 
= 0. Indeed d, - x` = (dx. x')aX x", and let us assume that dXM; -ix = 
(dX-. x')5-laX, 5-lx' + 0(6V3) for some s 2t 2. By way of differentiating once we 
obtain 

dx' sxo 
= 

(d, )e)SaX M+ (S-1)(dx^) }5-ýdX�2X )ax 5-txm + ow_} 

_ (d 
x. 

x )5 5x' + O(Av3). 

To finish off the last step, we set 0= ('+T20) and use (3-3) in conjunction with 
dx^-x = p+O(AV3), which leads us to 

dX M=- p5-1'C1 (XnO' Q+ O( V3) 

for s >_ 2. Apart from dxtx" these are the only non-trivial derivatives (a 
priori not of size O(tV3)). In the case s=i up to a constant the same result 
holds true as we shall see in the next line: 

dX-*xm = [. to, (xo, x^'o) +v x^*O x 0)] ti i(x'o, X o)/(1+ t (x'o, X o)) + 0(eV3) 

=- l''C I I(X"O X'o) + O(z V3), 

where p" = (1+ti0`)/(1+ti`a) - 1. This completes the list of all derivatives of 
A x". So we end up with a polynomial in x and x: 

x" = x(p 1-ti ýz i{1+ý'1) ýý - p$XNtii - 1251 X"'41-l'tI, i + o(dV3), 

(with the convention 9o = p") and in particular x" = x+0(e). 

(B) We expand x into a Taylor series. Concerning the first order 
derivatives we know already 

dx~x' = -[Cpl{xpxýup +V x^"pPXp)J/v11(x'"O, x'0) =1+ tiOPO'x~ý + O(n) 

dxx' 4 -t11 (xo xM0)/vii = T11(X0, X 0) +0(61 ). 

For the higher order derivatives dx-sdxtx' we derive; first for s=0; t>1 by 
differentiating it follows dxtx' = %I(xo, x ") + 0(11) for t= 
Furthermore we derive immediatly by differentiating with respect to x 
dx,, " xtx - Tt, s+i(xox""o) + 0(11) for (s, t) > (0,1). We are missing the pure x"' 



derivatives. Firstly 
to 

dx x' _ 't03(xoPx""o)+v30(x"'a)ýa)+v21(x"'0, )eo)dx) + 0(11) 

= T03(xO, x""0) + O(AV3), 

since v3, = 0(11) and dxx' is of order O(0). Similarly for higher derivatives: 
dx"'5x' = 'co, 5+1 + 0(ßV3). Summarizing: 

dX--Sdxtx' = tit, 5+l + 0(tV3) 

for (s, t) (0,0), (s, t) * (0,0), (1,0). Finally, since x'a = 0, we get 

x' = xtill + x"'(l+tio2) + 2: (5, t)>(o, o), t>5+t>2 xA"Sxttit, s+1/((s! t! ) + 0(6V3) 

where the sum containes only summands of size 0(V3). In particular x' = x"" + 
O(d) and dxx' = 0(0), as we would have expected from the affine case. Let us 
return to (3-2') and insert the expressions for x", x', in particular we use the 
fact x"1ti1= xlti1+0(dV: 

-tlfll=l1t0ý71-1ýillýJ 2 -XýxýýI+ýýJI`ýý1ýý - Xu 

- x' -Cll + X('-ti) + (x"'+x`'L11-x'(1-to2))dXx' + vl0(x0, x0) = 0(. 6V3).. 

Hence 

AN' 

1>i+j_2 -xIX Fri+1,1 A! l! ) + -7 j->2 Xý"1p1-ltii, l 

+ first order terms in x and x'" = O( V3). 

Lemma 4 once applied to this polynomial in x yields 

Am * 

Lt-i-i>ýo -x )tip+i, i /j! = O(dV3) 

for i=2,..., 1-1. A second time and we obtain 

Ti+1,1- 0(dV3) 

for (i, j) >_ (2,0). Since we differentialted the commutativity condition with 
respect to x we do not get the co', j= As it turns out, the summand 
x" in (3-2*) spoils the til, j for j=2,..., 1-2, since they cancel out (up to a 
factor a). 
(ii) The second part of this proof is devoted to Tip t=0,1, 



We proceed similarly as in part (i), this time chosing x", x' as coordinates. We 
differentiate (3-1) with respect to x' and obtain 

dýv®ti - 'z®v) = [vlýx, x") - tildx, x')]dXx + tiol(x", )e) - vol(x"', x'). 

It follows by hypothesis (ii), (iii) that 

{xi-1[v x"j - ti,, xwj1dXx + 
=0(ßl) 

(3-4) 
for (xQ+x, x"), (xo+x, xp""+x'), etc. in ", t, etc.. Let us prune away all those 
terms that are small by assumption (ii) and the first part of this proof: 

2-1-1>j>-2 [-xý")L1, 
i(dxx) +x it0. i+1J + 

_7l-2>j1 
1"i 

1+1 + x~ - til0(xp, x'0) 

(3-4`) + vlo(xo, x"o) - (xA"Tjj+x(1-tim)-x)(dXx) ; )"till - x'(1-ti02) = 0(n1), 

since v0l(xý0, x'o) = tiol(x"ox 0) = 0. Here we used that, up to an error of 0(11), 
vll = -1, v2o= +1, v02 = +1 and výj = 0(11) for t+j >_ 3. 
(A) Similar to (i) part (A), expand x"" into a Taylor polynomial. With the 
assistance of the implicit function theorem we deduce from the stationarity 
conditions 

dxnx=ax"X=-(v02+ti2ti)/v11 =1 +ti20 +0(11), 

dxix = aXx = -ti1 1 /vii ='Uli + o(n), 

where the Vs are evaluated at (x0, x"0) and the -c's at (x"0, x'0). Furthermore, 
exploiting the stationarity condition that determines xe'" we obtain 

e3xx'v -v11Jýti02 + y., o) ° (1+t02)'' + 0(T1), 

a xA* = -till/(T02 + v20) = -(i+ti02)-ßt11 + O(e11), 

and this time the ti's are evaluated at (xo xAn0) and the v's at (�x'0). We 

write the arguments only where necessary. Combining the last equations we get 

dXx'" = aXx"" + (dxix)axx' 

(1+102)-l - (1+'C02)-'T i i(X" x o)t i i(Xo"X^"o) + o(ev3), 

d, ýMxA. = (dxux)a, x' - -t l I(X0, x~0) + 0('&V3)' 
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dx. 2x~ =- (dx x)ti21 + 0(ev3) = o(ev3), 
because 'C21 = O(DV3) as a result of the first part. Hence dX-5x"" = 0(6V& for 
all s >- 2. From (3-4") it is clear that the only derivatives of x"" that are 
important are dx. dxItx~ for s=0,1, t=1,..., l-s-1. Firstly for s=0, we 
obtain 

dXZx"" = dxh{(i+ti02)-1- ('+ti02)-Itiii(xraxa)tii(xax'"0) + O(EV3)) 

= (1+T02)-2(dXx)ti12- (l+T02)'1[t12+ (dXx)t21] + o(6V3)9 

= -(1+T02)'ltii'&" + O(AV3), 

since (dx x) is of size O(A). As already mentioned earlier, the remainder 
0(6v& is a sum of products which consists of at least two factors of at least 
third derivatives of v and at least second derivatives of T. This means in 
practice that we neglect derivatives of the remainder. Thus 

dX tx"" =- ßti l, t(x"OQ + 0(ßV3}, 

for t >_ 2, where q= (1+t02)'1. By the same argument we get 

't(x"O, 
x' + 0(OV3) = O(OV& dXndX tx' = -gti2 

for t >_ 1, because 't2, t = 0(DV3). It follows readily that dX"SdXtx"" = 0(AV3) 
for all (s, t) } (1,1). Finally we get for x"" the following expression 

xM=X-ao+qx'[1-t11t111-2: 2<jXiq'c1,1-XN'C 11+O(BV3). 

(B) Additionally to x~ we shall need the Taylor polynomial of x= x(x", x'). 
We know from (it) part (A) that dxx = ti11(x"a, x0) + 0(11) and therefore dx 5dXtx 

zi+s, t(x"ox'p) + 0(11) for all (s, t) ý (0,1). We are missing the pure 
x"-derivatives. The first was computed above: 

dxwx 2 
['02(x0, }') +'C20`X"O9K O)J + 0(10, 

and differentiating yields 

dx"2 = [VO2 XO O) + ti30(x'oa)eo)J + (dx"x)vtiXVx"O) + o(il? = OW3), 

since the V03, V12 = 0(9) and ti30 = 0(oV3) as a result of the first part. We 
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have therefore dX"tx =Tl, t + o(AV&, t=1,..., 1-1, and dX-sdXtx = O(UV3) for s> 
1. We summarize 

}{ ' }{o + }{ ti ii+ X*(1+t )+2: 1_1>g2 Xýh ij O(eV3). 

We now return to (3-4) and use that (dXx) = 0(6), thus 

Zl-1>j2 x Tti0,1+1 
- 4T 1,1/jI + X"ZI-2>j 1K!, U lj+1 + x^po - UIOOPX~0) + V1AOX 0) 

qx'[l-titItiIII - (xý"tijj*x(i-ti20)-x")(dx-x) - x'(1-tz02) = O(oV&. 

Lemma 4 applied to this polynomial in x leads to 

(1) o+ x°ti12 = o(av3), j=1, 
0 10 "Uo, i+l -4 TI, j + Tl, j+lx" = 0(aV3), j=2,..., 1-s, 

where 0 is some irrelevant constant (= ß[1 - c,, Tllj[l + c1lr1i] -1+ T02)- 
The term i=0 does not make sense. Inspecting the linear terms in x' we get 
-Ui, i = O(AV3) for i=2,..., 1-1. The constant terms then obviously lead to t= 
O(V3) for i=3,..., 1-1, since 1. This concludes the proof the lemma 6. 

Proof of proposition 5. We begin with some q* which satisfies condition 
(iv) of lemma 6, i. e. . 6[q"-lln = O(A). Applying lemma 6 improves q to q+i 
until 6V3 is of size ii (recall V3 = max3-<, <1(P'tI + IPUvP= 0(rlý(q-l1). (q is 
not necessarily an integer, and in lemma 6 we ought to have written AV3 + TI 
instead of AV3 to prevent that AV3 may get smaller than r1. ) Hence j`dPtl = 
00(11) p=3,..., 1, or JP-cl c epil for some numbers Vß, and c is up to an error 
of size na polynomial of degree two. Let ti(x, )<') = x2220/2 + xx'till + 
x'2'co2/2 + x'clo + xtiol + const.. By the remark made in section 2 it follows that 
ti? o = -ti11 = uo2 up to an error of size 0(i). The parameter c is chosen so 
that (ti-ti,,,, )ilI(o, o) =0 and therefore (ti--tcx), c)I = 0(rl). This concludes the 
proof of proposition 5, i. e. l3P(ti-tiCD, )N = 0(rl) for p=2,..., 1. Q 

4. Convergence proof. 

Proposition 7: Let cü = [m[0], m[1].... ] be an irrational number and let 
(v, ti) be a pair normalised generating function. Set A. _ [m[n], m[n-i],..., c[0]] 
and 11, - j[oýst. ail, where c[0] is determined so that ajaj r-'z,,, ý'[oPj(o, o) - 
0. Then there exist constants 8>0, -E >0 (depending on m[0], c[0]), and a 
sequence of coordinate changes (A.: nE No) that are near to affine, such that 
the renormalisation sequence of (v, ti) converges in the Cl-topology on (!, $) 
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to the simple line, provided 
(i) m[n]2m[n-1] BMna for some aE [0,1-4-ß) independent of n, 
(1t) 11(0) <_ E. 
Furthermore ri(n) < S"tl(0)Mn4 t1, for a constant V. 

Recall that tl(n) denotes the sizes of the l-th derivatives of v 
and ti after n renormalisations. The proof of the proposition splits into three 
parts: 
(A) Under the assumption that rii(n) =c (n) = 0(ilt(n)) for 1<i<1 
uniformly in n we show in lemma 8 that ei[u] are to be estimated by a 
polynomial in rl and u, in a way that suggests that ci u(n) , uT(l(n) for u_0. 
At this point we use the decomposition of the renormalisation operator 
introduced in section 2. In fact, lemma 8 deals only with the iterations of NA 
and the estimates of ej u(n) are deduced inductively on i. 
(B) Recall Nm = N*-". In lemma 8 we did the first part, i. e. Wm. Lemma 
10 completes the renormalisation by applying N`, which interchanges v and 
t and normltses the new pair using a coordinate transform A. The main part 
of A, an affine streching, makes Nm a contraction in the neigbourhood of the 
simple line. The non linear part of A will be introduced in lemma 10, and is 
designed to bring v close to the affine shear vm. 
(C) In lemma 11 it will be demonstrated that the new pair of renormalised 
maps is well defined on (4j) and commutes in IF . 
(D) Finally, to complete the proof of the proposition, we verify the 
hypothesis made in lemma 8. In particular it remains to prove that the new ti 
is close to an afftne shear. To this end we use proposition 5 which chaines ti 
to v provided they commute in some region, here3". 

We fix n and drop the index n in the following where there is no 
likelihood of confusion. We use furthermore the notation m= mini and c 
c[n]. (The numbers ep will be the same as in proposition 5. In lemma 11 we 
shall return to this point. ) 

Lemma 8: In the definition of ilP let the unit internal [0,1] be the range I 

of w. Suppose 
(i) there are numbers rp so that 11p fp1j, for p=2,... l-1; 
(ii) (m+1)2cri2 5 63', where (54X64)'1; 
(iii) JZP(ti-"tW'C)Ii< gyp; 
(iv) 1aP(v-v. )I < c-1i . 
Then there are polynomials *P(x), p=2,..., 1, with 41P(0) =0 and positive 
coefficients such that 
(4-1) £n a, < (u+c'1)(1 + ! �((u+1)2Cll 

))TIn 
rr. -r"r 
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for u=o,..., 

Remark: It the proof of proposition 7 it will turn out that (m+1)2c11 (where 
c- m[n-1]) is a decreasing exponentially fast for n- oo, due to the fact that 
a has to be strictly less than 1-4-ß. Hence the factor 1+ It P((m+1)2cr1) will 
converge to 1. In particular, by shrinking V the infinite product of them over 
ne IN can be made as close to i as we please. The point of lemma 8 is 
therefore, that e urgp. 

Proof. We shall prove the lemma by induction on p. Beginning with 
second order derivatives, p=2, we obtain for the derivatives of v[u+1] in 
terms of v[u] and T[u]: 

D 2v[u+1](x, x') = D. 2{v[uJ. t)(x, x') 

= v2ju] + W2tio2+ 2Dwx"[vii[u] + wt11] + (D, rx")2[v02tu] + ti2o) 

where u=1,..., m-1, and where the Vs are evaluated at (x, x) and the tis at 
(x", x'). (Because of the stationarity condition Vol[u] + tilg =0 we do not get a 
factor involving Dr2x"). Reordering gives 

D�2v[u+i](x, x') = [al + (Dwx")a212v[u](x, x") + (D�x")2[82 + w(Dwx")-1a3]2'c(x", X), 
(4-2) 

where 31,32,33 denote partial derivatives with respect to x, x", x'. When 
evaluating the square of 81 + (Dx")a2, the factor D, x" is regarded as a 
constant. Note that NA does not touch r at all. We will often drop the 
arguments of v and T. If c is chosen so that ala2(i-t 

, c)I(o, o) = 0, then we 
say tico approximates ti best. Naturally, there are other ways to fix c 
which are no less suitable to prove the contraction of the renormalisation 
operator in the vtncinity of the simple line. The derivatives {v20, v111 vo21 
can be expressed in terms of {Dw2v: wE [0,1]1, explicitly one finds (recall 
that Do= a 1) 

a1` = D02, 
81ä2 = [4D1/22 - D12 - 3Dp2/2, 
X22 = 2[D12- D1/22 + D01, 

and reads off the inequality 

(4-3) 132v[u]I ̀  81p, 02v[uJI 
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for wE [0,1]. Equipped with that inequality we do a closer look at (Drx')(x, x'). 
From the stationarity condition vol[u](x, x") + Tlo(x", x) =0 one derives with 
the implicit function theorem: 

Dvx' = -(vii[u) + wtill)/[vo2[u] + ti2o) 

_ [c/(uc+l) +w+ 0*(8cc , )]x[c/(uc+i) +1+ 0'(8cEý ]'' 

=1+ (w-1)[(ß+c-')-s + 1]-1 + 0*(48cc2, u) 

since cc2, U <_ 1/48 by assumption (u) (the denominator is expanded into a 
geometric series). The symbol 0 has the following meaning: f(x) = 0s(x) if 
If(x)/xl<_ 1 as x40. The assumption 

(4-4) (w-1)[(u+c-1)-l + 11-1 s 1, 

which will be made here shall be justified later on. We return to (4-2) and 
confine ourselves for the moment to pure D. -derivatives. We forget for the 
time being about the change of the range or w when passing from u to u+1. 
This question will be discussed shortly. Hence 

(4-5) C2, u+l ̀  e2, u + [2 + 48ce2,12112 <_ E,,, + 9x121 

if 48cc2, u < 1. Similar to (4-3) where av was estimated by D,, 2v for we 
[0,1], the mixed 32 and D. derivatives can be estimated. For u=1 we find 

62,1 _< c'1112 + 9112 since hypothesis (iv): la2(v-vcx3)Q < c'ir12. Summing over u 
we obtain: 

(4-6) c 2, U: 5 9(u+c"1)112. 

Let [O, w[u]] be an interval contained in the range of w at the 

u-th renormalisation step. Especially in view of the restriction (4-4) we have 
to make shure that the domain of w in the (u+i)-st renormalisation step is 
included in the range of w in the u-th renormalisation step. More precisely, 
we shall show that 

0: DW(u+iIx" ` W[uJ 

is satisfied. In fact this condition holds true for values w for which 0 <_ Dwx" 

<_ w generally. This last inequality is clearly satisfied if DMx" _ [(u+c")'' + 
w]x[(u+c'')-' +11' + O'(48cc2, �) lies in [O, w], Vu=0,..., m. This for example 
is true if 
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wz max(1,1 + 48c (uc+1}), 

and using (4-6) this follows from 

w >_ 1+ 8254(u+1)2C, 12, 

which itself is satisfied by hypothesis (ii). It is not too hard to see, that the last 
inequality also implies D,, x' ?0vu=0,..., m. We have therefore shown that 
the unit interval is contained in [O, w[m]] provided [0, w[0]] c [0,1 + 
54x64(m+1)2cr12]. In the sequel we shall assume w[0] =1+ 54x64(m+1)2cij2. 
In the hypothesis of the lemma ilp was supposed having been defined with w 
running over the unit interval. By the argument elaborated here, the unit 
interval [0,1] has to be blown up to the size of [0, w[0]]. Naturally, the 
then have to be replaced by some i"',, this time w running over [0, w[0]]. We 
return to this point at the end of the proof. In the following however we ignore 
this fact and assume qp was defined by using [0, w[0]] as range of w. 

We have proven the lemma for p=2. The general case is done via 
induction. Let us now assume formula (4-1) holds true for all derivatives up to 
p-i, where p is bigger than 2. We shall do the induction step from p to p+1. 
To express the p-th order derivatives of v[u+1] in terms of v[u] and ti[u] 
we need the following formula (where J(s, t) stands for the binomial 

coefficient s! /((s-t)! t! )): 

DwPv[u+1] = DwP(v[uJ t) 
(4-7) 

-OEq<p , -0<s`-p-q 
ä25I0<t<q (al+w8ý4-ta2t(v[u]*ti)(DWXM)IX(S, t)'Pp9'5[u)I 

where the coefficients Ip95[u] are sums of monomials of the form 
Tiý 
lt l<rs Dw r w, 

with i[r] >2 and >1<rs5 i[r] = p-q. Identity (4-7) is proven by induction on 
p as follows. As we have seen in (4-2) the j's are trivial for p=2. Assume 
(4-7) holds true for p-1 and lower orders, then there are three different ways 
for D. to act: 
(a) by increasing s- s+1 and sending t -+ t-1. The summands in the 

corresponding J then get one more factor; 
(b) as partial derivatives directly on (v[u]"T): t -+ t+1 and the ýI 

remain the same; 
(c) it acts on the 1, increasing there the number of derivatives . i[r] by 

one. 

Note: 
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(a) stationarity makes the term (t, s) = (0,1) vanish, 
(j3) the summand for (t, s) = (1,1) is zero because D,, x' = -[vii[u] + 

wtill]/[vo2[u) + -c 2o), and 
() the only term with trivial V is (t, s) = (p, 0). 
In all other cases has at least one term of at least third derivative and 
itself is the coefficent of an at least third order derivative of (v[u]®'t). Since 
third order derivatives of vcD and timt are zero these summands are made up 
of products that have at least two factors each of them at least a third order 
derivative of v[u]-v, D or ti[u]-tia, C and are therefore majorized by a 
polynomial in 112. 

In formula (4-7) contraction of the sum over t gives 

D, Pv(u+11 = 2: 0<q: sp _7o<ý -q 
[[a1 + Dwx*a2]gvp, 3[u] 

(4-8) + (Drx0)V2 + (DMx")'iw83]4tsp}lPP9-[uj. 

Unlike to the case p=2 there is one more complication. On the right hand side 
of (4-2) appeared no mixed derivative a2Dv, that was because of the 

stationarity condition. For p>2, additionally to (D1(v[u] - vW[u]): wE 
[0,1], 2<p< 1} we need to verify that for the derivatives f. P(v[u] - 
v, [u]): wE [0,1], 2E p+q, s 11 the same estimates hold true as for pure 
D. -derivattves. Consider D, Pv[u+1], for some p' < p, and differentiate with 
respect to x', then there are two cases: 
(i) 3x, acts on ti, then the contribution is of size 0(r1), since ti remains 

the same while u grows; 
(ii) (axx")aX acts of v[u] and t. We are finished when we can show that 

laX <"I is bounded by 1. Indeed 

ax x* = -tint/(vo2(u] + -u20) _ [(u+c-1)-1 + 1]-i + 0"(48cs2, u), 

which by hypothesis (ii) is less than one. 
Suppose we were working with 81, a2 instead of D., 82. Using 

the chain rule to evaluate the derivatives of v[u]®T, each time we increase u 
to u+1, c *, u has to be multiplied with a factor slightly bigger than one. If we 
replace al by D. we have instead to shrink the interval for w each time a 
bit. This procedure turns out to be technically more accessible. 

From (4-7) we now pass on to estimate the c 's: 

sm+1 <_ £P, u + [1 + (W-1)[(u+C")-i + 1]-1 + 48C£2, ]Pllp + SW 

The remainder $ºýu comes from those terms in (4-7) that involve non trivial 
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polynomials 9. As already noted they are dominated by sums of products with 
at least two Ems, 3{i<p. From (4-4) it follows that the second term in the 
brackets is less than one, and to estimate the entire coefficient of il, we use 
the expression of c4 which we derived in the first part of the proof. Hence 

Eli < Epu + [1 + 48x9(u+c'1)cT12]PT p+ Zj 

< epu + [l + 48x9e2p(u+c*1)cri2]rlp *; ßp, u, 

where, in the second step, we got rid of the exponent p. We sum up over u: 

(4-9) cplu <_ [(u+c'') + 112 Zocj<u ]ilp + 70`iß )' 

Before all we finish off with the remainders. By induction hypothesis the skj 
are for k<p majorized by polynomials of the form 

(j+1)a1Ti + Zr? 
2 (j+1)2r-lar(C'1)r, 

for some coefficients (a, >_ 0: r> i}. Products which contain at least two 
factors are dominated by something of the form 

Z 
r_>2 

(j+ 1)2r-2 a r(C TI ) r, 

with some new {a'r. > 0: r> 21. Summing up over j<u, increases the 
exponent of (j+1) by one (and multiplies with a factor (j+1)'1 <_ 1). For the 
remainder in (4-9) we find 

"T-O: Sj<u 2p, 
] :5 Lr>_2 (]+1)2r-lý 

r(cll)r. 

We add to the remaining terms of (4-9) (for simplicity substitute (u+1) by 
(u+1)2) and obtain a polynomial dp which has the properties as claimed for 
ap. 

As earlier remarked, for initialising the iteration of W we have 
to consider the bounds on the D, , -derivatives where w runs over the interval 
[0,1 + 54x64(m+1)2crt2]. Furthermore, it is not too hard to see that there 
exists a (positive) polynomial 10 satisfying 

{Iai1o ('C-'Lao, 
c)I) 

supi+jp, a¬[o, w[o]] 
(II81t (v-v, )L 

4 (1 + 2(w[0]-1))supi+ 
,, qo, l] (P11)wkv-va, )j (P, iDvkti-tO,,, 

C)D. 

We shall abstain from proving this formula. We need this inequality to get an 
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estimate on the initial cNo = i1p, which we have to replace by rl~P = (1 + 
P(54x64(m+1)2cr(2))'Ip for p=2,..., 1. Without the dependency on m we would 
end up with unreasonably bad bounds in the case of small m. We go with this 
expression into rp, and obtain the claimed polynomial Sr Obviously, "1P has 
the same properties as MCP. Positiveness of the coefficients and Sp(O) =0 
follows from the construction. This completes the proof of the lemma. Q 

Before introducing the coordinate transformation A, we shall see 
how a map U' which is close to Um, can be 'flattened using a non linear 
coordinate transform. 

Lemma 9: Let go >0 be a constant and (LU, T') be near enough to the simple 
line, and let be their generating functions defined on Suppose 
there are pE (0, p0] and r>1 so that 

pp(v, -vo, )Ig<_ prx-P 
for i<p1. Then there exists a coordinate change h and constants if, t>0 
independent of (v, ti), but depending on pp, so that 
(i) (a) O8P(hov'oh-'-v 

. )er < pol-P for p=1,..., l-1; 
(b) 3kh°v'°h-1 - v') = 0, 

where ' is a region in the x, x'-plane slightly smaller than 9 and 
converges to E for go -+ 0. 

(it) For ti (x, x) we get 
(a) 3P(hot'oh-' - ti')lf <- tor., -P for p 
(b) a'(hoti , h-i - i) = 0. 

Proof. The coordinate transform h depends entirely on v' and so we 
will not talk about 2' until the end of the proof. 

Coordinate transformations h that transform area preserving 
maps again into area preserving maps must have constant del Dh, where Dh 
is the Jacobian of h. This means that up to some affine stretching, h has to be 

area preserving itself. If h has the twist property, then it can be represented 
by a generating function. We shall go this way, combining a non linear 

coordinate transform with a shift by some factor close to 1/2 to obtain a 
coordinate transform h which has the twist property and therefore can be 

represented using a generating function. The shearing factor 1/2 is chosen so 
that the compositions of h and h'1 with U and T are again shearings and 
possess therefore well defined generating functions. 

Set h (x, y) -+ (x', y') = (x+2-ly, y) which has a generating function 

µcn(x, x') = (x-x')2. Let ho be a coordinate transform that is generated by 

p(x, x'), then ho-1 is generated by pp''(x, x') = -itp(x', x). In fact we shall 
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determine the generating function of ho, rather than giving ho in 
x, y-coordinates. Put U~ = haoU'oho-l and introduce variables according to the 
diagram: 

ho U ho-l 
(x, y) -4-9 (X, Y) "4-4 (X', Y') -4-4 (X, y'). 

where U^: (x, y) - (x', y'). In particular we obtain 

v"(x, x') = µa(x, x) + v'(X, )') - µo(X,. ') 

for intermediate coordinates X, X'. To determine po(x, x') we shall replace X, X' 
by X", X'' by which we denote the intermediate coordinates in the purely affine 
composition 

vm"(x, x') = µý(x, )(") + vCD(x', x"`) - }'CO(x', x`")" 

Considering x', X" as variables we obtain X" = X"(x, x ), r= X'"(x, x') and since 
X''-X" <_ -4-1 it follows in particular x'-x s -8-1 if rl is small enough. Take 
the Taylor expansion of cut it off at terms of order I and call 
v(X`, X"`) the resulting polynomial of order 1-1. Define 

J10'r) = uCDtx, ("), 
po(x, x*) = µ,,, (x, X: ) - v(X*, X'") for x(x, X*), X0(x, X"`), 

where (+X' = -2. Since x-x < -1/8 there is enough room for 

smoothing p0(x, X") so that 
(i) is Cl, and 
(ii) uo(x, XS) = µ0, (x, X*) - 
where (x, X) = (x(x', )("), X*()e, Xr)), so that (X", )("`) E C. Note that (ii) defines 

uo(x, X") uniquely, provided the smoothing from x'+X'" = -2 to {(x(x', )("), 

X0(x, X )): x'+X'" = -2) is done. Unfortunatly the intermediate points X, X' of 

v"(x, X) = uo(x, x) + of X, x') - uo(x', x') 

in gerneral will be different from X`, X", but since 

Nýýtuo-umý(x, x ýN - Iapv(x, X )N < pr), -P, 

we are already pretty close, namely 

IX-XsI IX'-rI <- spo(X, x )I < oprX-1. 
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for some jr >0 independent of v. This follows from the stationarity 
conditions for X, X' and which can be written as the stationarity coditton of the 
affine maps plus error terms of size o(prX 1). From this we get by integration 

i(x, x) =, x, x") + x' jX PO,, i(x, S)d5, 

J1`, X', )O = ýo- X, X') + xs jX µoi j(X, S)dS, 

v fi x' } 

and in particular since the paths of integration are of length < ArprX 1 we find 

v~i, X"x }= uo; i, )(x'X) + Vm; i, ýX*, ") - ila, i, X, `) + 01( p2r 

where the symbol 0" has the same meaning as in lemma 8, i. e. the remainder 
term is estimated by exactly 4Xp2rX i-ri. Therefore 

w"ýý{xýX )I P2rX l-rl, 

for i+j > 2. The norm here is taken over a suitable region in the x, x'-plane. 
The corresponding region in the x, y-plane is ! "` (introduced in section 2) 
shifted by ho. This improves the deviation of the derivatives of v-va from 

prX t-i to 4rp2rX i-rt for v~-vcD by approximately a factor rX 1. The final 

coordinate transform h is found by iterating this process as follows. Replace 

v by vom' and we proceed to construct a second transform hl in exactly the 

same way as we determined h0. However there will be one difference, unlike 
ho which is close to an affine shear with factor -1/2, hl will be close to the 

affine shear h_cD= (x-y/2, g). Hence pW = (x-x')2 has to be substituted by p_« 

= -(x-x')2. So the composition hl-ho is close to the identity. Similar to the 

estimations elaborated above for hp, we obtain (since p2 < p) 

Kh loh0, V, ho"'oh l"). (x, x )I -< (4tp)2prX-i+2. 

Here one takes the norm over some region El, which approximately coincides 
with C. We shall not go into details, but it is clear that Et containes at least 
the quatrilateral that one obtaines from C by cutting off on all sides a strip of 
size 0(prx 1). Going on we find h2 close to hm, and in general hk, k=0,..., 1, 

which is close to the shear (x, y) 4 ()e, y) = (x+(-i)ky/2, y). If l happens to be 

odd the we set h= hjo... ohloho and in the case that 1 is an even number we set 
h= hl+lohlo... ohp, where hl+l = (x', y') _ (x-y/2, y) an affine shear designed to 
make h itself close to the identity. Clearly, under the transformation with hl+l 
one does not affect the non linear parts of v. Furthermore from the remark 
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made in the last paragraph it is obvious that hov'oh" is defined in some region 
slightly smaller than E, and can be made arbitrary close to it itself by 
shrinking the constant po. 

The statement (i, b) follows from the fact that the coordinate 
transforms hk are polynomials of order less that 1-1. 

To finish off let ti be any generating function. Put ti~ = hoti'oh-1 
and we obtain in the same way as above 

av(nooeoh01- ti)lrt I aRjjo-i a )k' ` ArX-p, 

for p=2,..., 1-1, where C is some region in the x, x'-plane which is 
determined by v; and akhoot oho - ti') =0 since al(po-µ(, D) = 0. We shall be 
moe precise about LL`"`. First note that saying v' is defined in 49 is the same 
as to say If is defined in r, where r is in the (x, y)-plane up to an error of 
size 0(prX 1) the region 

((x, y) E F2: -3: s ys 3/4, x- (1-y)/21 <_ 2} 

Let T': (x, y) -+ (x', y'), (where (y, y') _ (-ti lo(x, x'), t'pl(x, x'))) be defined in t" 
R2. Since we are close to the simple line as we wish, we may assume that fc 
V and can therefore replace 4` by f. Iterating yields 

(4-10) 3P(noti'oh (4wp)krX4 ̀ (l+r)Aýx-ý`>> 

, 1(49rpo)k is a constant independent of (v', ti'), and can be made where t= 
_71 , 

arbitrary small if po is small enough. It is clear that at(hoti oh"1 - ti') =0 and 
this concludes the proof. Q 

In lemma 8 we examined the effect that Nam has on (-vj). To 

complete the renormalisation N. we have to apply Ns which maps (ti, v[m]) -* 
(Aov[m]oA'', AOTOA-1), where the coordinate change A is designed to bring 
(t, v[mJ) into normal form. In the following lemma we shall determine A. 

This is done in two steps. The first consists in giving the affine part A', which 

up to shifting in y-direction streches in x and y direction. In the second step 
v gets 'flattened whereby we need lemma 9. 

Lemma 10: Let A=t be as in proposition 7 and set ß_ = 0n-1, m= m[n], c= 
c[n], il = i(n) and if = TL(n+1). Then there exists a coordinate transformation 
A (= Ad close to affine and a constant c' (independent of (v, ti), so that 
(i) i :s (1 + t"m'cri)"A1-4-N: 
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(Ii) loPTs'T. A O(D) 
(iii) 8P(v_-vm) = 0(i') 

(iv) I lt*I, 
= 0(110; 

(v) Ialvit = 0(6Tt, ); 

where ti` = Aov[m]oA'1, 
functions of Un, T. 

for p=2,..., 1-1; 
for p=2,..., l-1; 

v` = AotoA-i are the transformed generating 

Proof. The coordinate change A falls apart into two parts, A= hoA', 
where A' is affine. The affine part normalizes (v[m], ti). Its Jacobian looks 
in x, y - coordinates like 

DA' = -r,, 0 
o -ry , 

for positive numbers r. F F. We have in y-direction 

ry = [(mc+1)'1 + 0'(£ )'1= (m+c-')c + 0`(48mcc2p), 

and in x-direction 

(4-10-x) I'x =r (c'l + 0x(712)) =m+0+ O'(64mce2, �). 

Set (U', T') = (A'-ToA''1, A'-U[m]oA''1); we summarize: 
(i) U is near to a shearing by factor one, 
(ii) T is near to a shearing by c[n], and 
(iii) U[m] is up to an error of size 5, m close to a shearing by mc+1. 
Hence 
((X) U= A'oToA'-' is a shearing by one (up to an error 0`(11'2), where 11'2 = 

11'2(n+1)), 
(ý) T= A'oU[m]oA'-1 shears by 

c'= rxry*i[mc +1+ o*(c2 _ Im + c-1 + o"(64mcc2, m)1(1 + o"(36x8E2,, )). 

Thus, c' can be approximated by 0-', more precisely 

(4-11} log c 'A = 0'(45mcc2, m) < 1/2 

and A' transforms generating functions like: 

ti(xýx ti'(x, x') = (A'otoA'-')(x, x) = rxryti(-r ix, -r lx) + const. (x+x'), 

where the constant expresses the contribution from shifting in y-dtrection. 
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Similarly for v'(x, )') = (A',, voA'-1). The p-derivatives of the transformed 
functions are multiplied by a factor which is in modulus ryrx'-P. We note that 
the v-derivatives turn out to be smaller by a factor Fx 1 that the 
ti-drivatives. This is because ti remains untouched under the iteration of N^, 
i. e. -c[u] = -c for all u=0,..., m. Hence 

(4-12-t) maxWE1, l+k=p < I'yrxi-Psi, 
(4-12-v) max, #ýj+k=p 

laAvv v'-vcA ` rgrxl pltP' 

for 1sp<1. We shall now determine the non linear part h of the coordinate 
transform A. In lemma 9 put p= r9rxilp and identify the r (conspiciously 
the same notation). Statement (ii) of lemma 10 follows immediatly. It remains 
to check the statement concerning t. Here we use that h changes the Taylor 
polynomial of generating function to not higher than (l-1)st order. In 
particular, the l-th order derivatives of v" = hov'oh-1, T' - ho t'oh-1 are the 
same as these of v', t'. More precisely (with the constant t from lemma 9) 

M maxWEI, j+k=p ýd21Dak('L"- ýýý)ý < jI'X1 
p(Epm +h ip) if p<1; 

(ii) max, Ei j+k=t I'yrxi-telp. 

For the sake of completeness we listed (i), it is necessary to persue only the 
second case. Put rq'l for Tll(n+i) and estimate el, with the assistance of 
(4-1) from lemma 8. We find 

(4-13) 11, l < (m+c-, )r 
yrxI-i[1 + ßl(m2c, 1)]111 

To evaluate the factor (m+c'1)ryrx 3 we need (4-10-y), (4-10-y) and (4-11). 
Firstly 

tm+c ý)I'X i (m+d_)d + 64mcc2, m + 45cc2, m <_ 1+ AA- + 109mcc2, m. 

Furthermore we use the property r1 ti A, ry-1 , A_; more precisely, we 
collect from (4-10-y) and (4-10-y): 

ryrx 2= ry llc'l + 0"012A -2 = [(m+c'1)c-' + 0"(3(m+c"')i12)1-1 

= c(m+c'')'1 + 0s(3c'12) _ 6_-id + 0*(4c112). 

From the last two estimates we gather 

(m+a_)ryrx-3 = o_ ie(i+ae_) + O'(121mcc2, ), 
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and 

Ti l< cal-4 
for a constant 

c= cn =i+ ($p(m2cri) + 121mcc + 64mcC2, m)rx 1. 

Since cam, s 9(m+c'1)ß, the terms in brackets are all of size m2crl and 
henceforth there exists a constant is >0 so that t= ti <_ 1+ t"m2cTt. 

To verify the statement (iv) we shall do a closer look at the factor 
For that purpose introduce renormalisation indices n. If m[n], 

m[n-1] are large numbers, d= di and d- - di_1 will be close to zero. In the 
case where m[n] increases fast enough for n4 oo (at least like ne for some 
8> 1/2), the product ffi<n (i+didi-t} converges to some finite value for n -º 
co. However this need not necessarily to be true, and in particular is not true if 
the rotation number w we are dealing with is of constant type. A priori we can 
only say that (l+didi_1) is at most 2, since di may come as close to 1 as 
one may fear. This, however happens only when m[n] =1 and m[n-1] is some 
large number; then di-i - m[n-1]-1, di -1 and di+l, is less than 1/2 
whatever m[n+1] happens to be. This argument shows, that subject to some 
fluctuations, the products Epic, (1+diai-i) can be estimated by setting di 
the inverse of the golden mean $= (1+, 15)/2. Hence (l+diai-i) ` (1+i-2) 
except in the case just described. If p= log (1+r-2)/log $ (which is less than 
1) we have (1+r-2-P <- 1. The gist of this is the statement (i): 

«l 4 1-4-}3 ýl" 

To level out the fluctuations which are caused when in the continued fraction 
expansion of w when m[n] of too different size are too near, we should 
additionally to t introduce one more constant 6= bi. As we pointed out in the 
last paragraph, the product Jf0<1<, bi remaines close to one for nEF; in 
particular is uniformly bounded (e. g. by 2). For clarity we shall ignore this 
fact as we already did in the statement of the lemma. 

In the last paragraph statement (iv) falb = O(Tj) was proven. 
Statement (v), Nalvs1 = O(A11'), follows immediately from (4-12-v). 
Furthermore, the non linear coordinate transform h brought v tclose to an 
affine shear, i. e. aP(v'-v0, )ß, therefore IaP(v"-vo, )i, j= O(IalvsV = O(erl'), p= 

and hence statement (iii). 
It remains to verify satement (ii), that the derivatives MT*-tim) 

are of size 0(6) for p=2,..., 1-1. Recall (4-12-ti): jaý(ti-tiýý)l <pryrx-2c ,,, 
this in conjuction with ems� <_ 4mrl, where p, q are constants independent of m 
and rl. Without going into detail we use the property rX -m- . 

0, ry -C 
A_"1. By lemma 8 we have cm2rl = 0(i). Combine these estimates in the order 
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£, = 0(Ti'Pc'1mP-2), 11 = O(m-le ), cm21i = 0(1) and one finds rl'PmP-1 = 0(1), 
which by far satisfies IaP(ti-T,, )j = O(A) for p=2,..., 1-1. Hence the lemma. 

11 
Remark: Let h= hto... oh0 (where t' is either I or 1+1) be the nonlinear 
part of the coordinate transform A and denote by v[i] the generating function 
of hi, for i=0,..., 1'. Then it follows from lemma 9 in conjunction with lemma 
10 

ppv[1lj ̀ prX-p - rqr l lp. 

For the non linear coordinate transform h: (x, y) 4 (x, y') = (x + F(x, y), y+ G(x, y)) 
in the x, y-plane we collect (one uses the implicit function theorem to compute 
the derivatives of F, G) the following inequalities 

waPFI IaPGM < (1+e)prx-P-l < (i+f)r9rx-P'I 1 

Vp=i,..., l-i for some constant r>0, independent of (v, ti) but depending 
on L In particular 1` 0 for i-' 0, i. e. if po goes to zero, where po itself 
depends on 8'. Hence t can be made arbirtary small for 8" small enough. 

Lemma it: Suppose (v, ti) is a normalised pair defined on (9, $'), Then the 
renormalised pair Nm(v, ti) is again well defined in (4, j'), commutes in 10. 

Proof. We consider the composition 

v[u+i](x, x') = v[u](x, x") + ti(x", x'). 

The stationarity condition for x, x", x' is 

-(x-x"-1)/(uc+1) + (x"-x')/c = 0"(E2, u+ii2). 

Regrouping yields 

(4-14) x-x' =1- (x"-x')(u+1+c-1) + O'(lOc(u+1)2112), 
X*--'(' I-- ((x-x") - 1)(u+c'')'1 + Os(10C(U+1)112). 

where we used C2, u <_ 9(u+1)112 which was proven in lemma B. Let [su+i, 
-, 

su+i +] be the range of x"-x'. Clearly [so, 
_, so, +] = [max(-24¢, -3c/4), min(2 f, 

2c) j, and from (4-14) we derive inductively 

sý+l+ = min(2, /f, 2c, (r, + - 1)(u-i+c"1)'1 - 10cuT12), 



as 
max(-2, %, -3c/4, (r,, _ - 

1)(u-1+c'')'' + 10cuT12), 

for u=1,..., m, where [r 
u, -, r, 4+) is the range of x-x" (with the notation 

introduced for v[u+1] = v[u], r), for which we obtain (also from (4-14)) 

r,, + =I-s , _(u+i+c'') - 
lOc(u+1)211, 

rt4_ =1-s , +(u+i+c-l) + 1Oc(u+1)2112, 

where [rpm 
, r0, +) = [1/4,3]. For u=i we find 

sl, + = min(2; 1,2c, 2c - lOch 2), 
su, - = max(-21j, -3c/4, -3c/4 + 10cr12), 

and 
r1, + = min(1 + 3c/2 - 20c4TJ2,1 + 4; j - 10c4112) 

rI, = max (I - 4c + 20c4112,1 - 4; ( - 10c4112). 

By shrinking the constant 8' which we introduced in lemma 8 we can achieve 
in particular that (i) 1Oc(u+1)2112 is arbirary small, and (ii) c _> 1-L, where 
L>0 (independent of n) can be made arbitrary small. Thus we can assume 
that rl, + ? 2, and r1 <- -2. It is not too hard to see that r 

,+ 
is monotone 

increasing, i. e. r�+1, + >_ r,, +, and similarly r, 1, <_ r,, for u=1,..., m-1. Hence 
v[u] is well defined for x-x' E [-2,2], u=1,..., m. 

To equation (4-14) we add 2x' - (xu+x') - (x'-x') and obtain 

(4-14) x+x' =1- (x'-x')(u+2+C"1) + (x"+x') + 0"(10C(u+1)2x(2), 

Since u is at least 0, and 10c(u+1)2112 is arbitrary small, we see (without 
further elaborating) that the range of x+x' is at least the range of x'+x'. Hence 
v[uJ is defined for k+x') <_ 4Vu=1,..., m. 

Finally, let v[m] be defined on ((x, x) E R2: Jx41 <_ 2, f +x'l < 4}. 
If ji-J y IS then it is clear that A'ov[m]oA''1 is defined on t= {(x, x') E Eil: 
Jx-x'l < 2J& k+x'j < 4}. (We neglect the transform h since its effect can be 

estimated in terms of c(u+1)2x12, can therefore be made arbitary small by way 
shrinking 8". ) Futhermore, it is clear that tc A'(i) and fc A'(! `) (since 3 
24[[). 

The condition 11 causes a problem in the case a large 

m[n-i] is followed up by a small m[n] = 1. In that case we have t= 
(1+gn-1), 1 - 1, where 4-1 N m[n-1]'1 is nearly zero. We discussed this 

problem in lemma 10. The same argument shows that /j is a good lower bound 
for (r, I except when r-L, = (1+6n_1)'1 - 1. In that case we replace I by a 
somewhat smaller region and one renormalisation step later we return to the 
full size f 
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It is clear, that v[u] and z commute in {(x, x') E R2: k-x'f < 2, 

jx+x < 4} Vu=1,..., m, and therefore, A',, v[m]oA''1 and A'otioA'-1 commute in 
f 

By making the constants es small enough we can achieve that the 
effect of the non linear coordinate transform h on the region 9 is arbitrary 
small. We shall abstain from elaborating this fact, and note only that we are 
entiteled to replace A' by A without having to change the statements. Hence 
the lemma. Q 

Proof of proposition 7. Iterating the statement (i) of lemma 10, we find 

111(n) 4rnMn4+j3-l. ll(o). 

where C. = Jo<i<n ti. Let 6s < (54X64)'1 be a constant so that 1+t"®' < IU4, 
say. Tighten the hypothesis (i) of lemma 8 in a way, so that m[n]2m[n-1]x12 
®' is satisfied. Hence C. is less than fZ/4 VnEN. Set 6= 1-4-p-a, then 
6>0 since a is supposed to be strictly less than 1-4-ß. Then 

m[n]2c[n]r12(n) sr m[n]2c[n]11(n) s rz®"lt�º4tý, -sýt(0), 

because m[n]2c[n] s 8Mýa by hypothesis (i) of the proposition. Since Mn 
increases at least exponentially, for instance Mn > j"/2/2 (since we are 
allowed to assume ti < ßj'1 Vie fl, see lemma 10), the right hand side 
decreases exponentially fast like const. 1-"a"4 for n -' oo. Hence, the product 

gn = JTo_i<n ti ` exp >nE, y ? m[n]2c[n]ii(n) 

converges to some finite value C, Qn <_ V. (One can give an upper bound on C` 

that does not depend on (v, t) but on ®'. ) We get the convergence result 

11(n) E r`Tl(0)Mn4+ß-l, 

In particular, to meet the condition m[nJc[n]TI2(n) sV for n=0, we set Z= 
©*(C*m[0]2c[0])-', depending on To and w. Set 9= ®"(C*e2E)-1, and using 
hypothesis (i) of proposition 7, m[n]Zm[n-1]8'1M�'a < 1, we obtain 

m[n] c[n]T (n) 
_< m[n]2m[n-1]C' . Mn4+P-i <_ m[n]2m[n-i]e e 1Mn"0C <_ ®', 

which is exactly hypothesis (ii) of lemma B. 
The rest of the proof is devoted to verifying the assumptions made 

in lemma 8. To check (i) we need proposition 5. Hypothesis (i), commutativity of 
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v and T, was done in lemma It. Hypothesis (ii) is exactly the statements (iv), 
(v) of lemma 10. Hypothesis (iii) coincides with statement (iii) of lemma 10 
(which was achieved by the non linear transformation h). Finally, proposition 5 
(iv) is exactly the statement (ii) of lemma 10. This altogether verifies 
hypothesis (i) of lemma 8. This and statements (iv) and (v) of lemma 10 
(smallness of the i-th order erivatives of v, ti) imply hypothesis (iii) and (iv). 
This completes the proof of proposition 7. Q 

The next lemma links the growth of the Mn to the Liouville 
exponent of w. 

Lemma 12: Let A. and M. be as in proposition 7. Then, if w has Liouville 
exponent g, i. e. m[n] <_ SMJ, for some constant It < oo (which depends on 
c[OJ). 

Proof. Define On = q[n]Mn-1, where 
denominators in the convergents of w. 
+ An-i} 

q[n+1] = m[n]q[n] + q[n-1], are the 
We derive inductively (recall A. = (m[n] 

ßn+l = m[nionAn + än-16n6n-1 

<_ [(i + dn-l%m(n))-i + (i + m[n]/An-1)-i] max(o on-, ), 

that is On+15 max(ßn, ßn_1). If we put c= max(c1,62), then q[n] <'5sMn for 
all nEN. It is known (cf. Hawkins - Schmidt [2]), that: 
(1) bnm[n] ̀- bn-1 ̀- 6n(2 + m[n]), where bn = h[n] - wp[nlý 
0 i) bn-1 ̀ q[n]-' ̀  6n-1(1 + m[n)-'), for n>2. 

By definition of the Liouville exponent, for a positive C: 6r, ? Cq[n]-1-t. It is 

bn 2: Cq[n]-t-'V , CMS 1-xdx-1-lp 

and on the other hand 

m[n} l. bn ̀- 6n-im[nJ l q[n]'m[nl' `- Mn" 

The last step follows from the fact Mn <_ q[n]. Hence m[n] < IIM, 7 with !E_ 
C-1041n. Q 

Remark: We cite the convergence result of proposition 7 in the form 
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ýI(n}iýtt-4-ß} ýýý1(0))ýý(t-a-ß ß ýý 

and combine it with lemma 12, m[n] < 2M. I. Hence 

m[nli«n)I! (1-4-ß) { r, 

for all nE ti, where f_ j((*i O))1/(1 4-P) is a constant. We shall use this 
formula in the next section frequently. 

5. Invariant curves. 

Lemma 9. The pair (U, T) possesses an invariant, Lipshitz continuous and 
transitive curve p of rotation number w. 

Proof: We shall do the proof by 'pulling back' cycles, a method which was 
introcuded by D. Rand in [7]. First a definition: A cycle for (U, T) is an orbit 
segment µ= (µ[i] E R2: iE J) under It (see section 2 for the definiton of 1) 

with µ[i+1] = *(ji[i]) for 1 <_ i< Ijb where J1 = {1,2,..., Iµß} is a numbering 
and WI is the lenth of the cycle (i. e. the number of points). As this definition 
suggests, a cycle resembles an invariant set when we look at some limited 
number of iterations of 2. In the following we shall construct cycles with 
increasing length and the idea is, that they will converge to an invariant curve 
µ. We begin with a cycle for (UwTr) which consists of two points. Out of this 
we construct a larger cycle for (Un-,, Tn-t) and inductively for (Ui, T1), for i 

= n,..., 0, the length of the cycles increases at least exponentially fast with i 
decreasing. We refer to this procedure as 'pulling back' of cycles. We always 
get eventually a cycle for (U, T). As we increase n, the length of the pulled 
back cycle for (U, T) will increase at least exponentially fast, and converges 
as a set to a lipshitz continuous curve p, which is invariant under 2. 

Let L, R be the left respectively right halfplane in x, y - 
coordinates, and define d= Iµ n LI and 6= IV n RI. Then we shall say p is of 
type (d, b) for (U, T). In the following we count the y-axis [(x, y) ERZ: x= 0) 

alternating to L and to R. If Nm(U, T) has a cycle of type (ab), then (U, T) 
has one of type (b + me, e), namely 

u' =A -1p U Ui 
.um 

U[u](A-'u n R), 

as a set, where R' = A-'L plays the role of the right half plane. The notion of 
'right' and 'left' half plane cannot be taken so literally as it was introduced in 
section 2, because the coordinate change A which has a non linear part maps 
the y-axis Y= {(x, y) E R2: x= 0} in general to some curve close to Y but not 
onto itself. In the sequel we will neglect this subtlety. There is a unique 
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numbering that makes j^' to a cycle. Introduce renormalisation indices and let 
i1n. rl be a cycle of (U 1, Tri+1) with Lipshitz constant In+1, then An has 
Lipshitz constant In. Let 9= fl ,4 At 1... Ao*1(t), which is a single point 
because 4 is compact, and construct a sequence of pulled back cycles f jl(i) E 
IR2: iE N} of (Uo, To). Put Qi = Ai... Aa4. We start the construction of }i(i) = 
u0(i) with µi(i) = {Ti"1Q1, Q1}, which is a two cycle. The Lipshitz constants of 
Ai(l) are bounded by Am[i}11(i), for some constant A (since the non 
linearities of U1, T1 are estimated by such an expression), or, due to the remark 
to lemma 12, we have li(t) < arl(t)1-VV(1-4-ß) (replacing A by Ar). The 
constant A shall be determined shortly. The cycle }ii(i) (i-k) - times pulled 
back will be denoted by J4(i), k=i,..., 0. Drop the index i, so that Ik(i) now 
reads lk and let us assume lk E Arl(k)1-1'(1-4-P) holds true for k=i,..., n+l, 
for some n <_ i. For the induction step from n+1 to n the Lipshitz constants 
change as indicated in the following diagram. 

Dh'1 DA'n'1 DUJu], 0<u<m[n] 
rn-- ->r'n-*----- -"-+lw 

For the first estimate we need that h: (x, y) -ý (x+F(x, y), y+G(x, g)) (without 
introducing an index n) is near to the identity transformation, in particular 
iFi PGf <_ (1+t )rqnr 

, *1r (n), because of the remark to lemma 10. Hence rn 

<_ 1 
,1+ 

(1+f)r, n; 
lrgil2(n), and for the second step one finds in <_ rx, nr ; 1r` 

n. 
The two inequalities combined yield 

rn < rx nr ýi ++ (1+t)r (n) { (t-va), + 1)112(n)1-1/(1-4-P), y, n 

(j is the golden mean) where we used that rx,; tryn is less than J-112 (for 

almost all nE IN, except in that special case discussed in lemma 10) and the 
fact that >" can be made arbitrary small by chosing Os (i. e. &) small enough, 
here we made < r-114- j-112. For the last step in the diagram we get 

t5-1} I� < rn[l - (m[n]c[n](1 +O (6c ]in))) + 1)1"n]-1 +£ 4n). 

(Under an affine shear S: (x, y) 4 (x+sy, y), s>0, derivatives transform like 
dy/dx -; (dy/dx)/(i + sdy/dx). ) For 6 and z small enough (depending on A, 
but X does not depend on 8 and Z) we can achieve that 

(m[n]c[n](i + 6C no(n)) + 1)ßn s 1/6, 

that is, the denominator in (5-1) is bigger than 5/6. Expand (5-1) into a 
geometric series expansion cut off after the second term. Hence 

ý< r"n[i + (6/5)rn(m[n)c[n)(1 + 6c2,4n)) + 01 + E2, m[4n), 
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For ® and E small enough, (assuming X>V 4) the coefficient of r'n2 is in 
modulus less than 

23 (6/5)(m[n]c[n](i + 66s) + 1)Yl(n)1-1f(1-4-P) < 44r 
- 1, 

using c2,4n) <_ 2m[n]rlJn) < 8' (because 1+ 4kp((m+1)2crl) <_ 2) for 8 
small enough). The same argument in conjunction the remark made to lemma 12 
provides c2[n1(n) < 2r 21/(1-4), and furthermore 

4: 5 [4« -3/4 + X'1)a + 2r 2i/(1-4-ß)]. I2(n)1-i/(1-4-ß). 

For X large enough the factor 4; -1/4 + ), -i) is less than f-118 and 
furthermore f-1"8 + 2X-''r2'ß/(1-4) <- 1. This determines the constant X and 
proves that the Lipshitz constants Ii are bounded uniformly for i4 oo. The 
pulled back cycles p(i) as sets form a nested sequence: {}i(0)} c ... c (p(i)) c 
{}t(i+i)} c .... It remains to show that the limit set u=U; <0 {u(i)} is 
transitive, i. e. that the closure of rrXp is an interval in P. Define 

kn(i) = max {Irr, -TTZI (94) E Jln(i)X}ln(i)p iT and rrxS are neighbours on R). 

Since all the Lipshitz constants are uniformly bounded, to prove that there are 
no'gaps' in p, it is sufficient to show that kn(i) goes to zero for i -+ oo. Drop 
the index i, and we deduce for kl kn, 0sn<i, 

kn tin+lrxn-i[l + 2r (m[n]c[n] + 1)] 

k :5 k+1r ý[1+ 2(S-114), + 1)(m[n]c[n) + i)Tjn)1-j/(1-4-ß)] 

The second factor in the squared brackets is less than p114 - 1, say, provided 
19 is small enough (so that 2(f 4X+1)®" < 11/4 - 1, substituting 
mcrl2(n)1-'J/(1-4-P) by 8s, where we used the remark to lemma 12). Hence k, 

< kn+lJ-1/4, since t', n; 
' is (almost always) less than x'112. Hence k: 5 kj$-ifa 

converges at least exponentially fast to zero for i -+ oo, since the starting ki 

are bounded by 2, say. This concludes the proof that }i is transitive. That }1 
has under I rotation number w is clear from the construction. Q 

Fix some renormalisation index n, set (U, T) = (UnTn), c= c[n], m 

= m[n], rl = 11(n) and h for the non-linear part of the coordinate 
transformation An. Before moving on to the construction of the smooth curves 

we shall prove the next two lemmas. 



Lemma 14: Let y(x) be a y-times differentiable, real valued function on some 
interval JcR Set = maxt (rdxry(x)[j and let y' = yoh"1, where h=h, 10... 0 
h0 (1' is either l or 1+1) is the non linear coordinate transform introduced in 
lemma 10. Let v[i] be the generating function of hi, i Then there 
are constants As, 10 >0 so that 

la 
Xry 

L j1/4 + lar+1.0[0]1 +... + 

for r whenever l'ä''+iv[O]I +... + Jr+lv[l')I s 8', r=1,..., p, and r< 
No. 

Proof. We shall prove this lemma separatly for each of the 
transformations hi, t=0,..., 1', which together made h. Let v(x, x') be the 
generating function of ho. 

We use the chain and product rules for differentiation and get a for 
axry'(x) an expression similar to the one encountered in (4-8) of lemma 8. 
Recall that h: (x, y) -. (x', y'), where x' = 11 U(x, g) and (y, y') = (-vto(x, x'), 
o01(x, x')). Hence (where JI(q, t) stands for the binomial coefficient 
q! /((q-t)! t! ) ) 

(5-2) aXry' = ary + >0<W >0<_s: 
Sr-q Z0<týy q, t)vy-t+l, t+s((ay )ay) 

r 
qs 

where lrq, S are sums of monomials of the form T[<s dX(b)(ä, c')8y, for 

integers i[b] _> 2 for which _71, ý i[b] = r-q. The implicit function theorem 

applied to y= -vlo(x, x'(x, y)) yields d= -vll(x, x')-i. Furthermore, by 
Lagranges formula, 

dx0kay )ay = -7o, w-cqb) i(i[b], w)(dxw(ay))(a'[bl- +y). 

If w31 it follows by the chain rule that there is at least one derivative 3'"''y, 

w" ? 1, which is multiplied with at[b}W+ly. This means that t=0 is the only 
summand that is 'linear' in ay. Hence there exist polynomials ? ma(y), P5, (0) 

=0 with positive coefficients, so that 

PXi[bkayx )aYI < 1(1 + 250)), 

for b=1,..., s. Observe in (5-2) that t=0 is the only term which is 'linear in 
ay'. Furthermore, V's is trivial (= 1) only if s=0, but this is possible only 
if q=r. Hence there is a polynomial "(() with positive coefficients and 

which begins with quadratic terms in y, so that 

Iaxry I Plyl + h), +l, ol "`(ý) + Xo_ 
r 

X1_s 
_q 

(pq+s+lvD'Sff lcb_s (1 + 2s, p(g)) + 
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Given some x>1, then there exist positive constants 8s, go so that 

Iaxr0 XV + Ir+I, OI 
whenever 0+5+1-oN < 8"/l' for q+s = 0,..., r and j< go. Now choose positive 
9", gp so that x= 11/41. We repeat the same argument for h1 instead of h0, 
and so on. This concludes the proof of the lemma. Q 

Lemma 15: Let y*"(x) be a real valued, j-times differential function defined 
on some interval J~ c R, and let v[u] be the generating function of some 
U[u]. Set g" = maxr=1r,., j Jaxry~[- and suppose m4' s j' o for some small 
constant i>0. Then 

laXu[u]I 1+ e'u2C, q + ucr + -M(e'uýCjt + uC"), 
lax, rg[u]I s e'u2cl + ucr" + p(e'u2cT, + uci"), 

for r=2,..., j, u=1,..., m and a positive constant 8', where P(g) is a 
polynomial in g without constant and linear terms, and where x= g[u](x) is 
the function determined by the implicit function theorem out of y~(x) _ 
-vl ju)(x, X ). 

Proof. Recall that up to some constant v[u] = (x-x'-1)2/(2+2uc) + remainder. 
The proof is by induction on r. We shall begin with the first derivative. In that 
case we get (write a for the differentiation if there is only one argument) 

a9[u]tx) _ -vl l[u](x, x)[v24u](x, X) + ay"(x}I-1 

[(uc+l)'l + 0"(9(u+1)112)]"[(uc+l)'' + 0*(9(u+1)n2) + 8y~(x)]-i 

=1+ p(9'u2CT( + uc ). 

for a constant 6', where P(y) is a positive polynomial of the form 1+ c2p2 + 
c313 + ..., without constant term and where the linear term has coefficient 1. 
In the last estimate we used C2, u: 5 9(u+1)112, which we obtained in lemma 8. By 
way of differentiating 8g[u] once more, r=2, we obtain explicitly: 

a29[ul = -[v21[ula9[ul + vlJulJ"[V24U] + ay"J-i 

- vll[u]Itv301uJ + A~)a9[U] + v211U]I"Iv2o[uJ + ay-]-2 

_"(uc+1)) + (uc) 1p(ui1)[(uc) -1 1 4R(i'(uc+ 
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for u=1,..., m, where we used that ag[u] =1+ p(8'u2crl + uci~). As doen here 
we shall in the sequel drop the arguments (note that ; 3x on v[u] acts like 
(ag[u])al + (12). For simlicity we use the same symbol ) for polynomials 
that are in fact different but are all of the same form, the one given in the last 
paragraph. For the step from r-i to r we obtain inductively: 

(5-3) arg[u] =- >o<sý-11(r-i, s)[ar-l-svl, [u]Jas[v uj + ay, p 

In case r-1-s > 0, the first factor involves at least third order derivatives 
and is henceforth 0(urL) (by virtue of lemma 8). If r-1-s =0 we use the 
approximation vll[u] = -(i+uc)-1 + 0(urq). The second factors in (5-3) 
decompose into 

aSv20[u] + ay~)'1 ' Il-<q: Ss [v u] + ay']i 'Tf I: st_<y as(t][vju] + NIP 

where the integers s[t] are at least one and 2: 1: stcq s[t] = s. Using the fact 
v2p[u) = (1+uc)'1 + 0(uq), for u=1,..., m, the denominator is estimated by 

[v2[u] + ay"]-9-1 = [uc(i + O(u2crl) + '~))]q+1 = 0(uc)9+1, 

and for the product we derive 

IITf I<_tý as(tkv2au] + ay"]II : Tf I<t<q [e'u, I +1] 
= 4e'ui + 1"A 

for a constant 0'. We collect the error-terms from the last two inequalities 
and find that the resulting term is of size 0(uc(e'u2Crl + u4')9) for q=1..... 
The second factor on the right hand side of (5-3) therefore is of size 0(e'u3c2ri 
+ u2c2 '), whereas (5-3) itself is to estimate like 

I8rg[u]I = [(l+uc)-l + O(ull)]O(e'u3c2n + u2c2j") = Lp(9'u2cn + ucr"), 

for u=1,..., m, where LI is a polynomial of the same kind as those above. Here 
we used the assumption that uce is bounded by e o. This proves the lemma. 

11 

After these preparations, we shall prove the main result of this section. 

Proposition 16: The invariant curve µ is a graph of class &LO'r'itz, for 
lp-1 = [1-4-ß-1]. 
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Proof. We extend the notion of 'pulling back' to curves that interpolate cycles 
similar to those constructed in lemma 13. (The interpolated cycles have to 
chosen a bit different from those in lemma 13. This is to get uniform bounds on 
the higher derivatives of the initiating curves. We shall show at the end of the 
proof, that the pulled back curves converge to u. ) The curves will not have an 
invariance property apart from the fact that each contains a set which is a 
cycle. The idea is, to show that the pulled back curves X (i) are uniformly 
smooth for all derivatives up to y= (1-3-p-7]. By the theorem of Arzela - 
Ascoli the sequence (or a subsequence, to be more precise) converges 
uniformly in CI P-1 to a limit x, which here coincides with }i. 

Fix some index iE IN and set ß`i = (0, -a1(v®'c)(0,0)), where 
(-vj) are the generating functions of (U1, Ti). Unlike to the situation in lemma 
13 we begin the pulling back with the two-cycle {Ti-'Q*i, Q*J. Furthermore, to 
this set we add the point UOQ*j. These three points do not form a cycle but they 
will grow up to one, since we identify 

Ui-i[m[i-i]]Ai-i'1Ti 1Qsi = Ai-11Ui"lg*i" 

Note, that lengths of the intervals (rrxTi-'Q i, nxQ-*i), (nxQ; i, n)Ui-tQsi) 
uniformly in n are bounded from above and below. This gives readily uniform 
bounds on the derivatives of the curves interpolating the initial points {Ti'1Q"i, 
Q Q. Ui1Q"i}. We connect these three points by a COD-curve Xi (which stands for 
Xi(t)), so that 
(i)i UiXi and TiXi join Cl-up in the point Q* ; 
(ii)i UiXi and Xi join up in Q' ; 
(iii)i UiXi and Xi join up in Q. 
It is clear, that the conditions (ii)i and (iii)i imply (i)i. 

Let us demonstrate the induction step n-1 i n. Suppose we got the 
curves Xk for k= n-1,..., i. Put Xrt4l =f yn+l(x): xE J} for some interval J. 
The coordinate transformation A brings Xn+i to X~n = An°Xn+i°An 1 
{(x, y~n(x)) E R2: xe J~}, for the new interval i"' = rx 1J. The new curve Xn 
is pieced together from copies of X~n as follows: 

Xn = X, u Uo 
ugn(n) U[u](X'n n Rý)ý 

where R' plays the role of the right half plane, i. e. R' = A-IL, where L 
represents the 'left half of the plane' one renormalisation step before. Having 
applied the transformation An-' the joining up condition (iii)1 reads: TnX' 
and X' join up at Q`n = An-1(Qsn+l). The points UJu+11(Qs), Unf u](TnQ'n) are 
to be identified because UJu+1] = Tn*UJu]. Furthermore, by (ii)n+t it follows 
that UJu+1]Xn and UJu]x~n join together at the point Uju](Qsd. Hence y 
is a smooth curve in C1. 

To complete the induction, one has to verify the joining up 
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conditions hold true for Xn. 
(iii)n By condition (iiijn+l it follows that TnX~n and X~n join up at Q'rp since 

Un+l = An0TnoAn'1; 
(ti)n By the construction of the renormalised pair it is clear that all iterates 

Tnk are well defined for k running up to m[n]. Thus, repeatedly 
applying (iti)n we get that TnnJn1X~n and X-n join up at Q`n. From 
condition (ii}n+l it is known that Tnn]JnX^"n and X"n join up at Qsn, 
and therefore UnX~n and X~n join up at Q"n. 

(i)n As we pointed out above, this condition follows from (iii)n and (iOn. 

In the following we shall estimate the derivatives of the xj. Set 
jJ = laxJyn(x)j, for j=Y. As indicated in the diagram the ttis are 

affected by the various operations we apply successively to X +i: 

DO DA's 1 DUJul, 0<_u<m[n] 
t n+I[ll -9-*-4-* 4"ß[)l -4-))) jj] -ý) )) ) )-4-4 )) t1[ll. 

For the first step we prepared lemma 14. Let us assume it i[j] <_ 10, and the 
coordinate transform is close enough to the idendity, i. e. lvqJ0)r +.., + tv [l']p 

0* for q+s = (where 1' is the number of transformations (either I 
or 1+1) into which we split h in lemma 9). Hence 

(5-4) 1/4(j 
, n+1f 1) + 1vj+1,01O]l 

The second step in the diagram involves the affine coordinate transform A',: 

(5-5) ll~nJjJ tCn[ilrx, niry, n 
1" 

We shall proof that ut[j] g CrI(n)1-i10-4-0, for some constant 91 >0 
whichshall be determined below. To begin with, we note that the distances 
between the initiating points Ti 1S2si, Q' , Ui'1Q"i, are by construction bounded 
from below (and above) uniformly in i. It is therefore clear that tt1[j] <_ 

ß(n)1-ýý(l'4'ß), for a positive it and all tEN. This combined 
with (5-4) and (5-5) yields 

~ýil r, nir ; iii/4(trl(n+1)i-1/(1-4-p) + N�1+i, o[o]N +... Nv lýý[t'lN) 
< rxnjr iml/4Tj(n+1)1-T/(1-4-P) + (1+2)rlj+l(n), 

where we used tv l, 0[i]N < r, n-ir ,, Iji(n), i=0,..., 1', as was pointed out in 
the remark to lemma 10. Using the convergence result of proposition 7 in the 
form rl(n+i) < 11(n)ß, 1-4-ß one finds (observe that Y/(l-4-ß) < 1/2) 
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+ {t+2), ýjýi {n} 

(5-6) < *ibrol/4an-1r1(n)I-110-4-P) + (l+2)nj+i(n), 

for constants 11, <_ (1 + bm[n]2m[n-i]112) to level out the error we made by 
replacing r by An" and r by dn's brl'', where b>0 is some fixed 
constant. We used furthermore the assumption j <_ 1-3-ß-1, i. e. 
We multiply (5-6) on both sides with mc. Hence 

mctt", I] S#41/40, 
-i cm11(n)1-VV(1-4-P) + (1+2)mci 1(n) 

*a 1/4. q(n)1-2j/{t-4-ßj+ ~012, 

where we used that (l+2)cmiljl(n) <_ e012 if 9s of lemma 8 is small enough 
(V sj 'o/(2(l+2)t 1)), and where we replaced DMIc by 1. The small error, 
tog D�_lcJ 

_< 
Wm2cTI2, for some constant ä>0, is swallowed by the On, where 

a will increase slightly. Let 8 be an upper bound for the On. Since 21 < 
1-4-ß, by shrinking 7, we can achieve that 1j(n)1-2^j/(1-4-P): 5 (# 114)-Y"o/2, 

whenever rß(0) <_ -7. Thus 

mcu" Jj] S "o. 

It is now the turn of tt, [j] to get estimated. In the following we 
will drop the renormalisation index n. Set X_ Xn and let (v, t) the 

generating functions of (U, T) = (Un, Td. We call )('[u] cx the piece of curve 
that is created using UJul: 

x*[UJ = UJU](X'nR) = 
{(x, y*[U](X)) E R2: XE Js[U]} 

for the interval J"[u] = T, )('[u]. (Remember )( = (x~nR) v UpwM(n] x"[u]). We 

shall use generating functions to express y*[u](x), that is 

J*[u](X) = vol[u](x, X ), 

where (x, x') e J^ xJ"[u]. The first coordinate x= x(x) has to be determined 
from 

Y '(X) = -vlo[u](x, x). 

By the implicit function theorem there exist functions g[u]: x= g[u](x') for x' 

E J*[u]. The derivatives of y'[u](x) = vol[u](x, x) lead to an expression similar 
to (4-8) of lemma 8 and to lemma 14, namely 

W[u] ->O qj 
I Ocs i-a Xo<t<q O(q, t)vs+t, q-t; l(a9[ul)lPjq"[ul, 



is 
where lij9'5[u] are sums of monomials of the form Tr1: 

3 atb)g[u], for 
integers i[b] >2 and E1 

., i[b] = j-q. It was shown above that mc( r] _ 
me jary~(x)[. t eo for 1r<y= [l-3-ß-1]. We may therefore apply lemma 
15. Observe 
(i) s=0 and q<j is impossible, because all j derivatives must act on v 

if ! b5[u] happens to be trivial. 
(ii) (q, s) = (0,1) has the v-derivative v11[u] = (uc)" + O(url), which is 

multiplied by a factor Jj9'5[u] = aig[u] = $'u2Crl + uci + &$'u2ci + 
mcj) and 

(iii) all the others have 1Pj9,5[u] = O(0'u2crl + ucg~ + 1($'u2c1L + uc1~)). 
Consequently 

jo y*[u]tj" _ [(uc)-' + o(uri)]o(e'u2cii + ucj' + p(e'u2cii + ucj")) s grml, 

for all u <_ m and a constant iC > 0. Stressing the dependence on the 
iteration index n, this gives t[j] irmri, (m[n] = m), provided the 
hypothesis of lemma 15 is satisfied. As pointed out in the remark to lemma 12 
we have m[n]rj(n) V(1-4-P)< r and therefore 

ujl] <- wrTl(n)1-j1(1-4-p)9 

for all u=i,.... m[n]. In particular, set it = Irr; and the induction 
hypothesis, ttý[j] < Itrt(n}1-e('-4-ß} is satisfied. 

Finally, convergence in CO has to be verified, since our initiating 
points Q differ from Qi, the ones used in the lemma 13. We had to do that 
different choice to get uniform boundes on the derivatives of the smooth curves 
between 1rxT11Q'i, nxQ'i and 1T U1'Q*i. The distances are uniformly bounded 
from below (and above). This is not any more true if we replace Q by Q. 
Define 

bk(i) = sup f int{k-c S6 Ak... Aou}: C6 Xk(i)}, 

for k=0,..., i and iE IN, where I"I is the usual R2 metric. From the remark 
to lemma 10 it is known that rd2v[i]M sr 'rOrl(k), vi=0,..., l'. Assume that 
8 and -E are small enough so that (1 + 2c2,, k](k))(l + ja2v[O]' +... + IaZop']I 
is at most ;,. Clearly, bi(i) <1 for all iE IN, and furthermore we deduce 

bk(i) < (1 + 2E2p[kjk))ryk-i(i + Ia2v[o1I +... + Ia2 [l']I*+1(t) ` 4rS*k+i(i), 

where we used that r1<;. 1 (almost always). Hence, yo(i) decreases 
exponentially fast for i4 co. That proves that the pulled back curves x(i) 
converge in CLtPshitz to u. 0 
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Lemma 17: The map I acts on µ ci+L itZ-conjugate to *t,,: x -' x+w mod 
i on IR/Z, for all j <_ y-1 = [L-3-ß-11 = [l-4-p-11. 

Proof. The proof goes parallel to proposition 16. Where appropriate we shall 
refer to the previous proposition and will not go into much details. For every i 
Ef we will construct a map v(i): Trxx(i) -' I= [0,1]. As before, the v(i) 

,iE 
IN, are bounded in CF and converge to ji in Co. Thus (i) converges for i -' 
oo in the Cr'-topology uniformly to some t Tixjj -. I= [0,1]. If we set 1) = 
Ü°n>, 10"1 = ycf', then 1) is the transformation for which I is conjugated to 

i. e. V*24-1=1w 
We start the construction of y(i) by choosing a e1(i): 1T xi(i) -. 

[0,1], which is y-times differentiable (or C°D) and satisfies the three 
glueing up conditions of the previous lemma (ih-, (ii)i and (iii)i. Suppose we 
got (tk for n<k<i, then is constructed as follows: 

DAR' 
In+i )-ý-ý I~n I'x, n 

1In+1, 

hol --- -*-ý-ý h~n. 

The maps on In corresponding to Un[u] on Xn are translations 

VJu]: I^`n -4 I`f[u] = I~n - O'nnLI -A "nnRKm[n] - u), 
x -4 x -R ~nnL) - 1~nnR J(m[n] - u) 

for 0<u< m[n], where I. I means the length of the interval. The intervals 
I"ju] =! [u](i) are uniformly in 'all indices' contained in a compact subset of 
It. Define 

b�(x) _ (V [u]°inoun[u]"1)(x, Yn(x)) for xE J"n[u] = n, tx*n[ul bn(x) = h~n(x) for xE In'n. 

This defines bn(x) on the interval In = I"n u Up 
u<ntn] I*n[u]. Put R2 -* R2 

for the linear map with slope c and constant part 0. For hn determine the 
parameter c which minimises 11[0] _ Wbn-Oco, dl where the norm is on I. In 
the same way we set Wjj] for lätOA Then the diagram holds 

Dh'' DA' D(rn 4V Eu)°roUn[u)-l) 
iln+Ill] -3ý $A [I] x-3-3 jj} -- -ýýý- --- -4-3-*-) ä�[j]" 

On the right hand side one reads the maximum over 0 <_ u< m[n]. To execute 
the last step we shall need lemma 15. For the sake of completeness we will list 
the steps that that are necessary to verify the hypothesis of lemma 15. Suppose 
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ill WI(n)1-110-4-P), 

for 
some constant 19 >0 which shall be determined 

below. Analoguously to proposition 16 we obtain under the action of h'' the 
following estimate 

(5-7) W'jl] 11/4(i, »1f1] + Ia2v[0]I+... + la2v[l']) 

provided i 1[j] <_ go. Similarly for the second step one finds 

(5-8) "ji] s ielilrx, nrl. 

It is clear that 11[j] < 1Mrj(n)1''i'(1-4'ß), for all jiEN (and 10 big 
enough). Thus we are lead to 

~nýlý ixnrljp}1/4. j(n+1)1-j/(1-4-ß) + (1+2)rij+1(n). 

This, rI(n+1) < rj(n)An1-4-P and en1-1-3-"< 1 leads to 

~JJl t 151101/4601(n)1- /{i-4-ß)+ (l+2)TTj+l(n), 

for constants D. which in the following (as in the previous proposition) will 
take account of errors which are dominated by an expression of the form 1+ 
bm[n]2m[n-1]r12. The last inequality will be multiplied with mc. Hence 

mcfr[1] `'p-Dr$-1/4TI(n)1-21/(1-4-ß) + ~o/2, 

if @" is small enough (as it was given in proposition 16), where we used Ann 
j-112 (for almost all nE IV) and crl(n)1"(1-4-P) < r. By shrinking Z we can 

achieve that rjpjpr$-1/4r1(n)1-2ö/{i-4-ß) < f~, /2, Thus ejj] satisfies the 
hypothesis of lemma 15: mcbd"e[jJ <_ g'o. 

Back in proposition 16 we had y"[u](x) _ -vlo[u](x, x') (dropping 
the index n), from which one finds with the implicit function theorem x' = 
g'[uJ(x), for functions g'[u]: J~ -' J"[u]. The derivatives of g'[u] are estimated 
in the same way as it was done for g[u]. Thus we are led to apply lemma 15. 
The conditions of lemma 15 are satisfied as we have seen in proposition 16. We 
obtain 

px'g'[u]I ̀ - 1+ $'u2C' l+ uq- + p(8'u2crE + uce), 
laXrg'[u]I <_ e'u2cr + uq" + 1(e'u2cn + uci~), 

for r=2,..., p and some polynomial f that begins with quadratic terms. It 
follow for the derivatives of the composition h~og'[Ul: 

F(r-g'[ul) - X1<t<r ((a ~)°9[ul)Jt[u), 



4$ 

where It[u] is a sum of products ITls: 
5t at[ ]g'[u], with i[s] >1 and E1:,, 

<t i[s] = r. In particular, ft[u] containes higher than first order derivatives if t 
< r. We therefore get 

lar(h"og'[u]) J"[u] "n[º'] + Z1< W"jt](e'u2cri + uce + p(e'u2cr1 + ucr")) 

and therefore 

J)] (lplor$114A01(n)1-i/(1-4-ß)+ T1(n))(1 + l"m[n]ii(n)), 

for some constant it > 0. We may assume that the constants On =1+ 
brn[n]2m[n-1]r1(n) are less than Sim, say (if ®" (and hence @) is small 
enough). Thus "1/4 dß 5 1-1/89 since <_ j-ln for almost all neN (the 
legitimacy of this replacement was discussed in lemma 10). We estimate 
m[n]T(n) roughly by 6` and set 

1 -1m)-1ý 

Then obviously the induction hypothesis h[j] <_ 11rl(n)1-j/(1-4-j3) is satisfied. 
The k(i) map µ onto intervals Io(i) whose length are uniformly bounded 
from above and below. By an affine streching I0(i) are normalised to the unit 
interval. Denote by ((i) the new functions. We have therefore proven that the 
sequence t(i) is contained in a compact subset in OF and thus by the theorem 
of Arzela - Ascoli converging uniformly in Ct-t (if necessary by passing to a 
subsequence) to a limit function fi(x) whose (y-1)-derivative is Lipshitz. It 
follows from the construction that r= banX is the transformation which 
realises the conjugacy 104-t" = Ru,. 0 

6. Proof of the theorems. 

Proof of theorem 3. We combine proposition 7 and the lemmas 9- 17. The 
size of the neigbourhood of the simple line depends upon the Liouville exponent 
I and the Liouville constant C. All that remains to do, is to check that 
condition (i) of proposition 7 agrees with the bound on the Liouville exponent. 
By lemma 12 An+1'1 < rMe+11; for a new constant !i- !E (to level out the 
effect caused through replacing m[n] by en'')and M+1 = An 1M, 

r Therefore 

An+1-2A n 
1n(O)Mn+14+ß-1 Er2Mn+121+4+ß-lAn i= Eg^2An {21+5+ß-1)M 

n21+4+ji-1 

< : 4r 7+2i+ß'lM 
n V(2, i+5+P-I)M n 

2j+4+ß-i. 



We see that popositton 7 (i) is satisfies if E< 289f"t- -2ý-ß (9/2 instead of 
0 because we used A's instead of m's) and if 

212-Y(1-7-p)-(1-4-ß) 0 

which holds true exactly if I<1 *(I) = (1-7-ß)/4 + rf(1-3-p)2/16 + 1/2] Q 

Proof of theorem 1. Let 0 be a lift of 9 and set 

(U 
, T") = (0t0IRP(0], 0q[1]RP[1]) = (P, §m[O ). 

Clearly this is a pair of commuting twist maps and furthermore we can be 
normalise them. This can be done fo instance by an affine coordinate transform 
As whose Jacobian has only in the diagonal non zero entries. Thus we set 

(Uo, T&) = (A$U*A* IAA*T*A* l). 

By theorem 2 there exists an [L-3-p-1J - differentiable curve that is invarint 
under (U0, T& and which has rotation number ui = [m[1], m[2J,... ]. And 
therefore 0 has an invariant curve in the class of smoothness with rotation 
number w= [m[O], [i].... J). This concludes the proof of the theorem. Q 
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Abstract Ruelle and Capocaccia gave a new definition of Gibbs states on 
Smale spaces. Equilibrium states of suitable functions there on are known to 

be Gibbs states. The converse is discussed in this paper, where the problem 

is reduced to shift spaces and there solved by constructing suitable 

conjugating homeomorphisms in order to verify the conditions for Gibbs 

states which Bowen gave for shift spaces, where the equivalence to 

equilibrium states is known. 

Let (4, T) be a Smale space, then for any continous function F: QR 

the pressure P(T, F) can be defined by the variational principle 

P(T, F) = sup p(hT(p) +Q jF dp), 

where p runs over all T-invariant probability measures over Q. Here 

hT(p) is the measure theoretic entropy with respect to T and p. A 

measure, for which the supremum is attained, is called an equilibrium state. 

For every Hölder continuous F there is a unique equilibrium state if (4, T) 

is topologically mixing (cf. [1] Theorem 1.22). 

Let d( ", ") = dQ(" , ") denote a metric on Q. A map V from some open 

UcQ into 4 is called cof, ) dating if d(Tko, (x), Tk(x)) 40 for Jk) -1, co 

uniformly in xEU. Actually, as one may derive from Lemma 4, the distance 

decreases in a uniformly exponential way with a properly chosen metric. 

Definition 1: (cf. [2) and [4). ) Let F be a h(flo r continims real valcieo 

fuºiction ors Q. A prop sbility measrre v is called a Gibbs state for F if 
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UJ'CoW g dv = W(U)J'c dv, 
where 

g(z) = exp EkEZ(F, TkoW(z) - FoTk(z)). 

for all bounded and meascrable functions t: yr(U) -ý R and all conjugating 
homeomorphisms yr: U -ý W(U), where U= Uqj is an open set in Q. 

Equilibrium states for F are also Gibbs states for F. This is proven in 
Ruelle's book [4], theorem 7,18. The converse, there referred to as an open 
question (cf. [1] p. 170), will be demonstrated in this paper, i. e. 

Theorem 2: Let (Q, T) be a Sinale space and FE CO(Q), for 8E (0,1), 1 

e., F is a holder contiguous real valued function over Q with exponent 8, 

and let v be a Gibbs state for F. Then there is a number tE BV S'101 #191 

v is invariant doer Tt and is an equilibrium state for Ft =10sr<t F°Tr 

an (Q, Tt). 

The proof is by a sequence of lemmas. We begin introducing a Markov 

partition on the Smale space (4, T), which gives rise to a shift space (1A, °). 

Most of the proof will be treated on this symbolic level. In order to see that 

every Gibbs measue on (Q, T) lifts in a well-defined way to one on (EA, o) it 

is shown that the boundary set of any Markov partition has measure zero. 
This is in Lemma 5 first done for T-invariant Gibbs states and then in 

Proposition 6 generalised for non-invariant Gibbs measures. For 

constructing conjugating homeomorphisms on (1Aß) an obvious method 

exists, which will be used at three stages in this paper: first in Lemma 7 to 

estimate the measure of cylinder sets; secondly in Lemma 9 to show that the 

wandering set has measure zero, and finally in Lemma 10 to prove that Gibbs 

states on shift spaces (1A °) with o acting topologically mixing, are 
invariant under a. This together (Proposition 11), provided a is 

topologically mixing, verifies the definition Bowen gave for Gibbs states (cf. 
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[1], Theorem 1.2), for which it is known that they are equilibrium states on 
(ZA, d). By standard results the same holds true for (Q, T). To justify the 

construction of conjugating homeomorphisms on (4,10) we begin in Lemma 4 
by proving that they can be 'pushed down' to conjugating homeomorphisms on 
(Q, T). 

From now on v denotes a Gibbs state for F on (4, T). 

Let x be any point in Q, then there exist a positive number 6 and a 
number XE (0,1), such that 

d(Tj(y), Tj(z)) s f. AIJ6(y, z) if { y, z E +x(a) for ja0, 
{ y, z E V-x(6) for j<0, 

for a positive constant l and where V+x(b) (V-x(8)) denotes the stable 
(unstable) manifold through x cut off at distance 6. The constant I can be 

assumed to be 1, d(.,. ) is then an adapted metric, which always exists. 

Furthermore T is expansive i. e. there exists a positive constant e, such that 

for two points x, x' E Q, with x* x' there is an index nEZ for which 

d(Tn(x), Tn(x')) > e. There exist Markov partitions with arbitrary small 

diameter (cf. [1]). We choose one, {R[j]: jE Al over an alphabet A, such 
that diam R[J] < E/2 for all jEA. The sets R[j] are called rectangles. Let 

A be the corresponding transition matrix and define the shift space 

2: A = (z: z= {zi :1E Z}, A[zi, zi+11- 1 for all iE Z}, 

which, endowed with the metric dr(x, y) = ak, where k= max{j: xi - yi 

for all I1 < j}, is a metric space. The surjectlon rr: 1A 4Q Is Llpshitz 

continuous with constant, say, L. See also [4] p. 130. The two-sided shift o 

on ZA is defind by o(z) = z' where z'i = zi+i for all ieZ, and covers T 

on Q: Torr = noo. We will need , 

Lemma 3. Let co, e be eyaansii constants, then 

(i) Given 8>0 and let Ma be the flWfIMi nunaber, such t/iat y, y' EQ 



On Gibbs and equilibrium states 4 

with dQ(y, y') <8 hWIMs dQ(T)(y), T)(y')) < c0 for all (jI < M8, then M8 
CO as 8 approaches zero. 

(ii) Giin MEN &7d let 8'M be the smallest number, such that y, y' EQ 
With dQ(TJ(y), T)(y')) < cj for all <M implies dQ(y, y') < 8'M, then 8'M 

-0 as M -+ co. 

The proof is easy; see e. g. (1) 
. 

Lemma 4_ Let gyp: U -* O(U), for Uc 1A be a uniformly continuous 
conjugating homeomorp/iism for a, then there are a finite ofecomoosition o! 
U= Ui Ui and conjugating homeomorrphisms ýyi: Vi = 17(Ui) - yri(Vi), Vi c 

4, for T, which are projections of 9 on Ui, ie. WioTr = 11o on Ui for 

a/I i. 

Proof. There is a n" E IN, such that (p(z))i = zi for all Iii a n" and zE 
U. Otherwise there would be a sequence {zk: kE N}, such that (9(zk))i[k] 

zki[k] for a sequence Ii[kiI co as k -' co. Or, d1(0i[k]op(z k), oi[k](zk)) _ 
1 for all kEN, but this contradicts the fact that d1(0lo9(z), oj(z)) 

converges to zero uniformly in z. 
By uniform continuity there exists a6E (0,1) 

, such that dy(x, y) sd 
implies dj: (9(x), sp(y)) s an*. Now set 

n= max(n", [log a /log s+ 1]). 

If for two points x, y EU we have xi = yi for Ii) <n the same is true for 

their Images under 9: (9(x))i = (9(y))i for all III < n. Select a finite number 

of points {yi: iE 3} c U, with (31 < co, and set Ui = {x: xj = yij V n) 

n U. A good choice of this set yields U= UiE3 Ui, 

The rectangles R[i], R[j] are said to be related if R[i] n R[j] * 0. Denote 

by B*R[j] and a-R[j) the forward and backward oriented parts of the 

boundary of R( j], and set öR = UjEA (a+R[ j] u a-R[j]). Call the entire 

boundary set K= UkEZ Tk(OR). 

The components of two points in Tr'(K) c EA always denote pairs of 
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related rectangles. The same is true for their images under 9 If we 
restrict to Ui for all ie0. To see this choose any two points x, x' E Ui for 
which rr(x) = Tr(x'), then R[xj] and R[x'j] are related for all jEZ. By 

construction of Ui their images have the same components for jjj <n and so 
R[(g(x))j] and R[(ip(x'))j] are again related for all jEZ. Since 

dQ(T)onolp(x), Tjarroq(x')) s diam(R[(ip(x))j] u R[(g(x'))j]) 

< C, 

for all jEZ, we conclude, that rroip(x) = noq(x') since c is an expansive 
constant (cf. [3]). 

Define on Vi = Tr(Ui) qsi: x- Troq(rr''(x) n Ui). The sets Vi are not 
necessarily open, but contain open subsets. The maps wi will turn out to be 

conjugating and injective maps on Vi. Set ß= [1 + Ilog(s/(4L))/log NJ] and 
take for each ta finite cover {Ui, k: kE Ki} of Ui with IcI< co, where 
Ut, k = {x: xj = zkl d Ill < n+ß} for finite subsets {zk: kE Ki} chosen as 
before. It remains to be shown that the maps Wt are continuous. This is done 

for each Uik, the regionbeing extended to the closures of the n(Uik) in 

rr(U). 

Choose any two points x, x' E Ui, k with y= Tr(x) and y' = n(x' )Je. y, y' 
E Vt, k = (cl. n(Ui, k)) n rr(Ui). Now we apply Lemma 3 (1) setting co = e/2 (and 

restrict to 8, so that Mg > n+ß). From the construction of the Vi, k it is 

clear that Tlonoip(x) and TlotToy(x') travel under T through the same 
rectangles for Ill < n+ß. Estimate 

dQ(TJoWiorr(x), TloW1olr(x')) 

s L{dl: (olog(x), ai(x)) + dX(oj()'), ol. g(x'))} + dQ(Tlan(x), Tlon(x')) 

s21al1l'n+e/2 se 

if n+ß s1 11 < M6. Hence dQ(Tloyii(y), Tloyri(y')) sc for all Iii < M6 and we 
conclude using Lemma 3 (ii) with el = e, that dQ(gri(y), yri(y')) s d' where 
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S'4 0 as 6 approaches zero. Moreover, Wi is a continuous homeomorphism 

onto the boundaries ä(n(Ui k)) n ö(n(Uj 1)) n ii(Uj) for all k, l. Thts gives us 

the maps Wi defined on ii(U1) in the desired form. Obviously they are 

conjugating. 

0 

Lemma S. If v" is a T- invariant Gibbs measure on Q, then v'(K) = 0, 

where K= Uk¬Z Tk(OR). 

Proof. Suppose v'(K) > 0, then so is v"(aR) >0 and thus either 

v"(f iENT'(ä+R)) >0 or v"((J-E1NT-I(8-R)) >0. Assume the first case 

holds, and let K" =f ieN Ti(ä+R). Denote by Bc(z) the ball around z with 

radius C. The set K` is invariant under T and is compact; hence there is a 

point zE K", such that v"(%(z) n K") >0 for all i>0. The points 

conjugated to z are dense in Q and for each of them there exists a 

conjugating homeomorphism defined in a neighbourhood of z (cf. [21). So 

there is aweQ and aE>0, so that B28(w) n K" = 0, and a conjugating 

homeomorphism yº defined on Bi(z) for a positive ý, such that W(z) E 

B6/2(w) and W(Bc(z)) c 86(w). Set D= yº(Bc(z) n K'), then we have v'(D) > 

0, because v' is a Gibbs state. Since yi is conjugating, there exists a n' E 

N such that d(T1o p(y), T'(y)) <a for all yeB; (z) and 111 a n'. So 

dtst(T'(D), K') <b for K' is invariant under T. But by construction 

dtst(D, K") > 8, hence T'(D) nD=o for all 12: n'. The collection {Tmn'(D): I 

E N} consists of pairwise disjoint sets, which have, since v" is 

T-invariant, the same, positive measure. Hence, the measure of their union 

diverges, which contradicts the normalisation v"(Q) = 1. 

0 

Proposition 6. far a Gibbs measLre v on (Q, T) it fwläs v(K) = 0. 

Proof. Assume v(K) > 0, then there must be an integer j so that 
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v(Tl(8R)) >0 and thus either v(T1(8+R)) >0 or v(T3(ö-R)) > 0. Suppose we 
have the situation j=0 and v(e-R) > 0. Then define a sequence of new 

measures 

vn = n"'1Osi<n v°T1. 
Since v is Gibbs it is clear that voll is Gibbs as well for all iEZ. By the 

convexity property (cf. (2)) all vn, for neN, are Gibbs measures. Let v" 

be a limit point of {vn: nE N) and n[j] be a subsequence in N so that 

vn[j] converges to v'. For the backward oriented boundary 8-R c T(ä-R) 

holds, and therefore v(ä-R) s vn[j)(a-R). We may treat 8-R as a compact 

set and have therefore lim sup1 vn[j](8'R) s v'(ö'R), which is s v'(K) =0 

since 8-R c K. 

0 

The function F, acting on Q, induces a Hölder continuous real valued 

function f= Forr on ZA, which is exponentially decreasing with a= Te E 

(0,1). Let 

vark f= sup{If(x) - f(A: x, y E 1A such that xi = yi V (ti < k} 

and set 

1If II = max(IIf Ilco" supkEZ «-Iklvark f). 

Restricted to Q\K, the map n'' is one to one, that is, by Proposition 6, 

iP is defined v-almost everywhere. Define the measure }I on Z by ji(V) 

=0 if Vc rr t(K), and }i(V) _ p(V n 1r-1(Q\K)) = v(n(V)) for all other Vc 

EA. Then }º is a Gibbs state for f, since v is one for F and all bounded 

and measurable (test)functions ti on EA can be written as ti = ti"'on 

almost everywhere with ti'r bounded and measurable functions on 9. 

The cylinder in ZA determined, by the string xa, ..., xb will be denoted 

by U(xa, ..., xb) and for convenience we will write p(xa, ..., xb) _ }'(U(xa, 

... x b)). 

Lemma 7: Let f be a tuition an I which decreases exponentially fast 



On stt bo and oqutlthrtum Oat** a 

with aE (0,1) and let o be topologically mixing; Then there is a constant 
C` E (0, co) so that 

(1) j(xl, ..., xm)"exp(mP - 
YkE[i, 

m] f°ok(x)) E [e-C`, e+C"] 
for all xE ZA aid mEN. The real number P is called the pressure of 

f. 

Proof. To verify (1) we will construct a sequence of sets of conjugating 
homeomorphisms on EA. Since o is supposed to act topologically mixing, 

we have An >0 if n is large enough. Let N be the smallest such integer 

and let 

V[m] = {(ai,..., a m): ai e A, A[a1, ai+11 =1VIE [1, m)} 

for the set of all m-strings. The pressure of f is P= ltm 4,00 Pm, where 

Pm = m'11og Zm 

and 
Zm = Ja¬tr`[m] exp sup{IkE[1, m] f°ok(2). zi = ai diE [1, m]}. 

Let us first summon a technical lemma. 

lemma 8: There exists a mWer b, such that JPm - PI s b/m tar a// m 

Z1. 

Proof. Set 

m= 
Xz¬9[m] exp 

-7kE(1, m] f °0k(z), 

where 9[m] = {x: Cm(x) = x, xE EA} is the set of all m-periodic points. 

Then, using the maximum matrix norm 1IA) = maxijKi, j]}, it follows 

Z~m+N s ZmIIA_ 12exp(2NIlf 11). 

Furthermore 

Zm s Z"'m+Nexp(2IIfII/(1'0))" 
Let cl = 2)IfII(N + 1/(1-(x)) + 2"logIANN, then these two inequalities combine to 

I109(rm+NZm-')I s c1. As can easily be seen, the pressure may be defined by 

lamm m'log Zm and as well by lamm m"log rm, which is the same. From 

(4] corollary 7.25 we know that I log rm - mPh 1 c2tm for constants c2 >0 
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and tE (0,1), that is (log Z''m+N - mPhs C2 + N"P. Now set b= N"P + cl + 
C2- 

0 
Recall that AN >0 since a is assumed to be topologically mixing. 

Choose any xE EA and MEN and fix them throughout the rest of the proof. 
Now we construct a collection of conjugating maps, which are all uniformly 

continuous and which depend on x and m. Set U= {z: zi = xi diE [1, m]} 

and choose any string WE cr`[m]. Now we define a conjugating map 9 
depending on w. Set for all zEU 

(i) (9(z)) I= (i for all i E[1, mJ 
(ii) (9(z)) i= zi for all tE (-co, -NJ u [m+N, +co) 
(iii) set U. = {z: zi = (ip(x))i = wi VIE [1, m1}, and take a covering of U 

by IA12 (not necessarily non-empty) sets: U(s, t) =Un {z: z-N = s, 

Zm+N = t}, for all s, t E A. The sets UW(s, t) are defined 

analogously. For their measure we obtain 

(2) P(Uw) =1s, tEA A(Uw(s, t)) = IS, tEA Ji(Uk Uwk(s, t)), 

where Uk(s, t) are at most IIANII disjoint sets of points with the 

same symbols on the places in [-N, m+N]. Altogether they cover 

Uw(s, t). Pick out the set UWk(s, t) which realises the maxk 

p(UWk(s, t)). This determines the components of gyp( ") on the places 

with indices in the two intervals (-N, 1) and (m, m+N). 

The map . 9: U(s, t) 4 U)k(s, t) for all s, t EA is therefore completely 

defined. It is clear that ip is uniformly continuous on U(s, t) for all s, t E A, 

and conjugating, but it is not a homeomorphism. On U(s, t) the map 9 is 

finite but at most (IAI"IIANII)2 to one and may therefore be decomposed in at 

most (IJl"IIANJ 2 homeomorphism. Moreover we derive from (2): 

(3) p(p(U)) a (I4IIANII)-2P(U(0). 

Finally we put 

S[m] = {all 0 as constructed above with w running over the whole Ts[m]}. 
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Let 3_ {1,2, be a numbering of S[m] and call the elements qj in 
it by an index. Set 

gj(x) = exp >kEZ (foako, 1(x) -f , Ck(x)) 
and consider the following weighted sum: 
(4) exp>kE[1, m) f°dk(x)'7j. 3 {gj(x) 

xexp>kE(-co, i)u(m, +co) -(fookoq3(x) - fok(x))}. 
This is the same as 

exp>kE f i, m] f 0Ok0 j(x) 

_ >jE3 exp(sup{XkE[1, m] f°dk(z): zi E [1, m]} + rj). 

where the remainder rj are estimated as jrjI s jjfjj(1 + 2a(1-am)/(1-a). 
The sum (4) lies therefore in the interval Zr[e-c, ec), where c= JI 11(1 + 
2/(1-a)). Let Pm = m-1Iog Zm and set 

8m =1t(xj, ..., xm)"exp(mPm - Xke[1, 
m] f °dk(x))- 

Observe that replacing Pm by P transforms em into the expression to the 
left of (1). We use (4) to get rid of the factor mPm in the exponential. 
Instead it appears a summation over j, expressing the sum over all 
m-strings in the definition of the pressure. So we end up with 

9m = . z(xi,..., x m)d1-71E3 d2, jQj(x). 
where d1 E [e-c, ec], and 

d2, j = expXkc(-oo, 1)u(m, +co) (f °0k°q j(x) - f, ak(x)) E [e-c', ec'] 
for all 1E3, with c' = 2/(1-(x). For all yeU and IE3 we estimate 

(lo9(9j(x)9j(y)-1)( 
1 

S Yk¬(-co, 1)u(m, +co) 
{Ifooko9 j(x) - fok(x)l + Ifooko0 j(y) - f. ak(g)l} 

t Eke[ 1, M] [If °ok. j(x) - fookq j(g)l + Ifook(x) - fook(g)l} 

s 4fll(N + 2/(1-a) +1+ 2a(i-(Xm)/(i-a)). 
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Set c" = ýJfjj(N +1+ 4/(i-(x)) and tt simplifies to 
(5) .; Ilog(gj(x)gj(y)4)) s c". 
Define the characteristic function of U 

TmX(y) _{1 if yi = xi for all iE [1, m], 
{0 otherwise. 

Then we have U= {y: yE EA, Tmx(y) = 11. For 6m we may write 

em => j¬3 d1d2, j9j(X)Uf tmx dji 

E >je3 Uf gjimx dp[e-c-c'-c", ec+c'+c"] 

- the last step since inequality (5). To evaluate the integral on the right, we 
remember ji to be a Gibbs state for f. According to the note made when 
defining the conjugating maps, we decompose for every j the cylinder U 

into a finite number of sets U[k, j], i. e U= Uk¬ [j] U[k, j], where ýq j J[k, j] 
are homeomorphisms and 2[j) s (+4ljAN, J)2 for all J. Hence 

Xj¬J Uf 9j"-'CmX dlº - -7jEJ 
Xk¬2[j] U[k'jJf gj. tmx dji 

1jE3 IkEa[j) Jtmx°cp j' dji 

where the integrals in the last line are taken over gj(U[k, j]). This expression 
lies in the interval [(14. IIANJJ)-2, (kI. IIANII)2]. To see this, observe that the set 
{w[j]= w(j] _ ((gj(x))1, .... (IPj(x))m), je 3} is just T'[mi, that is ZA = UjEa 
Uw(j} But UjE3 qj(U) does not cover the whole space EA, since there was 
a choice in (iii) in defining t. This and inequality (3) provides the lower 

bound. The upper can be explained by the possibility that the maps ý have 
to be decomposed in p[j]1 s (I4IIANII)2 homeomorphisms. It is therefore 

proven that 8m E [e-C, eC] with c=c+ c' + c" + 2"log(IIANII'4i) a constant 
independent of xE 1A and mEN. Finally we replace Pm by P, which is 

compensated for by increasing C to C+b, with the same b as in Lemma 8. 
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Set C" =C+b and (1) is proven for all xE EA and MEN. 

0 

Lemma 9. The wand r ng set has mvastre zero. 

Proof. The lemma is proven for the shift space and clearly holds then in the 

case of the underlying Smale space as well. Let A be the transition-matrix. 

It may be brought into the form 

A1, i A1,2 ... Ai't 

0 A2,2... 

0 ........... 0 At tl, 

where Aii are irreducible rixri-matrices. The alphabet A splits into 

(Ai, 
..., At), with 14jj = ri for all I. The subshifts Ei generated by Ai, i 

over Ai are topologically transitive and decompose into finitely many 

subshtfts 1j, q on which a power os of the shift acts topologically mixing. 

We renumber the shifts Eiq to call them now Zi for I E[1, t'] with t' a t. 

Let os for convenience now be called o and let N be the smallest number 

so that A1,1N >0 for all iE [1, t] (with the new Ai, i) and denote by P[i] 

the pressure of f on Ei. Points x= (xk)kEZ in the wandering set of EA are 

sequences with elements xk not all In one subalphabet Ai but in several; 

however the indices t[k] of Ai[k] to which the xk belong never decrease 

as k increases. Suppose the wandering set has positive measure, then there 

exists a subset U(ff) c XA, C=6.. 4 b with positive measure and for which 

U(C) n U(om(Q) _0 for all me Z\{O}, where U(S) denotes the cylinder in 

ZA which is determined by the string ý. 

Consider the cover U(; ) _U U&_ 1, g), where ýa_ i runs over all 

symbols with A[Sa-i, a] = i" If E Ai and ßa_1 E Ai' for i< i' and if 

P(Sa-i') >0 then we replace _ YO] by ; [11, o C, 
-i& 

(again p(Ca_11 ) 

. a_i any other symbol so stands for Ji(U(Ca_i, C))); otherwise we use for C 
that }j( _i, 

S) > 0. Repeat the same procedure for %+1 and increase the 

index of the subalphabet If possible or leave it the same. In that way we get 
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ý[2] = a1], %+1 with Cb E Al and Cb+1 E Ac, where js j'. iterating this 

process one obtains a sequence of strings at] of increasing length and 

ji(C[i]) >0 for iE Nu{0}. At any stage the elements on both sides must 

remain in the same subalphabets, that is, there exists a number M> max(jal, 
Ibl) and i, j with 1st <jst, so that ck E Ai and E Aj for all kaM. 

Set 
-M...., 

5 M=C and 

Ix: x_k E Ai, xk E A1, for k>M, 

xk= tk for Jkls M and A[xk, xk+1] =1 for all k E' Z}. 

The same notation will be used whenever there are cylinders with elements 

on the negative side restricted to At respectively Aj on the positive side. 

By construction p(U"(ý)) >0 and 

dm(u"(t)) n U"(t) =0 
holds true for all mE Z\{O}. Suppose P[i] z P[j]. Fix m> 2M+1+N and 

denote by {y{p]: pe [1, p]}, for a number p, the set of all m-strings in Mi. 

Let us construct conjugating homeomorphisms {Ipp: pE [1, p1}. Select an 

m-string 0 in Zj, then ß(U"'( ,..., 
8)) is positive, for all choices of 0 

since ji is Gibbs. The dots denote room for N-i symbols. Decompose 

where i runs over all (2N-1)-strings in It and il' over all 
(N-1)-strings in T j. Select a pair (n, n') so that 

(6) 
with co = j'IIANII'IIA2NII 

Define Pp for psp and set for ze 
(1) ((Pp(z))k = zk for ke (-oo, -M-2N] u [M+N+m, co), 

(it) (9p(z))k = zk-m for kE [-M+m, M+m], 

Ott) ((9p(z))-M-N"..., (9 p(z))-M-N+m) = Y[P]. 
(iv) something fitting up in (-M-2N, -M-N), (-M-N+m, -M+m) and (M+m, 

M+N+m), which will be specified in a moment. 

Thus it follows for the Radon-Nykodym-dertvattve 
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log dgpjl/djl(Z) _ YkEZ (f"Ok. Op(z) - fo0k(2)) 

Ike(-co, 
-M-2NJu[M+N+m, ao) 

(f ok°lp p(z) -f °Ok(z)) 

+ IkE[-M, M] (f. ok+m, (p(Z) -f 0ak(2) 

+>kE(-M-2N, -M-N)u(-M-N+m, -M+m)u(M+m, M+N+m) f °dk°gp(2) 

- >kE(-M-2N, 
-M)u(M, M+N) f °0k(Z)) 

+ lk¬[-M-N, 
-M-N+m) 

(f°0k0ep(2) - f, Ok+2(M+Nkz» 

The first and second of these four sums are in modulus less than 411f11/(1-a), 

and the third and fourth together are less than 3jjfj1(N+4/(i-a)). Put c= 
3IIf0(N+8/(1-a)). By construction we made the sets qp(U'"(n, g, rl', 8)) 

pairwise disjoint, and furthermore 

OPOP(TILT1, A) c (mO"(9)), 
that is, for different m we get disjoint sets. As pointed out in Lemma 7 part 

(iii), the fitting-up strings in (iv) may be chosen so that 

1I(am(e(D) Z ciiu(Upe[1. p) 
with cl = JA12. IIANII3. So we have for any ze Uý'(Tl, g, 71', 9): 

a cj-, e-cjp(u"(Tj, 9, ij', 8)) 
X Ip¬[1, 

p] expIk¬[1, m] (f. ok-M-N, gp(Z) - folk+M+N(Z)) 

z ci''e-c-Plilp(U~(n, C, 71', 9))exp{P[j7 - _7k¬[i, m] folk+M+l*Z))} 

X EpE[l, 
p] expIkE[i, m] f,, dk-M-Nogp(z) 

The same argument as in Lemma 7 provides a more general form of the 

inequalities (1), namely 
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u(11'(g,..., 8))exp{mP[j] - >ke[i, 

m] f. dk+M+t (Z))} E Jj(U~(g))[e-C`, e+C"], 
for 2E To see this, observe that the conjugating homeomorphisms 
there are to be constructed in exactly the same way. The result for Zeta- 
functions involving periodic points, which is cited in Lemma 8, works the 
same in this case too, since the number of periodic points with period h is 
the trace of the h-th power of the transittonmatrix, that is here tr(A3,1h). To 

evaluate the pressure in that case we choose only points which are periodic 
in the components with index i M+N. 

By following the argument after inequality (4) the summation over pE 
[l, p] gives rise to a factor exp(mPm[i]). Using (6) we end up with 

u(dm(W'(g))) i cQ-ßc14e-c-C"diu(U~(g))exp(m(Pm[i]-P[j])], 

where dl is the same constant as in Lemma 7. Finally, once more Lemma 8, 

this transforms to 

u(am( (ý))) i co_Ici"e-c-C`-bdipp(U~(t))exp[m(P[l]-P[J])] 

i co .1 ci-e-c-C`-bdilz(t(«)), 
since we supposed P[i]-P[ j] not to be negative. Summing up over m gives a 
contradiction to the normalisation condition }S(EA) = 1, hence p(U(g)) = 
u(C) = 0, and therefore the lemma follows, since the wandering set of 
(1q, o) is contained in the one of (Z , os). In case P(i] - P(j] happens to be 

negative we construct the conjugating homeomorphisms replacing m by -m 
and get then the lower bound for p(am(tPQ))) in the same way as described. 

11 

Lemma 10: Let p be a Gibbs state on (EA, d), then it is o -invaria7t, if a 
acts topologically mixing 

Proof. Let T[b-a] be the set consisting of all possible strings xa,..., xb of 

length b-a for a, b EZ and asb. 
Assume p not to be o-invariant, then there exists a set Bc EA such 

that Ip(d(B)) - p(B) >0 and p(B) > 0. Suppose it is jj(o(B)) i p"p(B) for a 

number p>1. By a covering argument we conclude that there must be a 
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cylinder U(ff) determined by the string C= xa,..., xp,..., x b (bold characters 
denote the zero position), such that 

. 
AO) a p"p(C), 

where xa,..., xt,..., x b is the shifted string C. A partial covering of ZA 

will now be constructed, and then it will be shown that }S(EA) Z 1. /p, which 
contradicts the normalisation of j. 

Let t be an even number such that 

1611fjj. O t/2 s log p, 

and let us construct a cover of U(C) by cylinder sets of the form 

where p, ß' E 9'[t], %rl' E T[N-1). There are strings ß, ß', rl, 

il' so that 

u(ß, 1t, S", Tl', ß) i p"1i(ß, i1, C, T1', ß'). 

One single ' means the whole string is to be shifted. For the moment fix 

i, Tj', and proceed to construct a pair of conjugating homeomorphisms gyp, 
as follows. Choose any string we T[b-a] with w= wa,..., (00, ---. w b and 

define for all 2E 
(1) (9(z)) i= wi for all iE [a, b], 
(ii) (q(z)) i= zi for all iE (-co, a-N] u [b+N, co), 
(iii) any strings e, e' E T[N-1] to join up the ends in the intervals (a-N, a) 

and (b, b+N). 

Secondly we define y' on the cylinder and set for all z in it 

(i') (p'(z))i = ((O")i for all i+i E [a, b], 
(ii') (9'(z))i - zi for all i+i E (-co, a-N) u (b+N, co), 
(iii) the same strings e and 0' as in (iii) to fill the two gaps. 
We observe that Vooo9'1 -o on Denote by X(xa,..., xp,..., x b) 
the characteristic function of U(xa,..., xo,..., x b). Since ji is by hypothesis a 

Gibbs state we conclude for any xe 

Ji((Ip(X)) a-N-ti,..., (VW)o- 
.... 

(e(x)) b+N+, t) 

sf x((9(x))a-N-ti...., (9(x))o,.... (9(X)) b+N+tt) dji 
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s JX((ýp(x))a-N-tip.... (! (xi)p.... 
ý(ýP(x)) b+N+ti)°g expXk¬Z -(f°0k°g - f°0k) dp. 

This leads to 

p(ß, 7 , r'. ß') exp{ykEZ -(f °dk°+0(x) - f. ok(x)) - c}, 
where 

c_ 4IfII" xt/2. 
In the last estimate we made use of the fact that 

2i = xi = (O(x))i 
for all zE U(p, e, C, e', ß') and te [a-N-t, a-N) u [b+N, b+N+ti). The same 
estimate holds on the shifted sets using gyp'. For any yE U(ß, Tj, ý', Tj', ß') 
(8) u(ß. 6, ý'. 9'ß) Z exp{IkEZ -(f °dk°ý¢(y) -f °dk(y)) - c} 
holds true. Set y= a(x) and (7) and (8) combined to give 

a p"p(ß. e, w, e', ß') exP{IkEZ [ (f °Ok°g(x) -f °ak(x)) 

- (f °pk°, p'°p(x) -f °pk°0(x))) - 2c}. 

Set M' = max(la-NI, jb+Nj), choose M> M" and estimate the sum in the 

exponential by 

5 >, k12M {If°dk, p', d(x) - f, ok+i(x)l + If, Ok. V(X) -f oak(x)l} 

+ IIlkj<M {-(f ook. b. g(x) -f oäko, (x)} +f oOM(x) _ f, d 1-M(x)) 

and since we identify coq(x) with q'oo(x), it follows 

s 2IIf (I. M+"-M`ß(1-(x) 

+ I-f o0M-14.0(x) + to01-Moe(x) +f 00M(x) - foöl-M(x)I 

s zOrII. (UM+ti-M"ß(1-a) + (xM-M`-1). 

This tends to zero as M tends to infinity. By the choice of ti we obtain 

k -jp-jj(p. e, w, Y, v) 
for all c0 E 9'[b-a] and suitable 6,9' E 9'[N-1]. The strings p and ß' are 
determined by the point xe U(ß, e, ý, 6', ý'), and therefore only a part of ZA 
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gets covered by varying w over the whole 9'[b-a]. Now we proceed to cover 
in the second generation, whereby we partly cover the complement of what 

was already covered in the first step. Let the strings ß, n, C etc. now be 

denoted with an index i (ßi, %, S1 etc. ) and set C2 = BiýliCiýlißi 

The cylinder U(C2) now gets covered by smaller ones, and again there is at 
least one cylinder for which 

u(ß2, ý12, ý2ý, l2, ß2) 2 A'JV(ß2, Tl2, C2. n'2, ß'2), 

where ß2, ß'2 E T[T] and r12, ß'2 E''[N-1] . 
For the second generation @2, 

02,6'2 we proceed as above. Call the union of all cylinders constructed in 

the i-th generation Vi for iEN, then we have VinVj =0 if t*J. It is 

possible to cover in this manner arbitrarily large subsets of EA. To make it 

obvious we will show that 

u(C(Uisisn Vi))* G 

for n4 co, where C denotes the complement in EA. In constructing the 

cylinders on which 9 respectively y' are defined we keep fixed the 

(t+N)-strings at each end of w, and thus we select just one small cylinder 

from at most (J"IIAT+41)2 small cylinders. Their p-measures may be 

compared, for example by constructing conjugating homeomorphisms. Since 

ji is Gibbs the ratio of two of them is at most 

exp[2"ff fff ('r +N+ 2/(1-oc))]. 

This allows us to deduce a lower bound for the measure of Vn for na1, 
depending on all the previous generations these subsets. If we set 

_ (I4, OAti+Mj)r-2exp[-2"IIf 1I(ti +N+ 2/(1 -(X))], 

which is a positive constant, we conclude that 

p(Vn) Z E'p(C(Uisi<n Vi)), 

for all nEN. Since the Vi are pairwise disjoint, we have 

J1(C(U1sisn Vi)) p(C(Uisi<n Vi)) -1p(Vn) 

s (i - )p(C(Uisi<n V0- 

Iteration yields 

u(C(Uisisn Vi)) S p(CViX1 - Pi 

and this tends to zero as n tends to infinity. By construction it is 
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u(d(vi)) Z fP"u(vi) 
for all iEN, andhence 

u(10(2: 0 Z Jý(d(uisisnýi)) Z f, ýp >1 
if n is large enough. This is impossible. In case p(c(B)) s p"p(B) for pe 
(0,1) we replace a by a-1, p by p-' and proceed in the same way. 

0 

Proposition 11: Let f be a fe fiction w EA which decreases 

exponentially fast with aE (0,1) and let o be topologically mixing. If ji 
is a Gibbs slate for f then it is also an egriliA-ium state. 

The proof is a reference to [1], Theorems 1.2 and 1.22. In Lemma 7 we have 

checked the conditions for a Gibbs state in Bowen's sense. Lemma 10 shows 
0-invariance of p and thus it is an equilibrium state for f on (1A, °). Since 
f is Hölder continuous it is the unique one. 

0 

Lemma 12_ Sgopose a 5male space with a /iomeomarrphism acting 
topologically mixing iIMlies (tief a Gibbs state for a giVn tiaactio» /M to b 

W egiiilff rium state. 
Let v be &' i Gibbs state. Then t/aere exists a nunWr sEN, such 

v is a equilibrium state tar Fs s IrE[o, 
s) F°Tr on (Q, T5). 

The proof is by Smale's spectral decomposition (cf. [1], theorem 3.5). The 

non- wandering set of Q is a union of finitely many disjoint compact sets 

4v, called basic sets, which are invariant under T and on which T acts 

topologically transitively. Points which are conjugated He always in the 

same basic set Qv, each of which is itself a union of t[v] many disjoint, 

compact sets Qv, u on which Tt[v] acts topologically mixing and where we 

have Tt[v](Qv, u) a Qv, u, for all uE [1, t[v)]. Each set Qv, u has positive 

distance from all the others, larger than 8, say. For any conjugating 
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homeomorphism ip defined on UcQ there is 

d(Tkt[v],, p(z). Tkt[v](Z)) < a. 
for all i EU and where IkI is big enough. That is, p restricted to Un 
Qv, u maps again into QV, u. So we restrict to maps p acting only on Qvu, 
replace T by Tt[v] and F by Fv =1osr<t[v] FeTr; then 

log g= Li¬Z (FoTloyi - FoT') 

>iEZ 10sr<t[v] (F0Tr+it[vLW - F, Tr+it[v]) 

_ >iEZ (FvoTttlv)oW - FvoTit[vJ). 

If v is a Gibbs state for F on (Q, T) then for each vu the normalisation of 
v restricted to Qv, u is a Gibbs state for Fv on (Qv, u, Tt[v)) and vice 
versa. Take s to be the lowest common multiple of the numbers t[v). 

13 

Proof of the theorem. It follows immediatly from the Lemmas 9 and 10 

that v is invariant under some power of T. As noted at the beginning, the 

conjugating maps as constructed in Lemma 7 give rise to a finite number of 

homeomorphisms on (4, T). Finally, it is well-known that an equilibrium 

state on the shift space ZA corresponds automatically to one on 0 (cf. [4] 

Theorem 7.9). 
0 

We cannot expect v to be an equilibrium state on (Q, T), since that 

would require it to be T-invariant. A look at the spectral decomposition as 
described in Lemma 12 shows that this is in general not true. The measure v 

restricted and normalised to Qv, u (if v(Qv, u) > 0) is clearly Gibbs and is 

invariant under Tt[v] but not under T unless t(v] = 1. But T need not be 

mixing to have an invariant measure. We have 



On 6tbbc and equtltbrtum states 21 

Corollary 13: (i) AT -invariant Gibbs meascre for a hUlder continmm 
real- valued Auction oir a Smale space is a7 egilWfum state, * 
(ii) if T acts topologically mixirr then, by Lemma 10, a Gibbs measur 
for a hUloer contin uis real-valued function or a Smale space is ai 
equilibrium state. 

I am indebted to Peter Walters for encouragement, advice and especially for 

pointing out Lemma 5. 
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t zquitalem re1atiou on sbitts of finite tom. 

Abstract: On subshifts which are derived from Markov partitions exists an 
equivalence relation which identifies points that lie on the boundary set of the 

partition. In this paper we restrict to symbolic dynamics. We express the 

quotient space in terms of a non transitive subshift of finite type, give a 
necessary and sufficient condition for the existence of a local product 
structure and evaluate the Zeta function of the quotient space. Finally we give 
an example where the quotient space is again a subshift of finite type. 

1. Introduction. 

In this paper we are concerned with a special kind of equivalence 
relations which occur in symbolic dynamics. The questions treated here arise 
from Markov partitions of Axiom A diffeomorphisms (cf. Smale [7] p. 777 and 
Bowen [1]). For a small enough partition one gets a shiftspace and a projection 

onto the original manifold where the diffeomorphism acts conjugate to the 

shift. It is known that a subshift of finite type can be isomorphic only to an 
Axiom A diffeomorphism over a non-wandering set of zero dimension. It is 

therefore clear that the boundary set, i. e. the set of points whose pre images in 

the shift consists of more than one point, containes essential information about 
the structure of the non wandering set despite the fact that it has measure zero 
for any smooth measure. 

We begin this paper by demonstrating that it is enough to consider 

strings of some certain length whenever we want to decide whether a relation 
induces an equivalence relation on 'A. In the following five sections we 

restrict to equivalence relations that have finite equivalence classes. In that 

case the quotient space can be described by means of a non-transitive subshift, 

which has a partial ordering. Maximal elements with respect to this ordering 

correspond to points in the quotient space. This formulation will be used in 

section 3 to express the topology on the quotient space in terms of cylinder sets 

of this new shift space. In section 4 we reduce each shiftspace with such an 



equivalence relation to the case where transitive points have no other 

equivalent point except themself. In section 5 we shall give a necessary and 

sufficient condition for the existence of a local product structure on the 

quotient space. In section 6 we evaluate the Zeta function under the assumption 

made that the equivalence classes are finite. It turns out, that in this more 

general context the Zeta function can be evaluated by Mannings product formula 

(see [5]). Finally, in the last section we give an example of a shift space, for 

which the quotient space is again a subshift of finite type independent of the 

equivalence relation. 

Let (Q, T) be a Smale space (a compact metric space with an 

expanding transformation and a local product structure; see [6] p. 125 ff, and 

section 3) with metric d(., ") and homeomophism T with expansive constant E. 
Let 1E _ (Rr jE 1}, for some index set jr, be a Markov partition. Two rectangles 

Ri and Rj are said to be related if they have non-empty intersection, write Rt 

" Rj. We will say relation whenever we mean it to be symmetric and reflexive 

but not necessarily transitive. Let A be the 0-1-transition matrix associated 

to the Markov partition and set for the shift space 

': A = {txi)iEZ: A[xi, xi+i] =1 for all iE Z). 

Define on ZA the relation -, as: x ti y if and only if xi - 61 for all iEZ. In 

the case of a Markov partition with diameter of each rectangle less than c/2, 

x is transitive and therefore an equivalence relation since for any two points 

x, yE ZA with x-y we have Tr(x) = n(y). This follows from d(Tkorr(x), 

Tkon(y)) <_ CvkEZ using the expansiveness of T. The next lemma applies to 

an arbitrary ZA and relation on A. Let a= Mq3. 

Lemma 1: A relation - on I induces an equivalence relation on EA in the 

above manner if and only if for any three IA-words x_«... xa, y-a... ya, 

z-a... z« satisfying xi - y1, yi - zi V Iii <_ cc, one has xo ti zo. 

Proof. First let us assume that every tripel of strings that are long 

enough implies transitivity of , on the sections cut off on 'both sides' by (x- 

Then it is clear that ti is an equivalence relation since the criterion applies to 
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any finite section. 

Secondly, suppose - induces an equivalence relation on EA, 

and there were three words of length 2a+i, x ... xa, y_«... ya, z-oc... za 
satisfying xi - yl - zi for jib <a but for which we have as well xd + z0. We 

shall contradict the transitivity of -. The strings are chosen long enough so 
that a tripel (yk, xk, zk) appears twice on the positive side, i. e. we can find 
indices 0 

_< 
k<Isa so that (yj, xk, zk) = (yt, xt, zl). Iterating this loop yields 

three positively equivalent points. The same argument applied to negative 
indices and we obtain three points x, y, z E EA for which x-yxz holds true, 

but not x-z since we have by construction xo + zo. Hence the lemma. Q 

From this lemma we immediatly deduce the following result. 

Corollary 2: Let -, be an equivalence relation and suppose there are three 

strings xk... xl, yk.. yl and zk.. zl for some k, i, k+2oc <1 for which xi - yi 

zi, i=k,..., l holds true. Then also xi - zi for i= k+a,..., 1-a. Q 

2. A non transitive subshift. 

From now on we assume - to be an equivalence relation on EA. 

Two strings xk... xt, yk... yl (k < 1) in EA are said to form a diamond if Xk = Uk, 

Xl = yl and a collapsing diamond if additionally xt - yi for i=k,..., 1. 

Furthermore we will assume the equivalence classes in EA to be finite, which 

is the same as to demand that there are no collapsing diamonds. That is the 

situation we are in, if 1A is a Markov shift and the partition is fine enough (i. e. 

if the diameter of the rectangles covering Q are less than half of an expansive 

constant). We refer the reader especially to [1] chapter 2. To prove that the 

projection Ti: EA 49 is bounded to one shows in effect, that Ea cannot have 

collapsing diamonds and n can therefore be at most 042 to one. From this it 

seems reasonable to turn the argument into an assumption, and that is what we 
have done here. To verify that does not collapse diamonds it is enough to 
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check all possible pairs of strings with length of at most PQ2+1. In particular, 
as already remarked, the equivalence classes contain at most PQ2 elements. 
Furthermore we assume ZA is topologically mixing, i. e. An is positive for n 
large enough. 

Let En denote the collection of the (unordered) n-element subsets 
{al,..., ar, } of 2, which contain no symbol twice and satisfy ai - aj for any two 
i, j in [1, n]. Introduce an ordering on In in the following way: {al,..., ad < 
{bl,..., bn} if there are admissible strings of some length m+1: xio... xim with 
xt0 = ai, xim = bi for i=1,..., n, and xlk - Xk for any two i, j in [1, n] and k= 
0,..., m. This generates a decomposition of In into subsets Ink for k=1,..., kn, 
in the way that for any two elements X0,; '1 in the same 9Enk we have it both 

ways ý0 < ý1 and t; t _< ýo and in particular io < i; 0. For elements C and S in 

different Irk we have either ý<c or c<ý if these two subsets may be 

joined up at all (where we said < if < holds but not >). This ordering process 

can be extended to the entire collection (Mink., k, n). Two subsets k, Iml are 

either related (e. g. 1; <S for some (t;, S) E i$�kxS , 
I), i. e. g, k < SffMl or k1 < 

,k for (n, k) * (m, l), or no element ink may be connected via some strings 

in the described manner with lFml (or the other way round). In the last case 

,k and l are said to be separated. Furthermore, it is impossible that there 

are X0,1; 1 E g, k and SE2.1 for some (n, k) * (m, l), with ýO <_ S<l; i. The case 

n=m is clear, so let n*m. Since t; l< ý0, the chain extends to ? 0: 5 St ý1 < 

ý0, which means that there are strings beginning in ýo and returning to it. A 

string that begins in ýo on a particular element does not necessarily end up on 

again the same element. Hence, a set of strings that materializes ýo <St; i< 
i; 0, induces a permutation n on the elements of ýo. Some power of n is the 

identity permutation and would imply collapsing diamonds since ta, t; l on the 

one hand and 5 on the other have different cardinality (because n* m). For n 

* rn we have thus always either &k < &l or ! gml < gnk if they are not 

separated. 

Consider {gnk: k, n} as a new alphabet and denote it by C. Delete 

all Ikk which may not be extended infinitly forward and backward, i. e. all 
these elements for which all possible transitions forward or backward 
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inevitably lead to a dead end (For the same effect one can also pass to higher 
block systems). Notice that in a subalphabet Ink that containes at least two 

symbols, every sumbol ý may at some future time be followed up by it itself, 
i. e. l; <_ ý. Define a transition matrix C for the alphabet C by setting C[ý, c] = 
1 if there exist XA-words {aiaj: i, j) of length 2 so that fail _ and (aj} _ 
S, where ý, c E fI : k, n); and C[ý, S] =0 otherwise. This defines in the usual 
way a (non transitive subshift) Xc of type two, where, with a suitable ordering 

of C, the transition matrix C is of diagonal form 

C(i) 0........ 0 

0 C(2) 0... 0 

.......... : 
0........... 0 C(s) 

for some s, where the submatices are square of upper triangular form 

A(t, 1) *........ 
0 A(t, 2) *... 

........... 
0........... 0 A(t, r) I, 

for some r= rt. We call the subshifts X (j) the components of F., -. Among the 

C(i) is one contains the transitionmatrix A somewhere in the diagonal. We call 

that particular sub-C and the associated shift space as the principal component 

of Xc. Call ti the subalphabets which determin the subshifts Z4(k, l) and 

arrange the indices (decreasing, so that ti > Cj if i>j, or Ci and C are 

not separated) so that Co = !f Accordingly the matrices A(M) are reindexed 

A(i) (with A(O) = A). Observe 

(i) that every subset of the form [al.... , aj with ai - aj for any i, j in [1, n] 

appears in exactly one of the Ci; 

(ii) the alphabet C is closed under intersections of its elements regarded as 

sets; 

(iii) the subshifts EA(G) are topologically transitive if not empty (Such a 

subshift is over a one-element subalphabet consisting of some ý for 

which ý<ý does not hold true. ); 
(iv) there is an integer function 'ö(i) which denotes the cardinality of the 



elements in the alphabet C i, the number b(i) = W(i)-1 is the dimension 

of C il 
We conclude this section by listing some properties of Fam. To 

begin with, we define a matrix C" of the same size as C and which has zeros 
at exactly the same places as C. Let ý= {al,..., ar}, c= {bl,..., bm} elements of 
C, the entries C~[ý, S] then are defined as the number of different sets of 
2-strings of the form aibp ai, bj E 9f, that materialize the transition 
Here are some examples to illustrate C": 

C~[{a, b, c}, {a', c'}] =i if ((a, bj+a, c-+c'); 
C~[{a, b}, {a', b')] =2 if ({a, bj+a, {a, b}-+b'); 

Lemma 3: Let lyp.. k be a word in I c, with all ýj in the same subalphabet 
Cl. Then there is exactly one set of related IA-strings xso.. xsk, S=1,..., ä(l), 

with ýi = (xli,..., xb(l)1} and x51- xs'j for any two s, s' E [1, W(l)] and i=0,..., k. 

Proof. We have to show that C~[ý, c] is at most one for any two ý and ý 

belonging to the same subalphabet. Suppose the statement were false then 

C~[t;, f] >_ 2 fore some C, S with C <_ S C. Set C= {al,..., ad, S= {bl,..., bn}, fix 

an ordering of the elements and select under possibly several transitions one 

linking c to C. We end up having the situation C -4 S -p-' C, with two different 

transitions in the first position (related to each other because they consist of 

only two elements) together with a unique transition in the second place (fixed 

once chosen). Hence C~[C, f] ?2 induces on C two different permutations rrl 

and n2. There are integers k, l >_ 1, so that TT = r2' =1 and by iterating the 

loop -c -i-, kl-times we get collapsing diamonds, since mkt = n21k =1 on 

?. Q 

Given x in IA, then we set <x> = {z: zE TA such that z -, x) 

for the equivalence class of x. Analoguously, we write <x>i = (zi: zE <x>) 

for the collection of the i-th coordinates as a subset of I Clearly <x> is a 

point in I c. 
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Lemma 4: Let x be a periodic point in EA. Then <x> lies in a subshift IA(I) 
for some 1. 

Proof. Assume <x> does not lie entirely in some Xx ». However, for some N 

EZ we have <x>i E Ck vi<N and some k. The <x>1 themself are periodic 
for i<N (not necessarily with the same period as x) and therefore may be 

extended to a periodic point x~ E ZC with x'i E Ck for all iEZ and with x~i 

= <x>i for i<N. All Za-strings running through x~ are necessarily 

equivalent to x (by periodicity) from which follows by corollary 2 that x~i c 
<x)i for all iEZ. By the same argument we have <x>1 E tl viýM some 
integer M and some tl. In the same way one defines a point xs in k with 

xsi E tl for all integers i so that x`i = <x>i for i >_ M. In a similar way we 

conclude x"i c <x>1 for all iEZ and hence x~ = x` =<x>. 11 

On IC there is a partial ordering by inclusion. For x, y e IC we 

say xcy if xi c yi as sets for all integers i. For x out of 'a, <x> are 

maximal elements in ZC and vice versa, maximal elements in IC correspond 

to points in the quotient ZA/x. 

Lemma 5: Given xa periodic point in EA, then <x> has the same period in 

EC" 

Proof. Let n be the (least) period of x an suppose <x> has a period which is 

a multiple of n, rn say. Then <x>0 * <x> for some 0<s<r, and since x is 

a string running through <x> we have xE( SQ. d5'<x>. Thus we define a 

new sequence xs = (x*j: ie Z} by setting x"1 =U 5<r <x>1 . Then <x> c x` 

and <x> * x"; furthermore x is a sequence contained in x" and all other 

sequences are equivalent to x and, by virtue of corollary 2, are equivalent to 

each other. This shows that x' is a point in 7, C which contains <x>, 

therefore x` = <x> since <x> is maximal. Q 

The last lemma is not true when nnP fikpq an nrriarinn nn the ciimhnlc of S 
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3. The topology on IA/%. 

As in corollary 2 let a=P, and denote 1A1 by Q. Define Uý = 
{(x, y) E ZAXXA: xi - yt for all 41 < Zan}. Clearly, each Un contains the 

diagonal of QxQ and is symmetric. Furthermore for each n we have UnoUn*Un 

c U. 
-I, where UnoUn = [(x, z): 3yE 1A such that (x, y), (y, z) E U, }. To see this, 

choose points w, x, y, zE 1a with wi , xi - yi - zi for all 41 < Zan. Corollary 

2 applied gives firstly wi - yi for 41: 5 a(2n-i) and secondly wi - zi for all 
Al <_ 2a(n-1). Hence UeoUn"Un c Ur holds true for all nE IN, and we may 

therefore apply Frinke's metrization lemma (see [4) p. 185) which says that 

there exists a pseudo-metric d on Q, with the property Un c {(x, y): d(x) < 
2-n} c Un_1 for all integers n. In fact, d is a metric since x, y E XA represent 

the same point in Q if and only if xi - yi ViEZ, which is the case if (x, y) 

lies in Un for all n. See also D. Fried [3]. 

One would like to consider as distance function d', for d"(x, y) _ 
AP where p= p(x, y) = max(q: xi ti yi Y 41: s q) for some AE (0,1). Indeed, for 

A= 2-2a, d" is equivalent to d: C"'d(.,. ) < d"(.,. ) < d(.,. ), where C= 22v. Set 

P= I2J and for later use we deduce the following lemma 

Lemma 6: Let x, y, w be three points in ZA satisfying (i) xi - y1 for isk 

and (ti) wi xi for i <_ k-ß. Then wi - yi for i <_ k-ß. 

Proof. Let us assume k-p is positive and a multiple of 2(x, k-ß = 2noc for 

some n>1, say. We have therefore that (x, w) lies in Un_1, and since U, F1 c 
{(x, y): d(x, y) < 21-a) c U-2 it follows that d(x, w) < 21-". By the same 

argument we obtain d(x, y) < 2-". We shall construct two equivalent points x, y'. 

Set (x'i, y'i) = (x1, y) for i <_ k-ß. Since p= {21 there is an index iE (k-p, k] 

so that {xi, yi} lies in some tp for which the associated shift space EA(p is 

transitive. Now choose any half infinite word in I: p(jp 
{X k, y'k) {X k+l, y k+l} {)<'k+29Yk+2}..., satisfying 1440 = {xk, yk}. Since d is a 
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metric on IA, - we have d(y', w) < d(y', x') + d(x', w) <_ d(z', w) < 211 which 
implies y'i - w1 Vi< k-ß, and because y, w did not get changed on positions 
less or equal to k-ß it follows yi - wi vi <_ k-ß. If k is an arbitrary 
integer we use a suitable iterate of d to bring x, y, w into a position so that 

the new k-ß is positive and a multiple of 2oc. Hence the lemma. 0 

It is easily seen that the lemma holds true too in the right 

asymptotic case: If x, y, w E 1A which satisfy (i) xi - yi Yi >_ k and (ii) wi 

xt Vi >_ k+ß, for some k r: Z then wi - y1 Vi? k+ß. A consequence of this 

lemma is the following statement: 

Proposition 7: Suppose xk... xl - yk... yl - zk.. zl are three strings, which are 

related in the way indicated, where 1-k is at least ß+2(c, and {xk, yk 1, {xl, yl) 

are symbols in C. Then xk... xl is related to zk.. zl. 

Proof. By corollary 2 we know already that xi - zi for i= k+a,..., 1-a. By 

assumption the strings xk+cc... xl-oc, yk+or""yl-a, zk+or""zl-a have length at least ß. 

We may therefore construct three points x', y', z' E IA with the properties 

(i) (x'i, y'i, z'i) = (xi, yi, zi) for i= 

(ii) xi ~ yi, xi ^' zi, yi - zi for i <_ 1-a, 
(iii) the symbols xi, yi for i>1 are choosen to make x' and y' equivalent 

points which is possible by assumption; and z'i for i>1 may be 

anything in XA. 

We have now the situation x'i - Vi , z'1 1 and x' y'. Using Lemma 6 

we conclude that xi - zi for i= 1-a+i,..., 1. In the same way one constructs 

three right assymptotic points and proves xi - zi for i=k,..., k+oc-1. Q 

As remarked in the previous section, there is an ordering on FC- 

The same applies to finite strings: we say b,... b1 cf... Wl if bi c h, for i= 

k,..., 1. Intersections of strings are defined in the obvious way. A basis for the 

topology induced by d on 9 is the set of all cylinders U(flý... fý) =fze IA: zi E 

bi, ksi <_ 11, where f .. t, are finite strings in I. 



For XE EA define: 

W5(x, k) = {z E Ea: zi N xi vi >_ -k), 
Wt(x, k) = {z EI: zi - xi Vi <_ k). 

The union over k turns out to be the stable, W5(x), respectively unstable, 
W'(x), direction through x. The shift ä on 1A induces a homeomorphism on Q 

which we again denote by d. Pick aze W5(x, k) for some k so that ds(x, z) <_ 
d(x, y) <_ 1/2. The homeomorphism o acts on W5{x, k) therefore contracting 
distances ds by A and r1 contracts distances on W"(x, k) by a factor X. 

Hence the stable and unstable directions through the points of 9 are described 

exactly by WS(x) and WLI(x). Clearly, periodic points are dense in 9. 

4. Reducing X A. 

A point x in 2A (Z (1)) is (doubly) transitive if for every yE EA 

(Ewl)) and nE OV there are positive integers m, m", so that yt = (O""x)i = 
W"x)i for all jiJ < n. In other words, every ZA -word (IA(l)-word) appears 

infinitly often in the past and future dimensions of x. In this section we 

discuss the possibility that ZA may have transitive points with non-trivial 

equivalence classes. We shall show that 1A than can be replaced by another 

subshift of finite type in which transitive points have trivial equivalence 

classes and whose quotient is isomorphic to XA/;: ý;. 

For a ZA(l)-word XsXs+l"""Xt we set U(XSX5+1... Xt) E 'A: 

s s+i""" t= X5X5+i".. Xt} for the cylinder of all points in XA(1) which have the 

word X5Xs+1"""Xt on the places between s and t. For a positive integer k we 

denote by tik the concatenation t t... ti, k-times. 

We now pass to a higher block system. Without changing the 

notation we replace !E by the set of all (ß+2a)-words. The new transition 

matrix AA is defined by setting AA[xtx2... xp20(, yly2... yp+2a] =1 if 

xlx2.. xP2a, Y1Y2, " YP+2« are EA-words satisfying xi = yi-t for i=2,..., ß+2oc; 

and 0 otherwise. The non-transitive subshift constructed in section 2 is now 

thought as being derived from this (ß+2(x)-system (without introducing new 
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notation). Naturally, there exists an induced relation on the new alphabet C: 

For ', S E V, we say ýNSaNb for some (a, b) E Cxc. Set (a, b) = 
(a,... ap+2a, bi... bp+2(x); since [al, bi}, {ap+2a, bp+2«} are pairs of related 

symbols that can be prolonged infinitely in backward respectively forward 

direction (i. e. are elements of the ancient C) we conclude, using proposition 7, 

that the induced relation on the higher block alphabet C reads in fact: C-S 

*4 a-b for all (a, b) E t; xc. It is clear that the relation induces an 

equivalence relation on the subshift EA.. From now on we shall call 

by (114 '1c), and the same applies to A(l) etc.. Equivalence 

classes in EA(1) are denoted by <. >, in the same way as in Zp(1). 

Lemma 8: Let x be a transitive point in some Sq(iý Then two sequences 

E <X> are either identical or disagree on all places. 

Proof: Let X be a transitive point in Ea. We have to show that different 

points t;, S E <X> differ on all places, i. e. ýi *SiViEZ. Suppose there 

exists aIEZ so that tl= cl and let kEZ be an integer such that Ck * Sk- 

Since X is transitive, there are numbers s, t E Z, s <_ min(k, i) < max(k, i) _< t, 

so that for any other transitive point )E U(X5X5+i... Xt) there exist ', c' E< 

satisfying ('pc'j) _ (Cpcp V min(k, i) <j <_ max(k, i). (Note, that the map X -+ 

<»»o E f, is continuous but not uniformly continuous. ) In particular, since X is 

transitive, the word X5X5+1"""Xt appears infinitly often, say at intervals of 

length m[1], m[2],... (all bigger than t-s). Unfortunatly ( k"""l"""k+m[1) 

4-41 """Ck+rrjjP need not to have collapsing diamonds in Zs; this is because 

strings beginning in Ck on the same element do not necessarily end up again on 

the same element in Ck, lj However, since the Ck+mqi] consist of finitely 

many sumbols of 11, we can find two numbers p<q, so that ( k+rr(pp"" k+m[qp 

Ck+m[pp. " k+m[qJ) collapses Za -diamonds. 
Q 

Let Ck and tl be two subalphabets satisfying d(k) =ä (l)+1 and 

set a (1) = m. Denote by tls the power-set of tl and let us define a map v: rk 

-* Cj* as follows: For (XO, Xl,..., Xm+l) =xE Cj, we set 
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v(x) _ {{X1,..., Xm+1], {X°, X2,...,. m+1},..., {XO, X1,..., Xm)} n Cl. 

Lemma 9: Suppose x, x E tk and Then for every cE V(x) there 

exists exactly one 5E v() so that c'. 

Proof. (i) Choose X4X for some X, E ik. It is then clear that every SE 

v(x) has at least one successor in v(X ), namely the unique subset of X which 
follows S when we join x and up by EA-strings of length 2. 
{i) Suppose there were two different ýo, '"o in v( X') and SE v(x) for 

some X, x E k, X -º , so that S -' go, S -f ro 
. We shall construct collapsing 

diamonds. Since YA(k) is transitive we have x<X<X and therefore a string 

X -+ X' 4 Xi -+ """ Xs -X of some length s, where the Xt are symbols in 4;, 
- 

Then we have S4 ýo C1-ß ... -+ ý5 -*S for a sequence f tt E Cl: ýt C Xt, t= 

1,..., s}. On the other hand, there exists a similar sequence running through t; "o 

and returning to it, namely S -4 '"o - ý*1 -+ """ 4 ý*s 4 S*s+i ý*o where the 

ý"t are symbols in Cl and subsets of the Xt. Both, the ýt and the r*t, are 

subsets of the same Xt, but unfortunately (Sýo".. ýssý*o' Sý00. " 
rsro) need 

not to provide collapsing diamonds in LA, since strings that begin in S on the 

same element do not necessarily share again the same element in c"o. This 

difficulty is overcome by iterating the words Sip.. ýs' ri... some p _> 
1 times; enough to make rrP, nsP = 1, where rr, n" are the permutation on the 

element of c respectively asp which are induced by the ': A-strings running 

through cgo... ý5S, ' 1... 9" o. This finishes off the proof, since (te 
l... 

gopsro' cý*o(r 1... rsS*o? P) contains diamonds that collaps in IA. Q 

We write v(JA(lý for the subshift over the alphabet V(Ck) with 
the transition matrix induced by v, i. e. for c, c' E v(Ck) we set 

whenever x -' x', where (S,, 5) E u(x)XD() for some x, X E äk. 

Theorem 10: 

(i) If v(EA(ký = ZA(G) then Qk - Q1 and 
(ti) if v(! k)) * 2: A(l) for all F* with b(k) = b(l)+1, then transitive points in 
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MA(l) have trivial equivalence classes. 

Proof. Clearly, v(Ck) = Cl; and it follows by lemma 9 that the transition 

matrix induced by v on tl coincides with A(l). 
(ii) Suppose ý is a transitive point in IA(l) with non-trivial equivalence 

class. By lemma 8 it follows that ýi * Si for any cE <«). Set C, = dim}, 

si = {Si0,..., cim}, where m= i(l), and let j: Z -4 {0,..., m} be indices chosen so 

that ci9i) * ßi5 for s-0,..., m and ieZ; then s- ýim, ciXi)} is an 

element in C and lies necessarily in some Ck, where b(k) = b(l)+i. In 

particular, since g is transitive it realises every possible transition, 

therefore in 9 exists ar of one higher dimension so that v(as) = t;. But this 

means that v(IA(k)} - IA(1) and by the first part of the theorem S2k ýE 91" 0 

We call a subshift YA(1) or subalphabet tt reduced if Ct 

satisfies the condition in part (it) of the theorem. We can always find a chain 

l[0], l[1],..., l[p] of some length p, so that 

(i) b(l[q+1]) = b(l[q])+1 for q=0,..., p-1, 
(it) XA(l[q+l])/ = ýa(t(q]}/- for q=0,..., p-1 and 

(iii) transitive points in EA(l[pD have trivial equivalence classes. 

By virtue of theorem 10 there exists always a reduced subshift of finite type 

whose quotient is isomorphic to 9= IA/; t;. For the rest of this paper we shall 

assume ;A is already reduced, i. e. transitive points in 'A have trivial 

equivalence classes. 

5. The product structure on Q. 

A local product structure is a map [.,. ]: QxQ .. Q defined in a 

neighbourhood of the diagonal of QxQ and which has the properties 
(i) [x, x] = x, [[x, y], z] = [x, [y, z]] = [x, z], [ßx, ßy] = o[x, y]; whenever these 

expressions are defined; 
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(it) there exist S>0, XE (0,1) so that 

(a) if d(yi, x) <6 and [yi, x] = y1, i=1,2, then d(o"yl, d"y2) <_ 
A"d(yl, y2) for n>0; 

(p) if d(x, zi) <S and [x, zi] = zi, i=1,2, then d(orzl, dnz2) 

X 4d(zl, z2) for n<0; 
The point [x, y] lies in the stable direction of x and in the unstable direction 

of y. See also [6] p. 125 ff. 

Recall that 1A is assumed to be mixing, i. e. An >0 for large n. 

We define the one-sided shift space 
ZA+ = 1X E ]T0... 

+ao 
A[xi, xi+1] =1 'V iE Z+}, 

and similarly 

-TA_ =fxE IT 
_o 

A[xi, xi+l] -1ViE Z-}. 

Denote by 2+(a) the set of all words (cylinder) xoxl... E _TA+ that begin with 

xo = a. Similarly 17(a) = [... x_1xo E 1A-: xo = a). Two sequences xoxl..., 

9091... in 1A+ are related, write xoxl... - yoyl..., whenever xi - yi for all i 

= 0,1,...; and similarly for ZA . Given SE &+(a) we then put 

±(S)={ýEZA±: i; "' S11 

for the set of all half - infinite words that are related to S. Denote by rri the 

projection onto the i-th coordinate; in particular 

nA (S) =f... y-iyo E m}, 

nom+(s) = [yo- yogi... E ms(s)}. 

In addition to C and ZC let us introduce corresponding one-sided 

objects C+, (-, Zc+, Zc . We take the collection of sub alphabets ( k: k, n} 

which was introcduced in section 2, and prune away all those elements that 

cannot extended infinitly in forward direction. This defines V. Similarly C- 

is defined as {Ink: k, n) less those Ink that cannot extended infinitly into 

backward direction. Furthermore we define transition matrices C+, C- (and 

similarly A+(i), A-(i)) in the same fashion as done in section 2, and call the 

associated one sided shift spaces ZC+, L. For convenience we agree on the 

notation '±' whenever we would like to write a formula with either of them. 
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Observe 

(i) C+nC-=C, 
(ii) the transitive subspaces of ZC+, Ec are the same as those of EC. 

(iii) given ttottltt2... E Zb*, then the cut off äpäpa+lttpI+2... is a half - infinite 

sequence that occours in EC, 0<P <_ P. The same applies to EC-: If 

-U-24-1% E 1C+, then ... ur_2ttjr_lu , is a sequence in IC, -P < I" < 0. 
Analoguously to the two-sided case, there is a partial ordering on 

the elements in Zc±. Given e F, c±, then &S+-(S) consists of the maximal 

elements in Z that contain Define W as all üp so that there exists a 
half infinite word tto%tl .. which is maximal in EC*. Similarly 9={: 3 

... it-2st lit0 maximal in FC-}. If we put At for the sub alphabet of 9 that 

containes the symbols out of which maximal strings of Zc are composed, we 

have in particular OR = fit n fr. (tt, b) E* x*)\(t). For aEM. set *±(a) _ fit 

E ±: aE tit} and define maps u`, µ-: A -' 21 by setting 

u±(a) = (1 {it E A+(a)). 
On has to think of points in, e. g. u+(a) as adhering to a under future 

continuation. For a subset 11 c !E we set generally pt(iv) =Up }i±(g). Note 

that Ic p±(I). It takes finitly many steps to construct t±, W+ (by checking 

strings which length is at most ß= I2J). 

Lemma 11: u-oje- = jr and j+, j+ = ji+. 

Proof. We shall do the proof only for µ', it works exactly the same for u+. 

Given some aE2 from the definition of }L' it follows that for bE p'(a) 

and for every string cE 27(a), the intersection f-(c) n &'(b) is not empty. 

Choose CE u-(u-(a)) = UbEp (a) }i-(b), then there exists abe j-(a) so that for 

every choice of l; E 27(b) the intersection §-(ý) n 27(c) is not empty. In 

particular we choose ýE A-(c) n 2. -(b). In other words, given c E&7(a) then 

§-(S) n 1-(c) *0 which by definition of p- proves that c lies in µ'(a). 

Therefore ji-(ji-(a)) - µ-(a). Q 
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We gather from the last lemma 

bE pt(a) N µ±(b) _ jif(a). 
Thus, µ-, }i+, each decomposes I into disjoint subsets. Furthermore, suppose 

µ-(a) consists of more than one single point. If be }i-(a)1{a) then necessarily 
11: s {a, b}. (Using the convention: For WEt, we write w_ !E (IE < w) if there 

exists cE It so that w<c (c < w). Since ;A is topologically mixing this 

property does not depend on the particular choice of c. ) To clarify the last 

statement observe that for any SE Z-(a) the intersection §-(c) n 17(b) is non 

empty. Since transitive points are supposed to have trivial equivalence classes, 
there must necessarily be at least one transition xm-1 -+ {xm, ym} E C, m <_ 0, 

for some ... x_lxo E 27(a), and where ... y_ly0 E *-(... x_txo) nW (b). 

Analoguously, if I+(a)l >_ 2, then {a, b} s 2, for every bE µ+(a)1{a}. Since no 

diamonds in ZA collapse, it is therefore clear that }j-(a) and µ+(b), a, b E 9f, 

intersect in at most one point. 

Given w= (a, b) E C, then we define relative cylinders & (ao), 

17(aß) as follows: 

%*(aý) = {xoxl... E 2+(a): there exists yoyl... E +(x01... ) n V+(a) 

satisfying {xo, ya} < ... < {x,, ys} < {xs, ys} for some s2 0}. 
In the same manner 27(aý) is defined. Obviously on has the inclusion tt(ajb) c 
11(a). Some more notation: For SEZ (alb) we set +(SP) = J±(ß) n *+(aJ) 

and define *+(#) = {rr r(Sý): Se t+(aý)}. For aE1 define the 

predecessor and sucessor sets as indicated 

f(a) = {c E ! f: A[c, a] = i}, 

f'(a) = {c E !E A[a, c] = i}. 

For it c1a subset, we write (it) _ [J Wc), and similarly '(it). We now 

indroduce functions c-, T+ that are defined on pairs of related symbols and 

map into *. More precisely: 

'c+(aý) _ (l [. V(u): it e 

V(al) _ (1 {f(u): UE J[-(alb)}, 
for {a, b} EU (Ci: ä(l)-2). Finally, for w= {a, b} E9 define t-(w) -U {ff e C: 
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w}, and in the same way %*(w) _U {(M E C: iv -+ w). Later on we shall 

write tt\Z±(w) instead of tn f\t+(w), tt a subset of I 

We call w= (a, b} Et isolated if 
(i) neither 11: 5 w nor w <_ 11 is satisfied; 
{ii) at least one of the intersections (it n f: (tt, L) E %+(ap)x * (bra)} is 

empty. 
The next lemma is a immediate consequence of this definition. 

Lemma 12: There is no local product structure on 9 if C has isolated 

elements. 

Proof: Given some 6>0, and denote by US(x) the 6-ball around xE 2A. We 

shall construct a sequence of points (x[q], y[q]) E XA X ZA that converges to the 

diagonal in LA/, - X ZA/: ý, and has the property that the local stable direction 

through x[q] and the local unstable direction through y[q] have empty 

intersection. If we denote by Ua(x) the 6-ball around xe IA, where 6 

desribes the size of the local stable and unstable directions, this means in 

particular that on cannot find a positive c so that d(x, y) sc entails 

necessarily that W5(y) n US(y) and Wu(x) n US(x) have a non empty 

intersection. 

We shall construct a sequence of points (x[q], y[q]) E ZA x ZA so 

that d(x[q], y[q]) 2[P'/ ] (for some r> 1) and so that the intersection 

WS(y[q], gr) n W°(x[q], gr) is empty. This contradicts the continuity property of a 

local product structure. Let w= {a, b) be an isolated element, then in 

particular there exist (u, b) E A+(aý)x* (bra) satisfying 1t nb=0. Let xoxI... 

E EA +, 
... y_lyo E ZA -, (xo, yo) = (a, b), be sequences, so that 

rrots-(xOxl.. ) - U, 

Trr+(... y-iyo) = b. 
By definition of (bja) there exists a IA-word x5... x_t, x_1 4 x0, related to 

ys... yl, s <_ 0, so that {xpyj < {xs, ys}. Let {xs, y){x5-l, ys-l)... {xpy5) be a 

Ec-loop of length l+1 1 and put (v, ti') = (xs-i... xs, YS-1"""y)" Similarly, there 
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exists a EA-word yl... yt, yo 4 yl, related to xl... xt, t0 so that {xt, yt) 
{xt, yt). Analoguously, let {xtyt}... {xt+kyt+k}{xryt) be a k-loop and put 
(v', ti") = (xt... xt+k, yt". yt+k)" For q >_ i put 

x[q] = ... v'IýIXS.. xioxl... xtv"gxt+lxt+2..., 

y[q] = ... ys-2ys-I-r gy5... V0yi... yt-i q.., 

where bolds characters denote the zero position and the dots to the left of v' 

and to the right of i" denote anything that makes x[q], y[g] to one - sided 

transitive points in EA. Set 

vq = TTog+(xoxI... xtv"gxt+ixt+2... ) c it, 

ýq = To*-(... ys-2ys-lti qys... y-ty0) c y, 
and we have necessarily Uq n vq = 0, q>i. By construction x[q] and y[q] are 

not equialent, and if there were azE W5(x[q], p) n W°(y[q], p) then the zero's 

coordinate in paricular would have the property 

Z0Etttnt~4, 

which is assumed to be empty. On the other hand we have d(x[q], y[g]) < 2[qr/2«], 

where r= min{k, l]. Q 

Lemma 13: Suppose w= (a, b) is an element in C that satisfies either 11: 5 w 

or w <_ I. Then 

(i) if !E <_ w, if cE (a) n 1-(w) then µ-(c) and ' (b{a) are disjoint; 

(ii) if w<2, if cE f(a) n *+(w) then µ+(c) and -c-(bra) are disjoint. 

Proof. We shall elaborate only the first part 11 <- w, the second case (ii) 

works exactly the same. The proof is by contradiction, we assume the 

intersection were not empty, we shall then construct a collapsing diamond. Let 

w0 = {a, b} EC be a such, that for some cE *a) n &-(w0) the intersection 

ji+(c) n T-(bra) is not empty. Choose dE }t+(c) n' (bIa). Clearly, one can find a 

Zc-word WkWk+l... WoW1... wt, for some k<0<1, Brij s2 for i=k,..., 1, and 

Wk E 4k', W1 EC j- for some tkk, Cr so that Ep(k-p ZA(l-) are both transitive. We 

may assume that there are exactly two ZA-words ti, v running through wk... W1 
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(chosen so that (t0, vo) _ (a, b)). (If there were more than two words, then two 

- element w that can be replaced by one - element w restricting the number 

of ZA-words running through the transformed k-word. This procedure can be 

repeated until there are exactly two strings running through the eventual 

wk,.. wl. ) Let {x0, y'0}... (x'P_l, y'P_1) {x'a, y'o}, be a IA(k)-loop satisfying 
{x'Pý_119'P_1} 4 wk. Set (ti', v') _ (xox'l... x'p_1, y'oy'l ... y'P_i). Similarly there 

exists a XA(l')-loop {x"o, y"o}... {x 
P"_t, y"p"_1} {x o, y"o} that satisfies wk -º 

{x"o, y" }. Set (t , v") _ (x"ox"l... x P _1, y"oy"1... 911P _1) and define (x, y) 

''vv). 

Now shall proceed to construct a collapsing diamond. Set q= 

max([p/p'] + 1, [ß/p"] + 1). By assumption Us wo, and clearly the same holds 

true for wk, i. e. I< wk. Hence there exist related IA-words (of the same 

length, naturally) 1,6 and an element gE!, so that gjv' - g6, u'. Let T E'A- 

chosen so that c'grv' again lies in I. Since dE }i-(c), cE 1(a), for every 

choice of T there exists at least one 'E Ep satisfying 'd E §-(5gjT'9ti'), 

where r=1 tk+i... t_1. (The inset Tq streches related section and enables 

us later on to apply lemma 6. ) We may assume that T is negatively transitive 

in I. In particular this entails that 'd and 5glti'1t- agree for large enough 

negative indices. Let h' be the first symbol they have in common and set 

X'h'S, h'C* for some E IA- and S*, '* finite IA-words. 

For positive coordinates we do a similar construction as follows. 

Set v+ = vovl... vl and pick a positively EA-transitive continuation v+v"9ý" E 

'A+, S" E 1p+, satisfying rr jf+(v+v"qS") _ {(v+v"qS")i} for large enough iEN. 

Since w= rrO§+(v+v"9S"k) E M+(bja), by assumption there exists a transition d 

-' d' E w. Let d*r" be an element in A+(v+v°qS"1a), then there one finds h" e 5, 

X" E 1A+ and finite EA-words Sn*, r so that v+v"9S' = v+v"qrh"x" and d"r 

= d*rh"x". We have the following situation, (where (x, y) _ (ti 00titi"°0, 

v'°Dvv"°°) ) 
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C8x 

d h" 
h' 

9 d: 

b y 
One uses lemma 6 (with k- ß) on the three points (x, y, w) = 

(5g1'c'tti"0D, 5g6v'4vv"9c", 'dds ") and concludes that c'gv'Qv- is related to 
'd. Hence (h'rg8v'4vv"9rh", h'rdd'rh") is a diamond that collapses under 

-. This proves the lemma. Q 

The next propositition will discuss a sufficient and necessary 

conditions for the existence of a continuous local product structure on 5: A/-,, -. 

Proposition 14: There is a local product structure on 9 exactly if 

ti) for all w= (a, b) E9 that satisfy either 11: s w or w $E we have 

(A) if Its w, (y j(a)\t (w), u1p(b)\V(w)) cµ 'c+(bk)Xu"T+(aO); 
(B) if ws2, (u+i(a)\*. (w), u+; (b)\Z+(w)) c p+T (b[a)Xu+'u (aO); 

(ii) C has no isolated elements. 

Proof. (i) Let us first discuss the first half of part (i). Say: 

(*) For every cE p(a)\I-(w) and (v, w) E J+(bý)x*-(c) the 
intersection 9(v) nw is not empty. 

Consider V(v) nw and take intersections over (v, w) E 01'(bja)x*-(c), then 
(*) reads as ti+(bIa) n Jl-(c) * 0, for cE jKa)\%7(w) (since T+(bIa) = (1 
f f(u): et E A+(bP)}). Say ti+(b(a) n jt-(c) = tt * 0, in particular Uc jf (c) and 
since 1t is not empty we have necessarily by lemma 11 }ý-eu-(c) = u'(c) _ 

µ'(U). Hence 

u`(t+(bJ) n u'(c)) c l. -'c}(b%) n u-°u-(c) = u--u+(bra) n u'(c) = p-(c), 
and therefore P-(c) c µ-T+(bk). This shows that (*) is equivalent to the first 

half of (i, A); the other cases are treated in the same way. 
The rest of the first part of the proof consists of verifying the 

local product structure on 9. Given x, y E 1A not too far apart, then we shall 
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describe how [x, y] is determined. Recall that and pick x, y E EA, 
d*(x, y) <_ aß, and assume It <_ {xi, yi} for some Ie We begin 
demonstrating the case of [y, x]. Let m be the infimum over all p <_ I for 

which there exist a Ec-word {xp, y'd {x+1, y'p+1}... (xI, y'1), y', = yI; if the 

minimum does not exist then we set m= -co. This procedure garanties that 
W(xm)\ ({xm, y'm}) is not empty. if m= -co set [y, x] _ ... y'I-2y'I-1yIyI+1...; and 
in case m is finite there exist by assumption half - infinite sequences 

(... x~m-2x~m-1, yfmy"m+1... ) E tº-(... xm-2xm-1)'4+(y m. ""y I-1ylyi+1... km) 

and a transition x^',, -1-4 y'm. Then we define 

[y, x] _ ... x~m-2x~m-1y"my m+1... 
The restiction to 1E\-({a, b)) which was made in the statement of the 

proposition is a result of lemma 13. In particular, we see that d([y, x], y) 

d(x, y) and d([y, x], x) d(x, y). The first inequality is obvious, the second 

follows from lemma 6, since [y, x] lies in the stable direction of y. To 

determin [x, y] suppose 9E s {xl, yi}, IE and let m' _< 
I be the infimum 

over all p such that there exists a k-word {x'p, yp} {x'p+t, yp+l}... {x'I, yi}, xI = 

xi, and set in the case kn'1 < co 

m -2y m'-lx mix m'+1... [xOy] = ... y 

for sequences 
(... y~m_2yNm_i, x"m'x"m+i... ) E 6-(... y(W-29m'-1)"g+(xm... XI-1xlxI+I"" 

m); 
and [x, y] = ... )eI-2xI-1xIx1+1... if m' = -oo. The case w It is dealt with in the 

very same manner, except that here m, m' >I and we have a suitable transition 

from a 2-element symbol in i to a 1-element symbol. 

We have to verify the identity [[x, y], z] = [x, z] for points x, y, z 

have ds distance X2P from each other. Assume 91: 5 [xl, yi}, IE then as 

was pointed out above 

NO _ ... y~m-2y~m-1) mX m+1... 
for some m <_ I. Consequently d([x, y], x) < d(x, y) < A2P, and suppose {x"i., zp} 
I for some I' E [ß, 2ß]. In the same way as above we find an integer m' >_ I', 

sequences (if m' is finite) 
(... Zm'-2z'm'-1, x~mx~m+l... ) E 4-(... yNM-1X m... x"m1-iým')''`A+(x"m'x"m+i... )# 
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and a transition z'ms_1 -* x"'m, so that 

[[x, y]+z] _ ... Z'ml_2Z m'-1x mx m1+1... . 
We have by construction [[x, y], z]1- [x, y]1 Vi> -2p, [x, y]i - xi Vi2 -2ß, 
and therefore because of corollary 2 [[x, y], z]i - xi Vi >_ -2ß+a. The same 
argument provides [[x, y], zý- - zi Vi <_ 2p-(x. Since oc <ß we conclude 
[[x, y], z] x [x, z]. Next let us assume Us {x'r, zp}, I' E [-2p, -ß], and let m' < r. 

In particular m' < m, and if m' = -oo, then Wu(y, m) = WU(z, m) and we are 
finished. In the case -oo < m', we have 

[[x, y], z] = ... Z~m`-2Z~m_1x"m'x"m1+1... , 

for sequences 
(... z m'-2z m'-1' x mix m; l... ) E A-(... zm'-2zm'-1)Xg (Ym.. ym-lx mX m+l... M), 

and on the other hand we observe 

[x, zj = ... z^m'-ZZ^m'-1XOm'Xrm"+1... , 
where 

(... zAm -2ZAm'-19 Xrm'X"m +l... ) E A-(... zm -2Zm"-1)"§; 
(Xm xm +1... Izm ). 

By the same argument as above one finds [x, z] - [[x, y], z]. 

(ii) Secondly, there is the possibility of strings with (possibly arbitrary) 

length greater that 2ß made up of elements that satisfy neither Is w nor w 

< IL Let x, y E XA, ds(x, y) <_ )fi. Since C containes no isolated elements it 

follows that rr i... y-iyo} and np$+(xoxl... ) have non - empty intersection, 

and clearly [x, y] = z, where (... z-1zo, zoz1... ) E V(... y-1yo)" +(xoxi... ). In 

exactly the same way one finds [y, x]. In the same way one verifies the formula 

[[x, y], z] _ [x, z] in the case that there are strings of length grater than 2ß that 

consist entirely of elements that satisfy neither ME <w nor w<I. We shall 

not go into details. 

(iii) We now proof the 'necessary' part. Parallel of the proof of lemma 12 we 

construct a sequence of points in 101A that converge in 2 to a periodic 

point. Suppose there exist w= {zoyso} E t, x"o E p(zo)\ +(w) and (v, w) E 

, 
47(X*O)xW(U*" so that V(v) and w have empty intersection. Let 



23 
("""x'_lxsp, yspy`1... ) E EA-x; a+ be two half-infinite words satisfying 
(n '(... xs-ixs0), no§+(yspysI... ko}) - (v, w). 

According to the definition of Ar one finds a IA-word z0zl... z3, 
s? 0, related to y'oy`l... yss, satisfying {zp, y"o} < ... < (z,, y"5} < (zs, y's} 
(possibly s- 0). Pick a Ic-loop {x'o, y'o}... {x'-,, y'. 1} (xo, y'o) satisfying 
{zs, ysj -+ {x'o. y'o}, set (ti, v) _ (xx i... x'p-1, y'OY'l... y'p-1) and define for q1 
(remember: x`0 4 zo) 

x[q] = ... xs-lxsozozl........ zstigx-o... x'p- ltirl... 
y[q] = ... y"oysi... y'sv'J j... yýp-tvýlyss+ýyss+r"" 

where dots to the left of ti and the right of v denote anything in Ea, and the 

bold characters mark the zero position. From lemmas 4 and 5 it is clear that 

TTp§+(y'oysi... yssvgy'o.. y'P_lvq'lys5+ly'S+Z... 1zp) C 17o*+(y"1y"2 .. 
ko), 

Indeed d'(x[q], y[g]) s APq. If there were a continuous local product structure 

on EA f x, there would exist ac>0 such that d`(x[q], y[q]) <c implies 

d*([y[q], x[gJ], x[q]) A and in particular d'(ß'S[y[q], x[q]], o-Sx[q]) <_ XS+t, s, 

0, since [y[q], x[q]] lies on the unstable direction through x[q]. By 

construction diy[q] + o-%[q] =cVqe IN, and thus d*(crPq[y[q], x[q]], 

c1lx[q]) =1 >_ A while it is obvious that x[q] and y[q] converge to ti°D = x' 

Y' = v°D. Q 

6. The Zeta function on Q. 

Denote by 1(n) the number of periodic points in Q= ZA/, - with 

period n. The zeta function (See [7] p. 766) then is defined as 

5(t) = expZ�WN n-1 n)tl, 
for ta complex variable in some open set of C. In particular we define for 

the individual subshifts ': p(ij 
Si(t) = exp2: n4! n-i(n)tn, 

where )! i(n) counts the the periodic points of period n in EA(i). In that case 
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one has 1(n) = trace A(i)" and the zeta functions are explicitly given by Si(t) _ 
[det(i - tA(i))]'1, which are analytic functions for 01 < i/hl, where N- is the 

topological entropy of lgip i. e. the maximal (positive) eigenvalue of A(i). 

Since the projection n: YEA 4Q is finite to one, the topological entropy h(ZA) = 

h0 =h of Z coincides with that of 9. Furthermore one has his h for all i. 

(cf. [2]). First let us prove an arithmetical lemma. 

Lemma 15: Let a[i] 1, i=1,2,..., u, be positive integers with at least one 

of them equal to 1, then 

S= I19c-0 Xi I], a(2 "jk) (-1)a[41]}*a[g2)+-+a[4kD 

where in the second sum every index i[j] appears at most once. 

Proof. We prove the lemma by induction. Set S= S(a[i], a[2],..., a[u]). For u= 

i it is clear that S(a[i]) = -1, since (-i)al1) _ -1, a[i] = 1, is the only 

summand that appears in the sum. Suppose it is shown that 

S(a[1], a[2],.. , a[u-1]) _ -1, then 

S(a[1], a[2],..., a[u]) = Zi: 
c<u 

Y(II i[k] (-1)a[(1]]+-+a[(kll 

- 
I15k 

u-1 [Zi[1], -., 
jkl, i[jl#u (-. i) «11*"-+a['k1J 

+ (-1)(U] 1],. i[k], i(I]#u (-1)a[t[1]+... +d[i[k]] +(-1)("]}. 

where the first sum consists of terms that do not contain (-i)alc1 and the 

second of these containing (-i)alu]. Hence 

S(a[i], a[2],..., a[u]) = S(a[1], a[2],..., a[u-1]) + (-i)*[u4i + S(a[i], a[2],..., a[u-1l)] 

and therefore S(a[i], a[2],..., a[u]) = -1.0 

Theorem 16: log c(t) - >i (-i ihog S1(t) for Rte < i/h, where 0(i) is the 

dimension of C. 



24 
Proof. Pick a periodic point x in ZA, then <x> is a maximal element in 
has due to lemma 5 the same period n as x and lies by virtue of lemma 4 in a 
subshift of the form IA(k) for some k. This does not imply that all points in 
<x> have period n, instead of this <x> decomposes into subsets <x>l, 

<x>2,..., <X>U, uy1, where <x>i are sequences in EC with the same period 

n as x, and are minimal in the sense that no <x>l can be split into two 

nonempty <x>', <x> which again have period n. One of the <x)i is x itself. 

Denote by a[i] the number of ZA-strings in <x>i, then a[i] is exactly d(i[j]), 

where i[j] is the index of the subshift ZA((jD in which <x>i lies. We now sum 

over all points in IC that lie as sets in the equivalence class of x and have the 

same period; we count the Xe-points <x>i with weight (+i) if they have even 
dimension (b - W-1) and with (-1) if they have odd dimension. Since at least one 

of the numbers W(i) = a[i] is one, we are lead to apply lemma 15, and obtain 

that the weighted sum is exactly 1. 

There is one more complication. Up to now we neglected periodic 

points in k that lie in <x> but have a longer period than x. We order the 

points y[j] of <x> with periods bigger than n, so that the period of y[j] is 

not less than the one of y[i] if i<j. For X1, X2,..., Xy E F. c we define 

V(XZ, X2,.... Xv) as the collection of all possible unions of Xi that lie in k 

(not necessarily all unions lie in IC). Set U(0) _ V(<x>l, <x>2,..., <x>u), and 

inductively U(m) = V({y[m]}, U(m-1)) (by construction y[m] q Uzqm-i) z). Let 

us assume EX«m) (-i)XX) = 1, for some m >_ 0. We have proven this formula 

in the case m=0, and indeed it holds true too for m+1, since 

EXdJ(m) (-1) X] =Zv. I(m-1) 
((-1 )+ (-1)XX»+1) +1=1. 

The summand 1 on the left hand side comes from the single factor 1- 

(-1)EtmD. We have therefore shown that on taking the weighted sum the 

counting of periodic points which have in Ea an equivalent point with smaller 

period cancelles out. Hence 7'(n) _ E1 (-1)b(i)Ni(n) and the theorem follows 

(See also [5], theorem in §4. ). Q 

In particular, this theorem proves rationality of the zeta function 

of 9. 
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7. The subshift I. 

Let r= 2=E be the power-set of I. We proceed to construct a 
nested sequence of shift-spaces of finite type and begin for j>2 by defining 
j-dimensional transition matrices as follows: 
Aj(X1,..., Xp -{i if there are xk E Xk for ik<j which form a j-string, i. e. 

A[xk, xk+i] -i for all k=1,..., j-1; 

{0 otherwise (including the case in which one of the Xk is the 

empty set), 

where Xl,..., Xj c- I`. The Aj define over the alphabet r subshifts of type j 

which we call Z. They form a nested sequence Ej Zj+t for 12: 2. Define 

For XE (0,1) there exists a natural metric on Za ; for x, y e Eco we set 
d(x, y) = A°, where n- max[m e N: so that xi = yi V Al < m}. There is also a 

sequence of subshifts Ii defined by restricting Zj to the points that have at 
least two one-element subsets of It in all j-words. They act like the eye of a 

needle, and we have Zj c ý-+i for j >_ 2. Hence F., can be approximated as 

well from the inside: Em = closure of Uj, Zj. To see this, we observe that for 

every sequence ... X_1XOX1... in Z there exists (at least) one sequence 

... x_1x0x1... in ZA for which xi c Xi, teZ. Clearly, ... X-1Xoxl... can be 

approximated by points ... X'_1X'pX'1... in Zj, where we set X'i = {xi} for (i+j) 

mod 2j = 0, and X'i = Xi otherwise. In general Z will no longer be a subshift 

of finite type. The next lemma provides a criteriom which allows to classify 

all ZA for which the associated is of finite type. We begin with a 
definition. 

Definition 17: The transition matrix A has the loo ro er if for every 

loop of pairs (v1, w1)... (v, w,,, ) with 
(i) A[vi, vi+i]A[wi, wi+i] si for all 1<i<m, 

(it) (vl, wl) - (vm, wm), 
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(iii) (vi, W1) * (vk, Wk) for all i*k and 1si, k < m, 
there are indices p, q with 1<p, q < m, so that 

A[vp, wP+l)M[wq, vy+l] = 1. 

Lemma 18: The subshift I is of finite type (< PQ2+1) if and only if A has 
the loop property. 

Proof. First the direction 'i': It will be shown that F. j+1 - F- for j large 

enough. Take a string Xo .. Xj where the Xi are elements in r, i. e. subsets of 
*. By assumption X0... Xrl and X0 .. Xj are 1-words in TT Hence there are 
j-strings vo .. vj-l and wl... wj with vi E Xi and wi e Xi for i=0,..., j. If j >_ 
M2+1 there must be a pair (vk, wk) which appears twice. By the assumption 
there exists an index pe [O, j) so that A[vp, w+l] = 1. Thus vo-.. vpwp+l... wj is a 
(j+1)-word running through Xo... Xr 

The second part 's : Suppose Z. is of type n and that there is a 

loop of length j as in the statement of the lemma but having A[vi, wi+r] -0 for 

all i=1,..., j-1, then we will construct an (n+1)-string in T.., which satisfies 

the criterion on n-strings but fails for that on (n+1)-strings. Set V for the 

(1-1)-word {vl}... {v. l} and W for {wk}... {wri}{w1}... (wk-1}, where k=n 

mod (j-1). Set furthermore Xi for the sets {vi, wi} E A' containing two 

elements. Then the string 

... vvvXX... XX1... Xk_1WWW... , 

where the word X= XiX2.. Xj_l is [n/(j-1)]-times repeated, lies in 4 but not 

any more in F. n+1. The case A[wi, vjl] =0 for i=1,..., j-1 is excluded in the 

same way. Q 

The loop property implies mixing: Two elements alb e 9E can be 

joined up by a string of length less than OF. To see this, choose x, y E IA two 

sequences with xo =a and yn = b, where n- 042. The block (xo, y&... (xi, yn) 

contains a loop and thus there is a transition xp 4yl for some p in [O, n). 

The converse in general is not true as the following example demonstrates. 

Take the alphabet {1,2,3,4} and define the transition matrix A= 
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1010 

0101 

10111 

I0111I. 

The subshift EA is mixing but has not the loop property as is to be seen at 
(1,2)(1,2), since that would require the transitions 1-4 2 and 2 -# 1. 

If the subhift Z, is of finite type the next lemma tells what the 

quotient ZA. A; looks like for any equivalence relation x. 

Theorem 19: Suppose is an equivalence relation on Ea, and T. is of 
finite type, n say. Then IA/st is isomorphic to a subshift of finite type. 

Proof. As before 1 denotes the power set of I Define a map 0 from Ip 

into r by 

4ý(y)t = {xt: xE EA and x y}. 
This map commutes with the shift and has the property that E(y) _ «(z) exactly 

if yxz. Every EA-word y'-... y'n which is related to y-,.. ye (y't - yt Y (il <_ 

n) can be completed to a point y' E EA which is equivalent to y, since by 

assumption (Ia, is of type n) there are transitions y-, -+ V-5+1, Yt-I -+ 9t for 

some 0<s, t < n. To determine g(y)p it suffices therefore to know the 

components of y on the positions in [-n, n) and we conclude that is a 

(2n+i)-block map, that is I maps Ea continuously into the full NJ-shift. 

Thus E' = S(EA) is isomorphic to EA/, -. Denote by C the set of all different 

subsets «(x)o with x ranging over EA. This is the alphabet for a new 

subshift, its transition matrix I is defined by 

I(X, Y) _ (1 if there exist x, y E EA such that E(x)o = X, 0(y)1 -Y and xxy; 
[0 otherwise, 

for X, YEC. It remains to show that 1I ä Eß/. t: 
(i) Choose E EI, then there exists by construction a sequence xk in ZA 

with O(xek =k and xk -, xk+l for kEZ. Hence xk x1 for any k, l E Z, and 

0: -TA/, - -* 1I is a surjection. 

(ii) If x, y E EA but x*y then also O(x) * 0(y) which implies E(x)k * CA 
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for an integer k. 

This shows that the map C Ea/x 4 2I is an isomorphism. Q 
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