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Nonlinear System-identification of the Filling Phase of
a Wet-Clutch System
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Abstract

The work presented illustrates how the choice of input perturbation signal and

experimental design improves the derived model of a nonlinear system, in partic-

ular the dynamics of a wet-clutch system. The relationship between the applied

input current signal and resulting output pressure in the filling phase of the clutch

is established based on bandlimited periodic signals applied at different current

operating points and signals approximating the desired filling current signal. A

polynomial nonlinear state space model is estimated and validated over a range

of measurements and yields better fits over a linear model, while the performance

of either model depends on the perturbation signal used for model estimation.

Keywords: Experiment design, Input signals, Clutches, Nonlinear system,

Frequency response, State space

Notation

u(t): Input time signal

P: Number of measured signal periods
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R: Number of independent signal realisations

U(k): Discrete Fourier transform (DFT) ofu(t) with k the harmonic number

Ur
p(k): DFT of thepth period and of therth realisation of signalu(t)

Ur (k): DFT’s averaged over periods for a given realisation

Gr
p(k): Frequency response estimated from thepth period and of therth

realisation of the input and output signal

Gr(k): Frequency response estimate for therth realisation of the input and

output signal when averaged over periods

G(k): Final frequency response estimate when averaged over

realisations

1. Introduction

The modelling of a system forms a crucial step in engineeringpractice. De-

pending on the level of information available at hand the identification proce-

dure is either defined as “white”, “grey” or “black” box identification. White

box identification is where the system’s dynamics are fully known and can be

derived from first principles. Grey box identification involves some knowledge

of the dynamics which when combined with experimental measurements yields

a model and black box identification is when no knowledge regarding the dy-

namics is known and an arbitrary model is derived by performing experiments

(Ljung, 2010). As such the manner in which the experiment is performed, which

includes the selection of input excitation and operating regions in which the ex-

periments are carried out, restricts and influences the quality of the final model

(Hjalmarsson, 2005). The system modelling and identification method presented

here follow a black box approach while an example of modelling using mechan-

ical and friction principles is presented in Nouailletas etal. (2010).
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The system to be identified is a wet-clutch device (Figure 1).A wet-clutch is

a mechanical device that transmits torque from an input axisto an output axis via

fluid friction prior to the engagement of the friction plates. Such devices are com-

monly used in automatic transmissions for off highway vehicles and agricultural

machines to transfer torque from the engine to the load. An electro-hydraulic

proportional valve regulates the pressure inside the clutch which causes the en-

gagement of the piston with the friction plates (Figure 2) . Amodel describ-

ing the relation between the current applied to the motor of the elctro-hydraulic

valve and the resulting pressure during the filling stage of the clutch is required,

to bring about a smooth engagement.

Induction motor

Transmission

Transmission break 

and flywheel

Figure 1: Wet-clutch experimental set-up

With the natural degradation of the wet-clutch over time, aninput (control)

signal that once resulted in a smooth engagement will not be asuitable signal

with time. As such an iterative learning control procedure,whereby at each

iteration a control signal similar to the existing signal isapplied to find a more

appropriate control signal. Such a control scheme as presented in Pinte et al.
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(2010) is shown to be an alternative and efficient method over robust control of

wet-clutches. It is therefore important to derive a reliable model describing the

dynamic behavior around the input signals applied in practise.

Input shaft Output shaft

 Motor

Cone

Spring Restoration spring

Valve

Position

Piston

Electro-hydraulic valve Wet-clutch

Figure 2: Cross-sectional schematic of the elctro-hydraulic valve and wet-clutch

When engaging the clutch, a fast response without vibrations is expected.

Torque transfer should thus commence as soon as possible without introducing

torque discontinuities and peaks. This can be realised by a short filling phase

followed by a smooth transition into the slip phase (Depraetere et al., 2010).

The model to be derived deals with the filling phase of the clutch. In this

region the applied current to the valve and the corresponding clutch pressure can

be measured in open loop. This is advantageous for identification as any mea-

surement noise in the output is not present in the measured input or fed through

the system. The current signal for model estimation is periodic with its further

features and design given in Section 2.2. A linear model in the form of ratio-

nal finite order transfer function and a polynomial nonlinear state space model

relating the current and pressure are estimated and validated. The estimation

procedure and comparison of the two models are given in Section 4 of the paper.
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2. Experimental Prerequisite

2.1. Wet clutch filling stage

In order to decide the amplitude level (or a signal’s root mean square value)

and the operating point around which a current signal is expected to be applied,

the filling region of the piston needs to be determined. This involves the ap-

plication of a low current signal to the valve and is gradually increased while

observing the corresponding pressure and for any transmission of torque. The

piston is initially held back by a restoration spring (Figure 2) and a certain level

of oil pressure is required to bring about a displacement. Similarly as the current

is increased the pressure in the drum increases pushing the piston towards the

friction plates until the transmission of torque is noted. This region is defined

as thefilling phaseof the wet clutch. The pressure (Pr) values and the corre-

sponding current (i) applied to the electro-hydraulic value in the filling region

are obtained experimentally to be equal to1:

1.368≤ Pr ≤ 3.3

0.035≤ i ≤ 0.069

The filling region established as mentioned is a steady stateregion whereby

any step change of current in the interval will cause the pressure to rise and settle

to a value in the corresponding pressure interval with no transmission of torque.

The types of current signals applied within this interval toexamine the dynamics

are discussed in Section 2.2.1.

Further, by applying a large current pulse that lasts for a short duration the

pressure can be increased to values much larger than the steady state interval. A

1For reasons of company confidentiality physical units are omitted.
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short current pulse width is necessary to ensure that no abrupt torque transmis-

sion could occur. As such once the current pulse is applied itis then gradually

increased to the point of torque transmission. Such currentsignals will result in

a rapid but smooth engagement and are discussed further in Section 2.2.2.

2.2. Input signal consideration

Periodic perturbation signals offer many advantages over an arbitrary non-

periodic excitation when estimating frequency response functions (FRF) and de-

tecting and quantifying non-linear system dynamics (Godfrey, 1993; Pintelon

and Schoukens, 2001; Abd-Elrady and Schoukens, 2005). These include the

elimination of transient errors from FRF estimates, the reduction of noise effects

at the output and detection and quantification of nonlinear distortions. However,

careful thought is required during the design of such signals to utilise these ad-

vantages. For linear system identification in the presence of noise, signals with

high signal to noise ratio over the frequency band of interest are required and

if the system is nonlinear, signals with small peak to peak are desired to reduce

the effect of nonlinearities present at the output. The generationof additional

frequencies in the output signal which are not present in theinput signal is an ex-

ample of a nonlinear phenomenon (Schetzen, 1980). This effect allows the level

of the nonlinearity to be detected. By suppressing certain harmonics in the input

spectrum, the resulting amplitude levels in the output spectrum at those sup-

pressed harmonics indicates the presence and level of the nonlinear distortions

(Evans et al., 1994; D’haene et al., 2005). Further if all even harmonics (includ-

ing the d.c) are suppressed, the distortions at the even harmonics are due to even

order nonlinearities and if some odd harmonics are suppressed, the distortions

at the suppressed odd harmonics are due to odd order nonlinearities (Schoukens
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et al., 2009).

For these reasons the input signal applied to the electro-hydraulic valve is

periodic and bandlimited. Two types of signals are designedfor the purpose of

estimation, and are:

1. Multisine signals

2. Bandlimited approximation of a filling stage current signal

The design and the choice of such signals are elaborated in the following sec-

tions.

2.2.1. Multisine signals

A multisine signal is a sum of sinusoids and offers great design flexibilities

both in the spectrum amplitude and harmonic content. The time signal expres-

sion is given in equation (1).

u(t) =
M∑

k=−M

U(k)ej2πk fst/N (1)

U(k) = A(k)ejφk (2)

Such signals allow arbitrary harmonics to be suppressed by setting U(k) = 0

while assigning a desired amplitude (power) spectrum in theremaining harmon-

ics. In equation (2)A(k) is the real valued amplitude andφk is the phase at

harmonick andM denotes the highest harmonic number of the signal. Further,

U(k) is a complex variable withU(−k) = U∗(k), fs is the sampling frequency

andN the number of samples per period. For a given amplitude spectrum A(k),

the choice of the phase at each harmonic (φk) will affect the amplitude distribu-

tion of the multisine signalu(t) (Schoukens and Dobrowiecki, 1998; Evans et al.,

1996). Two amplitude distributions are considered for the estimation of the wet-

clutch. In either case the signals have a flat amplitude spectrum and the phases
7



are selected such that the signal has a normal amplitude distribution or a posi-

tively skewed amplitude distribution. The normally distributed signal serves best

to investigate the dynamics around an operating point whilethe skew distributed

signal examines how the system responds to a sudden increasein current about

a given operating point.

Normally distributed multisine signal

A normal distribution is obtained when the harmonic phase isan indepen-

dent, identically and uniformly distributed random variable in the interval [0, 2π)

(Pintelon and Schoukens, 2001). With most of the samples occurring around the

signal’s mean (or operating point), the signal allows the dynamics around the

operating region to be better examined. An example of a such asignal is shown

in Figure 3.
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Figure 3: Top figure: Normally distributed multisine signal. Bottom figure: Amplitude distribu-

tion
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Skew distributed multisine signal

The selection of the harmonic phases for the generation of a positively skewed

amplitude distribution involves an iterative process. A brief description of the

steps involved is given here with a full description found inSchoukens and Do-

browiecki (1998). Consider a power of a time function of the form z(t) = atα,

with a a constant positive coefficient andα a constant exponent greater than 1.

The rapid increase of the value ofz(t) for large values oft implies that the am-

plitude distribution ofz(t) is positively skewed. Based on a normally distributed

multisine signalu0(t), the iterative algorithm arranges the signalz(t) giving a new

signalz̃(t). The phases of the signal ˜z(t) are retained and a new multisineu1(t) is

generated based on these phases and the flat amplitude spectrum. The procedure

is repeated by rearrangingz(t) now based uponu1(t) to derive the signalu2(t),

and the iteration ends when a suitable convergence criterion is met. The steps

involved are:

1. Generate an initial multisineu0(t).

2. Generatez(t) with its rms equal tou0(t).

3. Replace the smallest value ofu0(t) with the smallest value ofz(t), followed

by the next smallest value ofu0(t) replaced by that ofz(t) and so on result-

ing in z̃(t).

4. Obtain the phases of ˜z(t) and generate multisineu1(t) based on these phases

and a flat amplitude spectrum.

5. Repeat from Step 3 withu1(t) instead ofu0(t).

An example of such a signal is shown in Figure 4. Large positive values in the

time plot of the signal are observed and the corresponding amplitude distribution

shows a positive skewness.
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Figure 4: Top figure: Positively skewed multisine signal. Bottom figure: Amplitude distribution

Both the signals shown in Figures 3 and 4 are zero mean signalsand have a

flat amplitude spectrum from 1-50 Hz.

2.2.2. Bandlimited approximate filling signal

The intended outcome of the filling stage is a smooth engagement of the

piston with the friction plates within a short time duration. The sort of current

signal that will result in such an engagement is shown in Figure 5.

Starting with some low current value (I0) the signal has an initial pulse (Ip)

applied after a time interval ofT0 and then dropped to valueI3 followed by a

gradual increase (ramp) of the current to a final valueI f . The resulting rapid

increase in pressure, from the pulse section ensures that the shaft fills with oil

quickly forcing the piston closer to the friction plates which is then slowed down

and engaged smoothly as a result of the ramp section of the current signal. The

total duration of the signal isTt = 2.5s with the pulse lasting forT1 = 200ms.
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I0

Ip

I3

I f

T0 T1T1

Tt

Figure 5: Filling current signal

Having sharp edges, the signal is not bandlimited and consists of all harmon-

ics. As such when used as a perturbation signal there will be more inter harmonic

modulation in the output spectrum and results in a poor estimate of the underly-

ing linear dynamics. The discrete Fourier transform (DFT) of a periodic signal

u(t) is defined as:

U(k) =
1
√

N

N∑

t=1

u(t)e−2 jπkt/N, k = 0,±1, . . . ,±M (3)

In equation (3)N is the number of samples per period andM the highest har-

monic number. By computing the DFT of the desired signal and using the first

M harmonics from the transform, a bandlimited signal approximating that of the

desired signal (Figure 5) is generated via the inverse discrete Fourier transform

(IDFT).

A desired signal and its bandlimited approximation obtained via the truncated

DFT method are shown in Figure 6. The approximated signal is asmooth signal

and the discrepancy with the desired signal is highest at itsdiscontinuous points

(Figure 6). In the example the approximated signal consistsof the first 100

harmonics. The desired signal has a signal length of 2.5s giving a fundamental

of 1/2.5 = 0.4Hz. With 100 consecutive harmonics the approximate signalis
11
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Figure 6: Dash line: Desired filling current. Solid line: Bandlimited approximated version

bandlimited up to 40Hz. The resulting amplitude spectrum (magnitude of the

signal’s DFT) of the bandlimited signal is shown in Figure 7.

3. Experimental design: Measurements for estimation and validation

3.1. Measurements for model estimation

A linear approximation of a nonlinear system is conditionedby the proper-

ties of the input signal. Based on the application, a linear model derived for a

given signal’s operating point or its standard deviation, can differ when derived

for another operating point or standard deviation value (Schoukens et al., 2004).

As such for the identification of the wet-clutch model a series of measurements

are gathered whereby several input parameters are changed in each measurement

experiment. Initially the measurements are carried out by applying a multisine

signal at different operating points (mean around which the multisine signal is

applied) within the steady state filling interval (Section 2.1). A further set of
12
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Figure 7: Amplitude spectrum of the bandlimited signal

measurements is obtained by applying the bandlimited approximate current sig-

nal coupled with a multisine signal for different values of the signal parameters

such as the pulse height, width and final current value (see Figure 5).

From prior experience and preliminary experiments performed on the wet-

clutch it was ascertained that a model spanning a low bandwidth will be sufficient

to capture the salient features of the system. As such all measurements for model

estimation are periodic with a signal period of 10s and is bandlimited up to 50Hz.

The applied current signal and corresponding pressure is measured over 100s

giving 10 signal periods for averaging and for the analysis of output noise in the

measured pressure signal. An estimate of the measurement noise power which

is the variance of the measured pressure periods indicates if the data is reliable

and also influences the quality of any derived model (D’haeneet al., 2005).

The final model is derived based on all the collected measurements and is

not confined to a particular measurement set. Since the data are collected by
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changing several input parameters and features, the resulting model is expected

to be robust and versatile.

3.1.1. Measurements with multisine at several operating points

By applying a multisine current signal at several operatingpoints the vari-

ation of the linear dynamics can be examined. For a given operating point the

signal standard deviation is adjusted ensuring that the corresponding pressure is

within the filling region of the clutch. Table 1 shows 10 operating points at which

the multisine current signal is applied along with the signal’s standard deviation

and the type of amplitude distribution employed.

Realisation Operating point Signal stan-

dard devia-

tion

Signal distribution

1 0.050 0.030 Positive Skew

2 0.051 0.004 Normal

3 0.052 0.005 Normal

4 0.054 0.006 Normal

5 0.056 0.007 Normal

6 0.057 0.008 Normal

7 0.058 0.009 Normal

8 0.059 0.009 Normal

9 0.060 0.012 Positive Skew

10 0.061 0.015 Positive Skew

Table 1: Selected operating points within the filling stage for model estimation

Figures 3 and 4 presented earlier in Section 2.2 show an example of a single

14



period of a multisine signal employed for a given operating point. The current

signal applied at each operating point is independent and has a new phase real-

isation (in the case of the normally distributed signal) or anew initial multisine

signalu0(t) (in the case of the case of the skew distributed signal). Theharmonic

content is however identical and each signal has a bandwidthof 50Hz with sev-

eral odd and even harmonics suppressed.

3.1.2. Measurements with bandlimited approximate signal

As described in Section 2.2.2, the application of the desired filling signal

(Figure 5) is to bring about a smooth engagement of the clutch, and a bandlim-

ited approximate signal is generated for the purpose of identification. Having a

signal period ofTt = 2.5s, the bandlimited signal is duplicated four times to a

give a signal length of 10s making the measurement period consistent with the

multisine signals (Section 3.1.1).

Prior to the duplication the bandlimited signal is designedwith 100 consec-

utive harmonics up to 40Hz with a fundamental frequency at 0.4Hz (Figure 7).

By repeating the signal four times the new fundamental frequency is now at

0.1Hz (signal length is 10s) and the repetition causes the 100 consecutive har-

monics of the original signal to occur at every 4th harmonic relative to the new

fundamental frequency of 0.1Hz. As such the signal consistsof only even har-

monics. The increased frequency resolution is an advantageand is made use of

by superimposing a zero mean multisine signal of period length 10s with odd

only harmonics up to a frequency range of 50Hz. Due to the linear combination

of the two signals (bandlimited approximation and multisine) there is no inter-

harmonic modulation and the amplitude spectrum of the resulting signal shows

the distinct frequency content of the individual signals.

15



While the signal power is mostly from the underlying filling signal the cou-

pling of the multisine is to capture the finer dynamics of the wet clutch since it

increases the frequency content if only a bandlimited approximate filling signal

were to be used. Figure 8 shows one period of the resulting signal in the time

domain. The figure may first appear to present 4 periods of the bandlimited sig-

nal repeating every 2.5s (however for instance the pulses are not identical), since

the superimposed multisine is 10s in length the final signal is periodic every 10s.

The amplitude spectrum shown in Figure 9 shows the contribution from the ban-

dlimited approximate signal (crosses) occurring at even harmonics and the flat

spectrum multisine (circles) contribution occurring at the odd harmonics.
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Figure 8: Bandlimited filling signal with a superimposed multisine

Similar to the application of a multisine at different operating points, the wet

clutch dynamics are examined for a range of filling current parameter settings.

Referring to Figure 5 these include the drop down currentI3, final currentI f ,

pulse lengthT1 and the standard deviation of the superimposed multisine signal.
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Figure 9: Amplitude spectrum of the filling signal as a combination of two spectra. Crosses:

Bandlimited approximate spectrum. Circles: Superimposedmultisine spectrum

The selected values of these parameters are shown in Table 2.The remaining

parameters of the filling current signal are fixed for each realisation, such as the

initial low current I0 = 0.04, pulse heightIp = 0.15, the time after which the

pulse is appliedT0 = 2s.

3.2. Measurements for model validation

Once a model is derived, a new set of input current and output pressure sig-

nals are required to validate the model. For this the measurements are carried

out with the desired filling current signal that is describedin Section 2.2.2. The

effectiveness and robustness of the model is examined for a range of parameter

settings. In particular 10 measurement sets of input-output data are recorded and

Table 3 shows the parameter setting for each of the measurements, while the

remaining parameters of the filling current signal are fixed for each realisation,

such as the initial low currentI0 = 0.04, and the signal lengthTt = 2.5s. For
17



Realisation Drop down Final current Pulse length Multisine

current standard deviation

I3 I f T1(ms)

1 0.058 0.062 130 0.004

2 0.060 0.062 140 0.004

3 0.060 0.060 150 0.004

4 0.058 0.062 160 0.005

5 0.060 0.062 130 0.005

6 0.058 0.062 140 0.005

7 0.058 0.062 150 0.005

8 0.058 0.060 160 0.006

9 0.058 0.062 130 0.006

10 0.058 0.062 140 0.006

Table 2: Parameter settings of the desired filling current signal and multisine signal for model

estimation

each realisation 5 periods of the current and correspondingpressure signal are

recorded to reduce the influence of measurement noise by signal averaging.

4. Evaluation and analysis of data

4.1. Nonlinear distortion and noise levels

The preliminary data analysis is the investigation of the level of nonlinear

distortions and noise. The suppression of several odd and even harmonics in

the current multisine signal applied at different operating points (Section 3.1.1)

allows the level of nonlinearity to be examined. For a linearsystem, in the ab-

sence of any noise, the output spectrum consists only of the harmonics present

18



Realisation Peak current Drop

down

current

Final current Pulse length Pulse

applied

after

Ip I3 I f T1(ms) T0(s)

1 0.150 0.058 0.062 140 2

2 0.150 0.060 0.062 130 2

3 0.150 0.058 0.060 160 2

4 0.140 0.058 0.062 150 2

5 0.160 0.058 0.062 140 2

6 0.150 0.058 0.064 150 2

7 0.150 0.058 0.062 160 2

8 0.150 0.062 0.062 140 2

9 0.150 0.058 0.062 150 1

10 0.150 0.058 0.064 140 1

Table 3: Parameter settings of the desired filling current signal for model validation

in the input. Therefore by averaging the measured output signal over periods to

reduce the effect of noise and observing the power at the harmonics of the output

spectrum that do not occur in the input, the level of nonlinear distortions can be

gauged.

DenotingYr
p(k) as the DFT of the output pressure signal measured as the

pth period (of length 10s) of ther th realisation the averaged DFT for a given

realisation is:

Yr(k) =
1
P

P∑

p=1

Yr
p(k) (4)

In equation (4) the averaging is performed over periods where P = 10 and is
19



the total number of periods per measurement realisation. Anestimate of the

variance ofYr(k) gives the level of measurement noise. Denoting this variance

for a particular realisation asσ2[r ](k), it is defined as:

σ2[r ](k) =
1

(P− 1)P

P∑

p=1

|Yr
p(k) − Yr(k)|2 (5)

In equation (5) the extra division withP is included in order to obtain an estimate

of the variance ofYr(k) instead ofYr
p(k). This follows from the property that the

variance of a sample mean is the variance of the individual samples divided by

the total number of samples used in averaging (Papoulis, 1965).

Figure 10 shows the magnitude ofYr(k) along with nonlinear distortion levels

and the noise level (σ[r ](k)) when the current operating point is at 0.056 and has

a standard deviation of 0.007 (measurement realisation 5 inTable 1). The level

of even and odd nonlinear distortions are of similar magnitude, with the contri-

butions dominating at the higher frequencies and the noise level is much lower

(around -40dB) than the signal amplitude, indicating that the measurements are

reliable. Similar conclusions are drawn for the remaining measurements of cur-

rent applied at different operating points.

4.2. Frequency response function and parametric linear model

For the derivation of a linear model both the measurements ofmultisines ap-

plied at different operating points (described in Section 3.1.1) and measurements

with bandlimited approximate signals (described in Section 3.1.2) are used.

Having measured 10 periods and 20 independent realisationsthe frequency
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Figure 10: Amplitude spectrum of averaged output signal along with the level of nonlinear dis-

tortion and noise. Crosses and line: Amplitude spectrum at harmonics present in the input.

Squares and line: Even order distortions. Circles and line:Odd order distortions. Solid line:

Measurement noise

response is obtained by subsequent averaging over periods and realisations.

Gr
p(k) =

Yr
p(k)

Ur
p(k)

(6)

Gr(k) =
1
P

P∑

p=1

Gr
p(k) (7)

G(k) =
1
R

R∑

r=1

Gr(k) (8)

The termGr(k) in equation (7) is the individual frequency response obtained

for a given realisation, whileG(k) in equation (8) is an estimate of the over-

all frequency response function. In Figure 11 the estimatedfrequency response

magnitude (|Gr(k)|) is shown when the wet-clutch is at a low, mid and high op-

erating region of the filling stage, namely measurement realisations 2, 6 and 10
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in Table 1. Referring to Figures 11(a), 11(b) and 11(c), it isobserved that a

change in both gain and resonance frequency occurs depending on the operating

point. The overall frequency responseG(k) (equation (8)) and an estimate of its

standard deviation obtained when all measurements based ondifferent current

operating points and bandlimited approximation signals are used, is shown in

Figure (12). The standard deviation (σG(k)) is expressed as:

σ2
G(k) =

1
(R− 1)R

R∑

r=1

|Gr(k) −G(k)|2 (9)

Similar to equation (5) the extra division byR in equation (9) is to estimate the

variance ofG(k) rather thanGr(k).

Based on the estimated frequency responseG(k), a finite order rational trans-

fer function in thez-domain is fitted. Several model orders are fitted among

which a single zero three pole model is found to yield a satisfactory fit. The

parametric fit of the data is shown in Figure 13 and the pole-zero plot of the

transfer function is shown in Figure 14.

4.3. Polynomial nonlinear state space model

The final analysis is the fitting of a nonlinear state space model. In particular

the model considered is a polynomial nonlinear state space model (PNLSS) given

in equations (10) and (11).

x(t + 1) = Ax(t) + Bu(t) + Eζ(t) (10)

y(t) = Cx(t) + Du(t) + Fη(t) + e(t) (11)

The expressions are in discrete time and ignoring the termsEζ(t) andFη(t) re-

sults in a standard linear state space model withx(t) denoting the states,y(t) the

output ande(t) additive noise. The matricesA ∈ R
na×na, B ∈ R

na×1, C ∈ R
1×na
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Figure 11: Variation of frequency response over different operating points in Table 1. (a) Fre-

quency response for realisation 2, operating point: 0.051.(b) Frequency response for realisation

6, operating point: 0.057. (c) Frequency response for realisation 10, operating point: 0.061
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andD ∈ R have the coefficients of the linear terms of the states and input. The

termsζ(t) andη(t) are vectors containing monomials of the state and input up to a

specified degree with the corresponding coefficients given in matricesE ∈ R
na×nζ

andF ∈ R
1×nη .

The model shows the separation of the linear dynamics and nonlinear terms.

As a nonlinear optimisation routine is required to estimatethe matrices in equa-

tions (10) and (11), such a structure simplifies the identification procedure. In

that, an estimate of the linear model is first derived which can then be used as

a starting set of values to estimate the optimum parameter values of the PNLSS

model. The steps involved in the estimation of the PNLSS model are as described

in Paduart (2007) and Paduart et al. (2010) with the main features of procedure

outlined in this section.

From the preceding section a 3rd order (3 pole) linear model is found to

give a satisfactory fit on the frequency response dataG(k). Therefore a 3 state

linear model is identified by minimising the following weighted least squares
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cost function (equation (12)).

Vss=

F∑

k=1

|ǫ(k)|2/σ2
G(k) (12)

ǫ(k,A,B,C,D) = Gss(A,B,C,D, k) −G(k) (13)

Gss(A,B,C,D, k) = C(zkIna − A)−1B + D (14)

For this minimisation the starting values for the matricesA, B, C and D are

obtained through a frequency domain subspace algorithm (Paduart, 2007; McK-

elvey et al., 1996) and the optimum linear matrices are solved numerically via

the Levenberg-Marquardt (LM) algorithm.

The estimation of the PNLSS model involves a further weighted least squares

minimisation similar to that of equation (12). The functionnow minimised is the

square error between the output spectrum averaged over periods and that of the

PNLSS model.

VPNLS S(θ) =
F∑

k=1

||ǫ(k)||22/||W(k)||22 (15)

ǫ(k) = [ǫ1(k, θ), ǫ2(k, θ), . . . , ǫR(k, θ)]

W(k) = [σ[1](k), σ[2](k), . . . , σ[R](k)]

ǫr(k, θ) = Ym(k, θ) − Yr(k) (16)

θ = [vec(A)′,B′,C,D, vec(E)′,F] (17)

In equation (15)ǫ(k) is a vector formed by concatenating the error between the

model output and the averaged output spectrum for a given realisation (Yr(k)).

Similarly W(k) is a frequency domain weighting function and is the concatena-

tion of the pressure standard deviationσ[r ](k) (equation (5)) estiamted for each

realisation. The functionvec(X) in equation (17) stacks each column of a ma-

trix X to give a column vector. The model outputYm(k) (equation (16)) is first
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calculated in the time domain from the PNLSS model (equation(11)) with the

matricesE andF initially set to zero and matricesA, B, C andD set to the op-

timum values of the linear model obtained from the previous minimisation, after

which it is transformed into the frequency domain to calculate the error. Em-

ploying the LM algorithm the optimum values of the matrices for the PNLSS

model are then solved numerically.

A PNLSS model is first derived using all the 20 estimation realisations (mea-

surements from Tables 1 and 2) consisting of the current signal applied at sepa-

rate operating points and the approximate filling current signal. A further PNLSS

model is then derived based only on the currents applied at different operating

points (measurements from Table 1). This analysis intends to establish the im-

portance on the type of estimation data and experiment design when deriving a

nonlinear model.

4.4. Validation of linear and nonlinear model

The new set of measured currents and pressure signals with varying current

properties as given in Table 3 is used to validate both the PNLSS model and the

parametric linear model. Referring to this Table, the data set aims to validate the

effectiveness of the derived models for a range of current signal features.

The third order linear parametric model described in Section 4.2 is compared

to a three state PNLSS model with the nonlinear monomials in vectorsζ(t) and

η(t) (equations (10) and (11)) consisting of state only and input only combina-

tions of up to and including a nonlinear degree of 3. As described in Section

3.2, 5 periods are measured for each of the realisations. Thetime signals are

averaged over the periods and the model output is compared with the averaged

pressure signal.

27



4.4.1. PNLSS and linear model derived using all 20 estimation realisations

The true measured pressure signal (averaged) and the model output of the

linear and PNLSS model are shown in Figure 15. The results shown are for the

measurements of realisation 3 in Table 3.
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Figure 15: PNLSS and linear model output and error. Top figure, PNLSS model. Bottom figure,

Linear model. For both figures, Dash line: Measured pressure. Solid line: Model output. Dash-

dot line: Error

For better clarity of the model performance Figure 16 shows the measured

and modelled pressure from 0.5s to 1s. When comparing the linear and nonlin-

ear model output the first observation is the vast improvement attained with the

PNLSS model with respect to the linear model. It is seen that the gain of the

linear model is smaller and the model pressure does not reachthe peak pressure

of the measured signal. Secondly, with the estimation data consisting of sepa-

rate operating point measurements and bandlimited approximate filling current
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Figure 16: Zoomed time scale of PNLSS and linear model outputand error. Top figure, PNLSS

model. Bottom figure, Linear model. For both figures, Dash line: Measured pressure. Solid line:

Model output. Dash-dot line: Error

signals with multisines added, the PNLSS captures the finer oscillations in the

pressure when it rises and falls, while a smooth rise and fallin pressure is ob-

served with the linear model output. Finally the root mean square error (rmse)

of the PNLSS model has an improvement by a factor of 5 over the linear model.

The PNLSS model outperforms the linear model for the remaining validation

data realisations. This can be observed in Figure 17, where the rmse of both the

PNLSS and linear model are plotted against the corresponding validation exper-

iment. It is seen that the PNLSS error level is lower and remains approximately

constant with the exceptions of realisations 9 and 10. Here the current signal

pulse is applied earlier in contrast to the current signals used in the estimation

data. Though the overall model error level increases, the nonlinear model still

yields a better fit than the linear model.
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Linear model. Solid line with circles: PNLSS model

4.4.2. PNLSS and linear model derived using only currents applied at different

operating points

With the input-output data consisting of the currents applied at the operating

points given in Table 1, a 3 pole linear parametric model and a3 state, 3rd degree

nonlinear PNLSS (similar to previous PLNSS model) are estimated. The model

outputs when validated with the measurements of realisation 3 in Table 3, are

shown in Figure 18. Both models do not fit the peak rise in pressure and the

pressure oscillations when rising and falling. However thePNLSS model gives a

smaller overall error (rmse) of the two and the conclusion remains true with the

remaining validation realisation sets. This can be seen in Figure 19.

The results highlight the importance of the estimation dataset when deriv-

ing nonlinear models. While the current signals applied at the separate oper-

ating points resulted in pressures spanning the filling region of the wet-clutch,

30



O
ut

pu
tp

re
ss

ur
es

PNLSS error rmse 0.82017

O
ut

pu
tp

re
ss

ur
es

Linear model error rmse 1.3555

Time (s)

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

-2
0
2
4
6
8

10
12
14

-6
-4
-2
0
2
4
6
8

10
12
14

Figure 18: PNLSS and linear model output and error. Top figure, PNLSS model. Bottom figure,

Linear model. For both figures, Dash line: Measured pressure. Solid line: Model output. Dash-

dot line: Error

the PNLSS model derived based on such measurements does not produce satis-

factory fits (Figure 18). However when combined with the approximate filling

current data the model output shows a great improvement and the model pressure

closely resembles the measured pressure (Figure 15).

5. Conclusions

In comparison to linear system identification careful thought on experimen-

tal design with further emphasis on input perturbation signals and their operating

points pays off in nonlinear system identification. To this end the use of periodic

broadband signals with a finite harmonic content reduces both the influence of

measurement noise and the contribution from nonlinear distortions. Using mul-

31



R
M

S
E

Validation input exp number

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
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Linear model. Solid line with circles: PNLSS model

tisine signals for model estimation demonstrates its effectiveness in the analysis

of the wet-clutch which includes observing the alteration of the linear dynamics

(frequency response) and the level of nonlinearity at different operating points.

As bandlimited signals are preferred for model estimation,a bandlimited ap-

proximation of a desired signal with an infinite harmonic content can be obtained

via the inverse Fourier transform of a finite set of harmonics. This procedure is

applied to obtain a current signal that approximates a realistic filling signal.

A polynomial nonlinear state space model of the filling stageof the wet-

clutch shows superior results over a linear model for a rangeof filling current

signals. The sources of the better performance are due to theinclusion of the

nonlinear terms in the model combined with the diverse set ofestimation data,

which includes the application of multisines with different amplitude distribu-

tions at different operating points and the combination of multisines with ban-

dlimited filling current signals to explore the finer dynamics of the wet clutch
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system.
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