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Nonlinear System-identification of the Filling Phase of
a Wet-Clutch System

W. D. Widanagé?, J. Stoe¥, A. Van Mulders, J. SchoukerisG. Pinté

aDept. ELEC, Vrije Universiteit Brussel, Pleinlaan 2, B1@fussels, Belgium
BFMTC, Celestijnenlaan 300D, B-3001 Leuven, Belgium

Abstract

The work presented illustrates how the choice of input pbetion signal and
experimental design improves the derived model of a noatisgstem, in partic-
ular the dynamics of a wet-clutch system. The relationskigvben the applied
input current signal and resulting output pressure in thediphase of the clutch
is established based on bandlimited periodic signals egali diferent current
operating points and signals approximating the desiradditurrent signal. A
polynomial nonlinear state space model is estimated andatatl over a range
of measurements and yields better fits over a linear moddk wie performance
of either model depends on the perturbation signal used éalerestimation.
Keywords: Experiment design, Input signals, Clutches, Nonlineatesys

Frequency response, State space

Notation
u(t): Input time signal
P: Number of measured signal periods
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R Number of independent signal realisations

U (K): Discrete Fourier transform (DFT) aoft) with k the harmonic number

Up(K): DFT of the pth period and of theth realisation of signali(t)

U"(K): DFT’s averaged over periods for a given realisation

Gp(K): Frequency response estimated from pileperiod and of theth
realisation of the input and output signal

G"(K): Freguency response estimate for ttierealisation of the input and
output signal when averaged over periods

G(K): Final frequency response estimate when averaged over

realisations

1. Introduction

The modelling of a system forms a crucial step in engineepiagtice. De-
pending on the level of information available at hand thenidieation proce-
dure is either defined as “white”, “grey” or “black” box iddntation. White
box identification is where the system’s dynamics are fultiypwn and can be
derived from first principles. Grey box identification invek some knowledge
of the dynamics which when combined with experimental mesments yields
a model and black box identification is when no knowledge naigg the dy-
namics is known and an arbitrary model is derived by perfogr@éxperiments
(Ljung, 2010). As such the manner in which the experimener$gsmed, which
includes the selection of input excitation and operatirggaes in which the ex-
periments are carried out, restricts and influences thetgudlthe final model
(Hjalmarsson, 2005). The system modelling and identificetnethod presented
here follow a black box approach while an example of modgllising mechan-

ical and friction principles is presented in Nouailletagle{2010).
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The system to be identified is a wet-clutch device (Figuré\hyet-clutch is
a mechanical device that transmits torque from an inputtaxas output axis via
fluid friction prior to the engagement of the friction plat&ich devices are com-
monly used in automatic transmissions fdif lnighway vehicles and agricultural
machines to transfer torque from the engine to the load. Aoted-hydraulic
proportional valve regulates the pressure inside the lelwtaich causes the en-
gagement of the piston with the friction plates (Figure 2) .madel describ-
ing the relation between the current applied to the motohefdlictro-hydraulic
valve and the resulting pressure during the filling stag@efdutch is required,

to bring about a smooth engagement.

Induction motor

. Transmission

aal.

by —
: 324-’ ‘o"“} m.'-“ \
¥ § 4’.

-

L

Figure 1: Wet-clutch experimental set-up

With the natural degradation of the wet-clutch over timejrgrut (control)
signal that once resulted in a smooth engagement will not §gitable signal
with time. As such an iterative learning control procedusbereby at each
iteration a control signal similar to the existing signahplied to find a more

appropriate control signal. Such a control scheme as predem Pinte et al.
3



(2010) is shown to be an alternative arficent method over robust control of
wet-clutches. It is therefore important to derive a rekatvlodel describing the

dynamic behavior around the input signals applied in psacti

Electro-hydraulic valve Wet-clutch
Piston - Clutch discs
Position I |
Motor Piston | | Clutch plates
° (ir f Drum——
I:‘ g//Spring Restoration spring
Cone/:m Input shaft Output shaft

Figure 2: Cross-sectional schematic of the elctro-hydcaalve and wet-clutch

When engaging the clutch, a fast response without vibratisrexpected.
Torgue transfer should thus commence as soon as possibleuvihtroducing
torque discontinuities and peaks. This can be realised bho# §lling phase
followed by a smooth transition into the slip phase (Depaeet al., 2010).

The model to be derived deals with the filling phase of thectiutin this
region the applied current to the valve and the correspgndirich pressure can
be measured in open loop. This is advantageous for ideitiicas any mea-
surement noise in the output is not present in the measuped an fed through
the system. The current signal for model estimation is peiwith its further
features and design given in Section 2.2. A linear model enfthhm of ratio-
nal finite order transfer function and a polynomial nonlinstate space model
relating the current and pressure are estimated and \adidafhe estimation

procedure and comparison of the two models are given in@edtof the paper.



2. Experimental Prerequisite

2.1. Wet clutch filling stage

In order to decide the amplitude level (or a signal’s root meguare value)
and the operating point around which a current signal is eepkto be applied,
the filling region of the piston needs to be determined. Thv®lves the ap-
plication of a low current signal to the valve and is gradpaticreased while
observing the corresponding pressure and for any tranemis$ torque. The
piston is initially held back by a restoration spring (Fig@) and a certain level
of oil pressure is required to bring about a displacememil&ily as the current
is increased the pressure in the drum increases pushingdios powards the
friction plates until the transmission of torque is notedisTregion is defined
as thefilling phaseof the wet clutch. The pressur@r) values and the corre-
sponding currenti) applied to the electro-hydraulic value in the filling regio

are obtained experimentally to be equat to

1.368< Pr<33
0.035<i <0.069

The filling region established as mentioned is a steady stgien whereby
any step change of current in the interval will cause thequnesto rise and settle
to a value in the corresponding pressure interval with nastrassion of torque.
The types of current signals applied within this intervaéxamine the dynamics
are discussed in Section 2.2.1.

Further, by applying a large current pulse that lasts foratsuration the

pressure can be increased to values much larger than thily stade interval. A

For reasons of company confidentiality physical units arétech



short current pulse width is necessary to ensure that n@atorque transmis-
sion could occur. As such once the current pulse is appliedtiten gradually
increased to the point of torque transmission. Such cusignils will result in

a rapid but smooth engagement and are discussed furthectinise.2.2.

2.2. Input signal consideration

Periodic perturbation signaldfer many advantages over an arbitrary non-
periodic excitation when estimating frequency respongeetfans (FRF) and de-
tecting and quantifying non-linear system dynamics (Gagfi993; Pintelon
and Schoukens, 2001; Abd-Elrady and Schoukens, 2005). eTinekide the
elimination of transient errors from FRF estimates, theiotidn of noise fects
at the output and detection and quantification of nonlinésiodions. However,
careful thought is required during the design of such sgtmbutilise these ad-
vantages. For linear system identification in the preseho®ise, signals with
high signal to noise ratio over the frequency band of inteaes required and
if the system is nonlinear, signals with small peak to peakdmsired to reduce
the @fect of nonlinearities present at the output. The generaifcadditional
frequencies in the output signal which are not present it signal is an ex-
ample of a nonlinear phenomenon (Schetzen, 1980). Hastallows the level
of the nonlinearity to be detected. By suppressing certarmbnics in the input
spectrum, the resulting amplitude levels in the output spat at those sup-
pressed harmonics indicates the presence and level of tiimear distortions
(Evans et al., 1994; D’haene et al., 2005). Further if alhevarmonics (includ-
ing the d.c) are suppressed, the distortions at the evendmiceare due to even
order nonlinearities and if some odd harmonics are supgdeske distortions

at the suppressed odd harmonics are due to odd order nattieeéSchoukens
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et al., 2009).
For these reasons the input signal applied to the electtoalyic valve is
periodic and bandlimited. Two types of signals are desigoethe purpose of

estimation, and are:

1. Multisine signals

2. Bandlimited approximation of a filling stage current fign

The design and the choice of such signals are elaboratec ifollowing sec-

tions.

2.2.1. Multisine signals
A multisine signal is a sum of sinusoids anfiless great design flexibilities
both in the spectrum amplitude and harmonic content. The signal expres-

sion is given in equation (1).

M

ut) = > U(Kyezsn (1)
k=—M
U(K) = AK)el )

Such signals allow arbitrary harmonics to be suppressecetingU(k) = 0
while assigning a desired amplitude (power) spectrum in¢hgining harmon-
ics. In equation (2)A(K) is the real valued amplitude an#y is the phase at
harmonick andM denotes the highest harmonic number of the signal. Further,
U(K) is a complex variable withJ (—k) = U*(k), fsis the sampling frequency
andN the number of samples per period. For a given amplitude spa@(k),

the choice of the phase at each harmomjg (ill affect the amplitude distribu-
tion of the multisine signal(t) (Schoukens and Dobrowiecki, 1998; Evans et al.,
1996). Two amplitude distributions are considered for thtemation of the wet-

clutch. In either case the signals have a flat amplitude specand the phases



are selected such that the signal has a normal amplitud&distn or a posi-
tively skewed amplitude distribution. The normally dibtried signal serves best
to investigate the dynamics around an operating point whéeskew distributed
signal examines how the system responds to a sudden increaseent about

a given operating point.

Normally distributed multisine signal

A normal distribution is obtained when the harmonic phasanisndepen-
dent, identically and uniformly distributed random vai&im the interval [Q2r)
(Pintelon and Schoukens, 2001). With most of the samplasrong around the
signal’'s mean (or operating point), the signal allows theaigics around the

operating region to be better examined. An example of a switpral is shown

in Figure 3.
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Figure 3: Top figure: Normally distributed multisine signBbttom figure: Amplitude distribu-

tion



Skew distributed multisine signal

The selection of the harmonic phases for the generationaditiyely skewed
amplitude distribution involves an iterative process. Aebdescription of the
steps involved is given here with a full description foundichoukens and Do-
browiecki (1998). Consider a power of a time function of tbenf z(t) = at?,
with a a constant positive céiécient anda a constant exponent greater than 1.
The rapid increase of the value x{t) for large values of implies that the am-
plitude distribution ofz(t) is positively skewed. Based on a normally distributed
multisine signaliy(t), the iterative algorithm arranges the sigg@l giving a new
signalZ{(t). The phases of the sign#l) are retained and a new multisiogt) is
generated based on these phases and the flat amplitudeuspetire procedure
is repeated by rearrangiraft) now based upom,(t) to derive the signaliy(t),
and the iteration ends when a suitable convergence crtéimet. The steps

involved are:

1. Generate an initial multising(t).

2. Generate(t) with its rms equal tay(t).

3. Replace the smallest valuewg(t) with the smallest value aft), followed
by the next smallest value of(t) replaced by that af(t) and so on result-
ing in Z(t).

4. Obtain the phases #ft) and generate multising(t) based on these phases
and a flat amplitude spectrum.

5. Repeat from Step 3 witln (t) instead ofug(t).

An example of such a signal is shown in Figure 4. Large pasiialues in the
time plot of the signal are observed and the correspondirgifarde distribution

shows a positive skewness.
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Figure 4: Top figure: Positively skewed multisine signalttBm figure: Amplitude distribution

Both the signals shown in Figures 3 and 4 are zero mean signdliave a

flat amplitude spectrum from 1-50 Hz.

2.2.2. Bandlimited approximate filling signal

The intended outcome of the filling stage is a smooth engagenfethe
piston with the friction plates within a short time duratiohhe sort of current
signal that will result in such an engagement is shown in f&du

Starting with some low current valug) the signal has an initial pulse,]
applied after a time interval of, and then dropped to valug followed by a
gradual increase (ramp) of the current to a final vdlueThe resulting rapid
increase in pressure, from the pulse section ensures #ahtft fills with oil
quickly forcing the piston closer to the friction plates whiis then slowed down
and engaged smoothly as a result of the ramp section of thentwgignal. The

total duration of the signal i§; = 2.5s with the pulse lasting foF; = 200ms.
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Figure 5: Filling current signal

Having sharp edges, the signal is not bandlimited and censfigll harmon-
ics. As such when used as a perturbation signal there willdre imter harmonic
modulation in the output spectrum and results in a poor edéraf the underly-
ing linear dynamics. The discrete Fourier transform (DFTa periodic signal

u(t) is defined as:

1< .
UK = —= > ut)e ™ N, k=0+1,...+M 3)
W 2

In equation (3)N is the number of samples per period avdthe highest har-
monic number. By computing the DFT of the desired signal asidguthe first
M harmonics from the transform, a bandlimited signal apprating that of the
desired signal (Figure 5) is generated via the inverse elisé¢fourier transform
(IDFT).

A desired signal and its bandlimited approximation obtdiwiea the truncated
DFT method are shown in Figure 6. The approximated signasmm@oth signal
and the discrepancy with the desired signal is highest distntinuous points
(Figure 6). In the example the approximated signal consisthe first 100
harmonics. The desired signal has a signal lengthss giving a fundamental

of 1/2.5 = 0.4Hz. With 100 consecutive harmonics the approximate signal
11
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Figure 6: Dash line: Desired filling current. Solid line: Réimited approximated version

bandlimited up to 40Hz. The resulting amplitude spectruragnitude of the

signal’s DFT) of the bandlimited signal is shown in Figure 7.

3. Experimental design: Measurements for estimation and validation

3.1. Measurements for model estimation

A linear approximation of a nonlinear system is conditiobgdhe proper-
ties of the input signal. Based on the application, a lineadehderived for a
given signal’s operating point or its standard deviatican difer when derived
for another operating point or standard deviation valué¢Bkens et al., 2004).
As such for the identification of the wet-clutch model a senémeasurements
are gathered whereby several input parameters are changadh measurement
experiment. Initially the measurements are carried outdplyéng a multisine
signal at dfferent operating points (mean around which the multisineaics

applied) within the steady state filling interval (Sectioi)2 A further set of
2
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Figure 7: Amplitude spectrum of the bandlimited signal

measurements is obtained by applying the bandlimited appede current sig-
nal coupled with a multisine signal forfterent values of the signal parameters
such as the pulse height, width and final current value (Spa&r&b).

From prior experience and preliminary experiments peréatran the wet-
clutch it was ascertained that a model spanning a low bartdwidl be suficient
to capture the salient features of the system. As such aanements for model
estimation are periodic with a signal period of 10s and iglharited up to 50Hz.
The applied current signal and corresponding pressure &suned over 100s
giving 10 signal periods for averaging and for the analybsubput noise in the
measured pressure signal. An estimate of the measuremieetpmwer which
is the variance of the measured pressure periods indidates data is reliable
and also influences the quality of any derived model (D’haetrad., 2005).

The final model is derived based on all the collected measeméesrand is

not confined to a particular measurement set. Since the dateodected by
13



changing several input parameters and features, theiregnibdel is expected

to be robust and versatile.

3.1.1. Measurements with multisine at several operatingtpo

By applying a multisine current signal at several operapogts the vari-
ation of the linear dynamics can be examined. For a givenabipgr point the
signal standard deviation is adjusted ensuring that theesponding pressure is
within the filling region of the clutch. Table 1 shows 10 oparg points at which
the multisine current signal is applied along with the slgngtandard deviation

and the type of amplitude distribution employed.

Realisation Operating point Signal stanSignal distribution

dard devia-
tion
1 0.050 0.030 Positive Skew
2 0.051 0.004 Normal
3 0.052 0.005 Normal
4 0.054 0.006 Normal
5 0.056 0.007 Normal
6 0.057 0.008 Normal
7 0.058 0.009 Normal
8 0.059 0.009 Normal
9 0.060 0.012 Positive Skew
10 0.061 0.015 Positive Skew

Table 1: Selected operating points within the filling stagrerhodel estimation

Figures 3 and 4 presented earlier in Section 2.2 show an dgarha single

14



period of a multisine signal employed for a given operatiogyp The current
signal applied at each operating point is independent aacmew phase real-
isation (in the case of the normally distributed signal) oreav initial multisine
signalug(t) (in the case of the case of the skew distributed signal).REmmonic
content is however identical and each signal has a bandwfdiHz with sev-

eral odd and even harmonics suppressed.

3.1.2. Measurements with bandlimited approximate signal

As described in Section 2.2.2, the application of the ddsiiiéng signal
(Figure 5) is to bring about a smooth engagement of the ¢lateti a bandlim-
ited approximate signal is generated for the purpose oftiiigation. Having a
signal period ofT; = 2.5s, the bandlimited signal is duplicated four times to a
give a signal length of 10s making the measurement periodist@mt with the
multisine signals (Section 3.1.1).

Prior to the duplication the bandlimited signal is desigme&ith 100 consec-
utive harmonics up to 40Hz with a fundamental frequency 4t@.(Figure 7).
By repeating the signal four times the new fundamental feegy is now at
0.1Hz (signal length is 10s) and the repetition causes tRecbOsecutive har-
monics of the original signal to occur at every 4th harmoelative to the new
fundamental frequency of 0.1Hz. As such the signal consistgly even har-
monics. The increased frequency resolution is an advartageés made use of
by superimposing a zero mean multisine signal of periodtled@s with odd
only harmonics up to a frequency range of 50Hz. Due to thaticembination
of the two signals (bandlimited approximation and mul&ithere is no inter-
harmonic modulation and the amplitude spectrum of the tiegusignal shows

the distinct frequency content of the individual signals.

15



While the signal power is mostly from the underlying fillingsal the cou-
pling of the multisine is to capture the finer dynamics of thet wlutch since it
increases the frequency content if only a bandlimited apprate filling signal
were to be used. Figure 8 shows one period of the resultingakig the time
domain. The figure may first appear to present 4 periods ofdahdlbnited sig-
nal repeating every 2.5s (however for instance the pulgesatridentical), since
the superimposed multisine is 10s in length the final sigghpériodic every 10s.
The amplitude spectrum shown in Figure 9 shows the contabditom the ban-
dlimited approximate signal (crosses) occurring at evembaics and the flat

spectrum multisine (circles) contribution occurring a tdd harmonics.

0.18 T T T T T T T T T
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0.12r ]

o
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0.02 | | | | | | | | |

Filling current plus multisine

Time (s)

Figure 8: Bandlimited filling signal with a superimposed tigihe

Similar to the application of a multisine atftérent operating points, the wet
clutch dynamics are examined for a range of filling curremapeeter settings.
Referring to Figure 5 these include the drop down curtenfinal currentl;,

pulse lengthr; and the standard deviation of the superimposed multisgreasi
16
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Figure 9: Amplitude spectrum of the filling signal as a conaion of two spectra. Crosses:

Bandlimited approximate spectrum. Circles: Superimpaselfisine spectrum

The selected values of these parameters are shown in Tallaeremaining
parameters of the filling current signal are fixed for eaclisa@on, such as the
initial low currentl, = 0.04, pulse height, = 0.15, the time after which the

pulse is applied, = 2s.

3.2. Measurements for model validation

Once a model is derived, a new set of input current and outigsspre sig-
nals are required to validate the model. For this the measemts are carried
out with the desired filling current signal that is descrilie&ection 2.2.2. The
effectiveness and robustness of the model is examined for & @En@arameter
settings. In particular 10 measurement sets of input-dulgia are recorded and
Table 3 shows the parameter setting for each of the measntgnwehile the
remaining parameters of the filling current signal are fixaedelach realisation,

such as the initial low currerit = 0.04, and the signal length, = 2.5s. For



Realisation Drop down Final current Pulse length Multisine

current standard deviation
5 I's T1(ms)
1 0.058 0.062 130 0.004
2 0.060 0.062 140 0.004
3 0.060 0.060 150 0.004
4 0.058 0.062 160 0.005
5 0.060 0.062 130 0.005
6 0.058 0.062 140 0.005
7 0.058 0.062 150 0.005
8 0.058 0.060 160 0.006
9 0.058 0.062 130 0.006
10 0.058 0.062 140 0.006

Table 2: Parameter settings of the desired filling curragniai and multisine signal for model

estimation

each realisation 5 periods of the current and corresporuliegsure signal are

recorded to reduce the influence of measurement noise bl sigeraging.

4. Evaluation and analysis of data

4.1. Nonlinear distortion and noise levels

The preliminary data analysis is the investigation of theslef nonlinear
distortions and noise. The suppression of several odd aed learmonics in
the current multisine signal applied atférent operating points (Section 3.1.1)
allows the level of nonlinearity to be examined. For a ling@gstem, in the ab-

sence of any noise, the output spectrum consists only ofdh@dnics present
18



Realisation Peak current Drop Final current Pulse length Pulse

down applied
current after
Iy I3 l'¢ T1(ms) To(S)
1 0.150 0.058 0.062 140 2
2 0.150 0.060 0.062 130 2
3 0.150 0.058 0.060 160 2
4 0.140 0.058 0.062 150 2
5 0.160 0.058 0.062 140 2
6 0.150 0.058 0.064 150 2
7 0.150 0.058 0.062 160 2
8 0.150 0.062 0.062 140 2
9 0.150 0.058 0.062 150 1
10 0.150 0.058 0.064 140 1

Table 3: Parameter settings of the desired filling curregrtadifor model validation

in the input. Therefore by averaging the measured outpubsigver periods to
reduce the #ect of noise and observing the power at the harmonics of ttpibu
spectrum that do not occur in the input, the level of nonlirdéstortions can be
gauged.

Denoting Y, (k) as the DFT of the output pressure signal measured as the
p!" period (of length 10s) of the™" realisation the averaged DFT for a given

realisation is:
1 P
r _ - r
Y= pEle Yo (4)

In equation (4) the averaging is performed over periods e/Re= 10 and is
19



the total number of periods per measurement realisation.egtimate of the
variance ofY"(k) gives the level of measurement noise. Denoting this vagan

for a particular realisation as?'l(k), it is defined as:

P
o109 = 575 2. %09 - Y (5)
p=1

In equation (5) the extra division witRis included in order to obtain an estimate
of the variance of/" (k) instead ofY},(k). This follows from the property that the
variance of a sample mean is the variance of the individuap$ss divided by
the total number of samples used in averaging (Papouli$)196

Figure 10 shows the magnitudesf(k) along with nonlinear distortion levels
and the noise levebfll(k)) when the current operating point is at 0.056 and has
a standard deviation of 0.007 (measurement realisatiorTabfe 1). The level
of even and odd nonlinear distortions are of similar magigfwith the contri-
butions dominating at the higher frequencies and the neigsd is much lower
(around -40dB) than the signal amplitude, indicating thatineasurements are
reliable. Similar conclusions are drawn for the remainirgpsurements of cur-

rent applied at dierent operating points.

4.2. Frequency response function and parametric linearehod

For the derivation of a linear model both the measurementsuitisines ap-
plied at diferent operating points (described in Section 3.1.1) andureaents
with bandlimited approximate signals (described in Sec8d..2) are used.

Having measured 10 periods and 20 independent realisdtierfsequency

20
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Figure 10: Amplitude spectrum of averaged output signati@hith the level of nonlinear dis-
tortion and noise. Crosses and line: Amplitude spectrumaambnics present in the input.
Squares and line: Even order distortions. Circles and ldéd order distortions. Solid line:

Measurement noise

response is obtained by subsequent averaging over penddgalisations.

GyK) = J‘;—((f) (6)
1 P

G'(k) =5 )Gk ()
1 -

G ==, 6K ®)

The termG'(k) in equation (7) is the individual frequency response oladi
for a given realisation, whil&(k) in equation (8) is an estimate of the over-
all frequency response function. In Figure 11 the estimatgliency response
magnitude |G'(k)|) is shown when the wet-clutch is at a low, mid and high op-

erating region of the filling stage, namely measurements&adns 2, 6 and 10
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in Table 1. Referring to Figures 11(a), 11(b) and 11(c), iblserved that a
change in both gain and resonance frequency occurs dejenlithe operating
point. The overall frequency responSék) (equation (8)) and an estimate of its
standard deviation obtained when all measurements basddferent current
operating points and bandlimited approximation signaésused, is shown in

Figure (12). The standard deviatiand(Kk)) is expressed as:

1
780 = R DR 2,10 0 - C0F (9)

Similar to equation (5) the extra division IBin equation (9) is to estimate the
variance ofG(k) rather tharG' (k).

Based on the estimated frequency resp@ (&g, a finite order rational trans-
fer function in thez-domain is fitted. Several model orders are fitted among
which a single zero three pole model is found to yield a sadisfry fit. The
parametric fit of the data is shown in Figure 13 and the pote-péot of the

transfer function is shown in Figure 14.

4.3. Polynomial nonlinear state space model

The final analysis is the fitting of a nonlinear state spaceehdd particular
the model considered is a polynomial nonlinear state spacehiPNLSS) given

in equations (10) and (11).
X(t + 1) = Ax(t) + Bu(t) + EZ(t) (10)
y(t) = Cx(t) + Du(t) + Fn(t) + (t) (11)
The expressions are in discrete time and ignoring the t&(i3 andFn,(t) re-

sults in a standard linear state space model withdenoting the stateg(t) the

output ande(t) additive noise. The matrices € R™" B ¢ R C ¢ R>M
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Figure 11: Variation of frequency response ovdfatent operating points in Table 1. (a) Fre-
guency response for realisation 2, operating point: 0.@®1Frequency response for realisation

6, operating point: 0.057. (c) Frequency response forgatdin 10, operating point: 0.061
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Figure 13: Magnitude and phase of parametric fitting. Toprégolid line: Parametric fit
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andD € R have the coficients of the linear terms of the states and input. The
termsZ(t) andn(t) are vectors containing monomials of the state and inpub ap t
specified degree with the correspondingfticeents given in matricelR € R"*"%
andF € R™W,

The model shows the separation of the linear dynamics ankihean terms.
As a nonlinear optimisation routine is required to estintagematrices in equa-
tions (10) and (11), such a structure simplifies the ideatii® procedure. In
that, an estimate of the linear model is first derived which iteen be used as
a starting set of values to estimate the optimum parameleevaf the PNLSS
model. The steps involved in the estimation of the PNLSS rer@eas described
in Paduart (2007) and Paduart et al. (2010) with the maimufeatof procedure
outlined in this section.

From the preceding section a 3rd order (3 pole) linear maslébuind to
give a satisfactory fit on the frequency response @&iid. Therefore a 3 state

linear model is identified by minimising the following weiigll least squares



cost function (equation (12)).

F
Vss= D 1e(IP/o8(K) (12)
k=1
e(k,A,B,C,D) = Gs{A, B, C,D, k) - G(K) (13)
Gs{A,B,C,D,K) = C(zl,, —-A)'B+D (14)

For this minimisation the starting values for the matriéesB, C andD are
obtained through a frequency domain subspace algorithou@g 2007; McK-
elvey et al., 1996) and the optimum linear matrices are sofuemerically via
the Levenberg-Marquardt (LM) algorithm.

The estimation of the PNLSS model involves a further weidl¢ast squares
minimisation similar to that of equation (12). The functimow minimised is the
square error between the output spectrum averaged ovedpernd that of the

PNLSS model.
F
Venisg6) = D Ile(QI3/IW (K13 (15)
k=1

e(K) = [€-(k, 0), €X(K. 6), ..., E’(k, 0)]
W(K) = [M(K), oI (K), ..., P (K)]
€' (K. 6) = Ym(k, 6) - Y'(K) (16)
6 = [veqA)',B’,C, D, veqE)', F] (17)

In equation (15k(k) is a vector formed by concatenating the error between the
model output and the averaged output spectrum for a givdisagan (Y'(k)).
Similarly W(k) is a frequency domain weighting function and is the contate
tion of the pressure standard deviatiofi(k) (equation (5)) estiamted for each
realisation. The functiornedX) in equation (17) stacks each column of a ma-

trix X to give a column vector. The model outpyi(k) (equation (16)) is first
6



calculated in the time domain from the PNLSS model (equatidr) with the
matricesE andF initially set to zero and matrices, B, C andD set to the op-
timum values of the linear model obtained from the previousmisation, after
which it is transformed into the frequency domain to caltailde error. Em-
ploying the LM algorithm the optimum values of the matrices the PNLSS
model are then solved numerically.

A PNLSS model s first derived using all the 20 estimationisagilons (mea-
surements from Tables 1 and 2) consisting of the currentbgpplied at sepa-
rate operating points and the approximate filling curregmai. A further PNLSS
model is then derived based only on the currents appliedfi@rent operating
points (measurements from Table 1). This analysis inteod@stablish the im-
portance on the type of estimation data and experiment nleg#ngn deriving a

nonlinear model.

4.4. Validation of linear and nonlinear model

The new set of measured currents and pressure signals wjtimgaurrent
properties as given in Table 3 is used to validate both theF8Ninodel and the
parametric linear model. Referring to this Table, the datasns to validate the
effectiveness of the derived models for a range of current kfgatures.

The third order linear parametric model described in Secti@ is compared
to a three state PNLSS model with the nonlinear monomialgators/(t) and
n(t) (equations (10) and (11)) consisting of state only and timmly combina-
tions of up to and including a nonlinear degree of 3. As désctiin Section
3.2, 5 periods are measured for each of the realisations.tiiffeesignals are
averaged over the periods and the model output is compatédiva averaged

pressure signal.
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4.4.1. PNLSS and linear model derived using all 20 estimatalisations

The true measured pressure signal (averaged) and the matpelt @f the
linear and PNLSS model are shown in Figure 15. The resulteslaoe for the
measurements of realisation 3 in Table 3.

PNLSS error rmse 0.26731
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Figure 15: PNLSS and linear model output and error. Top figalLSS model. Bottom figure,
Linear model. For both figures, Dash line: Measured pres&okd line: Model output. Dash-

dot line: Error

For better clarity of the model performance Figure 16 shdvesmeasured
and modelled pressure from 0.5s to 1s. When comparing tharl@and nonlin-
ear model output the first observation is the vast improvemeained with the
PNLSS model with respect to the linear model. It is seen tmatgain of the
linear model is smaller and the model pressure does not thagheak pressure
of the measured signal. Secondly, with the estimation datsisting of sepa-

rate operating point measurements and bandlimited appaigifilling current
28
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Figure 16: Zoomed time scale of PNLSS and linear model owtpdterror. Top figure, PNLSS
model. Bottom figure, Linear model. For both figures, Dask:liMeasured pressure. Solid line:

Model output. Dash-dot line: Error

signals with multisines added, the PNLSS captures the fiseflations in the
pressure when it rises and falls, while a smooth rise andrfglressure is ob-
served with the linear model output. Finally the root meamasg error (rmse)
of the PNLSS model has an improvement by a factor of 5 overitieat model.
The PNLSS model outperforms the linear model for the remagimalidation
data realisations. This can be observed in Figure 17, wherentse of both the
PNLSS and linear model are plotted against the correspgndilidation exper-
iment. It is seen that the PNLSS error level is lower and resiapproximately
constant with the exceptions of realisations 9 and 10. Hegectirrent signal
pulse is applied earlier in contrast to the current signatdun the estimation
data. Though the overall model error level increases, tmdimear model still

yields a better fit than the linear model.

29



1.6 T T T T T T T T

1.4r

1.2F

RMSE

0.8r

2 3 4 5 6 7 8 9 10
Validation realisation number
Figure 17: Root mean square error for all the validationisatibns. Solid line with crosses:

Linear model. Solid line with circles: PNLSS model

4.4.2. PNLSS and linear model derived using only currengdieg at diferent
operating points

With the input-output data consisting of the currents agapéit the operating
points given in Table 1, a 3 pole linear parametric model aBdtate, 3rd degree
nonlinear PNLSS (similar to previous PLNSS model) are estth. The model
outputs when validated with the measurements of realis&io Table 3, are
shown in Figure 18. Both models do not fit the peak rise in presand the
pressure oscillations when rising and falling. However®hSS model gives a
smaller overall error (rmse) of the two and the conclusionais true with the
remaining validation realisation sets. This can be seemguarg 19.

The results highlight the importance of the estimation datawhen deriv-
ing nonlinear models. While the current signals appliechat 4eparate oper-

ating points resulted in pressures spanning the fillingoregf the wet-clutch,
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Figure 18: PNLSS and linear model output and error. Top figalLSS model. Bottom figure,
Linear model. For both figures, Dash line: Measured pressokd line: Model output. Dash-

dot line: Error

the PNLSS model derived based on such measurements doe®dot satis-
factory fits (Figure 18). However when combined with the agpnate filling
current data the model output shows a great improvement@naodel pressure

closely resembles the measured pressure (Figure 15).

5. Conclusions

In comparison to linear system identification careful thaugn experimen-
tal design with further emphasis on input perturbation aigand their operating
points pays f in nonlinear system identification. To this end the use oiqokc
broadband signals with a finite harmonic content reducels that influence of

measurement noise and the contribution from nonlineaodishs. Using mul-
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Figure 19: Root mean square error for all the validationisatibns. Solid line with crosses:

Linear model. Solid line with circles: PNLSS model

tisine signals for model estimation demonstratesfitsotiveness in the analysis
of the wet-clutch which includes observing the alteratibthe linear dynamics
(frequency response) and the level of nonlinearity fiedént operating points.

As bandlimited signals are preferred for model estimatopandlimited ap-
proximation of a desired signal with an infinite harmonictesr can be obtained
via the inverse Fourier transform of a finite set of harmanidsis procedure is
applied to obtain a current signal that approximates astafilling signal.

A polynomial nonlinear state space model of the filling stagehe wet-
clutch shows superior results over a linear model for a ravigéling current
signals. The sources of the better performance are due tm¢hssion of the
nonlinear terms in the model combined with the diverse setstfnation data,
which includes the application of multisines withffégrent amplitude distribu-
tions at diferent operating points and the combination of multisings Wwan-

dlimited filling current signals to explore the finer dynamuf the wet clutch
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system.
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