
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/55751

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



(2- 

Non-Ignorable Missing 
Covariate Data in Parametric 

Survival Analysis 

Katherine Boyd 

A Thesis presented for the degree of 
Doctor of Philosophy 

THE UNIVERSITY OF 

'CK WAkVy, l 

Department of Statistics 
University of Warwick 

England 

May 2007 



Contents 

Acknowledgements xii 

Declaration xiii 

Abstract xiv 

1 Introduction 1 

2 Theoretical Framework 6 

2.1 Survival Analysis ......................... 
6 

2.1.1 Introduction to Survival Analysis ........... 
7 

2.1.2 The Survival and Hazard Functions .......... 
9 

2.1.3 Non-Parametric Analysis ................ 
10 

2.1.4 Semi-Parametric and Parametric Models ....... 
15 

2.1.5 Model Selection ...................... 
19 

2.2 Left-Truncation .......................... 
20 

2.2.1 Left-Truncated Kaplan-Meier .............. 
22 

2.2.2 Likelihood under Left-Truncation ........... 
23 

2.2.3 Applications with Left-Truncation ........... 
23 

2.3 Missing Data ............................ 
24 

ii 



2.3.1 The Missing Data Mechanism .............. 
24 

3 Literature Review 28 

3.1 Early Historical Development .................. 28 

3.1.1 Editing Methods ..................... 29 

3.1.2 Imputation Methods ................... 30 

3.1.3 Maximum Likelihood Methods ............. 33 

3.1.4 Markov Chain Monte Carlo (MCMC) Methods .... 35 

3.2 Missing Data in Survival Analysis ............... 36 

3.2.1 Missing Data Problems ................. 37 

3.2.2 Approaches to Missing Covariate Data in Survival 

Analysis Problems .................... 37 

3.2.3 Approaches to Missing Survival Time Data in Sur- 

vival Analysis Problems ................. 56 

3.2.4 Summary ......................... 60 

4 Motivating Data 62 

4.1 Cerebral Palsy ........................... 62 

4.1.1 The Effect of Severity on Survival ........... 63 

4.2 The Bristol Data .......................... 66 

4.2.1 The Variables ....................... 67 

4.2.2 The Work of Hemming et al. (2006) .......... 68 

4.2.3 Identification of relevant cohorts ............ 70 

4.3 Summarizing the Data ...................... 74 

4.4 Available Case Survival Analysis ................ 77 

4.5 Considering the Missing Data Mechanism ........... 
79 

4.6 Parametric Analysis under the MAR Assumption ...... 
86 



4.6.1 Introduction to the MAR Model ............ 87 

4.6.2 Parametric Extension to the Model ........... 90 

4.7 Application of the MAR model to Cerebral Palsy Data .... 93 

4.8 Multiple Imputation (MI) .................... 100 

4.8.1 Calculating the Imputed Data - MICE ......... 100 

4.8.2 Comparing Survival Model Estimates ......... 101 

4.9 Conclusions and Summary ................... 107 

5 Modelling the Missing Data Mechanism 110 

5.1 Non-Ignorable Missing Data and Selection Bias ........ 113 

5.1.1 Normal Selection Models for Non-Ignorable Missing 

Data ............................ 113 

5.1.2 Normal Pattem-Mixture Models for Non-Ignorable 

Missing Data ....................... 117 

5.1.3 Models for Publication Bias ............... 118 

5.1.4 Non-Ignorable Missing Categorical Data in Surveys 119 

5.1.5 Informative Dropout in Repeated Measures Data - 120 

5.2 Introducing the Joint Survival and Missing Data Mechanism 

Selection Model .......................... 121 

5.2.1 Calculating the Likelihood Function .......... 125 

5.3 Alternative survival distributions ................ 130 

5.3.1 The log-logistic distribution ............... 130 

5.3.2 The Weibull and exponential distributions ...... 132 

5.4 Identifiability ........................... 133 

5.5 Application to the Cerebral Palsy Data ............. 
135 

5.5.1 The Adult Cohort ..................... 135 

5.5.2 The Incident Cohort ................... 138 



5.6 Discussion and Conclusions ................... 147 

6 Simulation Study 150 

6.1 joint Model Simulation Study .................. 
151 

6.1.1 Generating Data ..................... 
151 

6.1.2 Study design 
....................... 

153 

6.2 Simulation Study Results ..................... 
154 

6.3 Discussion of the Results ..................... 
155 

7 Multivariate Analysis 160 

7.1 The Multivariate Model ..................... 161 

7.1.1 The Covariate Model ................... 162 

7.1.2 The Survival Model ................... 163 

7.1.3 The Missing Data Mechanism .............. 164 

7.1.4 The Likelihood Function ................. 165 

7.2 Multivariate Analysis of Cerebral Palsy Data ......... 166 

7.2.1 Fitting Bivariate Models to the Adult Cohort ..... 167 

7.2.2 Further Multivariate Models .............. 169 

7.3 Discussion and Conclusions ................... 171 

7.4 Further Extensions ........................ 172 

7.4.1 Incorporating Continuous Covariates ......... 172 

7.4.2 Allowing for Informative Truncation 
.......... 

173 

8 Conclusions and Discussion 175 

8.1 Long-term Survival in Cerebral Palsy ............. 
181 

8.2 Modelling the Missing Data Mechanism 
............ 

182 

8.3 Discussion, Criticism and, Further Work ............ 
184 

8.4 Final Remarks ........................... 187 



A MAR model extension programs 

B Gaussian Quadrature 

188 

193 

C The NMAR joint model with left truncation 195 



List of Figures 

2.1 Truncated and censored survival data ............. 22 

4.1 Additional survival by decade of birth conditional on sur- 

vival until 22 years ........................ 73 

4.2 Survival by level of disability for the adult cohort including 

those with missing covariate data ................ 85 

4.3 Survival by severity of ambulation for the adult cohort under 
the MAR assumption ....................... 96 

4.4 Survival by severity of manual dexterity for the adult cohort 

under the MAR assumption ................... 96 

4.5 Survival by severity of visual impairment for the adult co- 
hort under the MAR assumption ................ 97 

4.6 Survival by severity of IQ for the adult cohort under the 
MAR assumption ......................... 97 

4.7 Survival by severity of ambulation for the incident cohort 

under the MAR assumption ................... 98 

4.8 Survival by severity of manual dexterity for the incident co- 
hort under the MAR assumption ................ 98 

vii 



4.9 Survival by severity of visual impairment for the incident 

cohort under the MAR assumption ............... 99 

4.10 Survival by severity of IQ for the incident cohort under the 

MAR assumption ......................... 99 

5.1 Survival by severity of IQ for the incident cohort under dif- 

ferent missing data assumptions ................ 137 

5.2 Probability of missing data for linear and exponential mech- 

anisms for the effect of severe ambulation with a Weibull 

model by survival (age in years) ................. 145 

5.3 Survival model estimates for the effect of a) ambulation and 
b) IQ by fixed exponential parameter in the mechanism sen- 

sitivity analysis (- = MAR estimate) ............... 146 

6.1 Simulation model estimates for survival model intercept un- 
der a) MCAR b) MAR c) 20 percent NMAR mechanisms -- 155 

6.2 Simulation model estimates for survival model covariate ef- 
fect under a) MCAR b) MAR c) 20 percent NMAR mechanisms 156 

6.3 Simulation model estimates for survival model dispersion 

under a) MCAR b) MAR c) 20 percent NMAR mechanisms - 156 

6.4 Simulation model estimates for survival model with 50 per- 

cent missing data ......................... 157 

7.1 Survival for those with non-severe ambulation and IQ or se- 

vere ambulation and IQ (age in years) .............. 
168 



List of Tables 

4.1 Number of cases by age of first assessment and decade of 
birth (n=471) ............................ 

71 

4.2 Proportions of severe disability and missingness structure by 

decade of birth (n=368) ...................... 72 

4.3 Birth characteristics and levels of disability for two cohort 

groups with cerebral palsy .................... 75 

4.4 Estimated survival percentages (95 percent confidence inter- 

vals) for the adult cohort ..................... 
77 

4.5 Estimated survival percentages (95 percent confidence inter- 

vals) for the incident cohort ................... 78 

4.6 Proportions of missing covariate data for the disability co- 

variates in the incident cohort by length of lifetime ...... 
80 

4.7 Analysis of deviance to consider the effect of survival time 

on the probability of missing disability data .......... 
81 

4.8 Proportions of missing covariate data for the disability Co- 

variates in the incident cohort .................. 
82 

4.9 Maximum log-likelihood values for univariate accelerated 
failure models over different distributions under the MAR 

assumption ............................. 94 

ix 



4.10 Comparison of parameters (s. e. ) from available case, multi- 

ple imputation, and likelihood based analyses for univariate 
disabilities in the adult cohort .................. 102 

4.11 Comparison of available case (AC), multiple imputation (MI), 

and likelihood based analyses for univariate disabilities in 

the adult cohort - 90% and 75% survival (in years from birth). 103 

4.12 Comparison of parameters (s. e. ) from available case, multi- 

ple imputation, and likelihood based analyses for univariate 
disabilities in the incident cohort ................ 105 

4.13 Comparison of available case, multiple imputation, and like- 

lihood based analyses for univariate disabilities in the inci- 

dent cohort - 90% and 75% survival ............... 106 

5.1 Comparison of complete case, and MAR and NMAR likeli- 

hood based survival parameters (s. e. ) for univariate disabil- 

ities in the adult cohort ...................... 136 

5.2 Parameters estimates for the missing data mechanism and 

covariate distribution for the adult cohort ........... 138 

5.3 Maximum log-likelihood values for univariate accelerated 
failure models over different distributions under the NMAR 

assumption ............................. 139 

5.4 Comparison of available case, MAR likelihood, and NMAR 

based analyses for ambulation and IQ in the incident cohort 

- 90% and 75% survival (age in years) .............. 
140 

5.5 Parameter estimates from the missing data mechanism and 

covariate model for the incident cohort ............ 
141 



5.6 Comparison of complete case, and MAR and NNIAR (linear 

and exponential) likelihood based survival analyses for uni- 

variate disabilities in the incident cohort ............ 
142 

5.7 Comparison of available case, MAR likelihood, and NMAR 

based analyses for manual dexterity and vision in the inci- 

dent cohort - 90% and 75% survival ............... 143 

7.1 Number (percent) of severe ambulation and IQ in the adult 

cohort ................................ 167 



Acknowledgements 

I would like to thank everyone who has helped me throughout my PhD. 

Most specifically, my supervisor Prof Jane Hutton, whose patience and sup- 

port have been invaluable. I would also like to thank all other members of 

the department and, in particular, Dr Karla Hemming for helping with the 

data. Thank you also to Paula, Julia, and Sue who are always on hand in a 

crisis! And to all the other PhD students; good luck! To Stephen and Chris, 

thanks for joining me on coffee breaks and I hope everything goes well for 

you in the future. 

I would also like to thank my parents for putting up with the embar- 

rassment of having to tell people that their daughter is still at university 
(yes - it has been a long time! ) and also for their love, support, and encour- 

agement. 
Thank you also to Billy who has put up with me, particularly in the last 

few months. I really appreciate the help. 

Finally, I acknowledge the help of the EPSRC who funded my time as a 

PhD student. 

xii 



Declaration 

I declare that this thesis is my own work, except where explicitly stated, 

and has not been submitted elsewhere. 

Copyright @ 2007 by Katherine Boyd. 

"The copyright of this thesis rests with the author. No quotations from it 

should be published without the author's prior written consent and infor- 

mation derived from it should be acknowledged". 

xiii 



Abstract 

Within any epidemiological study missing data is almost inevitable. 

This missing data is often ignored; however, unless we can assume quite 

restrictive mechanisms, this will lead to biased estimates. Our motivation 

are data collected to study the long-term effect of severity of disability upon 

survival in children with cerebral palsy (henceforth CP). The analysis of 

such an old data set brings to light statistical difficulties. The main issue in 

this data is the amount of missing covariate data. We raise concerns about 

the mechanism causing data to be missing. 
We present a flexible class of joint models for the survival times and the 

missing data mechanism which allows us to vary the mechanism causing 

the missing data. Simulation studies prove this model to be both precise 

and reliable in estimating survival with missing data. We show that long 

term survival in the moderately disabled is high and, therefore, a large 

proportion will be surviving to times when they require care specifically 
for elderly CP sufferers. In particular, our models suggest that survival 
from diagnosis is considerably higher than has been previously estimated 
from this data. 

This thesis contributes to the discussion of possible methods for dealing 

with NMAR data. 



Dedicated to 
my family and friends. 



Chapter 1 

Introduction 

This thesis is concerned with two main issues. The first, the motivating 

problem, is the analysis of data from a cohort study of cerebral palsy suf- 
ferers. Cerebral palsy is the name given to the mental and physical im- 

pairments caused by complications with brain development or brain in- 

jury. These complications normally arise during pregnancy or childbirth 
but can be the result of postnatal trauma. The severity of the condition 

varies immensely and, therefore, an individual's requirements and their 

impact on services changes vastly. For this reason good survival estimates 

are imperative in order to plan the distribution of various resources includ- 

ing schooling, medical facilities, and equipment for the home. There are 

several well established cohorts within the UK, and also abroad, looking 

at both severity and survival to try and establish both the prevalence and 
level of the condition but none can provide information on long term sur- 

vival as they have not been running for a long enough period. We consider 
data collected by a paediatrician in the Bristol area prior to the start of these 

cohorts. We are, therefore, able to look at survival rates at older ages and 

1 



CHAPTER 1. BVTRODUCT70N 

the dependence of survival upon level of disability. This is particularly im- 

portant as we are now seeing much better survival in older sufferers due 

to better medical care and so a whole new area of resource is required. We 

need to know what proportion of sufferers are expected to survive into old 

age and what level of disability they are likely to suffer from. 

The second issue considered in this thesis is the statistical difficulties 

presented by this analysis. Due to the nature of the data collection we 
have had to adapt usual survival analysis models. The main problem is 

the amount of missing covariate information. Our interest is in log-term 

survival prediction from baseline disability levels but a proportion of this 

baseline information is missing. This information was collected as early 
back as the 1930's and we are concerned that data is not randomly miss- 
ing but was not recorded because it was too complicated or impossible to 

collect. For example, mental impairment is measured via the use of an IQ 

test. In order to conduct such a test a certain level of ability is required. 
We do not know if when a child fell below this level it was recorded so if 

this is not taken into account and survival is dependent upon the level of 
disability then standard survival estimates may be biased. 

We start this thesis by describing the established theory of survival or 

time-to-event analysis. In Chapter 2 we discuss the issues that arise, the 

functions of interest, and the different models that might be used to de- 

scribe them. Our data is subject to both truncation and censoring both of 

which are discussed and compared. Non-parametric, semi-parametric, and 
fully parametric models are presented and their implementation discussed. 

Within this chapter we also discuss the main issues with missing data 

analysis. The hierarchy of modelling assumptions first presented by Ru- 

2 



CHAPTER 1. INTRODUCTION 

bin (Rubin 1976) and commonly used in the literature to accommodate 

missing data are presented. We discuss the formulation and refinement 

of these assumptions and introduce the notation and definitions that we 

will use for the rest of the thesis. 

After introducing the setting for modelling with missing covariate data 

we can examine the standard methods used. These are presented in Chap- 

ter 3. We start with basic case deletion methods, commonly used in prac- 

tice, and then we look at more complicated likelihood based methods and 

imputation techniques. The advantages and disadvantages of each of these 

methods are commented on. 

We then focus on the issue of missing data in survival analysis. A full 

literature review focuses on the issue of missing covariate information, as 

this is the issue with our motivating cerebral palsy study, but we also con- 

sider the possibility of missing outcome in a competing risks setting. We 

identify the particular issues raised with missing data in survival analy- 

sis and look at the different approaches to analysis. Previous research has 

looked at fully parametric models but focus has been on the popular Cox 

proportional hazards model. This research is discussed in detail and then 

summarised, identifying some of the open questions. 

Chapter 4 introduces the motivating data. It is important to understand 

the problems surrounding cerebral palsy and also some of the medical 
background in order to focus on the correct issues. We look at previous 

work on both shorter term survival with cerebral palsy and other work on 

this same data. We also identify the main questions that we are going to 

investigate in the remainder of the thesis. We then summarise the available 

3 
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data and look at the missing data pattern. 
In Chapter 3 we discuss standard methods for analysing data with miss- 

ing values and in Chapter 4 we implement these. We discuss the possi- 
ble missing data mechanisms and the level to which these are accommo- 
dated by each of the simpler techniques. These methods include simple 

case deletion and multiple imputation. Under these methods we look at 

non-parametric survival to try and increase our understanding of the rela- 

tionship between severity of disability and survival. We then adapt one of 

the likelihood based methods discussed in the literature review specifically 
designed to cope with missing data in survival analysis to allow for fully 

parametric models. Using this model we look at the effect of severe dis- 

ability on survival and compare estimates to those from both the complete 

case and imputed data. This method uses the missing at random assump- 
tion. However, we also show why we have doubts about the validity of 
this assumption in our data. 

Having established that the mechanism behind the missing data is likely 

to be complicated we consider how we can model it. We highlight the simi- 
larities between missing data analysis and other statistical issues including 

measurement error and selection bias. It is in this chapter that we introduce 

the main model of our analysis; a joint model for the survival time and 

the missing data mechanism. The missing data mechanism is modelled 

through the use of a latent variable. Models of this type were first fully 

investigated in the economics literature. We show its full construction and 

the derivation of the full likelihood function allowing for both right cen- 

soring and left truncation. We present the model for a variety of different 

distributions commonly used in survival analysis showing the flexibility of 

4 
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this joint model. 
We then discuss and implement this model, using it to investigate the 

changes in survival model estimates as we relax the missing data assump- 

tions, our focus throughout being the estimation of survival from baseline 

disability. As with any model it is important to consider the sensitivity of 

results to the assumptions made and we do this by carefully considering 

what we know about the data collection methods and missing data mech- 

anisms that may result ftom these. 

In Chapter 6 we present results from a simulation study designed to in- 

vestigate the reliability of the joint model and to compare it to results from 

the more standard missing data methods. If the missingness mechanisms 

acting on the data are such that simpler methods can be used to provide 

accurate parameter estimates then it is important that our model also per- 
forms precisely and efficiently and the simulation study shows that this 

is the case. However, it does highlight that the efficiency of the model is 

dependent upon the quantity of missing data. 

Finally, in Chapter 7, we extend the univariate model to a multivari- 

ate setting. This raises several issues, particularly concerning the covariate 

model and the structure of the missing data mechanism. We discuss how 

these issues may be tackled and implement multivariate models to further 

look at the effect of the level of disability upon survival. We also discuss 

the inclusion of continuous covariates, informative truncation or censoring, 

and suggest further work that might follow from this thesis. 

5 



Chapter 2 

Theoretical Framework 

The aim of this chapter is to discuss the main ideas already established in 

statistical literature that will be used throughout this thesis. We discuss 

the concepts behind survival analysis, and the implementation of standard 
analysis techniques, with particular reference to the issue of left-truncation. 

Also considered are the issues around missing data. We review the as- 
sumptions behind any analysis involving missing covariate data and intro- 
duce standard techniques for handling this issue. 

2.1 Survival Analysis 

Survival analysis is an area of statistics widely used primarily in both medicine 

and biology, but it is also used in economics and engineering. The main 

aim is to investigate the time until some end-point or event from a partic- 

ular origin. Within a medical setting, this time origin could be a patient's 
birth, the enrolment of an individual into a clinical trial, or the time of diag- 

nosis with the illness under investigation, for example. The only restriction 
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on this starting point is that it must be well defined but it does not need 
to be the same for each individual in the study. The event of interest could 
be death in which case the resulting (non-negative) time is quite literally a 
survival time. However, it may also be the curing of the disease or a reoc- 

currence of symptoms for example. Another aim is to study the effect of 
covariate information upon this survival time. Details of survival analysis 

can be found in several books including those by Cox & Oakes (1984) and 
Collett (1999). A nice review of survival analysis techniques was also given 
by Oakes (1982). 

2.1.1 Introduction to Survival Analysis 

We define the starting time for an individual to be to and the event of inter- 

est then occurs at time x measured from this origin. 

Censoring 

One of the main issues in studying survival is that times are often censored. 
By this we mean that we do not observe an exact event time, x, but know 

only that it falls into a set of times, A. For example, in a clinical trial, it is 

possible that at the end of the study not all the individuals will have ex- 
perienced the event of interest. An individual who is observed for a set 
length of time without failure must have a survival time that is longer than 
this period but this precise time is not recorded. We can record only a cen- 
soring time r. This is an example of right-censoring. In right-censoring 
A= (c, oo). Other possibilities are left-censoring, when an event is known 

only to occur before an observed censoring time A= (0, c), and interval 

censoring, when an event is known to occur between two observed cen- 
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soring times, cl and C2- It is usually assumed that the censoring times and 
failure times are independent given the covariates. 

In this work we will only be considering right-censoring. We can for- 

mally describe this restriction by defining x, the true survival time, and c, 

the censoring time. Then note, that we only observe a time t= min(x, c) 

and a censoring indicator 6=I (x < c). 

Applications of Survival Analysis 

Survival analysis techniques are used widely in the areas of medicine and 
biology. Many examples of their application can be found and several 

are discussed in the many books published on the subject. These include 

those by Cox & Oakes (1984) and Collett (1999) mentioned earlier as well 

as those by Lawless (2003), Klein & Moeschberger (1997), and Fleming 

& Harrington (1991). Some specific areas of application that have been 

discussed include the comparison of a particular treatment (the drug 6- 

mercaptopurine) to placebo for the treatment of leukemia patients (Freireich 

1963), the time to first exit-site infection in patients with renal insufficiency 

(Nahman 1992), and the prognosis of women with breast cancer (Leathem 

& Brooks 1987). 

Applications also occur in the engineering literature such as in the work 

of Nelson (1970) who test the failure of electrical appliances. This falls into 

the area of reliability data which is discussed in data by Crowder et al. 

(1991). 

8 
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2.1.2 The Survival and Hazard Functions 

When studying survival analysis there are two main functions of interest, 

the survival function and the hazard function. We can regard the actual 

survival time, x, of an individual to be a realization of a random variable 
X. If this random variable has an underlying density function, f. y (x), then 

the cumulative distribution function is given by 

Fx(x) = P(X < x) = 
in fx (u) du, 

which represents the probability that an individual has a survival time of 

at most x. 
The survival function is defined as 

Sx (x) = P(X > x) =1- Fx (x). 

This is the probability that an individual has of surviving to at least time 

x. This function is of great interest as we can use it to look at median and 

mean survival times. 

The hazard function can be defined as 

P(Xý< X< x+ 6x 1 x> X) 
ýX-0 öx 

It is the probability that, given an individual has survived to a time just 

before x, they fail at time x. This function shows us when an individual is 

most at risk. 
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It is possible to show that 

hx (x) = 
fx(x) 
Sx (x)' 

If we define the cumulative hazard function 

Hx (x) = 
in hx (u) du 

then we can also go on to show that 

Sx (x) = exp I- Hx (x)} . 

When analyzing survival data we can estimate both the survival and 
hazard functions. We can do this by specifying a parametric probability 
density function fx (x) or by using non-parametric methods. These meth- 

ods are described in the following sections. 

2.1.3 Non-Parametric Analysis 

Perhaps one of the simplest approaches to modelling survival data is via 

non-parametric methods. These may be simply an initial investigation into 

the data or may be used as the complete analysis. In particular, we can 

estimate the survival function for a set of survival times and then com- 

pare these functions over different groups of individuals. Here we present 

methods for analysing right censored data. 

10 
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Life-tables 

We calculate the life-table (or actuarial) estimate of the survival curve is 

based upon by dividing the full observation period into a series of inter- 

vals. We define these m intervals and assume that in the kth of these in- 

tervals time extends from time tk to time 4+ 1- In this period, count up the 

number of recorded deaths and censoring times and define these as dk and 

Ck respectively. Also, define the number of individuals at risk at the start 

of the period as nk. We then assume that the censoring process over each 

interval is such that the right censored survival times falling into the inter- 

val occur uniformly. Now, assuming this uniform censoring the average 

number of individuals at risk during the period is 

I (- -k 
nk - 

Calculating the survival probability in each interval as (it' - dk)ln' kk 

means that we can estimate the survival curve as 

i 
n', ý - dk 

SM = 11 
n' k=l 

(k 

for the interval tj <t< tj+ I, j=l,..., m. The initial probability of survival is, 

of course, unity. This results in a step-function when plotted against time. 

Kaplan-Meier Curves 

Kaplan & Meier (1958), presented an extension to the life-table where the 

intervals are determined by the r ordered recorded distinct death times, 

t(I)i .... t(, ) which are taken to occur at the start of each period. This is also 

referred to as the product limit estimate. By making the assumption that 

11 
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the deaths occur independently we arrive at an estimated survival function 

similar in form to that of the life-table. The Kaplan-Meier estimate is 

nk - dk 

nk k=l 

for the interval t(j) :ýt< t(j+, ), j=l,..., r where nk is the number of individ- 

uals at risk just before the death that occurs at time t(k), dk is the number 

who die at time t(k), and t(, +, ) is defined to be oc. Also note that ý(t) =1 
for time t< t(j). 

We can calculate the standard error for the Kaplan-Meier estimate via 
Greenwood's formula. It is given by 

s. e. 
dk 

d nk (nk k k=l 

for t(j) !ýt< t(j+, ). This expression can be used to calculate confidence 
intervals for the estimated survival function. Standard 100(l - a)% confi- 

dence intervals are of the form 

I Z, /2s. e-ý(t) 

where z, /2 is the upper a/2-point of the standard normal distribution. 

However, this can lead to confidence intervals that fall outside the region 
(0,1). We can transform ý (t) to lie in the range (- oc. oc) by using, for exam- 

ple, the log-log transform log I- log S (t) I and calculate an interval for this 

transformed value. Using this transform leads to the confidence interval 

100(1 - 0)'Z( 
, 
ý(tfxP1±, ý. 12s. e-[logf - log 

'ý(t) 
)II 

12 
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A Taylor series approximation can be used to calculate the Var [logj- log S(t))) 
Examples show that using Greenwood's formula for the standard error 

sometimes underestimates the confidence region. An alternative was sug- 

gested by Peto et al. (1977). They propose that the standard error should be 

calculated as 

s. e. fS(t)) 
V iij) 

for t(j) :ýt< t(j+, ). However, this expression slightly overestimates the 

standard error so confidence intervals will tend to be slightly larger than 
the should be. 

Hall & Welner (1980) show how to eliminate this incorrect estimation. 

They propose the confidence bands 

ý(t)±D, ý(t)[1+C,, (t)] t<t(,, ), 

where D, is the value of the Kolmogorov-Smirnov statistic at significance 
level ct and 

var 
ý(t)2 

Comparing Survival Curves 

We may wish to compare estimated survival curves for two or more groups 

of individuals in order to establish the effect of discrete covariates upon 

survival. Here we consider two non-parametric tests that can be used to 

test the null hypothesis that there is no difference between two survival 

curves. 

The first of these is the log-rank test. This is based upon the hyper- 

geometric distribution. Consider two groups, group 1 and group 2, for 
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whom we wish to compare survival. Again, label the distinct death times 

across both groups, t(j) < ... < t(, ),. as we did when considering the 

Kaplan-Meier estimate for the survival curve. Similarly, define dk and nk, 
k=r, as before. Further, suppose there are nik individuals at risk and 
dik deaths at time k in group i, i=1,2. If we assume that the marginals 
(i. e. dk and nk) are fixed and have the null hypothesis that the survival is 

independent of the group then d1k has a hypergeometric distribution. We 

then consider the statistic 

r 
UL = 1: (dlk - elk)i 

k=l 

the difference between the observed and expected numbers of deaths. elk 
is the mean of the hypergeometric random variable dlk and is given by 

elk = nlkdjl? ij. We can now calculate the variance of UL, 

rn n2kdk (nk - dk r 
var(UL) = 

1: 1 

n2 (nk - 1) 
E 

Vlk = YL. 

k=l k k=l 

It can be shown that UL has an approximately normal distribution so there- 

fore, UL / *%/ _VL -N (0,1). 

This implies that 
U2 

L_2 
V X1. 

L 

We can then compare this value to critical values for the chi-squared dis- 

tribution. The larger the value the greater the evidence against the null 

hypothesis. 

The second test is the Wilcoxon test. This is conducted in a similar man- 
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ner to that of the log-rank test. However, here we calculate the statistic 

r 
UW = 

1: nk (dlk - elk), 

k=l 

where the notation is the same as defined in the previous paragraph. As 

you can see we are weighting deviations from the expectation by the size 

of the risk set. This means that the Wilcoxon test is less sensitive to small 

sample sizes, i. e. towards the end of the study. The variance of Uvj, is given 
by var(Uvjý) =n 2v Ik= Viv and the Wilcoxon test statistic by kk 

ui2lv 2 Tvw = Vtv X1, 

These tests can be easily generalised to the situation when we have 

more than two groups. It is important to note that the log-rank test is more 

suitable when the alternative hypothesis is that of proportional hazards as 

it uses this assumption although smaller deviations from proportionality 
have a minor impact. The Wilcoxon test is more recommended when the 

alternative hypothesis is not that of proportional hazards. 

2.1.4 Semi-Parametric and Parametric Models 

In many studies there are covariates including individual characteristics 

and treatments whose effect on survival is of primary interest. This leads 

us to consider parametric regression models. 

The Cox Proportional Hazards Model 

One of the most commonly used models for survival data is the Cox pro- 

portional hazards model (Cox 1972). This is a semi-parametric model which 
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uses the assumption that covariates have a multiplicative effect upon the 

hazard function. In section 2.1.2 we introduced the hazard function, h(x), 

which can be thought of as the instantaneous risk of failure conditional 

upon survival until that point. The proportional hazards assumption is 

that 

hi(x) = expl, 3TZ, lho(x) i=l,..., n, 

where zi is the covariate vector (possibly containing dummy variables in 

the case of factors) for individual i, hi(x) is the hazard function for indi- 

vidual i, and ho(x) is a baseline hazard. Assume, 0 is a set of model pa- 

rameters. Note, that we have made no assumptions concerning the form 

of the baseline hazard. We can allow for different types of covariates, in- 

cluding those that are time-dependent, and can calculate maximum like- 

lihood estimates for model parameters through the use of a partial likeli- 

hood function. Details of this partial likelihood can be found in Cox (1972). 

We can maximise the partial likelihood using Newton-Raphson procedures 

and can approximate the covariance matrix of the parameter estimates us- 
ing the inverse of the information matrix. 

The Weibull Model 

We can still make this proportional hazards assumption but now we can 

allow the baseline hazard to have a Weibull distribution. The density func- 

tion for the Weibull distribution is 

(x) = Aj x-' -1 exp(-, \x-Y), A, -y >O and0 <x< oc. 
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A special case of the Weibull distribution is the exponential distribution 

which arises when -y = 1. If this assumption is valid then models based 

upon this distribution will arrive at more precise parameter estimates. Again 

we can fit this model using Newton-Raphson or other numerical proce- 
dures, although now we can obviously calculate a standard likelihood func- 

tion, details of which are discussed below. 

The Accelerated Failure Time Models 

An alternative assumption to that of proportional hazards is that of accel- 

erated failure. Here, the covariates act multiplicatively on the time scale. 

The assumption that we make in this general form of model is that 

hi (x) = exi)10 TZ, Iho (eX, ){, 3TZ, IX), i=1,..., n. 

The Weibull distribution can also be used to model the survival times under 

this assumption. However, we can also use other distributions including: 

the log-logistic fW= Ocxc - 
(I+OT, 4)" 

, ýPxl-le-13' and, the gamma distribution f (x) r, (a7 

o the log-normal f (X) = 
ý2- x-' exp (log� - 11) 2 /2nr2 

i7"2'7r 7r 

We should note that we can write both Weibull proportional hazards 

models and accelerated failure models in log-linear form with suitable choices 

of residual distribution. 

Calculating the Likelihood 

As discussed, when considering the Cox proportional hazard model we 

must use a partial likelihood as we are making no assumption about the 
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distribution of survival times. However, when using a fully parametric 

model we can use a normal likelihood function. The main issue to note 

though is that, due to censoring, we do not always observe the true survival 

time. This means that the contributions from censored and uncensored in- 

dividuals to the likelihood are going to be different. Here, we consider only 

right-censoring. If we consider the full data set (ti, 6j, zi), for i=1, ... ' n, 

consisting of observed times, censoring information, and covariate values 

then the likelihood can be calculated as follows... 

L(Olt, 6, Z) = 11 f (tilzi, 0) 11 S(tilzi, E» = 11 h(tilzi, E»5'S(tilzi, E» 

where 0 is the full set of model parameters. We can see that the contri- 
bution to the likelihood from the set of uncensored individuals (U) is as 

expected but from right-censored individuals (C) it equates to the survival 
function as we know only that failure occurs after the observed censoring 

time. 

Maximum likelihood estimates for the p unknown parameters, 

1, ... ' 
6p), are the values of (E) II.... 0p) that maximise the likelihood func- 

tion. They are found by solving the score equations... 

i) 
log L(E)It, 6, z) �=0, 

i=',..., p. dE)j 
1 

The covariance matrix of the maximum likelihood estimates can be ap- 

proximated via the inverse of the observed Fisher information matrix, 

var(O) ; zt V' (6). 

The observed information matrix is I(H) = -H(O) where H(E)) is the (p x 
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Hessian matrix with (i, j)th entry 

H(O-)i, j = 
ý)2 log L(O) 

'goiaoj 

for i, j=1, ---, p. Variances for 6 can then be found along the diagonal 

of the information matrix, i. e. the standard error of Oj is the square root 

of the (j, j)th entry of 1(0). We can use these standard errors to calculate 

confidence intervals for the parameter estimates and hence use these to 

decide upon the inclusion of covariates into the survival model and check 

for a significant impact on survival. 

2.1.5 Model Selection 

We can use the log likelihood ratio to choose between nested models and 

to informally compare non-nested models the AIC as discussed below. As 

previously mentioned, we can decide upon covariates to include firstly 

through the estimated parameter standard errors. However, we may wish 

to compare alternative models. As in any model fitting situation we may 

not wish to fit the most accurate model but the most parsimonious model 

(i. e. the model that best fits the data with the least number of parame- 

ters). In order to do this we consider the maximum log-likelihood log L (the 

log-likelihood function evaluated at its maximum likelihood estimates) or, 

more conveniently, -2 log L. L is a product of conditional probabilities and 

hence is less than unity, so the smaller the value of -2 log L the better the 

model fits the data. 

If we are comparing two nested models, say Model 1 nested in Model 

2, with maximized log-likelihoods log L(j) and log L(2) respectively, then a 

large difference between -2 log L(j) and -2 log L(2) would lead to the con- 
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clusion that the additional covariates in Model 2 do improve the adequacy 

of the model. The difference between the two maximized log-likelihoods 

can be written as 

-2 log L 
(2) 

and is called the likelihood ratio statistic. It can be shown that this has 

an asymptotic chi-squared distribution under the null hypothesis that the 

additional covariate coefficients are zero with degrees of freedom equal to 

the number of additional parameters in Model 2. Therefore, we can use it 

to assess the need for the additional terms. 

Sometimes, we do not have nested models and therefore, need an al- 

temative method for model selection. One method for choosing a model 
in this case is Akaike's Information Criterion (AIC). The AIC statistic for a 

single model is defined as 

AIC = -2 log L+ aq 

where q is the number of unknown covariate coefficients and a is a prede- 
termined constant usually approximately 3 as this is approximately equiv- 

alent to using a 5/(, significance level in judging the difference between two 

nested models differing by up to three parameters. When there are no sub- 

ject specific reasons for a particular model choice a suitable model can be 

identified as that with the lowest AIC. 

2.2 Left-Truncation 

Survival data can also be subject to truncation. This is a slightly different 

idea to that of censoring. Truncation occurs when sample values larger 
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(right-truncation) or smaller (left-truncation) than a fixed value, 11, are not 

recorded. This need not be the same point for each subject. For example, if 

individuals enter a study when they first see a specialist then they have to 
have survived until their first appointment in order to be included in the 
data set. If they die before this point they do not enter the study and no data 

are recorded. This is an example of left-truncation. So now our observed 
data for individual i is of the form (ti, yi, ýi, zi). Note that truncation can 
lead to the complete absence of an individual from the data set while cen- 

soring leads to the inclusion of partial information. Ignoring truncation can 
lead to biased survival estimates as highest risk individuals are more likely 

to fail before first being observed. We consider independent left-truncation 

when truncation times are independent from survival times. 

Figure 2.1 shows the different mechanisms that can act on the survival 

times if we allow right censoring and left truncation. This figure covers the 

types of data we will encounter within this thesis. 

The first lifetime shown (subject A) is an typical survival time which 

is observed for its whole survival period and for whom an exact failure 

time is observed. Subject B is also observed from the moment it enters the 

population of interest but is censored at the end of the study as it has not 

experienced the failure event. Individuals C and D are truncated data. C 

is included in the study as failure has not occurred before they could be 

included in the study but is censored before the end of the study period. 

However, subject D has failed before the study period starts so is an ex- 

ample of a truncated time. It cannot be included in the study. The last 

example, individual E, is missed by the study organizers despite being in 

the population of interest during the study period. 
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*- Birth = To 
40 - Entry time =Y 
X- Failure time =X 
o- Censoring time= C 

Figure 2.1: Truncated and censored survival data 

2.2.1 Left-Truncated Kaplan-Meier 

We can extend the techniques of Sections 2.1.3 and 2.1.4 to allow for left- 

truncated data. A modified estimate similar to that of Kaplan and Meier 

was first introduced in statistical literature by Woodroofe (1985) although 

previously, Lynden-Bell (1971) had derived a non-parametric maximum 
likelihood estimate within his work in astronomy However, Woodroofe's 

estimate does not allow for censoring. In 1987, Tsai et al. presented asymp- 
totic results for an analogue to the Kaplan-Meier curve where risk sets are 

adjusted at each failure time to account for the delayed entry. Using the 

same notation as that used in the earlier discussion of the Kaplan-Meier 

curve, we arrive at the same estimate Equation 2.1.3 except the risk set nk, 
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i. e. those individuals at risk just before time 4. is defined as 

nk I(Yi "ýý tk '5 ti), 

where I is the usual indicator function. They also present an extended 
Greenwood's formula for calculating the standard error of the estimated 

survival function. Note that issues raised by Pan & Chappell (1998) do not 

present an issue here as truncation mainly occurs at a young age and the 

majority of censoring at considerably older ages. They highlight the fact 

that the standard technique described can underestimate survival at very 

early times for left truncated and right censored data. 

2.2.2 Likelihood under Left-Truncation 

We again have to condition on entry time when considering the construc- 

tion of the likelihood function. For uncensored individuals the contribu- 
tion is equal to P(T = tj > yi. zi) and for censored individuals it is equal to 

p(j, > tj > yi, zi). Therefore, using Bayes theorem we can deduce that the 

likelihood function is of the form 

LT(Hlt, Yý 6, Z) = 
ii f (ti lzi3 0-) ns (ti 1 zi, E» 

11 
s (yi 1 zi, 0) c S(Yilzi. 0) * 

2.2.3 Applications with Left-Truncation 

Censoring is a very common issue in survival time studies. Truncation, 

while it arises less often, also features in many studies. Within a medical 

setting there are several examples. Struthers & Farewell (1989) present a 

model to investigate the development of AIDS (Acquired Immune Defi- 
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ciency Syndrome) from the point of infection with HIV (Human Immun- 

odeficiency Virus). The left-truncation occurs due to the lag between in- 

fection and diagnosis. There is also an issue with right-censoring as the 

point of progression is often uncertain. Analysis of this same issue is also 

considered by Lui et al. (1986) and Medley et al. (1987). Another example 

comes from the work by Hyde (1980) which discusses data collected from 

the Channing House retirement centre in California. The data here is left- 

truncated because individuals must survive to an old enough age to enter 

the centre before they can be included in the data set. This excludes those 

who die at a young age leading to a length biased sample. 

2.3 Missing Data 

Missing data is an issue that often occurs in studies. It is particularly com- 

mon within medical and survey settings where data collection may be dif- 

ficult. Censoring and truncation can fall under the heading of incomplete 

or coarsened data but we can also have unobserved covariate data. There 

has been much research into the problem of missing data and the standard 

approaches are discussed in Chapter 3. 

2.3.1 The Missing Data Mechanism 

in order to analyse data with missing observations we must first consider 

the missing data mechanism acting upon the data set. The role of this mech- 

anism was widely overlooked until the idea was formalized by Rubin. This 

is fully discussed in Little & Rubin (2002). He introduced notation based 

upon the concept of treating missing data indicators as random variables. 
Assume, for simplicity; that the same mechanism applies to the whole 
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data set. We define the complete true data as D= (dij) E ID where ID is 

the family of all possible observable data sets given the sampling method. 

This is, in reality, not entirely observed. With regard to survival analysis we 

can consider D= (T, Y, 6, Z) where T, Y, 6, and Z are the observed survival 

times, the entry times, the censoring indicator, and the recorded covariates 

respectively. Rubin introduced a missing data indicator matrix MGM. We 

construct. Al = (, rnij), of the same dimension as D, where mij =1 if dij is 

missing and mij =0 if dij is observed. The missing data mechanism can 

then be characterized by the conditional distribution of M given D, 

P(Af = ntiD = d, (D) =f (mid) for all MEM and dE ID 

where (P are unknown parameters. 
The most restrictive missing data mechanism is defined to be when the 

probability of missingness does not depend on any of the values in D and 

is called the missitig completely at random (MCAR) assumption. This occurs 

if 
(m Id, 4)) =f (m, 14b) for all dE ID and 4). 

A slightly less restrictive mechanism is in operation if the data are miss- 

ing at random (MAR). Here, missingness is allowed to depend upon the 

observed values of D but not on the unobserved values. Let Db, denote 

the observed entries of D and D,,, i, indicate the unobserved. We can then 

define the MAR assumption as 

f(m1d, (D) ýf (III jdobs. 4ý) for all d,,,, i, and 4). (2.2) 

Note that under the MAR assumption we can have different mechanisms 
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for different subgroups or even different individuals. 

Finally, if missingness is allowed to depend on both the observed and 

unobserved data (i. e. the full data, d) then the data is said to be not missing 

at random (NMAR). 

This hierarchy of missing data mechanisms and the corresponding no- 
tation is now widely used in missing data literature and whilst the concept 

of the three mechanisms is clear there is a subtlety in the notation that can 

cause confusion. This confusion arises with the definition of Dob, and Dmi,. 

The notation could imply that in the separation of D into its two com- 

portents both values and their positions are maintained i. e. Dob, and D,,, i, 
have the same dimension as D with the relevant entries missing. If this 

is indeed the case then, within the MAR definition, conditioning on Dob., 

means that we can fully determine the value of M as we merely look at 

the missingness structure of D,, b,,. This is something we cannot do when 

conditioning on D and so the equality above, Equation 2.2, does not hold. 

By definition, we can also fully determine. Al from D,, i,. 
Alternatively, if we take the notation to imply that we retain only the 

relevant matrix entries, and not their location within D, in the construction 

of D,, b, and Dmi, a problem arises in how we condition the distribution of 

the object Al with known dimension on an object with unknown structure. 

In order to avoid this confusion we introduce a slight variation to Ru- 

bin's original notation. Note first that the definitions and notation for the 

MCAR and NMAR mechanisms is clear and the issue only arises when 

concerned with data that is MAR. Again, let 

P(, Al=mjD=d) =f(rn, d), me M and dED 
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Instead of defining the two components Dob, and D,,, i, consider the class 
of matrices D* in which each matrix shares observed entries with D but has 

alternative values for those that we do not observe i. e. 

ID* d) d* ED: di*j = dij for all ij with mij = 01. 

We can then rewrite the definition for MAR data as 

f(m1d, (D) = f(mld*, 4)) for all dE ID, d* E ID*(ni, d) and 4). 

This implies that missingness depends only on the observed values of D 

whilst avoiding the notational confusion discussed above. 

Methods for analysing data with missing observations are discussed 

in Chapter 3. There we focus upon, in particular, missing covariate data 

in survival analysis. In Chapter 5 we look at recent research in NMAR 

missing data. Recent summaries of missing data research include Little 

(1992), Rubin (1996), Schafer (1999), and Schafer & Graham (2002). 
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Literature Review 

3.1 Early Historical Development 

The first methods used for dealing with missing data were editing meth- 

ods. These are described in Section 3.1.1. They were the primary idea used 

up until the 1970's and are still commonly used today. The formulation of 

the EM (Expectation-Maximization) algorithm (Dempster et al. 1977) first 

made it possible to compute maximum likelihood estimates in the presence 

of missing data (see Section 3.1.3). This meant that instead of deleting or 
filling in incomplete cases we can treat the missing data as random vari- 

ables which can be integrated out of the likelihood function as if they were 

never sampled. More recently, Markov chain monte carlo (MCMC) meth- 

ods have also been used in likelihood based approaches. In 1987, Rubin 

(1987) introduced the idea of multiple imputation. This is discussed in Sec- 

tion 3.1.2. In this method, each missing value is replaced with D>5 simu- 
lated values prior to analysis and computed parameters averaged over the 

D complete data sets. 
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3.1.1 Editing Methods 

The first, and most commonly used method, is complete case analysis. This 

involves removing observations with one or more of the variables missing. 

Complete Case Analysis 

There are both advantages and disadvantages to using complete case anal- 

ysis. The most obvious disadvantage is the, often large, reduction in the 

quantity of data so it is not a recommended method when there is a high 

proportion of missing data. This loss of data results in a potential loss of 
information in two respects. Firstly, a loss of precision, and secondly bias 

caused by the data not being MCAR (missing completely at random) or the 

complete cases not being a representative sample of all the cases. One strat- 

egy for partially adjusting the bias in complete-case analysis is to assign 

each individual a weighting. There are also advantages to complete-case 

analysis, however, which cause it to be the most commonly used n-tissing 
data technique and the default in many computer software packages. The 

most obvious is its simplicity and lack of need for extensive data manipu- 
lation. Another advantage is that univariate statistics are all calculated on 

the same sample meaning that direct comparison is justified. In this sur- 

vival analysis it also allows us to look at multivariate models involving all 

the variables that are available to us. 

Available Case Analysis 

Another method for dealing with missing data is available case analysis. 

This time we can look at subsets of the data and remove only the missing 

values in those variables. 
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The main disadvantage of available-case analysis is that the sample 
base changes from variable to variable according to the pattern of miss- 
ing data. Problems are also caused in multivariate analysis as more data 

is lost and variable selection becomes more difficult, as was the issue with 

complete case analysis. 
Available case analysis is more useful than complete case analysis when 

there is a larger amount of missing data, particularly when conducting a 

simple analysis. However, in multivariate analysis the available cases must 
be recalculated for each new model hence slightly increasing computation 

time and also meaning we can not use the log likelihood ratio or AIC to 

compare models. 

3.1.2 Imputation Methods 

It is important to note that both complete-case and available-case analysis 

make no use of cases with one variable missing when estimating either the 

marginal distribution of that variable or measures of covariation between 

that variable and others. This leads to a loss of important information. One 

method to regain some of this lost information is to impute, or fill-in, the 

missing data. Imputation is a flexible method for handling missing data 

but it does have problems. There are a variety of ways in which the miss- 
ing data can be imputed. However, we must be careful with imputation 

methods as they can be dangerous. For example, once we have imputed 

the data we can start to believe that we are dealing with a complete data 

set which is obviously not the case. 
We can use either explicit or implicit modelling to impute the data. In 

explicit models, the predictive distribution from which we draw imputa- 
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tions, is based on a formal model and hence the assumptions are explicit. In 

implicit models the imputation is based on an algorithm which implies an 

underlying model. 

Single Imputation 

In single imputation we impute only one value to substitute for each miss- 
ing value. This imputation can be done in several ways, some of which 

are discussed below. Mean and regression imputation are explicit methods 

while the hot and cold deck and substitution methods are implicit. 

Mean - One of the basic methods for continuous data is single mean 

imputation. Missing data in the continuous variables are replaced 

with either a unconditional or conditional mean value. 

" Regression - This method replaces missing values with predicted val- 

ues from a regression of the covariate containing the missing data 

on the variables observed for the individual. This can also be done 

stochastically if we include a residual drawn to reflect the uncertainty 
in the predicted value. 

" Hot deck - Here, draws are based on an implicit model and replace 

missing values by values from similar responding units in the sample. 
This can involve very elaborate schemes for unit selection. 

" Cold deck - Missing observations are replaced by constant values 
from some external source. For example, an earlier study. 

" Substitution - Replacement of unit if missing values occur. This is 

many used in survey data where such cases can be substituted at the 

fieldwork stage. 
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The main problem with single imputation methods is that it is difficult 

to assess the uncertainty in the final results as we impute only one fixed 

value. Bootstrap and jackknife methods can be used to calculate standard 

errors for the imputed data parameters. These both involve resampling 

methods. Alternatively, we could use multiple imputation. 

Multiple Imputation 

Multiple imputation could also be used to impute values for the missing 

data. This method is Bayesian and involves replacing each missing value 

by a vector of J>2 imputed values. The J values are ordered in the sense 

that J completed data sets can be created from the vectors of imputations. 

Standard complete data methods can then be used to analyze the data sets. 

Multiple imputation shares the advantages of single imputation but 

also rectifies some of the disadvantages. The resulting complete data anal- 

yses can be easily combined to create an inference that validly reflects sam- 

pling variability because of the missing values. The resulting estimates are 

often more efficient than in MCAR analysis. The only disadvantage of mul- 

tiple imputation over single imputation is that it takes more work to create 

the imputation and analyze the results. 

Model choice and variable selection in the analysis of multiple imputed 

data sets is an issue as alternative models and variables may appear to be 

best fitting in the different data sets. The same analysis must be carried out 

on each data set so that the parameters can be combined. 

After the multiple data sets are imputed and standard analysis com- 

pleted on each one parameter estimates and variances need to be combined - 
This is done as proposed by Rubin (1987). The combined estimate for each 
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parameter 0 calculated from J repeated imputations is 

11 

JE6j j=l 

where ýj is the estimate from imputation j and the variability associated 

with this estimate is 

11 J+j 
11j 

21 
V= Evj+_ 

-E(ý3A i 
j=l 

ii 
j=l 

where Vj is the variance of estimate Oj- Note that this combined variance 

is the sum of the within and between estimate variances. Rubin's rules for 

combining estimates require underlying normality of the estimator. 

3.1.3 Maximum Likelihood Methods 

More complicated approaches to missing data analysis involve likelihood 

procedures based upon explicit modelling assumptions. Imputation tech- 

niques also involve modelling assumptions in a more implicit way. For 

general patterns of missing data maximum likelihood estimates cannot be 

calculated explicitly utilizing factorizations of the likelihood. If this is the 

case, and if the closed-form solutions for the score functions cannot be 

found, then iterative procedures can be used to maximise the likelihood. 

The first of these is the Newton-Raphson algorithm. Assume that we 

have a function f (x) which has a root x, such that f (x, ) = 0. We can use 

the second degree approximation from Taylor's series to approximate this 

root. If we set an initial estimate for the root as xo then we can use the 
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iteration 

Xn+l Xn -f 
(xn) 

f'(x, ) 
to find the estimated root for the n+ 1st iteration. Here, x. " is the estimate 
for the nth iteration and f(x,,, ) is the differential of f (x) with respect to x 

evaluated at Xn. The estimates converge to the root. In the case of multi- 

ple roots the root located depends upon the arbitrarily chosen initial value. 
We are considering the maximisation of the likelihood function so if this 

is unimodal and concave then the sequence of estimates converges to the 

maximum likelihood estimate if the function f is taken to be the score func- 

tion (i. e. the differential of the likelihood, or log-likelihood, function). The 

main issue with this method is that the matrix of second derivatives of the 

log-likelihood needs to be calculated which can be of high dimension and 

complicated functions of the parameters. 
An alternative method, that does not require the calculation of second 

derivatives is the Expectation-Maximisation (EM) algorithm. The earliest 

reference to the algorithm seems to be that of McKendrick (1928). Sev- 

eral other authors then used the algorithm in differing circumstances and 
Orchard & Woodbury (1972) first noted the general applicability of the 

method calling it the missing information principle. The EM algorithm 

was formalized by Dempster et al. (1977). Since then further work has been 

done regarding its convergence (Wu 1983). It is a very general iterative al- 

gorithm for maximum likelihood estimation in incomplete-data problems. 
It consists of two steps. 

* The E-step - Finds the expected complete-data log-likelihood given 
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the current estimate of the parameters, 0= O(r): 

Q(Ololrl) =1 
l(Oly)f (ymislyobsi 0= o(r) )dYmi,. 

The M-step - The M-step determines 0(1+1) by maximising this ex- 

pected log-likelihood: 

Q(O(r+1)10(r)) ýý Q(010(r))_ 

Standards errors are generally harder to calculate through the EM algo- 

rithm than when using multiple imputation. 

3.1.4 Markov Chain Monte Carlo (MCMC) Methods 

Markov chain Monte Carlo (MCMC) is essentially Monte Carlo integra- 

tion using Markov chains and provides great assistance in statistical mod- 

elling (Gamerman 2002). Monte Carlo integration evaluates the expectation 

of a function, f (x), by drawing samples IXk, k=1, .. nj from the posterior 
distribution or likelihood, 7r(. ), and then approximating 

1n 
E[f (x)] -- 

nZf 
(Xk)- 

k=l 

So the population mean is estimated by a sample mean. The difficulty in 

this arises due to the general infeasibility of drawing independent samples 

from the posterior distribution. However, the 110 need not be indepen- 

dent so can be drawn from a Markov chain with stationary distribution 

7r (. ). 

The Gibbs sampler is a special case of the Metropolis-Hastings algo- 
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rithm. The Metropolis-Hastings algorithm is used to construct the Markov 

Chain with stationary distribution, 7r (. ). At each time t, the next state, Xt+ 1, 

is chosen by firstly sampling a candidate point Y from a proposal distribu- 

tion q(. IX) which may depend on the current Xt. The candidate point is 

then accepted with probability 

a(X, Y) = min 
7r(Y)q(XIY) ý 

7r(X)q(YIX)) 

If the candidate point is accepted the next state is Xt+l = Y. Otherwise, 

Xt+l = Xt. The proposal distribution, q(. 1. ) can have any form and the 

stationary distribution of the chain will be 7r(. ). Instead of updating the 

whole of X at once it is often more convenient to divide X into compo- 

nents X =IX. 1 i- -i 
X. h} and update these components one by one. Define 

X. 
-i = 1X-1i--iX-i-1Ai+1, 

--Ah}- For the Gibbs sampler, the proposal 
distribution for updating the ith component of X is 

q(Y1IX., X. 
_) = 

where7r (yj IX. 
_j) is the full conditional distribution. 

3.2 Missing Data in Survival Analysis 

The previous methods discussed can be applied to many types of miss- 
ing data. However, they are crude and rely heavily on some strong and 

untestable assumptions. They can also lead to very biased results if these 

assumptions are not true. As discussed, more recently methods have been 

developed which approach the problem of missing data through a likeli- 

hood approach. This has led, in particular, to the introduction of methods 
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based specifically on survival models. 

3.2.1 Missing Data Problems 

Firstly, we can think about the types of missing data problems that may 

arise in survival analysis studies. Research focuses on two main missing 
data patterns. The first is when there is missing data on the covariates that 

are collected in the studies and used to model survival. In this case we must 

usually have complete information on the survival times and the censoring 

indicator. Several approaches to this problem are described in Section 3.2.2. 

The second pattern, discussed in Section 3.2.3, is when we have complete 
data on any covariates but there is missing data on the survival times or 

censoring indicator. This is often looked at in a competing risks setting. We 

can also consider event times to be missing for censored individuals and 

an imputation method using this idea is discussed in Section 3.2.3. 

The published research looking at these two problems focus on maxi- 

mum likelihood approaches, particularly using the Cox proportional haz- 

ards profile likelihood. However, some multiple imputation ideas are looked 

at briefly. 

3.2.2 Approaches to Missing Covariate Data in Survival Analysis 

Problems 

We start by considering the issue of missing covariate data. We assume full 

observation of T i. e. the censoring or failure time, and the right-censoring 

indicator 6. 
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Parametric Models 

One of the earliest references to missing data in survival analysis is that 

of Schluchter & Jackson (1989). The method has three parts. They start 

by constructing a multinomial model based on the discrete covariates. The 

multinomial model arises by using the categorical covariates to form a con- 

tingency table so that each fully observed individual falls in to only one 

cell. The distribution of the hazard function conditional on the values of 

the covariates is then described using a log-hnear model. Schluchter and 

Jackson use a stepwise constant function for the hazard (i. e. piecewise ex- 

ponential survival). The resulting likelihood is then maximized over the 

missing data using the EM or Newton-Raphson algorithm as described in 

Section 3.1.3. When fitting an unsaturated log-linear model for the hazard 

the M-step, of the algorithm also requires the application of one step of the 

IPF (Iterative Proportionality Fitting) algorithm (Bishop et al. 1975). 

Several assumptions are made in the formulation of this model. Firstly, 

only categorical covariates can be incorporated. Assumptions also need 
to be made concerning the censoring and missing value mechanisms. The 

censoring must be independent of the true survival time given the covari- 

ates. This is the usual assumption of independent censoring and most 

methods that will be discussed require this. Also, the mechanism caus- 
ing covariates to be missing must be ignorable (Rubin 1976) i. e. the data is 

both MAR and distinct. 

This model leaves many avenues for extension. The stepwise log-linear 

model for the hazard is quite restrictive but it can be extended to simple 

parametric models. Extensions will be discussed in Section 4.6. It also re- 

quires the assumption that the data is MAR which is usually hard to verify. 

38 



CHAPTER 3. LITERATURE REVIEW 

A later model by Baker (1994) tries to relax the MAR assumption made 

by Schluchter and Jackson. It again only allows for categorical covariates, 

in this case only a single covariate is included. It also allows for a non- 

ignorable censoring mechanism. 

its main approach is to group survival into discrete times and then 

model discrete time hazards for both failure and censoring. This makes the 

analysis tractable but obviously causes a loss of information and hence pre- 

cision. The formulation of the model considers four random variables: an 

indicator of a missing covariate, censoring time, failure time, and the true 

covariate stratum. Using Bayes Theorem, the joint probabilities needed for 

the construction of the likelihood are decomposed. 

The model is then able to consider a variety of possible parameteriza- 

tions for the hazard function and it is this function that is of primary inter- 

est. It again uses a log-linear model ' as in Schluchter and Jackson, which 

can describe both proportional and non-proportional hazards. A model 

for the hazard of censoring is also required and it is at this point that the 

method can allow for non-ignorable censoring as we can include a term de- 

pendent on the covariate stratum. Again a log-linear model is used. Simi- 

larly, log models are used for the missing data mechanism and these can be 

made to depend on the covariate stratum to allow for non-ignorable miss- 

ing data. 

The likelihood formed using these models is then maximized using a 

composite linear model as discussed in Baker (1994). 

This approach is more complex and time consuming than that of Schluchter 

and Jackson but it is very useful in investigating the appropriateness of the 

assumptions regarding the censoring and missing data mechanism. How- 

ever, it still does not allow for continuous covariates and the use of discrete 
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times again causes a loss of information. 

As discussed in Section 3.1.3, the EM algorithm is now used often in 

missing data problems to maximise incomplete data likelihoods. The first 

method described in this section, that of Schluchter and Jackson, uses this 

algorithm. However, it is quite simple to implement in this case, as is the 

Newton-Raphson procedure which is also described. An extension to this 

algorithm is the EM algorithm by the method of weights, as described by 

Ibrahim (1990). It is shown that, under some very general conditions, the 

E-step of the EM algorithm can be written as a weighted complete data 109- 

likelihood for any generalized linear model (GLM), nonlinear regression 

model, or time series. In a survival setting, denote the covariates as z, the 

survival times as t, and the missing observations for individual i as zmi"j- 
Thus the E-step for a general regression problem at the (r + 1)st iteration 

can be written as 

wi(, )1(0; zi, ti, 6i) 
zmis, i 

where, given 0= (a, 0), 

1(0; zi, ti, 6i) = lOgIP(ti, 6ilzi,, 3)}+IogIP(zila)} and 

Wi(r) = P(Zmis, il2obs, iiti, 6i, O(r)) 

Here a and 0 are parameter vectors. We must again assume that the 

covariates are categorical and that the responses (in our case, the survival 
times and censoring indicator) are complete. 

40 



CHAPTER 3. LITERATURE REVIEW 

Using this EM algorithm by the method of weights means that we do 

not have to calculate the incomplete data likelihood so it can be used when 

it is not feasible to use Newton-Raphson directly. 

This algorithm was first applied to missing covariates in survival data 

by Lipsitz & Ibrahim (1996). They show, however, that the method of 

Ibrahim (1990) calculates many nuisance parameters and that by propos- 

ing a conditional model for the covariate distribution they can reduce the 

number of such parameters as if a covariate is fully observed its distribu- 

tion need not be estimated. This conditional model for the p covariates 

denoted z= (zi, .. zp) is 

P(Zj, .., ZpIce) -'ZZ P(Zpjzlý 
-7 ZP-11 CVP) ... 

P(Z21zl, a2)P(ZI lal) 

which could be fitted using a series of logistic regression models in the case 

of dichotomous covariates. This idea is useful for any parametric model of 

a response given discrete covariates. 

We can also use these method to incorporate continuous covariates that 

have no missing values. As discussed, if a covariate has no missing values 

we do not need to estimate its distribution given the other covariates in the 

above model thus allowing it to be continuous. Lipsitz and Ibrahim also 

demonstrate numerically that the parameter estimates for the final model 

and the resulting test statistics are not sensitive to the order of conditioning 

in the conditional model for the covariates. 

Lipsitz and Ibrahim introduce a liver cancer survival analysis data set 

as an example. In order to model the survival function they decide on a 

piecewise exponential model as in Schluchter & Jackson (1989). 
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Obvious extensions to the EM algorithm method by weights described 

by Ibrahim can be seen. Continuous covariates with missing data still need 

to be allowed for and we need to look at the details of using more complex 

parametric survival models when there are missing covariate data. Recent 

research has focused on these problems. 

In a subsequent paper by Ibrahim et al. (1999) the technique of Monte 

Carlo EM (as discussed by Wei & Tanner (1990)) was applied to tackle the 

issue of incorporating continuous covariates. The motivating example is 

a right-censored survival analysis data set although this technique can be 

used with a variety of models. 
The Monte Carlo E-step for the EM algorithm is derived. For missing 

continuous covariates, the usual E-step for the ith observation can be writ- 
ten as 

Q(010(r» =11 (0; Zi, ti, bi) P (Zmis, i 1 Zobs, i i ti i 
b, 

' o(r»dz�, i�, i - 
(3.2) 

We can compare Equation 3.2 to Equation 3.1 and note the obvious inte- 

gration caused by the inclusion of continuous covariates. It can be shown 
that 

P(Zmis, ilZobs, ii t, 1 5� o(r» � p(t, 1 6, iZ� 0(, r»p(Zile, (r», 

and therefore the product on the right can be used for sampling from the 

distribution [Zmis, ijZobs, ii ki 6ii ON]. For the ith observation a sample of size 

mi, zi,,,..., zi, mi, is taken from the distribution of [z,, i,, ilz,, b,, i, t,, 6,0(r)] via 

the Gibbs sampler in conjunction with the adaptive rejection algorithm. 
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The E-step for all observations, at the (t + I)st iteration, is given by 

Q(010(r» =ZZ- 
n mi 1 

1(0; Zi, hiZobs, iiti, bi) 

i=I h=I Mi 

This method for estimating the model parameters when there are miss- 

ing categorical, continuous, and mixed covariates can be used for arbitrary 

parametric regression models. However, the maximum likelihood method 

proposed requires the specification of a parametric distribution for the co- 

variates and thus introduces the possibility of misspecification. 

Cho & Schenker (1999) look at the log-F accelerated failure model. The 

log-F AFT model includes models with extreme value, logistic, normal, and 

log-gamma errors. This means that many parametric models, including the 

Weibull, gamma, log-logistic, and log-normal, can be fitted by adjusting the 

number of degrees of freedom in the log-F distribution. They assume that 

the missing covariate mechanism is ignorable (i. e. MAR and distinct) and 

that censoring is random and non-informative. They do, however, develop 

an extension that allows the censoring mechanism to depend on missing 

covariate values. Covariates can be continuous. They take a Bayesian ap- 

proach and utilize MCMC (Markov Chain Monte Carlo) techniques. 

Denote the vector of categorical covariates as U and the vector of con- 

tinuous covariates as V. The AFT survival model for survival times, T, is 

given by 

log(t) = 3o +, 3, U +, 32g(V) + /33h(U, V) + orc 

where g(V) is a vector representing the main effects and interactions of V, 

h(U, V) is a vector of the selected interactions between U and V, and E is 

a random error variable. Assume that E- log F(2a, 2b). Cho and Schenker 
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then suggest models for the covariates and the censoring. The model for 

the covariates is the general location model. This is the model used by 

Schluchter & Jackson (1989) and Lipsitz & Ibrahim (1998). It consists of a 

multinomial model for the contingency tables formed by the categorical co- 

variates and then has a multivariate normal distribution for the continuous 

covariates within each cell. There can be restrictions on this model as it can 
have many parameters. The model suggested for the censoring mechanism 
is an exponential regression model. They use the Gibbs sampler to estimate 

posterior distributions for the model parameters. 

Meng & Schenker (1999) also investigated the problem of missing data 

on continuous covariates. They again make the assumptions that data is 

MAR and that censoring is non-informative and random. They also assume 
that the censoring distribution does not depend on any predictors that are 

missing. They look at log-linear regression models of survival time on the 

covariates. This includes AFT models. They restrict the error variable to 
have a standard normal distribution. 

Instead of using MCMC techniques, as in Cho & Schenker (1999), Meng 

and Schenker simply construct the likelihood and maximise it over the 

missing data using the EM algorithm. Alternatively, the Newton-Raphson 

algorithm could be used although it tends not to converge without a good 
initial estimate for the parameters. 

Cox Proportional Hazards Models 

Section 3.1 looked at some of the earliest methods for missing data in sur- 

vival analysis and also some later more general approaches. As discussed 
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in Section 2.1.4 the most commonly used model in survival analysis is the 

Cox proportional hazards model (Cox 1972). Hence, there has been signif- 

icant research into using this model in the presence of missing data. The 

main problem with the Cox model is that standard likelihood methods can 

not be used as no parametric distribution is used for the baseline hazard so 

a partial likelihood is used instead. 

Let (xi, ci, zi), for i=1, .., n, be n independent replicates of (X, C, Z) 

where X is the failure time, C is the censoring time, and Z the vector of 

covariates. If we take tj = min (xi, ci), 6i =I (xi !ý ci) and wi (t) =I (ti ý! t) 

then the complete data partial score function for 06 is 

bit zi (ti) -20, ti) 1, (3.3) 
i=l 

where 
Eln=, wl(t) expf/3TZ, (t)IZI(t) 

t) -- l= n =l 
WI(t) eXpf, 3Tzl(t)1 

Note that /z. (O, t)is the conditional expectation of Zj(t) on fl : tj > tj. The 

MPLE, 3 is defined as the solution to the score equation I U(O) = 0}. It can 

be solved using Newton-Raphson. 

The earliest methods for incorporating the Cox proportional hazards 

model into analysis with missing data often required quite strict assump- 

tions. In particular, some of the first research of Lin & Ying (1993) requires 

the data to be missing completely at random (MCAR). However, they do 

allow the use of time-dependent continuous covariates. 
They derive an estimating function for the vector of regression param- 
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eters which is an approximation to the standard partial likelihood score 

function. Firstly, they estimate the conditional expectation, 2(, 3, t), from the 

subjects who have complete data at time t. The sum over the uncensored 
failure times of the observed value of zi (ti) minus its estimated 2 (3, ti) can 

then be used as an estimating equation for Oo. For those uncensored in- 

dividuals with missing observations, the equivalent components of zi are 

merely excluded from the summation. 
To construct the estimating equation they consider two random vari- 

ables, I Hoi (. ), Hi (. ) 1, where Hi (. ) is apxp matrix (p = number of covari- 

ates) with diagonal elements JHjj(. ),... 
'Hpi(. 

)} 
. Also, denote Hji(t) = 

I(zji(t) observed) and Hoi(t) = I(Hji(t) = 1) for aUj = 1,... p. It is now 

that the MCAR assumption is required as this corresponds to the assump- 

tion that the missing indicators jHjj; i=1,.., pl are independent of all 

other random variables. Now they introduce the following notation... 

S(')(, 3, t) = n-1 1: Hol(t)yi(t)eXPI, 3TZ, (t)ýZ, (t)O� 
i=l 

E(, ß, t) = (, ß, t) IS(') (ß, t), 

where for a vector a, aO' = 1, aOl = a, and a(92 = aaT. 

The approximate partial likelihood estimator (APLE) can then be writ- 

ten as 
ýj Hi (ti) I zi (ti) -E (0, ti) 

This APLE is shown to have only slightly reduced efficiency in compar- 

ison to the MPLE with full covariate measurements unless there is a large 

quantity of missing data. 
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A later paper by Zhou & Pepe (1995) also looks at an estimated partial 
likelihood estimator for the Cox regression model but makes use of auxil- 

iary covariate data which are considered to be informative about the data 

but which are not part of the regression model. 
They differentiate between individuals with complete data, which they 

call the validation sample V, and those with missing data. Those with miss- 

ing data must have observed auxiliary data. For those in the validation 

sample they look at the relative risk and for those not in the sample they 

look at the expectation of the relative risk given the observed auxiliary data. 

The association between the covariates in the regression model and the aux- 

iliary covariates is left unspecified and is estimated nonparametrically. 
Although the induced relative risks are unknown they can be estimated 

using the data in the validation sample. Then we can look at the intu- 

itive expectations of these relative risks given the auxiliary data, which are 

just weighted sums, and use these values in the sum over individuals that 

forms the approximate partial likelihood. The estimated partial likelihood 

score function is then solved using Newton-Raphson. 

This method does have some limitations. Firstly, whilst the potentially 

unobserved covariates in the proportional hazards model are allowed to 

be continuous the auxiliary covariates are not. Secondly, if the dimension 

of the auxiliary covariates is large, validation subsets within each distinct 

category may be small causing unstable induced relative risks. It is also 
difficult to see if the validation sample is a simple random sample of the 

whole data set. This assumption is required for the analysis. 

An alternative to the methods of Lin & Ying (1993) and Zhou & Pepe 
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(1995) is described by Paik & Tsai (1997). Their method still requires the 

data to be MAR. Denote those covariates that are completely observed for 

individual i as zl, i(t) and those covariates that may be missing as Z2, i(t)- 

The partial likelihood score function for the Cox proportional regression 

model can be rewritten as 

n 1: n 
1 

(tj) ZI, j (tj) 
e, 

3T-1, j(ti)+, 32T Z2J (ti) 

6 
(zi, 

i(ti» j= wj 
Zj, j (tj) 

)1 

Uf (ß) 
Z En ßT�, j (t, )+9T 2, i (ti) j=, wj(tj)e 12 

Z2, i 
(ti 

01 Ei) (02) 
- 

(E2 

using the same notation as in Equation 3.3. 

The first term in the above equation is a sum of "observed" covariates 
from failed study subjects, and the second term is a sum of "expected" 

covariate values given the prior information. Paik and Tsai propose two 

estimating functions. In the first they impute the "expected" term only. As 

in the previous method of Lin and Ying (1993) the contribution to the score 
function is discarded if the failed study subject has missing covariates. This 

imputation yields consistent estimators of the "expected" term under a re- 

stricted MAR assumption. This assumption is that missingness can depend 

on observed covariates but not on missing covariates or the correspond- 

ing failure or censoring times. The second method imputes both the "ex- 

pected" and "observed" terms. This method yields consistent estimators 

under the normal MAR assumption. If some of the fully observed covari- 

ates are continuous a smoothing technique is required. The imputed values 

can then be used in an imputed partial likelihood score function which can 

be solved via Newton-Raphson to obtain the proposed estimators for the 

regression parameters. 
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A slightly different approach to the problem of missing covariate data 

in the Cox proportional hazards model is taken by Pugh et al. (1993). In- 

stead of using an approximate partial likelihood by estimating the relative 

risk for those individuals with missing values they weight the score equa- 
tion from the complete case analysis to remove the bias caused by data not 
being MCAR. The subject-specific weights are proportional to the recipro- 

cal of the probability of having complete data. Although these weights are 

generally not known they can be estimated from the data using a binary 

regression model such as the logistic or probit model. Like the previous 

two approaches they allow continuous covariates. 

If there is independent censoring then the resulting parameters for the 

complete case analysis are consistent to the true parameters. Pugh et al. in- 

troduce a weighted score equation which yields unbiased estimates under 
less restrictive assumptions. 

There is a problem in this approach: we have to estimate the probabili- 

ties that individuals are fully observed given their covariate values. There 

is the danger of misspecification in this model which may lead to bias. 

A common unattractive feature of the methods discussed so far is that 

the variance formulas are very complicated. Multiple imputation meth- 

ods provide estimates whose variances can be easily computed by adding 
between-imputation and within-imputation variances. Paik (1997) looks at 

three multiple imputation methods for the Cox proportional model with 

missing covariate data. Two of the imputation methods provide estimates 

that are asymptotically equivalent to the earlier results of Zhou and Pepe 

(1995) and Paik and Tsai (1997). The third is a modified version of the sec- 
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ond of these for which estimates and standard errors can be calculated us- 
ing standard software, and time varying covariates can be incorporated. 

In drawing random samples from the observed data, we need to incor- 

porate variability. One method for doing this is the Approximate Bayesian 
Bootstrap (ABB) (Rubin, 1987, p124). This method has two steps. Firstly, 

sample with replacement from the observed observations, then draw im- 

putes from this bootstrap sample. 
The first two imputation methods described are completed by draw- 

ing imputes of the missing data using ABB from the observed covariates 
in each risk set given the fully observed covariates and then using these 
imputations in the estimating equations of Zhou and Pepe (1995) and Paik 

and Tsai (1997). Repeating the imputation D times leads to a series of pa- 
rameter estimates, ý(D)' which we can then average over. Although 

the variances of the regression parameters for these two imputation meth- 
ods are easier to compute than those from the methods on which they are 
based, they still can not be calculated using standard software so a modifi- 
cation to one of the methods is discussed. The difficulty in implementing 
the first method occurs as the imputed values for the missing covariates 
should be updated for every iteration of the Newton-Raphson algorithm 
as they depend on the regression parameters that we are trying to find. 
The modification changes the form of these imputed values so that they do 

not depend on the parameters. Again, a smoothing technique would be 

needed in any of these methods in the presence of continuous covariates. 
Using simulation methods, the authors compare their imputation meth- 

ods to the methods on which they are based and also complete case analysis 
results and results from the methods of Lin and Ying (1993) and Pugh et al. 
(1993). They conclude that the imputation methods are more efficient than 
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the estimates based only on complete data and inference can be drawn us- 

ing standard software. They also have the advantage of simple variance 

calculation but there is a loss in efficiency over the other discussed meth- 

ods. 

Another approach is taken by Chen & Little (1999). Unlike their prede- 

cessors, who look at approximations to the partial likelihood, these authors 

look at a nonparametric maximum likelihood approach. They do, how- 

ever, use an EM type algorithm to solve the maximisation problem. Again 

the method requires the MAR assumption. Simulation results suggest that 

this nonparametric method is more efficient than approximate partial like- 

lihood methods and complete case analysis. 

The main feature of the model is a discretization. of the likelihood which 

can then be maximized simply. When there are no missing data the Cox 

partial likelihood is obtained as the profile likelihood under this discretiza- 

tion. This method requires specification of the distribution of the missing 

covariates. The likelihood of the Cox proportional hazards model is (up to 

a constant factor): 

L (0 1 Zbs, t, 6) = 
11 f ho (ti) } 6' 1 

lexp (OTZ)}6i exp(-Ho(ti) exp (OT Z» f (Z, 0) dz 

i=I 

where the integration is over the possible covariate values for individual 

i. The maximum over the parameter space for 0 does not exist so the 

likelihood is modified by discretization of the cumulative baseline hazard, 

Ho (ti), as a step function with jumps at the observed failure times. This can 

then be maximized using an EM type algorithm. 
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However, this model requires a specification of the distributional form 

of the covariates. This feature is not present in the imputation method of 

Paik and Tsai (1997) or the approximate profile likelihood method of Zhou 

and Pepe (1995). 

A paper by Martinussen (1999) follows this method. Again the covari- 

ates are assumed to be missing at random. Non-informative censoring, as 

usual, is also assumed. The method relies on the nonparametric maximum 
likelihood interpretation of the Nelson-Aalen estimator in the Cox regres- 

sion setting (see Anderson et al. (1989)) whereas the method of Chen and 
Little (1999) uses the Breslow estimator. 

Again Martinussen specifies the complete data likelihood and maxi- 

mizes it using an EM type algorithm. This is the same EM algorithm by 

weights described by Ibrahim (1990) and used in Lipsitz & Ibrahim (1996). 

While the method is described for categorical covariates this is only a tech- 

nical assumption not a conceptual one. This method can also be extended 
to non-ignorable non-response if we can model the missing data mecha- 
nism. Simulations again suggest that this method is more efficient than the 
imputation method of Paik and Tsai (1997). 

MCMC methods of analysis can be used in missing data problems. 
They are used in the paper of Lipsitz & Ibrahim (1998). They propose a 

set of estimating equations for the parameters in a Cox model which they 

suggest are solved using MCMC, as an approximation to the EM algo- 

rithm, due to their computational intensity. They require the MAR assump- 
tion and restrict their analysis at first to categorical covariates. Their work 
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can be considered as an extension to the likelihood method of Lipsitz and 

Ibrahim (1996) to the Cox model. They take a serniparametric approach to 

specifying the joint distribution of the survival times and the covariates. A 

fully parametric distribution is given for the covariates and the conditional 
distribution of the survival times given the covariates is given by assuming 

proportional hazards. 

To specify the distribution of the covariates they use a multinomial dis- 

tribution similar to that of Schluchter and Jackson (1989) as the covariates 

are categorical. An obvious choice of model is then a log-linear model with 

regression parameters a. As the data is assumed to be MAR a consistent 

estimator of the parameters, 0, can be obtained by using the conditional 

expectation of the complete data score vector. Therefore they use the stan- 

dard forms for the score equations for the parameters in the proportional 
hazards model. Thus, 

U*(O) = E[U(O)lZc)bs] 

Ei'-lfo' fzj-. ý(s, O)jdNj(s) 
n (t)yi(t)eoT,, E Ei=l ýdNj(t) 

- AO observed data 
En 

i=l alogp(Zila)/, 9a 
J 

where 0= (0, A0, a) and the score equations for 0 (the survival model co- 

variates) and Ao (the baseline hazard) are written in counting process nota- 

tion (Fleming & Harrington 1991). Since the missing covariates are categor- 

ical we can remove the conditionality from the score function and multiply 

by the conditional probabilities for specific values summing over all possi- 

ble values. 
Their MCMC approximation to the EM algorithm is then summarized 
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as follows: 

Obtain an initial estimate of 0= 00), say, by complete cases. At the 

kth step we have 0(k). 

Using this calculate the posterior probabilities for the multinomial 

model. 

Fixing these, sample missing data from its conditional multinomial 
distribution. Repeat this L times to get L complete data sets. 

Find the mean of the score functions for the L data sets and set to 0. 

Solve for 0= 0(m+'). 

9 Iterate until convergence. 

This is similar to the method of Wei and Tanner (1990). This method is 

computationally feasible and can be easily implemented in standard soft- 

ware packages. 

MCMC is also used in follow-up papers by Herring & Ibrahim (2001), 

Leong et al. (2001), and Herring et al. (2004). The first of these, that of 
Herring and Ibrahim (2001) extends the method described above to contin- 

uous covariates. The MAR and non-informative censoring assumptions are 

again required. They implement a Monte Carlo version of the weighted EM 

algorithm along with the Gibbs sampler which is different to the method 

of Lipsitz and Ibrahim (1998). It is more computationally feasible to this 

earlier approach. When covariates are categorical it leads to similar results 
to the method of Chen and Little (1999). 
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The results of Lipsitz and Ibrahim (1998) are extended to allow for non- 

ignorably missing covariate data in the paper by Leong et al. (2001). Co- 

variates are still required to be categorical. 

Recall the estimating equations described earlier. We now include a 

model for the missingness mechanism and, hence, a corresponding score 
function 

=n 
09[logIP(Milti, ýi' zi, 0) 1] 

UO (0) E 
00 

i=1 

where mi is a vector of indicator values for the missingness of covariates for 

individual i, tj is the survival time, ýj is the censoring indicator, zi are the 

covariate values, and 0 are the parameters in the model for the missingness 

mechanism. The method uses the same Monte Carlo EM algorithm as that 

of Lipsitz and Ibrahim (1998). 

The covariates can be modelled using a saturated linear model and the 

number of nuisance parameters can be reduced using the idea of Lipsitz 

and Ibrahim (1996) where we write the distribution of the covariate vector 

as a product of one-dimensional conditional distributions. It is suggested 
that the missing data mechanism is also modelled by a sequence of one- 
dimensional conditional distributions. Since all components of Mi are bi- 

nary a sequence of logistic regressions is an obvious choice for the model 
form. The exact form of these logistic regression models can be determined 

by using Akaike's information criterion or the likelihood ratio. We need to 

be careful not to include too many factors in the model as it would soon 
become unidentifiable. 

This method is again extended by Herring et al. (2004) to include con- 
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tinuous covariates. Missingness is still allowed to be non-ignorable. It is a 

similar approach to that of Leong, Lipsitz, and Ibrahim (2001). 

When the covariates are continuous the E-step in the EM algorithm in- 

cludes an integral instead of a sum. This integral generally has no closed 
form. However, it has the form of an expectation with respect to the miss- 
ing data given the observed data and current parameter estimates. This 

means that it can be evaluated via the Monte Carlo EM algorithm of Ibrahim 

et al. (1999). Samples are taken using the Gibbs sampler. In the model for 

the covariates logistic or normal linear regression models can be used. 

3.2.3 Approaches to Missing Survival T"ime Data in Survival Anal- 

ysis Problems 

This issue is not going to be a focus in this thesis but it is interesting to 
look at previous methods to handle the problem and we include the dis- 

cussion here for completeness. This problem often occurs, particularly in 

a competing risks framework. It is interesting to consider the comparison 
between censoring and complete missingness, both of which are examples 

of coarsened data. This is just a small sample of the relevant literature. 

Multiple Imputation 

As described in Section 3.1.2 we can use multiple imputation in dealing 

with missing data problems. If it is the covariates that contain missing data 

and the survival times and censoring indicator are complete standard im- 

putation techniques can easily be used. Problems arise when the missing 
data occurs within the survival time variable. Taylor et al. (2002) discuss 

three methods for the imputation of missing survival times. The missing 
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data that they discuss are the true event times that go unrecorded for cen- 

sored individuals. 

The first of these methods is risk set imputation (RSI). In this approach 

we impute a survival time and censoring indicator from those individuals 

in the same risk set (i. e. those individuals still alive at the time of censor- 

ing). If the last observed event is censored then it retains its value since the 

risk set contains no possible donors. 

The second method is Kaplan-Meier imputation (KMI). This method 
draws an event time from a Kaplan-Meier estimator of the event times 

among those at risk. A KM survival curve is estimated from those indi- 

viduals in the corresponding risk set to each individual with missing data. 

The final imputation method is Bootstrap imputation (BI). The RSI and 
KMI methods alone do not incorporate the uncertainty in the imputes. 

Consider a bootstrap sample selected with replacement from the original 
data set. The imputing risk set then consists of those individuals in the 

bootstrap sample who are still at risk at the censoring time for the relevant 
individual. RSI or KMI can then be used. 

Imputations can be calculated J times and then standard multiple im- 

putation techniques can be used. 

Competing Risks Models 

One form of multistate survival model is the competing risks model. This 

model is relevant when there are several types of failure so instead of a bi- 

nary censoring indicator we have a failure type indicator. So far we have 

focused on the problem of missing covariate data but it may occur, partic- 

ularly, in competing risks models, that the failure type indicator is missing. 
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Censored survival times often preclude observation of the censoring indi- 

cator. There has been less investigation into this area. 

Dinse (1982) considered this issue. Data consist only of a survival time 

and failure indicator for each subject, there are no covariates. The con- 

structed model looks at the following four possible individual missing data 

patterns. 

1. Known survival time and failure type. 
2. Survival time right-censored and failure type unknown. 
3. Survival time right-censored and failure type observed. 
4. Known survival time but missing failure type. 

The model does not look at the situation when the survival time is com- 
pletely unknown. Censoring is assumed to be non-informative and data 

is MAR. A non-parametric likelihood can then be constructed. The joint 
distribution of the survival time and failure type indicator is estimated via 
the EM algorithm. This method can also be used in a traditional survival 
analysis setting when there is one covariate with missing values. 

The non-parametric MLE of the survival function is discrete (Kaplan & 

Meier 1958). The E-step of the EM algorithm only involves estimating the 
(unobserved) number of failures at time tk who have an observed failure 

type, j, and a right-censored survival time. Therefore, it is quite simple to 

compute. 
Less restrictive forms of incomplete observations would permit further 

extension of this technique. For example, we may observe a union of in- 

tervals on the positive real line for the survival time. Left and interval- 

censoring are special cases of this. Alternatively, we may know that the 
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failure type was one of a subset of the complete set. This would alter the 

contributions of the four possible missing data patterns but the EM algo- 

rithm would still provide maximum likelihood estimates. However, com- 

putation would be more complicated. 

It has been shown that nonparametric maximum likelihood estimators 

are inconsistent when failure indicators are missing. Van Der Laan & McK- 

eague (1998) introduce a sieved non-parametric maximum likelihood esti- 

mator and show that it is efficient. The assumption of MAR is again made. 

They do not strictly work with competing risks as there is no failure type 

indicator only the standard censoring indicator which can be missing. 
Their approach is to find the nonparametric maximum likelihood esti- 

mator (NPMLE) of the survival function based on reduced data produced 
by a discretization of the observed (possibly censored) survival times. This 

discretization is done by interval censoring the survival times of those in- 

dividuals for whom the censoring indicator is unobserved. This method 

provides consistent results. 

The methods of Dinse and Van Der Laan and McKeague looked at non- 

parametric models for the survival function. A natural progression is to 

look at the Cox proportional hazards model. Goetghebeur & Ryan (1995) 

base their method on the solution to estimating equations. MAR and nonin- 
formative censoring assumptions are again made. The method also allows 
for the inclusion of time-dependent covariates. 

Their approach is developed in two steps. They work with two possi- 
ble failure types. Firstly they assume the baseline cause-specific hazards for 
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the two types of failure are proportional and that the proportionality con- 

stant is known. This could be dependent on time. They construct a partial 
likelihood which leads to an score equation estimator that reduces to the 

Cox proportional hazards model when there is no missing data. Then, sec- 

ondly, they allow for estimation of the proportionality constant. However, 

in this second approach standard results are not achieved if the method is 

used on complete data. Score tests and cumulative hazard estimators are 

also derived. 

3.2.4 Summary 

As we have discussed missing data is a very complicated issue within sta- 

tistical theory. Research has focussed on the issue of missing at random 
(MAR) data, in particular within the Cox proportional hazards model as 

the semi-parametric nature of this model presents specific issues. We have 

considered a range of these approaches. There is some consideration of the 

NMAR assumption again mainly in the Cox model. 
We are left with some obvious areas for further study In particular, 

the use of fully parametric models under the NMAR assumption. In the 

following chapter we will present our motivating data and then go on to 

consider how we might fit such models under this assumption. 
One important thing to note is that we have barely touched on the vast 

literature on the use of multiple imputation. The flexible nature of the ap- 

proach means that it is not discussed exclusively with the survival liter- 

ature but is able to stand alone. There is considerable interest in the use 

of multiple imputation as its flexible nature means that it is very useful in 

standard analyses. Increasing software is being developed to conduct mul- 
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tiple imputation and this growing availability means that it is becoming 

slowly more popular in applied research. There are of course many diffi- 

cult questions that need to be resolved including how to best simulate the 

complete data and how to conduct model selection. 

Having investigated the literature we can now go on to look at our data. 

We will implement some of the simpler techniques and then develop flex- 

ible methods for modelling under less restrictive missing data mechanism 

assumptions. 
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Chapter 4 

Motivating Data 

4.1 Cerebral Palsy 

Cerebral palsy (henceforth CP) is a condition which affects many physical 

and mental characteristics. It is due, either, to a failure of part of the brain 

to develop properly or an injury that damages sections of it. It is usually ac- 

quired at a very young age, during pregnancy or labour, and is commonly 

diagnosed in the first years of childhood. Current beliefs suggest that the 

condition affects one in every four hundred children (Scope: About Cerebral 

Palsy 2006). There are several possible causes of CP and it is often difficult 

to identify the relevant incident in any one child. However, some of the 

known causes are infection in pregnancy, abnormal development, a diffi- 

cult or premature birth, genetic factors, or infection or injury in childhood. 

It is not a new disorder but the medical profession did not begin to 

study cerebral palsy as a distinct medical condition until the late 19th cen- 

tury. 

CP is nether progressive or communicable. It is also not curable al- 
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though therapies and technology can be highly beneficial to individuals af- 
fected by the condition. There are three main types of CP: spastic, athetoid, 

and ataxic CR The most common form of CP, affecting approximately 80% 

of sufferers (Cerebral Palsy - Ask the Doctor 2006), is spastic CP which causes 

the muscles to stiffen and decreases the possible range of movement. If only 

one side of the body is affected the condition is referred to as 'hemiplegia'. 

If legs are affected but arms are unaffected or only slightly affected this is 

known as 'diplegia' and if both are equally affected, then the term used 
is 'quadriplegia'. With athetoid CP muscles switch rapidly between tense 

and loose hence causing involuntary movements. These movements often 

interfere with skills other than obvious motor functioning including swal- 

lowing and speech. Ataxic CP is a rare form of the condition and causes 
difficulties in balance and coordination. It is possible to have mixed forms 

of CR Other symptoms associated with CP include epilepsy, poor sight and 
hearing, spatial awareness problems, and learning difficulties. Risk factors 

include mother's and father's age and position in family. 

4.1.1 The Effect of Severity on Survival 

The effect of the severity of physical, cognitive, and sensory disability on 

the survival of people with cerebral palsy (CP) has been described previ- 

ously (Evans et al. 1990, Hutton et al. 1994,2000,2002, Strauss et al. 1998a, 

1998b, and Blair et al. 2001). Research strongly suggests that the severity 

of disability has a highly significant effect on the expected survival. Those 

individuals with less severe disabilities can live well into adulthood. In- 

deed, estimates suggest that over 80% of children diagnosed with early im- 

pairment CP survive beyond their 30th birthday (Hutton & Pharoah 2002). 
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However, this data differs markedly from other available information and 

the true proportion may be lower. Physical disabilities, and in particular 

the lack of primary functional skills, are considered the most indicative of 

poor future survival. Strauss et al. (1998) investigate this in detail, look- 

ing at the ability of the child to roll and sit independently. Severe learning 

disabilities are also significant when considering survival but there is some 

belief that this is due to a high correlation with physical disability (Blair 

et al. 2001). More recently, Hutton & Pharoah (2002) have shown that se- 

vere sensory disability is also predictive of poor survival. A summary of 

recent research can be found in Katz (2003). 

Interestingly, and perhaps counterintuitively, birth weight and gesta- 

tional age are less predictive of survival and a low birth weight actually 

increases survival expectations. This is attributed to the likelihood that the 

most at risk babies of low birth weight die before a diagnosis of CP can 
be made. As neonatal care improves we might expect to see this change 

as more severely disabled children of low birth weight survive until CP 

is recognized. Currently, levels of severe disability are lower in low birth 

weight groups which suggests that cohorts are losing a large number of 

undiagnosed individuals (Hutton et al. 2000). 

Nearly all studies look at short term survival in child cohorts and use 
information obtained at or close to diagnosis to model future survival. 
Strauss & Shavelle (1998) consider long-term adult prognosis and conclude 
that this may not be reliably deduced from a follow-up of children in the 

original same condition as a change in disability level can occur and this 

affects survival. Further work found that excess mortality risk in compari- 

son to the general population decreased with age. Strauss et al. (2004) show 

that levels of severe mobility disability increase in adults over the age of 60 
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years. They also observed poorer survival in this age bracket. Their work is 

based upon a large cohort from California, USA. Work in the UK (Hutton 

et al. 2000) concludes that the hazard functions here vary from those in 

their cohort but that this difference is not due to differing rates of severe 

disabilities. 

As with all survival research the Cox proportional hazards model (Cox 

1972) is commonly used to model survival and estimate hazard ratios. This 

appears to be done without investigation of the proportional hazards as- 

sumption. Hutton & Pharoah 1994,2002, instead of using this approach, 

consider parametric models. In particular, they use the log-logistic acceler- 

ated failure model (Collett 1999) which they conclude is most appropriate 

for their data. 

There are two main issues that occur in nearly all the previous research 

into cerebral palsy survival. These involve ascertainment bias and miss- 

ing covariate information. Problems with ascertainment are widespread 

and most research attempts to tackle the issues that are believed to affect 

the data. In particular, the Californian cohort discussed above is collected 
from information regarding those who receive care in the state. This means 

that they may miss some individuals with low disability who require little 

or no care. However, they believe that any bias that this causes is small 

as their survival estimates for low disability individuals are very close to 

that of the general population. Also, Hutton & Pharoah (2002) investigate 

possible ascertainment bias caused by the part retrospective nature of their 

data from Merseyside, UK by comparing survival from entry to the cohort 

and survival conditional on survival until two years. They conclude that 

there is little difference between the two. 

All the studies suffer from missing covariate data but there is generally 
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little discussion concerning the mechanism behind the missingness. Com- 

plete case analysis is sometimes used but Hutton et al. (1994) point out that 

missing disability covariate information is unlikely to be independent of 

the severity level. In this case, using complete cases, a method only suit- 

able for missing completely at random data, will lead to bias in survival 

model estimates. This is the problem at the foundation of this thesis. 

4.2 The Bristol Data 

The motivating data come from a part retrospectively and part prospec- 
fively ascertained 1930s to 1960s birth cohort based on consultant paedia- 

trician Dr Grace Wood's case referral in the Bristol region of the UK. Each 

individual was diagnosed with cerebral palsy (CP). From 1951 to 1964, 

all cases under the care of the paediatrician were recorded on profession- 

ally designed punch cards. This later became the subject of her MD the- 

sis (Woods 1957). The cohort claims to see all cerebral palsied children 
from Bristol and the surrounding area. 

The information held on the punch cards was subsequently compiled 
into a database. Details of this method can be found in Hemming et al. 
(2006). Individuals were included if they met certain criteria and could 
be clearly diagnosed with CP Only those with early impairment CP were 
included i. e. if there was mention of a postnatal event after 28 days the 

child was excluded. Inevitably some cases were excluded as there was not 

enough information to allow for diagnosis. 

The data consists of information on birth weight, gestational age, the 

mother's age at birth, and several disability covariates. These include levels 

of ambulation (leg movement), manual dexterity (hands and arms), vision, 

66 



CHAPTER 4. MOTIVATING DATA 

and IQ (intelligence quotient). All can be grouped into severe and non- 

severe groups. See Section 4.2.1 for the precise definitions of levels. Previ- 

ous research (Hutton et al. 2000) suggests that this distinction provides the 

greatest significant difference in survival. Information is also available on 

date of birth, date of death (where appropriate) and, the age at first assess- 

ment. For those individuals in the study who are still alive, lifetimes are de- 

fined as timed from birth until the censoring date, December 2005. Deaths 

are flagged via the National Health Service Central Register (NHSCR) of 

the Office for National Statistics. 

4.2.1 The Variables 

The data consists of information on gestational age, mother's age at birth, 

and several disability covariates. Information is also available on date of 
birth, date of death (where appropriate) and, the age at first assessment. 

o Birth characteristics 

Gestational age Length of the gestational period of the child (in weeks). 

Birth weight Weight at birth (in grams). 

Mother's age Age of the child's mother at birth (in years). 

o Disability variables 

Ambulation Level of ambulatory disability (1 - none/mild (lowest), 

wheelchair dependent (highest)). 

Manual dexterity Level of manual disability (1 - none/mild (lowest), 

unable to feed or dress themselves (highest)). 

IQ Intelligence Quotient measurement. 
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Vision Level of visual disability (1 - non-severe (lowest), 2- regis- 

tered blind or attend school for partially sighted (highest)). 

* Lifetime outcome data 

Age Age (in days) at death or censoring. 

Age of assessment Age at first assessment (in days). 

Dead Censoring indicator (0-censored, 1-dead). 

Little is known about how this data were collected, particularly the dis- 

ability variables. Specifically, it is not known which method(s) were used to 

calculate IQ. However, the simple categorical structure of each of the phys- 

ical impairments means that measurement error is unlikely. For example, 

opinion on whether a child is dependent upon a wheelchair is unlikely to 

differ. As mentioned we will split the disability covariates into two lev- 

els: severe and non-severe. The severe group for each variable will include 

only those in the highest level. This means that those coded as severe for 

the ambulation and manual dexterity are those at level 4 (wheelchair de- 

pendent / unable feed or dress themselves). IQ is a continuous variable, 

we define a severe IQ to be less than 50. Vision is only recorded as a binary 

covariate anyway These definitions have been used previously by Hutton 

et al. (2000). Using these binary covariates again minimises the effect of 

measurement error. 

4.2.2 The Work of Hemming et al. (2006) 

This data has already been the motivation for work by Hemming et al. 

(2006). Their paper focused on two main aims. The first was to investi- 

gate the long-term survival in adults with CP and compare it to the general 
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population. They also examined the cause of death. We are mainly inter- 

ested in the first of these here. Survival is analyzed by birth characteristics 

and severity of disability conditional on survival until 20 years (and 2 years 

for a subset of the data). Conditioning on this 20 year survival, 85% of the 

cohort survived for another 30 years, compared to 95% for the general pop- 

ulation. Indeed, expected survival for the CP cohort is consistently lower 

than for the general population. However, the outlook for survival is gen- 

erally good. Intellectual ability is shown to be particularly associated with 

survival. 
In general, findings are consistent with the Californian long-term in- 

vestigation into adult survival Strauss & Shavelle (1998) discussed earlier 

in Section 4.1-1. It was found in both that excess risk of death over the gen- 

eral population decreased with age. However, the Bristol cohort exhibited 

an increase in relative risk for females over 50 years of age that is not found 

in the American study. Both studies found a significant difference between 

male and female survival. An observation that is not found in any of the 

childhood CP studies. 
There are limitations to this study caused by the nature of the data col- 

lection. Its retrospective nature and reliance on case referral have impli- 

cations with regard to survival estimate biases. Despite the fact that all 

individuals in the study were first seen before their 20th birthday this does 

not mean that we have full ascertairunent after this time. This is a particular 

issue with regards to those with less severe disabilities. 

There is also a proportion of missing data on each of the covariates. 

There is some debate about the mechanism behind this missing data. These 

issues will all be discussed later in this chapter. 
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4.2.3 Identification of relevant cohorts 

As discussed the data were originally collected between 1951 and 1964. 

However, there are obvious issues with the data that mean we cannot sim- 

ply consider the remaining data as a representative cohort. The data were 

collected part-retrospectively, as at the start of the study period Dr Woods 

looked at all children placed under her care. Some of whom were already of 

a reasonable age. Due to this retrospective nature of the data, survival times 

are subject to left truncation and will not be representative of the popula- 
tion as some of the severest cases will have died before they could be seen. 
We will therefore consider two cohorts. Both conditional on survival until 

a certain point but one with and one without the issue of left truncation. It 

should first be noted that we will not include those born in the 1960's as we 
leave a 5-year notification lag. This is because we have very low levels of 
data in this period implying we have clear under-ascertainment. 

For the first cohort, to eliminate the issue of left truncation, we consider 
those who survived longer than 22 years and model survival conditional 

on first reaching this age. We choose the age 22 because all recorded first 

assessments are done by this time and therefore we will assume that the 

cohort beyond this age is complete. For this first "adult" cohort we need 
to examine the ascertainment of individuals as there are clearly smaller 

numbers in the 1930's and 1940's than in the later decades. 

Table 4.1 presents the individuals included in the whole data set by 

decade of birth and age at first assessment (in years). As we would ex- 

pect, those born in the 1930's are all seen some time after 10 years. As we 
have discussed, data collection did not begin until 1951 so it would be im- 
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Decade of birth 
0-4 

Age at first assessment 
5-9 10-14 15+ Missing 

Total 

1930's 0 0 10 18 3 31 
1940's 41 85 40 2 6 174 
1950's 168 36 3 1 6 214 
1960's 45 2 0 0 5 52 

Table 4.1: Number of cases by age of first assessment and decade of birth 
(n=471) 

possible to see children born in the 1930's before they reached a later age. 
This pattern continues in later decades, with the average age of first assess- 

ment decreasing in later decades. From those born in the 1930's and 1940's 

we clearly observe only children who survived long enough to be seen. 
However, the question is whether these individuals are representative of 

children surviving until these later ages. 

There is no way of seeing if we have indeed found a representative 

sample from our target population. However, we can decide whether the 

group appears to be representative of what we would expect the cohort to 

look like. To do this we can consider the survival pattern and covariate 

structure. Our main concern stems from those bom in the 1930's as there 

is very clear under-ascertainment in this decade. Table 4.2 shows the levels 

of disability by birth decade conditional upon survival until 22 years. As 

discussed, we consider this restricted subcohort because all individuals in 

the data set have entered by the age of 22 and, therefore, we will not have 

to consider the left-truncation issue for this cohort. 

Looking at Table 4.2 we can see that there are higher levels of severe 

ambulation, manual dexterity, and IQ in the earlier decades than those col- 
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Decade 
of Birth 

Ambulation Manual 
Dexterity 

Non- Severe Missing Non- Severe Missing 
Severe Severe 

1930's 0.76 0.17 0.07 0.83 0.10 0.07 
1940's 0.86 0.06 0.08 0.88 0.03 0.09 
1950's 0.77 0.02 0.21 0.77 0.01 0.22 

Decade Vision IQ 
of Birth 

Non- Severe Missing Non- Severe Missing 
Severe Severe 

1930's 0.90 0.00 0.10 0.55 0.38 0.07 
1940's 0.92 0.03 0.06 0.73 0.20 0.07 
1950's 0.86 0.03 0.11 0.58 0.05 0.37 

Table 4-2: Proportions of severe disability and missingness structure by 
decade of birth (n=368) 

lected during the study period. However, there are also lower levels of 

missing data so it may be that in the 1950's we are missing more data on 

those with severe disability. This increased level of missingness may be 

because it is harder to collect this information on younger children. If we 
look at the survival patterns within each decade we see that they are quite 

similar (see Figure 4-1). Again this is conditional on survival until age 22. 

One important issue is going to be the low level of observed severe vision 
in all decades. This is going to mean we will have little power to estimate 

any model. 
Considering this evidence we decide to include all individuals bom be- 

tween. 1930 and 1959 inclusively who survived longer than 22 years in our 
first "adult" cohort. We expect to lose the most severely disabled, as sever- 
ity of disability has already been associated with survival. There are 368 

individuals in this first sub-cohort. 
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Figure 4.1: Additional survival by decade of birth conditional on survival 
until 22 years 

The second sub-cohort looks at those again born between 1930 and 1959 

conditional on survival until two years. From Table 4.1 we see that after 

the study period began in 1951 Dr Woods started to see individuals in the 

very first years of life but we condition on two year survival as she will in- 

evitably have missed children who died very early on and did not survive 

long enough to be referred. We also need to consider if the children in this 

second cohort are representative cases. We suspect that those with the most 

severe disabilities, and hence most obvious diagnosis, would have been re- 
ferred quickly and seen by Dr Woods early on whilst those with less severe 
disabilities would be see later. However, because these later individuals are 
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the less disabled they are likely to have longer lifetimes and hence survive 

until they could be seen. This means that we will have to consider the issue 

of left-truncation. In particular, this truncation may be informative. We ig- 

nore those with a missing age at first assessment as we will need this data. 

We will only deal with the issue of missing covariate data and this elimina- 

tion loses us only 20 individuals. We will refer to this second sub-cohort as 
the "incident" cohort. It is of size 390. 

4.3 Summarizing the Data 

We need to summarize the covariate information available to us in each of 
the two sub-cohorts. In particular, as we have discussed, there is missing 
data and we need to look at the levels of this missingness and consider 
the missing data mechanism behind it. The adult cohort consists of 368 

individuals of which 85 (23%) have a recorded death. In comparison, the 
incident cohort is 399 individuals with 126 (32%) deaths before December 
2005. Note that we have very high levels of censoring. This leads to less 

precision in survival model estimates but is common in epidemiological 
studies particularly those with such potentially long survival times. 

Section 4.2.1 presented the available covariates for the data. Table 4.3 

summarizes the data for each of the two sub-cohorts. It can also be noted 
that the mean values of gestational age, in weeks, are 37.7 for the adult co- 
hort and 37.8 for the incident cohort. The corresponding means for birth 

weight are 2690g and 2725g respectively. There are slightly more men in 

each of our sub-cohorts than there are women and they have a slightly 
higher death rate. We can see that the majority of individuals have normal 

gestational lengths (> 37 weeks) and normal birth weight (ý: 2500 grams). 
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Adult Sub-cohort Incident Cohort 
No. %% dead No. %% dead 

Sex 
Male 205 55.7 25.4 226 56.6 34.1 
Female 163 44.3 20.2 173 43.4 26.8 

Gestation (weeks) 
<32 41 11.1 24.4 30 10.3 26.8 
32-36 69 18.8 17.4 75 18.8 25.3 
> 37 231 62.7 25.5 260 65.2 35.4 
Missing 27 7.3 14.8 23 5.8 17.4 

Birth weight (g) 
<1500 44 12.0 15.9 44 11.0 20.5 
1500-2499 100 27.2 23.0 104 26.1 28.8 
> 2500 209 56.8 23.4 237 59.4 34.2 
Missing 15 4.1 40.0 14 3.5 42.9 

Ambulation 
Not Severe 298 81.0 20.5 308 77.2 24.7 
Severe 18 4.9 61.1 30 7.5 76.7 
Missing 52 14.1 25.0 61 15.3 44.3 

Manual dexterity 
Not Severe 303 82.3 22.1 317 79.4 26.5 
Severe 9 2.4 55.6 17 4.3 76.5 
Missing 56 15.2 23.2 65 16.3 44.6 

Vision 
Not Severe 327 88.9 22.0 348 87.2 27.3 
Severe 10 2.7 30.0 14 3.5 71.4 
Missing 31 8.4 32.3 37 9.3 56.8 

IQ 
Not Severe 236 64.1 17.4 244 61.2 19.7 
Severe 52 14.1 42.3 67 16.8 62.7 
Missing 80 21.7 27.5 88 22.1 40.9 

Number severe dis. 
0 208 56.5 16.3 216 54.1 18.5 
1 31 8.4 45.2 35 8.8 54.3 
2 6 1.6 50.0 7 1.8 71.4 
3 5 1.4 40.0 7 1.8 57.1 
4 2 0.5 100.0 7 1.8 100.0 
Missing 116 25.9 38.1 127 31.8 40.2 

Table 4.3: Birth characteristics and levels of disability for two cohort groups 
with cerebral palsy 
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We can also seen that there seems to be little association between either of 

these covariates and survival outcome although this will be investigated 

further in the following section. Levels of missingness on these two vari- 

ables are quite low. This is probably because this information is routinely 

recorded on medical records so is easily found. If we consider the dis- 

ability covariates however, we see higher levels of missing data (8-22% for 

the adult cohort and (10-22% for the incident cohort). We also see greater 

association between severity of disability and death within the follow-up 

period although there are particulary low proportions with recorded se- 

vere disability particularly with regards to manual dexterity and vision. In 

previous research, (Hutton & Pharoah 2002) suggest that the number of se- 

vere disabilities is also associated with outcome and we can see this here 

although data is sparse. If we consider the incident cohort then we see 
that there is still a low observation of severe disabilities although there are 

slightly more observed than in the adult cohort. This is as we would ex- 

pect because in the adult cohort we expect to have lost some of the more 
disabled individuals because they do not survive until 22 years. Hemming 

et al. (2005) present data on the proportion of children with severe disabil- 

ity in a selection of British studies which we can see is around 2- 4% so 
this is similar to the levels we observe. Interestingly, we see higher levels 

of severe IQ. We note that the percentages of individuals with at least one 
disability covariate missing is high and therefore it is possibly not sensi- 
ble to consider the number of severe level disabilities as having a possible 

effect on survival although they are not that much higher than for the IQ 

variable. However, we observe so few individuals at some levels that esti- 

mating survival at these levels would be very difficult. 

We can see the levels of missingness on the covariates increase in the 
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incident cohort. This increase is greater in the disability covariates than the 

birth characteristics suggesting missingness may be dependent on survival 

time or entry time. 

4.4 Available Case Survival Analysis 

Our first step is to consider non-parametric survival analysis. In Section 2.1.3 

we discussed the Kaplan-Meier survival function estimate and in Section 2.2.1 

how to adapt it to left truncated data. We now use these methods to inves- 

tigate the effect of the covariates on survival based upon the available case 

data and present summarized life table data. 

30y 
Survival Tune 

40y 50Y p 
Total 0.95 (0.93-0.97) 0.91 (0.88-0.94) 0.86 (0.82-0.89) 
Gender 
Male 0.95 (0.92-0.98) 0.90 (0.86-0.94) 0.84 (0.79-0.89) 0.27 
Female 0.95 (0.92-0.99) 0.93 (0-89-0.97) 0.89 (0.84-0.94) 

Gestation (weeks) 
<32 0.93 (0.83-1.00) 0.93 (0.85-1.00) 0.82 (0.70-0.95) 0.45 
32-36 0.97 (0.93-1.00) 0.96 (0.91-1.00) 0.92 (0.85-0.98) 
> 37 0.94 (0.91-0.97) 0.89 (0.85-0.93) 0.84 (0.80-0.89) 

Birth weight (g) 
<1-W 0.98 (0.93-1.00) 0.98 (0.93-1.00) 0.88 (0.79-0.99) 0,53 
1500-2499 0.94 (0.89-0.99) 0.93 (0.88-0.98) 0.90 (0-84-0.96) 
> 2500 0.94 (0.91-0.98) 0.89 (0.84-0.93) 0.84 (0.79-0.89) 

Ambulation 
Not Severe 0. % (0.94-0.99) 0.94 (0.91-0.97) 0.88 (0.84-0.92) <0.001 
Severe 0.88 (0.68-1.00) 0.67 (0.42-0.88) 0.56 (0.37-0.84) 

Manual dexterity 
Not Severe 0.96 (0.93-0.98) 0.92 (0.89-0.95) 0.87 (0.84-0.91) 0.03 
Severe 0.78 (0.55-1.00) 0.67 (0.42-1.00) 0.56 (0.31-1.00) 

Vision 
Not Severe 0.96 (0.94-0.98) 0.92 (0.90-0.95) 0.87 (0.84-0.91) 0.25 
Severe 0.90 (0.59-1.00) 0.70 (0,47-1.00) 0.70 (0.47-1.00) 

IQ 
Not Severe 0.98 (0.97-1.00) 0.96 (0.94-0.99) 0.92 (0.88-0.95) <0.001 
Severe 0.89 (0.80-0.98) 0.77 (0.66-0.89) 0.69 (0.58-0.83) 

p* - Wilcoxon 
test p-value 

Table 4.4: Estimated survival percentages (95 percent confidence intervals) 
for the adult cohort 
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Firstly, if we look at Table 4.4, we can see survival life tables for the 

adult sub-cohort. The full sub-cohort has a 50 year survival rate of 86%. 

We can see that survival is very strongly associated with severe levels of 

ambulation, manual dexterity, and IQ (p<0.01). There does not seem to be 

any association between poor vision and survival although Table 4.3 shows 

that we observe only three deaths with severe disability. 

We repeat the analysis for the incident data. Recall that this is now con- 

ditional upon survival until age two but we now need to allow for the left 

truncation of some of the survival times. Results are presented in Table 4.5. 

Survival Time 
loy 20y My P* 

Total 0.94 (0.91-0.96) 0.90 (0.87-0.93) 0.85 (0.81-0.88) 0.76 (0-72-0-80) 
Gender 

Male 0.94 (0.90-0.96) 0.90 (0.85-0.93) 0.84 (0.79-0.88) 0.74 (0.68-0.79) 0.19 
Female 0.95 (0.90-0.97) 0.90 (0.85-0.94) 0.85 (0.79-0.90) 0.79 (0.73-0.85) 

Gestation (wks) 
<32 1.00 (1.00-1.00) 0.98 (O. W1.00) 0.90 (0.76-0.96) 0.80 (0.63-0.89) 0.08 
32-36 0.93 (0.85-0.97) 0.89 (0-80-0.95) 0.87 (0-76-0.93) o. 81 (0-71-0.88) 
> 37 0.93 (0.89-0.96) 0.89 (0-84-0.92) 0.82 (0.77-0.87) 0.73 (0.67-0.78) 

Birth weight (g) 
<15500 1.00 (1.00-1.00) 0.95 (0.83-0.99) 0.93 (0.80-0.98) 0.83 (0-68-0.92) 0.02 
15W-2499 0.93 (0.86-0.97) 0.92 (0.85-0. %) 0.86 (0-78-0.92) 0.82 (0.74-0.89) 
> 2500 0.93 (0.89-0.96) 0.87 (0.82-0.91) 0.81 (0.76-0.86) 0.72 (0.66-0.77) 

Ambulation 
Not Severe 0.97 (0.95-0.99) 0.95 (0.92-0.97) 0.91 (0.87-0.94) 0.83 (0.78-0.87) <0.001 
Severe 0.80 (0.61-0.90) 0.63 (0.44-0.78) 0.50 (0.31-0.66) 0.33 (0.17-0.50) 

Manual dext. 
Not Severe 0.97 (0.94-0.98) 0.95 (0.92-0.97) 0.90 (0-86-0.93) 0.82 (0.77-0.86) <0.001 
Severe 0.82 (0.55-0.94) 0.59 (0.33-0.78) 0.41 (0.19-0.63) 0.29 (0.11-0.51) 

Vision 
Not Severe 0.97 (0,94-0.98) 0.93 (0.90-0.96) 0.89 (0.8". 92) 0.81 (0.77-0.85) <0-001 
Severe 0.71 (0.41-0.88) 0.57 (0.28-0.78) 0.35 (0.13-0.59) 0.29 (0.08-0-59) 

IQ 
Not Severe 0.98 (0.96-0.99) 0.97 (0.94-0.99) 0.95 (0.91-o. 97) 0.88 (0.84-0.92) <0.001 
Severe 0.88 (0.78-0-94) 0.73 (0,61-0.82) 0.61 (0.48-0.72) 0.46 (0-34-0-58) 

p* - Wilcoxon 
test P-value 

Table 4.5: Estimated survival percentages (95 percent confidence intervals) 
for the incident cohort 

In this analysis we again used the Wilcoxon test to compare the sur- 
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vival across covariate strata as this test is appropriate when the alternative 

hypothesis to the null hypothesis of no difference in the hazard function is 

that of non-proportional but different hazards. Note that we must allow for 

the left truncation when estimating the survival curves and calculating the 

Wilcoxon test statistic as it is well known that the Kaplan-Meier underes- 

timates survival in the presence of truncation (Pan & Chappell 1998). This 

extension to the Wilcoxon test was programmed in S-Plus. 

Again we see that severe disability is highly associated with survival. In 

particular, a severe visual impairment is now highly significant (p<0.001), 

a relationship that was not apparent in the adult cohort due to a lack of 

severe observations. Gestational age and birth weight can also be seen to 

be associated with survival. If we compare the survival proportions at 30 

and 50 years for the adult cohort and the incident cohort we see that the 

decreasing trend in survival over an increase in birth weight is more clearly 

defined than before, and this is reflected by the p-values of the Wilcoxon 

test. This is despite not seeing vastly different proportions of severe cases 

to the adult cohort. 
This analysis highlights one of the major problems with complete and 

available case analysis. By ignoring observations with a missing covariate 

we reduce our sample size considerably and hence our ability to extract 

information. 

4.5 Considering the Missing Data Mechanism 

We have seen that there is a reasonable amount of missing covariate data 

within our data set. Whenever we wish to conduct analysis in the presence 

of missing data we need to consider the mechanism behind the observa- 
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tion process. The possibilities for this were discussed in Section 2.3-1. We 

can think about the missing data mechanism behind the unobserved data 

on the disability covariates. Intuitively, this information is possibly more 

likely to be missing if the lifetime is very short as an individual is more 

likely to have left the study before all their information was recorded. Ta- 

ble 4.6 shows that those, for the incident cohort, those with a failure or 

censoring time of less than six years have very high levels of missing data 

and that these probabilities decrease as survival time increases. However, 

survival is good at young ages so numbers failing early are small. 

Disability Survival time (years) 
0-5 (n=10) 6-10 (n=15) 11+ (n=374) 

Ambulation. 0.60 0.20 0.14 
Manual dexterity 0.60 0.27 0.15 
Vision 0.60 0.20 0.07 
IQ 0.8 0.20 0.21 

Table 4.6: Proportions of missing covariate data for the disability covariates 
in the incident cohort by length of lifetime 

We do not know if attempts to record data were continued over the in- 

dividuals lifetime or just at the first assessment. If data was only recorded 

at the first assessment it is possible that an early entry into the study in- 

creases the probability of missing data as it more difficult to gather from 

young children or, if attempts were continued over the study period, it is 

possible that those entering in the late 1950's are more likely to have data 

missing. Note, however, that we have allowed for a five year lag so this is 

likely to counteract this second possibility. 

We can also use logistic regression methods to look at the effect of sur- 
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vival time upon the missing data mechanism. We construct an vector, Y, 

of Bernoulli indicator variables for each of the four disability covariates 

whose entries show whether a value is observed or missing. We define 

7ri = P(Yj = 1) (i. e. the probability the covariate value for the ith individ- 

ual is missing) and use a logistic link function to construct the model: 

log 
71i 

)= 
00 + 01 ti. 

G- 

-7ri 

Here, tj is the observed survival time of individual i and ý36 and 13, are pa- 

rameters. We can fit this model via maximum likelihood methods. Having 

fitted this model for each of the four disabilities we can then look at the 

significance of the survival time in each model by comparing the fit of each 

model to that of the null models Le we look to see if 01 = 0. In Table 4.7 we 

present p-values from a series of univariate analyses of deviance using the 

X2 distribution to do this comparison. 

Disability X2 p-value 
Adult cohort Incident cohort 

Ambulation 0.022 <0.06-1- 
Manual dexterity 0.131 <0.001 
Vision 0.072 <0.001 
IQ <0.001 <0.001 

Table 4.7: Analysis of deviance to consider the effect of survival time on the 
probability of missing disability data 

From Table 4.7 we see that the effect of survival time on the missing data 

mechanism is highly significant in the incident cohort. As we are including 

in this cohort those children who died very young this is unsurprising as 

the child may not have been in follow up long enough to collect the data. 

In the adult cohort we see a significant effect on the missingness of ambu- 
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lation and IQ. Children start to walk a different ages so they would have 

to survive to an old enough age in order to determine if they have a true 

disability or just have not started to walk yet. Conversely, a disability in 

the hands and arms could be detected earlier. To measure IQ a child would 

have to survive until an age when they had the language skills to take the 

required test. There is a smaller effect of survival time upon the missing- 

ness of the vision data. However, referring back to Table 4.3 recall that 

this variable had the smallest proportion of missing data making an effect 
harder to detect. 

Decade 
of Birth 

Ambulation Manual 
Dexterity 

Age at first assessment Age at first assessment 
0-4 5-9 10-14 15+ 0-4 5-9 10-14 15+ 

1930's --0.00 0.06 --0.00 0.06 
1940's 0.12 0.01 0.08 0.50 0.10 0.04 0.13 0.50 
1950's 0.28 0.08 0.33 0.00 0.26 0.19 0.33 0.00 

Decade Vision IQ 
of Birth 

Age at first assessment Age at first assessment 
0-4 5-9 10-14 15+ 0-4 5-9 10-14 15+ 

1930's --0.00 0.11 --0.00 0.06 
1940's 0.07 0.01 0.08 0.00 0.03 0.08 0.08 0.00 
1950's 0.15 0.11 0.00 0.00 0.44 0.14 0.00 0.00 

Table 4.8: Proportions of missing covariate data for the disability covariates 
in the incident cohort 

Table 4.8 presents the proportion of missing data for each of the four 

disability covariates by decade of birth and age at first assessment. One 

obvious feature is that the levels of missingness are, in general, lowest for 

those born in the 1930's and highest for those born in the 1950's. It should 
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be noted, from Table 4.1, that there are only two individuals born in the 

1940's first observed after the age of 15 so, with a missing proportion of 

0.05 we are in fact only missing one data point. Therefore, it also seems 

that there is very little missing data for those first observed after 10 years 

across all covariates and all decades of birth. For those first observed before 

10 years the level of missing data is consistently higher in those born in the 

1950's. These individuals had the shortest length of time for data collection 

as the study period ended in 1964. 

We might also think that the probability of a missing disability depends 

on the values of other covariates. We can only investigate this if the other 

disability data is observed. For example, if vision is poor an IQ test may 

be harder to conduct. We can again use logistic regression and analysis 

of deviance to look at this. However, we can only use the available data. 

We consider each pairwise univariate model looking at the dependence of 

the missing data mechanism of each disability on the other three. If we do 

this we see that the mechanisms acting on ambulation (X' p-value=0.047), 

manual dexterity (p=0.008), and vision (p=0.005) are all dependent on the 

value of IQ. The mechanisms on ambulation (p=0.045) and manual dex- 

terity (p=0.001) are also dependent upon vision. No other model shows a 

significant association. 

There is perhaps an increased probability of the level of disability being 

unobserved if the level of disability is more severe as it is harder to mea- 

sure. This would be particularly true for IQ. If we look at Figure 4.2 we can 

see that the survival estimate for those with a missing IQ observation have 

a survival rate at shorter lifetimes similar to those with an observed severe 

covariate. For the manual dexterity covariate the survival curve for those 

with missing data seems very similar to those with non-severe disability. 
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Figure 4.2: Survival by level of disability for the adult cohort including 
those with missing covariate data 
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For the remaining disabilities the survival curve for those with missing data 

lies somewhere between the curves for severe and non-severe disabilities. 

It is plausible that the probability of missingness is dependent not only time 

covariates but also on the underlying severity of the disability. Therefore, 

we need to consider how we will model the missing data mechanism and 

what effect changing this model would have on our conclusions regarding 

the effect of disability and birth characteristics on survival. 

4.6 Parametric Analysis under the MAR Assumption 

As discussed in Section 2.3.1 there is a well established hierarchy of as- 

sumptions for the analysis of data with missing observations. Our initial 

analysis of the cerebral palsy data was an available case analysis so this 

required us to make the MCAR assumption. However, this does not seem 

at all plausible as the missingness is likely to be dependent on both the 

survival and entry times and possibly the true value itself. A slightly less 

restrictive assumption is that of MAR. We can now try an analysis based 

upon this assumption. 
In Section 3.2.2 we discussed the early contribution to the use of para- 

metric survival models in survival analysis of Schluchter & Jackson (1989). 

They fitted a stepwise exponential model to survival times under the miss- 
ing at random assumption of Rubin (1976). We can now consider the use 

of alternative parametric models and also the inclusion of independent left 

truncation. 
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4.6.1 Introduction to the MAR Model 

If we start with complete data we can describe a model for the underly- 

ing true time to failure. Assume the complete data consist of (ti, 6i, zi) for 

i=n, ignoring the late entry for the moment. As in Section 2.1.1, 

ti is the observed survival, 6i the censoring indicator, and zi a vector of 

p categorical covariates. The covariates define a contingency table with 

Mý 11 x ... x Ip cells, where Ij is the number of levels for the jth covariate. 

Also define 0.. to be the probability associated with cell m, (m = M), 

such that Eý 10,,, = 1. Let Ei = (Ei 1, Eim)' be a multinomial indica- M= 
tor vector whose mth component is 1 if subject i belongs to cell m and is 0 

otherwise. Note that Ei is only known if no data are missing for i. We must 

also define a vector Wi = (Wil,... ' Wim)which indicates which cells of the 

contingency table i could possibly be given the actual observed covariate 
information. 

The model is written using complete data. To describe the distribution 

of survival times, conditional on the covariates, let A,,, (t) denote the hazard 

function of a subject belonging to the mth cell defined by the covariates. 
Schluchter and Jackson assume this hazard to be a stepwise function on 

K disjoint time interval defined by arbitrarily chosen cut points 0= To* < 

T1* < ... < Tk = oo: 

Am(t) ý Akmi Tk 
-1<t -< 

TZ 

A log-linear parametrization for the hazard function can be adopted. 

Schluchter and Jackson then go on to construct the likelihood function 

for the observed data. Let bki be the amount of exposure time contributed 
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by subject i to the kth time interval: 

bki ý0 ff Ti < Tk*- 1, 

if Tý*-, < Tj :! ý T; *, or Ti - Tý-l 

TZ - T; 
-l 

if Tk* < Ti. 

We define Si, to be the probability that a subject in cell m will survive up 
to time Ti, for i=n and m=M. Therefore, 

(K 

exp (-H(ti)) = exp 
ra 

/\kmbki 
k=l 

if we define H(t) to be the cumulative hazard function. If the censorship 

or failure for subject i occurred in the kth time interval, then, using that 

p(t, zIA, 0) = p(t I z, A)p(z 10) and the form of the likelihood for right censored 
data discussed in Section 2.1.4, the contribution to the likelihood for subject 
i is proportional to 

km' 
m=l 

We can now move on to maximizing this full log-likelihood (the sum 

of the individual contributions in Equation 4.1). Firstly, the log-likelihood 

for the hypothetical complete-data set (Ti, bi, Ej), i=1, ... ' n can be shown, 

except for an additive constant, to be 

KMm 
EE fDkm 109(Akm) - AkmUkm) +E Vtn 10g(Om), (4.2) 

k=l m=l M=l 

where Dkm is the number of failures that occurred in the kth time interval 

amongst individuals belonging to the mth cell, Uk, is the equivalent ex- 
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posure time, and V,,, is the number of subjects belonging to cell m. That 

is 

n 
EEjmSjI(Tý-j, < Tj: ý TZ Dkm 

n 
Ukm I: Eimbkii 

i=l 
n 

Vm Eim* 

The paper describes two methods for maximizing this log-likelihood, 

the EM algorithm and the Newton-Raphson algorithm. We look at the EM 

algorithm. 
The E-step involves computing the conditional expectation of the log- 

likelihood, Equation 4.2, given the observed data (Ti, 6j, Wj), i= 

Therefore, we need to calculate the expectation of Dkrn, Uk, and V, it is 

seen that these are equal to 

n 

T(l) = *) pl km 
>: 5iI(Tý-1 < Ti :ý Tý irni 
i=l 
n 

T (2) 
=Z bki Pim (4.3) km 

i=l 
n 

T(3) rn 
Pirn, 

where Pi,,, = Pr (Ei,,, = 11 Ti, 6i, Wi) is the posterior probability that subject 

I. belongs to cell m given the observed failure and censoring information, 

and the observed covariate information. 

If failure or censoring occurs in the kth time interval for a subject i, then 

an equation for Pi,,, is 
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Abi ,, P(Eim -= llWi) 
p, m 

kmSi 

Im =jA6ýjSjjP(Ejj = llWi)' 
= ki 

where 

ljWj) 
Wi. 0i. 
m El=i wilol 

(4.4) 

When fitting the saturated log-linear model, the updated estimates of 

the cell probabilities and hazard parameters obtained in the M-step of the 

algorithm are simply 

T(3) m (4.5) 
n 

and 
ýkm 

" 
a, 

MI-I (4.6) 
T(2) km 

The algorithm alternates between the E-step, Equations 4.3 and 4.4, and 

the M-step, Equations 4.5 and 4.6, until convergence. This is taken to be 

when the log-likelihood changes by < 0.0001. This value is arbitrary but 

must be sufficiently small. When fitting an unsaturated model the M-step 

of the algorithm also requires the application of one step of the IPF (It- 

erative Proportionality Fitting) algorithm to the counts contained in Tkm* 

Standard errors can be calculated using the information matrix, details of 

which are presented in the paper's appendix. 

4.6.2 Parametric Extension to the Model 

One of the most obvious questions with regards to this model is can we 

adapt it to allow parametric hazards which are likely to be more realistic 
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in survival analysis? Also, given that our motivating data is subject to left- 

truncation, how do we construct the likelihood to allow for this? 

Shao & Zhou (2004) discussed the use of the Burr XII distribution for 

the analysis of survival data with long-term survivors. This general distri- 

bution, suggested by Burr (1942), has the Weibull and log-logistic distribu- 

tions as special cases. These are distributions commonly used in survival 

analysis. The Burr XH distribution function is given by 

a11 fB(tlAiO03)--": aAt - fl+OAt"}-('+O) A, a, and 3>0 

with survival and hazard functions 

SB(tlA, a, O) fl+oAt("1- and 

hB(tlA, a,, 3) aAt'-1j1+OAt-j-1. 

The Weibull distribution occurs as ý ---* 0 and the log-logistic distribution 

when, 3 = 1. A criterion can be used to derived to test if 0=0 using results 

from Vu & Zhou (1997). It can also be noted that the Burr XII also has the 

Pareto distribution as a special case if a --ý oo and A-0 with aA fixed (or 

tends to a limit). 

The standard form of the likelihood function under the assumption of 

independent left-truncation was given in Section 2.2.2. 

Using the Burr XH distribution the log-likelihood allowing for indepen- 
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dent right-censoring and left-truncation is given by 

n Al 
1 (X, 0�3,0) = 

fi Z 
Ivimom, 

hB(tilAm, 
e (Irn, - 

3m, )6'SB(til/\m,. Om, - -3., 
) 

i=l 

[rn=l 

SB (Yi lAmý 
- am, 3m, 

n 11 
\Mtia,. -1 UZ wimoim (ami + 

i=l 

Im=I 

-- I 
1+ Om, Amj tic-- 11 + ý3m, Am, yim, 

(4.7) 

where yi is the left-truncated time of first assessment. Note that we are us- 
ing the same model structure for the categorical covariates, as just described 

where 0, is the probability of lying in cell Tri. This general log-likelihood 

can be used to fit a separate Burr XH distribution to the survival times in 

each cell of the covariate defined contingency table. We can show that the 
Burr XII distribution can be used under the accelerated failure distribu- 

tion assumption. This assumption keeps the shape parameters (o.. 3) fixed 

across the levels and changes the scale parameter, A. Therefore, if we wish 
to fit an AF17 model we must make a, and J3,,, constant over m. The likeli- 
hood functions for fitting Weibull and Log-Normal models can also be cal- 
culated. Using the parameterizations, of these distributions in Section 2.1.4 
these are as follows. 

Weibull distribution 

n 'if 
)6. exl)(A". t"-. )I l(A, x., Oý=fj EUyjmOrn, (Am, Km, tiK"', -' 

i=l 

lm=l 
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Log-Normal distribution 

n INI 6, 

, (pý 0'. 0) fi Z ulimomi 
1 

exp (_flogt 
_ 111 

2 /20r2) 

i=I m=I 

( 
to, N 

72-7r 

Cogc 
V-2 

The S-Plus (Insightful Corporation 2002) code used to implement these 

models via the Newton Raphson algorithm is included in Appendix A. We 

assume non-informative left truncation for the analysis of the incident co- 
hort. This means that we must modify the likelihood by conditioning upon 

survival until the observed point of entry as in Equation 2.1. 

We could also consider allowing for informative left-truncation. In which 

case, we have to model the distribution of entry times. This model can be 

extended to a multivariate setting using continuous covariates. 

4.7 Application of the MAR model to Cerebral Palsy 

Data 

We can now fit these parametric models to the two sub-cohorts identified 

in Section 4.2.3. We consider only the univariate case and investigate the 

effect of severe disability upon survival. Table 4.9 gives the maximum like- 

lihoods for the different distributions. During calculation difficulties were 

encountered with the convergence of the Burr XII model when the true dis- 

tribution appears to be the Weibull. This is because the Weibull occurs as a 
limiting case of the Burr distribution. 

By comparing the maximum likelihoods we can choose the best fitting 

parametric model. If we consider models fitted to both sub-cohorts we see 
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1) Adult 
cohort Model distribution 

Disability Burr Log- Weibull Log- 
)CII logistic normal 

Ambulation * -563-37 -562.13 -567.74 
Manual dext. * -539.20 -537.66 -543.75 
Vision * -545.01 -543.31 -549.98 
IQ -629.18 -629.70 -628.84 -632.43 

2) Incident 
cohort Model distribution 

Disability Burr Log- Weibull Log- 
XII logistic normal 

Ambulation * -843.23 -826-69 -832.39 
Manual dext. * -816.41 -799.99 -806-54 
Vision * -809-98 -793.33 -799.03 
IQ -897-53 -897.63 -882.01 -835-73 
*- Failure 
to converge 

Table 4.9: Maximum log-likelihood values for univariate accelerated failure 
models over different distributions under the MAR assumption 

that all disabilities are best modeled using the Weibull distribution. We 

will consider later the impact this has on the estimates hazard functions. 

As discussed, and as can be seen in the table, convergence can be difficult 

to obtain with the Burr XII distribution. Hutton & Monaghan (2002) discuss 

the impact of misspecification of parametric survival models. Accelerated 

failure models are reasonably robust to misspecification because of their 

log-linear structure. 
We can fit the appropriate survival models and compare to available 

case estimates. Figures 4.3- 4.6 show the comparison of the optimal models 

under the MAR assumption to the equivalent model calculated by available 

case analysis for the adult cohort. Recall that this cohort is conditional upon 
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survival until 22 years. 

Available case analysis appears to lead to very similar estimates to the 

MAR model for the physical disabilities. Figure 4.6 shows that in the avail- 

able case analysis we are overestimating survival for the severely intelli- 

gently impaired. Table 4.3 shows that of the four disability covariates IQ 

had the highest level of missing data in the adult cohort as well as the high- 

est numbers of observed severe. Figure 4.2 showed that the non-parametric 

survival for the individuals with missing IQ was closer to that of the se- 

vere level individuals than for the other covariates and so it is sensible 

that allowing for a less restrictive missing data mechanism lowers sur- 

vival. We also see a drop of approximately 6 years in the median survival 

(; ztý 67.1 - 60.8 years). We can also consider survival for the incident cohort 

which is conditional upon survival until 2 years. 
Figures 4.7- 4.10 show the estimated survival curves for the effect of 

severity on survival for the four different disability covariates and com- 

pares them to their available case equivalents. We see that restriction to 

the MAR assumption increases the survival for non-severe impairment but 

decreases the estimated survival for those with severe disabilityý The dif- 

ference is much greater than in the adult cohort. As we are now only con- 

ditioning upon survival until 2 years we expect to pick up more deaths and 

hence, survival to be lower. 

Indeed, we see that survival in the early years is dramatically different 

between those with severe and non-severe disabilities. 
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Figure 4.3: Survival by severity of ambulation for the adult cohort under 
the MAR assumption 
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Figure 4.4: Survival by severity of manual dexterity for the adult cohort 
under the MAR assumption 
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Figure 4.5: Survival by severity of visual impairment for the adult cohort 
under the MAR assumption 
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Figure 4.6: Survival by severity of IQ for the adult cohort under the MAR 
assumption 

97 



0 

OD 

S 
eo 
o= 

a 

(I) 

(N 

0 

Figure 4.7: Survival by severity of ambulation for the incident cohort under 
the MAR assumption 
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Figure 4.9: Survival by severity of visual impairment for the incident cohort 
under the MAR assumption 
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Figure 4.10: Survival by severity of IQ for the incident cohort under the 
MAR assumption 
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4.8 Multiple Imputation (Mb 

Imputation is the method of "filling in" missing values to arrive at a com- 

plete data set. It is very flexible and has many attractive features as dis- 

cussed in Section 3.1.2. We can compare survival estimates from analysis 

using available cases and the previously discussed likelihood based meth- 

ods to the results from standard survival analyses conducted on imputed 

data sets. We expect similar estimates from the likelihood based analysis 

and from the imputed data as they are both conducted under the MAR 

assumption. 

4.8.1 Calculating the Imputed Data - MICE 

MICE (Van Buuren & Oudshoorn 1999) is a software library for S-Plus and 
R. There is also an implementation for STATA. MICE stands for "Multiple 

Imputation by Chained Equations". It can be used to impute data as well 

as conduct linear and generalized linear modeling and find pooled results. 
For each variable with missing observations, a conditional distribution for 

the missing data given the observed data is specified. This is then used to 

impute the missing data by iterating over the densities using an approxi- 

mation to the Gibbs sampler. 
On our restricted data (survival time, censoring, entry time, and disabil- 

ity covariates) the missing information occurs on the four binary disability 

variables. Therefore, we use logistic regression models for the specification 

of each conditional distribution. Note that we do not include information 

from the other variables, e. g. birth weight and gestational age, that we have 

as we have not included these in the likelihood based analysis. However, 

an advantage of MI is that we can easily use all available data to impute 
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the missing information. We use all the information in our restricted data 

set (including only the disability variables) for the imputation in order to 

minimise bias and maximise certainty. 

MICE uses an approximate Gibbs sampler to draw from the conditional 

distributions. Convergence of the sampler must therefore be checked. 

4.8.2 Comparing Survival Model Estimates 

Separate univariate analyses are carried out on the adult and incident co- 

horts. Results are presented for both. We again consider the effect of each 

disability on survival separately. For each imputation analysis we com- 

bined the results from 5 imputations. 

The Adult cohort 

The effect of each covariate was best modeled by a Weibull distribution in 

each case. The Weibull distribution can be used under both the propor- 

tional hazards and accelerated failure assumptions and each assumption 

causes a change in the scale parameter A only and not in the shape parame- 

terK. Therefore, we present parameter estimates from the following model: 

(x I z) = A, rx'- 1 exp (- A, x'), A, r, >0 and 0<x< oc. 

Recall that z is a covariate value and equals 0 if the disability of interest is 

non-severe and 1 if it is severe. 

Table 4.10 presents a comparison of the parameter estimates across a 

available case, a multiple imputation, and a likelihood based analysis for 

the adult cohort. We can see that the available case analysis consistently 

underestimates the effect of a severe level disability in comparison to the 
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, \o x, k 
Arnbulation 

Available case 0.0023 (0.0012) 0.0050 (0.0032) 1.3109 (0-1487) 
MI 0.0028 (0.0014) 0.0100 (0.0055) 1.2485 (0.1343) 

Likelihood 0.0028 (0.0014) 0.0099 (0.0056) 1.2500 (0.1387) 
Manual dexteri 

Available case 0.0028 (0-0015) 0.0078 (0.0054) 1.2618 (0-1457) 
MI 0.0030 (0.0014) 0.0093 (0.0057) 1.2448 (0.1292) 

Likelihood 0.0030 (0.0014) 0.0083 (0.0054) 1.2464 (0-1315) 
Vision 

Available case 
mi 

Likelihood 

0.0027 (0.0014) 
0.0030 (0.0015) 
0.0030 (0.0015) 

0.0047 (0.0036) 
0.0054 (0-0039) 
0.0054 (0.0039) 

1.2779 (0.1431) 
1.2528 (0.1326) 
1.2526 (0.1328) 

IQ 
Available case 

mi 
Likelihood 

0.0012 (0.0007) 
0.0025 (0-0012) 
0.0025 (0.0011) 

0.0031 (0.0020) 
0.0073 (0.0036) 
0.0065 (0.0031) 

1.4258 (0.1720) 
1.2364 (0.1294) 
1.2421 (0.1230) 

Table 4.10: Comparison of parameters (s. e. ) from available case, multiple 
imputation, and likelihood based analyses for univariate disabilities in the 
adult cohort 

other methods i. e. A, is smaller than for the MAR methods. However, the 

intercept AO term is similarly estimated by each method. This suggests that, 

as suspected, we are missing more information on severe level disabilities. 

Conversely, the estimated shape parameter n is greater for the available 

case analysis particularly when considering the effect of severe low IQ, im- 

plying that the hazard function increases less rapidly than estimated for the 

available case. We expected to be including more early deaths as we are in- 

corporating those with more severe disability so this fits with this result. 
We can consider the estimated survival curves for each model. 

Also in this table we present standard errors for the parameter esti- 

mates. These are found numerically using the vcov-n1minb function in the 

MASS library of S-Plus. This method uses a finite difference approximation 
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to the Hessian matrix. We are pleased to note the fact that the standard er- 

rors estimated using MI and the likelihood approach are almost identical. 

Our data is of quite a simple structure and the simple method for imputa- 

tion that we used seems to have been accurate. Using the MAR assumption 

seems to increase our precision only on the shape parameter, r., and not on 

the estimated scale. However, estimated errors are not too dissimilar over 

any of the three methods. The magnitude of the standard errors show that 

there is no significant difference between the parameters over the MCAR 

and MAR assumptions. 

90% survival 75% survival 
Non-sev Severe Non-sev Severe 

AC 41.4 29.3 63.8 37.7 
Arnbulation MI 40.3 28.6 62.9 36.7 

Likelihood 40.2 28.6 62.7 36.8 
Manual AC 39.7 29.9 61.3 39.4 
Dexterity MI 39.4 29.0 61.1 37.8 

Likelihood 39.4 29.7 60.9 39.2 
AC 39.6 33.4 60.6 47.0 

Vision MI 39.1 32.7 60.2 45.9 
Likelihood 39.1 32.7 60.2 45.9 

AC 45.1 33.9 68.7 46.0 
IQ MI 42.6 30.7 68.4 41.5 

Likelihood 42.3 31.4 67.6 43.1 

Table 4.11: Comparison of available case (AC), multiple imputation (MI), 
and likelihood based analyses for univariate disabilities in the adult cohort 
- 90% and 75% survival (in years from birth). 

Table 4.11 gives estimated survival times for 90% and 75% of the in- 

dividuals by level of disability. We can see that estimated survival times 

are generally similar across methods. In particular, survival is similar for 

non-severe levels of physical disability. Non-severe IQ differs as the 90(70 

survival for the available case analysis is 2.5 years higher than for the MAR 
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methods. However, this gap has decreased by the 75VO survival time to 

approximately I year. Severe level physical disability survival is also gen- 

erally similarly estimated with 90% survival differing by a maximum of 0.9 

years. However, differences in the parameter estimates for the effect of IQ 

cause a greater difference and also a difference between estimates from the 

likelihood and multiple imputation methods. This is very apparent when 

considering the severe level survival where the range of estimates for 75% 

survival times is 4.5 years. 
Recall that each univariate model was best fitted using a Weibull haz- 

ard. With parameters similar to those estimated this implies a monotoni- 

cally increasing hazard function. This is unsurprising as we are condition- 
ing on survival until 22 years so we will not expect an initially larger hazard 

as may occur for the incident cohort. 

The Incident Cohort 

Recall that the incident cohort consists of individuals with survival greater 
than 2 years. 

The Weibull was again the chosen model, for each disability. We are 

now studying earlier survival and would expect a larger number of earlier 
deaths particularly in those most disabled. When we conditioned on 22 

year survival this initial period had passed and so the hazard was much 

more linear. Table 4.12 presents parameter estimates for the incident co- 
hort. For shape parameters r, as estimated here the hazard is only slightly 
increasing over time. 

As with the adult cohort the available case analysis is underestimat- 
ing the scale parameters. Also the scale parameter is again larger in the 
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AO A, 
Ambulation 

Available case 0.0026 (0-0018) 0.0136 (0-0091) 1.1788 (0.1598) 
MI 0.0057 (0.0025) 0.0304 (0.0136) 1.0125 (0.1052) 

Likelihood 0.0058 (0.0027) 0.0291 (0.0135) 1.0113 (0.1091) 
Manual dexterity 

Available case 0.0026 (0-0016) 0.0126 (0-0082) 1.2050 (0.1481) 
MI 0.0071 (0.0030) 0.0310 (0.0145) 0.9902 (0.1025) 

Likelihood 0.0068 (0.0030) 0.0328 (0-0158) 0.9930 (0.1055) 
Vision 

Available case 
MI 

Likelihood 

0.0030 (0.0017) 
0.0071 (0.0031) 
0.0069 (0.0031) 

0.0163 (0.0100) 
0.0345 (0-0167) 
0.0363 (0-0182) 

1.1798 (0-1381) 
0.9946 (0.1019) 
1.0000 (0-1089) 

IQ 
Available case 0.0018 (0-0005) 0.0082 (0-0021) 1.2066 (0.1491) 

MI 0.0045 (0.0020) 0.0206 (0.0088) 1.0168 (0.1022) 
Likelihood 0.0045 (0.0012) 0.0197 (0-0053) 1.0129 (0.1563) 

Table 4.12: Comparison of parameters (s. e. ) from available case, multiple 
imputation, and likelihood based analyses for univariate disabilities in the 
incident cohort 

available case models which may lead to some "trade-off" when we con- 

sider the survival curves. Multiple imputation estimates and likelihood 

estimates are again very similar in magnitude. The shape parameter r, for 

each of these models is lower than for the same models in the adult cohort. 

This is caused by the lower ages and the higher number of deaths at these 

low ages increasing the early hazard. 

One thing to note here is that we have presented models based on the 

distribution choice for the MAR likelihood model. Note that in each case 

the scale parameter r. is close to 1 which is the point at which a Weibull 

hazard switches from being monotonically increasing to decreasing. This 

means that the best model choice might be difficult to identify although 

survival estimates are unlikely to be too sensitive to the final choice. 
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We can again consider the estimated survival curves by looking at the 

90th and 75th survival percentiles. These are presented in Table 4.13. 

90% survival 75% survival 
Non-sev Severe Non-sev Severe 

AC 24.7 7.7 55.4 15.3 
Ambulation. MI 19.8 5.4 50.0 11.2 

Likelihood 19.6 5.6 49.6 11.7 
Manual AC 23.7 7.8 51.9 15.4 
Dexterity mi 18.2 5.0 45.9 10.1 

Likelihood 17.7 5.2 45.2 10.9 
AC 22.6 6.9 50.3 13.4 

Vision MI 17.2 5.0 43.6 10.1 
Likelihood 17.4 4.9 43.9 9.9 

AC 31.1 10.3 68.9 21.0 
IQ MI 24.4 7.2 62.3 16.1 

Likelihood 24.5 6.9 62.3 15.1 

Table 4.13: Comparison of available case, multiple imputation, and likeli- 
hood based analyses for univariate disabilities in the incident cohort - 90% 
and 75% survival. 

By considering Table 4.13 we can see that, unsurprisingly, survival es- 

timates are lower under the MAR assumption than under the MCAR as- 

sumption. Unlike with the analysis of the adult cohort it seems that data 

is no longer missing completely at random. This means we get differences 

in estimated survival over the different approaches. Looking at the each 
disability model we see the same dramatic decrease in survival at severe 
levels in comparison to non-severe levels. For example, the estimated 755/0 

survival time, under the MAR assumption, drops from 46 to 10 years when 

a child suffers from severe manual dexterity. Again, multiple imputation 

and model based survival estimates are quite similar. 
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4.9 Conclusions and Summary 

In this chapter we have introduced our motivating data and summarized 

its main features. We have decided to consider survival for two different 

sub-cohorts conditional upon survival to 2 and 22 years, the adult cohort 

and the incident cohort. 
Firstly, we introduced the available information. Little is known about 

how, or exactly when this data was collected. We know disabilities can 

not have been measured until after a child was referred to and seen by Dr 

Woods but we do not know if all the data was then immediately obtained. 

This has several implications. Issues can arise with longitudinal data if 

covariates change over time. However, we know that cerebral palsy is a 

non-degenerative condition so the level of disability will not change in the 

first years of life. Disability may, of course, increase at a much older age but 

we can be sure all our data were collected prior to this becoming an issue. 

What may be more of an issue with our data is that the methods used to 

assess disability do change overtime. The broad categories of the physical 

disabilities mean that it is unlikely that a child would have been differently 

assessed at different time points but we do not know how IQ was mea- 

sured. Using a binary covariate her, instead of a fully continuous variable, 

means that we can minimise any effect that changing methods may have. 

While changes in time may result in small changes in an estimate of IQ the 

probability of being classified incorrectly into one of the two groups is low. 

Changes in referral habits may have also changed over time meaning 

that the children we see from early on in the study period are actually from 

a slightly different population to those that we see later. In deciding which 

data to include in our analysis we looked at how the level of severe dis- 
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ability changed over time. We saw reasonably consistent levels of severity 

over time but this was complicated by changes proportions of missing data. 

This suggests that referral patterns stayed similar with regards to the type 

of children being referred over time. 

We used standard survival analysis techniques, the life table and Kaplan- 

Meier survival estimates to look at non-parametric survival in each of the 

two cohorts. The level of failure was also looked at in each cohort. We ob- 

served a moderate proportion of missing data. We then compared survival 

using both the MCAR and MAR assumption via likelihood based methods 

and multiple imputation. 

Severe disability is highly associated with a decrease in survival. How- 

ever, an available case analysis seems to underestimate this association 

slightly. This difference does not appear to be significant in the adult cohort 
but is apparent in the incident cohort where we include a large number of 

early deaths. By decreasing the restriction on the missing data mechanism 
to be missing at random we find decreased levels of survival for, in partic- 

ular, the severely disabled cases in the incident cohort. This suggests that 

data is not MAR and that missingness is particularly dependent on low 

survival times. However, as discussed in Section 4.5, it is possible that data 

is not missing at random so we will now consider a model for the missing 
data mechanism. 

In this Chapter we compared estimates from a model allowing for the 

MAR assumption to estimates using standard survival analysis methods 
based upon imputed data. These models both assumed slightly different 

mechanisms. The MAR model allowed survival to depend upon the sur- 

vival time while the imputation method did not. Therefore, it was slightly 

surprising that both methods led to very similar results. This was seen in 

108 



CHAPTER 4. MOTIVATING DATA 

Tables 4.10 and 4.12. There is clearly a very close association between sur- 

vival time and the covariates and it seems there may be little additional 

effect on missingness from the survival time once all the covariates have 

been accounted for. 

We can use the analysis from this chapter to consider the shape of the 

hazard functions. This is discussed in the following chapter after we have 

also modelled the missing data mechanism. 

109 



Chapter 5 

Modelling the Missing Data 

Mechanism 

In Chapter 4 we were introduced to the motivating data set of a cohort of 

children from the Bristol area of the UK suffering from cerebral palsy. As 

discussed, out interest lies in looking at the effect of severity of disability 

upon survival, particularly at longer survival times. However, the covari- 

ates within the data are subject to a certain level of missingness which we 

believe may be not missing at random (NMAR). This was discussed in Sec- 

tion 4.5. Therefore, the techniques discussed in Chapter 3 for dealing with 

missing data in survival analysis may not appropriate as they generally 

require the more restrictive MAR assumption. We will have to model the 

missing data mechanism. 
In Section 2.3.1 we introduced the notation of Rubin (1976), Y,,, i.,, the 

missing data, Yobs, the observed data, and Al, the missing data mechanism 

indicator matrix. We discussed the confusion that arises from this partic- 

ular notation and presented an alternative. However, for convenience we 
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will temporarily use the original notation to discuss the likelihood equa- 

tions under the different missing data mechanisms. Firstly, note that the 

complete joint distribution of the data and the missing data mechanism 

can be written as 

f(Y, MIE), 4)) = f(YIE))f(MIY, (D) 

= f(yobsgymisl6)f(Mlyobsiymisý4) 

where E) and (D are parameter vectors. The actual data consist of (Y,, b, 7A 1). 

By integrating out Y,,, i, from the joint distribution we can obtain the distri- 

bution for the observed data 

f (Yob,, MIE), 4ý) =ff 
(Yobsi YmisIE))f (Mlyobsi Ymi,, fl dY,,, i,. (5.1) 

Missing data is defined to be ignorable if the missing data is MAR and the 

parameters E) and 4) are distinct i. e. the joint parameter space of (6, (D) 

is the product of the two individual parameter spaces. This is because 

under these conditions we can ignore the missing data mechanism when 

constructing the likelihood as it will depend only on Y,, i,. A likelihood 

function is a conditional probability function considered as a function of 

its second argument with its first argument held fixed. We can use a like- 

lihood function to calculate maximum likelihood estimates of the model 

parameters, indeed, we previously used this method in the MAR model in 

Section 4.6. The likelihood ignoring the missing data mechanism can be 

defined as 
Lig� (E) 1 Yobs) CX f (yobs 1 E» 

where f (Y,, b, 10) is obtained by integrating Y,,, i, out of the density f (Y I E)). 
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The full likelihood is defined as 

Lf,, 11(61 'Plyobsi M) OC f (Yobsý MIE)i 4b) (5.2) 

where f (Y,, b,, MI E), 4)) is obtained by integrating Yj, out of the density 

f (Y, MI E), 4D) as in Equation 5.1. Maximum likelihood estimates can be 

found by maximising Lf,,,,,, in Equation 5.2, with respect to E) and 4D. Oc- 

casionally, the missing data mechanism is known but in general it is not 

and parameters -1) must be estimated. Examples with known missing data 

mechanisms can be found in Chapter 15 of Little & Rubin (2002). Grouped 

or rounded data are examples of known missing data mechanisms. Note 

that these are examples of coarsened data as discussed by HeitJan & Rubin 

(1991). 

There are two main approaches to formulating models for non-ignorable 
data. Assume that the observations to be modelled are independent. Selec- 

tion models have the joint distribution of M and Y, where Iff is the missing 
data mechanism and Y is the full data set (see Section 2.3.1) in the form 

f (M, YIE), 4P) =f (YIE))f (Mly, (D) 

where 0 and -(b are distinct. Here, conditioning on any complete covari- 

ates is suppressed. The model that we go on to formulate is of this form. 

Alternatively, pattern mixture models have the form 

f(MIYIIFIQ) = f(YIMIIP)f(AIIQ) 

where T and Q are again distinct parameter vectors. 
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5.1 Non-Ignorable Missing Data and Selection Bias 

The issue of selection bias raises similar questions to that of NMAR miss- 

ing covariate data. Selection bias occurs when a sample used for inference 

is not randomly selected and hence, calculated statistics are biased. If this 

bias is not taken into consideration then any conclusions drawn may be in- 

valid. The use of a complete case sample in data that is not MCAR results 

in selection bias. Another example of selection bias is publication bias. This 

occurs in meta analyses when insignificant or contradictory results are not 

included due to non-publication, hence, magnifying the overall positive 

effect in a meta analysis. Another example occurs in economics when in- 

vestigating wage levels and it is this area that sparked a development of 

models to deal with selection bias. Similar issues arise with drop-out in 

longitudinal studies. There has also been considerable research into non- 

ignorable missing data in categorical data particularly within survey data. 

5.1.1 Normal Selection Models for Non-Ignorable Missing Data 

Some of the most influential work in selection bias within the economics 

literature is the seminal research of Heckman (1974). He considered selec- 

tion bias with particular reference to market wage studies. For example, the 

wages for migrants do not provide a reliable estimate of what non-migrants 

would have earned if they had migrated. To model selection bias he used a 

simple characterization involving two equations. Consider a random sam- 

ple of n individuals. For individual i, (i = 1,.., n) ... 

y XT, 31 + Ul, 

y 2, = XTO + U, 2i 22 
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where Xjj is a vector of Kj regressors, Oj is a vector of Kj parameters and 
Uji and U2j are such that E(Uji) =0 and E(UjiUj, i,, ) = ojj, for i= i" (= 0 

otherwise). Also assume that the regressor matrix is of full rank so that if 

all the data were available parameters could be estimated by least squares 

regression. Suppose that our variable of interest is Y, so we wish to esti- 

mate parameters 01 but that some data on Y, are missing. The population 

regressor function can be written as 

E(YlilXli)=X, iO,, i=l,.., n. 

However, the regressor function for the available data is 

E(Yjj jXjj, sample selection rule) = XT'31 + E(Ujj I sample selection rule) 

(5.3) 

for observed individuals only. If the conditional expectation of Uii in Equa- 

tion 5.3 is zero the regression functions for the available data and the full 

data are the same so ordinary least squares on the complete data may be 

used to estimate 31 and the only cost is a loss of efficiency. In general, this 

is not the case. Assume that data is observed on Yli only if Y2i > 0. If 

Y2j <0 then Yli is not observed and hence the individual is not included in 

the sub-sample. This implies that 

E(UjjjXjj, sample selection rule) = E(UjjjXjj, Y2, i ý! 0) 

E(UlilXli, U2i ý! _XT02). 2i 

The selected sample regression function therefore depends on both Xii and 
X2i- Ignoring the condition expectation of Uji, i. e. fitting the model to the 
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observed data only, results in bias arising from omitted variables. It should 

be noted that if the joint density of Uli and U2i is a singular normal density 

and X, iý X2i f 31 -= ý2 then the Tobit model emerges (Tobin 1958). 

Heckman type models have been used extensively in the economics lit- 

erature. Heckman (1979) describes the construction of a model that uses 

a bivariate normal density for the model errors. Olsen (1980) extends this 

model by removing this bivariate normal assumption. He shows that Heck- 

man's model does not in fact require bivariate normality of the errors but 

only normality of U2j and of UjjJU2j. Bivariate normality is sufficient for 

this but not necessary. 
Heckman introduces a procedure for fitting this model where it is nec- 

essary to estimate the Mill's ratio. Mill's ratio is defined as 

Ai = 
O(zi) 
Ilb(Zi) 

where 0(. ) is the standard normal probability density function, -Ii(. ) its cu- 
XT 

mulative distribution function and where Zi 2i, 32 
. This is esti- =ar(U2ý, ) 

mated via use of a probit model in the first step of a two step procedure. 
Olsen goes on to derive a model where U2i is assumed to have a standard 

uniform distribution where it is necessary to estimate a linear selection 

model in place of Mill's ratio. If UjiJU2i is normal this only really leads 

to obviously different results when the correlation between Uji and U2j is 

strong. Olsen also describes conditions for the identifiability of the two step 

fitting method used by Heckman. For the linear selection model in Olsen 

(1980), variables are required inX2 that are not included in X1. Whilst 

for the bivariate normal model described by Heckman (1979), the probit 

model is identifiable even if X, = X2provided X, contains terms other 
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than a constant. Although this does rely on the nonlinearity of the Nfill's 

ratio. However, even though empirical experiments by Olsen suggest a de- 

gree of robustness of models of this type Little (1985) highlights a structural 

assumption needed for identifiability which may prove to be inappropri- 

ate. He also discusses specific covariate requirements for stability of these 

models. This instability can be overcome by using maximum likelihood 

instead of a two step procedure. However, such methods are sensitive to 

misspecification of the distribution of Uji. 

More recently, Puhani (2000) gives an overview of Monte Carlo stud- 
ies of Heckman's two step method. He concludes that the procedure is 

often inefficient particularly when there is correlation between the covari- 

ates in the outcome and selection models. However, Heckman (1979) him- 

self writes that the main purpose of his estimator is to provide good start- 
ing values for maximum likelihood estimation. Indeed, given the progress 
in computing power since Heckman introduced his procedure maximum 
likelihood methods are recommended. 

Copas & Li (1997) looked at inference in non-random samples. They 
discussed Heckman's two step procedure within the statistical literature 

and present, in detail, its restrictions. They investigate a full likelihood ap- 

proach to fitting the bivariate normal model. In particular, they look the 

sensitivity of model parameters close to the missing at random assump- 
tion. They conclude that the likelihood is often flat in shape suggesting 
that the data provide little information about sample selection. However, 

they are considering meta analysis in which there are typically only a few 

trials or studies with no individual patient data, we have a cohort study 

with considerably more available data. They also question whether any 

clear evidence may be the result of model misspecification. However, they 
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agree with previous work that using conventional methods assuming MAR 

when even a small level of selection bias is present can lead to conclusions 

that are grossly misleading. They suggest use of a sensitivity analysis. 

Selection type models are attractive as they have an intuitive structure. 

They have the same factorization used in the definitions of MCAR, MAR, 

and NMA_R (see Section 2.3-1). Also, MCAR and MAR models can be ob- 

tained as special cases of a NMAR model by setting certain parameters 

equal to zero. However, the parameter estimates rely heavily upon distri- 

butional assumptions which suggests that we should not use models of this 

type to test the MAR assumption (Kenward 1998). 

This is an important point of discussion. If the survival estimates are 

so heavily reliant upon the choice of distribution then the bias caused by 

misspecification may cause a problem. However, this does not mean that 

models of this type are not of use. If our model for the missing data mecha- 

nism is suitably flexible we can use the results to guide our understanding 

of the unknown distribution. We must be careful not to rely to heavily on 

the exact estimates. 

5.1.2 Normal Pattern-Mixture Models for Non-Ignorable Miss- 

ing Data 

Little (1994) discusses the use of pattern mixture models in modeling non- 

ignorable missing data. He extends earlier results looking at maximum 

likelihood estimates for ignorable data. He also considers a Bayesian ap- 

proach to inference. The model applies to bivariate normal data. Little 

discusses his opinions on both selection models and pattern mixture mod- 

els. He concludes that the efficiency of selection type models is better if 
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the distributional assumptions are correct as they allow direct estimation 

of certain parameters that pattern mixture models require to be fixed a pri- 

ori. However, the information provided for these parameters can be weak 

and relies heavily on the distributional assumptions so is susceptible to 

misspecification. Little & Wang (1996) extend this model to a multivariate 

model with monotone missing data on one outcome variable. However, 

Tang et at. (2003) suggest that it cannot be extended to general multivariate 

settings. 

5.1.3 Models for Publication Bias 

As discussed in Section 5.1 a specific example of selection bias is publica- 

tion bias. This is a major problem in meta analyses in medical statistics. We 

will discuss here the most recent work of Copas & Shi (2000,2001). 
They assume that the ith study in the population of interest has param- 

eter estimate of interest yj with 

2) 
yj - N(, ui, oi 

and 
pi - N(p, 

This is the standard random effects population model. Random effects are 
used to describe the heterogeneity of the data. They also have a selection 
model where they assume that the probability of publication or selection 
depends upon the reported standard deviation s of y in such a way that 

P(selectls) = 4D a+ 
b) 

s 

Here 4) is the standard normal cumulative distribution function. This can 
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be written in an equivalent way using the model 

zi =a+ 
b+u; 

i, where wi - N(O, 1). 
Si 

Where, without loss of generality we can say that a model is selected if and 
only if z>0. Noting that we can model y as 

yj = pi + ajEj, where ci - N(O, 1) 

they combine the models by using the jointly normal errors (fi, Lui) and 
defining that the corr(yi, zi) = p. Therefore, the joint distribution of y and 

z is multivariate normal. 

We can see that this model is the same as that of Heckman (1979) ap- 

plied specifically to publication bias. It again uses a bivariate normal for 

the distribution of the two error terms. 

5.1.4 Non-Ignorable Missing Categorical Data in Surveys 

Non-ignorable missing data has also been considered extensively within 
the survey literature. For example, Baker & Laird (1988) consider categor- 

ical non-ignorable non-response. They propose a hierarchical log-linear 

model for the joint distribution of the categorical covariates and missing 
data indicator matrix. Another approach is that of Little (1982) and Nord- 

heim (1984). They both introduce prior odds of response for the different 

categories. Little then uses the EM algorithm, as discussed in Section 3.1.3 

while Nordheim uses closed form estimates. A nice summary is given by 

Molenberghs et al. (1998). They discuss a wide range of published litera- 

ture. 
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5.1.5 Informative Dropout in Repeated Measures Data 

When considering data with repeated measurements it is possible that we 

will have a level of dropout from the study or intermittently missing out- 

come data. Diggle & Kenward (1994) discuss the issue of dropout in longi- 

tudinal studies. The issue here is, of course, missing outcome. Such studies 

consider repeated measurements on a group of individuals over a period 

of time. The observed data consists of I (yij, tij) :i=1, ... ' M, j=1, ... ' ni I 

where yij is the jth measurement on individual i which is obtained at time 

tij. The typical objective is to consider the mean response as a function of 

time and other covariates. In these cases, it is the dropout process that is 

under consideration. This is when the series of measurements on a partic- 

ular individual end prematurely. Dropout is considered informative or non- 
ignorable if the process depends upon the unobserved measurements Le. 

those that would have been observed had the individual not dropped out. 
Diggle and Kenward allow dropout to depend on current and previous 

values of Y. This issue is also considered by Wu & Carroll (1988). Their in- 

terest lies in estimating the rates of change of a covariate over time between 

different groups. They use a selection model and allow dropout to depend 

on the slope of the data. This may be appropriate if people with a rapid 
decline in outcome dropout more frequently than those with a slow dete- 

rioration. Rotnitzky et al. (1998) present methods based upon augmented 
inverse probability of censoring weighted estimating equations. They pro- 

pose that this method offers a degree of robustness to misspecification not 

provided by other likelihood based methods. 
A good summary of parametric methods for incomplete longitudinal 

data is give by Kenward & Molenberghs (1999). They discuss in detail the 
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use of selection and pattern mixture models for informative dropout. 

It should be noted that missing data is an example of coarse data. Where 

as in missing data literature we are concerned with the observation or com- 

plete non-observation of a data point we can consider the more general set- 

ting of coarse data. This is when we observe only a subset of the complete 

data sample space in which the true data lie. Examples of coarse data occur 

due to rounding, measurement error, censoring, data heaping (i. e. when 

data contains items reported with various levels of coarseness). Heitjan 

& Rubin (1991) present work on ignorability within the setting of coarse 

data. They present a general model for coarse data under a generalization 

of Rubin's (1976) MAR assumption. 

5.2 Introducing the joint Survival and Missing Data 

Mechanism Selection Model 

As discussed in Chapter 3, the majority of likelihood based methods for 

dealing with missing data in parametric survival analysis require the MAR 

assumption. However, this does not seem to be a sensible assumption for 

our cerebral palsy data (see Section 4.5). Therefore, we must build a model 

that allows us to model the missing data mechanism. The aim is to em- 

bed the MCAR and MAR models within a range of plausible models that 

allow the NMAR assumption. We can follow ideas already discussed in 

Section 5.1.1 (Heckman 1979) and Section 5.1.3 (Copas & Shi 2001) and de- 

velop a selection type model. 

There has been criticism against the use of selection models in miss- 
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ing data analysis (Section 5.1.2). The main issue is the heavy dependence 

of the models on distributional assumptions. However, Hutton & Mon- 

aghan (2002) discussed misspecification in accelerated failure models and 

note that they are reasonably robust. We do not intend to propose a pre- 

scriptive model but rather a basic model which a sensitivity analysis can be 

constructed around. In particular, we aim to remain quite flexible on any 

distributional assumptions. 
Firstly, let us establish the notation we will be using. Our data consist 

of (T, 6, Z) for individuals i=1, ., n where T= tj is the recorded (pos- 

sibly censored) survival time, 6= 6i is the censoring indicator (5i =1 if 

tj = death time), and Z= zi is the possibly missing covariate information. 

Note that we are only considering the case when we have fully observed 

survival time and censoring information on n individuals as this is the case 
in our motivating data. We will also assume that we have a missing data 

mechanism denoted as M. Initially, we ignore the issue of truncation. 
We wish to construct a model to estimate the joint distribution f (T 

ti, M= mi, Z= zi). We can factorize this distribution as follows: 

f(T=ti, M =mi, Z= zi) =f(M=milT=ti, Z= zi)f(T=tilZ= zi)f (Z= zi). 

We can see that this is a selection type model. 
For simplicity, initially assume we have just one binary covariate, z= 

(zl,..., z,, ), which has some missing data. Firstly, we construct a model for 

the survival times, T, to describe f (T = tj IZ= zi): 

ti = log(ti) = qo +, qlzi + O'ci, ci - N(O, 1), i=1, ..., n, (5.4) 

with q= (ijo,, qj, o, ). We allow the survival of individual i to depend on 
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the value of the covariate. Notice the log-linear structure of this model. 

in Collett (1999), Chapters 4 and 6, he discusses this form of the paramet- 

ric proportional hazards model and accelerated failure time model respec- 

tively We present the log-normal model first to highlight the comparisons 

with the selection bias model of Heckman (1979) and the publication bias 

sensitivity analysis of Copas & Shi (2001). We can also consider the log- 

logistic or Weibull models as well as other parametric distributions (see 

Section 5.3.1). Here, 770 is the baseline log-survival (when zi = 0), 'qj is the 

effect of the covariate on log-survival, and c is the standard deviation of 

the log-survival times. 

We choose to consider a fully parametric model not only because pre- 

vious research suggests that log-logistic models may be useful but also be- 

cause our interest lies in estimating survival and the main focus of Cox 

proportional hazard models is the investigation of relative risk. 

Secondly, we construct a model for the missing data mechanism using 

a latent variable M: 

mi z-- ao + alzi + a2ti + LVii u)i - N(O, 1) (5-5) 

where a == (ao ,0 11 Cf 2). This time we use a linear regression model for a 

continuous variable M which allows the mechanism to depend upon the 

covariate and the log survival time. Of course, M is not exactly observed. 

However, we can, without loss of generality, state that an individual i has 

missing data on covariate Z if mi > 0. As Z is either observed or missing 

we can construct an indicator vector for missingness and hence conclude 

on the sign of each mi. Assume the residuals (c, w) are independent and 

jointly normal with corr(E, Lo) = 0. 
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Note that this independent errors assumption differs slightly from other 

selection models as we incorporate the dependence of the missing data 

mechanism on the missing covariate directly and not through correlation 

of the covariate and latent variable. 
We must also construct a model for the covariate. As we are using a 

simple binomial covariate here we can use the model P(z = 0) = Oo = 
1- 01 =1- P(z = 1). The structure of this model will have to be carefully 

considered when allowing for multiple or continuous covariates. 
This model allows for all three missing data assumptions. The MAR 

and MCAR assumptions occur as special cases of the complete model. For 

example, if we set a, =0 and Cf 2=0 then we are assuming data are missing 

completely at random or, if all parameters, ao, a,, and CQ are non-zero then 

we are allowing the data to be not missing at random. We assume data are 

missing at random if a, is zero. In this case, we do not need to include 

the model for the missing data mechanism as it will have no bearing upon 
the maximum likelihood estimates for the survival model. We can have 

prior beliefs about the values of a, and a2 although we do not include 

these in our model. If the covariate in question is a disability covariate then 

we might expect those with more severe forms of the disability to have a 
higher chance of missing data because children are more likely to die before 

their disability levels can be ascertained so, therefore, cl < 0. Conversely, 

data are, perhaps, more likely to be observed if the individual has a longer 

lifetime which implies that a2 > 0. However, we can use the likelihood to 

find estimates for all these parameters. This identifiability is possible due 

to the linear constraint of the missing data mechanism model. We should 

consider this assumption and will conduct a sensitivity analysis. However, 

when adding additional terms to the model identifiability does become an 
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issue. We should also be cautious about using the parameter estimates as a 

test for the MCAR or MAR assumptions (Kenward 1998). 

As discussed in Sections 5.1.1 and 5.1.2 there is some concern about 

the reliance of selection models upon the distributional assumptions made. 

We will have to consider the form of the likelihood to identify parameters 

and maybe consider a sensitivity analysis, particularly with regards to the 

model for the missing data mechanism. 

5.2.1 Calculating the Likelihood Function 

The log-likelihood can now be constructed. Let F be the set of individuals 

with recorded failure times and C those with censored times. Recall that we 

denote tj = log ti - With no missing data the likelihood for right censored 

survival data can be constructed as follows: 

fl f (ti I zi, 77, a) 11 S (ti I zi, 71, o, ) 
Fc 
n 

11 h (ti I zi, 77, a) 6i S (ti I zi, 71, o, ). 

i=l 

As discussed in Section 2.1.2 S(tlz) is the survival function and 11(tlz) is 

the associated hazard function. We do not as yet look at the issue of left 

truncation. This is possible, and contributions would be of a similar form 

to those in left-truncated survival data with full information. 

We can split the individuals in the data set into four groups based upon 

their censoring information and missing data indicator. Within each group 

the subjects can then contribute the same form of information to the likeli- 
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hood function. The likelihood can be constructed as follows: 

L(77, a, a, Olt, z, 6) =rlf(T'=ti, M <O, Z= zila,, q, a, 0) 
F, O 

11 S(T'= ti, M<0, Z= zi ja, 17, u, 0) x 
C, 0 (5.6) 
11 f (T' = ti, M> Ola, 17, er, 0) x 

F'm 

rj S(T' = ti, M< Ol a, 0). 
O, M 

Here, F denotes the subset of individuals with a recorded failure time, C 

those with censored survival times, 0 those with an observed covariate, 

and M the subset with a missing covariate. Recall that the full joint density 

function can be calculated as the product of the conditional density func- 

tions which are given by 

P(M = miT'= t', Z= z) =1 exp 
1 

(M - ao - alZ - 02t1 )2 
v 27r 2 f- - 

11 

P(V = t'IZ z) exp (tf - 17o - 77142 and 
u ý, /2-7r 

1 
P(Z z) 0, such that Z 0, = 1. 

z=O 

Note also that we are still only considering discrete covariates, as the 

variables in our data set are of this form. Let us now consider the contribu- 

tion to the likelihood from an individual in each of the four groups: 

Group 1) Individual, i, with complete covariate data and failure time, total 
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number of individuals = n, 

L, (, q, or, ag 0 Iti, zi, mi) = P(M < 0, T' = ti, Z= zi) 

=1 P(Al = m, T' = ti, Z= zi) dm 
-00 

10 [_ 121,, 
2ý] 

-LO, exp (M - 00 -a1 Zi - a2ti) +2 (tz 
- 171 zi) dm 27ro, '2ý 01 

0, exp (ti 171 )2 
a v72- -7r ýcr2 770 Z1x 

1 )2 dm exp (M alZi - a2ti 
/r7r 

ý-2 

1 
0, exp 

1 
(ti. _ 770 - 771 Zj 2 

u \72- 
-7r 

ý-2u2 
% 

ýý(-ao 
- alzi - 02ti)- 

This is the contribution from each individual in this group where 4) is the 

standard normal distribution function. Therefore, the group contribution, 
which is the product of the individual contributions, is 

L, =(i 
)ni 11 0, exp 

1 
(t' - 770 - 771 zi ), 4)(-ao - alzi - a2t, ). 

crvý'2ir (i: ýýi<0 )t 
20,2 i 

, si =. 

Group 2) Individuals with complete covariate data but censored survival 
time, total number of individuals = n2 i. e. i: zi obs, 6i = 0. 

L2 (77 
, or, a, 01 ti', zi) = P(M < 0, T' > ti', Z= zi) 

00 

= P(M < 0, T'= u, Z= zi) du 

0,00 exp 2 
(U - Tio - 171 Zi )2 ")(-UO - al Zi - 02u) du. 

er %lr2 ti 2a 

This integration can be evaluated using numerical Gaussian quadrature 

methods. This technique will be further discussed later in this section. 
Again the full contribution from this group is the product of the individual 

127 



CHAPTER 5 MODELLING THE MISSING DATA MECHANISM 

contributions from all individuals within the group. 

Group 3) Individuals with recorded failure time but missing covariate, total 

number of individuals = n3 i. e. i: zi missing, 6i =1- 

Now we need to consider the distribution of survival times given that the 

covariate information is unknown. We must look at 
1 

P(M > 0, T= t') =Z P(M > 0, T'= t'IZ = z)P(Z = z). 
z=O 

Therefore, 

L3(I7i 0'1 ai Oltýli Mi) ý P(M > 0, T' = ti) 

1 

= Y: P(M > 0, T'= tilZ = z)P(Z = z) 
z=O 

00 
P(M=m, T'=tilZ=z)P(Z=z)dm 

z=O 
0, exp (t' - rio - qlz), (D(C, 0 + eilz 0,2t1)- 

E 

u%F2ii 2Cr2 
z=O 

Group 4) Individuals with incomplete data and censored failure time, total 

number of individuals = n4 i. e. i: zi missing, 6i = 0. 

Using our previous calculations we arrive at the following likelihood 
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contribufion 

L407i a,, a, Olt,, mi) = P(M > 0, T' > ti) 

1 
=Z P(AI, > 0, T'> tilZ = z)P(Z = z) 

z=O 

P(M>0, T'=uIZ=z)P(Z=z)du 
00 

z=O 

=1ý 
OC, , 

0, exp 
f-, 

(U - In -, ql Z), 
1 

'1>(a0 + alZ + 020 du Z 
o- 
-%/ý-2-7r jo-r2 

z=O 

ýe 
1 

Now that we have the full log-likelihood (which can be found from the 

sum of the natural logs of these group contributions) we can use this to fit 

the model described to our cerebral palsy data via Newton Raphson meth- 

ods (see Section 3.1.3). These are implemented using the n1minb function 

within S-Plus. 

Gaussian Quadrature 

Gaussian quadrature is a method of numerical integration which seeks to 

find the optimal abscissas. It is a weighted sum of function values at spec- 

ified points within the region of integration. The fundamental theorem of 

Gaussian quadrature states that the optimal abscissas of the n-point Gaus- 

sian quadrature formulas are precisely the roots of the orthogonal polyno- 

mial of degree n. The domain of integration for such a rule is convention- 

ally taken as P1,1], so the rule is stated as 

1 
f (x) dx -- 1: wif (xi) 1-1 

i=l 

where wi are the appropriate weights. 
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We use 10-point quadrature to try and estimate the integrals accurately 

using a function written in S-Plus and presented in Appendix B along with 

functions to implement the above log-normal model. 
If we could assume that missingness, was not dependent on time (i. e. 

a2 = 0) we could consider analytical integration methods. 

5.3 Alternative survival distributions 

The previous section, Section 5.2, gives details of our joint model based 

on a log-normal distribution. However, it is possible to use other survival 

distributions instead. These include the exponential, the Weibull, and the 

log-logistic. All of these distributions are commonly used in parametric 

survival analysis. The parametric forms of each of these distributions was 

discussed in Section 2.1.4. 

Changing the error distribution used changes the likelihood function. 

Note that we use the same distribution for the survival and missing data 

mechanism errors. However, this is not necessary. 

5.3.1 The log-logistic distribution 

The log-logistic has proved to be useful when modeling the survival of 

cerebral palsy as the hazard initially reaches a peak and then declines. We 

start with the same model form but change the distribution of the error to 

change the survival distribution. Therefore, 

ti = log(ti) = rio + Inzi + orfi, Ei - log(0,1), ,=1. ..., 
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Similarly, we construct the missing data mechanism model as 

Mi 'z-- Cio + OlZi + 0Z2ti + Wii wi - log (0,1). 

Note that now the errors have independent logistic distributions. This 

means that the distribution of ti, given zi, is log-logistic with mean 71o + yj zi 

and variance a 2. The density function for the logistic distribution is 

f 00 exp(-, E) 
+ exp(-E 

71* 

As before, we assume for now that we are working with one binary co- 

variate. We can now construct the likelihood as before using the full joint 

distribution 

P(M = m, T=t, Z= Z) = 
exp f- (m - ao - alZ - a2t')) exp I- (t' - 710 -, qlz) lal 0, 

or (1 + exp I- (m - ao - alz -a- 2t')}) (1 + exp f- (t, - 7/0 - TI, Z) /a I 

The formulation of the likelihood can continue in a similar fashion to 

that shown in Section 5.2.1. We can split the data into four groups based on 

their censoring and missing data indicators and calculate their individual 

contributions to the likelihood within these groups. The full log-likelihood 

is then the sum of the natural logarithms of the individual contributions. 
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l(77, a, a, Oiti, mi, zi) = 

Z log 
Oýi exP {- (ti - 170 - 171 zi) /u 1 

[1 + exp {- (t 
i 7o _ 71 Zi) /a j] 2+ exp (cto + alzi + a2t 

+ log exp (ui - no - Inzi) /-7) du] 
t' 11 + exp (ui - 170 - 171 Z, ) /Orj]2 /0,1]2 1+ exp (cko + alzi + a2UJ 

+ log exp (ti - no - 71 z) /u} eXP {OO + al + 122ti 

_ 170 _ 17, Z) /0,1]2 

1270 

[1 + exp (ti + exp (ao + cwl + 122ti) 

[1' Oýexpl-(uj-i70-171z)/crl eXP (a0 + Ckl Z+ 122U0 log EI 
, 

du] 

(i:,. i> 0) Z= 0 

lt. 
[I +expf- (ui - j» - 77, Z) /0112 +exp(cto + CkI Z+ 02U0 

Ai=O 

5.3.2 The Weibull and exponential distributions 

Another distribution used commonly in survival analysis is the Weibull 

distribution (and its restricted form, the exponential distribution). To use 

this distribution the survival model errors must follow a Gurnbel distribu- 

tion (See Collett (1999) for details) This is a type of extreme value distribu- 

tion and has the density function f (c) = exp ff- e'l . 
The joint distribution for the survival times and latent missing data 

variable is therefore... 

P(M =m, T'= t', Z= z) = 
1 

exp M- a0 - alZ - a2t/ + 
ti - 17o - ? 7iz 

- e-"l-" -£>2t e 
71 

01 t 01 1. 
Using the same methodology as previously we can calculate the full 109- 
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likelihood 

1(77, iT, a, Olti, mi, zi) = 

log ýa 
exp 

ti - no - 771zi 
-e exp 

(- 
et I: 

"I "I < Cý 
,, =1 

) 

ý--i u' - 710 - 771 z' 
-e'. 

i -70 - '11 ")z, 
-'2") ) du + I- log 

or 
exp 

01 
exp (-e 

-i< 0) 
'si =0 

t 7)0 - 771 z 

+ log exp 
ae 

e-all-01 Z-1121i 
fz=O 

I 
Ui - 770 ? 71 Z 

+ I- log exp eui du 

(i: -i>o) 

fz=O 

a or I 
'5ý =0 

The exponential is a specific case of the Weibull distribution. It occurs 

when o, = 1. This means that its hazard function is constant and does not 

depend on time. The log-likelihood can be easily derived from the Weibull 

model log-likelihood. 

We can, therefore, consider a variety of survival distributions and whilst 

details are given here for only three types of distribution we are not re- 

stricted to just these. However, problems arise in calculating the likelihood. 

The main problem occurs in the numerical integration as discussed previ- 

ously. Perhaps allowing the distribution of the missing data mechanism 

latent variable to differ from the survival model would mean that we could 

find analytic forms of the integrals, although nothing became apparent dur- 

ing the model development. 

5.4 Identifiability 

We must check the identifiability of the model parameters. We present here 

the original log-normal model and the log-logistic and Weibull models can 
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be checked in the same manner. We could check identifiability by consider- 
ing the log-likelihood and counting the number of sufficient statistics. We 
do not consider the effect of censoring on the likelihood as this does not 
change the number of sufficient statistics. Define Wi to be the indicator 

variable I(, cbs). In this case, the log-normal log-likelihood can be written as 

wi log 0, - jo-, 2 i_ 770 _ 17, Zi)2 + Z, log 0+ 
i=i 

ý 1- 

(1 - Zi) log(' - 0) + 109 - alZi - 02ti» 
1+ 

(1 - Wi) log exp 1-1 (ti _ no)21, b(_ao 
1 

jo-r2 i- a2ti)(1 - 
0)+ 

expf -1 
(t1. 

- C, () al)21, b(_C, 0 Ctl _ (: t2t/)o 2Cr2 1i 
)]j 

nnn 
log 0, 

Z Witi2 witi+ wi 
iC-r2 +72 770 

nnn 
WitiZi ýn-, 2 1702 Wi 

-72 770171 1 vi Z'- 

nnn 

er2,72 
1: Wi Z2+logOEW i Zi + log(, _ 0) 1: WI_ 

nn 
log (1 - 0) E Wi Zi +E Wi log 4) (- Cto - Ci 1 Zi - ci2ti) + 

i=I i=I 

(1 - Wj) log ( expl- 2er2 
(tt 

_ ao) 
2 1, b (_ ao - 02t1)(1 

11. 

i -0)+ 

ao _ C, 1)21, D(_(: to _ al exp ý-LIr-2 
(ti 

02t11)0)1 

(5.7) 

However, we see that we cannot check the identifiability of the model 
in the log-normal setting as we cannot identify all the sufficient statistics 
here. We instead satisfy the identifiability issues by testing our model. 
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5.5 Application to the Cerebral Palsy Data 

We can now apply this model to the adult cohort and compare results to the 

MAR and MCAR estimates of the previous Chapter. This was programmed 

in S-Plus as before and can be found in Appendix C. We again model the 

effect of each severe level disability upon survival. Multivariate extension 

will be discussed in Chapter 7. 

5.5.1 The Adult Cohort 

We now present the parameter estimates for the joint survival and miss- 

ing data mechanism model based upon the adult cohort and compare this 

to the complete case and MAR likelihood methods as discussed in Chap- 

ter 4. These are presented in Table 5.1. Comparison of the maximised log- 

likelihoods again suggests that the Weibull distribution is most appropri- 

ate. Note that we now consider these using the log-linear parametrization 

but it is easy to switch between the two using the following equalities: 

ol 
Ao = exp 

10) and, (- 
a 

A, = exp 
770 + 771 

Table 5.1 shows that parameter estimates for the Weibull models over 

each of the missing data mechanisms are quite similar. Although we do ap- 

pear to see a reduction in the effect of the MAR assumption. The most ap- 

parent difference occurs with the effect of IQ. The estimated survival curves 

by IQ are shown in Figure 5.1. Recall that IQ had the highest level of miss- 

ing data. We see that the survival curves are still very similar. It seems that 
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the naive MCAR analysis works well in this case although we must con- 

sider the appropriateness of the linearity of the missing data mechanism 
before concluding this. 

Tffi 771 a 

Ambulation. Available case 4.6808 -0-9759 0.7658 
(0-1102) (0.2601) (0.0850) 

MAR Likelihood 4.7055 -1.0119 0.8000 
(0.0990) (0.2010) (0.0695) 

NMAR model 4.6875 -0.9758 0.7993 
(0-1386) (0.2724) (0.0747) 

Manual Available case 4.6502 -0.8044 0.7925 
Dexterity (0.1500) (0.2500) (0.0823) 

MAR Likelihood 4.6523 -0.8070 0.8023 
(0.0988) (0.1300) (0.0701) 

NMAR model 4.6509 -0.8005 0.8043 
(0-1359) (0-3814) (0.0757) 

Vision Available case 4.6402 -0.4446 0.7826 
(0.1473) (0.1073) (0.0646) 

MAR Likelihood 4.6256 -0.4529 0.7983 
(0.0912) (0.1572) (0.0589) 

NMAR model 4.6306 -0.4164 0.8032 
(0.1341) (0.1750) (0.0760) 

IQ Available case 4.7307 -0.6726 0.7013 
(0-1502) (0.1745) (0.0624) 

MAR Likelihood 4.8119 -0.7607 0.8051 
(0-1401) (0.1593) (0.0431) 

NMAR model 4.7003 -0.5835 0.7928 
(0-1406) (0.2030) (0.0717) 

Table 5.1: Comparison of complete case, and MAR and NMAR likelihood 
based survival parameters (s. e. ) for univariate disabilities in the adult co- 
hort 

In Table 5.2 we see the parameter estimates from the missing data mech- 

anism and covariate models (see Equation 5.5). We see that severe IQ affects 

the mechanism slightly differently to the three physical disabilities and we 
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Figure 5.1: Survival by severity of IQ for the incident cohort under different 
missing data assumptions 

also estimate a higher proportion of severe (as observed in the complete 
data). In particular, the survival time seems to have a greater effect on the 

missingness of IQ than the other covariates. 

Sensitivity Analysis 

So far we have considered a linear missing data mechanism. However, we 

need to consider the appropriateness of this model. With the adult cohort 

we are conditioning upon survival of 22 years so we need to think about 

possible mechanisms that may act upon the data after this time. We are 

working only with binary covariates at present so we focus upon the de- 

pendence on time. As we are conditioning on reaching adulthood, the in- 

dividuals in our cohort will have reached physical maturity. Therefore, the 
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ao al 02 
Ambulation -0.2060 -2.6625 -0.1050 0.0489 

Manual -0.4495 -2.3903 -0.0476 0.0245 
Dexterity 
Vision -0.4497 -2.2142 -0.1090 0.0272 

IQ 0.9988 -2.4369 -0.3119 0.1414 

Table 5.2: Parameters estimates for the missing data mechanism and co- 
variate distribution for the adult cohort 

linear dependence on time seems reasonable as any particularly different 

effect is likely to be in the earlier years when measurement is more difficult. 

Breaking away slightly from our model from it may be interesting to 

use year of entry or age at entry in the missing data mechanism model but 

we have not presented this here. 

We can now consider the incident cohort and see if the same issues arise. 

We believe that we are more likely to have complex missing data mecha- 

nisms in this cohort as we are picking up individuals with shorter lifetimes. 

Very short times are likely to have a greater effect on missingness. Not only 

is there less time to collect the information but failure might occur before 

the children have fully developed so levels of disability may be impossible 

to ascertain. 

5.5.2 The Incident Cohort 

We repeat the analysis for the incident cohort except now we need to allow 
for the left-truncation of survival times. First we see that the Weibull is 

now no longer always the optimal model choice. Note that as each model 

estimates uses the same number of parameters we can compare the models 
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directly using the maximised log-likelihood. 

Model distribution 
Disability Log- Weibull Log- 

logistic normal 
Ambulation -605-68 -605.47 -609.80 
Manual dext. -584-07 -584.93 -588.03 
Vision -520.08 -523.29 -523.30 
IQ -700.48 -699.30 -704-34 

Table 5.3: Maximum log-likelihood values for univariate accelerated failure 
models over different distributions under the NMAR assumption 

Maximised log-likelihoods for log-normal, log-logistic, and Weibull uni- 

variate NMAR models are shown in Table 5.3. We can see that the choice 

between the log-logistic and Weibull models is less clear. In the models 

for manual dexterity and vision, the optimal model chosen by finding the 

maximum log-likelihood is the log-logistic model. The Weibull distribu- 

tion was chosen using this criteria in the MAR and MCAR analyses. We 

know that both distributions can be defined as special cases of the Burr XII 

distribution but as both models seem to fit well, and we had problems with 

optimizing the models with this distribution previously, we suspect that 

the Burr XH parameters would be unstable. We can consider the estimated 

survival model scale and shape parameters to investigate why there seems 

to be little to distinguish between the two models. 

The hazard functions for the Weibull and log-logistic models respec- 

tively are 

hw(xlA,, y) = A-yx -Y-1 and hL(XIOiO = 
OýXý-, 
1 +OXC 

When the scale is <1 the hazards have similar forms: they are both mono- 
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tonically decreasing. We might expect to see this now that we are consid- 

ering survival from diagnosis age. For scale >1 the Weibull has a mono- 

tonically increasing hazard (constant when the scale is unity) and the log- 

logistic has a single early peak followed by a slower decline. Recall that for 

the adult cohort the scale parameter was consistently greater than 1 imply- 

ing an increasing hazard under the Weibull model (see Table 5.1). 

Table 5.4 presents 90 and 75% survival (in years) conditional upon sur- 

vival until 2 years for the ambulation and IQ models using the optimum 

models previously identified in Table 5.3 (i. e. Weibull models for the ef- 

fect of severe ambulation and IQ and log-logistic models for the effect of 

manual dexterity and vision). We see that the linear NNMR model leads to 

a consistent decrease in estimated survival for those with non-severe level 

disabilities. We are now estimating 75% survival to 46.8 and 51.8 years for 

individuals with non-severe ambulation and IQ respectively. 

90% survival 75% survival 
Non-sev Severe Non-sev Severe 

AC 24.7 7.7 55.4 15.3 
Ambulation MAR 19.8 5.4 50.0 11.2 

NMAR 18.6 5.9 46.8 12.5 
AC 31.1 10.3 68.9 21.0 

IQ MAR 24.4 7.2 62.3 16.1 
NMAR 20.6 7.8 51.8 17.5 

Table 5.4: Comparison of available case, MAR likelihood, and NMAR 
based analyses for ambulation and IQ in the incident cohort - 90% and 75% 
survival (age in years). 

Survival in the manual dexterity and vision models is discussed in the 

following section where we also look the sensitivity to the linear constraint 

on the missing data mechanism model. 
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Sensitivity Analysis 

We can look at the actual estimates for the missing data mechanism model 

in Table 5.5. As discussed we should not place too much importance on 

these values but we can use them to consider the type of mechanisms that 

might be working. We can see that each model estimates a decrease in 

the probability of missingness with an increase in survival time as we pre- 

viously suspected. However, the structure of the mechanism then differs 

over the different covariates. This may suggest that the mechanisms are 

not the same over the different disabilities but we have only used a sim- 

ple model and so cannot place a great deal of weight on any conclusion. If 

we compare the estimates to those in Table 5.2 we see a much greater de- 

pendence on the true covariate value suggesting that the incident cohort is 

further from the MAR assumption than the adult cohort. 

do 61 62 0 

Arnbulation 0.58 -1.06 -0.27 0.08 
Manual dexterity -1.44 2.04 -0.12 0.11 
Vision -1.69 2.46 -0.24 0.09 
IQ 1.56 -1.79 -0.40 0.18 

Table 5.5: Parameter estimates from the missing data mechanism and co- 
variate model for the incident cohort 

We need to consider the sensitivity of our conclusions to diversions 

from this linear assumption. Unlike with the adult cohort we have rea- 

sons to suspect this assumption. We are now considering children who 

may not reached physical maturity Therefore, assessing the level of dis- 

ability will be harder. This will lead to a higher probability of missingness 
before approximately 10 years. We are working only with binary covari- 

ates at present so we focus upon the dependence on time. Therefore, we 
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consider a missing data mechanism of the form: 

Mi ý aO + OlZi + 02tli + 03exp(-ti) + wi, Lai - N(O, 1). (5.8) 

Note the inclusion of the exponential term with parameter a3- We start by 

setting Ce2 =0i. e. having an exponential effect of tý on missingness. This 

model is again identifiable and we can compare survival model estimates 

over mechanisms. 

N 771 or 

Available case 5.034 -1.388 0.848 
Ambulation MAR Likelihood 5.098 -1.596 0.991 

NMAR linear model 5.030 -1.448 0.986 
NMAR exponential model 5.184 -1.633 0.984 

Available case 4.655 -1.323 0.604 
Manual MAR Likelihood 4.683 -1.546 0.699 
Dexterity NMAR linear model 4.811 -2.329 0.805 

NMAR exponential model 4.834 -2.297 0.813 
Available case 4.648 -1.447 0.623 

Vision MAR Likelihood 4.657 -1-616 0.699 
NTMAR linear model 4.765 -2.606 0.815 

NMAR exponential model 4.795 -2.522 0.829 
Available case 5.235 -1.257 0.829 

IQ MAR Likelihood 5.330 -1.450 0.987 
NMAR linear model 5.127 -1.168 0.978 

NMAR exponential model 5.419 -1.479 0.987 

Table 5.6: Comparison of complete case, and MAR and NMAR (linear and 
exponential) likelihood based survival analyses for univariate disabilities 
in the incident cohort 

Table 5.6 presents the comparison of survival model parameters over 
MCAR, MAR, and two NMAR mechanisms. Let us consider the compari- 
son for each univariate model. Note, that we are comparing Weibull mod- 

els for the effect of severe ambulation and IQ and log-logistic models for the 
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90% survival 75% survival 
Non-sev Severe Non-sev Severe 

AC 29.8 9.4 56.1 16.4 
Manual MAR 25.3 7.0 52.2 12.7 

dexterity NMAR (linear) 23.0 4.0 52.7 6.9 
NMAR (exponential) 23.1 4.1 53.5 7.2 

AC 28.6 8.2 54.6 14.4 

Vision MAR 24.7 6.5 50.9 11.7 
NMAR (linear) 21.6 3.4 49.9 5.5 

NMAR (exponential) 21.6 3.6 50.6 5.9 

Table 5.7: Comparison of available case, MAR likelihood, and NMAR 
based analyses for manual dexterity and vision in the incident cohort - 90% 
and 75% survival. 

effect of severe manual dexterity and vision. There seems to be a difference 

according to this model choice, with a more obvious difference in 71() and 

ril between the MCAR and MAR mechanisms and the two NMAR mech- 

anisms in the log-logistic models. This may be because under the more 

restrictive mechanisms the favoured model was the Weibull distribution so 

we are actually comparing different models. However, the estimated pa- 

rameters are also closer over the two NMAR mechanisms (the linear and 

exponential models, Equation 5.8 with a3 =0 and a2 =0 respectively) 

suggesting that the main effect on the probability of missing data comes 

form the true severity level. This leads to an increase in the magnitude of 

the severe level effect in the survival model and a smaller increase in the 

baseline survival. These estimates were presented in Table 5.6. 

It is also interesting to note that for the ambulation and IQ models, 

where the optimal distribution is the Weibull, we estimate near exponential 

models (a ; zý I). 

Table 5.7 presents estimated survival for the manual dexterity and vi- 
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Sion models. The estimated survival curve is considerably lower for those 

with a severe impairment under the NMAR mechanisms. In particular the 

75% survival rates drop from approximately 13 to 7 years for those with 

severe manual dexterity and from 12 to 6 years for those with severe vi- 

sion impairment. From this we can see that a naive MCAR or MAR model 

vastly overestimates survival for those at severe levels. The estimated sur- 

vival curve remains similar for those with non-severe levels of disability in 

the sense that the absolute change is approximately the same but the pro- 

portional change is less. If we compare estimates under NMAR to those 

under the optimal MCAR and MAR Weibull models we see similar pat- 

terns although the magnitude of differences changes. 
Conclusions are not quite as clear for the ambulation and IQ models. 

We see that there is no clear trend in parameter estimates over the differ- 

ent mechanisms and there are differences between the estimates using the 

linear and exponential missing data mechanisms. Therefore, we consider 

including both terms in our mechanism. We cannot identify each param- 

eter in this model (see Section 5-4) therefore we must consider a range of 

suitable values for a3- 

Figure 5.2 shows the estimated probability of missing data for the am- 

bulation covariate for the linear missing data mechanism already fitted in 

Section 5.5.2 and the missing data mechanism using the same maximum 

likelihood estimates for ao, (: tj, and a2 but with the addition of a 10 exp(-ti) 

term. This results in a higher probability of missing data at low Survival 

times. This is quite an extreme mechanism given our understanding of the 

data, which we discussed at the start of this section, so we look at values 

0< Ce3 < 10. We can now fit this model, which is still identifiable, and com- 

pare the survival estimates to those of the previous no interaction model. 
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Figure 5.2: Probability of missing data for linear and exponential mecha- 
nisms for the effect of severe ambulation with a Weibull model by survival 
(age in years). 

Figure 5.3 shows results of the sensitivity analysis. We see that for the 

chosen range Of Ct3 the survival model estimates are similar in size to the 

estimates under the linear model (i. e. a3 - 0). Given that we believe we 
have considered a range of missing data mechanisms that contains a large 

proportion of mechanisms that fit our prior beliefs we might be satisfied 

that a linear missing data model is adequate here also. We can again look 

at estimated survival times. The 757c survival times for those with non- 

severe ambulation range from 46.8 to 47.2 years over the sensitivity analysis 
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and from 12.1 to 14.2 for those with severe ambulation. The corresponding 

ranges for those without and with severe IQ levels are 51.8 to 59.5 and 16.6 

to 19.9 years. Recall from Table 5.4 that the linear NMAR estimates were 

46.8 and 12.5 years for the ambulation model and 51.8 and 17.5 years for the 

IQ model. The MAR estimates were 50.0 and 11.2 years for ambulation and 

62.3 and 16.1 years for IQ. Therefore, survival for those with non-severe 

disabilities seems slightly decreased under the NMAR model over plausi- 

ble missing data models. Survival with severe disabilities seems possibly 

higher than thought under the NMR assumption, yet less than that from 

a MCAR analysis. However, the key to analysis of this kind is to realise 

that we are not looking for point estimates but rather wishing to estimate 

a range of values in which they may lie based upon our understanding of 

the data and collection method. 

5.6 Discussion and Conclusions 

We have now attempted to model the missing data mechanism. We in- 

troduced a univariate joint survival and missing data model following the 

selection model ideas of Heckman (1974). We showed how to construct 

the likelihood function under log-normal, log-logistic and Weibull distribu- 

tional assumptions and also with left-truncated survival times. This model 

could then be used to model our cerebral palsy data described in Chapter 4 

under the NMAR assumption. 

Firstly, we considered the adult cohort consisting of individuals who 

survived at least 22 years. This removed the need to consider left-truncation 

as all participants are first observed before this time. We saw that the linear 

NMAR model resulted in similar estimated survival for physical disabili- 
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ties suggesting MCAR or MAR missingness is appropriate. We discussed 

the appropriateness of the linear missing data mechanism and decided that 

we had no obvious reasons to consider other models as this fitted with our 

understanding of the data coRection method. 
We then considered the incident cohort. This includes all individuals 

from the large data set with recorded entry time and survival greater than 

2 years. We now saw a change in estimated survival over the different 

missing data mechanisms. Under the linear NMAR model we estimated 

a decrease in estimated survival time particularly for those with a severe 

level of disability. However, we considered a sensitivity analysis for the 

missing data mechanism based on the inclusion of an exponential of time 

term. As we were only considering a binary covariate this was the obvious 

change to make. This would be complicated for factors with more lev- 

els or continuous covariates. This sensitivity analysis was designed based 

upon our knowledge of the data collection method and our beliefs concern- 

ing the missing data mechanism and should not be universally applied in 

other analyses where these factors differ. This sensitivity analysis showed 

a greater dependence of the missing data mechanism on survival time. The 

main conclusion drawn here was the obvious bias in the naive available 

case analysis which overestimated survival for all individuals regardless of 

level of impairment. It was more complicated to draw conclusions from 

the NNIAR analysis concerning estimated survival but this can not be the 

aim of an analysis such as this. Our interest must lie in finding a plausible 

range of estimates given our beliefs and understandings about the data. 

Given that we are modeling using untestable assumptions we need to ac- 

knowledge this. 

We have had to make certain assumptions about the data itself and its 
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collection method to use this model. These focus around the disability co- 

variates. Firstly, we are assun-ting that there was adequate attempt to collect 

data over the study period and that if a child was simply too young at re- 

ferral to obtain the information they were reassessed at later visits. This is 

important as we are not conditioning the missing data mechanism on en- 

try time. However, this also requires that the level of disability does not 

change. CP is a non-degenerative condition so disability should not get 

worse until much older ages. Changes might arise in situations such as 

these due to a change in the testing procedures. Fortunately, the disability 

covariates are recorded on a very simple clear scale meaning they should 

be reasonably consistently estimated. We also assume that patterns of di- 

agnosis and referral remain the same over the course of the study period. 

This is a more difficult assumption to make. If we refer back to Table 4.2 

we see that the levels of disability remained reasonably constant over time 

although this is complicated by the missing data. This gives us some be- 

lief that children entering the study later are essentially the same as the 

children entering earlier. 

There are obvious possible extensions to this model. Clearly we can 

extend to discrete covariates. Continuous covariates could also be included 

but their probability distribution may be harder to model. In Chapter 7 we 

will consider a multivariate model for our data by considering a model for 

all four binary disability covariates. However, first we present results from 

a simulation study investigating the accuracy of the model. 
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Chapter 6 

Simulation Study 

In Chapter 5 we presented a flexible joint univariate model for the survival 

time and missing data mechanism. We must consider its reliability. In this 

chapter we describe a simulation study to look at the ability of the model to 

accurately estimate survival parameters assuming it is the true model. We 

consider the log-normal, log-logistic, and Weibull distributions. Estimates 

will be compared to corresponding results from available case and MAR 

likelihood analyses using the methods discussed in Chapter 4 as well as 

estimates based upon the complete data. Simulations are conducted using 

different missing data mechanisms and also a change in the proportion of 

missing data. Otherwise, we consider data similar to the cerebral palsy 

data set that is our motivation i. e. we use a similar level of censoring and 

the joint model maximum likelihood estimates are used as the model for 

the simulated data. 

Note that we are conducting this simulation study in order to investi- 

gate the reliability of our model to accurately estimate parameters assum- 

ing the model is correct. We are not looking at the robustness of our model 
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to misspecification. This would require an additional study that is beyond 

the scope of this thesis as this is a more complicated, although also inter- 

esting and important, issue. 

6.1 joint Model Simulation Study 

We will now discuss the methods by which we simulate the missing data, 

the design of the study, and present the results 

6.1.1 Generating Data 

In order to simulate data, of size n, we have to consider how to draw from 

the various survival distributions, how to apply censoring, the distribution 

of the covariate, and the construction of the missing data mechanism. 
Firstly, we create a vector of length n based on realisations from a Bernoulli 

distribution with probability R This gives the true covariate values which 

we then subject to our required missingness mechanism. 
We must then construct the true survival times based upon these simu- 

lated covariate values and the maximum likelihood survival estimates from 

the joint model for the adult cohort. Note that we are going to consider this 

cohort as it does not include the issue of left-truncation hence simplifying 

the study. Like censoring, truncation leads to a decrease in accuracy of 

model estimates. If the truncation is independent it can be incorporated in 

the likelihood as discussed and does not lead to bias. We can use estab- 
lished techniques to generate random numbers from a standard uniform 
distribution via the runif function in S-Plus. Effective random number gen- 

eration has a vast literature but we are using it simply so that is not our 

concern here. To transform these to random numbers from the normal, 
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logistic, and Gumbel distributions we require the inverse probability trans- 

form. 

Theorem If F: R, [0,1]is increasing and left-continuous then we dejine its 

inverse as follows 

F-l(u) = inf(t: F(t) > u) 

=: ý- A real valued random variable X with distribution fiinction F(x) = 
P(X <= x) can be represented using the inverse probability transform 

X= F-I(U) for Ua uniform [0,11 random variable. 

We can therefore construct survival times based on errors drawn from 

the relevant distribution, the corresponding covariate value, and the re- 

quired 71 and o,, the survival model parameters as presented in the previous 

chapter. 
We impose a censoring distribution similar to that we believe applies 

to the Bristol CP data i. e. independent uniform censoring on the interval 
[23 years, 53 years]. This is because censoring is mainly due to the end of 
the study period and not due to individuals being lost during the study. 
Recall that as we are trying to simulate data similar to the adult cohort we 

are conditioning on survival until 22 years. The last entry into the study is 

approximately 45 prior to the final censoring date of 2005 and the highest 

survival time in the data is approximately 75 years. Therefore, observed 

additional survival must be less than 53 years. We can then calculate the 

observed survival and censoring indicator. The enforced censoring mech- 

anism leads to approximately 80% censoring, similar to that found in the 
Bristol cerebral palsy data. 

Again using the inverse probability transform we can construct the la- 
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tent missing data mechanism variable, m. We can then force the covariate 
data to be missing according to the value of this. This method produces the 

full simulated data set and was programmed in S-Plus. 

6.1.2 Study design 

The aim of our simulation study is to investigate the success of the model 

at correctly estimating the survival model for different data sets with a va- 

riety of missing data mechanisms. We look at look at data sets similar in 

structure to the adult sub-cohorts discussed in Section 4.2.3 as we wish to 

investigate the reliability of the estimates obtained in Chapter 5. In or- 
der to do this we simulate survival data with parameters (71o, T11, u, 0) 

(4.7, -0.7,0.8,0.05). Recall that the survival model is defined as 

log ti = no + 771 zi + O"Ei 

and that 0 defines the covariate model. Refer back to Table 5.1 to see that 

these are approximate averages of the estimated parameters for the sur- 

vival in the adult cohort. We subject the simulations to four different miss- 
ing data mechanisms. These mechanisms are defined by the value of (a 11 (12) 

with ao chosen to result in approximately the right proportion of missing 
data. Recall that we modeled the missing data mechanism using the linear 

model, 
7ni -: z aO + Ce I Zi + Cf 2 109 ti + Wi - 

The four mechanism we consider are 

a) MCAR oI =-- a2 0,20% missing data, 

b) MAR a1=01 OZ2 -0 . 2,20% missing data, 
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c) NMAR a, = 1.5, Ce2 = -0.2,20% missing data, 

d) NMAR a, ý-- 1, a2 = 0,50% missing data. 

We are forced to drop the dependence of the missing data mechanism 

on survival time in the model with 50% missing data as otherwise we are 
left with no severe level cases and we wish to maintain the high depen- 

dence on the true covariate value. For each survival distribution previously 
discussed and each mechanisms we then simulate 100 data sets using the 

method discussed in the previous section and compare survival model esti- 

mates from our model with those from available case and MAR likelihood 

estimates and also the true estimates (based upon the true data). Each data 

set consists of 400 individuals with one binary covariate. Full results are 

presented as box plots. 

6.2 Simulation Study Results 

Results are presented for the simulations based upon the Weibull distri- 

bution as this is the model chosen as fitting the data best most frequently. 

Estimates for log-logistic and log-normal models display similar distribu- 

tions and summaries can be obtained from the author. 
Figures 6.1 to 6.3 present simulated results for the estimates of the sur- 

vival model intercept (71o), the covariate effect (711), and the dispersion (a) 

over the three mechanisms with 20% missing data. They compare the 

"True" estimates (i. e. estimates based on the complete data) with estimates 
from available case (AC), NCAR likelihood based (MAR), and NMAR joint 

model (NMAR) analyses. We can also consider the effect of an increased 

proportion of missing data on the different approach estimates. Results for 

154 



CHAPTER 6. SIMULATION STUDY 

7- AC MAR Paw 7- AC kw hum T- AC MAR KWAR 

Figure 6-1: Simulation model estimates for survival model intercept under 
a) MCAR b) MAR c) 20 percent NMAR mechanisms 

the missing data mechanism leading to approximately 50(70 missing data 

can be found in Figure 6.4. 

6.3 Discussion of the Results 

Studying Figures 6.1-6.3 we can discuss the reliability of our model over 
increasingly less restrictive missing data mechanisms. There are several 

things to note. Firstly, we consider our results when the data are MCAR. We 

can see that the distributions of all parameter estimates are similar for our 

joint model compared to that of the alternative methods and estimates as- 

suming known data. This is encouraging as it suggests that modelling the 

missing data mechanism does not lead to less reliable results compared to 

the most simple missing data methods when it is actually unnecessary. We 
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Figure 6.2: Simulation model estimates for survival model covariate effect 
under a) MCAR b) MAR c) 20 percent NMAR mechanisms 

a) MCAR b) MAR C) 

Ifni 

T- AC WW MW T- AC 40 MW I. W cc am 0" 

Figure 6.3: Simulation model estimates for survival model dispersion un- 
der a) MCAR b) MAR c) 20 percent NMAR mechanisms 
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Figure 6.4: Simulation model estimates for survival model with 50 percent 
missing data 

can then look at the distributions of results as the missing data mechanism 

tend to NMAR and the proportion of missing data increases. We can see 

that the available case estimates shift away from the true parameters under 
NMR conditions (in particular the c and 71o terms) and the likelihood based 

estimates shifts slightly under the NTNIAR mechanism (observe the bias in 

the estimate of 710). However, the median of the joint model estimates re- 

main consistently close to the "true" estimates. We know that available 

case analysis lead to bias in parameter estimates when data are not MCAR. 

This is why it is so important to be able to relax this assumption. In par- 
ticular, when we have an NMAR mechanism the available case estimates 

are considerably biased but our model remains more reliable. This is par- 

ticularly obvious in the estimation of the dispersion parameter, a, where 
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available case analyses vastly underestimate the magnitude. The biases 

within the available case and MAR likelihood estimates are in the expected 
direction as we expect to miss those with covariate z=1 and hence the 

lower survival times which would increase survival in general (i. e. lower 

the estimate of qo) and decrease the effect of the covariate. 
Secondly, we can look at the range of the parameter estimates. While 

the model estimates are obviously more variable than the estimates using 
the fully known data they are generally of a similar magnitude. This per- 
haps fails to be true when the level of missing data increases to 50% but this 

is unsurprising as we have much less information upon which to base es- 

timates. Note that there is now less difference in the variation of estimates 
form the MAR and NMAR models. This is most probably caused by the 
fact that the missing data mechanism used to generate this data is closer 
to a MAR mechanism. In situations such as this it does not seem to be a 

sensible idea to try any analysis as we have so little data. The range may 
decrease when there is no or less censoring, recall we have 807c, censoring, 

as censoring does lead to a decrease in precision of parameter estimates 

even with standard survival analysis models in data with no missing val- 

ues. Changes would also be likely under varying values of 0, the proba- 
bility of a "severe" covariate level. The low values that we are simulating 

with lead to small number of severe individuals, as observed in the cerebral 

palsy data. 

Thirdly, if we consider Figure 6.4, results for the NMAR mechanism 

resulting in 50% missing data, we see considerably larger variance in es- 

timates, particularly the covariate effect parameter nj. It should be noted 
that Figure 6.4 differs in content to the preceding three figures as we are 

now looking at each of the survival model parameters at once. They are 
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presented separately as we are now considering a different proportion of 

missing data. This larger variance may potentially be masking biases in 

simpler models, the result of dropping the dependence of missingness on 

survival time, or the fact that there is simply not enough data for the joint 

model to be able to extract any more information than the simplest avail- 

able case and MAR models. 

It is also useful to note that our model works equally over all the sur- 

vival distributions, although full results are not displayed here. These re- 

sults suggest that we may be reasonably confident in the precision of our 

model. However, we have already discussed the dependence of the model 

on the assumption of the linear missing data mechanism. In the analysis of 

the two cerebral palsy sub-cohorts we conducted a sensitivity analysis to 

the linearity assumption. 
It would also be interesting to extend the study to consider the accuracy 

of standard errors and confidence intervals. These are as important in anal- 

ysis as the actual point estimate. However, time constraints meant that this 

was not possible but might be considered as future work for investigation. 
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Chapter 7 

Multivariate Analysis 

In Chapter 5 we have considered a joint univariate selection model for the 

survival time and the missing data mechanism. We might use this to study 

the possible effect of each of the four disabilities upon survival. We have 

seen that severe disability causes a significant decrease in the estimated sur- 

vival time. We can now consider multivariate extensions to this idea. These 

are of particular interest for our incident cohort as our previous analysis 

suggested that data were not MAR so standard multivariate survival mod- 

els are not appropriate. We wish to investigate the multivariate model for 

the combined effect of severe ambulation, manual dexterity, vision, and IQ 

upon survival. Models of this type help us to investigate the relative impact 

of covariates as predictors of survival and also the dependence structure Of 

the dependent and independent covariates. There is a definite correlation 

between the severity of the disabilities and a multivariate model helps us 

to identify this structure. 
Here we discuss the possible structures for this multivariate model. As 

with the univariate case we must consider the form of the covariate model, 

160 



CHAPTER 7 MULTIVARIATE ANALYSIS 

the survival model, and the missing data mechanism. 

7.1 The Multivariate Model 

Recall that in the univariate case, as stated in Section 5.2.1, the joint likeli- 

hood for our latent variable model can be constructed as 

L(q, o,, a, Olt, z, 6) = 11 f (T' = ti, M<0, Z la, 77, a, 0) x 
F, O 

11 S(T' = ti, M<0, Z= zi la�q, 0', 0) x 
C, 0 
11 f (TI = ti, m> ola, 77, cr, 0) x 

F, M 

11 S(T' = ti, M> Ola, 71, a, 0) 
O, M 

where T' is the log of the observed survival time, M is a latent variable 

controlling the missing data mechanism, and Z is the vector of covariates. 
In turn we can express the joint density function in terms of the product 

of conditional densities: 

f(T, = ti, M < 0, Z= zi) = 

f(M = mIT'= t', Z = z)f(T= t'IZ = z)f (Z= z). 

However, now we have the issue that some data for an individual may 

be observed and some missing. Therefore the likelihood must be further 

divided to allow for the different patterns of missingness. Similarly, we will 

have to further separate the distribution of the missing data mechanism in 

the joint density function. 
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7.1.1 The Covariate Model 

In the early model, where we considered one binary covariate, a simple 

model was adequate for Z. However, as Z is now a vector we will have to 

describe a model for the distribution of the cell probabilities for the contin- 

gency table constructed via the components of Z. Using the same notation 

as in the missing at random model of Section 4.6, assume that Z is a vector 

of p factor variables. We can then construct a contingency table, based upon 

the covariates, of dimension I, x ... x Ip where Ij is the number of levels 

of the jth covariate. We then place a model on the probability distribution 

of the table cells. We can consider a fully saturated model or a restricted 

model. Investigation of the observed data might suggest possible simpli- 
fied models. 

Our main interest does not lie with the distribution of the covariates 

and therefore the estimation of these model parameters is a nuisance. Us- 

ing a restricted model decreases the number of degrees of freedom required 
to fit it although the effect of using an unsaturated model should be con- 

sidered. We have not looked at the sensitivity of our model to the form 

of the covariate distribution. While this was not a particular issue in the 

single binary variable case it becomes more important in a multivariate or 

continuous setting. 
Note that in a multivariate setting we may have some observed infor- 

mation for an individual but not all. We will need to model the unobserved 

conditional upon the observed data using Bayes theorem. 
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7.1.2 The Survival Model 

We also need to define the model used for the survival time. This is of the 

same form as before, except we now have a vector of covariates and hence 

a vector of covariate effect parameters. Our interest in the cerebral palsy 

data lies with the effect of the four binary disability covariates; ambulation, 

manual dexterity, vision, and IQ. Previous work (Hutton & Pharoah 2002) 

has considered the effect of the number of severe level disabilities upon 

survival. As was shown in Table 4.3 data are exceptionally sparse if we con- 

sidered this parametrization. Our univariate (binary) simulations showed 

that with high levels of missing data estimates became less reliable and this 

would not be helped by the increased number of levels if we looked at the 

number of disabilities. We could consider constructing a model here where 

we considered the variable to be coarsened as opposed to entirely missing 

i. e. if we observed severe ambulation but non-severe manual dexterity and 

IQ then if the data for vision was missing we would know that the number 

of severe level disabilities could only equal one or two dependent upon the 

true level of sight. However, this is beyond the scope of this thesis. 

We again use a log-linear construction for the survival model: 

IT log ti = ti = 770 + 771 Zi + Oci, ci , N(O, 1), n. 

Note that ill is now a vector of parameters of length equal to the covariate 

vector z. We may now have any number of data values missing for each 

individual. 

Our main purpose in this chapter is to show how the univariate joint 

model may be extended to multivariate settings and to discuss the compli- 

cations in doing so. Therefore, the analysis here should be considered as 
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an example of what can be done and not the only choice. We could also 

consider interaction terms or, if using continuous covariates, exponential 

or polynomial terms. 

7.1.3 The Missing Data Mechanism 

As we are now in a multivariate situation our missing data mechanism 

must be able to allow for any pattern of missingness. Therefore, we em- 

ploy a vector of length equal to the number of survival model covariates 

consisting of latent variables each of which works in the same fashion as in 

the univariate case. Again, we need to consider the data collection method 

in order to decide upon a sensible model for the missing data mechanism- 
It does not seem necessary, in our data, to allow the probability of missing a 

disability observation to depend upon the severity of the other disabilities. 

Therefore, as before, each missing data latent variable will be modelled us- 

ing the corresponding true individual covariate value and the log survival 

time. This means that 

Mi : -- Oi-O + ai, I Zi + 0j. 2 
109 t+ 

-4ýj 

where j=1,... p. As before, if rrij >0 this implies that the covariate value Zj 
is unobserved. We assume independence between each ý:,, Therefore, we 

can separate the density function of the mechanism into the product of the 

individual densities. This independence may not be appropriate in other 

situations. In this case we would need to consider how we would allow for 

the dependence structure and then calculate the likelihood function. This 

would involve multivariate numerical integration and there may be issues 

with identifiability. 
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7.1.4 The Likelihood Function 

Let us look specifically at the likelihood for a bivariate survival model. The 

bivariate survival model is of the form 

109 Ti : -- ti ý 7J0 + 771 Zl, i + 772 Z2J + Ufi 

where zi ý (Zl. i. Z2. i )T is the column vector of two covariates. Therefore, 
the missing data model used is of the form 

-. 
'. 

)=(a 
l'O 

+( 
C'" 

) 

-l'i +( 
02, 

ý 

) 

Z2, i +( 
C'. 

'2 

) 

ti +( 
L'ý, i 

), 

M 2', 02,0 0a 012,2 L02, i 

where w, and W2 are independent error terms. We will start by using a fully 

saturated model for the covariate model. 
We can now construct the likelihood as follows. As before, we split the 

likelihood into different components based upon the missing data pattern, 
initially assuming that we have a recorded failure. 

Group 1) Individuals with observed data on both covariates 

L, (Y7, a, a. Olt, z, ) = P(Afi < 0, A12 < 0, T' = ti, Z= (ZI, i, Z2, i)) 

= P(All < OJT' = t', ZI)P(Af2 < OJT' = t', Z2)P(T' = t'lZl, Z2)P(ZI, Z2). 

The exact parametrization is obviously determined by the choice of distri- 

bution. 

Group 2) Individuals with missing data on both covariates. 

= P(All > 0, A12 > 0, T' = ti) 

P(All > OJT' = t')P(A12 > OJT' = t')P(T' = t') 
1: P(All > OJT' = t', ZI)P(AI2 > OJT' = t', Z2)P(T' = t'IZI, Z2)P(Zl, Z2)- 

ZI -Z2 
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Group 3) Individuals with missing data on covariate Z, but observed data 

on Z2. 

Li (ij, a, a, Oltj, zi) = P(All > 0, M2 < 0, T' = tfil, Z2) 

= P(Mi > OJT' = t')P(M2 < OJT' = t', Z2)P(T' = t'IZ2)P(Z2) 

EP(Mi > OJT' = t', ZI)P(142 < OJT' =tl, Z2)P(T'= t'IZI, Z2)P(ZlIZ2)P(Z2)- 
ZI 

Group 4) Individuals with missing data on covariate Z2 but observed date 

on Z,. 

This is the same as for Group 3) above but with the covariates inverted. 

We then construct the full likelihood as the sum of the log of each com- 

ponent, remembering to integrate to find the survival function if the time 

is censored. 
As with the univariate model we need to consider the identifiability 

of this multivariate case. This can again be done using significant statis- 

tics. Details are not presented here but follow from the calculations of Sec- 

tion 5.4. Identifiability would become a point of concern if we did not force 

the missing data mechanisms to be independent conditional upon time as 

we have done. 

7.2 Multivariate Analysis of Cerebral Palsy Data 

We now go on to present the results and discussion of a multivariate analy- 

sis of the adult sub-cohort of the cerebral palsy data. We focus on the anal- 
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ysis from the adult cohort because our analysis so far has suggested that 

the data is MAR (or, at least, our NMAR model provides little additional 
information). This means we can compare the reliability of the multivari- 

ate model in comparison to available case estimates. We start by looking 

at bivariate models. We use a fully saturated multinomial model for the 

covariates. 

7.2.1 Fitting Bivariate Models to the Adult Cohort 

In attempting to fit the bivariate models we run in to serious issues with 

convergence and a lack of data. This is because the small proportions of 

severe disabilities mean that when considering two covariates we see very 

few individuals in some of the contingency table cells. Looking at avail- 

able case models the optimal choice uses the ambulation and IQ covariates. 
Table 7.1 shows the breakdown of the data for the two covariates. 

Not severe 
IQ 

Severe Missing Total 
Ambulation 
Not severe 218 (59.2) 33 (9.0) 47 (12-8) 298 (81 -0) 
Severe 3 (0.8) 11 (3.0) 4 (1.1) 18 (4.9) 
Missing 15 (4.1) 8 (2.2) 29 (7.9) 52 (14.1) 
Total 236 (64.0) 52 (14.0) 80 (22.0) 368 

Table 7.1: Number (percent) of severe ambulation and IQ in the adult co- 
hort 

The proportion with non-severe IQ but severe ambulation is very low. 

This means that the missing data mechanism is going to be very hard to 

idenfify. 

In Figure 7.1 we show the estimated survival curves from the available 

167 



CHAPTER 7. MULTIVARIATE ANALYSIS 

cc c 

c 0 f! u 
0 

CPI 

Figure 7.1: Survival for those with non-severe ambulation and IQ or severe 
ambulation and IQ (age in years). 

case and NMAR model for ambulation and IQ but only for those with two 

non-severe level disabilities and those with two severe level disabilities. 

The survival curves for those with one severe disability are similar over 

the available case and NMAR model and are also quite similar for each 

of the two covariates. This suggests that it may be the number of severe 

disabilities that is the important factor when considering survival. We can 

again see how there is considerable survival into older age in this cohort. 

However, we see that with the NMAR model we arrive at vastly different 

survival estimates for those with no severe disabilities and for those with 
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two severe levels. When modelling the missing data mechanism survival 

considerably improves in those with neither severe ambulatory disability 

with 90% survival increasing from 37.4 to 44.5 years and gets much worse 

in those with both severe impairments with 90% survival decreasing from 

30.7 to 26.6 years. 
The model estimated here is used as an example of the implementation 

of a multivariate model. We should look at a simulation study to investi- 

gate the efficiency and precision of the model in multiple dimensions. We 

have not used the bivariate model to investigate survival in the incident 

cohort. The issue of left-truncation in the incident cohort complicates the 

likelihood and makes convergence of the maximization of the likelihood 

difficult to achieve particularly given the small number of events in the 

available "exposed" time. The higher levels of missing data also mean that 

we are seeing very few individuals with fully observed data at severe levels 

on two covariates. 

7.2.2 Further Multivariate Models 

It would also be interesting to look at a model for survival involving all 

of the four disability covariates. Given the lack of data at severe levels it 

would be probably impossible to fit but can be discussed in theory. How- 

ever, the increase in covariates obviously adds a considerable number of 

parameters to the model which will lead to an increase in work in the op- 

timization. Therefore, we look at reducing the number of parameters by 

restricting the covariate model. 
If we look at the cerebral palsy data and fit a series of different models 

to the observed data we see that the best model uses a factor for the num- 
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ber of severe disabilities (rather than the separate disability covariates) and 

the severity of IQ. This means using a variable with levels 0,1,2,3 and, 4 

instead of four binary covariates. It suggests that the three physical dis- 

abilities have a similar distribution and action but that IQ behaves slightly 
differently and independently of the others. This is quite interesting. We 

would, perhaps, expect IQ to behave differently as the others are physical 
disabilities. 

However, even after reducing the model our program we are still un- 

able to fit the model due to a lack of data. Note also that we are trying to 

simultaneously find 23 parameters and the likelihood involves consider- 

able numerical integration which would complicate the optimization even 
if we had more data. Despite this it is interesting to look at a possible alter- 

native model to avoid this issue. 

Model using the Number of Severe Level Disabilities 

Another alternative would be to consider the effect of the total number of 

severe level disabilities through a four level factor variable, the levels corre- 

sponding to 1,2,3, or 4 severe disabilities. Hutton & Pharoah (2002) show 

how survival decreases rapidly with an increase in the number of severe 
level disabilities. This approach may not be appropriate in the analysis of 

the adult cohort as we observe very few cases with 3 or 4 severe disabilities 

(and, hence, very few deaths) but may be of more interest in the incident 

cohort. However, particular issues with such a model require considera- 

tion. 

The problem here is that we have partial information on the factor as it 

is the sum of four partially observed covariates. For example, we may ob- 
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serve, for a specific individual, non-severe levels of ambulation and man- 

ual dexterity but have missing values of vision and IQ. This means that 

the number of severe level disabilities can be at most 2. This pattern can 

vary for each individual causing complications. If we do not take this par- 

tial information into account we will be missing important information and 

hence losing precision. However, in order to do this we can cause compli- 

cations with the construction of the missing data mechanism model. How 

will this model work now that our data is not simply missing or observed. 

Perhaps we can use four separate missing data models as before, although 

of course this will not reduce the number of parameters which was part 

of our aim. Mtematively, we might develop a model based upon a differ- 

ent latent variable which allows for the different patterns of missing data. 

Methods for this have not been considered and are beyond the scope of this 

thesis. 

7.3 Discussion and Conclusions 

In this chapter we have tried to consider multivariate models to look at 

the survival of children with cerebral palsy. We have shown that survival 

decreases with the number of severe disabilities but that there is still con- 

siderable survival into later years. This implies that funding for resources 

specific to older sufferers is important and exact levels should be thought 

about. 
However, we have been hindered by the complexity of the model and 

the simplicity of our program despite attempts to simplify as much as pos- 

sible. Identifiability would be a definite issue in more complex models. 

This is definitely an area for further development. In particular, multivari- 
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ate models are difficult to fit when the proportion of cases at some factor 

levels are low. We should consider looking at sensitivity type model of the 

type used by (Copas & Shi 2001) in the case of selection bias. The lack of 
data means that we are in a similar situation and the missing data mecha- 

nism cannot be well identified using the data alone. 

7.4 Further Extensions 

There are several extensions to this model that we have not considered, 

mainly because they were not applicable to our motivating data but partly 
because the computation can become very difficult. We will briefly discuss 

some of these here. 

7.4.1 Incorporating Continuous Covariates 

Our interest lay in looking at the association of discrete (binary) covariates 

with survival time. However, it is worth noting that, theoretically, we can 
incorporate continuous covariates into our model. One way of doing this 

would be to use a general location model as used by Cho & Schenker (1999) 

and Lipsitz & Ibrahim (1998) for example. This type of model splits the co- 

variates into discrete and continuous; uses a multinomial model (possibly 

restricted) for the discrete covariates and then places a continuous distri- 

bution over each cell to model the remaining continuous covariates. 
There are several issues with this model. Firstly, while deciding upon an 

appropriate multinomial model is relatively straightforward (we can use a 
fully saturated model) the choice of continuous distribution is less obvious. 
A Gaussian distribution is the normal choice but an investigation into the 

effects of misspecification on the accuracy of parameter estimates would 
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be important. Secondly, if we are trying to include discrete and continuous 

covariates the number of parameters to be estimated increases rapidly and 

approaches to restricting the model become increasingly unclear. Another 

complication occurs when using multiple continuous covariates. The pos- 

sibility of different distributions describing the different covariates means 

that multivariate distributions, and hence the covariance structures, may 

be very complicated. 
The inclusion of continuous covariates highlights the issues that arose 

when we considered the multivariate model. This joint model becomes 

complicated with more complex covariate structures and the possibilities 

of misspecification increase. 

7.4.2 Allowing for Informative Truncation 

In Section 2.2 we discussed the issue of left truncation and discussed its 

comparison to censoring. Throughout we have assumed independent cen- 

soring. This seems a valid assumption as censoring is almost totally forced 

by the current censoring date, in this case December 2005. This means that 

we can ignore the censoring mechanism. 

We have also explained why our survival times are subject to left trun- 

cation. However, we have not focussed upon the mechanism behind this 

truncation. We have assumed independent truncation so that, as with the 

independent censoring, we can ignore the distribution of the truncation 

times and easily incorporate the conditioning upon survival until entry into 

the likelihood function. 

As with any assumption it is important that we consider its validity. 

Children become known to the study only when they were referred to Dr 
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Woods, the paediatrician who collected the data. The question is, how 

quickly did she see the children and was this associated with their sur- 

vival. As we are unsure about the exact process of referral this is difficult 

to consider but its seems reasonable that entry time may be associated with 

severity but once adjusting for this there is no further association with sur- 

vival time. If this assumption was not valid we would have to model the 

entry time distribution. 
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Conclusions and Discussion 

We have now completed the main body of research for this thesis. We will 

briefly summarise the content of the preceding chapters, drawing together 

the results, before presenting the conclusions that can be drawn. The main 

motivation was to look at the long term survival of a cohort of children 

diagnosed with cerebral palsy. The data also posed interesting theoretical 

statistics questions. 
Firstly, we amassed and presented the established theoretical background 

that we considered would be required for the later analysis and method- 

ological work. Established methods include models for the analysis of sur- 

vival data and the framework used for handling missing data. Survival 

analysis is concerned with the analysis of time to event data. Our focus 

lay with parametric models for survival although we also considered semi- 

parametric methods as these are exceptionally popular with applied statis- 

ticians and epidemiologists. In particular we presented methods adapted 

to deal with left truncated survival times. Within this chapter we intro- 

duced the commonly used taxonomy of missing data assumptions derived 
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by Rubin (1976). We commented on the application of these assumptions 

and developed a correction to the MAR assumption to avoid the possible 

confusion within it. Having presented these established methods we could 
focus on more recent work discussing issues similar to those posed by our 

motivating data. 

Chapter 3 contained a full literature review of the handling of missing 
data in survival analysis. We opened with the standard methods used com- 

monly in the analysis of data sets with missing observations and compared 
the advantages and disadvantages of each. These methods included case 
deletion and imputation techniques. We then described methods devel- 

oped in the literature to specifically incorporate missing data into survival 

analysis models. These focused on the Cox proportional hazards model. 
This is partly because it is a popular model useful for investigating the rel- 

ative risks of failure within different groups and partly because the semi- 

parametric nature means that its implementation requires a profile likeli- 

hood. 

This review left several open questions. We had seen a focus on the 
Cox model. While this is a useful flexible model the assumption of propor- 
tional hazards is not necessarily appropriate for cerebral palsy data. Even 

if the assumption is sensible if we can correctly fit a parametric form to the 
hazard we achieve higher power in our model. 

Research has also focussed upon Rubin's MAR (missing at random) as- 

sumption. This assumption is generally of use in missing data problems 

and several situations were discussed by various authors. However, this 

is an untestable assumption so as with any analysis we should look at the 

sensitivity of models to it. Choosing a more flexible model that allows us 
to model the missing data mechanism means we can consider less restric- 

176 



CHAPTER& CONCLUSIONS AND DISCUSSION 

tive assumptions. Possible approaches for doing this are discussed later in 

Chapter 5. However, first we start with a more basic statistical analysis of 

our data. This is to further our understanding of the demographics and 

association within our cohort. 

in Chapter 4 we fully summarised the motivating data. The data came 
from an early study into children with cerebral palsy. It contains full in- 

formation on survival time and complete censoring information. However, 

some of the covariate data is missing. 

Our interest in the data lies with its possible use in looking at long term 

survival rates by level of disability. Specifically, we construct two sub- 

cohorts of the whole data set to answer two slightly different questions. 

Firstly, what is the survival from diagnosis and how is this associated with 

the level of disability and, secondly, given a child has survived into adult- 

hood what is their future expected survival, does this still depend on the 

baseline level of disability, and how does survival differ to that taken from 

diagnosis? 

The first set of questions are looked at using all data available, condi- 

tional upon survival until 2 years of age. This is an approximate average 

age of diagnosis. However, not all children have entered the study by this 

age so we have the issue of left truncation, as discussed in Chapter 2. The 

issue of left truncation is avoided in the second sub-cohort as we now look 

at survival conditional upon age 22 years, an age older than any of the in- 

dividuals at the time of their first assessment i the study. This sub-cohort is 

used to look at the second set of questions as discussed above. 

We see that, in both sub-cohorts, levels of severe physical disability are 

low with a severe impairment being strongly associated with a decrease 

in survival time. This supports alternative work on both this, and other, 
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data. There are higher levels of severely low IQ, the measure of intellectual 

capacity used, and this is again associated with a significant decrease in 

survival. The association with survival time was looked at via complete 

case non-parametric survival methods. However, it is highly unlikely that 

data are missing completely at random and hence estimates will be biased. 

Therefore, we must look at the pattern of missing data and think about 

possible mechanisms that may be underlying it. 

After concluding that the MCAR assumption was almost certainly not 

valid we used a likelihood based analysis to allow for the MAR assump- 
tion. This method was an extension of earlier work by Schluchter & Jackson 

(1989). It allows us to calculate survival estimates based upon parametric 
hazards via maximum likelihood techniques. The NLAR assumption means 
that the mechanism is ignorable and so we do not have to directly model 
it. We compared the estimates from this likelihood analysis to those from 

multiple imputation techniques concluding that they led to similar results. 
Multiple imputation is a valuable technique. We can develop strategies 
for filling-in the missing data and then continue analysis as we would on 

complete data. Discussion of our likelihood based MAR model and the 

imputation techniques we used highlights the complex associations in our 
data. There is clearly a strong relationship between the disabilities and the 

survival time. It seems that the information held in the disability variables 

with regard to the missing data mechanism is very similar to that held by 

the survival time. This information, along with the need to look at the 

sensitivity of our model to the MAR assumption, leads us to consider the 

development of a more complex joint model. 
As previously mentioned, our review of possible methods continued 

in Chapter 5 when we discussed selection and pattern mixture models for 
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non-ignorable missing data. These methods attempt to allow for less re- 

strictive missing data mechanisms. 

We compared the issue of missing covariate data to that of selection bias 

and then focussed on a selection type model to jointly estimate the survival 

time and the missing data mechanism. The construction of this model was 
based upon ideas that have previously arisen in the selection bias litera- 

ture. However, we are in a slightly different situation as we are assuming 

that we are seeing all children affected by cerebral palsy so our survival, 

and censoring, data are complete, we are only missing some covariate in- 

formation. In selection bias issues we have the situation when it is possible 

that the cohort is not complete or is not representative of the population. 

We discussed in detail the formulation of this model and the calculation 

of the likelihood function. The structure of the model followed from the re- 

sults of our MAR analysis. We also discussed the practical evaluation of the 

likelihood function. This is a complicated model and the maximisation of 

the likelihood requires both numerical integration and optimisation tech- 

niques. We showed how this parametric model is flexible enough to take a 

variety of survival distributions and presented the likelihood for each. We 

also extended this model to allow for left-truncation. 

The chapter concluded with an application of this joint model to the 

cerebral palsy data and a comparison of survival estimates across the range 

of missing data mechanisms. Estimates in the cohort looking at survival 

from diagnosis have changed considerably over the different mechanisms. 

We have previously concluded that missingness is dependent upon sur- 

vival time, the shorter the survival the higher chance of missing data as 

there is less time in which to collect it. Indeed, this relationship forms part 

of our NMAR model. Therefore, we would expect estimates to change in 
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this sub-cohort as we are including more children with short survival times. 

We also believe that shorter survival is associated with severe level impair- 

ments, implying that we are now seeing more children with greater dis- 

ability. If our belief that missingness is also associated with the true level of 

severity is true this would also cause bias in our survival model estimates 
if not accounted for. One of the key sections in this chapter discussed the 

importance of sensitivity analysis to the linear structure of the missing data 

model. 
The performance of this univariate joint model was investigated in the 

simulation study, results of which were shown in Chapter 6. This perfor- 

mance was compared to case deletion and MAR methods, and also to the 

"true" data estimates, and proved to be effective at moderate levels of miss- 
ing data. In any statistical analysis it is important to test the sensitivity of 

the model to any untestable assumptions. We want our model to be ac- 

curate under the NMAR mechanism but it must still produce reliable esti- 

mates under the more restrictive assumptions. We also want it to be effi- 

cient. We do not look at the robustness of our model to deviations from the 

assumed distribution and structure. This is also important as we can not 

say conclusively if we have specified the correct model. However, this was 
beyond the scope and time constraints of this thesis. 

Finally, in Chapter 7 we discussed the model within a multivariate set- 
ting. Until now we have only looked at univariate analyses but it is im- 

portant to look at multivariate models for this data and, also, for general- 
isation of the techniques. Examples were again taken from the motivating 

cerebral palsy data. We showed that while multivariate models could be 

constructed they became difficult to fit within our data. This would likely 

be a problem even in larger data sets with more even risk sets. We also 
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suggested extension to the model to allow for continuous covariates and 

informative censoring or truncation. There are limitations to our model 

with regard to these issues. We are already making many assumptions that 

we need to investigate and these extensions require more. 

8.1 Long-term Survival in Cerebral Palsy 

Our main focus for this thesis was the analysis of long term survival for 

children diagnosed with cerebral palsy We noted at the start that this was 

vitally important for the allocation of funding and resources in an age- 

ing cohort. Other UK databases can look at 40 year survival but we have 

seen that moderately severely disabled people can easily live until 70 years 

old. Univariate models show that severe physical and cognitive disabilities 

have a large negative impact upon survival, reducing 75% survival by ap- 

proximately 25 years. Severe IQ (i. e. an IQ < 50), in particular, has a major 

effect. Interestingly we saw that IQ behaves differently to the physical co- 

variates when looking at the joint covariate distribution in the multivariate 

models. 
We can consider both of our chosen sub-cohorts in turn. Firstly, the 

adult cohort. Here we conditioned upon survival until 22 years to avoid 

the need to allow for left truncation. We could use this cohort to investigate 

survival in those individuals who have managed to survive into adulthood, 

possibly those who are naturally "better" survivors. In this cohort, we, un- 

surprisingly, see lower levels of severe disability. It transpires that the data 

is well modelled using Weibull models. Once a child has survived two 

decades they have made it through the periods of greatest risk so it is rea- 

sonable to believe that their hazard functions will be similar to that of the 
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complete adult population. We also saw similar survival model estimates 
for the adult cohort over increasingly flexible missing data mechanisms. 
This suggests data is missing with reasonable randomness perhaps con- 

trasting to our initial belief that missingness depends on both severity and 

survival time. 
In the incident cohort we included children from the age of 2 years 

meaning that we had to handle the issue of left truncation. We assumed 

non-informative truncation. However, we also discussed how we might 

go about modelling the late entry. In this cohort we saw lower survival 

rates and higher levels of disability. In particular, we captured more of 
those with three or four severe level disabilities. Failure rates for the most 

severely disabled were very high. 

Survival in the incident cohort was modelled slightly differently to that 

in the adult cohort. The choice of optimal distribution becomes less clear. 
In particular, it was slightly difficult to distinguish between the Weibull 

and Log-logistic distributions. This is possibly because the estimated log- 

logistic parameters are close to the point where the hazard function switches 
from a monotonic decrease and a single early peaked function. 

8.2 Modelling the Missing Data Mechanism 

Whenever we are analysing data with missing information it is important 

that we think about the possible mechanisms that might be underlying the 

data. Without the right approach analysis can result in biased estimates. 
This was the second focus for this thesis. We developed a joint model for 

the survival time and the missing data mechanism in order to allow for 

NMAR patterns. This selection model came from work in selection and 
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publication bias. We were able to directly estimate the complete model as 

our data was only partially unobserved i. e. we could assume we had the 

whole population of individuals and that it was only some of their baseline 

covariate data that we were missing. 

There are several important points raised by such analyses. Firstly, the 

main advantage of this model was that we could use it to investigate the 

missing data mechanism and see how allowing for simple NMAR mecha- 

nisms changed survival estimates. We could use its results to increase our 

understanding of the data structure. However, due to the nature of the 

model we had to keep the model for the missing data mechanism quite 

simple in order to be able to identify it. Therefore, we could not place too 

great a reliance on the exact point estimates. Instead, we had to consider 

the sensitivity of our results to the model and possible consider a range 

of sensible mechanisms and, hence, survival models. With our univariate 

models the obvious sensitivity analysis was to change the dependence of 

missingness upon survival time but this would become much more diffi- 

cult in more complicated setting. For example, how might we adapt the 

model to conduct a sensitivity analysis if we had multiple or continuous 

covariates or the data was collected via unusual techniques. 

Secondly, our work highlighted the issue of how important it is to con- 

sider the missing data mechanism. The commonly used complete or avail- 

able case methods are probably rarely appropriate and, as displayed by our 

review, there is a large literature available to implement methods that as- 

sume only the MAR method. Multiple imputation is particularly useful as 

it can exist separately from the analysis model so can be used in many sit- 

uations. The availability of computer software for simulating imputations 

and combining results is increasing and should be recommended. 
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The main disadvantage of the full model is the computational difficul- 

ties in implementing it. As each covariate added to the survival model 

results in the need to estimate at least three more parameters for the miss- 
ing data mechanism as well as the contribution to the covariate model we 

quickly see a vast increase in computation time. This is before we even 

allow for more complex dependence structures in the missing data mecha- 

nism. Therefore, it not possible to use a large saturated model as a starting 

place for investigation. 

This model seems to be of use in this analysis only in the univariate 

models. A lack of data means that multivariate models are hard to iden- 

tify. This may not be the case if the proportions observed at the different 

levels were of a similar magnitude. Sensitivity analyses such as seen in the 

selection bias literature (Copas & Shi 2001) are necessary here. They are 

also needed if we wish to fit more complex missing data mechanisms, thus 

making the model unidentifiable. 

8.3 Discussion, Criticism and, Further Work 

This thesis is, of course, limited in content. Time constraints mean that we 

are unable to consider all possible methods for analysis or all the questions 

we may wish to ask. 
This was a challenging data set and we have only dealt with some Of 

the issues it raises. From a epidemiological point of view it can provide 

valuable information that other cohorts can not due to its length and com- 

pleteness. The missing data and truncation are the obvious problems. Fol- 

low up for a period as long as that in this study is always difficult. This 

raises problems that can also be seen in the data. As data were collected 
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over 50 years ago it is difficult to go back and learn more about the collec- 

tion process and methods. Also many factors affecting the distribution of 

the data are likely to change over both the study period and the complete 

follow up. it is possible that during the study period the tests used to mea- 

sure disability or the way the results were interpreted changed. It is also 

possible that the behaviour of the paediatrician changed with regards to 

diagnosis or treatment. We are unfortunately unable to go back and find 

answers to these questions. 

Another issue caused by the long follow up is the almost definite im- 

provement in medical care and expertise over the period. This suggests a 

possible extension in this work, to include calender time in the model. This 

could allow survival patterns to change over time. This of course raises the 

issue of how exactly this could be done and complicates the model further. 

We have presented here an interesting and flexible class of models. Sen- 

sitivity analysis suggested that making the simple linear assumption in 

the model for the missing data mechanism was reasonably adequate and 

this enabled direct estimation of a single survival model. However, as dis- 

cussed in Chapter 7 there are obvious extensions to the model that would 

be useful for our cerebral palsy research that are difficult with our model. 

These include the multivariate models we discussed in detail as well as the 

inclusion of continuous covariates and informative truncation or censor- 

ing. These are all examples of methodological research that would be of 

further interest. 

As discussed this is only one approach to analysing data such as these. 

Alternatives might be NMAR imputation or a fully Bayesian approach. 

There are both advantages and disadvantages to these techniques. NMAR 
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imputation usually uses pattern mixture models. Where as in normal MI 

we assume that those with observed and missing data are similar now we 

assume they are different but we don't know how. We have to consider 
imputations under a variety of different mechanisms and look at the sensi- 

tivity of the model estimates to the choice of imputation model. We do not 

model the mechanism as we do in our analysis but specify it. Techniques 

such as this require a really good understanding of exactly what data we 

would expect if it were complete and, using this, what the possible mech- 

anism might be. However, once this has been considered and we have the 

complete data analysis is much more straightforward although we arrive 

at a set of possible models. We were able to estimate the mechanism after 

making some distributional assumptions about it and then we only had to 

look at sensitivity to the distributional assumptions. 
An alternative method would be to take a Bayesian approach and spec- 

ify priors for the mechanism model parameters. This would lead to greater 

stability in the model estimates, particularly in the event of sparse data as in 

the multivariate analysis, and also mean we could arrive at a single model 

estimate. Maximum likelihood based methods can often be well approxi- 

mated using Bayesian machinery. There is a growing literature in Bayesian 

approaches to this problem (e. g. Scharfstein et al. (2003)) particularly with 

reference to non-ignorable dropout (e. g Rotnitzky et al. (1998)). As with 

any Bayesian analysis priors have to be first elicited and in the case of pa- 

rameters in a missing data mechanism this is extremely complicated. 
The use of a Bayesian approach might mean that numerical conver- 

gence is easier to obtain. We encountered some difficulties with obtaining 

convergence in the maximisation of the likelihood although refinement of 

the numerical methods used may have helped with this. In particular, there 
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are possible modifications to the starting values and Newton-Raphson iter- 

ation that can help reach convergence. 

8.4 Final Remarks 

This thesis looked at both the applied and the theoretical issues involved 

in the analysis of a data set. It attempted to collate the available litera- 

ture looking at missing data in survival analysis and apply these, and a 

new model, to estimate long term survival for sufferers of cerebral palsy. 

It showed how important it is to fully consider the missing data mecha- 

nism and highlighted the sometimes forgotten issue of how important it is 

to understand the data and the collection methods before embarking on an 

analysis. What should not be forgotten is that any attempt to model data 

with potentially NMAR observations is extremely complicated and heavily 

dependent upon assumptions meaning that we should make every effort 

when collecting data to render at least the MAR assumption plausible. 
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MAR model extension 

programs 

Here, we present the S-Plus functions to calculate the likelihoods for the 

Weibull and log-normal extensions to the stepwise method of Schluchter & 

Jackson (1989). Density function for the two distributions can be found 

in Section2.1.4. We are fitting under the accelerated failure assumption 

and are assuming for the moment independent left-truncation and right- 

censoring. These S-Plus functions can be used to maximise the likelihoods 

by Newton-Raphson methods via the S, -Plus in-built n1minb function. See 

Venables & Ripley (2002) for details. Function n1minb only calculates the 

Hessian matrix at the solution if a means to calculate it is provided. This 

becomes particularly complicated for the Burr distribution so we can use 

the function vcov. nlminb in the MASS library of uses a finite difference ap- 

proximation to the Hessian. 

Function variables 
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para Vector of model parameters. If we assume that the number of cells in 

the contingency table is Al' then for the Weibull distribution pa ra = 
Am, ̂ ý) and for the log-normal distribution para = 

jim, o, ), where 0,,, is the probability of being in cell 

m and (A,,,,, -ý) are the parameters for the Weibull distribution in cell 

m and (p,, a) are the parameters for the log-normal distribution in 

the mth cell. 

surv The vector of survival times ti (i = 1,.., n), possibly subject to inde- 

pendent left-truncation and right-censoring. 

enter The vector of entry times (truncation times) 

censor The vector of censoring indicators 

w Matrix of dimension (n x Al) where 

m) =1 if individual i can lie in cell m, 

=0 otherwise. 

This can be constructed from the vector, or matrix, of covariate values. 

Weibull distribution 

Hazard function for the Weibull 

haz. comp<-function(lamda, gamma, timeI 

J lambda*garnma*(time^(qamma-1)) I 

Survival function for the Weibull 

surv. comp<-function(lamda, ganima, time) 

f exp(-(lamda*(time-gamma))) ) 
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# Constructs likelihood by sum of contributions over \(i\) 

and \(m\) 

weibull. likelihood. func<-function(para, surv, enter, censor, w) 

I 

like. temp<-matrix(O, length(surv), ncol(w)) 

like<-rep(O, length(surv)) for(i in 1: length(surv)) 

for(m in 1: (ncol(w)-l)) 

I 

like. temp[i, m]<-((w[i, ml-para[m])* 

(haz. comp(para[ncol(w)-l+ml, para[2*ncol(w), l, surv[il) 

-(censor(i]))* 

(surv. comp(para[ncol(w)-l+m), para[2-ncol(w)], surv[il)))/ 

(surv. comp(para[ncol(w)-l+m], para[2*ncol(w)], enter[il)) 

like. temp[i, ncol(w)]<-((w[i, m]* 

(1-sum(para[l: (ncol(poss)-l)])))* 

(haz. comp(para[(2*ncol(w))-11, para[2-ncol(w)], survril) 

-(censor[i]))* 

(3urv. comp(para[(2*ncol(w))-11, para[2*ncol(w)], surv[il)))/ 

(surv. comp(para[(2*ncol(w))-11, paral, 2*ncol(w)), enter(il)) 

for(i in 1: length(surv)) 

I 

like[i]<-sum(like. temp[i, l) 

return(-sum(log(like))) 

Log-Normal distribution 

Density function for the log-ncrmal 
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frac. comp<-function(sigma, timel 

f 1/(time*sicjma*sqrt(2*pi)) I 

exp. comp<-function(mu, sigma, time) 

I exp(-((log(time)-mu)^2)/(2*(sigma-2))) 

# Survival function for the log-normal surv. comp<-function(mu, sigma, time) 

f 1-pnorm((log(time)-mu)/sigma) I 

# Constructs likelihood by sum of contributions over \(i\) 

and \(m\) 

lognorm. likelihood. func<-function(para, surv, enter, censor, w) 

I 

like. temp<-matrix(O, length(surv), ncol(w)) 

like<-rep(O, length(surv)) 

for(i in 1: length(surv)) 

for(m in 1: (ncol(w)-l)) 

like. temp[i, m]<-((w[i, m]*para[ml)* 

((frac. comp(para[2*ncol(w)], surv[il)* 

exp. comp(para[ncol(w)-l+ml, para[2*ncol(w)], surv[i])) 

-(censor[i]))* 

(surv. comp(para[ncol(w)-l+m], para[2*ncol(w)], surv[i]) 

- (1-censor[i] )))/ 

(surv. comp(para[ncol(w)-l+m], para[2*ncol(w)], enter[il)) 

like. temp[i, ncol(w)]<-((w[i, ncol(w)]* 

(1-sum(para[l: (ncol(w)-l)])))* 

((frac. comp(para[2*ncol(w)], surv[il)* 
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exp. comp(para[(2*ncol(w))-l), para(2*ncolý(w)',, survlil)) 
^(censor[il))* 

(surv. comp(paraf(2*ncol(w))-11, paraý2-r. ý--ol(w), I, surv, 'il) LL 
-(l-censor(il)))/ 

(surv. comp(para[(2*ncol(w))-1,1, para't2. ncoý(w)], enter(il)) 

for(i in 1: length(surv)) 

like(i)<-sum(like. temp[i, )) 

return(-sum(log(like))) 
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Gaussian Quadrature 

This is the program used to implement 10 point Gaussian quadrature used 
in the implementation of the joint survival time and missing data model. 

gauss. int. 10<-function(f, umin, umax, n, entry, parameters) ( 

w <- c(O. 0666713,0.1494513,0.2190864,0.2692667,0.2955242, 

0.2955242,0.2692667,0.2190864,0.1494513,0.0666713) 

p <- c(-O. 9739065, -0.8650634, -0.6794096, -0.4333954, -0.1488743, 

0.1488743,0.4333954,0.6794096,0.8650634,0.9739065) 

d <- (umax - umin)/n 

ans <- 0 

for(j in 1: n) 1 

uj <- umin +d* (j - 1) 

sumj <- 0 

for(k in 1: 10) 

sumj <- sumj + w[k] * f(d/2 * p[k] + uj + d/2, entry, 

parameters) 

ans <- ans + sumj 
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ans <- (ans * d)/2 

ans 1 
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Appendix C 

The NMAR joint model with 

left truncation 

This is the S-Plus code for the univariate joint model of the survival time 

and the missing data mechanism. This is for the Weibull distribution model 

with left truncation. 

like. one. zero<-function(surv, parameters) 

(1/(parameters[3)*sqrt(2*pi)))* 

exp(-((surv-parameters[ll)-2)/(2*(parametersý31-2)))* 

(1-parameters[71)* 

(1-pnorm(parameters[4]+(parameters[6]*surv))) 

like. one. zero. left<-function(surv, entry, parameters) 

f 

like. one. zero(surv, parameters)/ 

(((pnorm((-entry+parameters[lj)/parameters[31))*(l-parameters[71))+ 

((pnorm((-entry+parameters[ll+parameters[21)/parameters[31))*parameters[71)) 
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like. one. one<-function(surv, parameters) 

i 

(1/(parameters(31*sqrt(2*pi)))* 

exp(-((siarv-parameters(Ij-parameters[2l)-2)/(2*(parametersf3l^2)))* 

parameters[71* 
(1-pnorm(parameters(4]+parameters[51+(parameters[61-surv))) 

I 

like-one. one. left<-function(surv, entry, parameters) 

I 

like. one. one(surv, parameters)/ 

(((pnorm((-entry+parameters[ll)/parameters[31))*(I-parameters[71))+ 

((pnorm((-entry+parameterstll+parameters[21)/parameters(3]))*parameters[71)) 

I 

like. three. zero<-function(surv, parameters) 

I 

(1/(parameters(31*sqrt(2*pi)))* 

exp(-((surv-parameters[l])-2)/(2*(parameters[31-2)))* 

(1-parameters[71)* 

pnorm(parameters[4]+(parameters[6]*surv)) 

like. three. zero. left<-function(surv, entry, parameters) 
i 

like. three. zero(surv, parameters)/ 

(pnorm((-entry+parametersfll)/parameters[31)) 

I 

like. three. one<-function(surv, parameters) 

f 
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(1/(parameters[3]*sqrt(2*pi)))* 

exp(-((surv-parameters(l]-parameters[2j)-2)/(2*(parameters[31-2)))* 

parameters[71* 

pnorm(parameters[4]+parameters[5]+(parameters[6]*surv)) 

like. three. one. left<-function(surv, entry, parameters) 

like. three. one(surv, parameters)/ 

(pnorm((-entry+parameters[l]+parameters[2))/parameters[31)) 

I 

like. four. left<-function(surv, entry, parameters) 

I 

like. three. zero. left(surv, entry, parameters)+ 

like. three. one. left(surv, entry, parameters) 

log. like. func. left(parameters. start, incident$SurvTimeYrs-2, 

entry. adjusted, incident$Censoring, incident$SevAmb) 

log. like. func. left<-function(parameters, surv, entry, delta, cov) 

f 

ifelse(! is. na(cov), 

ifelse(delta==l, 

ifelse(cov==O, 

log. like<-log(like. one. zero. left(surv, entry, parameters)), 

log. like<-log(like. one. one. left(surv, entry, parameters))), 

ifelse(cov==O, 

log. like<-log(gauss. int. 10(like. one. zero. left, surv, 

100, n=20, entry, parameters)), 

log. like<-log(gauss. int. 10(like. one. one. left, surv, 100, n=20, 

entry, parameters)))), 

ifelse(delta==l, 
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log. like<-log(like. four. left(surv, entry, parameters)), 
log. like<-log(gauss. int. 10(like. four. left, surv, 100, n=20, entry, 

parameters)))) 

max. log. like. left<-function(parameters, surv, entry, delta, cov) 

-sum(log. like. func. left(parameters, surv, entry, delta, cov)) 
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