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In chapter 4, we draw the results of previous chapters together to prove 
that we can detect zero, two, or infinitely many ends in groups with `good' 
automatic structures. We also prove that given an automatic group or a 
group with solvable word problem, if the group splits over a finite subgroup, 
we can detect this, and explicitly calculate a finite subgroup over which it 
splits. 
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we are able to sometimes detect one endedness (and thus solve the problem 
of how many ends the group has). 
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Chapter 1 

Introduction 

1.1 Groups, graphs and ends 

In this section, we introduce the terminology we use. The aim, then, is 

to provide a function from vocabulary to concepts, rather than to explain 

the concepts. For example, we sometimes make use of the concepts of CW 

complexes or the language of homology theory, without definition, because 

we feel that no ambiguity arises from doing so. 

1.1.1 Preliminaries 

1.1.1.1 Notation 

We use the symbols N, Z and R to denote the natural numbers, the integers 

and the real numbers respectively. N does not contain 0. We denote the 

quotient group Z/nZ by Z,. The closed interval from r to t in R is denoted 

by [r, t] . 
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We use the symbol c to denote inclusion as a subset. Note that we 

consider a set to be a subset of itself, so for example, NCN. The set of 

elements of A which are not elements of B is denoted by A\B. We use 0 to 

denote the empty set. 

Given xc IR, we denote the smallest integer not less than x (the ceiling 

of x) by [x], i. e. [x] = min {z EZ1z> x}. 1 

Similarly, given xER, we denote the largest integer not greater than x 

(the floor of x) by lx j, i. e. lxj = max {z EZýz<, x}. 

We often denote a sequence by (af, ), EN, and a finite sequence by (ai)n 

(Sequences are infinite unless specified otherwise. ) 

Given a function f: X --p Y, we denote the image of f by imf. If A is a 

subset of X, we may use f to define a function on this subset - the restriction 

of f to A- which we denote by f IA. 

1.1.1.2 Groups and words 

Throughout, we denote the group we are considering by G. We denote the 

identity element of G by ido. The group operation is denoted by juxtaposi- 

tion. 

When two groups G and H are isomorphic, we write G--H. 

We use (a,, a2, ... , an I rl, r2, ... ) Tm) to denote the group formed from 

the free group generated by a,, a2, ... , an, by quotienting out by the normal 

subgroup generated by the elements TI, r2, ... , r,.,,. 
Each ri is called a relator. 

We also use the symbols a,, a2 ,-.. , a, 1 to denote the elements in this quotient 
I The minimum, maximum, infimum and supremum of a set A are denoted by min A, 

max A, inf A and sup A respectively. 
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group. If we write w= w' in place of a relator, we mean the relator w w'. 

A word in a set A is a finite sequence of elements of A, which we denote 

by writing its terms in order next to each other. The length of a word is the 

number of terms in the sequence, and a prefix, or initial subword of a word is 

a word consisting of the first n terms of the original for some n. Thus ab-1 a 

is an example of a word of length 3 in the set {a, b, c, a-1, b-1, c-1 }. 

For a group G with a fixed generating set, a word of G is a word in the set 

consisting of the generators and their inverses. The word is said to represent 

the element of G obtained by multiplying the terms of the sequence in the 

order they appear. Thus we use ab-1 a to denote both the word and the 

element it represents. The length of an element of G is the length of the 

shortest word representing it. 

If a group H acts on a set X and ACX, we denote the stabiliser of A by 

stab(A). 

1.1.1.3 Metric spaces and paths 

We rarely consider more than one metric space at a time; in fact, almost all 

of the time, the metric space in question is r, the Cayley graph of G. (See 

section 1.1.2. ) If X is a metric space, we denote the distance in X between 

two points x and y of X, by d(x, y). If A and B are subsets of X, we denote 

the Hausdorif distance between A and B by d(A, B), i. e. 

d(A, B) = inf {d(a, b) IaEA, bE B}. 

A path is a continuous function from a closed connected subset of R. 

The domain of a path is usually [0,1] 
. Paths may be composed, but we do 



Chapter 1: Introduction 11 

not use any special notation for this. We always use the term ray to mean a 

continuous function (path) whose domain is [0, oo). By infinite path, we mean 

a ray. A path whose domain is the whole of IR is called bi-infinite. A path 

from a to b can be considered a homotopy between the functions {" H a} 

and {" r- b}. Thus we sometimes abuse notation and write a: a ^- b to 

mean that a is a path from a to b. 

An extension of a path a: [0, t] -ý X is a path (3 : [0, t'] -4 X with t' > t, 

or a path ß: [0, oo) --p X. In the latter case we call the extension an infinite 

extension. An initial segment of a path a is a path ß, of which a is an 

extension. 

A geodesic path is a path which is an isometry, i. e. a geodesic is a path a 

such that for all t and t' in the domain, d(a(t), a(t)) = It - t'j. Of special 

interest in later chapters are geodesic rays - geodesics whose domain is 

[0,00)" 

A set A is said to meet a set B, if A f1 B 0. A path a is said to meet a 

set A, if its image meets A. The number of times a meets A is the number 

of components in the inverse image of A under the function a. Similarly, if 

the image of a path a is a subset of a set A, we say a lies inside A. If a 

does not meet A, we say it lies outside A. 

A subset A of a connected metric space X disconnects X if X\A is 

not connected. We say that A disconnects X into components Ca , ... , Cn if 

tC1, 
... , 

C, j is the set of components of X\A. 
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1.1.1.4 Graphs 

A graph consists of a set of vertices together with a set of edges. An edge has 

an unordered pair of vertices with which we say it is incident. (These two 

vertices are allowed to be the same. ) Sometimes we denote an edge which is 

incident with the vertices g and h by [g, h]. 

A directed graph is one where the pair of vertices incident with an edge 

are ordered rather than unordered, so that each edge has a given direction. 

A graph may be realised topologically as a 1-dimensional CW complex, 

with 0-cells which we call vertices, and ]-cells which we call edges. (Thus 

when we think of a graph as a CW complex, edges are the open 1-cells. ) 

We give all graphs the path metric, so that the distance between two 

points is the length of a shortest path between them, and edges have length 

one. 

Thus we consider a graph to be a combinatorial object, a CW complex 

and a metric space, so that when we refer to an edge, we may think of it as 

an open 1-cell, or a metric subspace, or an element of the set of edges. A 

graph is finite if it has finitely many vertices and edges. 

A labelling on a set A is a function from A to a set which we call the 

labels. A labelled graph is a graph together with a labelling on the set of edges 

(and sometimes also vertices). When thinking of a graph geometrically or 

topologically, the labelling is a labelling of the cells of the underlying CW 

complex, so it is the open edges (and possibly the vertices) that are labelled. 

To colour a set is to give it a labelling, where the set of labels is finite 

and consists of elements that are named by colours. We then use the colours 
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as adjectives. 

A set may have more than one labelling, in which case we rely on the 

context to make it clear which we refer to. For example, colourings are 

labellings, but are never referred to as such, and to mark parts of a graph is 

to label them. 

An orientation on an edge is a choice of initial and terminal vertices 

incident with it. We say that the edge is oriented from the initial vertex 

to the terminal vertex, or points towards the terminal vertex. Note that a 

directed edge can have an orientation inconsistent with its direction. 

Orientation and direction are similar concepts; however, an orientation 

is equivalent to a labelling by an ordered pair, whereas a direction is part 

of the given structure of a graph. We never use the terms initial vertex or 

terminal vertex to refer to the direction on an edge. 

An edge path from a to b is a finite sequence (ej)n of oriented edges, 

where the initial vertex of el is a, the terminal vertex of e, is b, and for all 

iE {1, 
... ,n -1 }, the terminal vertex of ei is the initial vertex of ei+i. Thus 

an edge path is not a path in the ordinary sense, but rather, determines a 

path. 

A path a in a graph is said to cross an edge e= [a, a'] if there is a 

subset [t, ti of the domain of a such that a(t) = a, a(t') = a', and for all 

xE [t, t'], a(x) E e. 

A spanning subgraph is a subgraph which meets every vertex of the orig- 

final. 

A tree is a graph without loops - one where every vertex disconnects 

the graph. 
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1.1.2 The Cayley graph, r 

Given a group G with a fixed finite generating set, we construct a directed, 

labelled graph I', called the Cayley graph. We suppress G from the notation, 

because we never consider more than one Cayley graph at a time. 

The vertices of f are the elements of G, and the edges are the triples 

{(g, ga, a) IgEG, aE X}, where X is the set of generators of G. The edge 

(g, g a, a) is incident with g and g a, and is directed from g to ga. We say 

that an edge (g, ga, a) off is labelled with a. 

Q 
9') 9 CL 

Diagram 1.1.1: An edge of r 

Note that a (directed) edge is determined by its starting point and the 

generator with which it is labelled. 

Since G is finitely generated, and for each gEG, there is only one vertex 

g a, there are only finitely many edges incident with each vertex; !' is a locally 

finite graph. 

1.1.2.1 Geometry 

As a graph and a metric space, I' inherits all the definitions above. In partic- 

ular, d(x, y) usually refers to the distance between two points that are in the 

Cayley graph (and the Cayley graph has the usual path metric on graphs, as 

outlined above). 

Let g be a vertex of r (i. e. an element of G). The open ball of radius n 

about g is written Bn (g), and the closed ball is written Bn (g). The sphere at 
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radius n about g is denoted by Sn (g) 
. 

This notation always refers to subsets 

of the Cayley graph. Of course, since the vertices of F are the elements of G, 

we may refer to elements of G which lie in Bn (id), for example. ' For much 

of the time, we are concerned with balls centred at the identity element of G; 

we drop the centre, g, from the notation when g= idG, so balls and spheres 

about the identity are called Bn, Bn, and S. 

Note that if a geodesic in a graph has its endpoints on vertices, then if it 

meets the interior of an edge, it must cross the edge. Thus if such a geodesic 

does not meet it cannot meet the interior of any edge incident with a 

vertex of Sn_,, so it cannot pass closer than distance it to the identity. Thus 

such a geodesic lies outside Bn_ý if and only if it lies outside B. 

Recall that a ray is a path with domain [0, oo). Unless otherwise specified, 

rays in r start at the identity element. 

Note that since the set of generators generates G, there is an edge path 

in f from the identity to any element of G, determined by a word in the 

generators representing it. This edge path determines a topological path 

with the same endpoints. Thus G is connected and path-connected. In 

fact, r is locally path-connected, so for subsets of I, path-components and 

components are the same. 

1.1.2.2 The G-action on f 

Given an element gEG, and an edge e= (h, ha, a) of r, we define 

9e= (9h, 9ha, a). 
2Note that the length of an element (defined as the length of a shortest word repre- 

senting it), is the same as its distance from the identity in the Cayley graph. 
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Note that (gh, gha, a) really is an edge of r, because (gh) a= gha. Thus 

G acts by left multiplication on the vertices of r, and the action on edges is 

determined by the action on the vertices. 

Note that the G-action on r preserves the direction of edges. Since G 

preserves the incidence relations between vertices and edges, it preserves the 

structure of the graph, so it preserves the length of paths, and so G acts by 

isometries on r. 

G acts on itself by left multiplication with one orbit, and so the G action 

on the vertices r has only one orbit. 

If two edges el = (h1, h1 a, a) and e2 = (h2, h2b, b) are in the same orbit, 

then there exists gEG such that (ghl, gh1 a, a) = (hz, h2b, b), so a=b. 

Thus el and e2 are both labelled with the generator a. 

Conversely, for any hi and h2 in G, the edges (h1, h1 a, a) and (hz, h2a, a) 

are in the same orbit, because h2hi 1(hi 
, 
h, a, a) = (h2, h2 a, a). 

Thus two edges are in the same orbit if and only if they are labelled with 

the same generator. 

As usual, we extend the action of G on I to an action on the set of subsets 

off ; if A is a subset of r, a G-translate of A is the set gA for some gEG. 

1.1.2.3 Hyperbolic groups 

A group G is said to be hyperbolic if there is some fixed constant b', so that 

for any triple of geodesics (a, ß, y) that form a triangle in r, ' every point in 

the image of a is at most distance b' from the union of the images of the 
in the sense that there exist points a, b and c such that a: a ^_- b, ß: b=c and 

'y: cýa 



Chapter 1: Introduction 17 

other two paths. 

We touch only briefly on hyperbolic groups, mainly in chapter 5. The 

reader may want to refer to [Gd1H90] or [GHV91], or to other literature for 

a fuller account of the theory of hyperbolic groups. 

1.1.3 Ends and splittings 

1.1.3.1 Ends 

A locally compact, Hausdorf topological space X has at least e ends if there 

is a compact set K such that X\K has at least e components which have non- 

compact closure. Since the Cayley graph is a metric space, this is equivalent 

to saying that for some radius, the complement of the open ball has at least 

e infinite components. 4 We say X has e ends if it has at least e ends and for 

any e' > e, X does not have at least e' ends. If there is no bound on the 

number of ends, we say that X has infinitely many. (X has zero ends if it is 

compact. ) 

A group has e ends if its Cayley graph does. It is a theorem that the 

number of ends is independent of the generating set taken. It is also a 

theorem that a group has either zero, one, two or infinitely many ends. See, 

for example, [SW] for an introduction to theory of ends of groups. 

Since G acts by isometries on r, for any gEG, f\ Bn is isometric to 

f\ BO, (g); the number and nature of components of the complement of Bn (g) 

'It may be the case that there are fewer components of the complement of an open ball 

than in the complement of the closed ball. In this case we may increase the radius and 

will find at least as many as we needed. This is an unimportant point. 
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and of Bn are the same. 

1.1.3.2 Splittings 

Let A and B be groups with presentations (ai, 
... , anA I r1, ... ,T "IA) and 

(b1,.. 
., bnB I Si,.. ., smB) respectively. Let C be a group with generators 

cj,..., c, c, and let f: C->A, V: C-aAand g: C Bbe infective 

homomorphisms. 

The free product of A and B amalgamating C is the group given by the 

presentation 

anA, bl,..., bfB I f(cl) =9(ci),..., f(Cn, ) = 9(Cnc), 

Ti,. 
.., 

TMA, sj,..., S�ig). 

When C is the trivial group, this is the free product of A and B. 

The HNN extension of A over C is the group given by the presentation 

(t, a,,..., a,,, I f(ci)t=tf'(ci),..., f(cnC)t=tf'(cnC), T1,..., TMA). 

If G is isomorphic to a free product with amalgamation over C or to an 

HNN extension over C, we say G splits over C. C injects into G, so we 

commonly think of C as a subgroup of G. 

1.1.3.3 Stallings' theorem 

Stallings' theorem states that a group has more than one end if and only if it 

splits over a finite subgroup. An outline of the proof appears in section 3.1 

on page 65, and accounts may be found in [Sta68], [DD89], [SWI, and others. 
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1.2 Computation in groups 

1.2.1 Automatic groups 

An automatic group is a group which has certain structures which make 

computation straightforward. [ECH+92] contains an introduction to the the- 

ory of automatic groups. In the terminology of [ECH+92], by finite state 

automaton, we mean a partial deterministic automaton. 

1.2.1.1 Finite State Automata 

A finite state automaton (FSA) is a directed graph A, whose edges are la- 

belled by the elements of a set S called the alphabet. The vertices of A are 

called its states. There is a unique state called the start state, and some 

special states which are called accept states. Two edges incident with and 

directed away from the same vertex are not allowed to have the same label. 

A path in A is an edge path in A that begins at the start state, ' and 

whose edges have the orientation consistent with the direction of the edges 

of the directed graph A; edges of a finite state automaton are one-way only, 

and paths in an FSA are not allowed to go the wrong way. A loop is a path 

which ends at the same state it began. 

A path in A (starting from the start state, as usual), determines a se- 

quence of labels from S. Thus the path determines a word in the alphabet 

S. If the accept state at which the path finishes is an accept state of A, we 

say that A accepts the word. 
5unless otherwise specified 
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The set of all paths accepted by A determines a set of accepted words 

which we call the accepted language. 

1.2.1.2 Automatic structure of a group 

Let G be a group with a fixed finite generating set. 

A word acceptor for G is a finite state automaton WA, over the alphabet 

S equal to the set of generators and their inverses, such that every element 

of G can be written as a word accepted by M. 

We choose a symbol, $, not amongst the generators of G, which we call 

a padding symbol. 

In essence, a general multiplier for G is an automaton that accepts pairs 

of words (as words of pairs) that differ by a generator. More formally: 

Given a word acceptor WA for G, a general multiplier for G is a finite 

state automaton GM over the alphabet (SU{$}) x (SU{$}), with the following 

properties: 

" The accept states of GM are labelled with SU {ids}. 

" GM accepts (xi, yi ) (x2i yz) """ (xn,, tjn) in an accept state labelled a if 

and only if the words w= xIx2 """x, and w' = y1y2 """ tJn satisfy the 

following properties: 

- After removing all padding symbols from w and w', they represent 

elements g and g' of G such that ga = g'. 

- Padding symbols occur only at the end of w or w'. 
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An automatic structure for G is a finite generating set, a word acceptor 

WA and a general multiplier GM. A group is said to be automatic if it has 

an automatic structure. 

Sometimes an automatic structure is given by a word acceptor and a set 

of multiplier automata, {Ma IaESU {ids}}, where MQ satisfies the same 

conditions as GM, except that it only accepts pairs of words which differ by 

a. It can be shown that the two are equivalent. 

1.2.1.3 Languages 

We usually use the term accepted language to refer to the language accepted 

by the word acceptor of an automatic group. 

A language is said to be prefix closed if every prefix of every accepted 

word is also accepted. 

The accepted language of an automatic group is said to have unique 

representatives if for all gEG, there is one and only one word accepted by 

WA that represents g. 

We say that a group is short-lex-automatic if it has unique, geodesic 

representatives, and there is a total ordering on the generators such that for 

all gEG, the accepted word representing g comes first in the lexicographic 

(dictionary) order amongst all words of G that are equal to g. 
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1.2.1.4 Fellow-travelling 

w 
/. --., . 

w, 

denotes a path of length at most f 

Diagram 1.2.1: Fellow-travelling 
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Let w and w', be words in G of length n and n+m respectively. We say 

that w and w' f-fellow-travel if the distance in P between them is always 

bounded above by f; more precisely, they f-fellow-travel if 

Vi E {1, 
... , n}, d(w(i), w'(i)) < f, and also 

Vi E {l,..., m}, d(w(n), w'(n+i)) f. 

Theorem 2.3.5 of [ECH+92] proves that for every automatic group G, 

there is a constant f such that every pair of words that represent elements 

of G that differ by a generator, the inverse of a generator or do not differ, 

f-fellow-travel. We call f the fellow-travelling constant. 

1.2.1.5 Working with automatic groups 

The package KBMAG is available via f tp from a link on Derek Holt's website 

http: //www. maths. warwick. ac. uk/-dfh/. It consists of several programs 

for working with automatic groups. For example, the program autgroup can 

take a presentation for a group, and if the group is short-lex-automatic, 

calculate a short-lex automatic structure (given sufficient time and space). 
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1.2.2 General computation 

In this section we explain our use of terminology for general programming. 

1.2.2.1 Algorithmic decidability 

The formal mathematical definition of whether a problem is solvable with 

an algorithm is given in terms of Turing machines. We do not adopt this 

approach, since we wish to show that certain algorithms exist in the sense that 

they could, in principle, be turned into a program. To turn an algorithm into 

a Turing machine would be time and space consuming, and probably would 

not help the reader to understand how the algorithm works. Instead, we 

describe the algorithm in less formal terms. Algorithm is to Turing machine 

as proof is to fully formal logical derivation. 

Given a property P(O) of objects 0, we say we can detect the property 

P if there is an algorithm which takes any valid object 0, and terminates 

within a finite time with the output yes, if and only if 0 has property P. 

This corresponds to the standard terminology `recursively enumerable'. 

We say we can decide property P if we can detect both P and its nega- 

tion. Since algorithms may be run concurrently, P is decidable if there is 

an algorithm which always terminates in a finite amount of time, with the 

output yes or no, depending on whether P is satisfied or not. 

1.2.2.2 Depth first searches 

Depth-first searches of graphs are well-known tools in computer science, and 

we use them in several forms in the algorithms and programs we describe. 
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Here the word `depth' refers to the length of paths transversed whilst search- 

ing. `Depth-first' refers to the fact that in this method of searching a graph, 

we follow a path as deep (i. e. long) as we can before retracing our steps and 

trying a different path. 

There are two essential uses we make of depth-first searches. The first is 

to find all possible paths in a given graph, and the second is to calculate the 

components of a graph. The second type is more conventional in computa- 

tion, and its purpose is to visit every vertex (performing some action, but 

not more often than necessary). It can be implemented as an altered form 

of the first. 

The graph in question may be a subgraph of the Cayley graph r, or a 

finite state automaton. In the case of a subgraph of r, we do not construct a 

copy of the subgraph, but instead run the depth-first search in f itself, after 

marking certain edges uncrossable or vertices as unreachable. 

There is an analogous process called a breadth-first search, but breadth- 

first searches can be both harder to implement, and less efficient. 

Path depth-first search 

Sometimes, we only wish to find paths of length at most D. If so, we perform 

a path depth-first search to depth D. Otherwise we perform a path depth-first 

search. 

We find all paths and calculate the words that these paths define via the 

labels on the edges of the graph. 

The algorithm is defined in terms of itself, in a procedure akin to reverse 

induction, but with an unfortunate clash of terminology, known to computer 
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scientists as recursion. The algorithm `calls' itself, and the called version 

`returns' control and information to the caller. 

Visiting a vertex We assume we are given a current depth d. (Initially 

we are given d=0. 

1. If we are performing a search to depth D, and d=D, return the set 

containing the empty word to the caller. 

2. Visit each vertex incident with the current vertex (at depth d+ 1). 

(But do not use uncrossable edges or visit unreachable vertices. ) For 

each vertex visited, a set of words is returned. At the front of each 

returned word, write the label of the edge from the current vertex to 

the visited vertex. 

3. Return the set of all these words to the caller. 

To perform a path depth-first search starting at a vertex v, simply visit 

v. Once this is complete, a list of all words is obtained. 

Vertex depth-first search 

Sometimes, we only wish to find vertices at most D from our start vertex. If 

so, we perform a vertex depth-first search to depth D. Otherwise we perform 

a vertex depth-first search. 

The algorithm uses recursion in the same way as the path depth-first 

search. 
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Visiting a vertex We assume we are given a current depth d. (Initially 

we are given d=0. ) 

1. Mark the vertex as visited. 

2. If we are performing a search to depth D, and d=D, return control 

to the caller. 

3. Visit each vertex incident with the current vertex (at depth d+ 1). 

(But do not use uncrossable edges or visit unreachable vertices, nor 

visit vertices already marked as visited. ) 

4. Return control to the caller. 

To perform a vertex depth-first search starting at a vertex v, simply visit 

v. Once this is complete, all reachable vertices have been visited. 

1.2.3 Solvable and unsolvable problems in group the- 

ory 

We outline a number of the algorithmic problems in group theory, and prove 

that the JSJ problem is, in general, unsolvable. 

1.2.3.1 The word problem 

Given a group G with a fixed finite generating set, we say that G has solvable 

word problem if there is an algorithm that decides whether an arbitrary word 

of G represents ids . 
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An automatic group has solvable word problem, but not every group 

with solvable word problem is automatic. Not every group has solvable word 

problem. 

1.2.3.2 The triviality problem 

A class of groups has solvable triviality problem if there is an algorithm which 

takes presentations of groups that are in the class, and decides whether they 

are trivial (have only one element). 

The triviality problem is not solvable for the class of all groups, but is 

solvable for the class of all groups which have solvable word problem. 

1.2.3.3 The isomorphism problem 

A class of groups has solvable isomorphism problem if there is an algorithm 

which takes pairs of presentations of groups that are in the class, and decides 

whether they are isomorphic. 

The isomorphism problem is not solvable for the class of all groups, be- 

cause otherwise the triviality problem would be solvable. It is conjectured in 

[ECH+92] that the isomorphism problem for automatic groups is not solv- 

able. Sela [Se195] has published only half of his solution to the isomorphism 

problem for the class of hyperbolic groups. One step in the process of decid- 

ing whether two hyperbolic groups are isomorphic is determining whether a 

given group splits as a free product or splits over a finite subgroup. Gerasi- 

mov [Ger] proved an algorithm exists to do so. 



Chapter 1: Introduction 28 

1.2.3.4 The JSJ problem 

We leave the concept of a JSJ decomposition of a group undefined. The in- 

terested reader may consult [DS99], [FP97], [Bow95] or [RS95] for definitions 

and existence proofs in different classes of groups. 

In essence, the JSJ decomposition of a group G is a labelled graph (a 

graph of groups) which encapsulates the information about all the splittings 

of G over 2-ended subgroups. 

Dunwoody and Sageev [DS991 generalise this to cover splittings over `slen- 

der' subgroups, whilst Fujiwara and Papasoglu [FP97] use ̀ foldings' of graphs 

to express splittings over more than one class of subgroup at the same time. 

The JSJ problem is solvable for a class of groups if there is an algorithm 

which takes a presentation for a group in the class that has one end and 

calculates its JSJ decomposition, including the nature of its hanging orbifold 

subgroups. 

In a hyperbolic group, the non-orbifold vertex groups are rigid, and have 

solvable isomorphism problem. For this reason, Sela is able to solve the 

isomorphism problem for torsion-free hyperbolic groups by, in effect, solving 

the `JSJ problem', the free product problem, and the isomorphism problem 

in the case of rigid groups. This work is to appear in The Isomorphism 

Problem for Hyperbolic Groups II, which is unfortunately not yet available 

as a preprint. 
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1.2.3.5 Related work: the free product problem 

Clearly, the problem of whether a group given by finite presentation splits 

as a free product is not solvable for arbitrary finitely presented groups either 

-GxZ splits as a free product if and only if G is trivial. 

As mentioned above, Sela can solve the free product problem for torsion- 

free hyperbolic groups, but the proof is unavailable in written form. The 

algorithm he outlines seems infeasible as a real computer program, due to 

the complexity of the method he uses. 

Gerasimov [Ger] proved that the free-product problem is solvable for ar- 

bitrary hyperbolic groups. In fact, he showed that the generalised problem 

of whether a hyperbolic group splits over a finite subgroup is decidable. We 

give an altered exposition of his result in chapter 5 on page 134. 

1.2.3.6 More related work: ends of automatic graphs 

Note that by Stallings' theorem, the problem of deciding whether an infinite 

group splits over a finite subgroup is equivalent to the problem of deciding 

whether the group has more than one end or not. 

Olivier Ly [LyOO] defines the notion of an `automatic graph' - one that 

may be generated using finite state automata, and proves that for arbitrary 

automatic graphs, the problem of deciding the number of ends is not solvable. 
Note that there are many automatic graphs which are not the Cayley graph 

of a group. 

In chapter 4 on page 91 we show that for groups with `good' automatic 

structures, the properties of having more than one end, and of having zero 
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ends, are detectable. In chapter 6 on page 144, we show that there is an 

algorithm which may detect the property of having one end. 

1.2.4 The JSJ problem for arbitrary finitely presented 

groups is unsolvable 

It is not clear that anyone has noted the following, easily proven result; it is 

the only original comment in this otherwise expository chapter. 

Theorem 1.2.1 

The problem of determining the JSJ decomposition of a group from its pre- 

sentation is not solvable for the class of all finitely presented groups. 

Proof 

We argue by contradiction. Suppose there is an algorithm which deduces the 

JSJ decomposition of a group from its finite presentation. Let Ga group 

with a finite presentation. Then the direct product GxZxZ has a finite 

presentation which may be computed easily from that of G. 

Since ZxZ is a surface, hence orbifold group, its JSJ decomposition is 

the graph of groups consisting of a single (hanging orbifold) vertex group, 

ZxZ. If G is non-trivial, then GxZxZ 9t ZxZ, so in this case, the JSJ 

decomposition is not a single vertex labelled ZxZ. 

Thus, calculating the JSJ decomposition for GxZx 7G solves the triviality 

problem for G. But G was an arbitrary finitely presented group, and there 

can be no solution to the triviality problem for arbitrary finitely presented 

groups. Contradiction. 

0 
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Note that in calculating the JSJ decomposition, we must find which Z- 

splittings `cross' each other and give rise to hanging orbifold vertex groups 

- the JSJ problem can only be solvable in a class of groups for which it is 

possible to decide whether a presentation is that of a surface (or orbifold) 

group. 

Note also that one may be able to determine a JSJ decomposition without 

determining the isomorphism class of the group. As mentioned, it is necessary 

to determine the isomorphism class of the hanging orbifold subgroups, but 

one could conceivably determine a graph of groups decomposition where the 

non-orbifold vertex groups were given only by a presentation. 
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Chapter 2 

Complements of balls in the 

Cayley graph 

Recall that the Cayley graph, F, has at least e ends if the complement of the 

open ball of some finite radius has at least e infinite components. 

In this chapter we deal with three issues relating to these complements of 

open balls. Firstly, how much of r\ Bn do we need to examine, to be able to 

know what components it falls into? When computing, we can only calculate 

a finite part of the Cayley graph, and it is important to minimise the amount 

we need to calculate. In section 2.1 we show that there is a constant K such 

that we only need to look at the ball of radius n+K if we want to find the 

components of r\B. 

In section 2.2, we prove a result which says that if Bn disconnects the 

Cayley graph and there are at least two components of its complement that 

contain elements at distance 2n from the identity, then these components 

are infinite, so G has more than one end. This result is useful when we don't 
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have an automatic structure for the group. 

In section 2.3, we relate the question of whether components of F\ Bn are 

infinite, to whether they contain rays. We use this twice: in an automatic 

group we can test very quickly which components of F\ Bn are infinite, by 

checking in the word acceptor which elements can be infinitely extended. We 

also use these results in section 6.3 to show that `patch shadows' are closed 

and open subsets of a boundary for the group, and that if the group has 

infinitely many ends, this boundary is not nicely connected. 

2.1 Finding components: the connectivity 

constant, K 

Suppose r is a Cayley graph of a finitely presented group G. We wish to 

prove that there is a number K depending only on the presentation of G such 

that the -components' of Bn+K \ Bn and the components of f\ Bn are in 

one-to-one correspondence under inclusion; this will be the main theorem 

of the section (theorem 2.1.12 on page 51), and will allow us to represent 

infinite components of f as finite subsets of G. 

Definition 2.1.1 (K) Fix a finite presentation of a group G, and denote its 

Cayley graph by F. Consider the length of each relator and choose the longest. 

Halve this length, round down to the nearest integer and subtract 1. This is 

the connectivity constant of G, K, and for short we write 

K= 
t2 

(max relator length) - 1. 

Isee 2.1.1.2 on page 35 
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Definition 2.1.2 We call Bn+K \ Bn the band. 

2.1.1 Coboundaries, F-connectedness, closeness of edges 

We introduce some definitions enabling us to prove a generalised theorem, 

which will be used to prove the main theorem, but also a later result about 

the diameter of coboundaries. 

2.1.1.1 Coboundaries 

Notation 2.1.3 (complement) Let G be a group, and let S be any subset 

of G. We denote the complement, G\S by the symbol S*. 

We use the term coboundary in a slightly different sense than in coho- 

mology. Accordingly, we make the following definition: 

Definition 2.1.4 (coboundary) Let G be a finitely generated group, and 
let r be its Cayley graph. Let S be a subset of G. The coboundary of S is the 

set of edges of r which meet both S and its complement S*. We denote it by 

os. 

Note S determines a characteristic function Xs :G -f Z2, with gES0 

Xs (9) = 1. We can think of Xs as a 0-cochain with coefficients in Z2. As 

such it has coboundary (in the ordinary sense) equal to Xbs. This equality is 

why we use the term coboundary for 5S. 

We are only ever interested in subsets of G with finite coboundary, be- 

cause we are interested in splittings over finite subgroups. 
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2.1.1.2 r-connectedness 

Given a set of vertices S of r (i. e. elements of G), it is helpful to consider S as 

equivalent to the subset of r given by the union of the elements of S and all 

edges of r which have both vertices in S. Accordingly, we use the following 

terminology: 

Definition 2.1.5 (F-within) Let G be a finitely presented group with Cayley 

graph r. Given a set S of elements of G and an edge e of r, we say that e is 

F-within S if it has both its vertices lying inside S. 

Definition 2.1.6 (r-connectedness) Let G be a finitely presented group 

with Cayley graph r. We say that a set S of elements of G is T-connected if 

for every pair of vertices of S, there is an edge path between them which has 

each edge r-within S. 

A T' component of S is a maximal F-connected subset of S. 

2.1.1.3 Closeness of edges 

Here we prove a lemma useful in the theorem that follows. 

Definition 2.1.7 Let G be a group with a fixed finite presentation, and let 

f' be its Cayley graph. Let e and e' be edges of r. 

We say that e and e' are on the same relator if there is an element gEG 

and a relator r such that starting from g, the word r determines an edge path 

in f which crosses both e and e'. 
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r= aba-lcb-1 

LL 

Diagram 2.1.1: Edges on the same relator 

Lemma 2.1.8 

Let G be a group with a fixed finite presentation. Let V be its Cayley graph, 

and let K be the connectivity constant of G. 

If (sj)51I " is a sequence of edges of r such that for all jE {1,... 
, n}, S3 

and sj+i are edges on the same relator, then 

Vi E {1, 
... , n}, d(si, si+1) < K. 

Proof 

Let jE {1, 
... , n}, sj and sj+l are on the same relator. Then there is 

an element gEG, and a relator r such that starting from g, the word r 

determines an edge path in f which crosses both s3 and sj+,. 

--ma g 

R-1 

P /ý 

Diagram 2.1.2: P is the graph of the relator r. 
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Let P be the graph determined by the relator r; P is an n-gon, where Ti is 

the length of the word T. We label a vertex of P by g, and label one edge of 

P by sj and the other by sj+i, according to the position on the word r that 

sj and sj+i occur in r. 

Let R=2 (max relator length). P has the path metric, and has diameter 

at most R. If we remove the interiors of sj and s; +j from P, it falls into two 

path components. 

If both of these path components had diameter greater than R-1, then 

the word r would have length strictly greater than 2(R - 1) +2= 2R. This 

cannot happen, because R= ! (max relator length). 

Thus one of the path components has diameter less than or equal to 

R-1, thus less than or equal to LRJ - 1, since it is of integer length; i. e. 

d(si, s +i) < [R] -1=K. 

n 

2.1.2 Joining pairs of edges 

We use the more generalised setting of coboundaries to prove the results we 

need about r -components of the band B11+, \ Bn and components of i' \ B. 

It is helpful in the theorem below to think of S as the vertices of Bn (i. e. 

the vertices of Bn_1) and S* as the vertices of r\ Bn; indeed, this is how we 

will use the result. Being within distance K+1 of a vertex of Bn is the same 

as being in B11+,, \ B. 

Theorem 2.1.9 

Let K be the connectivity constant of G, and let S be a subset of G. Let 
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e= [gi, 91 a] and e' = [ga, g2b] be edges of the coboundary ES, with both g1 

and g2 in S*. Suppose there is a path ai between g, and 92 which does not 

meet S, and also that there is a path a2 between g2b and 91 a which does not 

meet S*. 

Then 

1. There is an edge path (ei)m I from 91 to 92i which is T'-within S*, in the 

sense that the sequence (vi)j"' of vertices it visits are all elements of 

S*. 

The vertices of this edge path all lie within distance K+1 of a vertex 

of S. 

2. There is a sequence (sj)'- of edges of SS such that si =e and s�l'+t = 

e', and Vj E {1, 
... , m'}, d(si, si+l) K. 

Proof 

The proof is not very short, and rather than split it into a sequence of lemmas 

with similar hypotheses, we provide section headings. 

We may remove unnecessary loops from the paths a, and oc2 so that they 

are both injective. The images of these two paths do not meet each other 

(because S and bS have empty intersection), and meet e and e' only at the 

endpoints g1, g21 g2b, g, a. Thus there is an embedded loop in r, passing 

across e and e'. 
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The Van Kampen diagram 

This loop describes a word in the generators of G that represents a trivial 

element of the group. We may take a Van Kampen diagram for this word. 

There is a simplicial dimension-preserving map from the 1-skeleton of the 

Van Kampen diagram to r, which takes the boundary of the Van Kampen 

diagram to the loop in r we started with. We will use this map to label the 

vertices and edges of the diagram. 

It must be stressed that we map the boundary of the Van Kampen di- 

agram round the loop we started with, not starting at idG as is the norm 

for Van Kampen diagrams. (Unless, of course, our loop meets ids anyway. ) 

In essence, we are translating the image of the diagram to where the loop 

occurs in P. 

The diagram has a polygonal 2-complex structure. ' The vertices are 

labelled by vertices of F (elements of G) and the edges are labelled by edges 

of i'. The 2-cells (polygons) are labelled by relators of G. 

Since the loop in r is embedded, neither the word it describes, nor any 

cyclic conjugate of it, has a proper subword representing a trivial element of 

G. An arbitrary Van Kampen diagram is planar, and is the union of disks 

and arcs. 
2A polygonal 2-complex is a 2-dimensional CW complex whose 2-cells are open regular 

polygons of edge length one, whose 1-cells are isometric with the open interval (0,1), and 

where the attaching maps from the closed polygons to the 1-skeleton are determined by 

isometries of the interiors of the edges. 
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trivial subword 

Diagram 2.1.3: An example of an arbitrary Van Kampen diagram 

However, the boundary of each such disc region is labelled by a subword 

of the boundary word which is trivial in G (property (2) in §2 of [Str90]). 

Since there is no such subword for our word, the Van Kampen diagram must 

consist of only one disk, with no arcs. 

Red and blue parts of the Van Kampen diagram 

We colour all the cells of the Van Kampen diagram either red or blue. We 

colour vertices red if they are labelled by elements of S, and we also colour 

edges and 2-cells red if they are incident on red vertices. All other cells and 

vertices are blue. So in particular, vertices of S*, and edges which are T-within 

S* are coloured blue. 
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key 

....... red (meets S) 
----- blue (does not) 

1týt 

II -WI 
,, 

\, t -W\ Ak, 

I,.. 92 
91 

g2b 

:.................. 

Diagram 2.1.4: Red and blue parts of the Van Kampen diagram 

Firstly, note an edge of a red relator cell lies on the same rela- 

tor as an element of S, and so each vertex on it is at most distance 

! (max relator length)] from a red vertex. 3 Now the distance between points 

in the Van Kampen diagram is greater than or equal to that between their 

images in ('; to prove part 1 it is enough to construct the edge path so that 

its edges and vertices are blue (1-within S*) and are edges and vertices of red 

relator cells (so that the vertices are within distance K+1 of S). 

Note that edges are labelled by elements of SS if and only if they have 

one vertex blue and the other red. (Such edges are themselves red. ) To prove 

part 2 we need to find a sequence of red edges each with a single blue vertex, 

such that successive pairs lie on the same relator. 
3Vertices are an integer distance apart. 
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From now on for shorthand, we may talk about vertices, edges and 2-cells 

of the Van Kampen diagram as if they were in r, rather than merely labelled 

by elements of I'. 

According to our colouring, the path a, between g1 and 92 that lies r- 

within S* is represented by the blue part of the boundary circle of the Van 

Kampen diagram, and the path a2 from g, to g2 that is f=within S is the red 

remainder of the boundary circle. Diagrammatically, we put g, on the left, 

92 on the right, the blue boundary path on the top and the red boundary 

path on the bottom. 

Orienting the 2-cells 

key 

""""""".. red (meets S) 

------ blue (does not) 
-rte 

; g2b 

. ................... 

Diagram 2.1.5: Orienting the 2-cells 
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gi a and g2b are the second and penultimate vertices respectively on the red 

boundary path from g1 to 92. (The notation is meant to suggest that they 

differ from gi and 92 by a generator. ) Diagrammatically, we orient the relator 

cells clockwise, to correspond to the following definition; the pair (g, a, gi ) 

is an ordering on the edge from gia to 9i . 
This determines an ordering 

on the (unique) relator cell incident with it. We orient all the other 2-cells 

coherently with this (so that considered as a homology 2-chain, the sum of 

the 2-cells has as boundary the (clockwise) oriented sum of the boundary 

edges). This is possible because the Van Kampen diagram is topologically a 

disk 

Inductively building up the edge path 

We start by defining v0 = g, a, vi =gI and s, = eo = [g a, gl}. gia is in S, 

so eo is red and on the boundary, so is incident on a unique red relator cell 

which we call TI. 

vi (current vertex) 

. et (next edge) 

i ^, vi+j (next vertex) 
(ri 

(red) 
key: 

'''''' red (meets S) 

---- blue (does not) 

Diagram 2.1.6: Next edge 
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If we are given a vertex vt, and a red relator cell rj on which it is incident, 

then the orientation on r; determines a next edge and a next vertex around 

Ti 

Case (1): If these are blue, we will call them ei and vi+1 respectively, so 

that ej = [vj, vt+i]. Note that ei and vl+1 are also on the boundary of with 

Ti 

Case (2): 

1ES* 
Si+1 bS 

ri 

(red) (red) 

ES 

key: 

..... red (meets S) 
blue (does not) 

red with a blue vertex 
(in 6S) 

Diagram 2.1.7: The next edge is a coboundary edge. 

If the next edge and next vertex are red, we define s3+l to be this next 

edge. Note that sj+j has one red vertex, and one blue vertex, i. e. it has one 

vertex in S, and the other in S*. Thus s; +1 is in 5S. 

Note also that both s3 and sj+l are edges of the relator cell rj, so are on 

the same relator. 

If the next edge (s; +1) is not on the boundary, then there is another relator 

cell ri+l # rj incident both with it and with the next vertex. Since this cell 
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is incident with a red vertex, it is red, so we keep the current vertex, but 

change relator cell to this new one. 

Summary 

At each stage we have a current vertex and relator cell, and may find that 

they determine a blue next vertex, in which case we change the current vertex, 

and add the intervening (blue) edge to our edge path. If not, we add the 

intervening (red, coboundary) edge to our other sequence of edges. In this 

case, if the current vertex and relator cell do not both touch the boundary, 

they determine another red relator cell, in which case we change the current 

relator cell, but leave the current vertex as it is. 
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red (meets S) 

---- blue (does not) 
red with a blue vertex 
(in 6S) 

T. I . 

V5 A, 
I, fi V15 "i \V17 i 

V V :� 

. 
. 

fV3 ä ... 
ss 6 

V9 = V11 V13 14 
r14S 

S ýý S 
1 

S1 
3 6=e 

r2 S3 3 
r10=r}z V10 l5 

12 

s 9 2 S9 J z 
rl rq 

Diagram 2.1.8: Blue vertices on red relator cells, and coboundary edges. 
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The path can only end at g2 

The only other possibility that may arise during the induction is that the 

current vertex is on the boundary, with the next vertex and edge both red 

and on the boundary. The orientation this edge gets from the adjacent cell is 

from blue to red, i. e. it starts outside Bn and ends inside it. There are only 

two edges on the boundary with both blue and red vertices, and we oriented 

the 2-cells using a red to blue orientation on one of them. Thus the next 

edge can only be the other one, 1g2, g2b], and so the current edge must end 

at 92. 

Thus the last next edge must be the red edge [92i g2b] = e', so s,, +l = e, 

where m' is the number of relator cells used in the construction of the edge 

path. 

The path must end 

We have proved that we may continue adding more edges to our blue edge 

path until we reach the point 92, but what if we never reach it? In fact this 

cannot happen, since we can prove that the edge path transverses each edge 

at most once in a given direction. 

Given eL = [vj, vi+i], there is only one edge that can be et-1: 
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Vi 

! i+1 =Wl =wl 
Wk = Vi-1 

Diagram 2.1.9: Next edges around vi 

Fix vi and consider the sequence (wj), l=, of vertices which are arranged 

(anti-clockwise) around vi, defined as follows: w1 = vi+1. Given w;, consider 

the oriented edge [w� vi]. This determines a unique relator cell having [wi, vi] 

as an edge and oriented coherently with it. This in turn defines a next 

oriented edge, which we call [vt, w; +i], thus defining w; +, . 
We continue in 

this way defining a next wj until we reach wl = wj again. 

Now for some k, ei_, _ [wk, Vj] . 
Some of the edges around the vertex vi 

are blue. If one of the edges [vi, w; ] for j strictly between k and I is blue, 

then by our definition, the next edge in the edge path after ei-1 cannot be 

[vi, vc 1], but this is a contradiction. Thus there is no blue edge [vi, w; ] for j 

between k and t, so we have proved that ei-1 = [wk, v; ] where Wk is the last 

vertex in the sequence (w; )j'_, such that [wk, vi] is blue. Thus an edge in our 

blue edge path determines its predecessor uniquely. 

What we have shown implies that if ei+1 = ej+,, then ei = e3. Note that 

el is the first edge on the edge path, and does not have a blue predecessor, 

so cannot be reached a second time; by induction, the edge path does not 

Wk+1 *... Wi 
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meet the same edge with the same orientation more than once. 

Conclusion 

Thus since there are only finitely many edges in the Van Kampen diagram, 

and the edge path can meet each of them only twice, the inductive addition 

of edges to this edge path must terminate. As we found before, the only 

place this can happen is when the current edge has its terminus at g2, so our 

edge path goes from g, to 92. Since it is always on the boundary of a red 

relator cell, the vertices are always within distance K+1 of a vertex of S, 

proving part 1.4 

We constructed a sequence (s; )m'+ ' of edges of SS such that s1 =e and 

sT,,,, }, = e'. For each jE {1, 
... , m'}, s; and sj+1 were on the same relator, 

so by lemma 2.1.8 on page 36, d(s3, sj+1) < K, and we have proved part 2. 

0 

2.1.3 Finding components 

Now we are ready to prove that the r -components of Bn+K \ Bn and the 

components of r\ Bn are in one-to-one correspondence under inclusion. 

'Strictly speaking, we have defined the sequence of edges in the Van Kampen diagram, 

but these edges define a sequence of edges in the Cayley graph. The image points are 

at least as close to each other as the originals are in the Van Kampen diagram, so the 

sequence in the Cayley graph has the same property as that in the Van Kampen diagram. 
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Corollary 2.1.10 

Let K be the connectivity constant of G, and let g, and g2 be elements of S. 

If there is a path between them lying outside the open ball of radius n, Bn, 

then there is necessarily a path between them which is r -within Bn+K \ B. 

Proof 

Let S=GfBn=GfBn_1. Then S*=G(1(r\Bc). 

Let gi and gz be two distinct elements of S, and suppose there is a path 

ai between them lying wholly in f\B. We may construct a second path 

between them which lies inside Bn except at its endpoints: take a geodesic 

from 92 to idG and from idG to gj and compose them. Call the first edge of 

this path e', the last edge e, and the remainder of the path O2. 

al does not meet S, a2 does not meet S*, and both e and e' are in 6S. 

By theorem 2.1.9, there is an edge path (e)1 ;t from 91 to 92, which is 

r -within Gn (T' \ BI, ), such that the vertices of this edge path all lie within 

distance K+1 of a vertex of Bn_ý, so all lie in Bn+K \ Bn. 

0 

We now extend the result from elements of Sn, to all elements of Bn+,, \Bn: 

Corollary 2.1.11 

Let K be the connectivity constant of G, and let g, and g2 be elements of the 

band, Bl+K \ B. 

Take geodesics from each to vertices v, and v2 on S. Then these two 

paths lie entirely inside the band, and we may precompose or postcompose 

with them or their inverses without changing whether a given path lies in 
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Bn+K Bn or r\ B°n. 

Thus if there is a path between g1 and g2 lying outside Bn, then there 

is necessarily a path between them which is V-within B, +, K \ Bn, using the 

previous result, corollary 2.1.10. 

11 

Now we may prove the main result: 

Theorem 2.1.12 

Let K be the connectivity constant of G. There is a bijection, given by inclu- 

sion as a subset, between the F-components of Bn+K \ Bn and the components 

of r\Bn: 

Let C be a component of t' \ B. Since C is path-connected, ' there is a 

path in C between any pair of elements of Cn (91+K\ B, ). By the previous 

result, there must also be a path which stays r-within C f1 (Bn+K \ B, ). Thus 

Cn (B, 
+K 

\ Bn) is a r-component of Bf+K \ B. 
Conversely, any r-component of Bn, +K \ BI,, lies wholly within one cornpo- 

nent of r\ Bn. 

We have proved that the i'-components of B, +, K \ Bn are exactly the inter- 

sections of B, +, ( \ Bn with the components of r\ Bn, restricted to G. This 

inclusion is a bijection from the former to the latter. 

'In Cayley graphs, components and path-components are the same because Cayley 

graphs are locally path-connected. 
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2.2 A simple condition for having more than 

one end 

Theorem 2.2.1 

Suppose that there is an nEN such that BT', disconnects F. If two elements 

of length 2n lie in different components of r\ Bn, then r has more than one 

end. 

Note The presence of an element of length 2n in a component of f\ Bn 

does not on its own guarantee that the component is infinite. It is not 

inconceivable that the group might be finite of diameter at least 2n, but yet 

still be disconnected by B. 

Proof 

The proof spans the rest of this section. Throughout, fix n such that B. 

disconnects F, and let g_i and gi be elements of length 2n lying in separate 

components of r\B. We construct a path that is disconnected by Bn into 

two infinite components. 

2.2.1 Patches 

Definition 2.2.2 Let gEG, and suppose Bn disconnects r. Since G acts 

by isometries on r, B, (g) disconnects the Cayley graph into components 

C1.... C, say. The sphere of radius n about g, S, (g), is partitioned into 

subsets S, (g) n CL, which we call patches about g at distance it. (When the 

value of it is fixed or clear from the context, we do not mention it. ) 

Fix i and let cE Ci. Suppose a path from c to g meets S, (g) first at 
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some point of Cj. Then this initial segment of the path demonstrates that Ci 

and Cj are the same component of r\B. Thus we define the c-patch about 

g, c-(g, to be the patch about g which any path from c to g must meet first, 

i. e. c-(g = Ci (1 S (g). 

Lemma 2.2.3 

Let dEf\B, (g). The following are equivalent: 

(same patches) d--(g = c--( g 

(all meet first) All paths from d to g meet c-(g first amongst the patches 

about g. 

(one meets first) Some path from d to g meets c-(g first amongst the 

patches about g. 

(all meet) All paths from d to g meet c-{g. 

(one meets only) Some path from d to g meets only the c-patch about g. 

(geods meet only) All geodesics from d to g meet only the c-patch about 

9. 

(a geod meets) A geodesic from d to g meets the c-patch about g. 

(path between) There is a path from d to c that does not meet B, (g). 

(same component) dE Ci 

Proof 

Note that if a is a path from b to g then since or ' (S11(g)) is a closed subset 

of [0,11, it contains its infimum, t, say, so aj[o, tj is a path from b to b-(g 

which lies wholly in CL, and so does not meet Bn (g) 
. 

We call this subpath 

the initial segment of .. 
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Note also that if oc is a geodesic path, we can reverse it so that it becomes 

parameterised by distance from g, so it meets exactly one point of S"(9), 

and so meets exactly one patch about g. 

(same patches) and (all meet first) are equivalent by definition. 

(all meet first) = (geods meet only) because any geodesic from d to g meets 

only one patch about g. 

(geods meet only) = (one meets first) because there is a geodesic from d to 

9. 

(one meets first) =ý (one meets only); take the initial segment of the path 

and compose it with a geodesic from its endpoint to g. 

(one meets only) = (path between); compose the initial segment of the path 

with a path outside B, (g) from its endpoint to c. Such a path exists because 

Ci is path connected. 

(path between) (same component) trivially. 

(same component) = (all meet) because the initial segment of any path from 

d to g lies wholly in Ci and ends in S11(g) nCj= c- (g 
. 

(all meet) (a geod meets) trivially. 

(a geod meets) = (same patches); the geodesic meets only one patch about 

g, so it meets c--(g first, and so by the definition, d--(g = c-(g 

cl 

Sometimes we write g)-c instead of c-(g. 



Chapter 2: Complements of balls in the Cayley graph 55 

2.2.2 Constructing a bi-infinite path 

Diagram 2.2.1: Constructing a bi-infinite path 

We define a bi-infinite path by inductively defining for all iEZ points gi and 

geodesics a.;.: gi -g j+1 of length 2n. We will prove that for j>i, , (g; +i ) 

does not meet Bn(gi), and from this, that the gi are distinct. 

The path a obtained by composing the (OCJiE7z is bi-infinite in the sense 

that for all rER, both a((oo, r]) and a([-r, oo)) contain infinitely many 

vertices of r. 

Let go = idG. By hypothesis, there are points g_I and gi, with geodesics 

a_I : g_, ý-- go and oco : go - g1 both of length 2n, with g_j-{go go}-gi. 

Assume inductively that we have defined gi-,, g, and 

paths a_L, a_(i_11, ... , oc1_2,04_1, with each o c, geodesic of length 2n from 

gi to 9t+1, and for all jE {-(i - 1), 
... 

J- - 11, gi-i`{9i gi)-9i+i. 

G acts by isometries on t', so for hEG there is more than one component 
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of i' \ Bj(h) containing elements of distance 2n from h. Thus given g and h 

with d(g, h) = 2n we can find k with d(h, k) = 2n and g-(h # h) -k. 

We make this construction for g= gi_1 and h= 9j, defining gi+1 =k 

and take ai to be a geodesic between gi and gi+j. We repeat for g= g_(i_1) 

and h= g_i, defining g_(i+, ) =k and take a_(i+, ) to be a geodesic between 

g-(t+v) and g-i. This completes the induction. 

2.2.3 Only adjacent closed balls meet 

Lemma 2.2.4 

If i<j and B,,, (gi) meets 9, (gj+l), then i=j. 

Note that for £E {-1,1} and for mEZ, 9, (gm) n Bn, (9m+e) =0 by the 

triangle inequality and the fact that g,,,, and gm+E are distance 2n apart. 

Proof 

Suppose there are i and j in Z with i<j and that B 
, 
(go fl Bn(gj+j) 00 We 

derive a contradiction. 

Pick i and j so that Ii - il is the smallest possible. 
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Diagram 2.2.2: Non-adjacent balls cannot meet like this. 

Since Ij - il is smallest, none of Bn(gi), Bn(9i+1), """, 
Bn(9i-2) meet 

, (g; ), and thus none of them meet Bn(g; ). Also, Bn, (g; 
_i) 

does not meet 

Bn(gj) because gis adjacent to gj. (B, (gi) U Bn(9i+t) U"""U Bn(g; _i 
)) n 

B' (gj) = 0. Because of this, the composite path aiai+j 0-j-2 from gi to 

gi_i lies wholly outside Bn (g; ) 
. 

(In the case that j=i+1, this path is the 

trivial path. ) Since a; _, 
is a geodesic from g; _l to g;, the path aiai+i """ aj_j 

meets S11(g3) only at gj_1-4g3. Thus gi-(g; = gi_1-{gj. 

Now since B,. jgi) meets B11(gj+i) there is a path "y : gj+j ý-- gi lying 

wholly inside B, (gi)UBn(gj+, ). Such a path cannot meet Bn(gj); Bt1(g3. i)n 

Bn (g3) =0 because gi and gj+i are adjacent, and 9, (gi) f Bn (g; ) =0 because 

we assumed that i and j were as close as possible. Thus by lemma 2.2.3, 

gi-{gi = gi+1-(g;. But now we have proved that g; _, -(g; = g; )-gj+I, which, 

by construction, does not happen. 

0 
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2.2.4 Conclusion 

We have constructed a bi-infinite path a=""" a_2 a_10(0 a1 a2 """. This path 

is bi-infinite both in the sense that its domain is R and that its image meets 

infinitely many vertices of r. For suppose i and g, = g3. Then B, 1(gi) 

meets 9, (gj), so by lemma 2.2.4, t and j are adjacent integers. But this 

cannot happen because in this case gl and gj are distance 2n apart. 

Diagram 2.2.3: oc is bi-infinite. 

The path al a2 a3 """ lies wholly outside Bn (ids ), so the component of r\ 

Bn in which g1 lies is infinite. Similarly, the path """ a_4M-3 M-2 demonstrates 

that the component of r\ Bn in which g_I lies is infinite. B, (idG) separates 

the Cayley graph into more than one infinite component, and G has more 

than one end. 

0 
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2.2.5 Alternative proof 

The previous proof uses the G-action to construct a bi-infinite string of balls 

to demonstrate that G has more than one end. In this section we present an 

alternative proof that shows that two components of the complement of the 

ball can be moved strictly inside themselves using the G-action (which is of 

course by bijections) so are infinite. 

Recall the statement of the theorem (theorem 2.2.1 on page 52): 

Theorem 

Suppose that there is an nEN such that Bn disconnects r. If two elements 

of length 2n lie in different components of T'\ Bn, then f has more than one 

end. 

The main work is done in the following lemma: 

Lemma 2.2.5 

Suppose that there is an nEN such that Bn disconnects r, and that S is one 

of the components of F\B. If there exist elements x and y of G such that 

Bn(x) fl B, (y) = 0, with yE xS and xý yS, then S contains infinitely many 

vertices. 

Proof 

Assume Bn(x) fl Bn(y) _ 0, with yE xS and xý yS. 

Bn(x) is connected and does not meet B, (y), so lies entirely in one com- 

ponent of r\ Bn(y). If that component were yS then x would be an element 

of yS, which is false by assumption, so B, (x) lyS = 0. Thus yS lies entirely 

within one component, c, of r\ Bn(x). 
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We know that neither yS nor B, (y) meet Bn(x), so neither does their 

union. However, BO, (y) UyS is connected, so it lies wholy within one com- 

ponent of r\ Bn(x), and since yS C C, we have that yEB, (-U) U yS C C. 

But yE xS, so xS =C and yS C xS. Now yE xS by assumption, but 

yý yS, so yS $ xS. 

Thus the set of vertices of yS is a proper subset of the set of vertices of 

xS. However, the G-action provides a bijection between these sets and the 

set of vertices of S; there is a bijection between the set of vertices of S and a 

proper subset of them, so there are infinitely many vertices in S. 

0 

Now we give the alternative proof of the theorem. 

Proof (of theorem 2.2.1) 

Fix n such that Bn disconnects T', and let g and h be elements of length 2n 

lying in separate components of r\B. We prove that G has more than one 

end, by showing that the components of r\ Bn containing g and h contain 

infinitely many vertices. 

Note that it is enough to prove that the component of P\ Bn containing g 

is infinite, since the fact that the component containing h is infinite follows 

by symmetry. Let S be the component of F\ Bn containing g. 

Note first that B, (g), B, (idG) and Bj(h) are pairwise disjoint: Neither 

Bj(g) nor B, (h) meets Bn by the triangle inequality. They do not meet each 

other because they are both path connected, so a non-empty intersection 

would imply that g and h lie in the same component of r\ Bn, which is false 

by assumption. 
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Thus, by the previous lemma, it is enough to find x and y amongst 

{g, idG, h} such that yE xS but xV yS. 

Case (1): idG E hS. We know that hVS= idG S, so if ids E hS then let 

x=h and y= idG; the result follows from lemma 2.2.5 on page 59. 

Case (2): idG ý gS. We know that gES= idG S, so if idG ¢ gS then let 

x= ids and y=g; the result follows from lemma 2.2.5. 

Case (3): idG ý hS and idG E gS. There is a geodesic path from idG to g; 

it lies in B11 U Bn (g) by the triangle inequality, so does not meet BO, (h) 
. 

Thus 

idG and g are in the same component of r\ Bn(h); idG ý hS =gV hS. 

Similarly, idG and hare in the same component of r\B, (g); idG E gS 

hE gS. 

Thus g¢ hS and hE gS, so by lemma 2.2.5, S contains infinitely many 

vertices. 

Thus in any case, S is infinite. r\ Bn has at least two infinite components, 

and G has more than one end. 

0 

Note that this alternative proof, like the first, does not work when only 

one component off \ Bn has an element of length 2n in it. 
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2.3 Infinite components and infinite words 

We prove a lemma relating whether a component of T'\ Bn is infinite to the 

existence of certain types of rays in it. 

Lemma 2.3.1 

Let C be a component of f\B. Then the following are equivalent: 

1. C is infinite 

2. there is a geodesic ray r, with r(m) EC for all m>n 

3. there is an infinite injective path -y and an MEN such that y(m) EC 

for allm> M. 

Proof 

Clearly, since geodesics are injective, (2) implies (3). Also, if -y is an infinite 

injective path then the points y(m) EC for m>M are all distinct elements 

of C, so C is infinite; (3) implies (1). All that remains is to prove that (1) 

implies (2). 

We assume C is an infinite component of r\ Bn, and prove that there is 

a geodesic ray into it. 

Since there are elements arbitrarily far from idG in C (because there are 

only finitely many elements of each length), there is no bound on the length 

of geodesics into C from ide. Thus, since there are finitely many entry points 

into C, at least one of the geodesics a to one of these entry points, a, must 

possess extensions of arbitrarily large lengths. 

Consider the union of all the images of all the geodesic extensions of a. 

This forms an infinite connected graph based at a. (Think of the edges as 
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directed away from a. ) 

Proceed along this directed graph, constructing a path. At each point 

we have finitely many choices (T' is a locally finite graph). At least one of 

the choices must allow us to reach points arbitrarily far from a, because 

otherwise there would be a global bound on the length of geodesics through 

a. In this way we inductively build up an infinite geodesic extension of a. 

By construction this ray a is a geodesic ray into C. 

0 
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Chapter 3 

Splittings and coboundaries 

Stallings' theorem [Sta68] relates the number of ends of a group to whether it 

splits over a finite subgroup. Dicks and Dunwoody give a proof of Stallings' 

theorem in their book Groups acting on Graphs, [DD89]. The proof involves 

`coboundaries', and Dunwoody more recently found a shorter proof using the 

`Bergman norm' on coboundaries. 

Dicks and Dunwoody use Bass-Serre theory to show that the group splits 

over a finite subgroup; they prove that the group acts in a certain way on an 

infinite tree, called the Bass-Serre tree for the splitting. For an introduction 

to Bass-Serre theory see [SW] or [Ser83]. 

In this chapter we define and study the coboundaries Dicks and Dun- 

woody use. Later, in section 4.4, we use some of these results in an algorithm 

which takes a group with certain computability properties, and if it has more 

than one end, calculates a finite subgroup over which it splits. 
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3.1 Stallings' theorem and coboundaries 

We give a brief exposition of the proof of Stallings' theorem in order to 

introduce concepts we will need later. 

Let G be a group, and let S be any subset of G. Recall from section 2.1.1.1 

on page 34 that S* denotes the complement of S, G\S, and that the cobound- 

ary, 8S, of S, is the set of edges of r which meet both S and S*. 

3.1.1 Nestedness 

The following tables are entrywise equivalent: 

ScT* SCT 

S*CT* S*CT 

SnT=O I SnT*=O 

S*nT=OIS*nT*=o 

TC S* T* C S* 

TCS T*CS 

This accounts for the use of the word nested below. 

Definition 3.1.1 (nested) Let S and T be sets of elements of G. We say 

that the pair (S, T) is a nested pair if one of the sets s fl T, sn T*, s* fl T, 

or S* n T*, is empty. 

A set of subsets of G is said to be nested if it is pairwise nested. 

A subset S of G is said to be G-nested if the set of all G-translates of it 

is a nested set of subsets of G, i. e. if {gS IgE G} is a nested set of subsets 

of G. 

A coboundary, SS, is said to be G-nested if S is G-nested. 

Note that nestedness of the pair (S, T) is independent of the order and 

independent of whether we take S or S*, T or T*. As a corollary, {gT ITE 

{S, S*}, gE G}} is a nested set of subsets of G if and only if {gS IgE G} is. 
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So S is G-nested if and only if {gT ITE {S, S*}, gE G}} is a nested set of 

subsets of G G. 

3.1.2 The Bergman norm 

Dicks and Dunwoody prove (in [DD89]) that if there is an infinite G-nested 

subset, S, of G, with infinite complement S*, and finite coboundary ÖS, then 

there is a tree on which G acts with edges {gT ITE {S, S*}, gE G}}, so that 

G splits over stab (S) 
. 

They prove also that if there exists any infinite subset T of G, with infinite 

complement T*, and finite coboundary, then there exists a G-nested set S with 

the same properties. In this way they prove Stallings' theorem, i. e. that a 

group with more than one end splits over a finite subgroup. 

As mentioned earlier, Dunwoody gave a much shorter alternative proof 

of this latter point, using the `Bergman norm' on coboundaries. The norm 

is due to George Bergman [Ber68]. 

Definition 3.1.2 (Bergman norm) Let E= bS be a finite coboundary. 

We define µL (E) to be the number of edge paths of length i which start in S 

and end in S*. 

We define the Bergman norm of E to be the sequence µ (E) _ 44 (E))t¬N. 

If S is a subset of G with coboundary SS, we define µ (S) =µ (SS). 

We say µ (a) <µ (b) if there exists IEN such that for all i<I, 

p (a) = µt (b), and 41 (a) < p. (b), i. e. we use the lexicographic ordering 

with the Bergman norm. 

Notice that µ (ÖS) =µ (b(S*)), so the asymmetry in the definition is only 
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apparent. We could equally well have defined µ;, (E) to be the number of 

unoriented edge paths which cross edges of E an odd number of times. 

3.1.3 Proof of Stallings' theorem 

We concentrate only on those parts of the proof we will be using later; for 

the more interesting G-tree constructions, the reader is referred to [DD89]. 

Lemma 3.1.3 (Dunwoody) 

Let S and T be subsets of G with finite coboundaries. Suppose that µ (S) _ 

µ (T) and that none of the sets SnT, Sn T*, S* fl T, nor S* f1 T* is infinite 

with infinite complement and strictly smaller Bergman norm. Then the pair 

(S, T) is a nested pair. [Dun98] 

CK 

Corollary 3.1.4 (Coboundary calculus) 

Let S and T be subsets of G with finite coboundaries. If µ (S) =µ (T) and 

(S, T) is not a nested pair, then one of the sets S nT, Sn T*, S* n T, or S* n T* 

has strictly smaller Bergman norm, and is infinite with infinite complement. 

Theorem 3.1.5 (Dunwoody) 

R 

If S is a Bergman-minimal subset of G, then it is G-nested, i. e. the set 

{gT ITE {S, S*}, gE G}} is a nested set of subsets of G. 

Proof 

6S=6 (S*), so µ (S) =4 (öS) =µ (6 (S*)) =4 (S*). Also, for any gEG, gS 

has the same Bergman norm as S (because G acts by graph isometries on ('). 
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Thus if S is Bergman-minimal, so are all of the sets {gT ITE IS, S*}, gE G}}. 

By lemma 3.1.3, they must therefore be pairwise nested, i. e. S is G-nested. 

0 

The following theorem of Bergman in particular guarantees that a se- 

quence of edge sets with decreasing Bergman norm is eventually constant. 

Theorem 3.1.6 (Bergman) 

The set of sets of edges of a graph is well-ordered by lexicographic ordering 

with the norm µ(). [Ber68] 

0 

Theorem 3.1.7 (Stallings) 

If G is a finitely generated group with more than one end, then it splits over 

a finite subgroup. 

The proof is Dunwoody's alteration of Stallings' original result, using 

Bergman's norm. 

Proof 

If G has more than one end, there exists a subset T of G which is infinite, 

has infinite complement and finite coboundary. (See [DD89]. ) 

We define a sequence (TL)tEN of infinite subsets of G with infinite comple- 

ment. Let T, = T. 

If T; is G-nested, define Tt+j = Ti. 

If Tj is not G-nested, there exists gEG with the pair (Ti, gTt) non-nested. 
By corollary 3.1.3, one of Tin gTL, Tin gTi , T, *n gTt, or T, *n gTl is infinite with 
infinite complement and has strictly smaller Bergman norm. Define Ti+i to 
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be this set with smaller norm. 
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By theorem 3.1.6, this sequence has a minimal element with respect to 

the norm, so eventually must attain this minimum. This means that at some 

stage, .i (Ti+1) =µ (Ti), but then Ti was G-nested. Define S= Ti. 

Thus there exists an infinite G-nested set, S, with infinite complement. 

By theorem 11.1.8 and 1.4.1 of [DD89], G splits over stab(S). Now stab(S) = 

stab(S*), so each element of stab(S) also stabilises 8S, i. e. stab(S) C stab(8S). 

Thus, since SS is finite, stab(S) is finite, so G splits over a finite subgroup. 

3.2 Oriented coboundaries 

0 

In the proof of Stallings' theorem, we explained that G splits over a finite 

subgroup stab(S), for some infinite subset S of G which has a finite cobound- 

ary and infinite complement. If we wish to calculate this subgroup, it is 

impractical to find the stabiliser of an infinite set. We proved that stab(S) 

is finite by showing that stab(S) C stab(SS). This inclusion may be proper, 

as is the case with the group G= (a, bI a2, b2) "' 7L2 * Z2, and the subset S 

consisting of elements whose shortest word in the generators starts with a. 

S 
abababababab 

a b` a bý` ä bý`ý a b`- a b` ä b`- 

ids 

Diagram 3.2.1: 7L2 * 7L2 
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In this section, we define the oriented coboundary of a subset of G, and 

prove that the stabiliser of the oriented coboundary is equal to the stabiliser of 

the set itself. Since there are finitely many edges in the oriented coboundary, 

we can calculate its stabiliser. 

Definition 3.2.1 (oriented coboundary) Let S be a subset of G with 

coboundary S. We define the oriented coboundary of S, 61, to be the set SS 

together with the orientation on the edges in SS pointing towards S. 

Thus the coboundary bS has two orientations, bS, and 
bS 

s* S 

'" 
_--- 

Diagram 3.2.2: An oriented coboundary 

As with coboundaries, we are only ever interested in finite oriented 

coboundaries. 

Lemma 3.2.2 

Let gEG, and let 55S be an oriented coboundary. Then g(-61) =b (g 
. 

Proof 

Note that g(S*) = (gS)*. 

Clearly, g (SS) C& (g S: If [x, y] E 66S, then xE S* and yES, so 
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gx E g(S*) = (gS)* and gg E gS, and so g[x, y] = [gx, gj] E 6(9S . 

Conversely, if [x, y] E8 (g 
, then xE gS* =g (S*) and yEgS, so gxE 

S* and g-'y E S. Thus g-1 [x, 1j] = [g-1x, g-'y] E SS, i. e. [x, y] E g(16). 

El 

Corollary 3.2.3 

Let gEG, and let SS be a coboundary. Then g(5S) = b(gS). 

0 

3.2.1 Stabilisers of oriented coboundaries 

We make the following definition for clarification. 

Definition 3.2.4 Let S be a subset of G. We say that an element of G 

stabilises the oriented coboundary of S if it stabilises the coboundary of S and 

preserves the orientation on the edges. 

Lemma 3.2.5 

Let S be a subset of G with finite coboundary bS and oriented coboundary 61. 

Consider the action of G on its Cayley graph. Then stab(S) = stab(SS). 

Proof 

First we prove the easier inclusion stab(S) C stab(S5S). Let gE stab(S), so 

gE stab(S*). Let e be an oriented edge in 61. Then the initial vertex of e is 

in S* and the terminal vertex is in S. Since gE stab(S), g sends the terminal 

vertex of e to a vertex of S, and since gE stab(S*), g sends the initial vertex 

of e to a vertex of S*. Thus e is sent to an edge which also starts in S* and 

terminates in S, i. e. ge E 81. Thus every element of stab(S) stabilises 51, 
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i. e. stab(S) C stab(g). 
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Now we prove the reverse inclusion. Let gE stab(55). We must prove 

that g stabilises S. Let aES. 

Case (1): If a is incident with an edge e of 
9, it must be a terminal 

vertex (the oriented coboundary is defined to be oriented towards S). Since 

gc stab(b5S), this edge is sent by g to another edge in -69, so its terminal 

vertex is sent into S, and so gaES as required. 

Case (2): Assume now that a is not incident with any edge of 89, and 

assume for contradiction that gaýS. 

S* iS [b, c] is mapped into 61 by g 

'; d cbaa 

mapped into S by g 
t ý-º- mapped into S by g 

Diagram 3.2.3: If g stabilises the oriented coboundary of S, it must stabilise 

S 

Let a: a ^_- d be a geodesic from a to the set of vertices in S which are 

incident with edges of bS. a lies wholly in S because otherwise it would not 
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be shortest. gdES by the previous case. As we travel along the path a, 

there is a first vertex, c, for which gc E S. The previous vertex on a, b, has 

gb¢S. 

Let e be the oriented edge [b, cl. We have b, cES but gb E S* and 

gc E S, so eý9 but ge E 9. In other words, (ge) E bS but g-' (ge) ý 51, 

so there is an element g-1 E stab(lb ) which does not stabilise 
8. This is a 

contradiction, so our initial assumption that ga ýS was false, and ga E S. 

Thus in either case, aES ga E S, so g stabilises S. Thus we have 

proved stab(b5S) C stab(S). 

0 

Corollary 3.2.6 

stab(SS) = stab(S) = stab(S*) = stab(5S ). 

0 

3.2.2 Orbits in oriented coboundaries 

An oriented coboundary, 51, is partitioned into orbits of edges under the 

action of stab (b5S) = stab (S) 
. We make the following abbreviation: 

Definition 3.2.7 (orbit) Let G be a finitely presented group, and let bS be 

the coboundary of some set S of vertices of G. By an orbit in SS we mean 

an orbit under the action of stab(16) = stab(S). 

Example 3.2.8 

Consider again the group G= (a, b a2, b2) "' 7L2 * Z2, and the subset S 

consisting of elements whose shortest word in the generators starts with a. 



Chapter 3: Splittings and coboundaries 

S 

ababababa b_ ab 

aba b- a b- aba b`- a 

idG 

Diagram 3.2.4: Z2 * 7L2 
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The coboundary of S consists of the two edges labelled a incident with 

ids. The oriented coboundary consists of these two edges both with the 

orientation pointing towards S. The stabiliser of S is equal to the stabiliser 

of this oriented coboundary, and is the trivial subgroup of G. Thus this 

coboundary has two orbits. (This contrasts with the fact that under the G- 

action, these two edges are a (proper) subset of a single orbit, because they 

are both labelled with a. ) 

3.3 Some non-bounds on coboundaries 

It would be convenient if there were some simple bound on the size of a (finite) 

Bergman-minimal coboundary, so that we would be able to conclude that if 

there were no coboundary within a certain radius the group has one end. 

We thought about several possible ways in which a computational approach 

might be successful, but unfortunately there is a counterexample to each of 

our ideas. 

The groups are straightforward but their presentations are clearly unnec- 

essarily complicated. However, pathological presentations of straightforward 

groups exist, and it is precisely for difficult-to-understand presentations that 
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we require an algorithm to determine endedness. 

3.3.1 Minimality does not imply single orbits 

A first hope would be that there is only one orbit of each generator with a 

given orientation, as in example 3.2.8. Unfortunately, a minimal coboundary 

may have many orbits. 

Example 3.3.1 

Let G=(a, blb=a3)'"Z. 

b -------- ------- ý 

J"\\ AAA 

---------- 

Diagram 3.3.1: Z generated by 1 and 3 

A Bergman minimal coboundary is shown in the diagram; the reader may 

confirm that no set containing fewer edges disconnects the Cayley graph, 

and that any set with four edges which does so is a G-translate of the one 

indicated. Since G acts by graph isometries on its Cayley graph, all such sets 

of edges have the same Bergman norm. 

Here the stabiliser of the oriented coboundary is again trivial. There are 

three orbits of edges labelled b and oriented into S. 
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3.3.2 Non linear growth in number of orbits with re- 

spect to presentation length 

Consider the sequence of presentations 

Pn = ta, bi , bz, ... , bra I bi = a2, {bi+i = b? Ii<n -1 }) 

of the group Z. 

key ý-- a ý-ý bi 

2b ,3 

ýý ,. 

Diagram 3.3.2: Z generated by powers of 2 

This presentation is of length n+1+ 3n, i. e. there are n+1 generators 

and words totalling length 3n in the presentation. 

A generator bi equal to a2` appears 2` times in a minimal coboundary 

(without 2` copies of such a generator, the Cayley graph cannot be discon- 

nected by a finite set of edges). Thus there are 1+2+4+8+"""+ 2" edges 

in a minimal coboundary. There are no finite subgroups of Z other than 

the trivial subgroup, so the stabiliser of a minimal coboundary is the trivial 
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subgroup. Thus there are 2"+' -1 orbits in a minimal coboundary with the 

presentation P. 

Thus there can be no linear bound in terms of the length of the presen- 

tation on the number of orbits in a minimal coboundary. 

Notice, however, that in this sequence of examples, the closed ball of 

radius it +1 always disconnects the Cayley graph. (An element at can 

be written as a word of length 1log21 in the generators, and the minimal 

coboundary can be translated so that every edge of it starts at a vertex 

expressible as at for i< 2n. So each edge of the minimal coboundary is 

within the closed ball of radius [loge 2111 +1= it + 1. ) 

3.3.3 No bound for splitting ball diameter in terms 

only of K 

Recall from section 2.1 on page 33 that the connectivity constant, K, of G is 

given by K=[ (max relator length)] - 1. The presentations in the previous 

section each have the same value for K, namely 0. Since the splitting ball 

diameter in the sequence is unbounded, there is no bound for the splitting 

ball diameter that depends only on K. 

3.4 kth coordinate of Bergman norm may be 

necessary 

Recall from definition 3.1.2 on page 66 that the Bergman norm µ (ÖS) of a 
finite coboundary bS is the sequence (µ. t (SS) )iEN where pj (&S) is the number 
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of edge paths of length i which start in S and end in S'k. 

In section 4.4 on page 114 we use the Bergman norm in an algorithm to 

find a finite subgroup over which a group with more than one end splits. We 

always use only finitely many elements of the norm, but can we bound in 

advance how many we need? In this section we answer the frequently asked 

question `Do we need all the components of the Bergman norm? '. 

Rephrased, the question comes in two forms: Firstly, is there some bound 

k such that for any group G, if a coboundary is minimal in the first k terms of 

its Bergman norm, then it is minimal with respect to all terms of the Bergman 

norm? (Can we determine Bergman-minimality with a bounded number of 

terms of the norm? ) Secondly, is there some bound k such that for any group 

G, if a coboundary is minimal in the first k terms of its Bergman norm, then 

it is G-nested? (Can we determine G-nestedness with a bounded number of 

terms of the norm? ) 

Since Bergman-minimal coboundaries are nested (see Dunwoody's theo- 

rem 3.1.5 on page 67 from the research talk [Dun98]), a yes to the first is 

a yes to the second, and contrapositively, a no to the second is a no to the 

first. 

The answer to both questions is no: 

Example 3.4.1 

For every kEN there is a group Gk with coboundaries bS and ST which 

have pti (bS) = Lj (ST) for i<k, but for which S is G-nested, and T is not 

G-nested (hence not minimal). 

The rest of this section is devoted to constructing such a sequence of 
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groups. 
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Definition 3.4.2 (neighbourhood) Let G be a finitely generated group 

with Cayley graph r. Let X be a subset of r, and let rER. We denote 

the closed neighbourhood of radius r about X by X, (X), i. e. 

N. (X) = {x er1 d(x, X) <, r} 

3.4.1 A sufficient condition for having similar Bergman 

norm 

Lemma 3.4.3 

Let G be a finitely generated group with Cayley graph F. Let E1, E2 and E3 be 

sets of edges of r, such that E, U E2 = SS and E1 U E3 = bT for some subsets 

S andT of F. LetkEN. 

Suppose that 

JVk-1(E2) 
Nk-1(E3) 

in the sense that they are isomorphic as graphs, and that both d(E1, E2) and 

d(EI) E3) are at least 2k. Then for all i<k, µ. j (5S) = µi (8S). 

Proof 

Note first that a path of length i crossing an edge e of E must stay within 

distance i-1 of e, so the number of such paths, µt, (E) depends only on the 

path components of M_1 (E). The distance between these path components 

does not affect the ith term of the norm. 

Now. Nk_l (El) and Ark-, (F-2) have empty intersection, because d(E1, E2) 

2k > 2(k-1). Thus, for i<k, the path components of NL-1(6S) are subsets 
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of either JVk_1(Ei) or . 
Nk_l (E2). 
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Similarly, the path components of ST are subsets of either Nk-i (E1) or 

Nk-11E3) " 

Since Nk_1 (E2) and J1%k_l (E3) are isomorphic as graphs, the path compo- 

nents of them are too, so their contribution to the ith entry in the Bergman 

norm is the same. Since there is no path of length less than 2k from either 

of them to Nk_l (EI ), we know that for i<k, µl (E1 U E2) = i, (EI U E3), i. e. 

µ;, (ES) = p. (6T). 

El 

3.4.2 A sequence demonstrating need for the kth entry 

of the Bergman norm 

Define 

Gk = (a, b, cI a2, b4k, c2, (b2k(1)4, (bc)2). 

Below is an incomplete fragment of the Cayley graph of Gk for k=2. 

The edges are not all drawn at the same scale. 
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T (not G-nested) 

ids 

ße6 e4lL-z- S (G-nested) 
`7 e3 

AV 

Diagram 3.4.1: T is a non-nested set with small norm. 

Consider the edges el, e2, e3, e4, e5 and e6, as labelled in the diagram. 

Define El = {e1, e2}, E2 = {e3, e4} and E3 = {e5, e6}. 

Now El U E2 separates the Cayley graph into two infinite components, as 

does E1 U E3, so that Ei U E2 = bS and El U E3 = ST as indicated on the 

diagram. 

Then E2 and E3 are both translates of E, under the G-action on r. Pre- 

cisely, E2 = (b2ka)Ei, and E2 = (bAa)2E1. Thus the sets J4_, (E; ) are all 

isomorphic as graphs. Also, d(E1, E2) = 2k and d(EI, E2) = 4k +1> 2k. 
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Thus the hypotheses of the lemma are satisfied, and pi (ES) = µi (ÖT) for 

i<k. 

The element h= b2ka has the property that hETnh. T, idG ETn hT*, 

h2 E T* f1 hT, and h3 E T* fl hT*. Thus T is not G-nested. 

However, S is G-nested: 

If we had gEG so that (S, gS) were not nested, g would need to move 

one edge of bS to to be =within S and move another edge of bS to to be 

r -within S*. 1 Whether an edge is V-within a set or not is determined only 

by whether its vertices are; el is f -within some set if and only if e2 is, and 

similarly for e3 and e4. 

It is clear that g (idG) ES if and only if g (b2k) E S, because the path 

between them described by the word b2k cannot cross SS, which consists only 

of edges labelled by a. So if el is 1-within S, e3 cannot be r -within S*, and if 

el is r -within S*, e3 cannot be T-within S. Thus there is no gcG for which 

(S, g S) is a non-nested pair. 

Thus S is a G-nested subset of G, and T is not, but their Bergman norms 

do not differ in the first k places. 

We do not know in advance how many components of the Bergman norm 

we will need to calculate to be able to find a nested set. 
'This is proved in lemma 4.4.7 on page 120; S is r-connected, as is S*. Lemma 4.4.7 

gives us the required condition for the nestedness of the pair (S, gS). This example is not 

used later, so the is no circularity of reasoning here. 



Chapter 3: Splittings and coboundaries 83 

3.5 Quasi-path-connected coboundaries 

In this section we prove that if S and S* are f' connected, then the edges of 

SS are close to each other. As a corollary, we can bound the diameter of such 

a coboundary in terms of the number of edges it contains. 

Definition 3.5.1 Let G be a finitely generated group with Cayley graph r, 

and let E be a set of edges of P. We say E is q-quasi-path-connected if for 

every pair {e, e'} of edges of E, there is a finite sequence (sj)j j' of edges of 

E such that s1 = e, sn+, = e' and 

Vi E {1, 
... , n}, d(s), s)+, ) <, q. 

The reader may recall a similar condition in the conclusion of theo- 

rem 2.1.9 on page 37. 

Theorem 3.5.2 

Let G be a finitely presented group with Cayley graph r, and let S be a subset 

of G. Let K be the connectivity constant of G. (See section 2.1. ) 

If S and S* are r -connected subsets of G, then the coboundary of S, bS is 

K- quasi-path- connected. 

Proof 

Suppose that S and S* are r-connected. 

Let e= [gl, gla] and e' = [92, g2b] be edges of 6S. Since S* is r 

connected, there is a path al between gi and 92 which does not meet S. 

Similarly, since S is r -connected, there is a path a2 between g2b and gIa 

which does not meet S*. 
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By theorem 2.1.9 on page 37, part 2, there is a sequence (sj )'j ,1 of edges 

in 6S, such that 

Vj E {1, ... , m'}, d(s;, s; +l) < K. 

Thus the sequence (s; )m, 1 between the arbitrarily chosen edges e and e' 

of bS shows that bS is K-quasi-path-connected, as required. 

Corollary 3.5.3 

0 

Let G be a finitely generated group with Cayley graph F, and let S be a subset 

of G. Let S and S* be r-connected subsets of G. 

If we know there are at most n edges in 5S, then the diameter of SS is at 

most n(K + 1) + 1. 

3.6 A total ordering on the orbits 

El 

Recall that by orbit, we mean an orbit of coboundary edges under the action 

of the stabiliser of the oriented coboundary. (Definition 3.2.7. ) 

In this section, we further analyse the orbit structure of G-nested 

coboundaries, by defining `innermost' and `outermost' orbits with respect 

to the orientation of an oriented coboundary. This definition will give rise 

to a total ordering on the set of orbits in the coboundary of edges that are 

labelled by a given generator. 
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Lemma 3.6.1 
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Let 55S be an oriented coboundary, and let H= stab(b5S) .2 
Let 01 and 02 be 

orbits in 55S (i. e. orbits of edges under the action of H), and suppose g is an 

element of G which translates an edge of 01 to an edge of 02. 

Then the set of all elements that translate some edge of 0, to some edge 

of 02 is exactly the double coset HgH. Formally, 

HgH = {k EG 13e1 E 01, e2 E 02 such that kel = e2} 

Ol 02 

ei hý e2 
1; e -h 

>- > e2 

Diagram 3.6.1: Orbits and double cosets 

Proof 

Suppose gel = e2 with el E 01 and e2 E 02. Let e', E 01 and e2 E 02. Then 

there exists hl EH such that h, eI = e1, and there exists h2 EH such that 

h2e2 = e2. Let k= h2ghi 1. Then kel' = h2ghj'eý = hege, = h2e2 = e2 

Conversely, any element k= h2gh-11 E Hgl-L takes some edge h1 e, of O1 

to an edge h2e2 of 02. 

0 

Definition 3.6.2 Let 0, and 02 be orbits in a G-nested, oriented cobound- 

ary 
9. We say that 01 is further out than 02 if 01 0 02 and there exist 

gEG, el E 01, and e2 E 02 such that gel = e2 and gS C S. 
2See section 3.2 on page 69 for definitions. 
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We write O1 - 02, or 02 >- 01, or say that 02 is further in than O,. 

Lemma 3.6.3 

-< is well-defined. 

Proof 

Let H= stab(g). Suppose 01 -< 02. Then there exists g in G and edges 

el of 01 and e2 of 02 such that gel = e2 and gS C S. Suppose also 

kEG with ke' = e2 for some el' of 01 and e2 of 02. Then kE HgH 

by the previous lemma, so k= h1 gh2, for some h, and h2 in H. Then 

kS = hjgh2S = h1gS C S, because gS CS and h, EH = stab(-579). 

11 

Recall that there is an element in G taking el to e2, if and only if el and 

e2 are in the same G-orbit. This is true if and only if el and e2 are labelled 

by the same generator. Clearly then an orbit in a coboundary consists of 

edges that are all labelled by the same generator. 

Lemma 3.6.4 

Let 69 be aG -nested, oriented coboundary, and let a be a generator of G. 

Then the set of orbits in 51 that have edges labelled a are totally ordered 

under the relation -<. 

Proof 

We prove that -< is transitive and satisfies the trichotomy condition: 
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Trichotomy 

Let 01 and 02 be orbits of 61 whose edges are labelled by the same generator, 

and suppose that 01 0 02. We prove that either 01 -< 02 or 01 >- 02. 

Let el E 01 and e2 E 02. Then since el and e2 are labelled by the same 

generator of G, there is some element gEG such that gel = e2. 

Since el and e2 are in 61, their initial vertices are in S* and their terminal 

vertices are in S, by the definition of oriented coboundary. 

Consider the initial vertex of e2 = gel. It is in S*, but also in 

g(S*) = (gS)*, so S* n (gS)* 0. Similarly, the terminal vertex of e2 = gel 

demonstrates that Sn gS 0. Since S is G-nested, one of the sets Sn gS, 

Sn gS*, S* n gS, or S* n gS* must be empty, so Sn (gS)* is empty or S* n gS 

is empty. 

Thus we have that gel = e2, and SC gS or gS C S. Recall from 3.2.5 

that stab(S) = stab(bbl). 

Case (1): Both SC gS and gS C S. 

In this case, S= gS, so gE stab(S), but then g cannot move el outside 

its orbit, i. e. e2 = gel E O1, and so 01 = 02. 

Note that conversely, if 01 = 02, then gE stab(S), so both SC gS and 

gS c S. 

Case (2): ScgSbutgSgS. 

Then 01 02 by the above remark, so by definition, 0 -< 02. 
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Case (3): gS CS but S gS. 

Then 01 02 by the remark above. Since gS C S, SC g^1 S. Now 

g~ý e2 = Cl, so by definition, 02 -< 0 1. 

Transitivity 

Suppose 01,02 and 03 are orbits in SAS, and assume that 01 -< 02 and 

02 -< 03. We prove that 01 - 03. 

Since Oi -< 02, there exist gti E G, el E O1, and e2 E 02 such that 

gel = e2 and gl SCS. Since 02 -< 03, there exist 92 E G, eZ E 02, and 

e3 E 03 such that gee = e3 and g2S C S. 

Let H= stab (SS) = stab (S) 
. 

Since both e2 and e2 are in 02, there is 

an element hEH such that het = e2. Define g= g2hgl. Then gel _ 

g2hglel = g2he2 = g2e2 = e3. Also, gjS C S, so since hE stab(S), 

h(g, S) C S. Thus since g2S C S, g2(h(giS)) C g2(S) C S, so gS g2hgiS C 

S. Thus either 01 - 03 or 01 = 03. 

If 01 = 03 then 01 -< 02 and 02 -"< 01, which cannot happen by the 

trichotomy condition above. 

Thus -< is a total ordering, as required. 

m 
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3.7 Could we bound the size of a minimal 

coboundary? 

In this section, we use the term minimal coboandary to refer to a coboundary 

which is Bergman-minimal amongst the coboundaries of infinite subsets of 

G which have infinite complement. 

We are interested in bounding the diameter of a minimal coboundary in 

terms of a computable function of the presentation (or an automatic struc- 

ture, if we have one). If we were to find such a bound, we would be able to 

detect one-endedness in groups computationally. Briefly, this bound would 

give us a diameter within which, if the group has more than one end, there 

must be a coboundary bS with S and S* infinite. If the group also has a solu- 

tion to the word problem, or, even better, an automatic structure, we would 

then be able to completely solve the algorithmic problem of determining the 

number of ends, using the techniques outlined in chapter 4. 

In section 3.3, we showed that some simple ideas for bounds on the size 

of coboundaries fail. It is the case, however, that in all our examples, the 

complexity of the presentation increases as we increase the number of orbits 

or the diameter of a minimal coboundary. 

A direct bound on the diameter of a minimal coboundary would solve our 

problem, but it seems unlikely that this can be deduced directly from the 

presentation. A presentation for a group can be thought of as a specification 

of the geometry of a small part of the Cayley graph. This geometry may 

induce some unpredictable large scale geometry. The triangle groups are an 

example of this sort of behaviour - in some cases the geometry gives rise to 



Chapter 3: Splittings and coboundaries 90 

positive curvature, and the group is finite, and in others, negative curvature, 

and the group is infinite. Of particular concern to us is that a presentation 

could conceivably be quite simple, but yet define a group which splits over a 

very large finite subgroup. 

Perhaps we should assume that we must prove for ourselves a bound 

on the number of elements in finite subgroups of our group before we can 

calculate a bound on the size of a minimal coboundary. In a hyperbolic 

group, we can calculate such a bound from the constant of hyperbolicity, as 

shown in [BG95]. 

It would then be enough to bound the number of orbits in a minimal 

coboundary, because then we may obtain a bound on the number of edges 

in a minimal coboundary. Lemma 4.4.11 on page 126 implies that if bS is 

a minimal coboundary, then S and S* must be rconnected, and in section 

3.5, we proved that such coboundaries are K-quasi-path-connected. Then a 

bound on the number of edges multiplied by (K + 1), plus 1, would be a 

bound on the diameter. (Corollary 3.5.3 on page 84. ) 
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Chapter 4 

Computing a splitting over a 

finite subgroup 

4.1 Overview and related work 

Sela was the first to prove that there is an algorithm which can decide whether 

a torsion-free hyperbolic group splits as a free product. However, the algo- 

rithm which detects one-endedness is a mammoth check which would be 

infeasible even on fairly simple examples. It is unlikely to ever be used in 

a computer program. Sela's algorithm is part of the content of the as yet 

unwritten paper The isomorphism problem for hyperbolic groups part II. 

Sela's algorithm uses the method of canonical representatives to reduce 

the solution of equations with alternating quantifiers in a torsion-free hy- 

perbolic group into large sets of such equations in a free group, which are 

then solvable. In this way he can calculate possible homomorphisms from 

the group to itself, and whether a given presentation of a splitting holds true 
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in the group. If the group does split over a finite subgroup, the algorithm 

finds a presentation for the splitting, and if the group is one ended the al- 

gorithm finishes calculating its JSJ decomposition. It seems clear that, at 

many points, the approach is not feasible. 

Recently, Gerasimov [Ger] generalised Sela's result, proving that there is 

an algorithm which decides whether an arbitrary hyperbolic group splits as 

a free product. 

Gerasimov's algorithm involves constructing a sequence of simplicial com- 

plexes whose vertices are geodesic words of a given length n. If this complex 

is connected and satisfies a certain condition for large enough n, the bound- 

ary is connected and locally connected, so the group is one-ended. We discuss 

and re-present Gerasimov's algorithm in chapter 5. 

Also, Dunwoody and his student Barker have been working towards find- 

ing an algorithmic solution to the endedness problem, assuming only that the 

group has solvable word problem. Their algorithms involve finding tracks 

in a simplicial presentation 2-complex for the group, and can detect one- 

endedness under certain conditions. 

Our algorithm assumes that the group is automatic, and we have a sep- 

arate approach to detecting each of the possible number of ends. The algo- 

rithms for detecting zero, two and uncountably many ends exist in the form 

of a program, kindly coded in C by David Hind as his fourth-year under- 

graduate project. The program runs quickly on our test presentations, and 

there is scope for making it much more efficient by avoiding some needless 

repetition. The algorithm for detecting zero ends is a simple check that there 

are no loops in the word acceptor, and we use a program written by Billing- 
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ton to detect two endedness. Our program for detecting more than two ends 

currently relies on the accepted words being geodesics, but theoretically this 

condition can be relaxed, as we shall see in sections 4.2.2.2 and 4.2.3. 

In fact, theoretically, we can detect having more than one end assuming 

only that the group has a solution to the word problem (section 4.3). Because 

our algorithm which may detect one-endedness depends on an automatic 

structure, it cannot be used in this context. But the algorithms to detect 

zero or two ends can be used, because such groups are always hyperbolic 

and therefore automatic. (See [SW] for a proof that 2-ended groups have 

a subgroup of finite index which is isomorphic to Z, [GdIH90] for a proof 

that such groups are hyperbolic, and [Pap95] or [ECH+92] for a proof that 

hyperbolic groups are automatic. ) 

4.1.1 Outline of the algorithm 

Where we give two references to later sections, the first deals with the case 

when there is an automatic structure for the group, and the second deals 

with the case when there is only a solution to the word problem. 

Let K be the connectivity constant of G. (See section 2.1 on page 33. ) 

1. If the group is zero- or two-ended, terminate, saying so. See sec- 

tion 4.2.4 on page 106. 

2. Calculate the vertices of B, +, K for some nEN. See section 4.2.2, or 

4.3.1. 

3. Calculate the r -components of Bn+K \ Bn, using several vertex depth- 

first searches. (See section 1.2.2.2 on page 25. ) This is the same as 
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calculating the components of r\ BO, by theorem 2.1.12. 

4. Decide by some means which components are infinite. See section 4.2.3 

or 4.3.2. 

5. If the number of infinite components off \ Bn is three or more, termi- 

nate, saying the group is infinitely ended. If not, increase n and start 

again. 

4.2 Practical: automatic groups 

We assume that G is automatic, and let Wk be its word acceptor, and GM 

its general multiplier. 

In this section we describe the algorithms used in the program ends. The 

program ends assumes that the words accepted by WA are geodesics, but we 

shall see that this assumption is unnecessarily restrictive we used it only 

to simplify the program. 

4.2.1 Representation of balls and their complement 

Let G= (X I R). Finite subsets of the Cayley graph are represented by a 

collection of arrays of vertices. 

Each vertex v has an array of adjacent vertices {w,, IxEX or x-1 E X}. 

We think of an oriented edge as the pair (v, w,, ) labelled by the generator x. 

Thus each edge of the Cayley graph appears twice, once for each vertex it is 

incident with. We think of this as using two oriented edges to represent each 

unoriented one. 
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When calculating the ball of a certain radius, we construct vertices and a 

spanning tree first and then the remaining edges. We calculate exactly those 

edges that begin and end at vertices which are already constructed. 

In essence, the Cayley graph is stored as a set of vertices, with information 

about which vertices are adjacent via which generators or generator inverses. 

In this sense the computer representation of f contains no edges; when we 

use the word `edge' in this context we really mean an adjacency relationship 

from v to w, labelled x. 

In fact when we construct parts off , an `edge' exists if and only if both 

its vertices do; with the computer we can only test r -connectedness. 
When we say that we have computed Bn or Bn+K, we mean that we have 

constructed the vertices of these sets and the adjacency relationships between 

them. However, since an edge is present in a computed subset of T' if and 

only if both its vertices are, we can test r -connectedness reliably within the 

ball we have constructed. 

In fact, in the program, rather than calculate the f' components of Bn+K \ 

Bo, we calculate the F -components of Bn+i+K \ Bn, which is the same as 

calculating the r -components of Bn+t+K \ Bn+t 
. 

(Using n+1 in place of it 

is a quirk of the original computer program that has persisted; it makes no 

difference mathematically. ) 

4.2.2 Constructing balls quickly ... 
In this section we describe the computation of an arbitrary ball of radius n. 
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4.2.2.1 ... assuming that all accepted words are geodesic 

Every element of G is represented by a word accepted by WA. We may, 

without loss of generality, assume that WA accepts a unique word for each 

element. (See section 2.5 of [ECH+92]. ) Thus each element is represented 

by a path in Wk from the start state to an accept state. We wish to find all 

such paths of length at most it. 

When we just want to find all the vertices of a graph, we do a vertex 

depth-first search, in effect, calculating a spanning tree. In this case we want 

to find all paths to all vertices, so we do a path depth-first search. (See 

section 1.2.2.2 on page 24. ) In essence we are calculating a finite portion of 

a covering tree of the finite state automaton WA. 

Whilst performing this path depth-first search, we make a list of the 

generators labelling the edges we travelled along. Thus we may calculate a 

list of all accepted words of length less at most n. This gives us a spanning 

graph for Bn. l 

To calculate the `edges', i. e. adjacency relationships, it is enough to cal- 

culate all pairs of accepted words of length at most n which terminate at 

distance 1 from each other. Fortunately, the general multiplier, GM, accepts 

all such pairs, and as before, we may perform a path depth-first search to 

calculate them. 
I Or a spanning tree, if the accepted language is prefix closed and has unique represen- 

tatives for each element. 
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4.2.2.2 ... without assuming that all accepted words are geodesic 

If not all the words accepted by WA are geodesic, then we may need to use 

words of length greater than n to construct B,,. 

However, since there is an accepted word for each element of G, and there 

are finitely many vertices in Bn, there is an mEN such that each element 

of B11 has an accepted path to it of length at most m. Thus, to construct B� 

reliably, all we need is a way of checking that we have calculated all vertices 

of B. 

An algorithm to calculate B11 is as follows: Calculate and store the vertices 

and adjacency relationships2 represented by words of length up to m for any 

m> it. Then begin at idG in this stored graph, and perform a vertex depth- 

first search to depth n-1. At each vertex we check that all adjacent vertices 

of r have been calculated, by checking that all outgoing `edges' exist. If so, 

the whole of Bn has been calculated. If not, we increase m and repeat the 

adjacency test. 

Of course, once the ball Bn has been constructed, its manner of construc- 

tion is unimportant. 

An upper bound We can calculate an upper bound on the length of 

an accepted word ending in S. If we choose, we can forgo the repeated 

adjacency test above, and instead compute all edges reached by words up to 

this length. It is not clear whether this will be more, or less efficient. 

Let g be an element of S, and let w be a geodesic word representing it. 

Let N be the number of states in the largest of the multiplier automata, and 
2(adjacent in the sense that they differ by a generator) 
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let no be the length of the shortest accepted representative of the identity. 

Then by lemma 2.3.9 of [ECH+92]3 there is an accepted word for g of length 

at most Nn + no. 

We may calculate no by first calculating any accepted representative, v, of 

the identity (see the end of proof 2.3.10 of [ECH+921). Let ME be the equality 

recogniser (i. e. the automaton accepting pairs of words that represent the 

same group element). We ennumerate all words equal to idG by performing 

a restricted path depth first search of M£; we only allow ourselves to travel 

along paths where the sequence of generators from the left side of each pair 

spells the word v. The other side then spells a word equal to idG, and every 

such word appears in this way. As in the proof of 2.3.9 in [ECH+92], we may 

ignore paths which take us around a loop in ME, and thus obtain a finite list 

of words. The length of the shortest of these words is no. 

We could of course skip this last calculation and use the length of v as 

no. However it pays to avoid calculating words of unnecessarily great length, 

particularly in a group with an automatic structure so awful that the identity 

element is only represented by long words! 

4.2.2.3 Possible efficiency gain 

This subsection does not form part of the theory, but deals with some im- 

plementation details with which we may speed up the actual program. 
3In [ECH+92], the N taken is any strictly greater than the N we use here. A brief look 

at where N is used in the proof shows that this is unnecessary and that our N will do. It 

is worth taking note of this, as N is a factor in the length we need to go to; this saves us 

n units of length, and thus possibly a very large number of calculations. 
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The program uses Derek Holt's program fsaenumerate, (part of the pack- 

age KBMAG). fsaenumerate takes a finite state automaton and performs the 

path depth-first search search we described, writing the result to file. fsaenu- 

merate was used to save time in coding, but it is unnecessarily inefficient to 

call this external program: 

Firstly, writing to disk is very much slower than manipulating informa- 

tion in the memory. Secondly, in reading the information from the file, it 

must be translated; strings of characters represent the generators, and this 

information must be translated into the internal representation. 

These first two problems are real, but insignificant compared to the third. 

We need to calculate balls of increasing radius. Now if we were to perform 

the path depth-first search in the program, we could freeze the state of the 

search, and return from where we left off when we needed to increase the 

radius. fsaenumerate has no such facility, and if we wish to calculate the ball 

of radius Ti + 1, fsaenumerate must start again from the identity. 

fsaenumerate allows you to specify a lower as well as upper bound for 

the length of words you require, but its calculation starts from the identity 

every time the program is called. The lower bound limits only the output 

generated. 

4.2.3 Deciding which components of a ball comple- 

ment are infinite 

To calculate the components of r\ BO,, we calculate the -components of the 

band, B, +,, \ B. Of course the band is finite, but we want to be able to tell 
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which of its r -components represent infinite components of r\B. 

We may assume without loss of generality that we have a unique accepted 

word representing each group element, 4 and it is also true that we may as- 

sume that the language accepted by WA is prefix closed. ' We do not know 

that we can assume without loss of generality that the word acceptor has 

both properties at once, but we shall make that hypothesis in the following 

lemma. If the finite state automaton does not have both properties at the 

same time, we may test whether the group has more than one end using the 

method outlined in section 4.3.2 on page 112. Note that current software only 

generates automata with both uniqueness and prefix-closure; in practice, the 

hypotheses of the lemma are satisfied. 

Lemma 4.2.1 

Let G be an automatic group with an accepted language which is prefix closed 

and has a unique representative for each group element. 

A component C of f\ Bn is infinite if and only if there is an infinite 

accepted word w, which meets C after it has left Bn for the last time. 6 

Proof 

First we prove the converse. If there is such a word, w, then it is injective, 

because it cannot re-visit any vertex of r; all its prefixes are accepted and 

there is only one representative for each group element. Then, by lemma 2.3.1 

4See section 2.5 of (ECH+92]. 
5See section 2.5 of [ECH+92]. 
6Note that since the accepted language is prefix closed, all states of the word acceptor 

are accept states. w is an infinite accepted word in the sense that all subwords of it are 

accepted. 
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on page 62, C is infinite. 

Secondly, we assume C is infinite, and prove the existence of w. Since C 

is infinite, there are words which terminate in it at arbitrarily large distance 

from the identity.? 

Only finitely many accepted words may pass into C and then return into 

Bn, because each element of the group has only one accepted word passing 

through it, and there are only finitely many vertices in C fl S, for such words 

to pass through. 

Also, there are only finitely many words which terminate in C, but which 

do not transverse a loop in the word acceptor, WA, because there is a bound 

on how far you can travel in Wk without looping, and there are only finitely 

many group elements in a ball of finite radius. 

Thus there must be infinitely many words which transverse a loop in WA 

whilst in C, so we may extend infinitely a subword of each. Only finitely 

many of these extensions can pass back into Bn, so in fact there are infinitely 

many words into C which possess infinite extension in C. Thus there is at 

least one infinite word, w, which passes into C after it has left Bn for the 

last time. (It is possible that all of the finite words we were considering are 

subwords of this infinite word. ) 

0 

Definition 4.2.2 Given a finite state automaton A, we may remove states 

from which it is impossible to reach a loop. We call this process pruning and 

call the resultant finite state automaton pruned. We denote this automaton 
7Note that a path may enter C, then leave it, and then re-enter it. 
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by pruned (A). 

start . -ý "' 

prune 

. F- . 

start 

102 
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C7 
Diagram 4.2.1: Pruning an automaton 

The pruned FSA accepts exactly those words in the original language 

which possess infinite extension. Thus an accepted word in r can be infinitely 

extended if and only if the state in WA in which it is accepted is also present 

in the pruned acceptor, pruned (WA). 

We now make a definition to distinguish between accepted words and 

subwords of accepted words. 

Definition 4.2.3 Let A be a finite state automaton. We call a word travell- 

able in A if it can be extended to a word accepted by A, i. e. if it is a subword 

of an accepted word. We call an infinite word travellable if every initial finite 

subword of it is travellable. 
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Note that an infinite travellable word could in theory have no accepted 

subword. 

Corollary 4.2.4 

Let G be an automatic group with a word acceptor WA which has every ac- 

cepted word geodesic. 

Suppose we have constructed Bf, +K, and that we have additionally labelled 

each vertex on the Cayley graph with the set of states from WA in which we 

may be when passing through that vertex. 8 This involves no extra computa- 

tion, because we record the information as we create the ball. 

Then a component C of f\ Bn is infinite if and only if there is an element 

gECn (Bn, +K \ Bn) which is labelled with a state which is also in the pruned 

version of the word acceptor. 

Proof 

If there is such an element, it may be extended infinitely, and it cannot return 

into Bn because it is geodesic. So by lemma 2.3.1 on page 62, C is infinite. 

Conversely, if C is infinite, there are arbitrarily long accepted words into 

C, so one of them, w, must transverse a loop in the word acceptor, so must 

be infinitely extendable. Thus at every distance from the identity, the state 

determined by w is in the pruned automaton. In particular, w(n + K) is. 

Thus there is an element in Bn+K \ Bn which is labelled by a set of states 

which includes a state from the pruned automaton. 
8Note that we list also the non-accept states in our set of states. This listing is pos- 

sible because all the accepted words are geodesic, and when we constructed the ball we 

enumerated all the travellable words of length n+K. 
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O 

Note that, in the program, the finite state automaton given by autgroup is 

a short-lex automaton, so in fact we work with prefix-closed unique geodesics, 

and so there is only one state in which we may be at any given group element. 

We do not need the geodesic assumption on the accepted words, but may 

need to do more computation if not. 

Corollary 4.2.5 

Let G be an automatic group with an accepted language which is prefix closed 

and has a unique representative for each group element. 

Then there is an algorithm to detect which components of T' \ BO, are 

infinite. 

Proof 

Construct all words of length up to m and `edges' between them, with m 

large enough so that Bn+, K has been constructed. ' Label each vertex on the 

Cayley graph with the state from WA in which we were when constructing 

that vertex. '0 

Consider the group elements determined by the accepted words of length 

exactly m. Since the whole of Bn has been calculated, these words may not 
9See section 2.1 on page 33 for the definition and properties of the connectivity constant, 

K. 

10There is a unique accepted representative for each group element, but also a unique 

word travellable in the word acceptor for each element; every subword of every accepted 

word is itself accepted, so all travellable paths passing through a given element must have 

the same initial subword up to that point. 
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return to Bn, because there are unique travellable words to each element. 

Restrict now to those which possess infinite extension by checking whether 

the state from WA in which they were accepted also appears in pruned (WA). 

There are no infinite geodesics except those extending these words, and 

these words have all left Bn for the last time, so a component of the com- 

plement of Bn is infinite if and only if it contains one of these words. We 

already know how to calculate the components of I'\ Bn, so we are done. 

0 

Definition 4.2.6 Let G be an automatic group. We say that the automatic 

structure is good if one or more of the following is true; either 

9 the accepted words are all geodesics, or 

" the set of accepted words is prefix-closed and there is a unique accepted 

word for each group element. 

Algorithm 4.2.7 (detecting more than one end) 
Suppose G is a group with a good automatic structure. Then there is an 

algorithm which answers yes if and only if G has one end. (If G has more 

than one end, the algorithm will not terminate. ) 

Let K be the connectivity constant of G. (See section 2.1 on page 33. ) 

1. Using one of the algorithms described in section 4.2.2 on page 95, we 

may calculate the ball of radius n+K for any nEN. 

2. We may calculate the P -components of the band, Bn+K \ Bn, and by 

theorem 2.1.12 on page 51, these represent faithfully the components 

of r\B . 
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3. By corollaries 4.2.5 on page 104 and 4.2.4 on page 103, given either of 

the two types of automatic structure, we may decide which components 

of V\ Bn are infinite. 

4. Thus if G has a good automatic structure, we may continue calculating 

how many infinite components there are of T'\Bn for larger and larger n. 

If for some it EN there is more than one infinite component, terminate, 

saying so. 

If at any stage there is more than one infinite component, then the group 

has more than one end. Conversely, if the group has more than one end, for 

some nEN, Bn disconnects the Cayley graph into more than one infinite 

component, and the algorithm detects this. 

0 

4.2.4 Deciding zero- and two-endedness 

If G has zero or two ends, in theory we can always detect this. This is because 

both finite and two-ended groups are hyperbolic, and thus strongly geodesi- 

cally automatic, by [Pap95]. This means that G has an automatic structure 

where the set of accepted words is exactly the set of all finite geodesics. This 

means that all pairs of geodesics to pairs of elements differing by a generator 

fellow-travel. In particular, if we restrict to just the lexicographically first 

geodesic to each element, this set of geodesics also has the fellow-travelling 

property. As described in section 2.5 of [ECH+92], we may alter the word 

acceptor to accept only the lexicographically first representative for each el- 

ement. Thus a hyperbolic group is necessarily short-lex automatic, and so 
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the program autgroup from the package KBMAG will in principle calculate 

the short-lex automatic structure. 

Of course, the group may be the monster group, or the monster group 

cross Z, and the computer does not have the capacity necessary to calculate 

its automatic structure. 

Once we have an automatic structure for a group, we may alter it so 

that it accepts a unique representative for each element (see section 2.5 of 

[ECH+92]). Clearly then the group is finite if and only if the word acceptor 

has no loops. 

Recall that the growth of a group is the sequence determined by all = 

ýBn (1 GI, i. e. an, is the number of elements of the group of distance at most 

n from the identity in the Cayley graph. 

By [Can], a group is two-ended if and only if it has linear growth. 

In his M. Sc. dissertation, [Bi196] Stephen Billington described various re- 

suits relating the growth of an automatic group to the structure of its word 

acceptor, in particular to the number and nature of strong components. A 

strong component is a subgraph of a finite state automaton which is maxi- 

mal under the condition that from each state there is a path to each other 

state. " Billington wrote programs which determine the growth of a finite 

state automaton, and one of them, 2end, tests whether the group has linear 

growth, and thus whether it is two-ended. 

Thus, given a presentation of a group, we may or may not be able to 

calculate an automatic structure for it using KBMAG. If we do have an au- 

tomatic structure, we can decide whether or not the group has zero ends (no 

"Note that this means that between any pair there are paths in both directions. 
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loops in the word acceptor), and using Billington's program tend, whether 

or not it has two ends (linear growth). 

4.2.5 Summary 

Algorithm 4.2.8 (ends) 

Let G be a group given as a finite presentation. Suppose G has a good 

automatic structure. (See definition 4.2.6 on page 105. ) 

Then the program ends detects if the group has zero, two, or uncountably 

many ends. 

1. First take the presentation and run the KBMAG program autgroup to 

try to calculate an automatic structure. 

2. If this succeeds, check for loops in the word acceptor. If there are none, 

terminate, stating that the group is finite and hence zero-ended. If 

there are loops, the group is infinite. 

3. Use the program 2end to decide whether or not the group has two ends. 

If so, terminate, saying that the group has two ends. If not, then the 

group can only have one or infinitely many ends. 

4. Use algorithm 4.2.7 on page 105 to try to detect that the group has 

more than one end. If it does, terminate, saying that the group has 

infinitely many ends. (We ruled out two-endedness in the previous 

step. ) 

Thus if G has zero, two, or uncountably many ends, ends detects this. 

If not, it proceeds to calculate larger and larger balls in the Cayley graph, 
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using more and more memory (and with the current implementation using 

fsaenumerate, more and more disk space). 
0 

The table on the current page summarises the logical situation. 

ends when we detect this when we refute this 

0 always always 

1 sometimes - see chapter 6 always 

2 always always 

00 always (sometimes) 

Table 4.1: To what extent we can determine the number of ends in a group 

given a good automatic structure. 

The `sometimes' in brackets in table 4.1 is a simple consequence of the 

`sometimes' under detecting one-endedness. Note that it is possible that the 

algorithm that sometimes detect one-endedness could in fact give an `always' 

rather than a `sometimes'. In the terminology of chapter 6 this would be 

true if the boundary of an arbitrary one-ended automatic group were always 

uniformly path-connected, and uniform path-connectedness were equivalent 

to the exterior paths condition for automatic groups. 
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4.3 Theoretical: using only the word prob- 

lem 

The program ends runs quickly on the examples we have tested, but for sim- 

plicity in coding, currently relies on the automatic structure having unique 

geodesic representatives for each element. As proved in section 4.2 this con- 

dition may be relaxed, and we expect some corresponding degradation in 

speed if so. In this section, we prove that there is a corresponding, but less 

powerful algorithm for groups which are not necessarily automatic, but which 

nevertheless have a solution to the word problem. This algorithm is consid- 

erably slower. The calculation of the ball of radius n is very slow, and the 

algorithm requires us to calculate a ball of approximately twice the radius 

needed by the program ends. In a group with large growth, this could make 

the difference between feasible and not feasible. 

Thus we consider the results of this section as primarily theoretical results. 

Example 4.3.1 

To compare the two algorithms on the same group, we take the group ZX Zen 

with presentation (a, bI ab a-1 b-' 
, ben) . The open ball of radius n+1 is 

the smallest to disconnect the Cayley graph, and we will need to check this 

by calculating the ball of radius n+1+K= 2n + 1. 

Using the automatic structure, we calculate the ball of radius 2n +1 in 

time proportional to the total length of all accepted words in the ball, so pro- 

portional to 4i2 + Fj, 14ni.. 12 Thus the computational complexity 

12This is because the sphere of radius i<n has 4i elements of length i in it, whereas 
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is of order 0(n3). The time taken to establish the components of the band 

Bn+, K \ Bn is the same for the automatic algorithm as for the word problem 

algorithm, so we ignore this summand. There are at least two infinitely ex- 

tendible geodesics within the band, and the time taken to find them is at 

worst proportional to the band's size, i. e. of order O(n). 

Using only a solution to the word problem, our algorithm means we must 

calculate the ball of radius 2(n + 1). (See section 4.3.2 on the next page. ) 

To calculate this ball we must compare each pair of words from the ball of 

radius 2(n + 1) in the free group on a and b for equality. In the free group, 

we have 1 +4 x 32n+1 elements in this ball, so we must make comparisons to 

the order of 0(34it), each of which may take non-trivial time. 

In this example, it is clear that the automatic algorithm, with a com- 

plexity 0(n3) is considerably faster than the word problem algorithm, which 

has complexity worse than O (34n) 
. 

This is true despite the quirk that in 

this case the value of K meant that (n + 1) +K was not much smaller than 

2(n + 1). In general we would expect that K is somewhat smaller than the 

radius of the smallest ball disconnecting the Cayley graph, unless we had 

a particularly nice presentation for the group; in general adding K to this 

radius would result in a smaller radius than multiplying it by two, so the 

automatic algorithm not only calculates balls quicker but need not calculate 

balls of as large radius as the word problem algorithm. 
for i>n the spheres have stopped growing, and are all of size 4n. 
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4.3.1 Constructing balls 

Suppose we are given a presentation for our group, G, and an algorithm 

which solves the word problem in G. Since we may determine whether a 

given word represents the identity element, we may test equality between 

words: w=u0wu: ' =ids. 

Given a radius n, we wish to calculate the closed ball of radius n, Bn. 

Each element at distance at most n from idG is represented by at least one 

word of length at most n. We calculate the ball of radius n in the free group 

on the generators of G, 13 and then find all pairs of words which represent the 

same group element using the solution to the word problem. This calculation 

is expensive computationally. 

Having done so, we know that we have correctly calculated the structure 

of the ball of radius n. 

4.3.2 Detecting more than one end 

As in the ends program, we calculate the ball of radius n+K and by theorem 

2.1.12, we find the r -components of i' \ Bn by finding the components of 

Bn+K \ B0n" 

Now by theorem 2.2.1 on page 52, G has more than one end if at least 

two components of f\ Bn have elements of length 2n in them. Note that 

conversely, if G has more than one end, there is an nEN such that f\ Bn 

has at least two infinite components, which then necessarily contain elements 
13For example, by running fsaenumerate to depth it on the word acceptor for this free 

group - free groups have a very simple automatic structure. 
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of length 2n. 

If we find more than one component of r\ Bn, we test this condition 

by constructing the ball of radius 2n. If there are two distinct components 

of f\ Bn containing elements of length 2n, we stop, and conclude that by 

theorem 2.2.1 the group has more than one end. If not, we start again with 

a ball of larger radius. 

If the group has more than one end, eventually this algorithm detects the 

fact. 

4.3.3 Finding the number of ends 

The algorithm for detecting endedness using only a solution to the word prob- 

lem is less powerful than that using an automatic structure. The difference 

is in detecting finiteness and two-endedness. 

If G is two-ended, then it is automatic, and so autgroup will calculate the 

automatic structure and 2end will determine that the group has two ends. 

If, however, autgroup does not calculate an automatic structure for the 

group, we usually do not know whether this is because it stopped too soon or 

there is no automatic structure for G. In this case we cannot conclude that 

G does not have two ends. Also, if we find a ball with exactly two infinite 

components in its complement, we do not know whether this is because the 

group is two-ended or because the group has infinitely many ends and we 

need to remove a larger ball to find more than two infinite components. 

Similarly, if the group is finite, eventually we can find this out either by 

calculating the whole Cayley graph or by calculating an automatic structure 
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and finding no loops. However, if we have not succeeded in either of these it 

may simply be because we have not computed long enough, and we cannot 

conclude that our group is infinite. 

Table 4.2 summarises the logical situation. 

ends when we detect this when we refute this 

0 always only sometimes 

1 never only sometimes 

2 always only sometimes 

00 always only sometimes 

Table 4.2: To what extent we can determine the number of ends in a group 

given only a presentation and a solution to the word problem. 

4.4 Theoretical: finding an explicit finite 

subgroup over which we split 

If we have found a ball that disconnects the Cayley graph into more than one 

infinite component, we know that the group splits over a finite subgroup. In 

this section we show there is an algorithm finding such a subgroup explicitly. 
We refer the reader to chapter 3 on page 64 for the definitions and results 

used in this section. 

The method for finding the subgroup derives from Dunwoody's proof of 

Stallings' theorem using the Bergman norm. See section 3.1 on page 65. 

In our exposition of the proof we defined a sequence of infinite subsets of 
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G whose finite coboundaries have strictly decreasing Bergman norm. We 

used the fact that the lexicographic ordering with the Bergman norm gives a 

well ordering, to deduce that the sequence is eventually constant, and hence 

that the constant term is G-nested. G then splits over the stabiliser of the 

G-nested subset we obtain. 

When computing we cannot handle an infinite number of vertices, but in 

section 3.2.1 on page 71, we proved that the stabiliser of a subset S of G is 

equal to the stabiliser of its oriented, finite coboundary, 1. 

The philosophy is that an oriented coboundary is equivalent to its defining 

set, and that we may calculate using the oriented coboundary rather than 

the infinite set. 

4.4.1 Calculating with coboundaries 

Recall the following definitions from section 3.5 on page 83: 

Definition 4.4.1 ([within) Let G be a finitely presented group with Cayley 

graph 1. Given a set S of elements of G and an edge e of r, we say that e is 

i-within S if it has both its vertices lying inside S. 

Definition 4.4.2 (i=connectedness) Let G be a finitely presented group 

with Cayley graph 1'. We say that a set S of elements of G is T' connected if 

for every pair of vertices of S, there is an edge path between them which has 

each edge r -within S. 

AP -component of S is a maximal T'-connected subset of S. 
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Lemma 4.4.3 (coboundaries of components) 

Let S be a subset of G with finite coboundary 6S, and suppose T is a 1'- 

component of S. Then ST C 5S, and bT is equal to those edges of SS which 

meet T. 

Proof 

Suppose for contradiction that an edge e of ST is not in S. One of the 

vertices incident with e is in TCS. Since e is not in bS, the other vertex, 

v, must also be in S. Since e is in 6T, výT. Thus TU {v} C S, but T was 

assumed to be ar -component of S, and this contradicts the maximality in 

the definition of r -component. Thus bT C S. 

Now let eET. Then eE bS, and one of the vertices of e is in T, so e 

meets T. 

Conversely, suppose eE SS and e meets T. Then, one of the vertices, w 

say, of e, is in T. TCS, so wES. The other vertex, v, is not in S, so výT. 

Thus e= [v, w] E 6T. 

0 

Lemma 4.4.4 (infinite F -Components) 

Let S be a subset of G with a coboundary &S that lies inside 91z for some 

nEN. Suppose T is a I-component of S. Then T is infinite if and only if 

there is a vertex v of T at exactly distance n from idG which lies in an infinite 

component of r\B. 
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Proof 

By the previous lemma, bT C bS, and by hypothesis, bS C Bn, so bT C Bn. 

So no path in (' \ Bn can cross an edge of 6T. Thus a component of f\ BO, 

has all its vertices in T or none of them. 

If there is a vertex v of T at exactly distance n from idG which lies in an 

infinite component of r\ Bn, then all the vertices of this component are in 

T, so there are infinitely many vertices in T. 

Conversely, if there are infinitely many vertices in T, only finitely many 

of them can lie in finite components of T' \ Bn, so there is a vertex of T in 

an infinite component of r\ Bn. Then all the vertices of this component are 

in T. Every component of i' \ Bn meets S11, because r is path-connected, so 

there is a vertex v of T at exactly distance it from idG which lies this infinite 

component of f\B. 

0 

Algorithm 4.4.5 (finding an infinite F-connected subset) 

Let G be a finitely presented group with Cayley graph F. Assume we can 

calculate the ball Bn of any radius it about idG in t', 14 and that we can 

determine which components of r\ Bn are infinite. 

Suppose we are given an oriented finite coboundary bS of some infinite 

subset S of G, and suppose the edges of bS lie inside 911 for some nEN. 

Then we can calculate the coboundaries of the infinite C=components of S. 

(Note that being given the orientation on SS is equivalent to being given the 

14This first condition is logically equivalent to having solvable word problem, but we 

phrase the hypothesis in the form we use it. 
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vertices of S incident with SS, and so the lemma applies whether we are given 

the orientation or the vertices. ) 

Let {V1, 
... , Vm} be the r -components of S, and let K be the connectivity 

constant of r. (See section 2.1 on page 33. ) 

1. Mark the edges of bS as temporarily uncrossable. 15 

2. Choose a vertex v of S incident with 6S. 

3. Perform a vertex depth-first search inside Bn, starting at v and without 

crossing any uncrossable edges. Mark each vertex encountered as being 

in the same r-component as v. 

4. If all vertices of Bn+K are marked as in the same =component as some 

vertex, proceed to the next step. Otherwise choose a new vertex v 

incident with SS and repeat the previous step. In this way we calculate 

the r -components of s fl Bn+K. By theorem 2.1.10, if there were a path 

between two vertices of Sf 
., 

there would also be a path between them 

inside Sn Bn+,,. Thus the intersection with B11 of the r -components of 

Sn Bn+K is the same as the intersection with Bn, of the r-components 

{V1,..., V1}of S. 

5. By lemma 4.4.4 on page 116, ar -component Vi is infinite if and only if 

it contains a vertex of S, which is in an infinite component of r\B. 

15In the computer representation of r, this means marking pairs of adjacency links 

unusable. See section 4.2.1 on page 94. 
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Calculate which are the infinite components of f\ Bn, and examine the 

vertices of Sn, to determine which of the Vt are infinite. 

6. Pick one of the infinite components, Vi, of S, and find which edges of 

bS meet it. These are the edges of SVA, by lemma 4.4.3 on page 116. 

El 

Similarly, given bS and 6T, we can find the infinite r-components of the 

sets SnT, Sn T*, S* n T, S* n T*: 

Algorithm 4.4.6 (finding infinite r -components) 

Let G be a finitely presented group with Cayley graph r. Assume we can cal- 

culate the ball Bn of any radius n about idG in 1, and that we can determine 

which components of r\ Bý, are infinite. 

Suppose we are given the finite coboundaries bS and ST of some subsets 

S and T of G, and suppose the edges of both coboundaries lie inside B11 for 

some nEN. Then we can calculate the intersection with B, ti of the infinite 

-components of the sets S fl T, Sn T*, S* n T, S* n T*, and can calculate the 

coboundaries of these r -components. 

Let [V1,. 
.., 

V�t} be the r-components of SnT, Sn T*, S* n T, S* n T*, 

and let K be the connectivity constant of r. (See section 2.1 on page 33. ) 

1. Mark the edges of SS and ST as temporarily uncrossable. 

2. Choose a vertex v incident with &S or with 5T. 

3. Perform a vertex depth-first search inside Bn, starting at v and without 
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crossing any uncrossable edges. Mark each vertex encountered as being 

in the same P -component as v. 

4. If all vertices of Bn+K are marked as in the same 1-component as some 

vertex, proceed to the next step. Otherwise choose a new vertex v 

incident with 6S or ST, and repeat the previous step. In this way we 

calculate the 1-components of the intersections with Bfl+, 
K of the sets 

SnT, Sn T*, S* n T, S* n T*. By theorem 2.1.10, when we intersect 

these with Bn we obtain the intersection with Bn of the r -components 

of the sets SnT, Sn T*, S* n T, S* n T*. 

5. By lemma 4.4.4 on page 116, ar -component V. is infinite if and only if 

it contains a vertex of Sn which is in an infinite component of f\B. 

Calculate which are the infinite components of F\ Bn, and examine the 

vertices of Sn to determine which of the VL are infinite. 

6. For each of the infinite components, Vi, find which edges of bS and bT 

meet it. These are the edges of bVi, by lemma 4.4.3 on page 116. 

r-l 

4.4.2 Testing whether a coboundary is G-nested 

Lemma 4.4.7 (A test for non-nestedness) 

Let S and T be subsets of G, and suppose that both S and S* are F-connected. 

Then the pair (S, T) is not nested if and only if one of the edges of bT is 

P -within S and another is P -within S*. 
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Proof 

First we prove that if (S, T) is not a nested pair of subsets of G, then both 

such edges exist. 

Suppose (S, T) is not a nested pair. Then the none of the sets SnT, 

Sn T*, S*nT, nor S*n T* is empty. Let X1 ESnT, x2 ESn T*, yi E S* rl T, 

and y2 E S* n T*. Since S is -connected, there is an edge path between x1 

and x2 whose edges are r -within S. There must be an edge of this edge path 

which has one vertex in T and the other in T*, so it is an edge of ST which is 

f' within S. Similarly, since S* is Fconnected, there is an edge path between 

yi and tie whose edges are 1-within S*. There must be an edge of this edge 

path which has one vertex in T and the other in T*, so it is an edge of bT 

which is -within S*. This concludes the proof of the first implication. 

Now suppose that an edge el of ST is r -within S and another edge e2 of 

ST is f-within S*. Each edge has one vertex in T and the other in T*. The 

vertices of el show that the sets SnT and Sn T* are non-empty, and the 

vertices of e2 show that the sets S* fl T and S* fl T* are non-empty. Thus 

(S, T) is not a nested pair. 

0 

Corollary 4.4.8 

Let S be a r-connected subset of G with r -connected complement, and finite 

coboundary 5S. Let d= diam(SS). Then S is not G-nested if and only if 

there is an element gEG fl Bed so that one of the edges of S(gS) is 1-within 

S and another is I' within S*. 
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Proof 

Let h be an element of G incident with SS, and let T= h-' S. Then for any 

gcG, the pair (S, gS) is nested if and only if the pair (T, h-lghT) is nested. 

Since {(T, h-'ghT) IgE G} = {(T, gT) Igc G}, S is G-nested if and only if 

T is G-nested. Thus, without loss of generality in our proof, we may assume 

that idG is a vertex of an edge of SAS 
. 

By the previous result, all we need show is that there is no element gEG 

outside B2d for which there is an edge of b (g S) r -within S and also an edge 

of b (g S) F -within S*. 

Now let gcG\ Bed. Without loss of generality, we may now assume that 

gES, because for the case of gE S* we may swap the labels S and S*. 

Assume then that idG is a vertex of 5S and gES has length strictly 

greater than 2d. Note that d= diam(bS) = diam(b(gS)), so every edge e of 

b (g S) is at most distance d from g. 

.............. bs ........ 

S* 
' idG 

> 2d IS 
E S(gS) 
g 

eE b(gS) 

eý 
<d 

Diagram 4.4.1: Long elements cannot give rise to non-nestedness. 

Assume for contradiction that there is an edge, e, of b (g S) F-within S*. 

Take a geodesic edge path from it to the edge of b(gS) incident with g. Since 

gES, one of the edges, e', of this edge path is in &S, so e' is in SS and is 
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within distance d of g. e' and idG are both parts of ÖS, so are within distance 

d of each other. By the triangle inequality, g and idG are within distance 2d 

of each other, which contradicts our hypothesis that g Bed. 

0 

To algorithmically test for G-nestedness, we need to be able to calculate 

the action of an element of G on subsets of the Cayley graph. 

Algorithm 4.4.9 (G-action) 

Let G be a finitely presented group with Cayley graph r. Suppose we can 

calculate the ball of any radius about idG in r, together with a word in the 

generators representing each element of G within the ball. 

Suppose we have calculated Bn, and let gE 911 be given. For any vertex 

h of Bn, we can calculate gh. For any edge e of Bn, we can calculate ge. 

For any finite set of edges or vertices, we can calculate its image under the 

action of the element g of G. 

It is enough to demonstrate the algorithm for the action on vertices, 

because the action on a set of vertices, or an edge, or a set of edges, is 

determined trivially from the action on the vertices involved. 

Let x1x2 """ xp be a word representing h. We find gh by finding succes- 

sively gxi, gxix2, ... , gxIx2 """ xp; to find gxlx2 """ xq+' from gxIx2 """ xq, 

we move along the edge labelled by xy+, . 
Note that it is trivial to find the inverse of a word, so the algorithm applies 

equally well to calculating the action of g-1 on some subset of i'. 

El 
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Algorithm 4.4.10 (testing nestedness) 

Let G be a finitely presented group with Cayley graph r. Suppose we can 

calculate the ball of any radius about idG in r, together with a word in the 

generators representing each element of G within the ball. 

Suppose we are given an oriented coboundary 5S, where both S and S* 

are r -connected, and suppose that we know an upper bound for the diameter 

of 5S. Then we can check whether S is G-nested as follows: 

Let d be the upper bound on diam(6S), and suppose we have already 

calculated 9, for some n such that SS C Bn,. 

1. Pick a vertex h incident with one of the edges of 6S. Translate bS under 

the action of h-' so that idG is incident with an edge of the translated 

coboundary. Replace S with h-I S, so that now idG is incident with ÖS. 

2. Since Bn is connected, there is a path between any two elements of 

SnL. which lies entirely within B,,. Now let v be an arbitrary vertex 

of Sn Bn, and consider a path from it to some element of S incident 

with ÖS, staying inside B,,. Even if this path does not always stay in 

S, at some point it meets some vertex of S incident with 5S; a vertex 

depth-first search of Sn B1z starting at this vertex will reach v: 

Find all the vertices inside the currently calculated ball that are in S, 

and mark them. Do this by taking each element v of S incident with 

an edge of SS, and performing a vertex depth-first search starting at v, 

without crossing any edge of 5S. Mark each vertex met. 



Chapter 4: Computing a splitting over a finite subgroup 125 

3. For each element gE B2di calculate the g-translate of SS, WS) = 

b(gS). 16 Check whether there are two edges of 6S, one of which is [- 

within S, the other of which is F-within S*. If so, stop, and conclude 

that S is not G-nested by lemma 4.4.7. 

If not, proceed to test other elements g of Bed. If each of the pairs 

(S, gS) is found to be nested, then stop and conclude, by corollary 

4.4.8, that S is G-nested. 

0 

4.4.3 Finding a G-nested coboundary 

Recall from definition 3.1.2 on page 66 that the Bergman norm t. (ES) of a 

coboundary SS is the sequence (µ. t (SS))iEN where p (bS) is the number of 

edge paths of length i which start in S and end in S*. 

In the proof of Stallings' theorem17 we take any infinite set with finite 

coboundary and infinite complement, and calculate a sequence of such sets 

with the aim of finding one which is G-nested. The Bergman norm of the 

terms of the sequence is decreasing while a G-nested set is not found. Since 

the norm is well-ordered [Ber68], eventually a nested set must be found. 

We want to be able to calculate the terms in such a sequence, so we need an 

algorithm which takes a non-G-nested infinite set with finite coboundary and 
"This equality is proved in corollary 3.2.3 on page 71. We may need to calculate Bn+t 

for some i so that b(gS) C B11+i. In any case, we need calculate no more than-93 dbecause 
diam(SS) =d and g is taken to be inside Bed. 

17Theorem 3.1.7 on page 68. 
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infinite complement, and calculates another infinite set with strictly smaller 

Bergman norm and infinite complement. 

Lemma 4.4.11 

Let S be an infinite subset of G with finite coboundary and infinite comple- 

ment. Then every infinite r-component, T, of S or of S* has infinite comple- 

ment, and has finite coboundary bT C bS with 4 (T) <µ (S). 

Moreover, if S is F-connected, and T is a F-component of S* then in addi- 

tion, both T and T* are r'-connected. 

Proof 

For the first point, it is enough to prove the result for TCS, since S* satisfies 

the same hypotheses as S. 

Let T be an infinite r -component of S. Then since TCS, S* C T*, and 

so T* is infinite. 

Since T is a -component of S, ST C bS by lemma 4.4.3 on page 116. 

If ST = SS, then µ (6T) =µ (ES) i. e. µ (T) =µ (S). Otherwise, there are 

more edges in 6S than in ST, so µi (ÖT) < µj (5S), so µ (T) <µ (S). 

Thus T is infinite, has infinite complement, and µ (T) <i (S). 

Now we prove the second point. 

Suppose additionally that S is 1-connected and that Tc S*. All that 

remains is to prove is that T* is f=connected, since T is itself a F-component, 

and thus T' connected. 

Let {Vj, 
... , 

V} be the f' components of S*. Without loss of generality, 
T= VI. For each i, there is an edge between Vi and S (by path-connectivity 
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of the Cayley graph and the maximality in the definition of r-component). 

Thus Vti US is =connected, and so T* =SU V2 U"""UV. is r -connected. 

Thus each of T and T* is infinite and F-connected, and µ (T) < i. (S). 

n 

Corollary 4.4.12 

Let S be an infinite subset of G with finite coboundary and infinite comple- 

ment. Suppose the pair (S, gS) is not nested. Then one of the F -components 

of one of the sets Sn gS, Sn gS*, S* n gS, or S* n gS* has strictly smaller 

Bergman norm than S, and is infinite with infinite complement. 

Proof 

Dunwoody's result (lemma 3.1.3 on page 67 and its corollary 3.1.4 on page 67) 

says that one of Sn gS, S fl gS*, S* Cl gS, or S* f1 gS* is infinite with infi- 

nite complement, and has strictly smaller Bergman norm than S. Suppose, 

without loss of generality, that S f1 gS does. 

Not all of the r-connecteds of S fl gS can be finite, because otherwise 

there would be infinitely many of them, and Sn gS would not have a finite 

coboundary. 18 Thus there is an infinite r-component of S Cl gS. The result 

follows from the previous lemma. 

0 

18No two f-components can share the same edge in their coboundary: Lemma 4.4.3 on 

page 116 says that if T is ar -component of S fl g S, then bT is those edges of b (S n gS) which 

meet T. Thus if T and T' were i-components of S t1 gS that shared an edge of S(S n gS), 

they would have a vertex in common, so would be the same. 
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Algorithm 4.4.13 (calculating µ, (SS)) 

Let G be a finitely presented group with Cayley graph r. Suppose we can 

calculate the ball of any radius about idG in 1'. Suppose we are given a 

coboundary SS, and suppose that we know an upper bound for the diameter 

of 6S. Then we can calculate the nth entry in the Bergman norm of 8S, 

µ., t 
(ES) as follows: 

1. Find all vertices at distance at most n from S, but which lie in S*. 19 (In- 

crease the radius of the calculated ball about the identity if necessary. ) 

Call these vertices startpoints. 

2. Mark all the other vertices of S* that have been calculated as temporar- 

ily unreachable. No path of length it from S* to S meets an unreachable 

vertex. 

3. From each startpoint, perform a path depth-first search to depth it, 

avoiding unreachable vertices. Each time a path from an element of S* 

ends in S, add one to the count. 

R 

Algorithm 4.4.14 (finding a nested coboundary) 

Let G be a finitely presented group with Cayley graph r. Assume we can 

calculate the ball of any radius about idG in r, together with a word in the 

198S and its Bergman norm are independent of which is S and which is S*, so if necessary, 

pick one at random and call it S. 
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generators representing each element of G within the ball. Assume also that 

we can determine which components of r\ Bn are infinite. 

Suppose we are given a finite coboundary bS of some infinite subset of 

G which has infinite complement. Then we may calculate a finite G-nested 

coboundary, bT for some TCG. 

1. S might not be F -connected. Use algorithm 4.4.5 to find To, an infinite 

1-component of S. Use it again to find TI, an infinite f=component of 

To 
. 

By lemma 4.4.11 on page 126, each of T1 and T* is infinite and 

r-connected, and µ (T1) <µ (To) <µ (S). 

2. Given 6TT, calculate an upper bound for its diameter by finding paths 

between each pair of vertices incident with it. 2° 

3. Since Tt and Tl are both -connected, we may use algorithm 4.4.10 

on page 124 to check whether 5Ti is G-nested. If so, stop. If not, 

we have found gEG such that the pair (Ti, gTL) is not nested. (By 

corollary 4.4.12 on page 127, one of the T' components of one of the sets 

TL n gTi, Ti n gTL , 
TL n gTi, or Ti n gT, * has strictly smaller Bergman 

norm, and is infinite with infinite complement. ) 

4. Temporarily mark the edges of &Ti and 5(gTi) as uncrossable, in order 

to calculate which T' components of Tl n gTT, Ti n gTi , 
Tt n gTL, and 

201f we have calculated the ball of sufficient radius, we will find the geodesics among the 

paths between pairs of vertices, and will have calculated the actual diameter. This is an 

unimportant point theoretically, but it may improve the speed of the algorithm checking 
for G-nestedness. 
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TL fl gTi are infinite with infinite complement. (Use algorithm 4.4.6 on 

page 119. ) 

5. Using algorithm 4.4.13 on page 128, calculate the nth element in the 

Bergman norm of each of the -components, for increasingly large Ti,. 

Find one of them, U, say, which has strictly smaller Bergman norm. 21 

Find aF -component of U*, and call it TL+1. Since U is V-connected and 

infinite with infinite complement, by lemma 4.4.11 on page 126, we 

know that TL+1 has a finite coboundary with i (T; +j) <t (U) < .t (Ti), 

and that both Ti+j and its complement are F -connected and infinite. 

6. Repeat steps 2 to 5 until TL is nested. This occurs after finitely many 

iterations because the Bergman norm and lexicographic order gives a 

well-ordering [Ber68]. 

0 

4.4.4 Finding a splitting 

Algorithm 4.4.15 (finding the stabiliser) 

Let G be a finitely presented group with Cayley graph r. Assume we can 

calculate the ball of any radius about idG in 1,, together with a word in the 

generators representing each element of G within the ball. Assume also that 

we can determine which components of r\ Bn are infinite. 

21 Since one of them has strictly smaller Bergman norm than Ti, we know that for some 

it, the nth element of the norm must be strictly smaller. We do not know in advance for 

which it EN this will first occur. See section 3.4 on page 77. 
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Suppose we are given a finite G-nested coboundary 6S, of some infinite 

r-connected subset of G which has infinite F -connected complement. Then 

we can calculate stab(). 

Let {vi , ... , v, } be the set of vertices of S that are incident with bS (i. e. 

the terminal vertices of 61), and let twl, 
... , wn} be the set of vertices of S* 

that are incident with SS (the initial vertices of 669). 

1. Find the sets {vj, 
... , vt1} and {w1,. 

.., wn}. If we are not given them, 

we may calculate them using algorithm 4.4.5 on page 117, since both S 

and S* are infinite and r -connected. It does not matter which is which, 

because stab(b) = stab(bS) (corollary 3.2.6 on page 73). 

2. Note that the stabiliser of 51 consists of exactly those elements 

that permute the vertices {v1,. 
.., v1j, and also permute the vertices 

twl, 
... , w,, I. 

Thus every element of stab(61) is of the form v, 1vj. Calculate these 

elements, using algorithm 4.4.9 on page 123. Call them {g,. 
.., g'}. 

3. Since stab(S) C {gi,... 
, gm}, all we need to do is find which of the gL 

do not permute the initial vertices {w1, 
... , w, } or do not permute the 

terminal vertices {v1,.. 
., v1 j. 

For each gi, and for each j, calculate gjv, and giw;, checking whether 

they are in {vi, 
... , vn} and {w,.. 

., w, t} respectively. This is the case 
if and only if gi E stab(). 

0 
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We may piece these algorithms together to find a subgroup over which G 

splits. 

Theorem 4.4.16 

Let G be a finitely presented group with Cayley graph r. Assume we can 

calculate the ball of any radius about idG in r, together with a word in the 

generators representing each element of G within the ball. Assume also that 

we can determine which components off \ Bn are infinite, for all nEN. 

Suppose we have found some nEN such that the ball of radius n discon- 

nects the Cayley graph into more than one infinite component. Then we can 

calculate a finite subgroup over which G splits. 

Proof 

1. Find an infinite component of r\ BO,, and denote the set of elements 

of G inside it by S. Calculate its (finite) coboundary, by taking the set 

of edges with one vertex in Bn and the other in S. S* is infinite, since 

it contains the vertices of another infinite component of f\B. 

2. Use algorithm 4.4.14 on page 128 to find a G-nested coboundary, 5T. 

3. Use algorithm 4.4.15 on page 130 to calculate H= stab(5-1). H is finite 

because HC stab(6T) and ST is finite. G splits over H by Stallings' 

theorem 3.1.7 on page 68 (via theorem 11.1.8 and 1.4.1 of [DD89]). 

Note that we can output H in the form of a set of vertices of r, or as a list 

of words in the generators of G. 

0 
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Note that the theorem is certainly not true for arbitrary finitely generated 

groups, just those in which we may calculate balls and infinite components. 
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Chapter 5 

Gerasimov's algorithm to 

detect endedness 

Recently, Gerasimov provided an algorithm which detects one-endedness in 

a hyperbolic group. The author finds Gerasimov's paper [Ger] hard to fol- 

low. At a meeting between Delzant, Dunwoody and Epstein in Strasbourg, 

Delzant gave a different exposition of Gerasimov's proof. This representation 

of Gerasimov's proof was in turn explained to the author by Epstein, and 

this chapter attempts to record it. 

Thus this chapter is expository in nature, with only the definition and 

test for exterior paths outside a given radius contributed by the author. 

Thus credit for the mathematics lies elsewhere, but any errors and poor 

explanations are entirely the author's own work. 

We do not use the standard notation for the boundary of a hyperbolic 

group; instead we reserve the symbol for a related construction for arbitrary 

finitely generated groups described in section 6.2. 
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5.1 Theoretical background to the algorithm 

In their paper The Boundary of Negatively Curved Groups [BM91], Bestv- 

ina and Mess prove that if a hyperbolic group has one end, and satisfies a 

combinatorial condition (which later we define, and call the exterior paths 

condition for hyperbolic groups), then its boundary is locally path connected. 

They also prove that if the hyperbolic group does not satisfy the exterior 

paths condition then its boundary has a global cut point. 

Bowditch [Bow96] and Swarup [Swa96] have both proved that the bound- 

ary of a one-ended hyperbolic group has no global cut point. Thus every 

one-ended hyperbolic group has locally connected boundary. 

Infinitely ended hyperbolic groups do not satisfy the hyperbolic exterior 

paths condition: The result of Bestvina and Mess does not use the hypothesis 

that the group is one ended, so the hyperbolic exterior paths condition implies 

locally connected boundary. Infinitely ended hyperbolic groups do not have 

locally connected boundary. 

Thus we may detect whether a hyperbolic group has one end by testing 

whether it satisfies the hyperbolic exterior paths condition. Gerasimov [Ger] 

defines an algorithm whereby a sequence of simplicial complexes is calculated. 

If one of the complexes far enough along in the sequence is connected and 

satisfies a certain condition, the group has one end. 

To explain Gerasimov's result, we outline below a method for testing the 

exterior paths condition directly. 
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5.2 An interpretation of Gerasimov's algo- 

rithm 

As outlined in the previous section, it is enough to prove that we may reliably 

detect the exterior paths condition if it is present. 

5.2.1 The exterior paths condition 

Bestvina and Mess define a condition on the Rips complex, ' which they call 

($M) . 
We make the same definition but apply it to the Cayley graph and 

call it exterior paths. 

Diagram 5.2.1: Exterior paths 

Definition 5.2.1 Let G be a group with an upper bound, C, on the distance 

of an arbitrary element to a geodesic ray (i. e. infinite geodesic) starting at 
'A definition can be found at the beginning of [BM91). 

iý 
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ids. Let M and L be natural numbers. 

We say that G has (M, t)-exterior-paths if Vn E N, and Vg, hES, 

d(g, h) <M implies that there is a path, a: g-h of length at most L such 

that a lies entirely outside the (open) ball of radius it - C, B'. 
-C. 

Such a 

path is called an exterior path. 

Sometimes we say G has exterior paths everywhere. 

Bestvina and Mess only deal with the above case, but it may be that there 

are only exterior paths between elements far away from ids. In this case, 

we use the phrase `outside radius N', giving the following definition. Note 

that detecting exterior paths outside some radius is irrelevant to Gerasimov's 

algorithm, but we will use it in the more generalised setting of chapter 6. 

Definition 5.2.2 Let G be a group with an upper bound, C, on the distance 

of an arbitrary element to a geodesic ray starting at idG. Let M and L be 

natural numbers. 

We say that a group has (M, t)-exterior-paths outside radius N if Vn EN 

with it > N, and Vg, hES, d(g, h) <M implies that there is a path, 

oc :g-h of length at most L such that a lies entirely outside the (open) ball 

of radius it - C, Bn_c. 

Note that G has (M, L)-exterior-paths if and only of it has (M, t)- 

exterior-paths outside radius 0, because the case when g and h are ids is 

trivial; indeed, the case when n<C is always trivial. 

Definition 5.2.3 (The exterior paths condition for hyperbolic groups) 

Let G now be a hyperbolic group, and as always, denote its Cayley graph by 
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r. Then there is a constant, C, depending on the constant of hyperbolicity 

such that every point of G is within distance C from a geodesic ray starting 

at ids . 
Let b' be the constant of hyperbolicity such that any point on any edge 

of a geodesic triangle is at most distance b' from the union of the other two 

sides. 

We say that G satisfies the exterior paths condition for hyperbolic groups, 

or the hyperbolic exterior paths condition if for some M> 6C + 26' + 3, 

and some LEN, G has (M, L)-exterior-paths (everywhere). 

(Bestvina and Mess prove that if G is hyperbolic and satisfies the exterior 

paths condition for hyperbolic groups, then the boundary of G is locally path 

connected. ) 

5.2.2 Testing for exterior paths using the automatic 

structure 

Here we follow the proof of Theorem 6.2 of [EIFZ96]. Epstein, lano-Fletcher 

and Zwick prove that the growth function for the number of embeddings of 

some graph into the Cayley graph of an automatic group is rational, and 

prove this by showing there is a finite state automaton which accepts tuples 

of words describing the image of the vertices of the graph we wish to embed. 
Let G be an automatic group with all accepted words geodesic. 
First we re-examine the automatic structure. Alter it so that it accepts 

unique word representatives for each group element. We may replace the 

general multiplier, GM, with a set of multiplier automata, Ma, one for each 
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generator a of G. It is clear that for a given generator, a, these may be 

calculated from GM by choosing the subset of the accept states corresponding 

to a. In practice there may be a much simpler automaton accepting the 

same pairs of words, and size is important for the complexity of the following 

process. 

By convention, we do not include specific fail states in finite state au- 

tomata; failure occurs when there is no transition corresponding to the next 

symbol on the input string, or when the input string terminates when we are 

in a non-accept state. With this convention, we may remove all states from 

which it is impossible to reach an accept state. 

Algorithm 5.2.4 (ext. paths) 

Let G be an automatic group with all accepted words geodesic. Then there 

is an algorithm, ext. paths, that determines whether there exist M and L 

such that G has (M, L)-exterior-paths or (M, L)-exterior-paths outside some 

radius N, or G does not have (M, L)-exterior-paths at all. 

1. For some in. E N, calculate Bm. (Use the algorithm from section 4.2.2.1 

on page 96. ) 

2. Calculate a spanning tree for LT.. Call it Tm. Number the vertices of 

Tm in some order, with the identity element as vertex number 1. 

3. Now Mn accepts words wi and w2 such that w1 a= w2. Mb accepts 

words wi and w3 such that wpb = w3. By theorem 1.4.6 of [ECH+92], 

we may construct an automaton which accepts triples (WI, W2) W3) 
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where w1 a= w2 and w1b = w3. It may be necessary to add ex- 

tra padding symbols ($) to one or more of the words, to adjust for 

the different lengths. For example, the actual words accepted could be 

W1$7 w2, and w3$$. 

Similarly, the tree T, gives us the relationships between pairs of words 

which define a ball of radius m about any vertex of the Cayley graph. 

Using the construction in theorem 1.4.6 of [ECH+92], we may construct 

an automaton which accepts 1BmI-tuples, (WI, w2) ... , wiB1), of words 

which together define the ball Bm(wl). Call this automaton Am. 

4. The number of padding symbols $ at the end of one of the words, wi 

in the tuple, compared with the number at the end of wi, gives the 

relative distance of w;, and w, from the identity, since we are assuming 

that accepted words are geodesic. In this step we alter A�L so that we 

can deduce from an accept state the relative lengths of the accepted 

words. 

No padding occurs inside pruned(A, ), because if it did, either padding 

occurs in the middle of an accepted word, which is false, or the au- 

tomaton accepts a set of words including some wi and wj arbitrarily 

far apart, which is also false, because the accepted tuples of words are 

pairwise at most distance 2m apart. 

Once we leave pruned(Am) there are only finitely many states we may 

pass through. Alter A, to form Am by duplicating states and paths if 

necessary, so that A,,, \ pruned (A, ) is a forest of trees. 

Each accept state now has a unique sequence of previous states and 
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transitions in which there is padding. Looking back along this edge 

path we can see how much padding each word has before it is accepted, 

and may calculate its distance from idG relative to wl. 

5. For each accept state in Am, create a copy of B, n, and use Tm and the 

relative distances calculated from A,.,, to label this ball with relative 

distances from ido. Call these labelled balls types of balls. 

Given gEG with gE Sn for some n, the ball B, n(g) is of one of the 

finitely many types calculated from the accept states of Am. Using the 

relative distances from the identity, we can calculate what Sn n B. (g ) 

and (T' \ Bn_C(idG)) n B,, (g) are. If m >, max{ M, L}, we can test the 

existence of (M, L)-exterior-paths between g and elements in BM (g). 

Thus by checking each of the ball types calculated from A, we can 

check exterior paths everywhere by checking exterior paths on these 

finitely many ball types. 

6. It may be that exterior paths fails for some accept states of A�t, but 

that these accept states are not reachable via a loop in A, n. This means 

that these ball types can only occur at a finite distance from ids. If all 

the other ball types have exterior paths, G has exterior paths outside 

some radius. We may calculate this radius by finding the maximum 

distance from the start state to accept states which fail the exterior 

paths test. 

Test for (M, L)-exterior-paths as above, for larger and larger values of M 

and L. If G has exterior paths eventually this algorithm detects the fact. 

0 
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5.2.2.1 Possible efficiency gain in hyperbolic groups 

In section 8 of [EIFZ96], there is a proof that in a hyperbolic group there 

is a fixed polynomial such that the growth in the number of injections of 

any finite graph into the Cayley graph of a hyperbolic group can always be 

expressed with this denominator. 

In the proof, a large automaton, H, is proved to exist with the property 

that injections of large finite graphs into the Cayley graph correspond to 

travellable words of this automaton in a finite-to-one way. It may be that 

H could be used to calculate very large ball types faster than the method 

above. 

It is not explained in [EIFZ96] how to calculate H, but a sketch is given 
below. This section is designed to be read in conjunction with [EIFZ96], and 

makes little sense without it. Crucially, the definition and properties of H 

are omitted. 

1. Alter the multiplier automata so that each state is labelled with the 

pair of states the current words determine in the word acceptor. This 

will increase the number of states in the multiplier automata. 

2. Calculate all accepted words of length up to 28', and their V- 

neighbourhoods. 

3. Calculate a spanning tree for each such neighbourhood, then combine 

multiplier automata according to the relationships defined by the edges 

of the tree, and calculate the relative distances from idG as we did 

before. Call these tree automata. 
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Each accept state of each tree automaton is a state in H. Keep the 

labels from the multipliers (originally from the word acceptor). A state 

in H is labelled by a S'-neighbourhood of a word of length 2&', each 

vertex of which is labelled by its relative distance to idG compared to 

the end of the word, and by its accept state in the word acceptor. 

4. Since H is an automaton, there is a radius depending on the number 

of states of H, inside which all states of H must occur. Calculate a ball 

of sufficient radius, and locate copies of the states of H in this ball. 

5. Calculate the transitions (edges) of H as follows: Each state of H has 

copy of it inside the ball, and a word of length 25'. For each generator 

a find the S'-neighbourhood of the word determined by adding the 

generator and shortening the word back to length 2b'. Find accept 

states on this new neighbourhood, and actual distances of elements 

from idG, using the latter to calculate relative distances. Find the 

state of H with this label, and connect the original state to this new 

state with a directed edge, labelled by the generator a. 

Once we have constructed the automaton H, we may follow the proof of 

lemma 8.2 of [EIFZ96] to construct the ball types for balls of radius M. For 

each state, we find all forward paths from the vertices of the state's label up 

to distance 2m + 2&', and from this we may determine the relative distances 

to the identity. 

This algorithm for hyperbolic groups is not necessary from a theoretical 

point of view, and would only be useful if we needed to consider large values 

of M and L when testing for (M, L)-exterior-paths. 
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Chapter 6 

Towards detecting 

one-endedness in automatic 

groups 

6.1 Introduction 

In this chapter we prove that if the algorithm described in chapter 5 is run on 

an automatic group G which has geodesic accepted words, ' and terminates, 

having found that G has (M, L)-exterior-paths for large enough M, then G 

has at most two ends. 

We do not prove that one-ended automatic groups with geodesic accepted 

words satisfy the exterior paths condition, so we stop short of proving that 

'This means that the set of accepted words is a subset of the set of geodesic words, not 

that every geodesic is accepted - the latter condition is stronger, and is equivalent to G 

being hyperbolic. See [Pap95} for a proof. 
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endedness is decidable for such groups. 

To show that the exterior paths condition implies having only finitely 

many ends, we borrow Epstein's construction of a boundary for an arbitrary 

graph, and relate endedness and exterior paths to connectivity properties 

of this boundary, following Bestvina and Mess [BM91]. In particular, we 

show that having (M, L)-exterior-paths for large enough M implies semi- 

local path-connectedness in 3 G. ' 

ends I algorithm detecting this I exterior paths condition? 

01 no loops in word acceptor 

11 possibly ext. paths 

2 2end (see [Bi1961) 

00 ends 

trivially 

perhaps 

outside some radius 

no 

Table 6.1: Ends and algorithms detecting them in automatic groups which 

have geodesic accepted words. 

6.2 The boundary of a Cayley Graph 

The definition given here is essentially the same as that explained to the 

author by Epstein. Epstein's definition will appear in a forthcoming article. 

We define the boundary by first defining a notion of distance on the set of 

geodesic rays from the identity, then adjusting the distance so that it satisfies 

the triangle inequality. This gives us a set with a pseudometric. Finally we 
'In fact, we prove the slightly stronger condition of uniform path-connectedness. See 

definition 6.3.5 on page 154. 
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identify points of zero distance apart, giving a metric space which we call the 

boundary of the Cayley graph. 

The metric on the boundary depends on the choice of generating set for 

the Cayley graph, and the choice of a base for exponentiation, and we do not 

prove that the boundary is a topological invariant of the group; indeed, it 

might not be topologically invariant under change of generators. We should 

refer to this boundary as öbr, or the boundary of the Cayley graph with base 

b, but sometimes we will abuse terminology and call it the boundary of the 

group, 3 G. 

6.2.1 The naive distance on the boundary 

Fix b>2. Let öG be the set of geodesic rays from idG. The naive distance 

between two geodesic rays is small when there is a geodesic between them 

that stays outside a ball of large radius. 

Definition 6.2.1 Let r, r' E 8G be two geodesic rays from ids. Define 

sm(r, rl) = max{d(im a, ids) Ia is a geodesic from r(m) to r'(m)} 

(There are only finitely many geodesics between two points in the Cayley 

graph because it is locally finite. ) 

We take the naive distance between r and r' to be 

bb(r, TI) = inf b-"`(TT') 

MEN 

Note that 0<5 (r, r') < 1. Roughly speaking, points are close if you can 

get between them far away from the identity. Indeed: 
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Corollary 6.2.2 

b (r, r') < -I if and only if there is an mEN such that sm(r, r') > n. But 
br, 

this, in turn, is true if and only if for some mEN there is a geodesic a 

r(m) , r'(m) which lies wholly outside the closed ball of radius n, B, (idG). 

0 

R Note that this also holds for negative n; in this case, for all r, r' E äG, 

6 (r, r') <1< b-'~ . Also Bn (idG) = 0, so trivially, for any r, r-' EäG, there 

is an m=1EN and a geodesic x.: r(1) = r' (1) outside (D. 

6.2.2 The pseudometric on the boundary 

Now to make the triangle inequality hold, we define the actual distance be- 

tween r and r': 
I 

db(r, r') = inf Ybb(ai_10ai) 
i=1 

(ai)i=o is a finite sequence of points in öG 

with ao =T and at = r' 

For convenience, we denote the set over which we take the infimum as 

D (r, T'). Note that since 6 (r, r') G 1, also db (r, r') < 1. 

Proposition 6.2.3 (db (_ 
, -) is a pseudometric) 

Let r, r' and r" be elements of 8G. Then 

" db(r, r') >0 

" db(r, r') = db(r', r) 

" db(r, r')+db(r', r") >, db(r, r") 
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Proof 

Clearly, 0< db(r, r') < 5b (T, r'), because the infimum of a set of non-negative 

numbers is non-negative. 
Now s, n(r, r') = s,, t(r', r), so bb(r, r') = bb(r', r) and thus db(r, r') _ 

db(r', r), because if two sets are the same, so is the infimum. 

If we define addition of sets of reals by X+Y= {x +yxEX, yE Y} 

then inf X+infY = inf(X+Y). Thus db(r, r') + db(r', r") = inf(D(r, r') + 

D (r', r")) = inf A, where 

if 
A= ý&b(ati-1) ai) + bb(bt-l, bt) 

(ai)i=0 and (bi)i. o are finite sequences of points in öG 

with ao = r, at = r', bo = r' and bl, =r 

But since any finite sequence between r and r' followed by a finite sequence 

between r' and r" is essentially a finite sequence between r and r" via r', we 

have that AC D(r, r"). Thus infA >, infD(r, r") i. e. db(r, r')+db(r', r") >, 
- 

db (r, r") 
m 

6.2.3 Definition of 8G 

OG is a set with a pseudometric, and so we may construct the quotient metric 

space, öbG - points of öbG are equivalence classes of elements of aG, where 

two elements of öG are equivalent if they are distance zero from each other in 

the pseudometric. (The quotient metric is well defined because the triangle 

inequality holds for the pseudometric. Thus the pseudometric axioms hold 
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in the quotient set, and so it really is a metric space. ) 

We will frequently abuse notation and use a geodesic ray as if it were an 

element of äbG, and also denote the metric on 8bG as db(_, 
_). 

If we are not 

interested in which base b for exponentiation we are using, or it is clear from 

the context, we drop b from the notation and call the boundary öG and the 

metric d(_, 
_). 

Note that we have not proven here that äbG is independent 

in any sense of the choice of b. 

Example 6.2.4 

Let G= (x, 1j. I xyx-1y-1 , . y4) ^' ZX Z4. 

4x 3x2x1x 0x 
idG 

1; 2; 3x4x 

Diagram 6.2.1: ZX 7L4 

There are many geodesic rays in r, but only two elements of ö G; any 

geodesic ray terminating with x°° is at distance 0 from yyx°°, and any 
geodesic ray terminating with x-°° is at distance 0 from yyx-°°. Since the 

power of y in a geodesic ray is limited to be between -2 and 2, these are the 

only two cases. 

We pick the representatives r= yyx°° and r' = yyx-°° because they are 

the closest pair of representatives. 
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Since a geodesic between r(m) and r'(m) has distance exactly 2 from 

idG, except when m<2, when it is closer, we have infm, EN = b-2 

Since these are the closest pair of representatives for the boundary points, 

and there are no other boundary points, we have db(r) r') = b-2 

Thus 8,, G is a two-point metric space of diameter b-2. 

6.3 Properties of aG 

Our motivation in using this boundary is to be able to relate the number of 

ends of the group to connectivity properties in ä G, and in turn, to be able 

to detect these connectivity properties by means of an algorithm. 

The following table relates the connectivity properties of the Gromov 

boundary of hyperbolic groups to the number of ends of the group. 

ends boundary connected? locally connected? 

0 0 trivially trivially 

1 ? yes yes3 

2 2 points no yes 

00 ? no no 

Table 6.2: Ends versus boundary connectivity in hyperbolic groups 

See [Gd1H90] for a definition and discussion of the boundary of hyperbolic 

groups. 
'The theorem that one-ended hyperbolic groups have locally connected boundary is a 

deep result, and has been proved both by Brian Bowditch [Bow96] and by Gadde Swarup 
[Swa96]. 



Chapter 6: Towards detecting one-endedness in automatic groups 151 

We will prove that if G has infinitely many ends, its boundary is not 

uniformly path-connected, 4 which is the equivalent of putting a "no" in the 

bottom right hand corner of a corresponding table for arbitrary finitely gen- 

erated groups. 

We showed in section 4.2.4 on page 106 that the cases of zero and two 

ends can be decided for automatic groups. If we have ruled these two cases 

out, and we find that aG is uniformly path-connected, then we know that 

G has one end. This does not mean we can necessarily always detect one- 

endedness in G- we have not proved that one-endedness implies uniform 

path-connectedness of the boundary. Neither have we proved that uniform 

path-connectedness implies that G has exterior paths. 

Throughout section 6.3 we assume only that G is finitely generated, so 

that its Cayley graph, F, is locally finite. 

6.3.1 Shadows of patches are open and closed 

Let nEN, and consider the open ball B. Recall from section 2.2.1 on 

page 52 that a patch at distance n from idG is the intersection of the sphere 

Sn, with one of the components of F\ B. 

Definition 6.3.1 (shadows of patches) Fix ncN. Let P be one of the 

patches at distance it around idG. By lemma 2.2.3 on page 53, a geodesic ray 

from the identity passes through exactly one patch about idG, so P determines 

a set of geodesic rays which we call the shadow of P, or shadow(P). Just as 

the patches at radius it in G partition the sphere S, the set of shadows of 
'See definition 6.3.5 on page 154. 
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R 
patches at radius it partitions öG. 

Technically speaking, shadow(P) is a subset of 8G, but we shall again 

abuse notation and use shadow(P) to denote the image of this set in öG as 

well. ' 

Lemma 6.3.2 

Let r and r' be geodesic rays from idG, and let P and P' be patches at distance 

n from idG 
. 

Suppose that r passes through the patch P and r' passes through 

P'. IfP P'thendb(r, r')> bn. 

Diagram 6.3.1: Shadows are separated. 

Proof 

For n' > it, r(n') and T' (n') lie in different components of r\ Bn, so every 

path between them passes inside B. Thus there is no geodesic between 

these points which lies wholly outside the closed ball of radius n, B, and by 

5In fact it will turn out that defining shadow(P) as a set of geodesic rays gives rise to 

a well-defined subset of öG directly. At the moment the definition is equivalent to saying 

that a point of aG is in shadow(P) if one of its representatives passes through P. 

radius it 
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corollary 6.2.2 on page 147, b (r, r') > b� 
. 

Thus if two geodesic rays pass through different patches, the naive dis- 

tance between them is at least b-n. We now need to prove the same result 
R for the pseudometric on öG. 

Let (ai)i-o be a sequence of geodesic rays with ao =r and al = r'. Then 

since r' does not pass through P, there is a smallest i such that ai does 

not pass through P. Since aL_1 does pass through P, b (a; 
_1 , ai) > b-", so 

Li_1 6b(ai_1, at) > b-n. Thus all numbers in D(r, r') are at least b-n, so 

their infimum is too, i. e. db (r, r') >, en 

0 

This means that if db (r, T') = 0, then r and Y' pass through the same 

patch, so shadow (P) is already a well-defined subset of 0G. Thus the set 

of shadows of patches at radius n partitions 3G. Also, since db (_ 
)_) 

is 

well-defined on a G, the lemma above holds for elements of 0G. 

Corollary 6.3.3 (shadows are open sets) 

Let P be a patch at distance it from idG. Let r represent an element of 3G, 

with rE shadow(P). Then by the previous lemma, db(r, r') < bn z r' E 

shadow(P). Thus shadow(P) is an open subset of G. 

0 

Corollary 6.3.4 (shadows are closed sets) 
Let P be a patch at distance n from idG. There are only finitely many patches 

at distance it from the identity, so there are only finitely many shadows of 

those patches. Every element of 3G is an element of one of these shadows, 
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so the complement of shadow(P) is the union of finitely many patch shadows, 

i. e. a union of finitely many open sets. Thus the complement of shadow(P) 

is open, i. e. shadow (P) is closed. 

F1 

6.3.2 Infinitely ended groups have messy boundaries. 

Definition 6.3.5 A metric space X is uniformly path-connected if there ex- 

ists E>0 such that for all x and y in X, d(x, y) <E implies there is 

a path between them. We call the number E the constant of uniform path- 

connectedness, and sometimes say that X is E-uniformly path-connected. 

We prove that if G has infinitely many ends then its boundary is not 

uniformly path-connected. 

Lemma 6.3.6 (Nearby separated rays) 

Let G have more than two ends, and let N be the smallest natural number such 

that BN separates the Cayley graph (T') into at least three infinite components. 

Fix m>N+2. Suppose r is a geodesic ray, and let g= r(m - (N + 1)). 

Then there exists a geodesic ray r' such that 

0 r'(m + 1) and idG lie in different components of r\ BN(g), and 

" r'(m + 1) and r(m + 1) lie in different components of i' \ BN (g). 6 

6We do not claim that r(m + 1) and idG lie in different components of r\ BN(g). It 

seems implausible that they do, but we don't need to know. 
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Diagram 6.3.2: Nearby rays in different shadows 

Proof 

Let m >, N+2, and note that by the triangle inequality, and the fact that 

d(g, idG) = m- (N + 1), BN(g) lies wholly inside B' (idG). 

Let h= r(m+l ). There are at least three infinite components of T'\BN(g), 

so there is one in which neither idG nor h lie. Call it C', and call the one in 

which h lies C. 
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D 

(from g) 

Diagram 6.3.3: Finding a nearby ray in a different shadow 

Since C' is infinite, there is a geodesic ray s: [0, oo) --- r starting from 

g and passing into C', by lemma 2.3.1 on page 62. This geodesic can meet 

B" (idG) at only finitely many vertices, so after it has done so for the last 

time, we pick an element of G, h' E C' fl im(s) at distance m+l from ids. 

Thus D, the component of r\ B°, 
t(idG) containing h', is infinite, because 

it has infinite intersection with s. Therefore there exists a geodesic ray r' 

starting from idG, passing into D. 

Since both h' and r'(m+1) are in D, there is a path between them outside 

Bm(ids). Now BN(g) C Bm(idG), so this path also lies outside BN(g), and 
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so r'(m + 1) and h' are in the same component of r\ BN (g), namely C'. 

Since C' was chosen so that neither idG nor h lie in it, r' (m + 1) and idG 

lie in different components of F\ BN (g), and r'(m + 1) and r(m + 1) lie in 

different components of r\ BN(g), as required. 

0 

Lemma 6.3.7 (Close but in different shadows) 
R Let G have infinitely many ends, and let rE öG be a geodesic ray starting 

from idG. Let N be the smallest natural number such that BN separates the 

Cayley graph into at least three infinite components. 

Then Vm >N+2,3r' E öG such that (ib(r) r') G b3N+2-m, but r and r' 

pass through different patches at distance m from idG, i. e. they lie in different 

shadows of patches at radius m. 
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Proof 

9 

Diagram 6.3.4: The two rays are close. 

Let r' be as in the previous lemma, and as before, let g= r(m- (N +1)). 

Then r'(m+ 1) and idG lie indifferent components of r\ BN (g), so r'j[o,,, t+jl 

must pass through BN (g). Thus there exists tEN such that r' (t) E BN (g), 

i. e. r'(t) is within distance N of g. 

Thus by the triangle inequality, t+N> d(g, ids) =m- (N + 1), so 

t>m-(2N+1). Thus we have 

d(r'(m), T'(t)) <1+ 2N, 

d(r'(t), g) < N, and 

d(g, r(m)) =N+1, so 

d(r'(m), r(m)) < 3N + 2. 
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Thus a geodesic between r'(m) and r(m) stays outside Bm_(3N+2)(idG), i. e. 

db(T, r') b3N+2-m 

Diagram 6.3.5: The two rays are in different shadows. 

All that remains is to prove that r and r' lie in different shadows. 

Let P be the patch at distance m from idG determined by T(m + 1), and 

let P' be the patch at distance m from ids determined by T' (M + 1). Then 

TE shadow(P) and r' E shadow(P'). 

We need to prove that P P'. By the patches lemma 2.2.3, this is 

equivalent to showing that there is no path from r(m + 1) to r' (m + 1) lying 

wholly outside BM (ids) 
. If there were such a path, it would lie outside BN (g) 

as well because BN (g) C BO (ide) 
, but this contradicts the previous lemma, 

which states that r(m + 1) and r'(m + 1) are in different components of 

r\BN(g)" 

Thus r and r' lie in different shadows. 

0 
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Theorem 6.3.8 (oo ends implies 8G not uniformly path-connected) 

Let G have infinitely many ends, and let xE aG. Then for every open set U 

in 8G containing x, there is an element yEU such that there does not exist 

a path from x to y. (Thus 8G is not uniformly path-connected. ) 

Proof 

Let UCöG be an open set containing x, and let r be a geodesic ray rep- 

resenting x. Then there exists e>0 such that db (x, y) <e=yEU. Let 

N be the smallest natural number such that BN separates the Cayley graph 

into at least three infinite components. 

Pick m large enough so that both m >, N+2 and b3N+2-"` < E. The 

hypothesis of the previous lemma is satisfied, so let r' be as in the conclusion, 

and define y to be the element of öG determined by T. 

Firstly, db(r, r') < b3N+2-m < e, i. e. db(x, y) <c and yEU. 

Secondly, r and r' pass through different patches at distance m from idG, 

so x and y are in different patch shadows. By corollaries 6.3.3 and 6.3.4, these 

shadows are both open and closed, so x and y are in different components of 

8 G; there is no path between them. 

x was an arbitrary element of 8 G, and we have shown that every open 

neighbourhood of x contains a point from a different path-component. DG 

is not uniformly path-connected. 

El 
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6.3.3 aG is compact 

Theorem 6.3.9 

äG is compact. 

The proof of this theorem is similar to the proof of the compactness of 

the boundary of a hyperbolic group. 

Proof 

Consider öG = 8bG for some b>2. 

Let (xi)iEN be an arbitrary sequence of points of öG, and let (ri)iEN be 

R 
a sequence of geodesic rays (i. e. points in iG) representing them. We show 

that (r; )iEN has a subsequence which is convergent in the sense that the 

naive distance between elements of the subsequence and the `limit' ray tends 

to zero. Since the distance in öG between two points is bounded above by the 

naive distance between any pair of representatives, this is enough to prove 

that the corresponding subsequence of (xi)tEN is convergent. 

The subsequence will be denoted by (rin)nEN, and we will define it element 

by element, by induction. When we say later that we ̀ pass to a subsequence' 

we do not refer to (rin)nEN, rather we refer to a subsequence of the original 

sequence to which we restrict our attention for the purposes of the argument. 
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r 

Diagram 6.3.6: Compactness in aG 

L4 

We define Ti, = Ti. Assume for induction that we have defined ri, n 
for 

all m<n, and have defined a geodesic r' up to length n, with Ti, equal to 

r' up to the point r' (m) 
. 

Also assume inductively that we have passed to a 

subsequence of the original sequence of rays in which all of them are equal 

to r' up to the point r'(n). 

There are finitely many elements at distance n+I from idG through 

which the rays in this subsequence pass, so there is at least one through 

which infinitely many of them pass. Define this point to be rl(n + 1), and 

pass to a subsequence again so that all the rays in the new subsequence pass 

through T' (n +1), i. e. are the same as T' up to the point T' (n + I). Pick the 

first ray in this subsequence aS Ti,, 
_,.,. 

This completes the induction. 

The induction defines a geodesic ray T' and a subsequence (r0nEN Of 

the original sequence such that for each nEN, Ti. is the same as T' up to 

distance n from idG. Thus there is a (trivial) geodesic between TiT, (n) and 

T'(n) which stays outside the closed ball of radius n-1, so by corollary 6.2.2 
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on page 147, bb(rin, r') < b-t'-'). 

Thus bb (Ti,,, r') tends to zero as n tends to infinity, so since db (Ti,, T') 

Sb(rin) r'), we know also that db(rin, r') tends to zero. Let x' be the element 

of 3G determined by T'. Since the metric on 6G is well-defined and equal 
R 

to the pseudometric on elements of äG, this proves that the subsequence 

(xi�)nEN determined by (rtjneN also has the property that &b(xt, 
ti, x') tends 

to zero as n tends to infinity. 

Thus (X EN has a convergent subsequence. 

0 

6.4 Exterior paths and connectivity at the 

boundary 

We use the phrase `connectivity at the boundary' for brevity - we in fact 

refer to uniform path-connectedness, i. e. there is a constant, E, such that if 

two points of the boundary are within distance E of each other, there is a 

path between them. 

6.4.1 Notation and assumptions 

We suppose that G is automatic, and let WA be its word acceptor. We also 

assume that the accepted words are all geodesics. Thus the fellow-travelling 

constant, f, is a fellow-travelling constant for accepted geodesics from the 

identity which terminate within distance 1 of each other. 

Recall from definition 4.2.3 on page 102 that an infinite word is travellable 
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iff every initial finite subword can be extended to an accepted word. 

6.4.2 Pruning and closeness of infinite words 

Recall also (from definition 4.2.2 on page 101) that pruned(WA) accepts 

exactly those words in the generators which possess infinite extension. 

Definition 6.4.1 (global closeness of infinite travellable words) Each 

word accepted by WA is a word accepted by pruned(WA) followed by a word 

which traces a path wholly outside the pruned(WA) automaton; this latter 

part of the path cannot trace any loops in the automaton. Since there are 

finitely many states in WA, there is a global bound, which we call C, on the 

length of this final subword. 
Note that C is a global constant depending only on the automatic structure 

of G. The crucial property of C is that for any element gEG, g is at most 

distance C from an infinite travellable word. 

6.4.3 Exterior paths implies uniform path-connectedness 

Recall the following definition from the previous chapter. 
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Diagram 6.4.1: Exterior paths 

Definition 6.4.2 Let G be a group with an upper bound, C, on the distance 

of an arbitrary element to a geodesic ray starting at idG. Let M and L be 

natural numbers. 

We say that G has (M, L)-exterior-paths if do E N, and dg, hES, 

d(g, h) <M implies that there is a path, a: g-h of length at most L such 

that a lies entirely outside the (open) ball of radius Ti - C, Bn_c. 

It may be that this condition is only satisfied for large n. In this case, we 

use the phrase `outside radius N ': 

We say that a group has (M, L)-exterior-paths outside radius N if do EN 

with n>N, and Vg, hES, d(g, h) <M implies that there is a path, 

a: g ^_- h of length at most L such that a lies entirely outside the (open) ball 

of radius it - C, Bn-C. 

We remind the reader that G has (M, L)-exterior-paths if and only of it 
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has (M, L)-exterior-paths outside radius 0, because the case when g and h 

are idG is trivial; indeed, the case when n<C is always trivial. 

This section leads to the proof of the following theorem. It is stated again 

and proved as theorem 6.4.8 on page 176 and corollary 6.4.9 on page 178. 

Theorem 

Let G be an automatic group with geodesic accepted words that f -fellow-travel, 

and let C be the global bound on the distance to some infinite travellable 

geodesic. Assume that for some M >, (2C + 1) (max1f, 31) and some LcN, 

G has (M, Q- exterior-paths outside radius N. Then for b >, maxt2, QI ab G 

is uniformly path-connected, with constant of uniform path- connectedness 

b -N+(C+I) 

In particular, if N=0 (i. e. G has exterior paths everywhere), then for 

b> maxJ2, Q, ObG is path connected. 

We defer the proof until later, after some examples and preliminary lem- 

mas. 

The ideas for the proof of this theorem are taken from Lemma 3.1 of 
[BM911. Bestvina and Mess assume that G is hyperbolic, and perform their 

calculations in the Rips complex 7 of G. They assume the group has exterior 

paths everywhere (for some M larger than a constant depending on the con- 

stant of hyperbolicity as well as C), and they prove local path connectedness. 
In this sense their result is quite different to ours. 

7A definition can be found at the beginning of [BM911. 
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Example 6.4.3 

I .................. & **A"** *a *"*"k' , ** 

..... ......... ......... ....... .... 

........... ....... ........ . .... -* .................. ... ............ ........ ........ 
'I 

idG 

Diagram 6.4.2: 7L X Z4 spanning tree with x before y 

X 

x 

start OyOO_>O 

Xi y 

O 

x-Ö 

Diagram 6.4.3: ZX Z4 word acceptor with x before y 

Let G= (%, -Li I xyx-1y-l 1.1-1 
4) '=- Zx (Z/4Z), and give it the automatic 

structure where accepted words are some power of x followed by some non- 

negative power of y. Thus the constant for closeness of infinite travellable 

geodesics that we compute from the word acceptor is C=3, the fellow- 

travelling constant is f=2, and (2C + 1) (max{f, 3}) = 12. 
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The open ball of radius n-C disconnects the Cayley graph for n> 

2+C, but there are points in S, of distance just 2(n - 2) apart in different 

components of the complement. Thus we need M< 2(n - 2), but also 

12 = (2C + I) (max1f, 31) <, M, so we need -n > 8, i. e. N=8. 

The distance between points in S, that are in the same component of 

r\B, '_C is at most 4, and we can choose the geodesic to lie outside r\B, 
-C * 

Thus in this case, G has (I 2,4)-exterior-paths outside radius 8, and so for 

b >, 4,3bG is E-uniformly patb-connected with E=b -8+3+1 =b -4 . This is 

of course trivially true, because in this case aG is a two-point set of diameter 

b -2 (see example 6.2.4 on page 149). 

Our result gives us a better picture of the structure of the boundary when 

the automatic structure is such that the values of C and f we calculate from 

it are as small as possible: 

Example 6.4.4 

idG 

Diagram 6.4.4: ZX Z4 spanning tree with y before x 
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y 

starýýýý 
ýXý 

-ý xx 

X1x -i 

X-ý x 

x-1 

Diagram 6.4.5: ZX Z4 word acceptor with y before x 

Again, let G= (x, ij I XjjX-Ijj-I', tj4) 2' Zx (Z/4Z), but this time give 

it the automatic structure where accepted words are some power between 

-1 and 2 of -Lj, followed by some power of x. This time, C=0, f=2, and 

(2C + I) (maxff 
, 
31) = 3, so we can pick L=3, and we have (3,3)-exterior- 

paths outside radius 3. 

Thus for b >, 3, abG is E-uniformly path-connected with E=b -3+1 

b -2 . 
This is as strong a result as we could hope for, because aG is a two-point 

set of diameter b -2 . 

Lemma 6.4.5 (Inductively interposing rays) 

Let G be an automatic group with geodesic accepted words that f -fellow-travel, 

and let C be the global bound on the distance to some infinite travellable 

geodesic. Assume that for some M >, (2C+ 1) (max{f, 31) and some L, NEN, 
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G has (M, L) -exterior-paths outside radius N. 

Suppose we have two geodesic rays r and r' from idG, and that for some 

n>N, d(r(n), r'(n)) < M. Then there exist L+1 geodesic rays, fTiliE{o, 
1,..., t} 

with ro =T and TL = r', and di E {1,2,... 
, 
L}, d(ri_j (n+1), ri(n+1)) <, M. 

Proof 

Since d(T(n), T'(n)) <, M and n>N, we can find a path of length at most 

L, CVC: T(n) r-ý Tl(n) that stays outside B. '-C. For notational convenience, we 

parameterise cv. by path length, and then compose it with a stationary path 

so that oc: [0, L] --) F. 

For each iE {O, 1, 
... , 

t}, we choose a geodesic ray ri to pass within 

distance C of a(i), and call the point of closest approach pi. (For i=0 we 

pick r, and for i=L we pick r'. ) Now pi and pL+1 are within distance 2C + 1, 

so let ß be a geodesic between them with length(ß) < 2C + 1. 
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T 

r,, 

Diagram 6.4.6: Interposing rays 

Case (1): 0 lies entirely outside B', 
+, . 

Construct accepted geodesics to 

all the vertices on P, using Tj and Ti+l for the endpoints. Each of these 

geodesics is at least of length n+I and they f-fellow-travel, so when we 

truncate them to length n+1, adjacent endpoints are within distance f 

Thus d(Ti(n + 1), Ti+1 (n + 1)) <_ (2C + I)f. 
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Pi+, 

radius n+1 

Diagram 6.4.7: Case (1): Truncating geodesics that fellow-travel 

Case (2): There is a point on P in -9,. In this case, the endpoints of P, pi 

and pj+1 are at most distance n+ (2C+ 1) from the identity. Also, pi and pj+1 
lie outside B'n-2c because they are within distance C of oc, which lies outside 
B, '-C. Thus for jE [iJ + 11, Pj E 1ýn+1+2C \ B. '-2C* Thus since pi is a point 

onTj, we have d(pj, Tj (n + 1)) <, 2C + 1. We also know that d(pi, pj+j) <, 
(2C + 1), so by the triangle inequality, d(ri(n + 1), Ti+l (n+ 1)) <, 3(2C + I). 
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r 

rac 

ra 

Diagram 6.4.8: Case (2): 0 lies in a band 

Thus in either case, d(rL(n + 1), ri+1(n + 1)) < (2C+ 1) (max{f, 3}) <M as 

required. 

0 

Lemma 6.4.6 (The base case) 

Let G be an automatic group with geodesic accepted words that f -fellow-travel) 

and let C be the global bound on the distance to some infinite travellable 

geodesic. Suppose we have two geodesic rays r and T' from idG, and that 

radius n -4- 1+ 2C 
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(T, T') < b-"(C") for some nEN. 

Then forsome L' C N, there exist L'+ I geodesic rays, JTijjEjO, j,..., L'j with 

ra =r and TL = r', and di E {1,2, 
... , L'}, d(rL_1(71+ 1), ri(n + 1)) < M. 

The similarity to the previous lemma will not be lost on the reader. 

Proof 

Since 6 (T, T') < b"'C", there is a natural number m and a path OC : T(M) 

i. e. outside B'-C; we are in exactly the r'(m) that stays outside -ffn-(C+I), 
n 

same situation as in the previous lemma, except that this time Ct is of some 

unknown length L', and its endpoints are not necessarily at distance exactly 

n+I from idG. This latter difference does not change the argument. 

Using exactly the same argument as in the previous lemma, construct this 

time L'geodesic rays, tTi IiE tO, L'jj with d(Ti(n+I), Ti+l (n+l)) <, M 

as required. 

0 

Lemma 6.4.7 

Assume that for some M >, (2C + 1) (maxif, 31), and some L, NEN, G has 

(M, Q -exterior-paths outside radius N, and suppose b >, maxt2, Q. Then if 

y (0) and (p (I ) are geodesic rays with 6b ((P (0)) (P 0<b -N+(C+I) , then we 

may extend (p to a path between them in abG. 

Proof 

By the base case lemma, lemma 6.4.6, we find there are L' +I geodesic 
rays [Tt}tE{o,,,..., L'} for some L' E N, with ro = cp(0) and rL = (p(1), and 
Vi E {1,2,... 

, 
L'}, d(ri_1(N + 1), ri(N + 1)) < M. If there are paths between 
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adjacent Ti, then we may compose them to obtain a path between ro = 

cp(O) and rL = y(1), so we may assume without loss of generality that 

d(cp(0)(N+1), cp(1)(N+1)) < M. 

Claim We inductively define (p(E,, ) for each jEN and for iG 10, 

so that db ((P (p <b UT L' 

Assume for induction on jEN that for all iE {O, 1, 
... ,U- 11, we have 

d(p(t, )(N +i), ýp(-L')(N 

Let iE {O, 1, ... , 
LU - 11. Then since we have (M, L)-exterior-paths 

outside radius N, by lemma 6.4.5 on page 169 there are L+1 geodesic 

rays, {rk}kE{o, 
i ,... , ý} with To = cp (t, ), TL = (p (`L ), and Vk E {1,2, 

d(rk_I (N+j+1), rk(N+j+1)) < M. 

Define cp (j*r) = rk for kE {0,1, 
... , 

Q. 

Since d(cp(; )(N + j), cp(iLl)(N + j)) < M, there is a geodesic be- 

tween them that lies outside BN+j_c, so it lies outside BN+j_(c+fl. Thus 
db ((P (Lý))(P (+--I)) <b'1). 

This completes the induction. 

Claim If -I<t, for some j' > j, then db (cp (L; ) 
)cp 

( )) < 

b-N-i-(c+t ) 

We prove this by induction on the difference between i and j'. Now by 
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the earlier claim, for 0 <, k<t, 

db(p( 
ti 
i 

), (p(it+ 
k}) 

< k(b-ýN+i+t)+(c+t)) 
Li+t 

L(b-(N+; +l)+(c+I)ý 

b-(N+i)+(c+l) 

because we assumed b >, maxt2, Q. Extending this result by induction, we 

complete the proof of the claim. 

Claim cp can be extended to a continuous function [0,1] -p a G. 

We abuse notation and use to stand for both the geodesic ray C 
(element of aG) and the corresponding element of aG. Distances remain R 

unaffected. 

We have defined (p on a dense subset of [0,11, and by the previous claim 

it is continuous on this subset. Since aG is compact (theorem 6.3.9 on 

page 161), it is a complete metric space, so (p possesses a unique continuous 

extension over [0,1] 
. 

1-: 1 

Now we are in a position to prove the main theorem of the section: 

Theorem 6.4.8 

Let G be an automatic group with geodesic accepted words that f -fellow-travel, 

and let C be the global bound on the distance to some infinite travellable 

geodesic. Assume that for some M >, (2C + 1) (max1f, 31) and some LEN, 

G has (M, Q- exterior-paths outside radius N- Then for b >, maxJ2, Q, ab G 

is uniformly path-connected, with constant of uniform path- connectedness 

b -N+(C+l) 
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Proof 

Assume G is automatic with geodesic accepted words that f -fellow-travel, 

and assume G has (M, L)-exterior-paths outside radius N for some M >, 

(2C + 1) (maxtf, 31) and some L, NEN. Suppose b> max{2, Q. 

-N+(C+I) Let * (0) and ip (1 ) be elements of DG with db (4) (0)) * (1 <b 

We extend * to a continuous function ý) : [0,11 -4 a G, thus proving that aG 

is b -N+(C+l )-uniformly path-connected. 

Since db (* (0)) IP 0 )) <b -N+(C+I) 
I it must also be true that there exists 

F_ >0 so that db(*(O), *(I)) <b -N+(C+I) - F_ Let T and T' be two geodesic 

rays representing *(0) and 4)(1) respectively. Then since the pseudometric 

is well-defined and equal to the metric on aG, db(T, Tl) = db(*(O))*(1))- 

Recall that 

db (T, TI) = inf 575b(Cti-l 

, aj) 

(ai)l=o is a finite sequence of points in 8G 

with ao =r and at = r'. 

Since db (T, TI) is the infimum, given F- >0 there is an IcN so that there exist 

rays t aj IiE tO, III such that F1 j=1 
WC4- I) CLJ < db(T, T1) +E. We picked 

F- so that db k0 (0)) (P (I )) <b -N+(C+l) _e7 SO Y-1i=j 6b(CLi-l) CLO <b -N+(C+I) . 

-N+(C+I) This implies that for each iEt1 11,5b (CLi- 1, aj) <b, so by the 

previous lemma, there are paths t-yj IiE t1, 
..., 1j) in a G, with -yj : aj-1 

aj. ' Composing these gives us a path 4) from *(0) to ip (I) 

'Here we abuse notation and use aj to stand for both the geodesic ray and the point 

of aG which it represents. 
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Corollary 6.4.9 

Let G be an automatic group with geodesic accepted words that f -fellow-travel, 

and let C be the global bound on the distance to some infinite travellable 

geodesic. 

If, for some M >, (2C + 1) (maxtf, 31), G has (M, Q -exterior-paths, then 

for b >, maxt2, Q, abG is path connected: 

G has (M, L)-exterior-paths outside radius 0, so by theorem 6.4.8, abG 

is uniformly path-connected, with constant of uniform path- connectedness 

b-o+(C+l) >' 2>1. But when we defined the pseudometric on aG, we noted 

that any two rays are at most distance I apart, so the fact that any two 

boundary points that are within distance I of each other have a path between 

them means that aG is path-connected. 
F-1 

6.4.4 The exterior paths condition for automatic groups 

Definition 6.4.10 (The exterior paths condition for automatic groups) 

Let G be an automatic group with Cayley graph r. 

Let C be the global bound on the distance to some infinite travellable 

geodesic. (See 6.4.1. ) 

We say that G satisfies the exterior paths condition for automatic 

groups, or the automatic exterior paths condition if there exists M >, 

(2C + I) (maxff , 31), and L, NEN, such that G has (M, Q -exterior-paths 

outside radius N. 
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6.4.4.1 Consequences for computation 

Theorem 6.4.8 on page 176 says that if an automatic group G satisfies the 

exterior paths condition for automatic groups, then its boundary is uniformly 

path-connected. Theorem 6.3.8 on page 160 proves that such a group cannot 

have infinitely many ends. 

Let G be an automatic group with geodesic accepted words. We can 

run the algorithms ends (algorithm 4.2.8 on page 108), and ext. paths (algo- 

rithm 5.2.4 on page 139) concurrently. G has zero, two or uncountably many 

ends if and only if ends terminates, saying so, and if ext. paths terminates, 

we will know that the group has one end (because the case of two ends is 

decided by ends at the beginning). 

6.4.4.2 Two-ended groups satisfy the exterior paths condition 

Two-ended groups have two-point, and hence uniformly path-connected 

boundaries. One would hope, then, that they satisfy the exterior path con- 
dition for automatic groups. They do: 

Theorem 6.4.11 

Let G be a group with two ends. Then there exists LEN such that for all 
MEN there exists NEN such that G has (M, L) -exterior-paths outside 
radius N. 

Corollary 6.4.12 

Two-ended groups satisfy the exterior paths condition for automatic groups. 
0 
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Proof (of theorem 6.4.11) 

Let G be 2-ended, and let MEN. Let K be the connectivity constant of G. 

G is automatic with geodesic accepted words because 2-ended groups are 

hyperbolic (they have Z as a subgroup of finite index [SW] and a group is 

hyperbolic if a subgroup of finite index is hyperbolic [GdIH90]). Let C be 

the bound on the distance to an infinite travellable geodesic. 

By [Can], G has linear growth, so there is a bound, B, say, on the number 

of elements in the sphere of any radius. (So there can be only (K + I)B 

elements in the band Bn+K \ Bn. ) 

Let L=4C+(K+1)B. 

Since G is two-ended, there is an mEN such that the open ball of radius 

m disconnects the Cayley graph. 

Let N> M/2 + m. 
Any path between points in different components of r\ BO must pass M 

through BO . If g and h are both at distance Tv >N from idG, and in different M 
components of r\ B' , then any path from g to h must first travel to B' from MM 
S., then travel across Bom, and then travel out again to distance n from idG, 

so is of length at least 2 (n - m) >2 (N - m) > M, (We chose N> M/2 + m. ) 

Thus if g and h are elements outside radius N, with d(g, h) <, M, then g 

and h lie in the same component of r\ Bý, M* 
Let n>N. Then n>m, so the ball of radius n disconnects r into two 

infinite components (and possibly some finite ones). 
Any point g of S, is within distance C of an infinite geodesic, so is within 

distance C of a ray T into an infinite component of r\ BO, - Thus there is a 
path of length at most C between g and r(n'), where n-C< n' <n+C, 
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and this path must stay outside B, '-C. Composing this with a subpath of r 

gives us a path of length at most 2C between g and T(n), which stays outside 

B'n-c * 
Now let g and g' be two points of S. that lie in the same component of 

r\ B' . There is a path of length 2C lying outside 
BT, 

M -C from g to r(n) and 
from T'(TI) to 9', for some rays T and T'. T(n) and T'(n) must lie in infinite 

components of r\B,. These components are subsets of a single component 

of r\ B' 
, and if they were distinct, there would be at least three infinite M 

components of F\ B,, which is false. 

Thus T(n) and T' (n) must lie in the same component of r\B,, so there's 

a path between them that has its vertices inside the band, B, +, \ BTO. There 

are at most (K + I)B vertices in the band, se we can choose this path to be 

of length at most (K + I)B. Note that it, too, stays outside Bn'-C. 

Thus any pair of vertices at distance n from idG that lie in the same 

component of r\ B' have a path between them of length less than or equal M 
to 2C + (K + I)B + 2C = L, which stays outside the ball of radius n-C. 

Thus for any M, we can find sufficiently large N such that for n>N, any 

two elements of S, that are within distance M of each other are in the same 

component of r\ B' for some M, where B' disconnects the Cayley graph MM 
into two infinite components (and possibly some finite ones). By the above 

arguments, there is then a path between them of length at most L that stays 

outside the ball of radius n-C. 

Thus G has (M, Q -exterior-paths outside radius N, for L= 4C + (K +I)B, 

any MEN, and N> M/2 + m. In particular, a 2-ended group satisfies the 

exterior paths condition for automatic groups. 

0 
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6.5 A generalisation of Gerasimov's result? 

Gerasimov's algorithm always detects one-endedness when it occurs in a hY- 

perbolic group, and we would like to do the same for groups with good 

automatic structures. We have shown that the boundary of an arbitrary 

group can only be uniformly path-connected if it has finitely many ends, and 

for any automatic group, we can determine whether we are in the case of 

zero or two ends. Thus if we detect uniform path-connectedness in a group 

known to not have two ends, we know the group is one-ended. 

To what extent is it true that if an automatic group (or indeed an arbi- 

trary finitely presented group) has one end, its boundary is uniformly path- 

connected? Is it also true that if a group is uniformly path-connected it has 

(M, L)-exterior-paths outside radius N for M large enough and some L and 

N? 

In a hyperbolic group we know from Bestvina, Mess, Bowditch and 

Swarup that having (M, Q-exterior-paths for large enough M is equivalent 

to having one end, but this relies on some deep results about the boundary 

of hyperbolic groups. The construction outlined here for the boundary of an 

arbitrary Cayley graph has a less refined notion of distance. We say that two 

rays are close if there is a geodesic between them which passes outside a ball 

of large radius, but the length of this geodesic is not taken into account. This 

means that the boundary sometimes collapses more than we expect - one 

might expect the boundary of ZxZ to be a circle, but with this construction 

it is a single point. 

Perhaps with this less subtle boundary, the exterior paths condition is 
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indeed directly equivalent to having a uniformly path-connected boundary. 

Proving this would prove that our algorithm always detects the number of 

ends of an automatic group which has geodesic accepted words. 
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Index of Definitions 

$ (padding symbol), 20,140 
f 110, tj (restriction to [0, tj), 9 
(al, a2, ... ) an I TI, T2, TM), 9 

(patch), 53 
(patch), 54 

Lx] (floor), 9 
ýxj (ceiling), 9 
ig, h] (edge), 12 
[r, tj (interval in R), 8 
-< (further in), 86 
>- (further out), 86 

path Oc :a s-- b, 11 
(isomorphic), 9 

(complement), 34 

Sb (T, T') (naive distance), 146 
a G, 149 
aG, 146 
abG, 148 
5S, 34 
81,70 
r-component of a set of vertices, 35, 

115 
r-connected set of vertices, 35,115 
r-within, 35,115 
K (the connectivity constant), 33 
ýt () (Bergman norm), 66 

accept state, 19 
accepted language, 20,21 
accepted word, 19 
autgroup, 22,107 
automatic, 21 
automatic structure, 21 

good, 105 

b (exponent base in a G), 146,147 
B, (closed ball around idG of ra- 

dius n in r), 15 
B, (g) (closed ball around g of ra- 

dius i-t in P), 14 
BO, (open ball around idG of radius 

n in P), 15 
B, O, (9) (open ball around g of radius 

n in r), 14 
band, the (B, +, ý 

\ B, ), 34 
Bergman norm, 66 
bi-infinite, 11 
blue, 40 

C (max distance to a ray), 164 
Cayley graph, 14 
coboundary, 34 

orbits in, 73 
oriented, 70 

colour, 12 
connectivity constant (K), 33 
cross an edge, 13 

d(A, B) (distance between sets), 10 
d(x, -y) (distance in r), 14 
D (r, T'), 147 
db(T, T') (distance in a G), 147 
decide, 23 
depth-first search 

for paths, 24 
for vertices, 25 

detect, 23 
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disconnects, 11 initial 

E (constant of uniform path-connectedness), 
- segment, 11 

- subword, 10 
154 

- vertex, 13 
edge path, 13 
ends, 17 KBMAG, 22 

ends, 108 
labelled graph, 12 ext. paths, 139 
labelled with a generator, 14 

extension, 11 
language (accepted by an FSA), 20 

exterior paths, 136,137,165 
length outside radius N, 137,165 

of a word, 10 
exterior paths condition 

of an element, 10 for automatic groups, 178 
lies inside/outside, 11 for hyperbolic groups, 137 
loop (in an FSA), 19 

f (fellow-travelling constant), 22 
fellow-travelling constant, f, 22 
finite state automaton, 19 
FSA (finite state automaton), 19 
fsaenumerate, 99 
further in (orbit), 86 
further out (orbit), 85 

mark, 13 
meet, 11 

naive distance (5b( 146 
nested, 65 
next edge, 44 
next vertex, 44 

G (the group), 9 
G-nested, 65 
G-translate, 16 
general multiplier, 20 
geodesic, 11 

ray, 11 
CM, 20 
good automatic structure, 105 
graph 

labelled, 12 
growth, 107 

linear, 107 

hyperbolic, 16 

idG (identity element), 9 
im (image), 9 
incident, 12 
infinite path, 11 

orbit 
further in, 86 
further out, 85 

orbit (in a coboundary), 73 
oriented, 13 

padding ($), 20,140 
patches, 52 
path, 10 

edge -, 13 
in an FSA, 19 

path depth-first search, 24 
path metric, 12 
prefix, 10 
prefix closed, 21 
pruned, 102 
pruning, 102 

quasi-path-connected, 83 
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ray, 11 
in r, 15 

red, 40 
relator, 9 

on the same -, 35 

shadow (of a patch), 151 
short-lex, 21 
SM(T, T'), 146 
S, (sphere around idG of radius n 

in r), 15 
ST, (g) (sphere around g of radius Tv 

in r), 15 
solvable word problem, 26 
spanning subgraph, 13 
splits, 18 
stab( ), 10 
start state (of an FSA), 19 
state, 19 
strong component, 107 
strongly geodesically automatic, 106 

terminal vertex, 13 
travellable, 102 
tree, 13 
types of balls, 141 

uniformly path-connected, 154 
unique representatives, 21 

vertex depth-first search, 25 

WA, 20 
word, 10 

accepted, 19 
of G, 10 

word acceptor, 20 
word problem, 26,110 
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