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Abstract

An optical wireless transmission technique represents an attractive choice for many
indoor and outdoors applications within fixed and mobile networks. It has the advantage of
providing a wide bandwidth that is unregulated worldwide, with availability to use it in a
very dense fashion, and potentially very low cost. Due to the high attenuation suffered by
Infrared radiation through the air, operating low power transmission sources, and generally
adverse signal to the noise environment found by ambient background light, where the
optical signal is typicaly at it is minimum power level when detected. A high sensitivity
and high selectivity receiver will be imperative for such applications as subcarrier
multiplex systems, millimetre-wave radio over fibre and other wireless optical system
applications.

The thesis details the research, design, and optimisation of a novel, low-noise front-
end optical receiver concept using a photoparametric amplifier (PPA) technique, in which
the detected optical baseband signal is electrically amplified and up-converted to upper-
side frequency, based on the nonlinear characteristic of the pin photodiode junction; the
desired signal passes through a further signal processing stage, and the original baseband
signal is recovered again, using the concept of the superheterodyne principle. The designed
DCHPPA receiver acts in a parale manner to a conventional double superheterodyne
detector system, but without the noise penalty normally incurred in the first stage. The PPA
is used instead of a resistive/transistor based mixer at the first stage. DCHPPAS have the
properties to provide very high gain, with high selectivity, combined with avery low noise
operation.

The research is conducted from three aspects. theoretical analysis, modelling and
simulation, and practical implementation and result analysis. The three approaches
followed the same trend shown, and the results correspond closely with each other.
Theoretically, a new non-degenerate PPA mode of operation is discussed, in which the
applied dc bias to the pin photodetector is replaced by the applied ac pump signal. Thisis
shown to be advantageous in terms of the desirable characteristics for PPA operation,
leading to improved conversion efficiency and the potential for low noise operation. PPA
was shown to behave more optimally with load resistance which was much lower than
normally used in the common optical wireless receiver-amplifiers. A new PPA gain theory
was derived and optimised accordance with the origina gain theory, PPA input/output
admittance power was anaysed for optimum power transfer. More accurate DCHPPA
circuit configurations were modelled and simulated using nonlinear simulator tools (AWR)
which help to understand and optimise system performance, particularly device parameters
and characteristics. The full DCHPPA system was implemented practically, and tested in
VHF and UHF as a sequel to the simulation configuration, which subsequently exhibited a
34.9dB baseband signal over the modulated optical signal; by employing a chain gain
DCHPPA cascaded configuration, 56.3 dB baseband signal gain was achieved. The PPA
noise was aso measured and analysed, which satisfied the tough front-end optical system
reguirements.
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Chapter 1

1. Introduction

This chapter present an overview of optical wireless communication systems and describes
the challenges and the key motivations of infrared communication in the design of high
sensitivity front-end optical receivers. It focuses on the concept of a photo-parametric
amplification techniques using up-converter optoel ectronic mixing that provides low noise
photo-detection, amplification and frequency conversion, with the aim of recovering the
baseband electrical signal at high gain with better signal to noise performance. At the end
of the chapter, the organization of the thesisis given.



1.1 Overview

In recent years, interest in optical wireless communication (OW) has increased.
Since data rate has reached over 155Mbits/s when operate in a line of sight (LOS) mode
[1]. The techniques and applications found within OW communication have become more
advanced and interesting, and are a strong candidate for high speed indoor/outdoors optical
communication [2-7]. Moreover, it has much promise as an access technology, because of
offering flexibility, mobility, and cost-effectiveness [8, 9]. Recently, there has been a
strong need for high bandwidth with high data rate communications (i.e. Gbits/s)
particularly with the increase in demand for real-time and multimedia applications in both
communication and computing. This may provide a method of achieving a high quality of
service (QoS) with alarger growth in user density. Light, as a medium of communication,
offers unequalled channel bandwidth, and is capable of data rates in the terabits per second

range (Thits/s) whether travelling through optical fibre, or potentially by OW.

OW communication can be classified into two main categories. visible light
communication (VLC) and infra-red communication (IRC). Indoor IR optical wireless
communication was first proposed in 1979 [10] and has found use in homes and offices
with devices ranging from TV remote control to the Infrared Data Association (IrDA) port
[11] on portable devices which are likely to proliferate in the future to become the leading
serial port alternative to USB and IEEE1394 connectivity. One way of achieving high
speed indoor optical communication is by using infrared radiation [7, 12] particularly at the
longer NIR wavelengths (1550nm). However, operating in anear-visible IR spectral region
(780nm to 850nm) principally makes use of very low cost optoel ectronic components, due
to the available commercia infrastructure and the availability of efficient and reliable
direct semiconductor diode-based detectors at these wavelengths (i.e. silicon materia). In
addition to achieving comparable quantum efficiencies, particularly when operating at a

2



higher wavelength. Therefore, high speed and better receiver sensitivity can be achieved

due to the lower energy per photon implied.

OW offers many advantages, over other RF communication networks (i.e.
LAN,WAN and MANSs) and can be seen as a complementary scheme to RF systems.

Advantages can be summarised as follows:

It does not require expensive licences in order to use spectrum.

o It can provide a high fibre-like bandwidth [13, 14].

o Low cost and ease of implementation, as it offers the lowest cost per bit of any
other access technology (i.e. RF spectrum licenses are expensive, and there are
bandwidth restrictions for unlicensed spectrum).

. Freedom from interference, particularly in indoor applications.

o Small, secure, and consume little power (i.e. very important for mobile terminal
system).

. OW is able to add communication to illumination with little extra cost (i.e. send

information via room illumination, traffic lights and signboards) and provide

other functions that can be useful for many applications such as the last mile
access, CATV, infofuelling and teleconferences (see table 1.1 for a brief

comparison of RF and IR Properties).

The bandwidth of OW is about 10,000 times higher than the highest frequency used by RF
technology. Also more than 1000 independent data channels can be grouped into the air on
a single optical beam, using wavelength division multiplexing (WDM) and sub carrier
multiplexing (SCM), thus providing a potential bandwidth ten million times that of any RF
solution [15]. It aso offers high data rates via low dispersion at operational

wavelength[16]. Recently, fibre optic networks have become widely available to homes,



industry and commercia buildings, resulting in area need for cost-effective indoor OW
devices (i.e. like-fibre) to benefit from the high capacity provided by fibre communication
(i.,e. FTTH). Comparatively speaking, IR-OW systems with low implementation
complexity, alicense free spectrum access technique and better sensitivity/selectivity could
be an attractive aternative when fibre deployment is difficult or due to the rapid
deployment required to connect point-to-point FSO networks (i.e. time and cost effect). An
analogue IR-OW system could be a candidate for a practical solution for millimetre wave
radio over fibre and using a SCM/WDM system, which potentially could combine high
bandwidth availability in optical communications, with the mobility found in RF

communication systems.

Table 1.1 comparisons of RF and IR properties for wireless communication

Property RF IR
Spectrum license Expensive Free
RF interference Yes No
Path loss High High
Multi-path fading Yes No
Multi-path dispersion Yes Yes
Coverage Medium Low
Technology cost (Transceiver) Variable Potentially low
Input represent Signal amplitude Signal power
Mobility Yes Some configuration
Transmission ranges Long range Short range
Dominate noise Interference Ambient light
Wall penetration Yes No
Security low High
Bandwidth limitation Regulatory, Radio Communication Photo-detector/Preamplifier,
Agency RCA-UK Diffuse channel

1.2 Challenge and Motivation

In spite of the advantages of IR presented in the previous section, there are some
challenges in employing IR-OW systems in our daily lives. The greatest challenges in
outdoor systems is atmospheric attenuation due to fog, rainfall, snow and mist, and hence
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high power transmission is required. Other challenges include eye safety, particularly if a
laser diode (LD) is employed indoors, so the emitted optical power has to be strictly
restricted according to the Maximum Power Exposure (MPE) value limit defined by [17]
to be 1 mW for atypical beam, (or 5.7 Wm), depending on the wavelength of the light.
However, light emitted diode (LED) with low power and low wavelength transmission are
preferable for indoor applications. The dominating noise source in IR-OW comes from
background interference sources, ambient light which is a combination of incandescent
light, fluorescent light and sunlight can raise the level of photonic noise in the receiver, and
hence, can impair performance with respect to signal to noise ratio (SNR). Using optical
filters helps to diminish this ambient light [ 18]. The power spectral densities of background

lights sources with the sensitivity of photodiodes (PD) are shown in figure 1.1[19].
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Figure 1.1 Coincidence of background radiation vs. photodiode sensitivity

Other indoor challenges are the network transmission topologies, which are
classified according to the degree of directionality of the transmitter and receiver, IR links
can be classified as line-of-sight (LOS) and non-line-of-sight ( i.e. diffused configuration)
[19, 20], each topology having advantages and disadvantages [15, 21]. The direct LOS,

with careful straight alignment, can minimize the multi-path distortion, and provide better



power efficiency, as shown in figure 1.2 [22]. This is because the emitted energy is
concentrated into a narrow beam (i.e. more power per unit area) and therefore, high gain
can be achieved, which leads to an increase in receiver signal. In the diffused configuration
approach, straight alignment is not required if a wide field of view (FOV) is provided for
both transmitter and receiver. This means a large area of detection is required for the
photodetector to have more power per unit area. The issue is that large capacitance is
required which is not favourable for high frequency response and receiver bandwidths
according to the 3dB corner frequency expression. Moreover, it presents maximum multi-
path distortion that can raise inter-symbol interference (1SI) which becomes critical at
higher data rates. Hence such a configuration can have low gain and poor receiver

sensitivity.

Received Power (W)

Rotation (degree)

Rotation (degree)

Figure 1.2 The received power within an empty environment as function of orientation

As mentioned earlier, undesired background noise sources induce noise currents
(i.e. a steady state DC current). Also, due to optoelectronic conversion, additional shot

noise (i.e. dark current and bias current) and other resistor thermal noise ( i.e. bias, bulk



and shunt resistor) are present. These noise sources induce additional noise currents in a

single photodetector receiver, which will significantly degrade receiver performance.

For al short range, indoor applications, intensity modulation direct detection
(IM/DD) is the only practical transmission technique [23], and the attenuation can be low
for short link transmission. Amplification of weak received signals is necessary because of
several factors. Firstly, mobility implies a lack of alignment between transmitters and
receivers, resulting in poor SNR. Secondly, the issues of IR handover can result in
problems of signal level. Thirdly, the channel impulse response for a given source and
receiver can affect signal levels and hence SNR. Fourthly, eye safety constraints restrict
signa level as well. Therefore a highly sensitive receiver is required, especialy if the
configuration is diffuse, or quasi-diffuse, which aso limits the bandwidth and therefore

datarate[5].

Designing a high sensitivity receiver is acrucial component, and is not straightforward, as
the issue is a matter of dealing with the conflicting requirements of gain and bandwidth.
Another very important consideration is noise performance which interacts with the
previous two requirements adversel; some techniques have been devoted to this issue, such
as those presented for Analogue/digital systems [1, 5, 8, 24-27]. Different optical detector
interface techniques are presented in different application areas, with most of them being
based on photodetection devices, followed by front-end amplifiers, and consequent
demodulation within the limit of the acceptable bit error rate (BER), as shown in figure
1.3. Examples of these amplifiers are: the High-impedance front-end amplifier, and the

Tran-impedance front-end amplifier configuration [21, 22], as shown in figure 1.4.
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Figure 1.3 Block diagram of front-end optical receiver system

These approaches afford a good compromise between bandwidth and noise, in which
bandwidth is influenced by the capacitance of the PD and the mgjority of noise in these
amplifiers is due to the effective load resistance (i.e. the load resistance in first approach
represents the input impedance of the amplifier in parallel with the bias resistor, whereas
the load resistance in the second approach represents the amplifier feedback resistor); yet

sensitivity improvement hasled to a bandwidth trade-off.
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Figure 1.4 Different basic amplifiers configuration



An approach to improve interfacing effectively and maintaine bandwidth at low noise
pendlty is that of combining the transimpedance approach with bootstrapping amplifiers
[28], the latter reduces the effective capacitance of the PD, which in turn allows a
relatively high feedback impedance to be used; this can reduce noise and increase
sensitivity. Measurement performance of these receivers using PIN and avalanche
photodiodes (APDs) for different dimensions are presented in [5]. The APD gives a
sensitivity advantage over PIN receivers [20] because it exhibit current multiplication
inside the detection junction. However, it is more costly, and requires high operating
voltages (typically 200-400volts) [29], and hence, is predominantly used in specialist
systems where performance is key, this made them unattractive for use in termind
equipment. Where low-cost is a priority, PIN receivers are preferred which require low

power to operate and more suitable for most indoor applications.

Although the above approaches can offer bandwidth and sensitivity enhancement,
this is not the optimum situation for the front-end amplifier in terms of noise figure, as the

total noise figure of the receiver is a consequence of the Friis formula:

F2 _1 F3 _1
G + GG F o, . (1.1
1 1~2

Fr=F

+

Where F; is the overall noise figure of the receiver, F; is the noise figure of stage 1 (i.e.
photodiode), and G; is the gain of stage 1, F; is the noise figure of stage 2 (i.e. pre-
amplifier LNA) and so on as shown in figure 1.5. Ideally, of course, G; should be set to as
high a value as possible to minimise the effect of F,, and this therefore makes the first
stage crucial. In contrast, the high gain at early stages is the better with respect to the
receiver noise figure. Other important considerations in this research is to set a high G,

which can minimise the effect of later stage as well as help to increase the overal receiver



noise figure, and hence increase the receiver’s overall gain and so on. The man

consideration is that the dominate noise source is receiver pre-amplifier noise.
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Figure 1.5 Front-end optical receiver with noise figure

Another important issue with the front-end optical receiver design is the frequency
selectivity feature, which is as important as sensitivity when considering Sub-carrier
Multiplex Systems (SCM), millimetre wave radio over fibre, and other wireless optical
system applications. In contrast, an optica wireless typically uses simple baseband
modulation schemes that require very limited signal processing and have low latency [13].
Moreover, the ability of up/down conversion flexibility, in such a system, provides great
utility to OW and FSO links that are to operate outside of any specific cyclostationary
noise [10] or bandwidth constraints imposed by multi-path dispersion[30]. In other words
the separation of the input and output signal can be seen as an issue for direct baseband
amplification. According to the above and previous chalenges, the issue is a matter of
dealing with the conflicting requirements of gain, bandwidth, frequency selectivity, power
effective, cost effectiveness, circuit complication, delay, signal interfacing. In addition,
another very important consideration is system sensitivity (i.e. noise, SNR), which needsto
interact with the previous requirements non-adversely. However, the ultimate measurement

of the value of any communication system (i.e. RF or Optical) is whether it can cost
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effectively transmit broadband data across the medium link with an acceptable bit error

rate BER ( typically taken as 10°° or better) [31].

There are ways to combat the issues and the challenges been discussed above,
namely to make better use of the photodetector devices at stage-1 (i.e. photodiode) if the
requirements for high bandwidth are not too stringent. However, high bandwidth in
anal ogue transmission applications is not aways preferable if narrow band applications are
required; this can be explained if the bandwidth of the system is much higher than the data
rate. This broadening will be insignificant, but the system noise will be an issue. A concept
caled the photoparametric amplifier (PPA) may be employed. This configuration takes
advantage of the phenomenon of parametric amplification which has been exploited in RF
microwave (MW) communication systems [32, 33], but only relatively recently in optical

communications asillustrated in the next chapter.

1.3 Photoparametric Amplification Approach

The term photoparametric amplifier (PPA) is used to describe a system in which
photodetection, amplification, frequency changing or harmonic generation can be achieved
by varying parameters within a single photodetector device. The PPA can be seen as one of
the attractive approaches to achieving very low noise amplification by using a purely
reactive amplifier (almost exclusively variable capacitance). In the PPA, the photodiode
converts modulated optical input into a photocurrent, which is then parametrically
amplified. A pump modulates the junction capacitance, producing parametric amplification
at low noise. The main advantage of the PPA isthat it combines optical detection with very
low noise amplification; this is because a pure reactance is being used as the amplifying
mechanism. Imperfections in the device, such as bulk resistance and stray capacitance, lead

to non-optima performance. Theoreticaly and ideally, the PPA can be considered as
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having a zero dB noise figure. The unique frequency selectivity features seem to be
particularly attractive for Subcarrier Multiplex Systems (SCM), millimetre wave radio over
fibre, and wireless optical system applications [34]. Also, it has become much more
relevant due to an increase in interest in Wavelength Division Multiplexing (WDM) and
SCM, in which many forms of signals are transmitted and bandwidth can be up to a few
GHz wide, since sub-carriers are independent of each other, and there is great flexibility to

deliver avariety of services to the subscribers.

In the PPA, the amplification depends on pumping the nonlinear capacitance of a
diode, which is similar to electrical Parametric Amplifiers (PA), with the distinction that
PPAs use a photodiode instead of a varactor diode to perform photodetection and
parametric amplification simultaneously. The theory of al parametric amplifiers is well
established and mature [35] .The main advantage of this type of amplifier is the ultra low
noise performance and the unique amplification technique that can increase the sensitivity
of the receiver, with the potential to reduce the cost and the complexity of an optical
receiver circuit [36] Also it can improve the performance of the system as a whole to be
less noisy [37]. Although photoparametric amplification at microwave frequencies has
been analysed [38] and demonstrated experimentally [39, 40], it seems to have received
little attention in the literature since 1965. On the other hand, the basic technique has been
applied using an optical pump (i.e. coherent amplifier) [41, 42]. This type of amplifier
cannot be used in free space terrestrial  links, due to cost and the polarisation issue (i.e.

signal and local oscillator source (LO) need to be coplanar) [34].

The PPA with loca oscillator (LO) has been shown to work in severa
configurations [36-40], in both non-degenerate and degenerate-mode. In non-degenerate
mode, the photodiode (PD) is pumped with RF energy and a photo-detected current can be

up- or down converted with an output signal at idler frequencies w; = wptws. A typical PPA
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configuration is shown in figure 1.6; the optoel ectronic mixing occurring between the two
input frequency components, one being the modulated optical signal at ws, and the
electronic pump at wp , in such anonlinear element, such that there is energy transfer from

the strong pump to the output idler frequency.

Output at various frequency

w i
P ~ C Wi= NWyEmWws
X
Pump source (LO) wp Wwi= NWPEMws
at Wp
Ac@) -
i X |
Optical input Load resistance
RF modulated signal at (ws)

Figure 1.6 Photoparametric amplifier circuit configurations

In the degenerate mode, the PPA operates with the same input and output
frequencies based on the application. However, the amplifier can be more susceptible to
potentia instability due to the need to operate as a negative resistance [37]. Investigative
work suggests that PPAs offer potential advantages over conventiona optical receivers
(PD followed by preamplifier) with respect to frequency tunability [36] and noise
performance [39, 43]. Moreover, it has been shown that the PPA is capable of improving

sensitivity in exchange for very little penalty in terms of circuit complexity [44].

The requirement for optimum photoparametric amplification is that the photodiode
should have low bulk resistance, and a high ratio of maximum to minimum capacitance at
applied voltage, in order to optimise tunability. In addition, it should exhibit efficient
optical detection and good responsitivity. Based on the proceeding requirements, a pin
structure is more desirable than a pn photodiode. This may at first not seem appropriate, as
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the CV characteristic of a pin diode can be less dependent on bias. Nevertheless, in reaity

this has not been found to be the case.

In this research, the aim of this work is to optimise the front-end optical wireless
receiver concept using the photo-parametric technique in which the detected baseband
signal will be up converted to upper-side frequency, and then recovered again using the
concept of the super-heterodyne technique, and hence, improve sensitivity/selectivity at
low cost. Idedlly, this approach should provide low noise across the band to maximize the
sensitivity of all the received channels and have good gain flatness across the band of each
channel, which helps to preserve channel content. A new approach to the design of a front
end optical recelver is based on the non-degenerate up-converter photoparametric
amplification approach at the first stage, instead of a resistive/transistor based mixer. The
problem of signal interfacing is avoided, and the benefit of this, optoelectronic, frequency
conversion and amplification are performed in pure variable reactance impedance (i.e. less
noise). The challenge to obtain high gain, alow noise figure and optimum power transfer
were considered at the outset in the design of stage-1 for the front-end receiver. Thisis by
operating the varactor PD at no external bias voltage, in which the degree of nonlinearity
of CV characteristics is higher, leading to improved conversion efficiency (i.e. greater
conversion gain) and the potential for low noise operation (i.e. better sensitivity); and

better power efficiency (i.e. desirable for mobile devices).

In this approach, the input, as designated, is an optical signal modulated at some
baseband frequency, then up-converted when detected in the PPA approach (i.e. stagel)
and then passed to the intermediate frequency (IF) signa processing unit (stage-2) which
help to utilise the IF signal to full advantage by boosting the selected IF signa to a useful
power level and offering additional gain at low cost with the careful consideration of

component choice. The output of the IF signal unit is passed along to the conventiona
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mixer (stage-3), using the same local oscillator as was the case for the PPA stage-1 for its
local pump source, and then the output of the mixer is channelled through alow passfilter,

from which the baseband modulation can be recovered intact, as shown in figure 1.7.
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Figure 1.7 DCHPPA circuit configuration

This technique is called a double conversion super-heterodyne photo-parametric amplifier
(DCHPPA); this sophisticated arrangement leads to certain matching requirements, yet a
beneficial overall signal gain at low noise penalty can be achieved with a passive mixer, as

found in the SCM optical front-end receiver.

This approach permits a direct detection of the DD baseband signal with more
sengitivity than abasic PD detector alone or followed by pre-amplifier. Thisis particularly
beneficial in analogue optical wireless configurations, due to the generally adverse signal
to noise environment found there. Moreover, the particular merits of this approach can be
quite similar to that of the superheterodyne configuration in the RF system, as it has been

shown to be very useful in obtaining selectivity and sensitivity. This approach is designed
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to be cost- and power effective, and has the aim of increasing the compactness and the
reduction of parasitic effect that lead to economies of scale facilitating the mass production
of, say, the front end optical receive a a very low price, offering substantial yet affordable
benefitsin access networks. The technique is thus quite versatile, offering the prospect of
significant benefits to OW and FSO, and aiding their widespread implementation, as well
as offering improved performance in fibre access network that can be used for optical-to-
RF interface systems using RF, optical fibre and optical wireless links (i.e. fibre hub,

optical fibre termination, optical wireless spot, etc) as demonstrated in [45].

1.4 Organization of the Thesis

The thesis is organized into seven chapters and two appendixes, with the following

chapters are organised thus:

e Chapter 2 provides the necessary background related to this research followed by a
review of a conventional PA technique. A comprehensive review of prior important
work on the development of PPA is presented.

e Chapter 3 provides a new PPA mode of operation, followed by a theoretical
analysis of PPA operation with respect to the amplifier gain expression, maximum
input/output admittance power transfer and general load analysis.

e Chapter 4 presents a versatile model of the DCHPPA circuit, and the result
obtained from employing nonlinear simulation tools that help to provide good
realistic assessment and better performance optimisation.

e Chapter 5 describes in details the experimenta arrangement and circuit
configurations with the result obtained from the practical implementation of the

system as a sequel to the simulation configuration.
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o Chapter 6 presents a brief performance analysis that helps to compare the
theoretical analysis results and verify them with both ssimulation and practical
results, followed by noise analysis.

e Chapter 7 presents the conclusions of the thesis by summarizing major research

achievements and making suggestion for future work.
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Chapter 2

2. Background and Literature Review

This chapter presents an overview of optical communication detection techniques, and
briefly describes the properties of each technique. This is followed by a review of the
conventional parametric amplifier technique, with a brief discussion of the established
Manley and Rowe nonlinear device theory with respect to the three and four frequency
parametric amplifier. A comprehensive review of prior important work relating to the
development of the photoparametric amplifier theory of operation, signa analysis and
practical implementation is presented, followed by the chapter conclusion.
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2.1 Background

Wireless optical communication systems have attracted many researchers since the
early 1960s, when the optical communications ‘explosion’ effectively began. Recently,
with the rapid development of optical systems such as radio over fibre, that operate at
millimetre-wave frequencies, passive optical networks and SCM systems also seem to be
potential technologies for large scale implementation. The interest in this technology has
increased again, and become very important as we move towards being “aways on” and
“aways connected”. Optical communication systems use different optical detection
techniques; these techniques are used to convert the received optical signal into asignal in
the electronic domain, since this is the most appropriate domain for further signal

processing.

Optical detection can be classified according to two main techniques known as
Direct Detection Intensity Modulation (DD/IM) and Coherent Detection (CD). In DD/IM,
the term DD indicates that the receiver measures the optical power of the input signal,
where ‘intensity’ refers to optical power and ‘modulation’ refers to the electro-optical
conversion process. DD is easily obtained because the photodetector generates a current
proportiona to the received optical power, as shown in figure 2.1a. Simply put, it is a
photon counting process where each detected photon may be converted into an electron-
hole pair. The DD receiver responds only to fluctuations in the power in the received field,
where the phase, frequency and polarization information are ignored; unless other optical
signal processing elements are employed, ahead of the photodetector device, such as an
interferometer or polarizers that makes the DD receiver more sensitive to the optical phase,

frequency or polarization, aswell as the intensity.
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The Coherent Detection (CD) technique, which may potentially improve receiver
sensitivity, together with wavelength selectivity, compared with the DD technique,
generaly limited by noise generated in the detector and pre-amplifier except at very high
SNR. Optical Coherent Detection (OCD) is based on the mixing of two optical waves prior
to the detecting with the implication to use a phase synchronous local oscillator, as shown
in figure 2.b; the weak incoming optical signal field is mixed with the strong local laser
signa (i.e. Local Oscillator LO), athird signal is generated at their frequency difference,
called intermediate frequency (IF), The photodetector responds as a square-law detector for
the electrical field, and generates a photocurrent; the resulting photocurrent is a replica of
the origina signal, which is translated up or down in frequency from the optical domain to
the eectrical domain for further signal processing and demodulation; this technique
showed an improvement in receiver sensitivity with more than a 20dB over DD[46]. This
technique was shown to work well in both free space optical communication and optical
fibore communication, and provided an increase in repeater spacing, improved
sensitivity/selectivity, increased the power budget and provided high transmission rates
over the existing route. The theory and coherence properties of signal detection by optical

mixing has been studied in detail in [47-49]; the EDFA is an example of this technique.

The Optical-Electrica Incoherent Heterodyne Detection (OEIHD) technique is
based on mixing the weak optical received signa (incident field) with a strong local
electrical signal (i.e. electrical loca oscillator LO). This technique shares both the
properties of the DD and OCD techniques, the OEIHD receiver responds only to
fluctuations in the power in the received field as DD, which at the same time shares the
advantages of OCD with respect to frequency mixing and power flow transfer, as shown in
figure 2.1c. Photoparametric amplification is an example of this system. Although optical

coherent detection (OCD) can essentially improve receiver sensitivity, its applicability in
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optical wireless mobile systems is limited because of the required matching of the
wavefronts of the signal and local laser [50]. Conversely, OEIHD seems to be more
applicable to optical wireless communication, particularly for mobile termina devices, as

its does not suffer from the matching issue.
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Figure 2.1 Optical detection techniques of (a) Direct Detection (DD); (b) Optical Coherent
Detection (OCD), (c) Optical/Electrical Incoherent Detection (OEIHD-PPA)

21



As mentioned in the previous chapter, the photo-detectors used in optical
communications that perform the best are PIN and APD. Although an electrically-pumped
APD with down-conversion optoelectronic mixing was practically demonstrated in [51,
52], the main drawback in the use of an APD isthe very high reverse bias needed, asit is
shown to operate under 100 and 160 volts respectively ( i.e. not suitable for mobile
devices). Therefore, a photoparametric amplification technique (i.e. OEIHD) based on the

pn/pin structure was chosen for further investigation.

A basic requirement in the design of a baseband optical wireless receiver is the
achievement of high sensitivity/selectivity, as well as a wide-bandwidth; a parametric
amplification (PA) technique was shown to work well in handling a low level received
signa with minimum degradation of SNR with a substantial conversion gain and frequency
conversion at the sametime. A very low noise optical detection may be implemented at the
same time as frequency selectivity in a single junction PD, creating a new definition
known as the PPA. The concept of the PPA was inherited from the conventional electronic
PA, as mentioned before; both the amplifiers can be considered to be mixers (modulators),
in that the input signal causes variation in the energy flowing from the amplifier’s energy
source. The mixer must deliver more power to the output load than the input signal delivers
to the mixer if it is to provide useful gain. Both techniques are based on parametric effect
devices (i.e , capacitance or inductor) which use a nonlinear reactance impedance (i.e.
modulator) for amplification, frequency conversion, oscillations or harmonic generation at
MW frequencies [53-59]. It is necessary to review the microwave PA technique with a
brief discussion of the established Manley and Rowe theory. This can help to facilitate

comparisons of the PPA mechanism with the conventional PA used in microwave systems.

Considerable work has been undertaken to investigate the theory and practice of

parametric amplification (PA). In particular, a definitive reference textbook was published
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by Howson and Smith [32] (i.e. considered as PA “Bible’). Parametric amplification has
been incorporated in many amplifier configurations, such as up-converters, down-
converters, or travelling-wave PAs. These amplifiers are based on nonlinear capacitance
(pure reactance), and not on nonlinear resistance, therefore avoids Johnson noise, resulting
in low noise amplifiers [60]. This low noise amplification technique has been widely used
as a front-end preamplifier for microwave ground receivers in the satellite link, and in
many radar applications, particularly with the new improvement in varactor diode

fabrication that |eads to better receiver performance.

In later years, with the development of more powerful satellite transmitter and
beam forming techniques, the need for ultra-low noise-cooled parametric amplifiers has
diminished substantially [37]. Except in scientific and some radar applications, the demise
of PA in microwave receiver systems was assisted by an improvement in low noise GaAs
FET technology, such as MESFETs and HEMETS, that are adequate for these applications.
The complexity of the PA configuration contrasted sharply with the simplicity of the GaAs

FET approach (i.e. less complicated and required less maintenance).

In paralel with the idea of the GaAs FET technique, the application of three-
terminal transistor-based preamplifiers has been adapted to low-noise optical fibre receiver
amplifiers; many techniques have been developed with respect to bandwidth, gain and
sengitivity as mentioned in the previous chapter. However, when large bandwidths in such
applications as multiple channel television and broad-band ISDN, are considered, and also,
due to increased interest in optical and broadband wireless services, BISDIN and video in
demand (VOD), there is a red need for a suitable front-end receiver technique that
considers both selectivity and sensitivity. In contrast, most of the existing front-end optical
fibre receivers use a double-bal anced heterodyne approach (as found for an SCM receiver),

which exhibits a considerably large noise figure in the receiver as a whole, as the

23



amplification occurrs at a second stage (pre-amplifier), as well as the signa selectivity,
based on the resistive/transistor based mixer (i.e. interface issues). Reverse biased pin PDs
are mostly widely used as photo-detectors in broad-band receivers, as they reach few PF
under high reverse bias, and are capable of better optical efficiency and a better frequency
response; hence, it is interesting to investigate the performance of photoparametric
amplification based on pin structures. The two main sources of noise in the OW receiver:
are background noise (i.e. ambient light as in optical domain), and preamplifier noise (i.e.
thermal noise as in electrical domain); hence, photoparametric amplification seems to be
potentially attractive to simplify the optical front-end receiver using the parametric
amplification. The next section will review the conventional parametric amplifier

technique prior to the photoparametric technique.

2.2 Electronic Parametric Amplifier

The first interest in such an amplifier dates back to 1936. Hartley describes
experiments in which a time-varying capacitance was used; in 1948, van der Ziel pointed
out that amplification which could be achieved using an almost purely reactive element
would be accompanied by low noise. Following this, a classic development of the theory
of parametric amplification was undertaken by Manley and Rowe in 1956, who presented
an exhaustive anaysis of the mixing properties of non-linear reactance[61, 62]. Both
inductive and capacitive parametric amplifiers have been investigated experimentally and
theoretically, and inductive types of amplifier that employ the nonlinear properties of
certain ferrites do not have low-noise properties (i.e. impractical). However, a capacitive
parametric amplifier is based on nonlinear capacitance-voltage characteristics of the

junction diodes ( i.e. varactor diode) do have low noise properties [32].
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In a conventional ac power amplifier no frequency translation occurs, and the
power gan is achieved by conversion from dc power. There are other possible gain
configurations, and these can be classified as: 1) Parametric amplifier,: if power
amplification is achieved by conversion from power at independent frequency (i.e. pump
frequency), with no frequency trandation; 2) frequency changer, the output power is at a
frequency that is different from the input power, such that this device produces such a
modulation product, usually termed a mixer, as the output power is an upper sideband or a
lower sideband; 3) parametric converter: in which the power amplification can be
achieved by conversion from dc power or, aternatively, by conversion from power at an
independent frequency (i.e. LO); 4) harmonic generator, in which the output power is at a

harmonic frequency of theinput signal, and is usually called afrequency-multiplier.

A classical development of the theory of parametric amplification was achieved by
Manley and Rowe; the power flow derived equation can be applied to both the nonlinear
capacitive and inductive energy storage system, as the reactances are characterised by their
energy-storage or memory properties, and the energy for nonlinear capacitance may be
defined as the area under the v-q curve. In referring to figure 2.2, signal energy at source
frequency (ws) is coupled via the tuned circuit to the non-linear capacitance (i.e. varactor),
which is pumped by other independent frequencies with energy at (wp). This pumped
capacitance is assumed to be loss-free. The pump modulates the variable capacitance in
such away that the signal power is amplified by the energy transfer from the pump signal;
the output signal with gained energy can be at the same frequency as the source frequency,
known as degenerate mode, or the output energy can be collected from a chosen
upper/down sideband known as idler frequencies (i), which is = nmy+ mws where m and

n are any integers from zero to infinity.
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Figure 2.2 Idealized conventional parametric amplifier configuration

The general relationships developed by Manley and Rowe are based on three
essential points: the reactance is an energy-storage element; the reactance is lossless; the
pump frequency (wp) and the signal frequency (ws) are independent [32]. The Manley and
Rowe equations to describe power flow in the circuit are:

2P

f > Tl =0 (2.1)

o Mo + No |

z & nP

> > . =0 (2.2)

o Mo+ No

Pmn represents the power at frequency (mostnmp). This derived relationship states that the
total power in the amplifier circuit remains constant, and that the frequencies at which they
are distributed depends on the interrelationships between frequencies that are allowed to
flow by thefilters.

For three frequency parametric amplifier (i.e. parametric converter), the above
relationships can be applied to analyse three—frequencies in which ws, wp and the general
idler frequency (o,=ws +r ®p) are the only frequencies at which the power flows. In this

restricted case, the Manley and Rowe equations become:
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+ L =0 (2.3)
o S &) r
and
Pos , Par _ g (2.4)
o p o

In the adopted convention, power absorbed by the nonlinear capacitance is positive, and
the power given by the capacitor is negative. Operating the amplifier circuit as an upper-

sideband converter, r>0 and o, iS positive; writing equation (2.3) as:

Pov _ 0, (2.5)

I31.0 s

The above equation shows that the power P o, absorbed by the capacitor at input frequency
s results in power given out at frequency o, Since P; , must then be negative. Further,

the power gain is equal to the ratio of output frequency to the input frequency (Av= ®,/ ®s).

Note that the above results apply to a pumped capacitor, which is aso driven by a
signa source of real, finite impedance. The equivaent circuit for the three frequency

parametric amplifier (the most common form) is shown in figure 2.3.

Applied Pump
Vp cos wpt
R Tuned to w; Tunedto w,+r w,
|
— L L
Rq
R,
Ry
V.
s COS Wit Varactor

diode T Ca=C(t)

Figure 2.3 Equivalent circuit for three-frequency parametric amplifier

As seen from the above circuit, two series tuned circuits are connected to the varactor, at

signa and at genera idler frequencies, limiting the current flow through the varactor to
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components at these frequencies. The pumped circuit is omitted for clarity. The transducer

gainisgiven by:

G - 10|ogm£ output power j

availableinput power (2.6)

Where the available input power is taken to mean the input power if source impedance and
the input impedance of the device were conjugately matched, the gain of the PA circuit
configuration is given by:

4RyR,
(Rg+R, +R, —R)?

Where R=— L (2.8)
4ogo,CH(R, +Ry)

G; =10log, [32] (2.7)

The three-frequency up-converter has few of the disadvantages of the negative-
resistance amplifier (i.e. susceptible to potential instability), has been little used. ; For high
gain, the frequency ratio must be large [32]. To circumvent some of the disadvantages of
three-frequency devices that have been outlined, a complex device was proposed, named as
a four frequency device, in which there is pump frequency (wp), signal frequency (ws), idler
frequency (wpt+ ®s) and an additional second idler frequency (wp- ws). The power relation is

given by:

- 2 (2.9)

Hence, very large gain can be obtained by operating this device as an up converter,
without the need for negative input resistance, if it is possible to match the variable

capacitance into the associated input and output circuit [63].

According to the above parametric amplifier (PA) analysis, it may be seen that a
problem now occurs in the employment of this well-established theory in the case of the

photoparametric amplifier, as the PPA, by comparison, has no direct electronic coupling
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between the input path and load circuit, as the input is optically coupled, and this does not
lend itself to the PA approach outlined above, and particularly to the equivalent term to
source impedance (Rg) is an infinite resistance, which would imply a Gt (equation 2.7)
found in PA. Therefore Manely and Rowe's expressions do not seem to be readily
applicable. However, Khanifar and Green have reported a different approach [40] to
deriving the gain equations that allow the signal energy to be externaly coupled by the

incident light directly into the varactor-PD, as discussed in next section.

2.3 Photoparametric Amplifiers Review

The use of photodiodes for photoparametric operation was first predicted by
Ahlstrom et a in 1959 [64], and was first demonstrated by Saito and his co-workers in
1962 [65]. Shortly thereafter, Sawyer reported the successful operation of a negative
resistance photoparametric amplifier in 1963 [66] and showed an anticipated increase in
detectivity using the parametric operation. He also advised that the diode be cooled to
reduce the internal thermally generated noise sources, so as to allow the signal to be greater
than the background noise, and hence achieve a better SNR. Shortly after, the noise
performance of photodiodes in parametric amplifiers was analysed by Garbrecht and
Heinlein in 1964 [67]. Their analysis showed that the PPA arrangement has a poorer
sengitivity than a photodiode followed by separate pre-amplifier. Their analysis stated that
the shot noise at idler frequency is additionally transformed into the signal circuit, which
increases the total noise power and hence degrades the SNR of the parametric receiver,
whereas the contribution of the shot noise to the SNR is always less in case of a PD

followed by a pre-amplifier.

A detailed analysis of the noise performance of the photoparametric amplifier was

then carried out separately by Saito and Fujii in 1964 [43], and Penfield and Sawyer in
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1965 [38]. Their analysis corrected the concept finding on [67] with respect to the PPA’s
poor sensitivity as compared to PD, followed by pre-amplifier, in different ways. First, the
authors used an insufficient equivalent circuit of the PD when the pumping voltage was
applied; and the proper design of photodetector should maximise the SNR at the signal
frequency. They aso made an incorrect Thevenin transformation by failing to take into
account that the nonlinear capacitance involved is time varying. Second, the shot noise at
the signal frequency for most microwave PDs is smaller than the thermal noise, and hence,
the shot noise at idler frequency can be properly neglected. The choice of fairly small
values for (og/m;) to reduce SNR degradation from series resistance (rs) will cause alarge
reduction in shot noise at the idler frequency. Furthermore, the maximisation of the SNR is
performed by selecting an optimum depletion field width to minimize the combination of
the effect of the junction capacitance and transit-time signal reduction. Also, by employing
the PD followed by the varactor parametric amplifier, as shown in [38], the principle noise
limitation on both PD and the varactor parametric amplifier is the parasitic series resistance
of the diodes, and if both operations took place in a single junction, the noise would be
reduced, because the signal would not have to travel through both series resistances to get
from the detector to the parametric amplifier. Their analysis shows that the best SNR is
obtained from PPA rather than from a PD followed by separated PA. Moreover, the gain
and noise properties of the photoparametric diode are expressed in terms of the gain and
noise of a hypothetical amplifier coupled with a smple non-parametric photodiode. One
advantage of operation as PPA is that a circulator is not needed, and it is not necessary to

pump the diode hard to get gain.

In contrast, Penfield and Sawyer predicted that if high-Q photodiodes (i.e. figures
of merit) are employed, the photoparametric amplifier should provide an amplified output

with an SNR of nearly equal to that of the un-amplified output of the same photodiode.
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This prediction was experimentally confirmed in 1966 by Grace and Sawyer [68], who
utilised a specially fabricated silicon (Si) device with a p-v-n-n" construction design for
excellent photo detection properties, but also retained a high Q for (a) good parametric
operation; their measurement involved a degenerate mode of operation at UHF (i.e.
690MHz) for the case of (wg/wi=1) and confirms the low-noise features predicted. The
measured noise figure (F) of the whole receiver was 13.5dB, and the computed value of
the noise figure (Fpa) Of the PPA was 3.4 dB. The value agrees, within experimental error,
with the 3.0 dB vaue calculated in [38]. A more specific object is to provide a
photoparametric amplifier semiconductor device, in which amplification is achieved

without any degradation of photodetection capability.

In 1964, Roulston [69] made a similar theoretical analysis for the Photoparametric
up converter and the PD, followed by a parametric amplifier, with respect to SNR, the
performance being comparable to typica photomultipliers (efficiency of a few per cent)
are obtainable, and the sensitivity of the PD relatively to the photomultiplier isimproved if
compared on the basis of SNR greater than unity. Also shown in photo-parametric up-
converter circuit analysis, if the shot noise contribution is less than 10®A, it introduces
negligible noise. In addition, the reverse current must be reduced to 107°A, otherwise

slight cooling is required.

Roulston again reported a similar analysis for the photoparametric up-converter
system in 1968 [39], which consisted of a single triplate line with one coaxia output
connected to a circulator, through which the pump is applied, as this can provides a
convenient method for applying the pump to the diode and extracting the up converted
signal, while at the same time isolating the load from the up-converter. The output was fed
to a classic mixer via a suitable attenuator and phase adjusted, and the output from the

mixer was then at the original baseband. Experimentally, the light was modulated from a
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few hertz to an upper limit of about 10MHz (i.e. the determined bandwidth of the triplate
circuit). The results were compared with other optical detectors which can be summarised
as follows. the photoparametric up-converter is a potentially useful system for optical
communications, and can give results that are superior to those of a photomultiplier.
Furthermore, the system is optimum from the point of view of SNR for a given optical
power and signal bandwidth. Moreover, in terms of the practical value of SNR, eg., as
required for communication system with a threshold of 12dB, the up-converter would be
about six times better than a photomultiplier. The sensitivity factor, F, was measured in
two bands (i.e. IF bandwidth), 1 MHz and 7MHz, with results of 1.3*10° and 4.4*10™
respectively. The junction which can be used for optimum photo parametric amplification
should have values of 1-pF capacitance and 7-ohm series resistance. The author did not

clearly define or measure conversion gain in hisanalysis.

Other theoretical analyses were reported by Tandon and Roulston [70] in 1973,
who compared the performance of the APD and the photoparametric up-converter (PPUC)
with respect to SNR. The APD and PPUC were compared for modulation frequency
below the diode transit-time cut-off frequency. The PPUC resultsin an SNR that is better
than the SNR of an APD a low bandwidth (i.e. IMHz); it also shows lower noise
equivalent power (NEP) for 1 MHz bandwidth, but for 100 MHz, the APD has lower NEP
and better SNR. Furthermore, additional analysis was carried out to analyse the effect of
base parameters on SNR in silicon P*-N-N*  PPUC diodes [71]. It was found that the
choice of base region parameters resulting in the maximum SNR showed that, for small
bandwidths, the shot noise dominates and results in the best SNR. For thermal noise
limited case, the optimum base parameters were found for different wavelengths of
incident radiation and for large bandwidths, and that thermal noise limits the value of SNR.

A similar result was reported by Roulston in [72], who compared the avalanche photodiode
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systems (APD) and a photo-detector system consisting of pin photodiodes, followed by a
base-band parametric up-converter. The overall noise performance was shown to be
potentially better than that of existing APD at a bandwidth of less than or equal to 100
MHz, and the NEP is much lower, but at a bandwidth of over 100 MHz, APD starts to

perform better.

Mears and Bachman [73] presented a theoretical and comparison study for low
noise amplification for wide-band optical and IR heterodyne receivers, based on two
detection methods, a pre-amplifier and PPA. They showed that the preamplifier technique
only satisfied the noise performance or bandwidth performance, but not both. However,
low noise and low bandwidth were easily achievable using the PPA, but a wide-bandwidth
is harder to achieve. A similar noise analysis was reported by Korneichuk [74], who
showed numerically that the sensitivity in the PPA is much better for an APD receiver for

bands of up to 320MHZ, but for very broad pass bands (i.e. >100MHz), an APD is better.

Most of the research works listed above were undertaken in an attempt to evaluate
the potential of such photoparametric receivers, compared with widely accepted techniques
at both UHF and MW frequencies, where a photodetector or an APD is followed by a
separate low noise amplifier. It seems that the PPA has received little attention since the
1960s, and, by and large, the pin-FET structure has been favoured for receiver
implementation in optical communication applications. As mentioned earlier, the recent
interest in optical and broadband wireless services, such as SCM and WDM, has renewed
interest in the simplification of receiver systems, as the sub-carriers are independent of
each other. This provides flexibility for configuring the system to deliver a variety of

services|[75].
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Khanifar and Green renewed interest in the photo parametric low noise
amplification PPA in 1992 by publishing a number of papersincluding theoretical analysis,
findings and experiments involving the PPA. Their small signal time-varying analysis [40,
76] showed that the gain for non degenerate mode is proportional to the ratio of an upper
side band to the signal frequency (wi/ws), which is consistent with the Manley and Rowe,
by introducing a new correction factor called (B8), added to the conventional gain equation.
This correction factor is related to the device structure and the operating point, and f is
derived from the pump voltage (V,), built in potential voltage (V) and applied bias voltage
(V). The practical system operates with high frequency, which requires a MW structure.
A circulator was used to pump the PD (0,=930MHz) and extracted the upper side
frequency (wj= 933MHz), as shown in figure 2.4 [40]. The investigation resulted in an
11dB up converter gain over the baseband signal received from the commercial laser
diode. They reported further practica work using a waveguide setup at X-band (i.e.
8GHz). The circuit was operated under non optimum conditions (i.e. noisy pump). 0.1IMHz
and 7.998GHz frequencies are used for signal frequency and pump frequency respectively,
the practical measurement demonstrated a 22dB up converter gain and a 9dB signal to
noise improvement. Further more, they reported a direct baseband circuit layout, the upper
and lower side-bands (idlers) generated across the junction were short circuited and phase
adjusted to be reflected back; the sidebands across the diode were parametrically down

converted to the baseband, giving their energy to a baseband signal.

Khanifar et a [36] reported results achieved by operating the PPA in the degenerate
mode; the practical measurement was based on a fabricated semi-insulating GaAs pn and
pin junctions, which indicated that the amplifier gain improvement was observed in
comparison to a commercia junction device, but the quantum efficiency appears to be

somewhat lower than that of the commercia diodes. They aso stated that amplification in
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the degenerate mode is possible, but at the expense of bandwidth, and the stability of
amplifier has to be ensured. Also, a pn junction, with a hyper-abrupt impurity profile, had
the best CV characteristics for the purposes of parametric amplification, but did not show

their comparison results, nor the obtained amplifier gain.

Oy . A
Photodetector Microwave
diods Spectrum A
Analyser LSB=f,f; USB=f,+f;
j Microwave F.=3MHz
. signal
Modulated Light generator | | “ | ‘
| >
* Detected * *
signal
Modulated ? s ? F=930MHz
optical signal
(@) (b)

Figure 2.4(a) the experimental setup and (b) the spectrum of signals across the PD

However, the measured results using the fabricated pn diodes in direct detection and up-
conversion mode were indicated in [77]. The experimental amplifier circuit consists of a
bias-tee to supply the bias voltage and a three-stub tuner, used as a convenient method to
pump the junction and extract the output signal at idler frequencies. The configuration was
successfully tested using an optical fibre link. The experiment was conducted in the MW
frequency range, and the optical signal was modulated at 5 MHz (o). 900MHz (wp) Was
used as a pump frequency; the PPA up-converter circuit exhibited 16.55db gain at a
frequency of 905MHz (wp+s). Their work was also carried out to measure the performance
of the amplifier in down conversion mode, where wp was set to 1890MHz and s to

990MHz. The down conversion gain measured at 900MHz was somewhat lower than the
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theoretically predicted value from numerical analysis (i.e. dmost less that 1 dB conversion

gain) and the issue was related to the experiment setup.

Green and Khanifar [78] examined the PD junction structure for parametric
amplification, their experiment being based on the fabricated junction found in [77]. The
designed PD aimed to be more suitable for a photo parametric mode of operation with
good optical conversion efficiency and high nonlinear capacitance-voltage (cv)
dependence. It exhibited nearly a 10 times lower optical conversion efficiency than the
commercia junction, but in terms of up conversion, photo parametric amplification
outperforms it. For up conversion from 10 MHz to 1 GHz, the designed junction offered
17dB of gain, in comparison to 12dB of gain by the commercia junction diode. Their
analysisin [79] estimated that a variation of the nonlinear capacitance Cpax/Crin Of greater
than 10 is needed for efficient parametric operation. Also, it was reported that the PPA
offers better noise performance than direct detection. Their most recent work was
published in 1999 [37], in which they presented a ssimulation and practical measurement
that helped to investigates the performance of various modes of operation (up converted
and down converter). Their numerical analysis was based on HP simulator MDS, which
exhibited a power gain of 17 db in a degenerated mode over a bandwidth of 25MHz, with a
1.1dB noise figure (i.e. 5 ohms series resistance) being predicted as reported in [79].
However, very low power gain was achieved in the practical configuration, which verified
their results reported in[77]. There was an observable difference between theory and

practice, due to using a different applied frequency and circuit entitiesin each case.

Idrus and Green have undertaken the most recent investigation of the PPA [80-83].
Their work includes the modelling and practical implementation of the PPA. Their noise
analysis shows that, by taking a typical PPA gain of 20dB, and both the series and load

resistances to be 50 ohms; the PPA noise factor (F) will be 1.05dB, so that, the PPA thus
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does not change the SNR very much if the gain is A>1. If the gain is unity, the PPA only
acts as azero loss mixer, resulting in F=3 to the system. They carried out a measurement of
the performance of the amplifier in the up-converter mode. Experimentally, the amplifier
was configured to detect alaser optical signa via a pn junction, and the source signal (ws)
was modulated at IMHz. A pump frequency (wp) of 89MHz was used, with the designed
up converter circuit offering 7dB gain at a frequency of 90MHz (wp:s). The Amplifier
heterodyne circuit consisted of acommercial crystal filter, connected to the pn PD, through
which the pump was applied. An output crystal filter was used to extract the up converted
signal. The output was fed to the active mixer via a suitable attenuator and phase adjusted,
and the output from the mixer was then at the origina baseband. Although the system
resulted in a 7.4dB gain over the original baseband, the amplifier circuit configuration
seemed to have many drawbacks, such as the fact that the crystal filters being used did not
provide any isolation; second, the crystal filter had a maximum input power level of O
dBm. Hence, any pump signal over 0dBm lead to unstable conditions for both input and
output crystal filters; third, an active mixer required low oscillator input power and
additional dc power supply; fourth, the system did not provide any isolation to prevent the
returned back signal from the active mixer, as the PPA was very susceptible to any other
non-required signal that may be involved in optoelectronic mixing. The PPA is aso
susceptible to any shunted reactance impedance, and therefore isolation is essential for low

signal parametric amplification.

A further literature review on the ssimulation and modelling of photoparametric
amplifiers will be presented in chapter 4, which helps to give a more complete picture of

the main advantages and drawbacks of each reported work.

37



24 Summary

It may be summarised that there is much scope for further research on device and amplifier
circuit optimisation, and this is expected to enhance the performance of the amplifier. The
OEIHD technique is more suitable for optical wireless communications. Thus far, most of
the reviewed work did not consider the figure of merit of the varactor photodiode with
respect to its nonlinearity characteristics and its the operational range under the parametric
amplification concept (i.e. the PD operates in conductive mode, and has biased in the range
of -0.5 to -10 Volts). Most of the experimental and simulation works reported were based
on a photodetector with a pn junction structure, as it was found to be more suitable for
parametric amplification, as it performed much better than the pin structure, whereas the
latter can be amost constant with bias-voltage variation, due to the large intrinsic layer.
However, the reversed pin photo detectors are shown to perform well in broad-band
receivers which, open up the possibility of further investigation into the employment of
this structure for photo parametric amplifications. Reported test-bed works were only
demonstrated which were based on a laser wireless transmission link or optical fibre link.
Furthermore, there are some parameters, as well as the amplifier circuit configuration, that
must be taken into account to develop a more accurate gain formula. The gain equation,
founded by Green and K hanifar, needs further investigation and optimisation. Furthermore,
according to the PPA review, there is no work that considers the input/output admittance
power analysis of the amplifier, nor the analysis of the PPA general load impedance, and
the optimisation of the receiver with respect to power efficiency and cost-effectiveness are
neglected in most of the reported works. Therefore, the next chapters cover the PPA
input/output admittance power analysis, general load analysis and receiver optimisation

with respect to power efficiency and cost-effectiveness.
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Chapter 3

3. Photoparametric M ode of Operation and Further Theoretical Analysis

The main concern in this chapter is to provide a further theoretical analysis for the photo
parametric amplifier operation, particularly in a non degenerate mode of operation. A new
PPA mode of operation is presented in which the applied dc bias to the photo detector is
minimised to maximise the sensitivity for such an application. Input and output power
admittance is analysed in which optimal power transfer can be achieved by matching the
input pump signal and the nonlinear reactance impedance itself, and between the reactance
impedance and the output load impedance that lead to potentially better conversion gain. A
new estimated gain expression has been derived, which provides more accurate gain theory
analysis with respect to PPA circuit configuration, photo detector characteristics and
applied pump signal. PPA load impedance has been analysed, which leads to maximising
the PPA output signal at load impedance.
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3.1 Photoparametric Mode of Operation

The photodiode may operate with or without an external applied voltage depending
on the application; these modes are referred to as photoconductive (reverse biased) and
photovoltaic (unbiased) modes. In the photoconductive mode, the PD is often a reversed
bias with a dc source, which can greatly improve the speed of response, optical detection
efficiency and the linearity of the PD. Thisis due to an increase in the depletion region and
consequently, decreases the junction capacitance and reduces the rise time, while
operating in high reverse bias has the accompanying disadvantage of increasing both the
dark and noise currents (reverse bias leakage current and thermal noise due to bulk and
bias resistors), thereby reducing the SNR. In the photovoltaic mode, the generated
photocurrent flows through the shunt resistor, causing a voltage across the diode. This
voltage opposes the band gap potential of the photodiode junction, forward biasing it. The
photovoltaic mode of operation is preferred when a PD is used at low frequencies and low
light levels, particularly when employing a pn junction; however using a pin photodiode
junction with an insulating layer makes the depletion region much wider, which has several
advantages over a regular pn junction, such as reduction in junction capacitance, increase

in frequency response, and optical conversion efficiency.

However, in this approach the concern is mainly with the nonlinearity utilization of
the junction which is beneficial for parametric amplification. In this mode of operation, the
ac pump signal (wp) is used to modulate the junction capacitance of the photodiode at
equilibrium conditions (i.e. zero dc bias), where the CV characteristics are highly nonlinear
and can lead to optimal performance with respect to frequency and gain conversion. In this
mode, the LO will bias the junction capacitance, which has nonlinear charge-voltage
characteristics due to voltage-dependent capacitance, and the junction capacitance varies
with the applied voltage according to equation (3.1). It would be desirable to have good
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tunability, which is the ratio of (Cyux/Crin), to be as high as possible, in order to have
optimal parametric amplification. Although this is no longer strictly accurate, as we shall
see later in chapter 4 and 5, it is nevertheless desirable to have greater capacitance change
for the given applied voltage (Vi) changes across junction PD (Gain A a dc/dvy). Moreover,
the pump frequency should be much higher than optical modulation frequency (®p >> ©s)
according to the PPA gain definition reported in [40]. In addition, the parasitic series
resistance (rs) should be smaller, so it can limit its noise figure contribution within the
PPA, and also minimise the voltage drop it produces, so as to maximise the voltage across
the capacitance and the voltage variations across it (rsis series with ¢j). In addition, the
input/output admittance power must be considered as shown in the next section, which
ams to provide optimum power transfer. An equivalent circuit for a non-degenerate mode

(up-converter PPA) at equilibrium mode is shown in figure 3.1.

Resonant Resonant
L1 L2
NN, P- a’a'alal
Vcoswpt Rs
+
Ve {7~ Isinwst % § RI
Is 7= Cj

Figure 3.1 PPA up-converter equivalent circuit

There are many advantages to be gained by pumping the junction diode at zero dc
bias in such areceiver, for example: 1) the junction capacitance is highly nonlinear at zero
dc bias mode, as shown in figure 3.2 and the ratio of dc/dv, can be as high as possible,
which is more desirable for parametric amplification; 2) moreover, there is a smaller shot

noise due to the low dark current under equilibrium conditions; 3) there is no reverse bias
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leakage current; 4) better thermal noise due to no bias resistor. On the other hand, too
much pump power can cause the forward current to flow through the PD and increase
noise. The am of this approach is to achieve high conversion gain in an up-converter
stage, and then any recovery technique can be used to recover the baseband components at

source frequency (ws), Photodiode parameters (m=0.45, Rs=6.5, Cj=72pF, Vx=0.554).
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Figure 3.2 Measured photodiode characteristics CV relationship

The PPA operation in non degenerated mode can beillustrated in figure 3.3. The ac
pump signal (mp) serves to modulate the PD variable capacitance in such way that the
optical received signal at source frequency (ws) iS amplified by energy transfer from the
large pump signal resulting in Idler frequencies (wi=wptws) With parametric amplification.
The PD is mainly biased by the ac pump source (i.e. sinewave signal) which sweeps the
junction in both photo-conductive (i.e -V, reverse bias) and photovoltaic modes (i.e +V,
forward mode), where the CV characteristics are shown to be highly nonlinear and the
capacitance variation can be driven to a maximum and minimum value of capacitance,

according to the pump signa (i.e. Cnax and Crin ), @ shown in the following graph.
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Figure 3.3 PPA junction operation at equilibrium mode

3.1.1 Principle of Operation and Consider ation

One of the main considerations for optimal power transfer for the PPA is to study
both input and output power admittance. Optimum reactance power transfer will thus
require source and load impedance to match with the time varying capacitance. Hence, the
input and output admittance should be proportional to the mean value of the variable
capacitance (Chean); conversely, the author in [84] states that the input and output
admittance should be proportional to the minimum value of the capacitance (Cpin). In this
approach a simple series inductive reactance circuit was used to match both the input and
output of the photodiode, as shown in figure 3.1. These reactance circuits (inductors) aim
to deliver maximum power from the ac pump source to the variable junction at pump
frequency (wp), Where the output inductive reactance circuit aims to dissipate and withdraw

as much reactive power to the load impedance at the idler frequency (ogtws). By using
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equal and opposite phase angles, the two parts of the circuit are brought into resonance to
ensure maximum transfer power (X.= -Xcmean), @ shown in figure 3.1. X 1=2#f,L, and
X 2=27fp+s Lo, The mean value of pn junction capacitance (Cyean) Can be calculated as
follows: The capacitance versus applied voltage is, by definition, the change in charge for a

change in applied voltage:

dQ
d(Vy -Va)

A[ 2qs_ NgNa T [85] (3.1)

Cj 2| Wx—Va) Ny Na

- where the charge Q isindeed a nonlinear function of applied voltage (Va), Vx isthe barrier
potential voltage, Nj is the acceptor density of the p-type, Ny is the donor density of the n-
type, q is electron charge, ¢ is the silicon permittivity, m is the coefficient grading (i.e.
m=1/2) and A is the area of the junction and di; is the thickness of the intrinsic region in the
pin junction as shown in equation (3.3).

The capacitance of the junction diode depends on the voltage applied to it. In photo
parametric mode, the mean applied voltage V, across the photodiode junction is the ac
pumping voltage V(t). Substituting V(t) for V, in equation (3.1), the voltage variable

capacitance C; can be expressed by:

(3.2)

1
A 2qc¢ NgyNa }4

€ :2_[(\/X—V(t))Nd+Na

And in case of pin photodiode, the voltage variable capacitance C; can be expressed by:

*2
A 482
cC. = — [85] (3.3
Na+N
b2 di2+2q&$,\|d¢ﬁ/x—V(t))
The pumping signal can be expressed as.
V(t):Vpcos(copt) (3.4)

Where V, is the peak value of the pump signal and o, iS the pump angular frequency.
Variation in the applied voltage V(t) results in a corresponding variation in the depletion-
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Capacitance (pF)

layer capacitance c(t), and this, as seen from figure 3.4(a), resulting in time-dependent

capacitance C(t), which can be expressed by:

C(t) = (Vx——%/(t))%(( A2 )m{%j)% (3.5)

N . N 1172
For simplicity lets: ( ( )zqg ( d+ Naa )J (3.6)
The mean vaue of the junction capacitance (Cnean) Can be calculated by integrated
| T Tt )%
equation (5): AC (t)dt = G é V=V (T) dt (3.7
T (3.8

1/, 1
1 A{VX—Vpcos ‘wptH‘éF Wpt\—ZVp
Vx =V pcos (wpt)

V-V
C = 2G |l ) L X P
mean T W,

X_Vp

- Whereis F(xym): Elliptic F[x,m] : eliptic integral of the first kind.

Figure 3.4(b) depicts the mean value of the junction capacitance at various applied voltages
across the PD. The mean value of the junction capacitance will be used to calculate the

input and output inductive reactance impedance, as mentioned earlier, which is

(XL=Xcmean)-
700 - Cmean
600 - C(pF) A
140 -
500 - L |
I |
400 T 120+ Ill

300 - Outl1001=
100 -
200 - I /

Figure 3.4(a) Resulting time-dependent capacitance; (b) Mean value of the junction capacitance

45



3.2 Further PPA Signal Analysisand Gain Theoretical Analysis

PPA signa analysis, in comparison with conventional PA, does not lend itself to
the same analysis, as the power flow is from an optical input to an electrical output. The
Manley-Rowe expressions shown in the previous chapter do not seem to be applicable in
PPA analysis. This is because the PPA approach used allows the signal energy to be
externally coupled by the incident radiation directly into the variable capacitance (i.e.

varactor).

3.2.1 Development of the Theory of Operation

In this section, it will be assumed that the equivaent circuit for the PD can be
represented as shown in figure 3.5, which consists of variable capacitance (depletion
capacitance) connect in series with a fixed loss-resistance (Bulk resistance Ryyk); and the
incident optical signal that represents a current source was shunted with the variable
capacitance; where the bulk resistance is connected with them in series. Other stray
capacitor and lead inductances were neglected, as their self-resonances are usually well

outside the frequency range of interest.

Rbulk

—#— Cd =Depletion capacitance

Ip=RPo(1+coswst) J—

Figure 3.5 Equivalent circuit for varactor photodiode

It assumed that, the effect of applied frequency on the Ry, would be very small (i.e
skin effect and source effect concept), and as known the bulk resistance being voltage
dependent particularly in pn junction; however bulk resistance was assumed as a fixed loss

resistance at that applied frequency and applied ac/dc voltage.
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It is also necessary to know the waveform of the pump voltage signa and to
assume that its amplitude is very large; also it is necessary to drive the pump voltage from
asinusoidal voltage source of zero impedance as voltage pumping is, however, analytically
more straightforward compared to current pumping analysis; the pump voltage can be
represented as shown in equation (3.4). The time-dependent capacitance as shown in figure
3.4 was redlized by voltage pumping, and varactor coefficient grading was assumed as for
an abrupt junction with a coefficient of 0.5 to avoid complicated analysis. This parameter
represents the gradient of the CV curve, which can lead to better conversion gain. Figure
3.6 illustrates an example of CV characteristics for different coefficient grading (m) where
large value of coefficient is more favourable in PPA operation, as it shows the highest

degree of nonlinearity, and the conversion gain follows (4 a dC/dV5).

100

m=0.5

90-| — m=1 i
— m=15
80 — m=2 B

Capacitance (PF)

-CZ)I.O -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
Applied voltage (v)

Figure 3.6 CV characteristics for different coefficient grading

The PPA theory analysisin this section can be considered as further analysis to the
PPA analysis reported in [40, 82, 86] with a new definition to the gain theory anaysis that
capable to estimate the up-converter gain based on the effect of photodiode characteristics,

the circuit configuration and the applied pump.
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3.2.1.2 Definition of the Problem from First Principles

There is a basic difference which makes the PPA amplifier different from the
classic parametric amplifier approach; this is due to the fact that the signal source is the
current source rather than a voltage source with finite impedance, and therefore, a different
approach is required. It is appropriate to consider that the PPA device operates in two

modes simultaneously (i.e photo detection and parametric amplification).

The first assumption is that changes in voltage across the PD do not inhibit
significantly (at least to first order effect), the relationship between input power & detected
current; and high level pumping does not affect the photo detection process. The

fundamental relation between input optical power and detected photo source current is:

el
1240 [19] (3.9)
Where R is flux responsitivity in amps per watt, A photon wavelength in nanometres,
n quantum efficiency in electrons per photon, Ps radiant flux in watts (input optical signal)
and P, average value of optical power. The input detected photo current (l,), when taking
the form of modulated signal frequency (ws) for 100% modulation of amplitude, can be
represented as:

RP,(1+ coswt)

I, =

V @ lp - ( —~Cgqg
i Optical input Ps@

(3.10)

pump

N
Z \dler
Z load |—

A

Pump|source
at wp |

Figure 3.7 PPA equivalent circuit
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The second assumption is that the dynamic capacitance of the PD is mainly controlled by
the pump voltage, i.e the photo signal induced changes in the capacitance directly are
small. The small signal equivalent circuit isillustrated in above figure 3.7.

As mentioned earlier, classic PA analysis does not apply to PPA analysis, due to
the current source embedded with the PD, and the well-established theory (Manley and
Rowe) in case of the photoparametric analysis cannot proceed further. The PPA analysis
approach will transform the current source that represents the input optical signa to a

voltage source, asillustrated in figure 3.8.

Rbulk %Rbulk

Ip ;é Cd
—B +
@) Ip/ jWsCd
- L
L

Figure 3.8 Current source to voltage source transformation

The general relationships developed by Manley and Rowe for the salient properties of
four-frequency circuits can be applied and the pump modulates the capacitance of the
varactor in such way that the signal power is amplified by the energy transfer from the
pump. A filter network is then employed to collect the energy from the chosen sideband, as

shown in figure 3.9.
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Figure 3.9 Idealized PPA configuration at equilibrium condition (zero bias mode)

3.2.2 PPA Up-conversion Gain Analysis

The modified equivalent circuit arrangement for PPA anaysis is shown in figure
3.10. The a.c condition for the depletion capacitance Cy will first be examined at pump

frequency (wp), as follows:

A
o Robuik
N

J T
v S
v ¢

Figure 3.10 AC photo parametric equivalent circuit

The voltage over the PD is the same pump sinusoidal voltage source of zero impedance
(Vp=Vp1) and is represented as:

V,, =V, coso,t (3.11)

The time varying voltage across the dynamic capacitance (Vc) is equal to:
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\Y,

P1

1+ ja)pCde

c:

(3.12)
The overall voltage across the PD (i.e biased the junction) can be represented as:
Vo =V +Ve (3.13)
Vo ~Ve + 72
pl R T T T~ o
1+ jo,CyR, (3.14)

According to equation (3.12), the bulk resistance R, can degrade the performance of the
varactor parametric amplifier, particularly at high pump frequency (i.e. reactance
impedance decrease at high pump frequency). Hence, a smal R, is preferable for
parametric amplification, and leads to low electrical losses (i.e. only small amount of
power can be dissipated); it also provides a fundamental limit as to the noise performance
of the amplifier (i.e. minimum heat energy). The bulk resistance, as represented by the
cutoff frequency, has generally been the dominant loss mechanism. A good varactor
pumped weakly may be no better than a poor varactor pumped strongly, so the pumping
level across the varactor is very important, and hence, a high capacitance variation is

required for parametric efficiency.

The following analysis is conducted for PPA gain estimation. V. is the main
applied voltage to drive the dynamic capacitance; it is assumed that the PD is an abrupt

junction, and the depletion width for pn and pin junction is given respectively by [85]:

%
dpn:(zg(\’x‘vm)[ 1 +1D (3.15)
q Na Nd
_ b
dpm:(dinng(\/)(\/pl)( 1 +1D (3.16)
q Na Nd

The depletion capacitance can be represented as.

C, = (Agj (3.17)
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Where d represents the sum of (xn+x,) for pn diode; x,, X, are the depletion layer widthsin
the n and p region for pn junction respectively. In the pin junction, d=x,+Xp+X; , and X;
represents the width of intrinsic layer.

For simplicity, a pn structure will be used for mathematical analysis in this section; the

depletion capacitance for a pn junction can be represented as.

b

C, = g NN, |” (3.18)

d 2V, -V, )N, + N,

b
Let p= 98 NaNo (3.19)
2 N, + N,
1

C,=A. 3.20
d W (3.20)

1

i.e C?=A. 3.21
d (—)VX_VM (3.21)

Cq is now described as function of V4, afine-varying function. From equation (3.18),

V
(V, =V )=V +Vq +— L — (3.22)
Pt 1+ jo,CiR,
2 ~ 242 2 [t/2
v, - [V, Ve 4V, F + 0,2 C2PR2W, +Vi
o [1+ 0*,C?% sz]llz (3.23)
VX -V
From equation (3.21) 12 =( . pl) (3.24)
C, A
From equation (3.23), let (VXJr—zVRb):é (3.25)
A

Substituting equation (3.18) for the overall applied voltage V; and taking the modulus of

1%
Vpl 2+ Vpl
VX +Vg, V, +Vg,
1+

1
c,> D? 1+ ,°C4°R,’

the complex quantity gives:

: | (3.26)

Whereis V1 represents the voltage across the PD and Vp1=Vc+Vro
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VG 4V )
<<2
VX +Vg,

This implies that the pump voltage across the junction is smaller than the barrier potential

and the voltage across the bulk resistance. Therefore,

z[vc+vaJ %
1 1 L WtV

C? D?| 1+0,2C47R,?

(3.27)

From equation (3.27), C4 is involved on both sides. However, using a suitable
Ve +Vp

approximation: Typically w,Cy4R,<<1, and let E .
V, +Vgy

1
Also employing the theorem of:  (1+ E)"'* = 1+§ E.

The diode capacitance in an approximation form is represented as.

1 1
F = F(l-ﬁ* E COSCOpt) (328)
d
The small signal equivalent circuit is now examined. Cq is modulated by the pump voltage

in complete fashion. Therefore, the previous analysis gives no alowance for idler and
circuit signal loading. If a general load of magnitude Z, =R + jX_ is connected in the

shunt across the PD, the magnitude of the load voltage can be presented as:

v - | Bt X
R +R (3.29)

Where V, is the voltage appearing a cross the general load impedance and can be

calculated based on the analysis of unloaded open circuit voltage shown in figure 3.11

i o @ —— Cq Rp Va

Figure 3.11 unloaded open circuit voltage (no pump)
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a= p (3.30)

Whereis Z= L
1+ joct)R,

In general, the pump circuit is matched to the baseband value of Cy and the unloaded value

of V,isgiven by:

RP a+aCOSa)St+ﬁCOSa)pt+gcos(a)p—a)s)t+
V‘"‘:_J{D 0} (3.31)
(2
® gcos(coercos) t+ .
2
a=1-E _ 1 ge, ﬂ=1E+£E3+ ......
And 16 1024 and

Where is R is junction responsitivity, P, is the average value of optical power, D is the
term relating to diode model parameters to barrier potential and voltage across the bulk
resistance, E is a parameter relating applied pump voltage to inbuilt barrier potential to the
PD. For the value of E in this case, =1 and B=E/2; B is more dependent on pump power
and the terms involving a reflect only terms of ws by direct detection and other a dc term

(i.e no pump state) and the others are dynamically modified by the pump.

Given that the output voltage at baseband frequency or pump frequency is
dependent on the V, and the load impedance, for comparison reasons, a purely resistive

load is considered. The output (i.e pump) at an idler frequency (mp+ ©s) iS given by:

Val= ‘j[s—ij@j - J[wl—%j@j (332)

In order to consider the gain relative to the uncorrected output of no pumped system at

idler frequency, the output (i.e no pump) is given by:

(O
ol
Gy (3.33)

The condition for gain at the output in non degenerate modeis:
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(wl(sld jg > (w:cs;d J (3.34)

ie > (ZC‘JJ (3.35)
: w;, 2 .
B
The corresponding up conversion gain is given by the rate of equation (3.32) to equation
(3.33)
A = ﬁ[ﬂj (3.30)
2| o,

The PPA up conversion gain analysis predicts that the available gain is proportional to the
ratio of first upper sideband to signal frequency. This is consistent with the Manley and
Rowe analysis (A=wi/ms) and the second parameter B related to junction characteristics,
the applied pump voltage and the applied pump frequency across the photodiode. However
the new definition of B is different to what reported in [40, 82, 86] which given as:

= —_Pmw = 82, 86 3.37
P 2 Vx 2 [ ] ( )

A new, more accurate elaborate definition of a B has derived which given as:

= E V.+Vg 1
2 Vx+Vg, 2 (3.38)
V
Where V,; isgiven as. V.=V, +Vc=V, +——P"t
p11SQ pl ro T VC Rb+l+jprde (339)

The up conversion gain can be represented as:

A 1vva[wj

Y4V, +Vy o, (3.40)

The above gain expression is derived by normalising the magnitude of the up
converted components to the corresponding baseband signal across an identical load. As
mentioned before, bulk resistance degrades the performance of a varactor parametric
amplifier particularly at high pump frequency. In addition, an increase in pump frequency
leads to a proportional decrease in junction reactance impedance and an increase in . In

other words, B decreases proportionally to the increase in bulk resistance (i.e more power
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dissipation occurs at large bulk resistor). It can be summarised that the above approach
could predict amplifier performance according to gain equation (3.36). The concept of high
gain being achieved if a high frequency is applied is no longer accurate without
considering the junction characteristics and applied pump across the PD itself. This theory
signa analysiswill be referred to and compared with further work in chapter 4, which aims
to reach a more realistic assessment, and performance optimisation can be achieved by
using nonlinear circuit simulators, compared with the actual behaviour of the practical

circuit with respect to gain conversion in chapter 5.

This section has presented gain analysis based on the PPA operating at equilibrium
mode (no dc bias source). However, the analysis of the PPA operating in conductive mode
(reverse bias) was derived, and it was found that the value of bias voltage (Vo) should be
entered into the expression of B in equation (3.38), and was added to the denominator in

equation (3.40) to become:

A\,Zlﬂ o (3.41)
4V, +V, +Vg | o

3.3 General Load Analysis

An equivaent circuit for general load matching analysisis shown in figure (3.12)

Rbulk
A
X<
ls.Sin(w)t @ 74 Cq & V,
lﬂ]

Figure 3.12 Equivalent circuit for load matching
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Where |s represent the photo current (1) at signal frequency. The load voltage can be

represented as follows:

v oo RLEIXL (3.42)
L (Rp+RL)+IXL
Where is Vs can be represented as:

_ 1 - [(Ro+RL)+ X ]Is
VS B IS' jwsCd + { l\ T 1+ josCqd (Rb+R|_ )—a)SCd XL (3'43)
(Rb +R )+ ix,
Hence
vl R+iX) _, (RiXUI(1-xCaX -joxCa(RyR) a4

LS (TagyXirios GiRR) S (TraxCaX P ras™Ca?(RyR L
The optimum situation for power transfer is for amatched load. The load is matched when

imaginary parts are zero in the equation (3.44) for load voltage V. :

X, t-oC X |-iosCy(Ry+R )=0 (3.45)
_ 2
In genera XL—wS(CdRL(RbJrRL)JerXL ) (3.46)
X
o =[Ci] L . (3.47)
d RL(Rb+RL)+XL
. 1
From equation (3.46) X L2 -X. J+ R(R+R)=0 (3.48)
wst
2 2 1/2
1 1
{a) J . o C J _4RL(Rb+RL)
s d s d
X, = _ (3.49)

X, providess two solutions. When the imaginary parts are zero, the V, in equation (3.44)

can be represented as:

v - RL-0sCqX| JrosCd XL (Ro+RL) (350)
L= 's 2 2.2 2 '
(1-0sCy XL ) +0s“Cq XL (Rp+RL)

- 2sCd XL+ Ry (351)

Hence VA
b % (-esCy XL )?+os?Cy X (Ry+RL )2
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To maximise the output:

dVL (ZwSZCdZX |_2Rb+a)32Cd2X|_2R|_j
il :_Is' 5 (3.52)
L ((1—60st XL )2 +0s?Ca?X L (Ry+RL )2)
2~ 2y 2 2~ 2 _
Therefore 20 °C X ‘R +0 C °X 2R =0 (3.53)
At maximum output, the load resistance RL =—Rb shows that a negative resistance is
necessary. The two value of X_ in equation (3.48) for which X =0 or[ 1 ] gives two
solutions for the voltage (V.):-
For apureresistive load (i.e X =0)
V =IR =-IR (3.54)
For tuned reactive (i.eXL:[ ! J)
a)st
v 's o (3.55)

" 0s?Cd?(Ro+RL)

The general load impedance is shown in figure 3.13, which shows that the maximum
power transfer occurs when the pure load resistance is very small (i.e. close to zero ohms);
a negative load resistance is required to achieve maximum power transfer. Moreover, the
maximum power transfer condition is unstable when matched by a complex conjugate
impedance. It can be seen that for stable power transfer, it is inevitable to use a low bulk
resistance, as shown in the graph ( i.e R.=Ry). The load cannot be matched for maximum
power transfer because this requires a negative rea resistance. It also means an overall

lossless system for infinite gain.
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Figure 3.13 PPA output at general load impedance

3.4 PPA Up-converson Consideration and Theoretical Performance

Predication

The PPA gain in up conversion mode is directly dependent on four main
parameters, as predicted in the theoretical analysis shown in the previous section (i.e
equation 4.40). Firstly, the gain is dependent on the PPA external circuit configuration that
can be identified as a PPA mode of operation (i.e zero bias mode or conductive mode);
second, the gain is dependent on varying the pump frequency to baseband frequency, and
is proportional to the ratio of upper sideband to signal frequency; third, the gain is
dependent on the magnitude of the pump voltage across the PD; fourth, the gain is
dependent on the PD characteristics in which the bulk resistance should be very small
compared to the capacitive reactance impedance, which helps to provide more power
signals to vary the dynamic capacitance, while low power dissipation can be lost due to the
bulk resistor. In other words, if the bulk resistor is too large compared to capacitive
reactance impedance, this can degrade the performance of the amplifier even if a large

pump is applied.
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The above four parameters are varied accordingly and were used for theoretica
analysis evaluation. The PPA derived gain expression was used to predict the amplifier up
conversion gain as shown in the following sections using MATLAB tool. Although this
tool is not designed for nonlinear analysis, it can be used for the following scenarios to

predict the estimated gain based on the derived expression.

In addition to the above considerations, the photo detection device used in the PPA
mode of operation should exhibit good reponsitivity and can be optimised for maximum
quantum efficiency, which commonly takes the form of a pin structure; aso it is
favourable to have small capacitive reactance impedance and very low bulk resistance;
hence it will be easier to apply an external pump, and also much better for signal speed and
frequency response. The most important requirement is the high nonlinearity of the CV

characteristics.

3.4.1 Gain versus Various Bias Voltages

The parameters used in the theoretical evaluation were set as (Ry=6.5Q, Pump
power=15dBm, V,=0.552volts, C4=72pF, R=50Q, ®;~432.92MHz and ws=1MHz. These
specific frequencies were used to show the viability of the theoretical approach and helped
to compare this result with both simulation and practical results in the following chapters.
In this section, the dc bias voltage was varied from zero to -30 Volts, as shown in figure
3.14. The maximum conversion gain was achieved at zero bias mode (i.e. 32.5dB gain).
Then the gain is gradually reduced by increasing the reverse dc bias. The graph shows that
the greatest steepness occurred at around zero bias voltage, due to junction behaviour in
equilibrium mode (.i.e high nonlinearity). The gain follows the junction CV characteristics
and this corresponds to verify the proposed mode of operation (i.e. equilibrium mode)

where the junction behaves in a highly nonlinear way.
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Figure 3.14 PPA gain at various reverse bias voltages

3.4.2 Gain versus Various Pump Frequency and Signal Frequency

The same parameters were used as section 3.4.1 for the same circuit configuration
(i.e. zero bias mode). As mentioned before, the gain is dominated by the ratio of the Idler
frequency over the RF optical frequency (wi /ws). The effect of this relation is plotted in
figure (3.15), and these two frequencies were varied from 1 to 100 MHz and from 1 to
3000 MHz for optical signal and pump frequency respectively. Also, as shown in figure
3.16, the gain was varied with various pump signals at fixed IMHz optical signals. Both
graphs illustrate that the gain is directly related to the frequency ratio, and it is favourable
to gain performance to have widely separated hon-commensurate excitation frequencies.
The gain, as shown in figure 3.14, increases in proportion to the increase in pump

frequency; however in the theory gain analysis, the gain is a trade off between the ratio of

(wi/ws) and the ratio of (%J which was identified as the B factor, and therefore both
x T VRo

ratios can used to optimise the performance of PPA. However it seems that the ratio of

(wi/ws) leads to the possibility of better gain achievement. In other words, the change in
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gain can be made with adjustment in these two terms by increasing one of the parameters

in the numerator, or decreasing one of the parameters in the denominator.

Gain dB
=
L

2000, = -
10 a0 4
Pump signal MHz g g 10 &

Figure 3.15 The effect of varying the pump and optical signal toward the gain
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Figure 3.16 PPA gain at various pump signals for IMHz optical signal

3.4.3 Gain versus Various Pump Power

The same parameters were used as in section 3.4.1 for the same circuit

configuration (i.e. zero bias mode). In this section the input pump power was varied from -
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30 dBm to 60 dBm, as shown in figure 3.17. As expected, the up-conversion gain increases
with pump power level (i.e. V.+Vry), the PPA gain is function of the applied power and
increases linearly with the increase in the pump level (LO) and operates as an ordinary
linear amplifier until the compression point. At very low pump power, the PPA behaves

like a convention loss mixer (i.e. this was explained in next chapter).

# ! ' ! : : T !

Bifes s v ........... ........... ............ ........... ........... ........... .......... =

Gain dB

i : i ; i
30 =20 -10 o 10 20 30 40 &0 B0
Input pump power dBm

Figure 3.17 PPA gain at various input pump power (LO)

3.4.4 Gain versus Various Bulk Resistor

The same parameters were used as section 3.4.1 for the same circuit configuration
(i.e. zero bias mode). In this section, the bulk resistor was varied from 0 to 50Q as shown
in figure 3.18. The idea of this scenario was to see the effect of the bulk resistor on overall
gain. As mentioned before, large bulk resistance can increase the pump voltage across
itself whereas at the same time, it can reduce the pump voltage across the variable
capacitance, and therefore lead to a decrease in overall gain according to gain equation

(3.40). Hence, a large value of the bulk resistor is not favourable for parametric
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amplification, particularly at high frequency applications. The graph below illustrates that

the maximum conversion gain can be achieved for very low bulk resistance.
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Figure 3.18 PPA gain at various bulk resistances
3.5 Summary

The benefit of employing the PPA at zero bias mode (i.e. no dc bias) is that the degree of
nonlinearity of CV characteristic is higher, leading to potentially greater conversion gain,
essential for optical communication as well as for wireless applications with tight power
budgets. Input and output power admittance were considered and analysed, and should be
proportional to the mean value of variable capacitance (Crean) fOr optimum power transfer.
Also, PPA general load analysis was presented, showing that optimum power transfer will
require the load impedance to be low, and approximately equal to the bulk resistance or

negative load impedance with (R = -Ry).

Further PPA theory gain analysis is presented with new derived gain expressions

that are able to include all the parameters that affect the PPA performance, including the
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external circuit configuration, junction characteristics and applied pump and source
frequencies. The PPA theory analysis predicts that the gain is proportional to the ratio of
the first harmonic to signal frequency. This is consistent with conventional PA analysis, in
addition to presenting a new correction factor. The theoretical analysis can predict the up-
conversion gain; however, such analysis can fall short of predicting other parameters that
affect the amplifier operation, as the variable capacitance depends both on frequency and
the voltage applied (i.e type of junction structure). Moreover, other effects such as the skin
effect may affect amplifier efficiency. Therefore, a more realistic assessment, and aso
performance optimisation, can be achieved by employing powerful nonlinear simulation

tools, followed by practical implementation as seen in the next chapters.
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Chapter 4

4. Double Conversion Heter odyne Photoparametric Amplifier
(DCHPPA) Modedlling, Analysis and Simulations Results

The main objective of this chapter isto develop a versatile model for the DCHPPA circuit,
which includes both an optoelectronics up-converter stage (PPA) and conventional down-
converter stage (conventional mixer and filter) circuits. The am in this chapter is to
employ nonlinear simulator tools to examine the full circuit configuration and provide a
good realistic assessment and better performance optimisation.
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4.1. Introduction

A photoparametric amplifier (PPA) circuit would not be possible if nonlinearities
did not exist. In eectronic circuits, nonlinearities are responsible for phenomena that
degrade system performance in many circuit designs such as small signal amplifiers [87].
However, it is often desirable for frequency conversion in such mixer and parametric
amplifier circuits (due to harmonic generation). In practice, the passive components such
as resistors and inductors and capacitors, can be observed to be nonlinear when operating
a the extremes of their operation range by applying large voltages or currents, which can
increase the temperature and result in resistance changes. Electronic circuits can be
classified as time-invariant circuits (linear), which include only those frequencies available
in the excitation waveforms, and do not generate new frequencies, and a time-variant
circuit (nonlinear) that generates mixing products between the excitation frequencies and

the frequency components of the time waveforms.

4.1.1. Nonlinear Circuit Analysis

A circuit consisting of semiconductor devices such as varactor diodes are often
characteristic of a strongly nonlinear circuit which has very strong CV characteristics
under bias voltage (ac/dc), and conventiona quasilinear circuit analysis cannot be applied.
Neither can Volterra series analysis or power-series analysis- be desirable for such a
situation [87], as they are mainly desirable for weakly nonlinear circuit characterisation.
There are other available approaches for nonlinear analysis using different techniques,
these include Load Pull, Large-Signal Scattering Parameters, Quasistatic Assumption and

Time domain, as well as frequency domain analysis.

The most dominant methods of nonlinear analysis are time domain (also called

transient) analysis, and frequency domain analysis method or hybrid (mixed time and

67



frequency domain), which depends on how the linear and nonlinear elements are anal ysed.
These methods are more desirable for nonlinear analysis, and depend on how the circuit
can be classified (i.e. as aweakly or strongly nonlinear circuit). Time domain analysis can
be seen as the most widespread [88] method for weak nonlinear circuit analysis, as it is
based on the differential nonlinear equations that describe the circuit (Kirchhoff's
equations), and can be performed by means of standard numerical integration methods.
This method is more practical in terms of anayzing lumped element circuits, as well as
any other circuits including two commensurate frequencies which can be seen as the same

case for single tone analysis [89].

Time domain analysis generally uses numerical integration or, where possible,
calculates the instantaneous value of the output (e.g. current) of an element from the
instantaneous value of the input (e.g. voltage). In a high frequency circuit (e.g. microwave
and millimetre wave) some components are difficult to model in the time domain and
frequently have a time constant that differs by orders of magnitude. An analysis using a
numerical integration technique is inefficient [77, 90], since the integration time step must
be smaller than twice the smallest time constant, while the number of iterations is
determined by the largest time constant [91]. However time domain analysis is not well
suited when components are characterized in the frequency domain, for two main reasons;
these are its inability to handle frequency domain quantitiesin a practical way (particular S
parameters) and the difficulty of applying this method to circuits having multiple
noncommensurate excitation frequencies (e.g. widely separated frequencies), and having
large differences in amplitude such as PPA and mixer circuits, where the signal is said to
be quasi-periodic. The reader is directed to [92] for a good review of the three most
popular techniques of time domain analysis, which includes direct numerical integration,

associated discrete circuit modelling and the shooting method.
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The frequency domain method is widely used for analysing non linear circuits, and
the most important technique is called harmonic balance (HB) analysis, which will be
explained in next section. HB analysis is more applicable to strongly PPA nonlinear
circuits (e.g. varactor diode) having two widely separated noncommensurate excitation
frequencies with large differences in amplitude (quasi-periodic). These include a large
pump signal (also called local oscillator LO) and small source signal (baseband signals). In
this chapter, HB analysis will be used to optimise the DCHPPA system, which consists of
multiple tones (3-tones) with various numbers of harmonics. The two other popular
methods for frequency domain analysis are: power series and Volterra series, both of
which are restricted to weakly nonlinear systems [90]. This is because of the algebraic
complexity of determining the transfer functions of high order, as required with more
strongly nonlinear circuits or with large signals. In other words, a very large number of

harmonics must be included in the analysig93].

Only two previous studies have been undertaken to model and simulate the PPA.
The initial work was reported in [37, 94, 95], where the PPA circuit model was based on a
pn junction diode, and simulated in transient analysis using a spice simulator package. The
CV characteristics of the pn photodiode are modelled as a linear capacitor, without
considering the bias dependent junction capacitance and the transport factor frequency
dependency. This is applicable only for single small excitation frequencies with weak
nonlinear elements. In such a case, Spice transient analysis runs purely in the time domain,
while the junction frequency dependence was more difficult to model in the time domain.
According to this research review and based on PPA configuration, transient anaysis is
computationally inefficient when it deals with multi excitation frequencies and strongly
nonlinear components [92, 96]. Time domain analysis requires too much time to reach a

steady state solution with excessive memory use, particularly when weak nonlinear

69



components exist in RF/MW circuits. Its limitations become clear when dealing with
frequency conversion and mixer devices in which frequencies change over a wide
spectrum. Moreover, at high frequencies, many linear components are best represented in
the frequency domain. Simulating such linear models in the time domain by means of
convolution can result in problems related to accuracy and stability [97], and, as
mentioned earlier, the use of this method for analysing the PPA circuit is not efficient
computationally. The severity of the problem becomes immediately evident when
computing the response of a single tone excitation, due to the use of iterative methods to
optimise the overall circuit, and the problem is even more acute when multiple excitations

are used to study the PPA behaviour in asubcarrier multiplied scenario.

The second work for modelling and simulating the PPA was presented in [81, 98,
99]. The PPA circuit model was based on a pn junction photodiode model, and simulated
using an HB technique provided by the Aplac simulator package. The pn photodiode
circuit model was configured for a simply ideal current source, representing the optical
modulated signal shunted to a pn junction diode. The equivalent circuit of the modelled PD
was ideal in principle, and did not consider the PD responsitivity, or its frequency response
with respect to detected optical signal. Moreover, the PPA circuit was configured by using
a voltage source as the pump source (LO), with 1 ohm input impedance (source) and the
PPA load impedance was configured as 50 ohms (resistor) connected in paralel to an
output port with 50 ohms impedance that results in an overal load impedance of 25 ohms.
In addition, the circuit configuration results in estimation of the value for the photocurrent
which was set to a very high value, and did not correspond to the detected optical power
signal. The PPA miss-matching impedance led to inaccurate results with respect to

photoparametric amplifications, as both the input and output impedance must be matched
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to 50 ohms, as for most RF systems. Thisis aminimum and simple requirement to validate

the model with respect to simulation and practical results.

There are many simulation programs available. The most accurate commercial ones
to handle high frequency effects are ADS by Agilent [100], and the AWR design
environment [101] also known as MWO (Microwave Office). AWR was chosen to be used
for modelling and simulating the whole system (DCHPPA). HB anaysis will be the main

core tool for performing frequency-domain simulation in this chapter.

4.2. Harmonic Balance in Perspective

HB was mathematically formulated in the late 60's [102], and was developed
particularly in the mid -1980s as a frequency domain anaysis technique for both linear and
nonlinear circuits analysis at any frequency, but offering clear advantages at high
frequency compared to transient analysis. Its attractiveness for microwave and millimetre
wave application results from its speed and ability to ssimply represent the dispersive,
distributed elements that are common at high frequencies. This technique has been shown
to be an efficient approach for analysing and optimising steady-state, quasi-periodic,
microwave and RF circuits [92, 93, 103, 104]. HB got its name because it is a method of
balancing currents between the linear and nonlinear parts of the circuit, and it is applicable
primarily to strongly nonlinear circuit such as the DCHPPA receiver which includes two

strongly nonlinear circuits (i.e. PPA and mixer) operating under multitone excitation.

Many high frequency (HF) circuits are high-Q, implying that they exhibit
transients that last over hundreds, and even thousands of carrier cycles. RF and MW
designers are primarily interested in steady-state responses, and many HF circuits contain
long time constants that require conventional transient methods to integrate over many

periods of the lowest frequency. Transient analysis requires integration over a
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considerable number of periods on the highest frequency sinusoid, and time is wasted in
the process of simulating through the transients [105, 106]. Moreover, it can result in
problems related to accuracy, causality or stability, particularly a HF, where all the
distributed circuit elements are aimost exclusively modelled, measured and analyzed in the
frequency domain. HB simulators overcome these problems in a rather efficient manner,
by resorting to frequency domain formulation of circuit equations (equations that arise
from an application of Kirchoff’s laws and the circuit elements constitutive relations). The
frequency domain formulation can be obtained by substituting the unknown waveforms
with their phasor equivaents, and then matching the phasor coefficients that correspond to
distinct frequencies. There are many methods for formulating harmonic balance equations,
such as conventional formulation, frequency time conversion and state variable

formulation, which can be found in detail in [87, 107].

A number of agorithms have been proposed to obtain a solution to harmonic
balance problems, and the solution can be obtained by several methods[82, 87, 108] such
as, the optimization method which is a reasonable approach only for relatively simple
problems. The relaxation method uses no derivative information (i.e 1/V), and is relatively
simple and fast, but it is not robust. The gradient method is an iterative technique, and can
be used to solve either a system of equations (e.g using Newton-Raphson), or to minimize
an objective function using a quasi-Newton or search method. The matrix methods for
solving involve many technique (e.g. direct solvers, sparse solvers, keylov-subspace
techniques, etc), which probably the main difference between the many implementation of
the harmonic balance simulators. For instance, the MWO simulator utilises the Generalised

Minimal Residua Method (GMRES) for harmonic balance analysig[87, 109, 110].

A common approach for nonlinear circuit analysis using HBT is to decompose the

circuit into alinear and nonlinear sub network [103, 105, 111], as shown in Figure 4.1. The
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figure illustrates the principle behind HB simulation, where the linear sub-circuit is
analyzed in the frequency domain by conventional linear multi-port techniques, while the

nonlinear sub-circuit is described in the time domain.

I () I (@)

“«— —>
© - |
Linear Nonlinear
Sub-cir cuit Sub-cir cuit
@ V(@) X?
“«— —>

I (@) Ine (o)

Figure 4.1 Circuit partitioned into linear and nonlinear sub-circuits.
The voltages at the interconnecting ports are considered as the unknowns, so the
goa of HB anaysisisto find the set of voltage phasors in such way that Kirchoff’s laws

are satisfied to desire accuracy. The HB analysis will find al the voltages as follows:

Find V(o) V(@ )i e V(o) 4.1)
for all o such that relation |l (@, )— 1 (@ )|<& holds at each interconnecting port,

where oy isthe set of significant frequencies in the port voltage spectra, and ¢ specifies the
desired accuracy. The voltages at connecting ports are expressed by Fourier series

K, K Kn .
expansions.  V(t)=Rg > > . ZVKllvkz,““eJZH(Klfp— ..... Koot 4.2)

K0 K;=0  K,=0
where n is the number of tones (sources), f;.. , are the fundamental frequencies of each
source and K; , are the number of harmonic for each tone. The elegance of the HB
approach in reference to the problems seen in time domain analysis, is because it uses a
linear combination of sinusoids to build the solution, so it approximates naturaly to the

periodic and quasi-periodic signals found in steady state response. Moreover, HB
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represents waveforms as coefficients of sinusoids, and converts the coefficient
representation of the stimulus into a sampled data representation. This is the idea of
converting from the frequency domain to time domain, which can be accomplished by the
Inverse Fourier Transform; thus, the nonlinear devices are easily evaluated. Consequently,
the results are then converted back into coefficient from using Forward Fourier Transform;

(see the following flowchart diagram for more clarification regarding the HB method):

! DCandysis :
i adwaysdone
s N
Set number of frequency
set desired accuracy
determine initial guess at solution
\ J
v
e N
Set number of harmonics B
Simulation Frequency Error Tolerance [~
& J

v

v h 4
<
Measure Linear Circuit Currents } { Measure Nonlinear Circuit Voltages

in the Frequency Domain in the Frequency Domain

v

-Inverse Fourier Transformer: Nonlinear Voltage
Now in Time Domain:

-Calculate Nonlinear Currents

-Fourier Transform: Nonlinear currents
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»
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4.2.1. Advanced Multi-tone Har monic Balance Analysis

Harmonic analysis is, at least as far as its everyday use is concerned. Its goa isto
caculate the steady state spectra and waveforms for strongly nonlinear circuits under
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periodic large-signal excitation. This technique can be generalized to cover the case of
multitone excitation, where the input signals frequencies may be far apart. A clear example
of this type of problem is the intermodulation calculation for the DCHPPA system for the
two types of mixer (i.e. PPA and conventional down converter mixer). Frequency mixing
in the PPA is quite similar to that of conventional mixers. In the PPA, there are two input
signas, the LO signa (large signal) and RF input signals (small signal). The RF signdl is
presented by the input modulated optical baseband signal, generated within the device
model (pin photodiode). The small modulated RF signal is multiplied by the LO signal ina

nonlinear junction capacitance.

The object-oriented MWO simulator aims to perform noncommensurate multitone
excitation analysis based on equivalent circuits composed of current sources proposed in
[112, 113] which enables the full exploitation of the object orientation. All models are
based on independent and voltage controlled current sources, as it is the only basic
component needed to create more complicated models. The simulator has the facility to
use two types of input file, a text file (script code) using net-list editor and the schematic
script capture file which can automatically generate the net-list code from the circuit
diagram. In addition, the tool provides its own program language, (Advanced Imagery
Library AIL), which recognises all the norma standard functions as mathematical
expressions written in a program-like manner, and can import other codes from various

tools such as MATLAB, SPICE, etc.

4.2.1.1. Small-Signal Large-Signal Mixer Analysis

In the DCHPPA system, the PPA circuit ( i.e. up-converter mixer) and the
conventional double balanced mixer circuit (i.e. down converter mixer) can be analysed

from the fast small-signal mixer analysis reported in [105, 109], where the RF signal is
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much weaker than the LO signal. A small signa analysis method was employed in the
MWO simulator that was preceded by a DC analysis using the Newton-Raphson method in
order to find the operating point. The circuit is then linearised at this point and a sinusoidal
phasor analysis is carried out. By using single-tone harmonic analysis, the operating point
idea may be extended by employing a strong pump signal LO, and, as result, the nonlinear
elements will have a periodic waveform as their operating point; in this case, the static and
dynamic sources may be linearised and treated as time-dependent components. By using
the Fourier Transform, the final solution was found by convolution, where the frequency-
dependent components were replaced by a time-domain equivalent circuit, and the time-
dependent components in the present case were replaced by their frequency-domain

equivalent circuits.

In MWO harmonic analysis, the first step isto analysis the non-linear static sources,
thus, all waveforms are represented in terms of Fourier series coefficients. For instance,

periodic steady state voltage u(t) is expressed as

N
u(t) =U,, +Z(U am COSMa t+U, s ma)pt) (4.3)

m=1

% , T represents the period of the pump signal, and N the number of

where is W, =

harmonicsin the pump LO signal. Coefficients U, m and Uy, are real numbers: subscripts a
and b refer to the cosine coefficients and sine coefficients respectively.

For anon-linear static component i=i(u), the steady state current can be expressed as:
N
it)= 1,0+ (1, cosme t+1, snmot) (4.4)
m=1

Assuming that the periodic steady state voltage u(t) in (4.3) is known, then the
coefficients of (4.4) are found by replacing u(t) in the non-linear characteristics i=i(u) and

applying the FFT asfollows:
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e Firstly, from an initid guess U? Ut‘im, the sample point values for u(t) are

calculated using Inverse Fourier Transforms. The number of sample points is (at |east)
2N.

e Secondly, values of i(t) are calculated at the sample points.

0 IO
am? b

e Finaly, coefficient | mare calculated using discrete Fourier transforms.

Each of the coefficients |, ,.l,,, will become a nonlinear function of al the coefficients

m? bm

U,.Uyn , thus, each node of the circuit may be expanded into 2N+1 nodes having

voltagesU, ., U, ,, after which currentsl, .l are treated as normal non-linear static

am'bm
sources and then enabling a conventiona DC analysis to be performed and al the
convergence aiding technique provided in the ssmulator to be used. After convergence, the
expanded nodes contain the spectral components of the node voltages.
The second step of HB analysis is the linearization of static and dynamic sources.

After carrying out the single-tone harmonic analysis, the current waveform of the static
source can be represented as.

i(t) =i(u(t) (4.5)
is known for the whole period of the pump LO signa. Linearisation of (4.5) equation
yields a time-dependent conductance:

(t)- [%} (46)

Similarly, a dynamic source can be represented as:

q(t) = q(u(t)) (4.7)

This creates a time-dependent capacitance which represented as:

_ do(t)
)= &0 (48)

The third step is small signal analysis; the RF signal (baseband) is turned on. The circuit is

divided into non-linear (time-dependent) and linear (frequency-dependent) parts (figure
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4.1). The frequency response of the frequency-dependent part can be caculated in a
straightforward manner, where the time dependent part is computed by creating a
frequency domain equivalent circuit with the aid of convolution [114, 115].

After LO signa analysis, the voltages and currents of the circuit are of the form
(4.3) and (4.6). Applying (4.6) and (4.8), the frequency-domain representations for the

conductance and capacitance become:

2N

g(t) =G, + Y [G,, coshw t + G, , coshw t] (4.9)
n-1
2N

ct)=Cp+ ). [Ca_n cosnw,t+C,,, cosna)pt] (4.10)

n=1

where o, is the LO angular frequency and N is the harmonics number used in large-signal
LO analysis. Once both the conductance and capacitance are presented in a Fourier series
expression, the final step is the analysis at RF angular frequency ws (baseband frequency),

the small-signal current being obtained from convolutions;

(0) =G(@)*U() = | G (0-£)ds (4.12)
and (@) =C@)* joU (@) =[ CE)ile-&U@-&ds (412

where is G(w) and C(w) are the Fourier transforms of (4.9) and (4.10), respectively. The
spectral components of G(w) and C(w), as well as those of the small-signal voltages and

currents are, shown in Figure 4.2[109].

G(w),C(w) U(o),l(w)

> o >

0 O 2m; 3w, O;  OpF0s OpF0; 20,05 20,105 30,-0s 30t

Figure 4.2 Frequency spectrum of large-signal G(w),C(w)and small-signal U(w), 1(w).
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The harmonic balance (HB) method is applicable primarily to strongly nonlinear
circuit, such as conventional mixer and PPA circuits, Also it has been show to work well in
the analysis of optoelectronics circuit [81, 116-118]. HBT can provide great benefits and
can be employed to model a versatile DCHPPA receiver that includes both optoel ectronic
circuit (PPA) and conventional mixer circuit. In the PPA circuit, the HBT will be used to
simultaneously model the optical field and the electric voltage, and the work will be
extended to model the whole system using a very powerful commercial simulator with the

advantage of using the multi-tone/multi-rate harmonic balance technique.

4.3. DCHPPA Circuit Development

4.3.1. PIN Photodiode M odel Development

The core element to develop the PPA up-converter circuit model is the photodiode
model. Hence, it is essential to have a precise model for the pin photodiode, in order to
obtain accurate simulation results. Pin/pn photodiodes are quite similar in structure to
pin/pn junction diodes except that their junctions are illuminated with external light, which
forms athird “optical” terminal. An equivalent circuit of the photodiode is shown in Figure
4.3. In this model, the nonlinear capacitance of the photodiode is represented by a silicon
varactor diode that has highly nonlinear characteristics, as it is one of the basic
requirements for parametric amplification. The use of a silicon varactor diode is shown to
work well in a conventional parametric amplifier, because the depletion layer capacitance
is dependent on the applied voltage, aswell asit exhibit a comparatively low level of noise
when compared to those using other materials, and particular germanium. The overall
series resistance (rs) of the Photodiode represent the lead resistance plus the bulk resistance

as shown below.

79



Photodiode Series resistance (Ry)

nl
®
Light ACVS
Varactor diode
o
VCCS

[ ) . J
n2 n2
(a) (b)

Figure 4.3 An equivalent circuit for photodiode.

Figure 4.3 shows the MWO schematic circuit diagram of the proposal model of the
photodiode used in harmonic balance simulation. As can be seen, an AC voltage source
(ACVY) is set to represent the incident optical power Pi, and allows for an independent
specification of the tone number and the fundamental frequency of that tone. The voltage
on ACVSis an anaog for the optical power in watts incident on the photo detector. The
optical signals are modelled as voltage quantities, expressed as a real number, as seen in
figure 4.4. Alternatively, the optical signals can aso be modelled as electrical power
quantities, expressed as areal number in (dBm) using an input port with defined frequency,
as it makes better use of the MWO features, particularly in some later simulation scenarios.
A voltage-controlled current source (VCCS) with the varactor diode in parallel will

represent the fully depleted pin/pn photodiode. The VCCS is used for modelling the

photocurrent gain; gain M, known also as tranconductance (j - 4lex ), is set to represent
A

out

the responsivity R of the photodiode (e.g R=0.62A/W). VCCS is used to implements the

current source, with output photocurrent based on the following equation:

'p =W — (4.13)



For an ideal current, the source the frequency F is set to zero, so the gain has no frequency
dependence, where A is the phase offset, t is the time delay, V is AC voltage magnitude
and f is the optical signal frequency. The ideal photon counter is impossible to redise in
actual practice. A more realistic model of the photodetection process is based on the above
formula. Where the ideal photon-to-photocarrier converter known as photon counting
process [119] is replaced by one with a finite conversion efficiency, represented by
equation 4.3 (i.e. equivalents to electrical low-pass filter), to account for the finite response

time of apractical photodetector.
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Figure 4.4 Photodiode schematic circuit diagram.

The photo-generated current Ip due to the incident optical signal is proportiona to the
radiant flux density [19]:

(4.14)

I  =RPi
p

where R is the photodiode responsivity and is the output photocurrent produced per unit of

average incident optical power (Pi) in A/W. Both the R and Pi can be expressed as follows:
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(4.15)

(4.16)

Where 1 is the quantum efficiency, q is the electron charge, h is the Planck’s constant, c is
the speed of the light, A is the wavelength, and Ny is the number of incident photons per
second. As aresult of illuminating the photodiode with an optical signal, the photodiode

output current will increase by the amount of photocurrent (I,) as shown in figure 4.5, thus:

I o=1 _+1
p

ph d (4.17)
Where 14 is the current through the photodiode in the absence of incident light, known as

the dark current.
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Figure 4.5 Photodiode 1V curve with the effect of incident optical power.

As mentioned in the previous chapter, the parametric amplification is based mainly
on the nonlinear behavior of the junction diode. There are numerous published works about
modeling the pn and pin junction diode from various aspects; however, this approach is
based on the pin junction diode model presented in [120, 121]. This model is able to model
adequately such important effects as intrinsic layer charge storage, which is the dominate

mechanism in governing such pin diode behavior as the impedance-frequency
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characteristic, the current-dependent carrier lifetime, insertion loss and limiter action. In
contrast, the pin diode model accurately describes a variety of pin diode geometries at high

frequency and over awide range of bias current, including zero bias.

The pin diode is characterized by a lightly-doped, so called intrinsic region,
sandwiched between a heavily-doped p type and n type region. The pin diode full circuit
simulator model describing the intrinsic region characteristics, and two pn junction

elements used to model the Pl and IN boundaries, are shown in figure 4.6 [105].
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Figure 4.6 Equivalent circuits for PIN diode model: (a) PIN diode equivalent subcircuit,
(b) PI and IN junction diode equivalent circuit, (c) two order equivalent circuit of the
intrinsic region stored charge, and can be up to 8" order to improve simulation accuracy.

The Pl and IN junctions are characterized by the default MWO nonlinear PN
junction diodes and are connected in series, thus resulting in 1/V characteristic for a PIN
diode. In addition to the junction diodes, there are two more nonlinear elements in the
above model, the controlled current source GRMOD and GE, the former describing the
nonlinear series resistance, and the latter describing the current-dependent storage time.

Their current equations can be found in [105, 121].
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The two PN junction diodes can be combined into one, if their characteristics are
the same. Otherwise the two diodes can be chosen to model the possibility of different
reverse saturation currents in the two PN diodes, by such effects such as the difference in
mesa diameters or surface passivation.

The PIN diode output current obeys the following equation [105]:
! pin ~ I pi in (4.18)

The sum of their voltages is the total voltage across the PIN diode
Vin =V, +Vi, (4.19)

The junction currents are a function of the junction voltages:

Ipi:Fpi(Vpi) & lin = FinV

in’ (4.20)

These are the functions for the current based on equation (4.14, 4.18). However, the Fpi( )
and Fin( ) are not the same functions because the ideality factor ( n) for the diodes Ny and
Nin are not equal, and can be expressed as follows:

_ 2N N - NB
" (1+B) & " (1+B) (4.21)

where N is the diode ideality factor and B is the mobility ratio. Finding an expression for
current as a function of PIN diode voltage would require solving equations (4.20). It does
not have a solution in closed form, as the equations are nonlinear. The MWO circuit

simulator solves the currents equations numerically.

Each PN junction diode obeys its depletion current equation [105], and can be

expressed as follows:
pi pi pi (4.22)

din in in (4.23)
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Figure 4.7 PN Diode model

The forward current I for each pn junction is given by:

I
=a

n Ve _
Ifr | O.5+KQ|SR(exanKT l) (4.24)
(5]

KF

Table (4.1) will provide a brief description for each parameter,

Table 4.1 photodiode model parameters.

Parameters | Description

Vy Voltage across the diode (voltage)

\ Silicon junction voltage (voltage)

Cy Diffusion capacitance (farad)

G Junction capacitance (farad)

Cio Zero-bias junction capacitance (farad)

Cut Total packaged capacitance (farad)

Vv High reverse breakdown voltage (voltage)
Ike High injection knee current (ampere)

lgy High reverse breakdown current (ampere)
(P Recombination current constant (ampere)
levL Low reverse breakdown current (ampere)
Is Saturation current (ampere)

m Grading coefficient

fe Grading coefficient for forward-bias depletion area capacitance formula
n Emission coefficient of the diode

7R Recombination current emission coefficient
ey High reverse breakdown ideality factor
BvL Low reverse breakdown ideality factor

T Absolute temperature of the diode (celsius)
a Relative device area (meter)

q Electron charge (coulombs)

k Boltzmann’s constant (joules/kelvin)

p Intrinsic region resistivity

& Relative permittivity

€0 Electric permittivity
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where |, in equation (2.24) represents the ideal diode (Schockley) current, given by:

gV,
| =1_|exXp—— 4.25

Isisaproportional constant, called the current parameter (reverse saturation current). Is can

be determined from:
= A"T2W, (exp %j (4.26)
KT
Where is A~ is the modified Richardson constant (96 cm™? K™ for silicon); W is the
junction area, and ¢, isthe barrier height in volts, a constant usually approximately as 0.1
volts greater than the diffusion potential [87].

The expression, kg , in equation 4.17 describes how the recombination current depends on

the junction depletion layer width.

%

K, = Hl—v—dJ +o.005] (4.27)
\7

The reverser current I, for each pn junction is given by:

-qVy —QVay —QqVy —QVgy
|, =al,,| e —1lexg ——= |+al ex -1|lexp ——— :
" BV( F{TIBVKTJ J F{UBVKT] BVL( [{TIBVLkT New KT (4.28)

The PIN diode used in this approach is the MWO improved model, with bias and

frequency dependent on junction capacitance. The PIN junction capacitance frequency

dependency is implemented according to:

C e “(ffrJz (4.29)

Where Cy is the total packaged capacitance and is given as parameter C; for the PIN diode,

and f; isthe dielectric relaxation frequency, given by:
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fr BT (4.30)
TTPE . € o
The dynamic capacitance, Cq4 , is nonlinear, and follows the formula:
ol ¢

where the first term represents the diffusion capacitance, and C; represents the junction

capacitance, as shown in equation (4.32,4.33).

The AWR tools give the ability to implement the bias dependency in the junction
capacitance according to the harmonic Spice formula (equation 4.22), or the AWR
harmonic formula (equation 4.23). However, using the AWR formula represents the actual
behaviour of the junction capacitance more accurately [105], particularly when a high
forward voltage is applied, known as the valley voltage in the tunnel diode. In this
approach, the commercial photodiode used in the research does not show the valley voltage
changes in the CV characteristics, as shown in figure 4.11. Therefore, some of the
parameters in the PIN diode equivalent circuit model shown in figure 4.6 have to be
modified and calculated, and then reset again to match the practical measurements with

respect to CV/IV characteristics. These parameters can be found in Appendix Al and A2.

C,
e ,when V, <0
Cj - Vi (4.32)
. V,
Cjo|1+ m—% ,when V)0
V.
|
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C.
— When V, < fV,
Va
Vi
_ , )
£
C. . m
C = jo i 141 ,Wh o_ - Vv -~
] (a-f)" ) 2(1-f.)? i 2 en C)\/J Vg > TV (4.33)
Cio o '[z_fc_\\;*d]
e - f when V> (2- f \V,
(1-f)" ) a2 )\/J

Some of the important parameters to model the PIN photodiode are usually givenin
the manufacturer’s data sheet, and some have been obtained from the supplier. However,
if some parameters are unknown, they can be calculated or extracted using the AWR
manual[105]. Table 4.2 presents some of the important parameters used to model the PIN
photodiode, based on the Osram commercia photodiode BPX61 (see Appendix A3 for
BPX61 photodiode data sheet). The other parameters related to modeling the pin junction
diode can be founded in Appendix A1 and A2.

Table 4.2 Some important parameters based on the Osram PIN photodiode.

Parameter Value Parameter Value
Junction capacitance at zero bias | C;=72 pF High injection knee current | Ikf=5e-5 A
Forward grading coefficient mM=0.45 Respnsitivity R=0.62A/W
Reverse grading coefficient =05 Speed of light C=3e8m/s
Saturation current |=3.5e-11 A | Plank constant H=6.63e-34J-s
I deality factor (emission N=1.01 Electron charge g=1.6e-19C
coefficient)

Seriesresistance r<6.5 ohm Wave lengthe A=0.85um
Barrier potential voltage V,=0.552 v Optical frequency =c/ A 3.529¢14
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It is important to note that the incident optical power received which can help to
determine the photocurrent value at this incident optical power is based on equation 4.14.
The incident optical power for the photodiode was measured using an Ealing photometer
device with sensitivity factor set to equal 1.776E-2 (cm?/w) at an RF signal of IMHz AM
modulation signal with 850nm wavelength. The measured optical power P;=1.414mW.

Figure (4.8) shows the photocurrent used to model the optical signal at 1.414mw optical

power.
Current Ip
1.5
0.001251 ms
1 0.8767 mA
0.5
1
o v
-0.5
-1
1.5
o 0.0005 0.001 0.0015 0.002
Time (ms)

Figure 4.8 photocurrent of 1.414 mwW incident optical power at 1IMHz optical signal

The photo-generated current (l,) due to the incident optical signal is proportiona to the
radiant flux density. Figure 4.9 shows the IV characteristic for different incident optical
powers, and the photocurrent modelling the photodiode for 1 MHz optical signa at

1.414mW power is equal to 1,=0.877 mA according to equation 4.14.

To validate the model, the PIN photodiode was simulated for DC analysis at
different incident optical powers; the simulation was run seven times for 0 to 5mWw,
including the 1.414mW optical power received at IMHz modulated frequency. The

simulation results for the IV characteristics for the photodiode model are shown in the
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figure below. It shows an excellent agreement between the calculations and the simulation

result for different optical intensities.

IV Characteristicsusing AWR Tools
5
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Figure 4.9 1V characteristics at different incident optical power
To verify the nonlinear characteristic of the PIN photodiode model, both the
simulation and measurement of IV characteristics are plotted in figure 4.10; the IV
photodiode was measured with a simple circuit using a normal current meter. (See

Appendix A1 for more details about 1V simulation setup and source code).
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Figure 4.10 Smulation and measurement 1V characteristics of the pin photodiode.
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Both the measurement and simulation results of the IV characteristics show a very good
correspondence, which has verified the validity of the photodiode model with an average
of 3% difference between the simulation and measurement results. However CV
characteristics can be seen as more important parameters to verify the model. This is
because the PPA is dependent on the capacitance voltage characteristics of the junction
capacitance, as the amplifier conversion gain follows the gradient of the CV curve. Higher
gain can be achieved if the junction operates at a high steep CV curve (zero bias). To verify
the photodiode model, junction capacitance has to be nonlinear. Figure 4.11 shows both the
simulated and measurement results of the photodiode CV characteristics at 1 MHz signal
frequency. The measured results were performed by using a capacitance meter (Boonton

model BD72) with £2% accuracy.
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Figure 4.11 Smulated and measured CV characteristics of the PIN photodiode.

The simulation result was based on a circuit diagram showed in Appendix A2 (see
Appendix A2 for more details about CV simulation setup and source code). As seen from
the above graph, the CV characteristics of the smulated result showed very close

agreement with the measured results. However, there is amost an average of 3%

91



difference between the simulation and measurement results, depending on the applied
voltage. The result shows an excellent correspondence that verifies the validity of the
photodiode model.

In addition, to validating the pin photodiode, an attempt had been made to model
the pn harmonic Spice junction diode and pn AWR harmonic junction diode, based on the
bias dependency formula in equation 4.32. Figure 4.12 shows the CV characteristics for
three different pn/pin photodiode models. The plot shows positive agreement with respect
to the CV curves, and the simulation results in the next section will provide a good
indication that the principle of parametric amplification are based mainly on the nonlinear
characteristic of the junction diode, and are not based on the pin or pn structure which has

not been found to be the case, as reported in many published papers.
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Figure 4.12 Smulated CV characteristics for different junction photodiode.
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4.3.2. Double Balanced Mixer M odel Development.

The most commonly used mixer for RF/MW frequencies is the double baanced
mixers (DBM) of the ring or star configuration. The ring mixer is more amenable to a low
frequency application, in which transformers can be used, but it is aso practical in high
frequency applications [122]. The advantages of a double-balanced mixer over a single
balanced mixer are the increased linearity and improved suppression of spurious products;
in other words, al even order products of the LO and the RF are suppressed and there is
inherent isolation between all ports. The disadvantages are that they require a higher level

LO drive, and require at least two transformers (i.e baluns).

The theoretical analysis of the single and double balanced mixer is well established
and considered mature[107, 122, 123]. The aim in this section is to model a ring DBM,
which can be used as a conventional down-converter mixer to recover the original
baseband signal. The designed model is based on a UHF commercia ring mixer
configuration (ZAD-1H+) supplied by Mini-circuits, which was used in practica
implementation. Figure 4.13 shows the schematic circuit of the ring mixer (ring modulator)
model. The circuit consists of two transformers that provide isolation for all ports, and
four identical Schottky diodes. Schottky diodes are very fast switching devices, and are
ideal for a diode resistive mixer, as they have virtualy no minority carrier effects, and

provide the best possible conversion loss and noise figure.
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Figure 4.13 schematic diagram of double balanced mixer.

It can be seen from the above schematic diagram that the mixer was configured for
15dBm pumping power (LO port) at 432.92 MHz frequency and -5dBm (IF port) signal
power at 433.92MHz. The output frequency of the down-converter mixer (RF port) was
the difference between the LO and IF frequency and other spurious products. The IV/CV
characteristic of the Schottky diode obeying equations 4.25 and harmonic Spice equation
4.32 respectively. Table 4.3 provides some important parameters of the junction diodes

that have been used to moddl the DBM.
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Figure 4.14 shows the conversion loss of the DB mixer model at different LO power
levels; for instance, at 15dBm pump power, the conversion lossis about 4.8dB. Figure 4.15
shows the DBM output spectrum of the down conversion mixer. It can be seen that there

are no spectral components, and al the even order products of the LO and the RF are

Table 4.3 ideal schottky diode parameters model based on AWR tools.

Parameter Value
Junction capacitance at zero bias Ci=0.13 pF
Forward grading coefficient m=0.5
Reverse grading coefficient f=0.5
Saturation current 1=2.2e-8 A
Ideality factor (emission coefficient) N=1.0
Seriesresistance r<=16 ohm
Barrier potential voltage V,=0.5v
High injection knee current Ikf=0 A

suppressed.
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Figure 4.14 Conversion loss of DBM.
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However, due to the lack of some technical information from the mixer supplier, such as
diode parameters, the mixer model exhibits a 4.8dB conversion loss compared to 6dB for
the commercial mixer. In contrast, the model shows a very good result with respect to the

down conversion DBM technique and conversion loss, as seen in the graphs below (figure

DBM output spectrum
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g -30 432.92 MHz
5 -40 -41.808 dBm
-50
-60
-70
_80 1 1 1 1 1 1 1 1 1 1
-10 40 90 140 190 240 290 340 390 440 490
Frequency (MHZz)

Figure 4.15 IF output spectrum for down converter DBM.

4.4. Simulation Realisation.

Prior to any practica implementation, it is necessary to model and simulate the
DCHPPA to optimise the performance of the system. The simulation provides a pictorial
view of the interaction of the optoelectronic mixing occurring between the optical signa
and the pump signal in up-converter amplifier. It may also predict some other merits that
can hardly be recognised in the practical measurement such the effect of grading
coefficient and bulk resistor. Moreover, it can aso predict the effect of other parameters
that may not been considered in the theoretical analysis, as it provides the flexibility to
determine the most important parameters that affect the parametric amplification
techniqgue. A novel HB simulation technique has been developed here to simulate the
operation of the DCHPPA system, which consists of an up-converter parametric amplifier

circuit and the down converter mixer circuit. The research aims to use a nonlinear circuit
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simulator that examines the circuit's configuration and provides a good, realistic

assessment and better performance optimisation.

The simulation was conducted on a Windows XP machine with an Intel core 2
processor of 1.86GHz speed and 2GB of RAM. The HB analysisis based on the AWR HB
simulation environment version 8.0 (Microwave Office, USA), used to optimise the
performance of the designed model. Multitone HB analysis was used to analyse the
DCHPPA receiver; alarge signa (LO pump frequency) being set to tone 1, as it is the
largest input power signal and the small signal (optical frequency RF) was set to tone 2.
The number of harmonics in each tone was set to 2, as the smulation analysis is interested
only in the first order of an InterModulation product (beat frequency IM) to obtain the
conversion gain. There are a number of important parameters that need to be set to obtain
an accurate result when using HB simulation; Nodal algorithm was used for HB analysis, a
sparse matrix solver was used for AC/DC analysis, and a trapezoid integration method was
used for transient analysis. Moreover, the iteration was set to 25 for the number of attempts
to solve the circuit, which guaranteed that no convergency difficulties were found.
Moreover, the harmonic order was set to a max of 9, considered as the desired level of
Fourier series truncation, and the HB simulator was able to compute its solution

waveforms to an adequate degree of accuracy.

45. PPA Circuit and Simulation Results

It was important to verify that the circuit model was operating as intended.
Performing both HB and AC analysis will enable evauation of the PPA up-converter in
both the time and frequency domains, as well as check the mixing tones (sources)

mechanism and observe their parametric amplification output products.
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The PPA schematic circuit in the non-degenerate mode was configured as shown in
figure 4.16. The circuit was configured to operate in zero bias modes (equilibrium mode).
The small input signal was configured for a 1.414mW optical signal, modulated at 1 MHz.
The large pump signa had a frequency of 433.92MHz, with a pump power of 15dBm. 50
ohms impedance was used for both source and load ports, as is common for most RF
system. The simulation experiments were conducted in the UHF frequency range. These
frequencies were determined principally by the convenience of using commercialy-
available components as well as showing the viability of the theoretical approach, and
comparing the ssmulation results with practical results (see Appendix A4 for more details

about up-converter simulation setup and source code).
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Figure 4.16 schematic circuit for PPA

Figure 4.17 shows the PPA output waveforms in the time domain. The resultant
waveforms show the transient curve of pump frequency 432.92 MHz signal with amplitude
modulation. There are side tones, with 1 MHz offset around the 432.92 MHz signal. The
time domain graph verifies the mixing signals operation, and the waveform shape is a
result of asmall sinusoid signal, with a smaller amplitude added to another signal of higher

frequency and larger amplitude. The resultant waveform varies with time according to the
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variation of the lower frequency sinusoidal. Figure 4.18 shows the waveform signal over
the nonlinear capacitance. It can be seen that the voltage across the junction capacitance is
smaller than that across the PIN photodiodes. This is because the voltage across the
photodiode represents the sum of the voltages across the series resistance and the junction

capacitance (i.e. voltage divider concept).
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Figure 4.17 PPA ssimulated output voltages across the up converter load
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Figure 4.18 Smulated voltage over the nonlinear junction capacitance.

Figure 4.19 shows the simulated frequency spectrum of the PPA up-converter. It
can be seen that the baseband signal IMHz (RF) with -64.2dBm power was pumped by
15dBm electrical power (LO) at a frequency of 432.92MHz. Multitone HB Simulation
results show that the optoelectronic mixing at the junction are the result of both upper and

lower side band intermediate frequencies (IF) and their harmonics. A 23.81dB of up-
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converter gain at 433.92MHz (IF) was predicted. The spectrum graph was limited to
plotting only the first harmonic intermediate modulation (up/down converter), the pump
frequency and the optical modulated frequency. Various tests were performed to validate
the PPA model, such as operating in DD/IM mode, where the sole input is the RF signal
without the pumping signal. Another mode is where is the sole input is the pump signal,

without a photo detection current.
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Figure 4.19 Smulated frequency spectrum of PPA up converter.

Figure 4.20 shows the frequency spectrum for three different photodiode models,
based on pn/pin structures where the same junction parameters were used and their CV
characteristics were shown in figure 4.12. The results indicate that the parametric
amplification is based mainly on the CV characteristic of the photodiodes, and is not on the
structure of PD as a pn or pin type. However, the latter can be seen as much better for

frequency response and photo-detection efficiency.

100



10

-10
-20
-30

-50
-60
10

-10
-20
-30

dBm

-50
-60
10

-10
. 20
-30

-50
-60

] i -4 (Bm) - (dBm)
PPA spectrumfor different photodiodes PINdode PN dode
(cBm)
43292 VHz PN Sdode
2587 dBm
433.92 MHz
fig.(a) ’[ T -40.35dBm
432.92 NHz /
2,606 dBm
433.92 MHz
flg(b) -40.42 dBm
432.92 NHz
2,606 dBm
433.92 MHz
fig.(c) T T‘ -40.41 dBm

430

431

432 433 434 435
Frequency (MHz)

436

Figure 4.20 ssmulated frequency spectrum of PPA up converter for different pn/pin
photodiode (a) pn photodiode, (b) pn spice photodiode, and (c) pin photodiode.

A number of different ssimulation scenarios were performed which were more

helpful in validating the theoretical analysis in the previous chapter, as well as predicting

other parameters that can affect PPA performance with respect to conversion gain. The

same PPA schematic circuit entities were used in the flowing scenario unless stated

otherwise. (See Appendix A3 for more details about the simulation setup).

4.5.1. PPA Gain versus Various Bias Voltages.

The schematic entries of the PPA model shown in figure 4.16 were used in addition

to a bias-T circuit to supply the bias voltage from a DC source voltage. The DC bias

voltage was varied from 0 to -15 volts, with 16 simulation points. Figure 4.21 shows that

the gain gradually reduced when the reverse bias voltages were increased. The simulation

results show that the maximum conversion gain can be achieved at zero bias voltage
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(equilibrium mode), where 0 dB gain was predicted at -24 volts, and areverse bias voltage
as illustrated in figure 4.22. According to both figures, it can be seen that the gain drops
from 23.8dB to 18.23dB with respect to the reverse bias voltage of O volts and -1 volts
respectively; the gain then starts to decrease gradually based on how steep the CV curve
was. This is in excellent correspondence to verify the proposed zero bias mode approach
(equilibrium mode), where the junction behaves in a highly nonlinear way, as predicted in

the previous chapter. (See Appendix A5 for simulation setup and source code).
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Figure 4.21 Smulated frequency spectrum of PPA up converter for various bias voltages.
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Figure 4.22 Up converter gain for various reverse bias voltages.

4.5.2. PPA Gain versus Various Pump Power .

In this scenario, the same schematic entries of the PPA model shown in figure 4.16
were used. The simulation was performed by varying the pump power from -10dBm to
27dBm with 37 simulation points, as shown in the simulated frequency spectrum below in
figure 4.23. The PPA up converter gain variation with respect to pump power level is
shown in figure 4.24. The gain increases linearly with LO pump power, and the PPA
operates as an ordinary linear amplifier. At the low LO pump, with the amplifier
conversion gain observed at around -8dBm power, the gain initially increases reaching a
maximum value and then decreases after the compression point. The 1 dB gan
compression occurs at around 25dBm pump power, where 30.85dB gain was achieved; the

amplifier at this stage behaves as a nonlinear amplifier.

Increasing the pump after compression points results in no increase in gain and at
some points, starts to decrease, this is because the LO voltage over the photodiode has

overcome the barrier potential voltage of the PD and causes an undesirable forward current
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to flow through the PD. However, it has been shown that the compression point occurs at a
higher pump level when the photodiode operates at a high DC reverse bias voltage, as
shown in figure 4.25. This is because the variation of LO voltage over the photodiode will
be greater, and therefore this greater LO pump will not cause any an undesirable forward
current to flow through the PD. In contrast, at the same power level in both scenarios (i.e.

Zero bias mode, -1v bias mode), a better gain was predicted at zero bias mode.
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Figure 4.23 Smulated frequency spectrum of PPA up converter for various pump power .
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Figure 4.24 PPA up converter for various pump power.
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Figure 4.25 PPA up converter gain for 0 and -1volts bias at various pump power.

According to the above graphs, the simulation results show that the gain is directly
related to the pump power. Asthe LO pump increases, so the PD current will increase too,
resulting in extra shot noise which can affects the noise figure of the PPA. HB analyses
show that the gain is a function of the pump power, as predicted in the aforementioned
theory analysis. The signal at idler frequency has been boosted due to energy transfer from
the pump signal to the first harmonic frequency, known as power flow in a conventiona
parametric amplifier. In addition, the gain increases with pump power below the
compression point, and the compression point occurs at high pump power when PPA
operates under DC reverse bias compared to the PPA in equilibrium mode.

4.5.3. PPA Gain versus Various Optical Frequencies and Optical
Intensity.

The PPA signa theory analysis in the previous chapter has shown that the up-
conversion gain was dominated by the ratio of the upper side band frequency over the

optical frequency (fi/fs). It is necessary to simulate the PPA for various optical signals. To
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do this, the PPA schematic entries shown in figure 4.16 were used; the HB simulation was
performed by varying the DD modulated optical frequency from 1IMHz to 20 MHz with a
1MHz interval. Figure 4.25 shows that a number of different modulated optical signals

(RF) were received by the photodiode, for 1.414mW incident optical power.
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Figure 4.26 ssimulated frequency spectrum for various modulated optical signals.

These received signals are based on the photocurrent gain equation 4.13, where the gain
has frequency-dependence which represents a non-ideal LED transmitter with respect to
photodiode frequency response, and the output RF received signals was measured with a
flatness of £2dB in this frequency range. This can verify the frequency response of the
modelled input optical frequency with the practical measurement of the photodiode

frequency response, as shown in the next chapter.

Figure 4.27 shows the PPA up-converter output spectrum for various RF input
signas. It can be seen that the highest gain was achieved by the RF signa frequency at
1MHz, with a gain of 23.8dB. The gain starts to decrease gradually by increasing the RF

signals, asillustrated. It has been shown that no gain will occur if the PPA detects a higher
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RF signa frequency than 19 MHz. The PPA conversion gain starts reducing for 20MHz
RF signals, with 0.68dB gain loss. The gain will decrease according to the increase in RF

signals, as predicted in the theoretical analysis, where the gain is proportional to the ratio

of (wi/ws).
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Figure 4.27 Smulated PPA up converter spectrum for various RF signals

The simulation was repeated for various pump powers at 432.92MHz, with various
optical RF signals, as shown in figure 4.28; it can be seen from the graph that the predicted
gains for various RF signals IMHz, 5SMHz, 10MHz, 15MHz, 20MHz were proportiona to
the pump signal. For instance, at the 5SMHz optical signal, the conversion gain started to
occur when almost 2.7dBm pump power was applied; however the PPA  works as a
conventional mixer with conversion loss at low pump power (i.e pump < 2.7 dBm). In
contrast, the gain is inversely proportional to the RF signals, as predicted in the signal

theory analysis.
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In addition to the above analysis, the HB simulation investigated the effect of the
RF signal power on the PPA conversion. The simulation was repeated by varying the
detected RF signal for ImW to 9mW optical power, with a 2 mW interval. Figure 4.29
shows the output spectrum for the PPA. It is clear that the gain is proportional to the

detected RF power signal.
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Figure 4.28 Smulated PPA conversion gain at various RF signals.
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Figure 4.29 Smulated PPA up converter spectrum for various RF power level.
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4.5.4. PPA Gain versus Various Pumping Frequency.

In continuing to analyse the effect of the pump frequency to the RF optical
frequency as mentioned in previous section, the PPA circuit was simulated by varying the
pump frequency from 100MHz to 1000 MHz, with 10 simulation loops to obtain the up-
converter gain at idler frequencies. The simulation was repeated for three different
scenarios: firstly, the experiment was run with 15dBm pump power at 1IMHz detected RF
signal; secondly, the pump power was set to 5dBm for 1IMHz detected RF signals; thirdly,
the pump power was set to 15dBm with a 10MHz detected RF signal. Figure 4.30 shows
the spectrum analysis for the PPA converter at various pump frequencies. The gain at fixed
input pump power (i.e. 15dBm) was not aways found to be proportional to the ratio of
pump frequency to RF frequency, as reported in [37, 82, 99]. However, on the signal
theory analysis, the up-converter gain is a trade off between the ratio of pump frequency
and the RF frequency, in addition to the amount of pump power applied to the junction
capacitance at pump frequency. Indeed, the PPA operates as a voltage divider; the pump
voltage to the PD is divided between the bulk resistance and the capacitive reactive

impedance, obeying the voltage divided concept.

In contrast, applying a high frequency pump will reduce the capacitive reactance
impedance, which results in decreasing the varying voltages over the reactance impedance
(i.e. increase the voltage over the bulk resistance), as shown in time domain analysis in
figure 4.31. It can be seen from the graph that three pump frequencies were used for
simulation, being: 241MHz, 432.92MHz and 900MHz. The output signal applied to the
junction capacitance varied with different pump frequency. Parametric amplification was
based mainly on the variable nonlinear capacitance. Therefore low capacitance variation,

even at high frequency pump, will not always lead to optimum conversion gain, as shown
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in figure 4.30. To achieve high gain a high pump frequency, a large pump power is

required.
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Figure 4.30 Smulated PPA converter spectra for various pump frequencies.
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In addition, the PD bulk resistance (rs), isaso known as one of the key elementsin
the PPA noise figure, and can also have a direct effect on conversion gain; hence, the lower
rs is the better for conversion gain, as shown in figure 4.32. The PPA was simulated by
varying the value of series resistance from (1,6.5,20,100,200,300) ohms, with six
simulation loops, at 15dBm pump power. The graph depicts that, if the PD has a bulk
resistor over 300 ohms; the PPA starts working as a conventional mixer with conversion
loss. According to the above analysis, the simulation analysis was found to be in good

agreement with the analytical gain expression given in the previous chapter.
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Figure 4.32 Smulated frequency spectrum of PPA up converter for various series resistance.

455. PPA Gain versusVarious Grading Coefficients

A variable capacitance junction may be referred to as abrupt, hyper abrupt, or super
hyper abrupt. These refer to the change in junction capacitance by changing the applied

voltage. These junctions offer a relatively large change in capacitance which is more
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desirable for parametric amplification, and can aso be seen as a disadvantage for PD
application with respect to photo detection efficiency and frequency response. For instant,
arelatively large change in Cj can enhance harmonic levels [124, 125]. Varying the applied
voltage of abrupt junctions over the rated limits, can change capacitance by a 4:1 ratio (i.e
m=0 to 0.5), hyper abrupt by 10:1 (m=0.5to 1.0), and super hyper abrupt by 20:1 (m=1 to
2.0) where m represents the grading coefficient. For instance, a diffused junction with

linear technology (m<0.33) is not desirable for parametric amplification.

A super hyper abrupt photodiode, known as a retrograded junction, is more
favourable for a PPA due to the large steepness in the CV curve. PD with super hyper
abrupt junction gives a highly steep CV curve, particularly at zero bias voltage. HB
simulation was used to investigate the effect of the grading coefficient (m) on the PPA
conversion gain. The simulations were run by varying the value of m from (m=0.1 to 2.0),
with 20 simulation points, as shown in figure 4.33; high gain can be achieved when m=2.0.
Figure 4.34 predicted the gain slope at various m values. The gain increases linearly with m
as expected, and corresponds to junction CV curve behaviour. When the CV curve gets
steeper and steeper, further gain can be achieved. As mentioned in signal theory analysis,
the value of m was assumed to be a default value in the CV equation, which is equa to
(m=0.5). The HB simulation tools predicted the effect of the grading coefficient to the
conversion gain, asit can give up to 40%, compared to the theoretical analysis, as shownin
figure 4.33. By applying curve-fitting techniques, as shown in Appendix A6, the curve

fitting function for various m can be presented in the form of:

f(m)=a+bm+cnt +dn? + fm (4.24)
where f(m) represents the gain correction factor, and constant a= 3.9E-04, b = 2.1E+00,c
=2.5E-01 and d =-1.6 . According to the above analysis, the PPA corresponding conversion
gain can be predicted in the form of:
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Gain (A) = Gain (theory analysis) - f (M)
The analysis predicts that the up-converter gain is directly dependent on the pump
frequency (wi/ms), consistent with Manley and Rowe analysis, and is also dependent on the
input pump power across the nonlinear capacitance, and is highly related to the photodiode
characteristic such as bulk resistor, reactance impedance at pump frequency and the type of

abrupt junction with respect to the grading coefficient value.
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Figure 4.33 Smulated spectrum of PPA up converter for various grading coefficient (m).
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Figure 4.34 PPA up converter gain for various grading coefficient (m)
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4.6. DCHPPA Circuit and Simulation Results

The schematic circuit diagram of the DCHPPA is shown in figure 4.35. The optica
receiver consists of a double heterodyne conversion system, representing the pre and post-
front optical receiver. The pre-front optical circuit (stage one) consists of a PPA circuit,
which translates the received signa spectrum from the optical carrier frequency to an
upper IF, at which detection, amplification and optoelectronic mixing can be done with
single PD. The post-front optica circuit (stage two) consists of signal processing (IF
filters) and a down-conversion mixed (DBM) circuit, which passes only the desired IF
frequency and performs down-conversion mixing to recover the origina baseband. A full
description of the design of DCHPPA and system analysis will be covered in the next
chapter. The DCHPPA receiver model consists of a PPA circuit, DBM circuit, 5" order LC
low pass Butterworth filter circuit (LPF) that has a maximally flat amplitude response, as
shown in figure 4.37 [123, 126] .Two functional block, bandpass filters (BPF) provided by
the AWR simulators were employed for the design of the bandpass SAW filter, which was
implemented in a practical circuit as seen in the next chapter, are not within the research
scope. Also used was a two-way functional block splitter with 3dB insertion loss. (See
Appendix A7 for more details about the simulation setup and source code).

As mentioned in the previous section, the optical modulated signal was received at
1MHz, with -64.22 dBm signal power, the PPA up-converter circuit exhibited 23.84dB
gan at a frequency of 433.92 MHz for 15dBm pump power, the DCHPPA technique
overal subsequently exhibited a 15.92dB baseband signal gain over the modulated optical
signal, as shown in figure 4.36(a) (e.g. aso exhibited 22.93 dB gain a 25dBm pump
power). The graph in figure 4.36(b) showed the output waveform of baseband signal at
1MHz frequency. The recovered signal had a peak voltage of 0.001205 volts, which

corresponds to -48.3dBm signal power.
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Most simulation tools become affected by time-variant reactance. The problem is with the

different phase in the time-variant reactance impedance, as it keeps changing all the time.

It is clear that DCHPPA stage one has introduced a 23.84db gain over the RF

signal, whereas stage two has a 7.92dB gain loss, which is due to the filter insertion loss

and DBM conversion loss. The modelled DCHPPA circuit arrangement presented in this

section shows the viability of the approach. Moreover, a full description of the optimised

DCHPPA configuration circuit (i.e. stage two) will be presented in the next chapter, which

ams to reduce the insertion loss and add extra conversion gain. (See Appendix A8 for

advance DCHPPA system setup).
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4.7. Summary

A novel DCHPPA circuit design model has been described. The two stages of system
modelling and simulation for the design of optical front-end recelver were presented.
These included the first stage as the up-conversion circuit (PPA), and the second stage as
the down conversion circuit (mixer). An accurate pin photodiode equivaent circuit model
was employed to model the PPA circuit. The PPA configuration was successfully
simulated that represents actual nonlinear dynamic junction capacitance behaviour. The
PPA has a baseband detection, gain and frequency conversion al together in the first stage,
so the DCHPPA system gain and noise figure at the baseband component are
predominantly given by the PPA. An actual DBM equivaent circuit model was
implemented in the second stage, which may have gain and baseband recovery at low cost.
An object-oriented tool with multitone harmonic balance features was used to verify and
optimise the performance of the designed system model (i.e. particularly at PPA circuit
configuration) as it demonstrates the behavioural models’ ability to accurately predict the
effect of PD parameters and the PPA circuit configuration of the photo parametric
amplification. The simulation experiments provided a good realistic assessment and better
performance optimisation with respect to gain conversion. Multitone HB analysis was used
to model the complete front end optical wireless DCHPPA circuit, which demonstrated the
viability of the approach conventionaly with respect to the baseband recovery signal. The
simulation experiments were conducted in the VHF, UHF and MW freguency range.
However, UHF frequencies were determined principally by the convenience of using
commercially-available components, as well as it can show the viability of the theoretical
approach and compare the simulation results with the practical results. The simulation
analysis was found to be in good agreement with the PPA analytical gain expression. The
results show that the gain is directly related to the level of pump power over the variable
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capacitance, and also proportional to the ratio of idler frequency to RF signal frequency as
predicted in the aforementioned theory. Also, if thereis alimit to the LO pump power; the
gain may be recovered by appropriate adjustment of the pump frequency, based on the gain
analytical formula. For optimum conversion gain, the PD in the PPA stage should operate
at equilibrium mode, and exhibit high nonlinearity (e.g. super hyper abrupt) with low bulk
resistance; where there is a minimum noise figure and low insertion loss is desirable in the
down-conversion stage. DCHPPA have properties that make them potentialy attractive for

use in future optical wireless communication systems.
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Chapter 5

5. DHCPPA Experimental | mplementation and Practical Results

In this chapter, the experimental arrangement and the result of the front-end optical
wireless receiver are shown. This includes the optoel ectronics up-converter stage-1 (PPA),
IF signal processing stage-2 and down-converter stage-3 circuits. Also described is the new
hardware design of the DCHPPA, capable of high gain, high selectivity and low noise
operation. Experiment configuration for the non-degenerate mode is discussed, which leads
to optimum high gain at the first idler frequency, as well as additional gain at a baseband
recovery signal. The practical recelver has been built and tested in VHF and UHF as a
sequel to the simulation configuration, and its parameters were set to demonstrate the
simulated model presented in the previous chapter, which helps to compare with
simulation results and verify both the simulation and theoretical analysis.
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5.1 Introduction

In designing a free space optical wireless receiver, the first consideration is the
selection of a receiver technique that can convert the recelved optical signal into an
electrical signal. In most cases, amplification is required to bring the electrical signal up to
a useful level, while at the same time keeping the noise level down. However, selectivity
can be as important as sensitivity when considering a super heterodyne technique in both
electrical and optical domains; the receiver must have sufficient bandwidth to recover the
entire signal. Moreover, too much bandwidth increases the noise and adds other non-

desired signals, and thereby deteriorates the SNR.

There are two different techniques used in free space optical wireless
communication; coherent and incoherent optical communications. The focus here is on
incoherent optical communications, which can utilize as a homodyne or heterodyne
detection technique; the homodyne uses optical/electrical LO to produce a stable loca
signa that has the same frequency as the incoming RF signal. However in photo
homodyne detection, the receiver operates by mixing alocally generated optical field with
the received field, prior to photo detection. This added local field aims to improve the
detection of the weaker received field in the presence of the interval receiver thermal noise;

the use of homodyne detection is often called (spatial) coherent detection[48].

Conventional heterodyne detection employs converting the RF to an intermediate
frequency or IF (also called beat frequency), which may be either higher or lower than RF
frequencies, early heterodyne receivers always down-converted to a lower IF frequency.
The reason for thisis purely practical [127], the super heterodyne front-end receiver works
by frequency converting as heterodyne with additional mixer stages that work to convert

the IF to a standard RF/MW freguency with an appreciable amplitude, minimising noise,
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particularly at the detection stage. The optical heterodyne receiver has a SNR advantage
over direct photo detection because the use of strong LO signa serves to make all the

receiver noise sources, other than photo detector shot noise, comparatively small [128].

5.2 Optical Wireless DCHPPA System

The idea behind the double conversion approach (up-converter, down-converter) is
to recover the baseband components at the source frequency (ws); it is clearly desirable in
many applications to recover the signa at baseband, as originaly transmitted from the
other end. In this approach the photodiode is pumped, and its output current mixed with a
local oscillator source (LO), resulting in an output signal at the IF. The first selected upper
sideband IF harmonic (w;) with its desirable gain will mix again with the same local source
(LO) to recover the baseband signal as showed in figure 1.7. As a result, high gain and
ultra low noise can be achieved in the up-converter PPA first stage, where high selectivity
and additional gain can be performed in the IF signal processing (stage two), and the down
converter (stage three) is used to recover the baseband signal within the relatively low

noise region.

There are many advantages to be gained by using this technique in such areceiver,
for example: 1) by de-multiplexing the IF signas to baseband signal frequencies, it is
easier to recover each sub-carrier and therefore its information content; 2) down-
conversion means that lower frequencies are used subsequently, and, in genera this means
a lower cost in comparison to the use of high frequencies components subsequently; 3)
filtering out noise and unwanted signals at |F stage frequencies is more helpful than trying
to do so at baseband (BB) recovery stage; 4) even with the additional low loss components
in IF stages can have less effect and more benefit compared to as found in a conventional

super heterodyne receiver with respect to receiver noise figure (Friss Formula), the overall
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NF is primarily established by the NF of its first PPA amplifying stage; 5) a double
conversion approach can perform as a highly selective optical receiver for an SCM system;
6) the heterodyne technique has been shown to work very well in many conventional radio

receivers, and it demonstrates superior sensitivity and selectivity.

5.3 DCHPPA Stage One: PPA Experimental Work and Results

The PPA up-converter circuit design is a crucia element to be considered in front-
end recelver design, asit isthe key element to achieving better SNR for the whole receiver.
Therefore high gain and ultra low noise is more desirable with respect to receiver
sengitivity, particularly at the first stage. The performance requirements of the PPA up
converter can be divided into three principle functions: photo detection, amplification and
frequency conversion, whereas the received optical signal can be converted into a high
electrical signal, combined with an increase in amplitude to certain levels required for

effective utilization of these signals.

5.3.1 Choosing the Photodetector

The photo-parametric mode of operation involves optical detection, optoelectronic
mixing and frequency conversion, as well as signal amplification within a single junction
photodiode; therefore the choice of junction type of photodiode is very crucia, and as
mentioned in previous chapters the pin junction has severa advantages over the pn
junction. However, in the PPA approach, concern is mainly with the nonlinearity
utilization of the junction which is beneficial for parametric amplification, as the
photodiode should exhibit a very good optical conversion, high sensitivity at operating
wavelength, large detection area, large electrical response, short response time and

minimum noise (high stability and reliability). The most requirements for parametric
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operation are to have high nonlinearity in the CV curve and the capacitance variation

depends strongly on the applied voltage Cj=f(Va).

Several commercial pn/pin photodiode characteristics were studied, and their
CV curves were practical measured using a Boonton 72B capacitance meter (USA) with a
1MHz test signal and 2% accuracy. The photodiodes were an OSD-5T by Centronic, a
PBX61 by Osram, a BPX65RT by Centronic, an OPF430 by Optek, a BPV22F by Vishay

and a BPV10NF by Centronic. Their CV curves were plotted respectively, as shown in

Figure5.1.

Capacitance versus bias voltage
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Figure 5.1 Practical measured CV characteristics for several pn/pin photodiodes

For optimum parametric amplification, as mentioned in section 4.5.5, the junction
should offer a relatively large change in capacitance with change in applied voltage (e.g.
dC/dV,) and is not as reported in [82, 129, 130] where high attention is paid to what is
called high tunabilty, which is the ratio of Cyux/Crin ,which has to be as high as possible (
more than ten), where as this has not been found to be the case. The above figure depicts

only the CV curves at reverse bias mode (conductive mode), where only three photodiodes
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were selected that have a large step curve around the zero bias voltage, which corresponds
to large reverse grading coefficient (m). The photodiodes were an OSD-5T by Centronic, a
BPV22F by Vishay and a PBX61 by Osram. The three selected photodiodes were then
studied at both photoconductive and photovoltaic modes, and ther CV and IV

characteristics were measured and plotted, as shown in figure 5.2.
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The IV curve can be used to predict the parasitic series resistance (rs) of the photodiode
and the smaller value of ris the more desirable for parametric operation, as it can provide
large voltage variation over the variable capacitance (i.e. voltage divider concept), and aso
it is the principle noise limitation in the PPA. The graph below illustrates the CV curve for
the photovoltaic mode, which corresponds to forward grading coefficient (f¢) and the large

steep curve is more desirable.

Based on the findings discussed above, the OSRAM BPX61 pin photodiode was
selected for practical demonstrations. Although a pin photodiode is more desirable for
photo detection and frequency response, it can aso provide awider CV curve compared to
a pn junction. This may, at first, not seem appropriate, as the CV characteristic of a pin
diode can be less dependent on bias. Nevertheless, in reality this has not been found the

case. BPX 61 photodiode parameters can be founded in Table 4.2 in the preceding chapter.

5.3.2 PPA Experimental Work and Circuit Configuration

The PPA up-converter circuit configuration is shown in figure 5.3, and was
configured in tests for an optical wireless link operating at 850 nm. The circuit is
simultaneously a photo detector and up converter PPA with two resonators, the input
resonator (L;) being tuned to pump frequency that guarantee weak shunting of the signal
by the internal resistance of the pump generator, and the output resonator (L») tuned to the
idler frequency at (mp + ws). The PD was followed by resonant L2, and connected to a 50
Q impedance spectrum analyser. The PPA up converter arrangement essentially consists of
a photodiode, conjugately matched at the pump frequency as well as the desired idler
frequency. In order to receive the maximum output power at the first upper sideband
signd, it is very important to match the photodiode with both input and output circuit;

hence the value of L; and L, were obtained according to the applied frequency as
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mentioned in chapter 3. Previous works [129, 131-137] used a circulator circuit or stub
tuner circuits to pump the PD and extract the up/down IF frequency. However, even with a
well designed circulator, it is possible to obtain a residual pump power at the output port
and most of the present-day circulators provide almost about 20dB isolation, and this may
also affect the bandwidth limitation. In addition it is desirable to have fairly low reactance

to keep circuit losses to a minimum.

Filter Resonant Resonant
L1 L2
—¢ LC-BPF alala’g! NN
Vcoswpt
Vp G:) I 500Q
Photodiode

Figure 5.3 PPA up-converter equivalent circuit

In PPA circuit design, a different approach was used without the need for a
circulator; the passive LC-BPF band pass filter provided a convenient method of applying
a high pump to the photodiode junction, whilst at the same time providing isolation,
reducing local oscillator sideband noise and blocking dc from passing through to the
variable junction. Moreover, a high return loss figure is more desirable in such filter. Itis
essential that the photo-parametric diode should exhibit very good optical conversion
efficiency in addition to pronounced nonlinearity in the CV curve. Although the available
commercial BPX61 junction capacitance is based on an abrupt junction with grading
coefficient, m = 0.45, and parasitic series resistance, measured at rs= 6.5 Q which makes
of very suitable as a photodetector with good frequency response. But super hyper abrupt
(m =1 to 2) junctions are more desirable for parametric operation, as they give a much
greater dC/dVa characteristic.
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In terms of fabrication of the circuits, breadboard and veroboard are too capacitive
at high frequencies;, hence, a FR-4 laminate PCBs with constant impedance microstrip
techniques were employed, i.e. short rounded tracks rather than long tracks. TX-line MWO
tools were used for the analysis and synthesis of transmission line structures according to
the applied frequency. Surface mount components provide better high frequency
performance than through-hole components, due to having shorter leads and hence lower
parasitic reactance. All the designed PCBs were fitted into a Die-cast box, which naturally

shielded for RF and EM .

For practical reasons, the PPA circuits are implemented on two PCB circuits; a
photodiode detector PCB circuit, which contains the pin photodiode, and two resonators L1
and L2; filter circuit which based on LC-BPF circuit [see Appendix B1]. The pump source,
LO, is fed to the LC-BPF circuit directly from a function generator (Rohde & Schwarz
SMLO03, 9KHz-3.3GHZ, GERMANY), followed by the input resonant that connects to the
junction cathode, where the junction anode is grounded. The PPA circuit is quite similar to
asimple DD/IM approach, as the photodiode output signal can be measured directly from

the cathode via a 50Q coaxial cable.

In non-degenerate photo-parametric mode, the receiver is operated at equilibrium
mode (i.e. zero bias) by pumping the photodiode through the input tuned circuit connected
to the cathode, and the measurement of the mixing output signals can only be done through
the cathode via the output tuned circuit connected to the 50 ohm spectrum analyzer. There
are many advantages to be gained by pumping the junction at equilibrium mode in such a
receiver: for example: 1) the junction capacitance is highly nonlinear at zero dc bias mode,
as shown in figure (5.1a), and the ratio of dc/dv, can be as much high as possible, which is
more desirable for parametric amplification; 2) also, there is smaller shot noise due to low

dark current under equilibrium condition; 3) there is no reverse bias leakage current; 4)
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better thermal noise due to no bias resistor; 5) better power consumption. In the other hand,
too much pump power can cause forward current to flow through the PD and increase
noise. The am of this approach is to achieve high gain in an upconverter stage, and then a
double conversion superheterodyne recovery technique can be used to recover the

baseband components at the source frequency (ws).

5.3.2.1 LED Drive Circuit

The optical wireless links transmit information by employing an optoelectronic
light modulator, typically alight emitting diode (LED); the emitter driver design was based
on high current gain Darlington pair transistor amplifiers, as shown in figure 5.4 (see
Appendix B2 for LED drive circuit). The designed drive circuit must cause the light output
from the LED source to follow accurately an input voltage waveform (signal generator) in
both amplitude and phase. The LED used was from Vishay Semiconductors, type
TSHG6400, which had a peak wavelength of 850nm with 18MHz modulation bandwidth

and typical radiant power of 50mW, classified as class 3B in terms of safety.

vcc
12v
vcc
R3
10kQ
AR1 W X LED1
x\
10kQ
(o)
6 Key=A 50% Q1
Q2
5 2N2222A 8 -
2N2222A
R4 3
27kQ
R2
680

Figure 5.4 Darlington pair current gain amplifier (LED drive circuit).
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In the practical implementation, two npn transistors were used to implement the Darlington
amplifier with other through-hole components, as shown in the graph. Designing a high
current gain amplifier requires a high wattage resistor (i.e. R2) and high power transistor

(i.e. Q2) or aheat sink is needed for Q2 to pass alarge current.

5.3.3 DCHPPA Stage 1. PPA Practical Results

For practica reasons, and to show the viability of the approach conveniently,
experiments were conducted in the VHF and UHF frequency range. This particular
frequency was determined principally by the convenience of using commercialy-available
components. The PD detector circuit was placed on an x-y-z micro-positioner so that it
could easily be aligned with the transmitter IR beam. The distance between the LED and
the PD was set to approximately 30 mm, in order to collect maximum intensity
illumination (see Appendix B3 for DCHPPA experiments setup). Also, two signal
generators, a power amplifier, spectrum analyzer, and a twin output power supply were
used in this practical arrangement for biasing the LED and biasing the PD (in non
equilibrium mode experiments). The signa generator supplying the input voltage
waveform to the LED was a Marconi Instrument 2019 (80KHz-1024KHz, UK), set to
generate signals at IMHz-5MHz, with an amplitude of 0.5V. A Rohde & Schwarz SML03
(9KHz-3.3GHZ, GERMANY) signal generator was used as the LO with the Amplifier
Research model 50W1000AM4 (USA), capable of providing an RF level up to 39dBm.
The spectrum analyzer was an Advantest R3131 (9KHz-3GHz, TAIWAN). The
oscilloscope used was a Tektronix TDS 3032C (300MHz, USA). The network anayzer

used was an Agilent technologies E5071B (300KHz-8.5GHz, USA).

The photo-detector circuit was carefully aligned geometrically to produce the

highest photocurrent. The optical signal was modulated at 1 MHz, as shown in figure
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5.5(a), with a measured optical power of 1.414mW that corresponds to the -64.39dBm
measured at the spectrum analyzer. A pump frequency of 241 MHz and 432.92 MHz was
used. Previously published work [138] demonstrated the PPA up converter in the VHF
frequency range (241MHz). However, the frequency operation for this demonstration was
increased and set to the UHF frequency range (432.92MHZz). This provided a widely
separated frequency to a 1 MHz optical source frequency, compared to VHF, and helped to
verified the effect of the (wi/ws) term in the gain equation, and utilize the effect of high
pump and high frequency on the behaviour of the variable capacitive impedance at
parametric operation. In addition, a VHF frequency was used as well in some experiments
to help to show the viability of the theoretical analysis and compare practical results for
both UHF and VHF. The PPA practical measurement was conducted through an on-off
operation. Firstly, the optical modulated signa was measured as DD/IM without any

pumping, as shown in figure 5.5a
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Figure 5.5 Frequency spectrum of (a) 1 MHz modulated optical signal-direct detection
response; and (b) up-down converter signals pumped by 432.92 MHz, pump power 22 dBm
(25.11db gain for the up-converter signal).
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A -64.39dBm source signal was detected at 1IMHz frequency. Secondly, the PPA
pumped at 432.92MHz with 22dBm pump power. Indeed, the actua pump was 26 dBm
pump power from the signa generator, as there was a 4-dB insertion loss due to LC-BPF;
the maximum RF input power of the Mini-circuit LC-BPF model SXBP-425+ was 0.5W (
i.e +27dBm). The pump power was restricted to +26 dBm to avoid any damage to the BPF.
The frequency spectrum of the up converted signals is shown in figure 5.5b. The graph
illustrate that the optoel ectronics mixing occurs due to the photo parametric operation. The
mixing frequency occurs between the three frequency components of the signal, idler and
pump waves in such a nonlinear element, and the energy flows from strong pump wave to
weak signal and idler waves. This flow of power introduces a negative conductance into
the signal circuit. Two sideband first IF harmonics were generated obeying (0F=0ptos);
an upper sideband IF harmonic of 433.92MHz, and a lower down sideband harmonic IF of

431.92MHz.

Experimentally, the proposed PPA mode of operation (equilibrium mode) worked
well, and may be summarised as follows: A 25.11 dB of up converter gain at upper beat
frequency was achieved, compared to a 29.72dB up converter gain in simulation results. In
addition, by employing the input/output tune circuit to the PPA circuit configuration, the
up-converter gain improved by amost 3dB compared with a PPA circuit, without
considering the input/output admittance power. Moreover, the frequency spectrum in
figure 5.5b showed that the gain in the up converter signa was a little higher (i.e. aimost
1dB) than that for the down converter signal, as predicted in the aforementioned gain

equation in chapter 3.

It was essential to measure the waveform across the pin photodiode at the pumping
operation, for two reasons; first, it can help to predict the level of the pump voltages across

the junction and therefore avoids excessive level of pump voltage which can overcome the
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barrier potential voltage of the junction (0.554V) and cause undesirable forward current to
flow through the photodiode. Second, it aso helped to predict the value of rg of the
photodiode (measured value of re=6 Q). Figure 5.6 shows the level of pump voltage over

the junction.
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Figure 5.6 Pumping voltage level across the PD

The signal for chl was measured via a high impedance probe device with

attenuation of X10 across the photodiode and ch2 signal was measured direct from the
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pump source. The experiment was run with two different pumping power signals 5 and 20
dBm at 241MHz pump frequency a VHF frequency was used in this experiment due to
limited frequency range of the oscilloscope 300MHz. The measured voltage across the PD
was almost (V=0.1Vy). A number of different experiments are discussed in the next
section, as shown in the preceding chapter, to provide more help in understanding the
effect of other experimenta parameters and circuit configurations on the PPA up-
conversion gain. The same experimental configuration will be used in the next sections

unless adifferent circuit configuration is being considered.

5.3.3.1. PA Gain versusVarious Bias Voltages

In this experimental configuration, the PPA up-converter circuit configuration
shown in figure 5.3 was used, and an additional external mini-circuit bias-T (ZFBT-
4R2GW+ 0.1-4200MHZ) was installed, as shown in the experimental arrangement layout
showed in Appendix AS. The bias T with 50Q matching impedance was used to guarantee
an optimum SNR by providing a convenient method of biasing the photodiode and
ensuring that the output mixing frequencies (i.e. RF, IF and LO) flow completely to the
load (spectrum analyzer) and that other DC signals will be rgjected from flowing to the
load. The reverse bias voltage varied from 0 to -5 volts with 0.5 volt intervals, as shown in
figure 5.7 (seeresult table in Appendix B4).

Experimentally, the maximum conversion gain was achieved at equilibrium mode
(i.e. zero bias). In both VHF,UHF operating frequencies, the gain dropped from 25.1dB to
19.9dB ( i.e. 5.2dB drop gain) with respect to the biasing voltage of O volt and -1 volts
respectively; compared to a 5.57dB drop in simulation results as shown in Figure 4.21 and
figure 4.22. The gain then started to decrease gradually following the CV characteristics.

This represents an excellence corresponding to verifying the proposed PPA mode of
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operation. The practical results showed very good agreement with the simulation results as

reported in chapter 6.

PPA up converter gain
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Figure 5.7 PPA up-converter gain for different bias voltages at UHF and VHF frequencies

5.3.3.2 PPA Load I mpedance Analysis

A convenient way to measure the output current on the PD is to convert it to a
voltage with a load resistor (i.e. spectrum anayser or oscilloscope) and in some cases; a
pre amplifier is required to boost the weak signal to a standards level, with the penalty of
additiona noise with respect to receiver sensitivity. The PPA has been shown to overcome
such issues and provide high sensitivity as compared to a PD followed by pre-amp [43,

139, 140Q], or avalanche photodiodes [137].

However, the PD has a capacitance proportional to its area, which also determines
the time response (t = RC). In the PPA operation, the junction capacitance will be forced
to increase proportionally to the level of pump power, as mentioned in chapter 3, which is
recognized as the mean value of capacitance (Crean). AS a result, the PPA mode of
operation provides a low time response which can be seen as a disadvantage of the PPA

with respect to a low frequency signal. Although high gain can be achieved due to
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pumping the junction, this can affect the gain bandwidth product (GBP) of the PPA. In
practise, the fastest photodiode has very small capacitance, even if it has a very large
detection area such as a pin structure, and, in most cases, it operates under high reverse
bias and low load resistor which helps to improve the time response of the PD to fast
signals, but this can also reduce the sensitivity for very weak light signals, due to driving a
leakage current (dark current) occurring from the biasing voltage source. Large dark
current has noise associated with it, which may limits the sensitivity of the receiver;
however the main limit to the sensitivity is (I,R.), so if the R_ is small then the output

voltageis small.

Therefore, some practical experiments were performed to measure the PPA |oad
impedance, based on the circuit configuration. As shown in figure 5.8, the designed circuit

represents an impedance matching transformer with loss (>20dB) according to the value of

the resistors used.
—4 LC-BPF nnon s AN
L1 L2
Filter Resonant Resonant R3
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Vp G) if R|/§/R2§ R4 § §5°Q

T SpectrumAnalyzer
Photodiode

Figure 5.8 PPA up-converter gain with impedance transformer circuit

The impedance matching circuit aims to maximize the power transfer to the load, whilst
minimizing the reflection from the load; the PPA load impedance was measured by
varying the load impedance according to R =Ri//R; (Rs+R4). The PPA up-converter gain
experiments were performed at both VHF and UHF frequencies with two levels of pump

power and different circuit configurations, as shown in figure 5.9. The graph illustrates that
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the maximum power transfer occurs at low load impedance, and the up-converter gain at

low load exhibits an increase of an average of 3dB, compared to 50 ohms load impedance

conditions.
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Figure 5.9 Measured PPA load impedance

The practical results verified the predicted analytical analysisin chapter 3, showing

that the PPA performs much better at low impedance, which can provide high GBP.

However, as most RF/ MW systems adopt a 50 Q impedance, the state of the art for the

available commercial impedance transformer provides amost 3dB insertion loss at UHF

frequency. It is a trade off between gain and bandwidth; and for practical reasons and the




availability of the standard 50Q2 commercial components, and to avoid additional noise due
to the impedance matching circuit (as the signal would not have to travel to both load
ports), it would be more convenient to measure the performance of PPA results on a
standard 50Q2 basis.

Alternatively, the PPA up-converter gain may perform well with a sustaining
circuit (i.e. negative resistance), however some important considerations regarding the
noise performance of parametric operation are: the inherent noise of the sustain circuit and
stability problem due to excess gain or excess negative resistance. In addition, in terms of
the practical implementation of the load impedance matching circuit, different in-house RF
transformers were designed and tested, and two commercial Mini-circuit RF transformers
TCM8-1+ and TX16-R3T+, with tunes ratios of 8 and 16, respectively, were implemented
and used (the circuit can be found in appendix B5). It was found that the PPA was very
susceptible to any shunted reactance impedance, and this can reduce the performance of
the PPA with respect to conversion gain. It can be argued that, to adapt the circuit for
complete power absorption of the pump power at the PD cathode, corresponds to setting
the load impedance equal to bulk resistance, which is the optimum load condition for the

signal.

5.3.3.3 PPA Gain versus Various Pump Power

In this experimental configuration, the PPA circuit configuration, shown in figure
5.3, was used, and the practical results were performed by varying the pump power from
-4dBm to 27dBm with a 1dBm interval, as shown in figure 5.10. The experiments were
conducted at both UHF and VHF frequencies and the beat signals at 433.92 and 242 MHz
were measured by a spectrum analyser. The gain increases linearly with the pump power,

and the PPA operates as ordinary linear amplifier; the observed gain starts at a pump
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power of -2dBm and 0dBm for UHF and VHF frequency respectively. The graph shows
that due to the large pump, the 1dB gain compression for UHF and VHF frequencies
occurs at around 25dBm (with 26.6dB gain achieved) and 20dBm (with 20.3dB gain)
respectively; the PPA then starts to operate as a nonlinear amplifier. Increasing the pump
after a compression point will lead to large voltage variation over the PD, and will excess
its barrier voltage and cause an undesirable forward current to flow through the junction.
Also of note is that due to this undesirable large forward current, the detected signal (i.e.
RF source signal) measurement was affected, and no longer provides the accurate reading

that corresponds to the photo current generated due to the incident optical power.
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Figure 5.10 PPA Up-converter gain for different pump power signal

It may be concluded that the gain is directly related to pump power, and also related
to the IF frequency, as predicted in theoretical analysis. However, the practical result
proves that the 1 dB compression occurs a high frequency (UHF), compared to low
frequency (VHF). This means that the capacitive reactance impedance of the junction
keeps changing according to the applied pump frequency, and this results in a reduction of

the applied pump power over the junction (i.e. voltage divider concept), as shown in figure
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4.30 in the simulation results. In other words, the pump voltage over the reactance
impedance at UHF is not the same asin VHF. Thisis because the reactance impedance has
adifferent value at each applied frequency, even if the same pump level is applied from the
function generator; therefore the gain is related to the pump voltage over the reactance
impedance, and also related to its value at applied frequency. In contrast, to achieve high
gain at high pump frequency, large power is needed, as most of the power is dissipated in
rs, based on the above finding, this can verify the new gain theory analysis as reported in
chapter 3. Optoelectronics mixing in PPA appears very promising as a means of linear
amplification and frequency conversion of incoherent optical signals (see Appendix B6 for

data result table).

In this section, the work continues to analyse the effect of the ratio of the pump
frequency to the RF source frequency, as shown above, with 241MHz and 432.93 MHz
pump frequencies. The PPA equivalent circuit was configured as shown in figure 5.11; the
PD was pumped directly via the function generator (i.e. that has internal rsof 50 ohms),
without the use of any series pass tuned circuits or BPF circuit. Measurement at other
frequencies was not possible due to the lack of any other commercial BPF that operates at
different cut off frequencies as supplied by Mini-circuit, and which provided the same
circuit configuration with the same insertion loss, as well as the same degree of isolation.
Also, in practical terms, it was very challenging to design an LC passive filter for these
frequencies [141], particularly with a high degree of isolation and low insertion loss;
therefore, the ssmple PPA circuit was used only to show the viability of the approach at

different pump frequencies.
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Figure 5.11 PPA Up-converter equivalent circuit for different pump frequency

Experimentally, the PD was pumped with 19dBm at various pump frequencies as
shown in figure 5.12. The graph show that the gain is not always proportional to pump
frequency without considering the pump voltage over the reactance impedance as
mentioned before. This may be explained by this example at 19dBm pump power, which
corresponds to Vpump=2.814 volts (equals to 1.99Vrus), with the voltage Vp across the
photodiode at 241MHz and 432MHz pump frequencies being equal to Vp=0.182V pymp and
Vp=0.142V ,ump respectively; the voltage across the variable capacitance V¢ at 241MHz
and 432MHz pump frequency are Vc=0.448V and V=0.311V, respectively. In contrast,
the voltage across the variable capacitance is proportional to the reactance impedance
value. At high frequency, pumping low voltage variation occurs over the capacitance. The
optimum PPA up converter gain can be achieved by giving due consideration to the level
of the pump power, as well as the relationship between the beat frequencies over the source
frequency. It aso is important to have a very low bulk resistance. At high bulk resistance,
most of the applied pump power across the PD is dissipated in the series resistance (rs).
However, applying the same voltage variation over the variable capacitance at any pump
frequency as a result of high gain corresponds to the highest pump frequency used. It can

be argue that the practical result, as shown in figure 5.10, can give a good indication of the
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conversion gain at various frequencies. However, at high frequency, the result can be less

accurate, due to not considering the micro-strap technique.
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Figure5.12 PPA Up-converter equivalent circuit for different pump frequency

5.3.3.4 PPA Gain versus Various Optical Frequencies

As mentioned before, the PPA signal theory analysis in the previous chapter
showed that the up-conversion gain was dominated by the ratio of the upper sideband
frequency over the optical frequency (fi/fs) if the same voltage is applied to the reactance at
any pump frequency. It is helpful to analyse the PPA operation at various input optical
signals. The PPA frequency response was measured by the same circuit configuration used
in figure 5.3. Initidly, the fir was fixed at 433.92MHz, while the optica modulation

frequency, fs, and the pump frequency, fp,were swept according to (f,= 433.92-f,).

The experiments were performed by varying the DD modulated optical frequency
from IMHz to 5 MHz with a IMHz interval, as shown in figure 5.13, while the PPA set as
inactive where no pump was applied. The graph shows the frequency response of the
detected RF signals, measured with a flatness of amost £2dB in this frequency range, as
compared to £3dB in the simulation results. This can verify the frequency response of the

modelled input optical frequency of the photodiode frequency response shown in chapter

4.
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Figure 5.13 Frequency response at various optical signals

The PPA was then set to the active condition and practical results were obtained by
sweeping the optical signa from 1IMHz to 5Mhz at 1Mhz intervas, while the IF signa
was fixed and the pump signal had to be decreased according to (fp= 433.92-f5). The PPA

up-converter summary of resultsis plotted in table 5.1.

Table 5.1 PPA frequency response at various optical signals

Optical signal Rr Pump signal Intermediate Up-converter gain
(Re) MHz (dBm) (FP)MHz signal (Fjg) MHz (dB)
1.0 -65.00 432.92 433.92 25.36
2.0 -65.05 431.92 433.92 21.07
30 -65.19 430.92 433.92 17.05
4.0 -65.97 429.92 433.92 14.58
50 -66.89 428.92 433.92 12.83

It can be seen that the highest gain, 25.3dB, was achieved when the RF signal
frequency measured 1IMHz. The gain then started to decrease according to an increase in
RF signals, as predicted in the theoretical anaysis, where the gain is proportional to the

ratio of (®i/ws).
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5.4 DCHPPA Circuit Configuration and Practical Result.

5.4.1 DCHPPA Stage 2: IF Signal Processing Circuit Configuration

The idea of the DCHPPA design, based on the super heterodyne principle, existsin
conventional RF/MW radio receiver, which is still the most popular technique since it was
invented in 1918. In the superheterodyne, dual, down-conversion mixing technique is used

as shown in figure 5.14.
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Figure 5.14 System diagram for super heterodyne double down conversion

Also the heterodyne approach has been seen as a very attractive technique for an
optical SCM system, particularly in terms of a long haul application; it can aso be more
applicable for afree space application, as seen in this chapter. In the SCM optical receiver,
as shown in figure 5.15 [75], the optical signal can be detected by the PD and then
amplified by alow noise amplifier LNA, which resultsin amplification of all the received
signa (i.e desired and non-desired signals), including the PD noise occurring due to the
optoelectronic signal converter. These output signals will feed to the mixer for down or up-

conversion and then the pre selector BPF will be employed to reject the images. The IF
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will feed again into the second up/down mixer, which aims to recover the origina

baseband signals to achieve better gain and better receiver sensitivity. In general, the

multiple conversion technique has been shown to work well in many RF/MW receivers,

but it is more complicated compared to a simple photo-detection circuit.
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Figure 5.15 System diagram for a microwave-multiplexing light wave system

The DCHPPA acts in a paralel manner to a conventional double superheterodyne

detector system, but without the noise penalty that normally occurs. Photoparametric

amplification is used at the first stage instead of a resistive/transistor-based mixer or

preamplifier front end circuit. In this section, the practical demonstration of the DCHPPA

will be presented. Figure 5.16 shows the circuit configuration of the DCHPPA receiver.

Each stage requires careful consideration of the choice of components. The whole circuit

was divided into three stages, each stage with its sub-circuits; the PPA circuit stage 1,

which includes passive LC band pass filter circuit and the photo detector circuit as

explained in previous section; IF Signal processing stage two, which includes the pre

selector cascading band pass filters followed by an IF amplifier circuit, followed by a
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second |IF cascading bandpass filters; down converter mixer stage 3, which includes a

passive LC bandpass filter circuit and DBM circuit, followed by alow passfilter.
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Figure 5.16 Experimental arrangement of the DCHPPA

As illustrated in the graph, the same pump source (LO) was used for the up-
converter and down-converter via a 2-way, O degree power splitter (i.e. no phase shift)
device. The LO was injected via high quality band pass filters that provide a convenient
method of applying the pump to the PD ( i.e. mixer one) as well as the DBM circuit (i.e.
mixer two), whilst at the same time providing isolation, reducing LO sideband noise and
blocking dc components from passing through. The up-converter mixer works to convert
an RF signal (1IMHz) to the first upper sideband signal IF (RF+LO; 433.92MHz), where

432.92MHz was used as the LO pump frequency. The down-converter mixer works to
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recover the desired baseband channel (IMHz) from the IF signal (433.92MHz). A picture
of the final setup can be seen below in figure 5.17.

As mentioned before, the signal processing stage two required a considerable
amount of attention; in particular with respect to selectivity and sensitivity, the most
important in this stage is selectivity; however, sensitivity is also desirable. In contrast,
there are four frequencies in the PPA output spectrum (wp,ws,optws) with their
harmonics (i.e third and fifth order; ®;F=mostnNw o) at various level of powers. As shown
in figure 5.5(b). At 22dBm pump power, the LO signal leve (i.e. 432.92MHz) was

measured over the PD to about 10dBm using a spectrum analyzer.

LED PD

Figure 5.17 Final DCHHPA system set-up

At high pump, the LO signa over the PD can lead to serious drawbacks if its PD output is
connected to the following stages without drastic consideration. For example, it can

saturate the DB mixer (mixer two) dueto a high level of input power, as well asforcing the
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SAW BPF to an unstable condition or damage. Therefore minimizing the LO level of
power at the PPA output is one of the key considerations; a limiter circuit was used to
reduce this effect; however, due to both frequencies (i.e. 432.92MHz and 433.92MHZ)
being close to each other (e.g. amost commensurate frequencies), the desired IF harmonic
was affected asit is weaker than the LO.

In addition, the preselector IF SAW filter should have two primary functions, one
being to accept a high input power, such as LC passive filters and ceramic filters.
Secondly, it must provide high selectivity with low insertion loss, such as a Crystal filter
[142]. A high-Q commercia Crystal filter was used in a previous published paper [143] at
the VHF frequency range. The filter was from Filtronics INC (FN-3809) with a 240MHz
centre frequency and 100 KHz pass bandwidth. The input power level was up to 5dBm,
and it exhibited a good frequency response as shown in figure 5.18a. Although it showed
high selectivity, it can be unstable at high pump power and economicaly, it is very
expensive (i.e. 250%) (see Appendix B7 for schematic circuit). Most of the present-day
crystal filters start being unstable when the input power exceeds zero dBm, and may result
in poor performance, asreported in [81] .

Ambitiously, a Surface Acoustic Wave (SAW) filter may overcome the previous
Issues with respect to selectivity, rejection, low loss, input power and cost (i.e. less than
2%), employing such components offering substantial yet affordable benefits in the access
network. Also it was shown to work well in both analogue and digita transceivers (i.e.
AMPS, GSM) with a very good performance for frequency/phase noise, and it exhibited
long term stability [144, 145]. Several SAW filters were implemented and tested for better
selectivity performance. Two narrow band commercial SAW BPF filters with 120KHz
pass bandwidth (Epcos-B3760, +10dBm input power) were cascaded in series, and two

inductors were connected in series between the filters to build a virtual 50Q point in
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between the filters to compensate for the capacitive part of the filter impedance (see
Appendix B8). The designed ultra narrow band pre IF filter aims to provide greater
steepness to the filter edge and high selectivity, while maintaining low insertion loss, as
shown in figure 5.18b. Moreover, it provides high stability, cost effectiveness and a better
frequency response performance compared to the Crystal Filter, as illustrated in figure
5.18a.

The pre IF SAW filters were used and performed as a good preselected to pass only
the desired IF signals, remove the noise outside its bandwidth, and also eliminate other
odd- and even mixing products from breaking through. Moreover, these provided high
isolation for unwanted frequencies, such as RF and LO, which could cause additional
distortion products, and which are reduced in severity. High selectivity and low insertion
loss are more desirable at this stage.

The IF amplifier in stage two is responsible for providing additional gain to the
receiver to render incon sequential any noise introduced in the subsequent stages, as well
as providing isolation by rejecting the reflect power form subsequent stage to pass back to
the pre IF SAW filter. A mini-circuit variable LNA (ZFL-500LN) was used with 24db gain
and 2.9dB noise figure. This amplifier can be used as what is known as an Automatic Gain
Controller amplifier (AGC) at IF stages, which consists of a variable-gain amplifier and
automatic gain controller mechanism that keeps the output swinging constantly over awide
range of input swings, and which seems to be more desirable for diffuse and quasi-diffuse
optical links, particularly for mobile wireless receivers where the incident detected power
signa may vary, due to mobility. In general, any appreciable amplitude with very low
noise figure is desirable at this stage; two mount surface mini-circuit |F amplifiers (TAMP-

72LN+) with very low noise figure (i.e 1dB ) were connected in series, matched to 50 Q
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and successfully implemented and tested; each amplifier has aimost about a 20dB gain;

cascaded IF amplifiers resulted in 40 dB gain overall (see appendix B9).
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In the third step in stage two, the LO signal is still the main cause of the distortion
products, even if it has been minimized in the previous stage; therefore a cascading of two
ultra narrowband SAW filters (Epcos-B3790, +5dBm input power) in series were designed
and connected in series and matched to 50Q2 impedance to be used as a post IF filter (see
Appendix B10). The high ultra narrowband post IF filter aims to provide greater steepness
at the filter edge and high selectivity, as shown in figure 5.18c; and pass only the desired
IF signal whilst suppressing all other LO, harmonics and noise signals, as seen in the next

practical results section.

5.4.2 DCHPPA Stage 3: Down Converter Circuit Configuration

Once the baseband signal trandates to a higher frequency (IF) and passes through
the multi-stages of IF signal processing, the up converter signal can be down converted to
the desired frequency by conventional means, as shown in figure 5.16. The output of the IF
stage is fed to the passive DBM (Mini-circuit ZAD-1H+), the LO for which originates
from the same source pump used at the first stage via a high-Q passive BPF filter, which
provides a convenient method of applying the pump, forming a dc blocking filter, rejecting
other LO sideband frequencies, and any other noise generated through the two way power
splitter (Mini-circuits ZFS-2-1W+, 3.3dB insertion loss at applied frequency). The use of
the passive mixer has a stable output at an even higher LO pump, without the need for an
additional dc source. However, it has approximately a 6dB conversion loss, which might
decrease the total system gain; but this conversion loss was aready considered and
compensated for in the IF stage two (i.e. IF amplifier). The output of the down-converter
DBM mixer is channelled through a passive LPF (less than 0.1dB insertion loss), which
passes only the desired baseband signal and eliminates other mixer products. At this stage,
the baseband modulation can be recovered at low cost (i.e. no variable attenuator or phase

shifter or additional dc source). Another possibility is to use an active DB mixer with
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conversion gain (see Appendix B11). However, a voltage variable attenuator circuit is
needed to adjust and bring down the pump level to the required LO active mixer level, as
well as an additional dc source supply being needed. It can be argued that resistors and
active devices are the main source of noise. Therefore, the design has considered both the

noise level and power consumption for wireless devices.

5.4.3 DCHPPA Stage 2: I F Signal Processing Practical Results

The bock diagram for the DCHPPA, second stage, is shown in figure 5.19. All the
designed PCB circuits were tested and their performances were measured at each stage.
Experimentally the PPA up-converter stage showed a 25.11dB of up-converter gain at a

frequency of 433.92MHz, as shown in figure 5.5(b).

SAW-760 Filter IF-Amplifier SAW-790 Filter
f0=433.92 MHz LNA=2.9dB fe=433.92 MHz
Insertion Loss=4.9dB Gain=24 dB —» Insertion Loss=8.3 dB
(Cascade) (Cascade)

Figure 5.19 Block diagram for DCHPPA stage2: |IF signal processing stage

The pre IF SAW filter (cascade-760) showed superb rejection and isolation for the
unwanted RF and LO signals, as shown in figure 5.20(b); the graph showed 48dB signal
isolation in the pump frequency [i.e. +12dBm-(-36.14dBm)]. This can be seen as promise
result compared to 20dB isolation for a well-designed circulator. Also it can provide a

convenient way to extract the IF desired signal with only = 3 dB insertion loss.
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Figure 5.20 Frequency spectrum of up-converter signal after pre IF SAW BPF showing (a)
2.97dB insertion loss in 433.92MHz; and (b) 48dB insertion loss in the pump signal
432.92).

As described in the previous section, the IF desired signal then fed to an IF
amplifier (i.e. 24dB gain) for additional gain, and then fed to an ultra narrow post-IF SAW
(790) filter. The results show that the IF signal processing stage provides an additional gain
to the original PPA up-converter signal with 15.31dB gain (i.e. 40.25dB gain in total), as
shown in figure 5.21(a). The graph show that the LO pump power was isolated, with
almost 83dB signal isolation to the LO [i.e. 12dBm-(-71.03dBm)], measured over the PD

at pump frequency operation as shown in figure 5.21(b).
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Figure 5.21 Frequency spectrum of up-converter signal after post IF SAW BPF (790)
showing (a) 15.31dB gain over original up converter signal; and (b) another 34dB
insertion loss in the pump signal 432.92).
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5.4.4 DCHHPA Stage 3: Baseband Recovery Results

Experimentally, the DCHPPA technique overall subsequently exhibited a 34.9 dB
baseband signal gain over the modulated optical signal, as shown in figure 5.22. This result
was obtained by employing a passive DB mixer with about 6 dB conversion loss.
However, an active mixer can be used instead of passive mixer, as reported in our previous

work [143]; the receiver would exhibited almost 44.9 dB baseband signal gain over the

optical signal.
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Figure 5.22 Frequency spectrum of (a) 1 MHz modul ated optical signal-direct detection
response; and (b) 1 MHz recovered baseband signal using DCHPPA showing 34.92dB
gain over the modulated optical signal.

In another practical scenario, the experiment was performed by varying the DD
modulated optical signal from 1 MHz to 5MHz as performed in section 5.3.3.4. The
DCHPPA system recovered the baseband signals as shown in table 5.2, the gain decreased
according to the increase of RF signds, therefore, the increase in DCHPPA gain is
proportiona to the increase in PPA gain. It can be surmised that, without achieving
desirable gain at PPA stage one, it is worthless to have gain at the baseband signal
recovery. In other words, the highest gain at the PPA stage one is more desirable with

respect to receiver sensitivity (i.e. SNR).
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Previous work [16, 129] in non-degenerate up-converter mode reported a similar
approach to recovering the baseband signals, with the result of 7.41dB and 12.5 dB gain
respectively; results were achieved with a different design and techniques. Another
possibility is to use the parametric amplifier as down-converter mixer, due to its ultra low
noise figure compared to that of a conventional mixer, but extra care needs to be taken due

to the complex input matching circuit required.

Table 5.2 DCHPPA frequency response at various optical signals

Optical signal Pump signal Recovered DCHPPA gain
(Rp) MHz (Fp)MHz baseband signal (dB)
(Fy,) dBm
1.0 432.92 -29.47 34.92
2.0 431.92 -33.39 310
3.0 430.92 -36.86 27.53
4.0 429.92 -40.44 23.95
5.0 428.92 -44.08 20.31

5.5 Gain Chain DCHPPA System.

The current proliferation of optical wireless devices result in large diversity of
designs and most of the future devices need better sensitivity, and have a requirement to be
aware of energy scale-down. Significant attention was paid to increasing the sensitivity and
reducing energy consumption, such that, the PPA works in equilibrium mode (i.e. no bias
source), employed passive components, low power components and low loss components

in designing the OW receiver.

All the receiver components can have a direct affect on is the noise figure (NF),
according to Friis formulafor NF calculation. An important consequence of this formulais

that the overall NF of the RF/MW receiver is primarily established by the NF of its first
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amplifying stage (i.e. PPA stage). Subsequent stages have diminishing effect on SNR and
do not have a drastic affect, but everything must be done in maximizing the gain and

dynamic range. The overall receiver NF can be expressed as:

=Foon + Fre =1
receiver — ' PPA G
PPA

where Fe IS the overal noise factor of the subsequent stages and Gppa IS the PPA gain;

F (5.1)

the overall NF of the receiver (Freceiver) 1S dominated by the noise figure of the PPA if the

gain is sufficiently high.

According to the above, the schematic circuit diagram of an optical gain chan
DCHPPA system is shown in figure 5.23. The diagram below shows typica components
used to build the receiver, as mentioned in the previous section, in addition to a new stage
added to the IF signal processing stage, which includes the IF amplifier and other SAW
BPF. The main advantage is in the superior sensitivity that designers amost take for
granted; additiona gain in the IF stage makes the desired IF signa levels high enough for

noise sources at the IF signal processing stage so as to have a negligible effect on the SNR.

As mentioned earlier, all the receiver components were built in individual PCBs
and were connected by 50Q coaxial cables. In the gain chain DCHPPA circuit
configuration, two Mini-circuit IF LNA amplifiers (TAMP-72LN+ operates at 5 volts)
were built in a cascade, with each amplifier having a 20dB gain and a very low noise figure
(i.e. 1 dB). Thistype of amplifier can improve a system spur-free dynamic range, which is
often the critical driver in many receiver applications. Moreover, it helps subsequent stages

(i.e. stages two and three) to enable greater sensitivity for receiver applications.

Experimentally, the gain chain DCHPPA technique overall subsequently exhibited
a 56.25 dB baseband signal gain over the modulated optical signal, as shown in figure

5.24.
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Figure 5.24 Frequency spectrum of 1 MHz recovered baseband signal using chain gain
DCHPPA showing 56.25dB gain over the modulated optical signal.

The technique can be seen as a promising approach to achieve high gain at low
cost, compared to other optical amplifiers designed for free space or a long-haul
environment, such as EDFAs and PSA amplifiers. Although the practical implementation
for the whole receiver as individual PCBs circuits performed well and exhibited desirable
baseband signal gain over the modulated optical signal, implementing the whole receiver
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on only one PCB circuit, as shown in (Appendix B12), can provide better performance
with respect to noise and conversion gan; this because al the components are
implemented in one BCP with short transmission lines (e.g. as coaxial cable at high
frequency has high signa attenuation and long signal delay), this can also increase the
compactness and reduction of parasitic effects, and makes the system easy to isolate using
a die-cast box. Effort was made to consider all the PCB technical requirements,
particularly at high frequency; however the performance regressed, as compared to
employing individual BCP circuits. Both passive and active surface mount components
were employed, which can cause a ground loop problem. Moreover, cascade amplifiers
may oscillate when mounted together, or due to not being physically separated, which can
cause coupling feedback that might also need extra care to decouple the dc power supply

lines that feed the two stages.

5.6 Summary

To summarise, a novel approach to the design of an optical wireless receiver has been
presented, based on the superheterodyne principle but using photoparametric amplification
at the first stage instead of a resistive/transistor based mixer. The designed OW receiver
acts in a paralel manner to a conventional double super heterodyne detector system, but
without the noise penalty normally incurred. DCHPPAS have properties that make them
potentially attractive for use in future optical wireless communication systems. In
particular, they can provide a very high gain with high selectivity, combined with very low
noise operation. The experimental work described in this chapter includes the design and
implementation of wide band test-bed which showed that, the gain frequency variation was
in accordance with theory and simulation. The tests on the up-converter, though, in a

preliminary stage (i.e. PPA) have indicated promise, and can be implemented satisfactorily
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using a PD in equilibrium mode, leading to potentially greater conversion gain at lower
penalty (i.e. in power and noise); the PPA is better at quite a low load impedance, which
can provide a better GBP; as has aso been shown, the gain is related to the pump power
over the reactance impedance, the value of reactance impedance at applied frequency, and
the idler frequency over the source frequency. In addition, the junction should exhibit high

nonlinearity, with very low parasitic resistance.

The tests on the second stage (i.e. IF signa processing) indicated a promise, and
can be implemented satisfactorily using SAW filters and very low noise amplifiers that
lead to potentially high selectivity and sensitivity, with additional gain at an early stage
also leading to a cost-effective solution. Tests on the third stage (recovery baseband)
indicate good results, and are implemented by using passive and low loss components (i.e.
DB mixer); aternatively, an active mixer can provide better overall conversion gain but an
additional attenuation circuit and power source is needed to accomplished the work. The
DCHPPA technique overall subsequently exhibited a 34.9 dB baseband signal gain over
the modulated optical signal. In addition, it seems that employing a chain gain DCHPPA
technique to be preferred, as is subsequently exhibited by a 56.3 dB baseband signal gain
over the modulated optical signal, which can maximize the SNR at signal frequency; this
technique can bring up the signal gain to certain levels required for effective utilization.
Optoelectronics mixing in DCHPPA appears very promising as means of linear
amplification and frequency conversion of optical signa that offers the prospect of
significant benefits to OW and FSO, as well as offering improved performance in fibre
access networks (i.e. wireless and long haul applications). The next chapter is concerned
with performance analysis as well as analysing the noise performance of the amplifier, as

high gain is meaningless without a full appreciation of the SNR aspects.
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Chapter 6

6. Performance Analysisand Noise Analysis

An analysis of the up-conversion PPA is given with respect to three approaches, theoretical
simulation and experiment results. Noise analysis and discussion of both the DD/IM
photodetection technique and the incoherent heterodyne (PPA) technique included the
DCHPPA stages are aso presented; both, signal to noise ratio and noise figure analysis
have been experimentally presented.
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6.1 Performance Analysis of Theoretical, Simulation and Practical
Results

The research in this section continues to identify and quantify important variables
and parameters that optimise the performance of a front-end optical wireless receiver. The
DCHPPA was successfully demonstrated and measured in the previous chapter; the core
element in this receiver being the up-converter PPA first stage. The receiver performance
usually depends on the photo-detector device itself (i.e. photodiode) and the design
technique (i.e. external photodetector circuit). The main challenge of designing a high
sensitivity receiver is how to deal with the conflict requirement of gain and bandwidth and
the noise performance, which, in most cases interacts aversely with the previous two
requirements. This section continues to examine the effect of the externa circuit on the
performances of the amplifier with respect to conversion power gain, bandwidth and noise.
These will include the effect of load impedance, the dc biasing source and the applied
pump power. It is worth comparing the theoretical, ssimulation and practical results which
helps to validate the theoretical and simulation models presented in chapter 3 and 4 with

the experimental setup result in chapter 5.

6.1.1 Load Impedance Effect

A convenient way to measure the PD output current is to convert it to a voltage
within a load resistor. The up-converter PPA was ssimulated by varying the value of load
resistance at 15dBm pump power, as shown in figure (6.1). A 23.81 dB up-converter gain
was predicted at 50Q2 load impedance. The gain increases in proportion to the decrease in
load impedance. For example, when the load impedance is equal to the series resistance
(R=Rp), the gain improves by 6.2dB, compared to the 50 Q load. Moreover, the gain

improves by 8.6dB when (R=-Ry).
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The simulation result verified the theoretical result, as shown in figure 6.1b, the
optimal power transfer occurred at very low load impedance, particularly when (R, = -Ry),
and hence, the PPA can be considered as alow impedance amplifier. Practical experiments
were aso performed (as mentioned in the previous chapter); the measurement results are
shown in figure 6.2. The graph illustrates that the maximum power transfer occurs at low
load impedance (i.e. 1Q) and the up-converter gain at low load exhibits an increase of an
average of 3dB, compared to 50 ohms load impedance. The practical results verified both
the predicted ssimulation results and the analytical analysis, as shown in figure 6.1 and 6.2;
the three results presented the same pattern with very good agreement. It is clear that the
PPA performs much better at low impedance, and hence can provide high GBP. The high
GBP may increase the amplifier thermal noise, due to operating at low load resistance. It is
a trade-off between GBP and receiver noise; this conflict helps the designer to choose the
load impedance value, based on receiver application requirements. Clearly, for optimum
load conditions and complete pump power absorption across the junction, the load

impedance must be set as equal to bulk resistance.

The research has shown that a PPA may be able to provide unexpected gains at low
load impedance, in comparison to standard optical wireless receivers, and also perform
well at zero bias for the photodiode. Tuning the pump circuits to suppress feedthrough
improves the performance of the PPA even more, such that a broader bandwidth operation
is possible using this with low load impedance, and also noticeable improvements in up-

conversion gain are seen.

6.1.2 Biasing Circuit Effect

The research has shown that a PPA under zero bias modes leading to potentialy

greater conversion gain. The benefit of this mode is that the degree of nonlinearity of the
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CV characteristics is high. The PPA performance was evauated by varying the dc bias
source, as shown in figure 6.3 a 15dBm pump power. A 32.5, 23.8 and 17.1 dB up-
converter gain were predicted in theoretical, ssimulation and practical results respectively.
The gain then gradually reduced by increase the reverse dc bias voltage. The greatest
steepness occurred between the zero bias and -1volt due to the high degree of nonlinearity.
The gain curve starts to follow the junction characteristics according to the degree of
steepness of the CV curve until it reaches the zero gain point, in which the PPA starts to
act as aloss mixer. The graph shows that the theoretical and simulation models are highly
linear compared to the practical results. However, the three approaches presented the same
pattern. This represents a very good agreement between the three approaches, which helps

to predict the performance of PPA under any dc bias conditions.

PPA up-converter gain
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Figure 6.3 Gain related to various reverse bias voltages

The main advantage of operating in equilibrium mode is the highest gain which is
essential for a wireless application with a tight power budget. Furthermore, this mode
provides low noise performance, caused by bias current (i.e. leakage current noise) and

bias resistance (i.e. Thermal noise). However, there is one main restriction in this mode,
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which is to avoid forward biasing the photodiode, which may incur noise and other
penalties (i.e. increase the forward current and hence increase the dark current). The main
drawback of this mode is the low frequency response and low speed, compared to

photodiodes under high reverse bias.

6.1.3 Pump Power Effect

Gain roll off is an inherent phenomenon in this type of parametric amplifier (®i/®s),
the PPA up-converter gain is also related to the level of the applied power across the
nonlinear junction, as predicted in the gain formula, where low bulk resistance and low
reactance impedance is desirable. The gain may be optimised through the appropriate
adjustment of the ratio of pump voltage across the junction to the voltage across the
reactance impedance and series resistance. It is clear that small series resistance compared
to reactance impedance can provide better gain conversion. Figure 6.4 illustrates the
relationship between gain and applied power; the three approaches show that gain
increases linearly with the applied power, which verifies the concept of the linear
amplifier, where the amplifier output signal is strongly based on the input signal multiplied
by the gain. Low pump makes the amplifier behave like aloose mixer and very large pump
can lead to 1dB gain compression (i.e. explained in previous analysis), whereas the
amplifier starts to behave as a nonlinear amplifier. The three approaches follow the same
trends, presenting a very good agreement and close results. The high gain or the high gain

bandwidth products (GBP) is meaningless without afull appreciation of the noise aspect.
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PPA gain spectrum at various pump power
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Figure 6.4 Gain related to various pump power

6.2 Noise Analysis

The term noise describes the unwanted components of an electrical signal that tend
to disturb the transmission and processing of the signa; in other words, it refers to any
signal present in the receiver other than the desired signal. It may broadly classify noise
according to its source, as either externa or interna to the system. External induced noise
and internally generated noise and both sources lead to degradation of the signal quality,
and put a lower limit on the sensitivity of any system. External noise includes those
disturbances that appear in the system as a result of an action outside the system (i.e. noise
from 60 Hz power lines and static caused by electrical storm). Internal noise includes all
noise that is generated within the system itself. All resistors and semiconductor
components have an internal source of noise, and produce a discernible noise. However,
the photo-detector semiconductor has an additional source of noise due to the incident
optical power and optical background noise. Noise in the optical detector can also be
described as being either additive (i.e. when there is no optical signal present) or signal
dependent (i.e. when optical signal present) and the amount of a signal dependent noise is
also frequently proportional to the signal power (i.e. the noise is effectively multiplied by
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the signal power). An understanding the origins of noise helps to characterise the
performance of wireless IR photodetector receiver, as the amount of noise present in a

photodetector system is the primary factor that defines its sensitivity.

6.2.1 Photodetection Noise Sour ces

The optical signal at the end of an optical link (i.e. fibre or free space) is often
highly attenuated, and so any optical detector noise should be as small as possible, to
prevent any degradation of the signal quality and put a lower limit on the receiver
sengitivity. Noise in the photo-detection process arises from radiation entering the detector
and from internally generated noise. There are many types of noise source in photo

detection, as shown in figure 6.5.

Quantum Optical
Shot Noise Background
Noise
Optical Egc"'aﬁa’
Signa an
Power
Dark Current Electronic
Noise (Thermal)
Noise

Figure 6.5 Noise source in photo-detector system

The maor noise sources which can significantly affect the system sensitivity are shot
noise, dark noise and thermal noise, as other noise sources are considerably negligible
compare to these. A review analysis of noise sources, especially in semiconductor

photodetectors, can be found in [119, 146].
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Noise, being a random process, cannot be described as en explicit function of time,
as there is no way to determine exactly what value of noise process will have at any future
time; and the most widely used characteristic is the root-mean-square (RMS) value [119].
Noise can also be characterised in the frequency domain; this technique isin fact preferred
for noise analysis and the most important frequency domain characteristic of noise process
is its Power Spectral-Density (PSD). PSD is defined as the Fourier transform of the time-
domain autocorrelation function and the impact of this relationship is that the PSD
corresponds to the time-averaged noise power that present in a 1Hz bandwidth amount the
measurement frequency. The following section will examine the type of noise sources
commonly found in photodetector, and how can be represented in the optoelectronic

communication system.

6.2.1.1 Shot Noise

Noise in the photodiode is primarily due to shot noise, which is related to dark
current and photo current and any other currents flowing through the junction, such as bias
current. The random nature of the generation of carriers in the junction yields also a
random current fluctuation that make up the shot noise, which result of the random arrival
rate of photons from the source of radiant energy under measurement and ambient
background illumination (i.e. shot noise is far smaller for optical fibre than for OW). The
effect of this process can be represented as a noise source, and can be expressed either as a
voltage source or a current source. The mean-square value of the shot current for pin
photodiodeis given by:

<ig>=2q(Ip+1)B  (AY) (6.1)

where q is the electron charge, I, is the photo-generated current, |4 is the dark current, and

B is the noise measurement bandwidth.
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6.2.1.2 Thermal Noise

Therma noise, also known as Johnson noise, is a result of thermally induced random
fluctuations in the charge carriersin aresistance. These carriers are in random motion in all
resistance at a temperature higher than zero. The shunt resistance and the bulk resistance
and the load resistance in a photo detector has Johnson noise associated with it. The mean-

square value of the thermal current for pin photodiode is given by:
<ip>=4KTB/IR (A? (6.2)

where Kk is Boltzmann's constant, T temperature, in degrees Kelvin (i.e. 290K, IEEE
standard) and R resistance in ohms. The total noise current generated in a photodetector is
given by:

<in®> =B (2q(ly*+1d) + 4KT/R) (A (6.3)

There are also other noise sources known as Excess Noise, that exceeds shot noise at very
low frequency, in which noise power varies inversely with the frequency (1/f) aso known
as modulation noise or flicker noise, and thought caused by the imperfection in the

junction materials, and it isinsignificant at high frequency.

6.2.2 Photodetection Noise Analysis

In any communication receiver, it is useful to consider the limits of the
performance of a system set by the SNR. In order to investigate the performance for the
optical receiver in DD/IM detection, the most important parameter in the analysis of a
communication system is the signal to noise ratio in the receiver (SNR). The SNR for
DD/IM detection is defined as:

(S/N) = (Sgnal Power/ Total Noise Power) (6.4)
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In contrast, the dominated noise in the DD/IM is due to the thermal noise (at very
low ambient light) and the shot noise (at very high ambient light). In referring to the
commercial used photodiode and its parameters as shown in chapter 4 and 5, the
photodiode photocurrent was calculated at 1.414mW power signal, and equals |p=0.87mA
(i.e. Responsitivity R=0.62). The calculated photo-detector shot noise at 9MHz bandwidth
is (is=5*10° Amp). The thermal noise current for the photodetector at 9MHz bandwidth
with 290°K degree and 50 ohms load is (in= 5.4*10° Amp), Also, the mean square dark
current ( i.e. due to the bulk and leakage current) at 2 nA dark current as defined in: (<ig,>>
= 2q(ld)B (A%, the calculated noise value is (ig=7.58*10"Amp). Thus for this
photodetector at high optical power (p=1.414mW), the RM S thermal noiseis similar to the
RMS shot noise, whereas the dark noise current is negligible compared to shot and thermal

noise, as any current less than 10°Amp, introduces negligible noise [69].

However at low power incident light (i.e. 0.14mW), the RMS thermal noise is
about 3.4 times greater than the RM S shot noise current. It is clear that the contribution of
thermal noise may be reduced by increasing the value of the load resistor, although this
reduction may be limited by bandwidth considerations. The signal to noise ratio for direct

detection SNR is given by:

SNR = | —3>
ith2+i5hz (6.5)
For example, the SNR at 9MHz bandwidth with an incident optical power of 1.414mW is
equal to 81.5dB, where the SNR for low optical power such as 0.141mW decreased to
63.49dB. Clearly, the SNR decreases proportional to optical power decrease. Furthermore,

the SNR value also decreases proportional to the bandwidth increase. In contrast, when the

optical power signa is relatively high, then shot noise power dominates; the SNR is

169



referred to as being a quantum noise limited or shot noise limited. However, when optical

power is low, the thermal noise dominates, and the SNR is called thermal noise limited.

In addition to SNR performances, a particular receiver can also be characterised by
its noise figure (NF) and the noise factor (F) [147], where ( NF=10logF). NF is a measure
of how much noise is added by the photodetector or the preamplifier or following the main
amplifier. The NF is a versatile method to determine the quality of such an amplifier, and
how much degradation of the SNR is contributed by the photodetector, and it is a key
element in measuring receiver sensitivity (i.e. Secver=F*K*T*B). Therefore, it is helpful to
determine the noise factor (F) of the photodiode theoretically, asit is quite unacceptable to
measure this experimentally, due to it operating at different domains; (optica as input and
electrical as output). The SNR at the input of the photodiode (SNRi, ) in the dark

conditionisgiven by :

=3
NR in = . . 2
'th (6.6)

Where the SNR at the output of the photodiode (SNRyy ) is given by equation 6.5. The

noise factor (F) and the Noise figure (NF) are given by:

4KTB

+2ql ,B
F = S\NR;, / SNR o = 1KTE (6.7)
R
NF= 10 loQ ((S\IRm / S\":eout ): S\":ein,dB 'S\lRout,dB (68)

At, 1.414mW incident optical power, the calculated noise factor (F) of the photodiode is
1.87, which equivalents to 2.7dB noise factor (NF). These values may vary according to
the photodetecor temperature, incident optical power, bandwidth and load impedance. The

above analysis provides a brief idea of the noise sources associated with the photodetector
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itself; however, the noise associated with optical sources such as the quantum shot noise of
optical sourcesisdifficult to control at the receiver end, and will result in the degradation

of optical sensitivity, which may expressed as an optical power penalty [148].

6.2.3 Photoparametric Up-converter Noise Analysis

The noise in photodetection system is mainly dominated by the thermal noise and
shot noise. Coherent detection (i.e. heterodyne and homodyne) has been shown in [49]
contains very sensitive techniques, and provide excellent rgection of adjacent channels.
However, incoherent-heterodyne PPA technique also exhibited low noise performance, due
to mixing and amplification incurred inside the variable reactance impedance. The author
in [149] made a comprehensive analysis of the effect of variable capacitance (i.e. reactance
impedance) amplifications in the case of bulk resistance being the only parasitic e ement.
The calculation for both idler frequencies (up/down frequencies) showed that the noise
figure for the amplifier is basically determined by the dynamic quality factor of the diode
(Q). Thelarger Q is, the lower the noise figure which can be obtained, and it is impossible
to build a low-noise amplifier if capacitance variation is small (i.e. abrupt junction).
Moreover, the author in [32] showed that the variable capacitance amplifier can have less
than a 1dB noise figure in cooled conditions. In PPA operation, particularly the up-
converter approach, the noise were theoretically analysed in detail in [69, 71, 137, 150] and
was shown to have better SNR compared to the photodiode, followed by preamplifier, and
it was also shown that it had better SNR at a few hundred MHz bandwidth, compared to a

photomultiplier (APD).

6.2.3.1 PPA Noise Analysis

SNR is quite a common performance criterion in communication Systems

measurements. The analysis of the photoparametric amplifier in terms of SNR must be
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undertaken in two circumstances: Firstly, without any pump applied, the system acts as
norma DD/IM technique. Secondly a more interesting mode is the photoparametric
technique. In the latter case, the up-converter mode of operation leads to an increase in the
mean vaue of the junction capacitance (Crean) Which may act adversely with the system
bandwidth. The DCHPPA system may also limit the receiver bandwidth, due to the High-
Q BPF in the IF signal processing stage (i.e. second stage, BW= fc/Q). At the beginning, it
is essential to measure the frequency response of the PD with no pump applied; this can
help to estimate the PPA frequency response according to the applied voltage across the
junction. As a consequence, a more accurate and realistic SNR measurement can be

obtained for the PPA with and without pump conditions.

The frequency response of the photo-detector is measured practicaly. It is
configured for the same detecting optical signal modulated at 1IMHz and measured using a
50Q spectrum analyser. The frequency response measurement was undertaken only in the
case of the photodetector system, in the absence of any pump circuit as shown in figure
6.6, which show a 9MHz bandwidth. However, at PPA with pump, the applied pump will
bias the junction, resulting in an increase in the Cyean Value, and hence leading to less

bandwidth compared to the no pump condition.

Experimentally, the work performed in the previous chapter uses only a single
carrier modulated signal (ws) without baseband modulation. In this case, the carrier to noise
ratio (CNR) will be used as a measure of predetection signal quality of the RF signa at the
front-end system, whereas the SNR is usually a measure of post-detection signal quality
after demodulation and it is a useful metric to quantify a baseband signal (i.e. video or
audio channel) quality. It is quite common in telecommunication that the CNR is often the
SNR of the modulated signal if the above distinction is not necessary, the term SNR is

often used instead of CNR.
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Figure 6.6 Frequency response of photodetector system

In practical terms, both the signal power and the noise power of the photodetector

were measured in the absence of a pump, using a 50 ohms spectrum analyser. Firstly, when

measuring the CNR with the spectrum analyser, it is important to ensure that, the analyser

displays the external noise floor, not its own internal noise floor, as shown in figure 6.7(a).

To verify the spectrum anayser measurement, the noise floor must be dropped at least

10dB when the RF input is disconnected. The optical signal and its PSD were measured as

shown in figure 6.7(b,c) respectively.
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Figure 6.7 Frequency spectrum of (a) spectrum analyser internal noise floor (b) DD/IM
optical power signal; and (c) Noise power spectral density at the receiver.
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Figure 6.7(a) shows that the analyser has Excess Noise Ratio (ENR) of > 44 dB,
compare to ideal floor noise density power that a thermal noise source has at the reference
temperature of 290K (i.e. P=KTB, -174dBm/Hz). Figure 6.7(c) shows that the measured
noise due to optoelectronics operation increases by amost 20dB. This increase was a
consequence of a thermal shot, and current noise, in addition to the background optical
noise. To calculate the power that the source will have in a BW, the PSD is added to the
dB (BW). As the noise is a random signal, its power is distributed over it is usable

bandwidth BW, and hence the noise power is proportional to the system BW.

For example, the CNR for photodetection can be caculated as follows:

A -110.75dBm/Hz amplified noise module with 1Hz, BW will have a minimum of:

The available noise power (N) at BW = PSD+10 log(BW-H2) (6.9

-110.75+10 log (1HZ)= -110.72dBm.
Hence, CNRgs & (1Hz-BW)= 101log (SN) = Sism -Nam (6.10)
= -65.06-(-110.75)= 45.42dB.
The CNR for DD/IM optical PD receiver at 1Hz bandwidth is equal to 45.42dB; the

CNR value below 40dB will generally result in an unacceptable QoS because of the
objectionable amount of noise in the baseband, and good engineering practice targets end-
of-line analogue video signa use between 45dB and 55dB [119]. The CNR at 9MHz
bandwidth was calculated based on the above formula, and its result is shown in table 6.1.
The CNR at 9MHz is equal to -24.12dB, this very small SNR may be acceptable, due to

the very low input optical power (-65.33dBm).

Secondly, the CNR was measured for photoparametric technique at various
conversion gains, as listed in table 6.1; the noise power spectral density (PSD) and the

signal power at 20dB up-converter gain are shown in figure 6.8.
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Figure 6.8 Frequency spectrum at 20dB gain of (a) Up-converter power signal; and (b)
Up-converter noise power spectral density.

Table 6.1 CNR measurements at various configurations

Circuit Configuration CNR(dB) at | CNR(dB) at | CNR(dB) at
1Hz-BW IMHz-BW TMHz-BW

Photodiode DD/IM 45.42 -24.12

PPA Up-converter gain with 5 db 45.28 -24.26

PPA Up-converter gain with 10 db 44.9 -24.67

PPA Up-converter gain with 15 db 44.8 -24.73

PPA Up-converter gain with 20 db 45.22 -24.32 -23.23

The above table shows that at 1Hz bandwidth, the CNR of the photodetector

compares slightly better to the photoparametric amplifier; the PPA technique at the same

bandwidth increases the noise at almost 0.22dB, compared to DD/IM. For instance, if the

photodetector has a noise figure of 2.7dB, then the up-converter PPA noise figure will be

2.92dB. Previous works [38, 68, 129, 151] investigate the performance of PPA with

respect to the noise figure; they show that in the noise figure of PPA is (3.4, 3.0, 1.1, and

1.1dB) respectively, the latter indicated that the PPA noise figure can have a low value at

high gain.
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As mentioned before, the PPA operation under high pump will reduce the
bandwidth according to the value of the Cpean. For example, at 20dB up-converter gain, as
shown in the above table, the applied pump will reduce the photodetector bandwidth from
9MHz to 7MHz, if the reduction in bandwidth (9 MHz to 7 MHz = 1.29 times, or 1.11 dB)
Is more than the noise figure. For instance, if the NF of the PPA at 7 MHz is 0.89 dB,
equivalent to aratio of 1.26 times, then the improvement in CNR compared to DD/IM is|
1.11 dB - 0.89dB = 0.22 dB], about 1.05 times as a numerica ratio. Obvioudly, the
available noise power at the receiver is a summation of the PSD plus the receiver
bandwidth, as shown in equation (6.9). Therefore, the photodiode has a larger bandwidth
than the PPA system, so the CNR at the photodiode is smaller than the SNR at the output.
The PPA can dightly improve the CNR compared with the photodetector, but with the
bandwidth expenses. It is necessary not to apply a high pump across the photodiode and
avoid driving the junction to a high forward current (i.e. increase the dark current) as
shown in the IV junction characteristics in chapter 4, or drive the junction to the
compression point, which results in  high NF, and hence degrades the improvement in

SNR.

The operation of parametric amplification should lead to alow noise figure when a
highly nonlinear junction is employed. However, the implemented PD junction in this
research exhibited very low nonlinearity (i.e. abrupt junction, m=0.45), and hence showed
very low improvement with respect to the noise figure, as well as showing low conversion
gain at the low pump. Furthermore, there are an additional noise caused from the receiver
implementation it self as it was built in many individuals boards connecting via coaxial

cablesand BNC connecters leads to increase the number of series parasitic resistances.

In practice, it is very complicated to measure an accurate SNR without building a

complete real time system with real baseband modulation (i.e. modulation and
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demodulation circuits), as the SNR is a metric to quantify the baseband signal after
demodul ation; and then compared to photodiode, followed by LNA or photomultiplier, this
measurement can provide a more accurate result with respect to SNR; however, the CNR
and SNR are often used interchangeably, and are more or less in line with each other. The
experimental result verified the computed result showed in [38], as the PPA can provide an
amplified output with a noise factor (F) nearly equal to that of the un-amplified output of
the same photodiode. The authors in [71, 131, 137] show that the PPA performs much

better than the photomultiplier amplifier at low bandwidth modulation.

6.2.4 DCHPPA Noise Analysis

The advantage of the PPA approach is the power gain associated with it at the front
stage, and the main attraction compared to other optical wireless approaches is the
optimum overall noise figure, as the total noise figure of the receiver is a consequence of
the Friss Formula, with the assumption that al the stages have the same modulation

bandwidth.

F,-1 F3-1
Fo=F + 2 + 3 LRI :
G, GG

The above formula shows the overall noise factor of the receiver. It is clear that G; should
be set to as high a value as possible, to minimise the effect of F, at the second stage (i.e.
pre-amplifier), and this makes the first stage crucial; thisis also the case with respect to G2
and G3. The whole DCHPPA system can dlightly increase the NF of the front-end system
over the up-converter PPA first stage, as mentioned in the previous chapter. Practically
speaking, it would be inadequate to compare the PPA carrier to the noise ratio with the
whole DCHPPA system, due to different bandwidth at each sub-circuit; the DCHPPA has
small bandwidth, due to the high-Q bandpass SAW filter (i.e. 120KHz) compared to the

PPA first stage. To obtain alow noise figure in the DCHPPA system, it is desirable to have
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low loss IF devices with very high gain and low NF at as early a stage as possible, so asto
minimise the effect of the later stage. It is clear that the up-converter PPA first stage is the
main core for improving SNR, and makes the first stage crucial. In contrast, the PPA can
provide a better quality of reception, and generally higher communication accuracy and

reliability than low SNR ratios, but with the expense of bandwidth.

For example, in casel: for DD/IM technique, the pin PD have F1=1.87 (NF=2.7dB)
and unity gain as no amplification inside the junction itself. Case2: for PPA technique, the
PPA as stage one has F1=1.96 (NF=2.92dB) with G1=20dB gain. Both the techniques were
followed by LNA with F2=3.16 (NF=5dB) and G2=20dB gain. By using the Friss formula,
the total receiver noise figure in case one is NF1=5.54 with a 20dB gain, whereas the total
receiver noise figure in case two is NF,=2.97 with a 40dB gain. The photoparametric
technique exhibited a smaller noise figure compared to PD, followed by the pre-amplifier,
which clearly shows that the high gain at stage one will provide better total noise figure for
the whole receiver. It may be concluded that PPA can provide better noise performance
compared to the photodetector, followed by the preamplifier, hence, the better the noise

figureis, the less the degradation for the receiver SNR.

The same analysis may be applied to the DCHPPA implemented receiver. It is clear
that high gain with low insertion loss at early stages is more favourable with respect to
receiver noise performance, and as mentioned in previous chapter, the choice of receiver
components such as IF filters and IF Amplifiers were highly selected with respect to low
loss and noise figures, even with cost and power efficiency (i.e. passive devices or low
power devices). The research has computed the total noise figure for both receivers
configurations, DCHPPA and Gain Chain DCHPPA, as reported in section 5.4 and 5.5
respectively; the first configuration has a 3.04dB noise figure with amost 24.7dB gain,

whereas the second configuration (gain chain DCHPPA) has a 3.0dB noise figure with

178



almost 62dB gain NF. This result verified that high gain and low insertion loss at an early
stags will outperform, and the last stage will have a very low effect, and results in a low
increase in the total noise figure, and hence avery small degradation on the SNR. Any high
loss device at alater stage may have an insignificant effect on the overall performance of
the receiver with respect to SNR. Implementing the whole receiver in a single board
(MMIC chip) can help to reduce the parasitic effect (series resistances), and hence provide

better SNR.

6.3 Summary

Performance analysis was conducted on theoretical, simulation and practical
approaches; this presented a very good agreement, and a close result. This showed that the
photoparametric amplifier may be able to offer unexpected gains and bandwidth
improvement at low load impedance in comparison to a standard optical wireless receiver,
but sensitivity is limited by thermal noise. Noticeable improvements in up-conversion gain
are seen at zero bias modes. The three analyses follow the same trend, presenting a close
result, and the practical result verified the mathematical and simulation models presented

in preceding chapters.

Shot noise and therma noise are predominate noise sources in both the
Photodetector (DD/IM) and the PPA. A reduction of shot noise is possible by using alow
power transmitted signal or a very narrow optical filter, or operating at very low ambient
background light. A reduction of thermal noise is possible by increasing the load resistance
which acts adversely with the bandwidth and the gain. Furthermore, a reduction of reverse
bias current to very low steady state dc level will reduce unwanted broadband noise (i.e.
equilibrium mode has only very small leakage current). A high pump can increase noise

due to driving the photodiode to photo-voltaic mode and increasing the dark current, or due
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to reach the compression point. A high nonlinear photodiode can perform much better with
respect to noise performance. Larger responsitivity (R) may reduce the quantum noise and
improve the optical detecting efficiency. A measurement of the signa and noise was
carried out with parametric amplification, and without amplification. From the
measurement of NF in both cases, NF was determined at NF=2.92dB, with a power gain of
20dB. Consequently, the PPA was shown to have added a very small noise over
photodetection, due to the parametric effect (i.e. ANe=0.22dB), but with the advantages of
offering power gain and low noise by mixing products in a single junction. Overall PPA
noise performance is shown to be potentially better than the photodetection receiver,
followed by the preamplifier, and provides better receiver sensitivity, but with a bandwidth
penalty. Furthermore, as mentioned in chapter 2, the PPA was shown to outperform APD,

resulting in alower noise figure at a few hundred MHz bandwidths.
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Chapter 7

7. Conclusionsand Future Work

In this chapter, the conclusions of the work undertaken in this thesis, as well as future
research work, will be detailed.
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7.1 Conclusions

A novel approach to the design and optimisation of high sensitivity front-end
optical receivers has been presented and discussed. It is based on the superheterodyne
principle, but using the photoparametric amplification technique at the first stage, instead of a
resgtiveltransstor-based mixer. The up-converter optoelectronic mixing approach offers
low noise photo-detection, amplification and frequency conversion, with the aim of
recovering the baseband electrical signal at high gain with overall noise performance. Over
the preceding chapters, the research has shown that a DCHPPA system can be
implemented satisfactorily based on a commercial pin photodiode, which was also
encouraged to work simultaneously as a parametric amplifier. Because of this, the
DCHPPA acts in a parallel manner to a conventional double superheterodyne
heterodyne detector system, but without the noise penaty normally incurred in the first

stage that commonly existsin a conventiona front-end system.

In chapter 1, an overview of optical wireless communication systems was
presented, and the challenges and the key motivations for designing high sensitivity front-
end optical receivers were presented. The concept of a photo-parametric amplification
technique using up-converter optoel ectronic mixing was discussed. Chapter 2 reviewed the
literature, presenting an overview of the optical detection techniques, followed by areview
of the conventional parametric amplifier and their nonlinear device theory. This was
followed by a comprehensive review of the prior work of the development of the PPA
theory of operation, signal analysis and practical work. The main background was found to
be more helpful in devising a new ideal for designing, investigating and optimising the
front-end optical receiver, based on photoparametric techniques. The rest of this chapter

provides a summary of the conclusion and the main contributions of this research which
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were discussed in chapter 3 to 6. This includes the theoretical, ssimulation, practical set-up

and results of the front-end system.

The research in chapter 3 has shown that a PPA may have optimum performance
under a zero reverse bias mode; the benefit of using no bias is that the degree of
nonlinearity of CV characteristic is higher, leading to potentially greater conversion gain,
low noise and better cost and power effectiveness, essential for optical communication as
well as for wireless applications with tight power (i.e. mobile terminal). Input and output
power admittance were theoretically analysed, and it was found that for optimum power
transfer; the input/output admittance should be proportiona to the mean value of variable
capacitance (Crean). PPA general load analysis was theoretically presented, showing that
optimum power transfer will require load impedance to be low, and approximately equal to
the value of bulk resistance (R,); however, low negative load impedance (R = -R,) can be
considered, but with the penalty of stability. PPA theory gain was developed and newly
derived gain expressions were presented. The formula is able to consider most of the
parameters that affect PPA performance, including external circuit configuration, junction

characteristics and the ratio of applied pump frequency to the optical source frequency.

A novel DCHPPA circuit design model has been described and analysed in chapter
4. The ssimulation required the use of advanced nonlinear simulation tools; known as
Microwave Office with Harmonic Balance Technique (HBT) features, to model accurately
the whole front-end system. This due to the strong nonlinearities of the circuit, plus the use
of avery small signa source frequency, which is much weaker than the pump frequency,
known as noncommensurate multitone excitation analysis. A new, more accurate pin
photodiode was modelled as a core element of the PPA circuit model and successfully
simulated. The model represents actual nonlinear dynamic junction capacitance behaviour

with respect to CV and 1V characteristics; furthermore, photodiode responsitivity and finite
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frequency conversion efficiency (i.e. photon counting process) were also considered and
validated with the practical photodetector. The whole DCHPPA systems, including the IF
signa processing stage and DB mixer stage, were modelled and smulated, and the
baseband signal was successfully recovered at the predicted gain. The simulation
experiments conducted in the VHF, UHF and MW frequency range provided a realistic
assessment and better understanding of performance optimisation with respect to power
gain conversion. The simulation analysis was found to be in positive agreement with the
analytical analysis presented in chapter 3, and demonstrated the behavioural model’s
ability to accurately predict the effect of PD parameters and the PPA circuit configuration
of the photo parametric amplification. Furthermore, for optimum conversion gain, the PD
in the PPA circuit should operate at an equilibrium mode and exhibit a strong nonlinearity
junction (e.g. super hyper abrupt junction) with very low bulk resistance and very low load

impedance, where low insertion loss components at down-conversion stage are desirable.

In chapter 5, a new design of the DCHPPA system was presented, and a wide band
test-bed was successfully implemented. The system hardware was divided into three main
stages, each stage mounted in separate PCBs; the first stage represents the up-converter
PPA circuit, the second stage represents the IF signal processing circuits, and the third
stage represents the conventional down converter circuits. The experiments result in the
up-converter, though at a preliminary stage, have indicated promise, and can be
implemented satisfactorily using a pin photodiode at equilibrium mode, leading to
potentially greater conversion gain at lower penalty of power and noise. A proof of
principle experiments at VHF and UHF has demonstrated a measure up-converter gain of
in excess of 20dB and 26dB respectively; with the potential of higher figures by employing
a strong nonlinear junction, as predicted in the ssimulation result, where the gain can

increase up to 40% more. It was found that PPA can provide unexpected gains at low load
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impedance in comparison to standard optical wireless receivers. Tuning the pump circuits
to suppress feedthrough improves the performance of the PPA even more, such that a
broader bandwidth operation is possible using this with low load impedance, and
noticeable improvements in up-conversion gain are also seen, which provide a better GBP.
The power gain was found to be related to the pump power over the variable reactance
impedance and aso related to the ratio of idler frequency over the source frequency. Low
bulk resistance helps the variable capacitance to absorb most of the applied power across
the junction, and hence improve conversion gain. The PPA experimental results were very
convincing, since the gain frequency variation was in accordance with theoretica

calculation and simulation result.

The tests on the second stage (i.e. IF signal processing) indicated a promise, and
was implemented satisfactorily using low cost SAW filters and low noise IF amplifiers (i.e.
strengthen IF signal). The designated stage leads to potentialy high selectivity and
sensitivity with better rejection of other unwanted signals outside the bandwidth, as well as
being able to minimise the other signals’ interference and distortions; it also provide good
isolation among the cascaded stages (prevent feedback signal from breaking through).
Tests on the third stage (recovery baseband signal) indicate good results, and are
implemented by using passive and low loss components (i.e. DB mixer and LPF). The
DCHPPA technique overall subsequently exhibited a 34.9dB baseband signal gain at UHF
over the modulated optical signal. Employing a chain gain DCHPPA technique would be
preferred, as is subsequently exhibited by a 56.3 dB baseband signal gain over the
modulated optical signal; this technique can bring up the signal gain to certain levels

required for effective utilization and hence increase sensitivity.

In chapter 6, performance analysis was conducted on theoretical, simulation and

practical approaches. It was found that the three analyses follow the same trend, showing a
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very good agreement, and presented close results; the practical result verified the
mathematical calculation, and the simulation results presented in preceding chapters. In
terms of noise analysis perspective, practica measurement of the signal and noise of the
PPA was carried out with parametric amplification, and without amplification. It was
found that there is only a little extra noise occurrence, due to the process of
photoparametric operation, and the predominant sources of noise in PPA are the thermal
noise and the shot noise as found in any photodetecotr receiver. 2.7dB noise figure was
computed for the photodetector for no pump being applied; however, at 20dB power gain,
the PPA showed a 2.92dB noise figure. Consequently, the PPA added only a very small
noise over the DD/IM technique, and with almost of (i.e. Ang=0.22dB), this figure
considerably has insignificant effect in accordance with the advantages of offering power
gain and frequency conversion in a single junction. It was found that the PPA is a crucia
element with respect to sengitivity (i.e. noise performance) as a whole DCHPPA system,
since the high gain and low noise figure at the first stage can help to minimise the noise
effect of the later stages. The DCHPPA may not easily improve the SNR compare to

photodetector, but it can lower the total receiver noise figure.

Overdl, optoelectronic mixing in the DCHPPA appears to be very promising as a
means of linear amplification and frequency conversion in detecting (incoherent-
heterodyne) optical signals that offers the prospect of significant benefits to OW and FSO,
as well as offering improved performance in fibre access networks (i.e. wireless and long
haul applications). PPA noise performance is shown to be potentialy better than the
photodetection receiver, followed by the preamplifier, and provides better receiver
sensitivity, low cost and power effectiveness, but with bandwidth limitation. The aim of
this research has been achieved, and the DCHPPA can ambitiously replace the SCM/WDM

receiver in Millimetre-wave radio-over-fibre and wireless optical systems. Clearly, as with
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any research, there is still further work that needs to be done, as detailed in the next

section.

7.2 Future Wor k

Further research work can be explored and suggested as a result of employing this
technique to improve the performance of the front-end optical receiver system. One of the
greatest challenges in this technique is the bandwidth limitation, particularly at the IF
signa processing stage, where a high-Q bandpass filter was necessary to eliminate other
signas from breaking through such as pump frequency, lower IF frequency and other
harmonics frequencies. Further investigation needs to be conducted to enhance the
bandwidth at this stage, as it has been shown that the PPA at the first stage can provide
high gain bandwidth products (GBP). Further work may aso be done to design and
develop high-Q bandpass filter at Millimetre-wave frequency, as the state of the art of

commercial SAW filter offers only afew GHz centre frequencies.

There is some other work also that needs to be done to make this system a
commercia reality, though this work has shown that the basic premise of the double
conversion heterodyne photoparametric amplifier is viable. Further experimental
investigation is required to develop the DCHPPA using Microwave Monoalithic Integration
Circuits (MMICs), or integrating the whole system in a single PCP; this can increase
compactness and reduce parasitic effects. More practical implementation is required to
investigate the use of low source impedance of the pump source, asit is very hard to obtain
high pump power at 50Q) source resistance; it may be suggested that the whole system
should adopt low input/output resistance, but this may adversely affect the noise

performance.
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Experimental comparisons between a numbers of optical detection techniques
could be carried out in order to verify the differences, advantages, and disadvantages of a
number of real optical systems. The most important chalenge for further work, and the
only way to confirm and demonstrate the ultimate feasibility of the DCHPPA in practical
situations, is to deploy the DCHPPA in practical fibre or optical wireless systems,
including modulation and demodulation circuits, and to evaluate the complete link
performances with respect to bandwidth and SNR. However, until that time, it is the
conclusion of this work that photoparametric amplification appears to be the most suitable

solution for alow cost, low noise, narrowband front-end optical wireless receiver.
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Appendix A

Appendix Al: IV Simulation Set-up.

EL 1 PINDiodeRC_AP

ID=D1
=
- ACCSN N
ID=I1 gk N
Mag=0 mA -
::I)DC;\\//?_S / ';;\\ ANng=0 Deg (,,\ \
il ( F=1 MHz T~
VStart=-40 V\ ) Tone=1 >
VStop=1 Vv _ / Offset=0 mA e

DCVal=0 mA

- RES

ID=R1
R=6.5 Ohm

Schematic Circuit Diagramfor 1V Smulation Measurement.

DI M
CUR MA
ANG  DEG
FREQ Mz
VoLV
CAP PF
IND NH
RES OH
TIME M
LNG MM
TEWP C

CKT

ACCSN 2 O ID="11" Mag=0 Ang=0 F=432 Tone=1 NHarnm0 &
NSanp=2 O fset=0 DCval =0

DCVSS 2 0 ID="V1" VStart=-40 VStop=1 VStep=0.1

Pl NDi odeRC_ AP 2 3 ID="D1" SCRIPT={""} B=3 BV=30 CJ=72 &
CPACK=0 FC=0.5 IBv=1e-007 | F=100 &
| KF=0. 06 | KNEE=2 | S=3. 5e- 008 LBOND=0 M=0.45 MODEL_ LEVEL=2 &
N=1. 01 REPI =0 RF=0.65 RHO=100000 RLI M=0.6 RP=1e+015 &
RS=0 TAU=2e- 008 VJ=0.552 W:0. 006 WD=le-007&
TEMP=28

RES 0 3 ID="R1" R=6.5

DEFOP "IV PIN D ode RC AP"

$Vi sual System Si nul at or

$Version 8.04r build 4268 Revl (60469)

$Apl ac netlist file

$Schematic Narme: |V PIN Diode RC AP

Pr epare
+ ADDDCPATH TAUDC=1e+008

197



+ ERR=0. 001 ABS ERR=1e-012 U=1 RM N=1le- 005 RMAX=1e+011] GVRES_M=100
ZEROPI VOT=1e- 020

+ FNOVFO TEMP=298. 15 TNOME298. 15

VERSI| ONOPTI ON="t ranOsour ceonl yi nt randc”

VECTOR AVR_ SWP_VAR 1 -40 + 1

VAR AVR_SWP_| NDX 0

$*************** SUBC' RCLJI TS kkkkhkkhkkhkkhkkhkkhkkhkkhkkkk

Def Model awr _subckt 1 2 2 1 PARAM 7 Mag Ang O fset DCVal ACMag ACAng
TRAN_F GLOBAL_PARAM 1 AWR SWP_| NDX

Curr J_ TR 1 2 SIN=[O, Mag, TRAN_F, 0, 0, Ang*180/ PI] OFFSET=Cf f set
DC=DCVal NO_SS

Curr J_ HB 1 2 TONE=[1] (Mag' Ang*180/ Pl -90) AC=( ACMVag' ACAng*180/ PI)
OFFSET=Cf f set NO_TRAN

EndMbdel

$*************** END SUBCI RCLJI TS R I I I b b b S 2 b S

awr _subckt 1 ACCSNII1 1 0 Mag=0 Ang=0 O fset =0 DCval =0 ACMVag=0
ACAng=0 TRAN_F=432000000

Volt DCVSS!IV1 1 0 DC=AVR_SWP_VAR 1] AWR_SWP_I NDX]

PI NDi odeRC D1 1 2 TEMP=301. 15 WD=3e-006 B=3 BV=30 CJ=7.2e-011 CPACK=0
EPS=1. 17e- 005 FC=0.5 | Bv=1e-010 | F=0.1

+ | KF=6e- 005 | KNEE=0. 002 | S=3. 5e-011 LBOND=0 M=0.45 MODEL_LEVEL=2
N=1. 01 REPI =0 RF=0.65 RHO=100000

+ RLI M=0. 6 RP=1e+015 RS=0 TAU=5. 7e-008 VJ=0.552 W-3e-006

Res RESIR1 0 2 6.5 TEMP=290

AVWRSaveResul ts

+ VOLTAGES 2 1 2

+ CURRENTS 6 ACCSNI'I 1,1 ACCSNI'11,2 D1,1 DCVSS! V1,1 DCVSS! V1, 2
RESI'R1, 1

+ DCOPS

Sweep "AWR | NTERNAL SWEEP" DC

+ LOOP 411 VAR AWVR SWP_INDX LIN 0 410

EndSweep

$Net | i st End
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Appendix A2: CV Simulation Set-up.

BIASTEE
ID=X1

PORT
2 1
P=1 D>—E|—E|— RF %H
Z=50 Ohm oc PY
J] 3 PINDiodeRC_AP 1
ID=D3
SWPVAR L
ID=SWP1
VarName="v_bias"
Values=stepped(-10,0.5,0.1) — bias=-10 2
UnitType=Voltage / +\ V_DI(?\S/S
| i
. Xn — ID=V1
Xo \\,,,/ V=v_bias V
RES
ID=R1
& R=6.5 Ohm

i

Schematic Circuit Diagram for CV Smulation Measurement.

DI M
voL VvV
CAP  PF
CUR MA
IND NH
RES CH
TIME MS
LNG MV
TEMP C
VAR
v_bias=-10
CKT

BI ASTEE 3 1 2 | D="X1"

DCVS 2 0 ID="V1" V={ v_bias }

Pl NDi odeRC_AP 3 0 ID="D3" SCRIPT={""} B=3 BV=30 CJ=72 &
CPACK=0 FC=0.5 | BV=1e-007 | F=100 &
| KF=0. 06 | KNEE=2 | S=3. 5e-008 LBOND=0 M-=0.45 MODEL LEVEL=2 &
N=1. 01 REPI =0 RF=0. 65 RHO=100000 RLI M=0. 6 RP=1e+015 &
RS=0 TAU=2e-008 VJ=0.552 W:0. 006 WD=1e-007&
TEMP=28

SWPVAR | D="SWP1" Var Name={"v_bi as"} Val ues=stepped(-10,0.5,0.1) &
Uni t Type=13

PORT 1 P=1 Z=50

DEFOP "CV PI ND odeRC AP"$Vi sual System Si mul at or

$Version 8.04r build 4268 Revl (60469)

$Aplac netlist file

$Schemati ¢ Name: CV Pl NDi odeRC AP

Pr epare
+ NO SE
+ ADDDCPATH TAUDC=1e+008
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+ ERR=0. 001 ABS ERR=1e-012 WU=1 RM N=le- 005 RMAX=1e+011l GVRES M-100
ZERCPI VOT=1e- 020
+ FNOMEO TEMP=298. 15 TNOME298. 15
VERSI ONOPTI ON="t ranOsour ceonl yi nt randc; maxadnme1e6"
VECTOR AVWVR SWP_VAR 1 1000000000 + 2000000000
VECTOR AWVR SWP VAR 2 -10 O
VECTOR AVR SWP_ VAR 4 -10 O
VAR AWVR SWP_ | NDX O
$*************** SUBCI RCLJI TS *kkkkhk ki khkkhhkkhhhhkhk
$*************** END SUBCI RCLJI TS EIE R S 0 S R S I S I
Cap CAP! X1 1 2 1e-005
Ind INDIX1 Ul 3 1 0.001
Volt DCVSIV1 3 0 DC=AVR_SWP_VAR 4] AWR_SWP_| NDX]
Pl NDi odeRC D3 1 0 TEMP=301. 15 WD=1e- 006 B=3 BV=30 CJ=7.2e-011 CPACK=0
EPS=1. 17e- 005 FC=1 | Bv=1e-010 I F=0.1
+ | KF=6e- 005 | KNEE=0. 002 | S=3. 5e-011 LBOND=0 M=0.45 MODEL LEVEL=2
N=1. 01 REPI =0 RF=0.65 RHO=100000
+ RLI M=0. 6 RP=1e+015 RS=0.1 TAU=5. 7e- 008 VJ=0. 552 W-1le-006
Port PORT! PORT_1 2 0 PORT=1 Z=(50, 0)
AVWRSaveResul ts
Sweep "AWR | NTERNAL SWEEP" DC
+ LOOP 212 VAR AWVR SWP_ INDX LIN 0 211
Anal yze AC FREQAVWR SWP_VAR 1[ AR _SWP_| NDX]
EndSweep
$Net | i st End
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Appendix A3; OSRAM BPX61 Data Sheet

Silizium-PIN-Fotodiode
Silicon PIN Photodiode

Lead (Pb) Free Product - RoHS Compliant

BPX 61

Wesentliche Merkmale

* Speriell geeignat flr Anwendungean im Bereich
von 400 nm bis 1100 nm

¢ Kurze Schaltzeit (typ. 20 ns)

+ Hemmetisch dichte Metallbautorm (&hnlich
TO-5)

Anwendungen

* Lichtschranken fir Gleich- und
Wachsellichtbetrieb

* [R-Femsieuerungen

* Industrieelekironik

v Messan/Steuarn/Hegein®

Typ Bestellnummer
Type Ordering Code
BFX 61 OE2702P0025
2005-03-30

Features

* Especially suitable for applications from 400 nm
to 1100 nm

* Short switching time (typ. 20 ns)

* Hermetically sealed metal package (similar to
TO-5)

Application

+ Photointarrupters

* |R-remote controls

¢ |ndustrial electronics

# For control and drive circuits

Opto Semiconductors

OSRAM
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BPX 61

Grenzwerte

Maximum Ratings

Bezeichnung Symbaol Wert Einheit
Parameter Symbaol Value Unit
Betriebz- und Lagenemperatur TS, Tﬂ? =40 ... +125 |°C
Operating and storage temperature range

Sperrspannung Vg 32 W
Heverse voltage

Verustleistung, T, =25°C P 250 m
Total power dissipation

Kennwerte (T, = 25 “C, Mommlicht A, T = 2856 K)

Characteristics (I, = 25 °C, standard light A, T = 2856 K)

Bezeichnung Symbol Wert Einheit
Parameter Symbaol Value Unit
Fotoempfindlichkeit, V=5V LY 70 (= 50) nAflx
Spectral sensitivity

Wellenldnge der max. Fotoempfindiichkeit AL max 850 nm
Wavelength of max. sensitivity

Spekiraler Bereich der Fotoempfindiichkeit A 400 ... 1100 nm

5= 10% von S,

Spectral range of sensitivity

5 =10% of Sqax

Bestrahlungsampfindliche Flache A 7.00 mim?
Radiant sensitive area

Abmessung der bastrahlungsempfindlichen Flache | L« 8 2.65 x 2.65 MM = mm
Dimensions of radiant sensitive area LW

Halbwinkel g +55 Grad
Half angla deq.
Dunkeistrom, Viy = 10V Iy 2 (=30) nA
Dark current

Spekirale Fotoempfindiichkeit, & = 850 nm 5 0.62 ANN
Spectral sensitivity

Cuantenausbeute, = 850 nm 1 0.20 Electrons
Cruantum yield Photon
Leerautspannung, £, = 1000 [x Va 375 (= 320) my
Open-circuit voitage

Kurzechlussstrom, £ = 1000 lx I 70 LA,
Short-circuit current

2005-03-30 2

Opto Semiconductors
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BPX 61

Kennwerte (T, = 25 “ C, Normlicht A, T = 2856 K)
Characteristics (T, = 25 °C, standard light A, T = 2856 K) (cont'd)

Bezeichnung Symbol Wert Einhait
Parameter Symbol Value Unit
Anstiegs- und Abfallzeit des Fotostroms L 20 ns

Rise and fall time of the photocurrent
R, =50k Vg =5V, L =850nm; { =800 uA

Durchlassspannung, /p = 100 mA, E=0 Ve 13 v

Forward voltage

Kapazitat, Vy =0V, = 1MHz E=0 [ 27 72 pF

Capacitance

Temperaturkoeffizient won V, Cy - 26 myiK

Temperature coefficient of ¥V,

Temperaturkoefiizient von fz- i .18 K

Temperature coefficient of /g

Rauschéquivalente Strahlungsleistung NEP 41% 107" W

Moise equivalent power Az

V=10V, & = BSD nm !

Machweisgrenze, Vg = 10 V, 1 = 850 nm D 6.6 < 10" s
cmx o Hz

Detection fimit =

2005-03-30 3

Opto Semiconductors OSRAM
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BPX 61

Relative Spectral Sensitivity
5= 1)

o0 Loy
gos AN
. \
&
\
" |
/ |
m E
b e T
Dark Current
Ir=f(Val E=0
oo il
I.v'-J'
o er’
B

/

]

/
/

5 e T
Directional Characteristics

Su=rtg)
W M oW

Photocurrent i, =f(E ). V=5V
Open-Circuit Voltage V= (£

"'; HER A

Capacitance

4 oF o8 [

2005-03-30

u
[
B
2
]
B

Total Power Dissipation

Fa=FT)
mf.“ &
il
oo
2+ 1
h
15l
A\
- \\
=
WT’!“’&:%TI'@
il '-
Dark Current
fg=f(Ts). Va=5V¥, E=0
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BPX 61

MafBzeichnung
Fackage Outlines
Chip positon
& gg & 1.75 (0.068) Pactiaig S
R 155(0.061) Cathods VU 1
e = = 2=
%J% o Lea 8045 (0.0%8) l-"“ %HE
&g i
2% g
Ea % -
4 i @ ]
34 (0.134) 143 (0L571) (ﬁ\
aofong | 12500482 S
— r— b q:'@'
(.3 10.012) max o
Approx. weight 2 g GHIDYEN1

Mals werdan wie Tolgt angegeban: mm {inch) / Dimensions are spacified as follows: mm {inch).

OSRAM

Opto Semiconductors
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BPX 61

Lotbedingungen
Soldering Conditions
Wellenioten (TTW) {nach CECC 00802}
TTW Soldering (acc. to CECC 00802)
20 L YIS
*c 103 Mormaskurve
= T standend curve
T 0 =
235°C .. 260°C Grenzkurven
2. Wella 7T lmit cunves
2. wWave
m A LY
1. Walle L
1. weEwa ‘1.‘
ki ca 200 Kis N 2K

00°C... 130°C _.=""

100 S
- -“'I-,__'
- Zwangskiihiung i

- forced coaling e T

50 =
0 T T L] T I T T T T
0 50 100 150 200 -3 50
—— |
Published by

OS5RAM Opto Semiconductors GmbH

Wermnerwerkstrasse 2, D-93049 Regensburg

WWW.OSTaM-05.C0m

& All Rights Reserved.

The information descrbes the fype of component and shall not be considered as assured charactenistics.

Terms of dalivery and rights 1o change design reserved. Due fo technical requirements componenis may contain
dangerous substances. For information an the types in question please contact our Sales Organization.

Packing

Please use tha recycling operators known to you. We can also help you — get in touch with wour nearest sales office.
By agreament we will take packing material back, if it is soried. You must bear the costs of transport. For packing
material that is returned {0 us unsored orwhich wa are not obliged fo accept, we shall have 1o inmvoice you for any cosls
incurred.

Components used in life-support devices or systems must be expressly authorized for such purposal Critical
componants |, may only be used in life-support devices or systems * with the express written approval of OSRAM O5.
! A crilical component i a component usedin a fife-support davice or system whosa failure can reasonably be expected
to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that dewvice or system.

2 Life support devices or systems are intended (a) to be implanted in the human body, or (b} to support andior maintain
and sustain human [ife. If they fail, it is reasonable to assume that the health of the user may be endangered.

2005-03-30 6
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Appendix A4: PPA Up-converter Simulation Set-up.

DI M
RES OH
CAP PF
COND /OH
ANG DEG
FREQ MHZ
TIME M
VoL VvV
CUR UA
IND NH
LNG MM
TEMP C
CKT
RES 3 1 ID="R3" R=6.5
CAP 1 2 ID="C1" C=20
VCCS 4 0 3 0 ID="U1" M=0.62 A=0 R1=0 R2=0 F=1 T=0
ACVSN 4 0 | D="V2" Mag=0.001414 Ang=0 F=1 Tone=2 NHarnr0 &
NSanp=1 O fset=0 DCval =0. 001414
PI NDi odeRC_AP 0 3 I D="D3" SCRIPT={""} B=3 BV=30 CJ=72 &
CPACK=0 FC=0.5 I BV=0.0001 | F=0.1 | KF=6e-005 | KNEE=2000 &
| S=3. 5e- 005 LBOND=0 M=0.45 MODEL_LEVEL=2 N=1.01 &
REPI =0 RF=0. 65 RHO=100000 RLI M=0. 6 RP=1e+015 &
RS=0 TAU=2e- 008 VJ=0.552 W:0. 006 WD=1e- 007 TEMP=28
PORT 2 P=1 Z=50
PORT_SRC 1 P=2 Z=50 Signal =0 SpecType=1 SpecBW-0 Sweep=0 &
Tone=1 Hi nt=0 NSanp=1 Freq=432.92 Pw =15 Ang=0
DEFOP " PPAPI NDi ode"

$Vi sual System Si nul at or

$Version 8.04r build 4268 Revl (60469)
$Apl ac netlist file

$Schemat i ¢ Name: PPAPI NDi ode

#| oad "C:\\ Program Fi | es\\ AWR\\ AWR2008\ \ nodel s\\ el e_defs.dl | "
t ype=aw nodel
Prepare

+ ADDDCPATH TAUDC=1e+008

+ ERR=0.001 ABS ERR=1e-012 U=1 RM N=le-005 RMVAX=1e+011 GVRES M=100
ZEROPI VOT=1e- 020

+ FNOMVEO TEMP=298. 15 TNOME298. 15
VERSI ONOPTI ON="t ranOsour ceonl yi nt r andc”

$*************** SUBCI RCLJI TS R I I S b S b 2 b S

Def Model awr _subckt _1 2 1 2 PARAM 7 Mag Ang Ofset DCval ACMag ACAng
TRAN_F G.OBAL_PARAM 1 AVWR_SWP_| NDX

Gyrator GL 1 2 30

Curr J TR 3 0 SIN[O0, Mag, TRAN_F, 0, 0, Ang* 180/ PI ] OFFSET=0O f set
DC=DCval NO_SS

Curr J_HB 3 0 TONE=[O0, 1] (Mg Ang*180/PI-90) AC=(ACMag' ACAng*180/Pl)
OFFSET=Of f set NO_TRAN

EndMbdel

Def Mbdel aw _subckt_2 1 1 PARAM1 Z G.OBAL_PARAM 1 AWR SWP_| NDX

Res R1 1 0 1 Z=Z NO SELESS

EndMbdel

Def Mbdel aw _subckt_3 1 1 PARAM 4 Z TRAN_F PWR_|I NDX ANG | NDX

Gyrator GL 1 020

VECTOR Pwr O 0.502973

VECTOR Ang0 O
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Curr J TR 2 0
SIN=[ 0, Sqrt (Z) *Pw O] PWR | NDX] , TRAN_F, 0, 0, Ang0[ ANG | NDX] *57. 2958]

Res Y 2 0 1 Y=Z NO SELESS

EndModel

$*************** END SUBCI RCLJI TS EIE R S 0 S R S I S I

Res RES'R3 6 2 6.5 TEMP=290

Cap CAPIC1 3 5 2e-011

Li near Mbdel VCCS!U1 4 1 06 0

+ PARAM 6 T=0 M=0.62 A=0 R1=0 R2=0 F=1000000

aw _subckt _1 ACVSN'V2 1 0 Mag=0.001414 Ang=0 O fset=0 DCval =0. 001414
ACMag=0. 001414 ACAng=0 TRAN F=1000000

Cap CAP! X1 2 3 1e-005

Ind INDI X1 Ul 4 2 0.001

Volt DCVSIV1 4 0 DC=0

PI NDi odeRC D3 0 6 TEMP=301.15 Wp=1e- 007 B=3 BV=30 CJ=7.2e-011 CPACK=0
FC=0.5 | Bv=1e- 010 | F=1e-007 | KF=6e-011

+ | KNEE=0. 002 |S=3.5e-011 LBOND=0 M-=0.45 MODEL LEVEL=2 N=1.01 REPI =0
RF=0. 65 RHO=100000 RLI M=0. 6

+ RP=1e+015 RS=0 TAU=2e-011 VJ=0.552 W6e- 006

awr _subckt 2 PORT!PORT_1 5 Z=(50, 0)

aw _subckt 3 PORT1_F!'PORT_2 2 Z=(50, 0) TRAN F=432920000 PWR | NDX=0
ANG | NDX=0

AVWRSaveResul ts

+ VOTAGES 6 1 2 345 6

+ CURRENTS 14 ACVSNI V2,1 ACVSNI V2,2 CAP!C1,1 CAP! X1,1 D3,1 DCVSI V1, 1
DCVSIV1, 2 INDI X1 Ul,1 PORT! PORT 1,1 RESIR3,1

+ VCCS! U1, 1 VCCS! U1, 2 VCCS! U1, 3 VCCS! U1, 4

+ DCOPS

Sweep "AWR | NTERNAL SWEEP" DC

EndSweep

$Net | i st End
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Appendix A5: PPA Simulation Set-up, Gain versus Various Bias Voltages

| [ 877 uA]
oV]
& =
vvvvv
=

Te 17V
BIASTEE
ID=X1

PORT_SRC
P=2

= ID=C1
2=50 Ohm
Signal=Sinusoid C=20pF
SpecType=Specify freq
SpecBW=Use doc # harms
Sweep=None

Tone=1
Freq=432.9 MHz
Pwr=15 dBm

An§:0 Deg
RES

- ID=R3
V=0V R=6.5 Ohm

— ACVSN
Mag=0.001414 V
- Ang=0 Deg

F=1MHz
Tone=2
of

ffset=0 V
DCVal=0.001414 V vees

=0ms
=

1 3
<+> : {:
[ RL » R2
— 2 4

T

4 PINDiodeRC_AP
0 " ID=D3

DI M
RES OH
CAP PF
COND / OH
ANG DEG
FREQ MZ
TIME M
VoLV
CUR UA
IND N
LNG MM
TEMP C
CKT
RES 1 4 ID="R3" R=6.5
6 1
|

I

| D=

CAP 5 I D="C1" C=20

VCCS 2010

ACVSN 2 0 I D="V2" Mag=0.001414 Ang=0 F=1 Tone=2 NHarnm=0 &
NSanp=1 O fset=0 DCval =0. 001414

BI ASTEE 4 5 7 | D="X1"

DCvS 7 0 ID="V1" WO

PI ND odeRC_AP 0 1 I D="D3" SCRIPT={""} B=3 BV=30 CJ=72 &
CPACK=0 FC=0.5 IBV=0.0001 | F=0.1 | KF=6e-005 | KNEE=2000 &
| S=3. 5e- 005 LBOND=0 M=0.45 MODEL_LEVEL=2 N=1.01 &
REPI =0 RF=0. 65 RHO=100000 RLI M=0. 6 RP=1e+015 &
RS=0 TAU=2e-008 VJ=0.552 Wt0. 006 WD=1e-007 TEMP=28

PORT 6 P=1 Z=50

PORT_SRC 4 P=2 Z=50 Signal =0 SpecType=1 SpecBW:0 Sweep=0 &
Tone=1 Hi nt=0 NSanp=1 Freq=432.92 Pw =15 Ang=0

DEFOP " PPAPI NDi ode"

$Vi sual System Si nul at or

D="Ul" M=0.62 A=0 R1=0 R2=0 F=1 T=0
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$Version 8.04r build 4268 Revl (60469)

$Apl ac netlist file

$Schemat i ¢ Narme: PPAPI NDi ode

#l oad "C. \\Program Fi | es\\ AWR\\ AWR2008\ \ nodel s\\ el e _defs.dlI"

t ype=aw nodel

Prepare

+ ADDDCPATH TAUDC=1e+008

+ ERR=0. 001 ABS ERR=1e-012 U=1 RM N=1le- 005 RMAX=1e+011] GVRES_M=100
ZEROPI VOT=1e- 020

+ FNOVFO TEMP=298. 15 TNOME298. 15

VERSI| ONOPTI ON="t ranOsour ceonl yi nt randc”

$*************** SUBCl RCLJI TS kkkkhkkhkkhkkhkkhkkhkkhkkhkkkk

Def Model awr _subckt 1 2 1 2 PARAM 7 Mag Ang O fset DCVal ACMag ACAng
TRAN_F G.OBAL_PARAM 1 AVWR_SWP_| NDX

Gyrator GL 1 2 30

Curr J_TR 3 0 SINF[O, Mag, TRAN F, 0, 0, Ang*180/ PI] OFFSET=Cf f set
DC=DCval NO_SS

Curr J_HB 3 0 TONE=[ 0, 1] (Mag' Ang*180/ Pl - 90) AC=( ACMag' ACAng*180/ PI)
OFFSET=0Of f set NO_TRAN

EndMbdel

Def Mbdel aw _subckt_2 1 1 PARAM1 Z G.OBAL_PARAM 1 AVWR SWP_| NDX
Res R1 1 0 1 Z=Z NO SELESS

EndMbdel

Def Mbdel aw _subckt_3 1 1 PARAM 4 Z TRAN_F PWR_| NDX ANG | NDX
Gyrator GL 1 020

VECTOR Pwr O 0.502973

VECTOR Ang0 O

Curr JJTR2 O

SI N=[ 0, Sgrt (Z) *Pwr O[ PWR_| NDX] , TRAN_F, 0, 0, Ang0[ ANG_| NDX] *57. 2958]

Res Y 2 0 1 Y=Z NO SELESS

EndMbdel

$*************** END SUBCI RCLJI TS R I I I b b b S 2 b S

Res RESIR3 6 2 6.5 TEMP=290

Cap CAPIC1 3 5 2e-011

Li near Mbdel VCCSIU1 4 1 0 6 0

+ PARAM 6 T=0 M=0.62 A=0 R1=0 R2=0 F=1000000

aw _subckt _1 ACYSNIV2 1 0 Mag=0.001414 Ang=0 O f set =0 DCval =0. 001414
ACMag=0. 001414 ACAng=0 TRAN_F=1000000

Cap CAP! X1 2 3 1le-005

Ind INDX1_Ul 4 2 0.001

Volt DCVS!IV1 4 0 DC=0

PI NDi odeRC D3 0 6 TEMP=301. 15 Wb=1e- 007 B=3 BV=30 CJ=7.2e-011 CPACK=0
FC=0.5 1 BvV=1e-010 | F=1e-007 | KF=6e-011

+ | KNEE=0. 002 | S=3. 5e-011 LBOND=0 M-=0.45 MODEL_LEVEL=2 N=1.01 REPI =0
RF=0. 65 RHO=100000 RLI M=0. 6

+ RP=1e+015 RS=0 TAU=2e-011 VJ=0.552 W-6e- 006

aw _subckt _2 PORT! PORT_1 5 Z=(50, 0)

aw _subckt _3 PORT1_F! PORT_2 2 Z=(50, 0) TRAN_F=432920000 PWR | NDX=0
ANG_| NDX=0

AVRSaveResul t s

+ VOLTAGES 6 1 2 3456

+ CURRENTS 14 ACVSNI V2,1 ACVSNI V2,2 CAP!C1,1 CAP! X1,1 D3,1 DCVS!V1, 1
DCvS!V1, 2 IND X1_U1,1 PORTIPORT_1,1 RESIR3,1

+ VCCs! U1, 1 VCCS! U1, 2 VCCS! UL, 3 VCCsS! UL, 4

+ DCOPS

Sweep "AWR | NTERNAL_SWEEP" DC

EndSweep
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Appendix A6: CurveFitting

Gain ratio=(10"(normalized gain/20).

M Fs power=64.22 Gain Normalized Gain
Gain (ratio)
0 64.22 0 0 0
0.1 64.22 11.07 -13.61 0.208689
0.2 64.22 16.99 -7.69 0.412572
0.3 64.22 20.42 -4.26 0.61235
0.4 64.22 22.86 -1.82 0.810961
0.5 64.22 24.68 0 1
0.6 64.22 26.17 1.49 1.187135
0.7 64.22 27.43 2.75 1.372461
0.8 64.22 28.5 3.82 1.552387
0.9 64.22 29.44 4.76 1.729816
1 64.22 30.3 5.62 1.909853
1.1 64.22 31.02 6.34 2.074914
1.2 64.22 31.7 7.02 2.243882
1.3 64.22 32.31 7.63 2.407133
1.4 64.22 32.87 8.19 2.567438
1.5 64.22 33.38 8.7 2.722701
1.6 64.22 33.85 9.17 2.874088
1.7 64.22 34.29 9.61 3.023431
1.8 64.22 34.69 10.01 3.16592
1.9 64.22 35.06 10.38 3.303695
2 64.22 35.34 10.66 3.411929
Gain

40

35

30 +

25 |

20

Gain (dB)

15

10

0 & 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J

0 010203040506 070809 1 11 12 13 14 15 16 1.7 18 19 2

Grading cofficient (m)

Gain Ratios at Various Grading Coefficient (m).
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User-Selectable Polynomial

Coefficients
y = a+ bmt e+ dmP+ fm*+ gn+ hmP+ im’

Fitting target of sum of squared absolute error = 4.3253595042810687E-05
a= 3.8960985344577240E-04

b = 2.0600857376433175E+00

¢ = 2.5114593468130109E-01

d = -1.6286359450344763E+00

f = 2.6430596291788806E+00

g =-2.1327106934817333E+00

h = 8.4350596012622681E-01

i =-1.3054686027100060E-01

o .0

3.5 =
.0 /
2.5

2.0
1.5
1.0
0.5
0.0 /

—i0.5
—. 5 0.0 a5 1.0 1.5 2. L0 2.5

Y data

Gainratio
35 -

25

15

gainratio

0.5
0 1 1 1 1 1 1 1 1 1 J
0O 02 04 06 08 1 12 14 16 18 2

grading coffiecient (m)

Normalized gain=Gian-(gain at m=0.5)= Gain-24.68
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Appendix A7: DCHPPA Simulation Set-up

DI M
RES OH
CAP PF
COND /OH
ANG DEG
FREQ Mz
TIME M
VoLV
CUR UA
IND NH
LNG MM
TEMP C

CKT

RES 8 17 ID="R3" R=6.5

CAP 17 18 ID="C1" C=20

VCCS 7 0 8 0 ID="U1" M=0.62 A=0 R1=0 R2=0 F=1 T=0

ACVSN 7 0 | D="V2" Mag=0.001414 Ang=0 F=1 Tone=2 NHarnr0 &
NSanp=1 O fset=0 DCval =0. 001414

PI NDi odeRC_AP 0 8 I D="D3" SCRIPT={""} B=3 BV=30 CJ=72 &
CPACK=0 FC=0.5 I BV=0.0001 | F=0.1 | KF=6e-005 | KNEE=2000 &
| S=3. 5e- 005 LBOND=0 M=0.45 MODEL_LEVEL=2 N=1.01 &
REPI =0 RF=0. 65 RHO=100000 RLI M=0. 6 RP=1e+015 &
RS=0 TAU=2e- 008 VJ=0.552 W:0. 006 WD=le- 007 TEMP=28

SPLIT2 19 17 6 ID="P1" L21=3 L31=3 Z0=50

BPFB 18 15 | D="BPFB1" N=3 FP1=433.72 FP2=434.12 AP=4 &
RS=50 RL=50 QU=7000

SDI ODE 12 1 | D="SDi odel" |S=2.2e-005 JSW0 MULT=1 AFAC=1 &
PJFAC=0 RS=16 N=1 TT=0 CJ0=0.13 CIP=0 VJ=0.5 &
PHP=0.8 M=0.5 MISW-0.33 FC=0.5 FCS=0.5 BV=5 IBV=0 &
| KF=0 I KR=0 EG=1.11 XTI =3 TEXT=26.85 T=27 KF=0 &
AF=1 FFE=1 KB=0 AB=1 FB=1 NFLAG=1 DCAP=0 TLEV=0 &
TLEVC=0 CTA=0 CTP=0 GAP1=0.000702 GAP2=1108 TCv=0 &
TML=0 TMR=0 TPB=0 TPHP=0 TRS=0 TTT1=0 TTT2=0 &
| MAX=1e+006 COMPAT=1 TRS2=0 TGS=0 TGS2=0 CD=0 &
TWONLBRANCHES=0 TWORESI STORS=0

SDI ODE 3 2 | D="SDi ode3" | S=2.2e-005 JSW0 MILT=1 AFAC=1 &
PJFAC=0 RS=16 N=1 TT=0 CJ0=0.13 CIP=0 VJ=0.5 &
PHP=0.8 M=0.5 MISW0. 33 FC=0.5 FCS=0.5 BV=5 IBV=0 &
| KF=0 I KR=0 EG=1.11 XTI =3 TEXT=26.85 T=27 KF=0 &
AF=1 FFE=1 KB=0 AB=1 FB=1 NFLAG=1 DCAP=0 TLEV=0 &
TLEVC=0 CTA=0 CTP=0 GAP1=0.000702 GAP2=1108 TCV=0 &
TML=0 TMR=0 TPB=0 TPHP=0 TRS=0 TTT1=0 TTT2=0 &
| MAX=1e+006 COMPAT=1 TRS2=0 TGS=0 TGS2=0 CD=0 &
TWONLBRANCHES=0 TWORESI STORS=0

SDI ODE 2 12 | D="SDi ode4" |S=2.2e-005 JSW0 MULT=1 AFAC=1 &
PJFAC=0 RS=16 N=1 TT=0 CJ0=0.13 CIP=0 VJ=0.5 &
PHP=0. 8 M=0.5 MISW-0. 33 FC=0.5 FCS=0.5 BV=5 IBV=0 &
| KF=0 I KR=0 EG=1.11 XTI =3 TEXT=26.85 T=27 KF=0 &
AF=1 FFE=1 KB=0 AB=1 FB=1 NFLAG=1 DCAP=0 TLEV=0 &
TLEVC=0 CTA=0 CTP=0 GAP1=0.000702 GAP2=1108 TCV=0 &
TML=0 TMR=0 TPB=0 TPHP=0 TRS=0 TTT1=0 TTT2=0 &
| MAX=1e+006 COMPAT=1 TRS2=0 TGS=0 TGS2=0 CD=0 &
TWONLBRANCHES=0 TWORESI STORS=0

SDI ODE 1 3 | D="Sdi ode2" | S=2.2e-005 JSW0 MILT=1 AFAC=1 &
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PIJFAC=0 RS=16 N=1 TT=0 CJ0=0.13 CIP=0 VJ=0.5 &
PHP=0.8 M=0.5 MISWE0. 33 FC=0.5 FCS=0.5 Bv=5 IBV=0 &
| KF=0 | KR=0 EG=1. 11 XTI =3 TEXT=26.85 T=27 KF=0 &
AF=1 FFE=1 KB=0 AB=1 FB=1 NFLAG=1 DCAP=0 TLEV=0 &
TLEVC=0 CTA=0 CTP=0 GAP1=0. 000702 GAP2=1108 TCV=0 &
TML=0 TM2=0 TPB=0 TPHP=0 TRS=0 TTT1=0 TTT2=0 &
| MAX=1e+006 COWPAT=1 TRS2=0 TGS=0 TGS2=0 CD=0 &
TWONLBRANCHES=0 TWORESI STORS=0

XFMRTAP 0 14 12 13 3 ID="XF1" N1=1 N2=1

XFMRTAP 6 0 1 0 2 I D="XF2" N1=1 N2=1

CAP 0 13 ID="C2" C=78

CAP 0 5 ID="C3" C=245

CAP 0 16 ID="C4" C=78

IND 13 5 I D="L1" L=515

IND 5 16 | D="L2" L=515

BPFB 15 14 | D="BPFB2" N=3 FP1=433. 72 FP2=434.12 AP=4 &
RS=50 RL=50 QU=7000

PORT_SRC 19 P=2 Z=50 Signal =0 SpecType=1 SpecBW-0 Sweep=0 &
Tone=1 Hi nt=0 NSanp=1 Freq=432.92 Pw =18 Ang=0

PORT 16 P=1 Z=50

DEFOP " DCHPPA"

$Vi sual System Si nul at or

$Version 8.04r build 4268 Revl (60469)

$Apl ac netlist file

$Schemat i ¢ Name: DCHPPA

#l oad "C \\Program Fi | es\\ AWR\\ AWR2008\ \ nodel s\\ FilterMmd. dl | "

t ype=aw nodel

#l oad "C. \\Program Fi | es\\ AWR\\ AWR2008\ \ nodel s\\ el e_defs.dlI"

t ype=aw nodel

Prepare

+ ADDDCPATH TAUDC=1e+008

+ ERR=0. 001 ABS_ERR=1e-012 U=1 RM N=le- 005 RMAX=1e+011 GVRES M-=100
ZEROPI VOT=1e- 020

+ TONE 2 9 BOX_AND DI AMOND="1, 1" HB_SAMPLI NG_METHOD=ONEDI M HB_MODE=1
HBSPECTRUMREL=0. 001 | NEXACT_NEWON=1

+ FNOVEO TEMP=298. 15 TNOME298. 15

VERSI ONOPTI ON="t ranOsour ceonl yi nt randc; maxadnm=1e6"

$*************** SUBC' RCLJI TS kkkkhkkhkkkkhkkhkkhkkhkkhkkkk

Def Model awr _subckt 1 2 1 2 PARAM 7 Mag Ang O fset DCVal ACMag ACAng
TRAN_F G.OBAL_PARAM 1 AVWR_SWP_| NDX

Gyrator GL 1 2 30

Curr J_TR 3 0 SINF[O, Mag, TRAN F, 0, 0, Ang*180/ PI ] OFFSET=Cf f set
DC=DCval NO_SS

Curr J_HB 3 0 TONE=[ 0, 1] (Mag' Ang*180/ Pl - 90) AC=( ACMag' ACAng*180/ PI)
OFFSET=0Of f set NO_TRAN

EndMbdel

Def Mbdel aw _subckt_2 2 1 2 GLOBAL_PARAM 1 AVR_SWP_| NDX

Res RC 1 3 16 M1

Res RB 3 4 0 M1 TEMP=300. 15 RESMODE=2

Di ode DB 4 2 | S=2.2510844504e-011 N=1 TEMP=300. 15 TNOWVF300. 15 NO TEMP
+ EG=0 XTI =0 | KF=0 NBV=1 | BV=2.2510844504e-011

+ BV=5 CAPMOD=0 TT=0 CJO=1.3005413914e-013 M=0.5

+ VJ=0. 49961354511 FC=0.5 KF=0 AF=1 MJLT=1

Res RSW3 5 0 M=0 TEMP=300. 15 RESMODE=2

Di ode DSW5 2 1S=0 N=1 TEMP=300.15 TNOM=300. 15 NO_TEMP

+ EG=0 XTI =0 | KF=0 NBvV=1 | BVvV=0
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+ Bv=5 CAPMOD=0 TT=0 CJO=0 M=0. 33

+ VJ=0. 79976354511 FC=0.5 KF=0 AF=1 MULT=1

EndModel

Def Model awr _subckt 3 1 1 PARAM 4 Z TRAN F PWR | NDX ANG | NDX
Gyrator GL 1 020

VECTOR Pw 0 0.710469

VECTOR Ang0 O

Curr JJTR2 0

SIN=[0, Sgrt (Z) *Pwr O] PMAR_| NDX] , TRAN _F, 0, 0, AngO[ ANG_| NDX] *57. 2958]

Res Y 2 0 1 Y=Z NO SELESS

EndModel

Def Model awr _subckt _4 1 1 PARAM 1 Z G.OBAL_PARAM 1 AWR _SWP_| NDX
Res RL 1 0 1 Z=Z NO SELESS

EndModel

$*************** END SUBCI R(:LJI TS EIE R S 0 S R S I o I

Res RES'R3 9 5 6.5 TEMP=290

Cap CAPICL 5 2 2e-011

Li nearMbdel VCCSIUL 4 1 09 0

+ PARAM 6 T=0 M=0.62 A=0 R1=0 R2=0 F=1000000

awr _subckt 1 ACVSNIV2 1 0 Mag=0.001414 Ang=0 O f set =0 DCVal =0. 001414
ACVag=0. 001414 ACAng=0 TRAN_F=1000000

PI NDi odeRC D3 0 9 TEMP=301. 15 Wb=1e-007 B=3 BV=30 CJ=7.2e-011 CPACK=0
FC=0.5 I Bv=1le-010 | F=1e-007 | KF=6e-011

+ | KNEE=0. 002 | S=3. 5e-011 LBOND=0 M-=0.45 MODEL_LEVEL=2 N=1.01 REPI =0
RF=0. 65 RHO=100000 RLI M=0. 6

+ RP=1e+015 RS=0 TAU=2e-011 VJ=0.552 W-6e- 006

Li near Mbdel SPLIT2!P1 3 10 5 15

+ PARAM 3 Z0=50 L21=3 L31=3

Li near Model BPFB! BPFB1 2 2 3

+ PARAM 7 QU=7000 N=3 FP1=433720000 FP2=434120000 AP=4 RS=50 RL=50
aw _subckt 2 SDI ODE! SDi odel 11 12

awr _subckt 2 SDI ODE! SDi ode3 13 14

aw _subckt 2 SDI ODE! SDi ode4 14 11

awr _subckt 2 SDI ODE! Sdi ode2 12 13

Li near Model XFMRTAP! XF1 5 0 4 11 6 13

+ PARAM 2 N2=1 N1=1

Li near Model XFMRTAP! XF2 5 15 0 12 0 14

+ PARAM 2 N2=1 N1=1

Cap CAPIC2 0 6 7.8e-011

Cap CAPIC3 0 7 2.45e-010

Cap CAPIC4 0 8 7.8e-011

Ind INDIL1 6 7 5. 15e-007

Ind INDIL2 7 8 5. 15e-007

Li near Model BPFB!BPFB2 2 3 4

+ PARAM 7 QU=7000 N=3 FP1=433720000 FP2=434120000 AP=4 RS=50 RL=50
awr _subckt 3 PORT1_F! PORT_2 10 Z=(50, 0) TRAN_F=432920000 PWR_I NDX=0
ANG _| NDX=0

awr _subckt 4 PORT! PORT_1 8 Z=(50, 0)

AVRSaveResul t s

+ VOLTAGES 151 23 4567 89 10

+ 11 12 13 14 15

+ CURRENTS 38 ACVSN V2,1 ACVSN V2, 2 BPFB! BPFB1, 1 BPFB! BPFB2, 1

CAPI C1,1 CAPIC2,1 CAP!C3,1 CAPP (4,1 D3,1 IND L], 1

+ INDIL2,1 PORT! PORT_1,1 RES!R3,1 SDI CDE! SDi odel, 1 SDI CDE! SDi odel, 2
SDI CDE! SDi ode3, 1 SDI ODE! SDi ode3, 2 SDI ODE! SD ode4, 1 SDI CDE! SDi ode4, 2
SDI ODE! Sdi ode2, 1

+ SDI CDE! Sdi ode2,2 SPLIT2! P1,1 SPLIT2!P1,2 SPLIT2!P1,3 VCCS! U1, 1
VCCS! U1, 2 VCCS! U1, 3 VCCS! U1, 4 XFMRTAP! XF1, 1 XFMRTAP! XF1, 2
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+ XFMRTAP! XF1, 3 XFMRTAP! XF1, 4 XFMRTAP! XF1, 5 XFMRTAP! XF2, 1
XFMRTAP! XF2, 2 XFMRTAP! XF2, 3 XFMRTAP! XF2, 4 XFMRTAP! XF2, 5
Sweep "AWR_| NTERNAL_SWEEP"

+ HB FC=[ 4. 3292e+008, 1e+006]

EndSweep

$Net | i st End
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Advanced DCHPPA Set-up

Appendix A8
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Appendix B

Appendix B1: PPA Up-converter Circuit

§
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:
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PPA PCB Circuit 2/2 (Band-pass filter, LC-SXBP-425MHz BPF)
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PPA PCB circuit 2/2 (Schematic Band-Pass filter, LC-SXBP-425MHz BPF)

Appendix B2: LED Drive Circuit

LED Drive Circuit
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Appendix B3: DCHPPA Experiment Setup

DCHPPA Experiment Set-up

Appendix B4: PPA Up-converter Gain for Various Bias Voltages

Biasing Voltage UHF Up-converter Gain | VHF Up-converter Gain
0 25.1 19.9
-0.5 211 16.1
-1 19.9 14.6
-1.5 16 11.9
-2 13.9 11
-2.5 11.1 8.7
-3 8.9 6.8
-3.5 5.9 4
-4 4.5 3.2
-4.5 35 2.1
-5 2.5 0.9
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Appendix B5: PPA Circuit with RF Transfor mers | mpedance

B Y Y T L T - L

----------- MISC-0805 - MISC-0805 MISG-0805 - - - - MISC-0805- MISC-O805 MESGAOBDS « « « « « + + « « + o oo oo
@HHHII ..... H. UL SIS
SURE \ 0/RETEY IPUDY URURY| FURS BUuy ey Ippey R - IR BT DU

PPA Circuit with RF Transformers Impedance (i.e. TX16, TCM8)
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Appendix B6: PPA Up-converter Gain for Various Pump Power

Pump Power dBm UHF Up-converter Gain | VHF Up-converter Gain
27 26.1
26 26.3
25 26.6
24 26
23 25.2
22 25.1 20
21 23.7 20.2
20 22.69 20.3
19 21.69 19.5
18 20.69 18.3
17 19.75 17.2
16 18.79 16.3
15 17.69 15.3
14 16.59 14.2
13 15.59 13.3
12 14.39 12.2
11 13.49 11.2
10 12.39 10.3
9 11.39 9.3
8 10.39 8.2
7 9.39 7.3
6 8.39 6.2
5 7.29 5.3
4 6.28 4.2
3 5.29 3.3
2 4.29 2.3
1 3.29 1.2
0 2.2 0.2
-1 1 -0.8
-2 0 -1.8
-3 -1.1 2.7
-4 -2.2 -3.7
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Appendix B7: Crystal filter FN-3809WS
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Crystal filter FN-3809WS (242MHz)

Appendix B8: SAW Band Pass Filter (B3760)

SAW-B3760 433.92Mhz BPF (cascade)
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SAW-B3760 BPF 433.92MHz

Appendix B9: IF Amplifier

TAMP-72 LN Amplifiers
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TAMP-72 LN Schematic Amplifier circuit

Appendix B10: SAW Band Pass Filter (B3790)

SAW-B3790 BPF 433.92MHz (Cascade)
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SAW-B3790 BPF 433.92MHz (Cascade)

Appendix B11: Active DB Mixer

Active DB Mixer
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Appendix B12: Gain Chain DCHHPA Receiver
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Gain Chain DHCPPA Complete Schematic Circuit
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Gain Chain DHCPPA Subcircuit-1

Gain Chain DHCPPA Subcircuit-2
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Gain Chain DHCPPA Subcircuit-3
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