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We report an improvement in power conversion efficiency in a small molecule tandem
organic photovoltaic (OPV) device by the optimisation of current balancing of the sub-cells
using an optical spacer layer. A co-deposited layer of N,N’-bis(1-naphthyl)-N,N0-diphenyl-
1,1’-biphenyl-4,4’-diamine (a-NPD) and molybdenum oxide was used as the optical spacer
layer and provided a highly transparent and conductive layer. Optical simulations showed
the addition of the optical spacer in a boron subphthalocyanine (SubPc)/C60 based tandem
OPV device increased the SubPc absorption in the front sub-cell and resulted in current bal-
ancing through the device. Fabricated tandem OPV devices showed similar trends, with the
power conversion efficiency increasing from 2.3% to 4.2% with the addition of an optimised
optical spacer thickness. External quantum efficiency and total absorption efficiency mea-
surements back up the optical model data which attribute the increased performance to
improved SubPc absorption in the front sub-cell, balancing the photocurrents of the two
sub-cells.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Organic photovoltaic cells (OPVs) have attracted much
attention recently due to their promise for low cost power
generation [1]. Power conversion efficiencies (PCE) have
increased steadily over the past few years but are still lim-
ited by light absorption of the thin active layers and low
coverage of the solar spectrum [2]. Methods have been
introduced to overcome these problems, including bulk
heterojunction (BHJ) layers to improve exciton dissociation
[3,4], allowing for thicker active layers to be used for en-
hanced light absorption. To increase the cell efficiency fur-
ther, tandem cell architectures have been introduced
comprised of sub-cells with complementary absorption
spectra to improve the overall absorption [5–9]. Tandem
cells comprised of identical composition sub-cells have
also been used though performance enhancement is lower
due to the absorption overlap [10,11]. As a result of the use
of a reflective cathode and the formation of optical inter-
ference patterns in the structure, the design of the tandem
stack to optimise the position of the sub-cells relative to
the reflecting cathode becomes important to match the
photocurrents of the two sub-cells [12,13]. This can usually
be achieved by the use of an optical spacer layer, such as
poly(trifluoroethylene) (PTrFE) [14], TiOX [8] or ZnO [15].
Wide band gap organic semiconductors are suitably trans-
parent for use as a spacer layer, but usually have low con-
ductivity, although this has been overcome by electrically
doping the layers [16]. Small molecule tandem cells
employing a highly doped optical spacer layer have
achieved very high performances but these usually require
the use of expensive dopant materials, such as F4-TCNQ,
increasing the cost of production [17]. N,N’-bis(1-naph-
thyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine (a-NPD)
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has been used effectively as a wide band gap hole trans-
porting layer in organic light emitting diodes [18] and fur-
ther improvements in conductivity have been shown by
doping the layer with a small amount of molybdenum
oxide (MoOX) [19]. In this study, we show that co-deposi-
tion of a-NPD with a low weight% of MoOX produces an
effective hole transporting optical spacer layer that, upon
optimisation, leads to efficient small molecule tandem
OPV cells. This shows that efficient tandem OPV devices
can be achieved using an optical spacer without the use
of an expensive, highly volatile, dopant.
Fig. 1. Transmittance spectra of a-NPD and a-NPD:MoOX (5%) layers on
quartz glass. Inset: J–V characteristics of hole only devices; ITO/MoOX

(5 nm)/HTL (100 nm)/MoOX (5 nm)/Al with a HTL of a-NPD and a-
NPD:MoOX (5%) respectively.
2. Experimental

All devices were produced on indium tin oxide (ITO)
coated glass substrates (Thin Film Devices Inc.) with a
sheet resistance of 15 X sq�1. The substrates were cleaned
using organic solvents in an ultrasonic bath and exposed to
UV–ozone prior to use. The organic materials, C60 (Nano-C
Inc, 99.5%) and a-NPD (Aldrich, 96%) were purified by vac-
uum gradient sublimation prior to deposition, whilst boron
subphthalocyanine chloride (SubPc, Lumtec, 99%), MoOX

(Aldrich, 99.99%) and bathocuproine (BCP, Aldrich 98%)
were used as received. The layers were vacuum deposited
using a Kurt J. Lesker Spectros system. For the BHJ Sub-
Pc:C60 and a-NPD:MoOX layers, the mass ratio was con-
trolled by independent quartz crystal microbalance
measurements. The Al cathode was deposited in situ
through a shadow mask giving devices with an active area
of 0.16 cm2. The current–voltage (J–V) characteristics of
the cells were measured under simulated AM1.5G solar
illumination at 100 mW cm�2 from a Newport Oriel solar
simulator using a Keithley 2400 sourcemeter for current
detection. External quantum efficiency (EQE) and total
absorption efficiency (TAE) measurements were performed
using mechanically chopped monochromatic light from a
Xe arc lamp (Sciencetech SF150). Signal detection was per-
formed using a current–voltage preamplifier (Femto
DHPCA-100) and a lock-in amplifier (Stanford Research
SR 830 DSP). Optical electric field calculations were carried
out using the transfer matrix formalism [20,21] with
refractive index data of the SubPc:C60 films measured by
L.O.T-Oriel GmbH & Co. KG with data for all other layers ta-
ken from the literature [22,23]. Work function measure-
ments were carried under nitrogen using a Kelvin Probe
(Besocke Delta Phi GmbH) and referenced to freshly
cleaved highly oriented pyrolytic graphite.
3. Results and discussion

Fig. 1 shows the transmittance spectra of an a-NPD film
and a codeposited film of a-NPD:MoOX (5%). The large
3.05 eV band gap of a-NPD gives the film a high transpar-
ency in the visible region of over 90% above 400 nm, and
the main absorption from the film is in the UV region.
The co-deposited film a-NPD:MoOX (5%) shows a slight in-
crease in transmittance at 350 nm and a decrease at 450–
500 nm caused by the reduction in intrinsic a-NPD and
radical cations in the a-NPD generated by charge transfer
to the MoOX [24]. The conductivity of the two films was
investigated by analysis of the J–V characteristics of hole
only devices. These were fabricated with the structure
ITO/MoOX (10 nm)/a-NPD (0, 5% MoOX) (100 nm)/MoOX

(10 nm)/Al, with the hole transport layer (HTL) sand-
wiched between two MoOX layers acting as ohmic contacts
to the electrodes. The results are also shown in Fig. 1, and a
large increase in conductivity is seen for the a-NPD:MoOX

layer which passes an order of magnitude higher current
with forward bias than the a-NPD film. This is explained
by charge transfer of an electron from the highest occupied
molecular orbital (HOMO) of a-NPD to the valence band of
the MoOX leaving behind a vacant hole which can help
facilitate hole transport [19]. The origin of this charge
transfer has been determined from the dispersion effi-
ciency of small nanoclusters of MoOX within the a-NPD
film [25].

The electrical doping present in the a-NPD:MoOX film
not only improves the conductivity, but also leads to a shift
in the Fermi level towards the HOMO of a-NPD, reducing
the interface barrier for hole injection. Work function mea-
surements were carried out on a-NPD films in a nitrogen
atmosphere and the results are shown in Fig. 2. In the
intrinsic film the Fermi level sits 1.1 eV above the HOMO
and on addition of a small percentage of MoOX (5%) a rapid
shift of over 0.5 eV is seen towards the HOMO. With fur-
ther increases in MoOX concentration there is little change
in the Fermi level position which is pinned at �0.5 eV
above the HOMO consistent with previous reports [19].
The properties of the a-NPD:MoOX film, namely its high
transmittance in the visible region, the shift of the Fermi
level towards the HOMO of a-NPD reducing the injection
barrier for holes, and the increase in conductivity, are all
desirable for application as an optical spacer layer.

Fig. 3 shows a schematic of the tandem device structure
investigated to assess the influence of the a-NPD:MoOX

optical spacer layer. The active layers are based upon boron
subphthalocyanine chloride (SubPc) and C60 bulk hetero-
juntions with a 1:4 weight ratio [26]. The a-NPD optical
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Fig. 3. Schematic of the SubPc:C60 tandem OPV device investigated with
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spacer layer is placed between the Ag recombination layer
and the MoOX hole transport layer, allowing for optical
spacing of the front SubPc:C60 sub-cell whilst acting as a
hole transport layer for the back sub-cell to the recombina-
tion layer. The performance of single BHJ devices using an
a-NPD:MoOX hole transport layer was found to be largely
independent of MoOX concentration in the range 5–25%
(Supplementary Fig. S1 and Table T1), and therefore a 5%
concentration was selected for the optical spacer layers.
The tandem device had the structure ITO/MoOX (5 nm)/
SubPc:C60 (1:4) (70 nm)/C60 (10 nm)/BCP (5 nm)/Ag
(0.3 nm)/a-NPD:MoOX (5%) (0–80 nm)/MoOX (5 nm)/Sub-
Pc:C60 (1:4) (65 nm)/C60 (10 nm)/BCP (8 nm)/Al. The a-
NPD:MoOX thickness was varied to investigate the influ-
ence on device performance of spacing the front sub-cell
away from the Al cathode. The varying distance of the
sub-cell from the Al cathode alters its position in the opti-
cal field and varies the sub-cell photocurrent, thus provid-
ing an effective tool for balancing the photocurrents of
both sub-cells.

In order to investigate the current balancing of the sub-
cells an optical model was used to calculate the photocur-
rent produced in each of the sub-cells with a varied a-
NPD:MoOX spacer thickness. The transfer matrix formalism
[20] was used to calculate the absorptance throughout the
device using the optical data of the films. Fig. 4 shows the
wavelength dependent absorptance in the layers for the
device without an optical spacer (4a) and with a 50 nm
a-NPD:MoOX layer (4b). The device without an optical
spacer has a large absorptance in the back sub-cell be-
tween 500 and 600 nm from the contribution of SubPc
and 400–500 nm from C60. In the front sub-cell there is
considerably less absorptance in the SubPc region. With
the spacer layer, absorptance is still strong in the SubPc
section in the back sub-cell but an enhancement is seen
in this region in the front sub-cell. The optical spacer has
positioned the sub-cell into an interference peak for radia-
tion of 500–600 nm. The absorptance of C60 in the 400–
500 nm section also varies with the spacer layer, with the
absorptance peaking in the discrete C60 layer in the front
sub-cell and a small reduction seen in the BHJ layer.

The absorptance profiles of the devices were integrated
over the AM1.5G solar spectrum to calculate the predicted
sub-cell photocurrents. An internal quantum efficiency of
0.8 was assumed, calculated from comparison of the
absorptance of an equivalent single junction device to the
measured external quantum efficiency (EQE) (supplemen-
tary Fig. S2). A plot of the predicted photocurrent of both
sub-cells with spacer thickness is shown in Fig. 4c. A large
photocurrent imbalance is shown for a spacer thickness of
0 nm from the low SubPc contribution in the front sub-cell.
The photocurrent from this sub-cell improves with in-
creased optical spacer thickness as it is moved into an opti-
mum optical interference position with a spacer thickness
of 60 nm. This increased absorptance in the front sub-cell
has a negative effect on the back sub-cell, reducing its pho-
tocurrent with increased spacer thickness. An optimum
current balancing is observed for an optical spacer thick-
ness just above 40 nm with a predicted photocurrent of
5.1 mA cm�2, a 35% increase in the minimum sub-cell pho-
tocurrent from the device without an optical spacer layer.
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A similar spacing effect could also be achieved through
increasing the active layer thicknesses, and indeed model-
ling predicts higher limiting photocurrents for an ideal de-
vice (supplementary Fig. S3). However, significant FF losses
have been reported at small molecule BHJ thicknesses over
�80 nm, significantly below the required thicknesses of
>100 nm here, and therefore any photocurrent gain is
likely to be negated by a loss in FF [27].
A series of devices were fabricated with nine variations
of a-NPD:MoOX thickness from 0–80 nm. Due to the vac-
uum deposition method, nine different thicknesses of a-
NPD:MoOX could be processed during the same fabrication
run with all other layers remaining identical across all de-
vices, allowing direct measurement of the optical spacer
effect without batch to batch variations of the photoactive
layers. The device parameters for the fabricated cells are
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shown in Fig. 5. As expected from the modelled data, the
change in absorptance of the sub-cells with varying spacer
thickness causes a large variation in JSC. An improvement in
photocurrent is shown on the addition of an optical spacer,
with the JSC improving from 3.2 mA cm�2 without a spacer
layer, to 4.7 mA cm�2 with an optimum 60 nm spacer
thickness. This improvement in JSC is indicative of the
absorptance increase in the front sub-cell as it moves into
a maxima in the optical field (Fig. 4), leading to improved
current balancing of the sub-cells. The VOC shows an
improvement on addition of the spacer from 1.72 V to
2.07 V and it remains constant with increased thickness
of the spacer layer, close to the summation of the two sin-
gle cell voltages (1.07 V). This shows the effectiveness of
utilising the a-NPD:MoOX layer in the recombination zone,
leading to a lower voltage loss. The FF remains consistent
across all a-NPD:MoOX thicknesses indicating low resis-
tance losses from the spacer layer due to its high conduc-
tivity [12]. Due to the consistent VOC and FF with spacer
thickness, the trend in PCE follows the JSC. The low JSC

and VOC of the reference device produce a PCE of 2.3%. De-
vice performance improves rapidly with the addition of an
optical spacer layer and PCE reaches 4.2%, an increase of
80% from optimisation of the absorptance in both sub-
cells. Comparing the tandem device to a representative
sub-cell with BHJ thickness of 65 nm, an improvement in
performance is also seen. The JSC of the tandem device is
slightly reduced from the single-junction device value of
6.6 mA cm�2 due to the absorption now being spread be-
tween two sub-cells, but the efficiency is improved from
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3.3%. The J–V plots for this device and performance param-
eters are shown in Supplementary Fig. S4.

To further investigate the cause of the increase in pho-
tocurrent when an optical spacer is added in-between the
sub-cells, EQE measurements were performed. These were
carried out in monochromatic light conditions with no
external light or voltage bias. Under these measurement
conditions any imbalance in the current generation of the
two sub-cells will result in the EQE being limited as the
underperforming sub-cell prevents the overperforming
sub-cell from operating at its full capacity. Fig. 6a shows
the EQE measurements of the devices with a 0, 30 and
60 nm thick a-NPD:MoOX optical spacer. The reference de-
vice without the spacer layer showed an EQE of 17% at the
SubPc absorption peak (590 nm). The device with the
30 nm optical spacer shows an improvement from 500 to
600 nm with a peak of 24% from an increased contribution
of the SubPc. This further improves with the 60 nm optical
spacer where the peak at 590 nm is >30%. This increase in
the SubPc EQE shows the improvements in the sub-cell
balancing in this absorption region as seen in the optical
model (Fig. 4b), with an increase in SubPc absorptance
from 500 to 600 nm in the front sub-cell on the addition
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Fig. 6. (a) EQE spectra and (b) TAE spectra of the SubPc:C60 BHJ tandem
OPV device for three a-NPD:MoOX thicknesses of; 0 nm, 30 nm, 60 nm.
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of an optical spacer. The shift in absorptance profile of the
C60 region seen in Fig. 4 provides no significant improve-
ment in the EQE between 400 and 450 nm.

TAE measurements were also carried out on the devices
and are shown in Fig. 6b. These are recorded from reflec-
tion data, and provide a measure of all light absorbed in
the device. The device without the optical spacer has a
low absorption at the SubPc peak (590 nm). An increase
in absorption is seen with addition of the a-NPD:MoOX

optical spacer which occurs in the 500–600 nm region cor-
responding to the SubPc, similar to the improvement seen
in the EQE. The TAE of the devices with 30 and 60 nm
spacer layers show only a small change in the SubPc
absorption region compared to the variation seen in the
EQE. This suggests that the distribution of the absorption
within the sub-cells produces an improved current match-
ing in the 60 nm optical spacer device whilst having a sim-
ilar overall absorption to the 30 nm optical spacer device.
The TAE measurements corroborate the EQE and the opti-
cal modelling data suggesting that the increase in JSC of the
tandem device is from increased absorption of the SubPc in
the front tandem sub-cell, balancing the photocurrents
through the device.
4. Conclusions

In this paper we have demonstrated the use of an a-
NPD:MoOX layer as a conductive and visibly transparent
optical spacer layer for small molecule tandem OPV de-
vices. Optical simulations showed that photocurrent in
the tandem device could be enhanced by placing the sub-
cells in interference maxima by inserting an optical spacer
layer of 40–60 nm. Photocurrent in the tandem OPV device
improved from 3.2 mA cm�2 to 4.7 mA cm�2 due to the en-
hanced absorption resulting in current balancing between
sub-cells. External quantum efficiency and total absorption
efficiency measurements showed that the increase in
absorption in the SubPc region was the cause for the im-
proved photocurrent balancing of the sub-cells in the opti-
cally spaced tandem OPV device improving the efficiency
by �80%.
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