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Abstract

Acoustic cavitation plays an important role in a broad range of biomedical,

chemical and oceanic engineering problems. For example, kidney stone

can be crushed into the powder (being discharged naturally) by the

acoustic cavitation generated by carefully controlled focused ultrasonic

beams. Therefore, the prediction of generation of acoustic cavitation is

essential to the aforementioned emerging non-invasive technique for

kidney stone crushing. The objective of this PhD program is to study the

generation of acoustic cavitation (e.g. through rectified mass diffusion

across bubble interface) theoretically in the Newtonian fluids (e.g. water)

or viscoelastic mediums (e.g. human soft tissue) under acoustic excitation

of single or dual frequency. The compressibility and the viscosity of the

liquid, heat and mass transfer across bubble-medium interface are all

considered in this study.

During this PhD program, the established works in the literature on the

above topic have been re-examined. More physically general formulas of

natural frequency and damping of gas bubble oscillations in Newtonian or



xix

viscoelastic mediums has been derived and further employed for solving

the problem of bubble growth under acoustic field (i.e. rectified mass

diffusion).

For rectified mass diffusion of gas bubbles in Newtonian liquids, the

predictions have been improved for high-frequency region of megahertz

and above. Effects of medium viscoelasticity and dual-frequency acoustic

excitation on rectified mass diffusion have also been studied. To facilitate

the fast growth of bubble under acoustic field, dynamic-frequency and

dual-frequency techniques have been proposed and demonstrated.

Key words: acoustic cavitation, gas bubbles, rectified mass diffusion,

liquid compressibility, radial oscillations, damping mechanism, thermal

effects, viscoelasticity
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Chapter 1

Introduction and background

This chapter reviews relevant literature of acoustic cavitation and explains

the objectives of this PhD research program.

Under the support of Engineering and Physical Sciences Research Council

(EPSRC) Warwick Innovative Manufacturing Research Centre (WIMRC)

phase II major project “Non-Surgical Cavitation-Effect Destruction of

Kidney Stones”, a non-surgical technique for crushing kidney stones based

on cavitation induced by carefully controlled focused ultrasonic beam is

being developed by the Cavitation Research Group (University of

Warwick, UK). Comparing with current extracorporeal shock wave

lithotripter (ECSWL), this technique can crush the stones into powder

being discharged naturally; thus minimizes the negative effects.

The predictions of the bubble growth under ultrasonic waves (i.e.

generation of acoustic cavitation) are essential to the above project. The
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frame work for solving this problem has been set up several decades ago.

The previous investigations detailed in the literature were mainly focused

on gas bubble dynamics under low- and single-frequency acoustic

excitation (e.g. 20 kHz). However, in most of present and emerging

applications, gas bubbles usually experience ultrasonic (e.g. megahertz

and above) and multiple-frequency (two, three or more frequencies

involved) excitation. Furthermore, micro- even nano-sized bubbles are

often involved in applications; and such cases will further expand

dramatically in the future. Therefore, a re-visit to those established works

has been performed in this thesis with a focus on high-frequency regions

and multiple-frequency acoustic excitation. Theoretical analysis on

rectified mass diffusion has also been extended for gas bubble growth in

viscoelastic mediums. Based on our analysis, two techniques

(dynamic-frequency and dual-frequency approaches) for facilitating the

fast growth of bubble under acoustic excitation have been proposed and

demonstrated.

1.1 Radial oscillations of gas bubbles

This section briefly reviews published works on solving the radial

oscillations of gas bubbles in liquids. For details, readers are referred to
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reviews by e.g. Plesset and Prosperetti (1977), Neppiras (1980),

Prosperetti (1984a; 1984b), Feng and Leal (1997), Brenner et al. (2002)

and Coussios and Roy (2008) or textbooks by e.g. Young (1989) and

Brennen (1995). The basic equation for the motion of a spherical bubble in

an infinite domain of liquid was mainly developed by Rayleigh (1917),

Plesset (1949), Noltingk and Neppiras (1950), Neppiras and Noltingk

(1951) and Poritsky (1952). This equation is generally called

“Rayleigh-Plesset equation” for short (Brennen, 1995, Chap. 2.2). Shu

(1952) examined Poritsky’s results and proved that without surface tension,

the collapse time of the bubble will be infinite if the non-dimensional

viscosity is above a critical value.

In Rayleigh-Plesset equation, the effect of liquid compressibility is

ignored. To account for liquid compressibility, radiation pressure has been

proposed by Crandall (1926, p.120-124) and used by others (e.g. Chapman

and Plesset, 1971; Prosperetti, 1977) for linear cases. The expressions of

damping and natural frequencies of gas bubbles in liquids shown in

Prosperetti (1977) have been widely cited in the literature till now.

Equations of bubble motion with liquid compressibility considered have

been intensively studied by researchers, mainly including Herring’s

equation (Herring, 1941; Trilling, 1952), Keller’s equation (Keller and
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Kolodner, 1956; Epstein and Keller, 1971; Keller and Miksis, 1980) and

Gilmore’s equation (Gilmore, 1952). Prosperetti and Lezzi (1986) found

that there exists one-parameter family of equations of bubble motion to the

first order of bubble wall Mach number, which incorporates Herring’s

equation and Keller’s equation as special cases. They pointed out that

equations close to Keller’s form but written by enthalpy is the most

accurate one in the test cases even better than Gilmore’s equation. Lezzi

and Prosperetti (1987) further found that Gilmore’s equation is not

accurate to the second order of bubble wall Mach number and its success

reported in Hickling and Plesset (1964) is due to the use of enthalpy.

The damping mechanisms (viscous, thermal and acoustic damping) and

natural frequency of bubbles are primary parameters for bubble dynamics,

which can be obtained based on linearization of the equation of bubble

motion. Many researchers contribute to the understandings of these topics

including Minnaert (1933), Smith (1935), Pfriem (1940), Devin (1959),

Plesset and Hsieh (1960), Eller (1970), Shima (1970), Chapman and

Plesset (1971) and Prosperetti (1977). For thermal effects, the work by

Prosperetti (1977) has laid down a systematic frame work by allowing

non-uniform pressure in the bubbles and temperature variations in the

gases and liquids. Crum (1983) has shown that the expressions related
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with thermal effects in Devin (1959) can be reduced from those in

Prosperetti (1977). Experimental verification has been done by Crum

(1983) through measuring the polytropic exponents for different gases.

The expressions of damping constants and natural frequency obtained by

Devin (1959) and Prosperetti (1977) have been highly cited by other

researchers and are prevalent in the literature. Formulas in Prosperetti

(1977) are usually used by researchers for validations e.g. Prosperetti

(1991) and Preston et al. (2007).

Equations of bubble motion in viscoelastic mediums have also been

studied by many researchers. For review of this topic, readers are referred

to a recent book by Brujan (2010). Here, we only focused our discussions

on a recent work by Yang and Church (2005). By using linear Voigt model

as constitutive equation, a generalized Keller’s equation was obtained by

Yang and Church (2005). After linearization, the formulas for damping

constants and natural frequency are obtained and compared with those in

Newtonian fluids given by Prosperetti (1977).

1.2 Rectified mass diffusion

Rectified (mass) diffusion serves as an important mechanism for
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dissolution or growth of bubbles in acoustic field. Due to the

interdisciplinary nature of this phenomenon, it attracts many researchers

from various background e.g. acoustics, biomedical engineering and

sonochemistry. For detailed reviews of this topic, readers are referred to

Plesset and Prosperetti (1977), Crum (1984) and Ashokkumar et al. (2007).

Rectified diffusion serves as a paramount factor in many physical

processes, such as bubble sonoluminescence (Gaitan et al., 1992; Brenner

et al., 1996; Roberts and Wu, 1998), formation of gas bubbles with visible

size under ultrasound in vivo (Crum and Hansen, 1982b; Crum et al. 1987),

evaluation of human diver and marine mammal safety (Crum and Mao,

1996; Houser et al., 2001; Crum et al., 2005; Ilinskii et al., 2008),

generation of free radical in sonochemistry (Okada et al., 2009),

enhancement of transdermal transport of a variety of different molecules

(termed as “sonophoresis”) (Lavon et al., 2007), ultrasonic degassing of

hydrogen bubbles in molten aluminum alloys (Naji Meidani and Hasan,

2004), volcanic eruptions (Sturtevant et al., 1996 and Brodsky et al., 1998;

Ichihara and Brodsky, 2006) and behavior of nanobubbles at solid-liquid

interface under ultrasound irradiation (Brotchie and Zhang, 2011).

Generally, there are three effects involved in the process of rectified

diffusion (Fyrillas and Szeri, 1994, p.381):
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1. During bubble oscillations, the interface area of bubble for mass

transportation changes.

2. During bubble oscillations, the volume of bubble, internal pressure and

gas concentration in bubble change. According to the Henry’s law, the

concentration of dissolved gas at the bubble interfaces changes either.

3. The bubble volume oscillations also generate radial motion of liquids

with velocity field which is inversely proportional to the square of

radial coordinate. This velocity field will influence the gas diffusion

through the convection terms in diffusion equation.

It has been shown that all three effects are necessary for an adequate

description of this phenomenon.

This subject has been studied by researchers over half a century. This

phenomenon was firstly observed by Harvey et al. (1944) and theoretically

analyzed by Blake (1949) with the effect of area change included only.

Hsieh and Plesset (1961) considerably improved the predictions by

including the convection term in the diffusion equation comparing with

the experiments (Strasberg, 1959; 1961). Eller and Flynn (1965) proposed

an approach to account nonlinear pulsation of bubble under acoustic field

based on thin-diffusion layer approximation initially used by Plesset and

Zwick (1952). Eller and Flynn (1965) uncoupled the diffusion equation
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and the equation of bubble motion based on the fact that gas diffusion

across bubble interface is very limited during a single cycle of bubble

oscillation. Safar (1968) found that approaches of Hsieh and Plesset (1961)

and Eller and Flynn (1965) are identical if the inertial terms are not

neglected in Hsieh and Plesset (1961). Eller-Flynn’s framework was

adopted by many researchers, e.g. Eller (1969; 1972; 1975), Crum (1980),

Crum and Hansen (1982a), Church (1988a; 1988b) and Roberts and Wu

(1998). Fyrillas and Szeri (1994) proposed more physically general

formulas for this problem. For details, readers are referred to Fyrillas and

Szeri (1994; 1995; 1996). Crum (1980) reported a fairly good agreement

between predictions and experiments except for the addition of surface

active agents. The effect of surface active agent on rectified diffusion was

further experimentally investigated by Lee et al. (2005), Leong et al. (2010)

and Leong et al. (2011). Recently, the effect of temperature on rectified

diffusion has been studied by Webb et al. (2010) and Webb et al. (2011).

For analytic approach, Crum and Hansen (1982a) derived first generalized

equations by introducing the polytropic exponent and all damping terms

(viscous, thermal and acoustic damping) obtained by Devin (1959) and

Eller (1970). The analytic approach of rectified diffusion has been

successfully employed to explain bubble growth under ultrasound in vivo
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(e.g. Crum and Hansen, 1982b; Crum et al., 1987), evaluate human diver

and marine mammal safety (Crum and Mao, 1996) and predict

transdermal transport of molecules (Lavon et al., 2007). Equations in

Crum and Hansen (1982a) have been widely cited in reviews (e.g. Crum,

1984) and books (e.g., Leighton, 1994, Chap. 4.4.3; Brennen, 1995, Chap.

4.9).

All the above works deal with the rectified diffusion of gas bubbles in

Newtonian fluids. According to the literature review, no work has been

done for rectified diffusion of gas bubbles in non-Newtonian fluids (e.g.

viscoelastic mediums).

1.3 Gas bubble dynamics under acoustic field

of multiple frequencies

The effect of acoustic cavitation can be enhanced by multiple-frequency

acoustic excitation. Previously, this multiple-frequency technique has been

successfully applied for bubble size measurement (Newhouse and Shankar,

1984), fluid pressure measurement (Shankar et al., 1986), contrast imaging

(Wu and Tsao, 2003; Wu et al., 2005), optimization of acoustic scattering

(Wyczalkowski and Szeri, 2003), enhancement of cavitation effect in
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sonochemistry (Feng et al., 2002; Avvaru and Pandit, 2008) and

enhancement of bubble sonoluminescence (Holzfuss et al., 1998;

Ketterling and Apfel, 2000; Hargreaves and Matula, 2000; Krefting et al.,

2002; Kanthale et al., 2008).

For the theoretical studies, analytic solutions for the radial oscillations of

gas bubbles in liquids under dual-frequency acoustic excitation have been

obtained by Newhouse and Shankar (1984) with liquid compressibility

excluded. For numerical simulations, readers are referred to the recent

work by Kanthale et al. (2007). According to the literature review, the

mass transfer across bubble-medium interface during the radial

oscillations of gas bubbles in liquids is currently ignored by published

works.

1.4 Objectives of the thesis

In this thesis, physically general formulas for predictions of generation of

acoustic cavitation in Newtonian or viscoelastic mediums under acoustic

excitation have been derived. Published works involving this topic have

been re-examined. Dynamic-frequency and dual-frequency techniques

have been proposed and demonstrated for facilitating the fast growth of
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acoustic bubbles. The whole thesis is organized as follows.

Chapter 2: More physically general formulas for damping mechanisms

and thermal effects of radial oscillations of gas bubbles in the liquids are

proposed. The valid regions for formulas shown in the literature have been

investigated and defined. Formulas in the literature are compared and

discussed with ours through several demonstrating examples.

Chapter 3: Analytical solutions for the rectified mass diffusion during

radial oscillations of gas bubbles in the Newtonian fluids are derived for

more general cases and compared with those in the literature. Based on

above formulas derived by us, the advantage of dynamic-frequency

approach is shown by comparing with constant-frequency approach.

Chapter 4: More physically general formulas of damping and natural

frequency for the radial oscillations of gas bubbles in viscoelastic

mediums are derived and compared with previous works. Analytical

solutions for the rectified mass diffusion during radial oscillations of gas

bubbles in the viscoelastic mediums are also derived. The predictions

based our formulas are compared with experimental data and previous

predictions in the literature based on formulas of rectified mass diffusion

in Newtonian fluids.

Chapter 5: Analytical solutions for the rectified mass diffusion during

radial oscillations of gas bubbles in the liquids under acoustic field of dual
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frequency are derived. Some demonstrating examples are given and

compared with those under acoustic field of single frequency, showing the

advantage of the dual-frequency technique.

Chapter 6: The contributions obtained from this PhD programme to the

further understanding of the subjects are summarized and possible future

works are outlined.
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Chapter 2

Damping mechanisms and

thermal effects for radial

oscillations of gas bubbles

in liquids

In this chapter, the damping mechanisms and thermal effects for radial

oscillations of gas bubbles in liquids are investigated. Parts of Chap. 2.1

and 2.3 have been published in Zhang and Li (2012). Parts of Chap. 2.2.5

and 2.2.7 have been published in Zhang and Li (2010a). The primary

assumptions employed in this chapter are

1. The gas and liquid are both Newtonian fluids.

2. The bubble is spherical.

3. Only radial motion of bubble is considered.

If not specified, the constants shown in Appendix A are used for

calculations in this chapter.
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2.1 Natural frequency and damping for radial

oscillations of gas bubbles in liquids

In this section, expressions for damping constants and natural frequency of

linear radial oscillations of gas bubbles in liquids will be derived.

Prosperetti and Lezzi (1986) proposed a one-parameter family of

equations of bubble motion to the first order of bubble-wall Mach number

(the ratio between bubble wall velocity and speed of sound), which treats

Keller’s equation (Keller and Kolodner, 1956; Keller and Miksis, 1980) as

a special case. For small oscillations considered here, expressions of

damping constant and natural frequency will be the same based on any

equation of bubble motion which falls into this one-parameter family. For

the proof of this, readers are referred to Appendix B. Here, Keller’s

equation is chosen as the equation of bubble motion and a more

appropriate expression of Keller’s equation is used (Prosperetti and Lezzi,

1986, p.466). Comparing with derivations shown in literature (e.g. Devin,

1959; Prosperetti, 1977), a more physically general derivations are given

here. Comments on other previous works and comparisons with formulas

in literature will be given in Chap. 2.3. Here, oscillations of spherical gas

bubbles with small amplitude in infinite liquids are considered. Keller’s

equation (Keller and Kolodner, 1956; Keller and Miksis, 1980; Prosperetti
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and Lezzi, 1986) can be written as
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,ext s

l l

d p R t p tR

c dt


 (2.1)

where

42
( , ) l

ext inp R t P R
R R


    ; (2.2)

0( ) 1 i t
sp t P e     . (2.3)

Here, R is the instantaneous bubble radius; the overdot denotes the time

derivatives; lc is the undisturbed speed of sound in the liquid (Prosperetti

and Lezzi, 1986); l is the density of the liquid; t is the time; inP is the

instantaneous pressure at the gas side of bubble wall;  is the surface

tension coefficient; l is the viscosity of the liquid; 0P is the ambient

pressure;  is the non-dimensional amplitude of driving sound field; 

is the angular frequency of driving sound field.

For comparisons, framework in Prosperetti (1977) for thermal effects will

be followed but the equation of bubble motion based on radiation pressure

( radP ) being replaced by Keller’s equation. Notations in Prosperetti (1977)

will also be retained the same such as

0 (1 )R R x  ,

, 0 0( , )in in eqP P P p R t  ,
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 
3

, 0 / 4in in eq thP P R R x


   ,

, 0

0

2
in eqP P

R


  .

Here, 0R is the equilibrium bubble radius; x is the non-dimensional

perturbation of instantaneous bubble radius, which is of the same order of

 ; 0( , )p R t is the non-dimensional deviation from the equilibrium

pressure at the gas side of bubble wall; ,in eqP is the equilibrium pressure

at the gas side of bubble wall; th is the effective thermal viscosity; 

is the polytropic exponent. For small oscillations,  (or x) <<1 and we

omit the 2nd and higher orders of  (or x). Based on above formulas, we

obtain the following relation,

 
3

0 0 , 0 ,( , ) / 1 4 3 4in eq th in eq thP p R t P R R x P x x


        
 

  . (2.4)

Substituting above relation into Eq. (2.1) results in an inhomogeneous

equation for a harmonic oscillator (the oscillating bubble being studied),

 2
0 0 02 1 / /i t

tot lx x x i R c e M          , (2.5)

where

0
0 2

0l

P

R



 ;

 0
2
0

4
1 l th

l l

R
M

c R

 




  .

In Eq. (2.5), tot is the total damping constant; 0 is the natural

frequency. The total damping constant ( tot ) is

tot vis th ac      ,
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where

2
02 /vis l l R M   ; (2.6)

2
02 /th th l R M   ; (2.7)

20
0

2
ac

l

R

c
  , (2.8)

representing the viscous, thermal and acoustic damping constants

respectively. The acoustic damping constant (Eq. (2.8)) derived by us is

different with expressions derived by others. For details, readers are

referred to Chap. 2.3. The natural frequency of the harmonic oscillator is

,2
0 2 3

0 0

31 2in eq

l l

P

M R R

 


 

 
  

 
. (2.9)

Note that here l , th and liquid compressibility make contributions to

natural frequency through M in Eq. (2.9) though these contributions are

relatively small1.

Forced oscillations of bubbles will enter stationary oscillations once the

transient term (the solution for the corresponding homogenous equation)

in the solution approaches to zero. For details, readers are referred to

Appendix C. For most cases of bubble oscillations, the contribution from

the transient term dies quickly. For example, for a bubble of radius 1 μm 

driven by an external force at angular frequency 710  sec-1 with

1 Taking an air bubble oscillating in water as an example, M varies between 1 and 1.03 if
10-2m≥R0≥10-7m and 108 sec-1≥ω≥104 sec-1.
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non-dimensional amplitude 0.1  , the ratio of amplitudes between the

transient term and the stationary term (i.e. the particular integral for the

inhomogeneous equation) reduces down to 0.1 at t=1.15 μs (i.e. t=1.83T, T

is the period of acoustic field). Therefore, transient term only plays an

important role during the initial several cycles of gas bubble oscillations.

For the rectified mass diffusion, the large timescale effects after thousands

of bubble oscillations are of interest. Hence, the oscillation to be analyzed

can be simplified as a stationary one such as appearing in the previous

studies (e.g. Prosperetti, 1977). Here, for the stationary forced oscillations

driven by sound field of single frequency ( ), th in Eq. (2.7) and 

in Eq. (2.9) can be determined by solving the bubble interior following the

approach in Prosperetti (1977). For details, readers are referred to Chap.

2.2. Though Keller’s equation has been used previously to replace the

radiation pressure as used by Prosperetti (1977), the resultant expressions

for th and  are the same1 (Prosperetti, 1977),

2
0

1
Im

4
th g R   ; (2.10)

 2 2
0 ,

1
/ Re

3
g in eqR P    . (2.11)

Here, g is the gas density;  is a function relating to the solution of

bubble interior problem. For the expressions of  , readers are referred to

Chap. 2.2.2.

1 Noticing that expressions of
th

 and  in Prosperetti (1977) were determined by comparing

solutions of two methods: one based on polytropic model with effective thermal damping; the other
based on solution of bubble interior.
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For a wide range of parameters, 1M  (referring to note 1 in p.17). Thus,

Eq. (2.5) reduces to

 2
0 0 02 1 / i t

tot lx x x i R c e           . (2.12)

Here 0 and tot reduce to

,2
0 2 3

0 0

3 2in eq

l l

P

R R

 


 
  ; (2.13)

  20
02

0

2

2
l th

tot

l l

R

R c

 
 




  . (2.14)

This expression for natural frequency is well cited (e.g. Plesset and

Prosperetti, 1977), in which the contribution of compressibility (through

M) disappears. However, the contribution of compressibility to the total

damping constant tot does not disappear completely since the ac term

still remains.

Furthermore, if lc  (corresponding to
l

R

c


and 0 0

l

R

c
 ), i.e.

incompressible cases, Eq. (2.1) reduces to the Rayleigh-Plesset equation.

And Eq. (2.12) reduces to

2
0 02

0

4( ) i tl th

l

x x x e
R

 
  



 
    
 

  , (2.15)

identical to the cases where the Rayleigh-Plesset equation replaces the

radiation pressure in Prosperetti (1977). Naturally, the acoustic damping
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disappears since liquid compressibility is not considered in

Rayleigh-Plesset equation.

Here, formulas for free gas bubble oscillations can also be reduced from

above derivations. Let l =0, th =0,  =0 and  =0 then Eq. (2.12)

reduces to

0 0
2

0 0

3 3
0

l l l

P P
x x x

R c R

 

 
    . (2.16)

which is the Eq. (28) in Keller and Kolodner (1956). Bubble radius as a

function of time predicted by Eq. (2.16) agrees well with experiments

(Keller and Kolodner, 1956, Fig.7). Keller and Miksis (1980) re-evaluated

the work in Keller and Kolodner (1956) by including liquid viscosity but

found that its influence is not distinguishable.

If th =0 and  =0, Eq. (2.5) reduces to

2 20 0
0 02 2

0 0

4 4
1 0l l

l l l l

R R
x x x

c R R c

 
 

 

   
       

   
  , (2.17)

which is identical with Eq. (13) in Shima (1970) based on Gilmore’s

equation (Gilmore, 1952). For details, readers are referred to Appendix D.

This is not surprising because during the linearization process of

Gilmore’s equation, the variation of sound speed will reduce to a constant

( lc ) and a second-order term of sound speed in Gilmore’s equation has
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been neglected. Therefore, formulas for damping based on Gilmore’s

equation are identical with those obtained using Keller’s equation.

Comparing the expressions of acoustic damping for the forced (i.e. Eqs.

(2.5) and (2.8)) and the free (i.e. Eq. (2.17)) gas bubble oscillations, one

can find that they are identical. This finding is different from previous

understanding (referring to Chap. 2.3).

2.2 Thermal effects

For the closure of the model, solution of  in the expressions of th

and  (Eqs. (2.10) and (2.11)) relating to thermal effects will be given

and discussed in this section.

2.2.1 Equations for gas bubbles in liquids

In order to solve  in Eqs. (2.10) and (2.11), Prosperetti (1977) further

considered following equations for bubble interior, which will be

introduced in this section. The deviations of quantities (e.g. density,

pressure and temperature) from their equilibrium values are assumed to be

small and we denote

 1g    ;
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 0 0 01 2 /P P R P p   ;

 1g gT T   ;

 1l lT T   .

Here,  , P and gT are the local values of density, pressure and

temperature in the gas respectively; T is the ambient temperature;  ,

p and g are the non-dimensional deviations from the equilibrium

values of density, pressure and temperature in the gas respectively; lT is

the local temperature in the liquid; l is the non-dimensional deviation

from the equilibrium value of the liquid temperature. The equation of state

of the gas is

 /g g gP R M T .

Here, gR is the universal gas constant; gM is the molecular weight of

the gas in the bubble. Then, we obtain

   0 01 2 / gp R P     .

The equations of conservation of mass and momentum in the gas are

 2

2

1
0

r u

t r r

 
 

 
; (2.18)

0 0
g

Pu p

t r

 
 

 
. (2.19)

Here, u is the gas velocity; r is the radial coordinate. The equations of

conservation of energy in the gas and the liquid are

 0 02

2
.

2 /1 1g g

g g v

P R
r

r r r k T t D t

  



   
  

    
; (2.20)
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2

2

1 1l l

l

r
r r r D t

    
    

. (2.21)

Here, gk is the gas thermal conductivity; ,g vD is the thermal diffusivity

of the gas defined at constant volume; lD is the thermal diffusivity of the

liquid. The boundary conditions can be given as follows:

Continuity of temperature at gas-liquid interface ( 0r R )

0 0( , ) ( , )l r R t g r R t   . (2.22)

Continuity of heat flux at gas-liquid interface ( 0r R )

0 0( , ) ( , )

gl
l r R t g r R tk k

t t


 


  

 
. (2.23)

Here, lk is the thermal conductivity of the liquid.

Continuity of velocity at gas-liquid interface ( 0r R )

0( , ) /r R tu dR dt  . (2.24)

2.2.2 Prosperetti’s analysis

In this section, the analysis by Prosperetti (1977) for the solution of

equations of gas bubbles in liquids (Eqs. (2.18-2.21)) with boundary

conditions (Eqs. (2.22-2.24)) is introduced. The main assumption used by

Prosperetti (1977) is that the gas bubble is spherical. The validities of this

assumption will be further discussed in Chap. 2.2.7. Non-uniform pressure

in the gas bubbles, temperature variations in the liquids and the gas

bubbles are all allowed. The equations of mass, momentum and energy
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conservation equations in the gas and the energy conservation equation in

the liquid were solved together with boundary conditions. Three

non-dimensional parameters have been defined by Prosperetti (1977):

1 , /g g v gG M D R T   ; (2.25)

2
2 0 ,/ g vG R D ; (2.26)

2
3 0 / lG R D . (2.27)

Here,  is the ratio of specific heats of the gas. 1G reflects the ratio

between mean free path and the wavelength in the gas (Prosperetti, 1977);

2G reflects the ratio between bubble radius and thermal penetration depth

(Prosperetti, 1977).

To close the model, expression of  is required in Eqs. (2.10) and (2.11).

Prosperetti (1977) determined the expression of  by solving Eqs.

(2.18-2.21) with boundary conditions (Eqs. (2.22-2.24)). Here, the

solution of  given by Prosperetti (1977) will be directly cited here. For

details, readers are referred to Prosperetti (1977). Following Prosperetti

(1977),  in Eqs. (2.10) and (2.11) can be expressed by

 
   

2 1 2 2 1 1

2 1 1 2 1 2 2 1

kf

kf

 


   

     


     
, (2.28)

where

  
1/2

1/22

1,2 2 1 1 1

1
4 /

2
G i G i G iG  

         
; (2.29)
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coth 1 =1,2i i i i    ; (2.30)

 
1/22

1,2 1 1 14 /i G i G iG       
 

; (2.31)

 
1/2

3

1
1 1

2
f i G

 
    

 
; (2.32)

/l gk k k . (2.33)

Therefore, k is the ratio of the liquid and the gas thermal conductivities.

Using the definition of G1 (Eq. (2.25)) and G2 (Eq. (2.26)) and equations

of state of gas ( , /in eq g g gP R T M  ), th and  can also be expressed

as

, 1 2 Im
4

in eq

th

P G G
 


 ; (2.34)

1 2

1
Re

3
G G   . (2.35)

In order to simplify above expressions, Prosperetti (1977) further assumed

that the angular frequency of acoustic field is limited (corresponding to

G1<<1 based on Eq. (2.25)). Thus Eqs. (2.29) and (2.31) become

   
1/2

2
1 2 1 1

1 1
1 1 ( 1) / ( )

2 2
i G i G O G   
   

      
   

; (2.36)

   
1/2 2

2 1 2 1 1

1
( 1) / ( )

2
G G i G O G  

 
    

 
; (2.37)

  2
1 1 12 / ( )i G O G    ; (2.38)

  2
2 1 12 ( 1) / ( )G O G     . (2.39)
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Based on the fact that the magnitude of quantity kf is a large number in

most cases, Prosperetti (1977) further simplified the expression of  (Eq.

(2.28)) as follows

   
1 2

11 kf E O kf
     

 
, (2.40)

where

1 2

1 2 2 1 

 
 

  
; (2.41)

 
2

1 21 2
1

1 2 1 2 2 1

E
 

 

 

    

. (2.42)

If all 1( )kf  term with the first order and above are neglected, Eq. (2.40)

reduces to

   . (2.43)

In section Ⅱ of Prosperetti (1977),  values for the range of G1=10-9 to

10-5 have been evaluated based on Eqs. (2.30), (2.36)-(2.39), (2.41) and

(2.43). The thermal damping constant ( th ) for the range of ω=102 to 109

sec-1 (corresponding to G1=2.46×10-8 to 2.46×10-1 for air bubbles) has also

been evaluated in section Ⅲ of Prosperetti (1977) based on Eqs. (2.28),

(2.30), (2.32)-(2.33) and (2.36)-(2.39).

2.2.3 Devin’s analysis

In this section, analysis of thermal effects shown in Devin (1959) will be

introduced. It should be noted that Devin’s work on this topic is largely
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based on Pfriem (1940). The following assumptions were used by Devin

(1959):

1. Liquid temperature adjacent the bubble interface does not change so

the liquid behaves as a heat reservoir (Devin, 1959, p.1657). Therefore,

the equation of energy conservation in liquids was not solved in Devin

(1959).

2. The density and specific heats of the gas are regarded as constants

(Devin, 1959, p.1657).

3. Pressure in the gas bubbles is uniform. Therefore, pressure in the gas is

only a function of time rather than radial coordinate (Devin, 1959,

p.1657).

4. The boundary conditions at the bubble interface and the bubble center

are given as follows: at the center of the bubble, the changes of

temperature must be finite and the gradient of change in temperature

must be zero; at the bubble-liquid interface, the changes of

temperature must be zero and the gradient of change in temperature

must be finite (Devin, 1959, p.1658).

5. The oscillations of pressure, bubble volume and temperature are

assumed to be small (Devin, 1959, p.1657).

Based on above assumptions, Devin (1959) obtained the following
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expressions for thermal effects1,

      1/2 1/2

1 2 3 / 1 3 1 / coth / 1G G i i i            
 

, (2.44)

where

2
, 0/g pD R  .

Here, , , /g p g vD D  is the thermal diffusivity of the gas at constant

pressure. Eq. (2.44) is the same as formulas in Pfriem (1940, Eq. (14b)),

Devin (1959, Eq. (50)) and Prosperetti et al. (1988, Eq. (41)). Then, Eqs.

(2.34) and (2.35) become

, Im
4

in eq

th

P



  ; (2.45)

1
Re

3
   . (2.46)

2.2.4 Influence of surface tension

Although the formula for damping constant derived by Devin (1959) and

Prosperetti et al. (1988) is identical, non-dimensional thermal damping

constant ( th ) is usually used in the literature (Medwin, 1977; Medwin and

Clay, 1998, Chap. 8.2), which was defined by Devin (1959) as,

2 2 2
0 0 04 / 2 /th th l thR         . (2.47)

Devin (1959) gave the expression of th as follows,

Im / Reth    . (2.48)

1 A concise expression in Prosperetti et al. (1988) is cited here and in the following discussions.
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However, we found that above expression do not account for surface

tension. If surface tension included, Eq. (2.48) should be

0 ,

Im

Re 2 /
th

in eqR P







 
. (2.49)

Eq. (2.49) can be directly obtained based on Eqs. (2.13), (2.45) and (2.46)

following Prosperetti’s framework (Prosperetti, 1977; Prosperetti et al.,

1988) or alternatively based on Devin (1959) as shown in Appendix E.

Comparing with Eq. (2.48) derived by Devin (1959), a surface tension

term ( 0 ,2 / in eqR P ) was shown in denominator of Eq. (2.49). The effect of

surface tension on damping constants is emphasized here because many

published papers did not notice the difference between Eq. (2.48) and Eq.

(2.49), which includes review papers (e.g. Medwin, 1977) and textbooks

(e.g. Leighton, 1994, Chap. 3.4; Medwin and Clay, 1998, Chap. 8.2).

Figure 2.1 compares the predictions of non-dimensional thermal damping

constant ( th ) with or without surface tension (i.e. Eq. (2.49) and Eq. (2.48)

respectively) for frequencies  =105, 106 and 107 sec-1 respectively. The

predictions of th without surface tension are lower than those with

surface tension. In the following sections, we will use Eq. (2.49) for

predictions of th if not specified.

We will further consider two specific cases of Eq. (2.49) for fixed

frequencies ( ):
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Case A. For large bubbles, 0 ,2 / 0in eqR P  and Eq. (2.49) reduces to Eq.

(2.48). Devin (1959, Eq. (55)) found that for 0.08  in Eq. (2.44), the

error of predictions of th can be controlled within nearly one percent by

 
 

1 2
3 1 / 2

1 2 / / 3 1
th


  

 


  

 
. (2.50)

Case B. For small bubbles, surface tension terms in Eq. (2.49) should be

considered. For 0.5  in Eq. (2.44), the following simplified formula

given by Devin (1959, Eq. (56)) to predict th with error within one

percent will be impaired,

1

15
th







 . (2.51)

Instead, we found that the error of the following simplified formula for

predicting th is within nearly one percent for 0.5  in Eq. (2.44),

 0 ,

1

15 1 2 / 3
th

in eqR P




 





. (2.52)
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Figure 2.1 Comparison of non-dimensional thermal damping constant

predicted with and without surface tension corrections. The marked line

(R0=3.4 μm) corresponds to error between Eq. (2.48) and Eq. (2.49) being 

10%.

2.2.5 Re-visit to Prosperetti’s analysis

Although Prosperetti (1977) gave the full solution for  , the influence of

approximation of G1<<1 on the predictions was not shown. Furthermore,

the predictions of polytropic exponent for G1 more than 10-5 were not

shown in Prosperetti (1977). Therefore, a re-visit to the approximation of

G1<<1 used by Prosperetti in Chap. 2.2.2 will be given in this section.

According to Prosperetti (1977, p.24), a nonisothermal layer would

become essential only for an extremely high frequency, e.g. in the order of
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1014 sec-1 for water. Though the maximum frequency currently used, say

in medical applications, is high, it is still not higher than 109 sec-1.

Therefore, the framework by Prosperetti (1977) is still followed here1.

Our re-visit has been performed through comparing those given in

Prosperetti (1977) using approximation G1<<1 (Eqs. (2.36)-(2.39)) with

the full solution (Eqs. (2.28)-(2.33)) also derived by Prosperetti (1977).

For comparison, air bubbles in water have been used; and values for G1

between 10-9 and 10-1 and G1G2 between 10-10 and 101 have been

evaluated. In the following discussions, “Prosperetti (1977) (G1<<1)”

refers to the use of Eqs. (2.28), (2.30), (2.32)-(2.33) and (2.36)-(2.39) for

predictions; “Prosperetti (1977)” refers to the use of Eqs. (2.28)-(2.33) for

predictions.

From the re-visit, the influence of the approximation G1<<1 on the values

of  and th , which are determined by the real and imaginary parts of

 respectively (referring to Eqs. (2.10) and (2.11)), are revealed as

follows. For  , only a little difference between “Prosperetti (1977)

(G1<<1)” and “Prosperetti (1977)” is found for G1=10-1, and no

1 Eq. (35) and A3 in the solution of the bubble interior as given in Prosperetti (1977, p.24) have

typographical errors and should be

1/2
3 0 3 0

1
( / )exp[ (1 )( ) / ] ;

2
i t

l A R r i G r R e     1/2
3 1 2 1 2 3 1

1 1
( )exp[(1 )( ) ] / [( (1 ) ].

2 2
A i G G w       
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differences for other regions (Figure 2.2). However, for th , “Prosperetti

(1977)” predicts much lower values for G1=10-1, 5×10-2 and 10-2 (Figures

2.3-2.5). Our re-visit indicates that the use of the approximation G1<<1 in

Prosperetti (1977) is no longer valid for G1≥10-2 (corresponding to

ω=4.07×107 sec-1 for air bubbles), in particular for predicting th .

However, the frequency used for experimental evaluation of the polytropic

exponent by Crum (1983) is low enough (22.2 kHz and G1≤3.64×10-5) that

Crum’s results have not been impaired by this approximation.

Figure 2.2 Influence of approximation G1<<1 on the predictions of the

polytropic exponent against G1 and G2. The labeled value is G1 varying

between 10-1 and 10-9.
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Figure 2.3 Influence of approximation G1<<1 on the predictions of the

thermal damping constant against G2. G1=10-1.

Figure 2.4 Influence of approximation G1<<1 on the predictions of the

thermal damping constant against G2. G1=5×10-2.
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Figure 2.5 Influence of approximation G1<<1 on the predictions of the

thermal damping constant against G2. G1=10-2.

2.2.6 Simplified formulas for thermal effects

Although the full solution of  (Eqs. (2.28)-(2.33)) given by Prosperetti

(1977) is accurate, it is quite complex and some simplifications are needed.

Prosperetti (1977) expanded the Eqs. (2.29) and (2.31) to the first order of

1G using Taylor series expansion to simplify the formulas, leading to Eqs.

(2.36)-(2.39). However, this approach does not work well for high

frequencies (i.e. 1G ≥10-2) as shown in Chap. 2.2.5. In this section, some

alternative simplifications are shown and discussed.

Here, we expand the solutions of  to the third order of 1G (referring to
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Appendix F). After careful examinations, we found that a particular term

of order 2
1G in 2 is paramount for accurate predictions of thermal

effects. With inclusion of this term, 2 can be expressed as

     3
2 1 1 12 1 1 / /G iG O G       . (2.53)

Comparing with Eq. (2.39), an additional term with order of 2
1G is shown

in the imaginary part of Eq. (2.53). In the following discussion, “ 2 ( 2
1G )”

refers to the predictions using Eq. (2.53) for 2 and others are the same

as “Prosperetti (1977) (G1<<1)” (i.e. Eqs. (2.28), (2.30), (2.32)-(2.33),

(2.36)-(2.38) and (2.53)). From Figs. 2.3-2.5, one can see that the

predictions of thermal damping constant have been significantly improved

by “ 2 ( 2
1G )”, even hardly distinguishing the discrepancies between

“ 2 ( 2
1G )” and “Prosperetti (1977)” for the predictions of thermal

damping constant for G1≤5×10-2 (Figures 2.4 and 2.5).

Crum (1983) showed that the Devin’s formula (Eq. (2.44)) can be obtained

through the reduction of Prosperetti’s formulas as follows. For 1 2 1G G  ,

assumption of uniform pressure inside bubbles used by Devin (1959) is

valid. Therefore, using Eqs. (2.30) and (2.37), Crum (1983) obtained

 2
2 2 2 2 1 2 1 1 2

1 1
coth 1 / 3 1 ( 1) /

3 3
G G iG G G              . (2.54)

Substituting Eqs. (2.30), (2.36), (2.38)-(2.39), (2.41) and (2.54) into Eq.

(2.43) and neglecting all terms involving 1G , Devin’s formula (Eq. (2.44))
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can be obtained.

2.2.7 Valid regions of formulas for thermal effects

By the definitions of G1 (Eq. (2.25)) and G2 (Eq. (2.26)) (Prosperetti,

1977), one can obtain

2 2

0 0
1 2

2 2 l

g l g

R R c
G G

c

 

 

   
       
   

, (2.55)

where

   ,2 / 2 / / 2 / /g g in eq g g gc P R T M             .

Here, gc and lc are the speeds of sound in the gas and the liquid

respectively; g and l are the wavelengths in the gas and the liquid

respectively. Therefore, 0 / gR  and 0 / lR  are functions of 1 2G G . In

our analysis, uniform pressure assumptions inside and outside gas bubbles

are valid if 0 / gR  <0.1 and 0 / lR  <0.1 respectively, corresponding to

1 2G G <0.39 and 7.38 respectively for an air bubble oscillating in water. In

the following discussion, “Devin (1959)” refers to Eq. (2.44); “Prosperetti

(1977)” refers to Eqs. (2.28)-(2.33) as before. According to this criterion,

our analysis can be performed for three different regions (Figure 2.6):

Region Ⅰ: 1 2G G <0.39. Both external and internal fields are virtually

uniform and the work by Devin (1959) based on the assumption of

uniform pressure inside the gas bubble is valid. For this region, there are

two sub-cases:
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For 2G <1, 0R is of the order of or smaller than the penetration depth

of thermal effects (Prosperetti, 1977). Therefore, the bubble will behave

isothermally for almost all 1G .

For 2G ≥1, 0R is of the order of or larger than the penetration depth

of thermal effects (Prosperetti, 1977) and  will basically increase with

2G . For 1G ≤10-5, the value of  almost approaches the specific heat

ratio  , being virtually independent of 1G (Prosperetti, 1977). For

1G >10-5, the maximum  will gradually decrease with the increase of

1G . Therefore, the maximum  in the high-frequency regions is much

less than  .

Region Ⅱ: 0.39≤ 1 2G G <7.38. In this region, the internal field is no longer

uniform because 0 / gR  varies between 0.1 and 0.43 and the uniform

(pressure) assumption is not applicable. Since the external field can still be

treated as uniform one, the solutions for the thermal effects can still be

obtained following the analytic approach by Prosperetti (1977).

Region Ⅲ: 1 2G G ≥7.38. For this region, both the external and internal 

fields are non-uniform. Consequently, the shape oscillation of the gas

bubble must be considered. The solution will be much more complex.
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Figure 2.6 Valid regions of formulas for thermal effects.

Valid regions for the formulas derived by Devin (1959) and Prosperetti

(1977) are shown above. Since Devin’s formulas do not count for G1 and

predict  between 1 and  , precautions should be taken when Devin’s

formulas are used for relatively high frequencies (e.g. G1>10-5, see Figure

2.2). The  predictions of Devin’s formulas are not valid for regions Ⅱ

and Ⅲ. For Prosperetti’s formulas, results will not be physical for region

Ⅲ. The  values predicted in region Ⅲ by the formulas of Prosperetti

(1977) oscillate significantly, with the sign changing alternatively, which

has already been shown in Prosperetti (1977, p.20) and in our calculations

as well. The valid regions for Devin’s or Prosperetti’s formulas are

emphasized here because such precautions are not seen in many published
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articles. For example, Prosperetti’s formulas were used in Thuraisingham

(1997) for calculating the acoustic cross section of a single air bubble in

water for the regions of large 0 / lR  (referring to Fig.1 in Thuraisingham,

1997), corresponding to 1 2G G between 1.87×10-5 and 1866, partially

beyond the valid regions of the Prosperetti’s formulas.

2.3 Effect of liquid compressibility

2.3.1 Comments on other published expressions

The expression of acoustic damping constant derived by us in Chap. 2.1 is

different with others. The reason for this is explained in this section by

re-examination of other published expressions. In this section, for the

expression of natural frequency ( 0 ), readers are referred to Eq. (2.13).

Firstly, we discuss those published papers based on Keller’s equation (e.g.

Prosperetti, 1984a; Commander and Prosperetti, 1989). If we follow

Prosperetti (1984a), dividing Eq. (2.12) by  01 / li R c , neglecting all

terms with order of 2c and using x i x  and x i x (Prosperetti,

1984a, p.72), Eq. (2.12) becomes

  2 2
0 0 02

0

2
2 / 2l th i t

l

l

x R c x x e
R

 
   



 
     

 
  . (2.56)

This is just the Eqs. (29)-(30) in Prosperetti (1984a) and Eqs. (32)-(33) in
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Commander and Prosperetti (1989). The acoustic damping constant

( 2
0 / 2 lR c ) shown in Eq. (2.56) is different from ours, i.e. 2

0 0 / 2 lR c of

Eq. (2.14), by noticing that 0  for non-resonant oscillations. This

also explains why the prediction of acoustic damping constant can be so

remarkably improved by using our approach for high frequencies and

large bubbles (referring to Figures 2.7-2.10) because for those cases the

decreasing 0 is further deviating from the increasing  . Indeed, the

approach employed in Prosperetti (1984a) as demonstrated above can be

avoided. Instead, the expressions of damping and natural frequency can be

determined directly from the coefficients of the harmonic oscillator based

on the linearization of Keller’s equation, which is a real second order

equation. Term  01 / li R c can still remain at the right hand side of

Eqs. (2.5) and (2.12), without using the relations of x i x  and x i x .

This is exactly the approach employed for the derivations of damping and

natural frequency in Chap. 2.1. Furthermore, only for oscillations entering

the stationary phase, the transient term disappears from the solution such

that x i x  and x i x (referring to Chap. 2.1 and Appendix C).

Nevertheless, to be strictly speaking, these two relations should not be

used for the purpose of determining the expressions of damping and

natural frequency. Otherwise, they would have changed the coefficients of

this inhomogeneous second-order equation that represent the damping and
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natural frequency of the harmonic oscillator defined by this equation.

Consequently, the resultant expressions defined by Eq. (2.56) will deviate

from the true damping and natural frequency.

Now, we turn attention to those expressions based on radiation pressure

(e.g. Crandall, 1926),

 
1

0 01 /rad l lP R R i R c 


  . (2.57)

Then one can obtain as in Prosperetti (1977),

0

42
1 i t l

in radP P e P R
R R

 
      

 . (2.58)

Substituting Eqs. (2.4) and (2.57) into Eq. (2.58), it becomes

 02
0

4( )
1 /l th

l

l

x i R c x
R

 




 
  
 

 

   2
0 0 0 01 / 1 / i t

l li R c x i R c e          . (2.59)

In order to demonstrate how the expressions in published literature were

reached, the relations of x i x  and x i x are to be employed,

which will lead to variable expressions for “natural frequency” and

“damping” as shown below.

If both sides of Eq. (2.59) divided by 0(1 / )li R c , it becomes

 
20
0 02 2

00

1 / 4( )

1 /

i tl l th

ll

i R c
x x x e

RR c

  
  



  
    

  
  . (2.60)

The first term in Eq. (2.60) then is rearranged using x i x  as,
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     

2
0 0

2 2 2

0 0 0

1 / /1

1 / 1 / 1 /

l l

l l l

i R c R c
x x x

R c R c R c

 

  


 

  
   .

Substituting it into Eq. (2.60) leads to

 
 

 

2
20
0 02 22

00 0

4 /1

1 / 1 /

l th i tl

ll l

R c
x x x e

RR c R c

  
  

 

 
     

   

  . (2.61)

If all terms with order of 2c are neglected in Eq. (2.61), this will yield

the acoustic damping constant as expressed by Eq. (11) in Smith (1935),

Eq. (77) in Devin (1959) and Eq. (27) in Chapman and Plesset (1971).

If the first term in Eq. (2.61) is further treated by using the relations of

x i x  and x i x , i.e.,

 
 
 

 
 

2 2

0 0 2

2 2 2

0 0 0

/ /1
1 .

1 / 1 / 1 /

l l

l l l

R c R c
x x x x

R c R c R c

 


  

 
    

    

  

Eq. (2.61) will again become another inhomogeneous 2nd order equation

with different coefficients,

 
 

 
 

22
02 20

0 02 22
0 0 0

4 //

1 / 1 /

l th l i tl

l l l

R cR c
x x x e

R R c R c

  
   

  

   
        

       

  .

(2.62)

This is just the equation used for determining the expressions of damping

and natural frequency in Prosperetti (1977).

The demonstration above shows how the use of x i x  and x i x

changes the coefficients of the equation, resulting in various different



44

expressions for the natural frequency and damping constants of the

harmonic oscillator as appeared in the literature such as the contradiction

between those two groups of published studies represented by Eqs. (2.61)

and (2.62) respectively. It also explains why there is a difference between

Prosperetti (1984a) and ours shown in Chap. 2.1.

The expression of acoustic damping constant derived by us is different

from those by Smith (1935), Devin (1959), Chapman and Plesset (1971),

Prosperetti (1977; 1984a) and Commander and Prosperetti (1989). For

natural frequency, our expression is almost identical to theirs except for

Prosperetti (1977). Therefore, a comparison with Prosperetti (1977) should

be essential. The slight difference of acoustic damping between Eq. (2.61)

and Eq. (2.62), i.e. 2
0( / )lR c , is trivial and excluded from discussions.

The assumption of spherical bubble (i.e. uniform pressure outside bubble

when 0 / lR  <0.1, here l is wavelength in liquids) limits the value of

0 / lR c (i.e. 02 / lR  ) up to 0.628, referring to Chap. 2.2.7. Therefore,

those bubbles within this range are to be considered in the following

discussions.

2.3.2 Comparisons

In this section, values predicted by Prosperetti (1977) based on radiation
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pressure will be compared with ours. Forced oscillations of air bubbles in

water will be considered with the constants shown in Appendix A. In

following figures and discussions, “Prosperetti (1977)” refers to Eq. (2.62)

based on radiation pressure and “Present” refers to Eqs. (2.6)-(2.9) based

on Keller’s equation derived by us. For completeness, the viscous and

thermal damping mechanisms are also considered in this section. For

predictions of thermal effects ( th and  ), solution (Eqs. (2.28)-(2.33))

by Prosperetti (1977) is used in this section. To focus on liquid

compressibility, natural frequency, acoustic and total damping constants

are compared.

Figures 2.7-2.11 show the comparisons of the acoustic and the total

damping constants and the natural frequencies for ω=104, 105, 106 and 107

sec-1 respectively. These comparisons demonstrate that the acoustic

damping constant predicted by us is quite different from those in

Prosperetti (1977). For the total damping constant and the natural

frequency, our predictions are much smaller than those by Prosperetti

(1977) in particular for the region involving large 0 / lR c .
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Figure 2.7 Comparison of acoustic and total damping constants between

“Prosperetti (1977)” (dash lines) and “Present” (solid lines). ω=104 sec-1.

Figure 2.8 Comparison of acoustic and total damping constants between

“Prosperetti (1977)” (dash lines) and “Present” (solid lines). ω=105 sec-1.
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Figure 2.9 Comparison of acoustic and total damping constants between

“Prosperetti (1977)” (dash lines) and “Present” (solid lines). ω=106 sec-1.

Figure 2.10 Comparison of acoustic and total damping constants between

“Prosperetti (1977)” (dash lines) and “Present” (solid lines). ω=107 sec-1.
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Figure 2.11 Comparison of natural frequency between “Prosperetti

(1977)” (dash lines) and “Present” (solid lines). The labeled values are ω

(sec-1).

2.4 Examples for air bubbles in water

In this section, contributions from viscous, thermal and acoustic effects to

the total damping constant for gas bubbles oscillating in liquids are plotted

following Eqs. (2.6)-(2.9) based on Keller’s equation derived by us. For

simplicity, forced oscillations of air bubbles in water will be considered.

The viscous, thermal, acoustic and total damping constants are shown for

ω=104, 105, 106, and 107 sec-1 respectively (Figures 2.12-2.15). For fixed
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frequency, viscous and acoustic damping mechanisms are dominant ones

for regions with small and large bubbles respectively while thermal

damping is dominant one for the intermediate regions between two regions

above. The contribution from thermal damping to the total damping

deceases with frequency. Comparing with previous works (e.g. Prosperetti,

1977), values of acoustic damping predicted by us are much smaller and

the regions dominated by acoustic damping also shrink.

Figure 2.12 Viscous, thermal, acoustic and total damping constant for air

bubble oscillations in water. ω=104 sec-1.
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Figure 2.13 Viscous, thermal, acoustic and total damping constant for air

bubble oscillations in water. ω=105 sec-1.

Figure 2.14 Viscous, thermal, acoustic and total damping constant for air

bubble oscillations in water. ω=106 sec-1.
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Figure 2.15 Viscous, thermal, acoustic and total damping constant for air

bubble oscillations in water. ω=107 sec-1.

2.5 Summary

In this chapter, the predictions for damping constants and natural

frequency of radial oscillations of gas bubbles in liquids are improved.

The concluding remarks are:

a. For acoustic damping constant of forced gas bubble oscillations, a

different formula has been proposed by us, which improves the

predictions of damping behavior in regions of large bubbles or high

frequencies (corresponding to large 0 / lR c ).

b. Based on our studies, the approximation of G1<<1 used by Prosperetti
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(1977) to simplify the formulas of thermal effects will be no longer

valid for G1≥10-2. Another set of simplified formulas for thermal

effects has been proposed by us for the predictions in regions of high

frequencies.

c. For G1>10-5, the maximum values of the polytropic exponent are less

than the specific heat ratio, gradually decreasing with frequency.

d. The valid regions for formulas derived by Devin (1959) and

Prosperetti (1977) are categorized based on the ratios of the bubble

radii to the wavelengths.

e. A more appropriate expression for non-dimensional thermal damping

constant with surface tension included has been proposed by us.
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Chapter 3

Rectified mass diffusion of gas

bubbles in Newtonian fluids

In this chapter, rectified mass diffusion of gas bubbles in Newtonian fluids

will be discussed. Parts of Chaps. 3.3 and 3.4 have been presented at IEEE

International Ultrasonic Symposium (2011) held at Orlando, USA (Zhang

and Li, 2011). Parts of Chap. 3.5 have been presented at WIMRC 3rd

International Cavitation Forum held at Warwick University, Coventry, UK

(Li and Zhang, 2011).

3.1 Basic equations

The equation of bubble motion is Keller’s equation (Eqs. (2.1)-(2.3)). The

mass transfer equation is (Eller and Flynn, 1965),

2c
c D c

t


   


u , (3.1)

where c is the concentration of the gas in the liquid; u is the velocity
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of the liquid; D is the diffusion constant. The initial and boundary

conditions are (Epstain and Plesset, 1950; Eller and Flynn, 1965),

   ,0 ic r C  r R , (3.2)

 lim , i
r

c r t C


 , (3.3)

 , sc R t C   0t  , (3.4)

where iC is the initial uniform concentration of the gas in the liquid and

also the concentration of the gas in the liquid at infinity; sC is the

concentration of the gas in the liquid at the bubble wall. According to

Henry’s law, the solubility of the gas in the liquid is proportional to the

partial pressure of the gas. Therefore, we have

1
0 0C k P H ,

 1
0 2 /sC k P R H .

Here, 0C is the saturation concentration of the gas in the liquid; kH is

the Henry’s constant. Therefore,

 0 01 2 /sC C P R  . (3.5)

3.2 Crum’s analysis

As far as analytic work on the subject, Crum and Hansen (1982a) derived

the first generalized equations by introducing the polytropic exponent and

all three damping mechanisms (i.e. viscous, thermal and acoustic damping
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mechanisms) which were obtained earlier by Devin (1959) and Eller

(1970). Crum and Mao (1996) made further modifications on the formulas

in Crum and Hansen (1982a). In this section, formulas derived by Crum

and Hansen (1982a) and Crum and Mao (1996) will be cited. We will

firstly introduce Crum and Mao (1996)’s work.

Based on Crum and Mao (1996, p.2902), one can obtain

1/2
4

00
0 0

0

( / )
/

R RdR Dd
R R R

dt R tD

  
     
  

  

1 4
0 0

4
0 0 0 0

( / ) ( / )4
1

3 ( / )

ini
R R P PC

P R C R R


   
         

, (3.6)

where

0 0/gd R T C P .

Here,   denotes time averages.

The instantaneous pressure of the gas in the bubble is given by

3
, 0( / )in in eqP P R R  . (3.7)

The Rayleigh-Plesset equation is (Crum and Mao, 1996, p.2901)

 
2

32 1 2 0
0 , 0 0

3 2
/ cos( ) 0.

2
l in eq A l tot

R
RR R P P R R P t R

R R

 
   


  

       
 


 

(3.8)1

1 For consistence with Eq. (2.3),
0

( ) cos( )
s A

p t P P t  in Crum and Mao (1996) is modified as
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Here, AP is the acoustic pressure amplitude; 2
02 /tot tot    is the

non-dimensional total damping constant. The formula for natural

frequency is the same as Eq. (2.13), i.e.

2
0 02

0 0 0

1 2 2
3

l

P
R R R

 
 



  
    

  
.

 and tot are given by (Devin, 1959; Eller, 1970)

Re / 3   ,

vistot th ac      ,

where

 vis 0 0 04 / 3 2 / 2 /P R R         ; (3.9)

Im / Reth    ; (3.10)

 3 3
0 0 0 0/ 3 2 / 2 /ac l lR c P R R          , (3.11)

which represent non-dimensional viscous, thermal and acoustic damping

constants respectively. For the formula of  , readers are referred to Eq.

(2.44).

Eq. (3.8) can be solved using perturbation method with direct series

expansions. Here, an approximate solution of Eq. (3.8) is given such as

     
22

0 0 0/ 1 / cos /A AR R P P t K P P       , (3.12)

where

0
( ) cos( )

s A
p t P P t  . Therefore,  in Eq. (3.13) is equal to minus of  given by Crum and

Mao (1996, p.2902).
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   

1/2

0
2 22 2 2 2

0 0 0

1

l tot

P

R


    

 
  
   

; (3.13)

 

2
1 0

2 2
0

tan tot 


 


 
 

  

; (3.14)

    
  

2
0 0

0 0

3 1 / 4 / 2 3 1 2 / 3

1 2 / 1 1/ 3

R P
K

R P

    

 

    


 
; (3.15)

 2 2 2
0 0 0 0/ 3 2 / 2 /R P R R         . (3.16)1

Then, the time averages 0/R R ,  
4

0/R R and    
4

0 0/ /inR R P P

required in Eq. (3.6) are given by

 
22

0 0/ 1 /AR R K P P  , (3.17)

   
24 2

0 0( / ) 1 3 4 /AR R K P P   , (3.18)

   
  

 
4 22

0 0 0

3 1 3 4
/ / 1 /

4
in AR R P P P P

 


 
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   
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4 3 / 1AK P P

R P


 

 
    

. (3.19)

Substituting Eqs. (3.17)-(3.19) into Eq. (3.6), the bubble growth rate

( 0 /dR dt ) can be obtained. By integration of Eq. (3.6), one can obtain the

instantaneous equilibrium bubble radius. If 0 /dR dt =0 in Eq. (3.6), the

threshold of acoustic pressure amplitude of rectified diffusion ( TP ) is

         

2
2 0 0 0 0

2
0 0 0

1 2 / /
.

3 4 / 3 1 3 4 / 4 4 3 1 2 /
i

T

i

P R P C C
P

K C C K R P



    

 


        

1 Crum and Mao (1996, p.2902) gave the formula of  as

 2 2

0 0 0 0
/ 3 ( 2 / ) 2 /R P R R       .

Our re-visit to Crum and Mao (1996) found that the missing superscript “2” of  in Crum and

Mao (1996) can be treated as typographical error. Therefore, it was corrected in Eq. (3.16) and in
the following comparisons in Chap. 3.4.
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(3.20)

Now, the formulas derived by Crum and Hansen (1982a) will be cited. The

following formulas are used by Crum and Hansen (1982a),

vis 04 / 3 P   , (3.21)

3 3
0 0/ 3ac l lR P c    , (3.22)

   

1/2

0
22 22 2

0 0 0

1

l tot

P

R


    

 
  
   

, (3.23)

2 2 2
0 0/ 3R P   . (3.24)

The other formulas are exactly the same as those in Crum and Mao (1996).

Although Crum and Hansen (1982a) considered the effect of surface

tension in their physical model, Eqs. (3.21) and (3.22) failed to include

effect of surface tension, which has been corrected later in Crum and Mao

(1996) i.e. Eqs. (3.9) and (3.11). The difference between Eq. (3.13) and Eq.

(3.23) are owing to the incorrect expression of damping term in Eq. (4) of

Crum and Hansen (1982a), which has been corrected in Crum and Mao

(1996). Comparing Eq. (3.13) with Eq. (3.23), only the term involving

tot is different, which will be only dominant term near resonance

( 0  ). The difference between Eq. (3.16) and Eq. (3.24) will be

discussed in next section.
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3.3 Improved approach

In this section, we will firstly give some comments on the Crum’s analysis

shown in Chap. 3.2. Then more physically general formulas for rectified

diffusion will be derived. Comments on Crum’s analysis are given as

follows:

1. Crum’s analysis is based on Rayleigh-Plesset equation and the effect

of liquid compressibility is considered by using the non-dimensional

effective acoustic damping constant ( ac ). For a full account of the

effects of liquid compressibility, the equation of bubble motion

including liquid compressibility (e.g. Keller’s equation Eq. (2.1))

should be directly used.

2. For the formulas of thermal damping ( th ), formulas shown in Devin

(1959) were used by Crum and Hansen (1982a) and Crum and Mao

(1996). However, as shown in Chap. 2.2.4, Devin’s formulas (Eq.

(3.10)) should be replaced by Eq. (2.49) with surface tension included.

Furthermore, as shown in Chapters 2.2.6 and 2.2.7, formulas of Devin

(1959) for thermal effects can be reduced from the solutions by

Prosperetti (1977). Therefore, formulas for thermal effects proposed

by Prosperetti (1977) i.e. Eqs. (2.28)-(2.35) will be used by us.

3. For acoustic damping, a different formula has been derived by us in
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Chap. 2.1 and compared with others (i.e. Devin, 1959) in Chap. 2.3.

4. Our derivations (referring to Appendix G) which is based on Keller’s

equation with surface tension and liquid compressibility included

indicate that Eq. (3.24) given by Crum and Hansen (1982a) is correct

while the “correction” Eq. (3.16) by Crum and Mao (1996) is

incorrect.

5. With thermal damping included, the instantaneous pressure of the gas

in the bubble should be (Prosperetti, 1977, p.18)

 
3

, 0 / 4 /in in eq thP P R R R R


   .

Comparing with Eq. (3.7), there is a phase difference between volume

and pressure of gas bubbles caused by thermal damping. The influence

of th on the term    
4

0 0/ /inR R P P is discussed in Appendix H.

Therefore, a more physically general derivation will be given in this

section based on Keller’s equation with surface tension and liquid

compressibility included. For completeness, more sophisticated formulas

(Eqs. (2.28)-(2.35)) for thermal effects proposed by Prosperetti (1977) will

be used. In this section, the formulas for non-dimensional total damping

constants tot ( 2
02 /tot tot   ) and natural frequency ( 0 ) shown in

Chap. 2 (i.e. Eqs. (2.6)-(2.9)) will be used. The influences of initial

conditions and transient solution of bubble motion equation are discussed
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in Appendix I. Eller and Flynn (1965) reported that the contributions from

second harmonic term to rectified diffusion is of the order  
4

0/AP P . The

formulas of 0/R R ,  
4

0/R R and    
4

0 0/ /inR R P P to the order

of  
4

0/AP P are shown in Appendix H. For comparing with Crum’s

analysis, we only consider the terms contributing to rectified diffusion up

to the order of  
2

0/AP P here. With second harmonic term neglected, the

approximate solution of Eq. (2.1) can be assumed as Eq. (3.12) with

(referring to Appendix G)
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, (3.25)
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, (3.26)

    
  
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0 0

0 0

3 1 / 4 / 2 3 1 2 / 3

1 2 / 1 1/ 3

R P
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    

 

    


 
, (3.27)

2 2 2
0 0/ 3R P   . (3.28)

For the expression of M , readers are referred to Eq. (2.5). Comparing

with Eqs. (3.13) and (3.14) derived by Crum and Mao (1996), additional

terms involving 0 / lR c are included in Eqs. (3.25) and (3.26). Those

terms reflect the liquid compressibility but were missed in published

works. If 0 / 1lR c  (i.e. regions with low frequencies and small

bubble radius), Eqs. (3.25) and (3.26) then reduce to Eqs. (3.13) and (3.14)

respectively. Eqs. (3.27) and (3.28) will remain the same as those derived
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by Crum and Hansen (1982a) (i.e. Eqs. (3.15) and (3.24)). Owing to the

fact that formulas of 0/R R , 4
0( / )R R and    

4

0 0/ /inR R P P

together with the threshold of rectified diffusion (Eqs. (3.17)-(3.20)) are

all functions of  and K , the predictions of rectified diffusion obtained

by using these three groups of formulas derived by Crum and Hansen

(1982a), Crum and Mao (1996) and ours will be different.

3.4 Results and discussions

In this section, the predictions of rectified diffusion based on formulas

derived by Crum and Hansen (1982a) and Crum and Mao (1996) were

compared with those derived by ours in Chap. 3.3 (referred as “Present” in

following discussions). Although Crum and Mao (1996) have made

corrections to Crum and Hansen (1982a), formulas from Crum and

Hansen (1982a) are still prevalent in currently published literature. In the

following analysis, we will focus on air bubble in saturated water

( 0/ 1iC C  ). The constants are the same as those in Crum and Hansen

(1982a, p.1588) as shown in Appendix A1.

1
Crum (1980) reported that although some precautions have been made against contaminations,

the measured equilibrium surface tension coefficient was 68 dyn/m in his experiment. Therefore,

 =68 dyn/m was used in Crum (1980) and Crum and Hansen (1982, p.1588). For predictions of

rectified diffusion in Chap. 3.4 and 3.5,  =68 dyn/m was also used.
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Figures 3.1-3.3 showed the threshold of acoustic pressure amplitude of

rectified diffusion predicted by Crum and Hansen (1982a), Crum and Mao

(1996) and ours (Present) for frequencies 107, 5×107 and 108 sec-1. Our

evaluations showed that the difference between three approaches increase

with frequencies. For ω<5×106 sec-1, the differences between predictions

by three approaches can be safely ignored. Comparing with predictions by

Crum and Hansen (1982a), predictions by ours are different in the regions

near and above resonance. Comparing with predictions by Crum and Mao

(1996), predictions by ours are different in the regions above resonance.

As shown in Chap. 3.3, formulas derived by us has fully accounted for the

effect of liquid compressibility, surface tension and all the damping

mechanisms. For details, readers are referred to Chapters 3.2 and 3.3.
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Figure 3.1 Comparisons of threshold of acoustic pressure amplitude of

rectified diffusion predicted by Crum and Hansen (1982a), Crum and Mao

(1996) and ours (Present). ω=107 sec-1.

Figure 3.2 Comparisons of threshold of acoustic pressure amplitude of

rectified diffusion predicted by Crum and Hansen (1982a), Crum and Mao

(1996) and ours (Present). ω=5×107 sec-1.
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Figure 3.3 Comparisons of threshold of acoustic pressure amplitude of

rectified diffusion predicted by Crum and Hansen (1982a), Crum and Mao

(1996) and ours (Present). ω=108 sec-1.

Nowadays, formulas proposed by Crum and Hansen (1982a) are mostly

popular ones in reviews (e.g. Crum, 1984), textbooks (e.g. Leighton, 1994)

and research papers. Therefore, we will compare Crum and Hansen (1982a)

with ours in the following discussions. Another test case was calculated

for behavior of bubble with radius R0=2×10-6 m under acoustic field with

ω=107 sec-1 and PA=3.3×104 Pa (Figure 3.4). Through comparison with

Crum and Hansen (1982a), our predictions showed that the growth rate of

equilibrium bubble radius is higher and the final equilibrium radius is

larger. As shown in Eq. (3.6), the value of the second term in the bracket

decreases with time. Therefore, if time is larger than certain critical value,
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the bubble growth rate will be reduced as well as shown in Figure 3.4.

Figure 3.4 Comparison of equilibrium bubble radius and bubble growth

rate predicted by Crum and Hansen (1982a) and ours (Present) near

resonance. R0=2×10-6 m. ω=107 sec-1. PA=3.3×104 Pa.

3.5 Dynamic frequency approach

In order to make bubbles grow rapidly, a technique that generates a sound

field with its frequency following the decreasing value of the resonant

frequency of the growing bubbles (i.e. dynamic-frequency technique) has

been proposed by Li (2008). In order to demonstrate the advantage of this

technique, comparisons of growing gas bubbles are made between those

based on dynamic-frequency and constant-frequency techniques. Formulas
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in Chap. 3.3 derived by us are used in this section. Demonstrating

examples are shown for air bubbles in water with constants given in

Appendix A except for  =68 dyn/m.

For the dynamic-frequency technique, the driving frequency (ω) follows

the variation of resonant frequency (ωr) of the growing bubbles to achieve

the fastest growth rate at the status of resonance while the driving

frequency (ω) for the constant-frequency technique is equal to resonant

frequency (ωr) of the initial bubble. Here, the resonance frequency is

defined as the maximum responsing magnitude of oscillating gas bubbles

for given amplitude of sound field (Brennen, 1995, Chap. 4.2). The

expression of resonance frequency is (Brennen, 1995, Chap. 4.2),

 
1/22 2

0 2r tot    .

For many biomedical applications, bubbles are in the range of 1-10 μm, 

which are chosen for the following demonstrating examples. Fig. 3.5

compares the instantaneous equilibrium bubble radius and its bubble

growth rate for the dynamic-frequency and the constant-frequency

techniques respectively. The initial equilibrium bubble radius (R0) is 2 μm, 

corresponding to the resonant frequency ωr=1.04×107 sec-1. For the

constant-frequency approach, the bubble stops growing soon after the

resonant frequency (ωr) of bubbles deviating from the driving frequency
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(ω). Whereas, for the dynamic-frequency approach, the bubble grows

much quicker since the driving frequency (ω) always follows the reducing

resonant frequency (ωr) of bubbles.

Figure 3.5 Comparison of equilibrium bubble radius and bubble growth

rate predicted by the dynamic-frequency and the constant-frequency

techniques. The initial R0 is 2 μm, corresponding to the resonant frequency 

ωr=1.04×107 sec-1. For the constant-frequency technique, its driving

frequency is set as ωr of initial bubble.

For practical applications, the driving frequency (ω) may vary in steps.

Fig. 3.6 shows the effect of step changes in the driving frequency. Even

finite steps of frequency change (i=2 or 5, here i is the total number of

frequencies used in the dynamic-frequency approach) will accelerate
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bubble growth considerably.

Figure 3.6 Comparison of the dynamic-frequency technique (in step

changes) with the constant-frequency technique. Arrows indicate the

instance of the step changes in frequency.

Table 3.1 shows the comparisons of the final equilibrium bubble radius for

a short duration of 60 ms. Three cases of initial bubble radii (R0=2, 5 and

10 μm) are tested, representing some typical sizes of bubbles in 

biomedical applications. Dynamic frequency approach is more effective

for small bubbles (e.g. R0=2 and 5 μm) but less effective for large bubbles 

(e.g. R0=10 μm). Whereas for longer duration, say 6s, for the large bubbles 

(R0=10 μm) the acceleration effect will manifest itself eventually, giving a 

final equilibrium bubble radius of 26.84 μm against 12.85 μm (referring to 
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Table 3.2).

Table 3.1 Comparisons of the final equilibrium bubble radius with time

duration of 60 ms.

Method R0=2 μm R0=5 μm R0=10 μm 

Constant frequency 2.12 μm 5.42 μm 10.46 μm 

Dynamic frequency 2.38 μm 5.59 μm 10.49 μm 

Dynamic frequency (i=2) 2.22 μm 5.52 μm 10.48 μm 

Table 3.2 Comparisons of the final equilibrium bubble radius with time

duration of 6 s.

Method R0=2 μm R0=5 μm R0=10 μm 

Constant frequency 2.13 μm 5.94 μm 12.85 μm 

Dynamic frequency 22.99 μm 24.27 μm 26.84 μm 

Dynamic frequency (i=2) 2.29 μm 7.15 μm 15.23 μm 

The dynamic-frequency technique has great potential for accelerating

bubble growth in many applications. However, a novel device capable of

generating a variable driving frequency is essential for the implementation

of this approach.
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3.6 Summary

a. A more physically general approach for predictions of rectified mass

diffusion of gas bubbles in Newtonian fluids has been proposed and

compared with published papers. Results show that predictions of rectified

mass diffusion can be improved by using our approach for regions near

and above resonance at frequency megahertz and above.

b. To facilitate the growth of gas bubbles through rectified mass diffusion,

a dynamic-frequency approach based on near resonance effects has been

proposed. The advantages of the dynamic-frequency approach for quick

bubble growth has been theoretically demonstrated and compared with

constant-frequency approach.
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Chapter 4

Rectified mass diffusion of

gas bubbles in viscoelastic

mediums

In this chapter, rectified mass diffusion of gas bubbles in viscoelastic

mediums will be discussed.

4.1 Basic equations for bubble motion

In this section, a model developed by Yang and Church (2005) for the

bubble dynamics in soft tissue is introduced. The polytropic model is used

to describe the relationship between the internal pressure and the volume

of bubble. The generalized Keller equation is (Yang and Church, 2005,

Eqs. (12)-(14))
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Here, rr is the stress in the r direction. In order to consider the

viscoelastic effect of soft tissue, a linear Voigt model is used by Yang and

Church (2005),

 2rr rr rrG     . (4.3)

Here, G is the shear modulus; rr is the strain, which can be expressed

as

  3 3 3
02 / 3rr r R R    . (4.4)

Combining Eqs. (4.2)-(4.4), Yang and Church (2005) obtained
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
. (4.5)

If G =0 in Eqs. (4.1) and (4.5), Keller’s equation (Eqs. (2.1)-(2.3)) is

reduced.
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4.2 Natural frequency and damping for radial

oscillations of gas bubbles in viscoelastic

mediums

In this section, Eqs. (4.1) and (4.5) are linearized to obtain the expressions

of natural frequency and damping of the radial oscillations of gas bubbles

in viscoelastic mediums. Analysis by Yang and Church (2005) is firstly

introduced in Chap. 4.2.1. In Chap. 4.2.2, more appropriate expressions of

natural frequency and damping are derived by us with comments on Yang

and Church (2005). Then expressions of natural frequency and damping

derived by us are compared with those derived by Yang and Church (2005)

in Chap. 4.2.3.

4.2.1 Yang and Church’s analysis

In this section, expressions of natural frequency and damping derived by

Yang and Church (2005) are introduced. The Eqs. (4.1) and (4.5) are

linearized by using  0 1R R x  and neglecting all terms involving

second or higher order of x (or  ). The term 0 /i t
li P e c  , which is

like the term in the right hand side of Eq. (2.5), is replaced by radiation

pressure wave (Yang and Church, 2005, Eq. (20)),

0

01 /
l

sac

l

RR
P

i R c









. (4.6)
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Expressions of x i x and x i x  are also used during derivations.

The resulting equation is

2
0 02 /i t

totx x x e M        , (4.7)

where

0
0 2

0l

P

R



 ,

0
2
0

4
1 l

l l

R
M

c R




  .

The total damping constant ( tot ) is

inttot vis th ac el          ,

where

2
0

2 l
vis

l R M





 , (4.8)

,0
2
0

3

2

in eq

th

l l

PR

c R M





 , (4.9)
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/
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l
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l

R c

MR c

 
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
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
, (4.10)

0 0
int 2

0

2 /

2 l l

R R

c R M





  , (4.11)

0
2
0

2
el

l l

R G

c R M



 , (4.12)

representing the viscous, thermal, acoustic, interfacial and elastic damping

constants respectively as defined by Yang and Church (2005). The natural

frequency is
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 

2
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in eq
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  

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 
    

  

. (4.13)

Based on Eqs. (4.8)-(4.13), some demonstrating examples were given by

Yang and Church (2005, Figs.1-3).

4.2.2 Comments on Yang and Church’s analysis

together with our analysis

Comments on the analysis of Yang and Church (2005) shown in Chap.

4.2.1 are given by us as follows:

1. The replacement of 0 /i t
li P e c  using radiation pressure by Yang

and Church (2005, Eq. (20)) is not necessary. The term 0 /i t
li P e c 

can be kept at right hand side of equation as treated in Chap. 2.1.

Radiation pressure should not be further used because liquid

compressibility has been fully considered in the equation of bubble

motion (Eq. (4.1)).

2. Expressions of x i x and x i x  used during derivations of

natural frequency and damping by Yang and Church (2005) are also

not necessary, which has been fully explained in Chap. 2.3.

3. In fact, Yang and Church (2005) do not account for thermal damping

in their derivations by noticing that  
3

, 0 /in in eqP P R R


 in Yang and

Church (2005, p.3598) while with thermal damping included it should

be  
3

, 0 / 4in in eq thP P R R x


   (referring to Chap. 2.1) based on
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Prosperetti (1977). The so-called “thermal damping constant” (Eq.

(4.9)) is in fact a part of acoustic damping as shown later. Therefore,

comparisons of thermal damping predicted by Prosperetti (1977)

shown in Yang and Church (2005, Figs.2-3) are not necessary.

4. According to our analysis shown later, the two new damping terms

(interfacial and elastic damping, Eqs. (4.11) and (4.12)) defined by

Yang and Church (2005) can both be considered as parts of acoustic

damping.

In order to make comparison with Yang and Church (2005) in the

following derivations, the thermal damping is also neglected ( th =0) and

Eqs. (4.1) and (4.5) can be directly linearized by following the process

shown in Chap. 2.1. The results are

 2
0 0 02 1 / /i t

tot lx x x i R c e M          , (4.14)

where

0
0 2

0l

P

R



 ;

0
2
0

4
1 l

l l

R
M

c R




  .

The total damping constant ( tot ) is

tot vis ac    ,

where
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20
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2
ac

l

R

c
  , (4.16)

representing the viscous and acoustic damping respectively. The natural

frequency is

, 02
0 2

0

3 2 / 4in eq

l

P R G

R M

 




 
 . (4.17)

Comparing with expression of natural frequency in Newtonian fluids (i.e.

Eq. (2.9)), an additional term involving the shear modulus (G ) appears in

Eq. (4.17). If G =0, Eqs. (4.15)-(4.17) reduce to Eqs. (2.6), (2.8) and (2.9)

with th =0. In order to show the influence of shear modulus on the

predictions, the acoustic damping constant (Eq. (4.16)) are split into two

terms such as

0ac ac ac el     ,

with

, 00
0 2

0

3 2 /

2

in eq

ac

l l

P RR

c R M

 






 , (4.18)

0
2
0

2
ac el

l l

R G

c R M



  . (4.19)

4.2.3 Discussions

In this section, predictions based on our analysis (referring to Chap. 4.2.2)

are compared with those based on Yang and Church (2005) (referring to
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Chap. 4.2.1). The constants (referring to Appendix A) used by Yang and

Church (2005) are adopted and adiabatic bubbles ( =1.4) are considered

here.

Figure 4.1 compares the natural frequency predicted by Yang and Church

(2005), Prosperetti (1977) (only for water) and ours (“Improved approach”)

with shear modulus G =0.5, 1 and 1.5 MPa and driving frequency 1 MHz.

Fig.1 of Yang and Church (2005) shows the natural frequency for free air

bubbles in water and soft tissue (i.e.  =0 in Eq. (4.7)). However,

expressions of x i x and x i x  used during derivations of Yang

and Church (2005) are only valid for forced bubble oscillations. Therefore,

forced gas bubble oscillations are considered in Fig. 4.1. The values

predicted by Yang and Church (2005) are quite different with ours. For air

bubble oscillations in water ( G =0), natural frequency predicted by Yang

and Church (2005) (Eq. (4.13)) is also different with the one by Prosperetti

(1977) (Eq. (2.62)), which is caused by the improper replacement of

0 /i t
li P e c  with radiation pressure in Yang and Church (2005). Based

on our predictions, the natural frequency of air bubbles in soft tissue is

larger than the values of air bubbles in water and also gradually increases

with the increase of the shear modulus.
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Figure 4.1 Natural frequency predicted by improved approach (Eq. (4.17)),

Yang and Church (2005) (Eq. (4.13)) and Prosperetti (1977) (Eq. (2.62),

only for water) for forced oscillations of air bubbles in water and soft

tissue with shear modulus G =0.5, 1 and 1.5 MPa. Driving frequency is 1

MHz.

For comparisons with Yang and Church (2005, Figs. 2 and 3), the damping

constants are plotted for fixed bubble radius (Fig. 4.2) or fixed driving

frequency (Fig. 4.3). For Yang and Church (2005), only total damping

constant is shown in Figures 4.2 and 4.3. Comparing with Yang and

Church (2005), the total damping constant predicted by ours is much

smaller especially for regions with high frequencies and large bubbles.
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Figure 4.2 Dimensional linear damping constants predicted by Yang and

Church (2005) (dash lines) and improved approach (solid lines) against

driving frequency for equilibrium bubble radii of (a) 10 μm and (b) 1 μm, 

surrounded by tissue with G=1.0 MPa and l =0.015 Pa·s.
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Figure 4.3 Dimensional linear damping constants predicted by Yang and

Church (2005) (dash lines) and improved approach (solid lines) against

bubble radius for driving frequency of (a) 1 MHz and (b) 10 MHz,

surrounded by tissue with G=1.0 MPa and l =0.015 Pa·s.
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Based on our predictions, for fixed frequency, viscous damping dominates

the regions with small bubbles while acoustic damping dominates the

regions with large bubbles. Among all the contributions to the acoustic

damping, contributions from elastic modulus ( ac el  ) is the most important

one except for very small bubbles (Fig. 4.3b).

4.3 Rectified mass diffusion in viscoelastic

mediums

In this section, the formulas of rectified diffusion in viscoelastic mediums

are derived. The governing equations are the equation of bubble motion

Eqs. (4.1) and (4.5) and the diffusion equation Eq. (3.1) with initial and

boundary conditions Eqs. (3.2)-(3.4). Eller and Flynn (1965) uncoupled

the diffusion equation and bubble motion equation based on the fact that

gas diffusion across bubble interface is very limited during a single cycle

of bubble oscillation. Here, Eller-Flynn’s frame work is followed. The

solution of bubble motion equations (Eqs. (4.1) and (4.5)) was

approximately obtained based on perturbation method with direct series

expansions (referring to Appendix G). To the second order of  0/AP P ,

the approximate solution of Eqs. (4.1) and (4.5) is

     
22

0 0 0/ 1 / cos /A AR R P P t K P P       , (4.20)
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(4.23)

For expressions of 0 , tot and M , readers are referred to Eqs.

(4.14)-(4.17). Second harmonic term is not included in Eq. (4.20) because

it contributes to the rectified diffusion with the fourth order of 0( / )AP P

(Eller and Flynn, 1965, p.501; Appendix H) and can be neglected here.

The influences of the initial conditions and transient solution are discussed

in Appendix I. Based on Eqs. (4.21)-(4.23), one can find that  and K

will be influenced by viscoelasticity through shear modulus (G ). If G =0,

Eqs. (4.21)-(4.23) will reduce to formulas of rectified diffusion in

Newtonian liquids Eqs. (3.25)-(3.28) with th =0. Because the bubble

motion equation and diffusion equation are uncoupled (Eller and Flynn,

1965), the bubble growth rate in viscoelastic mediums can still be

expressed as Eq. (3.6) and the time averages 0/R R ,  
4

0/R R and

   
4

0 0/ /inR R P P required in Eq. (3.6) can still be expressed as Eqs.

(3.17)-(3.19) with  and K given by Eqs. (4.21) and (4.23).
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4.4 Results and discussions

In this section, some demonstrating examples of rectified diffusion of gas

bubbles in viscoelastic mediums (e.g. soft tissue) are given. For

comparison, air bubble oscillations in water are also shown following

formulas in Chap. 3.3. The values of constants used in this section are

shown in Appendix A. The driving frequency ( f ) is 1 MHz. The

polytropic exponent ( ) is predicted by Eqs. (2.44) and (2.46) based on

Devin (1959) and thermal damping is currently ignored. For air bubbles in

water, the following constants are used:  =72.8 dyn/m; l =1000 kg/m3;

l =0.001 Pa·s; lc =1486 m/s. For air bubbles in soft tissue, constants used

by Yang and Church (2005) are adopted here:  =56 dyn/m; l =1060

kg/m3; l =0.015 Pa·s; lc =1540 m/s; G =1 MPa.

Figure 4.4 shows the threshold of the acoustic driving pressure amplitude

of rectified diffusion for air bubbles in water and in soft tissue for

frequency f =1 MHz and 0/iC C =0.96, 1.00 and 1.04. There are two

cross points between a given acoustic pressure amplitude and the threshold

curve. The corresponding bubble radii of two cross points can be defined

as the threshold and maximum bubble radii respectively (Crum and

Hansen, 1982b). Bubble will grow to maximum radius through rectified
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diffusion if its radius is larger than threshold radius. As shown in Figure

4.4, the threshold of acoustic pressure amplitude of rectified diffusion has

a minimum value near resonance and increases when bubble is away from

resonance. Threshold of acoustic pressure amplitude of rectified diffusion

decreases with the increase of the saturation conditions ( 0/iC C ).

Comparing with air bubbles in water, the shear modulus ( G ) also

contributes to the resonance frequency of bubbles in soft tissue. Therefore,

as shown in Figure 4.4, the resonance bubble radius in soft tissue is 10.2

μm, which is larger than 3.2 μm in water. If the acoustic pressure is 

sufficient high to induce bubble growth through rectified diffusion, large

bubbles near 10.2 μm will grow in soft tissue while small bubbles near 3.2 

μm will grow in water. For example, with f =1 MHz, 0/iC C =1.04 and

AP =1×105 Pa, the threshold and maximum bubble radii through rectified

diffusion is 9.43 μm and 11.1 μm for air bubbles in soft tissue while is 2.0 

μm and 4.5 μm for air bubbles in water respectively.  
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Figure 4.4 Comparison of threshold of acoustic pressure amplitude of

rectified diffusion between air bubbles in water and in soft tissue. f =1

MHz. 0/iC C =0.96, 1.00 and 1.04.

The bubble growth curves for different saturation conditions are shown in

Figure 4.5. The initial bubble radius is assumed to be 10 μm. The bubble 

radius can reach as large as dozens of micrometers within minutes in soft

tissue through rectified diffusion while the growth of bubbles with the

same conditions in water is negligible.
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Figure 4.5 Comparison of air bubble growth in soft tissue through rectified

diffusion for different saturation conditions. f =1 MHz. 0/iC C =1.00

(solid line), 1.05 (dash line), 1.10 (dot line) and 1.15 (dash dot line).

0/AP P =2.

4.5 Explanation of cavitation in vivo

Ultrasonically induced cavitation in vivo has been demonstrated by many

researchers (e.g. ter Haar and Daniels, 1981; ter Haar et al., 1982). In ter

Haar and Daniels (1981), a guinea-pig hind limb was irradiated using

continuous ultrasound and a pulse echo ultrasonic imaging technique was

used to visualize both moving and stationary bubbles of diameters down to

10 μm. Crum and Hansen (1982b) proposed that rectified diffusion is the 
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primary mechanism for the bubble growth under irradiation of ultrasound

in vivo observed by ter Haar and Daniels (1981) and ter Haar et al. (1982).

Formulas of Crum (1980) for gas bubble rectified diffusion in Newtonian

fluids were used in Crum and Hansen (1982b). Comparing with

experimental results of ter Haar and Daniels (1981), Crum and Hansen

(1982b) noticed that

1. Based on the predictions, the maximum bubble diameter of the gas

bubble growing through rectified diffusion is of order of 20 μm while 

in the experiment, the diameters of most bubbles is in the range of

10-100 μm (Crum and Hansen, 1982b, p.417). Crum and Hansen 

(1982b) attributed the above difference to the bubble coalescences and

limited resolution of the experimental system.

2. Based on the predictions, the time required for the gas bubble growing

to the maximum size is of order of a few seconds while in the

experiment, the time is “within the first minute” (Crum and Hansen,

1982b, p.417; ter Haar and Daniels, 1981, p.1147). Crum and Hansen

(1982b) attributed the above difference to the “increased damping or

local environmental restrictions on the growth rate”.

For the above deviations of predictions, we suggest that the viscoelastic

effects of soft tissue which have not been considered in their predictions
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are possible explanations. In Chap. 4.3, viscoelastic behavior of tissue has

been included in the theory of rectified diffusion. In this section, the

predictions based on formulas in Chap. 4.3 (named as “soft tissue” in

Tab.4.1) are compared with those based on Newtonian fluids previously

obtained by Crum and Hansen (1982b). In this section, the constants are

chosen as the same as those of experimental conditions of ter Haar and

coworkers (ter Haar and Daniels, 1981; ter Haar et al., 1982): continuous

ultrasound with frequency f =0.75 MHz and spatial average intensities

80, 150, 300 and 680 mW/cm2 (corresponding to peak intensities 240, 450,

900 and 2040 mW/cm2) respectively. Formulas of Crum (1980) were used

in Crum and Hansen (1982b) with the constants shown in Appendix A

except for  =60 dyn/cm. Formulas derived by us in Chap. 4.3 are used

for the predictions of rectified diffusion in soft tissue with constants

shown in Chap. 4.4.

Table 4.1 shows the comparisons of the threshold and maximum bubble

radii of rectified diffusion for a wide range of acoustic intensities and

dissolved gas concentrations. Both the threshold and maximum bubble

radii in soft tissue are much larger than those predicted by Crum and

Hansen (1982b). Under oversaturation status, the maximum bubble

diameter through rectified diffusion is as large as dozens of micrometers.
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Table 4.1 Threshold and maximum bubble radii of rectified diffusion for a

wide range of acoustic intensities and dissolved gas concentrations for

bubbles in Newtonian fluids and soft tissue respectively. The data for

“Newtonian fluids” were directly adapted from Table.1 of Crum and

Hansen (1982b).

Concentration Peak

intensity

(mW/cm2)

Newtonian fluids Soft tissue

Threshold

bubble

radius (μm)

Maximum

bubble

radius (μm)

Threshold

bubble

radius (μm)

Maximum

bubble

radius (μm)

1.00 240 2.4 5.9 --- ---

1.00 450 2.0 6.5 13.2 14.1

1.00 900 1.5 7.3 12.6 14.7

1.00 2040 1.1 8.4 11.8 15.4

1.05 240 2.3 6.2 12.9 14.5

1.05 450 1.8 6.9 12.4 15.1

1.05 900 1.4 7.8 11.8 16.0

1.05 2040 1.0 9.1 10.9 18.0

1.10 240 2.2 6.8 10.5 ---
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1.10 450 1.8 7.8 10.2 ---

1.10 900 1.4 9.4 9.7 ---

1.10 2040 0.9 11.2 8.9 ---

1.15 240 2.0 --- 7.3 ---

1.15 450 1.6 --- 7.2 ---

1.15 900 1.2 --- 7.1 ---

1.15 2040 0.9 --- 6.7 ---

Figure 4.6 shows the effect of saturation conditions on the bubble growth

through rectified diffusion. Comparing with the Figure 2 of Crum and

Hansen (1982b), the time required for the gas bubble growing to the

maximum size is of order of minute based on our predictions. As shown in

Fig. 4.6, the bubble growth rate through rectified diffusion is strongly

dependent on the saturation conditions. Therefore, with the viscoelastic

effects of tissue included, both the predictions of bubble diameters and

time required to reach the maximum bubble sizes are much closer to the

experimental observations by ter Haar and Daniels (1981).
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Figure 4.6 Comparison of air bubble growth in soft tissue through rectified

diffusion for different saturation conditions. f =0.75 MHz. 0/iC C =1.00

(solid line), 1.10 (dash line) and 1.15 (dot line). The spatial average

intensity is 680 mW/cm2. Initial 0R  is 12 μm. 

4.6 Summary

a. More physically general formulas for natural frequency and damping of

gas bubbles in soft tissue have been proposed. Comparing with Yang and

Church (2005), total damping constant and natural frequency predicted by

us is much smaller especially for regions involving high frequencies and

large bubbles.

b. Formulas for rectified mass diffusion of gas bubble in soft tissue are
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derived. Comparing with rectified diffusion of gas bubbles in Newtonian

fluids, shear modulus of soft tissue also contributes to the rectified

diffusion of gas bubbles in soft tissue. We further proposed that

viscoelasticity of the soft tissue is a paramount factor to explain the

differences between the previous predictions and experiments.
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Chapter 5

Rectified mass diffusion of

gas bubbles in Newtonian

fluids under acoustic field of

dual frequency

In this chapter, theoretical expressions of rectified diffusion of gas bubbles

in Newtonian fluids under acoustic field of dual frequency are derived and

some demonstrating examples are given.

5.1 Formulas of rectified mass diffusion

In this section, formulas of rectified diffusion under acoustic field with

dual frequency are derived. Thermal damping is currently neglected. The

equation of bubble motion is Keller’s equation (Eqs. (2.1) and (2.2)) with

Eq. (2.3) replaced by
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   
1 20 1 2( ) cos coss A AP t P P t P t    . (5.1)

Here,
1AP and

2AP are the amplitudes of external sound field of

frequency 1 and 2 respectively (assuming that 1 < 2 for

convenience). Solution of equation of bubble motion under acoustic field

of dual frequency was given in Appendix J. The solution is

       
1 1

2

2 0 11 1 11 12 2 12 0

0

1 / cos cos /A A

R
B P P A t A t P P

R
           . (5.2)

For simplicity, terms involving
2 0( / )AP P in Eq. (5.2) have been replace

by terms involving
1 0( / )AP P noticing that

2 2 1 10 0/ ( / )( / )A A A AP P P P P P .

For the expressions of 11A , 11 , 12A , 12 and 2B , readers are referred

to Eqs. (J8)-(J11) and (J16). Although 2B has no contribution to bubble

size measurement in the previous work (Newhouse and Shankar, 1984),

2B contributes to the rectified diffusion as shown later and its expression

has been derived by us. Second-harmonic term and terms involving sum or

difference of two frequencies (referring to Eq. (J14)) have no contribution

to rectified diffusion to the second order of
1 0/AP P as shown in Appendix

K.

Then, the time averages up to the second order of
1 0( / )AP P can be given

as follows (referring to Appendix K)

 
1

2

0 2 0/ 1 /AR R B P P  , (5.3)

     
1

24 2 2
0 2 11 12 0/ 1 4 3 /AR R B A A P P      , (5.4)
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(5.5)

Substituting Eqs. (5.3)-(5.5) into Eq. (3.6), the expression for bubble

growth rate can be obtained. With 0 /dR dt =0 in Eq. (3.6), threshold of

acoustic pressure amplitude of rectified diffusion can be obtained. For

simplicity, we assume that the acoustic pressure amplitudes of two

frequencies are equal (i.e.
1 2A AP P P   ). Therefore, the expression of

threshold acoustic pressure amplitude of rectified diffusion ( TP ) will be

2
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   


 
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 
        

           
      

(5.6)

For a given bubble, if the acoustic pressure amplitude is above TP , the

bubble will grow. Otherwise, the bubble will dissolve. Now, we will

consider one specific case. If the acoustic sources only contains a single

frequency (i.e.
2AP =0 and 12A =0), one can find that solution of the

equation of bubble motion (Eq. (5.2)) and expression of threshold of

acoustic pressure amplitude (Eq. (5.6)) will reduce to those of rectified

diffusion under acoustic field of single frequency as shown in Chap. 3.3.
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5.2 Results and discussions

In this section, some demonstrating examples based on formulas in Chap.

5.1 are given and compared with those based on single-frequency

technique. Air bubbles in water are considered. For the constants used in

the calculations, readers are referred to Appendix A. The two driving

frequencies are 1 =5×105 sec-1 and 2 =1.5×106 sec-1. For convenience,

we firstly assume that the amplitudes of the two frequencies in

dual-frequency technique are both equal to P . For single-frequency

technique, the polytropic exponent ( ) is predicted based on Prosperetti

(1977). For dual-frequency technique,  is approximated using the value

predicted under the average of two driving frequencies.

Figure 5.1 shows the comparisons of the threshold of acoustic pressure

amplitude of rectified diffusion predicted based on single-frequency and

dual-frequency techniques. If P is above threshold acoustic pressure

amplitude, the bubble will grow otherwise it will dissolve. Resonance

bubble radius ( 1rR and 2rR ) for two frequencies used in tests can be

calculated based on Eq. (2.9) and are shown in Figure 5.1. 1R and 2R

are the cross points between the threshold curve based on single-frequency

technique ( 2 ) and P . 3R and 4R are the cross points between the
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threshold curve based on single-frequency technique ( 1 ) and P .

Figure 5.1 Threshold of acoustic pressure amplitude of rectified diffusion

predicted based on single- and dual-frequency techniques. 1rR and 2rR

are the resonance radius of frequency 1 and 2 respectively.

0/iC C  1. 1 =5×105 sec-1. 2 =1.5×106 sec-1. For others, readers are

referred to texts.

Comparing with single-frequency technique, the threshold of rectified

diffusion under dual-frequency technique in the regions between two

resonance bubble radius [ 1rR , 2rR ] is much smaller and there exists a

local maximum threshold pressure ( . .Loc MaxP ). If the given amplitude of

acoustic field is above the . .Loc MaxP (e.g. P =0.3 bar in Figure 5.1), the

two cross points between threshold curve and P for dual-frequency
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technique can be assumed as the points marked as 1R and 4R with

negligible differences. Therefore, the bubble behavior can be divided into

five regions as shown in Figure 5.1 and Table 5.1. Comparing with

single-frequency technique, a much wider range of bubbles can grow

under dual-frequency technique. For example, bubbles with radii within

regions [ 1R , 4R ] can grow based on dual-frequency technique while only

bubbles within regions [ 1R , 2R ] for single-frequency technique with 2

or [ 3R , 4R ] for single-frequency technique with 1 can grow. Because

threshold of acoustic pressure amplitude of rectified diffusion based on

dual-frequency technique is lower than one based on single-frequency

technique in the regions [ 1rR , 2rR ], one can find that the bubble growth

rate under dual-frequency technique will be also higher than those under

single-frequency technique in the above regions based on Eq. (3.6).

Comparing with single-frequency technique, the bubble growth rate

through rectified diffusion is much higher and the final equilibrium bubble

radius is much larger under dual-frequency technique (Figure 5.2). As

shown in Figure 5.1, for the given amplitude, bubbles with radius 0R =10

μm under single frequency 1 will dissolve, which is not shown in

Figure 5.2. Some examples for over saturation (i.e. 0/iC C 1.05) are also

shown in Figure 5.2.
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Table 5.1 Bubble response and final equilibrium bubble radius under

single-frequency and dual-frequency techniques. Others refer to Fig. 5.1.

0R 1 2 1 2 

Response Final

0R

Response Final

0R

Response Final

0R

0R < 1R Dissolution _ Dissolution _ Dissolution _

[ 1R , 2R ] Dissolution _ Growth 2R Growth 4R

[ 2R , 3R ] Dissolution _ Dissolution _ Growth 4R

[ 3R , 4R ] Growth 4R Dissolution _ Growth 4R

0R > 4R Dissolution _ Dissolution _ Dissolution _

Figure 5.2 Predicted equilibrium bubble radius against time with different

saturation status. Initial bubble radius is 10 μm. P =0.3 bar. 0/iC C 1

and 1.05. 1 =5×105 sec-1. 2 =1.5×106 sec-1.
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Figure 5.3 shows the cases of the two frequencies in dual-frequency

technique with unequal amplitudes. The bubble growth rate will increase

with the increase of amplitude of acoustic field (Figure 5.3). Because the

change of acoustic amplitude is limited in Figure 5.3, no distinguishable

change of the final equilibrium bubble radius is observed, although the

final equilibrium bubble radius through rectified diffusion is dependent on

the amplitudes of acoustic field (Figure 5.1).

Figure 5.3 Predicted equilibrium bubble radius against time based on

dual-frequency technique. Initial bubble radius is 10 μm. 1P =0.3 bar.

2P =0.28 (solid line), 0.3 (dash line) and 0.32 (dot line) bar. 0/iC C 1.

1 =5×105 sec-1. 2 =1.5×106 sec-1.

The dual frequency can be generated by a combination of two transducers
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as used by Newhouse and Shankar (1984) or a single dual-frequency

ultrasonic transducer (Saitoh et al., 1995; Wang and Chan, 2003; Huang et

al., 2005).

5.3 Summary

a. Formulas of rectified mass diffusion under acoustic field of dual

frequency are derived. The formulas for bubble growth rate and threshold

of acoustic pressure amplitude of rectified diffusion are obtained.

b. Comparing with single-frequency technique, a wide range of bubbles

can rapidly grow into larger bubbles through rectified diffusion by using

dual-frequency technique.
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Chapter 6

Conclusions

6.1 Achievements

1. Formulas of damping and natural frequency of radial oscillations of

gas bubbles in the Newtonian liquids have been derived for more

general cases and compared with those in the literature.

a) For thermal effects, a re-visit to Prosperetti’s work (Prosperetti,

1977) has been done. An approximation used by Prosperetti (1977)

to simplify the solutions has been re-evaluated and the simplified

formulas proposed by Prosperetti (1977) have been improved for

high-frequency regions. Surface tension has been considered for

non-dimensional thermal damping constant based on Devin

(1959). The valid regions of formulas involving the thermal

effects have also been defined and discussed.

b) For effects of liquid compressibility, an improved formula for
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acoustic damping constant has been derived and compared with

previous ones. The predictions of acoustic damping constant can

be improved by using our formulas for regions of large bubbles

and high frequencies (i.e. large 0 / lR c ).

2. Formulas for rectified mass diffusion of gas bubbles in Newtonian

fluids have been studied more precisely and compared with those in

the literature. Predictions for frequencies at megahertz and above can

be improved compared with previous work. The advantages of the

dynamic-frequency approach have been demonstrated in comparison

with the constant-frequency approach.

3. More physically general formulas of damping and natural frequency of

radial oscillations of gas bubbles in the viscoelastic mediums have

been derived and compared with those in the literature. Formulas for

rectified mass diffusion of gas bubbles in viscoelastic mediums have

been derived and applied for explanations of experimental data

obtained in vivo. The maximum sizes of bubbles growing through

rectified diffusion together with the required time can be predicted

more precisely by including the viscoelastic effects.

4. Formulas for rectified mass diffusion of gas bubbles in Newtonian

fluids under acoustic field with dual frequency have been derived. The

advantages of this dual-frequency technique have been demonstrated
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by comparing with those under single-frequency excitation. A much

wider range of bubbles can grow through rectified diffusion under

dual-frequency acoustic excitation.

6.2 Future work

1. The primary assumptions used in this thesis is that bubbles are

spherical, which has been well accepted and validated by the previous

researchers for studying the problems presented in this thesis. For

example, for rectified diffusion, Crum (1980) has demonstrated a

fairly well agreement between the experiments and predictions except

for addition of surface active agent. Although there is little reason for

the unexpected large discrepancy between experiments and

predictions based on our formulas, a sound experimental verification

will be an excellent propellant for our work in this field. Some

experimental work is being considered in the future, e.g. rectified

mass diffusion near and above resonance at megahertz and above,

rectified mass diffusion in viscoelastic mediums and rectified mass

diffusion under dual-frequency acoustic excitation. Development of a

numerical code for solving the full set of equations related with heat

and mass transfer across bubble interfaces under acoustic excitation
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with large amplitude is also being considered to validate results

shown in this thesis and gain deeper physical understandings of this

problem.

2. Due to the presence of other bubbles (e.g. in a cloud of bubbles), the

bubble is non-spherical and bubble-bubble interaction should be

considered. For those circumstances, more sophisticated models

should be used for simulations. A direct numerical simulation code

based on front tracking method developed by Tryggvason and

coworkers (Tryggvason et al., 2007; Tryggvason et al., 2011) is a

good choice to solve those problems. During this PhD program, some

works on this subject have been delivered (Zhang and Li, 2010b;

2010c). Zhang and Li (2010b) proposed a virtual grid based front

tracking method for the simulations of bubble cloud with high void

fraction. By allowing for the oscillations of non-spherical bubbles,

Zhang and Li (2010c) studied the response of cloud of bubbles to

pressure waves with finite amplitude. More works are being

performed toward the understanding of bubble cloud dynamics.
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Appendix A: Constants used

for calculations

If not specified, the following values for air and water are used for

calculations in Chapters 2-5: ambient pressure 0P =1.01×105 Pa; density

of the liquid l =1000 kg/m3; speed of sound in the liquid lc =1486 m/s;

viscosity of the liquid l =0.001 Pa·s; surface tension coefficient  =72.8

dyn/m; diffusion constant D =2.4×10-9 m2/s; thermal diffusivity of the gas

at constant pressure ,g pD  2.08×10-5 m2/s; thermal diffusivity of the gas

at constant volume ,g vD  2.90×10-5 m2/s; thermal diffusivity of the liquid

lD  1.42×10-7 m2/s; thermal conductivity of the gas gk  2.54×103

erg/cm/sec/K; thermal conductivity of the liquid lk  5.9×104

erg/cm/sec/K; specific heat ratio  =1.40; universal gas constant

gR =8.314 J/mol/K; molecular weight of the gas in the bubble gM =28.88

g; absolute temperature T =293.15 K; coefficient 0 /gd R TC P =0.02

( 0C is saturation concentration of the gas in the liquid in moles per unit

volume).
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In Chapter 4, if not specified, the following values from Yang and Church

(2005, p.3599) are used to mimic the properties of soft tissue: density of

the liquid l =1060 kg/m3; speed of the sound in the liquid lc =1540 m/s;

surface tension coefficient  =56 dyn/m; viscosity of the liquid

l =0.015 Pa·s; shear modulus G =0.5, 1.0 and 1.5 MPa.
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Appendix B: Damping and

natural frequency

determined based on

equations of bubble motion

in one-parameter family

In this appendix, the expressions of damping and natural frequency for the

radial oscillations of gas bubbles in liquids are determined based on

equations of bubble motion in the one-parameter family. Prosperetti and

Lezzi (1986) proposed the following one-parameter family equation (i.e.

“general Keller-Herring equation”) if written in terms of pressure

    23
1 1 1 3 1

2 3l l

R R
RR R

c c
 

   
        

   

 
 

 
       ,,

1 1
ext sext s

l l l l

d p R t p tp R t p tR R

c c dt


 

       
 


. (B1)

Here,  is an arbitrary parameter which is of smaller order of 1/ Ma

( Ma is the bubble wall Mach number) (Prosperetti and Lezzi, 1986,

p.466&Eq. (4.3)); ( , )extp R t and ( )sp t are given by Eqs. (2.2) and (2.3)
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respectively. If 0  , Eq. (B1) reduces to Keller’s equation (Eq. (2.1)). If

1  , Eq. (B1) reduces to the equation derived by Herring (1941) such as

       2
,,3 4

1 2 1 .
2 3

ext sext s

l l l l l

d p R t p tp R t p tR R R
RR R

c c c dt 
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   

 
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(B2)

The derivation procedure of damping and natural frequency for linear gas

bubble oscillations in liquids based on Eq. (B1) is identical with one

shown in Chap. 2.1. Here, we will only keeps terms up to the second order

of  (or x ). Substituting  0 1R R x  into terms involving  in Eq.

(B1), we obtain the following expressions term by term
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Based on Eqs. (B3)-(B5), we can clearly see that terms involving the 

in Eq. (B1) is of the second or higher order of  (or x ). Therefore, for

linear oscillations, the equations of bubble motion falling into the

one-parameter family will give the same expressions for damping and

natural frequency (i.e. Eqs. (2.6)-(2.9)).
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Appendix C: A complete

solution of harmonic

oscillator

Eq. (2.5) can be rewritten as

2
0 02 i t

totx x x A e       , (C1)

with

 0 0 01 / /lA i R c M    .

A complete solution of Eq. (C1) includes two parts: solution of the

corresponding homogenous equation (i.e. Eq. (C1) with 0  ); solution

of the inhomogenous equation. The complete solution of Eq. (C1) is
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Here, 1c and 2c are two constants to be determined by the initial



114

conditions. Based on Eq. (C2), one can see that the solution of the

corresponding homogenous equation (i.e. the first term in Eq. (C2)) can be

safely ignored because it decays exponentially with time owing to the term

totte  .



115

Appendix D: A brief note on

linearization of Gilmore’s

equation

Gilmore (1952) obtained following equation of bubble motion

23
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Here, lC is the speed of sound at bubble wall; H is the enthalpy at the

bubble wall. Eq. (D1) was linearized by Shima (1970) and a brief note on

the linearization of Eq. (D1) is given in this appendix. Following

Prosperetti and Lezzi (1986, Eqs. (3.1) and (3.2)), if the pressure in the

liquid p does not deviate too strongly from the undisturbed pressure,

one can express the enthalpy h and the speed of sound c as,

0 0
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Here, ( / )B A is the standard nonlinearity parameter of acoustics. Based

on Prosperetti and Lezzi (1986, p.461), lC and H can be determined if
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pressures ( p ) in Eqs. (D2) and (D3) are set as instantaneous pressure at

the bubble wall (i.e. 0

42 i tl
inp P R P e

R R


    ). For the linear

oscillations, the terms in the bracket of the order of 2
lc in Eqs. (D2) and

(D3) can be safely neglected. Similarly, terms of the order of 2
lC in Eq.

(D1) can also be safely ignored for linear oscillations. Then, one can

obtain

l lC c ,
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

 
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 
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Therefore, Gilmore’s equation (Eq. (D1)) has reduced to Keller’s equation

(Eqs. (2.1)-(2.3)). Then, Shima’s result (Eq. (2.17)) can be reduced from

Eq. (2.12) by setting th =0 and  =0.
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Appendix E: Derivations of

non-dimensional thermal

damping constant with

surface tension

In this appendix, expression of non-dimensional thermal damping constant

( th ) with surface tension is derived based on frame work of Devin (1959).

For convenience, we firstly employ the notations used by Devin (1959)

and then those used by Prosperetti (1977).

With inclusion of surface tension, Eq. (4) of Devin (1959) becomes

 2 ,exp in eqP P i t P   . (E1)

Here, 2P is the instantaneous pressure inside bubble; P is the complex

amplitude of the deviation of pressure from the equilibrium value.

Because Devin (1959) assumed that the pressure inside bubble is uniform,

2P and P are only functions of time ( t ) rather than radial coordinate

( r ). Based on the first law of thermodynamics, the deviation of absolute
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temperature ( 1( , )r t ) from the equilibrium absolute temperature ( 0T ) was

determined by Devin (1959, Eqs. (38) and (40)). The expression of

1( , )r t is not influenced by the surface tension. For a spherical shell with

radius r and thickness dr , the equilibrium volume of the shell 0v can

be written as (Devin, 1959, Eq. (41)),

2
0 4v r dr . (E2)

Based on the law of ideal gas, we obtain1

 2 0 , 0 0/in eqP P T T     . (E3)

Here,  is the deviation of volume of the shell from the equilibrium

volume. Following Eqs. (43)-(47) of Devin (1959) and differentiating both

sides of Eq. (E3) and integrating d from 0r  to 0r R , one can

obtain the deviation of the total bubble volume (V  ) from equilibrium total

bubble volume ( 0V ) as follows,

 0

,

3 exp

in eq

V P i t
V

P


 


. (E4)

Here,  is given by Eq. (2.44). 0P in Eq. (47) of Devin (1959) was

replaced by ,in eqP in Eq. (E4) to include surface tension. Now, we will

convert the Devin’s notations into Prosperetti’s notations (referring to

Chap.2.1) such as

2inP P , (E5)

1 Eq. (42) of Devin (1959) (
2 , 0 0

/
in eq

P P T T   ) contains typo-error, which has been corrected in Eq.

(E3).
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   0 , expP p r t P i t . (E6)1

Then, based on Eq. (49) of Devin (1959) and Eq. (2.4), we obtain

   0 0 ,exp , 4 3th th in eqb V k V P i t P p R t x P x             . (E7)

Here, thb is the thermal dissipation coefficient. The meaning of k will

be explained later. Noticing that    
33

0 04 / 3 1 1 3V R x V x      
 

, we

have,

04 / 3th thb V , (E8)

, 0/in eqk P V  . (E9)

In Eq. (E7), stiffness k used by Devin (1959, Eq. 49) was replaced by k

because the two expressions are not identical with inclusion of surface

tension. Devin (1959, p.1661) derived the expression of stiffness k with

inclusion of surface tension as follows,

  , 0 0 ,/ 1 2 / 3in eq in eqk P V R P    . (E10)

k reduces to k only if surface tension in Eq. (E10) is neglected. Devin

(1959) defined th as,

/th thb k  . (E11)

Substituting Eq. (E4) into Eq. (E7), one can obtain thb and k as

functions of  . Further using Eqs. (E8)-(E11), one can obtain Eq. (2.46)

for  and Eq. (2.49) for th .

1 Pay attention that exp( )P i t derived based on assumption of uniform pressure inside gas

bubble used by Devin (1959) is only a function of time while
0

( , )P p r t derived based on

assumption of non-uniform pressure inside gas bubble used by Prosperetti (1977) is a function of
both time and radial coordinate.
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Appendix F: Derivations of a

set of simplified formulas for

thermal effects

In this appendix, Taylor Series expansion is applied to Eqs. (2.29) and

(2.31) up to the third order of 1G .  
1/22

1 14 /i G iG   
 

in Eqs. (2.29)

and (2.31) can be expanded as

       
1/22 2

1 1 1 14 / 2 / 1 2 / 1/ 1i G iG i G i G          
 

       3 4
1 12 / 2 / 1 1 1/ G O G      . (F1)

Substituting Eq. (F1) into Eqs. (2.29) and (2.31), we obtain

     3
1 1 12 / 2 / 2 / 1 1 1/G G       

     2 4
1 12 2 / 1/ 1i G O G       , (F2)

       3
2 1 12 1 1/ 2 / 2 / 1 1 1/G G        

     2 4
1 12 / 1/ 1i G O G      , (F3)

        1/2 3
1 2 1 1/ 2 2 1/ 1 2 / 2 / 1 1 1/G G G         

     
1/2

2 4
1 12 2 / 1/ 1i G O G       , (F4)

          
1/21/2 2 3

2 1 2 1 1 11 2 / 1 1 1/ 1 1/G G G G i O G           . (F5)

If neglecting 2
1G and 3

1G terms in the bracket of Eqs. (F4) and (F5), we
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obtain

      
1/21/2 2

1 2 1 1/ 2 2 1/ 1 2G G i O G      , (F6)

      
1/21/2 2

2 1 2 1 11 1 1/G G G i O G      . (F7)

Prosperetti (1977) further applied Taylor series expansion to Eqs. (F6) and

(F7), which lead to Eqs. (2.36) and (2.37) for the expressions of 1 and

2 .

By checking the real and imaginary parts of Eqs. (F2)-(F5) and comparing

with Prosperetti’s analysis (Eqs. (2.36)-(2.39)), we identify that term

   2
12 / 1/ 1i G     in 2 is a paramount one because this term is of

the leading order in the imaginary part of 2 and cannot be neglected for

high-frequency regions.
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Appendix G: Solution of

equation of bubble motion

based on perturbation

method

In this appendix, the equation of bubble motion is solved based on

perturbation method with direct series expansions. The generalized

Keller’s equation (Eqs. (4.1) and (4.5)) will be firstly solved. The solution

of Keller’s equation (Eqs. (2.1)-(2.3)) can be conveniently obtained by

setting shear modulus G =0 in the solution of the generalized Keller’s

equation. Although thermal damping is not considered in Eqs. (4.1) and

(4.5), it can be conveniently included through the use of effective thermal

viscosity ( th ) in the following derivations. The solution of Eqs. (4.1) and

(4.5) is assumed as

2
1 2

0

1 ...
R

x x
R

     . (G1)

Here, 0/AP P  . In this appendix, we only consider the terms up to the

second order of  . In Eq. (G1), only stable solution of Eqs. (4.1) and (4.5)
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is considered. The influence of initial conditions and the solution of

homogenous equation (transient solution) are discussed in Appendix I.

Substituting Eq. (G1) into Eqs. (4.1) and (4.5), we obtain,

 

   

2 2 2 2 20
0 1 2 1 1 1 1 0 1

1
0 1 1 0 1 1

0 0

1 0
0 1 1 0 1 1

0 0

3

2

2 2
3 cos 4 4

2 2
3 sin 4 4

l

l l

l l

l

R
R x x x x x x R x

c

P x x P t x Gx
R R

R
P x x P t x Gx

c R R

  

 
    

 
     





  
     

  

  
        

  

  
        

  

     



   

 

   

     

 

1 2 2
0 2 0 1

0 0 0 0

2
2 1 1 2 1

1 20
0 2 0 1 1 2 1 1

0 0 0

2
1 2 1 1

3 3 12 2 2 2
3

2

4 4 2

2 2 2
3 3 3 1 2

4 4

l

l

l

l

l

P x P x
R R R R

x x x G x x

R
P x P x x x x x

c R R R

x x x x G x

    
  



  
    







      
            

      

   

    
           

    

    

 

   

    

   

 

2 1 1

1 0 1 1 0 1

0 0

1 1 0 1 0 1

0 0

2

2 2
3 sin 4

2 2
3 cos 4 0.

l

l

x x

x P x x P t x
R R

x x P x P t x
R R

 
   

 
  



  
       

  

   
        

   



  

 

(G2)

Based on Eq. (G2), the sum of all terms with order  (or 2 ) in Eq. (G2)

should be equal to zero. To the first order of  , the result is

     2 0
1 1 0 1 02

0

2 cos / sintot l

l

P
x x x t R c t

M R
    


        , (G3)

where

20
02

0

2

2
l

tot

l l

R

M R c


 


  ; (G4)
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2
0 02

0 0 0

1 2 2
3 4

l

P G
M R R R

 
 



  
     

  
; (G5)

0
2
0

4
1 l

l l

R
M

R c




  . (G6)

The solution of Eq. (G3) can be written as

 1 1 1cosx A t   , (G7)

where

 

 

1/2
2

00
1 22 2 2 2 2

0 0

1 /

4

l

l tot

R cP
A

M R



    

 
  
   

; (G8)

   
 

2 2
0 01

1 2 2 2
0 0

/ 2
tan

2 /

l tot

tot l

R c

R c

    


   


   

  
   

. (G9)

To the second order of  in Eq. (G2), we obtain,

2 0
2 2 0 22 totx x x

M
 


     , (G10)

where

   

 

2 20
0 1 1 1 1 1 0 1 1 12 2

0 0 0 0

20
0 1 1 1 1 1 1 12

0 0 0

0
1 0 1 1 02

0 0 0

43 1 3 (3 1) 2 2

2 2

1 2 4
3 3 1 4

1 2 2
3 sin

l

l l l

l

l l

l l

R
x x x x x P x x x

c R R R R

R
P x x x x x x x

c R R R

R
x P x x P

c R R R

   

 

 
  



 
  



  
         

  

  
        

  

 
     

 

    

   

   

 

1

0
1 0 1 1 0 12

0 0 0

2 0
1 1 12

0

4

1 2 2
3 cos 4

8
.

l

l

l l

l l

t x

R
x P x x P t x

c R R R

RG
x x x

R c



 
  





 
 

 

  
       

  

 
   

 



 



(G11)

The solution of Eq. (G10) can be written as
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 2 2 2 2cos 2x A t B    . (G12)

Here, 2B is a constant. To the second order of  , the oscillating term

 2 2cos 2A t  in Eq. (G12) has no contribution to the time averages

0/R R  , 4
0( / )R R  and 4

0 0( / ) ( / )inR R P P  in the equation of bubble

growth rate of rectified diffusion i.e. Eq. (3.6) (Eller and Flynn, 1965,

p.501). For details, readers are referred to Appendix H. Therefore, we only

need to determine 2B in Eq. (G12). One can find that terms involving

1 1x x  and 1 1x x can be written as harmonic terms (i.e.  sin 2 t ) and

     1 1 1 1sin cos sin 2x t x t A t        .

Those terms have no contribution to the time averages in Eq. (3.6) to the

second order of  . Then, the sum of constant terms ( 0
 ) in 0 can be

written as

 
2 2

2 2 2 2 1 1
0 1 1 02 2

0 0 0 0

41 3 1 2 4
3 3 1

2 4 4 l l

A GA
A A P

R R R R

 
   

 

  
          

  
.

(G13)

Therefore, we obtain

2
2 0 0/B M  . (G14)

Although the expression of 2A in Eq. (G12) is not used in this thesis, it

can be determined by Eq. (G11). Now the solution of the generalized

Keller’s equation (Eqs. (4.1) and (4.5)) required in Chap. 4.3 is given. To

the first order of  (i.e. Eq. (G3)), the above solution reduces to the

solution of the linear oscillations in Chap. 4.2.2.
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If we set G =0 in Eqs. (G8), (G9) and (G14) and include the thermal

damping term by replacing l with ( )l th  , the solution of Keller’s

equation (Eqs. (2.1)-(2.3)) to the second order of  required in Chap. 3.3

will be obtained. To the first order of  , the above solution reduces to the

solution of linear oscillations in Chap. 2.1.

In the other sections, the notations used by Crum and Hansen (1982a) will

be used with the following conversions

1A  ; 1  ; 0/AP P  ; 2
2K B  .

Thus, Eq. (G1) can be written as

     
22

0 0 0/ 1 / cos /A AR R P P t K P P       .
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Appendix H: Formulas of

rectified mass diffusion to

the fourth order

In this appendix, we will derive the time averages 0/R R ,  
4

0/R R

and    
4

0 0/ /inR R P P required in the formulas of rectified diffusion

(Eq. (3.6)) to the fourth order of  0/AP P . The complete solution of the

equation of bubble motion is (referring to Appendix G)

     
22

0 0 0/ 1 / cos /A AR R P P t K P P      

   
2

2 0 2/ cos 2 .AA P P t   (H1)

Comparing with Eq. (3.12), Eq. (H1) contains the second harmonic term.

We perform the time averages within time duration bT , such as

 0 2 /bT nT n    .

Here, 0T is the period of the applied sound field and n is a small integer.

The general Binomial theorem is

 
0

m k m k k
m

k

x y C x y






  ,

where
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   1 ... 1

!
k
m

m m m k
C

k

  
 .

Here, m is a real number; k is an integer; x and y are two terms in

the Binomial. Following relationships of trigonometric function will be

used during the derivations,

   sin / cosd dt    ;

   cos / sind dt     ;

     sin 2 2sin cos   ;

   2 1
cos 1 cos 2

2
     ;

     3cos 3 4cos 3cos    ;

       1 2 1 2 1 2

1
cos cos cos cos

2
           ;

       1 2 1 2 1 2

1
sin cos sin sin

2
           .

Here, 1 and 2 are two arbitrary variables. To the fourth order of

 0/AP P , one can find following expressions,

 
22

0 0

0

1
/ 1 /

bt T

A

b t

R
R R dt K P P

T R




   , (H2)

 

   

   

       

0

0

2 41 2 2 4 2
0 0

2 22 1 2 2
2 0 0

4 4 44 4 1 2 2 2 2
0 1 2 0 2 2 0

1
/

1 / /

1
1 / /

2

3 1 1
/ / cos 2 / .

8 4 2

b
mt T

m

b t

m A m A

m m A A

m A m m A m A

R
R R dt

T R

C K P P C K P P

C C K P P P P

C P P C C A P P C A P P

 

 

   







 
  

 

  

  
 

   



(H3)

If 4m  in Eq. (H3), we obtain



129

     
4 22

0 0/ 1 3 4 /AR R K P P  

   
44 2 4 4 2 2

2 2 2 0

3
6 6 3 cos 2 3 /

8
AK K A A P P     

 
       

. (H4)

If 4 3m   in Eq. (H3), we obtain

   
  

 
4 3 22

0 0

4 3 3 3
/ 1 4 3 /

4
AR R K P P

  
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   
    

 

       4 2 44 3 3 3 4 3 3 3 2 3
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    
 

    
 


       44 3 3 3 2 3 1 33

8 4!

   


   


    
 

   
 

42 2
2 2 2 0

4 3 3 3 2 3 4 3 3 3
cos 2 / .

8 4
AA A P P

    
  

     
   



(H5)

Although thermal damping was considered in Crum and Hansen (1982a),

it was not included in the expression of instantaneous pressure inside

bubbles ( inP ) (Crum and Hansen, 1982a, Eq. (3)). If thermal damping is

considered using an effective thermal viscosity, the instantaneous pressure

inside bubbles is (Prosperetti, 1977, p.18)

  
3

0 0 02 / / 4 /in thP P R R R R R


     .

Therefore,

       
4 4 3

0 0 0 0 0/ / 1 2 / /inR R P P P R R R





 

          
3

0 0 0 2 0 24 / / / sin 2 / sin 2 .th A AP P P R R t A P P t           

We notice that
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       

     
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 

     
 

       
   

  



 

     

         
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/
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A

t
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

   
 

            



         

        
     
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2 0 2 2 0 2
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/ cos 2 3 / cos 2

sin 2 / sin 2 0.

A A A

A A

A

K P P P P t P P t

A P P t A P P t

t A P P t dt

      

   

    

      


   
 

     



Therefore, thermal damping has no contribution to the

   
4

0 0/ /inR R P P . Then, we obtain

 

   
   

 

       

     

    
 

   
 

4 4 3
0 0 0 0 0
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0 0 0
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4

4 3 3 3 4 3 3 3 2 3
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4 3 3 3 2 3 1 33

8 4!

4 3 3 3 2 3 4 3 3 3
cos 2 / .

8 4
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A

A

R R P P P R R R

P R K P P

K K

A A P P



 
  

    
 

   


    
  

 

   
      

  

    
 


   


      
   

 

(H6)

Based on Eqs. (H2), (H4) and (H6), we have proofed that the harmonic

term  2 2cos 2A t  contributes to the time averages required by
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rectified diffusion with the fourth or higher orders of  0/AP P . To the

second order of  0/AP P , Eqs. (H2), (H4) and (H6) reduce to those

derived by Crum and Hansen (1982a), i.e. Eqs. (3.17)-(3.19).
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Appendix I: Influences of

initial conditions and

solution of homogenous

equation on rectified mass

diffusion

In this appendix, the influences of initial conditions and solution of

homogenous equation are discussed. Assuming that the initial conditions

of the equation of bubble motion without damping are   00R R and

 0 0R  , Eller and Flynn (1965, Eq. 52, p.501) obtained the solution as

         
22

0 0 0/ 1 sin / sin / /A AR R t t P P K P P            . (I1)

The second term in bracket is the solution of homogenous equation

(transient solution). Strictly speaking, Eq. (I1) only satisfies the boundary

conditions to the first order of  0/AP P . To the second order of  0/AP P ,

 0 0R  but    
22

0 0 00 1 /AR R K P P R   
 

.

According to Appendix C, the solution of inhomogeneous equation is the
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sum of the stable solution and the transient solution. If the damping

mechanisms are considered in the bubble motion, the transient solution

will decay exponentially with the time owing to the term totte  (referring

to Appendix C). Noticing that the problems discussed in this thesis (e.g.

rectified diffusion) are a rather slow process, we can safely ignore the

transient solution. Then the solution is (Eller, 1969, Eq. 7)

     
22

0 0 0/ 1 / cos /A AR R P P t K P P     . (I2)

Comparing with Eq. (3.12), only a phase  is missing in Eq. (I2) but it

will not influence the discussions in this thesis (e.g. rectified diffusion

phenomenon). Based Eq. (I2), one can obtain the initial conditions as

 0 0R  , (I3)

     
22

0 0 00 1 / /A AR R P P K P P    
 

. (I4)

For convenience, Eller (1969, p.1248, Eq.6) employed the Eqs. (I3) and

(I4) as the initial conditions in order that Eq. (I2) is strictly the solution of

the equation of bubble motion with corresponding initial boundary

conditions. Eq. (I2) was also used by Crum (1980, Eq.6) and was further

modified by Crum and Hansen (1982a, Eq.7) with the phase  included

     
22

0 0 0/ 1 / cos /A AR R P P t K P P       . (I5)

For convenience, Eq. (I5) is employed in our work and the following

initial conditions are used

     
22

0 0 00 1 / cos /A AR R P P K P P     
 

, (I6)
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   00 / sinAR P P    . (I7)
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Appendix J: Solution of

equation of bubble motion

under acoustic field of dual

frequency

In this appendix, the equation of bubble motion under acoustic field with

dual frequency is solved based on perturbation method with direct series

expansions. We assume that the solution of Keller’s equation under

dual-frequency acoustic field (Eqs. (2.1), (2.2) and (5.1)) is

2
1 2

0

1 ...
R

x x
R

     . (J1)

Here,
1 0/AP P  . In Eq. (J1), only stable solution is considered and the

influences of initial conditions and the solution of homogenous equation

(transient solution) have been discussed in Appendix C and I. Here, we

only consider the terms up to the second order of  . We denote

2 121 /A AP P  . Thermal damping is currently ignored. Substituting Eq. (J1)

into Eqs. (2.1), (2.2) and (5.1), we obtain,
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   

     
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 
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


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  
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        

  
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        
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
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

  
    







      
           

      

 

    
           

    

   

 

   

  

     

   

1 0 1 1 0 1 1 0 21 2 2 1

0 0

1 1 0 1 0 1 0 21 2 1

0 0

2 2
3 sin sin 4

2 2
3 cos cos 4 0.

l

l

x P x x P t P t x
R R

x x P x P t P t x
R R

 
      

 
    

  
        

  

   
         

   

  

 

(J2)

Based on Eq. (J2), the sum of all terms with order  (or 2 ) in Eq. (J2)

should be equal to zero respectively. To the first order of  , the result is

2
1 1 0 12 totx x x          0

1 1 0 12
0

cos / sinl

l

P
t R c t

M R
  


   

      21 2 2 0 2cos / sinlt R c t       (J3)

where

20
02

0

2

2
l

tot

l l

R

M R c


 


  ; (J4)

2
0 02

0 0 0

1 2 2
3

l

P
M R R R

 
 



  
    

  
; (J5)

0
2
0

4
1 l

l l

R
M

R c




  . (J6)
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The solution of Eq. (J3) can be written as

   1 11 1 11 12 2 12cos cosx A t A t       , (J7)

where

 

 

1/2
2

1 00
11 22 2 2 2 2
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1 /

4

l

l tot

R cP
A

M R


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 
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; (J8)

  
 

2 2
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11 2 2 2
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/ 2
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2 /

l tot

tot l

R c

R c

    


   


   

  
   

; (J9)

 

 
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2
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1 /

4

l
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A

M R
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  
 

2 2
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
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. (J11)

To the second order of  in Eq. (J2), we obtain,

2 0
2 2 0 22 totx x x

M
 


     , (J12)

where
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l

l
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R
x P x x P t P t x

c R R R
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 
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

 
  

 
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

 

(J13)

The solution of Eq. (J12) can be written as

   2 2 21 1 21 22 2 22cos 2 cos 2x B A t A t       
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   23 1 2 23 24 1 2 24cos cosA t A t                 . (J14)

Here, 2B is a constant. In Eq. (J14), the second and third terms are

second harmonics. The frequencies of the fourth and fifth terms in Eq.

(J14) are the sum or difference of the two driving frequencies. To the

second order of  , the second harmonic terms and the sum and difference

terms in Eq. (J14) have no contribution to rectified diffusion (referring to

Appendix K). Therefore, we only need to determine 2B in Eq. (J14). The

sum of constant terms ( 0
 ) in 0 can be written as

   
2 2

2 2 2 2 11 12
0 11 1 12 2 02

0 0 0

1 1 2 4
3 3 1

4 4 l

A A
A A P

R R R

 
   



  
        

  
. (J15)

Then we obtain

2
2 0 0/B M  . (J16)

Now the solution of Keller’s equation (Eqs. (2.1), (2.2) and (5.1)) under

acoustic field with dual frequency has been obtained. For convenience, we

set 1M  in the following discussions. As shown in Chap. 2.1, Keller’s

equation reduces to Rayleigh-Plesset equation without liquid

compressibility. If the effects of liquid compressibility (i.e. the terms

involving lc ) are ignored, Eqs. (J8)-(J11) reduce to

   1

1/22 22 2 2 2
11 1 0 1 0 02 2

0 0

1 / 4 /
A

l l

l

P
A R

R
      

 


      

, (J17)

1 1
11 2 2

0 1

2
tan tot 


 

  
  

 
, (J18)
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   2

1/22 22 2 2 2
12 2 0 2 0 02 2

0 0

1 / 4 /
A

l l

l

P
A R

R
      

 


      

, (J19)

1 2
12 2 2

0 2

2
tan tot 


 

  
  

 
. (J20)

Eqs. (J17) and (J19) are exactly the same as those derived by Newhouse

and Shankar (1984, Eq. (10)) based on Rayleigh-Plesset equation.
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Appendix K: Time averages

required in formulas of

rectified mass diffusion

under acoustic field of dual

frequency

As shown in Appendix J, the solution of bubble motion under acoustic

field with dual frequency is

       
1 1

2

0 2 0 11 1 11 12 2 12 0/ 1 / cos cos /A AR R B P P A t A t P P          

      21 1 21 22 2 22 23 1 2 23cos 2 cos 2 cosA t A t A t             

   
1

2

24 1 2 24 0cos /AA t P P       .

(K1)

This solution has included the second harmonics and terms with sum or

difference of dual frequency. For convenience, we set 2 0 1n  (Here,

0n is an integer). Therefore, the time averages are performed within time

duration 1bT nT (Here, 1 12 /T   and n is an integer). The period

of the sum of frequencies  1 2  is  0/ ( 1)bT T n n   . The period of
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the sum of frequencies  2 1  is  0/ ( 1)bT T n n   . Here, we only

give the expressions of time averages to the second order of  
1 0/AP P :

 
1

2

0 2 0

0

1
/ 1 /

bt T

A

b t

R
R R dt B P P

T R
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(K3)

If m=4 in Eq. (K3), we obtain

   
1

2
4 2 2

0 2 11 12 0( / ) 1 4 3 /AR R B A A P P      . (K4)

If 4 3m   in Eq. (K3), we obtain

4 4 3
0 0 0

0 0

2
( / ) ( / ) 1 ( / )inR R P P R R

P R
  

   
 

 
      

1

2
2 2

2 11 12 0
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4 3 3 32
1 1 4 3 / .
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AB A A P P
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 
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     
(K5)
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Based on Eqs. (K2), (K4) and (K5), the contributions of second harmonics

and sum or difference terms to rectified diffusion is with the fourth or

higher orders of
1 0( / )AP P .
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