
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/55161 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/55161


www.warwick.ac.uk

AUTHOR: Duy Pham DEGREE: Ph.D.

TITLE: Markov-functional and Stochastic Volatility modelling

DATE OF DEPOSIT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Markov-functional and Stochastic

Volatility modelling

by

Duy Pham

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Statistics

September 2012



Contents

List of Tables v

List of Figures vii

Acknowledgments xi

Declarations xii

Abstract xiii

Chapter 1 Introduction 1

I Markov-functional modelling 5

Chapter 2 An overview of interest rate modelling 6

2.1 Basic products and derivatives in the interest rate market . . . . . . 6

2.1.1 Fundamental Instruments . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Vanilla interest rate options . . . . . . . . . . . . . . . . . . . 9

2.1.3 Bermudan swaptions . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Pricing and hedging Bermudan swaptions in practice . . . . . . . . . 12

2.2.1 The choice of models . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 A motivational example: two-period Bermudan swaption . . 15

Chapter 3 Implications for Hedging of the choice of driving process

for one-factor Markov-functional models 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Pricing Bermudan swaptions under the one dimensional swap Markov-

functional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 The one dimensional swap Markov-functional model . . . . . 24

3.3.2 Parametrizations by time and by expiry . . . . . . . . . . . . 26

3.3.3 An alternative parametrization of time . . . . . . . . . . . . . 30

i



3.3.3.1 One step covariance . . . . . . . . . . . . . . . . . . 31

3.3.3.2 Weighted covariance . . . . . . . . . . . . . . . . . . 33

3.4 Vegas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 The vega computation under the swap Markov-functional model 35

3.4.2 The Bermudan swaption’s vegas under the HW and MR models 37

3.4.3 The Bermudan swaption’s vegas under the one step and weighted

covariance models . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 The net market vegas for different parameterizations . . . . . 43

3.5 A hedging result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 A hedging portfolio for the HW and MR models . . . . . . . 49

3.5.1.1 Vega hedge . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1.2 Delta hedge . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1.3 The gammas of the HW and MR hedging portfolios 52

3.5.2 A hedging portfolio for the one step and weighted covariance

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2.1 Vega hedge . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2.2 Delta hedge . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2.3 The gammas of the one step and weighted covariance

hedging portfolios . . . . . . . . . . . . . . . . . . . 62

3.6 Gamma-theta balance . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.A Appendix: Estimating the market implied covariance/correlation struc-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.A.1 Approximating the terminal correlations, a global fit approach 71

3.A.2 Approximating the covariances, a local fit approach . . . . . 74

3.B Appendix: Explanations for the deltas of the Bermudan swaption . . 76

3.B.1 Delta calculation . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.B.2 Main effects of bumping the co-initial swap rates on the inputs

and the implication for the deltas . . . . . . . . . . . . . . . . 77

II Stochastic volatility modelling 80

Chapter 4 An overview of smile modelling 81

4.1 Black/Normal models and general market consensus . . . . . . . . . 81

4.2 Local volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Desirable properties of a “good” model in practice . . . . . . . . . . 86

ii



Chapter 5 On the approximation of the SABR model: a probabilistic

approach 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 SABR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 A displaced diffusion version of the SABR model . . . . . . . 91

5.2.1.1 Near the money . . . . . . . . . . . . . . . . . . . . 92

5.2.1.2 Implied volatilities in the wings . . . . . . . . . . . 98

5.3 A probabilistic approximation . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Approximating the terminal distribution . . . . . . . . . . . . 101

5.3.2 Normal approximation . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2.1 Implementation: advantages and disadvantages . . . 103

5.3.2.2 A comparison with other approximations . . . . . . 106

5.3.3 Normal Inverse Gaussian approximation . . . . . . . . . . . . 108

5.3.3.1 Matching Parameters . . . . . . . . . . . . . . . . . 110

5.3.3.2 Implementation: two-dimensional integration . . . . 111

5.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Normal SABR . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.2 Log-Normal SABR and DD-SABR . . . . . . . . . . . . . . . 117

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.A Appendix: Distribution of FT under the Log-Normal SABR model . 124

5.B Appendix: Proof of Proposition 1 (conditional moments of the real-

ized variance VT ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.B.1 First conditional moment of VT . . . . . . . . . . . . . . . . . 126

5.B.2 Second conditional moment of VT . . . . . . . . . . . . . . . . 127

5.C Appendix: Proof of proposition 2 (conditional mean and variance of

sT ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.D Appendix: DD-SABR equivalent Black implied volatility . . . . . . . 130

Chapter 6 On the approximation of the SABR with mean reversion

model: a probabilistic approach 134

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 An alternative stochastic volatility model for modelling smiles . . . . 137

6.2.1 The SABR and SABR with mean reversion models (SABR-MR)137

6.2.1.1 The DD-SABR-MR model . . . . . . . . . . . . . . 139

6.3 Forward volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.2 Some numerical examples . . . . . . . . . . . . . . . . . . . . 142

6.4 A probabilistic approximation for the SABR-MR model . . . . . . . 147

6.4.1 Approximating the terminal distribution . . . . . . . . . . . . 148

6.4.2 Normal Inverse Gaussian approximation . . . . . . . . . . . . 150

iii



6.4.2.1 Matching parameters . . . . . . . . . . . . . . . . . 151

6.4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . 152

6.5 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.1 Normal SABR-MR (β = 0) . . . . . . . . . . . . . . . . . . . 153

6.5.2 Log-Normal SABR-MR and DD-SABR-MR (β ∈ (0, 1]) . . . 158

6.5.3 Stress test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.A Distribution of yT under the Log-Normal SABR-MR model . . . . . 164

6.B Distributions of yT1 and yT2 under the modified SABR-MR model in

Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.C Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.C.1 First conditional moments of HT and VT . . . . . . . . . . . 168

6.C.2 Second conditional moment of VT . . . . . . . . . . . . . . . . 169

Chapter 7 Hedging European options with stochastic volatility mod-

els 170

7.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Hedging with stochastic volatility: theory and practice . . . . . . . . 171

7.2.1 The theoretical concept: from deterministic to stochastic volatil-

ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1.1 Numerical Examples . . . . . . . . . . . . . . . . . . 175

7.2.2 Practical delta and vega . . . . . . . . . . . . . . . . . . . . . 178

7.2.2.1 Numerical Examples . . . . . . . . . . . . . . . . . . 179

Chapter 8 Discussion 184

iv



List of Tables

3.1 Market data from the swaption matrix to be incorporated into the

driving process x for a 11 years annual Bermudan swaption. HW’s

approach (left), alternative approach (right). . . . . . . . . . . . . . 31

3.2 Black implied volatilities (%) of the ATM swaptions on October 17,

2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Initial swap rates (%) on October 17, 2007. . . . . . . . . . . . . . . 38

3.4 The Bermudan swaption’s scaled vegas (in 104) under the HW model. 39

3.5 The Bermudan swaption’s scaled vegas (in 104) under the MR model. 39

3.6 The Bermudan swaption’s scaled vegas (in 104) under the one step

covariance model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 The Bermudan swaption’s scaled vegas (in 104) under the weighted

covariance model (α = 0.05). . . . . . . . . . . . . . . . . . . . . . . 42

3.8 The Bermudan swaption’s scaled vegas (in 104) under the weighted

covariance model (α = 0.3). . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 The Bermudan swaption’s scaled vegas (in 104) under the weighted

covariance model (α = 5). . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 The Bermudan swaption’s scaled vegas (in 104) for the HW and MR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 The co-terminal vanilla swaptions’ scaled vegas (in 104). . . . . . . . 50

3.12 Vega hedging (N sption
i ) for the HW and MR models. . . . . . . . . . 50

3.13 Delta hedging (N swap
i ) for the HW and MR models (correspond to

swaps with notional N = 1 million). . . . . . . . . . . . . . . . . . . 52

3.14 Scaled total gammas of the HW and MR portfolios. . . . . . . . . . 54

3.15 The vanilla swaptions’ scaled vegas (in 104). . . . . . . . . . . . . . . 59

3.16 Vega hedging (N sption
i,j ) for the one step covariance model. . . . . . . 60

3.17 Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.05). 60

3.18 Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.3). 61

3.19 Vega hedging (N sption
i,j ) for the weighted covariance model (α = 5). . 61

3.20 Delta hedging (N swap
i ) for the one step and the weighted covariance

models (correspond to swaps with notional N = 1 million). . . . . . 62

v



3.21 Scaled total gammas of the one step and weighted covariance portfolios. 63

3.22 Contribution of the gamma ε>A(t)ε to the change in values of the

portfolios as all co-initial swap rates move up (or down) by 1 bp, i.e.

ε> = (±0.0001, . . . ,±0.0001). . . . . . . . . . . . . . . . . . . . . . . 66

3.23 The change in values of the portfolios as time advances by 1 trading

day (theta). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.24 Contribution of the gamma ε>A(t)ε to the change in values of the

portfolios of payer Bermudans with different strikes as all co-initial

swap rates move up (or down) by 1 bp, i.e. ε> = (±0.0001, . . . ,±0.0001). 69

3.25 The change in values of the portfolios of payer Bermudan swaptions

with different strikes as time advances by 1 trading day (theta). . . . 69

3.26 The gamma-theta balance (
∂V port

t
∂t h + 1

2ε
>A(t)ε) of the portfolios of

payer Bermudan swaptions with different strikes as co-initial swap

rates move 3 bp after 1 trading day, i.e. h = 1 trading day and

ε> = (±0.0003, . . . ,±0.0003). . . . . . . . . . . . . . . . . . . . . . . 70

3.27 Effects of bumping the co-initial swap rates by 1 bp on the LIBORs

(in percentage). The bold figures represent the main effects. . . . . . 78

3.28 Effects of bumping the co-initial swap rates by 1 bp on the co-terminal

swap rates (in percentage). The bold figures represent the main effects. 79

5.1 Probability mass assigned to the absorbing barrier (CEV-SABR) and

the negative rates region (DD-SABR) for the four cases considered in

figures 5.7 and 5.8 (computed by direct Monte Carlo simulation). . . 100

5.2 Checklist of the most current approximations for the SABR model. . 106

5.3 Fitting errors, in percentages, against strike and maturity for β =

0, ν = 0.6, ρ = −0.1, F0 = 90, σ0 = 9 (approximation implied volatil-

ity minus MC volatilities). . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Probability mass assigned to the negative rates region for the four

cases considered in figures 5.7 and 5.8. . . . . . . . . . . . . . . . . . 123

7.1 Calibrated parameters for the Normal SABR and DD-SABR models

for different expiries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 Parameters for the Normal SABR-MR and DD-SABR-MR models

for all expiries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

vi



List of Figures

2.1 Zero-coupon bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Deposit cashflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 FRA cashflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Payers interest rate swap cashflows . . . . . . . . . . . . . . . . . . . 9

3.1 Global effect of bumping σ̃i,n+1−i on the instantaneous volatility func-

tions of the log-LIBORs. The dots represent a very small effect. . . . 28

3.2 Local effects of bumping the σ̃i,n+1−i on the instantaneous volatility

functions of the log-LIBORs. . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The (net) row sum of the scaled vegas (in 104) of a 11-years annual

Bermudan swaption for different models and parameters. . . . . . . . 44

3.4 The scaled deltas of the Bermudan under the HW and MR models. . 52

3.5 Proxy vs. row sum of the gamma matrix under the HW model. . . . 53

3.6 Scaled total gamma contributions from the co-terminal vanilla swap-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Scaled gamma vectors of the HW and MR portfolios before and after

the hedge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Scaled gamma contribution vectors of the co-terminal swaptions and

the co-initial swaps for the HW and MR portfolios. . . . . . . . . . . 58

3.9 Scaled gamma vectors of the HW and the one step and weighted

covariance portfolios before and after the hedge. . . . . . . . . . . . 64

3.10 Scaled gamma contribution vectors of the vanilla swaptions and the

co-initial swaps for the HW and the one step and weighted covariance

portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Effects of maturity T and Volvol ν on the mapping when the ATM are

matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-

CEV: CEV-SABR MC solution, MC-DD: DD-SABR MC solution,

Errors: MC-DD minus MC-CEV. . . . . . . . . . . . . . . . . . . . . 93

vii



5.2 Effects of maturity T and Volvol ν on the mapping when the ATM are

matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-

CEV: CEV-SABR MC solution, MC-DD: DD-SABR MC solution,

Errors: MC-DD minus MC-CEV. . . . . . . . . . . . . . . . . . . . . 94

5.3 Effects of maturity T and Volvol ν on the mapping when the ATM are

matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-

CEV: CEV-SABR MC solution, MC-DD: DD-SABR MC solution,

Errors: MC-DD minus MC-CEV. . . . . . . . . . . . . . . . . . . . . 95

5.4 Effect of very long maturity T on the mapping when the ATM are

matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. . . . . 96

5.5 Effect of ρ on the mapping when the ATM are matched. Parameters:

β = 0.5, T = 10, ν = 0.3, σ0 = 130%, F0 = 90. . . . . . . . . . . . . . 97

5.6 Effect of β on the mapping when the ATM are matched. Parameters:

ρ = −0.2, T = 10, ν = 0.3, F0 = 90, σ0 is chosen for each case so that

the ATM are comparable. . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Implied volatilities under different models. Parameters: β = 0.5, ρ =

−0.2, σ0 = 4.30%, 3.80% as maturity increases, respectively. . . . . . 99

5.8 Implied volatilities under different models. Parameters: β = 0.5, ρ =

−0.2, σ0 = 4.10%, 3.70% as maturity increases, respectively. . . . . . 100

5.9 The integrand of (5.12) as a function of σT . Left plot: β = 1, ρ =

−0.5, F0 = 90,K = 90, T = 10, ν = 0.3, σ0 = 15%, right plot: β =

1, ρ = −0.5, F0 = 90,K = 90, T = 15, ν = 0.6, σ0 = 15%. . . . . . . . 105

5.10 Normal Q-Q plots: standardized conditional samples of sT |σT against

the standard Normal distribution. Common parameters: β = 1, ρ =

−0.5, F0 = 90, σ0 = 5%. left plot: T = 15, ν = 0.3, σT = 5%, right

plot: T = 15, ν = 0.3, σT = 50%. . . . . . . . . . . . . . . . . . . . . 109

5.11 Effects of maturity within a high Volvol regime on the Normal and

NIG approximations. Other parameters: β = 0, ρ = −0.1, F0 =

90, ν = 0.6, σ0 = 9. The dashed curve of the same colour indicates

the errors of the corresponding approximation. . . . . . . . . . . . . 114

5.12 Effects of maturity within a high Volvol regime on the Normal and

NIG approximations. Other parameters: β = 0, ρ = −0.1, F0 =

90, ν = 0.6, σ0 = 9. The dashed curve of the same colour indicates

the errors of the corresponding approximation. . . . . . . . . . . . . 115

5.13 Effects of moderate maturity within a low Volvol regime on the Nor-

mal and NIG approxmations. Common parameters: ν = 0.3, F0 =

90, β = 1, σ0 = 15%, ρ = −0.5. The dashed curve of the same colour

indicates the errors of the corresponding approximation. . . . . . . . 118

viii



5.14 Effects of moderate maturity within a low Volvol regime on the Nor-

mal and NIG approxmations. Common parameters: ν = 0.3, F0 =

90, β = 0.5, σ0 = 130%, ρ = −0.2. The dashed curve of the same

colour indicates the errors of the corresponding approximation. . . . 119

5.15 Effects of very long maturity within a low Volvol regime on the NIG

approximation. Common parameters: ν = 0.3, F0 = 90, β = 1, σ0 =

15%, ρ = −0.5. The dashed curve of the same colour indicates the

errors of the corresponding approximation. . . . . . . . . . . . . . . . 120

5.16 Effects of very long maturity within a low Volvol regime on the NIG

approximation. Common parameters: ν = 0.3, F0 = 90, β = 0.5, σ0 =

130%, ρ = −0.2. The dashed curve of the same colour indicates the

errors of the corresponding approximation. . . . . . . . . . . . . . . . 121

5.17 Effect of high ν2T (stress volatility regime) on the NIG approxima-

tion. Parameters: β = 0.5, ν = 0.6, F0 = 90, σ0 = 130%, ρ = −0.2.

The dashed curve of the same colour indicates the errors of the cor-

responding approximation. . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Prices of forward start options for various κ: β = 0, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 1 and calibrated parameters. . . . . . . 143

6.2 Prices of forward start options for various κ: β = 0, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 0.75 and K = 1.25. . . . . . . . . . . . 144

6.3 Prices of forward start options for various κ: β = 0.5, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 1 and calibrated parameters. . . . . . . 145

6.4 Prices of forward start options for various κ: β = 0.5, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 0.75 and K = 1.25. . . . . . . . . . . . 146

6.5 First and second moments of the forward realized variance V 1
T2

=∫ T2
T1
σ2
t dt for the considered cases. . . . . . . . . . . . . . . . . . . . . 147

6.6 ν-effect on the NIG approximation: ν = 0.4 (MC solution and approx-

imation errors). Other parameters: β = 0, y0 = 0.05, κ = 0.05, c =

0.1, ρ = −0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 ν-effect on the NIG approximation: ν = 0.25 (MC solution and

approximation errors). Other parameters: β = 0, y0 = 0.05, κ =

0.05, c = 0.1, ρ = −0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.8 κ-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, c = 0.1, ρ = −0.1. 156

6.9 c-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, κ = 0.05, ρ =

−0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.10 ρ-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, κ = 0.05, c = 0.1. 158

ix



6.11 ν-effect on the NIG approximation. . . . . . . . . . . . . . . . . . . . 159

6.12 ν-effect on the NIG approximation. . . . . . . . . . . . . . . . . . . . 160

6.13 κ-effect on the NIG approximation. . . . . . . . . . . . . . . . . . . . 161

6.14 Stress test 1 for the NIG approximation (MC solution and approxi-

mation errors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.15 Stress test 2 for the NIG approximation (MC solution and approxi-

mation errors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1 Pure delta δ1 under the Normal SABR and DD-SABR models. . . . 176

7.2 Bartlett delta δ̃2 under the Normal SABR and DD-SABR models. . 177

7.3 Practical delta under different models. . . . . . . . . . . . . . . . . . 180

7.4 Practical delta under different models. . . . . . . . . . . . . . . . . . 181

7.5 Practical vega under different models. . . . . . . . . . . . . . . . . . 182

7.6 Practical vega under different models. . . . . . . . . . . . . . . . . . 183

x



Acknowledgments

First and foremost, I am indebted to my supervisor, Dr Jo Kennedy, for her guidance

and continuous support. Jo, it wouldn’t have been possible without you. Thank

you for being incredibly patient with me.

I am grateful to the department of statistics for the financial support I have

received and for all the excellent lectures I have learnt from. This has been an

incredible experience for me.

I would like to thank Subhankar Mitra for introducing me to the world of

coding while we were working together in summer 2010. Thank you for sharing

with me your invaluable experience. I am also grateful to a number of anonymous

referees who provided valuable comments and suggestions to earlier versions of the

papers that form the basis for this thesis.

One paragraph is surely not enough for my friends but I will try my best.

First of all, a special thank to all my office mates. I can’t imagine how my office life

would have been without them. Hasin and Fiona, thank you for all the joy we had

together. Giorgos and Javier, those Friday glasses of wine will stay in my memory

for a long time. Tomek, you are a true philosopher. Helen, 12pm Friday is always

in my diary. For those who were not mentioned, I want to thank you all: from

Warwick and off-Warwick, Statistics and non-Statistics. You guys have taught me

so many lessons: both academic and non-academic. Thank you all for being there

when it matters and spending such a priceless time at Warwick with me.

Finally, I’d like to thank my parents, my grandma, and my sister for their

enduring love and support. Thank you for loving me all these years.

xi



Declarations

I declare that this thesis is based on my own research in accordance with the regula-

tions of the University of Warwick. The work is original except where indicated by

specific references in the text. Chapter 3 is based on the working paper Kennedy and

Pham [2011] (which was submitted for publication). Chapter 5 is based on Kennedy

et al. [Forthcoming] (which was accepted for a publication in the journal of Applied

Mathematical Finance). The thesis has not been submitted for examination at any

other university.

xii



Abstract

In this thesis, we study two practical problems in applied mathematical fi-
nance. The first topic discusses the issue of pricing and hedging Bermudan swaptions
within a one factor Markov-functional model. We focus on the implications for hedg-
ing of the choice of instantaneous volatility for the one-dimensional driving Markov
process of the model. We find that there is a strong evidence in favour of what we
term “parametrization by time” as opposed to “parametrization by expiry”. We
further propose a new parametrization by time for the driving process which takes
as inputs into the model the market correlations of relevant swap rates. We show
that the new driving process enables a very effective vega-delta hedge with a much
more stable gamma profile for the hedging portfolio compared with the existing
ones.

The second part of the thesis mainly addresses the topic of pricing European
options within the popular stochastic volatility SABR model and its extension with
mean reversion. We investigate some efficient approximations for these models to be
used in real time. We first derive a probabilistic approximation for three different
versions of the SABR model: Normal, Log-Normal and a displaced diffusion version
for the general constant elasticity of variance case. Specifically, we focus on captur-
ing the terminal distribution of the underlying process (conditional on the terminal
volatility) to arrive at the implied volatilities of the corresponding European options
for all strikes and maturities. Our resulting method allows us to work with a variety
of parameters which cover long dated options and highly stress market condition.
This is a different feature from other current approaches which rely on the assump-
tion of very small total volatility and usually fail for longer than 10 years maturity
or large volatility of volatility.

A similar study is done for the extension of the SABR model with mean
reversion (SABR-MR). We first compare the SABR model with this extended model
in terms of forward volatility to point out the fundamental difference in the dynamics
of the two models. This is done through a numerical example of pricing forward
start options. We then derive an efficient probabilistic approximation for the SABR-
MR model to price European options in a similar fashion to the one for the SABR
model. The numerical results are shown to be still satisfactory for a wide range of
market conditions.
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Chapter 1

Introduction

The purpose of this thesis is to contribute further to the current literature of two

distinct areas in applied mathematical finance: Markov-functional and stochastic

volatility modelling. Since the two topics have little overlap, we treat them sep-

arately in Part I and Part II respectively. For each part, we provide a separate

background chapter (Chapters 2 and 4) so this introductory chapter only gives a

brief outline and summary of the contents of the whole thesis. Readers can choose to

read the background chapter of each part and then return here for a better overview

of the thesis.

Part I of the thesis discusses the issue of pricing and hedging Bermudan

swaptions within a one factor Markov-functional model. We focus on the implica-

tions for hedging of the choice of instantaneous volatility for the one-dimensional

driving Markov process of the model. The second part of the thesis mainly addresses

the topic of pricing European options within the popular stochastic volatility SABR

model and its extension with mean reversion. We investigate some efficient approx-

imations of the models to be used in real time.

The mathematical background assumed in this thesis can be accessed from a

number of modern textbooks in mathematical finance and interest rate modelling.

For example, Karatzas and Shreve [1991] is a standard textbook for various topics

in probability and stochastic calculus, and some applications to finance. Another

reference is Hunt and Kennedy [2004] which presents a self-contained discussion

on the topics ranging from theoretical issues such as Girsanov’s theorem and the

Martingale Representation theorem to more practical issues regarding arbitrage-free

derivatives pricing in the real world. Topics on interest rate and stochastic volatility

modelling have been addressed in various texts in the literature. For example,

Rebonato [2002], Rebonato [2004] and Brigo and Mercurio [2001] present many

different issues on pricing and hedging interest rate derivatives with and without

stochastic volatility, and the complete three volumes of Andersen and Piterbarg

[2010] is another excellent reference. Readers are not required to read those texts
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to get a grasp of interest rate and stochastic volatility modelling. In this thesis, we

provide a self-contained study of these topics within specific contexts and refer to

relevant materials in the literature whenever necessary.

In Part I (Chapters 2 and 3), we focus on further development of one fac-

tor Markov-functional models which are efficient arbitrage-free interest rate models.

Chapter 2 gives relevant background of interest rate markets in terms of both prod-

ucts and existing models. We discuss from basic concepts and the workings of various

interest rate products to some current issues in the literature. One of the issues is

the problem of hedging Bermudan swaptions within one factor Markov-functional

models. The questions that we want to answer are: how can different parametriza-

tions of the model lead to different behaviours of the hedging portfolios of Bermudan

swaptions? What are the key factors that affect the price and the hedge quality,

and how can we set up a one factor model that can improve the hedge?

Bearing these questions in mind, the main contribution that we want to make

is discussed in Chapter 3. For a working paper version, see Kennedy and Pham

[2011]. In Chapter 3, we consider different choices of the instantaneous volatility

for the one-dimensional driving Markov process of the corresponding swap Markov-

functional model. One very popular choice is to take a Gaussian process with

exponential instantaneous volatility, referred to as the mean reversion process (MR),

as is done in Pietersz and Pelsser [2010]. Our first investigation is to compare

this candidate with one based on the Hull-White short-rate model, referred to as

the Hull-White process (HW) which was first introduced in Bennett and Kennedy

[2005].

For these two driving processes, the vega profiles of a Bermudan swaption un-

der the swap Markov-functional model turn out to have some key differences. These

differences can be traced back to the difference in nature of the two parametriza-

tions for the driving process. The MR process is an example of what we term

“parametrization by expiry”. Here the auto-correlations of the driving process are

chosen at the outset and controlled by parameters which are user inputs. As such

the changes in the correlations of swap rates at their setting dates relevant to the

pricing of a Bermudan swaption are not hedged. In contrast, the HW process is an

example of “parametrization by time”. In this type of parametrization, the auto-

correlations of the driving process are linked explicitly to market implied volatilities

and it is this important feature which allows the possibility of hedging against moves

in market correlations of relevant swap rates. See Section 2.2.2 in Chapter 2 for an

intuitive discussion on these concepts via a simple example of a two-period Bermu-

dan swaption.

Based on the investigation of the MR and HW processes, a new parametriza-

tion by time for the driving process is proposed in Section 3.3.3. This new parametriza-
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tion takes as inputs into the model the market correlations of relevant swap rates.

As far as we are aware of the one factor Markov-functional model literature, Kennedy

and Pham [2011] was the first to present this idea. We find that this new parametriza-

tion has a vega response spread over the swaption matrix but interestingly the total

vega for each expiry (row of the swaption matrix) is approximately the same as for

the HW model. In Section 3.4.4, a theoretical proof is given to explain this result.

The different vega profiles of the parametrizations by expiry and by time

have a direct consequence for hedging. In Section 3.5, we find that when the driving

process is parameterized by time the “total” gamma (sum of all gammas) of a

vega-delta neutral portfolio for a Bermudan swaption is stabilized. In contrast,

it is not possible to control the “total” gamma for this portfolio with the vega

profile associated with parametrization by expiry. We further find that the proposed

parametrization by time for the driving process with a vega response spread over

the swaption matrix leads to a more stable “parallel” gamma profile (sum of each

row of the gamma matrix) than that of the HW process. Apart from the gamma

results, we also find a much better gamma-theta balance for the hedging portfolios

associated with parametrization by time which directly affects the potential Profit

and Loss accounts of the portfolios. These findings support our overall view in favour

of the parametrization by time for the one-dimensional driving Markov process of

the swap Markov-functional model. In some parts of Chapters 2 and 3, we note that

this conclusion should apply to one factor separable market models as well which

are also popular interest rate models in the current literature.

In Part II (Chapters 4,5,6 and 7), we turn our attention to the topic of

stochastic volatility modelling. By convention, market prices of European options

are usually quoted in terms of (Black) implied volatilities which are the volatil-

ity parameters in the Black formula (Black and Scholes [1973] and Black [1976]).

Volatility smile is the phenomenon in the market that different implied volatilities

are quoted for European options that have different strikes. The term “smile” arises

since implied volatility as a function of strikes sometimes displays the U-shape or

smile shape. Here we use the general term “smile” but note that it covers other

shapes as well, e.g. skew as seen in various markets. Chapter 4 gives a brief his-

toric background of different volatility models and describes how smile modelling is

tackled in the literature. We also discuss at the end of Chapter 4 our thoughts and

objectives that we want to achieve in the later chapters.

In Chapter 5, we study one of the most popular stochastic volatility mod-

els in practice: the SABR model that was first proposed in Hagan et al. [2002].

See Kennedy et al. [Forthcoming] for the paper version which was accepted for

publication in the Journal of Applied Mathematical Finance. The main technical

contribution that we make in this chapter is to derive an efficient approximation

3



to price European options and obtain implied volatilities within a short amount

of time. The main idea is to focus on capturing the terminal distribution of the

underlying process (conditional on the terminal volatility) to arrive at the implied

volatilities of the corresponding European options for all strikes and maturities. The

resulting method allows us to work with a variety of parameters which cover long

dated options and highly stress market condition. This is a different feature from

other current approaches which rely on the assumption of very small total volatility

and usually fail for maturity longer than 10 years or large volatility of volatility. We

numerically compare this approximation with others in the literature and find that

ours outperforms them in most market scenarios.

Chapter 6 is similar to Chapter 5 in terms of objectives but the underlying

model that we work with is an extension of the SABR model with mean-reverting

volatility (denoted by SABR-MR in this thesis). We explain why practitioners

might want to use the SABR-MR model in various contexts, e.g. equity or fixed

income. The difference in dynamics between the SABR and SABR-MR models is

also addressed via some numerical examples involving pricing forward start options.

Through this investigation, we want to make a point that while the two models may

be quite similar when pricing European options, there are still some fundamental

differences if we are going to use them to price other products.

Later in Chapter 6, we derive an efficient approximation for the SABR-

MR model using a similar method to that used in Chapter 5. The results show

that the method continues to work well even though the underlying model is more

complicated. Various numerical tests for the approximation are performed and

compared against Monte Carlo solution, and all yield satisfactory results.

Chapter 7 examines the hedging properties of both the SABR and SABR-MR

models. The primary interest is to assess whether the two models yield different

hedging results even though they can give similar prices for the same European

option. The results show that they still continue to be qualitatively similar from the

hedging perspective. As we discuss hedging within stochastic volatility models, we

review hedging methodologies from different points of view (theory and practice).

This is a topic that has not been dealt with very well in the literature. We do

not give an answer to how practitioners can obtain the best hedge with stochastic

volatility but we attempt to connect different ideas of hedging European options.
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Part I

Markov-functional modelling
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Chapter 2

An overview of interest rate

modelling

The purpose of this chapter is to give a brief overview of interest rate modelling

and set up the foundation for Chapter 3. This chapter will be divided into 2 main

parts: products and models. We first describe the main interest rate products and

general market practice that will be relevant to the thesis. The models will then

be emphasized in terms of their usage for our main application. At the end of the

chapter, we provide a simple example to illustrate our intuition for the main work

in the next chapter.

2.1 Basic products and derivatives in the interest rate

market

In this section, we give a brief outline of the interest rate market in terms of the

products and how they work in practice. We start from the most fundamental

instruments in the market that are relevant to the thesis. These products include:

pure discount bonds, deposits, forward rate agreements and interest rate swaps. We

then proceed to different types of options including both vanilla and exotic based

on these fundamental instruments. The particular interest rate derivatives that we

consider are caplets, European swaptions, and Bermudan swaptions. The materials

of this section are gathered in a number of modern text books, e.g. Hunt and

Kennedy [2004], Pelsser [2000] and Andersen and Piterbarg [2010]. Here, we set up

our own notations that will be consistent throughout Part I of the thesis.

2.1.1 Fundamental Instruments

Amongst the most fundamental products in interest rate markets is the family of

zero-coupon bonds, also known as the pure discount bonds. Assume that a guaran-
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teed payment of a unit currency at time T is a traded product at any time t < T

(cashflows illustrated in the figure below). The time-t value of this product is the

price of a pure discount bond maturing at T as seen at t. We denote it by DtT for

0 ≤ t ≤ T . It is clear that Dtt = 1 for all t > 0. The construction of the family of

pure discount bonds for a discrete collection of maturities is commonly referred to

as the construction of the yield curve or interest rate curve.

?

t

DtT

T

61

Receive

Pay

Figure 2.1: Zero-coupon bond

A deposit is an agreement between two counterparties in which one pays the

other a cash amount and in return receives this money back at some pre-agreed

future date, with a pre-agreed additional payment of interest (proportional to the

amount of cash initially deposited).

?

T

N

S

6
N +NαL

� α -

Receive

Pay

Figure 2.2: Deposit cashflows

In figure 2.2 above, N is the amount of cash deposited at time T and L is

the pre-agreed interest rate for the period [T, S]. The duration α between T and S

is referred to as the accrual factor. Deposits are available for a range of maturities

and only a small number of them are quoted as standard.

In the interbank market, L is often known as the (spot) LIBOR rate whose

value is known at time T . LIBOR stands for London Interbank Offered Rate and it

is the rate of interest that one London bank will offer to pay on a deposit by another.

In general, LIBOR rates are quoted on values of the accrual factor α ranging from

one week to 12 months. The spot LIBOR for the period [T, S] will be denoted by

LT [T, S]. One can easily see the relation between the LIBOR rate and discount

bonds via figure 2.2. If we deposit the amount of cash DTS in the bank, at time S
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we will receive

1 = DTS(1 + αLT [T, S])

⇐⇒ LT [T, S] =
1−DTS

αDTS
. (2.1)

While a deposit locks in an interest rate for a given period of time starting

immediately, many market participants prefer to lock in interest rates for a given

period of time starting in the future. In the fixed income market, contracts that give

such an agreement are known as forward rate agreements. A forward rate agreement

(FRA) is an agreement between two counterparties to exchange cash payments at

some specified date in the future. An FRA involves a notional amount N and two

dates, the reset date T and the payment date S > T . These two dates will be such

that the period [T, S] corresponds exactly to the accrual period of a standard deposit

starting at date T . Under an FRA, the first counterparty pays to the second an

amount NαK, where the accrual factor α is defined as previously and K is the fixed

rate that is known when the agreement is made. In return, the second counterparty

pays to the first NαLT [T, S], where LT [T, S] is the spot LIBOR that sets at T (not

known when the agreement is made).

?

T S

6
NαLT [T, S]

NαK

Receive

Pay

Figure 2.3: FRA cashflows

Assume that two counterparties enter an FRA at time t with no additional

cost for some fixed rate K. It is this value of K that is quoted in the FRA market

and it is referred to as the forward LIBOR rate, denoted by Lt[T, S] for t ∈ [0, T ].

Following a simple static replicating portfolio argument, we obtain the time-t value

of an FRA which is equal to N [DtT − (1 + αK)DtS ]. The forward LIBOR Lt[T, S]

can then be expressed in terms of the discount bonds as follows

Lt[T, S] =
DtT −DtS

αDtS
. (2.2)

An interest rate swap, or swap, is an agreement between two counterparties

to exchange a series of cashflows on pre-agreed dates in the future. Let 0 = T0 <

T1 < · · · < Tn+1 denote a given tenor structure and the accrual factors αi = Ti+1−Ti
for i = 1, . . . , n. We denote the forward LIBOR Lt[Ti, Ti+1] by Lit for brevity. The

payment of a swap may be decomposed into the floating legs NαiL
i
Ti

and the fixed

legs NαiK at Ti+1 where K is the fixed rate for the swap. The contract with fixed

8



pays is referred to as a payers swap whereas the one with reversed cashflows is a

receivers swap. Note that a payers swap could be valued in exactly the same way

as for an FRA. Hence, one can easily see that the value of the above swap at time

t < T1 is given by

V 1,n
swap(t) = N(DtT1 −DtTn+1 −K

n∑
k=1

αkDtTk+1
).

?

T1

6

?

6

?

6

?

Tn+1

6
NαnL

n
Tn

NαnK

Receive

Pay

Figure 2.4: Payers interest rate swap cashflows

In general, one can specify a swap for any given tenor structure. For instance,

assume a tenor structure Ti < Ti+1 < · · · < Tj+1, we then obtain exactly the same

valuation formula as the above with appropriate indices. The forward swap rate,

that we choose to denote by yi,j+1−i
t for t ∈ [0, Ti], is the fixed rate K for which

the time-t value of the corresponding swap is zero. The superscript indicates that

the swap with tenor (swap length or number of payments) j + 1 − i is entered at

expiry time Ti, i.e. the last payment is made at maturity time Tj+1. Similar to

the LIBOR rates, swap rates are also the reference interest rates that are set by a

financial authority. The swap rate and discount bonds can be easily linked by the

following relation

yi,j+1−i
t =

DtTi −DtTj+1∑j
k=i αkDtTk+1

. (2.3)

The term in the denominator is referred to as the present value of a basis point

(PVBP) and is denoted by

P i,j+1−i
t =

j∑
k=i

αkDtTk+1
.

Given the swap rate yi,j+1−i, we obtain a more convenient formula for the swap

V i,j+1−i
swap (t) = NP i,j+1−i

t (yi,j+1−i
t −K).

2.1.2 Vanilla interest rate options

In order to protect investors from the possibility that interest rates may increase or

decrease in the future, options written on those rates are issued and liquidly traded
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in the market. Practitioners usually refer to these options as vanilla options. In

what follows, we define some vanilla interest rate options that are most relevant to

this thesis.

A caplet is an option on an FRA which pays V i
cl(Ti+1) := Nαi max(LiTi−K, 0)

at time Ti+1 where K is the strike, Li is the forward LIBOR, and N is the notional.

The time-Ti value of this caplet can be discounted from its time-Ti+1 value, i.e.

V i
cl(Ti) = NαiDTiTi+1 max(LiTi −K, 0). A floorlet has the opposite payout function

to a caplet: V i
fl(Ti+1) := Nαi max(K − LiTi , 0). One can think of a caplet and a

floorlet as a call and a put on the LIBOR respectively.

Just as a caplet is an option on an FRA, a European swaption is an option

on a swap. The time-t value of the European swaption with the underlying swap’s

time-t value V i,j+1−i
swap (t) and the associated swap rate yi,j+1−i

t is given by the payoff

at time Ti

V i,j+1−i
sption (Ti) := max(V i,j+1−i

swap (Ti), 0). (2.4)

In case of a payer swaption with some strike K, its Ti-value can be written in a

more convenient form

V i,j+1−i
sption (Ti) = NP i,j+1−i

Ti
max(yi,j+1−i

Ti
−K, 0).

Similar to caplets, the above form clearly indicates a payer (or receiver) swaption

is a call (or put) option on the swap rate. Hence, caplets/floorlets and European

swaptions can be priced by a vanilla model1 which only considers one single rate

at a time. We take the swap rate yi,j+1−i as an example. Suppose we work with

the martingale measure that takes its PVBP P i,j+1−i as the numeraire. We refer to

this measure as the swaption measure (forward measure for caplets and floorlets).

The definition in (2.3) implies that yi,j+1−i is a martingale and can be modelled by

a driftless Log-Normal process (Black model) under its swaption measure

dyi,j+1−i
t = σi,j+1−iy

i,j+1−i
t dWt, σi,j+1−i > 0.

In order to evaluate V i,j+1−i
sption (0), one needs to consider the following expectation

under the swaption measure

V i,j+1−i
sption (0) = NP i,j+1−i

0 E

[
P i,j+1−i
Ti

(yi,j+1−i
Ti

−K)+

P i,j+1−i
Ti

]
= NP i,j+1−i

0 E[(yi,j+1−i
Ti

−K)+].

If we carry out full calculation of this expectation, we will then arrive at the famous

1We adopt the term vanilla model from Andersen and Piterbarg [2010].
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Black formula in Black [1976]

V i,j+1−i
sption (0) = NP i,j+1−i

0 (yi,j+1−i
0 Φ(d1)−KΦ(d2)), (2.5)

where Φ(·) denotes the Normal cumulative distribution function and

d1 =
ln(yi,j+1−i

0 /K)

σi,j+1−i
√
Ti

+
1

2
σi,j+1−i

√
Ti,

d2 = d1 − σi,j+1−i
√
Ti.

Conversely, market prices of European swaptions and caplets can be translated

into the market implied distributions of forward swap rates and LIBOR rates. It

is market convention that the market price of the European swaption associated

with yi,j+1−i is usually quoted in terms of the Black implied volatility, denoted

by σ̃i,j+1−i for each strike K. That is the value for the volatility parameter that

we plug into the Black formula to recover this market price2. This means that if

we set the volatility parameter σi,j+1−i in the above SDE to be the same as the

Black implied volatility σ̃i,j+1−i for each strike K, the model price computed by the

Black formula and the market price of the corresponding European swaption will

coincide. One also has a choice to use a deterministic function of time σi,j+1−i(·)
instead of the constant σi,j+1−i in the SDE for the swap rate, but has to ensure that∫ Ti

0 σ2
i,j+1−i(t)dt = σ̃2

i,j+1−iTi for the perfect recovery of market price.

It is observed from the market that for different strikes K, we have differ-

ent implied volatilities and this phenomenon is known as “smile” (or skew). This

problem forms the second part of the thesis where we study various types of vanilla

models rather than the Black model. In Part I, we will work without the presence

of smile or equivalently assume flat volatility smile curves.

2.1.3 Bermudan swaptions

We have discussed some of the most basic and fundamental products which form

important building blocks for other more sophisticated interest rate derivatives.

Another popular type of interest rate derivatives is the Bermudan style interest rate

derivatives such as Bermudan swaptions. Unlike the previously discussed vanilla

options, Bermudan swaptions are not liquidly traded and considered exotic products.

A financial product that has multiple exercise dates is called Bermudan. A

Bermudan swaption is an option to enter into a swap on any of its pre-specified

fixing dates. We consider a particular example of a co-terminal Bermudan swaption

2The market price given by the above Black formula implies the Log-Normal distribution of the
swap rate at its expiry date yi,j+1−i

Ti
under its swaption measure. In practice, they can be given by

the Bachelier formula too which implies the corresponding Normal distribution (see Chapter 4).
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where all the underlying swaps end at the same date Tn+1. To be more specific,

the holder of a (co-terminal) Bermudan swaption has the right, on any of the swap

exercise dates to enter the remaining swap, i.e. at time Ti, i = 1, . . . , n enter the

swap that ends at Tn+1. At each exercise date, the holder maximizes the value of

entering the swap now and the value of the Bermudan swaption with the remaining

exercise dates (exercise the option later). Note that the Bermudan swaption holder

can only exercise the option once. Due to its nature, one can think of a Bermudan

swaption as an option on an option (on an option, etc.). Other types of Bermudan

swaption include the co-sliding or constant maturity Bermudan swaptions where

all the underlying swaps have the same tenor (swap length), or the zero-coupon

Bermudan swaptions where the notionals of the underlying swaps are different. See

volume 3 of Andersen and Piterbarg [2010] for a detailed discussion on the general

class of callable LIBOR exotics which includes Bermudan swaptions.

2.2 Pricing and hedging Bermudan swaptions in prac-

tice

While Bermudan swaptions seem to be an attractive product due to the potential

profits that investors are entitled to, the complex structure of the product and the

source of exotic risks that they contain could be a tremendous problem. One then

certainly needs a sophisticated enough model as a pricing and hedging tool for this

kind of products.

An obvious difficulty is that the price a Bermudan swaption has to be consis-

tent with the market prices of its underlying European swaptions (known via implied

volatilities). Otherwise, the option holder can make arbitrage opportunities out of

the inconsistencies in prices. The first criterion that we need is calibration where

the chosen model can reproduce vanilla prices of the underlying Europeans by using

implied volatilities before attempting to quote a Bermudan price. Furthermore, the

Bermudan optionality nature of the product indicates that its price depends vastly

on multiple rates. As a result, we need to consider the joint distribution of different

underlying rates across different time points rather than the marginal distribution

of just one single rate at one time. The evaluation process, hence, requires a detailed

knowledge of the dynamics of the whole term structure.

Throughout the life of a Bermudan swaption, the rates and market quotes for

implied volatilities both change. The model then needs to be re-calibrated to more

recent market quotes to update the Bermudan swaption price. Consequently, we

face two main risks: delta and vega risks. In this context, delta risk is the risk with

respect to the change in the interest rate curve while vega risk is with respect to

12



the change in implied volatilities3. These are the typical examples of in-model and

out-of-model hedging concepts. For a comprehensive discussion on this topic, see for

example Rebonato [2004]. The practice of hedging requires practitioners to acquire

appropriate proportions of other assets/hedging instruments to offset the vega and

delta risks. This means that the corresponding portfolio containing the Bermudan

swaption and its hedging instruments will not be exposed to any small changes in

the interest rate curve and implied volatilities over a short period of time. The risk

management of Bermudan swaptions is vital and considered to be as important as

the pricing especially when there are many underlyings involved in the product.

Having stressed the importance of hedging, we want to note that this matter

has to be considered with care. Different models imply different delta and vega risks.

The underlying reason is that even when different models can calibrate to the same

market data, it is possible that they can give different hedges for the Bermudan

since other factors affect the product as well, e.g. the joint distribution of multiple

rates. If we hedge the Bermudan swaption assuming wrong delta and vega risks,

the hedging cost could be substantially high and lead to potentially big losses for

investors. Bearing this in mind, choosing a good model for the pricing and hedging

purposes is another important issue for practitioners.

2.2.1 The choice of models

One of the main challenges in the development of interest rate models is the cali-

bration property. Although models in the past such as short-rate models are highly

tractable and relatively simple to understand, e.g. Hull and White [1990], it is

difficult to calibrate them to the interest rate curve and the set of relevant vanilla

prices for pricing exotic products. The reason is that the hypothetical short rate is

not directly observable in the market. Obviously, in terms of pricing a Bermudan

swaption there is no straightforward way of using implied volatilities of European

swaptions as input to the short-rate models. See Chapter 17 of Hunt and Kennedy

[2004] for an example of using the Vasicek-Hull-White model to price a Bermudan

swaption.

In the late 90s, the emergence of market models marked a breakthrough

in the interest rate modelling literature. The class of market models include both

LIBOR and swap market models, also known as BGM models (see Brace et al.

[1997], Miltersen et al. [1997] and Jamshidian [1997]). The big advantage of these

models is the calibration property where practitioners assume that the rates that

are directly observable from the market (forward LIBORs or forward swap rates)

are Log-Normal martingales in their own (forward or swaption) measures. Market

models, therefore, allow for a straightforward calibration to market vanilla prices

3See Chapter 3 and Chapter 7 for different forms of delta and vega risks
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using the quoted Black implied volatilities in the Black formula for caplets and

European swaptions. See Rebonato [2002] and Rebonato [2004] for a comprehensive

review of the development of market models for pricing and hedging interest rate

derivatives.

Another challenge in interest rate modelling is the efficiency in implemen-

tation as practitioners have to produce prices within a reasonably short period of

time. Despite the calibration advantage and clear intuition, market models suffer

from their high dimensionality4 even when we use only one factor for the SDEs of all

LIBORs or swap rates. In terms of pricing callable products like Bermudan swap-

tions in market models, Monte Carlo simulation is needed to determine the exercise

boundary. Different approximations have been developed in the past in order to

reduce the computational burden of Monte Carlo simulation, e.g. see Longstaff and

Schwartz algorithm in Longstaff and Schwartz [2001]. In the literature, the common

way to get around the high dimensionality problem is by approximating the market

model by some process of lower dimension (see Pietersz et al. [2004]) under an ex-

tra assumption of separability. Unfortunately, this method in general encourages a

significant amount of arbitrage in the model.

The class of Markov-functional models has been introduced by Hunt et al.

[2000] to overcome the shortcomings of market models (see also Chapter 19, Hunt

and Kennedy [2004] and Pelsser [2000]). Markov-functional models can fit the ob-

served prices of vanilla instruments similarly to market models (consistent with the

Black formula), but at the same time they inherit the practical advantage from

short-rate models as we only need to keep track of some low (usually one or two)

dimensional Markov process. Markov-functional models are typically implemented

on a lattice under the terminal measure (taking the terminal discount bond as nu-

meraire) but other versions of Markov-functional models exist too. For example,

the cross-currency and hybrid Markov-functional models were presented in Fries

and Rott [2004] and Fries and Eckstaedt [2009] under the spot measure (taking the

money market account as numeraire). See also Fries [2007] for tips on the implemen-

tation of these models. Another recent development on Markov-functional models is

the n-dimensional LIBOR Markov-functional model introduced in Kaisajuntti and

Kennedy [Forthcoming] also under the spot measure. The implementation of this

model requires Monte Carlo simulation rather than the typical lattice implementa-

tion as for the one-dimensional version.

The one-dimensional (or one factor5) Markov-functional model also has some

possible drawbacks. In terms of pricing and hedging Bermudan swaptions, one

4The dimension of the model grows with the number of rates being modelled. In some modern
texts, some author refer to this as “the curse of dimensionality”.

5Unlike market models, the number of factors used for the driving Markov process is equal to
the number of dimensions of the corresponding Markov-functional model.
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disadvantage is that we have only one Brownian motion to control the correlation

structure of the model that could have a certain effect on the price and hedge.

Consequently, the instantaneous correlation of different rates could only be one. In

the literature, one of the biggest debates is whether it is necessary to use a multi-

factor model to enable a more flexible correlation structure for pricing and hedging

Bermudan swaptions. A good summary of the current literature on this topic is

given in Pietersz and Pelsser [2010] or Chapter 6 of Pietersz [2005]. We also list

here a number of references that compared single factor models with multi-factor

models with different views and opinions: Longstaff et al. [2001], Driessen et al.

[2003], and Fan et al. [2003]. Back to the paper by Pietersz and Pelsser [2010], the

authors carry out a comparison of the hedging performance of a single factor Markov-

functional model and multi-factor market models in relation to Bermudan swaptions

and their findings support the claim that if a one factor Markov-functional model is

appropriately calibrated to “terminal correlations”6 of swap rates that are relevant

to the Bermudan swaption then the hedging performance of both the multi-factor

and one factor models are comparable. See also Pietersz [2005] for more technical

discussions on using multi-factor market models for Bermudan-style interest rate

derivatives.

In spirit of the work by Pietersz and Pelsser [2010], we want to initiate

our own investigation on the pricing and hedging of Bermudan swaptions within

a one factor Markov-functional model driven by a Gaussian process. The main

contribution we want to make is to study the implications for hedging of the choice

of the instantaneous volatility for the driving process. This is a topic which have

received little attention in the literature for one factor Markov-functional models

or equivalently for one factor market models under the assumption of separability

(see Bennett and Kennedy [2005] and Pietersz et al. [2004]). We will discuss this in

Chapter 3. We conclude the current chapter by including a worked-out example in

the next subsection to illustrate our intuition.

2.2.2 A motivational example: two-period Bermudan swaption

Let us consider a concrete example of a two-period Bermudan swaption to get a

flavour of the problem that we are going to tackle in Chapter 3. This simple two-

period Bermudan swaption involves three different rates: the one-year LIBOR L1,

the two-year LIBOR L2, and the one-year into two-year swap rate y1,2. The un-

derlying swaption values for this Bermudan swaption are V 1,2
sption(0) and V 2,1

sption(0)

with the market Black implied volatilities σ̃1,2 and σ̃2,1 respectively. Note that the

two-year LIBOR L2 coincides with the two-year into one-year swap rate y2,1, but

6The term “terminal correlation” has slightly different interpretations in the literature. When
we use this term later in the thesis, we will specify exactly what we mean.
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we will use the former rather than the latter to avoid confusion.

Suppose we want to use a one factor LIBOR market model to price this

product. The model assumes the following dynamics for the two LIBOR rates

under the same (unspecified) measure

dLit = µitL
i
tdt+ σi(t)L

i
tdWt, i = 1, 2. (2.6)

Recall that each LIBOR is a Log-Normal martingale under its own forward measure,

i.e. no drift in the SDE. We ignore the drift term in (2.6) for now for some reasons

to be discussed in Chapter 3, so the involvement of measure is neglected here and

only the diffusion part is assumed to be significant. The only flexibility we have here

is the specification of the instantaneous volatility functions σi(t) which will have a

direct link to the Black formula and Black implied volatilities in (2.5). We consider

two different parametrizations for the instantaneous volatility functions σi(t) for

0 ≤ t ≤ Ti and i = 1, 2.

1. Parametrization by expiry (constant volatility): σi(t) is a positive constant

throughout its life, i.e. σi(t) = σi for 0 ≤ t ≤ Ti.

2. Parametrization by time (piecewise-constant volatility): σi(t) is chosen to be

piecewise-constant, i.e.

σ1(t) = σ1, t ∈ [0, T1]

σ2(t) = σ2,1, t ∈ [0, T1]

= σ2,2, t ∈ (T1, T2].

All the constants here must be positive. We assume the two log-LIBORs

have the same instantaneous volatility for the first period, i.e. σ2,1 = σ1 for

0 ≤ t ≤ T1. Note that for the previous parametrization by expiry case, we

basically impose that σ2,1 = σ2,2 = σ2 equivalently.

We now require that the two underlying swaptions should be simultaneously

correctly evaluated. This is the compulsory model calibration procedure. It is

clear for the two-year caplet that we need to ensure the following link between the

instantaneous volatility function of the log-LIBOR and the market Black implied

volatility

σ̃2
2,1T2 =

∫ T2

0
σ2

2(t)dt. (2.7)

For the one-year into two-year swaption, the issue is a bit more delicate since we

do not have a direct control over the instantaneous volatility of the log of the cor-

responding swap rate to link to its implied volatility. However, we can use the

connection of this swap rate with the two underlying LIBORs and some further
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approximations to arrive at the following condition

σ̃2
1,2T1 ≈

∫ T1

0
(ζ1σ1(t) + ζ2σ2(t))2dt, (2.8)

where ζ1 and ζ2 are assumed to be positive constant weights (see Chapter 3 or

Rebonato [2002] for their full expressions and explanations). This is because the

instantaneous volatility σ1,2(t) of the log of the swap rate y1,2
t is approximately

ζ1σ1(t) + ζ2σ2(t) in a one factor model (see Chapter 3), i.e.

dy1,2
t ≈ . . . dt+ (ζ1σ1(t) + ζ2σ2(t))y1,2

t dWt. (2.9)

For the parametrization by expiry, no choice is left for σ2 as the condition

from (2.7) uniquely determines σ2

σ̃2
2,1T2 = σ2

2T2

⇐⇒ σ2 = σ̃2,1. (2.10)

Now, by using (2.8) σ1 can be solved explicitly as follows

σ̃2
1,2T1 ≈ (ζ1σ1 + ζ2σ2)2T1

⇐⇒ σ̃1,2 ≈ ζ1σ1 + ζ2σ̃2,1

⇐⇒ σ1 ≈ σ̃1,2 − ζ2σ̃2,1

ζ1
. (2.11)

For the parametrization by time, the condition (2.8) implies that

σ̃2
1,2T1 ≈ (ζ1σ1 + ζ2σ2,1)2T1

⇐⇒ σ̃2
1,2 ≈ σ2

1(ζ1 + ζ2)2

⇐⇒ σ1 ≈ σ̃1,2

ζ1 + ζ2
. (2.12)

We recall that the second line of the above equations follows because σ2,1 = σ1

by the initial assumption. From the derived expression for σ1, we then find the

expression for σ2,2 by using (2.7)

σ̃2
2,1T2 =

∫ T1

0
σ2

2,1dt+

∫ T2

T1

σ2
2,2dt

= σ2
1T1 + σ2

2,2(T2 − T1)

⇐⇒ σ2,2 ≈

√√√√ σ̃2
2,1T2 −

σ̃2
1,2

(ζ1+ζ2)2
T1

T2 − T1
. (2.13)
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For this two-period Bermudan swaption, we want to note that the future

realizations of y1,2
T1

or L2
T2

determine the future payoffs of the product if one is going to

exercise the option at T1 or T2 respectively. In practice, the option holder can choose

to exercise at T1 if the payoff is positive. Nevertheless, even when the immediate

exercise value is positive, the holder can decide to hold on to the swaption in view

of a more favourable L2
T2

. In that sense, it is clear that the today’s value of this two-

period Bermudan swaption should be influenced heavily by the joint distribution of

y1,2
T1

and L2
T2

as well. It was suggested in a number of references, e.g. Rebonato

[2002] and Brigo and Mercurio [2001], that the correlation Corr(ln y1,2
T1
, lnL2

T2
) is

indeed one of the main driving forces of the price. Here we consider this correlation

term explicitly

Corr(ln y1,2
T1
, lnL2

T2) =
Cov(ln y1,2

T1
, lnL2

T2
)√

Var(ln y1,2
T1

)
√

Var(lnL2
T2

)

≈
Cov(ln y1,2

T1
, lnL2

T1
)

σ̃1,2

√
T1σ̃2,1

√
T2

≈
∫ T1

0 (ζ1σ1(t) + ζ2σ2(t))σ2(t)dt

σ̃1,2

√
T1σ̃2,1

√
T2

≈ (ζ1σ1 + ζ2σ2,1)σ2,1T1

σ̃1,2

√
T1σ̃2,1

√
T2

.

Recall that we did not specify the measure and assumed earlier that only the dif-

fusion parts of the LIBORs and swap rates matter. The numerator in the second

line of the above equations follows immediately from the independence of increment

in (2.6) and (2.9), while the denominator follows from the implication by the Black

formula.

For the parametrization by expiry, recall that σ2,1 = σ2,2 6= σ1 and from

(2.10) and (2.11) we obtain the following

Corr(ln y1,2
T1
, lnL2

T2) ≈

(
ζ1

(
σ̃1,2−ζ2σ̃2,1

ζ1

)
+ ζ2σ̃2,1

)
σ̃2,1

√
T1

σ̃1,2σ̃2,1

√
T2

=

√
T1

T2
. (2.14)

For the parametrization by time, recall that σ1 = σ2,1 6= σ2,2 and from (2.12) and

(2.13) we have that

Corr(ln y1,2
T1
, lnL2

T2) ≈
(ζ1 + ζ2)

σ̃2
1,2

(ζ1+ζ2)2

√
T1

σ̃1,2σ̃2,1

√
T2

=
σ̃1,2

σ̃2,1(ζ1 + ζ2)

√
T1

T2
. (2.15)

It is clear that the expressions in (2.14) and (2.15) are quite different mathe-

matically. While the formula in (2.15) takes into account the market Black implied
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volatilities, the other does not. This difference leads to the two following important

questions regarding the hedging issue:

1. How will the correlation structure of the rates alter as the implied volatilities

change?

2. Consequently, how will the price of this two-period Bermudan swaption be

affected as a result of the change in correlation structure?

Of course, the two different parametrizations of volatility functions lead to two

models that respond very differently to the change in market data. Potentially, the

answers to the above questions will also vary substantially between the two models

as we shall see in the next chapter. We want to emphasize at this point that this

feature is what makes the hedging of Bermudan swaptions somewhat delicate and

so crucial in practice. If we parametrize the model in a way that is not realistic

and consistent with the market, the hedging error could be devastating and cost

the option holder a fortune. We carry out our analysis further in Chapter 3 where

we study the problem of hedging Bermudan swaptions within a one factor Markov-

functional model specifically.

19



Chapter 3

Implications for Hedging of the

choice of driving process for

one-factor Markov-functional

models

In this chapter, we study the implications for hedging Bermudan swaptions of the

choice of the instantaneous volatility for the driving Markov process of the one-

dimensional swap Markov-functional model. We find that there is a strong evidence

in favour of what we term “parametrization by time” as opposed to “parametrization

by expiry”. We further propose a new parametrization by time for the driving

process which takes as inputs into the model the market correlations of relevant

swap rates. We show that the new driving process enables a very effective vega-delta

hedge with a much more stable gamma profile for the hedging portfolio compared

with the existing ones.

3.1 Introduction

The problem of pricing and hedging a Bermudan swaption has been of great prac-

tical concern in the fixed income quantitative research. The product itself is among

the most common exotic interest rate derivatives. However, opinions differ as to

what constitutes an effective modelling framework for pricing and hedging Bermu-

dan swaptions. As noted in Chapter 2, one of the biggest debates is whether it is

necessary to use a multi-factor model. A good summary of the current literature

on this topic is given in Pietersz and Pelsser [2010]. We also recall from Chapter 2

that in Pietersz and Pelsser [2010], the authors carry out a comparison of the hedg-

ing performance of a single factor Markov-functional model and multi-factor market
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models in relation to Bermudan swaptions. Their findings support the claim that

if a single factor Markov-functional model is appropriately calibrated to “terminal

correlations” of swap rates that are relevant to the Bermudan swaption then the

hedging performance of both the multi-factor and single factor models are compa-

rable.

In this chapter, we restrict attention to the pricing and hedging of Bermudan

swaptions within the context of a one factor Markov-functional model driven by a

Gaussian process. The contribution we make here is to study the implications for

hedging of the choice of the instantaneous volatility for the driving Markov process.

This is a topic which seems to have received little attention in the literature for one

factor Markov-functional models or equivalently for one factor separable market

models (see Bennett and Kennedy [2005] and Pietersz et al. [2004]). One popular

choice is to take a Gaussian process with exponential instantaneous volatility, re-

ferred to as the mean reversion process (MR), as is done in Pietersz and Pelsser

[2010]. We begin our investigation by comparing this candidate with one based on

the Hull-White short-rate model, referred to as the Hull-White process (HW) which

was first introduced in Bennett and Kennedy [2005].

For these two candidate processes the vega profiles of a Bermudan swaption

under the swap Markov-functional model turn out to have some key differences (see

also Pertursson [2008] for a comparison of their vega profiles under different market

scenarios). These differences can be linked back to the difference in nature of the two

parametrizations for the driving process. The mean reversion process (MR) is an

example of what we term “parametrization by expiry”. Here the auto-correlations

of the driving process are chosen at the outset and controlled by parameters which

are user inputs. As such the changes in the correlations of swap rates at their setting

dates relevant to the pricing of a Bermudan are not hedged. In contrast, the Hull-

White process (HW) is an example of “parametrization by time”. In this type of

parametrization, the auto-correlations of the driving process are linked explicitly

to market implied volatilities and it is this feature which allows the possibility of

hedging against moves in market correlations of relevant swap rates.

Based on the insight gained by our study of the MR and HW processes,

we propose a new parametrization by time for the driving process. This new

parametrization takes as inputs into the model the market correlations of relevant

swap rates. These market correlations are estimated via a full rank LIBOR market

model using a two-step procedure involving a global and local fit to the swaption

matrix. This new parametrization has a vega response spread over the swaption

matrix but interestingly the total vega for each expiry (row of the swaption matrix)

is approximately the same as for the HW model. We give an explanation for why

this is the case.
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The different vega profiles of the parametrizations by expiry and by time

have a direct consequence for hedging. We find that when the driving process

is parameterized by time the “total” gamma (sum of all gammas) of a vega-delta

neutral portfolio for a Bermudan swaption is stabilized. In contrast, it is not possible

to control the “total” gamma for this portfolio with the vega profile associated with

parametrization by expiry. We further find that the proposed parametrization by

time for the driving process with a vega response spread over the swaption matrix

leads to a more stable “parallel” gamma profile (sum of each row of the gamma

matrix) than that of the HW process. In addition to the gamma results, we also look

at the theta and find a much better gamma-theta balance for the hedging portfolios

associated with parametrization by time which affects their potential Profit and

Loss accounts to some extent.

The chapter is organized as follows. In Section 3.2, we review the preliminar-

ies and set up the notations. In Section 3.3, we first describe the one-dimensional

swap Markov-functional model and analyze the difference between parametrizations

by expiry and by time. After that, we construct a new parametrization by time

for the driving process. In Section 3.4, we compute the vegas of a Bermudan and

analyze them theoretically. A hedging result with an emphasis on the gamma risks

will be addressed in Section 3.5. We analyze the gamma-theta balance in Section

3.6. Section 3.7 concludes the chapter.

3.2 Notations and preliminaries

Consider a general tenor structure

0 = T0 < T1 < · · · < Tn+1,

where αi = Ti+1 − Ti are the accrual factors for i = 0, . . . , n.

Let DtT denote the time-t value of a zero-coupon discount bond that matures

at time T . We denote by Li the forward LIBOR that sets (expires) at Ti and settles

(matures) at Ti+1. Recall from Chapter 2 that forward LIBORs and discount bonds

can be linked via the relation

Lit =
DtTi −DtTi+1

αiDtTi+1

, t ≤ Ti, (3.1)

for i = 0, . . . , n. We denote by yi,j the forward swap rate of an interest rate swap with

setting dates Ti, Ti+1, . . . , Ti+j−1 and settlement dates Ti+1, Ti+2, . . . , Ti+j . Similar

to forward LIBORs, forward swap rates can also be written in terms of discount
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bonds as noted in Chapter 2

yi,jt =
DtTi −DtTi+j∑i+j−1
k=i αkDtTk+1

, t ≤ Ti, (3.2)

for i = 0, . . . , n. It is clear that yi,1 coincides with Li. For each swap rate yi,j , we

further introduce the corresponding at the money (ATM) Black implied volatility

σ̃i,j .

We recall from Chapter 2 the main features of Bermudan swaptions. The

type of Bermudan swaption we consider in this chapter is the co-terminal version,

as opposed to other non-standard types of Bermudan swaption. The holder of a

co-terminal Bermudan swaption has the right, on any of the swap exercise dates

to enter the remaining swap which ends at the pre-determined terminal date Tn+1.

The underlying swap at Ti consists of a number of coupons that set at Tj and settle

at Tj+1 for j = i, . . . , n. We further denote the notional amount by N and the strike

by K. Suppose that the Bermudan swaption is to be exercised at time Ti. In case

of a pay fixed type, the holder will then receive the corresponding coupons from the

underlying swap, i.e. at Tj+1 for each j = i, . . . , n he or she will receive the floating

leg NαjL
j
Tj

and pay the fixed leg NαjK. In case of a receive fixed type, the holder

will receive the fixed legs in exchange for the floating legs. Although the coupons

depend on the values of the LIBORs at their setting dates, the exercise value of the

underlying swap at each exercise date Ti depends on the corresponding co-terminal

swap rate at its setting date yi,n+1−i
Ti

. For a pay fixed Bermudan, the holder will

only exercise at time Ti if yi,n+1−i
Ti

is above the strike level K. Nevertheless, even

when the immediate exercise value is positive, the holder can decide to hold on to

the swaption in view of a more favourable co-terminal swap rate yj,n+1−j
Ti

for j > i.

It was noted in Pietersz and Pelsser [2010] that although the joint distribution of

the random variables {yj,n+1−j
Ti

; j = i, . . . , n; i = 1, . . . , n} fully determines the price

of a Bermudan swaption, the main contribution (up to first order approximation)

actually comes from the joint distribution of the co-terminal swap rates at their

setting dates {yi,n+1−i
Ti

; i = 1, . . . , n} (see also Piterbarg [2004]). This is why we are

interested in their correlation structure.

3.3 Pricing Bermudan swaptions under the one dimen-

sional swap Markov-functional model

The defining characteristic of the standard Markov-functional model (MF) is that

discount bond prices are assumed to be at any time functions of some low-dimensional

(usually one or two) Markov process x, which is Markovian in some specified mar-

tingale measure. The exact forms are only determined at the exercise dates, i.e.
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DTiTj (xTi) for 0 ≤ i ≤ j ≤ n, since this is all that is typically needed in prac-

tice. Depending on the application, the functional forms are derived numerically

from relevant market prices and the martingale property necessary to maintain the

arbitrage-free property of the model. Note that the functional forms of the discount

bonds implicitly imply the functional forms of all forward swap/LIBOR rates and

vice versa. Given the functional forms, the conditional expected value under the

specified martingale measure of a payoff at any exercise date Ti can be derived nu-

merically. Hence, the value of an exotic product can be calculated by backward

induction on a grid.

Here, we restrict attention to the development of the one-dimensional swap

Markov-functional model (SMF) for the pricing and hedging of Bermudan swaptions.

This section starts by reviewing the one-dimensional SMF model and its current

choices of driving Markov process. We then propose an alternative choice which is

more suitable for our current application.

3.3.1 The one dimensional swap Markov-functional model

In the one-dimensional SMF model, the functional forms of the discount bonds are

chosen so that accurate calibration to the market prices of the co-terminal vanilla

swaptions is achieved. We assume that these market prices are given by the Black

formula with the corresponding co-terminal implied volatilities {σ̃i,n+1−i}i=1,...,n.

The freedom to specify the law of x allows the model to capture well some features

of the real market relevant to the exotic products. For a Bermudan swaption, those

features are the correlations of the co-terminal forward swap rates at their setting

dates as we discussed in Section 3.2.

In our model, we choose to work with the terminal measure Sn+1 which takes

the terminal discount bond D·Tn+1 as the numeraire. Details of the implementation

of the SMF model under the terminal measure can be found in Hunt et al. [2000] and

Hunt and Kennedy [2004]. We assume the driving process x is a Gaussian process

satisfying

xt :=

∫ t

0
σ(u)dWu,

where W denotes a standard Brownian motion under Sn+1 and σ(·) is a deterministic

function of time. For the implementation of the model, we only need to specify the

law of x at each exercise date Ti for i = 1, . . . , n.

An important result that was observed in Bennett and Kennedy [2005] is the

approximate linear relationship between the logarithms of the co-terminal forward

swap rates and x

ln yi,n+1−i
t ≈ γi︸︷︷︸

constant

xt + ηit︸︷︷︸
deterministic

. (3.3)
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Consequently, the joint distributions of the log of the co-terminal forward swap rates

can be captured via our choice of x since correlation is invariant under the linear

transformation

Corr(xTi , xTj ) =

√
ξmin(Ti,Tj)

ξmax(Ti,Tj)
≈ Corrmo(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
),

where ξTi := Var(xTi) =
∫ Ti

0 σ2(t)dt and the superscript “mo” denotes model quan-

tities.

We further note that by matching the model to the Black formula for the

co-terminal vanilla swaptions, we have the following approximation in the terminal

measure (exact in the associated swaption measure)

Varmo(ln yi,n+1−i
Ti

) ≈ σ̃2
i,n+1−iTi. (3.4)

Hence, once x is chosen the γi’s are implicitly determined and from (3.3) and (3.4)

we have

γ2
i ξTi ≈ σ̃2

i,n+1−iTi. (3.5)

Note that each γi is matched specifically to the associated co-terminal swap rate

yi,n+1−i and once the model is calibrated it stays constant from today till expiry. In

that sense, the γi’s are expiry-dependent quantities.

We now present in the following two current candidates for x before exploring

other choices in the later sections.

Current candidates:

• MR: The first choice is referred to as the mean reversion (MR) driving process

with σ(t) = eat, where a > 0 is the mean reversion parameter. It follows that

one can write the variance of x at each exercise date Ti as

ξTi =

∫ Ti

0
e2atdt =

1

2a
(e2aTi − 1).

For this choice of parametrization, one can see that any changes in the market

implied volatilities will not influence x and its auto-correlations once we fix

the parameter a. However, the expiry-dependent quantities γi’s may change

as we can see from (3.5). In that sense, the MR process is an example of

“parametrization by expiry”.

• HW: An alternative choice of x is motivated by considering the Hull-White

short-rate model which was first introduced in Bennett and Kennedy [2005].

We refer to it as the Hull-White (HW) process. For each i = 1, . . . , n, we have
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the following specification for the HW process

ξTi =

(
Tn+1 − Ti

(1 + αiy
i,n+1−i
0 )(ψTn+1 − ψTi)

)2

σ̃2
i,n+1−iTi, (3.6)

where ψTi = 1
a(1− e−aTi), a > 0. In contrast to the MR process, any changes

in the market co-terminal implied volatilities will have an immediate effect on

x and its auto-correlations. From the linear approximation in (3.3), we see

that the instantaneous volatilities of the co-terminal swap rates will be altered

in certain time periods. On the other hand, the expiry-dependent quantities

γi’s will stay the same as we can see from substitution of the expression (3.6)

into (3.5). In that sense, the HW process is an example of “parametrization

by time”.

For both the above model parametrizations, an increase in the implied volatility of

one of the co-terminal swap rates tends to increase the value of a Bermudan. This

is not surprising as the value of the associated vanilla swaption has increased. But

the optionality of a Bermudan provides extra value in addition to the value of the

underlying vanilla options. This extra value is highly dependent on the correlations

between the co-terminal swap rates at their setting dates and for the above two

models these correlations behave very differently in response to changes in the co-

terminal implied volatilities. This leads to very different hedging profiles as we shall

see in the later sections. In the next section we investigate the essential difference

in nature between the two parametrizations by considering the underlying LIBORs.

3.3.2 Parametrizations by time and by expiry

In the previous subsection, we discussed the idea of parametrizations by expiry and

by time in terms of the responses of the instantaneous volatilities of the co-terminal

swap rates to a shift in the implied volatilities. Here we explore how this idea carries

over to the LIBORs as they are the basic building blocks of any interest rate model.

For all choices of x, the linear approximation in (3.3) implies that the instan-

taneous volatility of the log of the co-terminal forward swap rate yi,n+1−i
t is approx-

imately γiσ(t) under the terminal measure. In order to gain insight into the effect of

shifting the implied volatilities, we make the simplifying assumption that each log-

LIBOR lnLi has a positive and deterministic volatility function σi(t), t ≤ Ti. Under

this assumption, we can use the approximation described in Appendix 3.A. In a one

factor model instead of the multi-factor setting in Appendix 3.A, the instantaneous

volatility of the log of the co-terminal forward swap rate yi,n+1−i can be linked to
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the instantaneous volatilities of the log-LIBORs by the following approximation

γiσ(t) ≈
n∑
k=i

ζi,n+1−i
k (0)σk(t), (3.7)

where {ζi,n+1−i
k (0)}k=i,...,n are constant empirical weights that depend on the initial

discount curve. This can be seen from SDE (3.36) in Appendix 3.A.2.

Since the last LIBOR Ln = yn,1, we have that σn(t) ≈ γnσ(t). Using the

derived form for σn(t), we can deduce σn−1(t) by considering the approximation in

(3.7) for γn−1σ(t)

σn−1(t) ≈ σn−1σ(t),

where we let

σn−1 :=
γn−1 − ζn−1,2

n (0)γn

ζn−1,2
n−1 (0)

.

We assume σn−1 > 0 so that σn−1(·) will also be positive as we assumed earlier.

Inductively, assume we have that σk(t) ≈ σkσ(t) where σk is a positive constant

for each k = i + 1, . . . , n. When k = n, σn is the same as γn. We can then derive

σi(t) by considering the approximation in (3.7) for γiσ(t). We rewrite (3.7) in the

following form

γiσ(t) ≈ ζi,n+1−i
i (0)σi(t) +

n∑
k=i+1

ζi,n+1−i
k (0)σkσ(t)

⇐⇒ σi(t) ≈

(
γi −

∑n
k=i+1 ζ

i,n+1−i
k (0)σk

ζi,n+1−i
i (0)

)
σ(t).

This again reduces σi(t) approximately to the form σiσ(t) where

σi :=
γi −

∑n
k=i+1 ζ

i,n+1−i
k (0)σk

ζi,n+1−i
i (0)

. (3.8)

This concludes that σi(t) ≈ σiσ(t) for all i = 1, . . . , n where each constant σi

can be derived inductively by (3.8) and is assumed to be positive. One can see

that each σi depends on {γk}k=i,...,n and the empirical weights {ζi,n+1−i
k (0)}k=i,...,n,

{ζi+1,n−i
k (0)}k=i+1,...,n, . . . , {ζn−1,2

k (0)}k=n−1,n. Since these empirical weights do not

depend on the implied volatilities, we will safely ignore their involvements in the

next discussion.

We now analyze how shifting the implied volatilities affects the instantaneous

volatility functions {σi(·)}i=1,...,n of the log-LIBORs for each choice of x.

Parametrization by expiry: For the MR process, by the approximation in (3.5)
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we have that

γi ≈
σ̃i,n+1−i

√
Ti√

e2aTi−1
2a

, i = 1, . . . , n. (3.9)

Suppose we want to bump the co-terminal implied volatility σ̃i,n+1−i and keep

the rest the same. It is clear that the instantaneous volatility σ(t) = eat of

the MR process will not be affected. We observe other effects and summarize

them below:

• γj for j 6= i are unchanged as we can see from (3.9). This then follows

from (3.8) that the constants {σj}j=i+1,...,n and hence {σj(·)}j=i+1,...,n

also remain unchanged.

• γi will increase directly as a result of (3.9). From (3.8), we see that σi

and hence σi(·) will increase as {σj}j=i+1,...,n are unchanged.

• Since γi−1 and {σj}j=i+1,...,n stay the same but σi increases, again we can

see from (3.8) that σi−1 and hence σi−1(·) will decrease.

• The effects on {σk}k=1,...,i−2 and hence {σk(·)}k=1,...,i−2 will be quite

small. This is because the increase in σi and decrease in σi−1 tend to

cancel each other out in the sum in (3.8) when we consider σk for k < i−1.

Note that all the above effects are (global) from today till expiry (illustrated

in figure 3.1). In that sense, the instantaneous volatilities of the log-LIBORs

are clearly parameterized by expiry.

-

6

σ1(·) · · ·
· · · · ··
· · · · · · · · ·

σi−1(·) −−−−−−−
σi(·) + + + + + + + + +

σn(·)

T1 Ti−1Ti Ti+1 Tn

Time

Instantaneous volatility

Parametrization

by expiry

Figure 3.1: Global effect of bumping σ̃i,n+1−i on the instantaneous volatility func-

tions of the log-LIBORs. The dots represent a very small effect.
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Parametrization by time: For the HW process where ξTi is given by (3.6), it can

be seen from (3.5) that the γi’s are independent of the implied volatilities

γi ≈
(1 + αiy

i,n+1−i
0 )(ψTn+1 − ψTi)
Tn+1 − Ti

, ψTi =
1

a
(1− e−aTi), a > 0.

(3.10)

Although the instantaneous volatility function σ(·) of x is not defined explic-

itly, we know it exists such that
∫ Ti

0 σ2(t)dt = ξTi is given by (3.6). This is

because this form of ξTi is strictly increasing in Ti.

We now bump the co-terminal implied volatility σ̃i,n+1−i and keep the rest

unchanged. It is clear from (3.10) that γj will stay the same for j = 1, . . . , n.

Hence, it follows from (3.8) that the constants σj will also remain unchanged

for all j. The only effect of the bump is on the function σ(·) (see (3.6)). One

can see that the variance of x at Ti is shifted but those at the other exercise

dates remain unchanged. Consequently, we have that the only effect on x is

the following

ξTi − ξTi−1 =

∫ Ti

Ti−1

σ2(t)dt increases,

ξTi+1 − ξTi =

∫ Ti+1

Ti

σ2(t)dt decreases.

The above effect implies that on average the instantaneous volatility function

σ(·) of x is increased during the time period (Ti−1, Ti] but is decreased during

the next one (Ti, Ti+1]. Since σj(t) ≈ σjσ(t) is only defined during the corre-

sponding LIBOR’s life, i.e. t ∈ [0, Tj ], the effect on σ(·) only carries over to

{σj(·)}j=i,...,n. It is then clear that on average the collection of instantaneous

volatilities {σj(·)}j=i,...,n will increase and decrease during the two consecu-

tive time intervals (Ti−1, Ti] and (Ti, Ti+1] respectively (figure 3.2). For the

last co-terminal implied volatility σ̃n,1, the equivalent effect is that σn(·) will

only increase during the period (Tn−1, Tn]. Note that the above effects are

local as the instantaneous volatilities of the log-LIBORs are only shocked lo-

cally for some particular time periods in response to the movement of the

corresponding implied volatility. In that sense, the instantaneous volatilities

of the log-LIBORs are clearly parameterized by time.
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σ1(·)

σi(·)
σi+1(·)

σn(·)

T1 Ti−1

+

+

+

+

+

+

Ti

−
−
−
−
−

Ti+1 Tn

Time

Instantaneous volatility

Parametrization

by time

Figure 3.2: Local effects of bumping the σ̃i,n+1−i on the instantaneous volatility

functions of the log-LIBORs.

The difference in parametrizations mentioned above has a fundamental effect on the

hedging of a Bermudan swaption. Specifically, the global and local effects of the

parametrizations by expiry and by time influence the correlations of the forward

LIBORs and the co-terminal forward swap rates in very different ways. This fact, in

turn, leads to very different hedging behaviours of correlation-dependent products

like the Bermudan swaption. We will investigate further the difference in their vega

profiles in Section 3.4.2. Since the “parametrization by time” outperforms the other

type as we explore later in Section 3.5, we will next propose an alternative for this

parametrization.

3.3.3 An alternative parametrization of time

We recall that the correlation of the MR process is fixed from the outset while

the HW specification links the correlation structure of the model/co-terminal swap

rates explicitly to the market implied volatilities. However at each exercise date Ti,

the HW process only takes into account the co-terminal implied volatility σ̃i,n+1−i.

In this section, we explore alternative ways to specify the x process which link the

model’s correlation structure to implied volatilities of different tenors (see table 3.1).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . σ̃1,10

2 . . . . . . . . . . . . . . . . . . . . . . . . σ̃2,9 . . .

3 . . . . . . . . . . . . . . . . . . . . . σ̃3,8 . . . . . .

4 . . . . . . . . . . . . . . . . . . σ̃4,7 . . . . . . . . .

5 . . . . . . . . . . . . . . . σ̃5,6 . . . . . . . . . . . .

6 . . . . . . . . . . . . σ̃6,5 . . . . . . . . . . . . . . .

7 . . . . . . . . . σ̃7,4 . . . . . . . . . . . . . . . . . .

8 . . . . . . σ̃8,3 . . . . . . . . . . . . . . . . . . . . .

9 . . . σ̃9,2 . . . . . . . . . . . . . . . . . . . . . . . .

10 σ̃10,1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2 3 4 5 6 7 8 9 10

σ̃1,1 σ̃1,2 σ̃1,3 σ̃1,4 σ̃1,5 σ̃1,6 σ̃1,7 σ̃1,8 σ̃1,9 σ̃1,10

σ̃2,1 σ̃2,2 σ̃2,3 σ̃2,4 σ̃2,5 σ̃2,6 σ̃2,7 σ̃2,8 σ̃2,9 . . .

σ̃3,1 σ̃3,2 σ̃3,3 σ̃3,4 σ̃3,5 σ̃3,6 σ̃3,7 σ̃3,8 . . . . . .

σ̃4,1 σ̃4,2 σ̃4,3 σ̃4,4 σ̃4,5 σ̃4,6 σ̃4,7 . . . . . . . . .

σ̃5,1 σ̃5,2 σ̃5,3 σ̃5,4 σ̃5,5 σ̃5,6 . . . . . . . . . . . .

σ̃6,1 σ̃6,2 σ̃6,3 σ̃6,4 σ̃6,5 . . . . . . . . . . . . . . .

σ̃7,1 σ̃7,2 σ̃7,3 σ̃7,4 . . . . . . . . . . . . . . . . . .

σ̃8,1 σ̃8,2 σ̃8,3 . . . . . . . . . . . . . . . . . . . . .

σ̃9,1 σ̃9,2 . . . . . . . . . . . . . . . . . . . . . . . .

σ̃10,1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.1: Market data from the swaption matrix to be incorporated into the driv-

ing process x for a 11 years annual Bermudan swaption. HW’s approach (left),

alternative approach (right).

3.3.3.1 One step covariance

One way to view a Bermudan swaption is as the right to choose between the as-

sociated European swaptions. In setting up a model, one might choose to try to

capture the correlations between the co-terminal swap rates at their setting dates.

These are the correlations that matter when pricing a Bermudan swaption. In a

one factor model, we cannot capture all these correlations. One choice is to consider

the one step correlations, i.e. the correlation of yi,n+1−i
Ti

with its nearest neighbour

yi+1,n−i
Ti+1

for each i. Note that we will work with the log of the swap rates because

it allows for a direct connection with the driving process x as we shall see in the

model’s setup.

In the approach adopted here, we estimate the one step covariances, i.e.

Cov(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

) for i = 1, . . . , n− 1, using the swaption matrix from the

market. This is a two-step procedure. The first step is to approximate the correla-

tions of the log-LIBORs at each exercise date by a global fit to the swaption matrix.

The second step is to deduce the corresponding covariances of the log-LIBORs by

performing a local fit to each row of the swaption matrix and using the correlations

from the first step. We then use these covariances to derive the required one step

covariances (see equation (3.37)). In fact, we only need Cov(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti

)

as

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈ Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

),

for i < j ≤ n (see Appendix 3.A.2). Details of the whole approximation procedure

can be found in Appendix 3.A. In what follows we will use the superscript ”ma” to

denote quantities estimated from the market.

Model’s setup: Once we have estimated the one step covariances from the

market, we set up the model as follows. Recall the linear approximation under the
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terminal measure in Bennett and Kennedy [2005], for i < n

γixt + ηit ≈ ln yi,n+1−i
t

⇒ Corr(xTi , xTi+1) ≈ Corrmo(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

)

⇐⇒

√
ξTi
ξTi+1

≈
Covmo(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti
)√

Varmo(ln yi,n+1−i
Ti

)Varmo(ln yi+1,n−i
Ti+1

)
. (3.11)

As for each i = 1, . . . , n Varmo(ln yi,n+1−i
Ti

) can be inferred from the corresponding

Black implied volatility σ̃i,n+1−i, we can now incorporate the one step covariances

into the model as described below.

• Without loss of generality, fix ξTn = σ̃2
n,1Tn.

• At Tn−1, by knowledge of Covma(ln yn−1,2
Tn−1

, ln yn,1Tn
) and hence the one step

correlation Corrma(ln yn−1,2
Tn−1

, ln yn,1Tn
) =

Covma(ln yn−1,2
Tn−1

,ln yn,1Tn
)

σ̃n−1,2

√
Tn−1σ̃n,1

√
Tn

that we have esti-

mated from the market, we can recover ξTn−1 by fixing√
ξTn−1

ξTn
= Corrma(ln yn−1,2

Tn−1
, ln yn,1Tn

)

⇐⇒
√
ξTn−1 = Corrma(ln yn−1,2

Tn−1
, ln yn,1Tn

)
√
ξTn ,

where we use the relation in (3.11).

• Inductively, assume we are at Ti and have derived ξTj for j > i from the

previous steps. By the approximation for Corrma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

) from

the market and the knowledge of ξTi+1 , we can fix ξTi√
ξTi = Corrma(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti+1
)
√
ξTi+1 ,

where we again use (3.11).

• We have now fixed ξTi for i = 1, . . . , n and the SMF model can be implemented

on the grid.

The above model is an example of parametrization by time and its overall vega profile

(in terms of a Bermudan swaption) has a close connection to that of the HW model

as we shall see in Section 3.4. As implied volatilities change, the implied correlations

in the market change. The one step covariance model attempts to hedge this risk

but with the focus just on the one step covariance with the next co-terminal swap

rate. Clearly, we are ignoring some important market information. This is exactly

the motivation for our next proposed model.
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3.3.3.2 Weighted covariance

We propose another alternative choice of x based on the following intuition. In order

to make a decision whether to exercise the option at Ti, the one step correlation

Corr(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

) will be the most important as Ti+1 is immediately after

Ti. The correlations with the later rates are less significant since we can wait until

later to decide.

For each i = 1, . . . , n−1, in addition to the one step covariance we can choose

to take into account the significance of the covariances Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

)

for all j > i but with different levels of impact on the Bermudan swaption’s price.

Again, as there is only one factor in the model we cannot capture everything. One

way is to consider the weighted covariance Cov(ln yi,n+1−i
Ti

,
∑n

j=i+1 p
Tj−Ti ln yj,n+1−j

Tj
)

at each exercise date Ti where the weight is chosen to be a monotonically decreasing

function in Tj − Ti

pTj−Ti = exp[−α(Tj − Ti)], j > i,

for some α > 0. Note that the weighted covariance can be estimated in exactly the

same way as we estimate the one step covariance from the market (see Appendix

3.A). As we shall see in Section 3.4.3, the weighted covariance model spreads the

vega responses over the swaption matrix while the one step covariance model only

assigns a significant contribution to the first column and the reverse diagonal. It is

this feature that gives the weighted covariance model a potential hedging advantage

over the one step covariance model.

Model’s setup: For i = 1, . . . , n−1, we calibrate the model to the following

market quantity

Covma(ln yi,n+1−i
Ti

,
n∑

j=i+1

pTj−Ti ln yj,n+1−j
Tj

) ≈
n∑

j=i+1

pTj−TiCovma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

).

(3.12)

For ease of exposition, we denote this market quantity by Bi. One can incorporate

the Bi’s into the model as follows

• Without loss of generality, fix ξαTn = σ̃2
n,1Tn

1.

• At Tn−1, we only need to estimate from the market the one step covariance

Covma(ln yn−1,2
Tn−1

, ln yn,1Tn−1
) for Bn−1 and consequently the one step correlation

Corrma(ln yn−1,2
Tn−1

, ln yn,1Tn
). Since we want to calibrate the model’s correlation

1The superscript α is added to emphasize the dependence.
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structure to Bn−1, we then require that

p

√
ξαTn−1

ξαTn
σ̃n−1,2

√
Tn−1σ̃n,1

√
Tn = Bn−1

⇐⇒
√
ξαTn−1

= Corrma(ln yn−1,2
Tn−1

, ln yn,1Tn
)
√
ξαTn ,

where we use the relation in (3.11). Note that this step is the same as that in

the one step covariance model.

• Inductively, assume we are at Ti and have derived {ξαTj}j=i+1,...,n from the

previous steps, ξαTi will then be obtained by backward induction. Since we have

estimated Bi from the market and want to calibrate the model’s correlation

structure to Bi, we require that

n∑
j=i+1

pTj−Ti

√
ξαTi
ξαTj

σ̃i,n+1−i
√
Tiσ̃j,n+1−j

√
Tj = Bi, (3.13)

where we use Corrma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) for j > i instead of just j = i+ 1

as in the one step covariance case. Hence, from (3.13) we fix√
ξαTi =

Bi

σ̃i,n+1−i
√
Ti
∑n

j=i+1 p
Tj−Ti

√
1
ξαTj
σ̃j,n+1−j

√
Tj

. (3.14)

• We have now fixed ξαTi for i = 1, . . . , n and the SMF model can be implemented

on the grid.

One can immediately see that the one step covariance process is a special case of

the general weighted covariance process when α is very large. The reason is the

following. When α is sufficiently large, pTj−Ti will decay exponentially fast and all

the weights will then become insignificant compared with pTi+1−Ti . Consequently,

only the one step covariance matters in the market quantity Bi and the weighted

covariance process is reduced to the one step covariance one.

Remark 1 For both the one step and weighted covariance models, one can view the

vectors of Black implied volatilities (σ̃i,1, σ̃i,2, . . . , σ̃i,n+1−i) for i = 1, . . . , n as the

model’s initial inputs (see the global and local fits in Appendix 3.A). It follows from

the constructions of both the one step and weighted covariance processes that one

can write

ξαTi = f i(ξαTi+1
, . . . , ξαTn ; {σ̃i,k}k=1,...,n+1−i; {σ̃j,n+1−j}j=i+1,...,n), (3.15)

where f i is some deterministic function (see Appendix 3.A.2 for more details). This
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cascade structure of the model clearly has an important implication on the response

of the Bermudan price to changes in implied volatilities.

Although the one step and weighted covariance processes appear to be more

complicated than the HW process, it turns out that they are still quite similar in

some context. In the next section, we will explore further their connection through

the Bermudan swaption’s vegas.

3.4 Vegas

In this section, we study the vegas of a Bermudan swaption produced by the different

models. While the deltas and the gammas do not vary so much from model to model

as we shall see in Section 3.5, the vegas prove to be the most influential in the hedging

of a Bermudan. In addition, the underlying parametrization of the model has an

important implication for the vegas. It is, therefore, worthwhile to investigate the

behaviour of the vegas from different perspectives to explore the model’s structure.

In Subsection 3.4.1, we review analytically the vegas under different models. We

then study the vegas numerically and investigate further the link between them.

3.4.1 The vega computation under the swap Markov-functional

model

In order to compute the price of a Bermudan swaption in a SMF model, we need two

sets of initial inputs and a covariance/correlation structure (captured through the

process x). The first set of inputs are the initial discount bonds which can be safely

ignored in this discussion as we are only concerned with the vegas here. The second

set of inputs are the co-terminal implied volatilities which are used to recover the

prices of the underlying co-terminal vanilla swaptions and fix the functional forms

of the corresponding co-terminal forward swap rates at their setting dates. In the

implementation of the SMF model, this is the calibration to the market marginals

and it is done for all different specifications of x. In general, one can view the value

of a Bermudan V̂T0 as a price function which maps (the square root of) the variances

of x and the second set of inputs to a real positive value:

V̂T0 : Rn × Rn → R+

V̂T0(ξ, σ) := v0, (3.16)

where ξ = (
√
ξT1 ,

√
ξT2 , . . . ,

√
ξTn) and σ = (σ̃1,n, σ̃2,n−1, . . . , σ̃n,1). For the weighted

covariance process, the equivalent input from x is ξ
α

= (
√
ξαT1 ,

√
ξαT2 , . . . ,

√
ξαTn).

Note that the notation ξ
α

when α→∞ indicates the one step covariance case as we

explained in Section 3.3.3.2. For the data we are working with, it is observed that
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the vectors ξ
α

are quite similar for all α and hence different choices for α result in

similar prices for the Bermudan.

Define the vega νi,k to be the total derivative of the Bermudan swaption’s

price with respect to σ̃i,k for each i = 1, . . . , n and k = 1, . . . , n+ 1− i:

νi,k :=
dV̂T0
dσ̃i,k

. (3.17)

We apply the finite difference/bumping-revaluation method to calculate these deriva-

tives numerically.

We now consider the vegas on a particular ith row of the swaption matrix. In

order to distinguish the vegas produced by different models, we denote ναi,k for the

weighted covariance process. Note again that the notation ναi,k as α→∞ indicates

the vegas for the one step covariance process. For the HW and MR models, we

denote the vegas by νhw
i,k and νmr

i,k respectively. Note that only the co-terminal vegas

νhw
i,n+1−i and νmr

i,n+1−i matter in the HW and MR models which follows directly from

their setups. The other vegas are all zero for these models.

1. k = 1, . . . , n − i (off reverse diagonal): For the one step and weighted

covariance models, as σ̃i,k is only involved in ξ
α
, by the chain rule and equation

(3.15) we have that

ναi,k =
dV̂T0
dσ̃i,k

=
i∑

s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dσ̃i,k
. (3.18)

The term
∂V̂T0
∂
√
ξαTs

should be interpreted as the partial derivative of the price

function V̂T0 with respect to the sth coordinate of the vector ξ
α
. For the total

derivatives
d
√
ξαTs

dσ̃i,k
where 1 ≤ s < i, by equation (3.15) it is clear that the

dependence of
√
ξαTs on σ̃i,k is through {

√
ξαTj∗}j∗=s+1,...,i.

Note that the price of a Bermudan swaption is not sensitive to these implied

volatility inputs under the HW and MR models. Hence, as noted above we

have zero values for the corresponding vegas in these models.

2. k = n+ 1− i (reverse diagonal): For the one step and weighted covariance

models, as σ̃i,n+1−i is involved in both ξ
α

and σ we have that

ναi,n+1−i =
∂V̂T0

∂σ̃i,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dσ̃i,n+1−i
. (3.19)

Note that the first term on the right hand side of (3.19) is approximately the

ith bucket vega νmr
i,n+1−i of the MR process when the prices are comparable
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between models. This term only reflects the change of the marginal distribu-

tion of yi,n+1−i
Ti

under its own swaption measure. For the HW process, the

equivalent vega is

νhw
i,n+1−i =

∂V̂T0
∂σ̃i,n+1−i

+
∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dσ̃i,n+1−i
(3.20)

≈ νmr
i,n+1−i +

∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dσ̃i,n+1−i
.

One can see that the above differences between νhw
i,n+1−i and ναi,n+1−i on one

hand and νhw
i,n+1−i and νmr

i,n+1−i on the other hand come from the differences in

their correlation structures. Since the HW and the one step and the weighted

covariance models are different examples of parametrization by time, their

vegas are closely connected as we shall see in Section 3.4.4. For the MR

and HW models which respond to the reverse diagonal only, the difference

in their correlation structures follow directly from the difference between the

parameterizations by expiry and by time. We will review this difference in the

next section.

3.4.2 The Bermudan swaption’s vegas under the HW and MR

models

The example we consider here is a 11 years annual payer Bermudan swaption with

fixed rate K = 5%, notional N = 100 million and the following initial data:

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 13.12 13.19 13.21 13.21 13.22 13.00 12.78 12.58 12.39 12.17

2 13.16 13.16 13.09 13.04 12.92 12.72 12.51 12.31 12.12 . . .

3 13.06 12.97 12.91 12.82 12.66 12.42 12.20 12.03 . . . . . .

4 12.95 12.82 12.72 12.51 12.32 12.14 11.93 . . . . . . . . .

5 12.76 12.57 12.43 12.24 12.03 11.87 . . . . . . . . . . . .

6 12.38 12.19 12.12 11.89 11.71 . . . . . . . . . . . . . . .

7 12.10 11.89 11.77 11.59 . . . . . . . . . . . . . . . . . .

8 11.69 11.56 11.46 . . . . . . . . . . . . . . . . . . . . .

9 11.48 11.31 . . . . . . . . . . . . . . . . . . . . . . . .

10 11.19 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.2: Black implied volatilities (%) of the ATM swaptions on October 17, 2007.

and
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 4.54 4.55 4.56 4.58 4.60 4.63 4.66 4.70 4.73 4.76

2 4.55 4.57 4.59 4.62 4.65 4.69 4.73 4.76 4.79 . . .

3 4.58 4.62 4.65 4.68 4.72 4.76 4.80 4.83 . . . . . .

4 4.65 4.68 4.72 4.76 4.80 4.84 4.87 . . . . . . . . .

5 4.71 4.75 4.80 4.84 4.88 4.92 . . . . . . . . . . . .

6 4.80 4.84 4.89 4.93 4.97 . . . . . . . . . . . . . . .

7 4.89 4.94 4.98 5.01 . . . . . . . . . . . . . . . . . .

8 4.99 5.03 5.06 . . . . . . . . . . . . . . . . . . . . .

9 5.06 5.09 . . . . . . . . . . . . . . . . . . . . . . . .

10 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.3: Initial swap rates (%) on October 17, 2007.

Here we compare the vegas of the Bermudan swaption under the HW and

MR models. The mean reversion parameter a is fixed at 3% for both two driving

processes so that the Bermudan prices produced by the two models are close and

also comparable to those that are produced by the one step and weighted covariance

models. We display the vegas in tables 3.4 and 3.5. The position of each vega

corresponds to the implied volatility in the swaption matrix. Recall that the off

reverse diagonal entries are all zero since the Bermudan swaption’s price is not

sensitive to the corresponding implied volatility inputs here.

Remark 2 In practice, traders usually quote vega as the change in price when im-

plied volatility increases by 100 basis points (bp) or 1% so we will scale the “true”

vega by a factor of 0.01, i.e. νi,k → 0.01νi,k. For example, the entry 4.09 in the

first row and the last column of table 3.4 means that when σ̃1,10 increases by 1% the

Bermudan price (with notional 100 million) will increase by 40, 900.
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0 0 0 0 0 0 0 0 0 4.09

2 0 0 0 0 0 0 0 0 10.00 . . .

3 0 0 0 0 0 0 0 9.48 . . . . . .

4 0 0 0 0 0 0 7.76 . . . . . . . . .

5 0 0 0 0 0 6.23 . . . . . . . . . . . .

6 0 0 0 0 4.69 . . . . . . . . . . . . . . .

7 0 0 0 3.74 . . . . . . . . . . . . . . . . . .

8 0 0 2.94 . . . . . . . . . . . . . . . . . . . . .

9 0 2.16 . . . . . . . . . . . . . . . . . . . . . . . .

10 1.56 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.4: The Bermudan swaption’s scaled vegas (in 104) under the HW model.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0 0 0 0 0 0 0 0 0 6.28

2 0 0 0 0 0 0 0 0 14.54 . . .

3 0 0 0 0 0 0 0 12.12 . . . . . .

4 0 0 0 0 0 0 8.48 . . . . . . . . .

5 0 0 0 0 0 5.62 . . . . . . . . . . . .

6 0 0 0 0 3.37 . . . . . . . . . . . . . . .

7 0 0 0 1.86 . . . . . . . . . . . . . . . . . .

8 0 0 0.83 . . . . . . . . . . . . . . . . . . . . .

9 0 0.22 . . . . . . . . . . . . . . . . . . . . . . . .

10 -0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.5: The Bermudan swaption’s scaled vegas (in 104) under the MR model.

It is seen in figure 3.3 that the vegas for both models as a function of expiry

display “humped” shapes whose peaks are attained at the same exercise date. We

also observe that the HW vegas are lower than the MR vegas at the early exercise

dates but higher at the later ones. Recall from Subsection 3.4.1 that this difference

in vegas is actually caused by the difference in the correlation structures. This is

rather important for a strongly correlation-dependent product like the Bermudan

swaption. In the following, we will give a crude explanation on how a change in one

of the co-terminal implied volatilities can affect the correlations of the co-terminal

swap rates under the two models which will then clearly indicate their vegas.

Parametrization by expiry (MR): We recall that the MR process is unaltered
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by bumping any co-terminal implied volatility. This then implies that the

correlation structure of the model/co-terminal forward swap rates is unaltered,

i.e. Corrmo(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) which are approximately

√
ξmin(Ti,Tj)

ξmax(Ti,Tj)
are

unchanged for all i, j ≤ n.

Parametrization by time (HW): Bumping σ̃i,n+1−i has an immediate effect on

the HW process and hence the correlation structure of the model/co-terminal

forward swap rates. Specifically, Corrmo(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈
√

ξmin(Ti,Tj)

ξmax(Ti,Tj)

will increase for j > i but decrease for j < i. Heuristically, we have the

following overall effect: on average the co-terminal forward swap rates will

tend to be more correlated if i is small and less correlated if i is large.

We employ the following heuristic argument for the correlation’s effects on the

Bermudan price. The optionality of a Bermudan implies that the lower the cor-

relations of the co-terminal swap rates get, the higher the price of the Bermudan

swaption becomes. For more details of how correlations affect the Bermudan price,

see Andersen and Piterbarg [2010] and Rebonato [2004] for example for reference.

Hence, we draw the following conclusion on the vegas. If x is parameterized by time

and i is small (early exercise date), the co-terminal forward swap rates will tend to

be more correlated on average. This effect will cause the HW price to increase less

than the MR price and make νhw
i,n+1−i lower than νmr

i,n+1−i. On the other hand, if i

is large (late exercise date), the co-terminal forward swap rates will tend to be less

correlated on average. This then causes νhw
i,n+1−i to be higher than νmr

i,n+1−i. This

fundamental difference is the key observation which leads to very different hedging

profiles as we shall see later.

Remark 3 The MR vegas become very small or even negative at the end of the

option which is possible under some circumstances in practice. See Appendix B

in Pietersz and Pelsser [2004] for an explanation of negative vega for a two stock

Bermudan option example.

3.4.3 The Bermudan swaption’s vegas under the one step and weighted

covariance models

We test the one step and weighted covariance processes with different values of α

and display their vega matrices in tables 3.6, 3.7, 3.8 and 3.9.

We first look at the vegas for the one step covariance model in table 3.6.

The first thing to notice from this table is that the vega response starts shifting

away from the reverse diagonal entries. We obtain a vega profile which assigns a

significant contribution to the first column of the swaption matrix. The other vega

entries are seen to be much smaller and very close to zero except for the co-terminal
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ones. The vega behaviour of the first column can be seen from the local fit in

Appendix 3.A.2. In this local fit step, apart from the reverse diagonal entries we

see that shifting the first column has the most distinctive effect on the one step

covariance terms that we estimate from the market. The one step covariance model

is set up such that it responds to the changes in the one step covariances only (not

the other covariances as considered in the weighted covariance model). Thus it is

a shift in the first column or a reverse diagonal entry of the swaption matrix that

has the largest vega response. Note that the swaptions corresponding to the first

column are fairly illiquid so it would be desirable to use more implied volatilities to

moderate the response to any inaccurate market signals. The results produced by

the weighted covariance model indeed have this feature.

For the weighted covariance model, we observe different patterns for the vega

response depending on different values of α. For example, when α = 0.05 we observe

a bigger response in the central part of the table compared with that when we use

a much higher value of α, for instance α = 5. For some particular rows, it is seen

that those central entries even dominate the reverse diagonal and the first column.

For larger values of α such as 0.3 in table 3.8, we observe a clearer trend in the vega

entries. They tend to increase in tenor for each expiry. When α gets much higher

(table 3.9), it is clear that the entries look very similar to the one step covariance

case where the vegas from the central part become much more insignificant and

dominated by the reverse diagonal and the first column. This is predictable as one

step covariance is a special case of the weighted covariance model when α is very

large.

Remark 4 We get a few negative vega entries when α = 0.05. Note that those in the

reverse diagonal (the first two rows) are quite large in magnitude. One reason for this

behaviour is the following. When we shift the co-terminal implied volatility σ̃i,n+1−i,

the approximations from the market for the correlations Corrma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

)

tend to increase for j > i. For a very low value of α, the model will take into account

all these increases in correlations with high levels of impact on the Bermudan price

since the geometric weight pTj−Ti decays very slowly in Tj − Ti. Therefore, when i

is small the overall increase in correlations of the co-terminal swap rates could be

large which in turn leads to a decrease in price and hence negative vegas.
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.60

2 0.94 0.01 0.01 0.01 0.01 0.01 0.01 0.01 8.86 . . .

3 1.46 0.01 0.01 0.01 0.01 0.01 0.00 7.79 . . . . . .

4 1.82 0.01 0.01 0.01 0.01 0.01 5.71 . . . . . . . . .

5 2.01 0.02 0.02 0.02 0.01 4.02 . . . . . . . . . . . .

6 2.08 0.02 0.02 0.01 2.45 . . . . . . . . . . . . . . .

7 2.05 0.02 0.01 1.56 . . . . . . . . . . . . . . . . . .

8 1.89 0.02 1.00 . . . . . . . . . . . . . . . . . . . . .

9 1.68 0.43 . . . . . . . . . . . . . . . . . . . . . . . .

10 1.57 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.6: The Bermudan swaption’s scaled vegas (in 104) under the one step co-

variance model.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.08 0.05 0.16 0.30 0.16 0.62 0.70 0.57 2.48 −1.05

2 0.10 0.46 0.36 0.56 0.86 1.32 2.21 4.79 −1.06 . . .

3 0.10 0.22 0.36 0.58 0.93 1.70 3.70 1.42 . . . . . .

4 0.06 0.16 0.29 0.54 0.95 2.15 3.49 . . . . . . . . .

5 0.05 0.16 0.30 0.55 1.34 3.82 . . . . . . . . . . . .

6 0.02 0.10 0.16 0.46 3.89 . . . . . . . . . . . . . . .

7 0.03 0.01 0.08 3.67 . . . . . . . . . . . . . . . . . .

8 −0.07 −0.24 3.25 . . . . . . . . . . . . . . . . . . . . .

9 −0.18 2.25 . . . . . . . . . . . . . . . . . . . . . . . .

10 1.54 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.7: The Bermudan swaption’s scaled vegas (in 104) under the weighted co-

variance model (α = 0.05).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.10 0.13 0.18 0.25 0.15 0.35 0.30 0.38 0.65 1.86

2 0.23 0.36 0.46 0.59 0.66 0.82 1.05 1.73 3.83 . . .

3 0.22 0.41 0.53 0.67 0.81 1.14 1.87 3.75 . . . . . .

4 0.23 0.38 0.51 0.69 0.95 1.67 3.45 . . . . . . . . .

5 0.18 0.35 0.53 0.81 1.48 3.00 . . . . . . . . . . . .

6 0.17 0.34 0.53 1.05 2.67 . . . . . . . . . . . . . . .

7 0.13 0.31 0.71 2.68 . . . . . . . . . . . . . . . . . .

8 0.08 0.26 2.62 . . . . . . . . . . . . . . . . . . . . .

9 0.08 2.03 . . . . . . . . . . . . . . . . . . . . . . . .

10 1.55 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.8: The Bermudan swaption’s scaled vegas (in 104) under the weighted co-

variance model (α = 0.3).

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.59

2 0.94 0.03 0.01 0.01 0.01 0.01 0.01 0.01 8.87 . . .

3 1.44 0.03 0.01 0.01 0.01 0.00 0.00 7.77 . . . . . .

4 1.78 0.05 0.00 0.00 0.00 0.01 5.69 . . . . . . . . .

5 1.98 0.05 0.00 0.00 0.00 4.03 . . . . . . . . . . . .

6 2.03 0.04 0.03 0.00 2.42 . . . . . . . . . . . . . . .

7 2.03 0.08 0.02 1.58 . . . . . . . . . . . . . . . . . .

8 1.82 0.08 0.99 . . . . . . . . . . . . . . . . . . . . .

9 1.66 0.46 . . . . . . . . . . . . . . . . . . . . . . . .

10 1.57 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.9: The Bermudan swaption’s scaled vegas (in 104) under the weighted co-

variance model (α = 5).

3.4.4 The net market vegas for different parameterizations

We recall that the HW process is an example of parametrization by time and it

has a certain vega profile with the responses only on the reverse diagonal. The one

step and weighted covariance models move the vega response away from the reverse

diagonal and this causes their hedging behaviours to be quite different from that of

the HW model. However, their vega profiles are still very closely connected as they

are different examples of parametrization by time. For the one step and weighted

covariance models, we plot the sum of the vegas for each row (expiry) of the swaption
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matrix. With our initial data, we observe that each row sum is roughly a constant

that is independent of α and very close to the co-terminal vega on the same row of

the HW model (figure 3.3).
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Figure 3.3: The (net) row sum of the scaled vegas (in 104) of a 11-years annual

Bermudan swaption for different models and parameters.

We state this observation as a result.

Result 1 For each i = 1, . . . , n and all α > 0, under the assumptions that implied

volatilities of the same expiry are not so variant with respect to tenor and the vari-

ances ξT1 , . . . , ξTn are comparable between models the following relation holds true

n+1−i∑
k=1

ναi,k ≈ νhwi,n+1−i (3.21)

In order to prove this result, we need the following sub-result that works with the

log-transformation of the implied volatilities.

For k = 1, . . . , n+ 1− i, let Σi,k := ln σ̃i,k. We define the total derivative of

the Bermudan swaption’s price with respect to these log-implied volatilities as

ν̂i,k :=
dV̂T0
dΣi,k

.

Again, in order to distinguish different models we denote ν̂αi,k for the one step and

weighted covariance models. For the HW model, the equivalent co-terminal term is

denoted by ν̂hw
i,n+1−i and note that it is the only term that matters. We state the

sub-result as a lemma.
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Lemma 1 For each i = 1, . . . , n and all α > 0, under the second assumption in

result 1 the following relation holds true

n+1−i∑
k=1

ν̂αi,k ≈ ν̂hwi,n+1−i (3.22)

Proof : We will first prove that for the one step and weighted covariance models the

row sum
∑n+1−i

k=1 ν̂αi,k is independent of α. Note that
∑n+1−i

k=1 ν̂αi,k roughly represents

the effect of a parallel additive shift of Σi,k for k = 1, . . . , n+ 1− i on the Bermudan

price as we can see from the Taylor expansion of the price function V̂T0 . This is

equivalent to a parallel multiplicative shift of σ̃i,k for k = 1, . . . , n+ 1− i since

Σi,k −→ Σi,k + ln ε ⇐⇒ σ̃i,k −→ εσ̃i,k.

One then can write

n+1−i∑
k=1

ν̂αi,k ≈ V̂T0(εσ̃i,1, . . . , εσ̃i,n+1−i)− V̂T0(σ̃i,1, . . . , σ̃i,n+1−i)

ln ε
,

where ε > 1 and sufficiently small. It remains to show that the effect of the parallel

multiplicative shift of the ith row of the swaption matrix on the Bermudan price is

independent of α.

In the following we use the analysis obtained in Appendix 3.A. The main

purpose is to assess the effects of the above parallel multiplicative shift on each

of the estimated covariances that feed into the one step and weighted covariance

models, i.e. Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) for j = i+ 1, . . . , n. This can be seen via

the effects on the covariances of the log-LIBORs. From the local fit in Appendix

3.A.2, we have the following approximation for the covariances of the log-LIBORs

at each exercise date Ti

σ̃2
i,kTi ≈

i+k−1∑
l=i

i+k−1∑
l∗=i

ζi,kl (0)ζi,kl∗ (0)Covma(lnLlTi , lnL
l∗
Ti), k = 1, . . . , n+ 1− i,

where {ζi,kl (0)}l=i,...,n are constants that only depend on the initial discount curve

(see Appendix 3.A). Therefore, under a parallel multiplicative shift of the ith row

of the swaption matrix we have that

Covma(lnLlTi , lnL
l∗
Ti) −→ ε2Covma(lnLlTi , lnL

l∗
Ti), l, l∗ = i, . . . , n.

Since the covariance of the log-swap rates can be approximated by summing up the

covariances of the corresponding spanning log-LIBORs (see Appendix 3.A.2), we
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have

Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) ≈
n∑
k=i

n∑
l=j

ζi,n+1−i
k (0)ζj,n+1−j

l (0)Covma(lnLkTi , lnL
l
Ti)

⇒ Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) −→ ε2Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

), j = i+ 1, . . . , n.

Recall the market quantity Bi =
∑n

j=i+1 p
Tj−TiCovma(ln yi,n+1−i

Ti
, ln yj,n+1−j

Ti
). For

all values of α, we then have that

Bi −→ ε2Bi.

We further recall the construction of
√
ξαTi in equation (3.14) where we have

√
ξαTi =

Bi

σ̃i,n+1−i
√
Ti
∑n

j=i+1 p
Tj−Ti

√
1
ξαTj
σ̃j,n+1−j

√
Tj

.

Similar to the arguments in Section 3.4.1, the cascade structure in equation (3.15)

implies that {
√
ξαTj}j=i+1,...,n are invariant under a parallel multiplicative shift of

the ith row. It then follows from (3.14) that√
ξαTi −→ ε

√
ξαTi ,

and hence further
√

1
ξαTi
σ̃i,n+1−i

√
Ti is invariant. For 1 ≤ s < i, we have that

√
ξαTs =

Bs

σ̃s,n+1−s
√
Ts
∑n

j=s+1 p
Tj−Ts

√
1
ξαTj
σ̃j,n+1−j

√
Tj

.

When s = i − 1, it is clear that
√
ξαTs is also invariant because

√
1
ξαTi
σ̃i,n+1−i

√
Ti is

invariant. Inductively, we have that {
√
ξαTs}1≤s<i are all invariant. It is now clear

that a parallel multiplicative shift of the ith row will only shift
√
ξαTi −→ ε

√
ξαTi

regardless of α.

Since Σi,k is just the log of σ̃i,k for each k = 1, . . . , n + 1 − i, one can write

the analogous formulae for ν̂αi,k following exactly the same arguments as in (3.18)

and (3.19). Therefore, for the off reverse diagonal entries: k = 1, . . . , n− i

ν̂αi,k =

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,k
,
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and for the reverse diagonal entry k = n+ 1− i

ν̂αi,n+1−i =
∂V̂T0

∂Σi,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,n+1−i
.

Hence, we have the row sum

n+1−i∑
k=1

ν̂αi,k =
∂V̂T0

∂Σi,n+1−i
+
n+1−i∑
k=1

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

d
√
ξαTs

dΣi,k

=
∂V̂T0

∂Σi,n+1−i
+

i∑
s=1

∂V̂T0
∂
√
ξαTs
×

(
n+1−i∑
k=1

d
√
ξαTs

dΣi,k

)
.

Similar to that we discussed earlier, the sum
∑n+1−i

k=1

d
√
ξαTs

dΣi,k
roughly represents the

effect of a parallel multiplicative shift of the ith row of the swaption matrix on
√
ξαTs

by looking at the Taylor expansion on
√
ξαTs . We previously concluded for the one

step and weighted covariance models that this shift will leave
√
ξαTj unchanged for

j 6= i. It follows that
∑n+1−i

k=1

d
√
ξαTs

dΣi,k
≈ 0 for s < i. Hence

n+1−i∑
k=1

ν̂αi,k ≈
∂V̂T0

∂Σi,n+1−i
+

∂V̂T0

∂
√
ξαTi

×
n+1−i∑
k=1

d
√
ξαTi

dΣi,k
.

Since the parallel multiplicative shift of the ith row will alter
√
ξαTi −→ ε

√
ξαTi , we

then can write that

n+1−i∑
k=1

ν̂αi,k ≈
∂V̂T0

∂Σi,n+1−i
+

∂V̂T0

∂
√
ξαTi

×
ε
√
ξαTi −

√
ξαTi

ln ε
. (3.23)

Because we assume the
√
ξαTi ’s are similar for all α under our initial data, we can

now conclude that
∑n+1−i

k=1 ν̂αi,k is independent of α.

We now prove the second part of the lemma that connects the weighted

covariance process with the HW process. For the HW process, we recall that

ξTi =

(
Tn+1 − Ti

(1 + αiy
i,n+1−i
0 )(ψTn+1 − ψTi)

)2

σ̃2
i,n+1−iTi,

where ψTi = 1
a(1 − e−aTi), a > 0. We fixed a at 3% so that the ξTi ’s are similar to

the ξαTi ’s of the weighted covariance process. It is clear that shifting Σi,n+1−i −→
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Σi,n+1−i + ln ε or equivalently σ̃i,n+1−i −→ εσ̃i,n+1−i will only shift√
ξTi −→ ε

√
ξTi , (3.24)

and leave {
√
ξTj}j 6=i remain unchanged. This is exactly the same effect that a

parallel multiplicative shift of the ith row has on the weighted covariance process.

We now write the analogous formula for ν̂hw
i,n+1−i following the same argument as in

(3.20)

ν̂hw
i,n+1−i =

∂V̂T0
∂Σi,n+1−i

+
∂V̂T0
∂
√
ξTi
×

d
√
ξTi

dΣi,n+1−i
.

This then follows immediately from (3.24) that

ν̂hw
i,n+1−i ≈

∂V̂T0
∂Σi,n+1−i

+
∂V̂T0
∂
√
ξTi
×
ε
√
ξTi −

√
ξTi

ln ε
,

which is approximately the same as (3.23) since ξTi and ξαTi are comparable. The

proof is now complete.

We are now able to prove result 1.

Proof of result 1: since Σi,k = ln σ̃i,k, one can write the following for the

one step and weighted covariance models

ναi,k = ν̂αi,k
dΣi,k

dσ̃i,k
= ν̂αi,k

1

σ̃i,k
.

Hence
n+1−i∑
k=1

ναi,k =

n+1−i∑
k=1

ν̂αi,k
1

σ̃i,k
.

For the HW model, the equivalent quantity is νhw
i,n+1−i = ν̂hw

i,n+1−i
1

σ̃i,n+1−i
. Observe

that if the implied volatility is not so variant in tenor k, we will be able to remove

σ̃−1
i,k from the sum and replace them by a constant C. This assumption is also

supported by the data we work with in this chapter (table 3.2). It then follows by

lemma 1 that

n+1−i∑
k=1

ναi,k ≈ C
n+1−i∑
k=1

ν̂αi,k ≈ Cν̂hw
i,n+1−i ≈ νhw

i,n+1−i.

The proof is now complete.

3.5 A hedging result

In this section, we construct a vega-delta neutral portfolio for a Bermudan swaption

under different models. The portfolio will consist of vanilla swaptions and interest
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rate swaps. We then calculate the gamma profile of the portfolio for each model

and compare them accordingly. Here we employ the same example of Bermudan

swaption as we considered in Section 3.4 with the data provided in tables 3.2 and

3.3.

We first look at the gamma profiles of the HW and MR hedging portfolios in

Section 3.5.1. We then continue our investigation with the one step and weighted

covariance models in Section 3.5.2. In all cases, we want to stress that the vegas

of the Bermudan are the main factor that affects the gamma profile of the hedging

portfolio. For the first two models, we observe a distinct difference between them in

terms of the total gamma of vega-delta neutral portfolio. These will be addressed

in detail in Section 3.5.1.3. It is also seen in this section that the parallel gamma

profiles of these models are qualitatively similar and not ideal in practice. Due

to the more realistic specification of the later models, one can actually hope that

the gamma profile of the hedging portfolio will be improved. This is a potential

advantage of the one step and weighted covariance models and we will analyze it in

detail in Section 3.5.2.3.

3.5.1 A hedging portfolio for the HW and MR models

We now proceed to the construction of the vega-delta neutral portfolios for the HW

and MR models.

3.5.1.1 Vega hedge

We first construct a vega neutral portfolio. Since the Bermudan prices under the

HW and MR models are only sensitive to the changes in the co-terminal implied

volatilities, we will only need to hedge those risks by trading suitable proportions

of the co-terminal vanilla swaptions. At this stage, the portfolio will consist of a

Bermudan swaption with today’s value V̂T0 and an appropriate proportion N sption
i

of the corresponding ith co-terminal vanilla swaption with today’s value Ṽ i,n+1−i
T0

for each i = 1, . . . , n. We require the portfolio to be vega neutral, i.e. for each

i = 1, . . . , n, N sption
i is chosen such that

dV̂T0
dσ̃i,n+1−i

+N sption
i

dṼ i,n+1−i
T0

dσ̃i,n+1−i
= νi,n+1−i +N sption

i

dṼ i,n+1−i
T0

dσ̃i,n+1−i
= 0,

where the derivatives can be calculated numerically by the finite difference method

and note that νi,n+1−i indicates the ith bucket vega of the Bermudan for the HW

and MR models. Hence, we have that

N sption
i = −νi,n+1−i/

(
dṼ i,n+1−i

T0

dσ̃i,n+1−i

)
.

49



We display the vegas of the Bermudan calculated for the HW and MR models

together in table 3.10 and the co-terminal vanilla swaptions’ vegas (with notional

being 1 million) in table 3.11. The calculations of N sption
i then follow directly and

we display the results in table 3.12.

i 1 2 3 4 5 6 7 8 9 10

HW 4.09 10.00 9.48 7.76 6.23 4.69 3.74 2.94 2.16 1.56

MR 6.28 14.54 12.12 8.48 5.62 3.37 1.86 0.83 0.22 -0.02

Table 3.10: The Bermudan swaption’s scaled vegas (in 104) for the HW and MR

models.

i 1 2 3 4 5 6 7 8 9 10

vanilla 0.27 0.35 0.38 0.38 0.36 0.32 0.27 0.21 0.15 0.08

Table 3.11: The co-terminal vanilla swaptions’ scaled vegas (in 104).

i 1 2 3 4 5 6 7 8 9 10

HW -15 -28 -25 -20 -17 -15 -14 -14 -15 -21

MR -23 -41 -32 -22 -16 -11 -7 -4 -1 0

Table 3.12: Vega hedging (N sption
i ) for the HW and MR models.

In table 3.12, one observes that N sption
i ’s of the MR model are about one and

a half times as big in magnitude as those of the HW model for small i. The gap

between N sption
i ’s of the two models gets smaller as i increases and after a certain i

we observe the reverse situation, i.e. N sption
i ’s of the MR model become much smaller

in magnitude compared with those of the HW model. This is an immediate result

from the difference in their vegas which is a direct consequence of the difference

between the parameterizations by time and by expiry as we explored in Sections

3.3.2 and 3.4.2.

3.5.1.2 Delta hedge

After the vega hedging step, the hedging portfolio is no longer exposed to the vega

risks but still exposed to the delta risks, i.e. the risks with respect to the movements

of the underlyings. The next step is, therefore, to neutralize the delta risks but still

maintain the vega neutrality. We will do so by using the co-initial swaps with

today’s values V 0,i
T0

for i = 1, . . . , n + 1 as the hedging instruments. Note that
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the corresponding swap rates of the co-initial swaps are y0,i which start today and

mature at Ti for i = 1, . . . , n+ 1. We will work with the co-initial swap rates as the

underlyings instead of the pure discount bonds as their prices are directly available

in the market.

We first define the deltas of a Bermudan to be

∆̂j :=
dV̂T0
dy0,j

,

for j = 1, . . . , n + 1. These derivatives can be calculated by the finite difference

method. At this stage, the current vega neutral portfolio has non-zero deltas.

Because the co-initial swaps are not sensitive to any changes in the implied

volatilities, adding them to the portfolio will not affect the vega neutrality. Denote

the proportions of the co-initial swaps that we wish to acquire by N swap
i for i =

1, . . . , n+ 1. We now have a new hedging portfolio with today’s value V port
T0

V port
T0

= V̂T0 +

n∑
i=1

N sption
i Ṽ i,n+1−i

T0
+

n+1∑
i=1

N swap
i V 0,i

T0
.

The proportions {N swap
i }i=1,...,n+1 need to be chosen so that the hedging portfolio

becomes delta neutral. The jth delta position of the portfolio is denoted by ∆j where

∆j :=
dV port

T0

dy0,j
,

for j = 1, . . . , n+1. Therefore, in order to neutralize the delta risks we need to solve

for vector Nswap = (N swap
1 , . . . , N swap

n+1 ) so that ∆j = 0 for j = 1, . . . , n + 1. This

is a straightforward task and it effectively requires a matrix multiplication to get

the vector Nswap. The portfolios for the HW and MR models are now vega-delta

neutral.

We present the Bermudan’s deltas and N swap
i ’s in figure 3.4 and table 3.13

respectively. Note that there is a large jump in the last delta of the Bermudan which

is not straightforward at first glance. The reason is that shifting the last co-initial

swap rate will shift the last LIBOR and result in a parallel shift of all the co-terminal

swap rates. On the other hand, the equivalent effect of shifting the other co-initial

swap rates is that it will only decrease slightly one of the co-terminal swap rates

and leave the rest almost unchanged. As a result, the last delta is positive and large

in magnitude while the others are small and negative. These effects can be seen via

the one to one correspondence between the co-initial swap rates and the discount

bonds (see Appendix 3.B).

Remark 5 In practice, delta is usually quoted as the change in price when the
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underlying rate moves by 1 bp (0.0001) so we will scale the “true” delta as calculated

above by a factor of 0.0001, i.e. ∆̂j → 0.0001∆̂j. For example, a delta of around

−3000 in figure 3.4 means that the Bermudan price (with notional 100 million) will

decrease by around 3000 if the corresponding co-initial swap rate increases by 1 bp.
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Figure 3.4: The scaled deltas of the Bermudan under the HW and MR models.

i 1 2 3 4 5 6 7 8 9 10 11

HW -1.4 -2.0 -1.3 -0.9 -0.8 -1.2 -1.6 -2.6 -4.2 -8.2 21.8

MR -4.4 -7.6 -4.7 -2.0 -0.0 1.4 2.5 3.5 4.2 4.8 -0.9

Table 3.13: Delta hedging (N swap
i ) for the HW and MR models (correspond to swaps

with notional N = 1 million).

3.5.1.3 The gammas of the HW and MR hedging portfolios

Recall that each of the deltas is itself a function of the co-initial swap rates so

they will move whenever these rates move. This change of deltas requires us to re-

balance the portfolio since the previous portfolio is no longer delta-neutral. It is then

important to consider the gammas of the portfolio as a measure of the sensitivity

of the deltas. As the re-balancing cost could sometimes be high, it is desirable from

a practical point of view that the gammas of the portfolio should have as small

magnitudes as possible which implies that there is very little need for re-balancing

the portfolio. For each i = 1, . . . , n+ 1, we carry out a parallel shift of the co-initial

swap rates with ε = 1 bp (0.0001) and re-evaluate the delta to calculate the gamma.

For the Bermudan, we then end up with the gamma vector Γ̂ where each of the
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co-ordinates is

Γ̂i :=
∆̂i(y

0,1 + ε, . . . , y0,n+1 + ε)− ∆̂i(y
0,1, . . . , y0,n+1)

ε
, i = 1, . . . , n+ 1.

(3.25)

For the vega-delta neutral portfolio, we have the corresponding gamma vector Γ =

(Γ1, . . . ,Γn+1). The quantity in (3.25) is referred to as the parallel gamma and tells

the trader how much the delta moves when the market moves. It is a proxy for the

row sums of the full gamma matrix

Γ̂i ≈
n+1∑
j=1

d2V̂T0
dy0,idy0,j

.

Remark 6 Again, we note that although the “true” gammas are the second order

derivatives of the price with respect to the underlyings, it is market convention to

quote them as the change in the scaled deltas (by a factor of 0.0001) when the

underlying rate(s) increases by 1 bp. For example, one will quote the parallel gamma

Γ̂i as calculated in (3.25) as

0.0001∆̂i(y
0,1 + ε, . . . , y0,n+1 + ε)− 0.0001∆̂i(y

0,1, . . . , y0,n+1).

Therefore, the gammas we display later are the “true” gammas scaled by a factor of

10−8.

Figure 3.5 illustrates the row sums of the gamma matrix and the gamma vector Γ̂

of the Bermudan under the HW model (similar for all other models). As one can

expect, the two calculations show similar results with some small fluctuations from

the proxy calculation (3.25). Note that the large jump in the last gamma is a direct

consequence of the jump in the last delta.
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Figure 3.5: Proxy vs. row sum of the gamma matrix under the HW model.
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An aggregated gamma quantity of interest is the total gamma. This is the

sum of all entries in the gamma matrix Γ =
∑n+1

i=1 Γi and it measures the total

gamma exposure of the vega-delta neutral portfolio. We approximate this quantity

by adding up all co-ordinates of the gamma vector since each co-ordinate is a proxy

for the row sum of the gamma matrix. In table 3.14, we display the scaled total

gamma for each component of the HW and MR portfolios. The result shows that

the magnitude of the total gamma of the MR portfolio is around twice as big as

that of the HW portfolio. This difference mainly comes from the big gap between

the total gamma contributions of the co-terminal swaptions of the two portfolios.

On the other hand, the contributions from the co-initial swaps are seen to be much

smaller in magnitude so we will not discuss them in detail.

Bermudan vanilla swaptions co-initial swaps portfolio

HW 196 -286 2 -88

MR 192 -369 -7 -184

Table 3.14: Scaled total gammas of the HW and MR portfolios.

In order to understand the difference in the total gammas of the two portfo-

lios, we plot the total gamma contribution from each individual co-terminal swaption

in figure 3.6. Note that the total gamma contribution of the vanilla swaptions (-

286 for HW and -369 for MR after scaling) is basically
∑n

i=1N
sption
i

∑n+1
j=1 Γ̃i,n+1−i

j .

The plot in figure 3.6 displays N sption
i

∑n+1
j=1 Γ̃i,n+1−i

j after scaling for each i. The

difference in the negative peaks is clearly caused by the difference in N sption
i ’s as we

observed in table 3.12. Recall that the difference in N sption
i ’s is a consequence of the

difference in the vegas of the Bermudan for the two models which is characterized

by the difference between the parametrizations by time and by expiry. From this

analysis, one then concludes that the HW portfolio has a better total gamma than

the MR portfolio. It indicates that in a wider context a parametrization by time

process will potentially lead to a better total gamma profile of the hedging portfolio

than a parametrization by expiry process.
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Figure 3.6: Scaled total gamma contributions from the co-terminal vanilla swaptions.

We now look at the gamma vectors of the HW and MR portfolios. Figure

3.7 displays the scaled gamma vectors of the portfolios before the hedge (just the

Bermudan) and after the hedge (together with the co-terminal swaptions and the co-

initial swaps). The results show that the gamma vectors of the Bermudan swaption

for both models are very similar. After the hedge, the portfolios of the two models

still have qualitatively very similar gamma profiles. Note that the large jump in

the last gamma in the left plot is a direct consequence of the jump in the last delta

in figure 3.4. From the right plot in figure 3.7, we see that for both models as all

co-initial swap rates increase the deltas ∆i’s will increase for i < n+ 1 and decrease

for i = n+ 1. We further observe that the rates of the increase are much lower than

the rate of the decrease. Clearly, we do not have a good hedge of the last gamma

for both the HW and MR models.
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Figure 3.7: Scaled gamma vectors of the HW and MR portfolios before and after

the hedge.

To gain more insight into the gamma behaviours, we will look at the gamma

contribution from each hedging component. We further denote the gamma vector of

the co-terminal swaption with today’s value Ṽ i,n+1−i
T0

by Γ̃i,n+1−i = (Γ̃i,n+1−i
1 , . . . , Γ̃i,n+1−i

n+1 ).

Similarly, we denote the gamma vector of the co-initial swap with today’s value V 0,i
T0

by Γ0,i = (Γ0,i
1 , . . . ,Γ0,i

n+1). Recall that the portfolio consists of

V port
T0

= V̂T0 +

n∑
i=1

N sption
i Ṽ i,n+1−i

T0
+

n+1∑
i=1

N swap
i V 0,i

T0
,

and hence the portfolio’s parallel gamma can be written as

Γj = Γ̂j︸︷︷︸
Bermudan

+

n∑
i=1

N sption
i Γ̃i,n+1−i

j︸ ︷︷ ︸
Co-terminal swaptions

+

n+1∑
i=1

N swap
i Γ0,i

j︸︷︷︸
Co-initial swaps

,
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for j = 1, . . . , n + 1. Figure 3.8 represents the scaled gamma contribution vec-

tor from each hedging component of the portfolio. The left and right plots dis-

play
∑n

i=1N
sption
i Γ̃i,n+1−i

j and
∑n+1

i=1 N
swap
i Γ0,i

j after scaling respectively for each

j = 1, . . . , n + 1. Note that the index i for both sums indicates the corresponding

co-terminal swaption and the co-initial swap. While the co-initial swaps do not have

very large gammas, the contribution from the co-terminal swaptions clearly deter-

mines the gamma behaviour of the whole portfolio. We observe in the left plot of

figure 3.8 that for both models the last gamma contribution
∑n

i=1N
sption
i Γ̃i,n+1−i

n+1

is extremely negative and it pulls the last gamma Γn+1 of the portfolio down to

be also very negative. This seems to be a common problem for both models. The

reason is that both the HW and MR models assign the vega responses to only the

reverse diagonal of the swaption matrix. This results in large values in magnitude

of N sption
i ’s which then lead to very negative values of

∑n
i=1N

sption
i Γ̃i,n+1−i

n+1 . In Sec-

tion 3.5.2.3, we will examine for the one step and weighted covariance models how

moving the vega responses away from the reverse diagonal and spreading them over

the swaption matrix can influence (improve) the gamma profile of the portfolio.
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Figure 3.8: Scaled gamma contribution vectors of the co-terminal swaptions and the

co-initial swaps for the HW and MR portfolios.

3.5.2 A hedging portfolio for the one step and weighted covariance

models

This section discusses the vega-delta neutral portfolios for the one step and weighted

covariance models. Similar to our treatment of the HW and MR models, we again

use the vanilla swaptions and the co-initial swaps to vega-delta hedge the Bermudan.

3.5.2.1 Vega hedge

In Section 3.4.4, we discussed the vegas of a Bermudan computed for the one step

and weighted covariance models. Since Bermudan prices under these models re-

spond to the changes of certain implied volatilities in the swaption matrix, we will

need to hedge those risks by trading suitable proportions of the appropriate vanilla

swaptions. At this stage, the portfolio will consist of a Bermudan swaption with

today’s value V̂T0 and an appropriate proportion N sption
i,j of the corresponding vanilla

swaption with today’s value Ṽ i,j
T0

(with notional being 1 million) for each i = 1, . . . , n
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and j = 1, . . . , n + 1 − i. We require the portfolio to be vega neutral, i.e. for each

i = 1, . . . , n and j = 1, . . . , n+ 1− i, N sption
i,j is chosen such that

dV̂T0
dσ̃i,j

+N sption
i,j

dṼ i,j
T0

dσ̃i,j
= ναi,j +N sption

i,j

dṼ i,j
T0

dσ̃i,j
= 0,

where the derivatives can be calculated numerically by the finite difference method.

The vegas of vanilla swaptions are displayed in table 3.15. We recall that ναi,j is the

(i, j) entry in the Bermudan’s vega matrix of the one step and weighted covariance

models. Hence, we have that

N sption
i,j = −ναi,j/

(
dṼ i,j

T0

dσ̃i,j

)
.

We now present the results from the vega-hedging step in the following tables.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 0.03 0.05 0.08 0.10 0.13 0.16 0.19 0.21 0.24 0.27

2 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.35 . . .

3 0.05 0.10 0.15 0.20 0.25 0.29 0.34 0.38 . . . . . .

4 0.06 0.12 0.17 0.23 0.28 0.33 0.38 . . . . . . . . .

5 0.06 0.13 0.19 0.25 0.30 0.36 . . . . . . . . . . . .

6 0.07 0.13 0.20 0.26 0.32 . . . . . . . . . . . . . . .

7 0.07 0.14 0.21 0.27 . . . . . . . . . . . . . . . . . .

8 0.07 0.14 0.21 . . . . . . . . . . . . . . . . . . . . .

9 0.07 0.15 . . . . . . . . . . . . . . . . . . . . . . . .

10 0.08 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.15: The vanilla swaptions’ scaled vegas (in 104).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -10.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -13.4

2 -22.7 -0.1 -0.1 -0.1 -0.1 -0.0 -0.0 -0.0 -25.2 . . .

3 -28.6 -0.1 -0.1 -0.1 -0.1 -0.0 -0.0 -20.5 . . . . . .

4 -31.1 -0.1 -0.1 -0.1 -0.1 -0.0 -15.1 . . . . . . . . .

5 -31.5 -0.2 -0.1 -0.1 -0.0 -11.3 . . . . . . . . . . . .

6 -30.5 -0.2 -0.1 -0.0 -7.7 . . . . . . . . . . . . . . .

7 -28.7 -0.2 -0.1 -5.8 . . . . . . . . . . . . . . . . . .

8 -25.6 -0.1 -4.7 . . . . . . . . . . . . . . . . . . . . .

9 -22.4 -2.9 . . . . . . . . . . . . . . . . . . . . . . . .

10 -20.9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.16: Vega hedging (N sption
i,j ) for the one step covariance model.

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -3.0 -1.0 -2.1 -2.8 -1.2 -3.9 -3.8 -2.7 -10.3 3.9

2 -2.4 -5.7 -3.0 -3.5 -4.3 -5.6 -8.0 -15.2 3.0 . . .

3 -1.9 -2.2 -2.4 -2.9 -3.8 -5.8 -11.0 -3.7 . . . . . .

4 -1.1 -1.4 -1.7 -2.4 -3.4 -6.5 -9.2 . . . . . . . . .

5 -0.8 -1.3 -1.6 -2.3 -4.4 -10.7 . . . . . . . . . . . .

6 -0.3 -0.8 -0.8 -1.8 -12.2 . . . . . . . . . . . . . . .

7 -0.4 -0.1 -0.4 -13.6 . . . . . . . . . . . . . . . . . .

8 0.9 1.7 -15.4 . . . . . . . . . . . . . . . . . . . . .

9 2.4 -15.4 . . . . . . . . . . . . . . . . . . . . . . . .

10 -20.4 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.17: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.05).
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Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -3.8 -2.4 -2.3 -2.4 -1.2 -2.2 -1.6 -1.8 -2.7 -6.9

2 -5.6 -4.4 -3.8 -3.7 -3.3 -3.4 -3.8 -5.5 -10.9 . . .

3 -4.3 -4.1 -3.6 -3.4 -3.3 -3.9 -5.6 -9.9 . . . . . .

4 -4.0 -3.3 -3.0 -3.0 -3.4 -5.1 -9.1 . . . . . . . . .

5 -2.8 -2.8 -2.8 -3.3 -4.9 -8.4 . . . . . . . . . . . .

6 -2.5 -2.5 -2.7 -4.0 -8.4 . . . . . . . . . . . . . . .

7 -1.9 -2.2 -3.4 -9.9 . . . . . . . . . . . . . . . . . .

8 -1.1 -1.8 -12.3 . . . . . . . . . . . . . . . . . . . . .

9 -1.0 -13.9 . . . . . . . . . . . . . . . . . . . . . . . .

10 -20.5 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.18: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 0.3).

Tenor 1 2 3 4 5 6 7 8 9 10

Expiry 1 -9.2 -0.3 -0.2 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -13.3

2 -22.9 -0.4 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -25.2 . . .

3 -28.2 -0.3 -0.1 -0.1 -0.0 -0.0 -0.0 -20.4 . . . . . .

4 -30.4 -0.5 -0.0 -0.0 -0.0 -0.0 -15.0 . . . . . . . . .

5 -30.9 -0.4 -0.0 -0.0 -0.0 -11.3 . . . . . . . . . . . .

6 -29.7 -0.3 -0.2 0.0 -7.6 . . . . . . . . . . . . . . .

7 -28.4 -0.6 -0.1 -5.8 . . . . . . . . . . . . . . . . . .

8 -24.7 -0.6 -4.7 . . . . . . . . . . . . . . . . . . . . .

9 -22.1 -3.2 . . . . . . . . . . . . . . . . . . . . . . . .

10 -20.9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.19: Vega hedging (N sption
i,j ) for the weighted covariance model (α = 5).

3.5.2.2 Delta hedge

Similar to the HW and MR models, we use the co-initial swaps with today’s values

V 0,i
T0

for i = 1, . . . , n+ 1 to delta hedge the vega neutral portfolio. To be specific, we

construct the hedging portfolio with today’s value V port
T0

V port
T0

= V̂T0 +
n∑
i=1

n+1−i∑
j=1

N sption
i,j Ṽ i,j

T0
+
n+1∑
i=1

N swap
i V 0,i

T0
.

In order to neutralize the deltas, one then needs to solve for vector Nswap =

(N swap
1 , . . . , N swap

n+1 ) so that ∆j = 0 where each ∆j is the overall jth delta posi-
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tion of the portfolio for j = 1, . . . , n + 1. This step again requires us to effectively

do a matrix multiplication to obtain the vector Nswap.

Since the deltas of the Bermudan under the one step and weighted covariance

models are very similar to those under the HW and MR models, there is no extra

interest in plotting them. We display the vectors Nswap for the one step and weighted

covariance models in table 3.20.

i 1 2 3 4 5 6 7 8 9 10 11

α = 0.05 -3.2 -6.3 -3.5 0.1 0.9 1.8 3.8 6.0 5.8 11.5 -19.1

α = 0.3 -4.0 -6.0 -3.6 -1.4 1.3 2.1 3.9 5.4 5.7 8.6 -13.8

α = 5 -3.6 -6.2 -2.3 -0.1 1.7 2.9 3.2 4.4 4.3 5.5 -8.3

One step cov -3.7 -5.9 -2.6 -0.3 1.6 2.6 3.6 4.3 4.6 5.4 -8.3

Table 3.20: Delta hedging (N swap
i ) for the one step and the weighted covariance

models (correspond to swaps with notional N = 1 million).

3.5.2.3 The gammas of the one step and weighted covariance hedging

portfolios

In this section, we carry out a similar comparison as in Section 3.5.1.3 but for the

HW and the one step and weighted covariance portfolios. We first report the total

gamma of each portfolio produced by the one step and weighted covariance models

in table 3.21. Recall that the total gamma is approximated by summing up all co-

ordinates of the parallel gamma vector. One can see that the results are very similar

and comparable between models. Furthermore, they slightly deviate from that of

the HW model and are still much smaller in magnitude compared with that of the

MR model (see table 3.14). This again supports our findings in Section 3.5.1.3 that

a parametrization by time process potentially leads to a better vega-delta neutral

portfolio than a parametrization by expiry process in terms of the total gamma.

Note that the overall contributions from the vanilla swaptions in all four

portfolios are quite close to the overall contributions from the co-terminal swaptions

in the HW case. In order to calculate these contributions for the one step and

weighted covariance models, one first calculates the total gamma for each vanilla

swaption involved in the vega hedge and then multiplies with the corresponding

proportion of holding N sption
i,j in the portfolio. We then sum these products up to

obtain the overall contribution. It turns out that as we sum them up for each row of

the swaption matrix, we effectively get the same plot as figure 3.6 of the HW model.

This observation can be linked back to the vega “row sum” observation in result 1.

The Bermudan’s vega ναi,j of the one step and weighted covariance models is directly

connected to the proportion N sption
i,j in the vega hedge. Intuitively, the similarity

62



between the vega row sum
∑n+1−i

j=1 ναi,j and the HW’s ith bucket vega νhw
i,n+1−i for

each i = 1, . . . , n should also carry over to the row sum2 of the total gamma to some

extent due to the direct connection of the proportions of vanilla swaptions in their

portfolios, i.e. {N sption
i,j }j=1,...,n+1−i of the one step and weighted covariance models

and N sption
i of the HW model.

Bermudan vanilla swaptions co-initial swaps portfolio

α = 0.05 199 -292 -8 -101

α = 0.3 196 -299 -7 -110

α = 5 195 -282 -6 -93

One step cov 196 -282 -6 -92

Table 3.21: Scaled total gammas of the one step and weighted covariance portfolios.

We now consider the gamma vectors which are calculated by the analogue of

(3.25) for the relevant instruments. The results are displayed in figure 3.9. Again, we

observe that the Bermudan’s gamma vectors are very close across models. The after-

hedge gamma vectors, on the other hand, seem to be quite variant. On average,

Γi’s of the one step and weighted covariance portfolios are seen to be lower in

magnitude than those of the HW portfolio, especially the last gamma. This is a big

improvement of the one step and weighted covariance models over the HW model.

2The “row sum” in this discussion corresponds to the row of the swaption matrix, NOT the row
of the gamma matrix.
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Figure 3.9: Scaled gamma vectors of the HW and the one step and weighted covari-

ance portfolios before and after the hedge.

We again look at the gamma contribution vector from each hedging com-

ponent of the portfolio in figure 3.10. As expected for all models, the magnitude

of each co-ordinate of the vanilla swaptions’ gamma vector dominates that of the

co-initial swaps and clearly determines the gamma behaviour of the whole portfolio.

Hence, we will focus on the gamma behaviour of the vanilla swaptions only. We

observe that on average the contributions from the vanilla swaptions of the one step

and weighted covariance portfolios seem to be much lower in magnitude than those

from the co-terminal swaptions of the HW portfolio. Observe that as we move away

from the reverse diagonal entries and assign more weight to other entries of the

swaption matrix, the magnitude of each co-ordinate of the gamma vector can be

significantly reduced.

We further observe a trend in the vanilla swaptions’ gamma contributions

as the parameter α of the weighted covariance model varies. When α = 0.05, the

gamma contribution is seen to be more evenly spread over all co-ordinates of the

gamma vector compared with other values of α. As α increases, there are less
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gamma contributions from the earlier co-ordinates (i < n+ 1) but the last gamma

contribution gets bigger in magnitude (more negative). Note that the case α = 5 is

very similar to the one step covariance case (almost coincide as we see in the plots).

This is because the two models have very similar vega profiles and N sption
i,j ’s from the

vega hedge. Finally, an important point that we want to stress here is that with the

one step and weighted covariance models the swaption’s holder has the flexibility

to control the gamma vector of the portfolio just by simply tuning the geometric

weight parameter α.
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Figure 3.10: Scaled gamma contribution vectors of the vanilla swaptions and the

co-initial swaps for the HW and the one step and weighted covariance portfolios.

3.6 Gamma-theta balance

In the previous section, we looked at the parallel and total gamma profiles of the

hedging portfolios for different parametrizations. We recall that the total gamma

of the MR portfolio is negative and almost twice as big in magnitude compared

with other portfolios. Although this implies that the MR model is worse than the
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others in terms of the gamma profiles, it is not the full story. Large negative gamma

will only be a problem if it is not compensated by theta which is the Greek with

respect to the time decay of an option. In this section, we analyze the gamma-theta

balance for the hedging portfolio of the Bermudan. See Chapter 25, Volume 3 of

Andersen and Piterbarg [2010] for a detailed discussion on this topic. Generally

speaking, suppose we want to evaluate the change in value of the hedging portfolio

as time advances forward by 1 trading day given a certain size of perturbation for

all co-initial swap rates. By Taylor expansion, we have that

V port
t+h ≈ V

port
t +

∂V port
t

∂t
h+ ∆(t)ε+

1

2
ε>A(t)ε, (3.26)

where h equals 1 trading day, ε> is the row vector of perturbation for all co-initial

swap rates, ∆(t) is the time-t delta vector and A(t) is the time-t gamma matrix.

Note that the term
∂V port

t
∂t is referred to as the theta and it can be calculated

numerically. Since we assume that the proportions of hedging instruments do not

change over the time period [t, t + h], the change in the portfolio’s value purely

comes from the change in the Bermudan and hedging instruments’ values. As we

delta hedge the Bermudan at time t, the vector ∆(t) is a zero vector and hence ∆(t)ε

will not contribute to the change in the portfolio’s value. It is then clear that the

theta and the gamma of the portfolio should provide a good balance so that V port
t+h

will not differ too much from V port
t , i.e. we would want that

∂V port
t
∂t h+ 1

2ε
>A(t)ε is

as close to zero as possible (gamma-theta balance). Ideally, investors would like the

sum
∂V port

t
∂t h+ 1

2ε
>A(t)ε to be positive to ensure that the portfolio is not losing its

value.

In practice, it is not unusual to observe that all co-initial swap rates will

move up (or down) together so we will fix the perturbation to be of the same sign

and size for all rates. The term ε>A(t)ε, thus, has a close link to the total gamma

as displayed below.

Bermudan vanilla swaptions co-initial swaps portfolio

MR 192 -369 -7 -184

HW 196 -286 2 -88

α = 0.05 199 -292 -8 -101

α = 0.3 196 -299 -7 -110

α = 5 195 -282 -6 -93

One step cov 196 -282 -6 -92

Table 3.22: Contribution of the gamma ε>A(t)ε to the change in values of the

portfolios as all co-initial swap rates move up (or down) by 1 bp, i.e. ε> =

(±0.0001, . . . ,±0.0001).
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We now display the theta of the portfolio including the Bermudan and its

hedging instruments in the following tables. It is clear from the results that we get

the scenario: long theta (positive), short gamma (negative) for the HW, one step

and weighted covariance portfolios. However, for the MR portfolio we obtain the

scenario: short theta and short gamma. This means that only the HW, one step and

weighted covariance portfolios tend to have the gamma-theta balance. In a practical

sense, the gamma-theta balance has a direct implication. A long theta-short gamma

position makes money in calm markets or small ε in magnitude equivalently, but

loses money in volatile markets or big ε in magnitude. A short theta-long gamma

position will do the opposite. The case of a short theta-short gamma position as

implied by the MR portfolio will lose money in all market scenarios.

Bermudan vanilla swaptions co-initial swaps portfolio

MR -1806 1774 0 -32

HW -1119 1412 0 293

α = 0.05 -1162 1403 0 241

α = 0.3 -1132 1447 0 315

α = 5 -1098 1392 0 294

One step cov -1091 1391 0 300

Table 3.23: The change in values of the portfolios as time advances by 1 trading

day (theta).

We now look further into why the MR portfolio has negative theta while

others have the opposite. It is seen from the tables that the theta contribution

from vanilla swaptions of the MR portfolio is positive and even bigger in size than

those of other portfolios. The main factor that leads to negative theta of the MR

portfolio is that the Bermudan’s theta following this parametrization is a lot more

negative compared with others. While the Bermudan of the MR model loses 1806

after each trading day, the equivalent figures for other models is only roughly 1100.

The reason for this is also clear. In order to compute the theta by finite difference,

one will have to move time forward (i.e. time to expiry will decrease equivalently)

and keep all other market data (implied volatilities and discount bonds) the same

since theta is the partial derivative with respect to time. For example, we calculate

the theta of the European swaption with today’s value Ṽ i,j
T0

by finite difference as
Ṽ i,jT0+h

−Ṽ i,jT0
h with σ̃i,j and yi,j0 both kept fixed. See also Chapter 22, Andersen and

Piterbarg [2010] for different ways considered by practitioners to calculate the theta.

However, we note that computing the European swaption’s value with time to

maturity Ti−h and implied volatility σ̃i,j is equivalent to the one with time to expiry

Ti and implied volatility σ̃i,j

√
Ti−h
Ti

as clearly seen from the Black formula. There-
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fore, computing the theta for the Bermudan and all European swaptions by finite

difference can be done equivalently by adjusting all the involved implied volatilities

in the swaption matrix: σ̃i,j → σ̃i,j

√
Ti−h
Ti

for all i, j and keep the discount bonds and

time to expiry the same. This implies that the shorter the expiry is, the more the

corresponding implied volatilities decrease. This adjustment of implied volatilities

will not affect the correlation structure of the MR model but it will change that of

the HW model as well as the one step and weighted covariance models immediately

(similar to the vega analysis). Specifically, the correlation of any pair of co-terminal

swap rates at their setting dates tends to decrease, e.g. this can be seen easily from

the parametrization of the HW process. As a result, the Bermudan price produced

by the HW, one step and weighted covariance models will decrease less than the

MR model as time advances forward. This is again another interesting feature that

differentiates the parametrizations by time and by expiry.

We now display the full result for the portfolios of payer Bermudan swaptions

with other strikes in the following tables. We only show the results for the one step

covariance case as similar conclusions are drawn for the weighted covariance model.

Overall, we observe that one always gets a better gamma-theta balance for the HW

and one step covariance models compared with the MR model. Note that when the

strike is low (3% and 4%), we have the theta-gamma balance for the MR model

but the theta is relatively small indicating that it might not be sufficient to offset

the gamma risk when the market is volatile. For the large strike case (7%), a

long gamma-long theta position is observed for the HW and one step covariance

model indicating that the portfolios’ values tend to increase regardless of market

movements.
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Strike

Model Component 3% 4% 5% 6% 7%

MR Bermudan -23 207 192 118 73

vanilla swaptions -53 -568 -369 -168 -79

co-initial swaps 49 14 -7 -8 -7

portfolio -27 -347 -184 -58 -13

HW Bermudan -25 211 196 117 72

vanilla swaptions -30 -413 -286 -135 -65

co-initial swaps 50 21 2 -1 0

portfolio -5 -181 -88 -19 7

One step cov Bermudan -29 217 196 116 71

vanilla swaptions -23 -413 -282 -130 -60

co-initial swaps 51 17 -6 -9 -7

portfolio -1 -179 -92 -23 4

Table 3.24: Contribution of the gamma ε>A(t)ε to the change in values of the

portfolios of payer Bermudans with different strikes as all co-initial swap rates move

up (or down) by 1 bp, i.e. ε> = (±0.0001, . . . ,±0.0001).

Strike

Model Component 3% 4% 5% 6% 7%

MR Bermudan -243 -2684 -1806 -866 -445

vanilla swaptions 250 2685 1774 846 428

co-initial swaps 0 0 0 0 0

portfolio 7 1 -32 -20 -17

HW Bermudan -83 -1301 -1119 -631 -350

vanilla swaptions 142 1969 1412 716 373

co-initial swaps 0 0 0 0 0

portfolio 59 668 293 85 23

One step cov Bermudan -62 -1262 -1091 -621 -346

vanilla swaptions 107 1969 1391 695 357

co-initial swaps 0 0 0 0 0

portfolio 45 707 300 74 11

Table 3.25: The change in values of the portfolios of payer Bermudan swaptions

with different strikes as time advances by 1 trading day (theta).

As estimated from the data, it is observed that one standard deviation move

per day for swap rates is roughly ± 3 bp. We display the movement of the portfolios

with respect to this scenario in the table below. Given this level of movement of the
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co-initial swap rates, we can see that the values of the HW and one step covariance

portfolios always increase whilst that of the MR portfolio decreases with certainty.

Strike

Model Component 3% 4% 5% 6% 7%

MR Bermudan -278 -2374 -1517 -690 -335

vanilla swaptions 171 1833 1220 594 309

co-initial swaps 74 20 -10 -12 -10

portfolio -33 -521 -307 -108 -36

HW Bermudan -121 -984 -825 -456 -243

vanilla swaptions 97 1350 984 513 276

co-initial swaps 76 31 2 -1 0

portfolio 52 397 161 56 33

One step cov Bermudan -105 -936 -798 -448 -239

vanilla swaptions 73 1350 969 500 266

co-initial swaps 76 25 -9 -13 -11

portfolio 44 439 162 39 16

Table 3.26: The gamma-theta balance (
∂V port

t
∂t h+ 1

2ε
>A(t)ε) of the portfolios of payer

Bermudan swaptions with different strikes as co-initial swap rates move 3 bp after

1 trading day, i.e. h = 1 trading day and ε> = (±0.0003, . . . ,±0.0003).

3.7 Conclusions

This chapter has developed a new framework for the choice of driving process for

the one-dimensional SMF model. Our approach is motivated by the problem of

pricing and hedging Bermudan swaptions. We retain the computational benefit of a

single-factor model but attempt to incorporate the information from a multi-factor

world. It turns out that the choice of driving process x has a strong impact on the

hedging behaviour of the model. In terms of the existing choices, when we construct

a vega-delta neutral portfolio for a Bermudan swaption the HW model gives a much

lower total gamma in magnitude compared with the MR model. The reason was

found to be the fundamental difference between their imposed parametrizations by

time and by expiry which leads to the difference in their vega profiles. We analyzed

this issue in detail and concluded that the former outperforms the latter. The HW

model, however, still lacks some flexibility in terms of the control over the parallel

gamma vector of the vega-delta neutral portfolio. The main reason for this weakness

was found to be the fact that the HW model only assigns the vega responses to the

reverse diagonal of the swaption matrix.

In this chapter, we introduce the one step and weighted covariance models
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which are different examples of parametrization by time. We observed that the

new models give a very similar quality of hedge to the HW model in terms of

the total gamma of vega-delta neutral portfolio. Additionally, they have an extra

flexibility of the exponentially decaying weights that helps with the control over

response to changes in the swaption matrix. For a certain choice of weights, the

weighted covariance model spreads the vega responses over the swaption matrix

and consequently reduces the magnitudes of all co-ordinates of the parallel gamma

vectors of the vega-delta neutral portfolio. This is an advantage in practice. In order

to support the conclusion on the gamma, we considered the gamma-theta balance

of all different hedging portfolios to partly assess their potential Profit and Loss

accounts. It was found that the MR portfolio tends to have a wrong gamma-theta

balance which is worse than that of the HW and other portfolios associated with

parametrization by time.

We believe that the driving process x plays a fundamental role in evaluating

any other product and application. Furthermore, the underlying parametrization

that x imposes should be one of the first criteria to consider for practitioners. It is

promising that a parametrization by time process can be used in a wider context.

3.A Appendix: Estimating the market implied covari-

ance/correlation structure

In this appendix, we show how we estimate the covariances of the log of the co-

terminal forward swap rates at their setting dates from the market. The estimation

is carried out in two stages using a full rank multi-factor LIBOR Market model

(LMM). We first describe how to approximate the correlations of the log-LIBORs

at each exercise date by a global fit to the swaption matrix. With the knowledge

of these correlations, we deduce the corresponding covariances of the log-LIBORs

by performing a local fit to each row of the swaption matrix. The final stage of the

approximation is to use the covariances of the log-LIBORs at each exercise date to

determine the target quantities, Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) for i = 1, . . . , n− 1 and

j > i. This can be done by using the relationship between the swap rates and the

LIBORs.

3.A.1 Approximating the terminal correlations, a global fit ap-

proach

We first introduce the n-factor LMM under the terminal measure Sn+1. Suppose

we are given n deterministic instantaneous volatility functions σi(t), t ≤ Ti for each

i = 1, . . . , n. We further introduce the instantaneous correlation ρij ∈ [−1, 1] for
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each pair of Brownian factors W i and W j , i.e. dW i
t dW

j
t = ρijdt. Under the terminal

measure Sn+1, the n-factor LMM reads

1. i = n, t ≤ Tn:

dLnt = σn(t)Lnt dWn
t ,

2. i < n, t ≤ Ti:

dLit = −

 n∑
j=i+1

αjL
j
t

1 + αjL
j
t

σi(t)σj(t)ρij

Litdt+ σi(t)L
i
tdW

i
t . (3.27)

The formal solution to the SDE (3.27) is

Lit = Li0 × exp

∫ t

0

n∑
j=i+1

αjL
j
s

1 + αjL
j
s

σi(s)σj(s)ρijds−
∫ t

0

σ2
i (s)

2
ds+

∫ t

0
σi(t)dW

i
t

 .

As the drift terms are stochastic, one usually seeks for a fast numerical scheme

to approximate the solution. In the current literature, by “freezing the drift” at

time zero we obtain a very crude drift approximation which could encourage quite

a significant arbitrage

Lit ≈ Li0 × exp

 n∑
j=i+1

αjL
j
0

1 + αjL
j
0

∫ t

0
σi(s)σj(s)ρijds−

∫ t

0

σ2
i (s)

2
ds+

∫ t

0
σi(t)dW

i
t

 .

(3.28)

However, it is particularly useful when calibrating the model to the “terminal corre-

lation” because it allows for an analytically closed form formula. Here, by “terminal

correlation” we mean the correlation between the log-LIBORs at the same setting

date, e.g. Corr(lnLkTi , lnL
l
Ti

) for k, l ≥ i. Similar versions for other setting dates

hold as well, see for example Brigo and Mercurio [2001] or Rebonato [2004]. By

(3.28), we get

Corr(lnLkTi , lnL
l
Ti) ≈

∫ Ti
0 σk(t)σl(t)ρkldt√∫ Ti

0 σ2
k(t)dt

√∫ Ti
0 σ2

l (t)dt
, k, l ≥ i. (3.29)

The above quantities can only be approximated given the parameters for the instan-

taneous volatilities and the instantaneous correlations.

Instantaneous correlation: we use the following simple and financially appealing

form

ρij = ρij(β) = exp(−β|Ti − Tj |),

where β > 0. For more details of this choice, readers are referred to Rebonato
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[2002, 2004] and Brigo and Mercurio [2001].

Instantaneous volatility: we choose the “humped shape” function, originally pro-

posed by Rebonato [2002, 2004]

σi(t) = σi(t; a, b, c, d) = [a+ b(Ti − t)]e−c(Ti−t) + d,

where a, b, c, d ∈ R are the four parameters to be chosen appropriately.

A global fit: we now aim to recover all the parameters of the n-factor LMM model

in order to approximate the terminal correlations in (3.29). This can be done by

performing a global fit to the swaption matrix which contains implied volatilities of

different expiries and tenors.

Note that each swap rate can be written as

yi,jt =

i+j−1∑
k=i

wi,jk (t)Lkt ,

wi,jk (t) =
αkDtTk+1∑i+j−1

l=i αlDtTl+1

,

By Itô’s lemma, under the terminal measure we have that

dyi,jt = . . . dt+

(
i+j−1∑
k=i

ζi,jk (t)σk(t)dW
k
t

)
yi,jt , (3.30)

ζi,jk (t) =
w̃i,jk (t)Lkt

yi,jt
,

w̃i,jk (t) = wi,jk (t) +

i+j−1∑
l=i,l 6=k

∂wi,jl (t)

∂Lkt
Llt.

Hence, if the corresponding swaption is to be valued using the Black formula with

implied volatility σ̃i,j , we would want to get

σ̃2
i,jTi =

i+j−1∑
k=i

i+j−1∑
l=i

∫ Ti

0
ζi,jk (t)ζi,jl (t)σk(t)σl(t)ρkldt,

by ignoring the drift in (3.30) and assuming that the terms ζi,jk (t) are all determin-

istic. Empirically, as shown in Rebonato [2002], Rebonato [2004] and Brigo and

Mercurio [2001], one can actually obtain that each ζi,jk (t) is approximately equal to

its value today, i.e. ζi,jk (0). The above equation now becomes of a much simpler

form

σ̃2
i,jTi ≈

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)

∫ Ti

0
σk(t)σl(t)ρkldt. (3.31)

73



This allows us to a carry a fast yet accurate enough approximation scheme for both

the global and the local fits as we shall see later.

We can now use a least squares fit method to do a global fit to the swaption

matrix. For a particular choice of parameters {β, a, b, c, d}, we define the model

volatilities {σi,j(β; a, b, c, d)} to satisfy

σ2
i,j(β; a, b, c, d)Ti :=

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)

∫ Ti

0
σk(t; a, b, c, d)σl(t; a, b, c, d)ρkl(β)dt.

One then defines

χ2 :=
n∑
i=1

n+1−i∑
j=1

[σi,j(β; a, b, c, d)− σ̃i,j ]2 ,

and looks for the optimal set of parameters {β, a, b, c, d} that minimizes χ2. At the

end of this stage, we will have recovered all the parameters of the n-factor LMM

and hence the terminal correlations in (3.29) can be estimated.

Remark 7 Note that in this step, we do not take the value
∫ Ti

0 σk(t)σl(t)ρkl(β)dt as

an approximation for Cov(lnLkTi , lnL
l
Ti

) (the global approach does not reflect enough

accuracy). The local step presented next will give a better approximation for these

covariances.

We assume the correlations between the log-LIBORs obtained from the global

fit are not affected by any changes in the market data. This is because the changes

in these correlations are recorded to be small and do not have a big impact on the

approximations from the local fit in Appendix 3.A.2. In our check, we find that the

effect is numerically insignificant and this suggests that historical data can be used

for the global fit. Hence, we keep the parameters of the instantaneous volatility and

the instantaneous correlation functions the same at all time.

3.A.2 Approximating the covariances, a local fit approach

Recall that from the global fit we can approximate the correlations Corr(lnLkTi , lnL
l
Ti

)

for k, l ≥ i at any exercise date Ti. In order to deduce the corresponding covariances

of the log-LIBORs at Ti, we use the implied volatilities on the ith row of the swaption

matrix. We employ the approximation in (3.31) but use Cov(lnLkTi , lnL
l
Ti

) instead

of
∫ Ti

0 σk(t)σl(t)ρkldt, i.e.

σ̃2
i,jTi ≈

i+j−1∑
k=i

i+j−1∑
l=i

ζi,jk (0)ζi,jl (0)Cov(lnLkTi , lnL
l
Ti). (3.32)

The following approximation steps are described to solve for Var(lnLjTi) where j

runs from i to n. Since we keep all the correlations fixed, solving for the variances
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automatically implies the covariances. Note that we ignore the effect of changing

the measure as it is small and irrelevant for the discussion.

• Step 1: we start from σ̃i,1 of the ith caplet. The Black formula implies that

σ̃2
i,1Ti ≈ Var(ln Li

Ti
).

• Step 2: next, we consider σ̃i,2. Also, by the Black formula and the approxi-

mation in (3.32)

σ̃2
i,2Ti ≈ (ζi,2i (0))2Var(lnLiTi)

+(ζi,2i+1(0))2Var(ln Li+1
Ti

) + 2ζi,2i (0)ζi,2i+1(0)Cov(lnLiTi , lnL
i+1
Ti

)

= (ζi,2i (0))2Var(lnLiTi) + (ζi,2i+1(0))2Var(ln Li+1
Ti

) (3.33)

+2ζi,2i (0)ζi,2i+1(0)Corr(lnLiTi , lnL
i+1
Ti

)
√

Var(lnLiTi)
√

Var(ln Li+1
Ti

)

It is straightforward to solve this equation for the unknown Var(ln Li+1
Ti

).

Hence, Cov(lnLiTi , lnL
i+1
Ti

) can be recovered.

• Step j+1-i: notice that each time we move from σ̃i,j−i to σ̃i,j+1−i, there is one

more unknown to solve, i.e. Var(ln Lj
Ti

). With the knowledge of the terminal

correlation, we can recover Cov(lnLkTi , lnL
j
Ti

) for k = i, . . . , j−1. This is clear

by the following relation

σ̃2
i,j+1−iTi

≈
j∑
k=i

j∑
l=i

ζi,j+1−i
k (0)ζi,j+1−i

l (0)Cov(lnLkTi , lnL
l
Ti)

= · · ·+ (ζi,j+1−i
j (0))2Var(ln Lj

Ti
) (3.34)

+2

j−1∑
k=i

ζi,j+1−i
k (0)ζi,j+1−i

j (0)Cov(lnLkTi , lnL
j
Ti

)

= · · ·+ (ζi,j+1−i
j (0))2Var(ln Lj

Ti
) (3.35)

+2

j−1∑
k=i

ζi,j+1−i
k (0)ζi,j+1−i

j (0)Corr(lnLkTi , lnL
j
Ti

)
√

Var(lnLkTi)
√

Var(ln Lj
Ti

)

where the . . . terms and Var(lnLkTi), for k = i, . . . , j − 1 are known from the

previous steps.

• Step n+1-i: At the end of this step, we will have recovered the variances and

covariances of all the alive log-LIBORs at Ti.
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For j > i, by using the approximation ζi,jk (t) ≈ ζi,jk (0) in (3.30) we have that

d ln yi,jt ≈ . . . dt+

(
i+j−1∑
k=i

ζi,jk (0)σk(t)dW
k
t

)
. (3.36)

Hence, our target market quantity can be written as

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈ Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

), j > i,

which follows from the independence of increment in (3.36). Again, since we use

Cov(lnLkTi , lnL
l
Ti

) instead of
∫ Ti

0 σk(t)σl(t)ρkldt, it follows from (3.36) that

Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Ti

) ≈
n∑
k=i

n∑
l=j

ζi,n+1−i
k (0)ζj,n+1−j

l (0)Cov(lnLkTi , lnL
l
Ti).

(3.37)

When setting the various models, we will denote the covariances of the log of the

swap rates Cov(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) estimated from the market by this two step

procedure as Covma(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) for j = i+ 1, . . . , n.

3.B Appendix: Explanations for the deltas of the Bermu-

dan swaption

In this appendix, we give a brief and heuristic explanation for the behaviour of the

Bermudan’s deltas in the main chapter.

3.B.1 Delta calculation

Recall from the main chapter that the deltas of a Bermudan swaption are defined

to be

∆̂i :=
dV̂T0
dy0,i

,

for i = 1, . . . , n+1. This gives a vector ∆̂ and each element ∆̂i is itself a function of

the co-initial swap rates. We describe below how we carry out the finite difference

scheme to calculate the deltas.

Bumping the co-initial swap rates: consider the initial discount bonds

with values D0Ti for i = 1, . . . , n+ 1. The co-initial swap rates and discount bonds

are linked via the relation

y0,i =
1−D0Ti∑i−1
j=0 αjD0Tj+1

, i = 1, . . . , n+ 1. (3.38)

We can also calculate each discount bond D0Ti from the co-initial swap rate y0,i and
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the discount bonds that mature previously: D0T1 , . . . , D0Ti−1

D0Ti =
1− y0,i

∑i−2
j=0 αjD0Tj+1

1 + αi−1y0,i
. (3.39)

This is because if we calculate the right hand side of (3.39) by using (3.38), we will

have that

1− y0,i
∑i−2

j=0 αjD0Tj+1

1 + αi−1y0,i
=

1− 1−D0Ti∑i−1
j=0 αjD0Tj+1

∑i−2
j=0 αjD0Tj+1

1 + αi−1y0,i

=

1− 1−D0Ti∑i−1
j=0 αjD0Tj+1

(∑i−1
j=0 αjD0Tj+1 − αi−1D0Ti

)
1 + αi−1y0,i

=

1− (1−D0Ti) +D0Ti
αi−1−αi−1D0Ti∑i−1
j=0 αjD0Tj+1

1 + αi−1y0,i

=

D0Ti +D0Ti
αi−1−αi−1D0Ti∑i−1
j=0 αjD0Tj+1

1 + αi−1y0,i

= D0Ti

1 + αi−1
1−D0Ti∑i−1

j=0 αjD0Tj+1

1 + αi−1y0,i

= D0Ti

1 + αi−1y
0,i

1 + αi−1y0,i

= D0Ti .

It is then straightforward to shift y0,i and keep y0,j , j 6= i constant for each i.

3.B.2 Main effects of bumping the co-initial swap rates on the in-

puts and the implication for the deltas

We now explain how bumping the co-initial swap rates can affect the inputs and the

Bermudan price. We display the LIBORs and the co-terminal swap rates in tables

3.27 and 3.28 respectively. The second columns of both tables display the rates

before the bump of each co-initial swap rate. Other columns show their updated

values after the bump.

We bump each of y0,i and keep the rest unchanged to calculate the deltas

as described in the previous section. When i ≤ n, it follows directly from (3.39)

that only {D0Tj}j=i,...,n+1 alter. D0Ti will decrease as y0,i increases but D0Ti+1 will

increase to keep y0,i+1 unchanged (see (3.39)). This will have a direct effect on the

two consecutive LIBORs

Li−1
0 =

D0Ti−1 −D0Ti

αi−1D0Ti

increases, Li0 =
D0Ti −D0Ti+1

αiD0Ti+1

decreases.
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The later discount bonds are also affected but it is observed numerically that the

effects on the LIBORs for the later periods are very small (table 3.27).

As we can expect, a change of the LIBORs will directly lead to a change

of the involved co-terminal swap rates. Since one can view a co-terminal swap

rate approximately as a linear combination of the corresponding spanning LIBORs,

bumping y0,i for i ≤ n effectively has only one main effect on yi,n+1−i
0 . Because Li0

decreases and the later LIBORs are almost the same as before the bump, yi,n+1−i
0

will decrease (see table 3.28). It is clear that the co-terminal swap rates with expiries

after Ti will almost stay the same as the effects on their spanning LIBORs are very

small. The co-terminal swap rates with expiries before Ti are also much less affected.

This is because the increase and decrease in the corresponding spanning LIBORs

Li−1
0 and Li0 tend to cancel each other out and hence leave these co-terminal swap

rates which are the average sums almost unchanged. Note that the decrease in

yi,n+1−i
0 is seen to be relatively small and hence one can expect that it leads to a

negative delta of quite small magnitude (figure 3.4).

The last delta is quite different from the others. Bumping y0,n+1 will only

decrease the terminal discount bond D0Tn+1 . This causes the last LIBOR and all

the co-terminal swap rates to increase because

yi,n+1−i
0 =

D0Ti −D0Tn+1∑n
j=i αjD0Tj+1

.

This can cause the overall effect on the Bermudan to be quite large. The last delta

∆̂n+1, thus, is positive and could have a very large magnitude compared with the

other deltas. This explains the large jump of the last delta in figure 3.4.

Bump None y0,1 y0,2 y0,3 y0,4 y0,5 y0,6 y0,7 y0,8 y0,9 y0,10 y0,11

L0
0 4.54 4.55 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54

L1
0 4.54 4.53 4.56 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54

L2
0 4.55 4.55 4.53 4.58 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55

L3
0 4.58 4.58 4.58 4.55 4.63 4.58 4.58 4.58 4.58 4.58 4.58 4.58

L4
0 4.65 4.65 4.65 4.65 4.61 4.71 4.65 4.65 4.65 4.65 4.65 4.65

L5
0 4.71 4.71 4.71 4.71 4.71 4.65 4.78 4.71 4.71 4.71 4.71 4.71

L6
0 4.80 4.80 4.80 4.80 4.80 4.80 4.73 4.88 4.80 4.80 4.80 4.80

L7
0 4.89 4.89 4.89 4.89 4.89 4.89 4.89 4.80 4.98 4.89 4.89 4.89

L8
0 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.90 5.10 4.99 4.99

L9
0 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 4.95 5.19 5.06

L10
0 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.00 5.27

Table 3.27: Effects of bumping the co-initial swap rates by 1 bp on the LIBORs (in

percentage). The bold figures represent the main effects.
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Bump None y0,1 y0,2 y0,3 y0,4 y0,5 y0,6 y0,7 y0,8 y0,9 y0,10 y0,11

y1,10
0 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.77

y2,9
0 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.81

y3,8
0 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.85

y4,7
0 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.89

y5,6
0 4.92 4.92 4.92 4.92 4.92 4.91 4.92 4.92 4.92 4.92 4.92 4.94

y6,5
0 4.97 4.97 4.97 4.97 4.97 4.97 4.95 4.97 4.97 4.97 4.97 4.99

y7,4
0 5.01 5.01 5.01 5.01 5.01 5.01 5.01 4.99 5.01 5.01 5.01 5.05

y8,3
0 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.02 5.06 5.06 5.10

y9,2
0 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.03 5.09 5.16

y10,1
0 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.00 5.27

Table 3.28: Effects of bumping the co-initial swap rates by 1 bp on the co-terminal

swap rates (in percentage). The bold figures represent the main effects.
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Part II

Stochastic volatility modelling
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Chapter 4

An overview of smile modelling

Part II of the thesis focuses on the problem of modelling volatility smile. This

chapter gives a brief overview of the problem as well as some current issues in the

literature.

4.1 Black/Normal models and general market consen-

sus

The Black-Scholes (in Black and Scholes [1973]) or Black (in Black [1976]) models

are amongst the simplest models to describe the dynamics of an asset in practice.

We recall from Chapter 2 that under the Black model, the underlying asset has

a Log-Normal distribution that follows the driftless SDE under some martingale

measure

dFt = σFtdWt, t ∈ [0, T ],

where W is a one-dimensional Brownian motion. The constant volatility parameter

σ > 0 is the main input for the model to arrive at the famous Black formula. Similar

to the application of the Black model to the evaluation of European swaptions and

caplets as discussed in Chapter 2, the numeraire rebased today’s price of a European

call option written on F with strike K and maturity T is given in closed form

C0(F0,K, T ) = E[(FT −K)+]

= F0Φ(d1)−KΦ(d2),

where Φ(·) is the standard Normal CDF and

d1 =
ln(F0

K ) + 1
2σ

2T

σ
√
T

,

d2 = d1 − σ
√
T .
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As noted in Chapter 2, conversely the market price of the above European call

option is usually quoted via the Black implied volatility σ̃ for each strike K. That

is the value for the volatility parameter that we plug into the above Black formula

to reproduce the market price. Hence, if we set σ = σ̃ in the Black model for each

strike K, the model price computed by the Black formula and the market price

will coincide. One also has a choice to use a deterministic function of time σ(·)
instead of the constant σ in the SDE for the underlying, but has to ensure that∫ T

0 σ2(t)dt = σ̃2T for the perfect recovery of the market price.

In the previous chapters, we assumed that the Black implied volatility stays

constant for all strikes. In fact, this is not the case in practice. After the market crash

in 1987, it became more pronounced to practitioners that the log of the underlying

asset at time T is far from Normal and a constant volatility parameter σ or even

a deterministic function of time σ(·) are not possible. What usually features in

the market is that the market Black implied volatilities that we invert from market

option prices display a variety of shapes as a function of strike. The most common

is the U-shape or smile (higher volatilities for low and high strikes). In interest

rate markets, skew is a more dominant feature, i.e. Black implied volatility tends

to be monotonically decreasing in strike and displays less convexity for large strike.

Despite the fall of the Black model, Black implied volatility is still one of the market

standards to quote vanilla prices in practice. This has become a common metric as

to how traders think and relate prices in a trading environment.

Another way of quoting vanilla prices is via the Normal implied volatilities.

The underlying model is the Normal (or Bachelier) model where we assume the

dynamics of the underlying asset is given by

dFt = σdWt.

The constant volatility parameter σ > 0 (or a deterministic function of time σ(·))
in this model is the Normal rather than Log-Normal volatility as in the previous

Black model. One can immediately obtain a closed-form expression for vanilla call

and put prices in a similar fashion to the Black formula, and such expression is the

so-called Bachelier formula with the analogous Normal implied volatility. In certain

markets, traders tend to think in terms of the Normal implied volatilities since the

Normal model sometimes captures the dynamics of the underlying asset better than

the Black model. A clear drawback of this model is that F becomes negative in

finite time with positive probability which is not desired. Henceforth, we note that

the implied volatility that we refer to is always the Black implied volatility unless

otherwise specified. We return to the Normal implied volatilities in Chapter 7 where

we discuss the hedging of European options with stochastic volatility.

Certainly, the Black and Normal models are both not rich enough to capture
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the market implied distribution of the underlying. In terms of the implied volatility

smile, even when we equip the Black model with a time-dependent volatility function

rather than just a constant, we still end up with a flat implied volatility curve at time

T . The reason is that the model implied distribution of the underlying under the

martingale measure is always Log-Normal which is not consistent with the market.

See also Chapter 2 for a similar discussion on market implied distributions. This

means that one cannot use the same model to price vanilla European options for

all strikes. This leads us to a further study of richer classes of volatility models to

account for the smile/skew effect.

4.2 Local volatility models

Local volatility models have been mentioned and studied in a large body of works

to achieve the objectives of recovering market smiles. Here we name a few early

works on local volatility models that are greatly acknowledged, e.g. Duprie [1994],

Derman and Kani [1994], and Derman and Kani [1998]. See also Carr [2000] for a

brief survey on the related subject. The class of local volatility models is essentially

a natural extension of the Black model where one writes the dynamics of underlying

asset under some martingale measure as

dFt = σϕ(Ft)dWt.

Here, we still assume the simplest case of constant volatility σ > 0 and ϕ(·) is a

suitable deterministic function of the underlying asset that satisfies regularity con-

ditions (see page 278, Volume 1, Andersen and Piterbarg [2010]). The introduction

of function ϕ(·) has a direct impact on implied volatilities. If ϕ(x)/x is a monotoni-

cally decreasing function in x, the smile will be a downward-sloping skew. If ϕ(x)/x

is non-monotonic, we will be able to obtain a true U-shaped smile. See for example

Andersen and Andreasen [2002] or page 279, Volume 1, Andersen and Piterbarg

[2010] for implications for smile shapes of different choices of the function ϕ(·).
Two popular examples of local volatility models that have been used extensively in

practice to model skews are described below.

CEV Model: The Constant Elasticity of Variance model, or CEV, has appeared

in a number of works, e.g. Schroder [1989], Cox [1996]. In the CEV model, the

local volatility function ϕ(x) = xβ is of the power law type with the exponent

β typically ranging between [0, 1]

dFt = σF βt dWt.
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When β = 0 or 1, the CEV model collapses to the Bachelier or Black models

respectively. The flexibility of β was introduced to better capture the skew,

i.e. more negative slope is observed as β is reduced from 1 to 0 (we will discuss

this in more detail in the next chapter). Of course, this SDE formulation will

never admit negative solutions. Otherwise, F βt will be a complex number.

Depending on the value of β, we then have that Ft either absorbs or reflects

at zero and its transition density is known in closed form. Practitioners, on

the other hand, tend to choose the absorbing or reflecting behaviours based

on the markets rather than the choice of β, e.g. absorption at zero for interest

rate but reflection at zero for equity. See also Brigo and Mercurio [2001], or

Volume I, Andersen and Piterbarg [2010] for option pricing in the CEV model.

Displaced Diffusion model: Another relatively simple way to account for volatil-

ity skew is to use the Displaced Diffusion (DD) model which was first intro-

duced in Rubinstein [1983]. In this case, ϕ(x) = x + θ where θ is a positive

constant

dFt = σ(Ft + θ)dWt.

When θ = 0, the DD model collapses to the Black model and becomes very sim-

ilar to the Bachelier model as θ →∞. Under some certain model parametriza-

tion, Marris [1999] shows that the DD and CEV models are in fact very similar

qualitatively. With this SDE formulation, one again can price European calls

and puts in closed form, e.g. for call option we have the following DD-Black

formula

C0(F0,K, T ) = E[(FT −K)+]

= (F0 + θ)Φ(d1)− (K + θ)Φ(d2),

where

d1 =
ln
(
F0+θ
K+θ

)
+ 1

2σ
2T

σ
√
T

,

d2 = d1 − σ
√
T .

A clear drawback of this model is that it admits negative values for the under-

lying asset with positive probability. We will discuss this issue in more detail

in Chapters 5 and 6. For a more complete reference to the CEV and DD

models, readers are referred to several books such as Musiela and Rutkowski

[2004], Brigo and Mercurio [2001], Andersen and Piterbarg [2010], Rebonato

[2004], etc.
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4.3 Stochastic volatility models

We mentioned that the class of local volatility models is capable of producing

skews/smiles exhibited in various markets. The fact that the model has only one

factor enables a fairly simple and straightforward implementation in practice. How-

ever, this simplicity comes with a cost. Hagan et al. [2002] was the first to question

whether local volatility models match the qualitative behaviour of the markets. In

Hagan et al. [2002], the authors show that no matter how well we fit to market

smiles, local volatility models are still not good enough to capture the full dynamics

of the underlying. Specifically, it was pointed out by the authors that local volatil-

ity models predict smiles to move with the underlying in an “opposite” direction

to the market. However, this is based on a rather “naive” hedging concept which

is not always practically useful. In Chapter 7, we will discuss different hedging

methodologies in detail.

It is interesting to note that stochastic volatility models appeared long before

local volatility models were criticized. They were, in fact, studied at the time when

analytical solutions and computer power for simulation were not always available

for practical use. In a general stochastic volatility model, volatility is a stochastic

process itself with a separate Brownian motion Z to describe the randomness in

addition to the SDE for the underlying asset. A general SDE for the volatility

process is usually of the form

dσt = g(σt)dt+ h(σt)dZt,

where g(·) and h(·) describe the drift and diffusion terms respectively. The literature

for stochastic volatility models is vast. One of the first contributions in this area

is the model proposed in Hull and White [1987] where the underlying asset has

the usual Black-Scholes (Log-Normal) SDE and the volatility dynamics follows the

driftless Log-Normal SDE

dσt = νσtdZt, ν > 0.

Here, volatility is assumed to be independent of the underlying, i.e. two Brownian

motions W and Z are uncorrelated. This is not always consistent with empirical

studies of market data. Later models tend to consider a more general correlation

structure, i.e. dWtdZt = ρdt, ρ ∈ [−1, 1]. A relatively recent paper by Maghsoodi

[April 2007] studied the Hull and White [1987] stochastic volatility model with

general correlation structure, and investigated the exact solution of the model.

Since the Hull-White model only employs the Log-Normal SDE for the un-

derlying, the smile shapes that it produces are rather restricted. The fact that a
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general form of local volatility function ϕ(·) leads to a variety of skew/smile shapes

encourages us to keep this feature even in stochastic volatility models. A famous

example is the SABR model proposed in Hagan et al. [2002]. This is a combination

of the CEV model equipped with the Hull and White [1987] model’s volatility pro-

cess. Since its publication, the SABR model has now become one of the standard

stochastic volatility models in many different markets. We draw our attention to

the SABR model in Chapter 5.

Other SDE formulations for the volatility process have also been considered

apart from the Log-Normal type in the Hull and White [1987] model. For example,

Scott [1987], and Heston [1993] incorporate mean reversion to the volatility process.

See also Fouque et al. [2000a] and Fouque et al. [2000b] for more developments on

the mean reverting stochastic volatility models. In Chapter 6, we address to some

extent why mean reversion should be considered and study a specific example of the

SABR model with mean reverting volatility.

4.4 Desirable properties of a “good” model in practice

We end this chapter by sharing a few thoughts on modelling requirements and

discuss the aims that we hope to achieve in the coming chapters.

Up to now, we have reviewed some existing attempts to model the volatility

smile. The key questions that we have in mind in the next chapters involve the

followings.

• Which properties are useful for a model in a chosen market?

This is not an easy question as modelling requirements vary from market to

market and it depends on what we use the model for. The points we want to

stress here is that there is no universal model for all applications. Instead of

proposing a complicated model that has all useful features, we prefer to work

with a simple model that is “nice” enough for our given objectives. This is

why in later chapters, we consider the SABR model which is widely used in

practice and a modification introducing mean reverting volatility.

• What can we do given a certain model formulation? Can we compute prices

in a timely manner or does the model’s flexibility always come with a cost?

Having chosen a model that is theoretically suitable for the market and our

applications, the next important issue is the implementation. In fact, this

problem could be a lot more challenging than the first and very often in practice

the rejection of a model comes from its intractability. If there is no available

efficient numerical scheme, one will have to tweak the model somehow for

practical use in the trading environment. This action does not always leave
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the original model to retain its desirable features. In Chapters 5 and 6, we

focus on the efficient numerical implementation of the SABR and SABR with

mean reversion models. While we want to use the SDE formulations that have

nice and suitable properties, we always bear in mind that they must also be

implemented in an efficient manner.

• Given that different stochastic volatility models can achieve a given objective,

will they continue to give similar results if we put them in action for other

purposes?

This is an extension of the first question and we address it in both Chapters

6 and 7. The purpose is to test further the appropriateness of our chosen

models. Suppose that there are two available stochastic volatility models that

we believe can do the same job (pricing European options and calibrating

to market smiles) equally well with comparable computational speed, we are

interested in whether they will produce similar results if they are put in a

different battle.

An interesting angle to explore is the hedging problem that is similar to what

we have covered in detail in Part I (but with deterministic volatility setting).

We want to know how to hedge European options within stochastic volatility

models and whether the models yield desirable hedging properties (Chapter

7). Another application that we have in mind is the pricing of other derivatives

that are exposed to other information in the market, e.g. future yield curve,

forward volatility (Chapter 6). Will different models give different prices?
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Chapter 5

On the approximation of the

SABR model: a probabilistic

approach

In this chapter, we derive a probabilistic approximation for three different versions

of the SABR model: Normal, Log-Normal and a displaced diffusion version for the

general constant elasticity of variance case. Specifically, we focus on capturing the

terminal distribution of the underlying process (conditional on the terminal volatil-

ity) to arrive at the implied volatilities of the corresponding European options for

all strikes and maturities. Our resulting method allows us to work with a variety of

parameters which cover long dated options and highly stress market condition. This

is a different feature from other current approaches which rely on the assumption of

very small total volatility and usually fail for longer than 10 years maturity or large

volatility of volatility.

5.1 Introduction

As noted in Chapter 4, in financial markets we usually observe that implied volatility

as a function of strike displays skews (negative slope) or smile shapes. The exis-

tence of smiles/skews suggests that the Log-Normal assumption of the underlying

process (Black and Scholes [1973]) should be relaxed to develop a more general class

of models. In the literature, we have the class of one factor models such as the

local volatility models which assume the dependence of volatility on both time and

underlying or the more ambitious two factor stochastic volatility models assigning

a separate stochastic component to the volatility. We recall from Chapter 4 that

although any given market smile and skew can be fitted quite well with the local

volatility models, Hagan et al. [2002] pointed out their poor dynamics that predict
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wrong movements of the smiles as the underlying moves. This fact implies that even

simple derivatives can only be hedged properly with the stochastic volatility models.

We will study one of the most frequently used stochastic volatility models in

practice: the SABR model that was originally proposed in Hagan et al. [2002]. It

is widely used to model the forward price of the stock or the forward LIBOR/swap

rates in the fixed income market. The model is essentially a stochastic volatility

extension of the constant elasticity of variance (CEV) model (studied in Schroder

[1989] and Cox [1996]) with a lognormal specification of the volatility process. In

Hagan et al. [2002], the authors use singular perturbation techniques to obtain ex-

plicit, closed-form algebraic formulae for the implied volatility enabling very efficient

implementation of the model on a daily basis. The quality of this so-called SABR

formula is quite satisfactory given short maturity and strikes not so far from the

current underlying. It becomes much poorer for pricing the long dated options or

strikes on the wing. In addition, the formula itself has an internal flaw, i.e. im-

plied volatilities for long maturity computed by this formula usually imply negative

density of the underlying at very low strike.

A number of other approaches have been developed in the current literature

to improve the approximation of the SABR model. Two common techniques are

singular perturbation (e.g. Hagan et al. [2002], Hagan et al. [2005] and Wu [2010])

and heat kernel expansion (e.g. Henry-Labordere [2005] and Paulot [2009]). Our

method, which is based on a probabilistic framework, focuses on the marginal dis-

tribution of the underlying at maturity to arrive at the required implied volatilities.

Once we fit an appropriate approximation to the underlying’s marginal distribution,

implied volatilities can be immediately recovered by inverting the option prices and

we do not have the problem regarding negative density as in Hagan et al. [2002].

While the idea is conceptually clear, developing an effective framework for it

is not straightforward. One reason is from the solution of the SDE for the under-

lying process. For the Normal and Log-Normal versions of the SABR model where

we are able to write the explicit solutions in distribution for the SDE, the correla-

tion parameter causes the presence of both terminal volatility and realized variance

leading to a challenging high dimensional problem. Some authors, hence, assume

zero correlation to remove this difficulty and then only the realized variance needs

to be considered. This assumption, however, gives rise to a much more restricted

SABR model. We keep the general correlation structure but build up our approxi-

mation by conditioning the underlying’s distribution on the terminal volatility and

approximating this distribution. The resulting approximate conditional distribution

(with correct mean and variance) has to be theoretically appealing (close to the true

distribution) but simple enough to allow for computational efficiency. We propose

the Normal and Normal Inverse Gaussian distributions for such purposes.
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Another challenge for our approach is the CEV structure of the SABR model

which admits no explicit solution. In order to find a way around this, we study the

simpler displaced diffusion (DD) model where our previously mentioned method can

be applied. The DD models (first studied in Rubinstein [1983]) are the simplest way

of incorporating skews even without stochastic volatility in finance literature. De-

spite the difference between the two models’ dynamics, Marris [1999] noted that for

a certain model parametrization the option prices and implied volatilities produced

by the deterministic CEV and DD models are almost identical across a wide range

of strikes and maturities. The comparison is studied further in Svoboda-Greenwood

[2009]. See also Rebonato [2002] for a discussion on the CEV and DD models for the

interest rate area. Other authors, thereby, adopt the more tractable DD structure

with the intuition based on the CEV in the stochastic volatility setting without

having investigated the connection between them, e.g. Joshi and Rebonato [2003],

Piterbarg [2005] and Larsson [2010]. In this chapter, we attempt to fill in this gap

in literature at least numerically with the aim of transferring the intuition from the

CEV to DD version of the SABR model for which one can derive an approximation

with much less effort.

The chapter is organized as follows. Section 5.2 compares the SABR model

and its displaced diffusion version with the mapping connecting them numerically.

We develop our approximation in Section 5.3 where we quote the appropriate for-

mulae and match the parameters for implementation. In Section 5.4, we numerically

investigate the quality of our approximation in conjunction with other approxima-

tions and Monte Carlo simulations. Section 5.5 concludes the chapter.

5.2 SABR model

Under the SABR model, the dynamics of the underlying asset is given by:

dFt = σtF
β
t dWt β ∈ [0, 1],

dσt = νσtdZt ν > 0, (5.1)

where Wt and Zt are correlated Brownian motions such that dWtdZt = ρdt for all

t ≤ T with ρ ∈ [−1, 1]. The model assumes that the underlying process is already a

(local) martingale1 under some equivalent martingale measure.

Each parameter in the SABR model has a specific role in determining the

shapes of the skews and smiles. Hagan et al. [2002] was the first to point out these

roles through their SABR formula which will be introduced in Section 5.3.2.2. The

parameter β has a primary effect on the skew, i.e. reducing β from 1 to 0 gives rise

1When β = 1 and ρ > 0, the underlying process is not a martingale.
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to more negative (downward) slope of the implied volatility curves. Furthermore,

Hagan et al. [2002] also mentioned that β determines the “backbone” which is the

curve that the at the money (ATM) volatility traces as F0 varies. Often, one extracts

β from historical data and fixes it upfront for certain markets. It is also noted in

Hagan et al. [2002] that market smiles can be fit equally well with any specific value

of β. For our later model analysis, we will separate the SABR model into three

sub-models:

1. β = 0: this model is referred to as the Normal SABR model.

2. β = 1: this model is referred to as the Log-Normal SABR model.

3. β ∈ (0, 1): this model is referred to as the CEV-SABR model.

The ρ-parameter in the SABR model has a similar impact on the skew, i.e. more

negative ρ enables a more downward sloping curve. Therefore, ρ is often chosen to

match the skew. It also features in general market practice that the implied volatility

curves exhibit different levels of curvature. Large curvature usually occurs for short

dated options while the smiles tend to flatten out as maturity increases. For that

reason, ν known as Volvol (volatility of volatility) is always considered alongside

with the market given parameter T (maturity). Finally, the initial volatility σ0 has

a unique role of matching up the ATM implied volatility which corresponds to the

most liquid option in any market.

5.2.1 A displaced diffusion version of the SABR model

The non-stochastic CEV model is known to enable a very flexible modelling of

volatility skew. Despite this advantage, the CEV structure lacks closed-form solution

and numerically it is not very straightforward to implement. The same difficulties

also apply to the CEV-SABR model. For our method, we use a much simpler

alternative model with the same capability as the CEV-SABR model. In practice,

the DD model has been posited for such purpose since it is equally capable of

capturing the skews. A further advantage which makes practitioners prefer this

model is the fact that the DD structure is very similar to the Log-Normal structure

which admits an explicit form for the terminal distribution of the underlying and

can be easily handled. Therefore, we study the DD version of the SABR model

(DD-SABR) which is specified by the following SDEs

dFt = σ̂t(Ft + θ)dWt,

dσ̂t = νσ̂tdZt,

dWtdZt = ρdt. (5.2)
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The CEV-SABR and DD-SABR models become comparable via the following map-

ping

σ̂t = σtβF
β−1
0 ,

θ = F0
1− β
β

.

It is well known that in the deterministic volatility case (ν = 0), the forward dy-

namics in (5.1) and (5.2) with the above mapping are very similar and implied

volatilities produced by the two models are almost identical across a wide range of

strikes. This mapping was first discussed in Marris [1999] and studied further in

Svoboda-Greenwood [2009]. It was then widely adopted by other authors and prac-

titioners even in the stochastic volatility setting without having been investigated.

Note that the mapping is perfect when β = 1 for which the DD-SABR model col-

lapses to the Log-Normal SABR model. For the rest of the chapter, the DD-SABR

model is always equipped with the mapping to match the intended CEV-SABR

model.

Having chosen to work with the DD-SABR model, we want to stress the

importance of the CEV-SABR one and compare the two models numerically for

completeness. We will split our comparison into two parts. The first part is about

the mapping quality when strikes are near the money while the second one focuses

on the wing behaviour. The reason is that the SABR model best represents the

market given strikes not too far from the current underlying level. When pricing

long-dated options, both models tend to break down in the wings since each of them

has its own shortcomings. In our comparison, we only look at the smiles exhibited

by the two models when their ATM volatilities are matched as this is the comparison

that matters in practice.

5.2.1.1 Near the money

We have systematically investigated the mapping under different regimes and sce-

narios when strikes are not far from at the money. In the results presented here, the

parameters are taken to be consistent with our later numerical study and represen-

tative enough so that similar results are expected to hold for all cases.

Figures 5.1, 5.2 and 5.3 illustrate the effects of both ν and T on the mapping.

For up to medium long maturity (15 years) and low Volvol ν (0.3), the mapping is

quite accurate with errors recorded to be very small across all strikes. The maximum

error is about 60 basis points (bp) at the lowest strike. When Volvol is higher, the

DD-SABR model displays more curvature on the smiles but the differences still

remain acceptably small (maximum 100 bp). We then take the maturity to be very

long (20 and 30 years) with low Volvol ν as usually expected in practice (figure
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5.4). The resulting plots show that the mapping starts breaking down as the shapes

of two implied volatility curves are not entirely in line with each other. The DD-

SABR model produces progressively steeper skews while the CEV-SABR’s curves

tend to kick up at the right wing, i.e. leading to positive errors for low strikes and

negative errors for large strikes. This effect becomes much more significant when

we deal with strikes that are far from at the money. The rare cases of high Volvol

and long maturity are not presented here but one observes that similar effects hold

throughout.
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Figure 5.1: Effects of maturity T and Volvol ν on the mapping when the ATM

are matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-CEV:

CEV-SABR MC solution, MC-DD: DD-SABR MC solution, Errors: MC-DD minus

MC-CEV.
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Figure 5.2: Effects of maturity T and Volvol ν on the mapping when the ATM

are matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-CEV:

CEV-SABR MC solution, MC-DD: DD-SABR MC solution, Errors: MC-DD minus

MC-CEV.
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Figure 5.3: Effects of maturity T and Volvol ν on the mapping when the ATM

are matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90. MC-CEV:

CEV-SABR MC solution, MC-DD: DD-SABR MC solution, Errors: MC-DD minus

MC-CEV.
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Figure 5.4: Effect of very long maturity T on the mapping when the ATM are

matched. Parameters: β = 0.5, ρ = −0.2, σ0 = 130%, F0 = 90.

We mentioned that both ρ and β affect the skew. In figure 5.5, it is seen

that the correlation parameter ρ does not really affect the mapping and the error

curves look almost identical. On the other hand, β as illustrated in figure 5.6 has

a stronger influence and the mapping tends to be less accurate for smaller β. This

makes sense since perfect mapping is obtained as β approaches one. For low value of

β, the displaced diffusion coefficient θ is large enabling more probability mass to be

assigned to negative values of FT while the absorbing barrier of the CEV structure

also plays a more significant role.
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Figure 5.5: Effect of ρ on the mapping when the ATM are matched. Parameters:

β = 0.5, T = 10, ν = 0.3, σ0 = 130%, F0 = 90.
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Figure 5.6: Effect of β on the mapping when the ATM are matched. Parameters:

ρ = −0.2, T = 10, ν = 0.3, F0 = 90, σ0 is chosen for each case so that the ATM are

comparable.

5.2.1.2 Implied volatilities in the wings

We have further investigated the behaviour in the wings. In the results presented

here, the parameters are taken to represent typical market swaption smiles of differ-

ent maturities (figures 5.7 and 5.8). We chose to work with swaption data as strikes

being far from at the money is observed more often in the interest rate market.

While high strikes are not really a problem, the gap between two models gets bigger

as the strike gets lower. When the strike is sufficiently low (ATM - 200 bp), the

error can approach 3 to 4% which is quite significant in practice. For increasing

maturity (20 and 30 years), the mapping completely breaks down for “ATM - 200

bp” strike even with very low ν. This fact was addressed in Svoboda-Greenwood

[2009] in detail. The author argues that even in the deterministic volatility setting,

the mapping may work well given the assumption that forward interest rates are

“not too low” and their percentage volatilities are “reasonable”. When such as-

sumption fails, a greater portion of the probability density function is likely to fall

98



in the negative rates region for the DD process while a large part of the distribution

is absorbed at zero for the CEV process over intermediate maturities. These effects

become more pronounced for longer maturity. We report these results for the data

used in figures 5.7 and 5.8 in table 5.1. For the 30 year maturity case, it is seen

that around a quarter of the mass is given to the absorbing barrier and the negative

rates region. Therefore, the mapping can no longer be justified. We want to stress

that this is not really a problem as both models are not good enough in practice

here.

In the next section, we derive an approximation for the models (exclud-

ing CEV-SABR). Note that with these models practitioners are only interested in

around the ATM region. From that perspective, the approximation is valid for all

different asset classes including interest rates.
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-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1.50% 3.00% 3.50% 4.00% 5.50%

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 5, ν = 0.47

MC-CEV

MC-DD

Errors

ATM

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1.50% 3.00% 3.50% 4.00% 5.50%

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 10, ν = 0.41

MC-CEV

MC-DD

Errors

Figure 5.7: Implied volatilities under different models. Parameters: β = 0.5, ρ =

−0.2, σ0 = 4.30%, 3.80% as maturity increases, respectively.
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Figure 5.8: Implied volatilities under different models. Parameters: β = 0.5, ρ =

−0.2, σ0 = 4.10%, 3.70% as maturity increases, respectively.

T 5 Y 10 Y 20 Y 30 Y

CEV-SABR 5.18 % 9.77% 25.85% 30.15%

DD-SABR 4.03 % 7.67% 19.47% 22.60%

Table 5.1: Probability mass assigned to the absorbing barrier (CEV-SABR) and the

negative rates region (DD-SABR) for the four cases considered in figures 5.7 and

5.8 (computed by direct Monte Carlo simulation).
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5.3 A probabilistic approximation

5.3.1 Approximating the terminal distribution

By the fundamental pricing formula and tower property, today’s numeraire-rebased

price of a vanilla call option struck at some strike K is given by

C0(K,F0) = E
[
(FT −K)+

]
= E

[
E{(FT −K)+|σT }

]
. (5.3)

Assuming that we have in mind some distribution for FT |σT : the conditional distri-

bution of FT given σT (see Sections 5.3.2 and 5.3.3), then the conditional expectation

above can be evaluated as a double integral. Recall that σT has a known Log-Normal

distribution as the SDE it solves has an explicit solution. To keep the notation sim-

ple and transparent, we introduce the process s that represents the level of assets

and function g(.) to transform it back to the underlying process F , i.e. Ft = g(st).

As the first stepping stone, we will write down the exact solutions in distribution to

the SDE for our reference models (see Appendix 5.A for details).

• Normal SABR:

sT , F0 +
ρ

ν
(σT − σ0) +

√
1− ρ2V

1
2
T G,

g(s) = s. (5.4)

• Log-Normal SABR:

sT , lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G,

g(s) = es. (5.5)

• DD-SABR:

sT , ln(F0 + θ) + βF β−1
0

ρ

ν
(σT − σ0)− 1

2
β2F 2β−2

0 VT + βF β−1
0

√
1− ρ2V

1
2
T G,

θ = F0
1− β
β

,

g(s) = es − θ. (5.6)

Here VT :=
∫ T

0 σ2
t dt is the realized variance and G is a standard Normal random

variable independent of σT and VT . We aim to approximate the conditional distri-

bution of sT |σT by replacing it with some suitable random variable with the same

conditional mean and variance. In each case, the realized variance VT plays a central

role in our calculation and analysis so we will treat its moments separately in the
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following proposition.

Proposition 1 Assume that the dynamics of the volatility is governed by a Log-

Normal process with Volvol ν > 0, i.e. dσt = νσtdZt where Z is a Brownian

motion. The first two conditional moments of the realized variance VT have

the following analytical expressions:

E(VT |σT ) =
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) , (5.7)

E(V 2
T |σT ) = −σ

4
0

√
T

4ν3

(
1 + e2 ln(σT /σ0)

) [Φ( ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)

+
σ4

0

√
T

4ν3

[
Φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
) , (5.8)

where φ(.) and Φ(.) are the Normal density and cumulative distribution functions

respectively.

Proof : Appendix 5.B.

5.3.2 Normal approximation

We first consider the Normal distribution for the approximation of sT |σT as it ap-

pears to be very tractable and efficient to use in practice. Another motivation for

choosing the Normal distribution comes from an earlier numerical investigation in

Mitra [2010]. In this work, the conditional distribution of sT |σT was seen to be quite

close to Normal through examination of the Q-Q plots (see Section 5.3.3 for further

discussion). In order to implement this approximation, we first need to calculate

the exact conditional mean and variance of sT

µ(σT ) = E(sT |σT ),

η2(σT ) = Var(sT |σT ),

and then replace the conditional distribution of sT |σT by a Normal random variable

with mean µ(σT ) and variance η2(σT ). One will then be able to calculate the call

option prices by (5.3) and obtain the implied volatilities. The analytical formulae

for µ(σT ) and η2(σT ) are quoted in the following proposition.

Proposition 2 : The conditional mean and variance of sT for the reference models

are given by the following closed-form expressions:
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• Normal SABR:

µ(σT ) = F0 +
ρ

ν
(σT − σ0),

η2(σT ) = (1− ρ2)
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) .

(5.9)

• Log-Normal SABR and DD-SABR:

µ(σ̂T )

= ln(F0 + θ) +
ρ

ν
(σ̂T − σ̂0)− σ̂2

0

√
T

4ν

[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
) ,

η2(σ̂T )

=
σ̂2

0

√
T

2ν

(
(1− ρ2)−

(σ̂2
T + σ̂2

0)

8ν2

) [Φ( ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)

+
σ̂4

0

√
T

16ν3

[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ 2ν
√
T
)

− σ̂
4
0T

16ν2


[
Φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σ̂T /σ̂0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σ̂T /σ̂0)

ν
√
T

+ ν
√
T
)

2

, (5.10)

where

θ = F0
1− β
β

,

σ̂t = σtβF
β−1
0 .

Proof : By Proposition 1 and direct calculations (see Appendix 5.C for more de-

tails). Clearly, the formulae in (5.10) for the Log-Normal SABR model are obtained

when β = 1.

5.3.2.1 Implementation: advantages and disadvantages

We apply the formulae derived in the last section to the direct calculations of vanilla

call option prices for all strikes. Since there is a one to one correspondence between
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the volatility process σ and its driving Brownian motion Z (through the SDE of σ)

ZT =
ln(σT /σ0) + 1

2ν
2T

ν
,

ZT ∼ N (0, T ),

we can also express the conditional mean and variance in terms of ZT . Conse-

quently, the inner conditional expectation in (5.3) has the equivalent expression

E
[
(FT −K)+|ZT

]
and (5.3) now reads

C0(K,F0) =

∫ ∞
−∞

E[(g(sT )−K)+|ZT = x]fZT (x)dx,

where g(.) is the appropriate transformation for the chosen β and fZT (x) = e−
x2

2T /
√

2πT

is the probability density function of ZT . After some direct calculations we obtain:

1. Normal SABR:

C0(K,F0)

=

∫ ∞
−∞

[√
η2(x)φ

(
K − µ(x)√

η2(x)

)
+ (µ(x)−K)

(
1− Φ

(
K − µ(x)√

η2(x)

))]
e
−x2
2T

√
2πT

dx.

(5.11)

2. Log-Normal SABR:

C0(K,F0)

=

∫ ∞
−∞

[
eµ(x)+

η2(x)
2 Φ

(
µ(x) + η2(x)− lnK√

η2(x)

)
−KΦ

(
µ(x)− lnK√

η2(x)

)]
e
−x2
2T

√
2πT

dx.

(5.12)

Remark 8 : For the DD-SABR model, we have exactly the same formula as (5.12)

with K replaced by K + θ.

Both (5.11) and (5.12) are simple one-dimensional integrals and can therefore be

evaluated easily by some efficient numerical routine. We want to emphasize this

point because we think it is crucial. Although the Normal approximation, as we

shall see later, does not appear to be the best choice theoretically, it is the only

one that could compete with other asymptotic approximations in terms of com-

putational time and this is an important consideration for any practical model.

Consequently, one should always look at the regimes when it works well and not so

well. Despite its convenience and simple form, the Normal approximation admits a

potential numerical problem as described in the following remark.
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Remark 9 : For both the Log-Normal SABR and DD-SABR models, E(V 2
T |σT ) and

hence η2(σT ) become very large when ν2T is large can be observed from equation

(5.8). For certain parameter choices, the growth rate of E[(g(sT ) − K)+|ZT = x]

in equation (5.12) is not balanced by the rate of decay of fZT (x) and hence, leads

to the numerical divergence of the integral. This problem can be illustrated by the

following figure

Figure 5.9: The integrand of (5.12) as a function of σT . Left plot: β = 1, ρ =

−0.5, F0 = 90,K = 90, T = 10, ν = 0.3, σ0 = 15%, right plot: β = 1, ρ = −0.5, F0 =

90,K = 90, T = 15, ν = 0.6, σ0 = 15%.

As a result, prices can not be calculated correctly when the numerical conver-

gence fails. In principle, one can do the following

C0(K,F0) =

∫ ∞
−∞

E[(g(sT )−K)+|ZT = x]
e
−x2
2T

√
2πT

dx

≈
∫ z

z
E[(g(sT )−K)+|ZT = x]

e
−x2
2T

√
2πT

dx,

where z and z are the appropriate lower and upper limits for the numerical inte-

gration. For some regimes of large ν2T , z cannot be chosen to give the numerical

convergence. In practice, one can truncate the integral at a much lower z to avoid

this issue as the volatility process is unlikely to hit a very high level at maturity. If

the truncated value is too low, the density function will have to be re-normalized,
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that is

C0(K,F0) =

∫ z

z
E[(g(sT )−K)+|ZT = x]f̃ZT (x)dx,

f̃ZT (x) =
e
−x2
2T∫ z

z e
−u2
2T du

.

5.3.2.2 A comparison with other approximations

We briefly review some attempts made by other authors to approximate the SABR

model and compare them with the Normal approximation in terms of implied volatil-

ity. We want to single out those that have already been tested numerically. Table

5.2 gives a brief overview of various approximations labeled by authors for all sub-

models.

Authors Normal SABR Log-Normal SABR CEV-SABR DD-SABR

Hagan et al. [2002] tested tested tested not tested

Obloj [2008] tested tested tested not available

Paulot [2009] not tested not tested tested not available

Johnson and Nonas [2009] not available tested not tested not available

Wu [2010] tested tested tested not available

Larsson [2010] tested tested not available tested

Table 5.2: Checklist of the most current approximations for the SABR model.

The SABR formula in Hagan et al. [2002] is the original and, perhaps, the

most popular amongst the listed works in this table owing to its algebraic closed-form

expression. Henceforth, we take the SABR formula as the benchmark approximation

for our comparison. In the SABR formula, the Black implied volatility σB(K,F0)

for a vanilla call (or put) option written on the forward price S struck at some strike

K has the following form

σB(K,F0) =
σ0

(F0K)(1−β)/2
{

1 + (1−β)2

24 ln2 F0
K + (1−β)4

1920 ln4 F0
K + ...

} ( z

x(z)

)
{

1 +

[
(1− β)2

24

σ2
0

(F0K)1−β +
1

4

ρβσ0ν

(F0K)
1−β
2

+
2− 3ρ2

24
ν2

]
T + ...

}
,

(5.13)
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where

z =
ν

σ0
(F0K)(1−β)/2 ln

F0

K
,

x(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (5.14)

The ATM Black implied volatility reduces to

σB(F0, F0) = σ0F
β−1
0

{
1 +

[
(1− β)2

24

σ2
0

F 2−2β
0

+
1

4

ρβσ0ν

F 1−β
0

+
2− 3ρ2

24
ν2

]
T + ...

}
.

(5.15)

We borrow the same technique2 to derive an equivalent Black implied volatility

formula for the DD-SABR model (see Appendix 5.D)

σB(K,F0) = σ̂0

√
(F0 + θ)(K + θ)√

F0K

(
1 + 1

24 ln2 F0+θ
K+θ + 1

1920 ln4 F0+θ
K+θ + . . .

1 + 1
24 ln2 F0

K + 1
1920 ln4 F0

K + . . .

)(
z

x(z)

)
{

1 +

[
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}
,

(5.16)

where

z =
ν

σ̂0
ln
F0 + θ

K + θ
,

θ = F0
1− β
β

,

σ̂0 = σ0βF
β−1
0 ,

and x(z) has the same form as (5.14). For the special case of the ATM option, the

formula reduces to

σB(F0, F0)

= σ̂0
F0 + θ

F0

{
1 +

[
2θ/F0 + θ2/F 2

0

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}

= σ0F
β−1
0

1 +

21−β
β + (1−β)2

β2

24
σ2

0β
2F 2β−2

0 +
1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

T + . . .


= σ0F

β−1
0

{
1 +

[
1− β2

24

σ2
0

F 2−2β
0

+
1

4

ρβσ0ν

F 1−β
0

+
2− 3ρ2

24
ν2

]
T + . . .

}
. (5.17)

For the rest of the chapter, we will refer to (5.16) and (5.17) as the DD-SABR for-

2We take into account the main criticism of the SABR formula pointed out in Obloj [2008] whilst
deriving this formula.
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mula. One can immediately recognize a lot of similarities between this formula and

the SABR formula given strikes near the money and short maturity. A systematic

comparison of the Normal approximation with the SABR and DD-SABR formulae

will be addressed in Section 5.4. Meanwhile, we summarize the results of other

established approximations in conjunction with the SABR formula and emphasize

the Normal approximation’s superiority.

Most of the approximations listed in table 5.2 fail or lose their precision

when T > 10 years even with low ν, e.g. both Wu [2010] and Larsson [2010]

focus on maturity less than 5 years or Paulot [2009] completely breaks down for

ν2T > 1.6. The reason is that most of the techniques (singular perturbation or

heat kernel expansion) are based on the assumption of small total volatility3 ν2T

to allow for accurate asymptotic expansions up to the second order. As discussed

in Section 5.3.2.1, the total volatility ν2T also affects the Normal approximation

to some extent. An intuitive reason for this adverse effect is that a larger value of

ν2T will push the true conditional distribution of sT |σT further away from Normal.

However, in the results presented in Section 5.4, the Normal approximation is shown

to perform quite well for the Normal SABR model up to 30 years maturity or very

large ν2T ≈ 10.8. For the other sub-models, it works well up to 15 years maturity

or ν2T ≈ 1.8. A further advantage of the Normal approximation over the current

approaches is that it always yields a proper density function for the underlying while

the other techniques sometimes result in negative density at the low strike region

for long maturity, e.g. the SABR formula. This issue is addressed in Obloj [2008]

and Johnson and Nonas [2009] but the problem still remains.

5.3.3 Normal Inverse Gaussian approximation

As hinted previously, the true conditional distribution of sT |σT can be far from

Normal for some parameter sets. We track down this flaw by looking at the Q-Q

plots of the standardized conditional sample of sT |σT against the standard Normal

distribution. In figure 5.10, the results show that even when the Normal approxi-

mation works, the true conditional distribution displays much heavier tails than the

Normal distribution. We even observe more left skewness as σT gets bigger.

3Other authors usually use ε = ν
√
T as the perturbation parameter. Theoretically, they require

this parameter to be much smaller than 1 to give precise results, e.g. Hagan et al. [2002], Hagan
et al. [2005] and Wu [2010]. In practice, such requirement can only be satisfied for very short
maturity (less than 10 years).
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Figure 5.10: Normal Q-Q plots: standardized conditional samples of sT |σT against

the standard Normal distribution. Common parameters: β = 1, ρ = −0.5, F0 =

90, σ0 = 5%. left plot: T = 15, ν = 0.3, σT = 5%, right plot: T = 15, ν = 0.3, σT =

50%.

The breakdown of the Normal approximation for certain parameter choices

leads us to a further investigation of a more flexible distribution which can capture

the skewness and heavy tails. We propose the Normal Inverse Gaussian (NIG)

distribution for such purpose. NIG is quite popular in finance, especially in the

financial econometrics literature, for instance Barndorff-Nielsen [1997].

Under the NIG approximation, we assume

sT |σT ∼ NIG(α̂, β̂, µ̂, δ̂),

where the parameters are to be chosen. The NIG density function is defined as

follows

fNIG(s; α̂, β̂, µ̂, δ̂) =
α̂

δ̂
exp(δ̂

√
α̂2 − β̂2− β̂µ̂)

K1

(
α̂δ̂
√

1 + ( s−µ̂
δ̂

)2
)

√
1 + ( s−µ̂

δ̂
)2

exp(β̂s), (5.18)

where s ∈ R and each parameter has a specific role: α̂ > 0 determines the tail

heaviness of the distribution, δ̂ > 0 is the scale parameter, µ̂ ∈ R is the location

parameter, and |β̂| < α̂ controls the asymmetry of the distribution. The function

K1(.) is the modified Bessel function of the third kind with index 1. The Gaussian

distribution is obtained as α̂ → ∞. Despite the involvement of a number of free

parameters, the process of matching them to the intended distribution is actually

very straightforward as we shall see later.
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5.3.3.1 Matching Parameters

We now describe an efficient way to match the NIG parameters. We use the fact that

a NIG random variable X can be expressed as the Normal variance-mean mixture

form:

X = µ̂+ β̂Y +
√
Y G, (5.19)

where the mixing random variable Y follows an Inverse Gaussian (IG) distribution

(see Barndorff-Nielsen [1997]) and G is a standard Normal random variable that is

independent of Y . If

Y ∼ IG(δ̂,

√
α̂2 − β̂2),

E(Y ) =
δ̂√

α̂2 − β̂2

,

Var(Y ) =
δ̂(√

α̂2 − β̂2

)3 ,

then

X ∼ NIG(α̂, β̂, µ̂, δ̂).

Therefore, matching the mean and variance of the mixing random variable is ade-

quate to capture those of the corresponding NIG random variable. It is clear from

(5.4) to (5.6) that conditioned on σT , sT will have a similar form as (5.19). We will

now express the NIG parameters in terms of σT .

• For β = 0: the mixing random variable is (1 − ρ2)VT |σT . We first match the

location and asymmetry parameters

µ̂(σT ) = F0 +
ρ

ν
(σT − σ0),

β̂(σT ) = 0.

• For 0 < β ≤ 1: the mixing random variable is (1−ρ2)β2F 2β−2
0 VT |σT . Similarly,

we have that

µ̂(σT ) = ln(F0 + θ) +
ρ

ν
βF β−1

0 (σT − σ0),

β̂(σT ) = − 1

2(1− ρ2)
.

It now remains to derive δ̂(σT ) and α̂(σT ) by matching the conditional mean and

variance of the mixing random variable, i.e.
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• For β = 0

δ̂(σT )√
α̂2(σT )− β̂2(σT )

= (1− ρ2)E(VT |σT ),

δ̂(σT )(√
α̂2(σT )− β̂2(σT )

)3 = (1− ρ2)2Var(VT |σT ).

• For 0 < β ≤ 1

δ̂(σT )√
α̂2(σT )− β̂2(σT )

= (1− ρ2)β2F 2β−2
0 E(VT |σT ),

δ̂(σT )(√
α̂2(σT )− β̂2(σT )

)3 = (1− ρ2)2β4F 4β−4
0 Var(VT |σT ).

As there are only two unknowns, solving the above simultaneous equations is a

straightforward task.

5.3.3.2 Implementation: two-dimensional integration

Unlike the Normal approximation, we have to perform a two-dimensional integration

in order to compute the vanilla call prices using the NIG approximation. Note that

as the NIG parameters can be expressed in terms of ZT , we have that

C0(K,F0) =

∫ ∞
−∞

∫ ∞
−∞

(g(s)−K)+fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds
e−

x2

2T

√
2πT

dx

=

∫ ∞
−∞

∫ ∞
g−1(K)

(g(s)−K)fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds
e−

x2

2T

√
2πT

dx,

(5.20)

where g(.) (specified in (5.4), (5.5) and (5.6)) is the appropriate transformation and

g−1(.) denotes its inverse. Although the above double integral could be a bottleneck

in computation and numerically more expensive than the Normal approximation, the

implementation scheme is actually quite straightforward. We apply the Simpson’s

rule, which is found sufficient to give the numerical convergence, to evaluate both

the inner and outer integrals. When numerically integrating the outer integral, the

upper limit z (discussed in the implementation for the Normal approximation) can

be taken to be quite comfortably large and we do not have the same problem as

the Normal approximation. This is because the growth rate of the inner integral is

much slower than the rate of decay of fZT (·). Consequently, their product always
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tends to zero in the tails of distribution of ZT . The lower limit z, on the other hand,

has to be chosen with more care. For short maturity, if too low a value of z is taken,

the NIG parameters can be undefined. This is not really a problem as very small

probability mass is assigned to those small values. However, for longer maturity z

has to be sufficiently small to preserve the probability mass.

Efficiency: One can improve the efficiency of the NIG implementation by

the following scheme. Recall that the inner integral of (5.20) has the following form

I(x,K) =

∫ ∞
g−1(K)

(g(s)−K)fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x))ds,

where fNIG is given by (5.18). For ease of exposition, we write fNIG(s; α̂, β̂, µ̂, δ̂)

instead of fNIG(s; α̂(x), β̂(x), µ̂(x), δ̂(x)) but implicitly mean the dependence of the

NIG parameters on x. By change of variable, we set

y := α̂δ̂

√
1 +

(
s− µ̂
δ̂

)2

.

Hence

I(x,K) =

∫ ∞
l̃(x,K)

H(y,K; α̂, β̂, µ̂, δ̂)K1(y)dy,

where

l̃(x,K) = α̂δ̂

√
1 +

(
g−1(K)− µ̂

δ̂

)2

,

H(y,K; α̂, β̂, µ̂, δ̂) = h̃(y,K) exp

(
δ̂

√
α̂2 − β̂2

)
exp(β̂(s− µ̂))

δ̂2

√(
y

α̂δ̂

)2
− 1

,

h̃(y,K) = g

µ̂+ δ̂

√(
y

α̂δ̂

)2

− 1

−K,
s− µ̂ = δ̂

√(
y

α̂δ̂

)2

− 1.

It can be easily checked that H(.) is a smooth function in y for each fixed set of the

NIG parameters and strike K. Therefore, one can approximate H(.) by a piecewise

polynomial of the form

H(y,K) =

m∑
n=0

[an(x)−Kbn(x)]yn

⇒ I(x,K) ≈
m∑
n=0

[an(x)−Kbn(x)]

∫ ∞
l̃(x,K)

ynK1(y)dy,
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where the coefficients {an(x), bn(x)}mn=0 depend on the NIG parameters. Thus, one

can implement the NIG approximation as follows

• For a grid of x values, store the coefficients {an(x), bn(x)}mn=0.

• For a grid of l∗ values, store the values of the integral
∫∞
l∗ y

nK1(y)dy.

• For a given strike K, calculate I(x,K) by using li which is the nearest value

of l∗ to l̃(x,K), i.e. li−1 ≤ l̃(x,K) < li∫ ∞
l̃(x,K)

ynK1(y)dy =

∫ li

l̃(x,K)
ynK1(y)dy +

∫ ∞
li

ynK1(y)dy,

where
∫ li
l̃(x,K)

ynK1(y)dy can be evaluated by polynomial interpolation between

the grid values li−1 and li.

With the above numerical scheme, one can improve the computational efficiency of

the two-dimensional integration. Note that this method can also be applied to other

European payoff structures.

5.4 Numerical study

In this section, we investigate the quality of the approximations developed in this

chapter. It is known that both the Normal and Log-Normal SABR models can be

implemented quite well with the SABR formula so we will compare the Normal and

NIG approximations with this formula. Similarly for the DD-SABR model, we will

test them against the DD-SABR formula.

We take the Monte Carlo solutions (denoted MC for both the Normal and

Log-Normal SABR models, and MC-DD for the DD-SABR model) of the SDEs as

a natural benchmark to compare all the approximations against. In our numerical

study, the initial volatility σ0 is first chosen to represent the level of the true ATM

implied volatility (≈ σ0F
β−1
0 ). We force all the ATM implied volatilities produced

by the approximations to be the same as the Monte Carlo ATM by adjusting σ0

and compare errors along the wings as practitioners do in practice.

5.4.1 Normal SABR

We consider the typical parameter values: β = 0, ρ = −0.1, F0 = 90, σ0 = 9 for

varying maturities T . Since the Normal and NIG approximations work very well for

the Normal SABR model, as we shall see in the coming plots, we present our results

for the large Volvol cases only and better results are expected to hold for typical

market volatility regimes.
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The effect on the near the money implied volatility region as maturity in-

creases is illustrated by figures 5.11 and 5.12
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Figure 5.11: Effects of maturity within a high Volvol regime on the Normal and

NIG approximations. Other parameters: β = 0, ρ = −0.1, F0 = 90, ν = 0.6, σ0 =

9. The dashed curve of the same colour indicates the errors of the corresponding

approximation.
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Figure 5.12: Effects of maturity within a high Volvol regime on the Normal and

NIG approximations. Other parameters: β = 0, ρ = −0.1, F0 = 90, ν = 0.6, σ0 =

9. The dashed curve of the same colour indicates the errors of the corresponding

approximation.
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Strike

Maturity 30 60 70 80 90 100 110 120 150

10Y SABR 4.81 2.43 1.44 0.54 0.00 0.19 0.76 1.34 2.64

Normal -2.40 -1.00 -0.63 -0.25 0.00 -0.12 -0.39 -0.62 -0.97

NIG 1.66 0.79 0.54 0.26 0.00 0.15 0.36 0.49 0.67

15Y SABR 6.97 3.48 2.06 0.77 0.00 0.29 1.13 1.98 3.91

Normal -2.87 -1.08 -0.66 -0.26 0.00 -0.10 -0.36 -0.60 -0.99

NIG 2.85 1.21 0.83 0.40 0.00 0.14 0.41 0.59 0.85

20Y SABR 8.30 4.36 2.59 0.96 0.00 0.39 1.48 2.57 5.09

Normal -3.61 -1.19 -0.71 -0.27 0.00 -0.09 -0.34 -0.58 -1.03

NIG 3.33 1.37 0.99 0.54 0.00 0.02 0.27 0.43 0.67

30Y SABR 9.19 6.05 3.62 1.35 0.00 0.62 2.22 3.81 7.47

Normal -5.03 -1.20 -0.69 -0.27 0.00 -0.05 -0.26 -0.48 -0.93

NIG 8.67 2.30 1.62 0.92 0.00 -0.96 -1.15 -1.15 -1.11

Table 5.3: Fitting errors, in percentages, against strike and maturity for β = 0, ν =

0.6, ρ = −0.1, F0 = 90, σ0 = 9 (approximation implied volatility minus MC volatili-

ties).

Comments on the accuracy of approximations: for β = 0,

• The SABR formula starts losing precision for T ≥ 10 years while the Normal

and NIG approximations still perform quite well and remain relatively close

up to 30 years maturity. All the approximations perform worse on the left

wing of the implied volatility curves but the errors are still acceptably small

for the Normal and NIG approximations (table 5.3). The errors only become

substantial when we consider 30 years maturity and low strike (30). Note

that in this case, ν = 0.6 represents a highly stress market condition for

T = 10, 15, 20 and 30 years.

• The Normal approximation does not display enough curvature while the SABR

formula shows the opposite. The plots show that it is always a lot closer to the

MC solution than the SABR formula on both wings. Furthermore, the errors

of the Normal approximation are recorded to be very stable across maturities.

• Similar to the Normal approximation, the NIG approximation works well up

to very long maturity even within a high volatility regime, i.e. very high

ν2T ≈ 10. As maturity increases from 20 years to 30 years, the implied

volatility curve produced by the NIG approximation becomes progressively
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steeper. It is observed in this case that the Normal approximation is a better

choice than the NIG approximation.

5.4.2 Log-Normal SABR and DD-SABR

Since the Log-Normal SABR and DD-SABR models yield a lot of similarities in

structure, we present their numerical results together and single out the volatility

regimes when each individual approximation performs well. We consider the typical

parameter values:

• β = 1, F0 = 90, ρ = −0.5, σ0 = 15%.

• β = 0.5, F0 = 90, ρ = −0.2, σ0 = 130%.

Figures 5.13 and 5.14 display the moderate maturity cases where the Normal ap-

proximation still performs quite well.
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Figure 5.13: Effects of moderate maturity within a low Volvol regime on the Normal

and NIG approxmations. Common parameters: ν = 0.3, F0 = 90, β = 1, σ0 =

15%, ρ = −0.5. The dashed curve of the same colour indicates the errors of the

corresponding approximation.

118



-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

10.00%

11.00%

12.00%

13.00%

14.00%

15.00%

16.00%

17.00%

18.00%

19.00%

20.00%

60 70 80 90 100 110 120

Er
ro

rs

Im
p

lie
d

 v
o

l.

Strikes

T = 10

DD-SABR

MC-DD

Normal

NIG

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

10.00%

11.00%

12.00%

13.00%

14.00%

15.00%

16.00%

17.00%

18.00%

19.00%

20.00%

60 70 80 90 100 110 120
Er

ro
rs

Im
p

lie
d

 v
o

l.

Strikes

T = 15

DD-SABR

MC-DD

Normal

NIG

Figure 5.14: Effects of moderate maturity within a low Volvol regime on the Normal

and NIG approxmations. Common parameters: ν = 0.3, F0 = 90, β = 0.5, σ0 =

130%, ρ = −0.2. The dashed curve of the same colour indicates the errors of the

corresponding approximation.

When we consider very long maturity or higher Volvol regime with moderate

maturity cases (ν2T > 1.8), the Normal approximation breaks down due to the

reason in remark 9. Although we apply the truncation method mentioned in remark

9, the “Normal” curves are still well above the others. Since the approximation is

too far from the true solution, matching the ATM for these cases is a very difficult

task. The NIG approximation, on the other hand, still gives very good fits for these

cases as illustrated by figures 5.15, 5.16, and 5.17.
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Figure 5.15: Effects of very long maturity within a low Volvol regime on the NIG

approximation. Common parameters: ν = 0.3, F0 = 90, β = 1, σ0 = 15%, ρ =

−0.5. The dashed curve of the same colour indicates the errors of the corresponding

approximation.
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Figure 5.16: Effects of very long maturity within a low Volvol regime on the NIG

approximation. Common parameters: ν = 0.3, F0 = 90, β = 0.5, σ0 = 130%, ρ =

−0.2. The dashed curve of the same colour indicates the errors of the corresponding

approximation.
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Figure 5.17: Effect of high ν2T (stress volatility regime) on the NIG approximation.

Parameters: β = 0.5, ν = 0.6, F0 = 90, σ0 = 130%, ρ = −0.2. The dashed curve of

the same colour indicates the errors of the corresponding approximation.

Comments on the accuracy of approximations: for 0 < β ≤ 1

• As β varies from 1 to 0, the Normal and NIG approximations perform better.

• The SABR formula starts breaking down when T ≥ 10 years or ν2T ≥ 0.9 as

the left and right wings of implied volatility curves are not in line with the

MC solutions. On the contrary, the Normal approximation maintains similar

shape and therefore fits the MC curves much better than the SABR formula

for these cases. It works well up to 15 years and only breaks down for very

long maturity or ν2T > 1.8.

• The NIG approximation seems to work well up to ν2T ≈ 3.6 and 5.4 for

β = 1 and 0.5 respectively with the error plots having the lowest magnitude

compared with the others. These upper bounds for ν2T are obtained from the

following case analysis:

– Low Volvol (ν ≈ 0.3): the NIG approximation performs well up to 30

years maturity for β = 0.5 and slightly away from the MC solution for

β = 1. Note that in this case, ν ≈ 0.3 is the typical market volatility

regime for T ≥ 20 years.

– High Volvol (ν ≈ 0.6): it starts breaking down when T > 15 years for

β = 0.5 and T > 10 years for β = 1. The plots show that the errors
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are reasonably small with slightly wrong curvature. In this case, ν ≈ 0.6

represents the stress volatility regime for moderate maturity.

Remark 10 In the interest rate area, it is essential to question how the model

and the approximations behave for very low rates. As one can expect, the Normal

and NIG approximations also assign some positive probability mass to the negative

rates region for the DD-SABR model. In table 5.4, we display the mass assigned

to negative rates for both approximations and compare with exact (MC-DD) results

for the cases considered in Section 5.2.1.2. It is seen from this table that the mass

given by the NIG approximation and the MC-DD solution are very close while that

given by the Normal approximation is a bit higher. This supports our findings in this

section that the NIG approximation is closer in distribution to the MC-DD solution

than the Normal approximation.

T 5 Y 10 Y 20 Y 30 Y

MC-DD 4.03 % 7.67% 19.47% 22.60%

Normal 4.37% 8.22% 22.06% 24.91%

NIG 4.29% 7.49% 18.36% 21.73%

Table 5.4: Probability mass assigned to the negative rates region for the four cases

considered in figures 5.7 and 5.8.

5.5 Conclusions

Using an entirely probabilistic framework, we have derived a new approximation for

the terminal distribution of the underlying asset. In our method, the main objective

is to model the asset’s distribution at the maturity date rather than the implied

volatilities themselves. This is necessary if we want to extend the approximation to

the pricing of more exotic derivatives. The results show that simple approximations

which allow for ease of computation are rich enough to capture the model’s terminal

distribution. The benchmark models we considered in this chapter are the SABR

model and the DD-SABR model. In Section 5.2, we find that the CEV-SABR

and the DD-SABR model with chosen matching parameters produce very similar

implied volatility curves provided that maturity is not too long. Although they are

not as close for other cases, we still can work with both models to achieve similar

objectives.

In our numerical study, we compare the Normal and NIG approximations

with the SABR formula for β = 0, 1 and the DD-SABR formula for β = 0.5. When

β = 0, both the Normal and NIG approximations work very well up to 30 years

maturity. In the considered stress cases, the Normal approximation is always better
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than the SABR formula and remains relatively close to the NIG approximation. Due

to its more efficient implementation, the Normal approximation proves to be a very

good choice for the Normal SABR model. For β > 0, the Normal approximation

starts losing its precision (slightly away from the true solution) and fails for long

maturities (after 20 years) or stress cases (high ν2T ). However, within its working

regimes the Normal approximation still remains better than the SABR formula. We,

therefore, conclude that the Normal approximation offers a competitive choice of fit-

ting smiles/skews for short to medium long maturities and normal market condition.

The NIG approximation proves to be the best choice here since it outperforms the

(DD-)SABR formula and the Normal approximation under all different market sce-

narios, e.g. normal market condition up to 30 years maturity and stress condition

up to 15 years maturity. It also appears to be more theoretically appealing than the

Normal approximation although the implementation is slightly trickier to handle. In

conclusion, the method addressed in this chapter offers a potentially good approach

to other SDE formulations as we shall see in the next chapter.

5.A Appendix: Distribution of FT under the Log-Normal

SABR model

The SDE of the Log-Normal SABR model is

dFt = σtFtdWt,

dσT = νσtdZt,

dWt = ρdZt +
√

1− ρ2dŴt,

where Z and Ŵ are independent Brownian motions. By Itô’s lemma, we have that

d lnFt =
1

Ft
dFt −

1

2

1

F 2
t

dFtdFt

⇒ lnFT = lnF0 −
1

2

∫ T

0
σ2
t dt+

∫ T

0
σtdWt

= lnF0 −
1

2

∫ T

0
σ2
t dt+

∫ T

0
ρσtdZt +

√
1− ρ2

∫ T

0
σtdŴt

= lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2

∫ T

0
σtdŴt, (5.21)

where VT :=
∫ T

0 σ2
t dt. Let Mt :=

∫ t
0 σudŴu and FT = σ(Zu : 0 ≤ u ≤ T ) be

the σ-algebra generated by the Brownian motion Z over the time horizon of the

option. It is clear that MT |FT ∼ N (0, VT ). By considering the conditional moment
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generating function (m.g.f) of MT , we have that

E
(
eaMT

∣∣FT ) = e
1
2
a2VT

= E
(
eaV

1
2
T G
∣∣FT) ,

where G ∼ N (0, 1) and G is independent of FT . Consider the m.g.f of lnFT

E(ea lnFT )

= E
[
E
{

exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2MT

)) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT

))
E
{

exp
(
a
√

1− ρ2MT

) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT

))
E
{

exp

(
a
√

1− ρ2V
1
2
T G

) ∣∣FT}]
= E

[
exp

(
a

(
lnF0 +

ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G

))]
,

by using the tower and “taking out what is known” properties. Hence

lnFT , lnF0 +
ρ

ν
(σT − σ0)− 1

2
VT +

√
1− ρ2V

1
2
T G.

The same steps follow in both the Normal SABR and DD-SABR models to obtain

(5.4) and (5.6) respectively.

5.B Appendix: Proof of Proposition 1 (conditional mo-

ments of the realized variance VT)

To calculate E(VT |σT ) and E(V 2
T |σT ) we use the concept of a Brownian Bridge. By

Itô’s lemma, we have that:

d lnσt =
1

σt
νσtdZt −

1

2σ2
t

ν2σ2
t dt

⇒ lnσT = lnσ0 +

∫ T

0
νdZt −

1

2

∫ T

0
ν2dt

⇒ lnσT = lnσ0 + νZT −
1

2
ν2T

⇐⇒ ZT =
lnσT − lnσ0 + 1

2ν
2T

ν
. (5.22)

Hence, if σT is known, the value of the end point ZT is immediate.

Conditional on ZT , we have a Brownian bridge whose values at time zero
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and T are known. Define

Zt|ZT , ZT
t

T
+ (Bt −

t

T
BT ); 0 ≤ t ≤ T (5.23)

where Bt is a standard one-dimensional Brownian motion then Zt|ZT is a Brownian

bridge from 0 to ZT on [0, T ] (Karatzas and Shreve [1991]). It then follows from

equation (5.23) that

Zt|σT = Zt|ZT ∼ N
(
t

T
ZT , t−

t2

T

)
, (5.24)

and it has the following covariance function for 0 ≤ t, s ≤ T

Cov(Zt, Zs|σT ) = t ∧ s− ts

T
. (5.25)

5.B.1 First conditional moment of VT

The conditional expectation of the realized variance can now be written in the

following form:

E(VT |σT ) = E
[∫ T

0
exp

(
2 lnσ0 − ν2t+ 2νZt

)
dt|σT

]
=

∫ T

0
E[exp(2 lnσ0 − ν2t+ 2νZt)|σT ]dt

=

∫ T

0
exp

(
2 lnσ0 − ν2t+

2νt

T
ZT + 2ν2

(
t− t2

T

))
dt

= σ2
0 exp


[
ν
√
T

2 + ZT√
T

]2

2

√πT

2
ν−1

×

[
Φ

(
3ν
√
T

2
− ZT√

T

)
− Φ

(
−ν
√
T

2
− ZT√

T

)]
, (5.26)

where Φ(·) is the cumulative normal distribution function. Plugging back (5.22) to

(5.26), we obtain

E(VT |σT ) =
σ2

0

√
T

2ν

[
Φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
) , (5.27)

where φ(y) = e
−y2
2√
2π

.
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5.B.2 Second conditional moment of VT

We now evaluate the second conditional moment of the realized variance.

E(V 2
T |σT )

= E

[(∫ T

0
σ2
t dt

)2

|σT

]

= E
[
2

∫ T

0

∫ t

0
σ2
t σ

2
sdsdt|σT

]
= 2

∫ T

0

∫ t

0
σ4

0E
[
exp(−ν2(t+ s) + 2ν(Z0→ZT

t + Z0→ZT
s ))

]
dsdt

= 2σ4
0

∫ T

0

∫ t

0
exp

(
−ν2(t+ s) + 2ν

t+ s

T
ZT + 2ν2

(
t− t2

T
+ s− s2

T
+ 2s− 2

ts

T

))
dsdt

= 2σ4
0

∫ T

0
exp(−4ν2t)

∫ t

0
exp

−4ν2 (t+s)2

T − 22ν(t+s)√
T

(
5ν
√
T

2 + ZT√
T

)
2

 dsdt. (5.28)

By completing the square and change of variable u = 2ν(t+s)√
T
−
(

5ν
√
T

2 + ZT√
T

)
in the

inner integral of (5.28), we have that

E(V 2
T |σT )

= 2σ4
0 exp


(

5ν
√
T

2 + ZT√
T

)2

2

√πT

2
ν−1

∫ T

0
exp(−4ν2t)

∫ 4νt−ZT√
T
− 5ν

2

√
T

2νt−ZT√
T
− 5ν

2

√
T

1√
2π
e−

u2

2 dudt

= 2σ4
0 exp


(

5ν
√
T

2 + ZT√
T

)2

2

√πT

2
ν−1

×
∫ T

0
exp(−4ν2t)

[
Φ

(
4νt− ZT√

T
− 5ν

2

√
T

)
− Φ

(
2νt− ZT√

T
− 5ν

2

√
T

)]
︸ ︷︷ ︸

:=Φ(g1(t))−Φ(g2(t))

dt.
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The above integral can be evaluated by integration by parts∫ T

0
exp(−4ν2t)Φ(g1(t))dt

= −exp(−4ν2t)

4ν2
Φ(g1(t))

∣∣∣∣T
0

+

∫ T

0

exp(−4ν2t)

4ν2
g
′
1(t)φ(g1(t))dt

=

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T

+
3ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

ν
√
T

∫ T

0

1√
2π

exp

−
(

4νt−ZT√
T
− 5ν

2

√
T
)2

+ 8ν2t

2

 dt

=

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T

+
3ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

ν
√
T

exp


(

3ν
√
T

2 + ZT√
T

)2

2
−

(
5ν
√
T

2 + ZT√
T

)2

2


×
∫ T

0

1√
2π

exp

−
(

4νt−ZT√
T
− 3ν

2

√
T
)2

2

 dt. (5.29)

By change of variable v = 4νt−ZT√
T
− 3ν

2

√
T in (5.29), we find that

∫ T

0
exp(−4ν2t)Φ(g1(t))dt

=

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T

+
3ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

4ν2
exp


(

3ν
√
T

2 + ZT√
T

)2

2
−

(
5ν
√
T

2 + ZT√
T

)2

2


×
[
Φ

(
−ZT√
T

+
5ν

2

√
T

)
− Φ

(
−ZT√
T
− 3ν

2

√
T

)]
.
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Similarly, ∫ T

0
exp(−4ν2t)Φ(g2(t))dt

=

[
−exp(−4ν2T )

4ν2
Φ

(
−ZT√
T
− ν

2

√
T

)
+

1

4ν2
Φ

(
−ZT√
T
− 5ν

2

√
T

)]

+
1

4ν2
exp


(
ν
√
T

2 + ZT√
T

)2

2
−

(
5ν
√
T

2 + ZT√
T

)2

2


×
[
Φ

(
−ZT√
T

+
3ν

2

√
T

)
− Φ

(
−ZT√
T
− ν

2

√
T

)]
.

Putting all the pieces together we obtain

E(V 2
T |σT ) = −σ

4
0

√
T

4ν3

(
1 + e2 ln(σT /σ0)

) [Φ( ln(σT /σ0)

ν
√
T

+ ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− ν
√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ ν
√
T
)

+
σ4

0

√
T

4ν3

[
Φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
)
− Φ

(
ln(σT /σ0)

ν
√
T
− 2ν

√
T
)]

φ
(

ln(σT /σ0)

ν
√
T

+ 2ν
√
T
) . (5.30)

5.C Appendix: Proof of proposition 2 (conditional mean

and variance of sT)

We prove the Log-Normal SABR case only as similar calculations apply to other

models. The conditional mean of sT is

µ(σT ) = E(sT |σT )

= lnF0 +
ρ

ν
(σT − σ0)− 1

2
E(VT |σT ) +

√
1− ρ2E(V

1
2
T G|σT ). (5.31)

Recall that FT = σ(Zu : 0 ≤ u ≤ T ). It follows that

E(V
1
2
T G|σT ) = E(E(V

1
2
T G|FT )|σT )

= E(V
1
2
T E(G|FT ) | σT )

= E(V
1
2
T E(G) | σT )

= 0.

Hence

µ(σT ) = lnF0 +
ρ

ν
(σT − σ0)− 1

2
E(VT |σT ). (5.32)
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The conditional variance of sT :

η2(σT ) = Var(sT |σT )

=
1

4
Var(VT |σT )−

√
1− ρ2Cov(VT , V

1
2
T G|σT ) + (1− ρ2)Var(V

1
2
T G|σT ).

(5.33)

Similarly, the covariance term in (5.33) can be expressed as

Cov(VT , V
1
2
T G|σT ) = E(V

3
2
T G|σT )− E(VT |σT )E(V

1
2
T G|σT )

= E(V
3
2
T G|σT )

= 0,

and the last term in (5.33) is

Var(V
1
2
T G|σT ) = E(VTG

2|σT )− [E(V
1
2
T G|σT )]2

= E(VTG
2|σT )− 0

= E(VT |σT ),

again using the tower property and noting that E(G2) = 1. Hence

η2(σT ) =
1

4
E(V 2

T |σT )− 1

4
[E(VT |σT )]2 + (1− ρ2)E(VT |σT ). (5.34)

Given the formulae from the previous appendix, the results follow immediately.

5.D Appendix: DD-SABR equivalent Black implied volatil-

ity

In this appendix, we derive an equivalent Black implied volatility formula for the

DD-SABR model using the techniques developed in Hagan et al. [2002] but with a

few modifications from later literature, e.g. Hagan et al. [2005], Obloj [2008]. We

start with a more general form of the SABR model:

dFt = σ̂tC(Ft)dWt,

dσ̂t = νσ̂tdZt,

dZtdWt = ρdt,

where the function C(u) is is assumed to be positive, smooth and integrable around

0: ∫ x

0

du

C(u)
<∞, x > 0.
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Equation (B.65) in Appendix B of Hagan et al. [2002] yields the equivalent Black

implied volatility for the above model:

σB(K,F0)

=
σ̂0 lnF0/K∫ F0

K
du
C(u)

(
z

x(z)

)
× (5.35)

{
1 +

[
2γ2 − γ2

1 + 1
F 2
av

24
σ̂2

0C
2(Fav) +

1

4
ρνσ̂0γ1C(Fav) +

2− 3ρ2

24
ν2

]
T + . . .

}
.

Here

Fav =
√
F0K, (5.36)

γ1 =
C
′
(Fav)

C(Fav)
, (5.37)

γ2 =
C
′′
(Fav)

C(Fav)
, (5.38)

and

z =
ν

σ̂0

F0 −K
C(Fav)

,

x(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
,

where z
x(z) basically represents the main effect of the stochastic volatility. The

fraction z
x(z) is taken to be 1 for the ATM case in the limit sense for proper ATM

calibration. There are quite a few criticisms of this function z, e.g. Obloj [2008].

We use a more general form of z as proposed in Hagan et al. [2005].

z =
ν

σ̂0

∫ F0

K

du

C(u)
. (5.39)

Note that for this choice of z, implied volatilities obtained by this approximation

coincide with Berestycki et al. [2004] and Obloj [2008] for the CEV-SABR model.

We now turn our attention to the DD-SABR model as introduced in the main

chapter. The model is the special case:

C(Ft) = Ft + θ,

θ = F0
1− β
β

,

σ̂0 = σ0βF
β−1
0 .
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Making this substitution in (5.37), (5.38) and (5.39) we obtain:

γ1 =
1√

F0K + θ
,

γ2 = 0,

z =
ν

σ̂0
ln
F0 + θ

K + θ
.

Substituting further in (5.35), we get:

σB(K,F0) =
σ̂0 lnF0/K

ln(F0 + θ)/(K + θ)

(
z

x(z)

)
{1 +M · T + . . . },

M =
−1/(

√
F0K + θ)2 + 1/(F0K)

24
σ̂2

0(
√
F0K + θ)2

+
1

4
ρνσ̂0

1√
F0K + θ

(
√
F0K + θ) +

2− 3ρ2

24
ν2

=
−1 + (

√
F0K + θ)2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

=
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2.

We can simplify this formula by expanding4

(F0 + θ)− (K + θ)

=
√

(F0 + θ)(K + θ) ln
F0 + θ

K + θ

{
1 +

1

24
ln2 F0 + θ

K + θ
+

1

1920
ln4 F0 + θ

K + θ
+ . . .

}
,

F0 −K

=
√
F0K ln

F0

K

{
1 +

1

24
ln2 F0

K
+

1

1920
ln4 F0

K
+ . . .

}
.

Hence, the implied volatility formula now reads

σB(K,F0) = σ̂0

√
(F0 + θ)(K + θ)√

F0K

(
1 + 1

24 ln2 F0+θ
K+θ + 1

1920 ln4 F0+θ
K+θ + . . .

1 + 1
24 ln2 F0

K + 1
1920 ln4 F0

K + . . .

)(
z

x(z)

)
{1 +

[
2θ/
√
F0K + θ2/(F0K)

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . . }.

For the special case of ATM options, we first take the limit

lim
K→F0

lnF0/K

ln(F0 + θ)/(K + θ)
=
F0 + θ

F0
, (5.40)

4We use Hagan’s technique with the assumption that the strike K is not so far away from F0
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and hence the formula reduces to

σB(F0, F0)

= σ̂0
F0 + θ

F0

{
1 +

[
2θ/F0 + θ2/F 2

0

24
σ̂2

0 +
1

4
ρνσ̂0 +

2− 3ρ2

24
ν2

]
T + . . .

}

= σ0F
β−1
0

1 +

21−β
β + (1−β)2

β2

24
σ2

0β
2F 2β−2

0 +
1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

T + . . .


= σ0F

β−1
0

{
1 +

[
1− β2

24
σ2

0F
2β−2
0 +

1

4
ρνσ0βF

β−1
0 +

2− 3ρ2

24
ν2

]
T + . . .

}
.
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Chapter 6

On the approximation of the

SABR with mean reversion

model: a probabilistic approach

In this chapter, we study the SABR with mean reversion model (SABR-MR). We

first compare the SABR model with the SABR-MR model in terms of forward

volatility to point out the fundamental difference in the models’ dynamics. We

then derive an efficient probabilistic approximation for the SABR-MR model to

price European options. Similar to the method derived in Chapter 5, we focus

on capturing the terminal distribution of the underlying asset (conditional on the

terminal volatility) to arrive at the implied volatilities of the corresponding European

options for all strikes and maturities. As in the SABR case, the method allows us to

work with a wide range of parameters which cover long dated options and different

market conditions.

6.1 Introduction

Stochastic volatility modelling is a demanding area and the modelling requirements

vary from market to market. As noted in Chapter 5, the SABR model that was

originally proposed in Hagan et al. [2002] is amongst the most popular stochastic

volatility models in practice. It is widely used to model the forward price of a stock

or the forward LIBOR/swap rates in the fixed income market. In the interest rate

context, relevant market (caplet/swaption) prices or market smiles will inform us

about the marginal distribution of the underlying rate at its start date (under some

martingale measure) and the SABR model can calibrate well to this information.

The downside of the model, as argued by a number of authors, is the fact that we

need different SABR models (different parameters sets) to recover market marginals

134



of different rates (at different start dates). This leads to an incoherent model that

isolates the rates from each other and hence one cannot use the SABR dynamics

to model a common driver for many rates. A comprehensive discussion on this

topic can be found in Rebonato et al. [2009]. While it might not be a problem for

the pricing of European swaptions which relies on the distribution of only one rate

at its start date under a certain martingale measure, systematic problems may be

encountered as we want to apply the model to price other derivatives. Examples of

such products include payoffs that depend on more than one rate or one rate but at

more than one future date.

Having listed a few drawbacks of the SABR model, we want to switch focus

to a model extension that could prove to be practically useful: the SABR with

mean reversion model (SABR-MR). To be specific, the usual geometric Brownian

motion for the volatility process in the SABR model is replaced by the product of the

exponential of an Ornstein Uhlenbeck process and an extra deterministic function of

time. Incorporating mean reversion into the volatility process has been previously

adopted by a number of authors. For example, Fouque et al. [2000a], Masoliver and

Perello [2006] and Perello et al. [2008] studied the equity market and investigated

why the mean reverting behaviour of the volatility process is needed to explain the

data (S&P 500 and Dow Jones Industrial Average indices). In case of the interest

rate market, the works by Kaisajuntti and Kennedy [2011], Piterbarg [2005] and the

most recent paper by Antonov and Spector [2012] also agree that the mean reverting

volatility setup is needed especially for large time horizons. A particular form of

the SABR-MR model was studied in Kaisajuntti and Kennedy [2011] within the

context of swaption data. The authors found that mean reversion will be essential

if one wishes to provide a low dimensional model for the level of rates. In terms of

the option pricing problem, it was investigated and concluded in this paper that the

SABR and SABR-MR models can price European options and calibrate to market

smiles of all expiries equally well. The model introduced in Piterbarg [2005] is

similar to the SABR-MR model intuitively but the SDE formulation is a bit different.

Instead of using the exponential Ornstein Uhlenbeck process, the author assumed

that the stochastic variance follows the mean reverting square-root dynamics. The

main objective is then to apply this proposed SDE formulation to develop a full

term structure model.

While agreeing that both the SABR and SABR-MR models can price Eu-

ropean options equally well, we want to extend the analysis further and give some

thought as to why the SABR-MR model might be more suitable for other products.

In Section 6.3, we examine the difference in forward volatility (from future time t to

expiry T ) between the two models, which determines the forward smiles. Derivatives

that are exposed to forward volatility include from quite simple contracts such as
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forward start options (swaptions), forward swaption straddles, to more complicated

structures such as cliquet options.

The second objective of the chapter is to derive an efficient approximation for

the SABR-MR model to price European options. We adopt a similar method to the

one derived in Chapter 5 for the SABR model but with some further adjustments.

As in Chapter 5, this method focuses on the marginal distribution of the under-

lying at option’s maturity to arrive at the required implied volatilities. Once we

fit an appropriate approximation to the underlying’s marginal distribution, implied

volatilities can be immediately recovered by inverting the option prices. In Chapter

5, we found that this approach was significantly better than the benchmark ap-

proximation proposed in Hagan et al. [2002]. An advantage for the probabilistic

approximation in Chapter 5 is that it can cope well with very long maturity (up to

30 years) or high volatility of volatility. This is a different feature from other current

approaches in the literature (applied to the SABR model) that rely on the assump-

tion of very small total volatility and usually degrades for longer than 10 years

maturity, e.g. Hagan et al. [2002], Hagan et al. [2005], Wu [2010], Henry-Labordere

[2005] and Paulot [2009]. The works that we mentioned earlier, i.e. Fouque et al.

[2000a] and Perello et al. [2008], also developed some approximations for pricing

European options within the exponential Ornstein Uhlenbeck stochastic volatility

model. However, the proposed methods are only valid for a range of typical param-

eters in a certain market (very short dated options). Later in the chapter, we will

compare our approximation with the true Monte Carlo solution to assess its quality.

Here we briefly review the main features of the probabilistic approach used

in Chapter 5 that we intend to apply to the SABR-MR model. The first important

remark is that we keep the general correlation structure of the model to retain the

flexibility of capturing the skews. We then build up our approximation by condi-

tioning the underlying’s distribution on the terminal volatility and approximating

this distribution. The resulting approximate conditional distribution (with approx-

imately correct mean and variance) has to be theoretically appealing (close to the

true distribution) but simple enough to allow for computational efficiency. As done

in Chapter 5, we propose the Normal Inverse Gaussian distribution for such pur-

poses.

Secondly, a challenge for this approach is the constant elasticity of variance

(CEV) structure of the SABR-MR model which admits no explicit solution. As in

Chapter 5, we study the simpler displaced diffusion (DD) model where our previously

mentioned method can be applied. There, the CEV and DD versions of the SABR

model have been compared numerically and the results show that the two models

continue to be qualitatively similar. In this chapter, we continue to adopt this

mapping with the aim of transferring the intuition from the CEV to DD version of
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the SABR-MR model.

The chapter is organized as follows. Section 6.3 compares the SABR and

SABR-MR models in terms of forward volatility through some numerical examples.

We develop our approximation in Section 6.4. In Section 6.5, we numerically investi-

gate the quality of our approximation and compare against Monte Carlo simulations

as the benchmark. Section 6.6 concludes the chapter.

6.2 An alternative stochastic volatility model for mod-

elling smiles

This section starts by reviewing the SABR model.

6.2.1 The SABR and SABR with mean reversion models (SABR-

MR)

Recall that under the SABR model, the dynamics of the underlying asset1 is given

by

dyt = σty
β
t dWt β ∈ [0, 1], (6.1)

dσt = νσtdZt ν > 0,

where Wt and Zt are correlated Brownian motions such that dWtdZt = ρdt for all

t ≤ T with ρ ∈ [−1, 1]. The model assumes that the underlying process is already

a (local) martingale under some equivalent martingale measure. Each parameter

in the SABR model has a specific role in determining the shapes of the skews and

smiles. See Hagan et al. [2002] and Chapter 5 for these roles.

Although the SABR model is a powerful tool for vanilla swaption pricing,

the biggest limitation is that it can only price one single vanilla at a time. To be

specific, for each swap rate of different start date one will have to feed a different

set of SABR parameters into the model in order to reproduce the correct market

smile (see Rebonato et al. [2009]). For this reason, the dynamics of the SABR model

might not be an appropriate choice to describe the market implied distributions of

the swap rates at different time points in the future.

In order to better understand the point above, we assess the SABR model

from a different viewpoint. Today’s market smile of a swap rate that expires in T

years tells us everything about today’s marginal distribution of (yT |y0 = y, σ0 = σ)

and the SABR model can get this right. While this task can be achieved by more

than one stochastic volatility model, it does not guarantee that we will also get right

1Note that we switch the notation for the underlying from F as in Chapter 5 to y. This is
because we work more with interest rate data so it seems more suitable to use the chosen notation.
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the forward conditional distribution of (yT |yt, σt) for t ∈ (0, T ) which can be crucial

for other forward volatility sensitive products. We tackle this issue in Section 6.3.

We now discuss an extension of the SABR model. One choice is to in-

corporate mean reversion into the volatility process. Instead of the Log-Normal

specification as in the SABR model, we assume that volatility is the exponential of

an Ornstein Uhlenbeck (mean reverting) process U . Before going into details of the

main model, we first review some existing works that consider similar formulations.

Adding mean reversion to volatility is not new in the area. A number of

authors have already considered this formulation but with different objectives. The

first model that is worth mentioning is the exponential Ornstein Uhlenbeck model

proposed by Fouque et al. [2000a]. In this model, only β = 1 is considered in the

SDE for the underlying and the volatility process as we mentioned above is of the

form exp(Ut) where

dUt = −κUtdt+ νdZt ν, κ > 0. (6.2)

They then applied the model in the equity market with a strong focus on the S&P

500 index. In such a market, they observed that volatility is fast mean-reverting

when looked at over the time scale of a European derivative contract (many months

but not years). Using an asymptotic method, they derived an implied volatility

formula to price European options on the S&P 500 index but only for a certain

range of parameters that fit this market. Extending the analysis in Fouque et al.

[2000a] but for the interest rate derivatives, in Cotton et al. [2004] the authors

considered simple short rate models such as CIR and Vasicek with the presence

of fast mean-reverting stochastic volatility and applied to price bond options. Two

other papers that are also similar in scope and setup are the works by Masoliver and

Perello [2006] and Perello et al. [2008]. In Masoliver and Perello [2006], by observing

annualized volatility from intensive historical data (Dow Jones Industrial Average

index from 1900 to 2004) the authors spotted the long term memory property of

the volatility, i.e. it reverts to the stationary distribution after a certain length

of time. This research gives further strong empirical evidence that the exponential

Ornstein Uhlenbeck model is desirable in such a market. In Perello et al. [2008], they

again looked at the option pricing problem under this model but focused on a wider

range of parameters than that considered in Fouque et al. [2000a]. Furthermore,

the estimation of parameters comes directly from the historical data observation of

long term volatility, rate of mean reversion and correlation with the log-returns, etc.

Since the approximation derived in Perello et al. [2008] is only valid for very short

dated options, we find it irrelevant for our main application which includes pricing

long dated European options so we will not discuss it further in this chapter.

We now look at our main model of interest, the SABR with mean reversion

model which will be referred to as the SABR-MR model. The form of the SABR-MR
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model we choose to study is as in Kaisajuntti and Kennedy [2011]

dyt = σty
β
t dWt β ∈ [0, 1], (6.3)

σt = It exp(Ut),

dUt = −κUtdt+ νdZt ν, κ > 0, U0 = 0,

dWtdZt = ρdt ρ ∈ [−1, 1],

where It = a exp{−c(T − t)} is a deterministic function of time with a > 0 being the

initial volatility and c > 0 being the rate of exponential decay. Similar to the initial

volatility σ0 in the SABR model, the function It also has the role of controlling the

ATM level of the smile. Furthermore, this choice of function is a lot more flexible

as it also controls the expected level of the volatility process through time. Note

that we have the freedom to choose other forms of the function It for the SABR-MR

model.

Note that U is an Ornstein Uhlenbeck process with κ being the mean rever-

sion parameter. A large κ will pull U fast towards its mean reversion level which is

set to be zero in this model. This implies that the volatility process σt = It exp(Ut)

of the SABR-MR model will mean revert around It for t ∈ [0, T ]. A reasonably

large level of κ ensures that the volatility of the underlying will not be too volatile

and grow too fast with expiry. When κ→ 0 we have Var(lnσT ) = ν2T which is the

same as in the SABR model.

In the interest rate context, this specific form of model was first introduced

in Kaisajuntti and Kennedy [2011] with the original motivation coming from a nu-

merical investigation of 10-years tenor swap rates of different start dates (2 to 30

years) in order to identify a model for the level of rates. As discussed in Kaisajuntti

and Kennedy [2011], ν has the role of controlling the overall curvature of different

smiles across expiries while κ controls the dampening over time. In other words,

a reasonable κ will flatten out the smile curve as maturity increases. The roles of

other parameters are found to be similar to those in the SABR model.

6.2.1.1 The DD-SABR-MR model

As noted in Chapter 5, the power law type function φ(y) = yβ as specified in (6.1)

and (6.3) can enable a very flexible modelling of volatility skew. However, the CEV

structure does not admit an explicit solution and it is not very straightforward

numerically to implement. Similar to what we did in Chapter 5, we consider a

modification of (6.3), the displaced diffusion SABR-MR model (DD-SABR-MR). In

fact, this is also the main model of interest in Kaisajuntti and Kennedy [2011]. In

139



this model, the dynamics of the underlying asset is given as

dyt = σ̂t(yt + θ)dWt, (6.4)

σt = It exp(Ut),

dUt = −κUtdt+ νdZt U0 = 0,

dWtdZt = ρdt,

for some displaced diffusion coefficient θ ∈ R. We apply the mapping as introduced

in Marris [1999] to match up the CEV structure in (6.3) when β ∈ (0, 1)

σ̂t = σtβy
β−1
0 ,

θ = y0
1− β
β

.

It is well known from Marris [1999] and Svoboda-Greenwood [2009] that in

the deterministic volatility case, the dynamics in (6.3) and (6.4) with the above

mapping are very similar and implied volatilities produced by the two models are

almost identical across a wide range of strikes. In Chapter 5, it is found that this

is still the case qualitatively for the SABR model and its displaced diffusion version

(DD-SABR). We, therefore, assume the close link between the CEV-SABR-MR

model (specified in (6.3)) and the DD-SABR-MR model (specified in (6.4)) to hold

qualitatively. For ease of notation, we will continue to refer to the parameter β for

the DD-SABR-MR model and implicitly use the above mapping. The other two

special cases will be referred to as the Normal SABR-MR model (β = 0) and the

Log-Normal SABR-MR model (β = 1). Later in some parts of the chapter, we

employ the terminologies SABR and SABR-MR but we will mean the families of

the Normal, Log-Normal, and DD versions of the SABR and SABR-MR models

respectively unless otherwise specified.

6.3 Forward volatility

Up to now, we have described the SABR-MR model in terms of its capability of

pricing European options. We recall that what matters for this problem is the

distribution of (yT |y0 = y, σ0 = σ). The fact that the SABR and SABR-MR models

can give reasonably similar prices for the same European option implies that they

generate similar distribution of (yT |y0 = y, σ0 = σ) which in turn determines today’s

market smile. However, it does not tell us anything about whether the two models

will give the same (conditional) forward smiles, i.e. the distribution of (yT |yt, σt),
t ∈ (0, T ). This conditional distribution, of course, depends on the volatility paths

{σu}, u ∈ [t, T ]. In the literature, these volatility paths are often referred to as the

140



forward volatility. For the two models, the two different autonomous SDEs for the

volatility process potentially imply very different dynamics of the forward volatility.

In what follows, we compare them numerically to pull out the differences that can

have some level of practical significance.

6.3.1 Products

We now consider a toy example of forward start options which involves the study of

forward volatility. Let us first define this product.

A forward start option in general is a contract in which the holder receives,

at future time T1 (at no additional cost), an option with expiry date T2 > T1. Here

we consider the simplest example of a forward start call option, i.e. the payoff at

time T2 is (yT2−KyT1)+ which depends on the realizations of the underlying at two

future dates T1 and T2. The strike ratio K here could be: < 1 (ITM), = 1 (ATM),

or > 1 (OTM). Prices of this product for various K are determined by the forward

smile. One can also define other payoffs such as: (KyT1 − yT2)+ for put, |yT2 − yT1 |
for straddle.

Pricing methodology: in order to price a forward start option, we use

Monte Carlo simulation to generate different realizations of the underlying at T1

and T2, i.e. yT1(ωi) and yT2(ωi) where each ωi indicates a particular outcome. The

numeraire-rebased price of this product at time T0 can be written as

C0(T1, T2, y0, σ0) = E[(yT2 −KyT1)+]

≈ 1

N

N∑
i=1

(yT2(ωi)−KyT1(ωi))
+, (6.5)

where N is the number of paths used for Monte Carlo simulation.

Calibration: for accurate valuation, one has to calibrate the model properly

to the right market information. To be specific, we need to consider the followings

for our application

• The distribution of (yT2 |y0 = y, σ0 = σ): this is implied by today’s T2-market

smile.

• The distribution of (yT1 |y0 = y, σ0 = σ): this is implied by today’s T1-market

smile.

• Having specified both (yT2 |y0 = y, σ0 = σ) and (yT1 |y0 = y, σ0 = σ), we are

then left with (yT2 |yT1 , σT1) which is fully determined by the forward volatility.

Note that this information is forced to model users as long as the first two

requirements are fulfilled.
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6.3.2 Some numerical examples

Having mentioned the calibration requirements for forward start option pricing, we

now proceed to the set up of the model. Suppose we are given two market smiles

for European options expiring at T1 and T2 for calibration, we wish to investigate

if the price of a forward start option changes due to the change of model (SABR to

SABR-MR). Recall that the main feature that differentiates the SABR-MR model

from the SABR model is the mean reverting behaviour of the volatility process.

This behaviour is controlled by the parameter κ. Hence, it is sensible to view prices

as a function of κ and assess how it changes with respect to this parameter. Of

course, as κ approaches zero, the model dynamics becomes closer to the SABR

dynamics. This can be seen by looking at the SDE (6.2) for Ut of the SABR-MR

model. When κ = 0, the SDE for exp(Ut) is the same as that in the SABR model

plus a deterministic drift term.

To fit the model to the T1 and T2-smiles using different choices of κ, we alter

the volatility process {σt}t∈[0,T2] of the original SABR-MR model as follows

dUt = −κUtdt+ ν(t)dZt, U0 = 0,

σt = α(t) exp(Ut),

where ν(t) and α(t) are both piecewise-constant

ν(t) = ν1 t ∈ [0, T1),

= ν12 t ∈ [0, T2],

α(t) = α1 t ∈ [0, T1),

= α12 t ∈ [0, T2].

All constants here must be positive. In this choice, the function α(t) is used instead

of the original deterministic function It for simplification. With two different con-

stants α1 and α12 for two time periods, we ensure that the ATM levels of T1 and

T2-smiles are properly matched. The volatility of volatility function ν(t) is used to

guarantee that the smiles can also be fitted properly along the wings. It is clear that

large values of ν1 and ν12 are accompanied with large κ for accurate calibration.

Our numerical experiment will be carried out in a number of steps. For a

chosen β, we generate two arbitrary symmetric (i.e. ρ = 0 for simplification) smiles

for European options with: the underlying swap rate y0 = 5%, expiries T1 = 5Y,

T2 = 10Y, and assume they are given for calibration. We then fit the above model

to these two smiles for various values of κ and calculate the forward start option

prices using (6.5). Three different values of strike ratios K are used in this example
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• K = 1 (ATM).

• K = 0.75 (ITM).

• K = 1.25 (OTM).

The prices and calibrated parameters are plotted for different values of κ in the

following figures. The result for the case β = 1 is observed to be qualitatively

similar so we will not display it here.

0.40%

0.45%

0.50%

0.55%

0.60%

0.65%

0.70%

0 0.1 0.2 0.3 0.4 0.5

Fo
rw

ar
d

 S
ta

rt
 O

p
ti

o
n

 P
ri

ce
 

 

 β = 0, K = 1 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4

V
o

lv
o

l 

 

Calibrated Parameters 

n_1 n_12

a_1 a_12

0.00%

0.50%

1.00%

1.50%

2.00%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5

V
o

la
ti

lit
y 

Le
ve

l 

V
o

lv
o

l 

 

Calibrated Parameters 

n_1 n_12

a_1 a_12

Figure 6.1: Prices of forward start options for various κ: β = 0, ρ = 0, y0 = 5%, T2 =

10Y, T1 = 5Y, K = 1 and calibrated parameters.
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Figure 6.2: Prices of forward start options for various κ: β = 0, ρ = 0, y0 = 5%, T2 =

10Y, T1 = 5Y, K = 0.75 and K = 1.25.
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Figure 6.3: Prices of forward start options for various κ: β = 0.5, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 1 and calibrated parameters.
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Figure 6.4: Prices of forward start options for various κ: β = 0.5, ρ = 0, y0 =

5%, T2 = 10Y, T1 = 5Y, K = 0.75 and K = 1.25.

From the results, one can immediately spot that although prices are not so

variant with κ for the ATM case, the price curves for the ITM and OTM cases are

clearly monotonically decreasing in κ. This is an interesting result since it clearly

differentiates the SABR dynamics (κ = 0) from the SABR-MR dynamics (κ > 0).

To see how forward volatility might have some influence on the price of a

forward start option, we look at the distributions of the underlying rate at both

dates T1 and T2. For the simplest case (β = 0, ρ = 0) that we considered, we can

write down the exact distributions of yT1 and yT2 as follows (see Appendices 6.A

and 6.B for derivation)

yT1 , y0 +
√
VT1G1 , VT1 =

∫ T1

0
σ2
t dt,

yT2 , yT1 +
√
V 1
T2
G12 , V 1

T2 =

∫ T2

T1

σ2
t dt, (6.6)

G1 ⊥ G12 , G1, G12 ∼ N (0, 1),
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and G1 and G12 are also independent of {σt}t∈[0,T2]. We term V 1
T2

by the “forward”

realized variance to indicate that the integral of the variance process starts from

future date T1 to T2. Since the conditional distribution of (yT1 |y0 = y, σ0 = σ) is

similar for all levels of κ due to the calibration to T1-market smile, heuristically the

difference in price tends to come from the difference in the conditional distribution

of (yT2 |yT1 , σT1). From (6.6), it is intuitively clear that the forward realized variance

V 1
T2

is one of the main ingredients to control the distribution of (yT2 |yT1 , σT1) which

in turn affects the forward start option prices. We plot the first and second moments

of the forward realized variance below to illustrate this intuition.
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Figure 6.5: First and second moments of the forward realized variance V 1
T2

=∫ T2
T1
σ2
t dt for the considered cases.

6.4 A probabilistic approximation for the SABR-MR

model

In this section, we develop an approximation for the SABR-MR model described in

Section 6.2.1 following a similar approach in Chapter 5. Although the main objective
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is the pricing of European swaptions, the proposed approach can easily be applied

for equity and other markets as mentioned in the literature review in Section 6.2.1.

6.4.1 Approximating the terminal distribution

We recall at this point the SDE formulations (6.3) for the Normal and Log-Normal

versions (β = 0, 1), and (6.4) for the DD version (β ∈ (0, 1)) of the SABR-MR model.

By the fundamental pricing formula and tower property, today’s numeraire-rebased

price of a vanilla call option struck at some strike K is given by

C0(K, y0) = E
[
(yT −K)+

]
= E

[
E{(yT −K)+|UT }

]
. (6.7)

Assuming that we have in mind some distribution for yT |UT : the conditional distri-

bution of yT given UT , then the conditional expectation above can be evaluated as a

double integral since the law of UT is known (see (6.2) and Appendix 6.C). To keep

the notation simple and transparent, we introduce the process s that represents the

level of assets and function g(.) to transform it back to the underlying process y,

i.e. yt = g(st). As the first stepping stone, we will write down the exact solutions

in distribution to the SDE for our reference models (see Appendix 6.A for details).

• Normal SABR-MR:

sT , y0 +
ρ

ν
(F (T,UT )− F (0, U0)) + ρHT +

√
1− ρ2V

1
2
T G,

g(s) = s. (6.8)

• Log-Normal SABR-MR:

sT , ln y0 +
ρ

ν
(F (T,UT )− F (0, U0)) + ρHT −

1

2
VT +

√
1− ρ2V

1
2
T G,

g(s) = es. (6.9)

• DD-SABR-MR:

sT , ln(y0 + θ) + βyβ−1
0

ρ

ν
(F (T,UT )− F (0, U0)) + ρβyβ−1

0 HT −
1

2
β2y2β−2

0 VT

+
√

1− ρ2βyβ−1
0 V

1
2
T G,

θ = y0
1− β
β

,

g(s) = es − θ, (6.10)
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where F (t, Ut) = It exp(Ut) is the anti-derivative of It exp(Ut) with respect to Ut

and

VT :=

∫ T

0
It

2 exp(2Ut)dt, (6.11)

HT := −
(ν

2
+
c

ν

)∫ T

0
It exp(Ut)dt+

κ

ν

∫ T

0
It exp(Ut)Utdt, (6.12)

and G is a standard normal random variable that is independent of U , i.e. it is also

independent of VT and HT . Here, we refer to the random variable VT as the realized

variance.

We note that this stage is a bit different from the SABR case in Chapter

5. Conditional on UT = u∗, the above solutions in distribution will involve the

random variables HT , VT and an independent Normal variable G. It is seen that

HT has a direct connection with the correlation parameter ρ and hence a certain

control over the slope of the implied volatility curve. At an intuitive level, an initial

guess is that HT plays a similar role to the second term involving F (T,UT ) in (6.8),

(6.9) and (6.10), and thus does not display too much variability once conditioned

on UT = u∗. Therefore, we first approximate HT |UT = u∗ by its conditional mean

E(HT |UT = u∗) and treat it as a deterministic term. Our approximation will now

become of the form

sT |UT = u∗ ≈ s̃T |UT = u∗,

where s̃T |UT now involves the conditional mean E(HT |UT = u∗) instead of HT |UT =

u∗. Note that when ρ = 0, sT |UT = u∗ and s̃T |UT = u∗ coincide. We now proceed

to the second step of the approximation where the conditional mean and variance

of s̃T |UT = u∗ need to be evaluated. We then aim to approximate the conditional

distribution of s̃T |UT = u∗ by replacing it with some suitable random variable with

the same conditional mean and variance. In each case, HT and the realized variance

VT play a central role in our calculation and analysis so we will treat its moments

separately in the following proposition.

Proposition 3 Assume that the dynamics of the volatility is given by It exp(Ut)

where

It = a exp{−c(T − t)} a, c > 0,

dUt = −κUtdt+ νdZt ν, κ > 0,
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where U0 = 0 and t ∈ [0, T ]. Given the covariance function of U

R(t, s) = Cov(Ut, Us) =
ν2

2κ
[exp{−κ|t− s|} − exp{−κ(t+ s)}],

R(t, t) = R(t),

the first conditional moments of HT and the realized variance VT have the

following integral expressions

E(VT |UT = u∗) =

∫ T

0
(It)

2 exp

(
2u∗

R(t, T )

R(T )
+ 2R(t)− 2

R2(t, T )

R(T )

)
dt,(6.13)

E(HT |UT = u∗) = −
(ν

2
+
c

ν

)
H1(u∗) +

κ

ν
H2(u∗), (6.14)

where

H1(u∗) =

∫ T

0
It exp

u∗R(t, T )

R(T )
+
R(t)− R2(t,T )

R(T )

2

 dt,

H2(u∗) =

∫ T

0
It

(
u∗
R(t, T )

R(T )
+R(t)− R2(t, T )

R(T )

)
exp

u∗R(t, T )

R(T )
+
R(t)− R2(t,T )

R(T )

2

 dt.

The second conditional moment of the realized variance VT can be expressed

as the following double integral

E(V 2
T | UT = u∗)

= 2

∫ T

0
(It)

2

∫ t

0
(Is)

2 exp

(
2u∗

(
R(t, T )

R(T )
+
R(s, T )

R(T )

)
+ 2(R(t) +R(s))

)
× exp

(
−2

R2(t, T ) +R2(s, T )

R(T )
+ 4R(t, s)− 4

R(t, T )R(s, T )

R(T )

)
dsdt.

Proof : see Appendix 6.C.

Remark 11 When κ, c = 0, we obtain analytical expressions for the first and sec-

ond conditional moments of VT as the volatility dynamics coincides with the SABR

volatility dynamics.

6.4.2 Normal Inverse Gaussian approximation

In this section, we consider the Normal Inverse Gaussian distribution (NIG) for the

approximation of s̃T |UT (defined in the previous section) rather than sT |UT as in

the SABR case. This choice of distribution was proposed in Chapter 5 together with

the Normal distribution. There, the numerical investigation showed that the NIG

approximation was found to be superior compared with the other. We have tested
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both approximations for the SABR-MR model and since the NIG approximation

continues to be much better, we will consider it only.

Under the NIG approximation, we assume

s̃T |UT = u∗ ∼ NIG(α̂, β̂, µ̂, δ̂),

where the parameters are to be chosen. The NIG density function fNIG(s; α̂, β̂, µ̂, δ̂)

is the same as (5.18) in Chapter 5.

6.4.2.1 Matching parameters

Similar to Chapter 5, we now describe an efficient way to match the NIG parameters.

We again use the fact that a NIG random variable X can be expressed as the Normal

variance-mean mixture form:

X = µ̂+ β̂Y +
√
Y G, (6.15)

where the mixing random variable Y follows an Inverse Gaussian (IG) distribution

and G is a standard Normal random variable that is independent of Y . It is clear

from (6.8) to (6.10) that conditioned on UT = u∗, s̃T as an approximation of sT will

have a similar form as (6.15). We will now express the NIG parameters in terms of

u∗.

Recall that we replace s̃T |UT = u∗ with a NIG random variable, i.e.

s̃T |UT = u∗ ∼ NIG(α̂(u∗), β̂(u∗), µ̂(u∗), δ̂(u∗)).

Matching parameters for the NIG approximation in the SABR-MR model is the

same as for the SABR model, as shown in Chapter 5, provided that we work with

the approximate random variable s̃T |UT = u∗ instead of sT |UT = u∗.

• For β = 0: the mixing random variable is (1− ρ2)VT |UT = u∗. We first match

the location and asymmetry parameters

µ̂(u∗) = y0 +
ρ

ν
(F (T, u∗)− F (0, 0)) + ρE(HT | UT = u∗),

β̂(u∗) = 0.

• For 0 < β ≤ 1: the mixing random variable is (1 − ρ2)β2y2β−2
0 VT |UT = u∗.

Similarly, we have that

µ̂(u∗) = ln(y0 + θ) +
ρ

ν
βyβ−1

0 (F (T, u∗)− F (0, 0)) + ρβyβ−1
0 E(HT | UT = u∗),

β̂(u∗) = − 1

2(1− ρ2)
.
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It now remains to derive δ̂(u∗) and α̂(u∗) by matching the conditional mean and

variance of the mixing random variable, i.e.

• For β = 0

δ̂(u∗)√
α̂2(u∗)− β̂2(u∗)

= (1− ρ2)E(VT |UT = u∗),

δ̂(u∗)(√
α̂2(u∗)− β̂2(u∗)

)3 = (1− ρ2)2Var(VT |UT = u∗).

• For 0 < β ≤ 1

δ̂(u∗)√
α̂2(u∗)− β̂2(u∗)

= (1− ρ2)β2y2β−2
0 E(VT |UT = u∗),

δ̂(u∗)(√
α̂2(u∗)− β̂2(u∗)

)3 = (1− ρ2)2β4y4β−4
0 Var(VT |UT = u∗).

As there are only two unknowns, solving the above simultaneous equations is a

straightforward task.

6.4.2.2 Implementation

In order to implement the NIG approximation, we have to perform a two-dimensional

integration in order to compute the vanilla call option price.

C0(K, y0) =

∫ ∞
−∞

∫ ∞
−∞

(g(s)−K)+fNIG(s; α̂(u), β̂(u), µ̂(u), δ̂(u))ds
e
− u2

2R(T )√
2πR(T )

du

=

∫ ∞
−∞

∫ ∞
g−1(K)

(g(s)−K)fNIG(s; α̂(u), β̂(u), µ̂(u), δ̂(u))ds
e
− u2

2R(T )√
2πR(T )

du,

(6.16)

where fNIG(.) is the density function of corresponding NIG random variable; g(.)

is the appropriate transformation for the chosen β and g−1(.) denotes its inverse.

Although the above double integral could be a bottleneck in computation and nu-

merically expensive, the implementation scheme is actually quite straightforward.

We apply the Simpson’s rule, which is found sufficient to give the numerical conver-

gence, to evaluate both the inner and outer integrals.

Efficiency: One can improve the efficiency of the NIG implementation by

the interpolating polynomials scheme mentioned in Chapter 5. However, the integral
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forms of E(VT |UT = u∗),E(V 2
T |UT = u∗) and E(HT |UT = u∗) in Proposition 3 make

the NIG approximation for the SABR-MR a bit slower to implement than that for

the SABR model as in Chapter 5.

6.5 Numerical study

In this section, we test the quality of the NIG approximation under different volatil-

ity regimes. We take the Monte Carlo solutions (MC) of the SDEs as a natural

benchmark to compare the NIG approximation against. In our numerical study,

the parameter a is first chosen to represent the average level of the true ATM im-

plied volatilities. We force all the ATM-implied volatilities produced by the NIG

approximation to be the same as the MC-ATM by adjusting the parameter a. We

then compare the approximation errors along the wings by subtracting MC implied

volatility from the approximate implied volatility. Swaption prices are calculated

for strikes -200, -100, -50, -25, 0, 25, 50, 100, 200 basis points (bp) away from the

ATM strike (y0). Note that we test the approximation for typical swaption data but

the same conclusions apply to other markets too.

6.5.1 Normal SABR-MR (β = 0)

In this section, we investigate the quality of the NIG approximation for the Normal

SABR-MR model. We consider the following typical parameter values: β = 0, y0 =

0.05, a = 0.0075 for varying T . In the results shown below, we vary one parameter

at a time to assess the effect of such parameter on the approximation. For each

parameter, we display the smiles produced by the MC solution and the NIG’s errors

(approximation minus MC) for T = 2, 5, 10, 20, and 30 years (Y).

The effect of ν: we first test the parameters which control the curvature of

the smile. Recall that ν controls the overall curvature of the smiles while κ represents

the dampening effect through time. The effect of ν on the NIG approximation is

displayed in figures 6.6 and 6.7. Two values of ν = 0.25, 0.4 are tested while other

parameters are held fixed: κ = 0.05, c = 0.1, ρ = −0.1. One can see that as ν varies

from 0.4 to 0.25, the magnitude of the errors across expiries decreases dramatically.

For the worst case when T = 30Y and strike is 0.03 (−200 bp strike offset), the size

of the error drops by about five and a half times (0.90%→ 0.16%).
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Figure 6.6: ν-effect on the NIG approximation: ν = 0.4 (MC solution and approxi-

mation errors). Other parameters: β = 0, y0 = 0.05, κ = 0.05, c = 0.1, ρ = −0.1.
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Figure 6.7: ν-effect on the NIG approximation: ν = 0.25 (MC solution and approx-

imation errors). Other parameters: β = 0, y0 = 0.05, κ = 0.05, c = 0.1, ρ = −0.1.

The effect of κ: we now fix ν = 0.4 and other parameters c = 0.1, ρ = −0.1

but increases κ from 0.05 to 0.15. As κ controls the curvature through time, one

expects that as κ gets larger smiles get flat faster. We observe that smiles with

ν = 0.4, κ = 0.15 look quite similar to those with ν = 0.25, κ = 0.05 and indeed the

errors are also of similar size although they seem to be a bit larger in the right wing

for all expiries.
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Figure 6.8: κ-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, c = 0.1, ρ = −0.1.

The effect of c: the next parameter is c which controls the ATM levels of

the smiles. As we fix ν = 0.4, κ = 0.05, ρ = −0.1 and only vary c from 0.1 to 0.2,

the curvature changes very little. In terms of the NIG’s errors, we observe in figure

6.9 that their magnitude drops down as c increases but the difference is only clear

when T = 20 or 30Y.
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Figure 6.9: c-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, κ = 0.05, ρ = −0.1.

The effect of ρ: the last test is on the correlation parameter ρ. Note that

it is often observed that ρ could be positive when β = 0 so we vary ρ from −0.1 to

0.1. As one can see from figure 6.10 as a comparison to figure 6.6, the smiles are of

similar shapes but a bit more symmetric. The error curves for this case also seem to

rotate anti-clockwise as a result of the smiles’ rotation. This then leads to smaller

error in the left wing but higher error in the right wing as ρ becomes more positive

(or less negative).
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Figure 6.10: ρ-effect on the NIG approximation (MC solution and approximation

errors). Other parameters: β = 0, y0 = 0.05, ν = 0.4, κ = 0.05, c = 0.1.

6.5.2 Log-Normal SABR-MR and DD-SABR-MR (β ∈ (0, 1])

We continue our numerical investigation with other choices of β. Similar behaviour

in the MC solutions as in the Normal SABR-MR model is observed when we vary

parameters so we will not plot them here. In what follows, we display the NIG

approximation’s errors as we vary one parameter at a time when β = 0.5, 1. We

consider the following typical parameter values and first investigate the effects of ν

and κ which control the curvature of the smiles.

• β = 0.5, y0 = 0.05, a = 0.043, ρ = −0.2, c = 0.1.

• β = 1, y0 = 0.05, a = 0.150, ρ = −0.5, c = 0.1

The effect of ν: two values of ν = 0.25, 0.4 are tested while κ = 0.05 and

other parameters are held fixed as listed above. Figures 6.11 and 6.12 plot the effect

of ν for the two models. At first glance, one can spot some immediate differences
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between the shapes of error curves across models. In the Normal SABR-MR model,

the NIG approximation tends to display a bit too much curvature (positive errors in

both wings) whereas it shows more negative slope in the other models, i.e. implied

volatilities are higher in the left wing and lower in the right wing. Note that the

case β = 1, ν = 0.4 yields quite large error for 30Y expiry in both left and right

wings (≈ 1% at the -200 and 200 bp strike offset).
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Figure 6.11: ν-effect on the NIG approximation.
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Figure 6.12: ν-effect on the NIG approximation.

The effect of κ: we fix ν = 0.4 and increase the speed of mean reversion κ

to 0.15. The κ-effect seems to be a lot clearer in these two models than the Normal

SABR-MR model. Recall at this point that a larger κ makes the smiles flatten out

faster as expiry increases. We observe that the left wing of the error curve gets

lower and the right wing gets higher. For the β = 1 case, this effect seems to be the

strongest. This implies that κ has a stronger effect on the NIG approximation in

the left wing than in the right wing.
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Figure 6.13: κ-effect on the NIG approximation.

The effects of c and ρ have also been investigated and similar results to those

of the Normal SABR-MR model are obtained. We conclude up to this point that

while c and ρ do not have big impacts on the quality of the NIG approximation,

ν and κ are the main factors that determine its behavior. A combination of large

ν = 0.4 and low κ = 0.05 is the worst case in our numerical investigation so far

for all β. Within this bound, the approximation performs reasonably well for all

expiries. The worst scenario that occurs is when T = 30Y and β = 1. The errors for

this case are the largest in magnitude for both left and right wings of the implied

volatility curve.

6.5.3 Stress test

In this section, we further test the NIG approximation beyond the range of param-

eters used previously. The stress cases we consider here are extremely rare and very

unlikely to happen in practice. These are also the volatility regimes when the NIG

approximation starts to break down. We show for β = 0 only as other β’s yield the
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same conclusion.

• Stress test 1: ν = 0.6, κ = 0.05 and other parameters y0 = 0.05, a = 0.0075, ρ =

−0.1, c = 0.1. This is an example of very large Volvol.

• Stress test 2: ν = 0.5, κ = 0.01 and other parameters y0 = 0.05, a = 0.0075, ρ =

−0.1, c = 0.1. This is an example of large Volvol and low mean reversion speed.
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Figure 6.14: Stress test 1 for the NIG approximation (MC solution and approxima-

tion errors).
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Figure 6.15: Stress test 2 for the NIG approximation (MC solution and approxima-

tion errors).

One can see from the above plots that the MC implied volatilities behave in an

unusual way. The ATM level gets much higher as expiry increases and there also

seems to be a lot more curvature for longer expiries. In both stress tests as displayed

in figures 6.14 and 6.15, the NIG approximation only works up to 10Y expiry with

large errors at the lowest strike (≈ 1.4% for the first test). For longer expiries, we

need to roughly double the initial value of a to match up the ATM level. This is

highly undesirable as this action tends to distort the intended distribution adversely.

Specifically, even when we match the ATM levels the slope and curvature cannot be

captured, i.e. too high in the left wing and too low in the right wing.

6.6 Conclusion

In this chapter, we have studied and set in context a possible extension of the SABR

model which equips the volatility process with the mean reverting behaviour. In
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Section 6.3, we examine the difference in dynamics of the two models. The results

illustrate that mean reversion can have a stronger effect than Volvol on the dynamics

of the volatility process through time. This is shown through a simple example of

the forward start option. In this example, we find that the first two moments of the

forward realized variance have the tendency to decrease with the mean reversion

speed κ of the volatility process even though we calibrate the model properly to

smiles of different expiries. Intuitively, we expect this effect causes the forward

smile to flatten out more as κ increases and lead to that the SABR-MR model will

underprice the forward start opions in the wings (strike ratios being away from 1)

compared with the SABR model.

Using a similar approach to the probabilistic approximation in Chapter 5,

we have derived a new approximation for the terminal distribution of the underlying

in the SABR-MR model. We apply the approximation directly to price European

options and obtain the corresponding implied volatilities. In our numerical study,

we test the NIG approximation against the MC solution since we are not aware

of any other current approximation for the SABR-MR model in the literature that

works for a wide range of parameters. The results show that the NIG approximation

can work well beyond the SABR model (as done in Chapter 5). The parameters

we covered represent typical interest rate data through good and bad days of the

market. The approximation only seems to break down when we worked with very

rare parameters sets that represent extreme market scenarios. We want to emphasize

again that while our focus tends to be on interest rate, the NIG approximation and

the generic SABR-MR model are applicable to all other asset classes.

6.A Distribution of yT under the Log-Normal SABR-

MR model

The Log-Normal SABR-MR model is specified by the following SDEs

dyt = It exp(Ut)ytdWt β ∈ [0, 1], (6.17)

dUt = −κUtdt+ νdZt ν, κ > 0, U0 = 0,

dWtdZt = ρdt ρ ∈ [−1, 1],

where It = a exp{−c(T − t)} is a deterministic function with c > 0. Write Wt =

ρZt +
√

1− ρ2Ŵt where Z ⊥ Ŵ . For the case β = 1 which we refer to as the
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Log-Normal SABR-MR model, we have that

dyt = ρIt exp(Ut)ytdZt +
√

1− ρ2It exp(Ut)ytdŴt,

dUt = −κUtdt+ νdZt,

dZt =
dUt + κUtdt

ν
.

Let F (t, Ut) be the anti-derivative of It exp(Ut) with respect to Ut, we have that

F (t, Ut) = It exp(Ut). Applying Itô’s lemma on ln yt, we have that

d ln yt

=
1

yt
dyt −

1

2(yt)2
d[y]t

= It exp(Ut)dWt −
1

2
(It)

2 exp(2Ut)dt

= ρIt exp(Ut)dZt +
√

1− ρ2It exp(Ut)dŴt −
1

2
(It)

2 exp(2Ut)dt

= ρIt exp(Ut)
dUt + κUtdt

ν
+
√

1− ρ2It exp(Ut)dŴt −
1

2
(It)

2 exp(2Ut)dt

=
ρ

ν
dF (t, Ut)−

(ρν
2

+
cρ

ν

)
It exp(Ut)dt+

ρκ

ν
It exp(Ut)Utdt

+
√

1− ρ2It exp(Ut)dŴt −
1

2
(It)

2 exp(2Ut)dt

⇒ ln yT

= ln y0 +
ρ

ν
(F (T,UT )− F (0, U0))−

(ρν
2

+
cρ

ν

)∫ T

0
It exp(Ut)dt

+
ρκ

ν

∫ T

0
It exp(Ut)Utdt−

1

2

∫ T

0
(It)

2 exp(2Ut)dt+
√

1− ρ2

∫ T

0
It exp(Ut)dŴt,

where

VT :=

∫ T

0
It

2 exp(2Ut)dt,

HT := −
(ν

2
+
c

ν

)∫ T

0
It exp(Ut)dt+

κ

ν

∫ T

0
It exp(Ut)Utdt.

Similar to the proof in Appendix 5.A, by using the moment generating func-

tion (m.g.f) we have that

ln yT , ln y0 +
ρ

ν
(F (T,UT )− F (0, U0)) + ρHT −

1

2
VT +

√
1− ρ2V

1
2
T G.

The same steps follow in both the Normal SABR-MR and DD-SABR-MR models

to obtain (6.8) and (6.10) respectively.
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6.B Distributions of yT1 and yT2 under the modified SABR-

MR model in Section 6.3

Recall the modified SABR-MR model in Section 6.3. In this appendix, we want to

show that when both ρ and β = 0 we have the following equations in distribution

for 0 < T1 < T2

yT1 , y0 +
√
VT1G1 , VT1 =

∫ T1

0
σ2
t dt,

yT2 , yT1 +
√
V 1
T2
G12 , V 1

T2 =

∫ T2

T1

σ2
t dt,

G1 ⊥ G12 , G1, G12 ∼ N (0, 1),

and G1 and G12 are both independent of {σt}t∈[0,T2]. Note that it is straightforward

to apply the same proof from the previous appendix to obtain

yT1 , y0 +
√
VT1G1 , VT1 =

∫ T1

0
σ2
t dt,

yT2 , y0 +
√
VT2G2 , VT2 =

∫ T2

0
σ2
t dt,

G1 ⊥ G2 , G1, G2 ∼ N (0, 1).

Hence, it suffices to prove

y0 +
√
VT1G1 +

√
V 1
T2
G12 , y0 +

√
VT2G2,

where G1,G12 and G2 are pairwise independent.

Recall from the previous appendix that FT = σ(Zu : 0 ≤ u ≤ T ). It is clear

that √
VT1G1|FT2 ∼ N (0, VT1),√
VT2G2|FT2 ∼ N (0, VT2),√
V 1
T2
G12|FT2 ∼ N (0, V 1

T2).

Let XT2 :=
√
VT1G1 +

√
V 1
T2
G12. For the first conditional moment of XT2 |FT2 , we

have that

E(XT2 |FT2) = E(
√
VT1G1|FT2) + E(

√
V 1
T2
G12|FT2)

=
√
VT1E(G1|FT2) +

√
V 1
T2
E(G12|FT2)

= 0,
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since G1 and G12 are indepdendent of FT2 . Similarly, for the second conditional

moment of XT2 |FT2 we have that

E(X2
T2 |FT2) = E(VT1G

2
1|FT2) + E(V 1

T2G
2
12|FT2) + 2E(G1G12

√
VT1V

1
T2
|FT2)

= VT1E(G2
1|FT2) + V 1

T2E(G2
12|FT2) + 2

√
VT1V

1
T2
E(G1G12|FT2)

= VT1 + V 1
T2 + 2

√
VT1V

1
T2
E(G1G12)

= VT2 .

The last line follows since G1 ⊥ G12 and VT1 + V 1
T2

= VT2 . Similar to the previous

appendix, by considering the m.g.f of XT2 we have that

E(esXT2 ) = E(E(esXT2 |FT2))

= E
(
e

1
2
s2VT2

)
= E(E(es

√
VT2G2 |FT2))

= E(es
√
VT2G2).

Hence, we have that XT2 ,
√
VT2G2 or equivalently yT2 , yT1 +

√
V 1
T2
G12.

6.C Proof of Proposition 3

In order to calculate E(VT |UT = u∗), E(V 2
T |UT = u∗) and E(HT |UT = u∗), it is

sufficient to look at the distribution of yT conditioned on the end point UT which is

fully specified by the so called OU bridge. Note that Ut is a Gaussian process with

law

Ut ∼ N (m(t), R(t, t)),

m(t) = 0,

R(t, t) =
ν2

2κ
[1− exp(−2κt)].

Furthermore, it has the covariance function for 0 ≤ t, s ≤ T :

R(t, s) = Cov(Ut, Us) =
ν2

2κ
[exp{−κ|t− s|} − exp{−κ(t+ s)}].

For ease of exposition, by R(t) we mean the variance R(t, t). An OU bridge is an OU

process that is “tied down” at time T to have some specific value. We denote the

OU bridge of the corresponding OU process U by UT,u
∗

from (0, 0) to (T, u∗) which
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admits the following non-anticipative representation (see Gasbarra et al. [2007])

UT,u
∗

t , Ut −
R(t, T )

R(T )
UT + u∗

R(t, T )

R(T )
. (6.18)

Note that this representation coincides with the Brownian bridge representation

when U is a Brownian motion. It then follows for 0 ≤ t, s ≤ T that, UT,u
∗

is

Gaussian with:

mT,u∗(t) = E(UT,u
∗

t ) = u∗
R(t, T )

R(T )
, (6.19)

RT,u
∗
(t, s) = Cov(UT,u

∗

t , UT,u
∗

s ) = R(t, s)− R(t, T )R(s, T )

R(T )
, (6.20)

and RT,u
∗
(t) = RT,u

∗
(t, t). As this OU bridge is also a Gaussian process with the

above mean and covariance function, we have that:

exp(UT,u
∗

t ) ∼ LN (mT,u∗(t), RT,u
∗
(t)). (6.21)

6.C.1 First conditional moments of HT and VT

We now evaluate the first conditional moments of HT and VT whose forms are given

in (6.12) and (6.11) in Section 6.4 in the main chapter respectively. Conditioning

on UT = u∗, we have that

E(HT |UT = u∗)

= −
(ν

2
+
c

ν

)∫ T

0
ItE{exp(UT,u

∗

t )}dt+
κ

ν

∫ T

0
ItE{exp(UT,u

∗

t )UT,u
∗

t }dt

= −
(ν

2
+
c

ν

)∫ T

0
It exp

(
mT,u∗(t) +

RT,u
∗
(t)

2

)
dt︸ ︷︷ ︸

H1(u∗)

(6.22)

+
κ

ν

∫ T

0
It(m

T,u∗(t) +RT,u
∗
(t)) exp

(
mT,u∗(t) +

RT,u
∗
(t)

2

)
dt︸ ︷︷ ︸

H2(u∗)

,

and

E(VT |UT = u∗) =

∫ T

0
(It)

2E{exp(2UT,u
∗

t )}dt

=

∫ T

0
(It)

2 exp
(

2mT,u∗(t) + 2RT,u
∗
(t)
)

dt. (6.23)
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Expand further the above integrals we have that

H1(u∗) =

∫ T

0
It exp

u∗R(t, T )

R(T )
+
R(t)− R2(t,T )

R(T )

2

dt,

H2(u∗) =

∫ T

0
It

(
u∗
R(t, T )

R(T )
+R(t)− R2(t, T )

R(T )

)

× exp

u∗R(t, T )

R(T )
+
R(t)− R2(t,T )

R(T )

2

 dt,

E(VT |UT = u∗) =

∫ T

0
(It)

2 exp

(
2u∗

R(t, T )

R(T )
+ 2R(t)− 2

R2(t, T )

R(T )

)
dt.

6.C.2 Second conditional moment of VT

We now evaluate the second conditional moment of VT .

E(V 2
T | UT = u∗)

= 2E
(∫ T

0
(It)

2e2Ut

∫ t

0
(Is)

2e2Usdsdt|UT = u∗
)

= 2E
(∫ T

0
(It)

2

∫ t

0
(Is)

2e2Ut+2Usdsdt|UT = u∗
)

= 2

∫ T

0
(It)

2

∫ t

0
(Is)

2E
(
e2UT,u

∗
t +2UT,u

∗
s

)
dsdt

= 2

∫ T

0
(It)

2

∫ t

0
(Is)

2 exp(2mT,u∗(t) + 2mT,u∗(s) + 2RT,u
∗
(t) + 2RT,u

∗
(s) + 4RT,u

∗
(t, s))dsdt

= 2

∫ T

0
(It)

2

∫ t

0
(Is)

2 exp

(
2

(
u∗
R(t, T )

R(T )
+ u∗

R(s, T )

R(T )

))
× exp

(
2R(t)− 2

R2(t, T )

R(T )
+ 2R(s)− 2

R2(s, T )

R(T )
+ 4R(t, s)− 4

R(t, T )R(s, T )

R(T )

)
dsdt.
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Chapter 7

Hedging European options with

stochastic volatility models

7.1 Objectives

In the previous chapters, we have focused on the problem of pricing European op-

tions within the SABR and SABR-MR stochastic volatility models in quite some

detail. As hinted in Chapter 6, although the SABR-MR model is more flexible than

the SABR model they are qualitatively very similar in terms of pricing European

options. In order to gain better understanding and intuition of the two models,

this chapter investigates further their hedging properties. Note that the comparison

of these models from a hedging perspective has not been covered previously in the

literature.

Recall the notation yt and σt for the underlying and the volatility process

respectively for t ∈ [0, T ]. Roughly speaking, a model that is capable of calibrating

to the market smile at time T will get right the following marginal distribution

(yT |y0 = y, σ0 = σ). (7.1)

While this seems to be the case for both the SABR and SABR-MR models, it has

not yet been investigated whether they will also agree on

(yT |y0, σ0). (7.2)

In other words, suppose the two models have been calibrated to (7.1) for y0 = y

and σ0 = σ, the question is: will they continue to agree if we perturb the state

variables by a small amount, e.g. y0 = y + ε and/or σ0 = σ + ε for ε > 0? An

example of such disagreement was done in Hagan et al. [2002] for the SABR model

and a simple local volatility model. The authors perturb y0 with σ0 held fixed and
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look at the shift of implied volatility smiles of the two models. The fact that they

move in opposite directions implies that (7.2) is not the same for the two models.

The investigation in Hagan et al. [2002] essentially examines the sensitivities of the

models with respect to the state variables.

We want to mention at this point that studying the previous question will

not give us a full picture about the hedging problem. In fact, we will only be able to

learn about the static behaviour of the volatility smile, i.e. observe different versions

of today’s smile but not let time vary. It is actually more important to appreciate the

smile dynamics that is generated by the model for a full understanding of hedging.

The hedge ratios that are based on considering the model dynamics have been

mentioned previously in the literature, e.g. Bartlett [2006], Rebonato et al. [2009]

and Andersen and Piterbarg [2010]. In Section 7.2, we want to separate these

different concepts and explain what really matters in practice when we hedge with

the presence of stochastic volatility. We then apply these concepts to the SABR and

SABR-MR models to assess whether the two models will differ from this perspective.

7.2 Hedging with stochastic volatility: theory and prac-

tice

Before assessing the hedging properties of the SABR and SABR-MR models, we

first review different hedging concepts in detail.

7.2.1 The theoretical concept: from deterministic to stochastic

volatility

We first denote by C0(K, y0, σ0, T ) or just C0 (for abbreviation) today’s price of a

European call option with strike K, initial underlying y0, option maturity T and

initial volatility σ0. The definitions of “pure” delta δ1 and vega v1 today can be

defined as follows

δ1 =
∂C0(K, y0, σ0, T )

∂y0
, (7.3)

v1 =
∂C0(K, y0, σ0, T )

∂σ0
. (7.4)

These model sensitivities are interpreted as the rates of change in price as y0 or

σ0 changes assuming that the other is kept fixed. The computation of the pure

delta and vega is typically done numerically by finite difference, e.g. δ1 can be

approximated as

δ1 ≈
C0(K, y0 + ε, σ0, T )− C0(K, y0, σ0, T )

ε
,
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where the perturbation size ε > 0 is sufficiently small. In the Black-Scholes economy

and hence a complete market, δ1 can be interpreted as the amount of holdings of y0

in the replicating portfolio for this European option. This means that if we acquire

a hedging portfolio consisting of this European option and a short δ1 position of y0,

the growth of this portfolio regardless of the underlying will be deterministic (or

locally riskless) over [0,∆t] where ∆t denotes a short period of time. This definition

of delta coincides with what we defined in Part I of the thesis. The reason for why

this result holds true is that volatility is assumed to be constant or deterministic

over [0,∆t] in the Black-Scholes economy. This will no longer be true if we relax

this assumption and let volatility to be stochastic.

In the stochastic volatility setting, it is clear that the market is no longer

complete if one just purely adopts the delta hedging with acquiring only positions

in y0. This is because the stochastic volatility process σ is driven by a second

Brownian motion Z (correlated with W which drives y). However, if the volatility

σ is an available traded asset in the market they can be included in the hedging

portfolio and the market will be complete. See Chapter 1, Hunt and Kennedy [2004]

for a discussion on market completeness. See also Lemma 8.9.1 in Andersen and

Piterbarg [2010] for the theoretical construction of a locally riskless portfolio in the

stochastic volatility setting by taking positions in two traded assets that depend on

both the underlying and volatility.

An important point about the consequence of introducing stochastic volatil-

ity that we want to make here is that the pure delta δ1 cannot be used naively as a

hedge ratio to construct a locally riskless portfolio as in the Black-Scholes economy.

We do not go further into how to construct a locally riskless portfolio or to complete

the market, but we will extend further the idea of delta hedging that employs only

the underlying asset. It is useful to look at the smile dynamics generated by general

stochastic volatility models for a better understanding of this subject. A rigorous

treatment of the smile dynamics is addressed in Chapter 12 of Rebonato et al. [2009]

or Volume 1 of Andersen and Piterbarg [2010] (page 348 to 352). In Andersen and

Piterbarg [2010], for numerical experiments the authors move calendar time forward

to some arbitrary value t and examine how the smile might look for several future

levels of yt. A similar investigation was done in Mercurio and Morini [2008] but

for a very short period of time ∆t rather than an arbitrary t. As our purpose is to

consider a form of delta that has a meaningful financial interpretation, we first want

to assess how a small movement of the underlying, say ∆y > 0, might contribute

to the overall change in price of a European option after a short period of time ∆t.

We then construct an appropriate portfolio for the European option that is not too

exposed to this movement of the underlying. Hence, a sensible way of viewing the
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delta following this motivation is

δ2 ≈ ∆C

∆y
, (7.5)

∆C = C0(K, y0 + ∆y, σ0+∆t, T )− C0(K, y0, σ0, T )

∆y = y0+∆t − y0,

where ∆t and the perturbation size ∆y are both sufficiently small and positive. Here,

δ2 reflects the rate of change in the European option price as the underlying evolves.

The evaluation of δ2 is not intuitively clear at first glance. To be more specific, the

quantity C0(K, y0 +∆y, σ0+∆t, T ) will need to be valued at the volatility level σ0+∆t

which is the future volatility level. Note that δ1 and δ2 will be identical if σ0+∆t = σ0.

The problem is that the volatility process is not observable in the market so it is

impossible to know the exact size of perturbation for volatility, i.e. ∆σ = σ0+∆t−σ0,

given that we know ∆y. Hence, δ2 cannot be observed without knowledge of data.

From the model perspective, the only power we have is to estimate ∆σ given the

known ∆y via the known SDE formulation. A sensible thing to do is to consider

the conditional expectation E(∆σ|∆y). This idea was considered in a few references

in the literature, e.g. Mercurio and Morini [2008] and Andersen and Piterbarg

[2010]. This conditional expectation has a clear meaning in terms of real data. If

the model best describes market data, E(∆σ|∆y) will be the average of all possible

real world realizations of the future change in volatility given an anticipated future

change in the underlying process. We can evaluate this conditional expectation by

decomposing the SDE for volatility into two orthogonal Brownian motions W and

W⊥. In case of the SABR model, if we write the Brownian motion that drives σ as

Zt = ρWt +
√

1− ρ2W⊥t we will have that

dσt = νσtdZt

= νσt(ρdWt +
√

1− ρ2dW⊥t )

= νρ
dyt

yβt
+
√

1− ρ2νσtdW
⊥
t .

As we know ∆y, following the above SDE we have that

E(∆σ|∆y) = νρ
∆y

yβ0
+
√

1− ρ2νσ0E(∆W⊥|∆y).

Since the process y and W are independent of W⊥, the second conditional expecta-

tion in the above equation is just zero. We then arrive at

E(∆σ|∆y) = νρ
∆y

yβ0
.
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Since we are working with a delta that is an estimate (or average) of δ2, we will

denote it by δ̃2. Putting pieces together, we have the following

δ̃2 ≈
C0(K, y0 + ∆y, σ0 + E(∆σ|∆y), T )− C0(K, y0, σ0, T )

∆y
.

Applying the first order Taylor expansion on the price function, we have that

C0(K, y0 + ∆y, σ0 + E(∆σ|∆y), T )

≈ C0(K, y0, σ0, T ) + ∆y
∂C0(K, y0, σ0, T )

∂y0
+ E(∆σ|∆y)

∂C0(K, y0, σ0, T )

∂σ0

≈ C0(K, y0, σ0, T ) + δ1∆y + νρ
∆y

yβ0
v1.

This then implies that

δ̃2 ≈ δ1 +
νρ

yβ0
v1.

The right hand side of the above equation first appeared in Bartlett [2006] so we will

refer to δ̃2 as the Bartlett delta. Following the same approach as above, we obtain

exactly the same formula for δ̃2 of the DD-SABR model.

In case of the (DD-)SABR-MR model, the argument follows similarly. We

first recall from Chapter 6 that σt = a exp(−c(T − t)) exp(Ut) and dUt = −κUtdt+

νdZt where a, c, ν and κ are all positive constants. By Itô’s formula, we have that

dσt = σtdUt +
1

2
σtd[U ]t + cσtdt

= σt(−κUtdt+ νdZt) +
1

2
σtν

2dt+ cσtdt

= νσtdZt + σt(−κUt +
1

2
ν2 + c)dt.

Again, by decomposing the Brownian motion Z into two orthogonal counterparts

and ignoring the finite variation part we have that

E(∆σ|∆y) ≈ νρ∆y

yβ0
.

We then arrive at the same form of δ̃2 for the (DD-)SABR-MR model.

The above discussion gives the Bartlett delta a clear financial interpretation

which does not follow from the original presentation in Bartlett [2006]. It reflects

the change in price given a change in the underlying and a predicted average (con-

ditional) change in the volatility. In terms of hedging, the hedge construction that

adopts the Bartlett delta turns out to have some practical relevance. Suppose we
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wish to delta hedge a European option with today’s value C0 by going short δmv
1

of the underlyings, i.e. the hedging portfolio has today’s value Π0 = C0 − δmvy0.

Since a perfect replication of this European option is not available in the stochastic

volatility setting, the best that we can hope for is that the value of the hedging

portfolio (given that the model is reasonably realistic) will not vary too much over

a short period of time, say [0,∆t]. Practically, this means that the variance of the

Profit & Loss of the hedging portfolio will be small. Equivalently in mathematical

terms, we would want to have that ∆Π = Π0+∆t − Π0 has the minimum variance.

As shown explicitly in Andersen and Piterbarg [2010] (Lemma 8.9.4, Volume 1) and

Rebonato et al. [2009] (page 221-229) for general stochastic volatility models and

the SABR model in particular, the minimum variance portfolio can be achieved by

letting δmv to be the same as the Bartlett delta, i.e.

δmv = δ1 +
νρ

yβ0
v1.

The analysis of vega could be proceeded along the same lines as the above,

e.g. see Bartlett [2006]. While the underlying y is directly observable in the market,

the volatility process σ is not. As a result, one can not easily observe the change

in price as σ changes. In practice, one tends to assess the the change in price

with respect to some other market quantities, e.g. Black ATM implied volatility or

Normal ATM implied volatility. We will address this issue in Section 7.2.2 where

we consider more practical forms of the Greeks.

7.2.1.1 Numerical Examples

We recall that our primary purpose of this chapter is to assess if the (DD-)SABR

and (DD-)SABR-MR models have different hedging properties. In what follows,

we will look at both the pure delta and the Bartlett delta numerically. We have

compared both models in terms of these deltas for a particular example and the

results are comparable. This concludes that mean reversion does not influence the

deltas a lot and the two models continue to be similar.

Since the numerical example that we are going to consider shows that the

two models yield very similar deltas, we will only display the results for the (DD-

)SABR model. For a range of calibrated parameters on 27/10/2007 (table 7.1), we

compute the pure delta (δ1) and the Bartlett delta (δ̃2) for swaptions with different

strikes and different expiries. The results are displayed in figures 7.1 and 7.2 below.

1The subscript is the abbreviation for minimum variance.

175



Expiry β σ0 ν ρ β σ0 ν ρ

2Y 0 0.0057 0.309 0.060 0.5 0.026 0.326 -0.160

5Y 0 0.0055 0.275 0.003 0.5 0.025 0.297 -0.220

10Y 0 0.0052 0.243 0.027 0.5 0.023 0.263 -0.205

20Y 0 0.0044 0.203 0.035 0.5 0.020 0.223 -0.219

30Y 0 0.0038 0.183 0.041 0.5 0.018 0.203 -0.233

Table 7.1: Calibrated parameters for the Normal SABR and DD-SABR models for

different expiries.
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Figure 7.1: Pure delta δ1 under the Normal SABR and DD-SABR models.
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Figure 7.2: Bartlett delta δ̃2 under the Normal SABR and DD-SABR models.

For short expiries (< 10Y ), the Bartlett delta δ̃2 seems to be independent

of the choice of β and ρ while the pure delta δ1 can increase significantly as β

increases or equivalently ρ becomes more negative. Note that the clearest effect is

seen around the ATM region. The Bartlett delta for β = 0 case is still very similar

to the pure delta while the extra term νρ

yβ0
v1 in the β = 0.5 case seems to pull the

pure delta down significantly around the ATM region. This observation is confirmed

by earlier results in Bartlett [2006] and Andersen and Piterbarg [2010] for a 5Yx5Y

swaption example. However in contrast to their results, we find that a stronger effect

is observed for longer expiries which has not been noted in the literature. That is

the longer the expiry is the more the Bartlett delta is affected for β = 0.5. This is

because the extra term νρ

yβ0
v1 could become a lot more negative as expiry increases

to 20Y or 30Y. Consequently, this leads to the result that the Bartlett delta can

decrease substantially as β increases for long expiries.
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7.2.2 Practical delta and vega

As hinted in the previous section, the pure delta and the Bartlett delta have very

specific theoretical interpretations. While the Bartlett delta appears to have some

positive impact on the delta hedge of a European option due to the minimum vari-

ance portfolio it imposes, this hedging strategy remains to be tested empirically. The

reason for this is the following. The minimum variance hedge argument is based on a

completely theoretical framework which relies on the model’s initial parametrization

(the set of parameters required to calibrate to market smiles). This means that if

the market in reality behaves differently from the dynamics predicted by the model

for various reasons, we will probably end up with a wrong delta figure and the min-

imum variance hedge will not be financially meaningful. This is why practitioners

tend to base the delta hedge more on historical data rather than completely rely on

the chosen model. In what follows, we describe a more practical way of calculating

the delta and vega.

In a typical example of a vanilla European option trading desk, practitioners

use stochastic volatility models on a daily basis to calibrate to market data. During

each trading day, some parameters are found to be stable and some are not. This

encourages us to hedge the risks involving model parameters as well as model state

variables. Depending on the nature of the market, practitioners can choose different

ways to parametrize their models and it is this difference that causes the presence

of different hedge ratios. The type of hedging that involves neutralizing the risks

with respect to model parameters is usually referred to as out-of-model hedging.

See Rebonato [2004] and Rebonato et al. [2009] for discussions on various types of

hedging including both in-model and out-of-model hedging.

Recall from Chapter 4 that the Normal implied volatility is the volatility

parameter that we plug into the Bachelier formula to recover the market price.

From talking to practitioners, it is not unusual in some market that the Normal

ATM implied volatility σ̃N,ATM(y0) is quite stable day to day. This means that

although this quantity could vary daily, this should not be treated as a systematic

change from the movement of the underlying asset. Hence, σ̃N,ATM(y0) and y0 should

be treated as independent market variables/input to the model. We illustrate this

intuition in the following example. Suppose we choose a fixed β > 0 for the SABR

model to calibrate to data. This requires us to also fix an appropriate value of ρ to

capture the right skew level. Roughly speaking, if the Volvol ν is low indicating a

small effect of stochastic volatility on the smile, we will have that the average level

of the Normal ATM implied volatility σ̃N,ATM(y0) will be approximately σ0y
β
0 (see

Chapter 4 for a rough intuition of the Normal implied volatility). This means that

if y0 moves, we will observe a systematic change in σ̃N,ATM(y0) which is not desired

in our particular context. To prevent this from happening, we have to adjust the
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model volatility level σ0 so that σ̃N,ATM(y0) will remain unchanged. Effectively, the

initial volatility σ0 should be of the form σ0(σ̃N,ATM(y0), y0).

Bearing this intuition in mind, we now consider a new form of delta

δpractice =
∂C0(K, y0, σ0, T )

∂y0
+
∂C0(K, y0, σ0, T )

∂σ0

∂σ0(σ̃N,ATM(y0), y0)

∂y0

= δ1 +
∂σ0(σ̃N,ATM(y0), y0)

∂y0
v1. (7.6)

This delta risk is now the risk with respect to changes in y0 with σ̃N,ATM(y0) held

fixed. The partial derivative in the last term is just the change in σ0 needed to keep

σ̃N,ATM(y0) constant while y0 changes. We note that the motivation for this form of

delta is very different from the Bartlett delta. Whilst the Bartlett delta arises from

the effect of the correlation parameter ρ, this practical delta that we are considering

tends to be an immediate adjustment to account for the β-effect.

The story of vega is slightly simpler than the delta. As discussed in the

previous section, in practice it may be more relevant to consider the change in some

market volatility quantity rather than the model volatility (initial volatility σ0). If

one uses the Normal ATM implied volatility σ̃N,ATM(y0) as the model parameter,

it seems to make more sense to calculate the vega as the model sensitivity to this

market parameter. Since σ̃N,ATM(y0) and y0 are assumed to be two independent

variables of the model, a change in σ̃N,ATM(y0) will have no effect on y0. Hence, we

have the following practical vega which is basically the scaled pure vega

vpractice =
∂C0(K, y0, σ0, T )

∂σ̃N,ATM(y0)
=
∂C0(K, y0, σ0, T )

∂σ0
/
∂σ̃N,ATM(y0)

∂σ0
. (7.7)

7.2.2.1 Numerical Examples

In this section, we will look at the practical delta δpractice and the practical vega

vpractice numerically. Having discussed in detail their meanings and financial inter-

pretations, we now compute them within the SABR and SABR-MR models to assess

if different model formulations have a significant impact on these Greeks. We again

note that this investigation has not been done in the literature. In order to have

a fair comparison, we will choose parameters such that European swaption prices

produced by the two models coincide for different expiries: 2Y, 5Y, 10Y, 20Y, 30Y.

The calibrated parameters for the SABR model are the same as those in table 7.1

and the SABR-MR parameters are listed in the following table.
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β a c κ ν ρ

0 0.006 0.065 0.098 0.317 0.033

0.5 0.027 0.068 0.050 0.278 -0.233

Table 7.2: Parameters for the Normal SABR-MR and DD-SABR-MR models for all

expiries.

The results for the practical delta and vega are displayed in the following

figures.
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Figure 7.3: Practical delta under different models.
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Figure 7.4: Practical delta under different models.
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Figure 7.5: Practical vega under different models.
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Figure 7.6: Practical vega under different models.

It is seen from the figures that the deltas and vegas computed are almost

the same for the (DD-)SABR and (DD-)SABR-MR models across all expiries. We

have also tested the second order Greeks and observed a similar conclusion. This

is quite surprising since one would expect some key differences in the two models’

dynamics to show up here. This concludes that once we properly fit the two models

to market smiles, the difference in hedge ratios for the Europeans are not of practical

significance.
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Chapter 8

Discussion

In this thesis, further developments on Markov-functional models and stochastic

volatility models were presented. The main technical contributions were addressed

in Chapters 3, 5 and 6.

In Chapter 3 of Part I of the thesis, we drew attention to the problem of

pricing and hedging Bermudan swaptions within a one-factor Markov-functional

model. Our results showed that different parametrizations of the model could lead

to very different hedging results. The innovations on the driving Markov process

that we presented in this chapter can potentially prove to be valuable for hedging

other interest rate exotics.

Part II (Chapters 4,5,6 and 7) of the thesis contains some important results

for several particular aspects of stochastic volatility modelling. We focused on effi-

cient implementations of the SABR model and its extension with mean reversion to

price European options and aimed at bringing these numerical schemes to trading

desks. In Chapter 5, we worked with the SABR model which has received a lot

of attention worldwide. Our results showed that the approximation we derived for

the model works extremely well, and could replace the existing schemes in practice

which are currently the market standards, e.g. one of the most popular approxi-

mations for the SABR model is the SABR formula derived in Hagan et al. [2002].

Chapter 6 is similar in scope but we looked at an extension of the SABR model with

mean reversion. An approximation using a similar approach was derived and the

results are still quite outstanding although the model has a much more complicated

structure.

Chapter 7 is a bit different in focus compared with Chapters 5 and 6. We

test further the appropriateness of our chosen models. The hedging properties were

assessed for the SABR and SABR-MR models presented in Chapters 5 and 6 in

the context of Europeans. We first provided a brief guide and explanation about

different ways to hedge a European option with stochastic volatility in theory and

practice. We then calculated the deltas and vegas under the two models following
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these different methods and the results showed that the SABR and SABR-MR

models yield very similar hedging properties for European options.
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