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Abstract

Electron capture dissociation (ECD) is a powerful and superior

tandem mass spectrometry (MS) fragmentation technique in the study of

protein post-translational modifications (PTMs) due to its unique features

of preserving labile modifications and providing more detailed sequence

information, which has been used to study protein platination and

disulfide linked proteins. Cisplatin was found cross-linking multiple

methionine (Met) pairs on calmodulin (CaM). The cross–linking of

cisplatin to apo–CaM or Ca–CaM can inhibit the ability of CaM to

recognize its target proteins as proved by a melittin binding assay. To

further establish MS strategies to quickly assign the platinum-modification

sites, a series of peptides with potential cisplatin binding sites were

reacted with cisplatin and then analyzed by ECD. Radical-mediated side

chain losses from the charge-reduced M+Pt species (such as CH3S• or

CH3SH from Met, SH• from Cys, CO2 from Glu or Asp, and NH2• from

amine groups) were found to be characteristic indicators for rapid and

unambiguous localization of the Pt-modification sites on certain amino

acid residues. Furthermore, the potential of cisplatin as a protein cross-

linking reagent was further explored and demonstrated on other peptides

and proteins. Many of the inherent features of cisplatin make it an

interesting cross-linking reagent, such as targeting new protein functional

groups (thioether and imidazole groups), its unique isotopic pattern, its

inherent positive charges, its potential of binding to different functional

groups, etc. However, it was found that the distance constraints obtained
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from NMR structures of CaM are inconsistent with the measured distance

constraints by cross–linking. Therefore, a newly developed flexibility

simulation method was applied to explore whether the flexibility motions

of CaM might contribute to the observed Pt-crosslinking on CaM. The

flexibility analysis showed that the structural flexibility of CaM is key to

cisplatin crosslinking CaM. ECD mechanism of disulfide bonds is still

under debate. To further explore the ECD mechanism of sulfur–

containing species, a series of disulfide (S–S), sulfur–selenium (S–Se),

and diselenide (Se–Se) bond–containing peptides was studied by ECD.

The results demonstrate that the radical has higher tendency to stay at

selenium rather than sulfur after cleavage of Se–S bonds by ECD and

suggest that direct electron capture at Se–Se and C–Se bonds is the

main process during ECD of inter–chain diselenide peptides. Last but not

least, a new active ion ECD (AI-ECD) method, named Shots-ECD, was

developed and applied to improve Top-down ECD backbone

fragmentation efficiency of disulfide-rich proteins. The results show that

the Shots–ECD approach can not only cleave multiple disulfide bonds but

also significantly improve the backbone cleavage efficiency. This strategy

is fast, efficient, and with no need of chemical reduction of samples and

instrument modification, and therefore can be a powerful approach to

improve top-down ECD efficiency of not only disulfide bonded proteins

but all proteins by Fourier transform ion cyclotron mass spectrometry

(FTICR MS).
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Chapter 1

Introduction

1.1 Introduction to the study of protein post-translational

modifications using mass spectrometry

Post-translational modifications (PTMs) are chemical modifications

that are crucially important in regulating the basic biological functions and

the dynamics and structures of proteins. More than 200 different types of

PTM have been characterized and reported, among them, the most

common and important PTMs are phosphorylation, acetylation,

methylation, glycosylation, sulfation, deamidation, nitration, disulfide bond

formation, as well as some other PTMs due to drug treatments, such as

platination.1 PTMs function in various ways, such as, phosphorylation

can reversibly activate/inactivate enzyme activity, regulate many cellular

processes including cell cycle, growth, apoptosis and signal transduction

pathways; acetylation can regulate protein–deoxyribonucleic acid (DNA)

interactions, and stabilize the structures of proteins; glycosylation can

regulate cell-cell recognition and signaling, and affects the folding,

conformation, stability, and activity of proteins; disulfide bonds can

stabilize the structure of proteins.1 Consequently, PTMs are associated

with various diseases, such as cancer, diabetes, neurodegenerative

diseases, and heart disease. The study of PTMs can therefore provide

invaluable insight into the cellular function processes.
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Mass spectrometry (MS) has been recognized as an essential tool

for characterizing PTMs due to its sensitivity, selectivity, accuracy, speed,

and low consumption of samples.2-8 Modified peptides or proteins can be

easily identified by MS due to the mass shift arising from the specific

modification, and the modification site can be further localized by tandem

MS.

This thesis focuses on protein PTMs studies by using tandem MS

methods, including the electron capture dissociation (ECD) and

collisionally activated dissociation (CAD), mainly ECD. This chapter

includes two parts: the introduction to mass spectrometry (section 1.2)

and the introduction to protein platination and disulfide proteins (section

1.3). In the first part, the components and techniques of mass

spectrometry are discussed in details. In the second part, the biological

importance of protein platination and disulfide bonds in proteins is

described, and the applications of ECD in metal bound proteins and

disulfide proteins are introduced.

1.2 Introduction to mass spectrometry

MS is a powerful analytical tool for providing molecular weight

information, and for elucidating the structural details of molecules. There

are three main components in a mass spectrometer, including the

ionization source, the mass analyzer, and the detector. In this section,

the major ionization techniques and mass analyzers will be introduced,

followed by tandem fragmentation techniques.
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1.2.1 Major ionization techniques

In mass spectrometers, only charged particles can be analyzed

and detected; therefore, the first stage of MS is to convert sample

molecules to ions in an ion source. A variety of ionization techniques has

been used for mass spectrometers, among them, electron impact (EI) and

chemical ionization (CI) are the most classic ionization methods.

Electron impact (EI)

Electron impact (EI) ionization is the original MS ionization method

and is usually used for the ionization of volatile organic compounds,

limited to volatile, low molecular weight, and thermally stable samples. In

EI, the sample is first vaporized into the mass spectrometer ion source;

where it collide with a beam of electrons with sufficient energy (~ 70e V)

to ionize the sample molecule by detachment one electron.9 The process

is summarized as follow:

M + e- → M+• +2e- (1.1)

The molecular ion generated, M+•, is a radical; thus is often not

stable and tends to fragment. Therefore, EI mass spectra are often

characterized by intense fragment ions and small molecular ion peaks.

Chemical ionization (CI)

CI involves multiple steps of ion-molecule reactions. The reagent

gas molecules (such as methane, ammonia) are first ionized by EI and

further undergo ion-molecule reactions with themselves and then the

molecule of interest. Taking the methane as the reagent gas for an

example, the processes generally occur as follow:

CH4 + e- → CH4
+• +2e- (1.2)
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CH4
+• + CH4 → CH5

+ + CH3
• (1.3)

M + CH5
+ → CH4 + MH+ (1.4)

The molecular species generated in CI are not the odd-electron

molecular ions (M+·) seen in EI, but the protonated even-electron

molecules, MH+. Thus, the CI molecules species are relatively more

stable compared with the molecular ions in EI and are less prone to

fragmentation. CI is particularly useful for providing the molecular weight

information but also requires volatile and stable samples.9

Matrix assisted laser desorption (MALDI)

Matrix assisted laser desorption ionization (MALDI) was first

invented by Karas and Hillenkamp in 1985.10-13 In 1988, Tanaka applied

a similar method to ionize large molecules, proteins and polymers, with

mass over 100,000 Da,14 Since then, MALDI has been widely applied to

the analysis of biomolecules, such as peptides, proteins, DNA, and large

organic molecules.13-18 The mechanisms of MALDI are still under debate

due to the complexity of the process.19, 20 In a simplified explanation,

MALDI typically involves a combination of two processes: desorption and

ionization. Samples are first mixed with excess of matrix and then

irradiated with UV or IR laser light. The matrix molecules heavily absorb

IR or UV laser energy, and lead to the ablation of the upper layer of the

matrix. Vaporized gas phase mixtures of neutral and ionized matrix

molecules and neutral sample molecules are then formed, followed by

proton transfer that results in the formation of ionized analytes (see

Figure 1.1). Most commonly used matrix molecules for peptide and

protein analysis include 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-
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hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The main

structure features that shared by these matrix are the aromatic structure

which absorbs the laser energy, and a functional group which can donate

proton, like carboxylic acid.

Figure 1.1 Diagram of the principle of MALDI (see

http://www.magnet.fsu.edu/education/tutorials/tools/ionization_maldi.html

for information, accessed 31st Dec, 2012)

MALDI is a soft ionization technique, which is particularly suitable

for non-volatile samples, such as biomolecules and polymers. The ions

generated in MALDI are typically singly-charged species, which simplifies

the spectra interpretation. As the MALDI process is independent of the

size of the compound analyzed; therefore, molecules with mass up to

300,000 Da can be detected with the hyphenation of time-of-flight mass

analyzers. In addition, MALDI is also more sensitive and rapid than other

laser desorption techniques, consumes fewer amounts of samples, has a

better tolerance for salt adducts, and requires less sample preparation
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procedure.

Electrospray ionization (ESI)

Electrospray ionization (ESI), invented by Fenn in the late

1980’s,21 along with MALDI, are the two revolutionary soft ionization

techniques, which made the analysis of large biological molecules

possible and contributed to the increasing understanding of the

processes of life. For the recognition of their contributions, Tanaka and

Fenn were rewarded the Nobel Prize in Chemistry for the inventions of

MALDI and ESI techniques in 2002.

Figure 1.2 Diagram of the principle of ESI

(See http://www.chm.bris.ac.uk/ms/newversion/esi-ionisation.htm for

information, accessed 31st Oct, 2012)

In ESI, the analyte is firstly dissolved in an easily evaporated

solvent and then introduced into a capillary tube. As shown in Figure 1.2,

a high electric potential of several kilovolts is applied to the capillary, and

the resulting strong electric field between the capillary and the counter

electrode induces charge accumulation at the liquid surface located at the
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tip of the capillary, which produces the charged droplets. A

countercurrent flow of dry gas is often used to assist the evaporation of

droplets and a sheath gas is used coaxially to reduce the radial

dispersion of the spray. When the “Coulombic repulsion” exceeds the

surface tension, smaller sized offspring droplets are released. This

process continues until the solvent is completely evaporated and the

charged ions are formed.

Both positive– and negative–ion spectra can be obtained. For

positive-ion mode, 50/50 H2O/acetonitrile or H2O/methanol is often used,

1% formic acid or acetic acid is usually added into the analyte solution to

enhance protonation and increase sensitivity. For negative-ion mode,

0.1% ammonium hydroxide is suitable to add to help deprotonation and

increase sensitivity.

One of the advantages of ESI is that multiply charged ions are

often formed, which not only improves the sensitivity, but also allows the

analysis of high molecular weight molecules. In addition, ESI is a soft

ionization technique so intact molecules are observed. Overall, ESI can

be used to the analysis a variety of samples, including peptides, proteins,

organometallics, polymers, petroleum, organic compounds, etc.2, 21-25

1.2.2 Mass analyzers

Once the analyte ions are generated in the ion source, they are

directed into the mass analyzer region of the mass spectrometer by

electric potentials, separated, and measured by a mass analyzer

according to their mass-to-charge ratios. The mass analyzer is the heart

of a mass spectrometer. There are many types of mass analyzers
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available, and the operating principles of several commonly used mass

spectrometers, including quadrupole mass analyzers, time-of-flight (TOF)

mass analyzers, and ion cyclotron resonance cell will be briefly discussed

here.

The performance of a mass spectrometer can be evaluated based

on the following important characteristic factors, including the mass range,

the mass accuracy, the mass resolving power, the scanning speed, the

sensitivity, and the transmission efficiency. Mass range is the range of

mass-over-charge (m/z) values that can be detected by a mass

spectrometer. Mass accuracy is the accuracy of m/z value and is usually

calculated by the difference between the experimental value and the

theoretical value in parts per million (ppm) units. Resolution or resolving

power represents the ability of a mass spectrometer to distinguish two

very close peaks in a mass spectrum. The resolving power (R) can be

calculated as R=m/Δm, where m is the m/z value of the peak and Δm is 

its full width measured at half maximum (FWHM). The scanning speed is

the rate at which the analyzer measures over a particular mass range.

The sensitivity of a mass spectrometer indicates the lowest amount of

sample that can be analyzed, which is affected by transmission efficiency.

Transmission efficiency is the ratio of the actual number of ions reaching

the detector to the total number of ions generated in the ion source region.

Quadrupole mass analyzer

A quadrupole mass analyzer consists of four parallel rods with

each opposite pair being electronically connected. As shown in Figure

1.3, the ions enter and travel in the z direction, while oscillating in the x-y
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plane. The oscillation is controlled by the radio frequency (RF) voltage (V)

and a direct current (DC) voltage (U) can be applied to each pair of rods.

Only ions with stable trajectories at the selected U and V values can

travel through the quadrupole and be detected.

Figure 1.3 The scheme of a quadrupole device (Reproduced from

Hoffmann et al. 2007)9.

The ion motion in a quadrupole is governed by the Mathieu

equation,9 and the trajectory stability of ions can be described by the two

following equations:

22

0

8

mr

eU
a  (1.5)

22

0

4

mr

eV
q  (1.6)

where a and q are related to direct DC potential U and the magnitude of

radio frequency V, respectively, ω is the angular frequency and r0 is the

half distance between the two opposite rods. For each different mass,

the solution to the Mathieu equation results in a different stability areas

(see Figure 1.4). With specific U and V values, only ions within a narrow
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m/z range can travel through the quadrupole, and the rest of the ions will

have unstable trajectories and strike on the rods. Therefore, quadrupole

mass analyzers can be used to isolate ions. As shown in Figure 1.4,

when a constant U/V value is kept during operation, the U/V line only

crosses the vertices of the stable areas; thus only the ion with specific

m/z value is transmitted. By adjusting the U/V value, the resolution of a

quadrupole mass analyzer can be varied. When the DC potential U is off,

the quadrupole functions as a RF only ion guide, which allows all ions

above a certain m/z value passing through the quadrupole.

Figure 1.4 Theoretical stability diagrams as a function of U and V for ions

with different masses (x < y < z). By ramping the U and V values

appropriately, only the peak of each individual stability diagram will be

transferred.

In practice, the upper-mass-limit of a quadrupole is around m/z

4000, resolution below 3000, and mass accuracy about ~100 ppm.9 The

advantages of a quadrupole mass analyzer are that they are low-cost,

easy to build and operate, and have the ability for ion isolation.
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Quadrupoles are often used as ions guides, ion selectors, and ion

storage devices in mass spectrometers.

Time-of-Flight (TOF) mass analyzer

In a time-of-flight (TOF) MS, ions generated in an ion source are

accelerated by an applied electric field and then separated in an

evacuated field-free flight tube (the drift region) of the instrument based

on their m/z values. The TOF mass analyzer measures the mass based

on the flight time of an accelerated ion travelling through the drift region to

a detector.26 The flight time can be calculated based on the length of the

flight tube (L) and the velocity (v) as:

v

L
t  (1.7)

the velocity can be derived from the initial kinetic energy,

zeV
mv

E 
2

2

(1.8)

Then the flight time (t) can be derived from equations 1.7 and 1.8 as:

zeV

mL
t

2

2

 (1.9)

where m and z are the mass and charge of the analyte ion, respectively,

and V is the accelerating potential. It can be seen from equation 1.9 that

lighter ions travel fast and reach the detector first, followed by heavier

ions.  Ion flight times typically lie in the range of ~ 100 μs;9 thus the TOF

analyzers are very fast. The pressure in the drift region is in the 10-7 torr

range so that the ions are allowed to drift with a minimum number of

collisions with background gases.

In reality, the initial velocities of ions with the same m/z generated
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are slightly different, which cause peak broadening and lower the mass

resolution of the TOF mass analyzer. There are several methods that

have been used to correct the kinetic energy spread, including the time-

lag-focusing method, the retarding field, and the reflectron.26, 27 With the

implementation of these techniques, modern TOF instruments can easily

reach a resolving power of 20,000 and mass accuracy of <10 ppm.27 In

addition, TOF instruments have high sensitivities and require relatively

small amount of samples, and there is no limitation for its mass range.

Fourier transform ion cyclotron resonance mass spectrometer

(FTICR MS)

The principle of cyclotron resonance acceleration was discovered

by Ernest O. Lawrence in 1930, and was first applied into a mass

spectrometer by Sommer et al. in 1950s. Two decades later, Melvin B.

Comisarow and Alan G. Marshall applied the Fourier transform method to

ion cyclotron resonance (ICR) mass spectrometry and built the first

FTICR MS instrument.28 The FTICR determines the mass-to-charge ratio

of ions by measuring their cyclotron frequency in a uniform magnetic

field.29, 30 As shown in Figure 1.5, ions are trapped radially in a

homogeneous axial magnetic field, and trapped axially by an electric field.

By applying a RF resonance excitation pulse to the two excitation plates,

ions are resonantly excited to higher cyclotron radius. The coherent ion

cyclotron motion of an ion package of given m/z induces image charge in

the detection plates. The image charge is amplified, and digitized to

generate the time domain transient. The transient signal can be Fourier

transformed into a frequency domain spectrum, calibrated, and converted
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into a mass spectrum.29 The advantage of FTICR MS is that the excited

ions can travel a distance of ~ kilometers during a detection time of a 1-s.

Thus, for a typical transient length of a few second or even minutes, a

resolving power over ~106 can be achieved.

Figure 1.5 Scheme of events that take place during excitation and

detection in an FTICR MS.

The main components of all FTICR MS instruments include a

magnet, a mass analyzer ─ ion cyclotron resonance cell (ICR cell), ultra-

high vacuum system, and data system. Among the magnets used for

FTICR MS, including permanent magnets, electromagnets, and

superconducting magnets, actively shielded superconducting magnets

are the most commonly used ones. As the core part of a FTICR MS, the

ICR cell is introduced in detail in the following section, along with ion

motions in the ICR cell, excitation, and detection.

Ion cyclotron resonance (ICR) cell. There are several types of
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ICR cells, including cubic cells, open cylindrical cells, cylindrical cells with

end-caps, “infinity cells”, and the newly developed ParaCell.29, 31 The

cubic cell is the original one as shown on the top-left of Figure 1.6. It has

the simplest configuration, with three sets of opposed plates for the

purpose of excitation, detection and trapping ions. The ions are trapped

in the z-direction by the two end-caps, and confined in the x-y plane by

the magnetic field. The trapped ions can then be excited and detected

using the other two sets of opposed plates.

Figure 1.6 The scheme of ICR cells. (Top) cubic cell and (bottom)

cylindrical cell.

The open cylindrical cell as shown in the bottom of Figure 1.6 is a

cylinder that axially segmented into three parts to produce ring electrodes.

The central cylinder has four plates, with two opposed ones function as

excitation plates and the other two as detection plates. The two cylinders

at the end are trapping plates to confine ions in the z-direction. The

advantage of open cylindrical cells is the uniformed excitation field

generated and easy access for ions as well as for electrons and photons.
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Ion motions in the ICR cell. Ions in the ICR cell experience a

complex combination motion of three types: cyclotron motion, trapping

motion, and magnetron motion.29, 30

Ion cyclotron motion. When an ion moves perpendicular to the

magnetic field, the ion will experience Lorentz force (F1) and be deflected

in a direction that is perpendicular to both its velocity and the magnetic

field (Figure 1.7).

)(1 BvqF  (1.10)

Where q is the ion’s charge, v is its velocity, and B is the magnetic

field strength.

Figure 1.7 Ion cyclotron motion in a uniform magnetic field (B)

(Reproduced from Marshall et al. 1998).29

Under the influence of the magnetic field, a stable circular orbit of

radius r results when the inward directed centripetal “force”

r

mv
F

2

2  (1.11)

F2 is balanced by the inward magnetic force, namely

21 FF  (1.12)

)(
2

Bvq
r

mv
 (1.13)
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The angular velocity ω of an ion is  

r

v
 (1.14)

Thus, by combining the above two equations, we have:

m

qB
c  (1.15)

The cyclotron frequency fc  equals to ωc; therefore it can be calculated as:

m

qB
fc

2
 (1.16)

This equation specifies that the cyclotron frequency of an ion in a

constant magnetic field is inversely proportional to its mass-to-charge

ratio, and most importantly, the cyclotron frequency does not depend on

the velocity or energy of the ion, which is the key feature why FTICR MS

is capable to achieve such high resolving power. While, for most other

types of mass spectrometers, their resolutions are limited by the energy

spread. Typically, the cyclotron frequency ranges from a few kHz to a

few MHz.

Trapping motion. Ions are confined radially by a magnetic field as

mentioned above; however, ions are free to escape along z-axis. To

prevent the escape of ions along the z-axis, a small voltage is applied to

the trapping plates; an electrostatic potential well is therefore created.

Ions are trapped in the well if their energy is lower than the trapping

voltage, and oscillate slowly back and forth between the trapping plates.

Typically, the frequency of the trapping motion is around a few kHz.

Magnetron motion. The trapping potential also produces a radial

force, which acts on the ion and produces an outward-directed electric
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force that opposes to the inward-directed magnetic force from the applied

magnetic field. Thus, the voltage VT on the trapping plates causes a

small decrease in the cyclotron frequencies, and the effective total force

experienced by the ion in the ICR cell can be calculated as:

r
a

qV
rqBrmForce

Trap

20
2


  (1.17)

or 0
2

02 
ma

qV

m

qB Trap
 (1.18)

Solving equation (1.18) for , we then can obtain two natural rotational

frequencies in place of the original “unperturbed” cyclotron frequency.

2
)

2
(

2

2
2 zcc

c


  (1.19)
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(
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2
2 zcc

c


  (1.20)

in which,
2

2

ma

Vq Trap

z


  (1.21), and

m

qB
 (1.15)

where ω+ and  ω- are the reduced cyclotron frequency and magnetron

frequency, respectively,  ωc is the unperturbed cyclotron motion,  ωz is

the frequency of the trapped ions in the z-direction.
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Figure 1.8 Ion motion in a cubic Penning trap, where the arrows show the

directions of ion motions, including cyclotron motion, magnetron motion,

and trapping motion (Reproduced from Marshall et al. 1998).29

Z-axis motion ωz is proportional to VT, so increasing the trapping

potential increases  ωz and ultimately decreases  ωc. Therefore, there is a

trade-off between raising the trapping plate voltages to better trap/detect

the ions and perturbing the true cyclotron frequency. Figure 1.8 shows

the ion motions in a Penning trap. The magnetron frequency (a few Hz)

and trapping frequency (a few kHz) are usually much less than the

cyclotron frequency (~ kHz to ~ MHz), and are mot determined in typical

experiments.29

Excitation and detection. Typically, initial ion cyclotron radii are

in the sub-millimeter ranges, which are too small to induce detectable

image current in the detection plates. In addition, the thermal cyclotron

motion of the ions is incoherent and generates zero net image current on

the detection plates. Therefore, a spatially uniform rf electric field (E0)

with frequency corresponding to a particular m/z value is used to

accelerate ions coherently to a larger cyclotron radius (see Figure 1.5),

which thus induces detectable image current on the detection plates. The

post-excitation radius r can be calculated from the following equation

(1.22):

B

TE
r Excite

2
0 (1.22)

or
dB

TV
r

Excitepp

2


 (1.23)
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where Vp-p represents the peak-to-peak excitation voltage, Texcite is the

excitation duration in seconds, and d is the distance between the two

opposite detection plates in meters.

It is clear from equation 1.22 that the post-excitation ion cyclotron

radius is independent of m/z. Thus, all ions of a certain range m/z can be

excited to the same ICR orbital radius. A broadband exication is usually

performed by frequency-sweep (chirp) excitation or stored waveform

inverse Fourier transfrom (SWIFT) excitation.29, 32 However, when using

the chirp-excitation, the power that ions experience is not evenly

distributed over the excitation range; therefore ions are excited to slightly

different cyclotron orbital radius, typical varying 10%. In addition, the

mass selectivities at the beginning and end of the frequency sweep are

poor. SWIFT, on the other hand, produces the flattest excitation. The

idea was proposed by Marshall et al.,32 in which the whole process is

reversed. The desired mass-domain is first defined and converted to a

frequency-domain spectrum, followed by performing an inverse Fourier

transform of the frequency spectrum to a time-domain excitation signal.

Resonant excitation creates spatially coherent ion packets, which

induces image current on the two opposite parallel detection plates. The

image current can be calculated as follow:

d

qy
Q

2
 (1.24)

where q represents the charge of an ion and is the distance between

the two detection plates.

Thus, the ICR signal is proportional to the induced current, which

inturn is proportional to the post-excitation radius. In addition, the
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detected signal intensity increases linearly with ion charge, so that the

ICR is more sensitive for multiply charged ions. Moreover, all ions of a

certain m/z range can be excited to the same ICR orbital radius; thus ions

of a wide m/z range can be detected simultaneously.29

Resolving power/resolution. In MS, resolution is defined as the

full width of a spectra peak at half-maximum peak height, ∆m50%, and the

resolving power is the observed mass divided by the mass peak width at

half-maximum height, namely m/∆m50%. In FTICR, the resolution can be

estimated by:

2
~

fT
R (1.25)

Where f is the cyclotron frequency and T is the transient length.

Therefore, the resolution in FTICR is determined by the transient length

and frequency. Although the length of the transient can last forever in

theory, in reality, the transient signal decays with time because

background gas in the ICR cell can lead to collisions between ions and

neutral gas molecules, the coherent ion cyclotron motion of the ion

package can then be destroyed and lead to signal decay. Therefore,

ultra-low pressure is essential to achieve high resolution, cryogenic

pumps or turbopumps are often used to achieve pressures down to ~ 10-

10 torr.

Since
m

qB
f

2
 , the mass resolving power increases linearly with

the strength of magnetic field. In general, the performance of the FTICR

MS instrument improves as the magnetic field strength increases;

however, the costs for the magnets of high field also increase
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dramatically. Currently, the magnet strengths of the commercial magnets

range from 3 to 15 T. However, the FTICR instrument using 21 T

superconducting magnets are under construction by the national high

magnetic field laboratory at Florida University and Pacific Northwest

national laboratory, respectively, aiming to achieve revolutionary

capabilities in FTICR MS.

Dynamic range. The detection limit of a MS indicates the lowest

amount of sample that can be analyzed. For a FTICR MS, typically ~ 100

charges of a given mass-over-charge are required to induce a detectable

image current for a broadband detection. Therefore, FTICR MS is

inherently less sensitive than ion-counting mass spectrometers. A lot

more ions can be trapped inside the ICR cell; however, when more than ~

100, 000 ions are presented in the cell, space charge effect needs to be

considered, which can induce peak broadening or peak coalescence, and

eventually leads to transient signal decay.29 Theoretically, the dynamic

range increases linearly with the magnetic field; therefore, higher magnet

field strength is preferred.

Deleterious factors. Space charge and magnetron expansion are

the two factors that cause the most deleterious effects on the

performance of ICR instruments.29, 30 The space charge effect is the

result of Coulombic interactions between and within ion clouds in an ICR

cell. It affects the instantaneous trapping field experienced by the ions,

thus the duration of the observable signal and the stability of the resonant

frequency. Space charge increases both the peak width and the

uncertainty of the peak position, causing frequency shift and peak
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coalescences, hence reducing the resolving power and the mass

accuracy. Magnetron motion is associated with the geometry of the

trapping potentials and its radius expands over time. This magnetron

expansion results in the exposure of the ion packets to increasingly

inhomogeneous trapping field, thus causing a decrease in the resolving

power and the mass accuracy.

The ultrahigh resolving power (~ 500, 000) and mass accuracy (<

1 ppm) of the FTICR MS make it particularly suited for complex sample

analysis, such as top-down protein analysis.33-35 The instrument used in

this thesis is a commercial 12 T Bruker solariX FTICR MS instrument;

therefore the main components of this instrument will be introduced

briefly in a later section.

1.2.3 Tandem mass spectrometry methods

Tandem mass spectrometry (MSn) can provide detailed structural

information for organic and biological samples by fragmenting the parent

ions. Over the years, many different fragmentation techniques have

been introduced, including collisionally activated dissociation (CAD),36

also known as collision-induced dissociation (CID),37 sustained off-

resonance dissociation (SORI-CAD),38 blackbody infrared radiative

dissociation (BIRD),39 infrared multiple photon dissociation (IRMPD),

electron capture dissociation (ECD),40 electron transfer dissociation

(ETD),41 electron detachment dissociation (EDD),42 electron induced

dissociation (EID), etc. Different fragmentation techniques can produce

different types of fragments. The structure or sequence information can
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then be deduced based on the masses of the fragments. Figure 1.9

shows the types of fragment ions of peptides or proteins that can be

generated in MS/MS analyses, which was proposed by Roepstorff in

1984.43

Collisionally activated dissociation (CAD)

CAD or CID was first introduced by Jennings37 and later by

McLafferty,36 and refers to the process in which inelaslic collisions

between ions and neutral gas molecules, such as gases are helium,

nitrogen, and argon, results in the conversion of part of the translational

energy into internal energy of ions and subsequent fragmentation. The

deposited vibration energy is redistributed rapidly throughout the

molecule prior fragmentation; therefore, the cleaved bonds are mostly the

weakest bonds. In peptides, the cleavages typically occur at the

backbone amide bond, yielding b and y ions (see Figure 1.9).

Preferential cleavages at the N-terminal proline and C-terminal aspartic

acid have been previously reported.44-46

Figure 1.9 Nomenclature of peptide N- and C-terminal sequence ions

used in mass spectrometry.

CAD is by far the most commonly used tandem fragmentation
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technique, which has been extensively used in the structural analyses of

peptides and proteins, oligosaccharide, and DNA.44, 47-51

Infrared multiphoton dissociation (IRMPD)

IRMPD is also based on the excitation of vibrational modes of ions,

in which parent ions are irradiated with an infrared laser (CO2 laser at

10.6 μm) and the absorption of photons leads to the fragmentation of 

parent ions.52, 53 IRMPD primarily produces b and y-type fragment ions,

just like CAD. However, compared to CAD, IRMPD often produces more

extensive fragmentation because the initial fragment ions generated by

IRMPD are also irradiated by the laser beam and fragmented.53

Electron capture dissociation (ECD)

The first ECD-type results were observed by Guan et al. in

ultraviolet (UV) photodissociation of multiply charged protein cations.54

Unusual c/z fragments and charge reduced precursor were unexpectedly

observed, which indicated that the parent ion reacted with electrons.

Similar results were also observed in the analysis of peptides using

MALDI in source decay (ISD) dissociation.55 It was thought that electrons

were produced by the UV laser hitting the edge of the ICR cell and this

assumption was further examined by modifying the ICR cell to trap ions

and electrons simultaneously by Zubarev et al. in 1998.40 The significant

increase of the charge reduced species and c/z fragments indicates that it

was the secondary electrons generated by the UV laser hitting the ICR

cell and not the UV photons responsible for this effect.56 ECD was

therefore born when the UV laser was replaced by a directly heated

filament.



25

ECD mechanisms. Several mechanisms have been proposed for

ECD, including mainly the Cornell mechanism,40, 57 the Utah-Washington

mechanism,58-63 and the Free radical cascade mechanism.64

The Cornell mechanism (the hot-hydrogen mechanism). Based on

the earliest experimental work on ECD, McLafferty et al. proposed that

electrons were initially captured at a positively charged site to form a

hypervalent radical center and a hot H• was then released to

subsequently attack (1) an S-S to cleave it to form –S• and –SH species

or (2) a backbone carbonyl oxygen atom for form a –(•COH) –NH–Cα–

radical center and break the N–Cα bond.57 The preservation of labile

modifications and nonselective cleavage in ECD lead to the idea that

ECD is a non-ergodic process, namely, the fragmentation occurs before

intramolecular vibration energy redistribution. The non-ergodic idea of

ECD has since then been under hot debate. Although there are

experimental results that support this idea, the theoretical calculation

results obtained by Turecek suggest that N-Cα bond cleavages in peptide

ketyl radicals and cation-radicals are extremely facile reactions.65

Therefore, it might not be necessary to use non-ergodicity to explain the

cleavages of strong N-Cα bonds while keeping weak bonds intact.

In the ECD study of a doubly charged peptide containing a

disulfide linkage at its center (KAjCAc)2 carried out by the Marshall

group,66 intense abundance of fragments resulting from the cleavage of

the disulfide bond were detected and similar fragmentation pattern was

also observed when the protonated Lys termini were replaced by

providing the charges with Na+ cations. These observations made them
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suspect that the hot-hydrogen mechanism might not be correct or not be

the only ECD mechanism because it is hard to explain how these hot H•

atoms can travel up to 32 Å (KA20CAc)2, j=20) to cleave the S-S bond.66

Alternative ECD mechanisms were therefore being considered.

Utah-Washington mechanism. It was proposed by the Simons

group58, 59, 67, 68 and the Turecek group60, 65, 69 independently that the

electron initially is captured in a Rydberg orbital centered on the positive

charge site, and subsequently undergoes intra-molecular electron

transfer to S–S σ* or an amide π* orbital to cleave the S–S or N–Cα bond.

In addition, Simons also proposed that direct electron capture at

S–S σ* or amide π* orbitals can promptly cleave the disulfide bond or 

form a –(•COH) –NH–Cα– radical and then cleaves the N–Cα bond.58

Although vertical electron attachment to an S– S σ* or amide π* orbital is 

ca. 1 eV or ca. 2.5 eV endothermic, respectively, the ab initio calculation

results show that the Coulomb stabilization by positively charged groups

can lower the energies of these low-lying anti-bonding orbitals, so that

electron attachment to these orbitals becomes exothermic. In addition,

based on Simons’ calculation, 90~99% of the initial electron attachment in

ETD (similar in ECD) most likely occurs into a Rydberg orbital on a

positive site and with 1~10% directly attached to the S–S σ* or amide π* 

orbital.

Free radical cascade mechanism. In the ECD study of doubly

charged cyclic peptides by Leymarie et al.,64 many fragments

corresponding to amino acid losses and side-chain losses were observed.

The observation of amino acid losses was unexpected because they
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require one electron capture to cleave multiple backbone sites. The free

radical cascade mechanism was therefore proposed, which suggests that

ECD generates an α-carbon radical species that then migrates along the 

protein backbone and induces secondary fragmentation. Recently, the

results from the Turecek group suggest that peptide cation radicals do go

through cascade dissociations.70, 71

Side chain cleavages from ECD. Electron capture by multiply

charged peptide and protein cations can also result in cleavages in amino

acid side-chains. These side-chain losses can then be used

diagnostically to identify the presence of certain amino acids in a

sequence. Some of the w-ions can also be used to differentiate isomeric

amino acids, such as IIe and Leu.72-75

Implementation of electron capture dissociation. ECD has been

almost exclusively equipped in FTICR MS instruments. It is mainly

because the heating of electrons can be avoided in an electromagnetic

field of FTICR, allowing more accurate control of electron kinetic energy,

which can give sufficient time for ions and electrons to interact. The main

obstacle of implementing ECD in other RF types of instrument is mainly

because the electrons are energized by the RF field and are ejected

typically within a microsecond. Although the simulation results show that

it is possible to use ECD in a Paul trap with the addition of a weak

magnetic field, the implementation of ECD in RF ion traps remains

challenging and ECD efficiency achieved is rather low.76, 77

In the early years of using ECD, electrons were generated by a

directly heated filament. Thus the cross-section of electron beam
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generated by the filament is not only small in diameter but also the

electron energies have a broad distribution due to the variation of the

electrical potential of the heated filament. In addition, the electron energy

flux is low and a good overlap between ions and electrons is often hard to

achieve. Therefore, it typically requires seconds of reaction to obtain

extensive fragment ions, which in turn limits the hyphenation of ECD with

separation techniques, such as liquid chromatography (LC) or capillary

electrophoresis (CE).

To improve the overlap of ions and electrons, to control electron

energy, to shorten the reaction time, to achieve high electron flux and

high rate ECD fragmentation efficiency, and to simultaneously perform

IRMPD/ECD, directly heated filaments have been replaced by various

types of indirectly heated dispenser cathodes to generate wide,

compressed, hollow, or cold ultra-wide electron beams.78 Each different

cathode has its own advantages and disadvantages, nevertheless, with

the use of dispenser cathodes, ECD fragmentation efficiency was

improved and the irradiation time was lowered to milliseconds. The

hollow dispenser cathode has been standardly implemented on Bruker

FTICR MS systems, allowing the combination of IRMPD and ECD in a

single experimental configuration.

Although ECD has been proved as a useful fragmentation

technique in many applications, the conversion efficiencies of precursor

ions to product ions is often limited. The experimental factors were

therefore examined by different groups to improve the efficiency.79, 80 It

was shown that the optimal irradiation period is inversely proportional to
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charge state, and the reflection of electrons through the ICR cell can

significantly improve ECD efficiency compared to a single pass.79, 80 A

further study by Tsybin et al. highlighted that the magnetron motions of

ions in the ICR cell can periodically modulate ECD fragmentation

efficiency due to the periodic overlap (misalignment) of ion cloud and

electron beams.81 Thus, the ECD conditions can be optimized by

correctly phasing electron injection with the ion magnetron motion or by

sidekick to manipulate ion magnetron motion. In addition, the overlap of

ions and electrons can be improved by on- and off-resonance ion

excitation prior to ion ejection.82, 83

Another factor limiting ECD efficiency is due to the conservation of

weak noncovalent interactions, which becomes problematic because c

and z• fragments can be held together through non-covalent bonding,

thus preventing their separation.84 Various activation methods have

been used to remove noncovalent interactions to give greater structure

fluctuations favored by ECD analyses, including IR laser radiation,

collision activation, blackbody radiation, or in-beam collisions.85-89 The

combination of these activation methods with ECD has been

demonstrated to yield remarkable improvement in ECD fragmentation

efficiencies, which in general was referred as “activated-ion ECD” (AI-

ECD).88

Applications of ECD. ECD has proven to be a powerful and

superior tandem fragmentation technique in the study of PTMs, protein

complexes, and top-down analyses due to many of its unique features.90

First, the cleavage sites in ECD are often complementary to those
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generated by conventional dissociation techniques, like CAD, which

makes the combination of these two types of techniques extremely

powerful in sequencing polypetides. Second, although the fragment ions

are usually low-abundance, the relatively nonselective homolytic

cleavages nature of ECD generally results in more detailed sequence

information compared to CAD, which is particularly beneficial in top-down

analyses. Last but not least, ECD has a unique feature to conserving

labile bonds during fragmentation, including the labile PTMs of proteins

and noncovalent interactions. Therefore, various types of PTMs have

been identified by ECD, including deamidation, phosphorylation,

glycosylation, sulfation, oxidation, etc.91-96 ECD has been also applied to

the studies of protein folding, and protein-protein complexes. 33, 97-103

Electron capture dissociation related fragmentation techniques (ExD)

As mentioned above, FTICR MS has been the only type of mass

spectrometer that enables the successful application of ECD and the

implementation of ECD in low cost and easily operated mass

spectrometers like RF traps has remained challenging. To overcome the

problem of storage of thermal electrons in an RF field, anions were used

as electron donors to provide electrons to multiply charged peptide

cations. Electron transfer dissociation (ETD) was therefore invented and

implemented in a modified 3D ion trap by Skya and Coon in 2004.41 In a

similar way, N-Cα or disulfide bonds are cleaved in ETD by interacting 

multiply charged ions with anions. The recombination energy in ETD is

lower than in ECD because the electron binding energy barrier has to be

overcome to transfer electrons to from anion to parent ions; the ETD
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efficiency was therefore often lower than that in ECD. However, the

implementation of ETD in low-cost, low-maintenance, and widely

accessible RF ion traps greatly improved the accessibility of ECD-like

dissociation to the whole proteomics field. It has been demonstrated that

ETD efficiency can be improved using a supplemental collisional

activation method (ETcaD) that can activate the charge reduced

precursor ions and promote the backbone dissociation.104

The development of radical-mediated fragmentation techniques

has gone beyond ECD and ETD. Electron detachment dissociation

(EDD)42 and negative ion ECD (niECD) for multiply deprotonated ions,105

and electron induced dissociation (EID) for singly-charged ions have also

been discovered.106 In EDD, multiply deprotonated ions interact with high

energy electrons (> 10 eV), resulting in the electron detachment from the

precursor ions and the formation of the nitrogen centred radical anions for

peptides/proteins, which can undergo Cα-C bond cleavages and side

chain losses.42 The efficiency of EDD can be improved by increasing the

charge state of the precursor ions, and by adjusting the voltages on the

cathode and the extraction lens. EDD is particularly useful for the

analysis of peptides/proteins rich in acidic residues, e.g. Asp, Glu, DNA

and RNA.107, 108 Ni-ECD was discovered by the Håkansson group,105

they found that peptide anions can capture electrons within a narrow

energy range (3.5~6.5 eV), resulting in charge-increased radical species

that then undergo dissociation similar to that in ECD/ETD. The increase

of charge in ni-ECD enables its application in not only multiply-charged

anions, but also singly-charged ions and this technique has been found
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useful in the analysis of PTMs, such as phosphorylation, sulfonation,

glycation, and disulfide linked peptides.105 EID is another technique that

can be used in the analysis of singly-charged ions. Following the

irradiation of peptide ions (singly or multiply charged) with fast electrons

(6~ 20 eV), the precursor ions are electronically excited and generate

fragments.106, 109

1.2.4 12 Tesla solariX FT ICR mass spectrometer

Figure 1.10 The instrumental diagram of Bruker 12T SolariX FTICR MS.

Figure 1.10 shows the diagram of the Bruker 12T SolariX FTICR

MS (Bruker Daltonics, Bremen, Germany). Ions are first generated using

either the ESI or MALDI source, then transferred through the heated

glass capillary and directed to the ion funnel and skimmer region. The

dual ion funnels can focus ions and transfer them more effectively. Ions

are then focused in the source octapoles before passing through the

quadrupole and hexapole collision cell (Qh front end). When performing

CAD, ions can be isolated by the quadrupole, accumulated and
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fragmented in the hexapole collision cell. ETD can also be performed in

the hexapole collision cell, with radical anions generated by an nCI

source mounted off-axis above the split octapole. Ions then fly through

the transfer hexapoles (ion guide) and enter the infinity cell, where ECD

and IRMPD can be performed. The hollow electron cathode is located on

the other side of the infinity cell, with an extraction lens located between

the ICR cell and the electron gun. The hollow electron gun design allows

the on-axis introduction of an IR laser beam and performance of IRMPD

and IR-ECD experiments.

Typical mass resolving power of over 500, 000 at m/z 400 can be

routinely achieved using this 12 T solariX FTICR MS, with mass accuracy

< 0.5 ppm with internal mass calibration, and < 2 ppm with external

calibration.

1.3 Introduction to protein platination and disulfide bound proteins

In this thesis, the studies on PTMs are particularly focused on

protein platination and disulfide linked proteins, details are introduced

separately in the following sections.

1.3.1 Biological importance of studying protein platination

Since the accidental discovery of the antitumor activity of cisplatin

in 1960’s, platinum-based drugs have been widely used in clinical cancer

treatments. During the last four decades, the research on platinum-based

anticancer drugs has been mainly focused on understanding how

cisplatin and its analogues induce antitumor effects, and on designing
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new platinum drugs with the aim of lessening the toxicity of cisplatin, such

as nephrotoxicity.110-113 It has been found that cisplatin converts to its

active form by aquation of one of the chloride leaving groups, and

subsequently coordinates to DNA, forming inter- and intra-strand

crosslinks, which leads to DNA-damage recognition and repair, cellular

apoptosis, and cell-cycle arrest.111

Although cisplatin is a very effective anticancer drug, it has two

major drawbacks, one is the strong toxicity to kidneys and gastrointestinal

tract, and the other is that tumors usually become resistant to platinum

drugs during treatment.114, 115 Thus, it is important to research on how the

tumour becomes resistant to cisplatin; new anticancer drugs with less

toxicity and better selectivity can then be designed and synthesized.

Intensive studies have been performed to investigate the resistance

mechanisms, and several mechanisms have been proposed, including (1)

insufficient amount of cisplatin reaching the target DNA, (2) increased

intra-cellular trapping of cisplatin, (3) increased repair of DNA damage or

increased tolerance of DNA damage, and (4) miscellaneous.114, 115

Cisplatin primarily binds to DNA to exert its cytotoxicity; however, it

also reacts with many biologically available nucleophiles, especially

sulfur- and nitrogen-containing ligands, such as methinone, cysteine and

histidine. Within one day of injection of cisplatin, 65~98% of the platinum

in the blood plasma is protein-bound.116 The binding of cisplatin to

proteins is implicated to be responsible for many of the severe side

effects exhibited by the drug through the mechanisms (1) and (2) as

mentioned above. Copper transporter-1 (CTR1), the major copper
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plasma-membrane transporter, has been shown to play a critical role in

cisplatin uptake.117-120 Both copper and cisplatin can cause a rapid down-

regulation of CTR1 expression in human ovarian cancer cell lines, and

the loss of CTR1 can result in less platinum entering cells, and

consequently lead to drug resistance.121 In addition, there are some

efflux proteins, such as multidrug resistance protein-1, copper transport

proteins─ATPase, have also been shown to involve the transport of 

cisplatin to a certain extent.114, 115 Moreover, increasing research has

shown that the increased level of thiol-containing species is related to the

drug resistance of cisplatin and its analogues. The strong binding of

platinum to sulfur-containing species, such as cysteine, methionine,

glutathione, and metallothioneins, can lead to drug detoxification,

nephrotoxicity, and resistance.122-128 In addition, recently it has been

reported that the binding of platinum to some proteins, such as human

copper chaperone Atox1 and calmodulin, can induce conformational

changes of proteins, thus interfere with the normal activities of proteins.129,

130

The transport of cisplatin through cell membranes and possible

intermediate binding to proteins remain poorly understood. Therefore,

studies on the interactions of anticancer metallodrugs with proteins are

attracting a growing interest because of their relevant pharmacological

and toxicological consequences.

The discovery and development of new platinum-containing

anticancer drugs have been focused on increasing the selectivity and

lowering the toxicity of this type of antitumor drug. PtIV complexes
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appeared attractive because these octahedral complexes are usually

substitution-inert and require reduction to PtII species to become

cytotoxic.131, 132 A potential application of such processes is for

therapeutic purposes and the development of light-sensitive PtIV pro-

drugs that can be photoactivated to active antitumor agents directly at the

site of the tumor. Such site-selective activation is expected to decrease

the side-effects and toxicity. Hence, the clinical application of platinum

antitumor agents might be expanded.

However, like cisplatin, these molecules also react with proteins,

binding covalently, and little is known about the specificity or positions of

this binding. It is therefore important to explore how cisplatin and its

analogues react with proteins, where they bind to proteins, and what kind

of effect that might have. This research can then in turn facilitate the

development of new metal-based anticancer drugs with low toxicity.

1.3.2 MS studies of protein platination

Early work on studying interactions of antitumor metallodrugs with

proteins has been performed using various spectroscopic techniques,

including circular dichroism (CD), fluorescence, nuclear magnetic

resonance (NMR) spectroscopy and X-ray crystallography. Each of these

methods provides a certain level of information, but meanwhile has some

drawbacks, such as, lack of sensitivity, and inability to provide binding site

information.

MS has been recently shown as an extremely powerful tool to

study the interactions of drugs with proteins, due to its advantage of

sensitivity and ability to provide direct information on the nature of the
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drug-protein adducts, even identification of binding sites.133-136 The

reactions between proteins (e.g. transferrin, cyctochrome c, ubiquitin,

insulin, superoxide dismutase, hemoglobin, cytochrome c, human serum

albumin) and platinum-based drugs have been studied by MS.116, 134, 137-

146 However, little attempt was made to pinpoint the binding sites for

platinum binding to proteins in the early studies.

Recent progress by a combination of mass spectrometry and

proteomics technologies has made the identification of binding sites much

more feasible. There are basically two classes of methods to achieve this,

“bottom-up” (peptide level) and “top-down” (intact protein level)

approaches.147 “Bottom up” strategies involve cleaving the protein into

peptide fragments by proteolytic enzymes prior to mass spectrometry

detection. By applying the bottom-up mass spectrometric approach,

Allardyce et al. successfully identified a binding site between cisplatin and

transferrin.134 “Top-down” methods identify proteins by measuring the

mass of the whole protein, then using tandem mass spectrometry, such

as CAD, IRMPD, and ECD to fragment intact proteins in order to generate

sequence information. Recently, Moreno-Gordaliza et al. were able to

determine the binding sites between cisplatin and insulin by combining

the top-down approach with nano-electrospray ionization mass

spectrometry using a linear ion trap MS.141 Further bottom-up MS study

enabled them to identify more binding sites.143 The combination of FTICR

MS with the top-down and/or bottom-up proteomic approaches makes

MS even more powerful; Hartinger et al. were able to identify the binding

sites of three different platinum anticancer drugs on ubiquitin.146
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In previous reports, CAD has been the main fragmentation

technique used for the localization of Pt-modification sites. There are a

few groups who have attempted but failed with the use of ECD for the

identification of Pt-modification sites.146, 148 It was suggested that the free

electron is captured by the metal ion and thus trapped; therefore no c/z

ions were observed in the ECD experiments.146 In this thesis, ECD was

successfully applied in the top-down and bottom-up analysis of Pt-

modified proteins. Detailed results are given in Chapters 2, 3, and 5.

1.3.3 ECD applied to disulfide bonds in peptides and proteins

Disulfide bonds in proteins are post-translational modifications that

are important for stabilizing the tertiary structures of proteins by

introducing covalent constraints. For many peptides and proteins,

disulfide bonds play a critical role in the folding and structural stabilization

of many extracellular peptides and proteins, such as enzymes, growth

factors, hormones, and toxins.149, 150 Thus, the characterization of

disulfide bonds is an important step to understand the structure of a

disulfide linked protein.

Although top-down MS approach has been successfully used to

sequence proteins rapidly, identify PTMs, and study protein complexes,

the applications of using the top-down MS approach to sequence

disulfide containing proteins remains challenging due to the fact that

disulfide bonds rarely dissociate in the presence of a mobile proton using

collisional activation methods.151, 152 Therefore, recently, top-down

studies of disulphide linked proteins using ECD or related electron–based

dissociation techniques have drawn wide attention.
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It was first reported by Zubarev that ECD preferentially cleaves

disulfide bonds.57 Later on, during the research with the use of other

radical-based fragmentation techniques, such as ETD and EDD to

dissociate disulfide bound protein ─ insulin, preferential cleavage of S-S 

bonds has been reported in both cases; therefore the sequence

information obtained is often limited.153, 154 In Chapter 7, a new AI-ECD

method is applied in a top-down study of disulfide-rich proteins to

enhance the backbone cleavage efficiency and sequence coverage.

The mechanism of ECD is another hot area which attracts wide

attention. So far, several mechanisms have been proposed for the

cleavage of disulfide bonds by ECD. One is that the electron is initially

captured into a Rydberg orbital centered on a positively-charged site, and

subsequently undergoes intra–molecular electron transfer to a nearby S–

S σ* orbital to cleave the disulfide bond.69 Alternatively, an electron is

captured directly into the uncharged S–S σ* orbital to cleave the disulfide 

bonds, S• and S– fragments to be formed through either mechanism,

which subsequently converts to SH by hydrogen abstraction.58

Selenium and sulfur are in the same group of the periodic table

and share many common physicochemical properties. Although these

studies of disulfide bonds in peptides and proteins by ECD have been

investigated during the past few years, little attention has been devoted to

investigating of the ECD behavior of diselenide peptides or proteins.

Previous theoretical calculations on the effects of electron capture on

small diselenide compounds have been performed. Thus, in Chapter 6, a

series of peptides with S–S, S–Se, or Se–Se bonds are studied using
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ECD with FTICR MS, to examine the ECD behavior of diselenide

peptides compared with previous theoretical calculations, and also to

examine the differences and similarities of the ECD fragmentation

patterns among disulfide (S–S), sulfur–selenium (S–Se), and diselenide

(Se–Se) peptides.

1.4 Overview of this thesis

This thesis focuses on the study of protein PTMs by advanced

tandem fragmentation techniques on an FTICR MS, involving both protein

platination and disulphide-linked proteins, and also the mechanism of

electron capture dissociation. The protein PTMs include: mass

spectrometry evidence of cisplatin as a protein cross-linking reagent

(Chapter 2); use of top-down and bottom-up Fourier transform ion

cyclotron resonance mass spectrometry for mapping calmodulin sites

modified by platinum anticancer drugs (Chapter 3); protein flexibility is

key to cisplatin cross-linking in calmodulin (Chapter 4); radical-mediated

side chain losses improve the determination of Pt(II)-modification sites on

peptides and proteins (Chapter 5); and top-down electron capture

dissociation of disulfide-rich proteins (Chapter 7). Research on the ECD

mechanism includes electron capture dissociation of disulfide, sulfur-

selenium, and diselenide bonds-containing peptides (Chapter 6).

Chapter 8 is the conclusion and future work. This thesis demonstrates the

utility of high resolution tandem mass spectrometry as a powerful method

for the studying of protein PTMs.
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Chapter 2

Mass spectrometry evidence for cisplatin as a protein cross-linking

reagent1

2.1 Introduction

2.1.1 Techniques used for probing protein-protein interactions

High-throughput proteomics now enables the assignment of

hundreds to thousands of proteins in a single experiment; however, the

physiological function of many newly discovered proteins remains unclear.

It has become evident that proteins often carry out their function as part of

large complexes, and their interaction is the core of cellular function.155

Therefore, the determination of the three dimensional structure of a

protein and the identification of its interaction partners are critical next

steps in understanding protein action. Many techniques have been

developed to probe protein-protein interactions, such as X-ray

crystallography and NMR spectroscopy, which provide high resolution

structural information, but these methods require a relatively large

amount of pure protein; alternatively, the chemical cross-linking approach

allows low resolution structural data to be generated by covalently joining

pairs of functional groups within a protein or a protein complex. The

covalent bonds formed by cross-linking can stabilize or freeze labile

interactions. Thus the distance constraints created between the reactive

1
This chapter has been partially/entirely reproduced from Huilin Li, Yao Zhao, Hazel I. A. Phillips,

Yulin Qi, Tzu-Yung Lin, Peter J. Sadler, and Peter B. O'Connor. Mass spectrometry evidence for
cisplatin as a protein cross-linking reagent. Anal. Chem. 2011, 83, 5369-5376. Copyright 2011
American Chemical Society.
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groups can help define 3-D structures of proteins or protein complexes.156

2.1.2 The advantages of Fourier transform ion cyclotron resonance

mass spectrometry (FTICR MS) in the analysis of complex samples

The combination of cross-linking with MS has facilitated the

investigation of protein-protein interactions due to its high sensitivity, fast

speed of analysis, reliable sequence identification, and theoretically

unlimited mass range.133, 156-159 FTICR MS has been proved to be a

potent tool for analyzing cross-linking reaction mixtures. The high mass

accuracy of FTICR MS can greatly reduce the number of candidates for

cross-linking products, and in addition, its high resolution, the ability of

allowing a “gas phase” purification to accumulate low intensity cross-

linking product ions, and the ability to fragment large proteins or peptides

extensively are critical for the unambiguous assignment of the cross-

linking products and localization of the cross-linking sites. However, the

identification of the cross-linked products can be still quite difficult due to

the complexity of reaction mixtures.

2.1.3 Challenges in cross-linking chemistry

The cross-linking chemistry inevitably produces a variety of

products, including unmodified peptides, multiply modified peptides,

dead-end, intra- and inter-peptide cross-linking products all present in the

same sample, which makes the detection and identification of low-

abundance cross-linked products challenging. To overcome these

challenges, significant effort has been dedicated to design new cross-

linkers which can enrich cross-linked products via affinity tags,160-162 or

facilitate the identification of cross-linked products by introducing mass
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spectrometry-cleavable bonds158, 159 or specific signature patterns,162-165

such as PIR (protein interaction reporter),159 isotope-labeled cross-

linkers163, 164 or isotope-labeled proteins.165

Although there is a broad range of cross-linking reagents available,

they all target a few particular functional groups, generally primary amines,

carboxylates, sulfhydryls, and free carbonyls (aldehyde groups generated

via protein oxidation).7 The limited choices of reactive groups have

limited the application of cross-linking; moreover, some of the inherent

chemical problems of existing functional groups also hinder the

interpretation of cross-linking data. For example, the complexity of the

reaction mixtures makes assignment difficult, and low charge states but

high mass-to-charge (m/z) ions are often formed upon electrospray

ionization when the cross-linking reagent reacts with primary amine

groups of lysines and the amino terminus, which could otherwise carry a

charge. Therefore, the development of MS identifiable cross-linkers

which target new functional groups will be of benefit in the mapping of

protein-protein interactions.

2.1.4 The potential of cisplatin as a cross-linking reagent

Cisplatin, cis-[Pt(NH3)2Cl2], is a widely used anticancer drug which

exerts its cytotoxic effect by reacting with DNA and forms 1,2-intrastrand

cross-links between adjacent guanines.166 The DNA cross-linking ability

of cisplatin and its analogs have been well documented.166-169 In addition,

a new class of anticancer drugs with multinuclear platinum molecules

linked by flexible arms is capable of forming long range inter- or intra-

stand cross-links.170-172 A few studies have demonstrated the ability of
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platinum compounds to cross-link DNA with proteins.173-175 However, up

to 98% of the platinum in the blood plasma is protein-bound within one

day of injection.176 The binding of cisplatin to proteins is likely to be a

primary cause of the side effects of such chemotherapies. However, the

interactions of proteins with platinum compounds have not been

extensively explored compared to DNA-Pt research.

The ability of a platinum complex to cross-link proteins has been

unexpectedly observed by Guo et al., and their result shows that cisplatin

can stabilize a multimeric complex of the human Ctr1 copper transporter

by cross-linking adjacent proteins via methionine binding.177 Recently, Hu

et al. also found that cisplatin cross-links domains of albumin.178

However, whether cisplatin can function as a cross-linking reagent has

not been fully explored. Platinum(II) has a strong affinity for sulfur and

nitrogen containing ligands, and the coordination sites are the side chains

of methionine (Met), cysteine (Cys) and histidine (His), namely, thioether,

sulfhydryl, and imidazole.113 Thus, cross-linkers targeting these functional

groups will broaden the application of cross-linking and contribute to the

understanding of protein action. Here, the ability of cisplatin as a

potential cross-linker is explored and demonstrated using standard

peptides and the 16.8 kDa protein calmodulin (CaM), but was

unsuccessfully tested with the 64 kDa protein hemoglobin. In addition,

the features of cisplatin as a potential cross–linking reagent are

discussed.
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2.2 Experimental section

Table 2.1 Amino acid sequences of the peptides and proteins studies

here. Ala1 and K115 (in bold) in the sequence of calmodulin are in

acetylated and tri–methylated forms, respectively.

Name Sequence Composition Monoisotopic

Mass (Da)

Angiotensin II DRVYIHPF C50H71N13O12 1045.53451

Bombesin pGlu–QRLGNQWAVGHLM–NH2 C71H110N24O18S 1618.81506

Calmodulin

(CaM)

ADQLTEEQIAEFKEAFSLFDKDGDGTITT

KELGTVMRSLGQNPTEAELQDMINEV

DADGNGTIDFPEFLTMMARKMKDTD

SEEEIREAFRVFDKDGNGYISAAELRHV

MTNLGEKLTDEEVDEMIREADIDGDG

QVNYEEFVQMMTAK

C719H1128O256N188S9 16779.85133

Hemoglobin VLSPADKTNVKAAWGKVGAHAGEYG

AEALERMFLSFPTTKTFPHFDLSHGSA

QVKGHGKKVADALTNAVAHVDDMPN

ALSALSDLHAHKLRVDPVNFKLLSHCLL

VTLAAHLPAEFTPAVHASLDKFLASVST

VLTSKYR (subunit α) 

VHLTPEEKSAVTALWGKVNVD

EVGGEALGRLLVVYPWTQRF

FESFGDLSTPDAVMGNPKVKAHGKKV

LGAFSDGLAHLDNLGTFATLSELHCDKL

HVDPENFRLLGNVLVCVLAHHFGKEFT

PPVQAAYQKVVAGVANALAHKYH

(subunit β) 

C685H1071O194N187S3 (α) 

C724H1119O201N195S3 (β)

15116.88510

(α) 

15857.24969

(β) 
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2.2.1 Materials

Angiotensin II, bombesin, bovine calmodulin (CaM), trypsin,

ammonium acetate (CH3COONH4), and ammonium bicarbonate

(NH4HCO3) were purchased from Sigma (St. Louis, MO). HPLC grade

methanol, acetic acid (HAc), and acetonitrile (ACN) were obtained from

Fisher Scientific (Pittsburgh, PA). Cisplatin was synthesized and

characterized by standard methods.179 Sequences of all the peptides and

proteins are shown in Table 2.1.

2.2.2 Reaction of peptides with Cisplatin

Aqueous solutions of 1000 μM angiotensin II, 1000 μM bombesin, 

and 500 μM cisplatin were prepared and mixed to give 200 μL of an 

angiotensin II:bombesin:platinum complex solution at a molar

concentration of 20 μM and a molar ratio of 1:1:3.  The sample was 

incubated at 37 °C for 24 h, the pH value was determined before and

after the reaction, both were 6.  The sample was diluted to 0.4 μM with 

50% MeOH–1% CH3COOH buffer immediately before mass spectrometry

analysis.

2.2.3 Reaction of Proteins with Cisplatin and Digestion of CaM–

cisplatin Adducts

Five hundred micromolar aqueous solutions of CaM and 500 μM 

cisplatin were mixed and diluted with water to give a 200 μL (40 μM) 

solution of protein:platinum complex at a molar ratio of 1:1. The sample

was incubated at 37 °C for 24 h, and then centrifuged using Amicon filters

(MW cut off = 3 kDa, Millipore, Watford, UK) at 13000 rpm (14857 x g) for

30 min at room temperature, to remove unbound platinum complex, and
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washed twice with 200 μL water.  Samples were then diluted to 0.4 μM 

immediately before for MS analysis. Aqueous solutions of hemoglobin

(500 μM) and cisplatin were reacted at a molar ratio of 1:5 and treated in 

the same manner as above.

The CaM–platinum adducts in the 1:1 CaM–cisplatin mixture were

diluted to 20 μM with 50 mM NH4HCO3 (pH 7.8) and then subjected to

trypsin digestion at a protein to enzyme ratio of 40:1 (w/w) at 37 °C for 4 h.

As a control, 20 μM free CaM was digested under the same conditions.   

Immediately before ESI–MS analysis, the digest solution was diluted to

0.4 μM with 50% MeOH–1% CH3COOH buffer.

2.2.4 FT ICR Mass Spectrometry

ESI–MS was performed on a Bruker SolariX FT ICR mass

spectrometer with an ESI source and a 12T actively shielded magnet.

Samples are electrosprayed at 0.4 μM concentration in 50:50 MeOH:H2O

with 1% acetic acid. For collisionally activated dissociation (CAD)

experiments, the parent ions were isolated using the first quadrupole (Q1),

and were fragmented in the collision cell (typical collision energies 10–25

eV), and then transmitted into the ICR cell for detection. For electron

capture dissociation (ECD) experiments, the parent ions were isolated in

Q1 and externally accumulated in collision cell for 3–10 s. After being

transferred and trapped in the Infinity ICR cell,180 ions were irradiated with

1.5 eV electrons from a 1.7 A heated hollow cathode dispenser for 50 to

80 ms. Full spectra were internally calibrated using peptide (bombesin or

digested CaM) peaks, CAD spectra were internally calibrated using

known b ion masses of bombesin or y ion masses of CaM(37–74), ECD
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spectra were internally calibrated using known c ion masses of bombesin

or c ion masses of CaM(107–126). The assigned mass tables for each

spectrum are provided in Appendix I (Tables S1~S7).

2.3 Results

2.3.1 Intermolecular cross–linking of peptides

Angiotensin II and bombesin are small peptides both with potential

histidine or methionine platinum binding sites; their amino acid sequences

are shown in Table 2.1. Figure 2.1 (a) and (b) are the CAD spectra of

angiotensin II–cisplatin and bombesin–cisplatin adducts, respectively. As

shown in Figure 2.1a, the observation of the a1 + Pt ion suggests that

platinum binds to the carboxyl group of Asp1 of angiotensin II; in addition,

the detection of y4 + Pt and internal fragments YIH + Pt, YIH + Pt-CO-NH3

indicates that Pt(II) also binds to His6 of angiotensin. Similarly, the

observation of b3 to b11 ions and b12 + Pt ions indicates that Pt(II)

coordinates to His12 of bombesin, and the [B + Pt - CH3SH]3+ ion implies

the binding of Pt(II) to Met14.181 Therefore, these two peptides were

chosen for the cross–linking studies.
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Figure 2.1 CAD spectra of peptides–Pt adducts (a) [A + Pt(NH3)2Cl +

2H]3+ ion at m/z 437.2; (b) [B + Pt(NH3) + H]3+ ion at m/z 610.5.

Angiotensin II and bombesin are abbreviated as A and B, separately.

Platinum(II) is normally square planar with four covalent bonds.

Depending on the type and number of nucleophiles available and steric

accessibility of peptides or proteins, all the ligands of cisplatin can also be

substituted by nucleophilic species.125, 182, 183 Angiotensin II, bombesin,

and cisplatin solution were mixed at a molar ratio of 1:1:3, incubated at 37

°C for 24 h, and diluted and subjected to MS analysis. As shown in

Figure 2.2 a, in additional to the various peptide–Pt adducts, two multiply

charged ions at m/z 719.8 (4+) and m/z 858.9 (4+) were detected (Figure

2.2 b).
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Figure 2.2 (a) Mass spectrum of angiotensin II–bombesin–cisplatin (1:1:3)

mixture. (b) Isotopic distributions of the cross–linked products

[A + Pt(NH3) + B + 2H]4+ and [B + Pt + B + 2H]4+ ions. “﹡” represents

chemical noise. Peaks are listed in Appendix I as Table A 2.1.

The m/z 719.8 (4+) value matches the mass of angiotensin II plus

the mass of bombesin and plus Pt(NH3) (m/z 719.83924, -0.10 ppm), the

m/z 858.9 (4+) value is consistent with the masses of two molecules of

bombesin plus a Pt (m/z 858.90300, 0.17 ppm). To simplify the labeling

of the mass spectrum of angiotensin–bombesin–cisplatin mixture,

angiotensin and bombesin are abbreviated by their initials as A and B,

respectively. The ions at m/z 719.8 and m/z 858.9 have isotopic

distributions of that both match their theoretical isotopic distributions of

[A + Pt(NH3) + B + 2H]4+ and [B + Pt + B + 2H]4+ ions with mean absolute
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deviation 0.37 ppm (Appendix I, Table A 2.1), which implies that

platinum(II) can cross–link peptides intermolecularly.

Figure 2.3 (a) CAD spectrum of the cross–linked product [A + Pt(NH3) +

B + 2H] 4+ ion at m/z 719.34. The insert of Figure 2.3 a is the overlapping

isotopic distributions of [A + Pt + B_b12 + 2H]4+ (cross) and [B + Pt + A_b6

+ 2H]4+ (circle) ions in absorption mode. (b) ECD spectrum [A + Pt(NH3) +

B + 2H] 4+ ion at m/z 719.34. Peak results are listed in Appendix I (Table

S 2.2 (CAD) and Table S 2.3 (ECD)). (c) Fragmentation diagram of the

cross–linked product A + Pt(NH3) + B.
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CAD and ECD experiments were both performed to locate the cross–

linking sites. To label the sources of b/y and c/z ions, b/y and c/z ions

from bombesin (B) are labeled as B_bn, B_ym, B_cn, and B_zm; similarly,

b/y and c/z ions from angiotensin II (A) are labeled as A_bn, A_ym, A_cn,

and A_zm. Figure 2.3 a shows the CAD spectrum of the [A + Pt(NH3) + B

+ 2H]4+ ion at m/z 719.8. Table A 2.2 in Appendix I shows the

assignments of each product ion peak of [A + Pt(NH3) + B + 2H]4+ ion with

mean absolute deviation 0.29 ppm, which yields high confidence in each

product peak assignment. The detection of B_b3 to B_b10 ions, B_b7
2+ to

B_b11
2+ ions without platinum, and (B_b12 + Pt)2+ to (B_b13 + Pt)2+ ions

indicates that platinum binds to His12. Also, ions at m/z 649.8 were

found to have overlapping isotopic distributions of [A + Pt + B_b12 + 2H]4+

ion and [B + Pt + A_b6 + 2H]4+ ion (insert of Figure 2.3 a), indicating that

platinum cross–links His6 of angiotensin II and His12 of bombesin. The

observation of [B + Pt(NH3) + A_y7 + 2H]4+ also indicates that His6 rather

than Asp1 of angiotensin II is primarily involved in the cross–linking. The

mass spectrometry (MS) data ranging from m/z 649 to m/z 652 were

processed with phase correction to yield the absorption mode spectrum

which improves the peak shape and resolution as shown in the insert of

Figure 2.3 a.184 Platinum(II) has a total of four coordination sites; one

amine (NH3), His6 of angiotensin II and His12 of bombesin occupy three

of the binding sites. Therefore, one more binding site needs to be

assigned. The [B +Pt–CH4S]2+ ion peak was found with a deviation of -

0.18 ppm (-0.16 mDa) from the calculated mass, suggesting that platinum

binds to the sulfur of the Met14 of bombesin. Literature would suggest
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that loss of CH4S directly from MS/MS cleavage of the side chain of

methionine is a minor fragmentation channel,185 but it is possible that the

presence of cisplatin has changed the local chemical environment to

promote the reaction. In order to test whether the loss of CH4S arises

from the coordination of Met to platinum rather than direct loss of CH4S

from bombesin, different charge states of bombesin ions, the [B + 2H]2+

ions and [B + 3H]3+ ions were dissociated. No [B + 2H-CH4S]2+ ion was

detected in either of the CAD spectra of the [B + 2H]2+ ions or [B + 3H]3+

ions (Figure A 2.1), which agrees with the hypothesis that platinum

coordinates Met14(S) of bombesin (Figure 2.3 c).

Although ECD has been reported to be problematic on Pt–bound

proteins,146 an ECD experiment was still tested in an effort to further

localize the cross–linking sites (Figure 2.3 b). The observation of B_c3 to

B_c11 ions, A_c2 to A_c5 ions, A + Pt + B_z5
2+· to A + Pt + B_z15

2+· ions,

and the [B - CH4S + H]+ ion were all consistent with the CAD results, that

is, Pt not only cross–links His6 of angiotensin II and His12 of bombesin,

but also macrochelates His12 and Met14 of bombesin (Figure 2.3 c). The

macrochelation of Pt with methionine (S) and histidine (N) (κ2SM, NH)

coordination result agrees with Gibson’s and Hohage’s results,116,186 in

which they showed that the macrochelates with κ2SM, NH coordination

modes are favorable in weakly acidic solutions (3 ≤ pH ≤ 6).    

In the same sample, bombesin was also detected to cross–link with

another bombesin molecule. Figure 2.4 a shows the CAD spectrum of

the [B + Pt + B + 2H]4+ ion at m/z 858.9. Similar diagnostic ions, like

[B_b12 + Pt]2+, [B + Pt + B_b12]
2+, [B + Pt + B_b13]

2+, and [B + Pt - CH4S]2+
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ions, were detected, indicating that platinum cross–links two bombesin

molecules by binding to the His and Met residues of bombesin.

Figure 2.4 (a) CAD spectrum of the cross–linked product [B + Pt + B +

2H]4+ ion at m/z 858.91, the insert shows the zoom spectrum from m/z

650 to m/z 950. (b) ECD spectrum of the cross–linked product [B + Pt + B

+ 2H]4+ ion at m/z 858.9. Peak results are listed in appendix I as Table A

2.4 (CAD) and S 2.5 (ECD). (c) Fragmentation diagram of the cross–

linked product B + Pt + B.

The ECD results are also in agreement with the CAD data, as
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shown in Figure 2.4 b; the observation of B_c3 ions to B_c11 ions

indicates that His12 and /or Met14 are the binding sites. As platinum

cross–links two peptides with the same sequence, B_c3 ions to B_c11 ions

can be generated from either chain, namely, the cross–linking sites are

localized at His12 and Met14 sites of each chain. Compared to the CAD

and ECD spectra of the [A + Pt(NH3) + B + 2H]4+ ion, many fewer peaks

were observed in the CAD and ECD spectra of the [B + Pt + B + 2H]4+ ion

(peak lists are available in Appendix I as Table A 2.4 and Table A 2.5),

which is likely to be due to the symmetric structure after platinum binding,

as shown in Figure 2.4 c.

2.3.2 Intramolecular cross–linking of Calmodulin

Calmodulin (CaM) is a small 16.8 kDa acidic protein, containing 9

Met residues out of 148 amino acid residues (Table 2.1). The Met

residues in CaM play an important role in its versatility, and contribute as

much as 46% of the exposed surface area of the hydrophobic patches on

the calmodulin surface,187 which makes CaM an interesting target for this

cross–linking study. CaM and cisplatin were incubated in a 1:1 mixture at

37 °C in water for 24 hours, and then subjected to trypsin digestion at a

CaM–cisplatin to enzyme ratio of 40:1 (w/w) at 37 °C for 4 h followed by

ESI–FTMS analysis. In addition to the peaks which correlate with Pt

binding to the tryptic digested peptides, a peak corresponding to the

platinum cross–linked tryptic digest peptides CaM(107–126) and

CaM(127–148) was observed at m/z 1018 (5+) with a mass error of -0.08

ppm, as shown in Figure 2.5 a, which is overlapped with the 4+ charge

state CaM(38–74) ion.
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Figure 2.5 (a) Cross–linked product spectrum from the digested CaM–

cisplatin (1:1) mixture. The isotopic distribution of the cross–linking

product CaM(107–126) + Pt + CaM(127–148)5+ ion (circles) is overlapped

with the digested peptide CaM(38–74)4+ ion (triangles). (b) CAD spectrum

of the cross–linked product CaM(107–126) + Pt + CaM(127–148)5+ ion at

m/z 1018. (c) ECD spectrum of the cross–linked product CaM(107–126) +
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Pt + CaM(127–148)6+ ion at m/z 848. (d) Fragmentation diagram of the

cross–linked product CaM(107~126)+ Pt + CaM(127–148). For the full

peak list, see Table A 2.6 (CAD) and Table A 2.7 (ECD) in Appendix I.

Figure 2.5 a shows the two overlapped experimental isotopic

distributions and the theoretical isotopic distributions (circles and

triangles), clearly demonstrating the resolving power of the FTICR MS

instrument used. Despite the fact that CaM(107–126) and CaM(127–148)

are contiguous tryptic peptides within native calmodulin, these are not

missed tryptic cleavages as shown in the MS/MS experiment discussed

below. The [CaM(107–126) + Pt + CaM(127–148) + 3H]5+ ion was

isolated by the front-end quadrupole with an isolation window of ± 5 Da

and then fragmented in the collision cell. Therefore, because of the

overlap, the [CaM(38–74) + 2H]4+ ion was also isolated and fragmented

at the same time. To simplify the labeling of the product ion spectrum of

the [CaM(107–126) + Pt + CaM(127–148) + 3H]5+ ion (Figure 2.5),

CaM(107–126), CaM(127–148) and CaM(38–74) are assigned as X ,Y,

and Z, respectively. The observation of X_y3 to X-y6 ions from CaM(107–

126) and Y_b3 - H2O to Y_b7 - H2O ions from CaM(127–148) show that

the linkage between CaM126 and CaM127 has been cleaved during

trypsin digestion, which proves the existence of cross–linking rather than

platinum binding to a missed cleavage peptide and a dehydrated

CaM(107–148) species. A series of [X + Pt + Y_y12 + 2H]4+ to [X + Pt +

Y_y20 + 2H]4+ ions, further confirms that these two peptides are cross–

linked by platinum, and also suggests that platinum binds to the C–
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terminal Met144 or Met145 residue of CaM(127–148). In addition, the

detection of a series of X_y3 to X_y8 ions indicates that platinum

coordinates to the N–terminal Met109 site (Figure 3d). ECD experiments

were performed on both the [CaM(107–126) + Pt + CaM(127–148) +

3H]5+ ion and the [CaM(107–126) + Pt + CaM(127–148) + 4H]6+ ion, the

ECD spectrum of the [CaM(107–126) + Pt + CaM(127–148) + 4H]6+ ion at

m/z 848 were chosen and shown in Figure 2.5 c. The observation of

Y_c3 to Y_c14 ions, X + Pt + Y_z6 ion, and X + Pt + Y_z8 to X + Pt + Y_z21

ions all indicates that platinum coordinates to either/both Met144 and

Met145 sites, rather than carboxyl groups (D or E) in the CaM(127–148)

chain. Similarly, the detection of the Y + Pt + X_c4 to Y + Pt + X_c8 ion

series correlates with the CAD result, that platinum binds to the Met109

site of CaM(107–126). It is generally accepted that ECD fragmentation

preserves labile modification sites;93 however, the observation of single

chain ions like [X + 2H]2+ and [X + 3H]3+ ions (Figure 2.5 c), [A + H]+ and

[B + 2H]2+ ions (Figure 2.3 b & Figure 2.4 b) implies that ECD may

fragment the labile modification sites (Pt–N or Pt–S) in this specific Pt–

bound peptide. Therefore, the origin of X_c4 to X_c13 ions can either be

from the cross–linked precursor ions or it can, more likely, originate from

the [X + 2H]2+ or [X + 3H]3+ ions by secondary electron capture rather

than from the precursor ions. As shown in Figure 2.5 c, for the X

(CaM(107–126)) chain, intense [X + 2H]2+ and [X + 3H]3+ peaks were

observed; for the Y (CaM(127–148)) chain, platinum-bound peaks [Y + Pt

+ 2H]3+· and [Y + Pt + H]2+· were detected, and no single Y chain ions or

Y_c/z ions at the platinum bound region appeared, all these results
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support the hypothesis that the X_c4 to X_c13 ions were generated by

secondary electron capture. Furthermore, the detection of [X + 2H]2+, [X

+ 3H]3+, [Y + Pt + 2H]3+·, and [Y + Pt + H]2+· ions indicates that the Pt–Y

chain is more strongly bound than the X–Pt chain under ECD conditions.

Therefore, it is likely that platinum coordinates to the Met109 of

CaM(107–126) and Met144 or Met145 of CaM(127–148) by forming

stable six–membered κ2SM, NM chelates on the respective residues. 188,

189

An interesting phenomenon of cisplatin cross–links in calmodulin is

that all the ligands of cisplatin are displaced, which rarely happens in

cisplatin–DNA adducts.111, 127 Similar results have also been observed in

other Met–rich peptides or proteins upon reaction with cisplatin due to the

trans–labilization effect. 125, 182, 183 In other words, once the displacement

of chlorine by sulfur of Met or Cys residue has occurred, the Pt–NH3 bond

trans to the sulfur is significantly labilized and thus the amine group is

readily substituted.

2.3.3 Intermolecular cross–linking of protein

Hemoglobin is a tetrameric heme–protein in the red cells of the blood

in mammals and other animals; it contains two alpha and two beta

subunits non–covalently bound, designated as α2β2. Each subunit has

multiple potential platinum binding sites, as listed in Table 2.1, the α unit 

has two Met, ten His, and one Cys residue; the β unit has one Met, nine 

His and two Cys residues. Since hemoglobin is a well understood and

easy to obtain protein, it was therefore of interest to investigate whether

cisplatin can cross–link α and β subunits.  Although the study of cisplatin–
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hemoglobin has been reported,190 whether cisplain can cross–link

hemoglobin complex subunits has not been explored.

Abundant α and β peaks along with peaks corresponding to platinum 

bound to either α or β subunits were detected (Figure A 2.2); however, no 

peaks corresponding to cisplatin cross–linking between the α and β 

subunits were detected.

2.4 Discussion

The cross–linking sites were identified and localized by FTICR MS

because of its unsurpassed resolution and mass accuracy, and also its

ability to extensively fragment large peptides by CAD and ECD

fragmentation techniques. Sub–ppm mass accuracy is routinely achieved

by SolariX FTICR MS (Tables S 2.1 to S 2.7) which is critical for the

assignment of all the peaks as the number of peptides with the same

nominal mass but different amino acid sequence increases dramatically

with the number of amino acid residues in the peptides.133 In the case of

the overlapping peaks [A + Pt + B_b12 + 2H]4+ at m/z 650.04429 and [B +

Pt + A_b6 + 2H]4+ at m/z 650.04952 (the insert of Figure 2.3 a), the mass

difference between these two peaks is only 5.2 mDa; therefore, the high

resolution (R=200,000) and mass accuracy (0.03 ppm) of this spectrum

greatly aid the assignments of these two peaks. More importantly, the

assignment of these two peaks is critical for localizing the cross–linking

sites.

Although the above experiments and CAD and ECD data all show

that cisplatin has the potential to be a peptide and protein cross–linker, in
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the development of a cross–linker, there are multiple characteristics that

should be considered, such as chemical specificity, arm length, water

solubility and cell membrane permeability, homobifunctional or

heterobifunctional reactive groups, and cleavability.7 In light of these

considerations, the potential for cisplatin as a cross–linker is discussed

below.

2.4.1 Chemical specificity

Although there are 20 different amino acids in protein structures, only

a small number of protein functional groups comprise selectable targets

for practical cross–linking studies. In practice, only four protein functional

groups (primary amines, carboxylates, sulfhydryls, and carbonyls)

account for the vast majority of cross–linking and chemical modification

sites. However, there are up to nine amino acids in proteins that are

readily derivatizable at their side chains, including aspartic acid, glutamic

acid, lysine, arginine, cysteine, histidine, tyrosine, methionine, and

tryptophan. These nine residues contain eight principal functional groups,

in addition to primary amines, carboxylates, and sulfhydryls (or disulfides),

thioethers, imidazoles, guanidinyl groups, phenolic and indolyl rings also

have sufficient reactivity for modification reactions.7

Platinum(II) has a strong affinity for sulfur and nitrogen containing

ligands, such as methionine, cysteine, and histidine. As shown by the

data obtained here, platinum can coordinate to both histidine and

methionine, providing new functional groups for cross–linking. The

discovery of new cross–linkers targeting new reactive groups will facilitate

the analysis of the three–dimensional structures of proteins and the
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identification of interaction partners. Lysine residues are the most

commonly targeted cross–linking groups, and are often located on the

surface of proteins. Hence lysine cross–linking usually provides surface

information on proteins. Unlike cross–linking reagents which only target

hydrophilic groups, cisplatin also targets the hydrophobic residue

methionine (Met). Met residues are often located in the interior of

proteins; therefore, targeting Met residues potentially provides information

on the core of protein complexes.

Moreover, new cross–linkers can help to overcome the inherent

problems of existing reactive groups, such as primary amines.156

Although the primary amine is by far the most commonly targeted

functional group, there are several limitations. First, cross–linkers react

with primary amine groups of lysine residues and the N–terminus of

proteins, and trypsin cannot normally cleave C–terminal to a modified

lysine residue; therefore, larger peptides are generated from such cross–

linked proteins during enzymatic proteolysis due to missed cleavages.

Platinum reacts with histidine, methionine, and cysteine, which can easily

overcome this problem. Second, the modification of the amine group of

lysine residues leads to a loss of a positively charged site. Thus,

digested cross–linked peptide ions with lower charge states are created

during electrospray ionization, reducing sensitivity and MS/MS

performance.

2.4.2 Compatibility with Mass Spectrometry analysis

2.4.2.1 Inherent two positive charges of Pt(II)

On one hand, platinum does not result in charge loss; on the other
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hand, platinum inherently has two positive charges, e.g. when the

fragment {Pt(NH3)2}
2+ binds, the cross–linking products observed often

have higher charge states than the peptides or proteins alone. Higher

charge states not only promote the detection of cross–linking products

without purification, but also result in a more comprehensive MS/MS

fragmentation pattern and therefore assist in the identification of

modification sites.

2.4.2.2 Unique isotopic pattern

Challenges to identify cross–linked products by mass spectrometry

have arisen due to the complexity of the cross–linking reaction mixtures

and low abundance of the cross–linked species. As presented in Figure

2.1, predominantly unmodified peptides, dead–end modified peptides,

and a low abundance of inter–cross–linked peptides were detected. To

overcome the challenges, significant effort has been made to develop

new cross–linkers to facilitate the identification of cross–linked species by

introducing a signature pattern in the data via isotope–labeling, such as

isotope labeling the cross–linking reagents or proteins,163-165 proteolytic

digestion in 18O labeling water,162 or by enriching cross–linked products,

such as affinity tags.159-162 In many cross–linking applications, isotope

labeling has greatly facilitated the identification of cross–linked products.

However, frequently, isotope labeling complicates the mass spectra of

products, increases the possibility of peak overlap, and lowers the

possibility of cross–linked products being detected by mass spectrometry

due to ion suppression effects. In addition, incomplete labeling, for

example due to partial label 18O exchange in proteolytic digestion
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samples, distorts the natural isotopic distribution.191 Platinum has

advantages over isotope labeling because it has a normalized unique

isotopic distribution (194Pt (97.41%), 195Pt (100%); 196Pt (74.58%)), which

allows for easy visual identification of cross–linked products in a spectrum

without significantly complicating the spectrum or the need for intricate

labeling procedures.140 As presented in Figure 3a, the Pt–bound peptide

complex has a broader and more abundant isotopic distribution compared

to unlabeled peptides in the same m/z region (CaM(38–74)).

2.4.3 Homobifunctional or heterobifunctional reactive groups

Homobifunctional cross–linking reagents contain the same

functionality at both ends; heterobifunctional cross–linkers have two

different reactive groups that target different functional groups. Cisplatin

has four coordinated ligands; the chloride ligands are likely to be the first

leaving groups to be replaced in reaction with proteins; depending on the

type and number of coordination sites available and steric accessibility,

the ammine ligand(s) can also be replaced. In particular, as shown above,

sulfur ligands have high trans–effects and can labilize trans NH3 ligands,

especially at a low pH value. As cisplatin can bind to Met (S), His (N),

Cys (S), or carboxyl (O) groups, it gives cisplatin the flexibility to be a

homobifunctional, or heterobifunctional (or even heterotetrafunctional)

cross–linking reagent. However, as with other homobifunctional reagents,

there is the potential for creating a wide range of non–cross linked

products.

2.4.4 Spacer arm length

Cross–linkers are selected not only based on their chemical
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specificities and reactivities but also their arm–lengths. The spacer arm

length of the cross–linker can provide an estimate of the distance

between two linked groups. In the example of cisplatin cross–linking

calmodulin, the spatial distances between the thioether sulfurs of Met109,

Met124, Met144 and Met145 were based on the NMR structure of apo–

calmodulin, (Figure 2.6, the S atom of Met145 was chosen as the center,

only amino acid residues within 8 Å are shown), and range from 4.50 Å to

11.31 Å. Based on the literature for small platinum compounds,192 the

average Pt–S bond length is 2.318 Å; thus the maximum spacer arm

length of S–Pt–S is around 4.63 Å, which fits the spatial distance between

Met109 and Met145 (4.54 Å). Therefore, it is likely platinum can readily

trans–cross–link Met109 and Met145.

Figure 2.6 Spatial distances between the thioether sulfurs of Met109,

Met124, Met144 and Met145 of apo–calmodulin (1DMO). The S atom of

Met145 is chosen as the center, only amino acid residues within 8 Å are

shown. The thioether sulfurs of methionine residues are labeled in black.

The distances indicate by double arrows between the thioether sulfurs of
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Met109, Met124, Met144 and Met145 range from 4.5 Å to 11.3 Å.

Thus, that cisplatin fails to cross–link hemoglobin subunits is a bit

surprising, because according to the crystal structure of hemoglobin

complex(PDB–2DN2), the distance between His122 (α)–Cys112 (β) (4.10 

Å) is within platinum cross–link range.193 Possible reasons may have to

do with the steric accessibility or the chemistry of cisplatin cross–linking

reactions. For example, the trans–labilization effect may play an

important role in Pt cross–linking. Studies by Kasherman et al. showed

that thiols (Cys) and thioethers (Met) bind to Pt(II) at similar rates, but

thioethers are significantly more efficient than thiols at labilizing the amine

at lower pH,122 which might contribute to the unsuccessful Pt cross–

linking of hemoglobin. Therefore, further research is still needed to

explore the chemistry of cisplatin binding with proteins.

2.4.5 Cleavability

Cleavability is important in studies involving the bio–specific

interactions between two molecules, which allow the verification of the

cross–linking reactions through identification of the cross–linked sites.

Cross–linkers can be cleaved either by chemical reactions or MS/MS

fragmentation. The CAD and ECD spectra of all the Pt cross–linking

products studied here have shown the cleavability of Pt–S or Pt–N bonds,

which provides information on the modification sites. The effective CAD

cleavability of platinum improves the information content in protein

structure analysis and localization of the cross–linking sites.
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2.5 Conclusions

This work effectively demonstrates the potential of cisplatin as a

cross–linking reagent. The cross–linking sites were unambiguously

assigned by use of high resolution FTICR MS data with sub–ppm mass

accuracy; subsequent CAD and ECD FTICR MS data allowed the

localization of the cross–linked sites on proteins. Cisplatin is a widely

used clinical anticancer drug; it is water soluble (8 mM) and is able to

penetrate membranes. Features of cisplatin, such as cross–linking DNA–

DNA, DNA–protein, targeting new protein functional groups (thioether and

imidazole groups), its unique isotopic pattern, and inherent two positive

charges of platinum(II) make it a promising tool for cross–linking

experiments in protein studies of more complicated biological systems by

high resolution mass spectrometry in the future. However, the trans–

labilizaiton effect of cisplatin and the binding of cisplatin to Cys (S) or

carboxyl (O) group can complicate cross–linking results. Therefore,

further efforts will have to be made in synthesizing novel cross–linkers,

such as multinuclear platinum complexes, in order to understand better

the chemistry of Pt cross–linking reactions.



68

Chapter 3

Use of Top-down and Bottom-up Fourier Transform Ion Cyclotron

Resonance Mass Spectrometry for Mapping Calmodulin Sites

Modified by Platinum Anticancer Drugs2

3.1 Introduction

Sulfur–containing biomolecules play significant roles in platinum

anticancer chemotherapy because of their high affinity for platinum

compounds. Studies of cisplatin drug resistance have demonstrated that

a failure of a sufficient quantity of platinum to reach the target DNA can

lead to resistance.115, 123, 194, 195 Further evidence showed that increased

levels of cytoplasmic sulfur–rich species, such as glutathione and

metallothioneins, causes cisplatin drug resistance and leads to

detoxification because platinum binds irreversibly to thiolate sulfur.124-128

3.1.1 Calmodulin (CaM)

CaM is a ubiquitous, calcium (Ca2+)–binding protein that senses

changes in intracellular calcium levels to coordinate the activity of over

thirty different target proteins in eukaryotic cells.196 CaM is expressed in

many cell types and can have different subcellular locations, including the

cytoplasm, within organelles, or associated with the plasma or organelle

membranes. CaM is a methionine–rich protein, with 9 methionine

residues out of 148 amino acid residues. Upon calcium activation,

2
This chapter has been partially/entirely reproduced from

Huilin Li, Tzu-Yung Lin, Steve L. Van Orden, Yao Zhao, Mark P. Barrow, Ana M. Pizarro, Yulin Qi,
Peter J. Sadler, Peter B. O'Connor. Use of top-down and bottom-up Fourier transform ion
cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum
anticancer drugs. Anal. Chem., 2011, 83, 9507-9515. Copyright 2011, American Chemical Society.
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methionine–rich binding pockets are exposed in each of the opposing

globular domains of CaM.197 These hydrophobic binding sites facilitate

CaM association with reorganizations and promote activation of a

diversity of conformations depending on the target.198 In fact Met

residues contribute as much as 46% of the exposed surface area of the

hydrophobic patches on the CaM surface,199 which makes them likely

targets for platinum drugs. Oxidation of methionine residues of CaM has

been shown to decrease the ability of CaM to activate target enzymes.200-

204 Recent studies have suggested that cisplatin can bind strongly to

CaM by forming Pt–S bonds with Met residues, which can cause

inhibition of calmodulin’s capacity to activate target proteins. For example,

inhibition of Ca2+–CaM due to direct interactions with cisplatin could play

a major role in stomach distention.205 In addition, CaM is also rich in

aspartic acid (Asp) and glutamic acid (Glu) residues, nearly half of which

are involved in calcium binding, and in total, one third of the CaM

sequence corresponds to the potential Pt–binding sites. Thus, in view of

the current widespread chemical use of platinum anticancer drugs, and

the need to elucidate their mechanism of activity and their side–effects, it

is of interest to investigate the interactions between CaM and cisplatin

analogs more closely.

3.1.2 Top–down and bottom–up mass spectrometric techniques

Mass spectrometry is an extremely powerful tool to study the

interactions of drugs with proteins, due to its advantage of sensitivity and

the ability to provide direct sequence–specific information on the position

and the form of the drug–protein adducts.206 Reactions between proteins
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(transferrin, cyctochrome C, ubiquitin, insulin, superoxide dismutase etc.)

and metallodrugs have been previously studied by electrospray ionization

mass spectrometry (ESI MS).116, 134, 137, 141, 146, 181, 207 Recent progress

with combination of mass spectrometry and proteomics technologies has

made the identification of binding sites much more feasible. There are

basically two classes of methods to achieve this, “bottom–up” (peptide

level) and “top–down” (intact protein level) approaches.93

“Bottom–up” strategies involve cleaving the protein into peptide

fragments using proteolytic enzymes prior to mass spectrometry detection.

By applying the bottom–up mass spectrometric approach, Allardyce et al.

identified that cisplatin binds to threonine 457 of transferrin.134 However,

as only some tryptic peptides are normally detected, it is possible that

other cisplatin modification sites on transferrin have been missed,

particularly because there are multiple potential cisplatin binding sites (44

Asp, 19 His, 8 Met, and 42 Glu residues) on transferrin.

“Top–down” methods identify proteins by measuring the mass of the

whole protein, then using tandem mass spectrometry (such as

collisionally activated dissociation (CAD), electron capture dissociation

(ECD), or infrared multiphoton dissociation (IRMPD)) to fragment intact

proteins in order to generate sequence information, so that all

modifications are normally detected. Recently, Moreno–Gordaliza et al.

were able to determine the binding sites between cisplatin and insulin by

combining the top–down approach with nano–electrospray ionization

mass spectrometry using a linear ion trap.141

The combination of Fourier transform ion cyclotron resonance mass
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spectrometry (FTICR MS) with top–down and bottom–up proteomic

approaches generate effective binding site information; Hartinger et al.

identified the binding sites of three different platinum anticancer drugs

with ubiquitin by top–down high resolution MS approach.146

Top–down analysis of proteins by ECD has developed rapidly in

recent years.33, 35, 57, 88, 100 ECD cleaves N–Cα bonds to produce mainly c

and z• ions, complementary to b and y ions produced in CAD by cleaving

CO–NH bonds.57 The combination of ECD and CAD has greatly

improved the efficiency and sequence coverage in top–down protein

analyses. However, in previous reports, the application of ECD in

protein–platinum or peptide–platinum complexes for characterizing

platinum binding sites is rather limited.146, 148 Previously, ECD has been

successfully applied to cisplatin cross–linked peptides and protein–CaM

by Li et al.208 Here, the top–down ECD mass spectrometric approach is

extended to map the binding sites for platinum anti–cancer drugs on CaM.

Cisplatin and its analogues are widely used in clinical cancer

treatments. The mechanisms for transport of platinum anticancer drugs

through cell membranes and possible intermediate formed by binding to

proteins remain poorly understood, although they may contribute to many

of the drugs’ side–effects.209 The objective of this Chapter is to gain

insights into the reactivity of various platinum complexes with CaM and to

map the binding sites by using top–down and bottom–up high resolution

MS approaches. Here, the application of top–down ECD mass

spectrometry for mapping the binding sites of the platinum anticancer

complexes cisplatin (Pt_1), [Pt(dien)Cl]Cl (Pt_2) and [{cis–
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PtCl2(NH3)}2(µ–NH2(CH2)4NH2)] (Pt_3) to CaM is demonstrated.

3.2 Experimental section

3.2.1 Materials

Bovine calmodulin, trypsin (TPCK treated from bovine pancreas),

ammonium acetate (CH3COONH4), and ammonium bicarbonate

(NH4HCO3) were purchased from Sigma (St. Louis, MO, USA). HPLC

grade methanol, acetic acid (HAc), and acetonitrile (ACN) were obtained

from Fisher Scientific (Pittsburgh, PA, USA). Cisplatin (Pt_1),

[(PtCl(dien))Cl] (Pt_2), and [{cis–PtCl2(NH3)}2(µ–NH2(CH2)4NH2)] (Pt_3)

were synthesized and characterized by standard methods.179, 210, 211 The

structures of compounds Pt_1, Pt_2, and Pt_3 are shown in Figure 3.1.

Figure 3.1 Chemical structures of Pt–complexes (Pt_1, Pt_2, and Pt_3)

3.2.2 Reaction of CaM with Pt_1, Pt_2, and Pt_3

Aqueous solutions of CaM (500 μM) and platinum complex (Pt_1, 

Pt_2, and Pt_3, 500 μM each) were prepared and mixed to give 200 μL 

(40 μM) solutions of protein:platinum complex at molar ratios of 1:1, 1:2, 

and 1:8. The samples were incubated at 37 °C for 24 h. To remove free

platinum complexes and desalt, amicon filters (MW cut off = 3 kDa,



73

Millipore, Watford, UK) were used at 13000 rpm for 30 min at room

temperature, and washed twice with 200 μL water.  The sample was 

diluted to 0.4 μM with 50% MeOH–1% CH3COOH buffer immediately

before mass spectrometry analysis.

3.2.3 Protein Digestion

The CaM–platinum adducts in the 1:1, 1:2, and 1:8 molar ratios of

CaM:Pt_1 or CaM:Pt_2 mixtures were diluted to 20 μM with 50 mM 

NH4HCO3 (pH 7.8) and then subjected to trypsin digestion at a protein to

enzyme ratio of 40:1 (w/w) at 37 °C for 4 h. As a control, 20 μM CaM 

without platinum reagents was digested under the same conditions. The

sample was diluted to 0.4 μM with 50% MeOH–1% CH3COOH buffer

immediately before mass spectrometry analysis.

3.2.4 FTICR Mass Spectrometry

ESI–MS was performed on a Bruker solariX FTICR mass

spectrometer with an ESI source and a 12 T actively shielded magnet.

Samples were electrosprayed at a flow rate of ~300 μL/hour at a 

concentration of 0.4 μM in 50:50 MeOH:H2O with 1% acetic acid. For

ECD experiments, the parent ions were first isolated in the first

quadrupole (Q1) and externally accumulated in the collision cell for 2–20

s. After being transferred to the Infinity cell,180 ions were irradiated with

1.5 eV electrons from a 1.7 A heated hollow cathode dispenser for 10 to

100 ms.78 A one millisecond single frequency shot at m/z 100 was given

at the beginning of the ECD event to improve the overlap between

electron beam and the trapped ions.82, 83 Full spectra were internally

calibrated using the unmodified c-ion series of CaM.
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Figure 3.2 ESI–FTICR MS analyses of reaction mixtures of platinum complexes with CaM at different molar ratios. (a) CaM:Pt_1
(1:2); (b) CaM:Pt_1 (1:8); (c) CaM:Pt_3 (1:1); (d) CaM:Pt_2 (1:2); (e) CaM:Pt_2 (1:8). Figures 1a’–1e’ are expansions of the
corresponding parts in Figures 1a–1e. The structures of Pt(II) complexes are inserted in Figure 3.2 a, c, and d. “*” Represents
chemical noise; ● CaM; ■ CaM+Pt; ★CaM+2Pt; ◆ CaM+Pt(dien), and▲CaM+2Pt(dien). 
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3.3 Results and discussion

3.3.1 FTICR MS Analyses of the interaction of platinum anti–cancer

drugs with CaM

Figures 3.2 a–e show the mass spectra of CaM upon reaction with

Pt_1, Pt_2 and the dinuclear platinum compound Pt_3 at different molar

ratios. At a lower molar ratio (1:2) of CaM:Pt_1, up to two platinum

molecules coordinate to CaM with all cisplatin ligands (NH3 and Cl)

displaced in CaM–Pt_1 mixtures (Figure 3.2 a&a’); increasing the molar

ratio of platinum complexes in the mixtures leads to more platinum

complexes coordinating to CaM (Figure 3.2 b). Taking the 13+ charge

states of CaM–Pt_1 complexes (Figure 3.2 b’) for example, five different

groups of CaM–Pt_1 complexes were detected, varying from six up to ten

cisplatin complexes bound to CaM in a variety of forms. The isotopic

patterns of the [CaM + 4Pt + nPt(NH3)2 + H]13+ (n=2~6) ions were

compared with the theoretical isotopic patterns, which fit with mean

absolute deviation within 1.5 ppm range (see the inserts of Figure 3.2 b’

and Table B.1).

As previously observed, cisplatin preferentially binds to Met sites of

CaM with all four cisplatin ligands displaced in low molar ratios of

cisplatin–CaM mixtures;208 herein, the maintenance of ligands, such as

NH3, indicates that cisplatin might also bind to His, Asp or Glu residues in

CaM sequence when increasing the concentration of cisplatin in the

cisplatin–CaM mixture. In addition, all the modified peaks shift to higher

m/z region, namely, lower charge states, which supports the assumption
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that cisplatin binds to the carboxyl groups of Asp or Glu residues because

deprotonation of a carboxyl group is needed before it binds to platinum(II).

Therefore, the two positive charges of platinum(II) are neutralized upon

platinum coordinating to two carboxyl groups. In addition, the shifting of

modified peaks to lower m/z region might indicate that the excessive

binding of cisplatin to CaM has charged the conformation of CaM.

Similar phenomena were observed in CaM–Pt_3 mixtures (Figure 3.2

c&c’), where the bridge linking the two platinum molecules is broken and

all the ligands are replaced. To address the questions as to whether the

loss of all the ligands and the breakage of the bridge of Pt_3 are due to

the reaction of platinum complexes to CaM or to over aggressive spray

condition, the reactions were monitored and recorded at every 30 minutes.

As shown in Figure B.1 a and a’ (see Appendix B), after 60 minutes’

reaction, both Pt_1 and Pt_3 bind to CaM in the same form, namely, CaM

+ Pt, CaM + Pt(NH3), CaM + Pt(NH3)Cl, and CaM + Pt(NH3)2Cl; and the

intensities of the CaM + Pt species keep increasing with time, which

suggest that the losses of all the ligands of Pt_1 and Pt_3 are because of

the binding to CaM. Similar results have also been observed in other

Met–rich peptides or proteins upon reactions with cisplatin due to the

trans–labilization effect.122, 182, 183 In other words, once the displacement

of chlorine ligand by sulfur of the Met or Cys residue has occurred, the

Pt–NH3 bond trans to the sulfur is significantly labilized and thus the

amine group is readily substituted. The observation of CaM + Pt(NH3)Cl

species is in agreement with the trans–labilization effect; in addition, this
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observation also indicates that following the initial replacement of the

trans chlorine ligand by sulfur of the Met residue, the loss of amine ligand

is a reactively fast process. Therefore, the trans–labilization effect

contributes to the release of {Pt(NH3)Cl}+ species from the dinuclear

platinum compound Pt_3 after the displacement of chlorine by sulfur of

the Met residue. A similar result was reported by Farrell and co–workers

in the reaction of polynuclear platinum antitumor compounds with

reduced glutathione, the final product was observed in the form of a

dinuclear species [{trans–Pt(SG)(NH3)2}2–μ–SG] with the linkage chain 

replaced.212

In contrast, as shown in Figure 3.2 d&d’, Pt_2 maintains its

{Pt(dien)}2+ fragment and with one other coordination site binding to CaM.

At a molar ratio 1:2 of CaM:Pt_2, up to three {Pt(dien)}2+ species were

found binding to CaM. Increasing the molar ratio to 1:8, mainly five

{Pt(dien)}2+ species bind to CaM, but the binding of up to seven

{Pt(dien)}2+ fragments to CaM was observed (Figure 3.2 e&e’). As shown

in Figure 3.2 e’, all the modified peaks in the sample of

CaM:[PtCl(dien)]Cl (1:8) shift to lower m/z region (higher charge states).

Although the shifting to higher charge states usually indicates that the

conformation of the protein has been altered, the positive charge of the

{Pt(dien)}2+ fragments also contributes to the shift in charge state in the

case of [PtCl(dien)]Cl binding to CaM because each {Pt(dien)}2+ fragment

has two positive charges and only one binding site available on Pt.

Therefore, {Pt(dien)}2+ contributes at least one charge upon each binding.

3.3.2 Mapping the binding sites of cisplatin (Pt_1) to CaM by top–
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down and bottom–up MS approaches

For CaM:Pt_1 (1:2) sample, the CaM + 2Pt species was chosen

for mapping the Pt–modification sites by performing top–down ECD

experiment. Figure 3.3 shows the ECD spectra of CaM + 2Pt species.

The peaks are assigned to fragments expected from the sequence of

CaM with platinum modifications. In all, 86 cleavages of the total 147

available N–Cα backbone bonds were generated and assigned,

representing overall backbone cleavage efficiency (fraction of inter–

residue bonds cleavage) of 58%. These cleavages allow localization of

the two platinum modification sites to the region of CaM(106–148). MS3

is a reasonable option to find out the exact Pt–binding points. However,

the intensities of the Pt–modified c/z· ions (as shown in Figure 3.3) are

often very low, which makes getting quality data out of MS3 very difficult.
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Figure 3.3 ECD spectra of the 1:2 CaM:Pt_1 sample. (a) ECD spectra of

[CaM + 2Pt + 12H]16+ ions at m/z 1074, the inset is the fragmentation map

from ECD spectra of CaM + 2Pt; (b) the expanded ECD spectra [CaM +

2Pt + 12H]16+ ions. Double dots represent doubly Pt–modified fragments.

Full peak list is available in Appendix B (Table B.2).

To further localize the binding sites of platinum to CaM, CaM–cisplatin

adducts at different molar ratios (1:1, 1:2, and 1:8) were trypsin–digested

and analyzed by MS. In the 1:1 molar ratio sample of trypsin–digested

CaM–cisplatin, in addition to the previously reported cross–linked

species,208 another platinum cross–linked species CaM(107–126) + Pt +

CaM(142–148) as well as platinum modified CaM(38–74), CaM(107–126),

and CaM(127–148) were also observed. The same Pt–modified peaks
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were also observed in the CaM–cisplatin (1:2) sample; however, when

the molar concentration of cisplatin is eight times higher than CaM, the

intensities of all Pt–modified peaks dropped significantly, and most of

them could be barely detected (Figure B.2). This result is in agreement

with the MS data for 1:8 CaM–cisplatin (Figure 3.2 b’), that is, at higher

molar ratio of cisplatin to CaM, multiple sites of CaM react with cisplatin

giving a complicated mixture of products and significantly decreasing the

intensities of each product overall. Thus, as shown in Figure 3.2 b and

Figure B.2, the intensities of many of the product peaks are low or even

undetectable.

Figure 3.4 shows the CAD spectrum of the cross–linked product at

m/z 681; by matching the fragments from the precursor with digested

CaM, the two platinum–cross–linking species were identified as

CaM(107–126) and CaM(142–CaM148). The CaM(142–148) species,

(F)VQMMTAK was unexpected in the trypsin digested samples because

trypsin preferentially cleaves peptide chains mainly at the carboxyl side of

the amino acids lysine or arginine, but not the carboxyl side of

phenyalanine (F141). Although unusual cleavages can happen in trypsin

digestion,213 it is also possible that a small amount of chymotrypsin is

active in the trypsin used.214 In addition to the cleavage at the carboxyl

side of Phe141, cleavages between Leu69 and Thr70, Met71 and Met72

were also observed (Figure B.2). To simplify the labeling of the spectrum,

CaM(107–126) is represented by X, and CaM(142–148) was represented

by Y’. The observation of X_b3 + Pt and Y_b3 + Pt ions indicates that

platinum cross–links CaM at Met109 and Met144, although it does not
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necessarily rule out the possibility that platinum can also bind to Met145.

Figure 3.4 CAD spectrum of the cross–linked product of [CaM(107–126)

+ Pt + CaM(142–CaM148) + 3H]5+ ion at m/z 681. To simplify the labeling

of the spectrum, CaM(107–126) is represented by X, and CaM(142–148)

is represented by Y’. The insets are the CAD fragmentation map of

[CaM(107–126) + Pt + CaM(142–CaM148) + 3H]5+ ions, and

characteristic fragment ions, Y’_b3 + Pt and X_b3 + Pt, which show that

Pt(II) cross–links Met109 and Met144 residues.
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Figure 3.5 Bottom–up MS/MS spectra of CaM:cisplatin (1:2). (a) ECD

spectrum of [CaM(38–74) + Pt + 2H]4+ ion at m/z 1066; (b) CAD spectrum

of [CaM(38–74) + Pt + 2H]4+ ion at m/z 1066; the observation of b14 + Pt2+

and y5 + Pt ions suggests that Pt cross–links Met51 and Met71 or Met72.
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(c) CAD spectrum of [CaM(107–126) + Pt + H]3+ ion at m/z 865; the

observation of b3 + Pt and y4 + Pt suggests that Pt cross–links Met109

and Met124 (d) CAD spectrum of [CaM(127–148) + Pt + H]3+ ion at m/z

895. The detection of b4 + Pt and y5 + Pt ions suggests that Pt cross–links

E127 or D129 with Met144 and Met145.

To further refine other platinum binding sites on CaM, CAD and ECD

experiments were performed on the platinum modified species, [CaM(38–

74) + Pt + 2H]4+ ion at m/z 1067, [CaM(107–126) + Pt + H]3+ ion at m/z

865, and [CaM(127–148) + Pt + H]3+ ion at m/z 895 (Figure 3.5). A

common feature for these three cisplatin–modified species is that all the

original NH3 and Cl ligands are displaced from cisplatin, which suggests

they are also platinum cross–linked species, and with at least two Met

residues binding to one platinum atom in each case. In general, for the

top–down analyses of the whole proteins, ECD yields more useful

fragment information; for most tryptic peptides, the results were varied

with CAD and ECD in some peptides (Figure 3.5), showing

complementarities in that CAD worked better than ECD and vice versa.

However, for the intra–chain Pt cross–linked peptides, clearly CAD

worked better than ECD (Figure 3.5 a vs b). Therefore, by combination of

top–down and bottom–up MS approaches, cisplatin modification sites in

CaM were identified as Met51, Met71 or/and Met72, Met 109, Met124,

Glu127 or Asp129, Met144, and Met145 residues (Figure 3.5); more likely,

platinum cross–links Met51 and Met71/Met72 residues, Met109 and

Met124 residues, Glu127/ Asp129, Met144, and Met145 residues.
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Figure 3.3 a (CaM + 2Pt) presents a high quality ECD Top–down

spectrum; however, no fragments were observed in the region of

CaM(106–148). Further ECD experiments on CaM without platinum were

performed (Figure B.3), up to 91% backbone cleavages were assigned in

the full CaM sequence and nearly 30% of the total cleavages were

generated in CaM(106–148) region. Therefore, by comparison, it is

reasonable to conclude that the cross–linking of Pt between CaM(109)

and CaM(144) contributes to repressed detections of cleavages in the

region of CaM(106–148) in the top–down analyses possibly because the

intramolecular cross–linking limits the flexibility of modified CaM

molecules in the gas phase. It is also likely due to the same reason that

only charge reduced species were observed in the ECD spectra of trypsin

digested Pt–modified species (Figure 3.5 a). Therefore, the combinations

of top–down and bottom–up MS approaches, and also CAD and ECD are

necessary for the identification of multiple cisplatin cross–linking CaM

sites.

3.3.3 Top–down MS with ECD and CAD for mapping the binding

sites of [Pt(dien)Cl]Cl on CaM

The ECD spectrum of [CaM + 2Pt(dien) + 15H]19+ ions at m/z 916 in

the CaM:Pt_2 (1:2) sample is shown in Figure 3.6. In this spectrum, the

observation of z11 + 2Pt(dien)3+• indicates that there are two binding sites

in the region of CaM(138–148). In addition, the detection of

c/z· complementary ion pairs, such as c82 + Pt(dien)8+/z66 + Pt(dien)8+•

(see the inserts of Figure 3.6), suggests that there is one Pt(dien) binding

site in the region of CaM(1–81) and the other in the region of CaM(131–
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148). Therefore, there are at least two isoforms for the CaM + 2Pt(dien)

species in the CaM:Pt_2 (1:2) sample.

Figure 3.6 ECD spectrum of [CaM + 2Pt(dien) + 15H]19+ ions at m/z 916

in the sample of CaM:cisplatin (1:2). The left inserts are the

complimentary c/z• ion pair, c82 + Pt(dien)8+ and z66 + Pt(dien)8+•; the right

insert is the fragmentation map of the ECD spectrum of CaM + 2Pt(dien).

Single dot represent singly Pt(dien)–modified fragments; two dots

represent doubly Pt(dien)–modified fragments.

Figure 3.7 shows the ECD spectrum of [CaM + 5Pt(dien) + 10H]20+

ions at m/z 914 in the CaM:Pt_2(1:8) sample. In the low m/z region

(Figure 3.7 b), fragment ions corresponding to Pt(dien)+•, [Pt(dien) - 2H]+•,

[Pt(dien)(CO) - H•]+, and Pt(dien)(CH3S)+• ions were observed. Similar

results have been previously observed by O’Hair and coworkers;148

however, the CAD product ion of [Pt(II)(dien)(CH3SH) - H]+ and ECD

product ion Pt(I)(dien)(CH3S)+• were assigned as Pt(dien)(CH3S)+ in both

cases.
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Figure 3.7 (a) ECD spectrum of [CaM + 5Pt(dien) + 10H]20+ ions at m/z

914; the insert shows the isotopic distribution of precursor ions; (b)

Complementary ion pairs, [Pt(dien)]+• and [CaM + 4Pt(dien) + 10H]18+ ions,

[Pt(dien)(CH3S)]+• and [CaM + 4Pt(dien) + 10H - CH3S]18+ ions; (c)

Isotopic distributions of Pt(dien)–modified c and z• ions. For full peak list,

see Table B.3.

Although the masses for [Pt(II)(dien)(CH3SH) - H]+ and

Pt(I)(dien)(CH3S)+• are the same, their origins are different. The

[Pt(II)(dien)(CH3SH) - H]+ ions detected in CAD are created by even

electron process rather than odd electron dissociation. However, the
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generation of the Pt(I)(dien)(CH3S)+• ions is driven by radical chemistry

related to ECD as shown in Scheme 3.1 (ii). In addition, complementary

ion pairs for Pt(I)(dien)+• (-0.14 ppm) and Pt(I)(dien)(CH3S)+• (-0.03 ppm)

ions, namely, [CaM + 4Pt(dien) + 10H]18+ (-0.06 ppm) and [CaM +

4Pt(dien) + 10H-CH3S]18+ (0.07 ppm) ions were also detected, as shown

in the right side of Figure 3.7 b, which also support the assignment as

Pt(I)(dien)(CH3S)+•. In addition, the Pt(dien)(CH3S) +• ion indicates that

Pt(dien) coordinates to the sulfur atom of Met residues; similarly,

[Pt(dien)(CO) - H•]+ suggests that Pt(dien) also binds to the carboxyl

group(s) of Asp or Glu residues.

As clearly demonstrated in Figure 3.8 a&b, by combination of the

ECD and CAD results, the binding sites for five {Pt(dien)}2+ fragments to

CaM are in the regions of CaM(64–76), CaM(102–113), CaM(120–125),

CaM(138–144), and Met145. In view of these multiple potential binding

sites, bottom–up experiments were performed to localize them. Specific

{Pt(dien)}2+ binding sites were identified as Met51, Met71, Met72, His107,

Met109, Met124, Met144, Met145, Glu45 or Glu47, and Asp122 or

Glu123 (Figure B.4).
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Figure 3.8 Site–specific yields of products from backbone fragmentation

vs. backbone cleavage sites. (a) ECD of [CaM + 5Pt(dien) + 10H]20+; (b)

CAD of [CaM + 5Pt(dien) + 10H]20+.

ECD studies of transition metal binding peptides have been

previously reported by a number of groups.215-217 Different fragmentation

behaviors were observed for different transition metal ions in these

complexes. For ECD of multiply–charged metal–protein ions, numerous

other dissociation channels exist. As can be seen in Figure 3.7, direct

electron capture by platinum(II), side–chain losses, and backbone N–Cα

bond cleavage leading to c/z· ions were all observed.
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Scheme 3.1 Proposed mechanism for formation of Pt(dien)+• and

Pt(dien)(CH3S)+• ions.

Scheme 3.1(i) shows that direct electron capture by platinum(II) leads

to the cleavage of Pt–S bonds, which is evidenced by the detection of

Pt(dien)+· ions.  Scheme 3.1(ii) illustrates abstraction of the γ–hydrogen, 

which leads to loss of a radical side chain fragment. Because of the two

inherent positive charges of platinum(II), the side chain loss of

Pt(dien)(SCH3)
+• was detected, which otherwise is neutral. The side

chain losses from Met residues have been reported as •C2H5S and C3H8S,
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the side chain loss of •SCH3 has rarely been observed for unmodified Met

residues.218 It is likely due to the positive charge of platinum(II),

therefore the side chain fragmentation pathway of Pt(II)–modified Met(S)

is different. The side chain loss of Pt(dien)(SCH3)
+• ions can be used as a

signature ion which indicates the binding of platinum(II) to Met(S).

Similarly, the observation of [Pt(dien)(CO)–H•]+ ions suggests the

coordination of platinum(II) to the carboxyl group of Asp or Glu residues.

3.4 Conclusions

Top–down ECD mass spectrometry has been successfully applied to

mapping the binding site of platinum complexes on CaM. Nearly 60%

backbone cleavage efficiency (fraction of inter–residue bonds cleavage)

was achieved in Pt–modified CaM, and over 90% backbone cleavage

efficiency was achieved in CaM without Pt–modification.

Multiple electron capture pathways were observed in the platinum–

modified CaM ions, such as, direct electron capture by platinum(II), side

chain losses, and normal backbone N–Cα bond cleavages leads to

c/z· ions. In addition, the side–chain loss ions, Pt(dien)(SCH3)
+• and

[Pt(dien)(CO) - H•]+, can be used as markers to indicate the binding of

Pt(dien) to Met(S), Asp(O), and Glu(O) groups.

The activity of platinum antitumor compounds is usually closely

related to their binding to DNA.219 Therefore, the loss of all the ligands of

cisplatin upon binding to Met–rich calmodulin could cause cisplatin to lose

much of its antitumor activity due to a failure of reaching the target

DNA.124-128 More importantly, the Met residues in calmodulin play an
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important role in the function of CaM by stabilizing the open conformation

of Ca2+–CaM and providing a target binding interface.198, 220 Therefore,

the intramolecularly Pt–cross–linked CaM will lose its conformational

flexibility to recognize calcium or target proteins, and thereby lose its

function as a calcium sensor and a signal transducer. In addition, it has

been widely reported that the oxidation of Met residues of CaM

decreases the ability of CaM to activate target proteins.198, 200-202

Particularly, the oxidation of Met144 and Met145 is largely responsible for

the decrease in the activity of CaM to activate enzymes.200 Therefore, the

direct binding of cisplatin or its analogues to either Met144 or Met145

may also decrease the activity of CaM to recognize other target proteins.
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Chapter 4

Protein Flexibility is Key to Cisplatin Cross-linking in Calmodulin
3

4.1 Introduction

Proteins often carry out their function as part of large complexes,

and their interactions are intrinsic to virtually every cellular process.

Therefore, the determination of a protein’s three-dimensional structure

and the identification of its interaction partners are critical next steps in 

understanding protein action. Chemical cross-linking as a powerful tool

for studying protein interactions has been used successfully for many

years;221-224 however, not until 2000, was the idea of combining cross-

linking and mass spectrometry (MS) as a tool to study protein

conformations and protein–protein interactions introduced by Young et

al.225 Since then, the developments in MS have greatly promoted the

application of cross-linking in structural biology.226, 227 Fourier transform

ion cyclotron resonance mass spectrometry (FTICR MS) has been shown

to be a powerful tool for analyzing cross-linking in reaction mixtures, due

to its high sensitivity, high mass accuracy, high resolving power, and the

availability of multiple fragmentation techniques.131, 228-231 The

combination of chemical cross-linking with FTICR MS not only yields

information about protein–protein interactions but also reveals which

3
This chapter has been partially/entirely reproduced from

Huilin Li, Stephen A. Wells, J. Emilio Jimenez-Roldan, Rudolf A. Römer, Yao Zhao, Peter J. Sadler,
and Peter B. O’Connor. Protein flexibility is key to cisplatin cross-linking in calmodulin. Protein Sci.
2012. 21, 1269-1279. Copyright 2012, Wiley.
*Flexibility simulation of CaM was done by Dr. Stephen A. Wells and rest of experimental and MS
works were completed by Huilin Li.
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residues within protein complexes are close to one another in space. The

high mass accuracy of FTICR MS can dramatically reduce the number of

candidates for cross-linking products, and in addition, its high resolution,

the ability to provide a “gas phase” purification to accumulate low intensity 

cross-linked product ions, and the ability to fragment large proteins or

peptides extensively, are critical tools that allow the unambiguous

assignment of the cross-linking products and localization of the cross-

linking sites.  However, the identification of the cross-linked products can 

still be laborious and time-consuming due to the complexity of the

reaction mixtures.  To overcome these challenges, significant effort has 

been dedicated to the design of new functional cross-linkers that can

enrich cross-linked products via affinity tags or facilitate the identification 

of cross-linked products by introducing mass spectrometry-cleavable

bonds.159, 161

Previously, the ability of cisplatin to act as a potential protein cross-

linker was explored and demonstrated using standard peptides and the

16.8 kDa protein calmodulin (CaM).208, 232 It was found that cisplatin

cross-links apo-CaM at multiple Met pairings, as follows: Met109–Met144,

Met51–Met71/Met72, Met109–Met124, and Glu127/Asp129–Met144–

Met145. However, the distance constraints obtained from NMR

structures are inconsistent with the measured distance constraints from

cross-linking (see Results and Table C.1). Our objective in this study is

to resolve this inconsistency.

4.1.1 Protein flexibility

Protein structures generally are dynamic and flexible, displaying
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motion on a wide range of length and time scales.233 In carrying out its

biological function, CaM displays substantial flexibility in both the

nonpolar binding grooves with the α-helical linker connecting the two 

globular domains; this flexibility is visible in nuclear magnetic resonance

(NMR) conformations of apo–CaM.234 In addition, in a previous backbone

dynamics study of calcium–saturated recombinant Drosophila CaM (the

sequence of Drosophila CaM differs from the sequence of human CaM by

2 amino acids, F99–Y99 and S147–A147), Barbato et al. observed that a

high degree of mobility exists near the middle of the central helix of CaM,

and also in the loop that connects the first with the second EF–hand type

calcium domain and in the loop connecting the third and fourth calcium

binding domains (Figure 4.1).235 Beck et al. pointed out that if a link

originates from a residue localized in a flexible loop in the protein,

attachments to residues scattered around the structure may be found.155

However, it is not clear whether the cross–links found to violate the

distance constraints observed in the NMR structures of CaM can be

attributed to observed mobility.235

Figure 4.1 NMR structure of CaM (1DMO, the first of 30 conformations)

(25) and crystal structure of Ca4–CaM (1CCL) (26). Calcium binding sites

are in cyan, calcium ions in black, Met residues in magenta, and rest of
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the CaM chain in green. Sulfur atoms indicated as spheres.

4.1.2 Protein flexibility simulation

Attempts to model large–scale dynamic motion at a very high level of

theory (e.g. ab–initio simulation) that could also describe the chemical

details of the formation of Met–Pt bonds would be excessively

computationally demanding. However, we expect the large–scale motion

to be dominated by the intrinsic dynamics of the protein backbone,233 and

this motion can be investigated using simplified methods. In the present

study, to assist in the interpretation of the experimental data, the flexible

motion of CaM was modeled computationally, using a recently developed

rapid method,236 combining protein rigidity analysis,237 geometric

modelling of flexible motion238 and elastic network modeling.239 Coarse–

grained elastic network modeling identifies low–frequency modes, which

are possible directions for flexible motion. Rigidity analysis rapidly

identifies rigid clusters and flexible regions which can act as "hinges".

Geometric simulation using framework rigidity optimized dynamic

algorithm (FRODA)238, 240 combines the information from both analyses

and moves the structure while maintaining bonding and steric constraints.

The combination of all these three methods is particularly suited to

modelling collective motions in a protein structure. These flexibility

simulations allow us to explore large–amplitude motion along multiple

normal modes in an all–atom protein structure at minimal computational

expense236 and provide valuable information on the geometry of potential

platinum–binding sites. In addition, results from flexibility simulations of
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Ca4–CaM were further tested by additional MS experiments. Last but not

least, based on the results of cross–linking experiments and flexibility

simulations, possible mechanisms were suggested, by which the binding

of anti–cancer drug cisplatin to CaM can decrease the ability of apo–CaM

and Ca4–CaM to recognize its target proteins.

4.2 Experimental section

4.2.1 Materials

Bovine calmodulin (CaM), trypsin (TPCK treated from bovine

pancreas), melittin, calcium chloride (CaCl2), ammonium acetate

(CH3COONH4), and ammonium bicarbonate (NH4HCO3) were purchased

from Sigma (St. Louis, MO, USA). HPLC grade of methanol, acetic acid

(HAc), and acetonitrile (ACN) were obtained from Fisher Scientific

(Pittsburgh, PA, USA). Cisplatin was synthesized and characterized by

published methods.

4.2.2 Reaction of CaM and Ca–CaM with Cisplatin

In previous work, all the reactions were carried out in water.15,22

Here, to simulate a physiological pH, all samples were reacted in 100 mM

ammonium acetate (pH 6.8). Calcium–containing CaM was obtained by

mixing a 500 μM apo–CaM solution with a 50 mM CaCl2 solution at a 1:10

volume ratio, yielding a calcium:CaM molar ratio of 1000:1. Ca–free CaM

and Ca–containing CaM solutions were then subsequently reacted with

cisplatin in a 1:2 molar ratio. The samples were incubated at 37° for 24 h.

To remove free platinum complexes and desalt, Amicon filters (MW cutoff

= 3 kDa, Millipore, Watford, UK) were used at 13000 rpm for 30 min at
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room temperature, and washed three times with 200 μL ammonium 

acetate (100 mM).

4.2.3 Reaction of Ca–CaM, apo–CaM–cisplatin Complexes, and Ca–

CaM–cisplatin Complexes with Mellitin

Ca–CaM, apo–CaM–cisplatin complexes with calcium added

subsequently, and Ca–CaM–cisplatin adducts from the above

experiments were mixed with melittin (1 mM) in 100 mM ammonium

acetate at a molar ratio of 1:1, to give a final concentration of 20 μM for 

each reaction complex. The same sample desalting procedure as

described above was applied.

4.2.4 Digestion

The samples were diluted to 20 μM with 50 mM NH4HCO3 (pH 7.8)

and then subjected to trypsin digestion at a protein to enzyme ratio of

40:1 (w/w) at 37° for 4 h.  As a control, 20 μM CaM without platinum 

reagents was digested under the same conditions.

4.2.5 FTICR Mass Spectrometry

ESI–MS was performed on a Bruker solariX FTICR mass

spectrometer with an ESI source and a 12 T actively shielded magnet.

For native spray, the samples were diluted to 2 μM with 100 mM 

ammonium acetate (pH 6.8). For normal ESI analysis, the samples were

diluted to 0.4 μM with 50% MeOH–1% CH3COOH buffer.

4.2.6 Flexible Motion Simulations

Rapid simulations of flexible motion were carried out by using a

combination of protein rigidity analysis,237 geometric modeling of flexible

motion238 and elastic network modeling,239 as described in detail in a
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recently developed method.236 The combined method is briefly described

here: the input is an all–atom protein crystal structure. For Ca4–CaM, the

1CLL crystal structure in the Protein Data Bank (PDB) was used,241 with

“REDUCE” (a program for adding hydrogens to a PDB molecular structure

file)242 to add hydrogens and PyMOL243 to renumber all atoms.

Rigidity analysis is carried out in floppy inclusions and rigid

substructure topography (FIRST) using the pebble–game algorithm,

which matches degrees of freedom against constraints to divide a

molecular framework into rigid and flexible regions.244, 245 The constraints

included are covalent bonds, hydrophobic tethers, and hydrogen bonds.

Water molecules are not explicitly included but the assignment of non–

covalent constraints assumes a polar solvent because of hydrophobic

effects. The strength of hydrogen bonds was estimated in FIRST using a

Mayo potential246 based on donor−hydrogen−acceptor distance and 

angles. The set of hydrogen bonds to include in the analysis is selected

using an energy cutoff value, Ecut. A rigidity dilution is carried out by

gradually lowering Ecut from a value of zero (including even the weakest

hydrogen bonds) to a large negative value that excludes all but the

strongest hydrogen bonds.244, 245 This provides information on the

relative rigidity and flexibility of different portions of the structure, as in a

recent study on the inhibition of HIV–1 protease,247 and suggests values

of Ecut in a physically relevant range to use in subsequent simulations of

flexible motion.

Coarse–grained elastic network modeling in ElNemo239 uses a

one–site–per–residue representation of the protein structure, obtained



99

from the PDB structure by selecting only the Cα atom of each residue. 

Springs of uniform strength are placed between all pairs of sites lying

within a distance cutoff, in this case of 12 Å. Diagonalisation of the

resulting matrix generates a set of 3n elastic network modes

(eigenvectors and frequency eigenvalues) for a protein structure of n

residues; here n=144 (the terminal residues 1–3 and residue 148 were

not resolved in the 1CLL crystal structure).

The FRODA implemented within FIRST, models bonding constraints

in a molecular framework using a system of templates.238, 240 Motion is

generated by a small perturbation (typically of order 0.01 Å) of all atomic

positions followed by reimposition of the bonding and steric constraints.

To model flexible motion, an elastic network mode eigenvector was used

as a systematic bias; the perturbation of the structure displaces all the

atoms of a given residue in the direction of motion for that residue in the

eigenvector. The process is iterated to produce a large amplitude of

motion along the bias eigenvector while retaining physically reasonable

bonding and steric geometry. Motions both parallel and anti–parallel to

the mode eigenvector were explored by using positive (+) and negative (–)

biases. A trajectory of several thousand conformations, generating motion

over several Ångström root–mean–square deviation (RMSD), takes only

a few central processing unit (CPU) minutes, allowing for the rapid

exploration of many modes.236, 248

4.3 Results and discussion

Previously Li et al. reported, using a combination of top–down and
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bottom–up MS methods, that cisplatin cross–links multiple Met pairs of

apo–CaM, as follows: Met51–Met71/Met72, Met109–Met124, Met109–

Met144, and Glu127 or Asp129–Met144–Met145. However, the spatial

distances of each cross–linked pair as determined from the reported

family of 30 NMR structures of apo–CaM (see Table C.1),234 as sulfur–

sulfur distances of each Met pair are as follow: Met51–Met71 (2.9 to 7.1

Å), Met51–Met72 (5.7 to 8.7 Å), Met109–Met124 (6.8 to 9.2 Å), Met109–

Met144 (9.7 to 12.7 Å), and Met144–Met145 (5.2 to 9.2 Å). These values

range from 2.9 to 12.7 Å; and only the spatial distances between Met51–

Met71 (in 11 conformations out of 30) fit the arm length range of cisplatin

(2.82 Å to 4.63 Å).

In general, protein structures are not static and rigid. The polypeptide

backbones, and especially the side chains, are constantly moving due to

thermal motion of the atoms.233 In both of the calcium–free and calcium–

saturated forms, CaM displays substantial flexibility in the nonpolar

binding grooves and the α–helical linker connecting the two globular 

domains. However, it is not clear whether the inconsistency of the

distance constraints between MS cross–linking data and NMR structures

of apo–CaM can be explained by such dynamical phenomena. The

flexible motion of CaM was therefore modeled to assist with the

interpretation of the experimental data and to guide further experiment

investigation.

4.3.1 Analysis of the cross–linking sites of cisplatin to CaM and Ca4–

CaM by flexibility approaches

4.3.1.1 Rigidity dilution analysis
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Figure 4.2 Rigidity dilution plots for (a) the native structure of Ca4–CaM

(1CLL), and (b) the Ca4–CaM (1CLL) with calcium deleted. The primary

sequence of the protein is represented as a line, and the secondary

structure is presented by using DSSP (database of secondary structure

assignments) with calcium binding sites indicated. A horizontal thin black

line indicates a flexible region of the backbone, while a thick coloured line

indicates a rigid cluster. The topmost line of the plot shows the rigidity of

the structure with the inclusion of all possible hydrogen bonds; the

structure is almost entirely a single rigid cluster, shown in red. When Ecut

is decreased (left–most column, in kcal/mol), rigid clusters break up as

indicated in different colors and more of the chain becomes flexible.

Cutoff values used in the simulation of flexible motion (-1,-2 and -3

kcal/mol) are indicated by arrows.

Rigidity analysis is carried out in FIRST software, which accurately

predicts flexible regions in proteins by analyzing the constraints on

flexibility formed by the covalent and non–covalent bonds.244, 245 Figure

4.2 shows the rigidity dilutions for the 1CLL CaM structure,241 both in its
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native state including four bound calcium ions (Figure 4.2 a), and also in

an edited state with calcium ions deleted from the structure (Figure 4.2 b).

In the native state, α–helical regions, for example, residues 103–111 

(pink), 118–128 (green), 139–146 (blue), are generally visible as

persistent rigid clusters during the dilution, and much of the N–terminal

region remains a single rigid cluster to cutoff values around –2 kcal/mol

(ca. 8.4 kJ/mol). However the central helix (residues 66–92) ceases to be

a single rigid cluster at a cutoff of -1.178 kcal/mol. It appears that the

capacity of the central helix to become flexible in CaM, visible in the NMR

ensemble of structures 1DMO,234 is predicted by the rigidity analysis.

Deletion of the calcium ions from the 1CLL structure (Figure 4.2 b)

removes constraints from the network as protein–metal bonds are no

longer present. The effects on the rigidity analysis are greatest at small

values of the energy cutoff and are particularly visible in the N–terminal

region. With calcium bound, residues 5–35 form as a solid robust helix

structure (Figure 4.2 a); upon removal of the calcium, the same region

splits into two helices connected by a flexible linker region (residues 19–

30) (Figure 4.2 b). With reference to these dilution plots, flexibility

simulations were carried out using three different cutoffs (-1, - 2 and - 3

kcal/mol) for both the native and calcium-deleted structures. This allowed

us to explore the flexible motion of the structure both when it is largely

rigid and when it is largely flexible.234

4.3.1.2 Elastic network mode

Coarse–grained elastic network modeling was performed to identify

low–frequency modes of CaM based on its crystal structure (1CLL).
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Conventionally these modes are ordered from lowest frequency to

highest. Modes 1–6 represent combinations of rigid–body rotations and

translations of the structure and have effectively zero frequency, so the

lowest–frequency non–trivial mode is mode 7, hereinafter m7. The

motions along the 20 lowest–frequency non–trivial modes, that is, m7–m26

were therefore examined. In order to distinguish between motion along

the direction of a mode and motion opposite, m+ and m- were used,

respectively. The protein displays a substantial amount of flexible

motions along these modes. Some of these flexible motions bring pairs

of Met residues into close proximity, potentially allowing cross–linking by

cisplatin. As CaM is almost symmetric, several modes were found to

occur in matched pairs, describing equivalent motions of the two globular

domains.

4.3.1.3 FRODA simulation results

The FRODA software was used to determine conformational changes

in CaM. Each of 20 mode eigenvectors of CaM was explored, in positive

and negative directions, for each of three Ecut values, for the native and

calcium–deleted structures, making up 240 trajectories in all. The

purpose of the simulations is to explore the possible formation of

platinum–binding sites, that is, locations where the side–chains of several

Met residues lie close together. The conformations generated in the

flexibility simulations were therefore examined and distances between the

sulfur atoms of Met side–chains were extracted using a distance cutoff of

5 Å. Multiple cases were identified (Table 4.1) in which a pair of sulfur
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atoms lying outside this cutoff distance in the crystal structure is brought

within the cutoff by flexible motion along a mode eigenvector.

Table 4.1 Predicted cross-linking sites as obtained from rigidity and

flexibility analysis at energy cutoffs of -3 kcal/mol (For results from

energy cutoffs of -2 kcal/mol and -1 kcal/mol, see Table C.2(A&B). The

first two columns give the potential cross-linking Met residues, the third

shows the sulfur-sulfur distance d(1—2) obtained from the crystal

structure of Ca4–CaM (1CCL). The remaining columns show the modes

in both +Ca and –Ca structures that can bring Met residues close to

within 5 Å, and the corresponding d(1—2) distances, and the MS results

wherever available. “-” indicates that the cross-linking of the

corresponding Met pairs was not observed in MS. (kcal/mol is used as a

default unit in FIRST software, which can be converted to SI unit

according to 1 kcal/mol=4.2 kJ/mol).

Rigidity cutoff -3

kcal/mol.

+Ca structure (1CLL) -Ca structure (calcium-

deleted structure of 1CLL)

Residue

1

Residue

2

d(1-2),

(Å)

native

(1CLL)

Mode of

close

approach

d(1-2),

(Å)

simulated

MS

experiment

results

Mode of

close

approach

d(1—2),

(Å)

simulated

MS

experiment

results

36 71 10.9 m
+

13 4.9 - -

36 72 11.6 - m
+

13 4.3 -

51 71 9.9 m
+

13 3.8 Yes m
+

13 3.6 Yes

51 72 12.5 - -

109 124 5.2 Many

modes

<5 Yes Many

modes

<5 Yes

109 144 12.3 m
-
14 3.7 Yes m

-
14 3.8 Yes

109 145 10.3 - -

124 144 9.6 m
+

18, 4.1 - m
+

18 4.6 -

124 145 11.0 - -
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In Figure 4.3, a flexible motion of the C–terminal globular domain is

illustrated. The side chains of residues Met109 and Met144 are widely

separated in the 1CLL crystal structure (Figure 4.3 a), but are brought

together by motion along m14 (Figure 4.3 b), a mode that opens and

closes the non–polar binding groove. This suggests that the thioether

side–chains of Met109 and Met144 can coordinate to the same platinum

ion when CaM binds to cisplatin. Thus, this accounts for the observation

of cross–linked fragments in MS, such as CaM(107–126) + Pt +

CaM(127–148).208, 232 It is also clear that the binding of platinum to this

pair of residues will effectively close the nonpolar groove and interfere

with the ability of CaM to bind to protein targets, which suggests that the

mechanism of action for platinum–containing drugs, such as cisplatin,

could involve inhibiting the activity of CaM as discussed later.

Figure 4.3 The C–terminal domain (residues 80–147) of Ca4–CaM (1CLL)

shows the hydrophobic protein–binding groove: (a) at the start of a

flexible–motion simulation (native structure), and (b) during flexible–

motion simulation along mode m14–. The protein is mostly shown in

cartoon view, with Met residues shown in all–atom view, and sulfurs
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highlighted in black. The sulfur–sulfur distance for residues 109 and 144

is shown and these two residues have clearly been brought into close

proximity in mode 14–.

Table 4.1 shows the results for significant pairs of Met residues in

each domain, giving in each case the initial distance between the sulfur

atoms, and the identity of any mode that brings the sulfur atoms within 5

Å of each other, along with the closest distance of approach in our

simulations. In the N–terminal domain, the pairing of residues Met36–

Met51 (Met(S)–Met(S) distance 4.97 Å) which are close in the 1CLL

structure was neglected, and of residues Met71–Met72, that are adjacent

in sequence. In the C–terminal domain, the pairing of residues Met144–

Met145 was neglected as they are adjacent in sequence; for the pair of

residues Met109–Met124, which are close in the native structure, multiple

modes producing close approaches of this pair were found. Table 4.1

provides data for simulations with and without calcium in the structure at

the energy cutoff of - 3 kcal/mol used in the rigidity analysis (Results

obtained at energy cutoffs - 2 kcal/mol and - 1 kcal/mol are listed in Table

C.2). The holo–CaM (+ Ca) structure is slightly less flexible than the

apo–CaM (- Ca) structure; however, the residue pairings observed are

consistent for both - Ca and + Ca CaM forms. The largest number of

pairings was found at a cutoff of - 3 kcal/mol, and simulations at smaller

cutoffs when the protein is more rigid have more restricted motion and

produce fewer pairings (Table C.2 a&b).
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4.3.2 Mapping the binding sites of cisplatin to Ca4–CaM by MS

approaches

Figure 4.4 (a) Native ESI spectrum of Ca–CaM:cisplatin = 1:2 reaction

products; (b) Trypsin digested Ca–CaM:cisplatin = 1:2 complex, the

inserts are platinum cross–linked species; (c) CAD spectrum of

[CaM(107–126) + Pt + H]3+ species. The observation of a3 + Pt and y4 +

Pt ions indicates that cisplatin cross–links Met109 and Met124 residues.



108

As shown in Table 4.1, the results obtained from flexibility analysis

suggest that cisplatin can also cross–link Ca4–CaM at multiple Met pairs.

To test the predictions obtained from flexibility analysis experimentally,

MS analysis of the products from reactions of cisplatin with calcium–

containing CaM was carried out. Figure 4.4 a shows the mass spectrum

of reaction products of calcium–containing CaM with cisplatin (Ca–

CaM:cisplatin=1:2) under native spray conditions. Different calcium

binding forms of CaM were observed, mainly CaM + 2Ca and CaM + 4Ca.

This is accounted for by the fact that the C–terminal lobe has a 10–fold

higher Ca2+–binding affinity than the N–terminal lobe.36 More importantly,

calcium-bound CaM displaced all four ligands from cisplatin, giving

products such as CaM + Pt + 2Ca, CaM + 4Ca + Pt, and CaM + Pt +

Pt(NH3) + 2Ca, which clearly indicates that cisplatin can also cross–link

calcium–bound CaM. Subsequently, the Ca–CaM:cisplatin = 1:2 reaction

products were further trypsin–digested, and followed by MS analysis.

Figure 4.4 b shows that spectra from the trypsin–digested Ca–

CaM:cisplatin = 1:2 sample contain a number of Pt–modified species. A

common feature of the species shown in the inserts of Figure 4.4 b,

[CaM(107–126) + Pt + H]3+ at m/z 865, [CaM(127–148) + Pt + H]3+ at m/z

895, [CaM(107–126) + Pt + CaM(127–148) + 3H]5+ at m/z 1018, and

[CaM(38–74) + Pt + H]3+ at m/z 1067, is that all the original ligands (NH3

and Cl) of cisplatin have been displaced. This is attributable to the trans–

labilization effect of Met sulfur.37 The loss of two ammine ligands

indicates that at least two Met residues bind to one platinum atom in each
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case. Therefore, cisplatin forms both interchain cross-links CaM(107–126)

and CaM(127–148) fragments, and intrachain cross-links CaM(38–74),

CaM(107–126), and CaM(127–148) fragments. To further localize the

cross-linking sites, the cross-linked species were fragmented by

collisional activated dissociation (CAD). As an example shown in Figure

4.4 c, the observation of a3 + Pt and y4 + Pt ions in the CAD spectrum of

[CaM(107–126) + Pt + H]3+ species suggests that cisplatin intrachain

cross–links CaM(107–126) at Met109 and Met124. Thus, cisplatin can

cross–link calcium–bound CaM at the same sites as to CaM, namely,

Met51–Met71/Met72, Met109–Met124, Met109–Met144, and Met144–

Met145 (Table 4.1).

Since the flexibility analysis results indicate that cisplatin can also

cross–link Met36 and Met72, Met124 and Met144, we then checked MS

results to see whether corresponding peaks had been detected. No

peaks corresponding to platinum cross–linking Met36 and Met72 were

observed. Also no fragment ions indicating that cisplatin cross–links

Met124 and Met144, were found in the tandem MS spectra of either

CaM(107–126) + Pt + CaM(127–148) or CaM(107–126) + Pt + CaM(142–

148) species. There are several reasons for a theoretically possible

cross–link not being observed in MS, including its low intensity,

unfavourable ionization, and unsuitable peptide length.

As Glu and Asp residues can also potentially coordinate platinum, we

carried out an additional search for close approaches between the side-

chain carboxylate groups of residues Glu127 and Asp129 with each other

and with the Met sulfur atoms in the C-terminal domain. The side chain
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carboxylate group of Glu127 is brought within 5 Å of the side chain

sulphur atom of Met144 by multiple flexible modes, at all energy cutoffs

studies, in both +Ca and –Ca structures. In the simulations, Glu127 was

not observed to pair with Met145, and Asp129 not to pair with either

Met144 or Met145. The experimental observation of Pt-crosslinked

CaM(127-148) fragments can thus be explained by the formation of

Glu127-Pt-Met144 cross-links as observed in the simulations. However,

the formation of Asp129–Pt–Met145 cross-links in this fragment cannot

be excluded. Therefore, overall, the cross-linking MS results of calcium-

bound CaM are consistent with the flexibility analysis of Ca4–CaM.

4.3.3 Biological insights from cross-linking experiments and

flexibility analysis

Previously Jarve et al. reported that treatment of rats with the anti-

cancer drug cisplatin can immunohistochemically reduce the level of the

Ca4–CaM complex.205 In addition, an in vitro experiment using an

analogue of CaM, Mero–CaM–1, showed that cis–diammine–

diaquacisplatinum(II), a hydrolysed form of cisplatin, inhibited the CaM

conformational shift through a direct interaction with the CaM molecule.

The authors concluded that distention of the stomach was due to

inhibition of neuronal nitric oxide synthase (NOS) activation by a direct

interaction between cisplatin and the calcium binding sites of the CaM

molecule. However, our previous results show that Met(S) residues are

the preferential cisplatin–binding sites rather than the calcium binding

sites (mainly Glu(E) and Asp(D) residues), although the binding of

cisplatin to Glu and Asp residues can occur when the molar ratios of
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cisplatin to CaM are high.232 Met residues in CaM play an important role

in its versatility and functions. It has been widely reported that the

oxidation of Met residues (especially Met144 and Met145) of CaM

decreases the ability of CaM to activate target proteins due to a large

reduction in the conformational flexibility of the Met side chains.249-251

Met residues account for nearly half the surface area of the hydrophobic

patches of Ca4–CaM, and function by providing a target-binding interface.

As shown in Figure 4.1, the binding of calcium exposes the hydrophobic

patches of Ca4–CaM, which in general moves Met residues further away

from each other compared to calcium–free CaM NMR structures.

However, the results of the flexibility simulation suggest that the cross–

linking of cisplatin to multiple Met sites on CaM will trap the binding

groove in a closed state and prevent opening of the binding interface

(Figure 4.3), therefore decreasing the ability of Ca4–CaM to recognize its

target proteins.

4.3.4 Melittin–binding assay

To verify the hypothesis that the cross–linking in CaM or Ca4–CaM

induced by cisplatin may decrease the ability of CaM to recognize its

target proteins, reaction products of CaM and cisplatin (CaM:cisplatin =

1:2), and calcium–containing CaM with cisplatin (Ca–CaM:cisplatin = 1:2)

were further reacted with melittin at a 1:1 molar ratio. Melittin is one of

the most potent inhibitors of CaM activity, and has been widely used to

evaluate the ability of CaM to recognize its targets.40-42
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Figure 4.5 Native ESI spectra of protein complexes. (a) Ca–CaM:melittin

= 1:1; (b) (CaM:cisplatin = 1:2)–Ca:melittin = 1:1; (c) (Ca–CaM:cisplatin =

1:2):melittin = 1:1.

Figure 4.5 shows MS spectra of melittin reacting with Ca–CaM,

(CaM:cisplatin = 1:2)–Ca complex (calcium added to assist the

recognition of melittin), and Ca–CaM:cisplatin = 1:2 complexes. As

shown in Figure 4.5 a, the adduct Ca4–CaM + melittin is the major

product from the cisplatin–free CaM reaction; in addition, Ca2–CaM also

binds to melittin. On the contrary, as shown in Figure 4.5 b, once CaM

has reacted with cisplatin, no peaks corresponding to Ca4–CaM + melittin

are detected when Ca2+ is added subsequently (with or without platinum,



113

or different numbers of calcium ions). The spectrum is dominated by Pt–

crosslinked CaM species; in addition, no cross–linked species were

detected with four calcium ions bound. In comparison, for the case of

calcium–bound CaM (Figure 4.5 c), the spectrum was dominated by

platinum cross–linked CaM species; however, surprisingly, a species

corresponding to CaM + 4Ca + Pt + melittin was observed (see the insert

of Figure 4.5 c), which suggests that calcium–binding opens up the more

compact apo–CaM (calcium–free CaM) structure, as shown in Figure 4.1,

increasing the exposure of hydrophobic target–binding surfaces in each

of the globular domains. Therefore, even Pt–crosslinked Ca4–CaM

maintains an extended open structure, and thus maintains to a certain

extent the ability to recognize its target, melittin. In contrast, the

structures of calcium–free CaM are more compact, the cross–linking

further closes the nonpolar groove. Therefore, addition of calcium ions

after cross–linking cannot effectively change the structure of the Pt–

crosslinked CaM species, and thus Pt–crosslinked CaM loses its ability to

recognize its target.

4.4 Conclusions

Previously the anti–cancer drug cisplatin has been demonstrated

to be a protein cross–linking reagent, cross–linking multiple sulfur atoms

of multiple Met pairs on CaM. However, the distance constraints obtained

from NMR structures of CaM are inconsistent with the measured distance

constraints by cross–linking. Here, a flexibility analysis shows that both +

Ca and – Ca CaM structures have extensive flexibility, and flexible
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motions can bring sulfur atoms of Met residues in the hydrophobic

patches close and within 5 Å, which provides opportunities for cisplatin to

cross–link Met residues of CaM. Therefore, the simulation of flexible

motion can be a very useful tool for predicting cross–linking pairs in

proteins and facilitating MS data analysis. In addition, flexibility simulation

also suggests a direct mechanism of action for platinum–containing drugs,

such as cisplatin, to inhibit the activity of CaM. This occurs via binding of

platinum to pairs of Met residues, such as Met109–Met144, which

effectively traps the nonpolar groove in a closed state, and interferes with

the ability of CaM to bind to protein targets. This hypothesis was further

validated by a melittin binding assay, Ca4–CaM maintains to a certain

extent of its ability to recognize melittin even when cross–linked by

platinum; however, calcium–free CaM, when cross–linked by cisplatin,

loses its ability to recognize the target, melittin.

Collectively, these results suggest that flexibility is key to cisplatin

cross–linking in CaM. The cross–linking of cisplatin to apo–CaM or Ca–

CaM can inhibit the ability of CaM to recognize its target proteins. In

addition, the simulation of flexible motion can be a very useful tool for

predicting cross–linking pairs in proteins and facilitating MS data analysis.

In the future work, it will likely be instructive to refine these simulations

here to further take account the fact that protein cross–linking by cisplatin

occurs in a stepwise fashion on a time scale of minutes to hours. After

the initial adduct {Pt(NH3)2Cl}+ is formed with the protein, the charged

cisplatin residue changes the local forces, adding new attractive charge–

charge and charge–dipole interactions. Thus, these simulations likely
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underestimate both the reaction rate and the apparent distance over

which cisplatin can crosslink proteins. Nevertheless, these cost–effective

simulations can provide some structural and modal insight into the

approach distances available in these proteins which helps to understand

how cross–linking can occur over larger distances than initially expected.

Ultimately, it is clear that such studies of platinated proteins in a

proteomic context will become increasingly important in the future as

more platinum and metal–based therapeutics become available.
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Chapter 5

Side–Chain Losses in Electron Capture Dissociation to Improve the

Identification of Pt(II)–modification Sites on Peptides and Proteins4

5.1 Introduction

5.1.1 Mass Spectrometry techniques for characterizing Pt–binding

sites on proteins

The most frequently used tandem MS fragmentation technique for

determining platinum binding sites on proteins is collision–activated

dissociation (CAD), which breaks peptide C–N bonds to form N–terminal

b and C–terminal y–ions.141, 143, 146, 252 Although CAD is useful in the

determination of platinum binding sites, it is still challenging to

differentiate the site to which platinum binds. CAD–induced cleavage of

labile post–translational modifications (PTMs), including Pt–modifications,

is dependent of the collision energy used, and can lead to erroneous

conclusions, especially in those situations where there are multiple

potential binding sites close to each other in a sequence.

Electron capture dissociation (ECD) is a complementary

fragmentation technique that produces c and z• ions upon breakage of

the N–Cα bond, and often labile modifications are preserved in ECD.40, 57

Previously it has been demonstrated that ECD can be used to localize the

sites of modification by platinum on proteins and peptides.208 The Pt–

modified and unmodified c/z• ions generated by ECD are very useful for

4
This chapter has been partially/entirely reproduced from

Huilin Li, Jonathon R. Snelling, James H. Scrivens, Peter J. Sadler, and Peter B. O’Connor. Side–
Chain Losses in Electron Capture Dissociation to Improve the Identification of Pt(II)–modification
Sites on Peptides and Proteins. Anal. Chem. 2012. Submitted.
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identifying the Pt–modification sites. As a result, Met(S), His(N), and

carboxyl groups of Asp and Glu have been identified as Pt–binding sites.

However, it is important to remember that cisplatin has four ligands

which can be displaced to form up to four bonds with a protein or peptide.

Thus, it is still challenging to identify, unambiguously, the modification

sites when there are multiple potential Pt–binding sites presented in one

sequence, especially when those potential Pt–binding sites are adjacent

or close to each other. Additionally, positional isomers are often formed

during the reaction of Pt(II) complex with proteins. Therefore, without any

prior separation, the precursor ion isolated for fragmentation is often a

mixture of ions with exactly the same mass but different structures

(including positional and conformational isomers), which can significantly

complicate the tandem spectra and data interpretation. It is relatively

easy to identify the Pt–modification sites at each end of the sequence

according to Pt–modified c/z• ion information, but the sites in the middle

of the sequence are often difficult to assign accurately. Determining the

precise location of the Pt–binding position can be crucial due to the fact

that Met(S), His(N), Cys(S), and carboxyl groups of Asp and Glu residues

are often involved in the binding of metal ions e.g. Zn2+, Cd2+, Cu2+, Ca2+,

in proteins, such as metallothioneins, superoxide dismutase, calmodulin,

and cytochromes.253

5.1.2 Side chain losses in ECD

Previously it has been observed that when platinum binds to a Met

residue of a peptide or protein sequence, there is a signature side chain

loss of CH3SH in ECD.208 Therefore, the side chain loss of CH3SH can
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be used as an indicator for Pt–modification at Met residues. Here, to

explore further the possibility of using the neutral side chain losses in

ECD as signatures to improve the localization of Pt–modification sites on

peptides and proteins, a detailed study of the binding of cisplatin to

peptides with various types of potential Pt–binding sites (Met(S), His(N),

Cys(S), Asp(O), Glu(O), disulfide bonds, Arg(N), and Lys(N)) is presented

using ECD in a Fourier transform ion cyclotron resonance mass

spectrometer (FTICR MS). In addition, as an alternative approach,

travelling wave ion mobility mass spectrometry combined with CAD is

also applied to separate and localize Pt–modification sites. It has already

been demonstrated that ion mobility can distinguish between isomeric

compounds with identical mass–to–charge ratios, including small

molecules, peptides, and proteins, which cannot be separated from each

other using mass spectrometry alone.254-258

Furthermore, the data analysis approach established here was

further tested in the analyses of top–down ECD data of a Pt–crosslinked

insulin dimer to locate the cross–linking sites.

5.2 Experimental section

5.2.1 Materials

Substance P (Sp), substance P fragment 1–7 (Sp1–7), substance P

fragment 2–11(Sp2–11), angiotensin II (A), bombesin (B), Arg8–vasopressin,

Lys8–vasopressin, insulin from bovine pancreas, and ammonium

hydroxide solution (NH4OH) were purchased from Sigma (St. Louis, MO).

Peptides (P1) (KMGIHACVEFK) was synthesized by GL Biochem
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(Shanghai, China) Ltd. HPLC grade of acetic acid (HAc), and acetonitrile

(ACN), were obtained from Fisher Scientific (Pittsburgh, PA). Cisplatin

was synthesized and characterized by standard methods.122

Table 5.1 Amino acid sequences of the peptides and proteins studies

here. Potential Pt(II) binding sites, are highlighted in red.

Name Sequence Composition Monoisotopic

Mass (Da)

Substance P

(SP)

RPKPQQFFGLM-NH2 C63H98N18O13S 1346.72815

Substance

P(1-7) (SP1-7)

RPKPQQF C41H65N13O10 899.49773

Substance

P(2-11)

(SP2-11)

PKPQQFFGLM-NH2 C57H86N14O12S 1190.62703

Angiotensin II

(A)

DRVYIHPF C50H71N13O12 1045.53451

Bombesin (B) pGlu-QRLGNQWAVGHLM-NH2 C71H110N24O18S 1618.81506

Lys
8
-

vasopressin

CYFQNCPKG-NH2

[Disulfide Bridge: 1-6]

C46H65N13O12S2 1055.43171

Arg
8
-

vasopressin

CYFQNCPRG-NH2

[Disulfide Bridge: 1-6]

C46H65N15O12S2 1083.43785

P1 KMGIHACVEFK C56H91N15O14S2 1261.63113

Insulin C254H377N65O75S2 5601.71259

5.2.2 Reaction of peptides with Cisplatin

Aqueous solutions of each peptide (1mM) and cisplatin (0.5 mM)

were prepared and mixed to give a peptide:cisplatin mixture at a molar
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ratio of 1:2 and then diluted to a final peptide concentration of 20 μM. The 

mixtures were incubated at 37 °C for 24 h and then diluted to 0.4 μM with 

50% ACN–1% CH3COOH for MS analysis. For reactions at different pH

values (3, 7, and 10), the pH values of peptide:cisplatin mixtures were

adjusted by adding CH3COOH or NH4OH. Insulin (0.2 mM) was reacted

with cisplatin at a molar ratio of 1:8 to a final protein concentration of 20

μM, and then incubated at 37 °C for 24 h before MS analysis. 

5.2.3 FT ICR Mass Spectrometry

ESI–MS was performed on a Bruker SolariX FT ICR mass

spectrometer with an ESI source and a 12 T actively shielded magnet.

Samples were electrosprayed at 0.4 μM concentration in 50:50 ACN:H2O

with 1% acetic acid. For collisionally activated dissociation (CAD)

experiments, the parent ions were isolated using the quadrupole, and

were fragmented in the collision cell, and then transmitted into the ICR for

detection. For electron capture dissociation (ECD) experiments, the

parent ions were isolated in quadrupole and externally accumulated in the

collision cell for 3 – 20 s. After being transferred and trapped in the

Infinity ICR cell, ions were irradiated with 1.5 eV electrons from a 1.7 A

heated hollow cathode dispenser for 10 to 120 ms. One millisecond

single frequency shot at m/z 100 was given at the beginning of the ECD

event to activate ions and improve the overlap between electrons and

ions. Spectra using 4 M data sets were recorded from m/z 150 to 3000

Da.
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5.2.4 Ion Mobility Mass Spectrometry

Ion mobility–mass spectrometry/mass spectrometry (IM–MS/MS)

experiments were performed by means of a hybrid quadrupole–travelling

wave ion mobility–orthogonal acceleration time–of–flight (oa–TOF) mass

spectrometer (Synapt G2, Waters, Manchester, UK). The time–of–flight

analyzer was mass calibrated using sodium iodide (NaI) for ESI

experiments.  Samples were electrosprayed at 0.4 μM concentration in 

50:50 ACN:H2O with 1% acetic acid. Data were acquired using the

sensitivity mode of the instrument (resolution 20,000 FWHM). As

described elsewhere,259 the Synapt G2 Tri–wave region comprises three

travelling–wave (T–Wave)–enabled stacked–ring ion guides: trap cell, ion

mobility cell and transfer cell. Separation in the ion mobility cell was

carried out using a T–Wave height of 40 volts and a velocity of 1200 m/s

in full scan mode. During MS/MS acquisition all CAD experiments took

place in the transfer cell, after precursor ion separation in the mobility cell.

The collision voltage within the transfer cell was optimized to 30 volts.

Data acquisition and processing were carried out using MassLynx (v4.1)

software (Waters, Manchester, UK).

5.3 Results and discussion

CAD and ECD experiments on a 12 T Bruker solariX FTICR MS

instrument and IM–MS/MS (CAD) experiments on a Waters Synapt G2

were performed separately for Pt(II) adducts of substance P (for

sequence see Table 5.1) to explore the identification of conformational

isomers.
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5.3.1 Analysis of Cisplatin–Substance P Adducts Using CAD/ECD

FTICR MS and IM–MS/MS (CAD)

Figure 5.1 MS/MS spectra of the substance P:cisplatin (1:2) sample. (a)

CAD spectrum of the [Sp + Pt(NH3) + H]3+ ions at m/z 520; (b) ECD

spectrum of [Sp + Pt(NH3) + H]3+ ions at m/z 520. “*” represents chemical

noise.

A CAD experiment on the platinum(II) adducts of substance P (Sp),

[Sp + Pt(NH3) + H]3+ ions at m/z 519.9, was first performed in a FTICR

MS instrument. As shown in Figure 5.1a, a series of ions corresponding

to yn + Pt accompanied by neutral losses were detected. The detection of
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y1 + Pt – HCONH2 peak indicates that cisplatin binds to the C–terminal

Met amide residue. In addition, (b8 + Pt)2+ and (a10 + Pt)2+ ions were also

observed, which suggests that platinum can also bind to some other

amino acid sites in the sequence, other than the Met residue, although

the observation of b2 to b10 ions without Pt–modification does not provide

additional information.

An interesting feature which reflects the conformation of substance

P was observed in the CAD spectrum of the [Sp + Pt(NH3) + H]3+ ion (the

same feature as in the CAD spectra of [Sp + 3H]3+ and [Sp + 2H]2+ ions).

As shown on top of Figure 5.1a, the observation of b2, b3 and a series of

b ions (b5 – PQ to b10 – PQ) with the loss of PQ residues in the middle of

the sequence. It is known that b–ions tend to form cyclic structures and a

cyclic structure of b–ions from substance P has been previously

reported,260-262 in which the observation of series of cm–Lys

fragmentations in ECD of several b–ions from Substance P suggested

that the macro–cyclic structure may also be formed by connecting the C–

terminal carbonyl group and the ε–amino group of the lysine side chain.  

However, losing PQ residues and forming a series of b–ions without

scrambling the sequence from such a macro–cyclic structure is unlikely.

The results observed here suggest that there might be certain interaction

between the ε–amino group of the Lys3 side chain to the carboxyl group 

of Glu6, which could also explain the observation of c4
• and c5

• ions in the

ECD spectrum of Sp.86 Due to the intramolecular interaction of Lys3 and

Glu6 residues, c/z• ion pairs are held together by hydrogen bonding and

thus lead to intra–complex hydrogen radical transfer and formation of c•/z
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ions.

Figure 5.1b shows the ECD spectrum of the [Sp + Pt(NH3) + H]3+

ion at m/z 519.9. The observation of the [Sp + Pt + H – CH3S]2+· ion and

a series of zm
· + Pt – NH3 ions (m= 4~7, 9) is consistent with the CAD

results, that is, Pt binds to the C–terminal Met site. Unexpectedly, a

group of ions corresponding to a1 + Pt, b1 + Pt, b3 + Pt – NH3, and b3 + Pt

ions were observed, which indicates that platinum also coordinates to the

amine group of residue Arg1 or the N–terminal amine group.

As suggested from the CAD data for the [Sp + Pt(NH3) + H]3+ ions,

substance P likely has multiple conformations in the gas phase. Pt–

modified and unmodified substance P species were therefore analyzed by

IM–MS/MS (CAD). The arrival time distribution (ATD) for substance P

indicated the presence of conformers. Two conformers for the doubly–

charged Sp ions were observed; however there was no significant

difference between these two conformers in terms of product ion CAD

spectra due to the close size of the cross sections of the two conformers.

Figure 5.2A shows the arrival time distribution (ATD) of the [Sp + Pt(NH3)

+ H]3+ ions. Three conformers (a), (b), and (c) were observed. To further

localize the Pt–modification sites, each of the three conformers was

further dissociated in the transfer region after the T–wave ion mobility

separation and the corresponding CAD spectrum of each conformer is

shown in Figure 5.2B.
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Figure 5.2 A). The arrival time distribution (ATD) of three conformers of

the [Sp + Pt(NH3) + H]3+ ions (the cross section of each conformer (a, b,

and c) is listed as insets of Figure 2A; B). Corresponding MS/MS (CAD)

ion mobility spectrum for each conformer, (a) CAD spectrum of conformer

a (AT=4.22 ms); (b) CAD spectrum of conformer b (AT=5.33 ms); (c) CAD

spectrum of conformer c (AT=5.83 ms). The rest of the insets are the

expanded m/z regions from 50 to 450 and 500 to 800.

It is clear that for conformer (a) (see Figure 5.2B_a), Pt binds to

both the Met(S) residue and an amine group (Arg, Lys, or the N–terminus)

as suggested by the observation of b9 + Pt2+ and [Sp + Pt – CH3SH +

H]3+ ions. The result is in line with the ATD observation (see Figure 5.2A,

the arrival time for the conformer (a) (4.22 ms) is shorter than other
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conformers), that a cyclized [Sp + Pt(NH3) + H]3+ ion has a smaller cross

section (282 Å) and travels faster compared to its linear form. For

conformers (b) and (c) (Figure 5.2B_b and 5.2B_c), Pt(II) coordinates to

Met11 in each case and no further binding site information was obtained.

One difference between conformers (b) and (c) is that the third conformer

(c) is more prone to further dissociation as observed in the corresponding

MS/MS spectra. The cross section differences between conformers (b)

and (c) can be either due to Pt(NH3)
+ binding to different Sp conformers

or the other two binding sites (except amine and thioether groups) for Pt(II)

on Sp are different.

The separation of three different conformers of the [Sp + Pt(NH3) +

H]3+ species (Figure 5.2) greatly simplified the data analysis for the

mixture of conformers (Figure 5.1a). However, in terms of obtaining

detectable binding information, the use of CAD fragmentation coupled to

ion mobility instrument is not ideal, as can be seen from Figure 5.2B; the

fragments obtained are rather limited. In addition, labile modifications can

be lost depending on the collision energy used; therefore, the exact

binding sites are often not observed (see Figure 5.1a and Figure 5.2). On

the other hand, although the ions sampled for the ECD experiment on the

FTICR are conformational mixtures, more Pt–binding information was

obtained; the Pt–binding sites at the N–terminus were further localized to

amine groups of either Arg1 or the N–terminal NH2 (Figure 5.1b). In

addition, the observation of the [Sp + Pt + H – CH3S•]2+· ion indicates that

the radical–mediated side–chain loss of CH3S• may be used as an

indicator of platinum binding to a Met residue. Thus, a series of peptides
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with potential Pt–binding sites were reacted with cisplatin to explore the

possibility of using ECD side chain losses to obtain more Pt–binding

information.

5.3.2 ECD of Cisplatin–Peptides Adducts

5.3.2.1 Interaction of Cisplatin with His–containing Peptides—

Angiotensin II (A) and Bombesin (B)

ECD spectrum of angiotensin II:cisplatin (1:2) adducts, the [A +

Pt(NH3)2Cl + H]3+ ion at m/z 437 is shown in Figure 5.3a. Observation of

z3 + Pt indicates that platinum binds to the His(N) residue at either N

atom, and b2 + Pt suggests that platinum also coordinates to either the

carboxyl group of Asp1 or the amine group of Arg2, or the N–terminal NH2.

ECD spectrum of the bombesin:cisplatin (1:2) adduct, the [B + Pt(NH3) +

H]3+ ion, at m/z 610.6, is shown in Figure 5.3b. A series of c ions from c3

to c9 and c11, c12 + Pt2+, and c12 + Pt – NH3 indicates the binding of

platinum to His12 and the product ions of [B + Pt – CH3SH + H]2+· show

coordination of Pt to Met14. In addition, the observation of c3 + Pt – NH3

suggests that platinum also coordinates to the amine group of Arg3 or the

N–terminal NH2.
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Figure 5.3 ECD spectra of peptide-cisplatin complexes. (a)

[A+Pt(NH3)2Cl+2H]3+ ions at m/z 520 in angiotensin II:cisplatin (1:2)

sample, (b) [B+Pt(NH3)+H]3+ ions at m/z 620 in bombesin:cisplatin (1:2)

sample, and (c) [P1+Pt]2+ ions at m/z 728 in P1:cisplatin (1:2) sample. “*”

represents noise.

5.3.2.2 Reaction of Cisplatin with Peptides containing Disulfide

Bonds

Arg8–vasopressin and Lys8–vasopressin are disulfide–containing

peptides and share similar sequences. No species corresponding to

cisplatin binding to either Arg8–vasopressin or Lys8–vasopressin was

observed, even when the reactions were further extended to 72 h,

although it has been previously reported that disulfide bonds can be
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cleaved by reacting with a platinum(II) complex [Pt(Met)Cl2],
20–21, 263

Noting the fact that the rate of reaction of [Pt(Met)Cl2] towards the

disulfide peptide GSSG is 100–fold faster than cisplatin, thus the result

obtained here is not surprising. 263 In addition, Morenao–Gordaliza and

coauthors propose that the reactivity of cysteines participating in disulfide

bonds is comparable to N–donors, including the N–terminus and His. 20–21

Their observation of Pt binding to cysteine disulfide sulfurs is more likely

due to the reaction conditions used.

5.3.2.3 Reaction of Cisplatin to a Peptide (P1) with Potential

Multiple binding Sites

Peptide 1 (KMGIHACVEFK) is a small peptide which was synthesized

to study the binding of cisplatin to several potential sites, including Cys(S),

His(N), Glu(O), and amine groups of N–terminus and Lys(N). the ECD

spectrum of [P1 + Pt]2+ at m/z 728 ( Figure 5.3c), shows that all four of

the original ligands of cisplatin have been displaced; however, the

observation of c5 + Pt to c10 + Pt fragment ions only localizes the Pt to the

first five amino acids.

Interestingly, platinum(II) was found to bind to amine groups of either

the N–terminus or Arg in both Pt–modified substance P and bombesin

(Met–containing peptides) species, but not in Arg8–vasopressin and Lys8–

vasopressin (no Met residues). It has been previously reported that

methinione sulfur is often a kinetically preferred Pt(II) binding site.264 At

pH>6, the initial sulfur coordination is followed by a pH–dependent

migration of the platinum from sulfur to the amine group.265-267 To

examine the conditions under which platinum can bind to the amine
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groups of Arg or Lys; further experiments were carried out at different pH

values and monitored by MS.

5.3.3 Intramolecular Migration of Pt(II) from Met(S) to Amine (N)

Peptides Sp1–7, Sp2–11, and Sp were reacted with cisplatin at pH

values of 3, 7, and 10. For Sp1–7, a peptide with amine groups (Arg, Lys,

and N–terminus) but without a Met residue, no coordination of platinum

was observed at pH range of 3–10 (Figure 5.4 (a–1), (b–1), and (c–1)).

However, non–covalent interactions between Sp1–7 and cisplatin and its

hydrolysis products were detected, such as Sp1–7 +

Pt(NH3)2(H2O)(CH3COO) and Sp1–7 + Pt(NH3)2Cl2 at pH3, Sp1–7 +

Pt(NH3)2(H2O)2 and Sp1–7 + Pt(NH3)2Cl2 at pH 7, and Sp1–7 + Pt(NH3)4 at

pH 10. The coordination of cisplatin to the Met–containing peptides Sp2–

11, and Sp was observed at both pH 3 and 7, but not at pH 10 (Figure 5.4).

ECD experiments on Sp2–11 + Pt(NH3)2Cl and Sp + Pt(NH3) at pH 3 and 7

were further carried out and are shown in the supporting information as

Figures D.1 and D.2. The observation of c5 + Pt – H in ECD of Sp2–11 +

Pt(NH3)2Cl suggests that platinum can bind to the amine group of Lys or

the N–terminus; similarly, the observation of a1 + Pt and b1 + Pt fragments

in ECD of Sp + Pt(NH3) species suggests that platinum can bind to the

amine of the Arg residue or the N–terminus. More importantly, the lack of

binding in the absence of methionine suggests that binding of Pt to Lys or

Arg may arise from the intramolecular migration of Pt(II) from Met(S) to

amine groups.
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Figure 5.4 MS spectra of peptide–cisplatin adducts at different pH values.

(a–1), (b–1), and (c–1) are the MS spectra of Sp(1–7)–cisplatin adducts at

pH 3, 7, and 10; (a–2), (b–2), and (c–2) are the MS spectra of Sp(2–11)–

cisplatin adducts at pH 3, 7, and 10; and (a–3), (b–3), and (c–3) are the

MS spectra of Sp–cisplatin adducts at pH 3, 7, and 10. “*” represents

noise.

These results are not entirely in line with previously published

results, in which it was suggested that the migration of the platinum

moiety from sulfur to the amine group occurs under basic conditions

rather than under acidic conditions as observed here.265-267 The

differences of experimental conditions, including the use of ammonium

hydroxide solution (NH4OH) to adjust the pH to basic values, thus many

contribute to the lack of observation of Pt–peptide coordination

complexes under basic conditions. Cisplatin undergoes hydrolysis and

reacts with NH3 groups under basic conditions; therefore, the formation of
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[Pt(NH3)4]
2+ species hinders the further reaction of [Pt(NH3)4]

2+ with

peptides because the Pt–NH3 bonds are stable towards displacement

compared to Pt–Cl bonds (Figure 5.4c). Thus, particular attention needs

to be given to the chemicals used to adjust pH values when using

cisplatin as a cross–linking reagent. The observation of Pt–N bound

species under acidic conditions indicates that the migration of platinum

from sulfur to nitrogen can occur at least in the pH range of 3 to 10. The

reason that it has not been previously reported might be due to the lower

sensitivity of nuclear magnetic resonance (NMR) used in the previous

studies compared to the MS methods used here.265-267

5.3.4 ECD Side Chain Losses Due to Pt–binding

The ECD side chain losses in peptides have been previously used

to improve peptide sequencing.72, 75, 218, 268, 269 For Pt–modified peptides,

it has been observed that when platinum binds to the side chain of Met, it

gives a signature side chain loss of CH3SH in ECD. Here, to explore the

possibility of using side chain losses to further localize the Pt–

modification sites, the regions corresponding to ECD side chain losses

are shown in Figure 5.5. In addition, the side chain loss information due

to Pt–binding from the charge reduced M + Pt species in comparison with

side chain losses of unmodified peptides obtained from the literature are

summarized in Table 5.2.72, 75, 218, 268, 269
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Table 5.2 List of observed ECD side chain losses from charge reduced

species (normal peptidesa and Pt–modified peptidesb)

Normal peptides Pt–modified peptides

Amino

Acid

Chemical

Formula

Exact Mass Chemical Formula Exact Mass

Arg C4H11N3 101.09530 NH2• 16.01926

CH3N2 43.02962

Lys C3H8N 58.06567 NH2• 16.01926

C4H9N 71.07350

Cys C2H4NO 58.02929 SH• 32.98044

C2H4NO + NH3 75.05584

C2H4NOS + NH3 107.02791

C2H5NO 59.03711

C2H4NOS 90.00136

Met C2H5S 61.01120 CH3• 15.02403

CH3S• 46.99664

C3H6S + NH3 91.04557 CH3SH 48.00337

Asp C2H4O2 60.02113 CO2
c

43.98983

CHO2 + NH3 62.02420

Glu C2H4O2 60.02113 CO2
c

43.98983

C2H3O2 + NH3 76.03985

C3H4O2 + NH3 89.04768

His C4H4N2 80.03745 — —

C3H3N2 67.02962

aResults obtained from literature. b To simplify the interpretation of spectra,

the side chain losses were calculated based on the m/z of the charge–

reduced M + Pt species in the spectra regardless of the original form of

the Pt–peptide complex. cThe loss of CO2 has been previously observed
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in ECD spectra of deamidated samples also from z• ions. Cautions still

need to be given when using loss of CO2 as an indicator of Pt(II) binding

to carboxyl groups of Asp or Glu. However, if the Pt–complex bound to

CO or CO2 was observed at low m/z region,23 it will confirm the binding of

Pt to carboxyl groups.

Figure 5.5 The side chain loss region from the charge–reduced M + Pt

species. (a) [Sp + Pt + H]3+, (b) [A + Pt]2+, (c) [B + Pt + H]3+, and (d) [P1 +

Pt]2+. The insets show the fragment ions with the diagnostic side chain

losses due to Pt–binding.

To simplify the interpretation of spectra, the side chain losses were
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calculated based on the m/z of the charge–reduced M + Pt species in the

spectra regardless of the original form of the Pt–peptide complex. All the

side chain losses were calculated based on the m/z of the [Sp + Pt + H]2+•

species. Taking Figure 5.5a for example, side chain losses of NH3, NH2•,

HCONH2, and CH3S• were observed and the detailed spectra of

fragments with side chain losses are shown on the left–hand side of

Figure 5.5a. Fragments at m/z 748 are a mixture of two groups of

isotopic ions, [Sp + Pt + H – CH3S•]2+ and [Sp + Pt + H–HCONH2]
2+•, and

fragments at m/z 763 are a mixture of isotopic ions of [Sp + Pt + H –

NH2•]
2+ and [Sp + Pt + H – NH3]

2+•. Similarly, side chain losses of CO2

and other neutral losses along with CO2 were observed in the ECD

spectra of [A + Pt(NH3)2Cl + H]2+ (Figure 5.5b); side chain losses of NH3,

NH2•, and CH3S• in the ECD of [B + Pt(NH3) + H]3+ (Figure 5.5c), and

neutral losses of SH• and CH3SH in the ECD of [P1 + Pt]2+ (Figure 5.5d).

Peak overlapping was commonly observed in all the spectra as

shown in the insets of Figure 5.5. Taking the inset of Figure 5.5c for an

example, for the peaks observed at m/z region of 898 to 901, it is

apparent that they are overlapping peaks of two groups of ions, assigned

as [B + Pt + H – NH3]
2+· and [B + Pt + H – NH2·]

2+·. The theoretical mass

difference between the isotopic peak A + 1 of [B + Pt + H – NH3]
2+· 

(898.88028) and the isotopic peak A of [B + Pt + H – NH2·]
2+· (898.88287)

is 2.61 mDa. In theory, it would need nearly a 1 M resolution to resolve

these two peaks. Based on the observation from the inset spectrum, the

peak height ratio between [B + Pt + H – NH3]
2+· (A + 1) and [B + Pt + H –

NH2·]
2+· (A) is about 2:1; the theoretical peaks were therefore simulated to
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show how much resolution would be needed to separate these two peaks

with a peak height ratio of 2:1. As can be seen from the inset of Figure

5.5c, resolution of 0.9 M is needed to fully resolve these two peaks and

they can be partially separated under the resolution of 0.45 M. On top of

the theoretical simulations, it shows the experimental spectrum of peaks

at m/z 898.88. The peak at m/z 898.88062 can be assigned confidently

as [B + Pt + H – NH3]
2+· (A + 1) with a sub–ppm mass accuracy (0.4 ppm).

Although the mass accuracy for the peak assigned as [B + Pt + H –

NH2·]
2+· (A) is also within sub–ppm range (0.34 ppm), the peak intensity is

rather low and can be seen as an artifact under certain circumstances.

Attempt to further improve the resolution was made; however wasn’t

successful due to the transient damping. The signal damping is likely

because in the infinity cell, the electric field that ions experience is

inhomogeneous, which causes the peak coalescence of these two closely

spaced masses.270, 271

The observation of neutral losses of SH• and CH3SH in the ECD of

[P1 + Pt]2+ is consistent with the displacement of the original two NH3

ligands from cisplatin due to the trans–labilization effect.4 By comparing

the ECD side chain losses observed from Pt–modified peptides with

those reported from normal peptides, as listed in Table 5.2, it can be seen

that radical–mediated side chain losses in Pt–modified peptides are

different from the side chain losses from unmodified peptides. Although

the mechanism of the side chain losses in ECD of the Pt–modified

peptides is not yet clear, the side chain losses of CH3SH and CH3S• from

Met residue, NH2• from amine groups, CO2 from Asp or Glu residue, and
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SH• from Cys residue are unique from the ECD side chain losses of

unmodified peptides, and thus can be used as signatures to locate the

Pt–modification sites rapidly.

5.3.5 Identification of the inter–chain crosslinking sites for cisplatin

on insulin dimer by top–down ECD

To further test the methodology and the data interpretation

approach proposed above, insulin was chosen for cisplatin modification.

Insulin is a small protein with two peptide chains (A and B) linked by two

inter–chain disulfide bonds, containing also an intra A–chain disulfide

bond. Previously, the interaction of cisplatin with insulin has been studied

using a top–down CAD mass spectrometric approach by Moreno–

Gordaliza et al.141, 143 However, due to the limitation of the resolution on

the Linear Ion Trap (LIT) instrument used, a cisplatin inter–chain cross–

linked insulin species, insulin + Pt(NH3)2 + insulin, was not reported.

Therefore, this system was used for testing the top–down ECD approach

and data analysis strategy for identification of inter–chain cross–linking

sites of cisplatin on a protein with multiple potential Pt–binding sites (6

Cys, 2 His, 4 Glu, 1 Arg, 1 Lys, and the N–terminus).

In solution without the presence of metal ions, insulin exists as a

mixture of monomer, dimer, hexamer, and higher order aggregates.272 To

investigate whether the observed species, insulin + Pt(NH3)2 + insulin,

consists of Pt(NH3)2
2+ binding to a single insulin of the insulin dimer rather

than cross–linking the two insulin molecules, the sample was diluted with

50% acetonitrile and 1% CH3COOH to destabilize any noncovalent

interactions. In addition, in–source–dissociation (ISD) voltages up to 70
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V were applied because noncovalent interactions are prone to

dissociation under collision activation condition. No signal intensity

decrease in the insulin + Pt(NH3)2 + insulin species was observed as

compared to the intensity of insulin + Pt(NH3)2 + insulin ions under

conditions with and without ISD (see Figure D.3a and 3b), which suggests

that insulin + Pt(NH3)2 + insulin is a covalently cross–linked product. It is

notable that the intensity of insulin + Pt(NH3)2 + insulin ions is 100 times

lower than the most intense peak in the spectrum, so hexapole

accumulation was used in FTICR MS to significantly improve the quality

of the tandem fragmentation spectra of this low intensity species.

Figure D.3c shows the CAD spectrum of [insulin + Pt(NH3)2 +

insulin + 7H]9+ species at m/z 1300. The main fragment peaks observed

are the charge separated species [I + Pt + 3H]5+ and [I + 4H]4+, so no

detailed cisplatin binding site information was obtained. In contrast, as

shown in Figure 5.6a, the ECD spectrum of the [Insulin + Pt(NH3)2 +

Insulin + 8H]10+ species at m/z 1170 is more informative, but also harder

to interpret. However, by using the data analysis method established

above, a complementary ion pair which contains the Pt–binding

information can be easily found as shown in Figure 5.6b. The

observation of the [I + Pt(NH3)2(NH2) + 4H]5+· and [I + 4H – NH2]
4+ species

indicates that one of the {Pt(NH3)2}
+ cross–linking sites is an amine group,

which significantly localize one of the cross–linking sites to an amine

group of Arg, Lys or the N–terminus. Hence, one of the cross–linking

sites can be readily identified as Lys29 in B chain with the observations of

ABc19
3+ to ABc26

3+ series and (ABc29 + Pt)3+ ions (see the right–hand
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spectra of Figure 5.6c).

Figure 5.6 (a) ECD spectra of the [insulin + Pt(NH3)2 + insulin + 8H]10+ ion

at m/z 1170, the insets show the details of the ECD spectrum; (b)

complementary ion pairs [I + Pt(NH3)2(NH2·) + 4H]5+· and [I–NH2· + 4H]5 + ;

(c) fragment ions ABc26
3 + and (ABc29 + Pt)4 + ; (d) fragmentation scheme

for insulin + Pt(NH3)2+insulin species (all the cleavages are mainly

labeled in one insulin structure as {Pt(NH3)}
2+ cross–linked two species

are identical here); (e) crystal structure of a insulin dimer (4E7T).52 The

chains and amino acids are color–coded as follow: A–chains in red, B–

chains in green, His in cyn, Glu in blue, and Lys in pink.

Figure 5.6d presents the observed fragmentation diagram for the
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insulin + Pt(NH3)2 + insulin species. The observation of fragments ABc21

+ Pt + I and ABz24 + Pt + I can further narrow the other cross–linking site

down to a His10, Glu13, or Glu21 or in B–chain; however, no further

information of radical–mediated side chain loss was observed in the ECD

spectrum of the cross–linked species. The absence of further ECD side

chain loss information can be due to either of the following reasons: (1)

Pt(II) binds to another amine group, thus yielding the same fragment as

observed; (2) Pt(II) binds to a His residue, which gives no characteristic

ECD side chain loss as shown in Table 5.2; or (3) Pt(II) might bind to any

possible residue but no observable fragments were detected due to low

signal–to–noise level.

To aid location of the other Pt–binding site, the crystal structure of

an insulin dimer was examined as shown in Figure 5.6e.273 The

distances between the amine–N of Lys29 and the carboxyl–O of Glu13 or

Glu21 range from 9.6 to 23.2 Å, and the distances between the amine–N

of Lys29 and imidazo–N of His10 are over 29.6 Å. Although the distance

between Lys29 and Glu21 (9.6 Å) is still out of the Pt–crosslinking range,

it is clear that both the side chains of Lys29 and Glu21 are flexible, and

the flexible motion could bring them within the crosslinking arm length of

Pt.130, 155 Therefore, it is still likely that {Pt(NH3)2}
2+ can cross–link Lys29

and Glu21 from different insulin B–chains.

5.4 Conclusions

This work demonstrates that radical–mediated side–chain losses

from the charge–reduced M + Pt species (such as CH3S• or CH3SH from
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Met, SH• from Cys, CO2 from Glu or Asp, and NH2• from amine groups,

see Figure 5.5 and Table 5.2) can be characteristic indicators for rapid

and unambiguous localization of the Pt–modification sites on certain

amino acid residues. This approach therefore improves data

interpretation and produces a more comprehensive picture of Pt–

modifications. Although FTICR MS is powerful for analyzing complex

biological samples, the ions sampled for fragmentation are often isomers;

thus, the hyphenation of ion mobility spectrometry to a FTICR MS

instrument might be the best approach to analyze complicated biological

samples. In this way sample analysis could not only benefit from the

separation of isomers in gas phase from ion mobility but also the superior

resolving power, mass accuracy, and comprehensive fragmentation

information from FTICR MS equipped with multiple fragmentation

techniques (such as, CAD, ECD, ETD).
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Chapter 6

Electron Capture Dissociation of Disulfide, Sulfur–Selenium, and

Diselenide Bound Peptides5

6.1 Introduction

6.1.1 Electron capture dissociation of disulfide bonded peptides

Electron capture dissociation (ECD) was first introduced in 1998 by

Zubarev et al. for the study of peptides and proteins.40 It has been shown

that ECD preferentially cleaves disulfide57 and N–Cα bonds, preserves

labile post–translation modifications, and gives high peptide sequence

coverage compared with collisional activation methods,93 which has

made ECD a powerful and widely used tandem mass spectrometry

technique for the study of peptides and proteins over the last decade.35, 93,

94, 274, 275 Formation of a disulfide bond is a post–translation modification

(PTM), which is critical to protein folding and structure stability.

Characterization of disulfide–containing proteins remains challenging due

to the fact that disulfide bonds rarely dissociate in the presence of a

mobile proton using collisional activation methods.276 Therefore, recently,

studies of proteins or peptides containing disulfide bonds using ECD or

related electron–based dissociation techniques have drawn wide

attention.153, 218, 277-281

5
This chapter has been partially/entirely reproduced from

Huilin Li, and Peter B. O’Connor. Electron Capture Dissociation of Disulfide, Sulfur–Selenium, and
Diselenide Bound Peptides. J. Am. Soc. Mass Spectrom. 2012. 23, 2001-2010. Copyright 2012,
Springer.
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6.1.2 ECD mechanisms of disulfide bond cleavage

Several mechanisms have been suggested for the cleavage of

disulfide bonds by ECD. One is that the electron is initially captured into

a Rydberg orbital centered on a positively charged site, and subsequently

undergoes intra–molecular electron transfer to a nearby S–S σ* orbital to 

cleave the disulfide bond. Alternatively, electron is captured directly into

the uncharged S–S σ* orbital to cleave the disulfide bonds, S• and S–

fragments to be formed through either mechanism, which subsequently

convert to SH by hydrogen abstraction.57-59, 63, 68, 282

6.1.3 Study of selenium–containing compounds

Selenium and sulfur are in the same column at the element

periodic table and share many common physicochemical properties. In

proteins, selenium is mainly presented in the form of selenocysteine (Sec)

and selenomethionine and plays a crucial role in biological systems, such

as, elimination of peroxides and other oxidant agents, inflammation

protection, and cancer prevention.4, 283-285 The substitution of Cys by Sec

has been carried out in a variety of systems. It was found that the

substitution of Cys by Sec is much conserved, and only minor structural

distortion and biological activity variations happened in all cases.286-289

Therefore, due to the importance of disulfide bridges for protein structures

and activity, the study of the reductive cleavage of diselenide (Se–Se)

bonds has started to attract attention.290, 291

Although the studies of disulfide bound peptides or proteins by

ECD have been investigated in the past few years,153, 218, 277-281 little

attention has been devoted to investigate the ECD behavior of diselenide
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peptides or proteins. Previous studies have been mainly focused on

using theoretical calculations to study the effects of electron capture on

small diselenide compounds (XSeSeX’), such as CH3SeSeCH3,

CH3SeSeOH, CH3SeSeF, and such.292-295 So, it is interesting to examine

the ECD behavior of diselenide peptides compared with previous

theoretical calculations, and also to examine the differences and

similarities of the ECD fragmentation patterns among disulfide (S–S),

sulfur–selenium (S–Se), and diselenide (Se–Se) peptides. Thus, in this

study, a series of free cysteine and selenocysteine–containing peptides

were reacted to form S–S, S–Se, and Se–Se bonds, and then studied

using electron capture dissociation (ECD) with Fourier transform ion

cyclotron mass spectrometry (FTICR MS).

6.2 Experimental section

6.2.1 Materials

Peptide P1 (K M G I H A C V E F K) was initially synthesized by

GL Biochem Ltd (Shanghai, China) for the study of interaction with

cisplatin for a different project. Here P1, as a peptide containing a free

cysteine residue, was used for the study of disulfide bonds. Therefore, a

selenocysteine–containing peptide, P2 (K G M I H A C(Se) V F E K), with

a similar sequence as P1 was synthesized accordingly by the same

company. Peptide P3 is a by–product of P2 synthesis, and its sequence

was identified as K G M I H HA C(Se) V F E K by CAD and ECD

sequencing. HPLC grade acetic acid (HAc) and methanol (MeOH) were
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obtained from Fisher Scientific (Pittsburgh, PA, USA).

6.2.2 Formation of S–S, S–Se, and Se–Se bound peptides

Aqueous solutions of 1 mM P1 and 1 mM P2 (contains P3) were

prepared. P1 and P2 solutions were mixed together at a molar ratio of

1:1 and further diluted to a concentration of 200 μM each.  To form S–S, 

S–Se, and Se–Se bound peptides, 200 μM P1, 200 μM P2, and 200 μM 

P1:P2 (1:1) mixture were incubated separately at 37°C for 24 h (Table

6.1).

Table 6.1 Amino acid sequences of the peptides studied here. P1, P2,

and P3 were obtained by synthesis, and rest of the S–S, Se–S, and Se–

Se containing peptides obtained by reacting P1, P2, and P3 together.

Name Sequence Composition Monoisotopic

Mass (Da)

P1 K M G I H A C V E F K C56H91N15O14S2 1261.63113

P2 K G M I H A C(Se) V F E K C56H91N15O14SSe 1309.57558

P3 K G M I H H A C(Se) V F E K C62H98O15N18SSe 1446.63450

P1+P1 C112H180N30O28S4 2521.24662

P1+P2 C112H180N30O28S3Se 2563.19702

P2+P2 C112H180N30O28S2Se2 2607.14417

P1+P3 C118H187O29N33S3Se 2706.24998

P2+P3 C
118

H
187

O
29

N
33

S
2
Se

2
2754.19443

P3+P3 C
124

H
194

O
30

N
36

S
2
Se

2
2891.25334
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6.2.3 FTICR Mass Spectrometry

ESI–MS was performed on a Bruker solariX FTICR mass

spectrometer with an ESI source and a 12 T actively shielded magnet.

For MS experiments, P1, P2, and P1:P2 = 1:1 reaction products were

mixed together at a molar ratio of 2:1:1 and diluted to yield a final

concentration of 2 μM in 50:50 MeOH:H2O with 1% acetic acid. Samples

were then electrosprayed at a flow rate of 240 μL/h.  For ECD 

experiments, the parent ions were first isolated in the first quadrupole and

externally accumulated in the collision cell for 5 s. After being transferred

to the ICR cell, ions were irradiated with 1.5 eV electrons from a 1.7 A

heated hollow cathode dispenser for 80 ms. Each ECD experiment was

repeated three times under the same condition, and 100 scans were

averaged for each spectrum. For the need of higher resolution (over

250,000) to separate fragment peaks within ~5 mDa at m/z 1230 region,

4 M data sets were recorded from m/z 500 to 3000. Otherwise, 4 M data

sets spectra were recorded from m/z 150 to 3000.

6.3 Results and discussion

Free selenium containing (P2 and P3) peptides are very reactive,

and once dissolved, diselenide bonds are formed rapidly. In contrast, the

formation of disulfide bonds between free cysteine containing peptides is

relatively slow. After 24 h incubation of P1, P2, and P1:P2 = 1:1 at 37 °C,

the reacted products were mixed and further diluted for MS analysis. As

shown in Figure 6.1, a series of S–S, S–Se, and Se–Se species were

formed during the incubation, including P1 + P1, P1 + P2, P2 + P2, P1 +
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P3, P2 + P3, and P3 + P3 species. ECD experiments were performed on

each triply–charged species, namely, P1 + P1 at m/z 841.42281, P1 + P2

at m/z 857.73795, P2 + P2 at m/z 873.38609, P1 + P3 at m/z 903.42365,

P2+P3 at m/z 919.40558, and P3 + P3 at m/z 965.09283.

Figure 6.1 Full spectrum of P1, P2, and P1:P2=1:1 reaction product

mixture.

To simplify the labelling of the fragment ions of ECD spectra, P1,

P2, and P3 here represent half of the structures of S–S, S–Se, or Se–Se

bonds–connected species. In elemental composition forms, P1

(C56H90N15O14S2), P2 (C56H90N15O14SSe), and P3 (C62H97O15N18SSe), are

1.00782 Da lower compared with the corresponding free cysteine or free

selenocysteine–containing peptides. Taking ECD spectrum of a disulfide

bond–containing species (R1 + R2) for example, the cleavage of disulfide

bonds by an electron generates R1(S•) and R2(SH). For P1 + P1, R1 and

R2 are of the same, so P1 (S•) represents R1(S•) and P1 (SH) represents

R2(SH), which differ by exactly 1.00727 Da.
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Figure 6.2 ECD spectra of triply–charged S–S (P1+P1), S–Se (P1+P2

and P1+P3), and Se–Se (P2+P2, P2+P3, and P3+P3) containing species.

(a) [P1+P1+3H]3+ at m/z 841.42281;  (b) [P1+P2+3H]3+ at m/z 857.73795;

(c) [P2+P2+3H]3+ at m/z 873.38609; (d) [P1+P3+3H]3 at m/z 903.42365+ ;

(e) [P2+P3+3H]3 at m/z 919.40558+ ; and (f) [P3+P3+3H]3+ at m/z

965.09283.

Figure 6.2 shows the ECD spectra of S–S (P1 + P1), S–Se (P1 +

P2, P1 + P3), and Se–Se (P2 + P2, P2 + P3, and P3 + P3) bonded

peptides. The observed fragments can be mainly categorized into four

classes based on cleavage sites. The first class includes normal c/z•

cleavages without involving the cleavage of S–S, S–Se, or Se–Se bonds.

The second class originates from the cleavage of S–S, S–Se, or Se–Se

bonds. The third class is the result of cleavage of C–S or C–Se bonds,

 As the two chains of the disulfide–linked peptide P1 + P1 are identical, the charge reduced
species [P1 + P1 + 3H]

2+·
at m/z 1262.13450, the fragment ions [P1(S)H]

+ ·
at m/z 1261.63059,

and [P1(SH+H]
+

at m/z 1262.63841 are overlapped in the same m/z region (See Figure 6.2a). The
same phenomena were observed for the P2+P2 and P3+P3 species as shown in Figure 6.2c and f.
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and the fourth class involves the cleavages of both N–Cα and S–S, S–Se,

or Se–Se bonds. To focus on the cleavages involving disulfide, sulfur–

selenium, and diselenide bonds, the first class, normal c/z• cleavages,

which do not involve the S–S, S–Se, or Se–Se bonds cleavages, are not

discussed further.

6.3.1 Cleavages of S–S, S–Se, and S–Se bonds

Figure 6.2 shows that the fragmentation pattern is dominated by

the cleavages of S–S and S–Se bonds for P1 + P1 (Figure 6.2a), P1 + P2

(Figure 6.2b), P1 + P3 (Figure 6.2d), and P2 + P2 (Figure 6.2c) species.

In contrast, for P2 + P3 (Figure 6.2e) and P3 + P3 (Figure 6.2f) species,

the cleavages of C–Se bonds competed with the dissociation of S–S and

S–Se bonds. The cleavage of disulfide bonds by electron capture would

generate P1(S•) / P2(SH) or P2(S•) / P1(SH) species (see Scheme 6.1a,

where P1 = P2); similar fragmentation patterns also apply to S–Se and

Se–Se species. The spectral details of the fragments originated from the

cleavage of S–S, S–Se, and Se–Se bonds are shown in Figure 6.3. As

expected, the ions detected were a mixture of both P(S•) and P(SH)

forms for P1–containing species (see Scheme 6.1 a & 6.2 a), and P(Se•)

and P(SeH) forms for P2 and P3 containing species (P represents a one

chain of a inter–chain disulfide–linked peptide; the sequences of P1, P2,

and P3 are shown in Table 6.1).
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Figure 6.3 Expanded ECD spectra of the fragment species formed by

cleavage of S–S, S–Se, and Se–Se bonds. The top–two rows are the

simulation spectra (in red) of P1 (S·/SH), P2 (Se·/SeH), and P3 (Se·/SeH)

species. Rest of the rows show the corresponding species generated

during ECD experiments.

The charge–reduced molecular ion regions from Figure 6.2 a–f are

expanded in Figure 6.3. By comparing the experimental spectrum (in

black) with the simulated isotope distribution spectrum (in red) of each
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fragment, it can be noticed that for ECD of S–Se bound peptides (P1 +

P2 and P1 + P3), the peak intensities of P(S•) species is apparently much

lower than its corresponding P(SH) species, and the peak intensities

corresponding to P(Se•) are accordingly higher than its P(SeH) species.

Taking P1 + P2 for an example, the cleavage of S–Se bonded peptides

can give two pairs of complementary ions, namely, P1(S•)/P2(SeH) and

P1(SH)/P2(Se•). Thus, the ratio of P1(S•)/P1(SH) can be used to

estimate the ratio of each fragmentation pathway; thereby, providing

preferential S–Se bond cleavage pathway information, namely, either

P1(S•)/P2(SeH) or P1(SH)/P2(Se•). Table 6.2 shows the ratios of

P(X•)/P(XH) (P = P1, P2, and P3; X = S, Se) calculated based on the

area of the monoisotopic peak. The cleavage of the disulfide bond of P1–

P1 gave a P1(S•)/P1(SH) ratio of 1.02 ± 0.05, which is expected because

the two chains connected by disulfide bonds are of the same sequence.

In contrast, the ratios of P1 (S•/SH) for S–Se linked peptides (P1 + P2

and P1 + P3), are 0.07 ± 0.00 and 0.10 ± 0.01, respectively, which

indicates that the radical has a higher tendency to reside at the Se atoms

when S–Se bonds cleave. This result is surprising because the

electronegativities value of S and Se are almost identical, with S of 2.58

and Se of 2.55 in Pauling units,296 and the electron affinities of S(2.07 eV)

and Se (2.02 eV) are also around the same.297 Thus, the

electronegativities or electron affinities of S and Se alone should not have

caused such a significant bias in fragmentation behaviour. Therefore,

some other factors must contribute to drive the radical to the Se atoms

during the ECD process.
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Table 6.2 Ratio of P(X•)/P(XH) (P = P1, P2, and P3; X = S, Se) species

generated during ECD of S–S, S–Se and Se–Se containing species. The

ratio was calculated based on the peak area of the monoisotopic peak of

each species.* 2 M data sets were used deliberately to simplify the ratio

calculation due to complicity of selenium isotopic distribution. Replicated

errors are the standard deviation of three duplicates.

Precursor

ions

m/z (Da) Ratio of

P1(S·)/P1(SH)

Ratio of

P2(Se·)/P2(SeH)

Ratio of

P3(Se·)/P3(SeH)

P1+P1 841.42281 1.02 ± 0.05 — —

P1+P2 857.73795 0.07 ± 0.00 —

P2+P2 873.38609 — 1.93 ± 0.36 —

P1+P3 903.42365 0.10 ± 0.01 —

P2+P3 919.40558 — 1.16 ± 0.21 0.87 ± 0.16

P3+P3 965.09283 — — 0.82 ± 0.36

Previously, Dumont et al.292 used ab initio calculations to

investigate the gas–phase electron addition on selenium–containing

organic compounds, dimethyldisulfide, dimethylseleneylsulfide, and

dimethyldiselenide. It is found that selenium strongly enhances the

electron affinity, with an increase of adiabatic electron affinity by about

0.20 eV by replacing a sulfur with a selenium. The formed radical

*
For P1+P2 and P1+P3, the ratios of P2(Se•)/P2(SeH) and P3(Se•)/P3(SeH) were also calculated

to determine the preference of the radical to residue on the Se atom. Although the ratios of
P2(Se•)/P2(SeH) indicate that the radical prefers to residing at the Se atom, the data was not
shown in Table 2 because the errors for these ratios are rather large. It is likely because the area
of the P2(Se•) (A+1) peak has a significant contribution to the overlapping peak of P2(SeH) (A).
Therefore, the area of the P2(Se•) (A+1) peak overshadows the area of the P2(SeH) (A) peak,
which leads to big errors.
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anionic intermediates are stable against dissociation. Their calculations

could explain the experimental results observed here. For ECD of

diselenide bound peptides, the ratios of P (Se•/SeH) for P2 + P3 and P3

+ P3 range from 0.82 ± 0.36 to 1.16 ± 0.21 (see Table 6.2), which

suggests that there is no specific force pulling the electron towards a

certain selenium although sequence differences might have some

contributions. However, the value of P2 (Se•/SeH) ratio for P2 + P2

diselenide–containing molecule is anomalous at 1.93 ± 0.36, indicating

that other effects, perhaps conformational, are also contributing. One

possible option is that P2(SeH) may have an additional low energy

fragmentation pathway which could deplete its abundance.

6.3.2 Cleavages of C–X (X = S or Se) bonds

Scheme 6.1(b, c, and d) shows the possible fragments generated

by cleavages of C–S bonds during ECD. Taking the triply charged

disulfide peptide (P1 + P1) for an example, theoretically, the cleavage of

C–S bonds by ECD may generate the following three types of

complementary pair ions, namely, [P1–SH + H]+ / [P1 + S + 3H]+•

(Scheme 6.1b), [P1–S + H]+• / [P1 + SH + H]+ (Scheme 6.1c), and [P1 –

S + 2H]+ / [P1 + S• + H]+• (Scheme 6.1d). Similar nominations also apply

to S–Se and Se–Se bound species. Although the cleavages displayed in

Scheme 6.1 might not necessarily go through the proposed processes or

always give detectable complementary ions.
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Scheme 6.1 Possible ECD fragments generated by cleaving the S–S (a)

or S–CH2 (b, c, and d) bonds of a triply–charged disulfide–linked peptide

ions, [P1+P1+3H]3+.

Figure 6.4a shows the ECD fragment ions spectra corresponding

to the cleavage of a C–S bond of the triply–charged disulfide peptide ions,

[P1 + P1 + 3H]3+. Interestingly, in the m/z region of 1228 to 1232 Da,

fragments corresponding to [P1 – SH + H]+ (–SH) at m/z 1228.65234, [P1

– S + H]+• (–S) at m/z 1229.66047, and [P1 – S + 2H]+ (–S + H) at m/z

1230.66772 ions, were all detected (A proposed corresponding structure

of each species is shown as the insert of Figure 6.4a). As presented in

the left–hand of Figure 6.4a, the isotope species of all three of [P1 – S +

H]+• (in black), [P1 – SH + H]+ (in pink), and [P1 – S + 2H]+• (in cyan) ions

were resolved using a high resolution 12–Tesla FTICR MS instrument.

As listed in Table 6.3, the theoretical mass differences between the A + 2
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isotopic peak of [P1 – SH + H]+ and the A + 1 isotopic peak of [P1 –S +

H]+·, and between the A +1 isotopic peak of [P1 – S + H]+· and the A

isotopic peak of [P1 – S + 2H]+ are 4.51 and 4.45 mDa, respectively.

Thus, a minimum resolving power of 250,000 is needed to separate all

three of these peaks at half height. A 5.5 s transient was obtained and

yielded a resolving power over 280,000 from m/z 1228 to 1232 Da. An

overall mean absolute deviation (MAD) less than 0.80 ppm across the

whole mass over charge region was achieved, as shown in Table E.1 (full

peak list table) and a MAD of 1.14 ppm was obtained at m/z 1228 to 1232

Da region as listed in Table 6.3, which suggest that the peak assignments

are valid.

Table 6.3 Partial peak list table of the ECD spectrum of [P1+P1+3H]3+.

For complete peak list table, see Table E.1.

Assignments Isotopic

number

Experimental

m/z (Da)

Theoretical

m/z (Da)

Mass error

(ppm)
1+ A 1228.58695

[P1–SH+H]
+

A 1228.65234 1228.65069 1.34

1+ A+1 1229.59002

[P1–SH+H]
+

A+1 1229.65528 1229.65406 0.99

[P1–S+H]
+·

A 1229.66047 1229.65851 1.59

1+ A+2 1230.59302

[P1–SH+H]
+

A+2 1230.65809 1230.65738 0.58

[P1–S+H]
+·

A+1 1230.66275 1230.66189 0.70

[P1–S+2H]
+

A 1230.66772 1230.66634 1.12

[P1–S+H]
+·

A+2 1231.664 1231.66520 –0.97

[P1–S+2H]
+

A+1 1231.6714 1231.66971 1.37

[P1–S+2H]
+

A+2 1232.67502 1232.67303 1.61

Mean absolute

deviation (ppm)

1.14
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Figure 6.4 Comparasion of ECD fragment ions generated by cleavage of

(a) C–S bonds (P1+P1),(b) C–Se bond vs C–S bond (P1+P3), and (c) C–

Se bonds (P2+P3). Experimental fragment spectra are in red and

simulated isotope patterns are in black To differentiate peaks closed–by

at m/z 1228 to 1233 Da region, the simulated spectra were color–coded

([P1–SH+H]+ species are in black, [P1–S+H]+· in pink, [P1–S+2H]+ in blue,

and [P1–S+3H]+ in orange.). The inserts shows the corresponding

structure of each species. The mass windows were not aligned between

different fragment species.
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Scheme 6.2 Possible S–S (a) C–S (b–e) bonds cleavage pathways of a

disulfide–containing peptide.

The right–hand spectra of Figure 6.4a show the corresponding

complementary–ion regions of the above species. In comparison with the

simulated isotope distribution spectra, the ions at m/z 1293.60407 can be

assigned as [P1 + S + H]+• species, which is complementary to the [P1 –

S + 2H]+ species. Previously, the generation of [P1 – SH + H]+ ions by

cleaving the C–S bonds of disulfide–containing species has been

reported,218, 280, 281 which can be initiated from the Cα position, either by

radical migrations (Scheme 6.2b),64 or by cleaving the N–Cα bond first, 

following by the radical migration to Cα position as shown in Scheme

6.2c.218 For the first proposed fragmentation pathway as shown in
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Scheme 6.2b, the complementary ion [P1 + S + 3H]+• should be observed.

However, neither the [P1 + S + 3H]+• species nor the further fragments

[P1 – S + 3H]+· (simulated isotope pattern is in orange as shown in Figure

6.4a) by losing S═S, were detected.  Therefore, the generation of the [P1 

– SH + H]+ species is more likely through the second proposed pathway

(Scheme 6.2c).

The observation of the [P1 – SH + H]+(– SH, – 32.97990 Da)

species is not surprising. However, the [P1 – S + H]+•(–S, 31.97207 Da)

and [P1 – S + 2H]+(–S+H, –30.96424 Da) fragments haven't been

previously reported, possibly because of the low–resolution of the

instruments used.218, 280, 281 Alternatively, it is also possible that the

processes to generate [P1 – S + H]+• and [P1 – S + 2H]+ ions are

unfavorable, although the peak intensities shown in Figure 6.4 a argue

against this hypothesis. Theoretically, the generation of both [P1 – S +

H]+• and [P1 – S + 2H]+ fragments can both occur through homolytic

cleavage of a C–S bond and lead to fragment pairs of [P1 – S + H]+·/[P1 +

SH + H]+ and [P1 – S + 2H]+/[P1 + S + H]+ · (Scheme 6.2d and 6.2e),

although, it has been previously suggested that the later process is

impossible or unfavorable because the β–carbon position is not predicted 

to have a high hydrogen atom affinity.218 The electron transmission

spectroscopy (ETS) results show that the C–S σ* orbital lies vertically < 

3.75 eV above its corresponding neutral;298 therefore, Sawicka and co–

authors suggested that C–S bonds can be cleaved by direct electron

attachment if a positive charge site is close to the C–S σ bond within ~3.8 

Å.5817
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Figure 6.4b shows the fragment ions spectra that correspond to

the cleavage of the C–S and C–Se bonds of a triply–charged S–Se

bonded peptide ion, [P1 + P3 + 3H]3+. The scission of the C–S bond of

S–Se peptides, such as [P1 + P3 + 3H]3+, gave similar fragments at the

m/z 1228 to 1232 region to those obtained in the ECD of the disulfide

containing species, [P1 + P1 + 3H]3+. However, the cleavage of C–Se

bond yielded a complementary fragment pair of [P3 – Se + 2H]+ and [P1 +

Se + H]+•. Regardless of the backbone sequences of P1 and P3,

plausibly proposed structures of [P1 – SH + H]+ and [P3 – Se + 2H]+ are

different as shown in the insets of Figure 6.4. Thus, the cleavages of C–

S and C–Se bonds are likely occurring via different fragmentation

pathways. Nevertheless, the intensities of fragments from cleaving C–S

bonds of the S–Se peptide (P1+P3) is rather low, which indicates that

neither C–S or C–Se bond cleavage is a favourable process for ECD of

S–Se containing peptides.

In contrast to the ECD result of a S–S bound peptide ion,[P1 + P1

+ 3H]3+ (Figure 6.4a), Figure 6.4c shows ECD of a triply–charged Se–Se

bonded peptide ion, [P2 + P3 + 3H]3+ and presents a very different C–Se

bond cleavage pattern. The cleavages of C–Se bonds gave two pairs of

complementary ions, namely, [P2 – Se + 2H]+/[P3 + Se + H]+· and [P3 –

Se + 2H]+/[P2 + Se + H]+·. For complementary pairs generated from the

same fragmentation pathway, the intensities of the two complementary

pairs should be around the same. Based on the total intensities of all the

isotopic peaks of each species, the intensity ratios of [P2 – Se + 2H]+:[P3

+ Se + H]+· and [P3 – Se + 2H]+:[P2 + Se + H]+· were therefore calculated
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as 0.99 ± 0.02 and 1.21 ± 0.06, respectively. Thus, it is more likely that

the cleavage of C–Se bonds is through a direct electron capture into an

orbital of the C–Se bond as suggested in Scheme 6.2e. Although there is

a slight possibility that [P2 – Se + H]+· ions can abstract a hydrogen from

elsewhere to form a [P2 – Se + 2H]+ species, the intensities of [P2 – SeH

+ H]+ and [P2 – Se + H]+· indicate that this process cannot be a dominant

process. In addition, the complementary pair species, [P3 + Se +

H]+· and [P2 + Se + H]+·would not be observed based on this hypothesis,

but were both detected here.

As can be seen from Figure 6.2e and 6.2f, the cleavages of C–Se

bonds are comparable with the cleavages of Se–Se bonds for P2 + P3

and P3 + P3 species. However, the cleavage of C–Se bonds is a minor

pathway compared to the cleavage of Se–Se bond for P2 + P2. Gamez

et al.293, 294, 299 previously have done extensive ab initio calculations to

study the ECD behaviours of Se–Se bond compounds. They also

discovered that Se–Se bond cleavage is not always the most favourable

process in electron attachment to diselenides, the effects of asymmetry

and the electronegativity of the substituents attached to the Se–Se bond

have strong impact on the ECD cleavage of diselenide compounds, as

observed here.

6.3.3 c/z• ions generated by cleaving both N–Cα and S–S (S–Se, or 

Se–Se) bonds

The last category of fragments ions was generated by cleaving

both N–Cα and S–S, S–Se, or Se–Se bonds. The ECD spectra of [P1 +

P1 + 3H]3+, [P1 + P3 + 3H]3+, and [P2 + P3 + 3H]3+ from m/z 840 to 1120
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are shown in Figure 6.5. It can be seen from the inserts of Figure 6.5a

that c ions generated from P1 chain are a mixture of c(S) and c(SH)

species; in contrast, the c ions generated from P2 and P3 chains (Se–

containing species) are only c(Se) species (see the inset of Figure 6.5c).

The c(SH) species should result from double electron capture

dissociation. C(S) and z (S·) ions can both be generated from P1(S·)

species by cleaving N–Cα bonds and forming cyclized c(S) and z(S·) 

species. However, it is not clear whether cyclized c(Se) and z(Se·) ions

can be generated by the same fragmentation pathway as Se strongly

enhances the electron affinity and radicals tend to remain on Se atoms.

Figure 6.5 Expanded ECD spectra of (a) [P1+P1+3H]3+, (b)

[P1+P3+3H]3+, and (c) [P2+P3+3H]3+. This spectra show the c/z·ions

generated by cleaving both N-Cα and S-S, S-Se, or Se-Se bonds.
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ECD experiments were also performed on doubly–charged ions to

further explore the fragment pathway of ions generated by cleaving both

N–Cα and S–S, S–Se, or Se–Se bonds. However, the results are less

informative and mainly the charge reduced species were observed, which

might be mainly because the electron capture cross section is dependent

on the ionic charge squared (z2), thus leading to lower fragmentation

efficiency.35 Similar results were also observed in electron transfer

dissociation (ETD) experiment of a large scale of peptides ranging from ~

1000 to 5000 by Good et al,300 in which they found that there is a linear

decrease in fragmentation efficiency as a function of increasing precursor

m/z.

6.4 Conclusions

A series of disulfide (S–S), sulfur–selenium (S–Se), and diselenide

(Se–Se) bond–containing peptides was studied by ECD. The results

demonstrate that the radical has higher tendency to stay at selenium

compared to sulfur after the cleavage of Se–S bonds by ECD. In addition,

the cleavage pathways of C–S bonds of a disulfide peptide and C–Se

bonds of a diselenide peptide are different. In the former, the cleavage of

C–S bonds gave fragments by losing SH (–33), S (–32), and (– S + H) (–

31) small neutral losses. In the later, the cleavage of C–Se bonds mainly

gave fragments by neutral loss of (– Se + H) and the radical tended to

reside at the selenium of its corresponding complementary pair. The

results suggest that direct electron capture at Se–Se and C–Se bonds is

the main process during ECD of inter–chain diselenide peptides, and
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possibly in ECD of inter–chain disulfide peptides as well.
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Chapter 7

Top-down Electron Capture Dissociation of Disulfide-Rich Proteins

7.1 Introduction

7.1.1 Bottom-up MS analysis of disulfide bound proteins

Disulfide bonds in proteins are post-translational modifications that

are important for stabilizing the tertiary structures of proteins by

introducing covalent constraints. For many peptides and proteins,

disulfide bonds are crucial for their proper biological function.301 Thus,

the characterization of disulfide bonds is an important step to understand

the structure of a protein. The strategies of sequencing disulfide-linked

proteins usually involve enzyme digestion and chemical reduction and

alkylation, followed by mass spectrometry analysis. Although this so-

called “bottom-up” MS approach has been proven useful and widely used

for the sequencing of disulfide linked proteins, there are some inherent

limitations. First of all, the sample preparation procedures consume time

and sample. Second, in a bottom-up approach, only a sub-fraction of the

digested peptides can be detected, many are lost, and even fewer

provide useful fragmentation information; therefore, the sequence

information is incomplete.302

7.1.2 Top-down MS analysis of disulfide bound proteins

As an alternative strategy, top-down MS approach enables the

identification and characterization of intact proteins by directly introducing
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protein ions into the gas phase and subsequently being analyzed by MSn

in the mass spectrometer.303 One of the great advantages of the top-

down approach is that fragmentation on an intact protein rather than at

the peptides level in principle enables the examination of the entire

sequence and direct characterization of the protein and PTMs.303, 304 In

addition, no extensive sample preparation (such as digestion or chemical

modification) is needed, although sample clean-up stage can be more

intensive. The top-down MS approach has been successfully used to

rapidly sequence proteins, identify PTMs,40, 107, 274, 305-310 and study

protein complexes,33, 101, 311 with the remarkable record of characterizing a

protein over 200 kDa.310 However, the application of using top-down MS

approach to sequence disulfide bound proteins remains challenging due

to the low fragmentation efficiency.57, 151-153, 312

7.1.3 ECD analysis of disulfide bound proteins

Collisionally activated dissociation (CAD) and Electron capture

dissociation (ECD) are the most commonly used tandem MS

fragmentation techniques in top-down analysis. However, the sequence

information obtained during fragmentation of disulfide bonded proteins

can be rather limited, because multiple backbone bonds must be cleaved

to yield product ions within the disulfide loop. ECD is well-known for its

abilities on top-down sequencing of intact proteins.33, 88, 101, 274 It was first

proposed and demonstrated by Zubarev et al. that ECD preferentially

cleaved disulfide bonds.57 Insulin, a small protein with two peptide chains

(A and B) linked by two inter-chain disulfide bonds, containing a third

intra-chain disulfide bond, as a perfect example has been extensively
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studied by different radical-based fragmentation techniques beyond ECD,

such as ETD, and electron detached dissociation (EDD).153, 154

Preferential cleavages of S-S bonds have been observed in all cases;

therefore the sequences information obtained is often limited. Only

recently, Huang et al. were able to demonstrate that up to 70% backbone

fragment efficiency can be achieved by ECD.313

As a general approach, activation of ions by collisional activation,

thermal heating, and infrared activation, in-beam collision before, during,

or after ECD events have been shown to improve the ECD fragmentation

efficiency of proteins.88, 314-317 The added energy helps to remove the

intra-molecular noncovalent bonds and results in more extended

structures, which are favorable for ECD analysis. However, interestingly,

some contradictive results have been recently reported by Breuker et

al.318 In their research, a few disulfide-bonded proteins, including ecotin,

aprotinin, and trypsin inhibitor, were studied by ECD. Interestingly, no c

and z• fragment ions from the regions of the proteins bridged by disulfide

bonds were observed even under activation conditions (such as, using

collisional activation and infrared activation).318 In one way or another,

insufficient sequence information is typically obtained in the ECD

analyses of disulfide-linked proteins.

Alternatively, Zhang et al. were able to improve the backbone

fragmentation efficiency of disulfide bound proteins by 3 to 13 fold by

reducing the disulfide bonds using an online electrochemistry strategy

prior to top-down ECD of proteins.95 In the research by Loo et al.,

supercharging has been shown to improve the backbone cleavage
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efficiency of disulfide bonded proteins by increasing the charge on the

protein ions.319

Here we demonstrate a simple approach to tackle this challenging

problem by simultaneously giving a one millisecond single frequency

excitation pulse at the beginning of the ECD events to activate the ions.

We discovered that this activation approach not only improves the

overlapping of ions and electrons but also activates ions and leads to

more comprehensive fragmentation. One may expect that this method is

the same as the strategy to improve the overlapping of ions and electrons

by sustained off-resonance excitation (SORI)83 (usually a few kHz off

compared to the cyclotron frequency of the precursor ions); however, the

frequencies used here to activate ions are at ~ MHz range (frequencies in

the range from a few hundred kHz to MHz have been examined to

activate ions as discussed below). In addition, in a typical SORI

experiment, the excitation pulse length is in a few hundred milliseconds to

a few second ranges, which is significantly longer than the excitation

duration used in Shot-ECD (1 ms).

7.2 Experimental section

7.2.1 Materials

Bovine insulin and bovine ribonuclease A (RNase A) were

purchased from Sigma (St. Louis, MO, USA). HPLC grade methanol,

acetic acid (HAc), and acetonitrile (ACN) were obtained from Fisher

Scientific (Pittsburgh, PA, USA).
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7.2.2 FTICR Mass Spectrometry

ESI-MS was performed on a Bruker solariX FTICR mass

spectrometer with an ESI source and a 12 Tesla actively shielded magnet.

Samples were electrosprayed at a flow rate of ~150 μL/hour at a 

concentration of 1μM in 50:50 MeOH:H2O with 1% acetic acid. For ECD

experiments, the parent ions were first isolated in the first quadrupole and

externally accumulated in the collision cell for 1-5 s. After being

transferred to the ICR cell, ions were irradiated with 1.5 eV electrons from

a 1.7 A heated hollow cathode dispenser78 for 10 to 50 ms. A 1 ms single

frequency excitation pulse at m/z 100 (frequency ~ 1.8 MHz) with a clean-

up shots power of 5%~10% (17.5~35 Vpp) was generated simultaneous to

the beginning of the ECD event to improve the overlap between electron

beam and the trapped ions. For IR-ECD experiments, a vertically

mounted 75 W, 10.6 μM CO2 laser (Synrad, Mukilteo, WA) was used. A

420 ms IR activation pulse with laser power of 7.5 W was given prior to

the ECD event. To improve the overlap of ions and photons as well as

ions and electrons, different trapping voltages (TP) were used for IR

(TP=1.0 V) and ECD (TP=0.5 V) events with 10 ms delay in between IR

and ECD events, during which the trapping voltages were ramped down

from 1.0 V to 0.5 V (Based on the experimental observation on this

instrument that the better overlap of ions and photons can be achieved

when using higher trapping voltages, and lower trapping voltages are

preferred for a slightly better overlap of ions and electrons with ECD and

for preventing fast signal decay. A detailed modification of pulse program

is provided in the appendix F. The same TP value of 0.5 V was
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maintained for the excitation and detection events. Full spectra were

internally calibrated using the singly-charged c ions of insulin or Rnase A.

7.3 Results and discussion

Previously we have observed that the backbone cleavage

efficiency of peptides can be significantly improved by giving a

millisecond single frequency excitation pulse at low m/z simultaneously to

the beginning of the ECD events,208, 232 this method has therefore been

used for ECD analysis of various modified- and unmodified- peptides and

proteins.34, 35 To differentiate this method from normal ECD and IR-ECD,

it is referred as Shots-ECD (modified pulse program is given in the

supporting information). Here, Shots-ECD was further applied in the top-

down analysis of the disulfide-rich proteins, insulin and ribonuclease A

(Rnase A). In addition, normal ECD, infrared activated ECD (IR–ECD),

along with Shots–ECD were performed to compare the fragment

efficiencies of different methods in Rnase A as discussed below.

7.3.1 Top-down Shots-ECD of Insulin

Insulin is a small protein with two peptide chains (A and B chains)

linked by two inter-chain disulfide bonds, containing a third intra-chain

disulfide bond in the A-chain. Insulin has been extensively studied

previously, by different electron-based fragmentation techniques, such as

ECD, ETD, and EDD. A maximum backbone cleavage efficiency of ~

70% was achieved by Huang et al. using ECD.313
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Figure 7.1 ECD spectra of [Insulin+6H]6+ at m/z 956. The insets show

the expanded spectra in mass regions from m/z 400 to 1100 and m/z

1550 to 2000.

Figure 7.1 shows the Shots-ECD spectrum of the [I+6H]6+ ions at m/z

956.4, and a detailed fragmentation scheme is provided in Figure 7.2a. It

can be seen from the insets of Figure 7.1 and the fragmentation scheme

of Figure 7.2a that multiple groups of complementary fragment pairs

resulting from the cleavages of multiple bonds including multiple disulfide

bond(s) were observed. To simplify the labeling of fragment ions, Insulin

A-chain is referred as A and B-chain as B, and ABc(n) or ABz(m)

represents c- or z- ion from insulin B-chain with insulin A-chain attached

by disulfide linkage(s). Some of the typical complementary pairs are

shown in Figure 7.2, such as Ac18(SH)+ and BAz3
3+•, Bc9(S•)+ and

ABz21(SH)3+• generated by cleaving of one backbone (either A-chain or B-

chain) N-Cα bond and one disulfide bond (Figure 7.2d); A+ at m/z 2335

and B3+ at m/z 1334 originated from the cleavages of the two inter-chain

disulfide bonds (Figure7. 2f). Overall, with the use of Shots–ECD, all
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three disulfide bonds of insulin were cleaved and nearly 100% backbone

cleavage efficiency was achieved with the exception of proline residues

due to its ring structure.40 In addition, the observation of multiple groups

of complementary ion-pairs (c/z•) in the Shots-ECD experiments of insulin,

therefore provides us the opportunity to assign the charge carrier sites

and to explore the fragmentation pathways of disulfide-rich proteins.

7.3.1.1 Charge carrier sites

The observation of Ac4
+, Az3

+(cyclic), Bc2
+, Bz4

+•, and Bz9
2+• suggest

that the N-terminus of both A– and B–chains, Asn21(A), Arg22(B),

Lys29(B) are the five out of the total six of charge carrier sites.

7.3.1.2 Fragment ions generated by single, double, or multiple

electron capture

The term “complementary fragments” has been previously defined

as a pair of fragments formed by cleaving between the same pair of

amino acids, and the masses of the two fragments sum up to the mass of

the molecular ion, namely, c+z•= Mm+H• in ECD.316 This definition of

“complementary fragments” refers to the cleavage of one N-Cα bond by

one electron capture. However, as discussed later, the fragments

observed for ECD of disulfide proteins (cleavages of both disulfide and N-

Cα bonds) often originate from multiple electron capture (n≥2).  Here, to 

simplify the calculation of the mass of the molecule and to determine the

numbers of electrons captured that lead to fragmentation, hydrogen

numbers were tracked for each complementary pair. In addition, to

guarantee that the two fragments of each complementary pairs are from

the same fragmentation pathway(s), the total number of charges (q) from
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both c and z• ions and electrons (e) (n=nq(c)+nq(z•)+ne) for each

complementary pair was also calculated.

Figure 7.2 Fragment ions observed in the ECD spectrum of the [I+6H]6+

ion. (a) Fragmentation diagram; (b) complementary ion pairs from the

cleavage of one N-Cα bond by single electron capture; (c) complementary

ion pairs from the cleavages of one N-Cα bond and one S-S bond by

single electron capture; (d) complementary ion pairs from the cleavages
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of one N-Cα bond and one S-S bond by double electrons capture; (e) ions

from insulin A-chain yielded by multiple electrons capture (n≥2) ; (f) A-

chain and B-chain ions due to the cleavages of both inter-chain disulfide

bonds; and (g) hydrogen bonding.

Taking the ECD results of the [I+6H]6+ ions of insulin (total numbers

of hydrogen: Hm=377) for an example, in the case of fragment pairs

originated from a single electron capture dissociation, total hydrogen

number should equal to 378 (Hc+Hz•=378), and the total number of

charges and electrons should equal to 6 (n=nq(c)+nq(z•)+ne=6, ne=1), such

as Ac4
+/BAz17

4+• (Hc+Hz•=263+115=378, n=1+4+1=6) and Bz5
+•/ABc254+

(Hc+Hz•=378, n=4+1+1=6) as shown in Figure 7.2b. Similarly, for

complementary pairs generated by double electron capture dissociation,

Hc+Hz•=379 and n=nq(c)+nq(z•)+ne=6 (ne = 2).

Some of the complementary fragments observed in the ECD

spectrum of the [I+6H]6+ ions are presented in Figure 7.2 b-d and f as

examples, which were divided into different categories according to the

number of electrons being captured. The first category shown in Figure

7.2b, are fragment pairs originating from single electron capture by

cleavage of either (1) a single N-Cα bond, such as Ac4/BAz17
4+•

(Hc+Hz•=263+115=378, n=1+4+1=6) and ABc25
4+/Bz5

+• (Hc+Hz•=378,

n=4+1+1=6), or (2) both an N–Cα and a disulfide bond, such as, Az3+

(cyclized z-ion)/BAc(S•)4+ (Figure 7.2c). Taking insulin as an example,

possible fragmentation pathways of the [I+6H]6+ ion due to single or

double electron(s) capture dissociation are summarized in Scheme 7.1.
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Scheme 7.1 Possible fragmentation pathways of the [insulin+6H]6+ ion

due to one or two electron(s) capture.

As shown in Scheme 1a and 1b, initial electron capture at or

transfer to amide π* orbital forms a –(·CO-)–NH–Cα– radical anion and

then cleaves its N–Cα bond to form c and z· ions.320 The radical at

z· ions can migrate to either inter–chain disulfide bonds

(Cys7(A)―Cys7(B) or Cys20(A)―Cys17(B)), cleave the disulfide bonds, 

and form complementary pairs of either ABc(S·)4+/cyclic z+ (Scheme 1a)

or Bc(S·)+/cyclic ABz4+ (Scheme 7.1b). The cleavage sites are only

drawn in B–chain of insulin for demonstration, the same process can also

happen in A–chain as observed, such as Az3+ (cyclized z-ion)/BAc(S•)4+

(Figure 7.2c). It has been previously reported that a single electron

transfer reaction can cleave both one S–S bond and one N–Cα bond,152,

281 and the formation of cyclic z-ions has been observed by Cole et al.281

on ETD of intra–chain disulfide peptides. Here, the observation of
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complementary pairs (in both mass and charge), such as

AB18c
4+(S·)/cyclic z3

+(SH) and Bc9(S·)+/cyclic ABz21
4+·(S) (Figure 7.2c),

suggests that single electron capture can dissociate both N-Cα and S-S

bonds in ECD of the [I+6H]6+ ion as proposed in Scheme 7.1a&b. In

addition, initial electron capture into an S–S δ* orbital can also happen, 

promptly cleave the disulfide bond, and form -S· and -SH through

hydrogen abstraction from elsewhere. Previously Lee et al.280 proposed

that the radical at -S· can abstract a hydrogen from either α- or β- carbon; 

then a radical site generated at the α-carbon can lead to b·/y ions 

(Scheme S-1a), while the β-carbon radical yields a/x· ions (Scheme S-1b) 

or c·/z ions (Scheme S-1c). Although By4 to By11 ion series were

detected, no complementary b·/y, or a/x· ion pairs were observed in ECD

of the [I+6H]6+ ion. In the case of c·/z ion pairs as proposed in Scheme S-

1c, it is not clear whether this pathway happened or at what extent as the

masses of Bc(SH)+· and ABz(SH)4+ are exactly the same as Bc(S·)+/cyclic

ABz(S)4+· (Scheme 7.1a), respectively.

Scheme 7.1c-f proposed the fragmentation pathways induced by

double electron capture dissociation. The fragment ion structures are

given without detailed pathways because it is not known whether the

capture of two electrons lead to the fragmentation of N-Cα or S-S bond

one after another or simultaneously, nor which happens first. As shown in

Scheme 7.1 c&d, when one of the two electrons targets the Cys7(A)-

Cys7(B) bond, the fragments yielded can be either

Bc(SH)+/ABz(S·)3+· (Scheme 7.1c) or Bc(S·)+/ABz(SH)3+· (Scheme 7.1 d)

ion pairs; likewise, the cleavages of Cys20(A)―Cys17(B) and one N-Cα 
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bond of B-chain would induce fragments of ABc(SH)3+/z(S·)+· as bi-radical

species (Scheme 7.1e) or ABc(SH)3+/cyclized z+(two radicals are

recombined and formed a cyclic structure)321 and

ABc(S·)3+/z(SH)+· (Scheme 7.1f). Figure 7.2d shows some of the

complementary ion pairs observed with the cleavage of both N-Cα and S-

S bonds by capturing two electrons, such as Ac18(SH)+/BAz3+·(S·),

Bc9(S·)+/ABz21(SH)3+·, and Bc9(SH)+/ABz21(S·)3+·. The results indicate

that the ECD fragmentation of the [I+6H]6+ ions (Figure 7.1) possibly go

through the proposed pathways (Scheme 7.1 c&d). Previously, in SORI-

CID of the bi-radical lacticin 481 species (a small peptide with three

lanthionine bridges), Kleinnijenhuis et al. observed that the recombination

of the two radical sites is the dominant process.321 However, it is not

clear whether the species observed here, such as BAz3+·(S·) and

ABz21(S·)3+·, are bi-radical species or species with two unpaired radicals

recombined. The masses are the same and the fragment ion

abundances are too low for MS3.

Figure 7.2e shows the c-ion fragments from A-chain sequenced by

cleaving an N-Cα and one S-S bond by multiple electron capture (n=2, 3).

Fragment ion Ac6 is mainly in Ac6(SH)+ form due to the cleavages of one

N–Cα bond and one S–S bond by two different electrons. The

observation of fragment ions of Ac7 and Ac8 is interesting because they

both must derive from the cleavage of three bonds, including two nearby

disulfide bonds and one N–Cα bond. In addition, two forms of fragments

Ac(S–S) or A(2×S•) and Ac(2×SH) were observed for both Ac7 and Ac8

(see the inset of Figure 7.2d, in blue) and they are different by 2 Da. In
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theory, for the cleavage of a disulfide linked peptide or protein (R1S-SR2)

in ECD, the ratio of R1S•/R1SH or R2S•/R2SH should be approximately

1:1. However, surprisingly, the intensities of Ac7(S-S) and Ac8(S-S) are

around 10 times higher than their corresponding Ac(2×SH) peaks, which

indicates that there are other fragmentation pathway(s) contributing to the

generation of Ac7(S-S) and Ac8(S-S) ions. Considering the fragmentation

pathways for Ac(S-S) and Ac(2×SH) species, they can both be generated

by the capture of three electrons. In that case, Ac7(S-S) and Ac8(S-S)

are both bi-radical species, which might not be stable. Considering

Cys6(S•) and Cys7(S•) are adjacent, it is likely that the two radicals

recombined and formed stable c-ions with a new disulfide bond. In

addition, there are two possible pathways that can lead to Ac7(S-S) and

Ac8(S-S) ions by capturing two electrons as shown in Scheme 7.2. In

each possible pathway, the obtained c-ion has a newly formed disulfide

bond, which could possibly explain why the intensities of Ac7(S-S) and

Ac8(S-S) are much higher than their corresponding Ac(2×SH) peaks.

Scheme 7.2 Possible fragmentation pathways of yielding Ac(S-S) ions by
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capturing two electrons.

Top-down ECD spectra are often complicated to interpret due to

the overlap of fragment peaks, which is particularly evidenced in the ECD

spectrum of the disulfide-rich protein―insulin (Figure 7.1 and 7.2).  As an 

example, shown in the left-hand of Figure 7.2e, the ions centered at m/z

916 are overlapping peaks of four species, including, Bc8(S·)+ (A+1),

Bc8(SH)+ (A), Bz8(A+2)+·, and Bz8
+(A+1). The peak overlap is primarily

because when one disulfide bond is cleaved, the hydrogen can attach to

either sulfur of one disulfide. Thus the fragments, such as Bc8(S·)+ and

Bc8(SH)+, are 1.00728 Da apart, depending on the charge states of ions,

which cause the overlapping of isotopic peaks of different groups of ions.

Since more than one electron is often needed to cleave both

disulfide and N-Cα bonds in disulfide bound proteins to generate

detectable backbone fragments, it is not surprising that in the previous

ETD study of insulin by Liu et al., neither separation of the two constituent

chains of insulin (+6) nor cleavages within the loop defined by the

disulfide bridges were observed under normal ETD conditions, and only

up to 38.8% backbone cleavage efficiency was achieved by ETD with

simultaneous ion trap collisional activation of the first generation charge-

reduced product during the ion/ion reaction period.22

7.3.1.3 Hydrogen abstraction

The cleavage of the two inter-chain disulfide bonds of insulin was

also observed as expected (see Figure 7.2f); however, it is surprising to
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observe the [A(2×S•)+H-H]+, [A(2×S•)+2H-H]2+, and [B(2×S•)+2H-H]2+

species. Taking the [B(2×S•)+2H-H]2+ species for an example, the results

suggest that one of the hydrogens on the B-chain was abstracted by A-

chain when the two inter-chain disulfide bonds were cleaved, and likewise

for the generation of [A(2×S•)+H-H]+, [A(2×S•)+2H-H]2+ species.

Therefore, this observation indicates that, for both A- and B-chains, one

of the hydrogen atoms abstracted by the –S- anion ions is not from the

charge carrier site but elsewhere within the insulin sequence. The whole

spectrum (Figure 7.1) was examined to track possible sites of hydrogen

abstracted, and the observation of Az3
+-H• (Figure 7.2c) and Bz4

+•-H•

(Figure 7.2g) ions suggests that the abstraction of hydrogens both came

from the C-terminal region of A– and B–chains of insulin, respectively.

Previously, the hydrogen loss from z• ions has been reported by Savitski

et al., in which they observed that amino acids Ser, Thr, and Trp in certain

position of the peptide’s sequence promote the H• loss from z• ions.322

However, it is not known where exactly the hydrogen is from; possibilities

include Cα, Cβ, or from the hydroxyl groups of Tyr of Az3 or Thr of Bz4.

Therefore, an attempt to further locate the abstracted hydrogens by

reacting hydroxyl groups with acetic anhydride was carried out. However,

as shown in the appendix Figure F.1, the charge state of insulin shifts

from mainly +6 to +4 after the reaction, which suggests that two of the

charge carrier sites, the –NH2 groups, also reacted with acetic anhydride

as a side reaction. Thus, the ECD reaction was severely suppressed.

Similar results were also observed in the ETD study of triply fixed-charge

disulfide peptides by McLuckey et al.,278 in which they postulated that an
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amide-hydrogen might be a possible source for hydrogen abstraction.

7.3.1.4 Hydrogen transfer from c to z• ions

As mentioned above, the observation of the z8
+ ion (Figure 7.2b)

suggests the existence of hydrogen bonding in the gas-phase structure of

the [I+6H]6+ ion of insulin. The detection of Bc2
+, Bc3

+, Bc3
+• (c3-H•), Bz4

+•,

and Bz4
+(z4

+•+H•) ions further localize the hydrogen bond interactions to

the side chains of Asn3(B) and Thr27(B), which is also evidenced by the

observation of cn•/zm
+ ions in the middle of the B-chain (n=3~18, m=4~23).

Most likely, the hydrogen bonding to the side chains of Asn3(B) and

Thr27(B) residues hold the c/z• pairs together, which leads to the transfer

of H• from c ions to z• ions.84, 323

7.3.2 Top-down ECD of Ribonuclease A (RNase A)

7.3.2.1 ECD, IR-ECD, vs shots-ECD

RNase A is a ~13.7 kDa protein with 124 residues and four disulfide

bonds (Cys26–Cys84, Cys58–110, Cys40–95, and Cys65–72). In

previous reports of sequencing RNase A by using top-down ECD, no

backbone fragment ions were observed for intact RNase A, and up to

47% backbone cleavage efficiency was achieved for a fully disulfide

reduced RNase A.324 Here RNase A was chosen as an example to

further test the method. In comparison, normal ECD, infrared activated

ECD (IR–ECD), and Shots–ECD were performed to compare the

fragment efficiencies of different methods as shown in Figure 7.3.
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Figure 7.3 MS/MS spectra of [Rnase A+13H]13+ ions at m/z 1053. (a)

ECD; (b) IR-ECD; (c) shot-ECD; and (d) fragment ions correspond to

cleavages of both N-Cα bond and disulfide bond(s) from Figure 7.1c. The

insets are the expanded spectra to show the spectra quality and the

fragmentation patterns.

Figure 7.3a shows the normal ECD spectra of RNase A and it can be

seen that fragments obtained are mainly c ions outside of the disulfide-

linked regions, and only 22% backbone cleavage efficiency was achieved

(see the left-hand of Figure 7.3a). In addition, one tiny peak

corresponding to c30
3+ was observed, which originates from the cleavage

of the disulfide bond Cys26–Cys84 and one N-Cα bond.  This result 

primarily agrees with the ECD data of other disulfide bonded proteins

obtained by Breuker et al.318 To further improve the ECD fragmentation

efficiency, IR (420ms, 2.5 W) heating prior to ECD was used to activate

ions and the IR-ECD spectra are shown in Figure 7.3b. A slight increase

(3%) in backbone cleavage efficiency was gained with one additional c-
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ion (c35) from the Cys26-Cys84 bridged region and one additional z•-ion

(z18) from the Cys58-Cys110 linked region (see insets of Figure 7.3b).

Further increasing the IR laser power to 15% leads to more b/y but not

c/z• fragments (see appendix, Figure F.2), which indicates that ions and

photons were well overlapped and 10% of laser power is sufficient to

activate ions but not cause significant amount of b/y fragment generation.

In contrast, when a one millisecond single-frequency activation clean-up

power was simultaneously given (at m/z 100 Da with 5% clean-up shots

power) at the beginning of the ECD event, a significant improvement in

fragmentation efficiency was achieved as presented in Figure 7.3c&d.

Compared to ECD and IR-ECD, Shots-ECD generates many more

fragment ions, as shown in the insets of Figure 7.3c. Overall, eleven

more backbone cleavages were detected outside the disulfide-bridged

regions; moreover, the cleavages of three out of four disulfide bonds

along with 35 new backbone cleavages within the disulfide-bridged

regions were observed. Some of the examples of ions generated by

cleaving both disulfide and N-Cα bonds are presented in Figure 7.3d,

such as c26
3+ (Cys26–Cys84 cleaved), c40

5+ and c49
5+ (both Cys26–Cys84

and Cys40–95 cleaved), z20
2+ (Cys58–110 cleaved), and z75

4+ (both

Cys26–Cys84 and Cys40–95 cleaved).

7.3.2.2 Effect of bias voltages on backbone cleavage efficiency of

Rnase A
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Figure 7.4 Shots-ECD spectra of the [Rnase A+13H]13+ ion at different

bias voltages. (a) 1.5V, (b) 3 V, (c) 5 V, (d) 10 V, and (e) 15 V. The insets

show the details of each spectrum and the intensities of each spectrum

are normalized to 1.0×109 and 5×108 for m/z 200 to 1000 and m/z 1250 to

1500, respectively.

Different electron gun bias voltages were applied to the hollow

cathode used for generating electrons to examine the effect of bias

voltages on radical-mediated fragmentation of the disulfide-rich protein,

Rnase A. Figure 7.4 shows the shots-ECD spectra of the [Rnase

A+13H]13+ ion at different bias voltages, 1.5 V, 3 V, 5 V, 10 V, and 15 V

(Figure 7.4a~e). The intensity (y-axis) of the m/z 200~1000 region of
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each spectrum was normalized to 1×109 (arbitrary units) to compare the

data quality of each method. The highest overall intensities of ions at low

m/z region (m/z 200 to 1000) were achieved at a bias voltage of 3 V (inset

of Figure 7.4b) and the peak intensities decrease when higher bias

voltages were used (Figure 7.4c~e). Although the intensity of each

individual fragment ion observed in the m/z 200~1000 region varies when

using different bias voltages, there are no significant differences in terms

of the presence of these ions. In contrast, the presence of the fragment

ions in the high m/z region varies dramatically at different bias voltages.

Taking the fragments in the m/z 1250~1500 region for an example, it is

clear that more fragment ions were observed at the bias voltage of 1.5 V

and the numbers and the intensities of fragment ions decreased as the

bias voltage being increased. The peaks that likely disappear while using

higher bias voltages are mostly z•-ions, which is likely because z-ions are

radical species and prone to undergo secondary fragmentation especially

when excessive energy is deposited into them.64

7.4 Conclusions

As demonstrated in the ECD study of disulfide bonded proteins,

the Shots-ECD method can significantly improve backbone fragmentation

efficiency of proteins. This strategy is fast, efficient, and with no need of

chemical reduction of samples and instrument modification, and therefore

can be a powerful approach to improve top-down ECD efficiency of not

only disulfide bonded proteins but all proteins by FTICR MS. Although
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capture of one electron can cleave one N–Cα bond and one S–S bond of

a disulfide linked protein, multiple electron capture is often needed to

generate more comprehensive sequence information for disulfide-rich

proteins. Thus, activating charge reduced species (the ones capture

multiple electrons (n ≥ 2) should provide more information for disulfide 

bonded proteins.

Although it is not clear why such a short (1 ms) activation can

make such a huge difference, there are a few things that are clear: first,

the excitation frequency used at ~ 1.8 MHz range is far away from the

frequency of the precursor or fragment ions. Second, in the comparison

experiment of IR-ECD and Shots-ECD, more c/z fragment ions but not b/y

ions were observed, which indicates that the mechanism of ions being

activated in Shots-ECD is different from IR heating. Third, the cleanup

shots power works at ~15%, further increasing the power leads to the

loss of ions. Last but not least, different shot-excitation frequencies have

been used to activate ions; excitation pulse at higher frequencies usually

works better, and the performance appears to vary with the molecular

ions. Further experiments are currently underway and will be reported

separately.
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Chapter 8

Conclusion and future work

8.1 Conclusions

Cisplatin along with other platinum-based drugs are the most

widely used anticancer agents. However drug resistance has been a

major problem for the successful chemotherapeutic treatment of cancer.

Protein platination is implicated to be responsible for many of the severe

side effects, which is a modification obtained during the treatment of

cancer with Pt-based drugs due to the binding of platinum to proteins.

The mode of transport of cisplatin and its analogs through the cell

membranes and possible intermediate binding to proteins remain largely

unknown. Therefore, it is important to study the reaction of Pt-based

drugs with proteins and to build analytical methodologies, with the

ultimate goal of building some reaction and analysis rules for doing bulk

proteomics to determine where these drugs bind in vivo and how this

correlates with chemotherapy side-effects. This thesis focuses on the

application of tandem fragmentation techniques, mainly electron capture

dissociation (ECD), to characterize the reaction products and Pt-

modification sites, and to understand possible side effects of platination

on proteins.

Sulfur–containing biomolecules play significant roles in platinum

anticancer chemotherapy because of their high affinity for platinum

compounds. CaM is a methionine (Met)–rich protein, with 8 out of 9 Met
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residues locating on the hydrophobic areas that facilitate CaM association

and activation of a diversity protein targets. CaM was therefore chosen

to study its interaction with cisplatin and its analogues using high

resolution tandem mass spectrometry (MS). It was first time that ECD

has been successfully applied in top-down MS analysis of Pt-modified

proteins. Unlike previous suggestions that metals are electron traps,

which terminate the normal ECD fragmentation pathways, multiple

electron capture pathways were observed in the platinum–modified CaM

ions, such as, direct electron capture by platinum(II), side chain losses,

and normal backbone N–Cα bond cleavages leading to c/z· ions. With

the combination of top-down and bottom-up MS approaches, the binding

forms of Pt-based drugs to CaM and the Pt-modification sites on CaM

were characterized. It was found that cisplatin cross-links multiple Met

pairs on CaM, which leads to the assumption that these intramolecular

Pt–crosslinkings on CaM might induce loss of CaM conformational

flexibility to recognize calcium or target proteins, and thereby loss of its

function as a calcium sensor and a signal transducer. This hypothesis

was further tested by a melittin binding assay. The results show that Ca4–

CaM maintains to a certain extent its ability to recognize melittin even

when cross–linked by platinum; however, calcium–free CaM, when

cross–linked by cisplatin, loses its ability to recognize the target, melittin.

Thus, the cross–linking of cisplatin to apo–CaM or Ca–CaM can inhibit

the ability of CaM to recognize its target proteins.

Further, the results from cross-linking of platinum on CaM suggests

the possibility of using cisplatin as a protein cross–linking reagent. The
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cross-linking ability of cisplatin was further explored and demonstrated on

other peptides and proteins. However, it is not just Pt-crosslinking but

many of the inherent features of platinum(II) which make cisplatin an

interesting cross-linking reagent, such as targeting new protein functional

groups (thioether and imidazole groups), its unique isotopic pattern, its

inherent positive charge, its potential of binding to different functional

groups.

One problem encountered when re-examining the Pt-crosslinking

results on CaM is that the distance constraints obtained from NMR

structures of CaM are inconsistent with the measured distance

constraints by cross–linking. Therefore, a combined flexibility simulation

method was applied to explore whether the flexibility motions of CaM

might contribute to the observation Pt-crosslinking on CaM. The flexibility

analysis showed that both + Ca and – Ca CaM structures have extensive

flexibility, and flexible motions can bring sulfur atoms of Met residues in

the hydrophobic patches close and within 5 Å, which provides

opportunities for cisplatin to cross–link Met residues of CaM. The

simulation analysis is consistent with the MS results. Therefore, the

simulation of flexible motion can be a very useful tool for predicting

cross–linking pairs in proteins and facilitating MS data analysis. In

addition, flexibility simulation also suggests that the crosslinking of

cisplatin on CaM can inhibit the activity of CaM, as observed in the

mellitin binding essay.

As mentioned above, based on fragment information obtained in

CAD and ECD experiments, including the Pt-modified b/y and c/z ions
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and unmodified b/y and c/z ions, the Pt-modification sites have been

successfully localized. However, there are situations that still make the

unambiguous identification of Pt-modification sites challenging, such as

(1) cisplatin has four ligands which can be displaced to form up to four

bonds with a protein or peptide. (2) There are often multiple potential Pt–

binding sites presented in one sequence, sometimes those potential Pt–

binding sites are adjacent or close to each other. (3) Positional isomers

are often formed during the reaction of Pt(II) complexes with proteins.

Therefore, without any prior separation, the precursor ion isolated for

fragmentation is often a mixture of ions with exactly the same mass but

different structures, which can significantly complicate the tandem spectra

and data interpretation. (4) CAD-induced cleavage of PTMs, including Pt-

modifications, depends on the collision energy used, thus can lead to

erroneous conclusions, especially in those situations where there are

multiple potential binding sites close to each other in a sequence.

Previously it was observed that when platinum binds to a Met residue of a

peptide or protein sequence, there is a signature side chain loss of

CH3SH in ECD. Therefore, to further explore the possibility of using

radical-mediated side chain loss to assist the assignment the platinum-

modification sites, a series of peptides with potential cisplatin binding

sites (Met(S), His(N), Cys(S), disulfide, carboxyl groups of Asp and Glu,

and amine groups of Arg and Lys, were reacted with cisplatin, then

analyzed by ECD in FTICR MS. The results demonstrate that radical–

mediated side–chain losses from the charge–reduced (M + Pt) species

(such as CH3S• or CH3SH from Met, SH• from Cys, CO2 from Glu or Asp,
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and NH2• from amine groups, can be used as characteristic indicators for

rapid and unambiguous localization of the Pt–modification sites to certain

amino acid residues. The method was further successfully applied to

interpret the top-down ECD spectrum of an inter-chain Pt-crosslinked

insulin dimer, insulin+Pt(NH3)2+insulin (>10 kDa). It was believed that

radical-mediated side chain losses can be used to improve data

interpretation and produce a more comprehensive picture of Pt–

modifications on proteins.

Disulfide bonds are PTM that are important for stabilizing the

tertiary structures of proteins. The characterization of disulfide bonds is

important to understand the structure of a protein. The sequence

information obtained during CAD fragmentation of disulfide linked

proteins is often rather limited, because multiple backbone bonds must be

cleaved to yield product ions within the disulfide loop. Therefore, much

more effort has been paid to apply ECD in the characterization of

disulfide-linked peptides and proteins, and to understand the ECD

mechanisms of disulfide-containing species.

Selenium and sulfur share many common physicochemical

properties. To further explore the ECD mechanisms of sulfur– or

selenium–containing species, a series of disulfide (S–S), sulfur–selenium

(S–Se), and diselenide (Se–Se) bond–containing peptides was studied by

ECD. Although the electron affinities of S atom (2.07 eV) and Se atom

(2.02 eV) are very close, they have very different reactivity towards

electrons. The results demonstrate that the radical has higher tendency

to stay at selenium compared to sulfur after the cleavage of Se–S bonds
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by ECD. In addition, the cleavage pathways of C–S bonds of a disulfide

peptide and C–Se bonds of a diselenide peptide are different, and the

results suggest that direct electron capture at Se–Se and C–Se bonds is

the main process during ECD of inter–chain diselenide peptides. This

research leads to a better understanding of the ECD mechanisms.

Although, top-down MS approach has been successfully used to

sequence proteins rapidly, with the remarkable record of characterizing a

protein over 200 kDa, the application of top-down MS approach to

sequence disulfide-containing proteins remains challenging due to the

lower fragmentation efficiency. Here, a new AI-ECD method, named

Shots-ECD was applied, to improve the backbone fragmentation

efficiency of disulfide-rich proteins. The results show that the Shots–ECD

approach can not only cleave multiple disulfide bonds but also

significantly improve the backbone cleavage efficiency. This strategy is

fast, efficient, and with no need of chemical reduction of samples and

instrument modification, and therefore can be a powerful approach to

improve top-down ECD efficiency of not only disulfide bonded proteins

but all proteins by FTICR MS. In addition, the observation of multiple

groups of complementary ion-pairs (c/z•) in the Shots-ECD experiments

of insulin makes the exploration of the fragmentation pathways of

disulfide-rich proteins possible.

8.2 Future work

Pt(IV) complexes have become attractive due to their potential

anticancer activity and the inert nature of platinum(IV). Platinum(IV)
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requires reduction to Pt(II) species to become cytotoxic. 131, 132 Recently,

Sadler’s group has been developing light-sensitive Pt(IV) pro-drugs that

can be photoactivated to active antitumor agents directly at the site of the

tumor.131, 229, 230 This therefore decreases the side-effects and toxicity.

Similar to cisplatin, these molecules also react with proteins and little is

known about the specificity or sites of this binding. Some preliminary

research has been performed, and it is interesting to notice that Pt(IV)

complexes preferentially interact with Met residues of peptides with all its

original ligands intact, namely noncovalent interaction. In addition, many

more new Pt-species will be generated during the reduction of Pt(IV) to

Pt(II), and the system can be significantly complicated; thus it is

necessary to study the interaction of Pt(IV) complexes to peptides or

proteins in simple systems before performing large scale proteomic

analysis.

Pt-drug resistance is a complex and multifactorial problem due to

changes of multiple biological pathways, which involves a large number of

proteins. Thus global quantitative proteomics screens are essential to

identify the protein targets that are differentially expressed in drug

resistant cell lines. The identification of proteins involved in Pt-drug

resistance in cells would be useful in completing our understanding of Pt-

complex interaction. Previously, the bottom-up MS approach in

combination with other methods has been applied to proteomic of

screening proteins that involve in cisplatin drug resistance, which allows

high throughput protein identification, but prevent the interrogation of the

complete sequence of the protein. 226, 228 A top-down MS approach, as an
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alternative, can provide entire sequence information and the PTM sites.

Although top-down MS analysis of intact proteins remains challenging

due to the sample complexity, the lack of sensitivity, and the relatively low

backbone cleavage efficiency, it has been successfully applied in many

proteomics studies. 325, 326

By covalently binding to the reactive groups of proteins, cross-

linking reagents create the distance constraints that can help define 3-D

structures of proteins or protein complexes. For protein-protein complex

studies, a cross-linker with a short spacer arm (4-8 Å) is often used first to

determine the degree of cross-linking. The space arm length of cisplatin

is about 2.8 to 4.6 Å, which fits in this range. However, different spacer

arm lengths are often required because steric effects dictate the distance

between potential reaction sites for cross-linking, and a cross-linker with a

longer spacer arm is favored for intermolecular cross-linking study. One

way of increasing the arm length of Pt-based cross-linking reagents is to

synthesize dinuclear-platinum complexes. By varying the lengths of the

linker region between the two Pt-complexes, different arm lengths can be

obtained. Previously, the cross-linking ability of a dinuclear Pt-complex,

[{cis–PtCl2(NH3)}2(µ–NH2(CH2)4NH2)], has been tested on calmodulin.

Unfortunately, due to the trans-labilization effect, all four of the original

ligands of each of the platinum are displaced. However, one can resolve

this problem by replacing the chloride group that trans to the linker with

other ligands that cannot be easily displaced, such as ammine groups. In

addition, further research on finding the optimal crosslinker-to-protein

molar ratios and the reaction time is also needed. With the combination
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of flexibility simulation and Pt-based cross-linkers, it is possible to

develop a general approach for probing of protein interactions and protein

flexibility.

Furthermore, although the possibility of using radical-mediated

side chain losses to quickly localize Pt-modification sites has been

explored, it is not clear how these side chains bound to platinum

disappeared during ECD, but platinum still binds to the peptide sequence.

Ab initio calculations provide useful approach to tackle this puzzle, and to

further explore the ECD mechanism of metal-bound peptides.63, 67, 217
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Appendix A (Supporting information for Chapter 2)

Figure A.1 Zoom CAD-MS2 spectra of (a) bombesin triply charged ion at

m/z 540; (b) bombesin doubly-charged ion at m/z 810; (c)

[A+Pt(NH3)+B+2H] 4+ ion at m/z 719. The fragment ions of [B+2H-

CH4S]2+, [B+2H]2+, and [B+Pt-CH4S]2+ are highlighted in grey. These

spectra show that Pt binds to the thioether sulfur of the N-terminal Met14

site.
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Figure A.2 Mass spectra of (a) hemoglobin-cisplatin (1:5) mixture; (b)

hemoglobin. Aqueous solutions of hemoglobin and cisplatin were mixed

at a molar ratio of 1:5 and incubated at 37 °C for 24 h.
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Table A.1 Isotopic distribution peaks of [A + Pt(NH3) + B + 2H] 4+ and

ions. The isotopic distributions of [A + Pt(NH3) + B + 2H] 4+ and [B + Pt +

B + 2H] 4+ ions are highlighted in bold.  Assigned peaks labeled with “▲” 

are the ions used as internal calibrants.

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

▲[A+2H] 
2+

523.77464 523.77453 0.21

▲[B+3H] 
3+

540.61232 540.61230 0.04

[A+Pt(NH3)+B+3H]
5+

576.07273 576.07290 -0.30

[B+Pt(NH3)+H]
3+

610.93808 610.93856 -0.79

[B+Pt(NH3)2+H]
3+

616.61349 616.61408 -0.96

[A+Pt(NH3)2]
2+

637.27559 637.27587 -0.44

[A+Pt(NH3)+B+2H]
4+

719.33830 719.33806 0.33

719.58876 719.58875 0.01

719.83924 719.83931 -0.10

720.08972 720.08995 -0.32

720.34043 720.34067 -0.33

720.59078 720.59064 0.19

▲[B+2H] 
2+

810.41479 810.41481 -0.02

[B+Pt+B+2H]
4+

858.40087 858.40156 -0.80

858.65212 858.65229 -0.20

858.90300 858.90285 0.17

859.15375 859.15351 0.28

859.40350 859.40421 -0.83

859.65423 859.65418 0.58

859.90553 859.90491 0.72

860.15573 860.15545 0.33

[B+Pt(NH3)+B+2H]
4+

863.15910 863.15949 -0.45

[B+Pt(NH3)]
2+

915.40228 915.40293 -0.71

[B+Pt(NH3)Cl+H]
2+

933.39047 933.39127 -0.86

[A+Pt(NH3)+B+H]
3+

959.44958 959.44998 -0.42

▲[A+H] 
+

1046.54180 1046.54179 0.01

Mean absolute deviation (ppm) 0.40
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Table A.2 CAD Fragments of [A + Pt(NH3) + B + 2H] 4+ ion. Assigned

peaks labeled with “▲” are the ions used as internal calibrants. 

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

B_b3 396.19898 396.19899 -0.03

B_b7
2+

404.70642 404.70665 -0.58

B_b8
2+

497.74620 497.74631 -0.22

▲B_b4 509.28303 509.28306 -0.06

[A+2H]
2+

523.77451 523.77453 -0.04

B_b9
2+

533.26492 533.26486 0.10

B_b5 566.30447 566.30452 -0.09

B_b10
2+

582.79899 582.79907 -0.15

[B+Pt-CH4S+H]
3+

589.26206 589.26192 0.24

[B+Pt-NH3+H]
3+

599.58775 599.58753 0.37

[B+Pt+H]
3+

605.26338 605.26305 0.55

[B+Pt(NH3)+H]
3+

610.93818 610.93856 -0.62

B_b11
2+

611.30991 611.30980 0.18

[A+Pt+B_a12+2H]
4+

643.29632 643.29614 0.28

[B+Pt+A_b6+2H]
4+

650.04961 650.04970 -0.14

[A+Pt+B_b12+2H]
4+

650.29448 650.29487 -0.60

[A+Pt(NH3)+B_b12+2H]
4+

654.05513 654.05565 -0.80

▲B_b6 680.34750 680.34745 0.07

[B+Pt(NH3)+A_y7+2H]
4+

690.83163 690.83060 1.49

[A+Pt+B-NH3+2H]
4+

711.32591 711.32603 -0.17

[A+Pt+B+2H]
4+

715.58215 715.58267 -0.73

[A+Pt(NH3)+B+2H]
4+

719.83932 719.83931 0.01

[B_a12+Pt]
2+

762.31672 762.31662 0.13

[B_b12+Pt]
2+

776.31416 776.31408 0.10

A_b6 784.41018 784.41005 0.17

[B-CH4S+2H]
2+

786.41310 786.41312 -0.03

[B-NH3+2H]
2+

801.90140 801.90153 -0.16

B_b7 808.40603 808.40603 0.00

[B+2H]
2+

810.41499 810.41481 0.22

[B_b13+Pt]
2+

832.85608 832.85612 -0.05

[B+Pt+A_b6+H]
3+

866.39669 866.39717 -0.55

[B+Pt-CH4S-NH3]
2+

874.37526 874.37469 0.65

[B+Pt-CH4S]
2+

882.88780 882.88796 -0.18

[B+Pt-CO-NH3]
2+

884.37900 884.37892 0.09

[B+Pt-NH3]
2+

898.37644 898.37638 0.07

[B+Pt]
2+

906.88946 906.88965 -0.21
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[B+Pt+NH3]
2+

915.40277 915.40293 -0.17

▲B_b8 994.48488 994.48534 -0.46

[A+H]
1+

1046.54125 1046.54179 -0.52

▲B_b9 1065.52207 1065.52245 -0.36

▲B_b10 1164.5913 1164.59087 0.37

Mean absolute deviation (ppm) 0.29
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Table A.3 ECD Fragments of the [A + Pt(NH3) + B + 2H] 4+ ion

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

A_c2 289.16167 289.16188 -0.73

A-c3 388.23012 388.23029 -0.44

B_c3 413.22533 413.22554 -0.51

▲[A+2H] 
2+

523.77453 523.77453 0.00

B-c4 526.30956 526.30961 -0.10

A_c5 551.29393 551.29362 0.56

B_c5 583.33100 583.33107 -0.12

[B+Pt(NH3)+H]
3+

610.60457 610.60438 0.31

A_c6 664.37750 664.37769 -0.29

B_c6 697.37418 697.37400 0.26

▲[A+Pt(NH3)+B+2H]
4+

719.83929 719.83931 -0.03

[B+2H-CH4S]
2+

786.41359 786.41312 0.03

▲[B+2H]
2+

810.41481 810.41481 0.00

B_c7 825.43279 825.43258 0.25

A+Pt+B_z12
3+

874.41373 874.41406 -0.38

B+Pt-CH4S
2+·

883.39248 883.39243 0.06

[B+Pt+H]
2+·

907.39370 907.39411 -0.45

A+Pt(NH3)+B_z13
3+·

917.09947 917.10027 -0.87

A+Pt(NH3)+B_z6
2+·

933.42222 933.42235 -0.14

[A+Pt+B+2H]
3+·

954.11063 954.11096 -0.35

[A+Pt(NH3)+B+2H]
3+·

959.78588 959.78647 -0.61

B_c8 1011.51202 1011.51189 0.13

A+Pt(NH3)+B_z7
2+·

1026.96238 1026.9633 -0.90

▲[A+H] 
+

1046.54183 1046.54179 0.04

B_c9 1082.54917 1082.54900 0.16

A+Pt(NH3)+B_z8
2+·

1090.99337 1090.99229 0.99

A+Pt(NH3)+B_z9
2+·

1148.01292 1148.01377 -0.74

A+Pt(NH3)+B_z10
2+·

1176.52437 1176.52451 -0.12

B_c10 1181.62000 1181.61742 2.18

A+Pt(NH3)+B_z11
2+·

1233.06608 1233.06658 -0.41

B_c11 1238.63910 1238.63888 0.18

A+Pt(NH3)+B_z12
2+·

1303.10696 1303.10781 -0.65

[A+Pt+B+2H]
2+··

1422.65622 1422.65371 1.76

[A+Pt(NH3)+B+2H]
2+··

1431.16535 1431.16644 -0.76

[B-CH4S-H]
+

1571.81968 1571.81897 0.45

▲[B+H] 
+

1619.82230 1619.82234 -0.02

[B+Pt-CH4S]
+·

1765.77947 1765.77703 1.38
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[B+Pt-NH3-H]
+

1795.74635 1795.74548 0.48

[B+Pt-NH3]
+·

1796.75430 1796.75385 0.25

[B+Pt-H]
+

1812.77370 1812.77203 0.92

[B+Pt]
+·

1813.78271 1813.78040 1.27

Mean absolute deviation (ppm) 0.46
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Table A.4 CAD Fragments of [B + Pt + B + 2H] 4+ ion

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

B_b8
2+

497.74635 497.74631 0.08

B_b9
2+

533.26470 533.26486 -0.30

B_b12
2+

679.83967 679.83926 0.60

B_b13
2+

736.38119 736.38129 -0.14

[B_a12+Pt]
2+

762.31685 762.31662 0.30

[B_b12+Pt]
2+

776.31406 776.31408 -0.03

[B-CH4S+2H]
2+

786.41306 786.41312 -0.08

[B+Pt+B_b12+2H]
4+

793.61489 793.61505 -0.20

[B-NH3+2H]
2+

801.90177 801.90153 0.30

B_b7 808.40614 808.40603 0.14

[B+2H]
2+

810.41486 810.41481 0.06

[B+Pt+B_b13+2H]
4+

821.88599 821.88608 -0.11

[B+Pt+B-CH4S-NH3+2H]
4+

842.64562 842.64537 0.30

[B+Pt+B-CH4S+2H]
4+

847.15125 847.15250 -1.48

[B+Pt+B-NH3+2H]
4+

854.6458 854.64622 -0.49

[B+Pt+B+2H]
4+

858.90294 858.90285 0.10

[B+Pt-CH4S]
2+

882.88828 882.88796 0.36

[B+Pt-CO-NH3]
2+

884.37925 884.37892 0.37

[B+Pt-NH3]
2+

898.37651 898.37638 0.14

[B+Pt]
2+

906.89000 906.88965 0.39

B_b8 994.48579 994.48534 0.45

B_b9 1065.52184 1065.52245 -0.57

B_b10 1164.59126 1164.59087 0.33

B_b11 1221.61296 1221.61233 0.52

Mean absolute deviation (ppm) 0.31
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Table A.5 ECD Fragments of [B + Pt + B + 2H] 4+ ion

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

B_c3 413.22554 413.22555 0.02

B_c4 526.30961 526.30956 -0.10

B_c5 583.33107 583.33096 -0.19

B_c6 697.37400 697.37396 -0.06

[B+2H-CH4S]
2+

786.41312 786.41236 -0.97

▲[B+2H] 
2+

810.41481 810.41466 -0.19

B_c7 825.43258 825.43259 0.01

▲[B+Pt+B+2H] 
4+

858.90285 858.90206 -0.92

[B+Pt-CH4S+H]
2+·

883.39243 883.39136 -1.21

[B+Pt+H]
2+

906.88965 906.89265 3.31

[B+Pt+H]
2+·

907.39411 907.39326 -0.94

B_c8 1011.51180 1011.51206 0.26

B+Pt+B_z12
3+·

1059.83333 1059.83032 -2.84

B_c
9

1082.54900 1082.54903 0.03

B+Pt+B_z13
3+·

1102.51833 1102.51711 -1.11

[B+Pt+B+2H-CH4S]
3+·

1129.20578 1129.20360 -1.93

[B+Pt+B+2H]
3+·

1145.20261 1145.20454 -1.69

B_c10 1181.61921 1181.61802 -1.01

B_c11 1238.63888 1238.63883 -0.04

B+Pt+B_z7
2+·

1305.09008 1305.09119 0.85

B+Pt+B_z8
2+·

1369.11940 1369.11862 -0.57

B+Pt+B_z9
2+·

1426.14088 1426.14080 -0.06

B+Pt+B_z10
2+·

1454.65162 1454.65848 4.72

B+Pt+B_z11
2+·

1511.19368 1511.19288 -0.53

B+Pt+B_z12
2+·

1589.24427 1589.24379 -0.30

▲[B+H] 
+

1619.82234 1619.82155 -0.49

B+Pt+B_z13
2+·

1653.27358 1653.27487 0.78

[B+Pt+B+2H-CH4S]
2+··

1693.80567 1693.80253 -1.85

[B+Pt+B+2H]
2+··

1717.80736 1717.80382 -2.06

[B+Pt-CH4S]
+·

1765.77703 1765.7783 0.72

▲[B+Pt-H] 
+

1812.77203 1812.76993 -1.16

[B+Pt]
+·

1813.78040 1813.77545 -2.73

[B+Pt+CH4S-H]
+

1860.77651 1860.77303 -1.87

Mean absolute deviation (ppm) 1.07
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Table A.6 CAD Fragments of [CaM(107~126) + Pt + CaM(127-148) +

3H]5+ and [CaM(37-74) + 4H]4+ ions

Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

▲Z_y3 377.19655 377.19655 0.00

Y_b4-H2O 411.18735 411.18743 -0.19

X_y3 419.24339 419.24350 -0.26

Y_b4 429.19818 429.19799 0.44

Z_b5 500.24635 500.24634 0.02

Z_y4 508.23699 508.23704 -0.10

Y_b5-H2O 526.21437 526.21437 0.00

X_y4 548.28614 548.28609 0.09

▲Z_y5 609.28479 609.28471 0.13

Z_y10
2+

621.80411 621.80412 -0.02

X_y5 663.31324 663.31304 0.30

Z_b13
2+

692.32302 692.32297 0.07

Y_b7-H2O 698.262574 698.26278 -0.30

Y_b7 716.27328 716.27334 -0.08

X_y6 762.3815 762.38145 0.07

Z_b8 827.389468 827.38937 0.12

▲Z_y7 869.4368 869.43719 -0.45

Z_b9 898.42689 898.42649 0.45

Z_b17
2+

935.92776 935.92800 -0.26

Y_b10-H2O 982.41083 982.41124 -0.42

X_y8 1020.46705 1020.46664 0.40

[X+Pt+Y+3H]
5+

1017.84696 1017.84615 0.80

[X+Pt+Y_y12+2H]
4+

1021.70039 1021.70072 -0.52

Z_b10 1027.46927 1027.46908 0.18

[X+Pt+Y_y13+2H]
4+

1046.46790 1046.46782 -0.12

[X+Pt+Y_y14+2H]
4+

1078.48085 1078.48246 -1.70

[X+Pt+Y_y15+2H]
4+

1092.73828 1092.73783 0.22

▲Z_y9 1095.53291 1095.53255 0.33

[X+Pt+Y_y16+2H]
4+

1121.49361 1121.49457 -1.04

[X+Pt+Y_y17-NH3]
4+

1131.49982 1131.49329 5.58

[X+Pt+Y_y17+2H]
4+

1135.75068 1135.74993 0.47

Z_b11 1140.55422 1140.55314 0.95

[X+Pt+Y_y18+2H-NH3]
4+

1160.25409 1160.25003 3.31

[X+Pt+Y_y18+2H]
4+

1164.50763 1164.50667 0.64

[X+Pt+Y_y19+2H]
4+

1192.77443 1192.77768 -2.91

[X+Pt+Y_y20+2H]
4+

1221.53422 1221.53442 -0.33
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Z_y10 1242.60061 1242.60096 -0.28

Z_b12 1268.61149 1268.61172 -0.18

▲Z_y11 1357.62757 1357.62791 -0.25

Z_b13 1383.63898 1383.63866 0.23

Z_y12 1470.71256 1470.71197 0.40

Z_b14 1514.67913 1514.67915 -0.01

Z_b15 1627.76619 1627.76321 1.83

Mean absolute deviation (ppm) 0.59
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Appendix B (Supporting Information for Chapter 3)

Figure B.1 ESI-FTMS analyses of anti-cancer platinum drug-CaM

mixtures after different reaction times. CaM:Pt_1 (1:2) at (a) 60min, (b)

90min, and (c) 120min; CaM:Pt_3 (1:1) at (a’) 60min, (b’) 90min, and (c’)

120min.
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Figure B.2 ESI-FTMS analyses of trypsin-digested CaM-cisplatin (Pt_1)

samples at different molar ratios. (a) CaM:Pt_1 (1:1); (b) CaM:Pt_1 (1:2);

(c) CaM:Pt_1 (1:8).
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Figure B.3 ECD spectra of [CaM+16H]16+ ions at m/z 1050 in a CaM

sample. The insert is shown to compare with Figure 2b, which indicates

that the intra-chain cross-linking of Pt between CaM(109) and CaM(144)

contributes to repressed detections of cleavages in the region of

CaM(106-148) in the top-down analyses. 91% backbone cleavage

efficiency was achieved.
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Figure B.4 Bottom-up MS/MS spectra of the CaM:Pt(dien) (1:8). (a) CAD

spectrum of [CaM(38-74)+3Pt(dien)+H]7+ ion at m/z 709; (b) CAD (b-1) &

ECD (b-2) spectra of [CaM(107-126)+2Pt(dien)+H]5+ ion at m/z 600; (c)

CAD spectrum of [CaM(127-148)+Pt(dien)+2H]4+ ion at m/z 697. Single

stars represent singly Pt(dien)-modified fragments; double stars represent

doubly Pt(dien)-modified fragments.
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Table B.1 Peak-list table for Figure 3.2 b’.

Assignments

Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

[CaM+Pt6(NH3)4+H]
13+

1386.677006 1386.673225 2.73

[CaM+Pt7(NH3)6-H]
13+

1404.131852 1404.134884 -2.16

[CaM+Pt8(NH3)8-3H]
13+

1421.673874 1421.673598 0.19

[CaM+Pt9(NH3)10-5H]
13+

1439.059673 1439.058202 1.02

[CaM+Pt
10

(NH3)12-7H]
13+

1456.595243 1456.596912 -1.15

Mean absolute deviation (ppm) 1.45
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Table B.2 ECD Fragments of the [CaM+2Pt+12H] 16+ ions

No. Assignments

Exp. mass

(Da) Theo. mass (Da) Error (ppm)

1 c4 487.251185 487.251089 0.20

2 c5-NH3 571.272554 571.272066 0.85

3 c5 588.299110 588.298615 0.84

4 c6 717.341071 717.341228 -0.22

5 c13
2+

781.888567 781.888477 0.12

6 c21
3+

834.413684 834.414059 -0.45

7 c7 846.384520 846.383953 0.67

8 c14 846.910394 846.911461 -1.26

9 c23
3+

891.429248 891.429057 0.21

10 c49
6+

908.450501 908.449960 0.60

11 c41
5+

913.256014 913.256163 -0.16

12 c33
4+

923.205572 923.204933 0.69

13 c24
4+

930.106823 930.105842 1.05

14 ?
2+

933.959746

15 c25
3+

949.112602 949.112996 -0.42

16 c16
2+

955.463113 955.462538 0.60

17 ?
3+

961.785910

18 c94
11+

972.469758 972.468904 0.88

19 c79
9+

982.249595 982.250077 -0.49

20 c26
3+

982.796265 982.795556 0.72

21 c53
6+

987.315973 987.315676 0.30

22 c96
11+

988.202801 988.200869 1.96

23 c80
9+

995.366295 995.365239 1.06

24 c97
11+

998.384463 998.386015 -1.55

25 c17
2+

998.978543 998.978552 -0.01

26 c
45 5+

1001.493617 1001.493358 0.26

27 ?
5+

1006.899099

28 c46
5+

1015.700577 1015.700781 -0.20

29 c82
9+

1019.261988 1019.262073 -0.08

30 c27
3+

1020.491172 1020.490244 0.91

31 c90
10+

1020.589788 1020.588878 0.89

32 c100
11+

1028.858151 1028.856488 1.62

33 c91
10+

1030.495724 1030.495721 0.00

34 ?
3+

1033.498990

35 c101
11+

1036.676848 1036.677290 -0.43

36 c102
11+

1043.044905 1043.044017 0.85
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37 c37
4+

1045.019694 1045.019357 0.32

38 c92
10+

1045.201623 1045.202563 -0.90

39 c103
11+

1049.500306 1049.501937 -1.55

40 c28
3+

1054.173714 1054.172804 0.86

41 c67
7+

1055.074252 1055.073554 0.66

42 c93
10+

1056.706278 1056.705258 0.97

43 c76
8+

1062.133808 1062.135027 -1.15

44 c48
5+

1064.127351 1064.126113 1.16

45 c38
4+

1066.776957 1066.777364 -0.38

46 ?
3+

1067.181663

47 c94
10+

1069.514904 1069.514755 0.14

48 [CaM+2Pt-H2O+12H]
16+

1073.368652 1073.367424 1.14

49 [CaM+2Pt+12H]
16+

1074.494353 1074.493084 1.18

50 [CaM+2Pt(NH3)+12H]
16+

1075.558402 1075.557242 1.08

51 [CaM+2Pt(NH3)2+12H]
16+

1076.620720 1076.621401 -0.63

52 c86
9+

1077.847853 1077.847672 0.17

53 c95
10+

1081.019396 1081.017449 1.80

54 c59
6+

1085.018357 1085.019890 -1.41

55 c96
10+

1086.719723 1086.719596 0.12

56 c29
3+

1087.856033 1087.855363 0.62

57 c49
5+

1089.938816 1089.938497 0.29

58 c87
9+

1092.186173 1092.185738 0.40

59 c78
8+

1092.650223 1092.650656 -0.40

60 c39
4+

1095.048661 1095.048374 0.26

61 ?
8+

1097.152540

62 c97
10+

1098.225201 1098.224200 0.91

63 c88
9+

1100.078004 1100.078751 -0.68

64 c60
6+

1104.027280 1104.026745 0.48

65 c79
8+

1105.156919 1105.156227 0.63

66 c70
7+

1106.673577 1106.673581 0.00

67 c40
4+

1108.802640 1108.802070 0.51

68 c50
5+

1112.943886 1112.944782 -0.81

69 ?
8+

1113.906926

70 ?
3+

1115.883442

71 c89
9+

1116.531223 1116.531154 0.06

72 c80
8+

1119.534174 1119.534595 -0.38

73 z74+2Pt
8+

1119.747419 1119.748572 -1.03

74 b19
2+

1121.042682 1121.043222 -0.48

75 ?
8+

1122.533770

76 z65+2Pt-H2O
7+

1124.785837 1124.784931 0.81

77 z65+2Pt 7
+

1127.072093 1127.071608 0.43

78 c19
2+

1129.556824 1129.556496 0.29
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79 c81
8+

1130.413850 1130.413598 0.22

80 c30
3+

1130.554111 1130.553684 0.38

81 ?
10+

1135.541130

82 c
41 4+

1140.817080 1140.816715 0.32

83 [CaM+2Pt+12H-H2O-CH3S]
15+·

1141.791667 1141.792273 -0.53

84 [CaM+2Pt+12H-CH3S]
15+·

85 [CaM+2Pt+12H-H2O]
15+·

1144.926094 1144.925288 0.70

86 [CaM+2Pt+12H]
15+·

1146.126927 1146.125993 0.81

87 z107+2Pt
11+

1147.780157 1147.783193 -2.65

88 ?
9+

1156.222090

89 c92
9+

1161.223933 1161.224262 -0.28

90 c52
5+

1161.763879 1161.768796 -4.23

91 c83
8+

1162.675131 1162.674247 0.76

92 z67+2Pt
7+

1163.940663 1163.940926 -0.23

93 ?
7+

1165.942120

94 c31
3+

1173.234130 1173.233411 0.61

95 c93
9+

1174.004376 1174.005033 -0.56

96 ?
5+

1175.574590

97 z68+2Pt
7+

1176.372827 1176.373992 -0.99

98 c74
7+

1176.419026 1176.420805 -1.51

99 z121+2Pt
12+

1177.537619 1177.537189 0.37

100 ?
7+

1178.377140

101 ?
8+

1180.399070

102 ?
9+

1183.016110

103 c53
5+

1184.577415 1184.577356 0.05

104 c20
2+

1187.071101 1187.069968 0.95

105 c94
9+

1188.238722 1188.237808 0.77

106 z59+2Pt
6+

1190.352377 1190.352448 -0.06

107 z69+2Pt-H2O
7+

1190.377452 1190.376543 0.76

108 z69+2Pt
7+

1192.804719 1192.806414 -1.42

109 c85
8+

1192.938986 1192.940081 -0.92

110 c43
4+

1194.093265 1194.092309 0.80

111 c75
7+

1195.147411 1195.145872 1.29

112 ?
7+

1194.808800

113 ?
9+

1202.240420

114 z91+2Pt
9+

1205.870621 1205.869506 0.92

115 z70+2Pt
7+

1207.242180 1207.241798 0.32

116 c96
9+

1207.353931 1207.354298 -0.30

117 c32
3+

1211.262424 1211.262570 -0.12

118 c86
8+

1212.453502 1212.452721 0.64

119 c76
7+

1213.725382 1213.724705 0.56

120 z60+2Pt
6+

1215.032755 1215.031015 1.43
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121 c44
4+

1219.355010 1219.354229 0.64

122 [CaM+2Pt+12H-CH3S]
14+··

1224.634869 1224.635372 -0.41

123 [CaM+2Pt+12H-CO]
14+··

1225.992780 1225.992537 0.20

124 [CaM+2Pt+12H-H2O]
14+··

1226.706234 1226.705705 0.43

125 [CaM+2Pt+12H]
14+··

1227.992732 1227.992174 0.45

126 c33
3+

1229.935720 1229.935254 0.38

127 c67
6+

1230.751932 1230.751267 0.54

128 c77
7+

1232.023615 1232.023988 -0.30

129 c88
8+

1237.461981 1237.462685 -0.57

130 ?
7+

1242.000000

131 z72+2Pt
7+

1242.687540 1242.691819 -3.44

132 ?
6+

1242.943100

133 ?
3+

1243.000000

134 ?
5+

1244.201300

135 z62+2Pt
6+

1248.375161 1248.377637 -1.98

136 c78
7+

1248.456738 1248.456408 0.26

137 ?
3+

1249.610000

138 ?
8+

1250.000000

139 c21
2+

1250.615870 1250.615744 0.10

140 ?
2+

1251.364150

141 c45
4+

1251.865868 1251.865714 0.12

142 z95+2Pt
9+

1251.888717 1251.888961

143 c56
5+

1253.204806 1253.204948 -0.11

144 ?
7+

1253.888000

145 c89
8+

1255.971803 1255.971638 0.13

146 ?
7+

1256.000000

147 ?
4+

1258.371706

148 ?
10+

1260.359460

149 z107+2Pt-H2O
5+

1260.656613 1260.659728 -2.47

150 z73+2Pt
7+

1260.837659 1260.836639 0.81

151 z107+2Pt
5+

1262.561551 1262.561119 0.34

152 c79
7+

1262.892100 1262.891791 0.24

153 c34
3+

1263.618710 1263.617813 0.71

154 z52+2Pt
5+

1264.739565 1264.739841 -0.22

155 z131+2Pt
12+

1265.994248 1265.993547 0.55

156 ?
11+

1265.000000

157 ?
12+

1266.000000

158 c57
5+

1267.412701 1267.412372 0.26

159 ?
5+

1268.000000

160 c46
4+

1268.873590 1268.872484 0.87

161 ?
7+

1272.606500

162 z132+2Pt
12+

1273.246333 1273.246219 0.09
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163 ?
12+

1274.000000

164 z53+2Pt-H2O
5+

1272.942707 1272.942630 0.06

165 ?
9+

1274.495550

166 z53+2Pt
5+

1275.944404 1275.943558 0.66

167 z74+2Pt
7+

1279.710457 1279.711822 -1.07

168 c80
7+

1279.323742 1279.324212 -0.37

169 ?
8+

1280.000000

170 ?
7+

1282.491800

171 c58
5+

1290.418417 1290.417760 0.51

172 c70
6+

1290.951358 1290.951298 0.05

173 c81
7+

1291.756077 1291.757359 -0.99

174 z64+2Pt
6+

1293.408162 1293.408711 -0.42

175 z122+2Pt
11+

1294.864144 1294.865979 -1.42

176 ?
5+

1295.000000

177 c35
3+

1297.309026 1297.309517 -0.38

178 z54+2Pt
5+

1299.148906 1299.149528 -0.48

179 ?
5+

1301.000000

180 c47
4+

1301.885028 1301.885641 -0.47

181 c59
5+

1301.420330 1301.420750 -0.32

182 ?
7+

1303.474260

183 c92
8+

1306.251575 1306.251385 0.15

184 c22
2+

1308.631393 1308.630910 0.37

185 c82
7+

1310.191838 1310.192015 -0.14

186 z76+2Pt
7+

1311.441480

187 z65+2Pt
6+

1314.748303 1314.748996 -0.53

188 [CaM+2Pt+12H-CH3S]
13+···

1318.836070 1318.838135 -1.57

189 [CaM+2Pt+12H-H2O]
13+···

1321.067250 1321.067725 -0.36

190 [CaM+2Pt+12H]
13+···

1322.453906 1322.453153 0.57

191 c60
5+

1324.630509 1324.630639 -0.10

192 z55+2Pt
5+

1324.770001 1324.768528 1.11

193 ?
5+

1328.000000

194 c83
7+

1328.626544 1328.626667 -0.09

195 z77+2Pt
7+

1330.304938 1330.304636 0.23

196 z66+2Pt-H2O
6+

1333.422287 1333.421153 0.85

197 c72
6+

1334.631125 1334.631462 -0.25

198 c61
5+

1336.034546 1336.034932 -0.29

199 z66+2Pt
6+

1336.088729 1336.088891 -0.12

200 c94
8+

1336.640563 1336.641625 -0.79

201 c23
2+

1337.142104 1337.141653 0.34

202 ?
6+

1338.759470

203 c36
3+

1340.321720 1340.320779 0.70

204 z90+2Pt
8+

1342.349572 1342.349504 0.05
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205 ?
9+

1345.376740

206 z56+2Pt
5+

1347.774205 1347.773920 0.21

207 ?
7+

1348.884500

208 ?
10+

1349.706570

209 z43+2Pt
4+

1351.311122 1351.311961 -0.62

210 ?
8+

1352.773000

211 z102+2Pt
9+

1353.712654 1353.713556 -0.67

212 z91+2Pt
8+

1356.477797 1356.477285 0.38

213 z67+2Pt
6+

1357.931567 1357.930016 1.14

214 ?
6+

1360.099190

215 c49
4+

1362.171530 1362.171302 0.17

216 c85
7+

1363.214732 1363.216196 -1.07

217 z92+2Pt
8+

1365.357533 1365.356925 0.45

218 c74
6+

1372.153591 1372.155863 -1.66

219 z68+2Pt
6+

1372.435848 1372.435355 0.36

220 ?
6+

1374.771600

221 z57+2Pt
5+

1377.388759 1377.387797 0.70

222 c63
5+

1378.861357 1378.861283 0.05

223 z44+2Pt
4+

1379.334074 1379.333964 0.08

224 z131+2Pt
11+

1380.994694 1380.992299 1.73

225 z69+2Pt-H2O
6+

1388.770549 1388.771907 -0.98

226 z132+2Pt
11+

1388.996875 1388.995386 1.07

227 z69+2Pt
6+

1391.440236 1391.439604 0.45

228 c37
3+

1393.023301 1393.023384 -0.06

229 c75
6+

1394.171361 1394.168971 1.71

230 c24
2+

1394.655297 1394.655124 0.12

231 z58+2Pt
5+

1397.202516 1397.201483 0.74

232 z107+2Pt-H2O
9+

1400.732706 1400.732594 0.08

233 z81+2Pt
7+

1400.621241 1400.624647 -2.43

234 c64
5+

1401.866275 1401.866672 -0.28

235 z107+2Pt
9+

1402.736261 1402.733768 1.78

236 z120+2Pt
10+

1403.139980 1403.139043 0.67

237 ?
5+

1403.000000

238 z70+2Pt
6+

1408.280181 1408.280886 -0.50

239 z95+2Pt
8+

1408.375197 1408.374366 0.59

240 z45+2Pt
4+

1411.593647 1411.593364 0.20

241 z121+2Pt
10+

1412.844525 1412.840680 2.72

242 c25
2+

1422.664410 1422.664151 0.18

243 z71+2Pt
6+

1427.617419 1427.618955 -1.08

244 z59+2Pt
5+

1428.423507 1428.421708 1.26

245 z46+2Pt
4+

1429.354651 1429.353902 0.52

246 c89
7+

1435.110340 1435.108949 0.97
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247 c77
6+

1437.362678 1437.360625 1.43

248 ?
2+

1442.176230

249 z47+2Pt
4+

1447.112014 1447.111927 0.06

250 z72+2Pt
6+

1449.135856 1449.135271 0.40

251 c52
4+

1451.959839 1451.959176 0.46

252 z60+2Pt
5+

1457.837282 1457.835763 1.04

253 c39
3+

1459.728326 1459.728739 -0.28

254 z48+2Pt
4+

1468.871743 1468.869937 1.23

255 z73+2Pt
6+

1470.978176 1470.975354 1.92

256 z61+2Pt
5+

1472.045369 1472.043187 1.48

257 c26
2+

1473.188130 1473.187990 0.10

258 c40
3+

1478.734907 1478.735894 -0.67

259 c53
4+

1479.969370 1479.968251 0.76

260 ?
6+

1484.872660

261 z74+2Pt
6+

1492.990490 1492.990454 0.02

262 ?
5+

1494.048690

263 z62+2Pt
5+

1497.851964 1497.851709 0.17

264 z49+2Pt
4+

1497.141856 1497.140959 0.60

265 ?
9+

1500.956880

266 ?
3+

1506.416720

267 ?
3+

1507.722080

268 ?
8+

1513.000000

269 ?
10+

1519.190850

270 c41
3+

1520.753210 1520.753194 0.01

271 ?
3+

1521.000000

272 z131+2Pt
6+

1519.191184 1519.191177 0.00

273 z89+2Pt
7+

1525.539479 1525.537512 1.29

274 c27
2+

1529.728950 1529.730022 -0.70

275 ?
4+

1532.436430

276 z50+2Pt
4+

1537.908816 1537.906876 1.26

277 c55 4+ 1537.497254 1537.497630 -0.24

278 ?
6+

1542.393240

279 ?
11+

1546.254890

280 z51+2Pt
4+

1552.162874 1552.162244 0.41

281 c13 1562.769610 1562.769676 -0.04

282 c56
4+

1566.254010 1566.254366 -0.23

283 ?
2+

1571.000000

284 ?
4+

1570.000000

285 ?
8+

1572.698870

286 ?
2+

1573.000000

287 ?
4+

1575.000000

288 z107+2Pt-H2O
8+

1575.575603 1575.572841 1.75
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289 z52+2Pt-H2O
4+

1576.420604 1576.420580 0.02

290 z107+2Pt
8+

1577.826316 1577.824162 1.37

291 z65+2Pt
5+

1577.497207 1577.497340 -0.08

292 z107+2Pt
8+

1577.826316 1577.824162 1.37

293 z52+2Pt
4+

1580.673981 1580.672982 0.63

294 c28
2+

1580.253960 1580.253861 0.06

295 c57
4+

1584.012975 1584.013645 -0.42

296 ?
4+

1584.000000

297 z53+2Pt-H2O
4+

1590.425749 1590.425709 0.03

298 z74+2Pt
6+

1492.826775 1492.829246 -1.66

299 z53+2Pt
4+

1594.929601 1594.928350 0.78

300 z66+2Pt-H2O
5+

1599.703907 1599.703750 0.10

301 ?
2+

1599.765710

302 z66+2Pt
5+

1603.307168 1603.305863 0.81

303 z95+2Pt-H2O
7+

1607.142333 1607.140258 1.29

304 z95+2Pt
7+

1609.427300 1609.426807 0.31

305 ?
2+

1609.000000

306 c58
4+

1612.772433 1612.770381 1.27

307 z54+2Pt-H2O
4+

1619.185653 1619.182450 1.98

308 z54+2Pt
4+

1623.685857 1623.685091 0.47

309 c59
4+

1627.026720 1627.025747 0.60

310 z67+2Pt
5+

1629.116270 1629.114386 1.16

311 c29
2+

1630.778140 1630.777701 0.27

312 ?
5+

1632.000000

313 ?
5+

1643.121810

314 ?
4+

1644.532710

315 c74
5+

1646.786809 1646.786838 -0.02

316 z68+2Pt
5+

1646.522168 1646.520679 0.90

317 ?
5+

1649.725560

318 z55+2Pt-H2O
4+

1651.205504 1651.206199 -0.42

319 z55+2Pt
4+

1655.710480 1655.708840 0.99

320 z69+2Pt-H2O
5+

1665.921878 1665.923956 -1.25

321 c45
3+

1668.149810 1668.149636 0.10

322 z69+2Pt
5+

1669.729148 1669.726362 1.67

323 ?
2+

1672.819560

324 ?
5+

1673.132130

325 ?
3+

1677.156700

326 z56+2Pt-H2O
4+

1680.967309 1680.970765 -2.06

327 z56+2Pt
4+

1684.466917 1684.465581 0.79

328 z70+2Pt
5+

1689.743351 1689.735607 4.58

329 c14 1691.811880 1691.812272 -0.23

330 c30
2+

1695.327219 1695.326888 0.20
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331 z71+2Pt-H2O
5+

1709.142049 1709.138885 1.85

332 z71+2Pt
5+

1712.941327 1712.941291 0.02

333 z57+2Pt
4+

1721.235009 1721.232639 1.38

334 z72+2Pt-H2O
5+

1735.354705 1735.359285 -2.64

335 z72+2Pt
5+

1738.157874 1738.159519 -0.95

336 z58+2Pt
4+

1746.252348 1746.250034 1.33

337 c31
2+

1759.346870 1759.346479 0.22

338 c15 1762.849260 1762.849385 -0.07

339 z73+2Pt
5+

1764.764988 1764.768385 -1.92

340 z59+2Pt
4+

1785.277174 1785.275316 1.04

341 z74+2Pt
5+

1790.992326 1790.993349 -0.57

342 z43+2Pt
3+

1801.081185 1801.079272 1.06

343 c32
2+

1815.892540 1815.888511 2.22

344 z60+2Pt
4+

1822.297847 1822.293192 2.55

345 z44+2Pt
3+

1838.776308 1838.776193 0.06

346 z61+2Pt
4+

1840.054836 1840.052473 1.28

347 c33
2+

1844.900046 1844.900949 -0.49

348 ?
1+

1865.902360

349 z62+2Pt
4+

1872.065837 1872.062817 1.61

350 z45+2Pt
3+

1881.790292 1881.788727 0.83

351 c34
2+

1895.423669 1895.424788 -0.59

352 z46+2Pt
3+

1905.802417 1905.803710 -0.68

353 c16 1909.915852 1909.917799 -1.02

354 z47+2Pt
3+

1929.147132 1929.146811 0.17

355 ?
3+

1934.153340

356 z48+2Pt
3+

1958.160290 1958.157491 1.43

357 z65+2Pt
4+

1972.125225 1972.120812 2.24

358 z49+2Pt
3+

1995.513694 1995.517982 -2.15

359 c17 1996.948989 1996.949828 -0.42

360 z66+2Pt
4+

2003.879279 2003.880510 -0.61

361 c36
2+

2010.979895 2010.980881 -0.49

362 z50+2Pt
3+

2050.203770 2050.206842 -1.50

363 z51+2Pt
3+

2069.215140 2069.213900 0.60

364 z69+2Pt-H2O
4+

2082.901128 2082.904951 -1.84

365 z69+2Pt
4+

2087.408001 2087.407592 0.20

366 z52+2Pt
3+

2107.230315 2107.228217 1.00

367 z53+2Pt
3+

2127.241860 2127.244845 -1.40

368 z54+2Pt-H2O
3+

2158.906854 2158.907824 -0.45

369 z54+2Pt
3+

2164.579285 2164.577696 0.73

370 z55+2Pt-H2O
3+

2201.933232 2201.940444 -3.28

371 z55+2Pt
3+

2207.274491 2207.276028 -0.70

372 z56+2Pt
3+

2245.617465 2245.618350 -0.39
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373 c19 2257.101740 2257.102306 -0.25

374 c41
2+

2281.633082 2281.629493 1.57

375 c20 2372.129920 2372.129249 0.28

Mean absolute deviation

(ppm) 0.59
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Table B.3 ECD Fragments of the [CaM+5Pt(dien)+10H] 20+ ions

No. Assignments Exp. mass

(Da)

Theo. mass

(Da)

Error

(ppm)

1 [Pt(dien)-2H]
+·

296.060078 296.060123 -0.15

2 [Pt(dien)]
+·

298.075730 298.075773 -0.14

3 [Pt(dien)+H·]
+

299.083250 299.083598 -1.16

4 [Pt(dien)(CO)-H·]
+

325.062743 325.062325 1.29

5 [Pt(dien)(CH3S)-H·]
+

344.063334 344.063506 -0.50

6 Pt(dien)(CH3S)
+·

345.071224 345.071331 -0.03

7 c3 374.167161 374.167025 0.36

8 b4 470.224588 470.22454 0.10

9 c4 487.251057 487.251089 -0.07

10 b5 571.272025 571.272218 -0.34

11 c5 588.298704 588.298767 -0.11

12 z12+2Pt(dien)
3+·

689.927521 689.927823 -0.44

13 b6 700.314677 700.314811 -0.19

14 z20+2Pt(dien)
4+·

717.530829 717.531519 -0.96

15 c6 717.341075 717.34136 -0.40

16 ?
3+

727.286910

17 z21+2Pt(dien)
4+·

735.290662 735.290806 -0.20

18 z48+4Pt(dien)
9+·

741.206532 741.206553 -0.03

19 z31+3Pt(dien)
6+·

747.458561 747.459470 -1.22

20 z14+2Pt(dien)
3+·

765.636456 765.636859 -0.53

21 z22+2Pt(dien)
4+·

767.550330 767.551468 -1.48

22 z57+4Pt(dien)
10+·

769.032138 769.031759 0.49

23 z51+4Pt(dien)
9+·

779.225319 779.225741 -0.54

24 c13
2+

781.888045 781.88847 -0.55

25 z15+2Pt(dien)
3+·

784.643353 784.644022 -0.85

26 z65+4Pt(dien)
11+·

790.259691 790.261517 -2.31

27 z52+4Pt(dien)
9+·

791.897174 791.897178 -0.01

28 z59+4Pt(dien)
10+·

794.548943 794.548718 0.28

29 z66+4Pt(dien)
11+·

801.990407 801.992662 -2.81

30 ?
9+

808.900450

31 z60+4Pt(dien)
10+·

809.355453 809.355804 -0.43

32 z54+4Pt(dien)
9+·

811.013047 811.013315 -0.33

33 z46+4Pt(dien)
8+·

815.097114 815.097816 -0.86

34 ?
3+

816.314700

35 z16+2Pt(dien)
3+·

822.985996 822.986351 -0.43

36 z55+4Pt(dien)
9+·

825.357039 825.357484 -0.54

37 ?
5+

825.328810



250

38 z69+4Pt(dien)
11+·

832.091926 832.092520 -0.71

39 z35+3Pt(dien)
6+·

833.343887 833.346139 -2.70

40 z48+4Pt(dien)
8+·

834.856114 834.856462 -0.42

41 z56+4Pt(dien)
9+·

838.025275 838.026872 -1.91

42 z17+2Pt(dien)
3+·

841.992622 841.993513 -1.06

43 c7 846.383316 846.383953 -0.75

44 z29+3Pt(dien)
5+·

848.135954 848.136442 -0.58

45 z57+4Pt(dien)
9+·

854.367353 854.3678131 -0.54

46 z65+4Pt(dien)
10+·

869.185226 869.186941 -1.97

47 z30+3Pt(dien)
5+·

873.943514 873.944980 -1.68

48 z51+4Pt(dien)
8+·

876.502434 876.503049 -0.70

49 z18+2Pt(dien)
3+·

880.335063 880.3358423 -0.89

50 z66+4Pt(dien)
10+·

882.090974 882.091200 -0.26

51 c15
2+

881.928653 881.928331 0.37

52 c23
3+

891.429015 891.429057 -0.05

53 z31+3Pt(dien)
5+·

896.949295 896.950374 -1.20

54 z68+4Pt(dien)
10+·

903.597184 903.598053 -0.96

55 [CaM+5Pt(dien)-H2O+10H]
20+

913.665494 913.665499 -0.01

56 [CaM+5Pt(dien)+10H]
20+

914.566326 914.566027 0.33

57 z19+2Pt(dien)
3+·

918.030147 918.030603 -0.50

58 z55+4Pt(dien)
8+·

928.526216 928.526327 -0.12

59 z65+3Pt(dien)
9+·

932.64424 932.644262 -0.02

60 z33+3Pt(dien)
5+·

939.775017 939.776735 -1.83

61 ?
5+

942.579640

62 ?
9+

946.761680

63 c25
3+

948.777807 948.778526 -0.76

64 z48+4Pt(dien)
7+·

953.978085 953.977774 0.33

65 c16
2+

955.461835 955.462538 -0.74

66 z20+2Pt(dien)
3+·

956.372235 956.372933 -0.73

67 [CaM+5Pt(dien)-CH3S-H2O+10H]
19+·

959.278132 959.280302 -2.26

68 [CaM+5Pt(dien)-CH3S+10H]
19+·

960.226745 960.228227 -1.54

69 [CaM+5Pt(dien)-H2O+10H]
19+·

961.753196 961.753735 -0.56

70 [CaM+5Pt(dien)+10H]
19+·

962.700602 962.701660 -1.10

71 z65+4Pt(dien)
9+·

965.539523 965.539553 -0.03

72 ?
9+

970.988670

73 z58+4Pt(dien)
8+·

973.545398 973.546739 -1.38

74 ?
7+

975.140160

75 z11+2Pt(dien)
2+·

976.866016 976.865640 0.38

76 z21+2Pt(dien)
3+·

980.052277 980.051983 0.30

77 c26
3+

982.460682 982.461086 -0.41

78 c17
2+

998.978327 998.978552 -0.23

79 [CaM+4Pt(dien)-CH3S-H2O+10H]
18+

995.958021 995.957715 0.31
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80 [CaM+4Pt(dien)-CH3S+10H]
18+

996.958369 996.958303 0.07

81 [CaM+4Pt(dien)-H2O+10H]
18+

998.624525 998.624222 0.30

82 [CaM+4Pt(dien)+10H]
18+

999.624754 999.624809 -0.06

83 [CaM+5Pt(dien)-CH3S-H2O+10H]
18+··

1012.517103 1012.517504 -0.40

84 [CaM+5Pt(dien)-CH3S+10H]
18+··

1013.571719 1013.573751 -2.00

85 [CaM+5Pt(dien)-H2O+10H]
18+··

1015.182782 1015.184009 -1.21

86 [CaM+5Pt(dien)+10H]
18+··

1016.183387 1016.184596 -1.19

87 [CaM+4Pt(dien)-CH3S-H2O+10H]
17+·

1054.601115 1054.602528 -1.34

88 [CaM+4Pt(dien)-CH3S+10H]
17+·

1055.602001 1055.603038 -0.98

89 [CaM+4Pt(dien)-H2O+10H]
17+·

1057.365952 1057.366953 -0.95

90 [CaM+4Pt(dien)+10H]
17+·

1058.425060 1058.426398 -1.26

91 c117+2Pt(dien)
13+

1061.812279 1061.812756 -0.45

92 c38
4+

1066.526508 1066.526542 -0.03

93 b9 1070.499605 1070.500046 -0.41

94 [CaM+5Pt(dien)-CH3S-H2O+10H]
17+···

1072.135116 1072.136355 -1.16

95 [CaM+5Pt(dien)-CH3S+10H]
17+···

1073.192642 1073.195801 -2.94

96 [CaM+5Pt(dien)-H2O+10H]
17+···

1074.959298 1074.959711 -0.38

97 c93+Pt(dien)
10+

1086.310822 1086.311212 -0.36

98 c49
5+

1089.536692 1089.537162 -0.43

99 z30+3Pt(dien)
4+·

1092.179897 1092.179818 0.07

100 c94+Pt(dien)
10+

1099.119676 1099.120709 -0.94

101 c40
4+

1108.802188 1108.802070 0.11

102 c86+Pt(dien)
9+

1110.852945 1110.854621 -1.51

103 c77+Pt(dien)
8+

1115.153248 1115.154333 -0.97

104 c96+Pt(dien)
10+

1116.324985 1116.325551 -0.51

105 [CaM+4Pt(dien)-CH3S-H2O+10H]
16+··

1120.513669 1120.515187 -1.35

106 [CaM+4Pt(dien)-CH3S+10H]
16+··

1121.575870 1121.578228 -2.10

107 [CaM+4Pt(dien)-H2O+10H]
16+··

1123.389994 1123.389771 0.20

108 [CaM+4Pt(dien)+10H]
16+··

1124.515018 1124.515431 -0.37

109 c97+Pt(dien)
10+

1127.727591 1127.729845 -2.00

110 c19
2+

1129.053648 1129.054791 -1.01

111 c78+Pt(dien)
8+

1129.408078 1129.407317 0.67

112 c30
3+

1130.218559 1130.219214 -0.58

113 c41
4+

1140.816085 1140.816715 -0.55

114 c79+Pt(dien)
8+

1142.161889 1142.163663 -1.55

115 c80+Pt(dien)
8+

1156.540502 1156.542032 -1.32

116 c10 1158.563786 1158.563708 0.07

117 c100+Pt(dien)
10+

1161.046132 1161.046734 -0.52

118 c81+Pt(dien)
8+

1167.420970 1167.421036 -0.06

119 c101+Pt(dien)
10+

1169.747148 1169.749938 -2.39

120 c31
3+

1173.233902 1173.233411 0.42

121 c82+Pt(dien)
8+

1183.550084 1183.551362 -1.08
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122 c53
5+

1184.176463 1184.176056 0.34

123 c20
2+

1186.568598 1186.568263 0.28

124 [CaM+4Pt(dien)-CH3S-H2O+10H]
15+···

1195.214402 1195.216345 -1.63

125 [CaM+4Pt(dien)-CH3S+10H]
15+···

1196.415953 1196.417050 -0.92

126 c83+Pt(dien)
8+

1199.680959 1199.681688 -0.61

127 c93+Pt(dien)
9+

1206.899263 1206.900538 -1.06

128 c32
3+

1210.927075 1210.928099 -0.85

129 c44
4+

1218.851827 1218.852557 -0.60

130 c94+Pt(dien)
9+

1221.132951 1221.133313 -0.30

131 c85+Pt(dien)
8+

1230.073049 1230.072898 0.12

132 c33
3+

1229.934715 1229.935254 -0.44

133 c96+Pt(dien)
9+

1240.24939 1240.249804 -0.33

134 c86+Pt(dien)
8+

1249.459456 1249.460165 -0.57

135 c21
2+

1250.615729 1250.615744 -0.01

136 c45
4+

1251.865782 1251.865714 0.05

137 c56
4+

1253.204701 1253.204948 -0.20

138 ?
16+

1255.796560

139 ?
4+

1257.869450

140 c34
3+

1263.617647 1263.617813 -0.13

141 c87+Pt(dien)
8+

1265.590347 1265.590490 -0.11

142 ?
5+

1267.211670

143 c46
4+

1268.871561 1268.872484 -0.73

144 c77+Pt(dien)
7+

1274.173891 1274.174901 -0.79

145 ?
9+

1284.938490

146 c11 1287.601493 1287.606302 -3.73

147 c100+Pt(dien)
9+

1289.940532 1289.940007 0.41

148 c55+Pt(dien)
5+

1290.015016 1290.012598 1.87

149 c89+Pt(dien)
8+

1292.853160 1292.853686 -0.41

150 c35
3+

1296.640610 1296.640618 -0.01

151 ?
7+

1298.468630

152 c47
4+

1301.133767 1301.133132 0.49

153 c59
5+

1301.419784 1301.42075 -0.74

154 c79+Pt(dien)
7+

1305.184872 1305.186004 -0.87

155 c22
2+

1308.128919 1308.129216 -0.23

156 c90+Pt(dien)
8+

1312.618001 1312.61709 0.69

157 ?
7+

1314.899920

158 c80+Pt(dien)
7+

1321.618669 1321.618426 0.18

159 c81+Pt(dien)
7+

1334.051096 1334.051574 -0.36

160 c23
2+

1336.639751 1336.639947 -0.15

161 c36
3+

1340.319966 1340.320779 -0.61

162 c92+Pt(dien)
8+

1343.258450 1343.258826 -0.28

163 ?
7+

1345.910930
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164 c82+Pt(dien)
7+

1352.486454 1352.486231 0.16

165 c49
4+

1361.669998 1361.669633 0.27

166 ?
7+

1364.348310

167 c83+Pt(dien)
7+

1370.920160 1370.920890 -0.53

168 c94+Pt(dien)
8+

1373.647589 1373.649068 -1.08

169 c63
5+

1378.456444 1378.459977 -2.56

170 ?
7+

1382.925310

171 c50
4+

1390.677257 1390.677203 0.04

172 c37
3+

1392.353599 1392.354483 -0.63

173 c24
2+

1394.153161 1394.153419 -0.19

174 c96+Pt(dien)
8+

1394.281455 1394.280491 0.69

175 ?
2+

1401.159230

176 c64
5+

1401.867273 1401.866672 0.43

177 c85+Pt(dien)
7+

1405.509923 1405.510416 -0.35

178 c25-H2O
2+

1414.160925 1414.160574 0.25

179 ?
1+

1417.646743

180 c38
3+

1421.698617 1421.699630 -0.71

181 c25
2+

1422.663974 1422.664151 -0.12

182 c86+Pt(dien)
7+

1427.667162 1427.667273 -0.08

183 ?
12+

1442.175260

184 c87+Pt(dien)
7+

1446.244955 1446.245235 -0.19

185 c52
4+

1451.456024 1451.457506 -1.02

186 c39
3+

1459.395113 1459.394030 0.74

187 ?
3+

1471.608450

188 c26
2+

1473.187500 1473.187990 -0.33

189 c89+Pt(dien)
7+

1477.549534 1477.546458 2.08

190 c40
3+

1478.401710 1478.401457 0.17

191 c53
4+

1479.967559 1479.968251 -0.47

192 ?
3+

1493.915950

193 ?
3+

1506.415980

194 ?
2+

1507.705720

195 c41
3+

1520.753519 1520.753194 0.21

196 c27
2+

1529.730215 1529.730022 0.13

197 c92+Pt(dien)
7+

1534.05336

198 c55
4+

1536.996711 1536.996003 0.46

199 ?
2+

1549.242880

200 c13 1562.770080 1562.769676 0.26

201 c56
4+

1566.253023 1566.254366 -0.85

202 ?
6+

1570.072130

203 c82+Pt(dien)
6+

1577.565060 1577.565535 -0.30

204 c28
2+

1580.253955 1580.253861 0.06

205 c57
4+

1583.510552 1583.512017 -0.93
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206 ?
6+

1591.735880

207 c83+Pt(dien)
6+

1598.238236 1598.239825 -0.99

208 ?
2+

1599.765740

209 ?
2+

1608.769190

210 c58
4+

1612.266469 1612.268753 -1.42

211 c44
3+

1625.135842 1625.135439 0.25

212 c59
4+

1626.776576 1626.774944 1.00

212 c29
2+

1630.778168 1630.777701 0.29

213 c45
3+

1668.150143 1668.149636 0.30

214 c61
4+

1669.793779 1669.791846 1.16

215 ?
2+

1672.818790

216 ?
3+

1677.161210

217 c14 1691.812455 1691.812272 0.11

218 c30
2+

1694.825403 1694.825182 0.13

219 c31
2+

1759.347762 1759.346479 0.73

220 c15 1762.850828 1762.849385 0.82

221 c32
2+

1815.893164 1815.888511 2.56

222 c33
2+

1844.397857 1844.399242 -0.75

223 ?
1+

1865.904520

224 ?
2+

1873.420190

225 c34
2+

1894.924541 1894.923082 0.77

226 c16 1909.918207 1909.917780 0.22

227 c17 1996.950698 1996.949828 0.44

228 ?
2+

2010.477840

229 c18 2110.036609 2110.033892 1.29

230 c19 2257.105508 2257.102306 1.42

231 ?
1+

2281.622640

232 c20 2372.127611 2372.129249 -0.69

233 c21 2500.226977 2500.224212 1.11

Mean absolute deviation (ppm) 0.60

Standard deviation (ppm) 0.88
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Appendix C (Supporting information for Chapter 4)

Table C.1 Distance constraints between sulfur atoms of Met residues

obtained from NMR structures of CaM
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Table C.2 Predicted cross-linking sites as obtained from rigidity and

flexibility analysis at energy cutoffs (A) -2 kcal/mol and (B) -1 kcal/mol.

The first two columns give the potential cross-linking Met residues, the

third shows the sulfur-surfur distance d(1—2) obtained from the crystal

structure of Ca4–CaM (1CCL). The remaining columns show the modes

in both +Ca and –Ca structures that can bring Met residues close to

within 5 Å, and the corresponding d(1—2) distances, and the MS results

wherever available. (kcal/mol is used as a default unit in FIRST software,

which can be converted to SI unit according to 1 kcal/mol=4.2 kJ/mol).

(A)

Rigidity cutoff -2 kcal/mol. +Ca structure (1CLL) -Ca structure (calcium-

deleted structure of 1CLL)

Residue

1

Residue

2

d(1—2),

(Å) native

Mode of

close

approach

d(1—2), (Å)

simulated

Mode of

close

approach

d(1—2), (Å)

simulated

36 71 10.9 m13+ 4.9

36 72 11.6 m13+ 4.2

51 71 9.9

51 72 12.5

109 124 5.2 Many modes <5 Many modes <5

109 144 12.3 m14- 4.4 m14- 4.8

109 145 10.3

124 144 9.6 m18+ 4.5 m14+ 4.6

124 145 11.0
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(B)

Rigidity cutoff -1 kcal/mol. +Ca structure (1CLL) -Ca structure (calcium-

deleted structure of 1CLL)

Residue

1

Residue

2

d(1—2),

(Å) native

Mode of

close

approach

d(1—2), (Å)

simulated

Mode of

close

approach

d(1—2), (Å)

simulated

36 71 10.9

36 72 11.6

51 71 9.9

51 72 12.5

109 124 5.2 Many modes <5 Many modes <5

109 144 12.3

109 145 10.3

124 144 9.6 m
+

18 4.7

124 145 11.0
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Appendix D (Supporting information for Chapter 5)

Figure D.1 ECD spectra of peptide-cisplatin adduct at different pH values.

(a) ECD spectrum of [Sp(2-11)+Pt(NH3)+H]3+ ions at pH 3; (b) ECD

spectrum of [Sp(2-11)+Pt(NH3)+H]3+ ions at pH 7; (c) ECD spectrum of [Sp(2-

11)+Pt(NH3)+H]3+ ions at pH 10.



259

Figure D.2 ECD spectra of peptide-cisplatin adduct at different pH values.

(a) ECD spectrum of [Sp+Pt(NH3)+H]3+ ions at pH 3; (b) ECD spectrum of

[Sp+Pt(NH3)+H]3+ ions at pH 7.
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Figure D.3 (a) Full MS spectra of insulin-cisplatin adducts with in source

dissociation voltage of 70 V, (b) Full MS spectra of the insulin-cisplatin

reaction sample, and (c) CAD spectra of the [insulin + Pt(NH3)2 + insulin +

7H]9+ ion at m/z 1300. The insets of Figure a and b show that the intensity

of the [insulin + Pt(NH3)2 + insulin + 7H]9+ species is the same with or

without ion source dissociation.
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Appendix E (Supporting information for Chapter 6)

Table E.1 Complete peak list table for the ECD spectrum of

[P1+P1+3H]3+ at m/z 841.42281. The spectrum was internal calibrated

by ions (c5, [P1+P1+3H]3+, (z6+P1)+·, (z7+P1)+·, and (z8+P1)+·) which are

not involved in cleaving of the disulfide bond. For ions at m/z 1228 to

1232 Da region, the isotope peaks of each ion were listed as highlighted

in grey. For rest of the peaks, the mass errors were calculated based on

the m/z values of the monoisotopic peak ions unless stated otherwise.

Assignments Isotopic

number

Experimental

m/z (Da)

Theoretical

m/z (Da)

Mass error

(ppm)

z4
+·

506.27274 506.27350 -1.50

z4
+

507.28114 507.28133 -0.37

– 655.37117

c5
+·

583.32591 583.32589 0.03

c5
+

584.33371 584.33371 0.00

[P1-SH]
2+

614.82863 614.82898 -0.57

P1(S)
2+·

630.81490 630.81502 -0.19

P1(SH)
2+

631.31801 631.31893 -1.46

P1(SSH)
2+

A+1 647.80783 647.80888 -1.62

[P1+P1+3H]
3+

841.42281 841.42282 -0.01

c8(S)
+

856.44147 856.44060 1.02

c8(SH)
+

857.44943 857.44842 1.18

z8(S)
+

929.45605 929.45495 1.18

– 952.50459

c9(S)
+·

984.47664 984.47537 1.29

c9(S)
+

985.48445 985.48319 1.28

z9(S)
+

986.47762 986.47641 1.23

c9(SH)
+

986.49229 986.49102 1.29

– 1003.50478

– 1017.45653

(c8+P1)
2+

1058.53312 1058.53168 1.36

(z8+P1)
2+·

1095.54424 1095.54277 1.34

– 1101.5517

– 1117.51829
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(c9+P1-H)
2+

1123.05474 1123.05298 1.57

(c9+P1)
2+

1123.5558 1123.55689 -0.97

(z9+P1)
2+·

A 1124.05715 1124.05405 3.25

(z9+P1)
2+·

A+1 1124.55606 1124.55520 1.00

2+ 1132.0649

2+ 1175.08563

(z10+P1)
2+·

1189.57539 1189.57374 1.38

(c10+P1)
2+

1197.08932 1197.09110 -1.49

1+ A 1228.58695

[P1-SH+H]
+

A 1228.65234 1228.65069 1.34

1+ A+1 1229.59002

[P1-SH+H]
+

A+1 1229.65528 1229.65406 0.99

[P1-S+H]
+·

A 1229.66047 1229.65851 1.59

1+ A+2 1230.59302

[P1-SH+H]
+

A+2 1230.65809 1230.65738 0.58

[P1-S+H]
+·

A+1 1230.66275 1230.66189 0.70

[P1-S+2H]
+

A 1230.66772 1230.66634 1.12

[P1-S+H]
+·

A+2 1231.664 1231.66520 -0.97

[P1-S+2H]
+

A+1 1231.6714 1231.66971 1.37

[P1-S+2H]
+

A+2 1232.67502 1232.67303 1.61

1+ 1233.63717

1+ 1234.64577

2+ 1239.12829

2+ 1239.13407

1+ 1245.61336

P1(S·)
+·

1261.63058 1261.63059 -0.01

[P1+P1+3H]
2+·

1262.13359 1262.13450 -0.72

P1(SH)
+

1262.63589 1262.63841 -2.00

1+ 1276.57802

1+ 1277.58589

[P1+S·+H]
+

1293.60407 1293.60266 1.09

(z2+P1-H)
+

1537.77905 1537.77798 0.70

(z2+P1)
+·

1538.78743 1538.78580 1.06

(z3+P1)
+·

-H 1666.82204 1666.82057 0.88

(z3+P1)
+·

1667.82629 1667.82840 -1.27

(z4+P1-H)
+·

1765.89030 1765.88899 0.74

(z4+P1)
+·

A 1766.89341 1766.89681 -1.92

(z4+P1)
+·

A+1 1767.90079 1767.90018 0.35

(z5+P1)
+·

1868.89818 1868.89817 0.01

(z6+P1)
+·

1939.93591 1939.93528 0.32

(c7+P1-H)
+

2016.98593
2016.98767

-0.86
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(z7+P1)
+·

2076.99501 2076.99420 0.39

(z7+P1)
+

2077.99789 2078.00202 -1.99

(c8+P1-H)
+

2116.05207 2116.055608 -1.67

(c8+P1)
+

2117.06156 2117.06391 -1.11

(z8+P1)
+·

2190.07844 2190.07826 0.08

(z8+P1)
+

A 2191.08169 2191.08608 -2.00

(z8+P1)
+

A+1 2192.08789 2192.08949 -0.73

(c9+P1)
+

2247.11096 2247.10991 0.47

Mean 0.77
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Table E.2 Fragment ions assignments and mass error of the ECD

spectrum of [P1+P2+3H]3+ at m/z 857.73795.

Assignments Experimental m/z

(Da)

Theoretical m/z

(Da)

Mass error

(ppm)

z4
+.

P1/P2 506.27328 506.27350 -0.43

z4
+

P1/P2 507.28126 507.28133 -0.14

c5
+·

583.32575 583.32589 -0.24

c5
+

P1 584.33368 584.33371 -0.05

[P2-SeH]
2+

/[P1-SH]
2+

614.82881 614.82898 -0.28

2+ 622.30167

2+ 622.82643

[P1(S)-H+2H]
2+·

630.81509 630.81502 0.11

[P1(S.)+2H]
2+

631.32076 631.31893 2.90

2+ 631.32816

[P1(SH)+2H]
2+

631.82288 631.82284 0.06

2+ 639.82041

2+ 647.81791

[P2(Se.)-H+2H]
2+

654.78869 654.78723 2.23

[P2(Se.)+2H]
2+

655.29051 655.29114 -0.96

c6 P1/P2 655.37088 655.37083 0.08

2+ 659.78280

[P1+Se.+2H]
2+

671.27698 671.27715 -0.25

1+ 721.39214

2+ 723.82066 723.82060 0.08

2+ 731.31445

2+ 740.31966

c7(S.) P1 757.37265 757.37219 0.61

c7(SH) P1 758.37983 758.38001 -0.24
2+

764.77607

1+ 805.31698

1+ 840.35173

3+ 857.73795

c8(SH) P1 857.44798 857.44842 -0.51

1+ 880.33451

1+ 886.34236

c8(Se.) P2 904.38528 904.38500 0.31

1+ 929.45523

1+ 946.47409

1+ 977.40001

1+ 985.48352
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1+ 986.47663

1+ 986.49151

1+ 1003.50407

c9(Se.) P2 1051.45381 1051.45342 0.37

(P1+c8)
2+

/ (P2+c8)
2+

1083.00912 1083.00779 1.23

1+ 1088.53841

z9(Se.) P2 1108.44016 1108.43984 0.29

1+ 1117.51737

2+ 1126.02499

2+ 1135.03661

(P2+c9)
2+

1148.03166 1148.03085 0.71

(P2+z9)
2+

1148.52901 1148.52746 1.35

(P1+c9)
2+

1157.04471 1157.04377 0.81

z10(Se.) P2 1165.46149 1165.46131 0.15

(P1+z9)
2+

1185.53608 1185.53698 -0.76

2+ 1199.05665

1+ 1212.61945

1+ 1216.63224

(P1+z10)
2+

/ (P2+z10)
2+

1214.04864 1214.04771 0.77

(P1+c10)
2+

/ (P2+c10)
2+

1221.56444 1221.56506 -0.51

1+ 1228.58555

[P1-SH+H]
+
/ 1228.65141 1228.65069 0.59

[P1-S+H]
+.

/ [P2-Se+H]
+.

1229.66063 1229.65851 1.72

[P1-S+2H]
+

/ 1230.66660 1230.66634 0.21

1+ 1234.64408

1+ 1245.61193

P1(S·)
+·

1261.63071 1261.63059 0.10

P1(SH)
+

1262.63825 1262.63841 -0.13

1+ 1278.63387

[P1+P2+3H]
2+.

1286.60526 1286.60847 -2.49

P2(Se.)
+

1309.57402 1309.57500 -0.75

1+ 1318.53889

(P2+S.)
+

1341.54684 1341.54702 -0.13

1+ 1446.63403

P1+z2 1520.75964 1520.75998 -0.22

P2+c2 1585.73537 1585.73696 -1.00

P2+z3 1586.72969 1586.73023 -0.34

P1+z3 1667.82780 1667.82840 -0.36

? 1715.77067

P1+z4 1766.89642 1766.89681 -0.22

P1+z5 1917.84667 1917.84599 0.35

P1+z6

1987.87874
1987.87969

-0.48



266

P1+z7/ P2+z7 2124.93666 2124.93864 -0.93

P1+z8/ P2+z8 2239.02012 2239.02617 -2.70

[P2+P1-HSH]
+..

2539.22941 2539.22975 -0.13
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Table E.3 Fragment ions assignments and mass error of the ECD

spectrum of [P2+P2+3H]3+ at m/z 873.38609.

Assignments Experimental m/z

(Da)

Theoretical m/z

(Da)

Mass error

(ppm)

c5
+

584.33368 584.33371 -0.05

2+ 597.86076

[P2-SeH]
2+

614.82874 614.82898 -0.39

2+ 622.82653

P2(Se.)
2+

655.29051 655.29114 -0.96

c6 655.37088 655.37083 0.08

2+ 723.81819 723.82060 -3.33

1+ 794.43050

c7 (Se.) 805.31698 805.31658 0.50

c8(Se.) 904.38500 904.38500 0.00

z8(Se.) 977.39910 977.39941 -0.32

c9(Se.) 1051.45345 1051.45342 0.03

z9(Se.) 1108.44002 1108.43984 0.16

1+ 1136.48245

z10(Se.) 1165.46142 1165.46131 0.09

1+ 1181.48029

2+ 1223.02810

[P2-SeH+H]
+.

1228.65102 1228.65069 0.27

[P2-Se+2H]
+

1230.66626 1230.66634 -0.07

P2+c10 (Se) 1245.53744 1245.53737 0.06

[P2+P2-SeH+3H]
2+.

1270.11735 1270.11851 -0.91

1+ 1276.53003

1+ 1293.55640

P2(Se.) 1309.57489 1309.57500 -0.08

[P2+P2+3H]
2+.

1310.07699 1310.07901 -1.54

P2+Se. 1389.49139 1389.49163 -0.17

1+ 1446.63414

P2+z2 1568.70442 1568.70441 0.01

P2+z3 1715.77306 1715.77283 0.13

P2+z4 1814.84202 1814.84125 0.42

P2+z7 2172.88834 2172.88324 2.35
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Appendix F (Supporting information for Chapter 7)

IR-ECD pulse program:

# ECD_KEY:

ECD.lines = 7

ECD.1 = "; Custom IR-ECD event using pulse-train definition"

ECD.2 = "; ECD; start delay=d3, event time=d12, IRMPD: start delay=d4,

event time=d13"

ECD.3 = " (d13 setnmr3|12 1u setnmr3^12)"

ECD.4 = " DT_LOW, d7 setnmr3|20"

ECD.5 = " 1u setnmr3^20"

ECD.6 = " lo to DT_LOW times l24"

ECD.7 = " (d12 setnmr3|26 1u setnmr3^26) "

;--------------------------------------

;Dynamic Trap Plate Block (lower)

;--------------------------------------

;DT_LOW, d7 setnmr3|20 ; lower dynamic trap voltage with voltage ramp

; 1u setnmr3^20

; lo to DT_LOW times l24 ; L[24] steps in voltage ramp
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Shots-ECD pulse program:

# CORRELATED_SHOTS_KEY:

CORRELATED_SHOTS.lines = 4

CORRELATED_SHOTS.1 = "; Custom DR-ECD event using pulse-train

definition"

CORRELATED_SHOTS.2 = "; ECD and CORR_SHOT start at same time:

ECD event time=d12, CORR_SHOT event time=p7"

CORRELATED_SHOTS.3 = " 10u pl7:f1; set attenuation for correlated

shots (FCtrl-1)"

CORRELATED_SHOTS.4 = " ((d12 setnmr3|26 1u setnmr3^26) (p7 ph2

<CORR_SHOTS_LIST>^):f1)"
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Figure F.1 (a) ESI spectrum of insulin, (b) ESI spectrum of the reaction

products of insulin with acetic anhydride, and (c) ECD spectrum of the

reaction products of insulin with acetic anhydride.
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Figure F.2 IR-ECD spectra of the [Rnase A+13H]13+ ion at m/z 1053. (a)

IR laser pulse length 420 ms, laser power 10%; (b) IR laser pulse length

420 ms, laser power 15%.
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Scheme F.1 Possible ECD fragmentation pathways of the [insulin+6H]6+

ion.
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