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Abstract. In this paper, we propose a new approach to characterize time series
with noise perturbations in both the time and frequency domains by combining
Granger causality and complex networks. We construct directed and weighted
complex networks from time series and use representative network measures
to describe their physical and topological properties. Through analyzing the
typical dynamical behaviors of some physical models and the MIT-BIH7 human
electrocardiogram data sets, we show that the proposed approach is able to
capture and characterize various dynamics and has much potential for analyzing
real-world time series of rather short length.
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1. Introduction

Characterizing typical dynamics from time series with noise perturbations is a fundamental
problem eliciting a great deal of attention from various communities. Some measures of
dynamical systems or information relevance, including the Lyapunov exponents, the correlation
dimension or entropies, have been consecutively developed and widely applied [1]. Most
of them circumscribe the investigations only in the phase spaces where time series evolve
dynamically. In recent years, techniques from different realms have been proposed in [2–7],
where the characterization of time series is converted from the phase space to the complex
network perspective. A network is a mathematical representation of a real-world complex
system and is defined by a collection of vertices and links between pairs of nodes. Therefore
some representative measures describing the topological properties of a complex network can
be used. A basic step in this approach is to reconstruct a complex network from a time series,
i.e. to estimate connectivity weights. The linear correlation coefficient and phase space distance
are commonly used to compute the connectivity weights of a complex network [2]; nonetheless,
the weights of the constructed complex network are usually sensitive to the outliers existent in
the time series, and are even endowed with spurious correlations. More importantly, the existing
techniques [2, 5–7] cannot extract information on the time series in the frequency domain and
are not applicable to non-stationary time series.

To somewhat relax these limitations, this paper proposes an approach for integrating
the Granger causality (GC) and complex networks into characterizing time series with noise
perturbations. In particular, the connectivity weights of a causal complex network (Cau-CN) are
obtained by computing the GC between sub-time series of a given time series.

The GC is based on precedence and predictability. It states that given two times series x
and y, if the inclusion of the past history of y helps to predict the future states of x in some
plausible statistical sense, then y is a cause of x in the Granger sense. Recently, the GC, as well
as its generalizations, has become one of the most powerful and valuable tools in discovering
connections or causalities between different elements in various complex systems, including
biological systems and climatic processes [8–11]. On the one hand, its time-domain definition
leads to causal relations, not only weighted but also directed, which provides further details
of the topological perspective of the interactions among those elements. On the other hand,
its frequency-domain decomposition, meanwhile, makes the interpretation more informative
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because those interactions even in different frequency bands could be clearly figured out instead
of a single number [12]. Therefore, all these important advantages of the GC allow us to have a
deeper insight into the characterization of the dynamics of the time series through the established
Cau-CNs. More specifically, we will use three frequently used measures, the average path length
(APL), the average vertex strength (AVS) and the average clustering coefficient (ACC) [13, 14],
computed for the so constructed Cau-CNs. Interestingly, these measures in both the time
and frequency domains are verified to be closely connected to typical dynamical systems. In
particular, the APL and ACC show more potential in distinguishing dynamical behaviors of
given time series in all frequencies. In addition, to exemplify the broad perspective of the
proposed approach in real applications, this paper investigates human electrocardiogram (ECG)
recordings from the MIT-BIH data sets.

2. Methods

In this section, we describe the method to construct Cau-CNs by computing the GC in the
context of the linear autoregressive (AR) model in both the time and frequency domains and
utilize a static as well as a dynamic approach to characterizing dynamics of time series through
the network to be established.

2.1. Causal complex network construction

Given a time series consisting of n observations, denoted by {x[q]}n
q=1, the time series-induced

Cau-CN is designed as follows. Firstly, we divide the given time series equally into m pieces,
which are called sub-time series, denoted by{

x j(t) = x[t + ( j − 1)bn/mc]
}

with j = 1, . . . , m and t = 1, . . . , bn/mc, where b·c is the floor function. Later, we will discuss
the impact of the piece number as well as the length of each sub-time series. Secondly, we
suppose that each sub-time series corresponds to one vertex in the finally obtained Cau-
CN, denoted by (V,W)J . Here, V is a set consisting of all m vertices in the network, and
W = {wi j}m×m is a directed weight matrix, in which each of its elements describes the GC from
the vertices i to j . The subscript J represents an index indicating the network constructed in
the time or frequency domains. We include in appendix the exact definitions of GC in both
the time and the frequency domains. In particular, when J = T , a Cau-CN (V,W)T in the
time domain is constructed, namely each weight connectivity wi j of the network is computed
through the formula of the causal influence Fi→ j (see equation (A.5)); meanwhile, J = f
theoretically invites an infinite number of networks (V,W) f in the frequency domain, namely
the weight connectivities with frequency f are obtained by the causal influence Ii→ j( f ) (see
equation (A.6)), where the frequency f ∈ [0, +∞).

2.2. Network measures—a static characterization

Once the Cau-CN (V,W)J is constructed in either the time or frequency domains, not only the
distributions of the weights but also the three aforementioned measures are calculated.

1. AVS describes the average of the strengths for all the network vertices [13, 14]. The
strength of vertex i is defined as s tot

i = s in
i + sout

i , where the in-strength s in
i =

∑
j 6=i w j i and
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the out-strength sout
i =

∑
j 6=i wi j . Also the degree of vertex i is defined as d tot

i = d in
i + dout

i ,
where the in-degree d in

i =
∑

j 6=i a j i , the out-degree dout
i =

∑
j 6=i ai j and ai j is the element

of the adjacency matrix A corresponding to the network (V,W)J .

2. APL describes the average of the shortest geodesic path lengths between all pairs of
network vertices, where the shortest geodesic path refers to the path between two vertices
with the sum of the weights of its constituent edges minimized [13, 14].

3. ACC represents the average fraction of the connections between the topological neighbors
of a vertex with respect to the maximum possible for all network vertices [13, 14]. In
particular, the clustering coefficient (CC) of vertex i is defined as

Ci =
[W [1/3] + (WT )[1/3]]3

i i

2[d tot
i (d tot

i − 1) − 2d↔

i ]
,

whereW [1/3]
= {w

1/3
i j } and d↔

i =
∑

j 6=i ai ja j i .

It should be noted that, in the following discussion, we use only the above three measures to
characterize the constructed networks in both domains. However, there are some other typical
measures that are frequently used in the characterization of complex networks [13, 14]; they
have been included in our ongoing works.

2.3. Artificial neural networks—a dynamic characterization

In addition to the above static measures, we design another distinguishing method by observing
the dynamics of a discrete-time artificial neural network (DANN) endowed with the weighted
connection matrix obtained above. The DANN is a mathematical model inspired by the structure
and functional aspects of biological neural networks which defines a discrete map to describe
the evolution of the states of neurons over time. Concretely, these neurons are connected and
we endow the weighted connection matrix {wi j} of a DANN:

Ni [s + 1] = k Ni [s] +
m∑

j=1

wi j M j [s], s = 0, 1, 2, . . .

with a causal network by applying the procedure of section 2.1. Here, Ni [s] and Mi [s] =

1/
[
1 + e−Ni [s]/ε

]
are, respectively, the internal state and the output of neuron i at the sth iteration,

and i = 1, . . . , m. The damping factor and the steepness parameter are taken as k = −0.9 and
ε = 3.3 × 10−3, which are the typical values used for simulating a DANN [15]. The dynamics
of the time series can then be characterized by the evolution of the DANN over time.

All these characterization methods are illustrated and validated in the following examples.

3. Examples: from toy models to real-world data

Example 1 (Non-chaos versus chaos). Consider a noised-perturbed time series:

y[q] = x[q] + ε[q], q = 1, . . . , 2000,

where ε[q] is a zero mean independent Gaussian noise with variance 0.01, and each x[q] is
generated by the standard Logistic model:

x[q + 1] = λx[q]{1 − x[q]}, q = 1, . . . , 2000.
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Figure 1. The Logistic model. (a) A bifurcation diagram as λ ∈ [2, 4]. Three
measures versus λ are plotted in the time domain (b) and in the frequency domain
(c). (d) Different patterns are produced by the DANNs with different casual
networks. (e) Variations of the measures with the length of the sub-time series
in the time domain. (f) Standard significance tests for the measures in the time
domain for each λ and correspondingly 100 surrogates.

Here, with an increase of the parameter λ in the interval [2, 4], the dynamics of the Logistic
model show qualitative changes from stable fixed points to cascades of periodic orbits and
chaos, as shown in figure 1. For each λ and, correspondingly, the noise-perturbed series y[q]
that contains 20 sub-time series, we establish Cau-CNs by the approach we proposed above.

According to the definition of the GC, the inclusion of the knowledge about one random
sub-time series cannot significantly reduce the variance of the prediction error of another
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random one. Nevertheless, the sub-time series in the periodic series, with stronger mutual causal
relations, do bring about the reduction. It is thus expected that the variation of the APL, AVS
and ACC of the causal network in the time domain is closely connected to the dynamics of the
Logistic model with different λ. As shown in figure 1, when λ ∈ [2, 3] that corresponds to the
appearance of stable fixed points, y[q] that consists of stable fixed point dynamics and noise
perturbation is seen as a random series, so that the weak causal internal relations between its
sub-time series naturally result in small values of the network measures. The measures become
larger when λ is taken from the region where stable periodic dynamics appear and again become
smaller as λ is in the parameter region of chaos. Note also that, although the measures for the
chaotic dynamics are relatively small, most of them are still larger than those for the random
series as λ ∈ [2, 3]. This somewhat implies the difference between chaos and randomness from
a casual network point of view. In addition, the peaks of the measurement curves in figure 1
correspond to the islands of stable periodic dynamics embedded in the chaotic region, which
further illustrates the reliability of the proposed approach in differentiating between chaos and
non-chaotic dynamics. To be candid, this kind of differentiation can be analogously done by
some existing techniques [5–7]; however, the proposed approach is further capable of showing
the frequency bands where the differences appear between the causal networks corresponding
to different dynamics. As shown in figure 1, the three measures become larger in both lower
and some higher frequency bands when λ takes the value by which the Logistic model has
periodic dynamics. This observation indeed implies some concrete frequency bands at which
causal relations among the sub-time series of the periodic time series are stronger.

The time series generated from the Logistic model with different parameters are also
characterized by the dynamics of their corresponding DANNs. As interestingly shown in
figure 1, all the states of the neurons converge to the fixed points as λ corresponds to random or
chaotic behavior in the noise-perturbed series y[q]; however, the states converge to periodic or
quasi-periodic orbits, forming thin stripe patterns, as λ takes a value by which the Logistic model
generates periodic dynamics. Hence, DANNs, when endowed with Cau-CNs, can preserve and
even be used to differentiate some dynamical properties of time series for rather short data sets.

To validate the robustness of the proposed approach with regard to the length of the sub-
time series, the measures for the networks in the time domain are, respectively, plotted versus
length in figure 1, where the curves become flatter as the length increases. This observation is
consistent with the result, reported in [16], on the length requirement (at least 100 points) of
the time series for computing the GC. Also this illustrates that our method is applicable for
analyzing a rather short data set.

In addition, random phase surrogates and standard significance tests [17] are utilized to
further validate the proposed approach. Specifically, for each λ, the generated time series are
randomly permuted for 100 times. Surrogates of the measure APL are then computed based on
the Cau-CNs constructed from these permuted time series. We denote the mean and standard
deviation (SD) of these surrogates by mAPL and σAPL, respectively. The statistic SAPL is defined
as SAPL = (APL − mAPL)/σAPL, which measures the deviation of APL from its surrogates. SAVS

and SACC are defined similarly. It can be seen from figure 1 that when λ corresponds to periodic
dynamics, the three network measures are significantly different from their surrogates, while
when λ corresponds to random or most of the chaotic time series, the difference, although
not very outstanding, can still be identified. If we need to identify the difference significantly
between random and chaotic dynamics, then in addition to the AR model some nonlinear models
should also be utilized in the computation of the GC.
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Figure 2. The Rulkov model with stimuli. (a) Two time series with spikes and
bursts. (b) Distributions of the matrix weights in the time domain. Measurements
in the frequency domain for the original two time series (c) and for the two time
series after the first-order difference (d).

Example 2 (Low-frequency versus high-frequency). Next we consider neural dynamics,
described by the Rulkov model [18, 19], with sinusoidal stimuli in two frequencies. We generate
two time series {xi [q]} (i = 1, 2), corresponding to the membrane potential of the neuron, as
follows:

xi [q + 1] =
α

1 + x2
i [q]

+ yi [q] + η sin

(
2π f ∗

i q

sr

)
+ ζεi [q],

yi [q + 1] = yi [q] − σ xi [q] − β.

Here, xi [1] = yi [1] = 0.1, the two intrinsic frequencies for the sinusoidal stimuli are set
as f ∗

1 = 10 Hz and f ∗

2 = 50 Hz, and the sampling rate, sr = 200 Hz. Each εi [q] is a zero
mean uncorrelated Gaussian noise with variance 1.0, and the strengths of the stimuli and the
noise are η = 3.0 and ζ = 0.1, respectively. The other parameters are taken as α = 4.2 and
σ = β = 0.001, so that the model exhibits chaotic bursting dynamics without any stimulus.
Then, we use the obtained time series (see figure 2) to construct the Cau-CNs, respectively.
Here, each time series contains 5000 points, and the last 2000 points, divided into 20 sub-time
series, are considered.

As shown in figure 2, a clear difference between both distributions of the matrix
weights of the constructed networks in the time domain can be observed. For the stimulus
of lower frequency, most of the weights take smaller values because the chaos property of
the bursting time series keeps still; however, more regular spikes due to the stimulus of high
frequency emerge, yielding a right shift of the distribution. In addition, the three measures
for the constructed networks in the frequency-domain approach maxima around some specific
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Figure 3. Results of the MIT-BIH ECG data sets. (a) The weight wi j versus s tot
i ×

s tot
j (upper panel), out-strength versus in-strength (middle panel) and clustering

coefficient versus total strength (lower panel) for each subject. The center of
each ellipse represents the average of the measures within each subject, and the
lengths of the ellipse’s semi-major and semi-minor axes represent the SDs in the
respective directions. (b) Averages and SDs of the measures across subjects from
the two data sets, respectively, in the frequency domain. Differences between the
averages of the measures for the two data sets are marked by the dash-dotted
(blue) lines.

frequencies (see figure 2). These frequencies clearly correspond to either the intrinsic frequency
of the chaotic bursting or the high frequency of the stimuli. More importantly, there is no overlap
between the curves of APL and ACC across different frequencies in figure 2. In fact, these two
quantities, rather than the AVS, reflect the global property of the underlying Cau-CNs. They
therefore show more potential in differentiating the different time series in all frequencies.

Besides, after the first-order difference of the time series, that is, x̂i [q] = xi [q + 1] − xi [q],
the maxima positions of the measures do not change much (figure 2). This implies that the
proposed approach could be suitable for characterizing some non-stationary time series, since
the difference procedure is commonly used to render time series stationary and thus meet the
requirements of classical Granger causal analysis.

Example 3 (Health versus arrhythmia). Now we analyze real-world data. Two MIT-BIH
ECG data sets8 are used in the analysis: one is from the Normal Sinus Rhythm Database (NSRD)
and the other is from the Arrhythmia Database (AD). We select the first 18 subjects from each
of the two data sets. ECG recorded the electrical activity of the heart and produced a time
series for each subject covering about 20 min. 500 sub-time series are used to construct the
corresponding Cau-CNs based on the above-proposed approach in the time domain. Here, after
selecting a sub-time series that contains 500 points, we set the next R-peak as the start point of
the following sub-time series and calculate the three network quantities mentioned above. For
the NSRD, the means and SDs of the APL, AVS and ACC are 0.000 67 ± 0.000 49, 26.7 ± 9.5
and 0.015 ± 0.006, respectively, whereas those for the AD are 0.028 ± 0.020, 110.3 ± 32.5 and
0.081 ± 0.030, respectively. More striking differences are shown in figure 3, which characterizes
the in- and out-strengths and CCs of the vertices in the constructed Cau-CNs. All these

8 All the data sets are available at http://www.physionet.org/physiobank/database.
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differences suggest that stronger causal relations exist between the sub-time series for the
arrhythmia subjects, but weaker causal relations for the normal sinus rhythm subjects. This
also indicates that the heart rhythm of healthy people adapts more sensitively to internal
or environmental fluctuations. These somewhat random fluctuations reasonably suppress the
relations quantified by the GC.

To more profoundly study the difference between both data sets, we also establish and
analyze the causal networks in the frequency domain. Here, we use 20 sub-time series, each of
which contains 200 points. As shown in figure 3, the averages of the three quantities for the two
data sets are different in all frequency bands. More importantly, the proposed approach enables
us to figure out the frequency band (1–2 Hz) where the differences between the healthy subjects
and arrhythmia patients are most prominent. This band interestingly corresponds to a human’s
normal heart rate, approximately 60–120 beats per minute. Besides, in figure 3, more overlaps
of the SDs of the two datasets are observed for the AVS rather than the other two measures. The
reason for this has been stressed in example 2.

4. Conclusion

Altogether, in this paper we have proposed a new approach to characterizing time series by
combining the GC and the concept of complex networks. Directed and weighted complex
networks constructed by the GC contain more details of the topological perspective of the
interactions among sub-time series, and provide more possibilities to capture the various
dynamics of the time series when compared with undirected and unweighted networks. More
importantly, decomposition of the GC in the frequency domain enables the construction
of frequency-specific complex networks, making it possible to characterize the time series
at a particular frequency or frequency band. This is particularly useful in analyzing real-
world time series when different frequency bands convey different signals and have distinct
functions (e.g. local field potential or electroencephalography data) or when some frequencies
are contaminated by noise and contain little information (e.g. functional magnetic-resonance-
imaging data). Furthermore, due to the robustness of GC, the proposed approach can be also
applied to non-stationary time series. By computing three representative network characteristics
of the established causal networks, the proposed approach has been applied to characterize the
time series produced by toy dynamical models and the recordings from two MIT-BIH data sets,
in both the time and frequency domains. The results show the potential of our approach to
capture various dynamics and to discriminate healthy subjects from arrhythmia patients.

Future works involve applying the proposed approach to analyze evolving time series by
using a sliding window and constructing Cau-CNs, which may thus be applicable to rather
short data sets. Moreover, since only the AR model is used for computing the GC, integrating
the other nonlinear models [20, 21] as well as more measures of complex networks into the
present approach might provide a more accurate characterization, which also deserves further
investigation.
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Appendix. The Granger causality in the time and frequency domains

We give a brief review of the GC in the context of the linear AR model in both the time and
frequency domains. Suppose x1 and x2 to be two zero-mean signals whose time observations
are denoted by x1(t) and x2(t), where t = 1, . . . , T . The univariate AR models are

x1(t) =

p∑
j=1

α j x1(t − j) + ε1(t) (A.1)

and

x2(t) =

p∑
j=1

β j x2(t − j) + ε2(t), (A.2)

where the prediction errors ε1(t) and ε2(t) are uncorrelated over time. The model considered by
Granger assumes that x1(t) and x2(t) are suitably represented by the bivariate model:

x1(t) =

p∑
j=1

a11, j x1(t − j) +
p∑

j=1

a12, j x2(t − j) + ε1|2(t) (A.3)

and

x2(t) =

p∑
j=1

a21, j x1(t − j) +
p∑

j=1

a22, j x2(t − j) + ε2|1(t). (A.4)

Here, p is the order of the AR model, determined by the standard Akaike information criterion
in this paper, and ε’s represent the prediction errors. If the variances of the prediction errors
satisfy var[ε1|2(t)] < var[ε1(t)], x2 is said to have a causal influence on x1. Analogously, if
var[ε2|1(t)] < var[ε2(t)], then there is a causal influence from x1 to x2 . These causal influences
are characterized in the time domain by

F j→i = ln
{
var[εi(t)]/ var[εi | j(t)]

}
, (A.5)

where i = 1, 2 and correspondingly j = 2, 1. Moreover, Geweke [12] proposed a spectral
decomposition of the GC from the time domain to the frequency domain. With a lag operator
L : Lx(t) = x(t − 1), the above bivariate model in a matrix form becomes

A(L)[x1(t), x2(t)]
T

= [ε1|2, ε2|1]T,

where A(L) = {ai j(L)}2×2 and ai j(L) =
∑p

k=0 ai j,kLk with ai j,0 = δi j . The covariance matrix of
the noise terms is 6 = {6i j}2×2, where 612 = 621 = cov[ε1|2, ε2|1] and 6i i = var[εi | j ] for i 6= j .
Thus, the discrete Fourier transformation of the model in the matrix form yields the spectral
equivalent model:

A( f )[x1( f ), x2( f )]T
= [E1( f ), E2( f )]T,

where

A( f ) = {ai j( f )}2×2, ai i( f ) = 1 −

p∑
k=1

ai i,k e−2iπk f , ai j( f ) = −

p∑
k=1

ai j,k e−2iπk f

New Journal of Physics 14 (2012) 083028 (http://www.njp.org/)
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for i 6= j . Hence, setting the transfer function matrix H( f ) = {ai j( f )}−1
2×2 leads the spectral

model above to

[x1( f ), x2( f )]T
= H( f )[E1( f ), E2( f )]T.

Then, the spectral density matrix S( f ) is given by S( f ) = H( f )6H ∗( f ). To eliminate the
cross terms in S( f ), Geweke’s normalization technique [12] is further adopted. Consequently,
the GC from x j to xi at the frequency f is

I j→i( f ) = ln
{

Si i( f )
/ [

Si i( f ) −
(
6 j j − 62

i j/6i i

)
|Hi j( f )|2

]}
. (A.6)

References

[1] Abarbanel H D I, Brown R, Sidorowich J J and Tsimring L Sh 1993 Rev. Mod. Phys. 65 1331
[2] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[3] Zhang J and Luo X 2007 Phys. Rev. E 75 016218
[4] Xu X, Zhang J and Small M 2008 Proc. Natl Acad. Sci. USA 105 19601
[5] Marwan N et al 2009 Phys. Lett. A 373 4246
[6] Donner R V et al 2010 New J. Phys. 12 033025
[7] Donner R V et al 2010 Phys. Rev. E 81 015101
[8] Granger C W J 1969 Econometrica 37 424
[9] Gourevitch B et al 2006 Biol. Cybern. 95 349

[10] Friston K 2009 PLoS Biol. 7 e1000033
[11] Mokhov I I et al 2011 Geophys. Res. Lett. 38 L00F04
[12] Geweke J 1984 J. Am. Stat. Assoc. 79 907
[13] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[14] Fagiolo G 2007 Phys. Rev. E 76 026107
[15] Lin W and Chen G 2009 IEEE Trans. Neural Netw. 20 1340
[16] Zou C and Feng J 2009 BMC Bioinf. 10 122
[17] Theiler J et al 1992 Physica D 58 77
[18] Rulkov N F 2001 Phys. Rev. Lett. 86 183
[19] Rulkov N F 2002 Phys. Rev. E 65 041922
[20] Dhamala M et al 2008 Phys. Rev. Lett. 100 018701
[21] Marinazzo D et al 2008 Phys. Rev. Lett. 100 144103

New Journal of Physics 14 (2012) 083028 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.65.1331
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1103/PhysRevE.75.016218
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1016/j.physleta.2009.09.042
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1103/PhysRevE.81.015101
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1007/s00422-006-0098-0
http://dx.doi.org/10.1371/journal.pbio.1000033.t001
http://dx.doi.org/10.1029/2010GL045932
http://dx.doi.org/10.1080/01621459.1984.10477110
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevE.76.026107
http://dx.doi.org/10.1109/TNN.2009.2024148
http://dx.doi.org/10.1186/1471-2105-10-122
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1103/PhysRevLett.86.183
http://dx.doi.org/10.1103/PhysRevE.65.041922
http://dx.doi.org/10.1103/PhysRevLett.100.018701
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://www.njp.org/

	1. Introduction
	2. Methods
	2.1. Causal complex network construction
	2.2. Network measures---a static characterization
	2.3. Artificial neural networks---a dynamic characterization

	3. Examples: from toy models to real-world data
	4. Conclusion
	Acknowledgments
	Appendix. The Granger causality in the time and frequency domains
	References

