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Abstract

This paper reports on the development of an MPI/OpenCL implementation of
LU, an application-level benchmark from the NAS Parallel Benchmark Suite.
An account of the design decisions addressed during the development of this
code is presented, demonstrating the importance of memory arrangement and
work-item/work-group distribution strategies when applications are deployed on
different device types. The resulting platform-agnostic, single source application
is benchmarked on a number of different architectures, and is shown to be
1.3–1.5x slower than native FORTRAN or CUDA implementations on a single
node and 1.3–3.1x slower on multiple nodes. We also explore the potential
performance gains of OpenCL’s device fissioning capability, demonstrating up
to a 3x speed-up over our original OpenCL implementation.

Keywords: Many-Core Computing, GPU Computing, Optimisation, OpenCL,
High Performance Computing

1. Introduction

Approximately twenty years ago, the High Performance Computing (HPC)
industry underwent arguably its most significant technological shift to date.
During this time the widespread use of vector-processor-based supercomputers
gradually declined in favour of larger scale distributed-memory architectures.
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The success of distributed machines was their ability to offer superior price-
performance over their complex vector counterparts. This drastic change in
computing hardware produced an equally significant switch in the design and
engineering of parallel scientific applications. Where parallelism was previously
created through the identification of vectorisation opportunities in loops, par-
allelism in the distributed-memory paradigm required a complete redesign of
many algorithms to utilise explicit communications through the Message Pass-
ing Interface (MPI) communications library.

As the computing community begins to address the utilisation of supercom-
puters that are able to calculate 1015 floating point operations per second (i.e.
one petaflop/s), we see another potential paradigm shift in the construction
of parallel computing hardware and software. While alternative architectural
designs exist, the use of computational accelerators appears to be gaining sig-
nificant traction in academia and industry alike. In these designs, specialised
hardware devices such as graphics processing units (GPUs), dense multi-core
processors and field programmable gate arrays (FPGAs) are utilised alongside
conventional general-purpose processors to accelerate specially selected sections
of code. The use of accelerator-based architectures appears promising due
to the significant levels of raw performance that can be achieved and a high
performance-to-power cost ratio, reflecting some of the same motivations for
distributed computing at the end of the 1990s.

From an application design and porting point of view, the adoption of dis-
tributed computational accelerators presents several challenges beyond con-
structing the initial message-passing structure of an application. These chal-
lenges include (i) how and where to locate program data, since many acceler-
ator devices have localised storage (data locality); (ii) how to structure data
to improve performance (memory layout); (iii) how to efficiently transfer data
between the main general-purpose processor and any accelerator devices (data
transfer cost); and (iv) how to develop an application such that it can run
across different hardware architectures and varieties of accelerator (portability).
This last point in particular has proven to be a major technological challenge,
since each new hardware offering has traditionally required applications to be re-
engineered and re-tuned with a new programming toolkit (e.g. CUDA, Brook+,
Cray/PGI accelerator directives).

The Open Computing Language (OpenCL [1]) is a recently developed cross-
vendor standard which ensures the functional portability of codes between hard-
ware from a number of vendors, thereby eliminating the need for applications
to be re-coded on a per-device or per-programming toolkit basis. However, it
makes no guarantees of performance portability – if an OpenCL application is
too highly tuned to a particular architecture, it is likely to exhibit very differ-
ent levels of performance on others. While this is perhaps more desirable than
having to re-write code for each new platform, the effect of poor performance
portability may provide a barrier to the re-use of application code across devices.

The purpose of the work presented in this paper is to assess whether it is
possible to maintain a single application written in OpenCL that is able to
achieve acceptable performance across a variety of different platforms. We note
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that this dictates that extensive platform-specific optimisations (e.g. tuning
for particular instruction sets or hardware features) has not been carried out.
Instead, we attempt to provide a more generic software development approach
that maintains performance portability, at the cost of some performance com-
promise compared to native (hand-tuned) implementations. We acknowledge
that we do use auto-tuning on two important parameters (memory layout and
work-item distribution) to improve performance, but these do not affect the
underlying algorithm.

We illustrate our study by developing an entirely new OpenCL-based imple-
mentation of the LU benchmark, which originates from the NAS Parallel Bench-
mark (NPB) Suite [2]. This builds on our experience in developing a version
of this benchmark for NVIDIA’s CUDA architecture, work which is described
in [3, 4], and extends the application to a potentially broader range of hardware.

The specific contributions of this paper are:

1. We present the first reported MPI/OpenCL implementation of an appli-
cation level benchmark from the NPB suite, with an account of the de-
sign decisions addressed during its development. We note that the port-
ing of LU is interesting for two reasons – first, LU is recognised as an
application-class benchmark because of its size and complexity; and sec-
ond, the mathematics implemented by LU (LU-factorisation and Succes-
sive Over-Relaxation) are common to a wide variety of complex scientific
applications;

2. Using industry leading CPU and GPU devices from AMD, Intel and
NVIDIA, we demonstrate the importance of memory arrangement and
work-item/work-group distribution strategies for each device type. We
also compare the performance of our OpenCL implementation of LU with
a native FORTRAN 77 implementation on a CPU, and a CUDA imple-
mentation on GPUs. Two different OpenCL software development kits
(SDKs) are employed (AMD and Intel) and two different FORTRAN 77
compilers are used (GNU and Sun Studio), to ensure a fair comparison;

3. We extend the study to examine multi-node performance. We do this us-
ing two systems: (i) a cluster of dual-socket, hex-core Intel X5660 nodes;
and (ii) a cluster of nodes containing Intel X5650s and NVIDIA M2050s.
Two algorithmic optimisations related to “k-blocking” are implemented
in LU, and are shown to significantly improve the performance of the
OpenCL code;

4. We examine the potential performance gains of device fission, by which
OpenCL is able to “fission” (i.e. split) a single device into multiple sub-
devices at runtime. This gives a program greater freedom in assigning
work to specific cores, allowing for task-level parallelism and/or better
exploitation of temporal and spatial cache locality.
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The remainder of this paper is organised as follows: Section 2 discusses related
work; Section 3 outlines the operation of LU (and other wavefront applica-
tions) and provides an overview of the OpenCL programming model; Section 4
describes the development of a single-source OpenCL implementation of LU,
which is then benchmarked on single compute nodes in Section 5 and across
multiple compute nodes in Section 6; device fissioning is explored in Section 7
and we discuss our findings in Section 8; Section 9 concludes the paper.

2. Related Work

The achievable performance of OpenCL applications has been the subject of
previous work. This has compared the performance of OpenCL codes with
alternative platform-specific programming languages and methodologies (e.g.
CUDA, Brook+, MPI) or has investigated the overheads associated with running
OpenCL codes optimised for one architecture on a number of other architectures.
Other work has investigated the use of OpenCL on different platforms as a means
of assessing power usage [5] and productivity [6].

In [7] the authors investigate the use of OpenCL for the GPU acceleration
of two BLAS functions. OpenCL implementations are compared to CUDA on
NVIDIA GPUs and to ATI’s Intermediate Language (IL) on an ATI Radeon
5870, and are shown to run significantly slower in both cases. The authors
demonstrate that the performance of kernels tuned for NVIDIA GPUs is poor
on ATI GPUs and vice-versa, concluding that an auto-tuning approach (which
selects the appropriately tuned kernel at run-time) will provide performance
portability for OpenCL applications. As the work is concerned primarily with
GPU architectures, the overheads of running OpenCL kernels on CPU architec-
tures is not considered.

A similar study [8] investigates the performance of several OpenCL applica-
tions on a number of different compute devices. Through examination of PTX
code, the authors demonstrate that an initially large performance gap between
CUDA and OpenCL is the result of compiler immaturity and that, following
hand-optimisation (e.g. loop unrolling), OpenCL performance can match that
of CUDA. Although performance results for CPUs are given, they are 20–183x
slower than the equivalent GPU results, suggesting that the OpenCL kernels
have been highly tuned for GPU architectures. The authors propose an in-
vestigation of auto-tuning as a method of achieving performance portability as
future work.

The work of Weber et al. [9] is most similar to our own, providing a perfor-
mance comparison of AMD and NVIDIA GPUs, multi-core CPUs and an FPGA
using an OpenCL implementation of a Quantum Monte Carlo application. At
large enough problem sizes, the performance of OpenCL is shown to exceed
that of a native C++ code executing on a quad-core Intel CPU. However, the
C++ code was compiled with the GCC compiler and -O3, the performance of
which is not necessarily representative of a code compiled with a proprietary or
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industrially recognised compiler (e.g. Intel, PGI, Sun) at higher optimisation
levels.

The work found in this paper is also concerned with the performance porta-
bility of OpenCL. We are not just interested in performance per se, but in
programming techniques and algorithmic optimisations which allow application
scientists to advance their code in a predictable fashion, despite architectural
changes to the platforms on which they run. The papers described in this sec-
tion have tried to achieve performance portability by maintaining individually
tuned OpenCL kernels for each platform; we seek acceptable performance across
platforms, but intentionally avoid architecture-specific optimisations (that may
ensure the best performance) which do not translate to other platforms.

3. Background

3.1. Wavefront Applications and the LU Benchmark

LU is an application-level benchmark from the NPB suite, a set of parallel
aerodynamic simulation benchmarks designed by domain-scientists at NASA to
assess the performance of representative calculations on large-scale supercom-
puters. The code implements a simplified compressible Navier-Stokes equation
solver, which employs a Gauss-Seidel relaxation scheme with symmetric suc-
cessive over-relaxation (SSOR) for solving linear and discretised equations. A
thorough discussion of the mathematics employed can be found in [2].

The three-dimensional data grid used by LU is of size N3 (i.e. the prob-
lem space is always cubic), although the underlying wavefront algorithm works
equally well on grids of any dimension. As of release 3.3.1, NASA provide seven
different application “classes” for which the benchmark is capable of perform-
ing verification. We focus on three of these classes in this work: Class A (643),
Class B (1023) and Class C (1623). The use of these problem sizes ensures
results which successfully validate and provide direct performance comparisons
to those reported elsewhere.

In the MPI implementation of LU, this data grid is decomposed over a two-
dimensional processor array of size Px × Py, assigning each of the processors a
stack of Nz data “tiles” of size Nx/Px × Ny/Py × 1. Initially, the algorithm
selects a processor at a given vertex of the processor array which solves the
first tile in its stack. Once complete, the edge data (which has been updated
during this solve step) is communicated to two of its neighbouring processors.
These adjacent processors – previously held in an idle state via the use of MPI-
blocking primitives – then proceed to compute the first tile in their stacks, while
the original processor solves its second tile. Once the neighbouring processors
have completed their tiles, their edge data is sent downstream. This continues
until the processor at the opposite vertex to the starting processor solves its last
tile, resulting in a “sweep” of computation through the data array.

Such sweeps, which are the defining features of pipelined wavefront applica-
tions, are also commonly employed in other parallel applications including the
Sweep3D [10] and Chimaera [11] particle transport applications. This class of
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algorithm is therefore of commercial as well as academic interest, not only due
to its ubiquity, but also the significant time associated with its execution at
large supercomputing sites such as NASA, the Los Alamos National Labora-
tory in the US and the Atomic Weapons Establishment (AWE) in the UK. The
SSOR-preconditioning and LU-decomposition methods utilised by the LU appli-
cation are also routinely employed in parallel solvers throughout many scientific
domains, making the implementation described here of broad interest.

LU executes two sweeps through the data grid (as opposed to eight in appli-
cations such as Sweep3D), one originating from the vertex held by processor 0,
and another in the opposite direction (which finishes at processor 0). Although
the execution time for a single iteration of LU is small, typically taking minutes,
when scaled to larger problems and incorporated as part of a larger workflow
requiring hundreds or thousands of iterations prior to convergence, the applica-
tion can consume vast amounts of processing time. The principal use of the LU
benchmark is comparing the suitability of different architectures for production
CFD applications [12] and thus the results presented in this paper have impli-
cations for large-scale production codes. The memory requirements of LU are
also significant (≈ 160 GB for a 10203 Class E problem) – the amount of RAM
available per node in commodity clusters is typically much less than this, and
the memory available to many current accelerator architectures is limited by
their use of GDDR, thus necessitating the use of large distributed machines.

The LU benchmark was selected for this case-study because it represents
a difficult problem to parallelise effectively. Previous work that presents the
parallelisation of wavefront applications for novel architectures [13, 14, 15, 16,
17], and our own previous efforts in porting this specific benchmark to CUDA [3],
have shown that good performance for a complete application can be achieved
for this type of algorithm on GPUs. However, previous implementations have all
focused on a single architecture and typically employ a different parallelisation
approach to that used in CPU implementations.

Algorithm 1 Pseudocode for the SSOR loop.
for iter = 1 to max iter do

for k = 1 to Nz do
call jacld(k)
call blts(k)

end for

for k = Nz to 1 do
call jacu(k)
call buts(k)

end for

call l2norm()
call rhs()
call l2norm()

end for
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The pseudocode in Algorithm 1 details the SSOR loop that accounts for the
majority of LU’s execution time. Each of the subroutines in the loop exhibit dif-
ferent parallel behaviours: jacld and jacu carry out a number of independent
computations per grid-point, which can be executed in parallel, to pre-compute
the values of arrays used in the forward and backward wavefront sweeps; blts
and buts are responsible for the forward and backward sweeps respectively;
l2norm computes a parallel reduction (on user-specified iterations); and rhs

carries out three parallel stencil update operations, which have no data depen-
dencies between grid-points. The number of loop iterations is configurable at
both compile- and run-time, but is typically 250–300.

3.2. The OpenCL Programming Model

The OpenCL programming model is conceptually similar to that of NVIDIA’s
CUDA, except that it is capable of targeting a range of different hardware
platforms from a number of different vendors. The language specification is
contributed to by many industry vendors and institutions, but maintained by
the Khronos Group [1].

With OpenCL, a host (typically a CPU) runs C/C++ code using library calls
to communicate with and control one or more devices. Each device is made up
of a number of compute units and may be a GPU, an accelerator, a multi-core
CPU and/or the host itself. Compute units can be further sub-divided into
processing elements.

Functions run on a device are known as kernels and can be compiled just-in-
time (JIT) from source, or loaded from a cached binary if one exists for the cur-
rent target platform. These kernels are executed in a single-program-multiple-
data (SPMD) fashion by a one-, two- or three-dimensional set of work-items,
which are grouped together into work-groups. Some architectures may choose
to execute work-items in a single-instruction-multiple-data (SIMD) fashion.

In order to permit OpenCL applications to scale up or down to fit differ-
ent hardware configurations, work-groups can be scheduled for execution to any
available compute unit and in any order. This means that, unless carefully de-
signed, programs that rely on synchronisation across all work-items are likely to
deadlock. Indeed, the OpenCL programming model does not currently provide
any method of global synchronisation for this reason. There is, however, an
implicit global synchronisation barrier between separate kernel calls and local
synchronisation is possible between all work-items in a given work-group.

Before addressing the performance of OpenCL – including cross-platform
optimisation – it is important to understand how the OpenCL concepts of de-
vices, compute units, work-groups and work-items map to different architectures
(and sometimes to the same architecture, when there may be more than one
implementation of the OpenCL runtime available).

On multi-core CPUs, we use version 2.4 of the Accelerated Parallel Process-
ing (APP) SDK from AMD [18], which is compatible with any AMD or Intel
CPU that supports SSE instructions. All of the CPUs in a node are treated
as a single device, with each of the cores presenting themselves as compute
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OpenCL Device

Socket

Memory

Socket
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Figure 1: A dual-socket, hex-core node as it appears to the OpenCL runtime.

Device Compute Units Processing Elements

Intel X5550, 2.66 GHz 4 4
Intel X5660, 2.80 GHz 12 12
NVIDIA Tesla C1060 30 240
NVIDIA Tesla C2050 14 448

AMD/ATI FirePro V7800 18 1440

Table 1: Devices as they appear to the OpenCL runtime.

units (see Figure 1). Each work-group is scheduled to a hardware thread and
is executed on a single core, with the chosen core iterating (in order) over all
work-items in the work-group. Use of OpenCL’s vector types (e.g. float4,
double2) is required to utilise the SSE units of each core. We also make use of
Intel’s OpenCL implementation [19], the behaviour of which is very similar; the
key difference is that Intel’s implementation supports auto-vectorisation in ad-
dition to OpenCL vector types (where possible, the compiler attempts to pack
the work of contiguous work-items into SSE vector units automatically).

On NVIDIA GPUs, we use version 4.0 of the CUDA Toolkit and SDK [20],
which includes OpenCL support. Work-groups map to CUDA blocks, which are
scheduled to the GPU’s stream-multiprocessors (SMs), while work-items map to
CUDA threads and are executed synchronously by streaming processors (SPs)
in sets of 32 known as warps. The approach is similar for AMD/ATI GPUs,
except that we use the AMD SDK; work-groups are scheduled to the GPU’s
SIMD units, while work-items are executed synchronously by streaming cores
in sets of 64 known as wavefronts (not to be confused with the wavefronts in
LU). As the GPUs from both vendors are separate devices to the host CPU, all
data to be used by kernels must be transferred to the device via PCI-Express
(PCIe).

Table 1 lists the number of compute units and processing elements for each
of the OpenCL devices used in our experiments. It should be noted that the
meaning of the term “processing element” differs by architecture; on CPUs, a
traditional x86 core is a compute unit of one processing element; on NVIDIA
GPUs, each stream multiprocessor (compute unit) consists of 8 or 32 “CUDA
cores” (processing elements) on the Tesla and Fermi architectures respectively;
and on AMD/ATI GPUs, a compute unit contains 16 stream cores of 5 simple
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processing elements each.

4. Implementation

4.1. Motivations for a Single Source

In recent years the HPC industry has shown a great deal of interest in the use
of novel architectures. This has been partly driven by the gradual maturity of
software environments for such devices but also because of the significant levels
of performance such devices can offer. One of the biggest challenges in adopting
these devices is the porting effort that is required, particularly in the context
of legacy applications. In many cases the performance of such applications has
been optimised for specific types of processor or machine architecture, introduc-
ing additional complexity into the code which will not easily port to accelerator
devices. In such cases there is no clear path to code development.

There are several reasons therefore to assess the practicality of a single source
approach to application design: (i) it is easier to maintain a single code that tar-
gets all platforms, as opposed to separate hand-tuned versions of the same code
for each alternative platform; (ii) it reduces the risk of being locked into a single
vendor solution; (iii) benchmarking is simplified, as the results can be compared
from a single code source; and (iv) it represents a “safer” investment for HPC
sites, as new codes (and ported legacy codes) will run on both existing and
future architectures. OpenCL is not the only available option for maintaining
a single-source application; source-to-source translation tools, algebra libraries
with support for multiple device types (e.g. BLAS) and domain-specific lan-
guages are all viable alternatives.

4.2. Ensuring Performance Portability

One of the issues associated with even simple CUDA programs is that optimi-
sation can be very difficult. The specifications of CUDA devices vary in several
respects (e.g. number of registers per work-item, amount of shared memory,
coalescence criteria) and each kernel has a number of adjustable parameters
(e.g. the number of work-items and work-groups). As such, the optimal val-
ues for these parameters on one architecture may not be optimal on others.
Several papers have suggested that this issue is best handled through “auto-
tuning”, a process that sees a code automatically searching a given parameter
space as it runs and tuning itself to maximise platform performance, for CUDA
and OpenCL codes alike [7, 8, 21]. We adopt this parameterisation approach
in our OpenCL implementation of LU, focusing on two high-level criteria we
believe to be important when targeting multiple platforms: memory layout and
work-item/work-group distribution.

Although we acknowledge that the choice between scalar and vector data
types has a large impact on the performance of some architectures, the pa-
rameterisation of this space requires much more involved low-level code and
algorithm changes than memory layout and work-item distribution. The Intel
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SDK already supports auto-vectorisation for CPUs, while the AMD SDK is ca-
pable of packing the VLIW architecture of an AMD GPU without the use of
explicit vector types. We expect that the auto-vectorisation capabilities of these
compilers will improve with time. Some effort is likely to be required from a
programmer to ensure successful auto-vectorisation of their kernels, but such
efforts are application-specific and beyond the scope of this paper.

The choice of floating-point precision is also an important parameter. Across
CPUs and GPUs, double precision compute is approximately twice as slow
as single precision, and the cost of data movement (i.e. memory copies or
MPI/PCIe communication) is similarly affected. All of the results presented in
this paper use double precision, in keeping with the precision of the original LU
benchmark. Supporting multiple precisions within a single-source application
could very easily be achieved through the use of macros and the C pre-processor.

4.3. Memory Layout

The performance of codes written for both CPUs and GPUs are sensitive to
memory layout. Due to the multiple-instruction-multiple-data (MIMD) paral-
lelism found in multi-core CPUs, codes where each core operates in its own
separate “chunk” of memory are likely to outperform those where cores are re-
quired to copy data from one another’s memory spaces. Furthermore, each core
is likely to perform best when the memory layout makes good use of its cache
line width through both spatial and temporal locality.

In terms of OpenCL, we would expect the best memory layout for CPUs
(executing scalar code) to be one that allows each work-item to load in all
of the data it will need in a single memory access. This memory layout is
unlikely to be effective on GPUs, owing to the way in which work-items are
grouped for synchronous execution in a native SIMD fashion. Both AMD and
NVIDIA stress the importance of coalescing memory accesses (i.e. ensuring
that contiguous work-items access contiguous memory locations) as this makes
best use of memory bandwidth.

Our OpenCL implementation of LU therefore allows for the memory layout
to be chosen at runtime. Currently, we support the two alternative layouts
shown in Figure 2: array-of-structs (AoS) and struct-of-arrays (SoA). The AoS
approach ensures that the five values associated with each LU grid-point are
next to one another in memory, providing good cache utilisation for a scalar
work-item; the SoA approach ensures that the five values are split into five
separate units, allowing work-items processed in SIMD to access corresponding
elements in parallel.

To support these alternative memory layouts in our implementation, the
index of each array access is replaced with a macro or inline function (i.e.
array[k][j][i][m] in the original C/C++ becomes array[array index(k,

j, i, m)]). This allows the index calculation for each array to be defined at
kernel compile time. We also introduce kernel calls for rearranging memory
based on these layouts immediately after a memory buffer is transferred to the
device, or immediately before it is transferred back to the host. Our solution
also rearranges memory between calls to the hyperplane and stencil operation
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Figure 2: A comparison of the Array-of-Structs (AoS) and Struct-of-Arrays (SoA) memory
layouts.

kernels of LU, due to their different memory access patterns (see implementation
for more details [22]).

4.4. Work-Item and Work-Group Distribution

The number of work-items that can execute an instruction in parallel on GPU
architectures is typically very high, as is the number required to effectively hide
memory latency. On an NVIDIA Tesla C2050, an integer or single precision
floating-point operation can be executed for two warps (64 work-items) in two
clock cycles on each of its 14 SMs; further, the maximum number of warps
that can be “active” (i.e. ready to be switched in, should another warp stall
on a memory operation) on each SM is 48, leading to 1,536 active work-items
per SM. On CPU architectures, there is significantly less parallelism available
(for scalar code). On an Intel X5550 without SMT enabled, each core can only
execute one thread at any given time; with SMT enabled, each core can execute
the instructions of two threads (so long as they are in different pipelines) in an
attempt to hide memory and instruction latencies.

Our OpenCL implementation of LU has two different methods of work-item
and work-group distribution. The first, which we refer to as fine-grained distri-
bution, launches one work-item for each LU grid-point value that must be com-
puted (regardless of how many compute units and processing elements the device
has); the second, which we refer to as coarse-grained distribution, launches one
work-group per compute unit. In both cases, the size of the work-group is set
based on the compute unit’s SIMD width. For CPUs, the SIMD width is treated
as one (despite SSE having a SIMD width of two for double precision) since, at
the time of writing, the Intel compiler does not auto-vectorise our kernels. For
GPUs, the SIMD width is treated as 64 – although this number is lower than is
typically used on NVIDIA hardware, the size of our work-groups is limited by
register constraints.

To facilitate a change in work-item and work-group distribution at run-
time, each of our kernels is enclosed in a set of three nested loops, as shown
in Algorithm 2. imax, jmax and kmax refer to the maximum grid-point co-
ordinates considered by a given kernel in each dimension; get global id and
get global size are two built-in OpenCL functions that return a work-item’s
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Algorithm 2 Parameterisation of work-item and work-group distribution.

for k = get global id(2) to kmax step get global size(2) do
for j = get global id(1) to jmax step get global size(1) do

for i = get global id(0) to imax step get global size(0) do

// kernel body

end for
end for

end for

ID and the total number of work-items in each dimension respectively. These
loops are structured in such a way that the kernel will execute for every grid
point from (0, 0, 0) to (imax, jmax, kmax), regardless of the number or config-
uration of the work-items and work-groups launched. For example, we consider
two extreme cases: a single work-group containing a single work-item will loop
from 0 to the maximum in steps of 1; and a set of imax× jmax× kmax work-
groups containing a single work-item will execute the kernel for exactly one
grid-point each.

As mentioned previously, the number of work-items per work-group is iden-
tical for both the fine-grained and coarse-grained distribution strategies. It
is the number of work-groups that changes, and hence the values returned
by the get global size function. For fine-grained distribution, the function
will return one of imax, jmax or kmax, and thus each work-item will ex-
ecute the kernel for the grid-point that corresponds to its ID. For coarse-
grained distribution, each work-item will execute the kernel for (imax×jmax×
kmax)/(SIMD width × compute units) grid-points.

4.5. k-blocking

In the default version of LU, each processor solves a “tile” of size Nx ×Ny × 1
at each time step prior to communication (see Section 3.1). Our OpenCL im-
plementation employs an optimisation commonly known as k-blocking, a name
which arises from previously reported studies on the Sweep3D wavefront code,
which utilises axes labelled i, j and k. Rather than partitioning the z-axis into
tiles of height 1, this optimisation sees each processor solve a block of depth
k-block (or kB) prior to communication.

The benefits of this optimisation are twofold. First, communication mes-
sages are aggregated into fewer, larger messages that make more effective use
of network bandwidth at the potential cost of delaying downstream processors.
Second, more parallelism is exposed within larger blocks. In a given wavefront
step w, computation for a grid-point (i, j, k) can only proceed if i + j + k = w;
for a “tile” with a fixed value of k, exploitable parallelism is restricted to the
other two dimensions.

We must therefore choose a k-block that strikes a balance between providing
a good level of parallelism on SIMD architectures and introducing significant
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Figure 3: k-blocking policies.

delays to downstream processors. It is important to note that this performance
trade-off is only a concern for multi-node runs; since a single node run con-
tains no MPI communication, the k-block value can be set to maximise SIMD
efficiency.

Figure 3 identifies three potential k-blocking depths. The current sweep-
step is shown in light grey, downstream processors that are waiting for data
are shown in white, and previous sweep steps are shown in progressively darker
shades. A k-block depth of 1 (Figure 3(a)) minimises the amount of time any
processor spends waiting on its first message, and represents the behaviour
found in the original benchmark; a k-block depth of min(Nx/Px, Ny/Py) (Fig-
ure 3(b)) provides an approximately cubic unit of computation, thus balancing
the need for a large k-block for compute efficiency with a small k-block for MPI
efficiency; and a k-block of depth Nz (Figure 3(c)) maximises the surface of the
3D compute-face for as much of the run as possible.

4.6. k-block Compute Policy

In [4] we presented an extension of the traditional k-blocking optimisation for
CUDA devices. We extend this study to OpenCL-based executions on CPU and
GPU devices here.

In a typical execution, the processing of a block of size Nx/Px×Ny/Py×kB
will be conducted by executing a form of “mini-sweep” through the block. The
size of the hyperplane i + j + k = w starts at one data cell, increases until
some maximum (dependent on the size of the block), and then decreases until it
has passed through the last cell. Following communication, the next time step
executes another “mini-sweep” for the next data block, again starting from a
single cell. Conducting computation in this manner wastes parallel efficiency
whenever the size of the hyperplane is less than the number of work-items an
architecture can execute in parallel. Figure 4(a) demonstrates the effect of
applying the traditional k-block compute policy in which the data is processed
as a discrete chunk.

Our optimisation permits a processor to solve for grid-points beyond the cur-
rent k-block boundary, thus maintaining the 45-degree angle established during
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(b) New Policy

Figure 4: Comparison of two k-blocking compute policies for the first three wavefront steps.

the start of the “mini-sweep”. The parallel and SIMD efficiency achieved per
node under this new k-block compute policy is the same as that seen when using
a kB value of Nz under the old policy, but permits processors to communicate
prior to the completion of their entire Nx/Px ×Ny/Py ×Nz volume. However,
as shown in Figure 4(b), each processor must now receive two messages (as op-
posed to one) in order to have enough border data from upstream to complete
the processing of a single data block.

5. Benchmark Comparisons for a Single Compute Node

5.1. Experimental Setup

The compiler configurations for all experiments performed in this section are
given in Table 2. Although it is more usual to use the flag arch=sm 20 when
compiling for an NVIDIA GPU based on the Fermi architecture (such as the
C2050), arch=sm 13 provides better performance for our code. The value of kB
was set at Nz for all OpenCL implementations, to maximise SIMD efficiency, and
at 1 for the native FORTRAN code (the default). All runs used the maximum
number of cores available on the hardware.

5.2. Performance Impact of Memory and Work Distribution Strategies

Figure 5 shows the runtime of our OpenCL code for a Class C problem on
one CPU (an Intel X5550), and on three GPUs (an NVIDIA Tesla C1060, an
NVIDIA Tesla C2050 and an ATI FirePro V7800) for different values of the
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Implementation Compiler MPI Flags

FORTRAN 77
Sun Studio 12

OpenMPI 1.4.2
-O5 -native -xprefetch

(Update 1) -xunroll=8 -xipo -xvector

OpenCL GCC 4.3 OpenMPI 1.4.2 -O3 -funroll-loops

CUDA (Host) GCC 4.3 OpenMPI 1.4.2 -O3 -funroll-loops

CUDA (Device) NVCC 4.0 N/A -O2 -arch="sm 13"

Table 2: Compiler configurations for single-node experiments.
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Figure 5: Performance comparison of different choices of memory layout and work-item dis-
tribution for Class C.

memory layout and work-item distribution parameters. We also compare the
runtime on the CPU for the AMD and Intel SDKs.

These results highlight the importance of our chosen auto-tuning parameters.
The coarse-grained work-item distribution is best suited to CPUs, achieving
lower runtimes for both the AMD and Intel OpenCL SDKs, and the fine-grained
work-item distribution is better suited to GPU architectures, giving the best
runtime on all three GPU platforms. The architectures also favour different
memory layouts as expected, and for the reasons explained in Section 4.3 – the
CPU performs best when data is stored in AoS format, and the GPUs perform
best when data is stored in SoA format. The Tesla C1060 is most affected by
both parameters: the penalty for selecting the “wrong” work-item distribution
is 12.9x; for memory layout it is 1.8x; and the difference between the best and
worst performance on this architecture is 15.5x.

We do not present results for the AMD SDK using fine-grained work-item
distribution on the CPU. On a Class A problem, this configuration was over 40x
slower than the coarse-grained distribution – for a Class C problem, it exceeded
an hour’s wall time. The Intel SDK also takes a performance hit from the use
of fine-grained distribution, but the impact is significantly lower. We do not
know why this is the case, but conjecture it may be a result of pairing the
AMD SDK with Intel hardware (which is not officially supported) or be related
to a difference in the way the two SDKs map work-items to threads; further
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Figure 6: A comparison of OpenCL and FORTRAN 77 implementations of LU.

investigation into this matter is necessary.

5.3. Performance of OpenCL vs. Native Implementations

Next we consider the performance of the OpenCL implementation of LU against
native FORTRAN 77 (for CPUs) and CUDA (for GPUs). It should be noted
that this FORTRAN 77 implementation of LU is not the default implementa-
tion as provided by NASA, but one that was heavily optimised as part of our
prior work [3] (this is also available at [22]). As stated, there are benefits in
maintaining one single (OpenCL) source. However, this argument is more com-
pelling if the performance of the OpenCL implementation is competitive with
that of native implementations.

To ensure clarity of results, and unless otherwise stated, the OpenCL runtime
configuration for each platform was selected as the best from the previous set
of results (i.e. coarse-grained work-distribution with an AoS layout for CPUs,
and fine-grained work-distribution with an SoA layout for GPUs).

The graph in Figure 6 compares the performance of the OpenCL and FOR-
TRAN 77 implementations running on a quad-core Intel X5550 CPU. We present
results from the same two OpenCL SDKs as previously, and from two FOR-
TRAN 77 compilers; GCC, since it is the default compiler on most Linux systems
and features regularly in performance studies of this nature, and Sun Studio,
a heavy-weight industrial compiler capable of extensive code optimisations and
thus representative of the compilers likely to be employed on production HPC
clusters.

Following the trend reported elsewhere [5, 9], the OpenCL performance is
marginally better (1.17x) than the FORTRAN 77 implementation compiled with
GCC. When compiled with Sun Studio, the FORTRAN 77 code is 1.5x faster
than OpenCL.

There is not likely to be one single reason for this performance gap, but rather
several contributing factors. Firstly, the maturity of FORTRAN 77 compilers
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Figure 7: A comparison of OpenCL and CUDA implementations of LU.

is much greater than that of OpenCL compilers, having been tuned over many
years for commodity-processor architectures. This is particularly true for x86,
which has enjoyed binary compatibility over multiple processor generations.
We attribute the difference between the GCC and Sun Studio compilers to the
latter’s ability to apply intensive inter-procedural optimisations (IPO) across
all source files, increasing compile time significantly but often providing better
runtime performance. Secondly, there are differences in memory behaviour:
the OpenCL runtime creates threads which may operate on memory located in
remote memory banks, whereas each of the MPI tasks in the FORTRAN 77
implementation operates only on its own, local, memory space. Finally, the
implementation of the wavefront algorithm in the native code reflects its origin
as a CPU-only code, in that the work of each MPI task is serial in nature (and
not easily parallelisable). The implementation of the wavefront algorithm in the
OpenCL code lends itself much better to parallelisation (and thus to portability
across different architectures) but may suffer from increased synchronisation
overhead (between kernels) and other inefficiencies.

The graph in Figure 7 compares the performance of the OpenCL and CUDA
implementations of the benchmark. On the Tesla C1060, the CUDA implemen-
tation is marginally faster (1.08x); on the C2050 it is faster still (1.35x). Neither
of these performance gaps are as large as those reported elsewhere for initial
ports of CUDA codes [7, 8], but these have been shown to be due to differ-
ences between the optimisations carried out by NVIDIA’s CUDA and OpenCL
compilers – we believe that the small difference in performance shown here is a
reflection of the hand-unrolled and hand-inlined nature of our implementation’s
most compute-intensive kernels.

The OpenCL runtime performance is clearly competitive with that of the
FORTRAN 77 and CUDA implementations. OpenCL (and its associated com-
piler technology) are still relatively immature, and so these performance figures
are likely to improve. Furthermore, we believe that the performance hit from
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Sierra Minerva (GPU Partition)

Nodes 1,944 6
CPUs/Node 2 × Intel X5660 2 × Intel X5650
Cores/Node 12 12
Core Frequency 2.8 GHz 2.66 GHz
Memory per Node 24 GB 24 GB
OS CHAOS 4.4 SUSE Enterprise Linux 11
Interconnect InfiniBand QDR (QLogic) InfiniBand TrueScale 4X-QDR
Accelerators/Node None 2 × NVIDIA M2050

Table 3: Hardware specifications of the Sierra and Minerva clusters.

Implementation Compiler MPI Flags

FORTRAN 77 PGI 8.0.1 OpenMPI 1.3.2 -O3 -Munroll -Minline

OpenCL PGI 8.0.1 OpenMPI 1.3.2 -O3 -Munroll

CUDA (Host) GCC 4.5 OpenMPI 1.3.2 -O3 -funroll-loops

CUDA (Device) NVCC 4.0 N/A -O2 -arch="sm 13"

Table 4: Compiler configurations for multi-node experiments.

using OpenCL in the manner that we have described is small enough (on a sin-
gle socket/node) that for many users it will be outweighed by the advantages of
cross-platform code compatibility.

6. Benchmark Comparisons for Multiple Compute Nodes

6.1. Experimental Setup

We extend the study to consider multi-node performance. Two machines are
used for these experiments: (i) the Sierra cluster housed in the Open Comput-
ing Facility at the Lawrence Livermore National Laboratory (LLNL), and (ii)
the GPU partition of the Minerva cluster housed at the Centre for Scientific
Computing at the University of Warwick. Hardware specifications for both ma-
chines can be found in Table 3, and compiler configurations are given in Table 4.
Communication between nodes is conducted via MPI, with MPI ranks allocated
in the following manner:

• FORTRAN 77 – a single MPI rank is allocated per core;

• OpenCL on CPUs – a single MPI rank is allocated per node with
OpenCL devices being used to execute computation within the node;

• CUDA/OpenCL on GPUs – a single MPI rank is allocated per GPU.

6.2. Performance Impact of k-blocking

Table 5 compares the performance of our OpenCL implementation with that
of existing FORTRAN 77 and CUDA versions of the code. The FORTRAN 77
code uses a kB of 1, and the CUDA code a kB of min(Nx/Px, Ny/Py), as these
values give the best performance; for OpenCL, we present results for all three
of the kB values discussed in Section 4.5. For the CPU, we give two results for
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Sierra

Devices

OpenCL

FORTRAN 77kB = 1 kB = min

(
Nx

Px
,
Ny

Py

)
kB = Nz

12 1884.87 1246.45 235.36 242.45 235.36 242.45 107.78
24 1158.60 706.53 170.48 158.09 172.02 172.97 62.43
48 760.73 460.37 109.87 95.81 129.25 122.07 36.49
96 503.25 365.68 80.96 64.80 113.74 95.06 22.01

192 320.17 320.53 56.98 49.86 89.90 77.79 16.25

Minerva (GPU Partition)

Devices

OpenCL

CUDAkB = 1 kB = min

(
Nx

Px
,
Ny

Py

)
kB = Nz

1 1066.17 83.68 83.68 63.86
2 1514.91 102.08 96.62 72.51
4 1001.53 73.16 71.85 46.89
8 815.33 76.76 73.46 39.85

Table 5: Runtimes (in seconds) for multi-device executions of a Class C problem.

each kB value: the left column contains results from the AMD SDK and the
right column contains results from the Intel SDK.

On a single node, the native FORTRAN 77 code is an order of magnitude
faster than the OpenCL implementation with kB = 1, but this gap is closed
to 2.2x for a more sensible choice of kB . This performance difference is still
larger than that seen on a single node in Section 5, and this is likely to be
due to the fact that Sierra nodes are dual-socket. Since the OpenCL runtime
groups multiple sockets in a system into a single device, we would expect the
memory behaviour of a näıve OpenCL implementation to be worse in a multi-
socket system (e.g. threads may access memory located at a different NUMA
level, and cache coherence must be maintained across sockets). The difference
between C2050 and M2050 hardware is minimal, and thus the native CUDA
code remains 1.3x faster than OpenCL on a single GPU.

The performance gap is wider for both architectures at scale. The native
code is 3.1x faster on 192 CPUs, and 1.8x faster on 8 GPUs. The reader’s
attention is also drawn to the poor scalability of LU, which results from the
wavefront across processors – for the FORTRAN 77 implementation, the speed-
up when strong-scaling from 12 to 192 cores is only 6.6x (out of an optimal
16x).

The results in this section demonstrate the importance of the kB parameter,
and show that it improves performance significantly across both architecture
types. On the CPU, the best value of kB gives up to an 8x speed-up, and on the
GPU it gives a maximum speed-up of 12.8x; we would expect this performance
improvement to be even larger for future architectures with more parallelism.
One unexpected result is that a kB value of Nz is actually fastest for the OpenCL
code on the GPU, suggesting that the increased parallel efficiency afforded by

19



the larger k-block is enough to outweigh the delay to downstream processors.

6.3. Performance Impact of the k-block Compute Policy

The effects of the k-block compute policy optimisation are quite varied. For
kB = 1, the performance of both the CPU and GPU implementations is im-
proved considerably at low node counts. For all other kB values, however, only
the GPU continues to see any benefit (a modest improvement of around 5%) –
all CPU implementations experience a slowdown (results not shown).

The new policy requires each processor to compute the values of some ad-
ditional grid-points lying beyond the end of the current k-block (Figure 4(b)),
and the relative cost of this additional compute is dependent upon the amount
of parallelism supported by the hardware. In the worst case (where only one
work-item can be processed at a time), the new policy will always result in a
slowdown, since the hardware is unable to take advantage of the increase in
exploitable parallelism; in the best case (where the number of work-items that
can be processed is greater than or equal to Nx/Px × Ny/Py) this additional
compute will be carried out at little to no cost, since it will utilise hardware
that is wasted when using the old policy.

The amount of parallelism available in CPU hardware is likely to be less than
the number of grid-points on the largest hyperplane, and thus the main impact
of the new k-block compute policy is a significant increase in the amount of time
the last processor (Px − 1, Py − 1) spends waiting to receive its first message.
GPUs execute many more threads with wider SIMD, and the compute time
of each individual GPU is decreased, but they ultimately suffer from the same
problem as CPUs at scale.

We intend to explore, through performance modelling and simulation, the
effects of our new k-block compute policy in future work. We believe that there
is much greater potential for improved performance with problem configurations
not supported by LU, namely: problems where Nz is significantly larger than
Nx or Ny, in which the cost of the first message reaching the last processor
is amortized; and problems where computational cost far outweighs that of
communication.

7. Device Fission

Although a multi-socket CPU node can be treated as a shared memory system,
it is arguably unwise to do so in this case; a platform-agnostic implementation
such as ours makes no consideration of the system’s memory hierarchy and is
therefore unlikely to exhibit good memory behaviour. More specifically, due
to the fact that our OpenCL implementation has no control over the order in
which work-groups and work-items are executed, nor the CPU cores to which
they are allocated, it cannot guarantee that the set of work-groups processed
by any given core will exploit either temporal or spatial cache locality.

An officially recognised extension to OpenCL known as device fission may
go some way towards solving this problem, by allowing the runtime to “fission”
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Figure 8: A dual-socket, hex-core node fissioned into (a) two sub-devices of six compute units;
and (b) four sub-devices of three compute units.

a single device into multiple sub-devices. This extension – which is supported
by the AMD and Intel SDKs, but not by the NVIDIA CUDA SDK – grants an
OpenCL application the ability to assign work to specific cores.

In keeping with our policy of making only minimal changes to source, our
implementation couples device fission with the existing MPI parallelism; instead
of running one MPI task per node as before, we run one MPI task per created
sub-device. This setup is demonstrated graphically in Figure 8 for the dual-
socket, hex-core nodes present in Sierra. The advantage of this approach is that
the only new code required is a simple check of whether fission is to be used in a
given run, detection of the number of sub-devices to create, and the assignment
of sub-devices to MPI tasks based on rank. As such, we argue that it is a logical
way to add support for device fission into an existing MPI-based code.

The results in Table 6 show the effects of using two different device fission
configurations in LU. We provide benchmarked execution times for all three of
the k-block depths previously considered, and all experiments were run using
the AMD SDK and the original k-block compute policy.

For a k-block value of 1, device fission provides significant performance im-
provements. The reader is reminded that without fission, the OpenCL code
paired with the AMD SDK gave a runtime of 1158 seconds on 24 cores; the equiv-
alent numbers for 2-way and 4-way fission are 568 and 394 seconds (speedups
of 2x and 2.9x) respectively. It should also be noted that for matching core
counts, the 4-way fission is always faster than the 2-way. This trend suggests
that a 6-way or even 12-way device fissioning may give better performance still,
with the domain decomposition across processors tending towards the default
decomposition used by the FORTRAN code – unfortunately, due to the restric-
tion that LU must be run on a number of devices that is a power of two, we were
not able to investigate this further. For a k-block value of min(Nx/Px, Ny/Py),
execution times are often lower with device fission than without, but the per-
formance improvement is modest. For a k-block value of 162, execution times
are higher, but this is to be expected; due to the increase in the number of
OpenCL devices and MPI tasks, the time that each device spends waiting on
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Configuration 1: 2-way Device Fission

Processor MPI
kB = 1 kB = min

(
Nx

Px
,
Ny

Py

)
kB = Nz

Cores Ranks

24 4 568.56 161.13 180.23
48 8 397.41 106.72 144.61
96 16 276.68 83.06 118.13
384 64 123.75 34.76 82.85

Configuration 2: 4-way Device Fission

Processor MPI
kB = 1 kB = min

(
Nx

Px
,
Ny

Py

)
kB = NzCores Ranks

12 4 622.27 257.45 302.46
24 8 394.63 161.83 241.70
48 16 250.84 106.30 167.14
192 64 100.71 46.42 97.51

Table 6: Runtimes (in seconds) for two device fission configurations.

communication is higher.
We acknowledge that there are likely to be some overheads introduced by

device fission, and that these may grow as the number of sub-devices created
increases. Each MPI task will consume additional system resources (compared
to a “pure” MPI implementation) to manage the task queue for its sub-device,
and there may be other scheduling conflicts between threads created and man-
aged by the OpenCL runtime. Specifically, it is unknown whether device fission
guarantees that the affinity of a created sub-device will remain fixed, or whether
it is possible for multiple MPI ranks to be assigned the same subset of cores.
We intend to investigate alternative methods of using device fission, including
n-way fissioning in nodes of n cores and using a single MPI task to manage a
set of several sub-devices, in future work.

Nonetheless, the results in this section suggest that device fissioning can be a
simple and effective way of improving the performance of hybrid MPI/OpenCL
applications on densely packed CPU nodes – with minimal changes to source.

8. Discussion

8.1. Compiler Improvements

One of the key differences between OpenCL and native programming environ-
ments is that calls to OpenCL functions are made by way of a library. The fact
that the operation of these functions is not necessarily defined until runtime
restricts the optimisation freedom of the host compiler. Our results show that
the IPO performed by the Sun Studio compiler has a considerable impact on
performance, and this is exactly the sort of optimisation that will be difficult to
employ for OpenCL code.

However, we do not see any reason that a hardware manufacturer supporting
OpenCL could not produce a compiler that examines both the host code and
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OpenCL code at compile time to produce a single, platform-specific binary.
Although this would prevent said binary from being portable across different
hardware, this is unlikely to be an issue for HPC – the fact that there is one
source that is relatively easy to maintain may be much more important than a
platform-agnostic binary. The makeup of a given supercomputer is fixed, and
the hardware that is available in each node is likely to be known to a user at
compile time. Such a compiler could potentially bring better performance to
OpenCL codes.

8.2. Single Source Methodology

We acknowledge that the approach to maintaining a single-source application
presented here is not guaranteed to work in every case. The performance gap
between a legacy application and a näıve OpenCL implementation will be highly
dependent upon the extent to which the original code was optimised, and re-
designing an inherently serial application to target multiple parallel architec-
tures will itself incur some cost. Further, we note that there will be particular
areas of large codes for which it is necessary to maintain separate platform-
specific source code for algorithmic reasons, or common functions (e.g. FFTs,
matrix multiplication) for which highly optimised and platform-specific libraries
are desirable.

However, we believe that the methodology demonstrated here is a simple
way of achieving acceptable levels of performance portability across different
architectures and that an approach such as ours will be well suited to many
massively parallel workloads.

9. Conclusions

There is considerable interest in the use of accelerator-based architectures in
high performance computing, not least because they promise high levels of per-
formance at low cost. This paper supports this work by reporting on the first
hybrid MPI/OpenCL implementation of LU, an application-level benchmark
from the NPB Suite.

We report on the design of a single-source, platform agnostic code, and in
particular on the performance impact of memory layout and work-item/work-
group distribution strategies. We demonstrate that a poorly chosen value for
either of these parameters can lead to up to a 12.9x decrease in performance,
and selecting the worst value in both cases can cause a slowdown of as much
as 15.5x. The use of k-blocking is shown to improve performance of wavefront
codes utilising a SIMD programming model by up to 8x on CPUs and 12.8x on
GPUs; alternatively, the use of 4-way device fission on CPUs gives a speed-up
of 3x.

Our OpenCL implementation is competitive with native FORTRAN 77 and
CUDA implementations running on the same hardware, performing 1.3–1.5x
slower on a single node. This performance gap widens at scale due to differences
in communication behaviour and the wavefront algorithm employed across MPI
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ranks. Whether or not this performance compromise is acceptable is open to
debate, but will ultimately be decided by HPC sites; it is not simply a question
of absolute performance, but one of time, money and protecting investment.

The platform agnostic-approach to HPC code development described here
recognises key differences between architectures, and dictates that these differ-
ences are accounted for during development. However, the approach allows for
such changes to be made incrementally, and to a single source, without the
need to maintain completely separate code-paths for each platform. It therefore
represents a productive and forward-thinking approach to HPC code develop-
ment, offering a middle-ground between (i) focusing development on a single
architecture today, hoping that the resulting code will execute effectively on
future hardware; and (ii) potentially wasting considerable development effort
on writing efficient code for each new hardware offering.
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