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Abstract

Mutations of human leucine-rich glioma inactivated (LGI1) gene encoding the epitempin protein cause autosomal dominant
temporal lateral epilepsy (ADTLE), a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the
transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved
in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed
of repeated structural units, known to mediate protein-protein interactions. A three dimensional in silico model of the two
epitempin domains was built to predict the structure-function relationship and propose a functional model integrating
previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible
arrangement between the two domains and identifies a possible ADAM protein binding site in the b-propeller domain and
another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could
mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a
dynamic way, by binding proteins at different times. The model was also used to predict effects of known disease-causing
missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface
regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within
the cell by quality control mechanisms or by altering interactions required for the secretion process.
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Introduction

The human leucine rich, glioma inactivated 1 (LGI1; GeneID

9211; MIM# 604619) gene has been linked to two different

clinical phenotypes: malignant progression of glioma and autoso-

mal dominant lateral temporal epilepsy (ADLTE; MIM#
600512), a rare familial partial epilepsy syndrome. This gene has

been shown to be frequently downregulated in malignant gliomas

and to regulate invasiveness of some glioma cell lines [1] by driving

the expression of matrix metalloproteinases through the ERK 1/2

pathway. These findings suggest that LGI1 may serve as a tumor

metastasis suppressor gene [2].

ADTLE is an inherited epileptic syndrome characterized by

focal seizures with predominant auditory symptoms likely

originating from the lateral temporal lobe cortex [3,4]. Mutations

causing ADLTE were identified in the LGI1 gene by positional

cloning [5,6]. To date, over 25 mutations have been reported,

resulting in either protein truncation or single amino acid

substitutions [7], but about half of the ADLTE families have

no LGI1 mutations [3]. LGI1 is mainly expressed in neurons [6,8]

and shows no similarity to known ion channels. The predicted

structure of the LGI1 protein comprises, starting from the N-

terminal end, a signal peptide, four leucine-rich repeats (LRR)

flanked on both sides by conserved cysteine clusters [9], and

seven copies of a repeat of about 45 residues, named EPTP [10]

or EAR [11], probably forming a b-propeller structural domain

[12]. Both LRR and b-propeller domains mediate protein-

protein interactions, each motif defining a distinct family of

proteins [12,13].

Several different functions and molecular partners have been

attributed to LGI1. A recent study provided evidence that

LGI1 is associated with a post-synaptic complex containing

PSD95 and ADAM22, a receptor associated with the post-

synaptic membrane [14]. Through specific binding to AD-

AM22, LGI1 was shown to participate in the control of

synaptic strength at excitatory synapses, whose malfunction

may result in epilepsy [14]. Mouse models developed more

recently have implicated LGI1 in neuronal maturation

processes. In one study, it was shown that LGI1 affects

postnatal maturation of glutamatergic synapses, a process

involving ADAM22, and mediates dendrite pruning so that

LGI1 mutations would result in persistence of immature,

untrimmed, dendritic arbor [15]. On the other hand, another

study showed that LGI1 preferentially interacts with ADAM23

and through this receptor, which is not located at postsynaptic

density, stimulates neurite outgrowth in vitro and dendritic

arborisation in vivo [16]. Finally, analysis of LGI1 knock-out and

transgenic mice suggested that LGI1 may act as a trans-
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synaptic protein connecting the pre-synaptic ADAM23 with the

post-synaptic ADAM22 receptors [17].

To help understand the three dimensional (3D) conformation of

LGI1, its binding properties, and ultimately its function(s), we

developed an in silico model of the protein structure and analysed

the amino acid sequence of the LRR and b-propeller LGI1

domains as well as their phylogenetic relationship. The models

were used to assess the significance of known missense mutations.

Analysis of possible interaction mechanisms with other proteins

suggests a conserved common binding site for members of the

ADAM protein family.

Materials and Methods

Sequence feature analysis
We employed an integrative bioinformatics approach combin-

ing sequence and domain database searches with the consensus

from predictions of protein structural features. The LGI1 sequence

(accession code: O95970) was downloaded from the SwissProt/

TrEMBL database [18]. Homologous sequences were retrieved

and selected with BLAST [19] from the SwissProt database using

standard parameters and visualized using Jalview [20] and ESPript

[21]. The secondary structure of LGI1 was predicted using the

consensus method [22]. Prediction of intrinsic disorder was

performed using Spritz [23] and the presence of signal peptides

assessed with SignalP [24]. Repetita [25] was used to predict

repeat periodicities.

Phylogenetic analysis
In order to reconstruct the phylogeny of the LGIs, 105

vertebrate and one branchiostomid epitempin sequences have

been automatically extracted from the available databases using

BLAST [19] searches. Full-length amino acid sequences have been

recovered from the corresponding nucleotide mRNA or genomic

sequences. Multiple alignment was constructed with CLUSTALW

[26]. The final alignment has been manually refined at the

variable N-terminus and used in the subsequent analysis.

A preliminary quartet puzzling analysis has been performed

with the Treepuzzle program [27,28] to test whether a phylogenic

approach could be applied to the original data set. Phylogenic

studies have been performed according to the maximum likelihood

(ML) with the PHYML 2.4 program [29]. The JTT substitution

matrix [30] was used during reconstruction, whereas site

heterogeneity was modeled with a four-category C distribution.

Nonparametric bootstrap resampling (BT) [31] was performed

with 1,000 replicas to test the robustness of the tree topology. The

phylogenetic tree was visualized with the Fig Tree 1.1.1 program

(http://tree.bio.ed.ac.uk/software/figtree/).

Alignment construction
Structural templates for the two LGI1 domains were found

using MANIFOLD [32] and MetaServer [33]. Initial alignments

were generated through systematic parameter variation from an

ensemble of similar alternatives [34]. Given the problematic

nature of repeated sequences, the best initial alignment was used as

a starting point only. Manual refinement consisted in a method

similar to ABRA [35] and Kajava’s method [36], with knowledge

about the approximate location and number of repeats serving to

identify the true repeat boundaries. Knowledge of key residues and

secondary structure was used to anchor the aligned repeats.

Molecular modeling
Models for the two LGI1 domains were constructed using the

HOMER server (URL: http://protein.bio.unipd.it/homer/). The

server uses the conserved parts of the structure to generate a raw

model, which is then completed by modeling the divergent regions

with LOBO, a fast divide and conquer method [37]. Side chains

are placed with SCWRL3 [38] and the energy evaluated with

FRST [39]. The final models were subjected to a short steepest

descent energy minimization with GROMACS [40] to remove

energy hotspots before calculating the electrostatic surface with

APBS [41]. Evaluation of model quality was performed with

QMEAN [42,43]. The structure is visualized using PyMOL

(DeLano Scientific, URL: http://pymol.sourceforge.net/). Posi-

tion-specific conservation scores for each amino acid were

calculated with ConSurf [44].

Mutation analysis
Amino acid substitutions have been mapped on the LRR and

EPTP domain models and their position evaluated by manual

inspection. Four computational methods were used to predict the

stability change of the structure caused by these mutations. While

I-Mutant 2.0 [45] and MuPro [46] both utilize support vector

machines or neural networks to predict the effect of the

substitution on protein stability, Eris [47] and PoPMuSiC v2.0

[48] calculate mutational free energy changes of the protein based

on its 3D structure.

Results and Discussion

Given the fragmented knowledge present in the literature, we

performed a full analysis of the LGI protein family starting from

the protein sequence. In the following, we will address each step

from phylogeny to sequence and structural analysis all the way to

new functional hypotheses.

Phylogenetic analysis
The phylogenetic reconstruction was performed using 105

Vertebrate (Chordata; Chraniata) sequences. An additional

sequence of Branchiostoma floridae (Chordata; Cephalochordata)

has been included in the analysis. The obtained reconstruction

reported in Figure 1 highlights the presence of 4 groups, named 1,

2, 3 and 4. The distribution pattern of LGI family transcripts in

the adult mouse brain [49] highlights the tissue specificity of group

1 (see Figure 1).

Group 1, 2 and 3 present the fish sequences (blue squares) in a

basal position, followed in group 1 and 3 by amphibian and bird

sequences (red and green arrows). The mammalian sequences

present an apical position in all the groups. The Ornithorhynchus

anatinus protein shares a common node with chicken in group 1

and both are basal to the other mammalians. The phylogeny of

LGI1 reveals an early duplication of the gene followed by two

other independent duplications as already reported by Gu et al

[50], but, in contrast to these authors, the phylogeny obtained with

a larger dataset indicates a closer relationship between the LGI3

and LGI4 sequences as opposed to LGI1 and LGI4.

Sequence domain organization
We defined boundaries of each domain in the LGI1 sequence

(Figure 2). The first 35 N-terminal residues contain the signal

peptide responsible for its secretion. A cleavage site is also

predicted by SignalP in this region. The N-terminal part of the

protein from residues 41 to 243 has about 30% sequence identity

with LRR domain family proteins, while the C-terminal region

between residues 245–552 contains the EPTP repeats. The two

domains are also present in all human LGI proteins (LGI1, LGI2,

LGI3, LGI4) and conserved across orthologs (Figure 2). Since a

structure of LGI1 is not available, a structural analysis was

Computational Model of the LGI1 Protein
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conducted separately for the two domains as they have different

characteristics.

Homology modeling of LRR domain and sequence to
structure mapping

The LRR domain was predicted using MANIFOLD. It

presents two terminal variable regions, LRR-NT and LRR-CT,

reported to have high similarity to those in Nogo-66 receptor

(NgR) [51] and four repeats between them. Recently, we

presented a preliminary model of the LRR domain based on the

NgR structure [7]. Modeling was conducted in two separated steps

on the N- and C-termini, which were combined successively.

Since the NgR protein has a longer LRR-CT and 8 repeats, the

analysis of repeat periodicities with Repetita was performed to

identify the correct number of LRR repeats in LGI1. The program

predicts 4 motifs of 24 amino acids length and the template search

selected the structure of the third LRR domain of Drosophila

melanogaster SLIT (PDB code:1W8AA) [52] as the best template

with a 32% sequence identity and the same number of repeats. In

this way, the curvature of the LRR domain is more accurately

modeled and the residues did not change in relative position as the

new model is still based on the alignment from our previous work

(Figure 3) [7]. Comparison of conserved residues and secondary

structures of hLGI1 and dSLIT revealed many correspondences

in the alignment. The alignment was used to build the model, with

only two gaps located in the LRR-NT and in the first LRR repeat

which were modeled with LOBO. LGI family members and their

orthologs differ exactly at these positions. This variability may

indicate the presence of a specialized region for the specific LRR

domain. Evaluation of model quality by QMEAN indicates that

the regions of poor quality are located at the N- and C-terminal

portion of the structure (Figure S1). However, the N- and C-

terminal caps of the LRR domain present two disulfide bonds

(C42–C48 and C46–C55) at LRR-NT and two disulfide bonds

(C177–C200 and C179–C221) at LRR-CT which confer stability

to the structure. Furthermore, the whole model has good quality

as indicated by a QMEAN score reflecting predicted model

reliability of 0.6 (range 0,…,1; where 0 is worst and 1 best). As

expected, the repeated model core presents all hydrophobic

residues forming the consensus sequence in the LRR domain

internally buried and polar residues exposed to the solvent

(Figure 3). The repeats stack in a parallel arc, allowing to partition

the surface into four parts. The concave face, consisting of parallel

b-strands, comprises a strong conserved region, while the convex

face formed by a tandem arrangement of polyproline II plus b-

turns has only localized regions of conservation. We can also

Figure 1. Evolutionary relationship among the LGI vertebrate amino acid sequences. The figure shows the best likelihood tree
(2lnL = 221148.01332) obtained using the PHYML program. The length of the branches represents the number of reconstructed change of state over
all sites (bar represents 0.2 substitutions per site), bootstrap values are reported at the nodes. Blue squares indicate the fish sequences whereas the
green and red arrows respectively the amphibian and bird sequences. An asterisk indicates the Ornithorhynchus anatinus protein.
doi:10.1371/journal.pone.0018142.g001
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distinguish two other surfaces formed by two arrays of loops: the

C-terminal side, which contains the loops linking the C-terminal

end of the b-strands to the N-termini of the helices, and the C-

terminal side, which forms a negative electrostatic surface (Figure 3

and Figure 4). Conserved negatively charged residues in LRR

domains have been found involved in specific hydrogen bonds

with NH groups of the backbone and considered important for

structural integrity [36]. Other solvent-exposed aspartic acid

residues have been found to contribute to the twist of the overall

LRR structure [53] as in the Yersinia pestis cytotoxin YopM [54]. In

the LRR domain of LGI1 the negatively charged residues

contributing to the negative electrostatic surface are all solvent

exposed suggesting that they may be important for protein

function.

Figure 3. LRR repeat overview. A. Consensus sequence repeat pattern of the LRR domain. Secondary structure is drawn on the top part of the
alignment: an arrow represents the b-strand and a ribbon the a-helix connected by curved lines (loops). B. Schematic diagram of repetitive structural
units in LGI1 protein. Conserved positions of the consensus pattern are reported on the diagram. Coloured pink spheres for buried residues and blue
spheres for exposed residues.
doi:10.1371/journal.pone.0018142.g003

Figure 2. Alignment of LGI family members and domain organization. Multiple alignment of representative homologs in the LGI family.
Species are abbreviated as follows: Hs = Homo sapiens; Mm = Mus musculus; Rn = Rattus norvegicus; Dr = Danio rerio; Xt = Xenopus tropicalis; Cf = Canis
familiaris. The LGI1 domains and secondary structure are shown on the top part. Missense mutations analyzed in this paper (triangles) and putative
glycosylation sites (stars) are indicated on the bottom of the alignment. Red lines are used to connect cysteine residues that form disulphide bridges
in the structural model. acc: accessibility level from DSSP (black = high and white = low).
doi:10.1371/journal.pone.0018142.g002
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Homology modeling of EPTP domain and sequence to
structure mapping

Staub and co-workers [10] proposed that the EPTP repeats

could constitute a new class of b-sheet repeats, which fold into a b-

propeller structure. The LGI1 b-propeller domain consists of 7

repeats, named EPTP1-7, each comprising a small four-stranded

antiparallel b-sheet, whose strands are labeled A to D from N- to

C-terminus. Repetita [25] was used to define the boundaries of

repeats in the EPTP domain. We built a multiple alignment at the

level of single repeats to define the EPTP repeat consensus

sequence (Figure 5). In order to classify LGI1 into a specific

protein domain family, we searched for the presence of sequence

motifs characteristic for different families of b-propellers [55]. The

WD motif located at the end of b-strand C is conserved in repeats

1 and 6. In particular, the WD motif at the first repeat is conserved

among all LGI proteins. In other blades, tryptophan and aspartic

acid are replaced by amino acids with similar biochemical

properties (Figure 2). We applied the Metaserver fold recognition

method and selected the WD domain structure of human WD

repeat protein 5 (WDR5) (PDB code: 2GNQA) as template, which

presents a ‘‘velcro’’ closure and ca. 11% sequence identity. In

many b-propellers each sequence repeat contains the first three

strands of one blade and the last strand of the next. This is

apparently also the case for LGI1. We manually curated the

alignment between template and LGI1, keeping in consideration

the secondary structure prediction. The gaps were closed with

LOBO and fell almost all in loops that are longer in LGI1 than

WDR5. Evaluation of the model quality, yielding a QMEAN score

of 0.4, reveals that the most high quality regions comprise the core

of the propeller formed by circular b-sheets, while the loops

forming the bottom and top surface show poorer quality (Figure

S1). These regions differ more from the template due to the

presence of several insertions/deletions. However, we can suppose

that the overall model corresponds to the real structure of LGI1,

since the protein core is stabilized by hydrophobic interactions.

The modeled structure also presents a likely disulfide bridge

between Cys260, in the first blade, and Cys286, in the second

blade, which would confer further stability to the overall fold.

The LGI1 structural model has been evaluated for both

conserved regions and electrostatic surface (Figure 6). Using the

alignment of different sequence families retrieved by BLAST,

ConSurf does not reveal any particular conserved region. A

conserved feature in all modular sheets from different propeller

domains is a set of positions with non-polar side chains, generally

non solvent accessible, located in the central part of the strands.

Since the major determinant for b-propeller assembly is the

Figure 4. LRR model, structural analysis. A Cartoon of the LRR model coloured from N-terminal (blue) to C-terminal (red); B. Electrostatic surface
(negative charge in red and positive charge in blue); C. Position of missense mutations, mutated residues are shown as spheres with structural
mutations indicated in red; D. Conserved surface with ConSurf colour code from unconserved (cyan) to strictly conserved (magenta).
doi:10.1371/journal.pone.0018142.g004
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packing of these residues, amino acids in these positions are free to

be replaced by other amino acids with similar biochemical

properties [12]. Interestingly, using only sequences of different

LGI family members to build the alignment, ConSurf identifies a

highly conserved circular region in the top face of the b-propeller.

On the bottom face of the protein there are also some conserved

sites that correspond to the WD motif and electrostatic surface

analysis identifies an extended positively charged region (Figure 6).

The top surface is formed by loops connecting strand D of one

blade and strand A of the next (DA loops) and loops connecting

strand B with strand C in the same blade (BC loops). The bottom

surface is formed by loops connecting strand C and D of a blade

(CD loops) and loops connecting strand A and B (AB loops)

(Figure 5). The alignment of WD repeat sequences allowed the

identification of regions of variable length. In some proteins, one

or more of these variable regions can be long enough to form an

independently folded domain while other insertions form a reverse

turn or loop that protrudes from the bottom of the b-propeller

[56]. The LGI1 b-propeller has an insertion in the AB loop of the

fourth repeat, not presents in paralogous LGI members, that

protrudes from the bottom surface (Fig. 2 and 7). This loop may

contain a functional motif that contributes to the functional

specificity of LGI1.

Interactions
LGI1 presents two domains that are known to form multi-

protein complexes [12,57]. It is reasonable to suppose that LGI1

mediates interactions between different proteins using different

surfaces in the two domains. The first step is to understand how

the two domains are arranged together. As they present two

Figure 5. EPTP repeat overview. A. Consensus sequence repeat pattern of EPTP domain. h = hydrophobic residue; p = polar; a = aromatic residue;
t = tiny residue. Secondary structure is drawn on the top part of the alignment. Arrows represent b-strands connected by curved lines (loops). Loops
forming the top surface are coloured in green, while those forming the bottom surface are coloured in blue. B. Schematic diagram of repetitive
structural units in the LGI1 protein. Conserved positions of the consensus pattern are reported on the diagram. Pink and blue spheres indicate buried
and exposed residues respectively.
doi:10.1371/journal.pone.0018142.g005
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Figure 6. EPTP model, structural analysis. A. Top (up) and bottom (down) view of electrostatic surface of EPTP model (negative charge in red
and positive charge in blue); B. Top (up) and bottom (down) view of the conserved surface of EPTP model with ConSurf colouring from unconserved
(cyan) to strictly conserved (magenta). C. Cartoon of the EPTP model in top and lateral view with ConSurf colouring. Spheres indicate residues found
mutated in ADTLE patients with structural mutations indicated in red.
doi:10.1371/journal.pone.0018142.g006

Figure 7. EPTP ligand bindind site. Top (A) and lateral (B) view of the hypothetical peptide binding site on the EPTP model. The position of a
hypothetical peptide (green spheres) was obtained by superimposition of the EPTP model with the WDR5 structure (PDB code 3EMH). Note that the
insertion specific for LGI1 ( in yellow) maps on the bottom face of the domain.
doi:10.1371/journal.pone.0018142.g007
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surfaces of opposite charge, it can be expected that an attraction

between them exists. However, they are not positioned face to

face due to the constraint imposed by the short loop connecting

them. Instead, if we position the EPTP domain with the top face

resting on a plane, the LRR moves laterally above the plane of

the bottom surface exposing the conserved b-sheet (concave

surface) (Figure 8A). Even if some LRR proteins use alternative

surfaces for ligand binding, it is generally thought that the

concave surface of the LRR structure contains the ligand-binding

site [58]. LGI1 could interact with one protein through the

concave LRR interface and with another protein through the top

surface of the EPTP domain. It has been previously observed,

that the b-propeller structure creates a stable platform that can

form complexes reversibly with several proteins, using three

potential interaction interfaces: top, bottom and circumference

[56,59].

The top surface appears to be a specialized region for LGI

members because it is particularly conserved across them. The

superimposition of LGI1 and the complex of WDR5 with its

ligand (PDB code: 3EMH) allowed us to map the putative

binding site of a ligand on the top surface of the EPTP domain

(Figure 7). LGI1 has been shown to bind through the b-propeller

domain to both ADAM22, ADAM23 and ADAM11, although

with different affinities [60]. On the other hand, LGI4 is known to

interact with ADAM22 [61]. Since the four members of the LGI

family have a common phylogenetic origin (Figure 1), it is

reasonable to expect that interactions between various compo-

nents of the LGI and ADAM protein families likely occur

through the same, structurally conserved LGI binding site on the

top EPTP surface (Figure 8A).

Role of LGI1 N-Glycosylation
It is well known that the LRR and EPTP domains in LGI1 are

N-glycosylated due to their extracellular localization and Sirerol-

Piquer et al. [62] demonstrated that N192Q (LRR-CT, conserved

across all LGI members), N277Q (conserved across some LGI1

and LGI2 orthologs) and N422Q (only conserved across

mammalians) are sites of N-linked glycosylation in LGI1

(Figure 2). Glycosylation could be essential for proper function

of the protein since it can dramatically alter surface properties and

thereby affect ligand binding. The effect of the potential N-

glycosylation sites have been evaluated on the secretion of LGI1

[62]. Compared to a normal protein, the triple mutant was not

secreted and secretion of the N192Q mutant was severely

attenuated.

To understand the potential role of LGI1 glycosylation we

analyzed their distribution over the domain surfaces. In our

model, N192 on the LRR domain and N277 and N422 on the

EPTP domain are all solvent exposed, confirming the overall

correctness of the model. In the LRR domain, the glycosylation

site maps to the N terminal side of the LRR-CT portion, while in

the EPTP domain, the glycosylation sites map to the b-strand D of

the first and fourth blades on the circumference surface. These

findings indicate that, while glycosylation modulates the surface

properties of LGI1, the putative ligand binding sites are located in

non-glycosylated regions.

However, the glycosylation of N192 is supposed to have a

mechanistic role. The presence of an oligosaccharide in this

position indeed likely interferes with attraction of the charged

surfaces present in the two domains, possibly preventing a too

close interaction between them. From this point of view, N-

Figure 8. Hypothetical structural assembly and interactions. A. LGI1 is represented as the association of LRR (green arc) and EPTP (violet
trapezoid) domains. LGI1 interactions with ADAM proteins likely occur on the top surface of the EPTP domain. B. The two hypothetical ways by which
LGI1 could mediate the trans-synaptic interaction between presynaptic ADAM23 and postsynaptic ADAM22.
doi:10.1371/journal.pone.0018142.g008
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linked glycosylation also appears important for correct protein

folding.

In silico analysis of missense mutations
Recently, we have reviewed a total of 25 LGI1 mutations

reported in the literature and analyzed their effects on secretion

and on the structure using a preliminary model of the LRR

domain [7]. Here we present the analysis of all 21 missense

mutations found as to date in the LGI1 gene from subjects with

familial or sporadic ADLTE, including the recently published

p.R407C mutation (Striano et al., in press), the two p.I122T and

p.C179R mutations (submitted) and the unpublished p.T380A

mutation. Twelve variants affect amino acid residues located in the

LRR domain while nine are in the EPTP domain (Figure 4 and

Figure 6). The analysis of structural and/or functional effects of

these two variant groups has been conducted separately using our

models of the LRR and EPTP domains (Table 1). Note that

truncating mutations were excluded from our analysis, as no

prediction is possible from the structure beyond noting probable

protein misfolding.

LRR mutations
Among the twelve variants occurring in the LRR domain, one

involves residues on the second LRR repeat, four on the third

LRR repeat, two on the fourth LRR repeat and five involve

residues at the N- and C-terminus. Some of the considered

substitutions mapped at the terminal parts of the LRR domain are

of particular interest since they modify conserved cysteine residues

flanking the LRR repeats forming disulfide bonds (Figure 2).

Substitution of these residues inevitably causes a structural

destabilization of the LRR domain. Even if using only protein

sequence information, I-Mutant predicts Cys42 and Cys46 as

stabilizing, but computational methods are not efficient in

predicting protein stability changes due to loss of a disulfide

bridge. All LRR variants are predicted to be destabilizing by at

least three methods, meaning that all variants could have a

negative structural change (Table S1). During initial analysis of

LRR variants, we observed that it was possible to distinguish two

groups of variants on the basis of their effect on structure or

function. The group of structural mutations includes critical

mutations of the conserved cysteine residues (p.C42R, p.C42G,

p.C46R, C179R and p.C200R), and four mutations of hydropho-

bic core residues to polar/charged residues (p.A110D, p.I122K,

p.I122T, p.L154P). These mutations occur at conserved positions

in the LRR repeat alignment having a structural role in folding the

LRR domain (Figure 3 and Figure 4). The second group

(p.E123K, p.R136W, p.S145R) alter residues located at the

protein surface which have a potential to maintain the local

structure, the details of which may be crucial for interactions with

protein partners. Since all of these mutants lost the ability to be

secreted, we hypothesize that a change on the surface, if not

causing misfolding, should interfere with the secretion process, e.g.

hampering attachment of the protein to the membrane.

Evaluation of the electrostatic surface of these three mutants

revealed that p.E123K and p.S145R affect the conserved concave

surface formed by parallel b-strands of the LRR domain (Figure

S2). Variant p.R136W has subtle effects on the electrostatic

potential of the convex surface (Figure S2), suggesting this could be

another protein binding site.

EPTP mutations
Nine variants affect the EPTP domain and appear distributed

through all repeats without any prevalence for a particular one. All

mutations except one (p.S473L) were predicted to be destabilizing

by at least two of the computational methods used (Table S1). We

also distinguish between structural and functional mutations for

the EPTP domain. Three mutations are classified as structural

variants (p.I298T, p.F318C, p.E383A), as they affect conserved

positions in the repeat alignment and map into the space between

the two b-sheets of repeats 2 and 3 (Figures 4 and 5). Indeed,

residues forming the consensus sequence of propeller repeats are

responsible for the hydrophobic contacts at the inter-sheet cores. It

is the packing of these residues that is a major determinant for the

assembly of the propeller fold [12]. The variant p.L232P located in

the loop between repeats 1 and 7 also has a structural role as it

forms part of the Velcro closure conferring stability to the b-

propeller (Figure 5).

Interestingly, other variants (p.T380A, p.R407C, p.V432E,

p.S473L, p.R474Q) occur at residues located in the DA and BC

loops that form the top surface of the b-propeller (Figure 5 and

Figure 6). Mutations at the top surface have a potential to interfere

with interactions occurring between the b-propeller and molecules

such as the known LGI interacting ADAM proteins. In agreement

with this, we recently found that the p.R407C mutation does not

inhibit protein secretion, probably because it does not perturb the

domain fold (Nobile et al., submitted for publication). Therefore,

this mutation likely affects the functional properties of the protein

binding site on the top surface and manifests its effects

extracellularly.

Functional model
Although a single transmembrane domain was initially

predicted in its central part [63], the LGI1 protein does not

contain any transmembrane domains and is presumably secreted

into the synaptic space [8]. Fukata et al. [17] have recently

proposed a model that assigns to LGI1 a role of trans-synaptic

adaptor connecting the post-synaptic ADAM22 and the pre-

synaptic membrane receptor ADAM23. However, since binding of

LGI1 with ADAM proteins is mediated by the EPTP domain [64]

and this interaction likely occurs only through the conserved

EPTP bottom surface (see above), it is unlikely that LGI1 is

capable of interactions with two ADAM proteins simultaneously.

Thus, rather than forming a stable link between two ADAM

receptors across the synaptic cleft, LGI1 may represent a dynamic

link which transports a signal from the pre- to the post-synaptic

membrane. In this scenario, binding of a partner protein with the

LRR domain removes the EPTP domain from its stable

interaction with one ADAM protein and allows the movement

of LGI1 to the opposite side of the synapse (Figure 8).

However, it has also been suggested that LGI1 is secreted as an

oligomer [14]. Therefore, another possible scenario is that LGI1

could form a dimer, in which the LRR domains of two subunits

interact by their concave surfaces connecting two ADAM proteins

at opposite sides of the synapse (Figure 8). This supports the

experimental findings that demonstrated LGI1 connecting the pre-

and postsynaptic machinery through ADAM22 and ADAM23

[17].

The hypothesis concerning LGI1 can also be reasonably

extended to other LGI family members. As supported by our

phylogenetic analysis and conserved surface residues, binding of

ADAM family proteins by LGI is probably a conserved feature.

The main difference between LGI1 and other family members

appears to be the precise arrangement between the LRR and

EPTP domains, as suggested by the presence of a unique insertion

on the bottom surface of EPTP in the LGI1 sequences. The effect

of this insertion may be a reduced binding affinity for the LRR

domain and thus an increased propensity for interaction with

other proteins and/or LGI homodimerization. This adaptation

Computational Model of the LGI1 Protein
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could contribute to explain the unique tissue distribution of LGI1

compared to other family members [49].

Conclusions
An important task of this study was to uncover the relationship

between amino acid sequence, 3D structure, and putative

functions of the LGI1 protein. Evolutionary sequence analysis

revealed the presence of peculiar sequence stretches for each LGI

protein, e.g. LGI1 contains a unique insertion on the fourth blade

facing the bottom surface of the propeller. Using a structure-based

sequence profile we identified a pattern among the structural units

and obtained the models which validated several underlying

assumptions, including the inward orientation of conserved non-

polar residues and solvent exposure of N-glycosylated residues.

The three-dimensional model of LGI1 domains showed how the

N- and C-terminal regions are intimately related, revealing a

possible mechanism by which LGI1 mediates the trans-synaptic

interactions between ADAM proteins. The LGI1 protein contains

Table 1. Missense mutations overview for the LGI1 protein.

Mutations dbSNP Position Structural/functional effects Secretion

p.C42R (8) LRR-NT Precludes disulfide bridge formation with C48. NT

p.C42G (8) LRR-NT Precludes disulfide bridge formation with C48. NT

p.C46R (8) rs104894166 LRR-NT Precludes disulfide bridge formation with C55. Negative

p.A110D (8) LRR2
Core

The mutation leads to three neighboring Asp
with possible electrostatic repulsion.

Negative

p.I122K (8) rs119488100 LRR3
Core

Insertion of an charged aminoacid (Lys) alters
the protein fold.

Negative

p.I122T (8) LRR3
Core

Polar residue inside the hydrophobic core. Possible
alteration of the LRR domain fold.

NT

p.E123K (8) LRR3
Concave surface

The mutation alters the electrostatic surface of a
potential peptide binding site on LRR domain.

NT

p.R136W (5) rs119488099 LRR4
Convex surface

Arg136 forms a salt bridge with Asp109. The
substitution cause the loss of important
interactions with neighboring amino acids,
leaving tryptophan to protrude from the molecule.

Negative

p.S145R (9) LRR4
Concave surface

The mutation alters the electrostatic surface of
a potential peptide binding site on LRR domain.

Negative

p.L154P (6) LRR4
Core

Having two neighboring proline poses a highly
destructive condition.

NT

p.C179R (9) LRR-CT Prevent the disulfide bridge with C241 causing a
misfolding of LRR-CT domain

NT

p.C200R (9) LRR-CT Prevent the disulfide bridge with C177 causing
a misfolding of LRR-CT domain.

Negative

p.L232P (2) rs104894167 EPTP7
Loop D7-A1 (‘‘Velcro’’)

Failure of ‘‘velcro’’ closure. Possible alteration
of the protein fold.

Negative

p.I298T (5) EPTP2
bB2

Polar residue inside the hydrophobic core.
Possible alteration of the propeller fold.

NT

p.F318C (7) rs28939075 EPTP2
bD2
Circumference surface

Position conserved across repeats. Possible
alteration of the propeller fold.

Negative

p.T380A (9) EPTP4
Loop D3-A4
Top surface

Possible alteration of the functional interactions
on the top surface of the propeller.

NT

p.E383A (8) rs28937874 EPTP4
bA4

Loss of contacts with neighboring sheets alter
the correct fold of the domain.

Negative

p.R407C (5) EPTP4
Loop B4-C4
Top surface

Possible alteration of the functional interactions
on the top surface of the propeller.

Secreted

p.V432E (8) EPTP5
Loop D4-A5
Top surface

The substitution lead to three negatively charged
aminoacids. Possible alteration of the local
structural integrity.

NT

p.S473L (9) EPTP5
Loop D5-A6
Top surface

Possible alteration of the functional interactions
on the top surface of the propeller.

NT

p.R474Q (9) EPTP5
Loop D5-A6
Top surface

Possible alteration of the functional interactions
on the top surface of the propeller.

NT

The table summarizes conservation degrees from ConSurf (in parenthesis, range 1–9), positions on the protein and predicted structural and functional effects of
mutations found in ADTLE patients. For some of these mutants, the effect on protein secretion was previously investigated. For a recent review see [7].
doi:10.1371/journal.pone.0018142.t001
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two conserved binding sites at the concave face of the LRR

domain and a circular region on the top surface of the b-propeller

domain.

We also evaluated the effect of missense mutations found in

ADTLE patients on LGI1 protein and we are able to distinguish

between structural and functional mutations, the former poten-

tially causing protein unfolding, while the latter interfere with

partner protein interactions. Previously published experiments

demonstrated that all but one (p.R407C) tested mutants have a

defect on secretion [7] (Striano et al., in press). Thus, we could

hypothesize that the secretion-defective mutant proteins are either

incorrectly folded or have altered electrostatic surfaces, which

could affects LGI1 export. This explains why many LGI1 variants

could not be secreted and opens a question about the mechanisms

involved in the molecular pathogenesis of the disease. On the

other hand, the p.R407C mutation is compatible with secretion,

but rather may exert its pathogenic effect by disrupting

interactions with ADAM proteins. Other functional mutations

may have the same extracellular effect.

Experimental knowledge suggests interactions between LGI1

and ADAM proteins to be mediated by the EPTP domain. We

showed that these interactions likely occur through the EPTP top

surface. Furthermore, based on the assumption that two protein

families usually interact in a similar way, with the same binding

site, we predict all four LGI family members to use this interface to

interact with different ADAM proteins, albeit with different

affinity, in a time and space dependent manner. Finally, we

suggest two alternative molecular mechanisms by which LGI1

connects ADAM receptors across the synaptic cleft.

Supporting Information

Figure S1 QMEAN model quality evaluation. The esti-

mated residue error is visualised using a colour gradient from blue

(most reliable regions) to red (potentially unreliable regions,

estimated error above 3.5 Å).

(TIF)

Figure S2 Electrostatic potential changes on the LRR
surface induced by the E123K, S145R and R136W
mutations.

(TIF)

Table S1 Analysis of LGI mutations with stability
change prediction methods. The computational predictions

were interpreted as stabilizing (S) or destabilizing (D). Stability

change prediction is indicated as a DDG value: I-Mutant2.0

(DDG,0 indicates destabilizing variants), Muprot and PoPMu-

SiC. The protocol used for Eris contains pre-relaxation before

calculating the stability change using the flexible-backbone

method (DDG.0 indicates destabilizing variants).

(XLS)
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