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Abstract

In this thesis, we designed and implemented a crowdsourcing system to annotate
mouse behaviors in videos; this involves the development of a novel clip-based video
labeling tools, that is more efficient than traditional labeling tools in crowdsourcing
platform, as well as the design of probabilistic inference algorithms that predict the
true labels and the workers’ expertise from multiple workers’ responses. Our algo-
rithms are shown to perform better than majority vote heuristic. We also carried out
extensive experiments to determine the effectiveness of our labeling tool, inference
algorithms and the overall system.
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Chapter 1

Introduction

Detecting and classifying animal behavior from video is one of the most interest-

ing challenges facing computer vision researchers. Recent study relies on developing

state-of-the-art action recognition algorithms and applying them to animal behavior

recognition. Although many automatic systems have already demonstrated some suc-

cessful results in recognizing the home-cage mouse, they still perform much poorer

than human annotators. This motivate us to search for alternative human-based

solutions. In this thesis, we explore the method of mice behavior recognition using

the crowdsourcing algorithms. In general, we would like to answer the following two

questions:

1. How can we build an efficient online behaviorial annotation tool?

2. How can we infer the groundtruth if the results we get from online workers are

noisy?

The chapter gives a general introduction to the problem of mice behavior recog-

nition and our solution using the crowdsourcing system. It also covers some recent

work on the topic of behavior recognition, online video annotation, and crowdsourcing

algorithms.
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1.1 Overview

Mouse behavioral recognition plays an important role in comprehensive phenotypic

analysis on both small scale characterization of single gene mutants and the large scale

study of the entire mouse genome[10]. Traditionally, manual annotation is frequently

used to provide accurate behaviorial labels. However, this approach is very expensive

and slow. Recently, thanks to the advances in computer vision and machine learning,

robust systems can be developed to recognize objects[18, 63] and human actions[60].

The use of vision-based approaches is already bearing fruit for the automated track-

ing [57, 9, 73] and recognition of behaviors in insects[38, 32] and animals[11, 40, 40].

More recently, a few computer vision systems for the recognition of mice behaviors

have been developed, including a commercial system (CleverSys, Inc) and several

prototypes from academic groups[46, 70]. Notably, base on a computational model

of motion processing in the primate visual cortex [27, 28], H. Jhuang, at el.[29, 31]

develop a trainable, general-purpose, automated and potentially high-throughput sys-

tem for the behavioral analysis of mice in their home-cage. They also provide a very

large database of manually annotated video sequences of single-mouse behaviors. Be-

sides, X. Burgos-Artizzu, at el.[69] propose a method for the automatic segmentation

and classification of social ”actions” in continuous multiple-mice video, where a novel

trajectory features are used to improve the performance. Nevertheless, these auto-

matic algorithms still perform poorer than human annotators. This motivate us to

search for alternative human-based solutions.

One popular approach is to make use of the vast human resources on the Internet.

Crowdsourcing, the act of outsourcing work to a large crowd of workers, is rapidly

changing the way data are collected. Example projects such as the ESP game[66,

65], the Listen game[17], Soylent Grid[55], Purposive Hidden Object Game[45], and

reCAPTCHA[41] have demonstrated the possibility of harnessing human resources to

solve different machine learning problems. While these methods use clever schemes

to obtain data from humans for free, a more direct approach is to hire annotators

online. Recent web tools such as Amazon’s Mechanical Turk[1] provide ideal solutions
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for high-speed, low cost labeling of massive data. With Mechanical Turk, it is possible

to assign annotation jobs to hundreds, even thousands, of computer-literate workers

and get results back in a matter of hours.

Due to the distributed and anonymous nature of these tools, interesting theoretical

and practical challenges arise. For example, user-friendly web interface need to be

built to ensure online workers are properly instructed and motivated to do high quality

work. Moreover, even we have perfect user interface, the quality of labels obtained

from annotators still varies. Some workers provide random or bad quality labels

in the hope that they will go unnoticed. Even without spammers, annotators with

different expertise can give responses with various accuracies. The standard solution

to the problem of “noisy” labels is to assign the same labeling task to many different

annotators, in the hope that at least a few of them will provide high quality labels or

that a consensus emerges from a great number of labels.

The above challenges become even difficult when the video annotation is con-

cerned. Some of the challenges includes: (1) building web video annotation tools is

much harder than, for example, designing image labeling tools; (2) video labels are

not independent from each other, since they arise from continuous video sequence.

This additional dependency makes the analysis even more complex.

To address these difficulties, we present our study of efficiently crowdsourcing mice

behavior annotation task. Our effort includes two video behaviorial annotation tools

and novel algorithms to aggregate the behaviorial labels for long videos.

1.2 Mice behavior recognition task and datasets

We are interested in the mice behavior recognition task explained in H. Jhuang and

T. Poggio [29, 31, 30, 58]. Basically, the task asks workers to identify 8 behaviors of

mice in videos. The videos contain singly housed mice from an angle perpendicular

to the side of the cage as shown in Figure 1-1.
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drink

micro-movement rear rest walk

eat groom hang

Figure 1-1: Snapshots for the eight home-cage behaviors of interest

1.2.1 Mice behavior recognition task

We want to annotate the following 8 common behaviors of inbred mice (as shown in

Figure 1-1):

drink: a mice attaches its mouth on the tip of the drinking tube.

eat: a mice reaches and acquires food from the foodhopper.

groom: a mice has its fore- or hind-limbs sweeping across the face or torso,

typically the mice is reared up.

hang: a mice grasps the wire bars with the fore-limbs and/or hind-limbs with

at least two limbs off the ground.

rear: a mice has an upright posture and fore-limbs off the ground, and stands

against a wall cage.

rest: a mice stays inactive or completely still.

walk: ambulation.

micro-movement: small movements of a mice’s head or limbs.

A typical mice behavior recognition task requires an annotator (human or ma-

chine) to go through entire video sequence and label all the behaviors of the above 8

types.
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1.2.2 Datasets

We use the mice video datasets provided by H. Jhuang and T. Poggio [29, 31, 30, 58].

They collect two datasets: a clipped dataset and a full dataset. The clipped dataset

contains 4200 clips with the most exemplary instances of each behavior from 12

videos. These videos contains different mice (differ in coat color, size, gender, etc.)

recorded at different times during the day and night during 12 separate sessions. Each

clip contains one single behavior. The full dataset contains 12 distinct videos of 30

minutes to 1 hour in length. Every frame of the videos are labeled by two separate

groups of people, which results in a total of over 10 hours of continuously annotated

videos.

1.3 Online video labeling system

As mentioned in the beginning of this chapter, one question we would like to answer

is how to build an efficient online behaviorial annotation tool. Design an online video

labeling tools is not easy. Previous attempt includes LabelMe Video from Jenny

Yuen et al [72] and VATIC from Carl Vondrick[15]. Most of the tools share the same

interface that basically asks annotators to view through a long video and identify the

behavior segments. Annotators need to specify both the boundary and the name of

each labels. To study the efficiency of the these conventional video labeling method,

we develop our own web labeling tool based on Adobe Flash. After performing

extensive experiments with web labeling tools, we find that the tool provide a horrible

labeling experience, and therefore not a suitable for low-paid online annotators. In

our opinion, the key to improve the user experience of the video labeling is to reduce

the amount of actions each labeler perform and make the objective clear. As we can

learning from the the other mechanical tasks such as image tagging and spam filtering,

the high quality tasks are usually simple and concise. Therefore, we consider the

second approach by breaking the videos into pieces of tiny segments either uniformly

or by using some video segmentation algorithms, and then ask online workers to

annotate each pieces by simply assigning an appropriate label. This significantly
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simplifies the annotation processes and shorten the time for obtaining the label. The

design details of our online labeling tools is covered in the Chapter 2.

1.4 Rating the annotators and aggregating the be-

havioral labels

Once we have results from online labeling tools, we need to build a classifier to predict

the correct label for each video based on the multiple labeler’s responses. This is the

second question we asked at the beginning, i.e. how can we infer the groundtruth

if the results we get from online workers are noisy? In the multi-labeler problems,

predicting the label purely base on simple majority vote, without regard for the label

source properties may not be effective in general. The reasons for the include: some

annotators may be more reliable than others, some may be malicious, some may be

corrected with others, there may exist different prior knowledge about annotators.

Probabilistic methods provide a principled way to approach the problems using stan-

dard inference tools. We explore one such approach by formulating a probabilistic

graphical model of the labeling process. This will be covered in Chapter 3.

1.5 Related Work

1.5.1 Systems for mice behavior analysis

The previous work on the automatic mice behavior analysis falls into two groups:

sensor-based approaches and video-based approaches.

Popular sensor-based approaches include the use of PVDF sensors [6], infrared sen-

sors [26, 25, 47, 59], RFID transponders [43], and photobeam [23]. These approaches

have been successfully applied to the analysis of coarse locomotion activity as a proxy

to measure global behavioral states such as active v.s. rest. Nevertheless, the physical

measurements obtained from these sensor-based approaches are usually not precise

and hence limit the complexity of the behavior that can be measured. This problem
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remains even for commercial systems using transponder technologies such as the in-

telliCage system (NewBehavior Inc.). While such systems can be effectively used to

monitor the locomotion activity of an animal as well as other pre-programmed activ-

ities via operant conditioning units located in the corners of the cage, such systems

alone cannot be used to study natural behaviors such as grooming, sniffing, rearing

or hanging, etc.

The other solution to address the problems described above is to rely on vision-

based techniques. Several computer vision systems for tracking mice have been

developed[39, 12, 4, 50, 14, 61, 35]. As for sensor-based approaches, these systems are

not suitable for the analysis of fine animal activities such as grooming or rearing. The

first effort to build an automated computer vision system for the recognition of mouse

behaviors is initiated at University of Southern California. As part of its SmartVi-

varium project, an initial computer vision system is developed for both tracking mice

[12] and recognizing the behaviors(eating, drinking, grooming, exploring and resting)

of mice[46]. Xue and Henderson also describe an approach [70, 33] for the analysis

of rodent behaviors; however, the system is only tested on synthetic data [33] and a

very limited number of behaviors. Recently, H. Jhuang, at el.[29, 31, 30, 58] develop

a trainable, general-purpose, automated and potentially high-throughput system for

the behavioral analysis of mice in their home-cage, base on a computational model

of motion processing in the primate visual cortex. They also provide a very large

database of manually annotated video sequences of single-mouse behaviors. Besides,

X. Burgos-Artizzu, at el. [69] propose a method for analyzing social behavior, which

segments continuous videos into action “bouts” by building a temporal context model

that combines features from spatio-temporal energy and agent trajectories. Still, these

automatic algorithms still perform poorer than human annotators do. This motivate

us to search for alternative human-based solutions.

1.5.2 Existing video annotation tools

With the rising popularity and success of massive data sets in vision, the community

has put great effort into designing efficient visual annotation tools. Deng et al [20]
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introduce a crowdsourced image annotation pipeline through ImageNet. Torralba et

al [54] present LabelMe as an open platform for dense polygon labeling on static

images. Everingham et al [24] describe a high quality image collection strategy for

the PASCAL VOC challenge. Von Ahn [66] and Dabbish and Von Ahn [65] et al

discover that games with a purpose could be used to label images. Ni et al [45]

also propose to combine image labeling with a popular puzzle game. Ramanan [53]

et al show that exploiting temporal dependence in video can automatically build a

data set of static faces. Welinder et al [48] propose a quality control mechanism for

annotation on crowdsourced marketplaces. Vittayakorn and Hays [64] propose quality

control measure without collecting more data. Endres et al [22] investigate some of

the challenges and benefits of building image datasets with humans in the loop.

However, the same principles that assist and motivate users to annotate static

images do not apply to dynamic videos directly. Consequently, significant work has

been completed in order to build specialized interfaces tailored for video annotation.

Yuen et al [72] introduce LabelMe video, an online, web-based platform that is able

to obtain high-quality video labels with arbitrary polygonal paths using homography

preserving linear interpolation, and can generate complex event annotations between

interacting objects. Mihalcik and Doermann [44] describe ViPER, a flexible and ex-

tensible video annotation system optimized for spatial labeling. Huber [16] designed

a simplified interface for video annotation. Ali et al [8] present FlowBoost, a tool

that can annotate videos from sparse set of key frame annotations. Agarwala et al

[7] propose using a tracker as a more reliable, automatic labeling scheme compared

to linear interpolation. Buchanan and Fitzgibbon [13] discuss efficient data struc-

tures that enable interactive tracking for video annotation. Fisher [52] discusses the

labeling of human activities in videos. Smeaton et al [56] describe TRECVID, a large

benchmark video database of annotated television programs. Laptev et al [42] fur-

ther show that using Hollywood movie scripts can automatically annotate video data

sets. More recently, Vondrick et al. [15] release VATIC(Video Annotation Tool from

Irvine, California), an open source platform for monetized, high quality, crowdsource

video labeling.
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We first use the conventional way to build video labeling tool and ask user to

annotate through entire video. It turns about that there are a few problems of this

method: (1) labeling process is very complicated, since annotators need to provide

both the boundary and the name for each label; (2) people tend to disagree with

each other on the boundaries. (3) videos often do not get fully annotated, as labelers

can easily skip some frames of the video. Therefore, we design a novel way of video

behavioral labeling mechanism by pre-breaking a long video down to tiny clips using

some video segmentation algorithms and asking the annotators to provide a single

label description for each clip. This significantly simplify the labeling process.

1.5.3 Crowdsourcing algorithms

Once we obtain the results, we need to predict the groundtruth of the labels based on

the multiple annotators’ responses. A naive approach to identify the correct answer

from multiple workers’ responses is to use majority voting. Majority voting simply

chooses what the majority of workers agree on. When there are many spammers,

majority voting is error-prone since it counts all the workers equally. In general,

efficient aggregation methods should take into account the differences in the workers’

labeling abilities.

A principled way to address this problem is to build generative probabilistic mod-

els for the annotation processes, and assign labels using standard inference tools. To

infer the answers of the tasks and also the reliability of workers, Dawid and Skene [19]

proposed an algorithm based on expectation maximization (EM) [5]. This approach

has also been applied in classification problems where the training data is annotated

by low-cost noisy “labelers” [36, 62].Recently, significant efforts have been made to

improve performance by incorporating more complicated generative models. For ex-

ample, Whitehill et al. [34] propose a probabilistic model for image classifications and

use it to simultaneously infer the label of each image, the expertise of each labeler,

and the difficulty of each image. Welinder and Perona [49] propose a model of the

labeling process which includes label uncertainty, as well as multi-dimensional mea-

sure of the annotators’ ability and derive an online algorithm that estimates the most
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likely value of the labels and the annotator abilities. It finds and prioritizes experts

when requesting labels, and actively excludes unreliable annotators. Based on labels

already obtained, it dynamically chooses which images will be labeled next, and how

many labels to request in order to achieve a desired level of confidence. Later in [48],

they extends to work by introducing a more comprehensive and accurate model of

the human annotation process and provide insight into the human annotation process

by learning a richer representation that distinguishes amongst the different sources of

annotator error. Also, Yan et al. [71] introduce a novel dependency that the anno-

tators’s expertise varies depending on the data they observe. That is, an annotator

may not be consistently accurate across the task domain.

However, EM is widely criticized for having local optimality issues [21]. In partic-

ular, algorithms require an initial starting point which is typically randomly guessed.

The algorithm is highly sensitive to this initialization, making it difficult to predict

the quality of the resulting estimate; this raises a potential tradeoff between more ded-

icated exploitation of the simpler models, either by introducing new inference tools

or fixing local optimality issues in EM, and the exploration of larger model space,

usually with increased computational cost and possibly the risk of over-fitting.

On the other hand, variational approaches [51], including the popular belief prop-

agation (BP) and mean field (MF) methods, provide powerful inference tools for

probabilistic graphical models[67, 37]. These algorithms are efficient, and often have

good local optimality properties or even globally optimal guarantees [68].

1.6 Contribution

The main contributions of this thesis are the followings:

1. Developed a novel clip-based video labeling tool, which greatly simplifies the

traditional video labeling task without comprising much the labeling accuracy. We

believe that our video labeling tool is more suitable for crowdsourcing video annota-

tion task, which requires simplicity and clearness.

2. Proposed probabilistic inference methods for label aggregation that simultane-
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ously predicts the expertise of the workers and groundtruth of labels. We show that

our methods outperform majority vote heuristic in most cases.

3. Designed and implemented a complete system to crowdsource the behavior

label for mice videos.
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Chapter 2

Online Video Labeling Tools

We aim to design an interface that allows workers to annotate all the behaviors of

interest in a video. The users should be able to specify the starting frame(time) and

the ending frame(time) of a behavior and also provide an appropriate label (name) for

that behavior. They also need to be able to perform operations such as modifying the

name and the time boundaries of an existing label, and deleting a label. Some desired

features of the tool include speed, responsiveness, and intuitiveness. In addition, since

it is an online labeling tool, we wish to handle system failures and recover the labeling

session properly.

This chapter describes the design and implementation choices, as well as chal-

lenges, involved in developing a workflow for behaviorial annotation in videos.

2.1 First design: conventional video labeling tool

In this section, we present our initial design of video labeling system as shown in

Figure 2-1. The labeling tool is developed using Adobe Flash CS5. The design follows

the philosophy of many existing video labeling tools such as LabelMe Video [72] and

VATIC [15]. We believe that the tool satisfies the requirements for crowdsouring

behaviorial video labels. In the next two sections, we describe several aspects of our

system including the user interface, backend system, and potential disadvantages.
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Figure 2-1: Flash video labeling tool interface
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2.1.1 Easy-to-use user interface

The system has a very clear user interface that comprises three main area: Video

Player (Top-left), Label List (Top-right), and Control Bar (Bottom). the Video Player

displays the video that is currently annotated. the Label List displays all the labels

that have been previously saved. The Control Bar offers most of the functions for

user to annotate the video.

To play and pause a video, click the “Play/Pause” button.

To insert a label, a user need to 1. specify the starting point and ending point of

the label by clicking the “Starting time” and “Ending time” buttons respectively, 2.

select a label name in the “Label” menu, 3. and click on “Save”. During the insertion

process, the label is displayed as rectangular box in the time bar. For example, in

Figure 2-1 the label “groom” is the current label to be inserted. Once a label is

inserted, it is added to the “Label List”.

To delete a label, a user can first select a label in the “Label List”, which results

the label appearing in the “Time bar” as a rectangular box. Then the user can click

“Delete” button to remove the label.

To update a label, similar to deletion, a user need to specify the label to be

removed by selecting it in the “Label List”. And then the user can re-define the

starting time, ending time and label name using appropriate buttons. At the end,

click “Save” to update the label.

In addition, the labeling tool let users easily find the precise time point using the

“Zoom in” and “Zoom out” buttons. Users can also download the labels easily via

the “Download” button.

2.1.2 Robust back-end system

We use Apache server [2] and MySQL [3] to support our labeling tool and store all

the data including user information, annotations, videos, dataset information, etc.

The system allows multiple online workers to annotate the same video and save their

responses separately. Therefore, we need to store the responses together with the
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Figure 2-2: Object relation graph of the database model

corresponding user information. In other word, we need to store the relations between

users and responses, etc. To satisfy the requirements, we design database tables

according to the object relation graph as shown in Figure 2-2. Each box represents

a database table and the edges represent the relationships between the tables. The

“1” and “n” on the two ends of a edge indicates a foreign key relationship or a “1:n”

relationship. For example, the “1:n” relationship between User and User Response

means that a user can give multiple responses, while a response can only associate to

a single user.

2.1.3 Potential disadvantages

There are some disadvantages of this labeling tool. First, users are asked to specify

the boundary of the labels themselves, which makes labeling process very show. Be-
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sides, as indicated in the user study, users are not accurate at estimating the best

boundary of the label. In fact, they tend to disagree with each other on the bound-

aries. Moreover, since the labeling process is relatively unconstrained, i.e. users can

define a label anywhere in the video, users can easily skip frames and hence give

incomplete annotations. Finally, the entire annotation process is still to complex for

Mechanical Turk workers as they need to go through a few steps to save a label.

Aware of the above problems, we re-think the design of the labeling tool and develop

the clip-based video labeling system which will be discussed in the next section.

2.2 Second design: clip-based video labeling

The motivation of designing the a clip-based video labeling system is to simplify the

labeling process of conventional labelers. Instead of asking the users to specify the

boundaries of the labels, we fix the boundaries for them so that the users only need to

provide a name for the label. We denote each of these predefined video segments as

a behaviorial clip . This significantly simply the labeling process, as most labelers

have trouble deciding the two ends of a label. In addition, we merely ask labelers to

watch a sequence of behaviorial clips rather than going through a whole video. We

believe that this way help workers easily focus on the each video clips and identify the

corresponding behaviors. Moreover, since the users are required to go through each

clip (pre-defined label) and provide a label name, they are unlikely to skip frames.

The clip-based video labeling system consists of three parts: breaking long videos

into behaviorial clips, crowdsourcing to assign annotations to all behaviorial clips,

and aggregating and assigning labels to the original videos. To divide a video into

small segments, the simplest way is to cut it uniformly under the assumption that if

we cut the video into pieces small enough, each piece contains only a single behavior.

Besides, we can also use more advanced motion segmentation algorithm to divide

the videos. The segmentation methods are discussed in details in Chapter 4. We

design a labeling tool that allows Mechanical Turk workers to label each behaviorial

clip easily, which is explained thoroughly in the remaining part of this section. Last
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but not the least, we need to develop machine learning algorithms to combine the

responses we get from the online workers to infer the most appropriate labels for the

original videos. This will be covered in Chapter 3 and Chapter 4.

2.2.1 User interface

The user interface of our clip-based video labeling tool consists of two separate parts:

instruction page and labeling page as shown in Figure 2-3 and Figure 2-4 respectively.

The instruction page contains two simple and clear steps. In Step 1, users are given

detailed description and video example of each behavior. They can easily preview any

behavior by clicking the corresponding button at the top. Once the online workers

are familiar with all the behavior, they can proceed to step 2 which will start the

actual labeling process (by clicking the “Start Experiment” button).

The labeling page (Figure 2-4) only includes a video player and label selection bar.

To annotate a video clip, the online worker just need to choose a behavior and click

“Confirm”. Besides, the labeling tool also provides some additional features such as

a “Replay” button and video number indicator. The “Replay” button allows users

to repeat the video; and the video number indicator tells them the progress of the

labeling task. We believe that this simple design will encourage more online workers

to complete our tasks.

2.3 User study

To evaluate the usability of the two labeling tools, we perform extensive user study.

In this section, we presents some study results. We locate research subjects by hiring

dedicated users in MIT Brain and Cognitive Science department. Our dedicated

users are experts in computer vision, neuroscience and biology. We also conduct

experiments on Amazon Mechanical Turk evaluate the performance of the clip-based

labeling tool. We compensate the online workers for $0.12 per 30 video clips. In both

cases, we ask the users to label the same 10min mice video. To evaluate clip-based

labeling tool, we first break the video into 180 behaviorial clips of 3 seconds length.
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Figure 2-3: The instruction of clip-based video labeling tool
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Label Selection bar

Video player

Figure 2-4: The user interface of clip-based video labeling tool

Then we randomized the order of the clips presented to the users, a necessary step to

reduce a learning and memorization bias. In the experiments, we measure the labeling

tools from the various aspects including the total time users spends in labeling the

entire video, the coverage of the labels provided by users (i.e. how many percent of

frames are labeled by users?), the number of labels provided by users, and the accuracy

of the users. Note the to measure the accuracy, we used the groundtruth annotations

provided in the dataset [29, 31, 30, 58]. The groundtruth labels are provided by a

group of expert annotators in the mice behavior analysis. The accuracy is computed

by comparing the users’ label with the groundtruth on every frame of the video (The

frames that are not annotated by users are considered to be labeled incorrectly).

The study results for our conventional labeling tool are shown in the Table 2.1.

The tables shows the total time, label coverage, number of labels, and accuracy of

six labelers. Note that it takes in average 2045.6 seconds (more than half an hour) to

label a 10-minute video. And the workers only label 91.25% of the frames in average

and have average accuracy 62.99%. Among all labelers, Labeler D has the worst
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Subject Total Time (s) Label Coverage(%) No. of Labels Accuracy(%)
A 2146.3 97.4 100 63.8
B 1911.1 90.6 78 65.0
C 2141.9 94.1 125 69.1
D 1848.0 75.2 82 47.0
E 2133.1 94.7 99 63.1
F 2093.4 95.6 127 69.9
Mean 2045.6 (±131.5) 91.3 102 63.0 (±8.3)

Table 2.1: The user study result of the conventional labeling tool

performance (47.0% accuracy). We can see that he has difficulty to finding behaviors

in the video and only annotate those most distinguishable parts, as his labels only

cover 75% of the total frames. Besides, we also plot the agreement matrix of the

labelers, which measures the ratios of the frame labels the labelers agree with each

other(as shown in Figure 2-5). We see that even labelers with similar accuracy do

not agree with each other on about 20%-30% of the frame labels.

Now we look at the study results for clip-based labeling tool, which are shown

in the Table 2.2. One result we notice immediately is that total time required to

label the 10min video drops from 2045.6 seconds to 1117.5 seconds in average. With

the clip-based labeling tools, it save the workers about half of the time to label the

same amount of the videos. Since the workers are required to go through all the clips

in the clip-based labeling, the label coverage goes up to 100%. Besides, the average

accuracy of the labelers increases by 1.2% as compared to that using conventional

labeling tools. Notably, Labeler D achieves about 12% accuracy increase. Moreover,

if we plot the agreement matrix of the labelers (as shown in Figure 2-5) and compare

it to the agreement matrix in Figure 2-5, we can see clearly that the overall agreement

among labelers increases. To put it quantitatively, the average agreement increases

by 11.6% (The average agreement of the labelers is computed by the summation of

the agreement of all pairs divided by the total number of pairs.). Therefore, using

clip-based labeling tool, we can obtain more consistent results from the labelers.

We also ask Mechanical Turk workers to label the same video using clip-based

labeling tool. Each behaviorial clip is annotated by 10 people. We simply use majority

vote to decide the best label for each clip (Better algorithms will be discussed in the
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Figure 2-5: Agreement Matrix of the conventional labeling tool: The entry (i, j)
indicates the percentage of frames Annotator i agrees with Annotator j.

Subject Total Time (s) Label Coverage(%) No. of Labels Accuracy(%)
A 1120.0 100 180 67.0
B 891.0 100 180 68.0
C 885.0 100 180 65.4
D 1358.0 100 180 59.0
E 1337.0 100 180 60.0
F 1114.0 100 180 65.0
Mean 1117.5 (±205.6) 100 180 64.2 (±3.8)

Table 2.2: The user study result of the clip-based labeling tool
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Figure 2-6: Agreement Matrix of the clip-based labeling tool: The entry (i, j) indi-
cates the percentage of frames Annotator i agrees with Annotator j.
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later chapters.). We obtain the labeling accuracy of 62.63%, and the average labeling

time 1433 seconds, which is computed by the total summation of time spent on all

the clips over 10 the number of annotations per clip.

In summary, the user study shows that clip-based labeling tool improve the con-

ventional labeling tool on the label coverage, total labeling time, while achieving the

similar labeling accuracy. However, the clip-based labeling tool also presents us some

interesting technical challenges.

2.4 Challenges

There are several technical challenges associate to the clip-based video labeling sys-

tem. First, it is not easy to divide video into pieces that each contains exactly one

behavior. Besides, since we ask multiple annotators to provide labels for each behav-

iorial clips, the responses can varies. Therefore, we need to design a method to infer

the most appropriate label for each clips. In the following chapters, we are going

to explore the solutions to this challenges. In Chapter 3, we discuss the algorithms

to infer correct answers from the workers’ answers. In Chapter 4, we address the

methods to segment long videos into short behaviorial clips and the way to make use

of the temporal information to aggregate workers’ responses.
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Chapter 3

Video Annotation for independent

clips

3.1 Modeling Annotators and Labels

Consider a set of N videos clips denoted by I = {1, . . . , N}. Each video belongs to

one of D possible categories (e.g. the eight behavioral labels in our experiment.). We

wish to determine the groundtruth class label zi ∈ {1, . . . , D} of each video i. We

use z to denote the set of all the groundtruth labels {zi}i∈I . The observed labels

depend on several causal factors: (1) the expertise of labeler and (2) the true label.

We model the expertise of the annotator j by a vector of parameter aj. For example,

it can be scalar, aj = aj, where aj ∈ [0, 1]. Here an aj = 1 means the labeler always

labels images correctly; aj = 0 means the labeler always labels the images incorrectly.

There are M annotators in total, denoted by A = {1, . . . ,M}, and the set of their

parameter vectors is a = {aj}Mj=1. Each annotator j provides labels Yj = {yij}i∈Ij
for

all or a subset of the videos, Ij ⊆ I. Likewise, each video i has labels Yi = {yij}j∈Ai

provided by a subset of the annotators Ai ⊆ A. The set of all labels is denoted Y.

For the purpose of our task, we assume the labels yij belong to the same set as the

underlying groundtruth values zi.

Figure 3-1 shows a causal model of the labeling process. The observed label yij

depends on true video labels zi and the labeler accuracy values aj. And zi and aj are
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Figure 3-1: Graphical model of true labels, observed labels, and labeler expertise

independent. If we do not assume any prior on aj, the join probability distribution

can thus be factorized as

p(Y, z, a) =
N∏

i=1

p(zi)
∏
yij

p(yij|zi, aj) (3.1)

We can simply assume that the labels yij are generated as follows:

p(yij|zi, aj) =

 aj yij = zi

1−aj

D−1
yij 6= zi

(3.2)

Thus, the annotator is assumed to provide the correct value with probability aj and

an incorrect value with probability (1−aj). Here we assume the probability of getting

the each of the incorrect labels is the same.

3.2 Expectation Maximization Approach

The observed labels are samples from the Y random variables. The unobserved

variables are the true video labels z, the different labeler accuracies a. Our goal is

to efficiently search for the most probable values of the unobserved variables z and

a given the observed data. To achieve that, we can use Expectation-Maximization

approach (EM) to obtain maximum likelihood estimates of the parameters of interest.
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E step: Assume we have a current estimate if a of the annotator parameters, we

need compute the posteriors of all zj given the a and Y:

p(zi|Y, a) = p(zi|Yi, a)

∝ p(zi|a)p(Yi|zi, a)

∝ p(zi)p(Yi|zi, a)

∝ p(zi)
∏
j∈Ai

p(yij|zi, aj)

where we noted that p(zi|a) = p(zi) using the independent assumptions from the

graphical model.

M step: To estimate the annotator parameters a, we maximize the expectation

of the logarithm of the posterior on a with respect to p(zi) from the E-step. We

maximize the auxiliary function Q(a) to update a as follows:

a∗ = arg max
a

Q(a) (3.3)

where

Q(a) = Ez[log p(Y|z, a)]

=
M∑

j=1

Qj(aj) (3.4)

where Ez[·] is the expectation with respect to p(z) and Qj(aj) is defined as follows:

Qj(aj) =
∑
i∈Ij

Ezi
[log p(yij|zi, aj)]

=
∑
i∈Ij

∑
zi

p(zi) log p(yij|zi, aj) (3.5)
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Figure 3-2: Graphical model of true labels, observed labels, and labeler expertise with
a prior on each labeler expertise

As we can see from the above, the optimization can be carried out separately for each

annotator. We can differentiate Qj to arrive at:

dQj

daj

=
∑
i∈Ij

∑
zi

p(zi)
1

p(yij|zi, aj)

dp(yij|zi, aj)

daj

(3.6)

=
∑
i∈Ij

p(zi = yij)
1

aj

− 1

D − 1

∑
zi 6=yij

p(zi)
D − 1

1− aj

 (3.7)

From 3.2 and 3.5, we can see that Qj((a)j) is concave. Therefore, we can let
dQj

daj
= 0,

we have a closed-form solution

aj =

∑
i∈Ij

p(zi = yij)

|Ij| (3.8)

3.3 Prior on a

We can also assume a prior for each aj as in Figure 3-2. Since aj ∈ [0, 1], we can use

a beta distribution as a prior for aj. The joint probability distribution becomes:

p(Y, z, a) =
N∏

i=1

p(zi)
∏

yij∈Y

p(yij|zi, aj)
M∏

j=1

p(aj|α, β) (3.9)

Introducing the prior does not change the E-step of the algorithm. However, we need

to modify the M-step to take care of the prior.
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M step:

a∗ = arg max
a

Q(a) (3.10)

where

Q(a) = Ez[log p(Y|z, a) + log p(a|α, β)] (3.11)

=
M∑

j=1

Qj(aj) (3.12)

where

Qj(aj) = log p(aj|α, β) +
∑
i∈Ij

Ezi
[log p(yij|zi, aj)]

= log p(aj|α, β) +
∑
i∈Ij

∑
zi

p(zi) log p(yij|zi, aj) (3.13)

Differentiating Qj, we have

dQj

daj

=
1

p(aj(α, β))

dp(aj(α, β))

daj

+
∑
i∈Ij

∑
zi

p(zi)
1

p(yij|zi, aj)

dp(yij|zi, aj)

daj

=
(α− 1)− (α + β − 2)aj

aj(1− aj)
+

∑
i∈Ij

p(zi = yij)
1

aj

− 1

D − 1

∑
zi 6=yij

p(zi)
D − 1

1− aj


By setting the derivative to zero, we obtain

âj =
(α− 1) +

∑
i∈Ij

p(zi = yij)

(α + β − 2) + |Ij| (3.14)

However, the âj may not maximize the Qj(aj). This is due to the fact that Qj(aj)

may not be concave. To find the maximum, we make use of the fact that Qj(aj)

has at most one critical point (sometimes aj computed by 3.14 falls outside [0, 1]).

We can simply compare the Qj value at âj with its values at 0 and 1 to obtain the

maximum.
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3.4 Multidimensional expertise of annotators

In the previous analysis, we use conditional probability

p(yij|zi, aj) =

 aj yij = zi

1−aj

D−1
yij 6= zi

(3.15)

which assumes that a user have the same probability aj of getting the correct answer

and same probability
1−aj

D−1
of getting each incorrect answer regardless of the true

label of the video. This assumption may not be true in general, since annotators may

have different areas of strength, or expertise, and thus provide more reliable labels

on different subsets of videos. For example, when ask to differentiate the 8 behaviors

in the videos, some annotators may be more aware of the distinction between eat

and drink, while other may be more aware of the distinction between groom and

micromovement.

To capture the variation of expertise, we may define aj = Aj, the confusion

matrix. Each entry Aj(s, t) in a confusion matrix is the probability with which a clip

is annotated as t when its true label is s, as computed by

Aj(s, t) =
# total clips labeled as s by annotator j where its groundtruth is t

#total clips labeled by annotator j where its grouthtruth is t
.

Using the new formulation of aj, the E step becomes:

p(zi|Y,A) ∝ p(zi)
∏
j∈Ai

p(yij|zi,Aj) (3.16)

where we use the conditional probability

p(yij|zi,Aj) = Aj(yij, zi). (3.17)

In the M-step, we need to find

Aj = arg max
Aj

Qj(Aj) (3.18)
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for all Aj, where

Qj(Aj) =
∑
i∈Ij

∑
zi

p(zi) log p(yij|zi,Aj) (3.19)

Since

Aj =


a11 a12 . . . a1n

a21
. . .

...
...

. . .
...

an1 . . . . . . ann

 (3.20)

where
∑n

s=1 ast = 1, ∀t. Therefore, we have ant = 1 −∑n−1
s=1 ast for t = 1, . . . , n. It

means that Aj has n × (n − 1) dimensions. Taking the derivative of 3.19 in each

dimension, we have

∑
i∈Ij

∑
zi

p(zi)
1

p(yij|zi,Aj)

∂p(yij|zi,Aj)

∂ast

=
∑

yij=s,zi=t

p(zi)

Aj(s, t)
−

∑
yij=n,zi=t

p(zi)

1−∑n−1
k=1 Aj(k, t)

(3.21)

for all s = 1, . . . , n − 1 and t = 1, . . . , n. Set the derivatives to zeros. Then for each

t, we have ∑
yij=s,zi=t

p(zi)

Aj(s, t)
=

∑
yij=n,zi=t

p(zi)

1−∑n−1
k=1 Aj(k, t)

(3.22)

for all s = 1, . . . , n− 1. Since L.H.S of 3.22 stay unchanged for all s, we then have∑
yij=s,zi=t p(zi)

Aj(s, t)
=

∑
yij=v,zi=t p(zi)

Aj(v, t)
(3.23)

for all s, v = 1, . . . , n− 1, which implies

Aj(s, t) =

∑
yij=s,zi=t p(zi)∑

zi=t p(zi)
(3.24)

for all s = 1, . . . , n− 1, and t = 1, . . . , n. And it is also clear that

Aj(n, t) =

∑
yij=n,zi=t p(zi)∑

zi=t p(zi)
(3.25)
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for all s = 1, . . . , n− 1, and t = 1, . . . , n.

3.5 Initialization

The EM algorithm is a local optimization algorithm, it can only converges to a local

optimal. Since the likelihood function of our problem is not a convex function of a

and z, there may exists one or more local maximum points. Thus, the initial guess

for our algorithms are very important. In our implementation, we use the result

from majority vote algorithm with some perturbations as a starting point for the EM

algorithm. This choice of starting point improves the stability of our algorithms.

3.6 Simulation

We explore the performance of the model using a set of video labels generated by the

model itself. Since, in this case we know the parameters z, a that observed labels, we

can compare them with corresponding parameters estimated using the EM procedure.

3.6.1 Basic simulation

The first experiment simulate binary annotations, where we simulate between 4 and

20 labelers, each labeling 2000 videos, whose true labels z are either 1 or 2 with equal

probability. The accuracy aj of each annotator is generated from a normal distri-

bution with mean 0.6 and variance 0.1, which is chosen under our assumption that

adverse labelers (whose accuracy belows 0.5) are rare. Given these labeler abilities,

the observed labels yij are sampled according to Equation 3.2 using z. Finally, the

three algorithms described above, namely basic EM inference procedure, EM algo-

rithm with beta prior (with beta parameters 2 and 2), and EM algorithm with a

being the confusion matrix A, and majority vote algorithm are executed to estimate

a, and z. The procedure (including generate synthetic data) is repeated 10 times to

smooth out variability between trails.
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Figure 3-3: Basic simulation result: accuracy of algorithms v.s. number of labels per
video
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Figure 3-4: Basic simulation result: parameter estimates v.s. number of labels per
video
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We compute the percentage of predicted labels that matched the true labels. We

compare the maximum likelihood estimates of our algorithms to estimates obtained

by taking the majority vote as the predicted label. The predictions of the proposed

algorithms are computed by taking the most probable label according to the posterior

probability p(zi) of each video. The results (averaged over all 10 experimental runs)

are shown in Figure 3-3. As expected, the overall accuracy increases as number of

labelers increase. Our three algorithms achieve higher accuracy than the majority vote

heuristic, since our algorithms make use of the fact that some labelers are experts and

hence their votes should count more than the votes of less skilled labelers on the same

video. Besides, we also compute the predicted labels’s accuracies and compare them

to the true accuracies. We also evaluate the results from the basic EM approach and

the EM with beta prior approach, since only these two algorithm explicitly compute

the annotators’ overall accuracy. The root mean square errors are shown in Figure

3-4. As expected, as the number of labelers grows, the parameter estimates converge

to the true values.

We also run the same experiment again with higher variance of labelers’ accuracy,

namely 0.4. With higher variance, we allow more adverse labelers. The result is

shown in Figure 3-5. As expected, we see more fluctuations in all the curves. One

possible explanation is that in the binary annotation as more adverse labelers join

the experiment, we have two groups of labelers who stand on opposite sides in most

cases. Therefore, both our algorithms and majority vote are confused about which

side gives the true label. However, our algorithms still perform better than majority

vote in general(sometimes even achieve 15% higher accuracy).

3.6.2 Multi-valued annotations

In this experiment, we would like to evaluate the performance of the algorithms in

multi-valued annotations. Similar to the prior experiment, we simulate between 4

and 20 labelers, each labeling 2000 videos, whose true labels z is selected from the

{1, . . . , 8} with equal probability. The accuracy aj is drawn from a normal distribution

with mean 0.6 and variance 0.1. The observed labels yij are sampled according to

45



4 6 8 10 12 14 16 18 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of labels per video

P
er

ce
nt

ag
e 

ac
cu

ra
te

Accuracy v.s. number of labels per video

 

 

EM Inference
EM with beta prior
EM with confusion matrix
Majority vote

Figure 3-5: Basic simulation result(labelers’ accuracy variance 0.4): accuracy of al-
gorithms v.s. number of labels per video
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Equation 3.2. The produce is repeated 10 times to produce the average performance.

Figure 3-6 shows the results of the simulation. Our model achieves a consistently

lower error rate as compared to majority vote. However, in this case, the improvement

is not as significant as that in binary annotation case. We also repeat the same

experiment with higher variance of accuracy aj (0.4). As can be seen from Figure

3-7, the advantage of our algorithms over majority vote is clearer. The difference is

particularly pronounced when the number of labelers per video is small.

3.6.3 Stability of the algorithms under various labelers

For most of the online annotation tasks, we have a fixed dataset and the a group of

online workers can varies, since there is impossible to expect a same set of people

will always do your task. Thus, in this experiment, we would like to find out the

performance of the algorithms subjects to the labelers change in the same dataset.

The experiment setting is the same as that in Section 3.6.1, except we only generate

the true labels z once and use it for the 10 repeats. We compute the average labeling

accuracy with the standard deviation against different number of labelers. The results

are shown in Figure 3-8. To make the graph clear, we only plot the performance of our

basic EM inference algorithm (the other two algorithm achieve similar performance)

and the majority vote algorithm. As expected, our algorithm outperforms majority

vote in terms of average accuracy with similar standard deviation.

3.7 Empirical study: video clip dataset

Now we are ready to experiment with real video label data. We use the video clips

dataset from [29, 31, 30, 58] and randomly select 480 video clips. There are 60 video

clips for each of the 8 behaviors. The 8 behaviors includes drink, eat, groom, hang,

rear, rest, walk, and micro-movement. The details of the task is described in Section

1.2.1. We use the clip-based labeling tool described in Section 2.2 to collect labels

from Mechanical Turk.

We obtain labels for 480 videos from 85 different Mechanical Turk labelers. Each

47



4 6 8 10 12 14 16 18 20
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Number of labels per video

P
er

ce
nt

ag
e 

ac
cu

ra
te

Accuracy v.s. number of labels per video

 

 

EM Inference
EM with beta prior
EM with confusion matrix
Majority vote

Figure 3-6: Multi-valued annotation simulation result: accuracy of algorithms v.s.
number of labels per video
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Figure 3-7: Multi-valued annotation simulation result(labelers’ accuracy variance
0.4): accuracy of algorithms v.s. number of labels per video
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Figure 3-8: Stability of the algorithms: accuracy with standard deviation v.s. number
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Figure 3-9: Video Clip Labeling Experiment: histogram of the number of videos
labeled by each labelers

video clip is annotated by 15 different labelers; in total there are 7200 labels.The

histogram of number of video clips labeled by each labelers is shown in Figure 3-9.

We can see that most of labelers annotates less than 100 videos; while there is a

worker manage to labels all the video clips.

Using the labels obtained from the Mechanical Turk, we infer the video labels

using either our algorithms and the majority vote heuristic, and then compare them

to the groundtruth. The result is shown in Table 3.1. Our algorithms achieve better

performance than majority vote. Notably, EM with confusion matrix obtain the best

accuracy 0.9458 among the four algorithms. To understand how the number of labels
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Method EM Inference (s) EM with beta prior EM with confusion matrix Majority vote
Accuracy 0.9375 0.9375 0.9458 0.9042

Table 3.1: Video Clip Labeling Experiment: the accuracy of the algorithms

per videos affects the accuracy, we randomly sample m labels from the 15 labels for

each video without replacement, where m = 3, . . . , 15 and compute the accuracy of

all the algorithms for m. The above procedure is carried out 10 times to take the

average. The result plot is shown in Figure 3-10. The EM infernce and ME with beta

prior consistently outperform majority vote. The EM with confusion matrix method,

which achieves the best accuracy at the end, does the worst at the beginning.

3.8 Moving forward

The label aggregation algorithms we develop based on probabilistic model and EM

show promising results in both synthetic data and actual video clips labeling experi-

ment on Mechanical Turk. We would like to leverage the methods to produce labels

for long videos. However, there is still one more challenge:

(1) How can we divide a long video into a sequence of video clips, each of which

contains a single well-define behavior?

We are going to discuss the above topics in the next chapter.
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Figure 3-10: Video Clip Labeling Experiment: accuracy v.s. number of labels per
video
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Chapter 4

Moving towards long video

annotation

We have presented the methods to crowdsource labels for short video clips in the

previous chapter. In this chapter, we discuss possible ways to automatically label a

long video using crowdsourcing platform. The overview of our proposal is shown in

Figure 4-1. The system first break long video into a sequence of short behaviorial clips

(a clip that only contains a single behavior). The behavioral clips are annotated using

our clip-based labeling tools discussed in Chapter 2. Then we use our aggregation

algorithms to predict the groundtruth label for each behavioral clip as discussed

in Chapter 3. Finally, we combine and smooth the labels of behavioral clips to

produce the a fully annotated video. The chapter focuses on the discussion of video

segmentation step and the overall system performance.

4.1 Video Segmentation

We can break the long video into small pieces either uniformly or using action seg-

mentation algorithms. To generate video clips uniformly, we need to decide the length

of the video clips. After some experiments, we decide that 3 seconds (100 frames) is

suitable length. Neither it is too long that each clips often contains more than one

behaviors, nor it is too short that result clips contain partial behaviors.
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Figure 4-1: System overview of long video annotation
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Since different behavioral clips usually have different length, uniform video seg-

mentation may not give the most desirable results. Instead, we make use of mouse

behavioral recognition system developed by Hueihan Jhuang[31] to provide better

segmentation. The system is developed from a computational model of motion pro-

cessing in the primate visual cortex consists of two modules: (1) a feature computation

module, and (2) a classification module. We can use the system to classify the video

frames into 8 behaviors and group the adjacent frames with same behavior into be-

havior clips. Moreover, we further make sure every behavior clip is not more than 3

seconds in length.

4.2 Performance of the system

4.2.1 Compare our system with traditional human annota-

tion by hiring college students

To evaluate the performance of our crowdsourcing mouse behavior recognition sys-

tem, we compare its annotation accuracy to that of human labelers using traditional

method. We hire 6 graduate students in MIT to annotate a 10 minutes video using the

Flash labeling tools we described in Chapter 2. At the same time, we also annotate

the video using our crowdsourcing system. The results are shown in the Table 4.1.

Note that for the crowdsourcing system, every video is labeled 10 times by different

labelers. As we can see, our crowdsouring system achieves comparable performance

as university students. We also plot the change of accuracy of our system as we

increase the number of labels per video (i.e. the number of labelers annotate each

video) in Figure 4-2. As indicated in the figure, we can improve the system accuracy

by increasing the number of labelers for each video.

Now we compare the cost of annotate video by our crowdsourcing system and by

hiring university students. The standard rate for hiring student to do the lab work is

between $10 between $20. And it takes in average 34 minutes for students to annotate

the 10 minute video. So it costs about $6− $12 to get the 10 minutes video annotate
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Subject A B C D E
Accuracy 0.638 0.650 0.691 0.470 0.631
Subject F Average(Students) CSMV CSEM CSEMP
Accuracy 0.699 0.630 0.626 0.648 0.648

Table 4.1: Comparing the performance of the crowdsourcing system to that of uni-
versity students: A - F represent the 6 student annotators; CSMV, CSEM, CSEMP
represent respectively our Crowdsourcing System using Majority Vote, EM infer-
ence and EM inference with beta Prior.

by one student. On the other hand, our crowdsourcing system pays online workers

$0.12 (it is very generous offer as compared to others on Mechanical Turk) to label

30 short video clips. In total, it only cost about $0.72 to annotate all video once and

only $7.2 percent to annotate the video 10 times. Consider the accuracy and cost

trade-off, to achieve 0.630 accuracy (average student accuracy), our system costs less

than $4.32 as compared to $6− $12 for hiring students. Besides, our system is fully

automatic, by which videos can be annotated within hours.

4.2.2 Uniform segmentation v.s. segmentation with behavior

recognition algorithm

We would like to know how much does the segmentation methods affect the overall

performance of the system. In this experiment, we use the system to annotate a

38 minutes video twice. In the first trial, the video is uniformly segmented into

behavioral clips with 3 seconds length. In the second time, the video is segmented

using the mouse behavior recognition system from [31]. In each trial, every video

is annotated 10 times by different labelers. The experiments results are shown in

Table 4.2. The overall accuracy of the system does not change much with different

segmentation methods. The uniform segmentation even achieves better accuracy in

this case. This agrees with our assumption that if we make the clip short enough,

each clip mostly contains 1 behavior.

Besides, we plot the system performance against the number of labels per video

as shown in Figure 4-3 and Figure 4-4. As can be expected, the system performance

improves as the number of the labels for each video increases.
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Figure 4-2: System performance on 10-min video annotation

Trial # clips # workers # labels per clip Accuracy (EM/EM prior/Majority Vote)
Trial 1 688 45 10 0.680/0.680/0.659
Trail 2 937 65 10 0.664/0.665/0.638

Table 4.2: The experiment results of the two trials.
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Figure 4-3: System performance on 38-min video annotation using uniform segmen-
tation
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Figure 4-4: System performance on 38-min video annotation using behavior recogni-
tion algorithm for segmentation
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Chapter 5

Conclusion

Thanks to the advances in artificial intelligence, especially in computer vision and

machine learning, machines have been successful in many recognition tasks such as

face detection and image search. However, in many critical fields as biological study

and medical research, we still cannot completely rely on machine for recognition and

detection. Human-based solutions are still predominant in those areas. Therefore,

crowdsourcing platforms provide us a cost-efficient solution to those tasks. In this

thesis, we have demonstrated an effective crowdsourcing system for mouse behav-

ior recognition, which includes a novel clip-based video labeling tool and an efficient

probabilistic aggregation mechanism to predict the true labels from multiple annota-

tions.
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