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Abstract. Consider a bounded open set U ⊂ Rn and a Lipschitz function

g : ∂U → Rm. Does this function always have a canonical optimal Lipschitz

extension to all of U? We propose a notion of optimal Lipschitz extension and
address existence and uniqueness in some special cases. In the case n = m = 2,

we show that smooth solutions have two phases: in one they are conformal

and in the other they are variants of infinity harmonic functions called infinity
harmonic fans. We also prove existence and uniqueness for the extension

problem on finite graphs.

1. Introduction

1.1. Overview. Suppose U ⊆ Rn is bounded and open and g : ∂U → Rm is
Lipschitz, i.e., Lip(g, ∂U) <∞, where

Lip(f,X) := sup
x,y∈X

|f(x)− f(y)|
|x− y|

.

A classical theorem of Kirszbraun implies that g has an extension u : Ū → Rm
such that Lip(u, Ū) = Lip(g, ∂U). In general, there may be infinitely many such
extensions [11].

When m = 1, a theorem of Jensen [8] implies that there is a unique extension
u of g that is absolutely minimizing Lipschitz (AML), i.e., a unique extension u
satisfying

(1.1) Lip(u, V ) = Lip(u, ∂V ) for every open V ⊆ U.
The situation is more complicated when m > 1, as the criterion (1.1) fails to
characterize a unique extension. Indeed, there are functions satisfying (1.1) whose
Lipschitz derivatives can be decreased everywhere (see Section 3). The purpose
of this article is to identify and study an appropriate notion of optimal Lipschitz
extension when m > 1.

We remark that the general problem of finding Lipschitz extensions of a Lipschitz
function from a subset Y of a metric space X to another metric space Z has been
thoroughly studied, with diverse applications in mathematics, computer science,
and engineering (see the books [20, 3], as well as the introductions of [13, 15, 16], and
the references therein). Much of this work has focused on finding extensions whose
Lipschitz norm is either equal to or within some constant factor of the minimal
one. The idea of imposing conditions that would identify a single uniquely optimal
extension has not received as much attention except in the following cases:

(1) Z = R.
(2) Z is a metric tree.
(3) X = R.
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The first case is the subject of an extensive literature (see Section 1.4.1). In par-
ticular, when Z = R and X is any length space, it is known that every bounded
Lipschitz function on a closed subset of X admits a unique AML extension to X
[17]. In the second case, a more recent paper shows existence and uniqueness of
AML extensions whenever X is a locally compact length space [16]. In the third
case, AML extensions are geodesic paths, which exist by definition if Z is a geodesic
metric space. It is natural to seek optimal Lipschitz extensions for functions be-
tween more general pairs of metric spaces. We limit our attention in this paper to
the case that Z = Rm and either X ⊆ Rn is the closure of a bounded domain (and
Y is the boundary) or X is a finite graph. (The case that X ⊆ Rn and Z = Rm is
particularly natural in light of Kirszbraun’s theorem, as stated above.)

This paper introduces a notion of optimality called tightness that is stronger than
the AML property (1.1) and yields existence and uniqueness results in the discrete
setting, when X is a finite graph. We extend the definition of tight extension to
the continuum setting and then partially characterize the smooth tight functions
using PDE. In the case n = m = 2, we prove that the smooth tight functions
come in two “phases”. In one phase they are conformal and in the other they are
variants of infinity harmonic functions called infinity harmonic fans. We also prove
some existence and uniqueness results within a class of radially symmetric tight
functions. Although AML extensions are known to be C1 when n = 2 and m = 1
[18], our examples show that this is not necessarily true of tight extensions (recall
that tight implies AML) when n = m = 2.

1.2. Tight functions on finite graphs. We begin by studying the discrete ver-
sion of our problem. Let G = (X,E, Y ) denote a connected graph with vertex set
X, edge set E, and a distinguished non-empty set of vertices Y ⊆ X. We wish to
understand when a function u : X → Rm is the optimal Lipschitz extension of its
restriction u|Y to Y .

The local Lipschitz constant of a function u : X → Rm at a vertex x ∈ X \ Y is
given by

Su(x) := sup
y∼Ex

|u(y)− u(x)|.

A function u : X → Rm is discrete infinity harmonic at x ∈ X \ Y if there is no
way to decrease Su(x) by changing the value of u at x. It was shown in [17] that if
G is finite then every g : Y → R has a unique extension u : X → R that is discrete
infinity harmonic on X \ Y .

We show that uniqueness of discrete infinity harmonic extensions fails in the
vector-valued case. To obtain uniqueness, we adopt a stronger optimality criterion.

Definition 1.1. If the functions u, v : X → Rm agree on Y and satisfy

(1.2) sup{Su : Su > Sv} > sup{Sv : Su < Sv},
then we say that v is tighter than u on G. We say that u is tight on G if there is no
tighter v. Informally, v is tighter if it improves the local Lipschitz constant where
it is large without making it too much worse elsewhere.

We prove existence and uniqueness of tight extensions for finite graphs. The
uniqueness of tight extensions fails for some infinite graphs; see Proposition 2.1.

Theorem 1.2. Suppose G = (X,E, Y ) denotes a finite connected graph with vertex
set X, edge set E, and a distinguished non-empty set of vertices Y ⊆ X. Every
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function g : Y → Rm has a unique extension u : X → Rm that is tight on G.
Moreover, this u is tighter than every other extension v : X → Rm of g.

When the graph is finite, we prove that the unique tight extension is the limit
of the discrete p-harmonic extensions.

Theorem 1.3. In addition to the hypotheses of Theorem 1.2, suppose that for each
p > 0, the function up : X → Rm minimizes

(1.3) Ip[u] :=
∑

x∈X\Y

(Su(x))p,

subject to up|Y = g. As p→∞, the up converge to the unique tight extension of g.

Finally, we provide an equivalent definition of tight by replacing the supremum
over vertices in (1.2) with supremum over edges; see Proposition 2.3 in Section 2.

1.3. Tight functions on Rn. Moving to the continuum case, we suppose U ⊆
Rn is bounded and open. Recall from [5] that the AML extension of a scalar
function g ∈ C(∂U) can also be characterized as the unique viscosity solution of
the boundary value problem

(1.4)

{
−∆∞u = 0 in U,
u = g on ∂U,

where ∆∞u := |Du|−2uxiuxjuxixj is the infinity Laplacian. Viscosity solutions of
(1.4) are called infinity harmonic. This alternate name owes its origin to the fact
that (1.4) is the limiting Euler-Lagrange equation as p→∞ for minimizers of the
functional

(1.5) Ip[u] :=

∫
U

|Du|p dx.

Such minimizers are called p-harmonic and are harmonic when p = 2. Moreover,
for each p > 1 the extension of g minimizing (1.5) is unique, and as p → ∞ these
minimizers converge pointwise to the infinity harmonic extension.

In the vector-valued case, we expect the limit as p → ∞ of minimizers of (1.5)
to be an optimal Lipschitz extension. However, in order to obtain something like
an AML extension in the limit as p → ∞, we must be careful to use the matrix
norm

(1.6) |A| := max
|a|=1

|Aa|,

so that

Lip(u, V ) = sup
V
|Du|,

whenever u ∈ C1(U,Rm) and V ⊆ U is open. Indeed, if one uses the more usual
Frobenius norm

|A|F = trace(AtA)1/2,

in (1.5), then one obtains a notion of p-harmonic and infinity harmonic [19, 14] that
is not related to AML extensions when m > 1. Because the norm (1.6) is neither
smooth nor strictly convex, trying to compute an optimal Lipschitz extension as
the limit of p-harmonic extensions seems difficult in the vector-valued case.

Instead, we obtain a notion of optimal Lipschitz extension in the continuum case
by taking the strongest natural analogue of (1.2). Consider a bounded open set
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U ⊆ Rn. If u ∈ C(U,Rm) is Lipschitz, then the local Lipschitz constant of u at a
point x ∈ U is

Lu(x) := inf
r>0

Lip(u, U ∩Br(x)).

Definition 1.4. If the Lipschitz functions u, v ∈ C(Ū ,Rm) agree on ∂U and satisfy

sup{Lu : Lv < Lu} > sup{Lv : Lv > Lu},

then we say that v is tighter than u on U . We say that u is tight if there is no
tighter v.

Our first result for tight functions on Rn is the following theorem. A principal
direction field for a function u ∈ C1(U,Rm) is a unit vector field a ∈ C(U,Rn) such
that a(x) spans the principal eigenspace ofDu(x)tDu(x) for all x ∈ U (in particular,
the principal eigenvalue of Du(x)tDu(x) is simple). Note that the linearization of
u at x sends a small sphere centered at x to a small ellipsoid centered at u(x). If
a is a principal direction field, then a(x) is parallel to the line whose image in u is
the (unique) major axis of that ellipsoid. Informally, ±a(x) are the directions in
which u is most rapidly changing.

Theorem 1.5. Suppose U ⊆ Rn is bounded open and u ∈ C3(U,Rm) has principal
direction field a ∈ C2(U,Rn). Then u is tight if and only if

(1.7) − (ua)a = 0 in U,

where we define va := vxi
ai for any v ∈ C1(U,Rk).

Note that in the case m = 1, we have a = ±|Du|−1Du and thus a · aa = 0 and

−(ua)a = −(uxi
ai)xj

aj = −uxixj
aiaj − uxi

aixj
aj = −∆∞u.

Thus in the scalar case the system (1.7) reduces to the PDE (1.4). We show below
that (1.7) is the limiting Euler-Lagrange equation for minimizers of (1.5) as p→∞
in the principal case.

An immediate and important corollary of Theorem 1.5 is that C3 infinity har-
monic functions from Rn to R are tight (recall that C2 infinity harmonic functions
have non-vanishing gradients [21]). Equally important is the following geometric
interpretation. We call the maximal curves in U that are parallel to the principal
direction field the principal flow curves. The system (1.7) says that the image of
a principal flow curve is a straight line. Moreover, it says that the map from the
curve to the line has constant speed. When n = 2, we can identify points on the
image lines by the principal of orthogonal motion (see Section 3.4) and obtain from
u an infinity harmonic function with a one-dimensional image. In this case, u may
be interpreted as a “fanned out” version of a one-dimensional infinity harmonic
function.

When the domain U is a subset of R2 and the function u is differentiable, the
alternative to having a principal direction at a point is to be conformal (or anti-
conformal) at that point. In this case, tightness is equivalent to a differential
inequality.

Theorem 1.6. Suppose U ⊂ C is bounded and open and u : U → C is analytic in
a neighborhood of U . Then u is tight if and only if either

(1) u′′ = 0 throughout U (i.e., u is affine on U).
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(2) The meromorphic function u′u′′′

(u′′)2 satisfies

(1.8) < u
′u′′′

(u′′)2
≤ 2

wherever it is defined in U . (In particular, this implies that any singularities

of u′u′′′

(u′′)2 are removable.)

When u is one-to-one and u′′ does not vanish, the criterion (1.8) can be more
suggestively written as

(1.9) −∆1 log |v′| ≥ 0,

where v = u−1 and ∆1 := ∆ −∆∞. Informally, the inequality (1.9) says that the
boundary of the set {|v′| ≥ s} is locally convex for all s > 0. See Lemma 3.2.

We construct, in Section 4, examples of tight functions that have both principal
and conformal pieces and smooth interfaces between them. Some of these examples
are not differentiable.

1.4. Alternative notions of tight.

1.4.1. History of the scalar case. Aronsson proved in 1967 that if X is the closure of
a bounded domain in Rn, then a smooth function from X to R is an AML extension
of its values on ∂X if and only if it is infinity harmonic. At the time, the existence
and uniqueness of AML extensions was unknown in general, and it was also unclear
what the correct notion of a non-smooth infinity harmonic function should be.

Crandall and Lions remedied the latter problem by introducing the notion of
viscosity solution in 1983 [6]. The definition of viscosity solution was based on
a monoticity requirement: roughly speaking, a function is a viscosity solution if
whenever it is less (greater) than a smooth solution on the boundary of a domain,
it is less (greater) than the smooth solution in the interior as well. Using this
definition, Jensen established the existence and uniqueness of infinity harmonic
extensions in 1993 [2, 8].

Restricting the class of smooth test functions to cones, one obtains an analogue
of the viscosity solution property called comparison with cones that easily extends
to other metric spaces. Jensen [8] proved that infinity harmonic functions satisfy
comparison with cones and Crandall, Evans, and Gariepy [5] proved that a function
on a bounded open set U ⊆ Rn is AML if and only if it satisfies comparison with
cones. Champion and De Pascale [4] adapted this definition to length spaces, where
cones are replaced by functions of the form φ(x) = b d(x, z) + c where b > 0. The
existence of AML extensions was extended to separable length space domains [9],
and [17] established existence and uniqueness for general length spaces (using game-
theoretic techniques).

1.4.2. Proper definitions for the vector case. The success of the theory in the case
Z = R relies heavily on monotonicity techniques. These techniques do not seem to
generalize to Z = Rm with m > 1. As a result, we are unable to generalize all of
the Z = R results to Z = Rm. This paper goes about as far with the m > 1 theory
as Aronsson went with the m = 1 theory in the 1960’s. We introduce a notion
of optimality (tightness) and describe the smooth functions with that property. It
remains to be seen whether our definition has to be modified in order to establish
a satisfactory existence and uniqueness theory.
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The following alternative notion of tight was suggested by Robert Jensen. If
U ⊆ Rn is bounded open and u, v : U → Rm are Lipschitz, then we say u is
measure-tighter than v if u = v on ∂U and there is an s > 0 such that

|{|Du| ≥ s}| < |{|Dv| ≥ s}|
and

|{|Du| ≥ t}| ≤ |{|Dv| ≥ t}| for every t ≥ s.
Observe that measure-tight implies tight: this follows from the fact that u tighter
than v implies that u is measure-tighter than v, which can be deduced from the
following:

|B(x, δ1) ∩ {Lu > Lu(x)− δ2}| > 0,

for every δ1, δ2 > 0 and x ∈ U .
One could also adopt an even stronger notion of optimality and say that u is

tighter than v if the Lp norm of |Du| is less than that of |Dv| for all sufficiently
large p.

Our philosophical objection to both of these definitions is that they depend on
the structure of Lebesgue measure, and it is not clear whether a different measure
would yield a substantially different definition. One would hope that the proper
notion of optimal extension would depend only on metric space properties of the
domain (as in the case when m = 1) and not on any extraneous structure such as
a measure. Nonetheless, it would certainly be interesting if existence or uniqueness
could be established using these alternative definitions. A different measure theo-
retic approach in the case that Z = R and X is a more general measurable length
space appears in [10] (which explores the idea of replacing the Lipschitz norm in
the definition of AMLE with the essential supremum of the local Lipschitz norm).

1.5. Notation and preliminaries. If U ⊆ Rn, then Ck(U,Rm) denotes the space
of k-times continuously differentiable functions from U to Rm. If u = (u1, ..., um) ∈
C1(U,Rm) and x ∈ U , then Du(x) denotes the m × n matrix with i, j-th entry
uixj

(x). When u ∈ C1(U,Rm), a ∈ C(U,Rn), and |a| = 1, we write ua := uxi
ai and

uaa := uxixj
aiaj . Note that uaa 6= (ua)a in general.

Aside from the definition of Lu above, the most important convention in this
article is our choice of matrix norm. Given an n× n symmetric matrix A, we let

λ1(A) ≥ · · · ≥ λn(A),

denote the eigenvalues of A listed in non-increasing order. Our norm (1.6) can then
be written

|A|2 = max
|a|=1

|Aa|2 = λ1(AtA).

Recall that we choose this norm because it satisfies

Lu(x) = |Du(x)|,
whenever U ⊆ Rn is open, u ∈ C1(U,Rm), and x ∈ U . We stress again that
this norm is not induced by the usual matrix inner product 〈A,B〉 := trace(AtB).
Moreover, the map A 7→ |A| is not smooth.

When λ1(AtA) > λ2(AtA), there is a unit vector a spanning the principal
eigenspace of AtA. In this case, the map A 7→ |A| is smooth in a neighborhood of
A and satisfies

(1.10) |A+ sB|2 = |A|2 + 2s(Aa)t(Ba) +O(s2),
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for any m × n matrix B and s ∈ R. Moreover, the constant in the O(s2) term
depends continuously on |A|, |B|, and (λ1(AtA)− λ2(AtA))−1.

1.6. Acknowledgements. The first co-author has collaborated with Assaf Naor
on the related project of showing that Lipschitz functions from subsets of length
spaces to trees have unique optimal Lipschitz extensions [16]. The work with Naor
also contains a general definition of discrete infinity harmonic (similar to the one
we use here), an existence result for discrete infinity harmonic extensions, and a
one-triangle version of the counterexample in Section 2.

We also thank Robert Jensen for many helpful discussions.

2. Tight functions on graphs

2.1. The finite case. As stated in the introduction, discrete infinity harmonic
extensions are not unique in the vector-valued case. To see this, consider the two
distinct discrete infinity harmonic embeddings of a finite graph into R2 displayed
in Figure 1. Here the outer three vertices are fixed and we are free to select the

Figure 1. Two distinct discrete infinity harmonic embeddings of
a finite graph into R2.

positions of the inner vertices. The graph on the right has a smaller overall Lipschitz
constant.

In fact, this example demonstrates more than just a failure of uniqueness. One
can show that if we fix any additional vertex x on the boundary of the inner triangle
in the left hand graph, then the extension is the unique one with the given Lipschitz
constant. (Once we fix such a vertex x, the corner vertex colinear with x and a
boundary point becomes fixed. From this, it follows that the other two corners are
fixed, etc.) Thus any algorithm that identifies an extension as having a sub-optimal
Lipschitz constant must consider many vertices simultaneously. In particular, the
non-local nature of the definition of tighter in (1.2) is necessary.

In the scalar case, discrete infinity harmonic (hence tight) extensions can be
computed using the following procedure (see [12] and [17]):

Find a path x0, ..., xn in G with x0, xn ∈ Y , x1, ..., xn−1 ∈ X \ Y ,
and n > 1 such that (u(xn) − u(x0))/n is as large as possible.
Extend g to Y ∪{xi} by setting g(xi) = (1−i/n)u(x0)+(i/n)u(xn)
and then set Y := Y ∪ {xi}. Repeat until X = Y .

While we do not know of such a simple algorithm in the vector-valued case, the
existence and uniqueness proof below is based on the idea that tight functions can
be determined “steepest part first.”
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Proof of Theorem 1.2. Given any extension u : X → Rm of g, let lv(u) ∈ R|X\Y |
be the values of Su listed in non-increasing order. Observe that if u is tighter than
some v : X → Rm, then lv(u) < lv(v) in the lexicographical ordering on R|X\Y |.
Thus, if lv(u) is lexicographically minimal among all extensions u : X → Rm of g,
then u is a tight extension of g.

To find a lexicographically minimal extension of g, simply observe that the set of
obtainable lv(u) (as u ranges over all possible extensions) is an unbounded closed
polyhedron in the subset of [0,∞)|X\Y | consisting of points with non-increasing co-
ordinates. An induction on the dimension |X \Y | shows that that the lexicographic
minimum is obtained on this set. (The set of points minimizing the first coordinate
is bounded and closed and non-empty, the subset of this set minimizing the second
coordinate is thus bounded and closed and non-empty, etc.) Thus, there indeed
exists a u for which lv(u) is lexicographically minimal, and this u is tight.

Now consider an arbitrary extension v not equal to u. We claim that u is tighter
than v (and in particular that u is the unique tight extension). For contradiction,
suppose u is not tighter than v. Since v is also not tighter than u, we must have

K := max{Su : Su 6= Sv} = max{Sv : Su 6= Sv},
where we define K = 0 if Su ≡ Sv.

Set w := (u+ v)/2 and observe that

(2.1) |w(x)− w(y)| ≤ 1

2
|u(x)− u(y)|+ 1

2
|v(x)− v(y)|,

whenever x ∼E y. In particular, if Su(x) ≥ K, then

Sw(x) ≤ Su(x) + Sv(x)

2
≤ Su(x).

Since w is not tighter than u, we must have Sw = Su on {Su ≥ K}.
Consider the set of edges

Ẽ := {(x, y) ∈ E : |w(x)− w(y)| ≥ K},
of length at least K. Since equality holds in (2.1) only if u(x)−u(y) = v(x)− v(y),
we conclude that u(x)−u(y) = v(x)−v(y) whenever x ∼Ẽ y. Therefore u(x) = v(x)

whenever x ∈ X is connected to Y via edges in Ẽ.
If every vertex in {Sw ≥ K} is connected to Y via edges in Ẽ then we may

conclude that u ≡ v on {Sw ≥ K} ⊇ {Su ≥ K}. In particular, Su = Sv on
{Su ≥ K}. Since v is not tighter than u, we must also have Su = Sv on {Sv ≥ K}.
Thus K = 0 and u ≡ v. Since we assumed u 6≡ v, there must be a non-empty
maximal Ẽ-connected set X0 ⊆ {Sw ≥ K}.

For small ε > 0, define wε : X → Rm by

wε(x) :=

{
w(x) if x ∈ X \X0,

(1− ε)w(x) if x ∈ X0.

Since |w(x)−w(y)| < K every (x, y) ∈ E \ Ẽ, we may select a small ε > 0 such that

|wε(x) − wε(y)| < K for (x, y) ∈ E \ Ẽ. Since X0 has no outgoing edges in Ẽ, we

also have |wε(x)−wε(y)| ≤ |w(x)−w(y)| if (x, y) ∈ Ẽ and Swε(x) = (1− ε)Sw(x)
if x ∈ X0. In particular,

max{Swε : Swε 6= Su} < max{Su : Swε 6= Su},
contradicting the fact that u is tight. �
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One might expect the convergence of the p-harmonic extensions to be corollary
of the following easy fact: If v is tighter than u, then∑

x∈X\Y

(Su(x))p >
∑

x∈X\Y

(Sv(x))p,

for all sufficiently large p > 0. However, it seems a more subtle argument is required.

Proof of Theorem 1.3. Since the up are bounded as p →∞, we know that any
sequence pk → ∞ has a further subsequence along which up converges to some
function u : X → Rm. Suppose for contradiction that v : X → Rm is the unique
tight extension of g and v 6≡ u. Let

K := max{Su : Sv 6= Su} > max{Sv : Sv 6= Su},

and

vk(x) :=

{
upk(x) if Su(x) > K,
v(x) otherwise.

We show that vk has smaller pk-energy than upk for sufficiently large k.
Let

Z := Y ∪ {Su > K} = Y ∪ {Sv > K},
and observe that v|Z is tight on G|Z , where G|Z is the reduct of G to the vertex
set Z. Since Su = Sv on Z, the proof of Theorem 1.2 implies that u must also be
tight on G|Z . In particular, u = v on Z and vk → v as k →∞.

Observe that

Svk = Supk on {Su > K},
for all sufficiently large k. Moreover, if we define

δ := max{Su : Sv 6= Su} −max{Sv : Sv 6= Su},

then

Svk < K − δ/2 on {Su ≤ K},
and

Supk ≥ K − δ/4 on {Su = K},
for all sufficiently large k. Thus we compute∑

X\Y

(Supk)pk −
∑
X\Y

(Svk(x))pk ≥
∑

{Su=K}

(Supk)pk −
∑

{Su≤K}

(Svk(x))pk

≥ (K − δ/4)pk − |X \ Y |(K − δ/2)pk

> 0,

for all sufficiently large k. �

2.2. Non-uniqueness of tight extensions on infinite graphs. Recall if G =
(X,E, Y ) is finite and u, v : X → R are tight, then

(2.2) max
X
|u− v| = max

Y
|u− v|.

When u, v : X → Rm and m > 1, this fails. Indeed, consider the two embeddings of
a four-vertex star-shaped graph into R2 displayed in Figure 2. In this example, the
hub of the star is an interior vertex while the three points of the star are boundary
vertices. The two fixed boundary vertices are mapped to (1, 0) and (−1, 0). The
free boundary vertex is mapped to (−(1−ε2)1/2, ε) or (−1, ε) and the interior vertex
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Figure 2. Two embeddings of a star-shaped four-vertex graph
into R2.

is then mapped to (0, 0) or (0, ε/2), respectively. Since the free boundary vertex
moves by only

r − (r2 − ε2)1/2 =
ε2

2r
+O(ε4),

we see that (2.2) fails in the vector-valued case.
We call this example an amplifier gadget, as it amplifies certain perturbations

of the boundary data. We think of the free boundary vertex as the input and the
interior vertex as the output. To obtain our non-uniqueness example, we will chain
amplifier gadgets together. That is, we will start with a single amplifier gadget
and then inductively attach the output of a new gadget to the input of the existing
compound gadget (see Figure 3). As the number of gadgets in the chain of gadgets
gets longer, the size of the input change to the last gadget needed to affect a given
output change in the first gadget will tend to zero. (Recall that we have existence
and uniqueness for finite graphs.) Once we extend the chain to infinite length, we
can construct two tight functions u and v from the graph vertices to R2 which
disagree on the first gadget in the chain, but whose difference tends to zero as one
moves further up the chain. The values Su and Sv will increase (converging to
some limit) as one goes further up the chain. We will have to prove that the u
and v we construct are tight: it will be obvious from construction and our finite
graph results that the functions restricted to the first n gadgets in the chain are
tight — that is, one cannot construct a tighter function than u (the argument for
v is similar) by modifying u on a finite set of interior vertices. However, we will
also show that changing u on an infinite set must make Su larger on an infinite set
(including places where Su is arbitrarily close to its maximum).

To be precise, we consider the infinite graph G = (X,E, Y ) with vertices

X := {ai} ∪ {bi} ∪ {ci},
edges

E := {(ai, ci)} ∪ {(bi, ci)} ∪ {(ci, ci+1)},
and boundary vertices

Y := {ai} ∪ {bi},
where i ranges over the natural numbers N. We let r0 := 1 and ε0 = 1/4 and then
inductively select (ri, εi) such that

(2.3) ri+1 = (r2i + (εi/2)2)1/2,

and

(2.4) εi+1/2 = ri − (r2i − ε2i )1/2.
We let g : Y → R2 be the unique map such that g(a0) = (−1, 0), g(b0) = (1, 0),

(2.5)
g(ai+1)− g(bi+1)

2ri+1
=

[
0 1/

√
2

−1/
√

2 0

]
g(ai)− g(bi)

2ri
,
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and

(2.6)
g(ai+1) + g(bi+1)

2
= g(ai) + εi

[
0 1/

√
2

−1/
√

2 0

]
g(ai)− g(bi)

2ri
.

Finally, we define two extensions u, v : X → R2 of g by

u(ci) :=

{
1
2 (g(ai) + g(bi)) if i even,
1
4 (g(ai+1) + g(bi+1) + 2g(bi)) if i odd,

and

v(ci) :=

{
1
2 (g(ai) + g(bi)) if i odd,
1
4 (g(ai+1) + g(bi+1) + 2g(bi)) if i even.

See Figure 3 for a diagram of these embeddings.

Figure 3. The restriction of the infinite graph example to the
vertices {ai, bi, ci, ai+1, bi+1, ci+1, ci+2} in the case i is even. Here
we have rotated the embedding by πi/2.

i+2

i+1

i+2

i

i+1

i+1

i+1

u(c    )

g(a )

v(c )

g(b )

g(a    )

v(c    )

v(c    )

u(c    )

g(b    )

i

i iu(c )

Proposition 2.1. The function g : Y → R2 is bounded and both u, v : X → R2

are tight on G. In particular, tight extensions on infinite graphs are not necessarily
unique even if the boundary data is bounded.

Proof. We first check that g is bounded. From (2.3) it follows that i 7→ ri is
increasing. Together with (2.4), this implies that εi+1 ≤ 2ε2i . Since ε0 = 1/4, it
follows that εi → 0 as i→∞ and

∑∞
i=0 εi <∞. Since (2.3) implies ri+1 ≤ ri + εi,

it then follows that ri → r̄ <∞ as i→∞.
Now consider how the points g(ai) are generated in (2.5) and (2.6). During each

iteration, the process rotates by π/2 radians clockwise. In particular, if we take
four steps at once, we obtain

|g(ai+4)− g(ai)| = O(|ri+4 − ri|) +O(|εi+4 − εi|) = O(εi).
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Since
∑∞
i=0 εi < ∞, we see that |g(a4i) − g(a0)| is bounded uniformly in i. This

implies that g is bounded.
Next we check that u is tight. Suppose instead that w : X → R2 is tighter

than u. Observe that our choice of ri+1 in (2.3) guarantees that i 7→ Su(ci) is
nondecreasing. Indeed, if i is even then

Su(ci) = ri,

and if i is odd then

Su(ci) = (r2i + (εi/2)2)1/2 = ri+1 > ri.

When i is even we have

u(ci) =
1

2
(g(ai) + g(bi)),

and

Su(ci) = |u(ci)− g(ai)| = |u(ci)− g(bi)|.
Thus if w(ci) 6= u(ci) we have

Sw(ci) > Su(ci) = max
j≤i

Su(cj).

Since w is tighter than u, we must have w(ci) = u(ci) for all large even i.
Given that i > 1 is even and u(ci) = w(ci), observe that

u(ci−1) =
1

2
(u(ci) + g(bi)),

and

Su(ci−1) = |u(ci−1)− g(bi)| = |u(ci−1)− u(ci)|.
In particular, if w(ci−1) 6= u(ci−1), then

Sw(ci−1) > Su(ci−1) = max
j≤i−1

Su(cj).

Thus we conclude that w(ci) = u(ci) for all sufficiently large i.
Now, let i be the largest integer such that w(ci) 6= u(ci). The arguments we just

gave immediately give

Sw(ci) > Su(ci) = max
j≤i

Su(cj),

and thus w can not be tighter than u. It follows that u is tight.
The argument that v is tight is the same except that we switch odd and even. �

Remark 2.2. The definition, existence, and uniqueness of tight extensions easily
generalizes to the case of weighted graphs. That is, when we have a function
d : E → (0,∞) and define

Su(x) := max
y∼Ex

|u(y)− u(x)|
d(y, x)

.

With this generalization, it is possible modify our non-uniqueness example so that
the graph has finite diameter. That is, we can set

d(ai, ci) = d(bi, ci) = d(ci, ci+1) =
1

2i
,

and then reduce the size of the amplifier gadgets so that the boundary data is still
bounded and Lipschitz.
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We thus obtain an example of a finite diameter and connected length space X,
a non-empty subset Y ⊆ X, and a Lipschitz function g : Y → R2 such that g has
at least two tight extensions to X.

2.3. An edge-based treatment of tight extensions. We finish this section
by providing an alternative characterization of tight extensions on graphs. Given
u : X → Rm and e = {x, y} ∈ E \ Y 2, we define Ŝu(e) := |u(x) − u(y)|. If two
functions u, v : X → Rm agree on Y and satisfy

sup{Ŝu : Ŝu < Ŝv} > sup{Ŝv : Ŝu > Ŝv},
we say that v is edge-tighter on G. We say that u is edge-tight if there is no edge-
tighter v.

Proposition 2.3. Let G = (X,E, Y ) denote a connected finite graph with vertex
set X, edge set E, and a distinguished non-empty set of vertices Y ⊆ X. A function
u : X → Rm is tight on G if and only if it is edge-tight on G.

Proof. We first observe that the proof of Theorem 1.2 also works for edge-tight
extensions. With existence and uniqueness of edge-tight extensions in hand, it is
enough to prove that tight implies edge-tight.

Suppose u : X → Rm is tight on G and v : X → Rm is any other extension of
u|Y . Theorem 1.2 implies that u is necessarily tighter than v. Let

K := max{Sv : Su 6= Sv} > max{Su : Su 6= Sv}.
Since both u and v are tight on Z := {Sv > K} = {Su > K}, it follows that u = v
on Z. This implies that

max{Ŝu : Ŝv < Ŝu} ≤ K ≤ max{Ŝv : Ŝv > Ŝu}.
In particular v is not edge-tighter than u. Thus tight implies edge-tight. �

3. Tight functions on Rn

3.1. Non-uniqueness of AML extensions. We showed in Section 2 that dis-
crete infinity harmonic extensions on a graph are not necessarily unique. In higher
dimensions the continuum criterion (1.1) similarly fails to characterize a unique
extension.

Example 3.1. For t ∈ [0, 1], let ut : B1(0) ⊆ R2 → R2 be given by

(3.1) ut(z) := tz2 + (1− t)z2/|z|,
and observe that

Lut(x) = 2 + 2t(|x| − 1).

If follows that if V ⊆ B1(0) and x ∈ ∂V maximizes x 7→ |x|, then supV Lut =
Lut(x); we may find distinct x1, x2 on ∂V , arbitrarily near x, satisfying |x1| = |x2|,
so Lip∂V (ut) = LipV (ut) = 2 + 2t(|x| − 1). Thus each ut satisfies (1.1). Note also
that the ut agree on the boundary of ∂B1(0) and t 7→ Lut(x) is decreasing for all
x ∈ B1(0). Thus ut1 is tighter than ut2 on B1(0) when t1 > t2.

It is interesting to note that the PDE (1.7) detects the non-optimality of the ut
when t < 1. Indeed, when t < 1 the unit vector field

a(z) := iz/|z|,
is a principal direction field for ut on B1(0) \ {0}. Since the ut-image of a principal
flow curve is not a line, we see that ut does not satisfy (1.7).



14 SCOTT SHEFFIELD AND CHARLES K. SMART

3.2. Limiting Euler-Lagrange equations. To derive the PDE (1.7) as the limit
of the Euler-Lagrange equations for (1.5), recall (e.g., Chapter 8, Theorem 6 of [7])
that if u ∈ C2(U,Rm) minimizes a functional of the form

v 7→
∫
U

F (Du) dx,

where F ∈ C2(Rm×n), then u satisfies

−(Fpk,i
(Du))xi = 0 in U,

where Fpk,i
denotes the derivative of F with respect to its ki-th input.

If u ∈ C2(U) minimizes (1.5) and has a principal direction field a ∈ C1(U,Rn),
then Du(U) is contained in the open set where the norm A 7→ |A| is smooth. Using
(1.10), we conclude that

−(p|Du|p−2uxj
ajak)xk

= 0 in U.

Distributing the derivative with respect to xk and normalizing, this is equivalent to

−|ua|−2(uaa · ua)ua −
1

p− 2
((ua)a + ua div(a)) = 0 in U.

Here we have used the shorthand ua := uxia
i and uaa := uxixja

iaj introduced in
the preliminaries. Since uaa · ua = (ua)a · ua, this system is equivalent to the pair −(|ua|−2ua ⊗ ua)(ua)a =

1

p− 1
ua div(a),

−(I − |ua|−2ua ⊗ ua)(ua)a = 0.

Sending p→∞ yields (1.7).

3.3. Proofs of main results.

Proof of Theorem 1.5. (⇒) Suppose u is tight. We first claim that

(3.2) (|ua|−1ua)a = 0,

which implies that the images of the flow curves of a are straight lines (but does
not yet imply that the map is length preserving).

Set b := |ua|−1ua and observe that, since b is a unit vector, we have b · ba = 0
and therefore (b · ba)a = b · (ba)a + |ba|2 = 0. We now show that if (3.2) fails
(i.e., the images of the flow curves are not straight lines), then we may modify
u (via a smooth perturbation that partially straightens these lines) to produce a
tighter function. Assuming (3.2) fails, we may rescale and translate to obtain that
(ba)a · b < 0 on B̄1(0) ⊆ U .

Define the standard bump function

ϕ(x) :=

{
e−(1−x

2)−2

if |x| < 1,

0 if |x| ≥ 1,

and set

v := u+ sϕba,

for some s > 0 to be determined. Using ua · ba = 0 and (1.10), compute

|Dv|2 = |Du|2 + 2sua · (ϕba)a +O(s2)

= |Du|2 + 2sϕua · (ba)a +O(s2).
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Recall that the constant in the O(s2) depends continuously on Du, D(ϕba), and
(λ1(DutDu) − λ2(DutDu))−1. Since all three of these are bounded on B̄1(0), we
may select a constant for the O(s2) term that works on all of B̄1(0). Since ua ·ba < 0
on B̄1(0), we see that v is tighter than u for all small s > 0.

Thus if (1.7) fails, we may assume by (3.2) that ua · (ua)a > 0 on B̄1(0) ⊆ U . (If
instead ua · (ua)a < 0 we can replace a with −a.) Since D|ua|2 6= 0 in B1(0) and
u ∈ C3(U,Rm), we may assume |ua|2 has a strict maximum on B̄1(0) at some point
x∗ ∈ ∂B1(0). Thus D|ua|2(x∗) is a positive multiple of the outward unit normal a∗

to ∂B1(0) at x∗. Since a ·D|ua|2 = 2ua · (ua)a > 0, we conclude that a(x∗) ·a∗ > 0.
In particular, ϕa(x)/ϕ(x)→ −∞ as x→ x∗.

Set
v := u+ sϕua,

and use ua · (ua)a = 0 and (1.10) to compute

|Dv|2 = |Du|2 + 2sua · (sϕua)a +O(s2)

= |Du|2 + 2s(ϕa|ua|2 + ϕua · (ua)a) +O(s2).

As before, there is a constant for the O(s2) term that works for all of B̄1(0).
Since ϕa(x)/ϕ(x) → −∞ as x → x∗, we know that the linear term in this Taylor
expansion is negative in a neighborhood of x∗. Since x∗ is a strict maximum for
|ua| = |Lu| on B̄1(0), it follows that v is tighter than u when s > 0 is small.

(⇐) Suppose u satisfies (1.7) in U and that v is tighter than u. Let x ∈ U be a
point where

(3.3) Lu(x) > Lv(x) > max{Lv : Lv > Lu}.
Let γ : [0, T ] → Ū be a unit-speed parameterization of the principal flow curve
through x. It follows from (1.7) that u ◦ γ is affine. We also have

(v ◦ γ)′(t) ≤ |Dv(γ(t))| ≤ |Du(γ(t))| = (u ◦ γ)′(t),

for all t ∈ (0, T ). Since (v ◦ γ)′(t0) < (u ◦ γ)′(t0), we have

v(γ(T ))− v(γ(0)) < u(γ(T ))− u(γ(0)),

contradicting the fact that u = v on ∂U . �

Lemma 3.2. Suppose U ⊆ R2 is bounded and open and u ∈ C∞(U,R2) is analytic
in a neighborhood of Ū . If u is one-to-one and u′′ does not vanish on U , then (1.8)
and (1.9) are equivalent.

Proof. To prove the equivalence of (1.8) and (1.9), write f = log v′ and note that

since f is analytic the gradient of <f is f
′

(viewed as a vector in R2). Note also
that <f has the same argument as (f ′)−1. Thus, ∆1<(f) ≤ 0 (or equivalently,
∆∞<(f) ≥ 0) if and only if <[f ′′/(f ′)2] ≥ 0. Plugging in f = log v′, we have
f ′ = v′′/v′ and f ′′ = (v′′′v′ − v′′v′′)/(v′)2 so that

< f ′′

(f ′)2
= <v

′′′v′ − v′′v′′

(v′′)2
≥ 0,

which is equivalent to <[v′′′v′/(v′′)2] ≥ 1. Now let us convert back to a statement
about u. We may suppose that 0 ∈ U , u(0) = 0 and u′(0) = 1, at the more
general result can be obtained from this case by composing u with affine functions.
Expanding about zero, we see that if

u(z) = z + a2z
2 + a3z

3 + · · · ,
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and

v(z) = z + b2z
2 + b3z

3 + · · · ,
then

z = u ◦ v = z + (a2 + b2)z2 + (a3 + b3 + 2a2b2)z3 + · · · .
We conclude that v′′ = −u′′ and v′′′ + u′′′ + 3(v′′)2 = 0. Thus, in this case

< v
′′′v′

(v′′)2
= < v′′′

(v′′)2
≥ 1 if and only if < u

′u′′′

(u′′)2
= 3−< v′′′

(v′′)2
≤ 2,

which is precisely (1.8). �

Before providing a proof of Theorem 1.6, we consider a simple family of tight
conformal maps.

Example 3.3. Suppose u(z) = zm or more generally u(z) = em log z for some fixed
branch of log where m may be complex. In this case we have identically

u′u′′′/(u′′)2 = (m− 2)/(m− 1) = 1− 1/(m− 1).

Thus <[1 − 1/(m − 1)] ≤ 2 provided <(m − 1)−1 ≥ −1, or equivalently m 6∈
B1/2(1/2). In particular, if m is real, then (1.8) states that m 6∈ (0, 1).

By taking u(z) = azm and choosing m, a, and z we obtain a generic set of values
in C3 for the triple

(u′(z), u′′(z), u′′′(z)) = (amzm−1, am(m− 1)zm−2, am(m− 1)(m− 2)zm−3).

Thus these monomials parameterize the space of inputs to (1.8).

Proof of Theorem 1.6. (⇒) Recall (1.9), which states (assuming u is one-to-one)
that for each s > 0 the set S := {|Du−1| ≥ s} is convex in a local sense: each point
x in uU ∩ ∂S has a neighborhood whose intersection with S is convex. If (1.9)
fails, then there is a neighborhood on which u is one-to-one and {|Du−1| ≥ s} is
not convex for some s > 0. We show that in this case, we can perturb u to create
a function tighter than u. By restricting to a subdomain, we may assume that
Dw 6= 0 in U , where w := |Du|2. Let

a := |Dw|−1Dw and b :=

[
0 − 1

1 0

]
a.

Since {|Du−1| ≥ s} is not convex, we may restrict to a further subdomain to obtain,

ub · (ua)b < 0 in U.

Translating and rescaling, we may assume that w has a strict maximum on the ball
B̄1(0) ⊆ U at a point x∗ ∈ ∂B1(0).

Let ϕ be the standard bump function

ϕ(x) :=

{
e−(1−x

2)−2

if |x| < 1,

0 if |x| ≥ 1,

and consider the perturbation

v := u+ sϕua,

for some s > 0 to be determined.
Observe that

|Dv|2 = |Du|2 + 2smax{ua · (ϕua)a, ub · (ϕua)b}+O(|D(sϕua)|2),
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and that

ua · (ϕua)a = ϕa|ua|2 + ϕua · (ua)a,

and

ub · (ϕua)b = ϕub · (ua)b.

Since φa(x)/φ(x)→ −∞ as x→ x∗, we see that both terms in the max above are
negative in a neighborhood of x∗. Thus we may choose a small s > 0 and obtain a
v that is tighter than u.

(⇐) If u is affine, then tightness is obvious. Thus we may suppose that u is not
affine and that (1.8) holds. Suppose for contradiction that v : Ū → R2 is tighter
than u and define

s := sup{Lu : u 6= v} ≥ sup{Lu : Lu > Lv},

and

t := sup{Lv : Lu < Lv},
Note that t < s, as v is tighter than u.

Since the singularities of (1.8) are removable, we must have u′′ 6= 0 whenever
u′ 6= 0. (One can easily check that if the power series expansion at a point has a
term of degree 1, no term of degree 2, and a next term of degree 3 or higher, then
(1.8) must have a non-removable singularity.) Since (log u′)′ = u′/u′′, it follows
that the non-zero level sets of |u′| are regular. Also, u = v on {Lu ≥ s}. By
modifying the domain U , we may assume that u 6= v and Lu < s in U .

Suppose that Γ ⊆ ∂U is a connected component of {x ∈ ∂U : |u′(x)| = s}. Here
we are using the fact that u is analytic on a neighborhood of Ū to make sense of
|u′| on ∂U . Select ε > 0 such that s− ε > t and let V be the connected component
of {|u′| > s − ε} whose closure contains Γ. Since log |u′| is harmonic, V is simply
connected. Let γ := U ∩ ∂V be the part of the boundary of V that lies in the
interior of U . Note that γ is a smooth curve, as the s− ε level set of |u′| is regular.

Since |u′| ≥ s−ε on V̄ , there is an r > 0 such that u is one-to-one on B(x, r) and
u(B(x, r)) is convex for each x ∈ V̄ . Making ε > 0 smaller, we may also assume
that V̄ ⊆

⋃
x∈γ B(x, r). The differential inequality (1.9) implies u(γ ∩B(x, r)) is a

smooth and concave part of the boundary of u(V ∩B(x, r)) for every x ∈ γ.
Let x be the midpoint of γ and consider the tangent line l to u(γ) at u(x). Let

Γ̃ ⊆ V be a maximal smooth curve such that x ∈ Γ̃ and u(Γ̃) ⊆ l. Observe that if

x ∈ γ, then l∩u(B(x, r)) is either empty or a single line segment. Thus Γ̃∩B(x, r)
is a subset of the simple curve (u|B(x,r))

−1(l∩u(B(x, r))). Since V̄ ⊆
⋃
x∈γ B(x, r)

and V is simply connected, it follows that Γ̃ is simple. Now the concavity of
u(γ ∩B(x, r)) guarantees that the endpoints of Γ̃ lie on ∂U .

Let (y, z) := u(Γ̃) and w := (u|W )−1. Since w((y, z)) = Γ̃ ⊆ V , we see that v ◦w
is a Lipschitz contraction on (y, z). Since w(y), w(z) ∈ ∂U , we see that v ◦w is the
identity on {y, z}. It follows that w ◦v is the identity on (y, z). In particular, u = v

on Γ̃, contradicting the fact that u 6= v in U . �

3.4. Infinity harmonic fans. In this section, we establish that when n = 2
smooth solutions of (1.7) are what we call infinity harmonic fans. Informally, a
such a fan u is constructed by mapping each principal flow curve of the infinity
harmonic function f onto a line in Rm in such a way that motion orthogonal to Df
is not amplified too much.
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For a concrete example, take any infinity harmonic function f ∈ C2(U,R) that
satisfies infU |Df | > 1 and consider the map u : Rn+m → R1+m given by

u : (x, y) 7→ (f(x), y).

While f maps its gradient flow lines to R, the map u maps the gradient flow lines of
f to different lines. The following is a more general proposition that in particular
implies that the example above is tight.

Proposition 3.4. Suppose U ⊆ Rn is bounded open and u ∈ C∞(U,Rm) has the
form

(3.4) u(x) = f(x)b(x) + c(x),

where

(1) the function f ∈ C∞(U,R) is infinity harmonic,
(2) the unit vector field b ∈ C∞(U,Rm) is constant on each flow curve of f ,
(3) the vector field c ∈ C∞(U,Rm) is constant on each flow curve of f ,
(4) the vector field a := |Df |−1Df is a principle direction field for u.

Then u is tight.

Proof. Using ba = 0, ca = 0, and (Df)aa = 0, compute

ua = bfa and (ua)a = b(fa)a = bfaa = 0.

Here we have again used the shorthand va := vxi
ai and vaa := vxixj

aiaj . Thus
Theorem 1.5 implies that u is tight. �

We remark that condition (4) in Proposition 3.4 is equivalent to

|Df | = |b⊗Df + fDb+Dc| > |fDb+Dc| in U.

The next proposition shows that when n = 2 and U is simply connected, all non-
conformal smooth tight functions have this form.

Proposition 3.5. Suppose U ⊆ R2 is bounded and simply connected and u ∈
C∞(U,Rm) is tight with principal direction field a ∈ C∞(U,Rn). Then u can be
written in the form (3.4) described in Proposition 3.4.

Proof. If u is tight and has a principal direction field a ∈ C∞(U,Rn), then Theorem
1.5 implies that u satisfies (1.7). In particular, the images of the principal flow
lines are straight lines. This suggests we simply define b := |ua|−1ua. Now pick an
arbitrary point on x on one of the principal flow curves, and consider the path P
orthogonal to the principal flow curves that passes through x. Observe that once
we define c(x), then (3.4) determines f(x) on the entire flow curve passing through
x. Since f must be constant on P , this determines c and f on the union of the flow
lines passing through P . Picking a new x and repeating this process allows us to
construct c and f on all of U .

Observe that the f and c constructed as above must necessarily be smooth.
Indeed, the value of f as some new point y is determined by the length of the
path through the field a to P . Since a is smooth, this distance must be a smooth
function. Since c = u− fb, it too must be smooth.

Finally, observe that (ua)a = 0 implies faa = 0. Thus f is infinity harmonic. �
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4. Radially symmetric examples on R2

4.1. Classifying radially symmetric tight functions. Let D ⊆ C \ {0} be
bounded and simply connected and fix α > 0. By Theorem 1.6 (and the subsequent
discussion) the maps u(z) = zα and u(z) = (z̄)−α are tight when the exponent is in
R \ (0, 1). These maps have some nice radial symmetries: in particular, arg u(z) =
α arg z for all z ∈ D (and some branch of arg defined on D) and |u(z)| depends
only on |z|. What other tight functions have these symmetries?

To frame this question more precisely, let ρ : Cu → A be the universal cover of
the annulus

A := {x ∈ R2 : R1 < |x| < R2},
where 0 < R1 < R2 <∞. Note that Cu can be parameterized by the set (R1, R2)×
R so that the covering map ρ : Cu → A is given by

ρ(r, θ) = (r cos θ, r sin θ).

We fix α > 0 and restrict our attention to maps u : C̄u → R2 that are α-periodic
in the sense that

u(r, θ) = u(r, θ + 2π/α) for every r ∈ [R1, R2] and θ ∈ R.

We can think of such maps u as being defined on the Riemannian manifold C given
by Cu modulo the map (r, θ)→ (r, θ+ 2π/α). In particular, this allows us to think
of z → zα as an injective map from C to R2.

We adopt the same definition of tight as before, even though C̄ is a manifold that
is not strictly a subset of C (unless α = 1). We now seek tight functions u : C̄ → R2

of the form

(4.1) u(r, θ) = ρ(φ(r), αθ).

Observe that Theorem 1.5 and Theorem 1.6 have straightforward generalizations
to functions u : C → R2. Theorem 1.5 implies that the map u : C → R2 given by
(4.1) with

(4.2) φ(r) = kr + k0

is tight provided that

(4.3) |k| > |α|(kr + k0)/r for every r ∈ (R1, R2).

Indeed, the condition on the constants k, k0, α ∈ R implies that the radial direction
in principal. Theorem 1.6 implies that the map u : C → R2 given by (4.1) with

(4.4) φ(r) = kr±α

is tight if and only if k = 0 or the exponent ±α is not in (0, 1).

Proposition 4.1. Suppose u : C → R2 has the form (4.1). Then u is tight if and
only if φ either has the form of (4.2) (satisfying (4.3)) or (4.4) on all of [R1, R2],

or this is not the case and there is some R̃ ∈ (R1, R2) such that one of the following
is true (here ki are assumed to be positive):

(1) α ≥ 1 and φ has the form k1r
−α on [R1, R̃] and the form k2r

α on [R̃, R2]

(2) α ≥ 1 and φ has the form k1r
−α on [R1, R̃] and is a decreasing affine

function on [R̃, R2] (with matching slope at R̃).

(3) α ≥ 1 and φ has the form k2r
α on [R̃, R2] and is an increasing affine

function on [R1, R̃] (with matching slope at R̃).
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(4) α ∈ (0, 1) and φ has the form k1r
−α on [R1, R̃] and is an increasing affine

function on [R̃, R2] (with opposite slope at R̃).

(5) α ∈ (0, 1) and φ has the form k1r
−α on [R1, R̃] and is a decreasing affine

function on [R̃, R2] (with matching slope at R̃).

The five possibilities are illustrated in Figure 4. The lighter curves in the back-
ground illustrate the functions kr±α for a range of k values. Note that if φ is one
of the functions described in Proposition 4.1, then on each the two intervals [R1, R̃]

and [R̃, R2] it either traces one of the curves kr±α or it traces a straight line that
is strictly steeper than each such curve it intersects (at the point of intersection).
Note that α ≥ 1 for the first three figures and α ∈ (0, 1) for the fourth and fifth
(hence the concavity of the increasing background curves).

Figure 4. The five possible interfaces in our radially symmetric examples.

Corollary 4.2. If g : ∂C → R2 has the form

(4.5) g(r, θ) =

{
ρ(M1, αθ) if r = R1,
ρ(M2, αθ) if r = R2,

for some α ∈ R, then g has a unique tight extension u : C → R2 of the form (4.1).

Proof. A straightforward inspection shows that any pair of points (R1,M1) and
(R2,M2) in (0,∞)2, with R1 6= R2, can be joined by a unique function φ that
either has one of the four types shown or is of the type (4.2) (satisfying (4.3)) or
(4.4) on all of [R1, R2]. This can be seen by viewing the background curves kr±α

as the lines of a new coordinate system: that is, we may change coordinates via
(R,M) → (Rα/M,R−α/M). In the case α ≥ 1, the difference between (R2,M2)
and (R1,M1) (in these new coordinates) can lie in three possible quadrants, and
the three figures represent these three cases. In the case α < 1, the two figures
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shown represent two possible quadrants; the third quadrant figure is not shown,
since one always has a straight line in that case. The corollary then follows from
Proposition 4.1. �

Lemma 4.3. A Lipschitz function u ∈ C(C,R2) of the form (4.1) is tight if and
only if it there is no tighter v of the form (4.1).

Proof. Suppose v ∈ C(C,R2) is tighter than u, i.e.,

M1 := sup{Lu : Lv < Lu} > sup{Lv : Lv > Lu} =: M2.

We define a rotated version of v by vβ(r, θ) = e−iαβv(r, θ + β) where (θ + β is
computed modulo 2π/α). Note that if v has the form (4.1) then vβ = v. Otherwise,

we may consider the symmetrized function w :=
∫ 2π/α

0
vβdβ. We claim that if v

is tighter than u then w is also tighter than u. To see this note first that on any
circle (r, ·) we have:

(1) Lu constant,
(2) Lv possibly non-constant, but never larger than Lu if max{Lu,Lv} ≥M2,
(3) Lw ≤ Lu if max{Lu,Lw} ≥M2 (by Jensen’s inequality).

This implies

(4.6) sup{Lw : Lw > Lu} ≤M2.

Similarly, on some circle (r, ·) we must have

(1) Lu constant with Lu > M2,
(2) Lv possibly non-constant with Lv ≤ Lu on the whole circle and Lv < Lu

on a positive measure subset,
(3) Lw < Lu (by Jensen’s inequality).

This implies

(4.7) sup{Lu : Lu > Lw} > M2.

Now (4.6) and (4.7) together imply that w is tighter than u. Now, it is not neces-
sarily the case that w has the form (4.1). The radial symmetries show only that it
can be written as

w(r, θ) = ρ(φ(r), αθ + α0(r)),

where α0 is some function of r. Let w̃ be the function obtained from w by replacing
this α0 with 0. Clearly, Lw̃ ≤ Lw pointwise, and hence w̃ is also tighter than u. �

Proof of Proposition 4.1. By Lemma 4.3, it is enough to consider functions of
the form (4.1), and to show that

(1) If φ is not of one of the types in the proposition statement, then one can
modify φ (keeping same boundary data) in a way that makes (4.1) tighter.

(2) If φ is of one of the types in the proposition statement, then one cannot do
this.

To establish (1), suppose we are given boundary conditions (R1,M1) and (R2,M2),
let φ̄ be the interpolation of Proposition 4.1. Simple inspection shows that if φ is
strictly larger than φ̄ on (R1, R2) then the extension (4.1) becomes tighter if φ
is replaced by φ̄ (note that the maximal contribution to Lu comes at one of the
endpoints of the interval). This argument in fact shows that in order for u to be
tight, if φ hits the boundary points (R1,M1) and (R2,M2) then it must be equal
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to or less than φ̄ on (R1, R2) (if it is larger on some open interval, we may replace
R1 and R2 with the endpoints of that interval and apply the above).

Next, if it happens that φ̄ is of the type (4.2) (satisfying (4.3)) then if φ is any
function other than φ̄ then u becomes tighter when φ is replaced by φ̄ (simply
because the Lipschitz norm of a one dimensional function on a finite interval —
with given boundary data – is minimized by a straight line). This argument shows
that if the graph of φ hits two points on such a φ̄, and φ is not affine between those
points, then u is not tight.

Now we claim that if the endpoints of the graph of φ lie on a convex kr±α, and
the φ goes below it, then φ is not tight. Considering first the rα case, the function
φ(r)/rα (which is Lipschitz, hence a.e. differentiable) has a positive derivative
at some point r′. This means that φ′(r) is steeper than than krα curve through
(r, φ(r)), and the previous argument implies that if φ is tight then φmust be equal to
an affine function g in a neighborhood of such a point. Taking r′′ to be the smallest
point at which φ(r) = g(r), we find that for some point r′′′ just smaller than r′′ the
interval (r′′′, r′) is one on which φ is not affine, even though the corresponding φ̄
is, and we have reduced to the previous case. The r−α case is similar.

Now we know that if φ is tight and strictly below φ̄ then φ/φ̄ cannot obtain a

minimum anywhere except R̃, and that in this case φ must be affine on both [R1, R̃]

and [R̃, R2]. It is easy to see by inspection that in this case φ̄ is tighter than φ.
This completes the proof of (1).

To establish (2), we must show that the φ̄ are in fact tight. If φ yielded a tighter
function, then there would be some interval such that φ and φ̄ were equal on the
endpoints, not equal inside, and had the restriction of φ to the interval tighter than
φ̄ on the interval. This cannot happen if φ > φ̄, since in this case the corresponding
ū would have a strictly higher Lipschitz constant in a neighborhood of the boundary,
where the maximum is obtained. If φ < φ̄ then the derivative of φ (which again
exists a.e.) would have to be strictly less than that of φ at points arbitrarily near
R1 (and greater at points arbitrarily near R2); thus, at points arbitrarily close to
the endpoint where φ̄ is steepest, we have φ even steeper. We conclude that φ
cannot be tighter than φ̄. �

5. Questions

Question 5.1. Does every Lipschitz function g : ∂U → Rm on the boundary of a
bounded open set U ⊆ Rn admit a (unique) tight extension?

One approach to proving existence and uniqueness in the scalar case is to estab-
lish good estimates for discrete infinity harmonic functions on lattice models (see,
e.g., Lemma 3.9 in [1]). It may be possible to use tight functions on graphs to do
this in the vector-valued case. However, one must be careful to avoid the instability
of uniqueness described above.

Question 5.2. By Proposition 3.4, we know that fans of smooth infinity harmonic
functions are tight. What happens if we fan out a non-smooth infinity harmonic
functions like the Aronsson function (x, y) 7→ x4/3 − y4/3?

Question 5.3. Suppose U ⊆ R2 and u ∈ C2(U,R2) is tight. Suppose, moreover,
that the interface between the regions where u is conformal and u has a principal
direction is a smooth curve. What can be said about u along that interface?
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Question 5.4. What kinds of surfaces can be images of tight functions in the
R2 → Rm case?

Question 5.5. For any differentiable map u, we may denote by Sk the set of x for
which the eigenspace of the largest eigenvalue of Du(x)tDu(x) is k dimensional.
Informally, Sk is the set of locations where there are k principle directions. What
can one say in general about the behavior of u on Sk? Can one construct any
non-trivial examples of tight functions for which each of the Sk has non-empty
interior?
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