
IDENTIFYING MODE CONFUSION POTENTIAL IN SOFTWARE DESIGN

by

Mario A. Rodriguez

B.S. Industrial Engineering
University of Central Florida, 1998.

Submitted to the Department of Aeronautics and Astronautics in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2000

@ 2000 Massachusetts Institute of Technology
All rights reserved

A uth or ...
Department of Aeronautics and Astfonautics

July 28, 2000.

C ertified by
Professor Nancy Leveson

Department of Aeronautics and Astronautics
Thesis Supervisor

A ccepted by......................
Professor Nesbitt W. Hagood

Associate Professor of Aeronautics and Astronautics
Chairman, Department Graduate Committee

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 1 7 2000

LIBRARIES

IDENTIFYING MODE CONFUSION POTENTIAL IN SOFTWARE DESIGN

by

Mario A. Rodriguez

Submitted to the Department of Aeronautics and Astronautics
on July 28, 2000, in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Aeronautics and Astronautics

Abstract

The current challenge of modem aircraft design is not in the capacity to automate
functions, but in making automation and humans effective team players. There are many
human factors issues that need to be considered in order to optimally operate the system
in a safe manner. This is not an easy task. Initial attempts mitigating the occurrence of
some known error types have produced new types of errors. Many of these new error
forms are the result of what has been labeled technology-centered automation, which
occurs when too little attention during software development is devoted to providing
enough support to humans in their monitoring and control tasks. In the case of auto flight
systems, automation has become a potential safety liability and there is a need to
systematically detect these types of error forms.

In order to evaluate and examine automation features that could lead to mode confusion
errors in complex process control systems, a formal specification language was used
(SpecTRM-RL). The MD-I1 vertical flight control system was chosen as a case study
because of many reasons. First it was a very large and complex system and one of the
contributions of this thesis was to evaluate the use of SpecTRM-RL for building complex
systems. Elements of the model are provided as well as lessons learned from the effort of
building the system. Another reason for choosing the vertical flight control system is
because it has been reported as one of the most common sources of mode confusion
errors in the ASRS reports. Finally, SpecTRM-RL is suited for the analysis of mode
confusion. Ideas are presented over how future design criteria can be added to the
existing set of tools available in SpecTRM-RL.

A human task visualization language is presented in order to build a model of the user
tasks that are analyzable and translatable to SpecTRM-RL. A translation of the elements
of the visual language is presented as well as suggestion on how it can be used for
detecting three types design features that can lead to mode confusion.

Thesis Supervisor: Nancy G. Leveson
Title: Professor of Aeronautics and Astronautics

2

Dedication

Pra meu papazinho.

3

Table of Contents

1 IN TR O D U C TIO N ... 6

1.1 RESEARCH GOALS ... 8

2 MODELING THE MD-11 VERTICAL FLIGHT CONTROL SYSTEM................ 10

2.1 M ODELING LANGUAGE.. 10
2.2 M D - 11 V ERTICAL FLIGHT CONTROL SYSTEM .. 14

2.2.1 Output M essage Specification .. 21
State Variable D efinition... 24
2.2.3 M acros and Functions .. 25
2.2.4 Input Variable D efinition.. 27

2.3 LESSONS LEARNED.. 28

3 HUMAN MACHINE INTERFACE DESIGN CRITERIA .. 31

3.1 INTRODUCTION .. 31
3.2 ANALYSIS A PPROACH.. 32
3.3 H UMAN TASK ANALYSIS... 34
3.4 A M BIGUOUS INTERFACE ERRORS .. 39

3.4.1 D esign Criteria for D etecting Ambiguous Interfaces .. 40
3.4.2 Conclusions...49

3.5 OPERATOR A UTHORITY LIM ITS ... 49
3.5.1 Conclusions...50

4 CO N CLU SIO N S ... 51

5 R EFERE N CES..53

4

List of Figures

Figure 2.1. Basic Supervisory Control Loop ... 11
Figure 2.2. The Form of a SpecTRM-RL Specification ... 12
Figure 2.3. Closed Loop Feedback .. 18
Figure 2.5. Overall view of the Vertical Flight Control System.................................... 20
Figure 2.6. MD-11 SpecTRM-RL Model.. 21
Figure 2.7. Example Output Variable ... 23
Figure 2.8. State Variable Example .. 24
Figure 2.9. Example Macro ... 26
Figure 2.10. Example Input Variable.. 27
Figure 3.1. Visual Task Modeling Language Components ... 35
Figure 3.2. User and Task Models .. 37
Figure 3.3. Ambiguous Interface Design ... 43
Figure 3.4. FMA Mode .. 45
Figure 3.5. Early Descent Definition... 48

5

1 Introduction

New advances in technology have added new functionality into systems. One of

the clearest examples is the aviation industry where advances in computing have had a

significant impact on the way systems are built. Some of the success achieved can be

seen in savings in production time, reduction of workload, increased productivity, and

increased precision. Unfortunately, humans have had problems coping with their

automated counterparts, and this affects negatively the safety of the new automated

systems. Such technology-centered automation has brought along surprises and new

types of errors. Breakdowns in the interaction of users with automated systems are

becoming more common. Pilots are at times lost in the automation. They ask questions

like "What is the computer doing?" "Why is it doing that?" "What will it do next?"

"How do I stop it from doing that?" and "How do I get it to do what I want it to do?"

(Wiener, 1980). The resulting confusion, sometimes called mode confusion, has been

cited as a contributing cause of accidents and serious incidents, highlighting the need to

develop ways to prevent it.

These surprises are not limited to operators. Designers as well have experienced

unexpected consequences (Sarter and Woods, 1995). As a result, a systematic

methodology for detecting these error forms should be developed for designers, as well as

for operators of these systems. It is hypothesized that such a methodology will allow

organizing ideas more clearly and visualizing the behavior of these models in a more

complete and systematic way, thus improving the overall safety of the system.

6

There are many challenges in improving the safety of a complex system. As

technology continues to improve, it is easy to make systems more complex and designing

them in a form that can be handled by humans is not an easy task. A common engineering

approach in dealing with complexity is the use of modes. Modes are defined as mutually

exclusive sets of system behaviors (Leveson, 1997). The use of modes allows for

flexibility and provides operators with a set of tools capable of optimizing system

performance across a wide range of circumstances (Sarter & Woods, 1995).

Proliferation of mode rich systems can result in the creation of new cognitive

demands on the operator and can lead to confusion. For example, the Flight Management

System (FMS) requires pilots to know which mode to use when, how to switch from one

mode to another, and how each mode is set up to fly the aircraft properly (Sarter &

Woods, 1995). All of these conditions make systems more difficult to handle, explain,

design, and predict their behavior.

A formal specification language helps in designing complex systems satisfying a set

of safety criteria, thus making the system more robust. A language like SpecTRM-RL

provides tools capable of a more consistent design during the early phases of

development. It is hypothesized that such languages providing features that enhance

readability and can be used by the common public will help make formal methods more

popular and will help engineers realize its power in systematically detecting error forms.

The following section will outline the research goals of this research. The first goal

was to build a blackbox model of a complex system with a formal specification language.

The second goal was to provide a more structured framework for detecting mode

confusion. Chapter 1 provides a description of the model for the vertical flight control

7

system that was used as a case study. Section 2.1 explains why the language was chosen

for this case in particular. It describes the foundation behind the language and why it is

suited for modeling process control systems. Section 2.2 introduces the areas of the

vertical flight control system that were modeled. It also provides examples of the

different elements of the model. The chapter ends with a summary of the lessons learned

while building the model. Chapter 3 provides a description of the human interface criteria

used as a framework for analyzing mode confusion in software design. Section 3.2

provides a review of related work in the area and describes the differences and

similarities with this thesis. Section 3.3 provides a description of the human task analysis

language and describes how it is formally translated into SpecTRM-RL. Section 3.4

provides a formal analysis of ambiguous interface errors. It includes recommendations

over how to better design the interface in order to avoid this error type. Section 3.5

describes operator authority limits and also provides with solutions of how to apply

algorithms based on the models of the system and the data structure of the state machine.

Finally, general conclusions are provided in chapter 4.

1.1 Research Goals

The goal of this research is to analyze human factors problems, specifically mode

confusion, that are part of the software used in most of the autoflight systems for

commercial aircraft. The analysis is based on a formal methodology to systematically

detect potential sources of problem. The use of SpecTRM-RL (Specification Tool and

Requirement Methodology - Requirement Language) for modeling of the case studies

help illustrate several points: scalability for large models, reviewability of the system

specification by a general audience, and the suitability of the language to analyze mode

8

confusion. The case study is the specification for the MD- 11 vertical flight control

system.

In essence, there are two goals of this thesis, one is to build the model of the

entire vertical flight control system with SpecTRM-RL and the other is to provide a

definition of the safety criteria for analyzing mode confusion and propose ways to

systematically detect them using this model. Experience gained in this effort will also

shed light in the enhancement of SpecTRM-RL for future projects.

9

2 Modeling the MD-11 Vertical Flight Control System

One contribution of this research is the experience gained in using SpecTRM-RL,

a formal specification language, to model a large complex system. The model is complex

in the sense of having many different highly dynamic components and subcomponents.

To this end, the MD-11 vertical flight control system was chosen as a case study. It will

be modeled by using SpecTRM-RL, which allows for different types of analysis in terms

of safety. Checks for completeness, consistency, and software deviation analysis are

available as part of the language.

2.1 Modeling Language

The selection of SpecTRM-RL to model a large and complex dynamic system,

such as the MD-1 1 vertical flight control system, offered many advantages over other

formal specification languages. The language is designed to support the way engineers

think about control systems, and its underlying formal model is based on a finite state

machine. This combination allows in depth analysis and easy development of models.

Readability is arguably the most advantageous characteristic of the language. It

allows all involved parties to discuss and analyze a specification with little knowledge of

formal methods. Further, experience has shown that in analyzing formal specifications

for complex systems, most significant errors will be found by human experts rather than

automated tools. Another added benefit was the short familiarization time needed to

master the language. Although some amount of training is needed, the amount is minimal

compared to other formal specification languages, such as PVS.

10

The types of models used in SpecTRM-RL are considered blackbox. The behavior

of the system is defined solely in terms of outputs and the inputs that stimulate those

outputs. By following this approach, the models do not include any information about

the internal design of the system, only about its externally visible behavior.

Measured
Variables

upervisr(s) Cotrler
Controls Model of

ess

til Displays Model of Superusory

and Process Interfaces

- -- --

Process
Inputs

Process
Outputs

Controlled
Variables

Figure 2.1. Basic Supervisory Control Loop

It is important to note that SpecTRM-RL was designed primarily for process-

control systems. Therefore mapping the parts of a SpecTRM-RL model to the parts of a

process control loop reduces semantic distance. A typical process-control system is

illustrated in Figure 2.1. It contains four types of components: the process, sensors,

displays, actuators, and controller. The blackbox model captures the controller's internal

model of the process. It is argued that accidents will occur when the internal model does

not accurately reflect the state of the controlled process.

The SpecTRM-RL notation is driven by the way engineers draw and define

control loops. It provides a simpler graphical representation than languages such as

Statecharts, PVS, and Z. Elements of the state machine formalism are hidden to the user

and only those components necessary to specify input/output function are included.

11

- Disturbances

.cuao

Figure 2.2 shows the four main components of a SpecTRM-RL specification: (1)

a specification of the supervisory modes of the controller being modeled, (2) a

specification of its operating modes, (3) a model of the controlled process that includes

the inferred operating modes and system state (inferred from the measured inputs), and

(4) a specification of the inputs and outputs to the controller.

Measured Variables
Component

SUPERVISORY NFERRED SYSTEM OPERATING MODES
MODE

Control

Control Input .------ U fd ----- - - -........... --.-. INE EII ~ 5 5IISAIN -------- Command

MODES

Display Output

Measured Variables
(Feedback)

Figure 2.2. The Form of a SpecTRM-RL Specification

Every automated controller has at least two interfaces: one with the supervisor(s)

that issues instructions to the automated controller (the supervisory interface) and one

with each controlled system component (controlled system interface). The supervisory

interface is shown to the left of the main controller model while the interface with the

controlled component is to shown the right. There may be additional interfaces (shown at

the top) with various environmental sensors.

The representation of the different interfaces allows analyzing the model in

different ways. The supervisory interfaces provide the model of the operator controls and

a model of the other ways to communicate information to the operator. The interface

12

models are composed of the logical view that the controller has of the interfaces - which

is independent of what actually occurs in the system. By having a representation of the

assumed interface vs. an actual interface, the analysis can detect the effect of

inconsistencies, errors, and failures. In addition, separating the physical design of the

interface from the logical design will facilitate changes and allow parallel development of

the software and the interface design.

Another advantage of SpecTRM-RL is the ability to specify modes. Modes are

abstractions on states and are not part of the description of the blackbox behavior. They

represent a logical way for users to organize the operation of the diverse set of behaviors

of complex systems. To this end, modes are used as state variables that play a particular

role in the state machine. SpecTRM-RL allows specifying several types of modes:

supervisory modes, control modes, controlled-system operating modes, and display

modes.

Supervisory modes are used in specifying information about the current supervisor

of the controller and are useful when a component may have multiple supervisors at any

time. For example, a flight control computer in an aircraft may get inputs from the flight

management computer and directly from the pilot. Required behavior may differ

depending on which supervisory mode is currently in effect. Mode-awareness errors

related to confusion in coordination between multiple supervisors can be defined (and the

potential for such errors theoretically identified from the models) in terms of these

supervisory modes. In systems with complex displays (such as Air Traffic Control

systems), it may also be useful to define various display modes.

13

The bottom left quadrant of Figure 2.1 provides information about the control

modes for the controller itself. These are not internal states of the controller (which are

not included in our specifications) but simply represent externally visible behavior about

the controller's modes of operation. Control Modes are used in describing the required

behavior of the controller. Modern avionics systems may have dozens of modes. Control

modes may be used in the interpretation of the component's interfaces or to describe the

component's required process-control behavior.

The right half of the controller model represents inferred information about the

operating modes and states of the controlled system (the plant in control theory

terminology). A simple plant model may include only a few relevant state variables. If

the controlled process or component is complex, the model of the controlled process may

be represented in terms of its operational modes and the states of its subcomponents.

Operational modes are useful in specifying sets of related behaviors of the controlled-

system (plant) model. For example, it may be helpful to define the operational state of an

aircraft in terms of it being in takeoff, climb, cruise, descent, or landing mode.

2.2 MD-11 Vertical Flight Control System

The vertical flight control system of an advanced technology aircraft like the MD-

11 is integrated as part of the flight management system (FMS) with the purpose of

increasing safety and improving performance. It provides accurate targets and optimized

controls necessary to maintain a predetermined vertical profile and provide guidance,

control, and annunciation functions. It reduces costs by flying algorithmically over

economized fuel paths. It also increases safety by performing critical maneuvers,

annunciating alerts, and augmenting the control characteristics that make the aircraft

14

easier to fly. This research tries to model the blackbox behavior of the automation in

order to be analyzed in terms of safety.

Many tasks of an integrated flight system are distributed between the FMS and

the autopilot. The FMS performs the tasks of flightplanning by compiling a four-

dimensional route, defined by a lateral flightplan, a vertical flightplan, and an elapsed

time trajectory. These flightplans are compiled from stored navigation databases and

flight-crew entries.

Navigation is performed by the FMS by identifying aircraft position relative to

fixed points on the surface of the earth. A lateral position, vertical position, and elapsed

time are computed by a combination of data from ground-based transponding radios,

radar, and aircraft motion sensors.

Guidance is performed by the FMS by determining the appropriate altitude,

speed, thrust, and heading required to maintain the current leg of the flightplan. These

targets are determined by a comparison of aircraft position (Navigation) to the desired

profile (Flightplanning) and may take into account temporary deviations from the

flightplan due to weather, traffic, equipment failures or on-board emergencies.

The autopilot controls the aircraft by synchronously adjusting the pitch, roll, and

yaw control surfaces and the throttle position, to instantaneously maintain the desired

aircraft trajectory defined by FMS Guidance.

Flight management of the vertical profile is modeled by a set of vertical guidance

operational procedures. This set of procedures represent all the necessary maneuvers

required by Air Traffic Control (ATC) and the flight-crew to manage the aircraft

15

trajectory in the vertical profile. Each Vertical Guidance Operational Procedure is defined

by a set of attributes that distinguishes them. They are described below.

The objectives/strategies of a vertical guidance operational procedure represent

the goals, manner of operation, or the specific maneuver that can be achieved by this

procedure. This attribute distinguishes one operational procedure from another.

The engagement criteria identifies aircraft position in the vertical flightplan of the

state of the aircraft when the operational procedure is invoked. It accounts for pilot

instructions received from the flight control panels, equipment status, and the position of

the aircraft relative to the desired vertical flightplan.

The altitude target identifies the level altitude that shall be maintained or acquired

by the aircraft to satisfy the objectives of the procedure. The altitude target, determined

by the selection of one of the altitude scenarios, may be the pilot selected clearance

altitude or an altitude constraint specified in the vertical flightplan.

The control mode identifies the parameters that shall be acquired and maintained

by the integrated pitch/thrust control mode. The attributes of the control modes include

the methods for computation of the elevator and throttle commands (typically closed-loop

feedback with a predictive term) and the control error criterion specified by the advisory

circular of the FAA. The control mode is determined by the selection of one of the

pitch/thrust combinations available in the autopilot.

The speed target identifies the airspeed and mach targets that shall be acquired

and maintained to satisfy the objectives of the procedure. The airspeed and mach targets,

determined by the selection of one of the speed scenarios, may be pilot selected airspeed

16

or mach from the flight control panel, an optimum speed defined by the FMS, or a speed

specified in the vertical flightplan.

The vertical speed target identifies the rate of descent that shall be acquired and

maintained in order to satisfy the objectives of the procedure. The vertical speed targets,

determined by the selection of one of the vertical speed scenarios, and may be the pilot

selected vertical speed from the FCP, or a rate of descent identified for a specific

procedure.

The model that was built of the automation is based on a real-time selection of a

vertical guidance operational procedure and the subsequent selection of the appropriate

target and control-mode scenarios. Figure 2.3 shows this selection logic. The applicable

procedure is selected responding to the logic of the control laws and the conditions of the

engagement criteria scenarios. The decisions consider the current states of the vertical

flightplan (including flightcrew instructions) and feedback of the navigation aircraft

position. Also based on the selection of the procedure, the vertical flightplan and aircraft

position are chosen as well as the altitude target, airspeed/mach target, vertical speed

target and control-mode.

For example, for the descent path operational procedure the altitude target status

defines the control logic for the aircraft altitude and the flight control computers modes.

The vertical guidance type and descent/approach path status are also included as part of

the definition and logic of the system. They define the capture hold criteria and the

engagement of the vertical profile.

17

Target States
Option 3

Optionn

Current States

Figure 2.3. Closed Loop Feedback

Figure 2.3 shows visualization of how the model of the automated controller

works. It selects the appropriate vertical guidance operating procedure evaluating the

current situation. Each of the options has an associated set of requirements for the

selection of the option.

There are three main areas covered in our model of the vertical flight control

system: interpretation, guidance, and annunciation. Figure 2.4 shows an overall view of

the model. The interpretation process generates and correlates all the necessary data

required by the guidance, control, and annunciation processes. Using the aircraft position

relative to its vertical profile and any operational commands from the pilot, the guidance

function determines appropriate altitude, speed, thrust, path, and pitch targets as well as

the integrated pitch/thrust control mode necessary to maintain the desired trajectory.

Finally, annunciation provides information to the FCC (flight control computer) to be

displayed in the cockpit, based on the guidance and control functions. This information

18

includes the flight mode, speed target, and altitude targets of the aircraft. Figure 2.4

shows the overall view of the different areas covered by our model.

Figure 2.5 shows the SpecTRM-RL model of the system. Because the vertical

flight control system is too large to show on one page (or one screen), the specification is

hierarchically decomposed and only state variables are shown. Figure 2.5 also shows the

possible values that the Flight Phase state variable can assume. In reality, every state

variable (including operating modes) listed on the system model is associated with a

similar set of values. However, only the list of names for state variables is shown due to

space limitations.

19

Interpretation

Operational Flightphase Conflict Vertical
Commands Selection Altitude GuidanceReference Alt

Vertical Vertical Thrust Limit Descent/
Guidance Guidance Selection Approach

Active Type Path Capture

Guidance

Operational Procedure Selection

Airmass Engine-Out Descent Path
Ascent Level Descets/ Larget Overspeed

Targets/ T Targeg/ MTarges Targets/
Modes Modes Modes Modes

Max Descent Invalid Path Climb Descent
Intermediate Cruise Level Intermediate

des! ares! Level Target/ Target/Modes Level Target/
Modes Modes

Engine-Out HM Airmass
Driftdown Early Descent Targets/ Descent

Target!Modarg etrget!Modes Modes Target/Modes

To FCC

Control
Descent/

Approach
Path

Control Law

Annunciation

Add Drag/
Remove Drag

FMA

Vertical Speed Target
Deviation

Engine-Out
Decel Driftdown

Target/Modes

Figure 2.4. Overall view of the Vertical Flight Control System.

20

t 'I

----------- I

Vertical Flight Control
Specification

SUPERVISORY
MODE

MODES

Operation Mode
Vert Guid. Cotrol Mode
FMS Cotrol Mode
FCC (Operating) Mode
FCC Engaged Mode
Speed Scenario
Vertcal Guidance Type
FCC FMS Speed Mode
Cib FMS Speed Mode
Cnise FMS Speed Mode
Decet FMS Speed Mode:
Cnlib FS Mode
Cnise Flgit Speed Mode:
Operaiug Proedre

Measured Variables

INFERRED SYSTEM OPERATING MODES
Flgit Phase

Unknwn refigl Tako Cmb ruie |escet Aproch one Control
Command

INFERRED SYSTEM STATE

Active Lateral Leg Descert Speed Violation
Active State Descert State
Active Th1ust Limit Engine Ott
Aircrat Above 2 Engine Mx Ergine Ort Level Deceleration
AircratAttainedV3 FMS cm Req
Aircrat Maneuver Go Arotid lritilated
Alrcrat Speed Statta Last Takeoff Thnjst Unit
Below Palh Approadh Level Next Cnse FIght Level
Capture Hold Status Next Lateral Leg
Cimb FMS Speed Operaional Cormands
Cnse Flight (Status) Penetraton Maneuer Measured
Cruse Fight Level Profle Descent Variables
Cruse FIMIS Speed Thrust Limit (Feedback)
Decal SituatonAvailable Thrust Unt Recycle
Decel SituationEngaged VGAtitudeTarget
DescertApproach Path Vaid VG Path Taiget
Descert FMS Speed VG Vertical Speed Target

Figure 2.5. MD-11 SpecTRM-RL Model

The SpecTRM-RL model of the MD-11 vertical flight control system is

composed of the graphical notation along with detailed specifications for output

messages or commands, modes and inferred states variables, input and output variables,

macros, and functions. The graphical notation has been described and each of the other

features is now described.

2.2.1 Output Message Specification

Figure 2.6 shows an example for the specification of an output. The general

format for the output specification includes information regarding: destination of the

output; acceptable values; timing behavior, including any initiation delay or completion

deadline along with any required exception-handling behavior if the deadlines cannot be

21

Control
Input

Display
Output

met, output load and capacity limitations, etc.; feedback information about how the

controller will determine that the output command has been successfully implemented;

and the identity of any other output commands that reverse this output (Leveson , 2000).

The output variable for the Target Altitude determines the current leg of the

aircraft's path. The conditions under which outputs are assigned values are described

using a tabular representation called AND/OR tables. Each AND/OR table is divided

into two parts, Control Modes and State Values. The control modes section describes the

value of the control modes necessary for the transition, while the state values section

describes the values of and conditions on inputs and state variables. This distinction

allows the reader to better understand each mode of the system's behavior, and it was

found helpful in detecting specification errors - particularly omissions.

AND/OR tables are concise representations of propositional logic (in disjunctive

normal form) that are easily read and interpreted. The far left column of the table lists

logical (boolean) phrases. Each of the other columns is a conjunction of those phrases

and contains the logical values of the expressions (a '*' denotes "don't care"). A column

evaluates to true if all of its elements are true. If one of the columns is true, then the table

evaluates to true. For example, the Target Altitude output Figure 2.6 would be Vertical

Guidance Climb Target Altitude if the Operating Procedure is Airmass Ascent and the

current flight phase is Takeoff or Climb, OR if the Operating Procedure is Climb

InterLev and the current flight phase is either Takeoff or Climb. This type of

representation allows summarizing extremely complex and long requirements.

22

Out ut Variable

Target Altitude

Type: INTEGER
Destination: TBD
Initiation Delay: 0 milliseconds
Completion Deadline: TBD
Exception Handling: None specified
References: N/A

:= Vertical Guidance Climb Target Altitude IF

Control Modes

State Values

Active Cruise Flight Level IF

Control Modes

State Values

: Vertical Guidance Descent A

Control Modes

State Values

Feedback Information:
Variables: UNDEFINED
Values: UNDEFINED
Min time between outputs: 10 MHz
Max time between outputs: UNDEFINED
Exception Handling: None Specified

TRIGGERING CONDITION

Vertical Guidance Operating Procedure INSTATE Airmass Ascent T T * *

Vertical Guidance Operating Procedure INSTATE Climb InterLev * * T T

Flight Phase INSTATE Takeoff T * T *

Flight Phase INSTATE Climb * T * T

TRIGGERING CONDITION

Vertical Guidance Operating Procedure INSTATE Airmass Ascent * T *

Vertical Guidance Operating Procedure INSTATE Climb InterLev * * T

Flight Phase IN_STATE Cruise * T T

Active Cruise FL Valid () T * *

Ititude IF
TRIGGERING CONDITION

Vertical Guidance Operating Procedure INSTATE Cruise * T

Step Climb INSTATE False * T

Clearance Altitude < Active Cruise FL - 250 * T

Vertical Guidance Descet Target Alt != -1000 T T

Active Operational Procedure ValidO T *

Notes:
The Vertical Guidance Descent Target Altitude is assigned a default of -1000 ft when no other
Descent Alt Constraints are entered in the flight plan.

Figure 2.6. Example Output Variable

23

State Value

ClimbFMSSpeedMode

Obsolescence: UNDEFINED
Exception Handling: None Specified

Description:

Location: Interpretation.OperationalCommands.FMSSpeedModeSelection

Comments:

: DefaultEcon

FlightPhase INSTATE Done T * * * * *

PREVSTEP(FlightPhase INSTATE Done) F * * * * *

FlightPhase INSTATE Descent * T * T * *

PREVSTEP(FlightPhase INSTATE Takeoff) * T * * * *

FlightPhase INSTATE Cruise * * T * * *

PREVSTEP(FlightPhase IN_STATE Climb) * * T T * *

FCCEngagedModeMacroo * * * * T *

PREVSTEP(EngineOutVar)= * * * * T *

EngagedType::tNotEngaged

EngineOut INSTATE Engaged * * * * T *

FMSMode = FMSModeType::tLateral0nly * * * * * T

: Econ

FCCSpeedModeRequest = SpeedModeType::tEcon T T * * *

FlightPhase IN_STATE Preflight T * T * *

TakeoffOrClimb() * T * T T

FCCSpeedModeRequest= * * T T *
SpeedModeType::tAFSSpeed

MCDUClimbSpeedModeRequest= * * * * T
ClimbSpeedModeType::tEcon

Figure 2.7. State Variable Example

2.2.2 State Variable Definition

State variables were used in the model to represent different modes of operation

of the system. Their values were inferred from the values of input variables or from other

24

state variable values. Figure 2.7 shows only two of the possible values for the state

variable ClimbFMSSpeedMode. The possible values shown are Econ and DefaultEcon.

During the climb portion of the profile, the Auto-Flight System (AFS) controls thrust

from FMC thrust limits and speed targets via the Flight Control Computers (FCCs). The

aircraft climbs at climb limit thrust to each altitude constraint, flies level until past the

constraining waypoint using an appropriate speed target, and then resumes the climb at

climb limit thrust. The model represents the logic for those situations.

Not shown is the description of the unknown value for this state variable. In

SpectRM-RL all definitions of state variables must include an unknown state. This

corresponds to the default value upon startup or upon specific mode transitions. The

purpose of this unknown state value is to force resynchronization of the model with the

outside world after an interruption in processing inputs.

Most of the state variables were used to represent the operational procedures

discussed before. The use of AND/OR tables captured the logic and they included the

operational behavior of the aircraft under the jurisdiction of the FMS Speed, navigation,

and vertical profile modes. Those operational procedures define the pitch/thrust axis

control strategy, altitude, path, speed, and vertical speed targets required to achieve the

desired objectives.

2.2.3 Macros and Functions

The use of macros in SpecTRM-RL allows the organization of the model in

logical pieces for easier reference: it simplifies the complexity inherent in large models

where conditions are re-used. By definition, macros are simply named pieces of AND/OR

25

tables that can be referenced from within another table. For example, Figure 2.8 shows a

simple macro that was created for this model.

MaNcro

A rcraft Speed Val id

Parameters: NONE

Condition:

FlightPhase INSTATE Takeoff T * * * *

FlightPhase INSTATE Climb * T * * *

FlightPhase INSTATE Cruise * * T * *

FlightPhase INSTATE Descent * * * T *

ADC CAS<V,+l10 T T T T *

ADCCAS>V.-20 T T T T *

FlightPhase INSTATE Approach * * * * T

ADC CAS<V+10 * * * * T

ADCCAS>V -10 * * * * T

Figure 2.8. Example Macro

The Aircraft Speed Valid macro will evaluate to true if the corresponding

AND/OR table evaluates to true. Macros are very convenient for expressing hierarchical

abstraction and enhance hierarchical review and understanding of the specification. In

order to handle very complex and large models, macros are almost a required feature for

humans.

Functions are similar to macros in the sense that they are specified in the same

way as macros with the only difference that they return a numeric value as an answer.

26

2.2.4 Input Variable Definition

There are several features in SpecTRM-RL that provide information regarding

inputs. The user can define arrival rates, exceptional-condition handling, data-age

requirements, etc. Figure 2.9 shows an example of an input definition for the aircraft

altitude.

Input Value

AircraftAltitude

Source: Interpretation
Type: Integer
Possible Values (Expected Range): 0..40000

Exception Handling: None Specified

Units: feet

Granularity: 1 foot

Arrival Rate (Load): one per second average

Min-Time-Between-Inputs: 10 Mhz

Max-Time-Between-Inputs: none

Obsolescence: UNDEFINED

Description:

Comments:

Figure 2.9. Example Input Variable

Inputs in our model were organized according to their fimctionality. For example,

the following were found to be inputs related to the Multiple Control Display Unit

(MCDU) and they where grouped together: Offside MCDU InitKey Pressed, Onside

MCDU InitKey Pressed, MCDU ButtonPush, Onside MCDU Discrete, Offside MCDU

Discrete, TL From MCDU TLPage, Final Approach Prompt, Alt TO TL Selected on

MCDU TLPage, MCDU Climb Speed Mode Request, MCDU Cruise Speed Mode

Request, MCDU Descent Speed Mode Request, and Assumed Temp Entry on MCDU

TLPage. This exemplifies the need to make this organization an easier task. The number

27

of input variables in a complex model can grow and can become very difficult to handle

not only during the design of the system but also during the testing period. During the

simulation the number of input variables were so large that one of the only ways to

observe them was to simplify the model by dividing them into sub-modules. After

division into modules, observing how changes in inputs were affecting the model was

manageable.

2.3 Lessons Learned

One of the first encouraging findings is the time it took to build the model. It is

estimated that it took approximately eight person months to create. Considering the lack

of experience or knowledge about either SpecTRM-RL or the MD-l I flight management

system and the lack of sophisticated tools to assist in the development, this is a good

result. It is believed that the time could be significantly reduced given more appropriate

tools.

Many initiatives helped in dealing with complexity of the model from a user's

cognitive point of view. Despite the improvements of the language in relation to previous

versions, cognitive manageability remained a concern throughout the building of the

model. Since experience in building complex systems with formal specification

languages is scarce, the author had to experiment with new techniques.

The use of macros was regarded as an effective technique in dealing with

complexity of the system. It served the purpose of organizing the information into

manageable chunks in order to help build a hierarchical abstraction of the system. By

having a way of grouping similar conditions or conditions used by similar procedures, the

language allows the user to simplify his other mental model of the system and model the

28

system with more confidence. In addition, because the model was build by a team of

students, the macros were shared during the distributed development. It allowed people to

work in different areas of the model but use the same macros. In case a change was

needed, then only the macro needed to be changed. Keeping control of the differences in

similar macros is also an essential future feature of the language. Sometimes macros will

differ in a line or two, or in the order of the condition definitions, making for confusion

while reading them.

One of the tools that would have reduced the time it took to build the model is the

availability of a data dictionary. This tool could have been helpful for organizing the state

variables, inputs, outputs, and macros in regard to defining their names and location or

just for simply organization purposes. It could have provided better ways to control the

names used thereby reducing confusion - the user would have been able to determine if

the name was used before and where or if it was misspelled. SpecTRM-RL provided

error messages if states were not defined properly or improperly referenced during a

declaration but only after the model had been build and not during the construction of the

model. By incorporating this data dictionary as part of the actual set of tools, designers

can save time, effort, and achieve a more consistent design.

Cognitive manageability was also a concern when modifying the specification. It

was often very difficult to consider and evaluate the ramifications of a potential change.

In addition, the simulation tool itself was limited in this regard. It did not allow much

experimentation on how to visualize changes in the dependencies among state variables.

Verifying the correctness of the model was also a painstaking experience. The

model was easy to read and (when looked at in reasonable chunks) understand, but

29

maintaining an accurate mental model of the entire system proved to be a challenging, if

not impossible, task. It is hypothesized that the use of collapsible columns and rows in

tables would have helped in this area. By allowing the user to select a specific area of the

model that she would have liked to concentrate her attention on, discoveries of errors and

revisions of dependencies of variables would have been easier to conduct. To accomplish

this, a Location element could be included as part of the definition of every state variable.

The location element would define the particular area and type of supervisory mode the

state variable is being used in the model. This would allow highlighting a specific area of

relevance and reducing the number of columns and rows to just the ones of particular

interest, making the model more manageable.

There are still tools needed to assist humans in dealing with the complexity of any

complete specification. However, some simple tools available were found very useful.

For example, the high-level, graphical view of the specification helped keep the overall

structure in mind, and the fact that SpecTRM-RL is executable was useful in error-

checking the evolving specification. A consistency and completeness tool identified

input conditions that were either not accounted for in our specification or led to an

ambiguous system response (i.e., nondeterministic behavior). In summary, SpecTRM-RL

proved to be a valuable tool in the development of the system specification.

30

3 Human Machine Interface Design Criteria

3.1 Introduction

The motivation behind building a model of the vertical flight control system was

the ability to analyze the model for safety - in particular mode confusion errors. The goal

is to provide a methodology to design the automation so that it will support human

actions. It was intended that by having a model of the automationi, design flaws could be

detected. Many of these errors are caused by designers focusing on the software mapping

of inputs to outputs, on mathematical models of required functionality, and on the

technical details and problems internal to the computer: Little attention is given to

evaluating software in terms of whether it provides transparent and consistent behavior

that supports operators in their monitoring and control tasks. The goal was to use the

SpecTRM-RL language and the set of tools to create a model of the automation and

evaluate a proposed methodology for integrated design of complex systems. It is during

these early stages of design that changes can be made relatively easily.

In this effort, one of the first steps was to determine an initial safety criterion that

would be able to detect or prevent automation features that can lead to operator mode

confusion. Leveson has identified six types of potential design features: inconsistent

system behavior, indirect mode transitions, lack of appropriate feedback, operator

'Although a version of the MD- 11 FMS was used to derive the example for this case study, nothing in this

thesis should be taken as applying to that aircraft's actual automation as the specification used is not that of

that from the current MD- 11 software.

31

authority limits, unintended side effects, and ambiguous interfaces (Leveson, 1997). This

chapter will suggest algorithms that will explore ways to detect them.

3.2 Analysis Approach

The hierarchical representation of modes parallels the hierarchy used in modeling

control systems. This is no coincidence. This representation of modes will be used to

detect error forms. In this sense, errors can be analyzed as breakdowns in the model of

the controlled system. Whenever the model is updated and consistent with the actual

system state, no conflicts arise. At the time of a divergence, erroneous control commands

result that could lead to accidents. This thesis will look for ways to make this

comparison.

This thesis is proposing a methodology for analysis based on many areas that are

considered critical. This methodology includes a model of the user actions and a

corresponding model of the automation.

Leveson and Palmer studied ways to identify design flaws that are commonly

reported by the ASRS. One result of this case study was a recognition that such mode

confusion errors could only be identified if the software (automation) model was

augmented by a simple model of the controller's view of the software's behavior (a user

model) - the formal software specification was not enough.

The closest approach to this that of Degani and of Harrison and Fields. Degani

provides a different classification of modes and of mode confusion detection criteria. His

classification of mode confusion detection criteria is a subset of Leveson's. Degani also

developed a task modeling framework, known as OFAN, which is based on the

Statecharts language. Previous experience in using Statecharts on real systems found it

32

not to be scalable for large and complex systems (Leveson, 1994). Harrison and Fields

(1995) use CSP models to attempt to achieve similar goals, but this language is very

formal and probably not usable without extensive training in discrete mathematics.

Javaux takes a more psychological approach. He uses a finite state machine to

describe a cognitive mental model, which he uses to identify potential instances of mode

confusion. In contrast, this thesis does not try to model human cognition or human

mental models. Instead, it uses a representation of the blackbox behavior of the

automation that the user expects and depends upon and the required steps needed to

complete a given task. Modeling the actions involved in an operator task potentially

allows analyzing the interaction of the operator with a formal model of the rest of the

system.

Vakil and Hansman have proposed the use of predictability as a measure of system

complexity, which they claim is directly related to mode confusion. Their work also

suggests approaches to mitigating complexity-driven issues in commercial flight systems.

Other researchers have applied Leveson's safety criteria for mode confusion and tried

to use formal methods techniques (e.g., model checking) to detect these error forms in

system specifications.

The study of errors in this thesis is based on the premise that by having a formal

model of the automation - as described before - the systematic detection of faults is

made easier. Because errors result from inconsistent models of the controlled process, the

representation of those models becomes a critical issue. Models may diverge either

because they were incorrect or incomplete to begin with (they do not adequately reflect

the behavior of the controlled system) or because they are improperly updated due to

33

incorrect feedback about the state of the modeled system. Note that there are several

sources of inconsistency due to improper feedback.

The following sections will intend to explicitly specify and validate these models. It

is believed this will allow engineers to identify and eliminate error-prone features of

automation and will be able to assist in task analysis and development of operator

training and reference materials.

3.3 Human Task Analysis

In order to complement the analysis of mode confusion, a task analysis needs to

be conducted. To solve this problem, a model of the human actions needs to be created.

Previous work in this area had identified a visual formalism for task analysis that was

easily translated into SpecTRM-RL. The work of Brown and Leveson (1998)

concentrated in modeling operator tasks in the area of air traffic control. The case chosen

in this thesis is different in the sense that the interaction with the computer needed to be

included, in contrast to just building a model based on the interaction among operators.

Therefore the language was modified in order to accommodate for the new needs

(Rodriguez et al., 2000).

The use of a visual formalism helps to organize the safety analysis. A task

analysis can be added to the model of the actual system so that it can be referenced and

analyzed easily. It provides a model of the different areas that were found critical - like

display information - for analyzing human-computer interaction. Three models were

created:

34

1) A user model of the automation behavior: this model is necessarily a

simplification or abstraction of the actual possible automation behavior (which is

often not completely understood even by the designers),

2) An operator task model resulting from a task analysis that identifies the

major tasks of the human controller and then breaks these down into subtasks,

eventually specifying the tasks down to the level of the key presses, voice

communications, display cues, etc. involved in performing the task, and

3) A detailed specification of the blackbox automation behavior, that is, the

blackbox behavioral requirements of the automated system.

A case study was fully analyzed by Rodriguez et al. and will not be covered here.

The contribution to this thesis is to formally describe this translation from the visual

formalism to SpecTRM-RL and describe how it can be used in the analysis of mode

confusion.

The components of the modeling language are shown in Figure 3.1. Steps required

to complete a task are represented by states. A transition is defined as the process of

changing from one state to the next. Conditions that trigger transitions are called events

and action describes a result or output from the transition. A communication point links

different models together. In this case, the human task model communicates its outputs

(or actions) via a communication point to the system model.

Figure 3.1. Visual Task Modeling Language Components

35

A state is represented by a square box. A transition is represented by an arrow

from one state to the next, and events are shown in text above the transition; actions are

represented by text with gray shade beneath the transition. Finally, communication points

are round boxes and refer to another component in the model (Brown and Leveson,

1998).

Figure 3.2 shows the user and pilot task models that were created. Relevant parts

of a display model are also included that show the feedback regarding the state of the

automation provided to the pilot. The figure shows parts of the tasks that the pilot needs

to take into consideration as described by the Pilot's Guide. In particular, it is referring to

the early descent operating procedure.

Benefits of translating the visual formalism into a formal language like SpectRM-

RL allows further analysis in terms of safety. The following paragraphs will describe

those elements of the visual formalism and how they are translated.

36

P"ed PROF
> tierdtpeed

at indALT +7501t - a* u-------tI Airqpeed < knit aled ta
Automation Expected Behavior (alp A 50o n De asn

Ease y CZ
DSFMS p rlS

- Une5kts P Aret k

CDU Model 1Navigation Display
I (N/D) ModelcuMesg

MaelmPilot Task Model

N p ode endmo

<CnrtrW atse DescentPah <Wk10t

Unde Srpspee

FMA Model i

(ND [ode Enterrtecec anewDUMeu

e nt]CI rleagrDseedP

Figure 3.2. User and Task Models

Each component of the task model is represented as a component in SpecTRM-

RL, consisting of a single state variable. This state variable can assume one of a set of

finite values at any time, namely the states of the task model component. The default

value of the state variable will be the first state of the task model component.

Conditions and Events can be translated as Inputs in the SpecTRM-RL model. All

conditions and events in the task model will be represented as input variables. By

default, these input variables could be defined as boolean (e.g. ATC_Clears_Descent =

{True, False}), though they may be other types when other types will be appropriate (e.g.

enumerated, integer). The declaration of such variable types could be made directly into

37

the task analysis model in order to facilitate the construction of the SpecTRM-RL model

or taken from the existing system model. Events could be organized by a data dictionary

feature that will allow the display of current values and will ease the adding/deleting of

possible cases for the events and conditions.

The representation of the actions becomes a more complicated issue. Actions are

represented as input variables in SpecTRM-RL models, but may additionally be

represented as output variables to other models, if they are part of a communication point.

This depends on the location of the action with regards to the model in which is currently

operating. The input variable needs to notify the component that the action (e.g.

PilotEngagesPROF) has been performed, but the output variable may also be necessary

if this action is communicated to other components. The safety criteria elements for

timing could also be included directly into the task analysis modeling language allowing

the designer to insert timing requirements and max/min conditions among others. The

definition of an action could be very helpful in analyzing conditions like "forcing

functions" defined formally as conditions where the inputs from the operator are ignored.

By having these models, the analyst can visualize those conditions and see what are the

implications.

Transition definitions between components are represented by AND/OR tables.

They denote the triggering conditions. As part of the definition, critical assumptions -

those where the improper performance of the software can have severe consequences -

can be included (Leveson, 1995). This will assure trigger event completeness and help

build a more robust system.

38

Display signals are represented as output variables in the SpecTRM-RL

component and as well are boolean by default (e.g. "ADD DRAG" displayed = {True,

False}). Display outputs are triggered when a certain transition is taken in the task

model. Hence, a display variable is activated when the state variable representing the

component makes a certain transition from one value to another.

Communication points denote a link between an output variable of one

component and an input variable of another. Each input/output variable associated with

the same communication point is defined with the same name. If an action is part of a

communication point, it must be represented not only as an input variable for the

component, but as an output variable as well. The names of such input/output variables

must be distinct, as SpecTRM-RL does not allow two variables to share the same name.

Communication points are also valuable elements to be analyzed for safety criteria issues

related to human-computer interaction. Further analysis of safety criteria issues could be

added to the formal definition of a communication point in order to incorporate safety

into the construction of these models.

The following sections will describe selected human-machine interface criteria

applicable to the detection of mode confusion. There are based on the work by Leveson

that identified design features of blackbox automation behavior that can lead to operator

mode confusion or mode awareness errors. Examples from the model are provided as

well as explanations on how the design criteria was applied using SpecTRM-RL.

3.4 Ambiguous Interface Errors

This classic mode confusion error form occurs when the computer interprets user-

entered values different than intended or it maps multiple conditions onto the same output

39

depending on the active control mode (Leveson, 1997). As a result, the operator interprets

the interface erroneously.

An example of this type of error common to many computer occurs in some word

processors where the user may think they are in insert mode but instead are in command

mode and their input is interpreted differently than they intended. There were many

instances in the development of the model where this potential mode confusion was

encountered and selected examples will illustrate how they were modeled.

The following section describes how some of the potential error prone features

were discovered in a model of the MD-Il flight control system and how to create

algorithms to detect those error prone features.

3.4.1 Design Criteria for Detecting Ambiguous Interfaces

There are several design criteria described by Leveson to detect this classic form

of mode confusion error. These design principles are intended to be incorporated into the

SpecTRM-RL model in order to be systematically detected and conveyed to system

designers during early stages of development. One of the advantages of using SpecTRM-

RL is its mode classification feature, which makes it easier to incorporate the safety

design criteria in simple ways that are visually detectable and manageable.

One of the first design constraints discussed by Leveson is that any mode used to

control interpretation of the supervisory interface should be annunciated to the operator -

that is, it should be part of the displays interface in the modeling language. In describing

such a situation in the model of the automation, the current operating mode of the

automation should be annunciated and be part of the display interface, as well as being

40

part of the operating modes. Many state variables were found not to satisfy this design

criteria.

An example has been chosen to illustrate this point. Detection of the failure to

comply with the design criteria is assisted by the use of a tool that provides a

visualization of the relationships among the different state variables in the model. The

example was chosen after conducting the human task analysis and it is based on the

Pilot's Guide and the analysis of indirect mode transitions discussed by Rodriguez et al.,

2000. Without this analysis it would have been impossible to detect the relationships and

the potential sources of problems with the interface.

The document for the vertical flight control system - which was the source of

information for building the model - was written in plain English and did not provided

any linking among the different components. Therefore while building the model a

distinction needed to be made between the control modes and the display modes -

something that was not originally included as part of the English specification. The

translation to the SpecTRM-RL model became a challenge since most of the state

variables referred to operating modes and it was impossible to foresee how they were

used by the other display components - namely FMA, Navigation Display (ND), and

Primary Flight Display (PFD). Fortunately, SpectRM-RL provides the ability to represent

control modes and displays.

The descent phase will be used as an example because more accidents occur in

this phase than others. A brief description of the descent phase is provided.

The descent phase normally starts when the aircraft departs the entered cruise

flight level and lasts until the slats are lowered for landing. The descent vertical path is

41

calculated by starting from the destination and computing in the reverse direction to

satisfy decelerations, configuration changes, altitude and airspeed constraints, altitude

speed limits, forecast winds, preselected descent speed, and other constraining factors.

On a descent vertical path, the automation maintains continuous altitude control along a

predefined path. When the aircraft speed exceeds the target speed by more than five

knots, the automation expects the pilot to manually apply the speed brakes. An "ADD

DRAG" message is displayed in the navigation display as a consequence.

However, if the airspeed continues to increase and exceeds the speed limit at an

altitude 750 feet higher than the speed limit altitude, the FMS will automatically take

action. It first displays the "SPEED LIMIT EXCEED" label in the Control Display Unit.

It then replaces the target altitude by the speed limit altitude and stops the descent. The

aircraft then is considered to be in a descent path overspeed scenario. This triggers a

mode change in the automation from the Descent Path mode to the Descent Path

Overspeed mode. The automation accordingly levels the aircraft, temporarily ending the

descent. Once the airspeed becomes three knots less than the speed limit, the automation

clears the message in the control display unit (CDU) and begins the descent again.

Amazingly enough the original system specification for the Descent Path

Overspeed contains no reference to the supervisory control interface or to any type of

display for that matter, except for the engagement of the profile as an operating procedure

for the control modes.

42

Figure 3.3 shows the condition definition for the transition from any state to

DescentPathOS for the Operating Modes state variable.

State Value

Operating Procedure

Obsolescence: UNDEFINED
Exception Handling: None Specified

Description:

Source: ControlModes

Comments:

DesPathOS

Condition: TRIGGERING CONDITION

Control Modes VerticalGuidanceType IN_STATE Profile T T

State Values ActFlightphaseO T T

AltitudeTargetStatuso T F

PREVSTEP(1,VertGuidanceRefAlt IN_STATE VerticalGuidanceRefAlt) * T

DeviationRequirements = satisfied T T

ACTLatLegMacroO T T

EngineOutStatuso T T

Figure 3.3. Ambiguous Interface Design

As shown in Figure 3.3 there is no description of the FMA or ND where this

information is going to be displayed. The triggering condition refers to the active

flightphase macro ActFlightphaseo which defines a set of valid flightphases; the altitude

target status macro AltitudeTargetStatuso, which defines the set of flight control

computer engaged modes, and the PREVSTEP which is a built-in function - a function

of the underlying formal RSM (Requirement State Machine) model - that allows

43

referring to previous values of modes, state variables, outputs, and inputs. In this case it

refers to the Vertical Reference Altitude input variable.

The display information for the add drag message appears as part of the

specification of the FMA which corresponds to another different section in the model

(Refer to section 2.2 for a list of the different sections of the model). Figure 3.4 shows the

definition of the state variable that provides the add drag message. It is argued that these

two state variables need to be combined in some way. They need to show at least that

they are related to each other in the model. The indication of control modes and state

variables - which is normally included as part of the output variable specification - can

provide such indication. As a result, system designers can look at the Descent Path Over

speed state variable and see what type of information is presented in the displays

interface.

State Value

FMA Modes

Obsolescence: UNDEFINED
Exception Handling: None Specified

Description:

Comments:

AddDragMode

Condition: TRIGGERING CONDITION

Control Modes Flightphase IN_STATE Descent T T *

VGOperProc INSTATE LateDescent T * *

VGOperProc INSTATE DesPathOS * T *

State Values NextDownpathDescentAltConstraint INSTATE Violated T T *

DecelMachSegmentMacroO I * *T

Figure 3.4. FMA Mode

44

Figure 3.4 shows how the add drag message is defined by the system

specification. Note that there is no way to correlate the two state variables: FMA Modes

with the Operating Procedure. Even though there is a reference to the vertical guidance

operating procedure (VGOperProc), it is impossible to tell from the transition definition

of Figure 3.3 that the operator is going to be informed about the transition. A simple

algorithm can systematically detect this situation.

The SpecTRM-RL model is structured according to a RSM machine that contains

its own data structure. There are a set of states, transition vectors, set of events, set of

expressions, macros, constants, input variables, output variables, input receiver, and

output receivers among others. It is possible then to analyze the model to the level of

each event, condition, state, or table, and even target set according to the model of

interest. Note that there can be more than one model running at the same time and

communicating as is the case of the human task analysis and the system specification

model.

Such a data structure combined with the mode classification scheme of

SpecTRM-RL allows for the creation of interesting algorithms. For the example in

question, we identified those transitions in the model that had inside their control mode

any reference to the Operating Procedure state variable with the value of Descent Path

Over Speed. An algorithm as follows can provide with helpful insight:

FOR every possible state

FOR every transition from the current state

FOR every column in the transition table

store all conditions specified in this column that relate to the CONTROL MODES

45

LOOP through the recorded conditions

IF the condition definition includes the state variable [Operating Procedure]

equals to [Descent Path Over Speed] THEN log it as part of an alert set

ELSE do nothing

This pseudo code provides as a result the set of transitions and its conditions

inside the AND/OR table that are reporting to the control modes the state of Descent Path

Over Speed. This could have been used to discover how the FMA Modes was related to

the state variable of interest.

Note also that a similar algorithm can be used to detect which transitions are not

annunciated to the operator. This is the case of an indirect mode transition. In this case it

will be easier because there will be those transitions with the CONTROL MODE set

empty - following the same types of loops as discussed before.

Such types of algorithms can help designers visualize the different relationships

of the variables used for the operating modes and the control modes thus assisting in the

design of the interface. Note also that although the algorithm was designed by using

computer science concepts such as loops and conditionals, the concepts itself were easy

to visualize for non-computer literates. The transition is represented visually in the

models by arrows signaling the beginning and end of the transition; the condition

definition is part of the AND/OR table (basically the rows), the columns are also part of

the table, and the control modes/state values are also present when system designers are

creating these models since they have to select them. Therefore it is hypothesized that

application domain experts without expertise in programming use and understand the

tools and the analysis results.

46

State Value |

Operating Procedure

Obsolescence: UNDEFINED
Exception Handling: None Specified

Description:

Source: Guidance

Comments:

EarlyDescent

Condition: TRIGGERING CONDITION

Control Modes VGType INSTATE Profile T

State Values ActiveFlightphaseO T

AltitudeTargetStatus3o T

DesAppPathMacro2O T

ACTLatLegMacroO F

EngineOutStatus3() T

Figure 3.5. Early Descent Definition

Another safety criteria discussed by Leveson relates to consistency of the

interface. During the parallel development of the system model and the human task

analysis inconsistencies were found corresponding to definitions of terms. An example

where the same term was used with different connotation is provided. While comparing

notes regarding the condition definitions for the transitions of the system specification to

the human-task analysis, the development team came to the realization that for the

definition of the Early Descent the engagement criteria for the vertical profile was

different in the pilot's guide than the system specification.

Figure 3.5 describes the conditions defined in the system specification for the

vertical flight control system regarding the engagement criteria for the Early Descent. In

order for this operating procedure to be valid, the vertical guidance type should be in state

47

profile. In contrast, the MD- 11 Pilot's guide states that as soon as the pilot selects a

descent altitude (different than cruise level flight) and selects a vertical speed, the vertical

profile automatically disengages. By running the two models (or components as

described by the data structure of SpecTRM-RL) a comparison can be made of when

these two situations are different.

A simple algorithm can fill two arrays (one for each of the models) with the

transition information, the fields (representing state variables, input variables, or macros),

and the value for those fields. It will look only into those transitions with the desired

value of the source/target for the transition thus minimizing the search space. It looks in

this case for any transition with the word "EarlyDescent" as part of the transition

definition. This is done for the two models: the human task analysis and the system

specification.

The second part is to compare the two arrays. If the field and its corresponding

value are different then it is recorded as part of the alert log of conditions that are in

conflict. Otherwise, nothing happens since both models agree. For the inconsistency case

the transition definition in the human task model is different from the system

specification transition definition. For example, the system defines a transition from any

state to EarlyDescent. In contrast, the human task analysis provides the conditions that

transition from cruise level flight to early descent. The condition definitions of the

transitions are also very different and this forces the algorithm to check only for the field

name and its values. This assures that any transition with the Early Descent name and

with same fields (state variables, inputs, or macros) but with different corresponding

values, are identified to the system designer.

48

3.4.2 Conclusions

Based on a safety evaluation of the different ramification of the states, designers

can create systems that provide more effective information. In addition, relationships that

are hard to foresee for complex systems may be identified. The SpecTRM-RL language

provides a framework in which the analyst can incorporate very helpful algorithms. Two

examples were described that are related to design decisions regarding the interface. One

of these design flaws was detected during a task analysis of the operations in the Pilot's

Guide (Rodriguez et al., 2000). We believe that the visual manageability of SpecTRM-

RL will allow manipulation of the data structure of the model by non-computer experts.

3.5 Operator Authority Limits

The purpose of this safety criteria is to create a well designed interlock. Such

interlocks will prevent hazardous system states by enforcing correct sequencing of events

or actions by isolating events in time. Design of such types of interlock features are

crucial and delicate due to the problems that can arise in case a maneuver is prohibited

that may be needed in extreme situations. There are many recent examples where pilots

have been involved fighting with the automation over control of the aircraft after

observing unexpected or undesirable behavior.

Important detection strategies could be concentrated on the natural sequences to

accomplish a task and when input from the operator is ignored. An analysis can be

conducted to determine if the blocking of a series of steps at a specific level will be

counter-intuitive to the normal decisions of the user. In other words, there is a need to

know where is the best place to input a forcing function and to know how to best inform

users of this limitation.

49

The analysis is made easy by SpecTRM-RL because it provides the ability to run

two models and do analysis on their interaction. It has been already described how a

human task analysis can be formally represented in SpecTRM-RL in section 3.3.

Therefore an algorithm will look at how these two models communicate to each other via

the interfaces of the operator model and the system specification model. Conditions

where the operator input are ignored are defined as:

All Actions from the Operator Model are considered as inputs to the System

Specification if they are part of the communication points. For any of those transitions in

which the condition definition does not include the actions of the operator model, then an

alert is created providing the specific transition in the system specification where the

condition occurs.

3.5.1 Conclusions

Operator authority limits analysis is an example of the ability of two models to

allow analysis that otherwise would have been impossible. It is very hard to identify

those conditions by only analyzing the system specification. A human task analysis can

also be used to detect other error prone circumstances. Most of the analysis uses a

combination of the RSM data structure and the information contained in the different

models built used in this research.

50

4 Conclusions

This thesis was the result of an interest in developing safer software and the

lessons learned from this effort. The research analyzed the process of designing software

that will support operators in controlling complex systems. Software and system

designers are in constant need of tools that will help them keep a manageable mental

model of how complex systems work. Those tools help to create an abstraction of the

system space to simplify it and reduce the potential for mode confusion and other types

of errors. Unfortunately, such tools as formal methods have proven difficult to use by

system designers, engineers, and human factors engineers. In this search for an easy to

use tool, SpecTRM-RL proved to be a good tool for accomplishing those goals.

The first part of the thesis described the effort to build a complex system: the

vertical flight control system for the MD-11 aircraft. The model included a human task

analysis based on the pilot's guide. This task analysis was conducted by modifying a

visual formalism previously developed by Brown and Leveson for doing ATC analysis. It

proved useful not only in understanding how the system works but also in helping others

understand the system and the pilot's tasks. We found that it was easier to refer to the

model than to read to many pages of English text. It has the added benefit that the models

built were translatable into SpecTRM-RL and therefore able to be systematically

analyzed by existing algorithms to check completeness, consistency, and by the

development of special purpose algorithms to detect specific types of errors.

The second part of the thesis explains how mode confusion analysis was

performed in the models. SpecTRM-RL was designed to include mode specification.

51

Based on the underlying RSM data structure and the defined models of the system and

human tasks, analysis algorithms were presented. Previous research in the area of mode

confusion dealt only with after-the-fact conclusions about design flaws. This thesis

showed that a priori and systematic analysis is possible with a language like SpecTRM-

RL.

52

5 References

Advanced Technology Aircraft Safety Survey Report. Department of Transport and Regional
Development.

Brown, M. and Leveson, N.G. (1998). "Modeling Controller Tasks for Safety Analysis." Second
International Workshop on Human Error, Safety, and System Development, Seattle,
April 1998.

Degani, A. Modeling Human-Machine Systems: On Modes, Error, and Patterns of Interaction.
Ph.D. Thesis, Georgia Institute of Technology, 1996.

Degani, A., (1994). Modeling Human-Machine Errors: on Modes, Error and Patterns of
Interaction. Doctoral Thesis. Atlanta, GA: Georgia Institute of Technology.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (1993) Human Computer Interaction. Prentice
Hall International, UK.

Fields, R., Wright, P., and Harrison, M.(1995) A Task centered Approach to Analyzing Human
Error Tolerance Requirements. Second International Symposium on Requirements
Engineering 1995.

Heindahl, M.P.E. and N. Leveson. Completeness and consistency analysis of statebased
requirements. Transactions on Software Engineering, June 1996.

Javaux, D. (1998). "An Algorithmic Method For Predicting Pilot-Mode Interaction
Difficulties." 17* Digital Avionics and Systems Conference. October 31 - November 6,
Bellevue, WA.

Javaux, D. and De Keyser, V. (1998). "The cognitive complexity of Pilot-Mode Interaction. A
Possible explanation of Sarter and Wood's classical results. In G. Boy & C. Graeber
(eds.), Proceedings of the International Conference on Human-Computer Interaction in
Aeronautics, May 27-29, Montreal, Canada.

Leveson, N. et all. (1997). "Analyzing Software Specifications for Mode Confusion Potential."
Presented at the Workshop on Human Error and System Development, Glascow, March
1997.

Leveson, N.(2000) "Completeness in Formal Specification Language Design for Process
Control Systems." To appear in the Proceedings of Formal Methods in Software
Practice.

Leveson, N.G. and Palmer, E. Identifying Indirect Mode Transitions: 'Oops, it didn't arm' as a
case study.

Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley Publishing Co., 1995.

Leveson, N.G., M. Heimdahl, H. Hildreth, and J. Reese.(1994) Requirements specification for
Process-control Systems. IEEE Transactions on Software Engineering, September,
1994.

Luttgen, G. and Carreflo,V. (1999). "Analyzing Mode Confusion via Model Checking."

53

NASA/CR-1999-209332.

MD- 11 Flight Management System Pilot's Guide. (1995). Honeywell Inc.

MD-11 FMC Software Requirements Document C72-3654-08. Honeywell Inc.

Miller, S.P., and Potts, J.N. (1999). "Detecting Mode Confusion Through formal modeling and
Analysis." NASA/CR-1999-208971.

Nagel, D.C. (1988). Human Error in Aviation Operations. In Wiener, E.L., and Nagel, D.C.
(eds.) Human Factors in Aviation. Academic Press, San Diego, California.

Norman, Donald. The Design of Everyday Things. New York, Basic Books. 1988.

Palmer, E. (1996) "Oops, it didn't arm" - a case study of two automation surprises. NASA
technical report.

Palmer, E.(1996). "Oops, it didn't arm" - a Case Study of Two Automation Surprises. NASA
Ames Technical Report.

Rodriguez, M. et al.(2000) "Identifying Mode Confusion Potential in Software Design". To

appear in the 19 * Digital Avionics and Systems Conference. Philadelphia, PA, 7-13
October.

Sarter, N. and Woods, D. (1995). Strong, Silent and 'Out-of-the-Loop': Properties of Advanced
(Cockpit) Automation and their impact on Human-Automation Interaction, Cognitive
Systems Engineering Laboratory. CESL Report 95-TR-01.

Sarter, N. D., Woods, D.D., and Billings, C.E. Automation Surprises. In G. Salvendy (Ed.)
Handbook of Human Factors/Ergonomics. 2nd Edition, Wiley, New York.

Sarter, N.D and D. Woods. " How in the world did I ever get into that mode?"; Mode error and
awareness in supervisory control. Human Factors 37, 5-19.

Sarter, N.D. and D. Woods. Strong, silent, and out-of-the-loop. CSEL Report 95-TR-01, Ohio
State University, February 1995.

Vakil, S., Hansman, R.J. (1999). "Approaches to Mitigating Complexity-Driven Issues in

Commercial Autoflight Systems." 3rd Workshop on Human Error, Safety, and System
development. Liege, Belgium, June 7-8.

Vicente, K. and Rasmussen, J. (1992). Ecological Interface Design: Theoretical Foundations.
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 22, No. 4, July/August
1992.

Wiener, E.L. and Curry, R.E. (1980) Flight-deck automation: Promises and problems. NASA
Technical Memorandum 81206, NASA Ames Research Center.

Zimmerman, M. et al.(2000) Making Formal Specifications Practical. To appear in the 19 *

Digital Avionics and Systems Conference. Philadelphia, PA, 7-13 October.

54

