
Stability and Performance of Intersecting Aircraft

Flows under Decentralized Conflict Resolution

by

Zhi-Hong Mao

M.E. Pattern Recognition & Intelligent Control (1998)
B.E. Automatic Control and B.S. Mathematics (1995)

Tsinghua University

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2000

@Massachusetts Institute of Technology, 2000. All Rights Reserved.
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

NOV 17 2000

A uthor....... ............... a .................... .... LIBRARIES.
Department of Aeronautics and Astronautics

August 14, 2000 Aerd

Certified by........ ..............................
Eric M. Feron

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

A ccepted by .......................... . ...........................
Nesbitt W. Hagood, IV

Chairman, Department Graduate Committee
Associate Professor of Aeronautics and Astronautics

-1



Stability and Performance of Intersecting Aircraft Flows

under Decentralized Conflict Resolution

by

Zhi-Hong Mao

M.E. Pattern Recognition & Intelligent Control (1998)

B.E. Automatic Control and B.S. Mathematics (1995)

Tsinghua University

Submitted to the Department of Aeronautics and Astronautics
on August 14, 2000, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis considers the problem of intersecting aircraft flows under decentralized
conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed
control volume), new air traffic control models and scenarios are defined that en-
able the study of long-term airspace stability problems. Considering a class of two
intersecting aircraft flows, it is shown that airspace stability, defined both in terms
of safety and performance, is preserved under decentralized conflict resolution algo-
rithms. Performance bounds are derived for the aircraft flow problem under different
maneuver models. Besides analytical approaches, numerical examples are presented
to test the theoretical results, as well as to generate some insight about the structure
of the traffic flow after resolution. Considering more than two intersecting aircraft
flows, simulations indicate that flow stability may not be guaranteed under simple
conflict avoidance rules. Finally, a comparison is made with centralized strategies to
conflict resolution.
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Chapter 1

Introduction and Motivation

Following the sustained growth of past and forecasted air traffic, the control of air

traffic is growing in importance. In the United States, the air traffic is expected

to increase by 5% annually for the next 15 years [19]. Even with today's traffic,

current air traffic control system has been suffering from problems like over-intensive

workload of the controllers (due to the limit of the amount of information processing

that a controller can afford) and common airborne delays in flights (due to congestion

in the skies), etc. There has been a perceived need in the air traffic control for new

technologies and new architectures.

1.1 Current Air Traffic System and Free Flight

Current air traffic control system of United States is organized hierarchically with a

single Air Traffic Control System Command Center (ATCSCC), which supervises the

overall traffic flow. The whole system consists of 22 Air Route Traffic Control Centers

(ARTCCs) organized by geographical region, and each ARTCC is further divided into

20 to 50 sectors. At any time, there are about 8000 aircraft on average flying in the

skies of United States (estimated from the data in [20]), and there are approximately

1500 enroute air traffic controllers, with at least one controller responsible for each

sector, regulating the aircraft flow and making sure no hazardous situation develops.

The air traffic control is for the most part centralized within a given sector. The
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centralized control directs aircraft flows along predefined air routes, and aircraft are

allowed to fly only along these routes (with some exceptions). The air routes are

straight line segments connecting a network of navigation beacons (VHF Omnidi-

rectional Range (VOR) and Distance Measuring Equipment systems (DME)). These

beacons are used by pilots as navigational aids to update and correct the position in-

formation. Flying on segments connecting the beacons makes the problem of aircraft

navigation and automated guidance particularly easy. The network structure of the

aircraft routing system allows the controllers to get a priori information on aircraft

conflict geometries and their locations.

Many decades of working experience have demonstrated that the air traffic system

with the network architecture is safe. However, the centralized control in this archi-

tecture frequently causes bottlenecks to develop. Also the air traffic system suffers

from strong perceived drawbacks, such as systematic indirect routing between origin

and destination, and in general a perceived lack of navigation freedom for pilots and

airlines.

Recently new technologies have been proposed for application in air traffic control.

For example, the new generation of Global Navigation Satellite Systems (GNSS) has

in principle removed the limitation of the ground-based navigation infrastructure (one

of the components of GNSS technology is the Global Positioning System (GPS));

And the improved datalink technologies have provided improved weather and traffic

information to both the pilots and controllers. These technological developments

have led to the possibility of developing Free Flight [34], a concept whereby pilots

and airlines would be allowed more freedom in the decision making process.

Under Free Flight, the pilots would be able to optimize their trajectories according

to several factors such as safety, weather, operating costs and coordination with other

flights. Free Flight would enable greater traffic volume and complexity by distributing

some of the functionality, including conflict detection and resolution, to pilots and/or

airborne systems. Obviously, the operation of Free Flight greatly departs from the

current, network based architecture of the aircraft traffic system. Its safety remains

to be proved. For example, the lack of predictability of conflict location under Free
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Flight will increase the complexity of conflict detection and resolution for human

operators. In addition, the set of standards for operational concept evaluation has

evolved to a more sophisticated and difficult certification process. The safety of

any new air traffic system cannot rely on experience only, it should also be proved

upon appropriate mathematical modeling and engineering analysis techniques. Thus,

Free Flight offers a wide array of new challenges and opportunities to the research

community.

1.2 Conflict Resolution

No matter in current centralized air traffic control system or in a decentralized system

allowing Free Flight, the detection and resolution of conflicts is always a crucial part

of the system architecture. There has been a long history of investigation on aircraft

conflict detection and resolution. However, with emerging Free Flight policies, new

technologies, and an increased emphasis on economic and market factors, conflict

detection and resolution needs to be re-examined and updated based on new concerns

and techniques.

A conflict is a loss of separation between aircraft. In an air traffic system, each

aircraft is assumed to be surrounded by two virtual cylinders, the protected zone

and alert zone. The radius and height of the protected zone depends on the FAA

separation standards, while the shape and size of the alert zone depends on various

factors, such as aircraft performance, airspeed, altitude, traffic situation, etc. A con-

flict between two aircraft is then defined as a situation in which the aircraft protected

zones overlap. Correspondingly, a system of aircraft is said to be safe if the aircraft

protected zones never overlap.

In recent years, a considerable body of research has been devoted to aircraft

conflict prediction and resolution. Excellent overviews of the approaches for conflict

prediction and resolution can be found in [24, 36].

This thesis considers the problem of air traffic "stability" under decentralized

conflict detection and resolution. One of the major issues that arises is the proper
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definition of "stability" of air traffic flows. In traditional control system terms, the

notion of "stability" usually relates to the long term behavior of dynamical systems,

which is expected to remain within some acceptable bounds and often to converge

towards a specific desired state. For example, individual aircraft stability concepts

are tied to the requirement that both aircraft attitude and position stay close enough

to some reference attitude and position.

Considering problems of air traffic management, the requirement for stability be-

comes more complex: While aircraft are expected to follow a reference trajectory

(as loosely defined as it may be), aircraft are also required to stay away from each

other to prevent near misses or even airborne collisions. In this context it becomes

quite important for the researcher to define appropriate notions of stability. This in

turn entails the requirement of appropriately defining the system being worked upon.

Much of the research focuses on problems involving a finite, usually small number of

aircraft. Such a Lagrangian standpoint (in which few aircraft are analyzed) is useful

when designing efficient conflict detection and resolution systems. However, it is not

convenient to use for flow stability analyses, since interactions occurring within a

finite set of aircraft can only have a finite duration.

We propose in this thesis an "Eulerian" standpoint, originally introduced in [25],

whereby many aircraft flow through a well-delimited volume of airspace. The mo-

tivation behind this standpoint is that, even under Free Flight, many aircraft flow

interactions are expected to occur within relatively well-defined parts of the airspace,

corresponding to the intersection between one or more optimal routes linking city

pairs, for example. This viewpoint is also very much compatible with an air traffic

controller's current view of the air transportation system, with the volume of airspace

being a sector. A recent paper adopting that standpoint is [8].

1.3 Thesis Organization

The thesis is organized as follows:

In Chapter 2, the aircraft flow models are introduced. An appropriate notion of
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aircraft flow stability is defined and the decentralized strategy followed by each aircraft

is introduced. In Chapter 3, a proof of aircraft flow stability is provided for the case of

two intersecting aircraft flows where aircraft use a simple, decentralized control rule,

and perform their conflict resolution through lateral relative position change. The

results are discussed along with simulations and generalizations. Chapter 4 presents

the proof of intersecting aircraft flow stability under general offset model. Simulations

for both offset model and velocity change model are given in this chapter. In Chapter

5, a comparison is drawn between centralized and decentralized resolutions, where the

centralized resolution strategies are realized via mixed integer linear programming.

Chapter 6 is the conclusion of the thesis.
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Chapter 2

Air Traffic Models and Problem

Formulation

2.1 General Considerations

The definition of appropriate models is a significant challenge when considering prob-

lems in air transportation [18]. For the conflict detection and resolution problem,

most researchers have traditionally concentrated on scenarios involving a finite num-

ber of aircraft. However, there appears to be a widespread concern about the "domino

effect", whereby one conflict resolution maneuver creates new conflicts which in turn

need to be solved, etc. In this thesis, we will concentrate on a possibly infinite number

of aircraft flowing through a finite portion of the airspace.

The system under study consists of a given volume of airspace, and a set of

aircraft flowing in and out of it, as shown in Fig. 2-1. The dynamics of the system are

determined by the "boundary conditions" that indicate the location, speed and rate at

which aircraft appear in the volume of airspace, and by their individual behavior while

they fly within the airspace. Clearly, some boundary conditions are unacceptable, e.g.,

the case when two aircraft appear into the control region very close to each other and

on a head-on collision course. Since relatively little is known about interacting aircraft

flows, we will consider aircraft flows with low complexity.

The aircraft are assumed to be intelligent, i. e., their pilots actively attempt to
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Figure 2-1: Aircraft flowing in and out of "control volume".

maneuver and avoid conflicts at the smallest possible cost.

2.2 Aircraft Maneuver Models

Although designing and analyzing systems for aircraft conflict detection and resolu-

tion needs to account for the three dimensions, this thesis only investigates air traffic

evolving in two dimensions (planar conflict resolution): The trajectories of all aircraft

are assumed to evolve in the horizontal plane. While vertical maneuvers appear to

be most efficient for tactical conflict resolution (such as in the case of TCAS (Traffic

Alert and Collision Avoidance System)), horizontal maneuvers might be more appro-

priate for the "strategic" conflict resolution context considered in this thesis, because

they induce less passenger discomfort and they do not require flight level changes and

thus may not perturb the vertically stratified traffic structure as it exists today in the

enroute airspace.

This thesis will be concerned with very simple aircraft behaviors. In particular

aircraft fly only along straight and level trajectories. Moreover, we will assume that

only one conflict area exists, and that aircraft may perform only one conflict avoidance

maneuver [2].

Two models for conflict avoidance will be considered in this thesis; Fig. 2-2 illus-

trates these conflict resolution models.
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Vf1i t

Figure 2-2: Velocity change model v.s. offset model. Left: The aircraft maneuver is an

immediate horizontal velocity change. Middle: The aircraft maneuver is a velocity change

followed by a second velocity change. Right: The aircraft maneuver is a relative position

change.

" Velocity change model: In this model (left picture in Fig. 2-2), both heading

changes and speed changes are used to modify aircraft trajectories. Following

the approach of Andrews [21, the velocity changes are assumed to occur in-

stantaneously when the aircraft makes a decision. This model will be used for

simulation purposes.

" Offset model: This model (right picture in Fig. 2-2), used for analysis and

simulation, consists of modeling aircraft trajectory changes via both lateral

and longitudinal relative position changes, the speed vector remaining the same

before and after the position changes. This model appears to be less realistic

than the previous model; however, it generates a far simpler analytic framework.

In addition, the offset model can be seen as a good approximate model for the

velocity change model: If we allow the speed and heading (in the velocity change

model) to change independently within specified bounds, and at the same time

we allow the lateral and longitudinal displacement (in the offset model) to vary

independently within given bounds, then for a given time horizon T, the areas

reached after both velocity change and relative position change are similar in

shape, especially for small deviations. As shown in Fig. 2-2, we denote b and f

as the allowed largest backward and forward displacements of the aircraft. In
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practice, T would be chosen to be the mean time to conflict. Alternatively, the

offset model can also be considered to be a close approximation of the "offset

maneuver model" shown in the middle of Fig. 2-2 and used in [11]: In this model,

the aircraft initially changes speed and heading as in the velocity change model

and then resumes original speed and heading after traveling the distance W,

shown in Fig. 2-2. Considering enroute aircraft with an approximate velocity

of 450 knots and an approximate time to conflict T = 10 minutes, the distance

to conflict W is approximately 75 nautical miles (nm). Considering a velocity

change model allowing for ±10 degrees heading change and a ±7% velocity

change, the corresponding offset model would allow for a lateral displacement

bound of ±13 nm and longitudinal displacement bound of approximately ±5

nm.

2.3 Aircraft Flow Arrival Geometry

The basic aircraft flow model chosen in this thesis is that shown in Fig. 2-3, originally

introduced by Niedringhaus in [29]. Two aircraft streams, oriented at a given angle 0

(0 = 90 degrees in Fig. 2-3) relative to each other, feed aircraft into a circular conflict

area. The streams are organized in such a way that all aircraft within each stream are

originally headed in the same direction. For simplicity of exposition only, it will also

be assumed all aircraft fly at the same speed, and originally all aircraft in each stream

fly along the same track prior to entering the control volume. The spacing between

each aircraft in each flow is arbitrary but no less than a given minimum safe distance

d (in practice d = 5 nm). Let E1 , E 2 ,.. ., Ej,... be the eastbound aircraft entering

the control volume, and S1 , S2 , .. . , Sj, .. . the southbound aircraft, where aircraft are

indexed according to the order they entered the control volume.

Generalizations will also be made to the above aircraft flow model in this thesis:

We will consider conflict scenarios involving arbitrary encounter angles, different times

to conflict, different aircraft speeds and multiple aircraft flows.
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Figure 2-3: Two crossing aircraft flows.

2.4 Conflict Resolution Rules and Maneuver

A conflict is declared whenever the projected straight path of any aircraft pair leads

them to a miss distance that is less than d. The decentralized conflict resolution

scheme chosen in this thesis follows a sequential approach, whereby aircraft solve

potential conflicts one at a time. To simplify matters, it is assumed that the order in

which aircraft perform their resolution maneuver is the same as the order they enter

the circular conflict area, although this assumption could be relaxed. An aircraft

solving a conflict considers all other aircraft that maneuvered before it as moving

obstacles, but does not account for the aircraft which have not maneuvered yet. Thus

each aircraft has knowledge of all aircraft that have already performed a maneuver

(or decided that no maneuver was necessary). A reliable implementation of such

sequential approaches is described in [4].

Given those aircraft which have already performed a resolution maneuver (and

must therefore be considered as obstacles), the resolution maneuver for the next air-

craft scheduled for conflict resolution will be such that (i) after the resolution no

conflict exists between this scheduled aircraft and any of the aircraft which have al-

ready performed resolution maneuvers, and (ii) the amplitude of the conflict avoidance

maneuver is as small as possible.
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2.5 Notions of Stability

In this thesis, the system will be stable if:

1. No conflict occurs among aircraft at any time, that is, all conflicts are resolved

and do not create any new, unsolvable conflicts.

2. The deviation of the aircraft trajectory from nominal, due to the requirement

for conflict resolution, remains bounded.

This definition summarizes the two most important requirements in air traffic control:

Guaranteed safety and efficiency of traffic handling.
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Chapter 3

Aircraft Flow Stability under

Lateral Offset Model and Heading

Control Model

This chapter analyzes the aircraft flow stability for the lateral offset model and head-

ing control (or heading change) model. These two models are special cases of the

offset model and velocity change model: In the heading control model, the velocity

change of an aircraft is restricted to heading changes only, with no speed change,

while in the lateral offset model, aircraft trajectory changes via a single lateral posi-

tion change. General discussions on the offset model and velocity change model will

be given in the next chapter.

As we have mentioned in the previous chapter, the resolution maneuver for the

aircraft scheduled for conflict resolution will be such that the amplitude of the con-

flict avoidance maneuver is as small as possible. For the heading control model, the

resolution maneuver will be to minimize the deviation from the nominal heading.

Similarly, for the lateral offset model, the resolution maneuver will attempt to min-

imize the lateral position change necessary for conflict resolution. In the computer

simulations presented thereafter, both conflict resolution maneuvers (heading change

and lateral position change) are generated by a simple line search away from the

nominal heading and position, using a predefined step size.
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3.1 Closed-loop System Stability for Lateral Offset

Model

This section presents one of the main results of this chapter: The system shown in

Fig. 2-3, under the conflict resolution rule described above, is stable. More precisely,

we ask the following question: Assuming the system has been running correctly in the

past, will it keep running correctly in the future? Indeed, it is possible to construct

"initial conditions" for the system such that conflicts are unavoidable. We now show

that an incoming aircraft (bold in Fig. 3-1) can always find a conflict resolution

maneuver and proceed with a conflict-free trajectory.

In this section, we will assume that aircraft resolve conflicts via lateral position

changes. The lateral offset model can be treated as a close approximation of the

heading control model. The advantage of the offset model is its simplicity of use for

analysis purposes.

3.1.1 Conflict Geometry

For simplicity, we assume that the two crossing aircraft flows are oriented 90 degrees

with respect to each other, with one southbound and one eastbound aircraft flow, as

shown in Fig. 3-1. Also, we will assume that all aircraft initially follow each other

along two intersecting lines, and that after maneuvering, all aircraft remain within

a "maneuver corridor" of total width L centered along the nominal paths. These

assumptions may be relaxed, and some generalizations could be found in Section 3.3.

Without loss of generality, one may assume that the next aircraft to perform a

resolution maneuver is eastbound, as represented in bold in Fig. 3-1. By definition

of the aircraft flow and allowable maneuvers, this aircraft never conflicts with neigh-

boring eastbound aircraft. In addition, each southbound aircraft within the control

volume has already performed a resolution maneuver and must be considered as a

moving obstacle.

To obtain a clear understanding of the conflict geometry, we introduce the follow-
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Figure 3-1: Aircraft flow configuration for stability analysis. The shaded areas are locations

where a conflict will occur.

ing two concepts: aisle and protected circle.

Each aircraft projects a linear, slab-shaped virtual "aisle" of width d, centered

around the aircraft and inclined 45 degrees (denoted in light grey in Fig. 3-1). For

general encounter angles and aircraft speeds, this aisle is oriented along the relative

velocity vectors. For the aircraft in the two streams to avoid any conflict, they must

maneuver so that the aisles defined by the eastbound aircraft do not overlap any

of the aisles of the southbound aircraft. Failure to do so means that a conflict will

occur. At the same time, the aisles of the aircraft in the same stream may overlap,

and therefore they may form a joint aisle. For example, the aisles of two aircraft that

are in contact with each other form a joint aisle, the width of which ranges from d to

2d.

A protected circle is an imaginary circle of radius d/2 centered around an aircraft

(note that the size of the aircraft drawn in all figures is considerably exaggerated).

Obviously, the protect circles of any pair of aircraft should not overlap, currently or

in the future. Otherwise, a conflict will occur. Also for an aircraft in one stream

to to avoid conflict with the aircraft in the other stream, it must maneuver so that

its protected circle does not intersect the aisles of any aircraft in the other stream.

Without causing confusion, we use the same notation (e.g. Ei) to represent an aircraft

19



Figure 3-2: Existence of conflict resolution maneuver is enabled by intelligent behavior.

and its corresponding protected circle. And we do not distinguish the following two

expressions: "the protected circle of aircraft A is in contact with the protected circle

of aircraft B" and "aircraft A is in contact with aircraft B".

3.1.2 Existence of Conflict Resolution Maneuver

It is now shown that an aircraft entering the control volume (e.g., the eastbound

aircraft Ei indicated in bold in Fig. 3-2) can always execute a lateral displacement

maneuver that results in a conflict-free trajectory, if the width of the maneuver corri-

dor, L, is sufficiently large. We begin with the hypothesis that such a maneuver does

not exist, and then make the following argument:

The aisles of the eastbound aircraft which are ahead of Ei should not cover the

protected circle of Ei, wherever Ei is located within the maneuver corridor. Otherwise,

aircraft Ei could hide inside one of such aisles, and therefore, succeed in finding a

lateral displacement (less than L/2) that results in a conflict-free trajectory. In other

words, there should not exist any aircraft other than Ei in the area of the shaded

right triangle S as seen in Fig. 3-2.

At the same time, all southbound aircraft currently inside the control volume have

already performed minimum lateral displacement conflict resolution maneuvers, and
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are flying along straight, conflict-free southbound paths. By hypothesis, their aisles

intersect the protected circle Ej, wherever its location is, since no conflict resolution

is possible. In particular, at least one aisle intersects the protected circle Ej when Ej

deviates fully to the left, as shown in Fig. 3-2. For this to happen, the corresponding

southbound aircraft (denoted by SI) must have deviated to the right (from its nominal

path) by a distance larger than L/2 - V'2d.

Assume

L > 2x/2d. (3.1)

From the above argument about the eastbound aircraft, we see that the aisles of

the eastbound aircraft should not intersect the protected circle of S, if S, were shifted

a lateral displacement of L/2 - V/-d closer to the central axis of the maneuver corridor.

Thus, we get a conflict-free resolution maneuver for S, with smaller amplitude. This

causes contradiction with the statement that the southbound aircraft have already

performed minimum lateral displacement maneuvers.

Therefore, there must exist a conflict avoidance maneuver for Ej, and the closed-

loop system is therefore stable.

The above argument has also provided an upper bound on the maximum conflict

avoidance maneuver amplitude for both southbound and eastbound aircraft: The

maximum lateral deviation experienced by the aircraft is bounded above by v'd.

If d = 5 nm (nautical miles), the lateral deviations will not be larger than 7.1 nm.

Considering a scenario where conflicts are predicted and solved 20 minutes ahead

of time, and aircraft flying at 500 knots, the corresponding distance to conflict R

is approximately 160 nm. Thus an equivalent maximum heading change amplitude

would be approximately 2.5 degrees.

Now let us look at a very simple situation involving only two aircraft: An east-

bound aircraft and a southbound aircraft arrive in the conflict area at the same time.

Without loss of generality, we assume that the southbound aircraft makes decision

and maneuver first. Since in our conflict resolution rules an aircraft does not account

for the aircraft which have not maneuvered yet, the southbound aircraft need not
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Figure 3-3: Test case for random arrival geometry using the lateral offset model. The

separation distance is subject to a uniform distribution on the interval [5,15] nm. The

number of the tested aircraft is 500. Left: A snapshot taken during the conflict resolution

process. Right: Aircraft deviation distribution.

take any action to avoid the conflict. Hence the conflict resolution is left to the east-

bound aircraft only. It is easy to test that the minimum lateral displacement for the

eastbound aircraft to avoid the conflict is exactly v/2d. This example shows that the

bound we obtained is tight. In general, it was observed that for the class of problems

considered in this section, up to six aircraft can be involved in the same conflict.

3.2 Simulations

This section presents simulations of traffic under the conditions described above. The

goal of the simulations is to estimate bounds on the maximum deviations actually

experienced by the intersecting aircraft flows, as well as to generate some insight about

the structure of the traffic flow after resolution. In this section, we will assume in the

first two subsections that the aircraft resolve conflicts via lateral position changes.

Some simulations for heading change maneuvers are given in the third subsection.

3.2.1 Random Arrival Geometry

We first examine the lateral displacement of aircraft in the two intersecting streams

for random arrival patterns. The aircraft in either stream are initially separated
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Figure 3-4: Test case for random arrival geometry using the lateral offset model. The

separation distance is subject to a uniform distribution on the interval [5, 10] nm, and the

number of the tested aircraft is 500. Left: A snapshot taken during the conflict resolution

process. Right: Aircraft deviation distribution.

by a distance chosen from a uniform distribution over the interval [5, 15] nm. The

considered airspace volume (conflict area) is circular with radius 100 nm. A total

of 500 aircraft flowing through this airspace have been simulated. Fig. 3-3 gives a

snapshot of the traffic flow taken during the conflict resolution process. Also shown in

Fig. 3-3 is a histogram of the lateral deviations experienced by the 500 tested aircraft.

The largest lateral displacement found in this simulation is 7.1 nm, which exactly is

our estimated upper bound. The average of the lateral displacements of the tested

aircraft is 2.68 nm, and there are 42.6% of the 500 tested aircraft deviating from

the nominal path with a lateral displacement larger than half of the upper bound

(approximately 3.5 nm).

Another simulation was run under the same conditions as above, except for the

uniform distribution on the initial separation distance, which was changed from [5, 15]

nm to [5, 10] nm. Fig. 3-4 gives the distribution plot and a snapshot taken during the

conflict resolution process. In this simulation, the largest recorded lateral displace-

ment is still 7.1 nm, and the average lateral displacement of the tested aircraft is 3.27

nm. There are 50.6% of the total aircraft deviating more than 3.5 nm. It can be

seen that as the average density of the random aircraft flows increases, the possibil-

ity for an aircraft to experience a large lateral displacement increases consequently.
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Figure 3-5: Test cases for uniform arrival geometry using the lateral offset model. Left:
Separation distance is 8 nm. Right: Separation distance is 5 nm.

However, its deviations never exceed the estimated upper bound.

3.2.2 Uniform Arrival Geometry

The following simulations consider the conflict resolution for two streams of aircraft

with fixed initial separation distance. Although this uniform aircraft arrival geometry

is unrealistic, it may help us get some intuition, in addition to the stability analysis,

about how the proposed avoidance rules can successfully handle the conflict resolution

for two streams of aircraft.

Fig. 3-5 gives two examples. In the first example, the initial separation distance

between every pair of neighboring aircraft is S = 8 nm. Denote d,,o as the initial

distance between the first aircraft in the southbound stream and the center of the

conflict area, and, correspondingly, denote de,O for the first aircraft in the eastbound

stream. In this example, d,,O and de,O are chosen such that d8,O - de,O = S/2. Thus

aircraft enter into the control volume one at a time. Fig. 3-5 (left picture) shows the

structure of the traffic flow after conflict resolution. The largest lateral displacement

experienced by the aircraft is 6.2 nm. In the second example, we chose the initial

separation distance of aircraft to be S = d = 5 nm, and d,,o - de,o to be S/2. In

this case the aircraft are "packed" in the most compact way before they flow into

the conflict area. Fig. 3-5 (right picture) shows a snapshot of the flows for this case
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Figure 3-6: Test case for uniform and simultaneous arrival geometry using the lateral offset

model.

during the conflict resolution process. The largest lateral displacement of the aircraft

is 5 nm. The displacements for both examples are within our estimated upper bound.

However, these examples show that aircraft deviation amplitude is not necessarily

monotonic with flow density.

From the above two examples we also observe that uniform aircraft arrival flows

generate periodic, conflict-free aircraft flow patterns under the simple conflict avoid-

ance rule. Furthermore, the conflict avoidance rule groups the aircraft in "platoons",

and each platoon is formed in such a manner that the aircraft in a platoon have the

same "shadow" as that of other aircraft in the same platoon. Intuitively, this kind

of platooning is very efficient for conflict resolution involving two aircraft flows. The

platooning results in a "shearing" motion when two platoons (from the two aircraft

streams) meet at the center of the conflict area. Interesting enough, platooning has

been proposed as a viable, although heuristic option in many intelligent, hierarchical

transportation systems [40, 9].

Next, considering closely spaced flows (S = 5), we determined the behavior of the

flows as d8,o - de,O decreases to 0, that is, eastbound and southbound aircraft enter

the control volume nearly at the same time. Fig. 3-6 presents a snapshot of the flows

for this case during the conflict resolution process. It is observed that the platooning

pattern does not change. The largest lateral displacement of the aircraft is 7.1 nm.
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Figure 3-7: Test cases for random arrival geometry using the heading control model. The

separation distance of aircraft is subject to a uniform distribution on the interval [5,15] nm

for the upper test case, and [5, 10] nm for the lower test case. The number of the tested

aircraft is 500 in both cases. Left: Snapshots taken during the conflict resolution process.

Right: Aircraft deviation distributions.
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Figure 3-8: Test cases for uniform arrival geometry using the heading control model. In

both cases, the separation distance is 5 nm, and the radius of the conflict area is 100 nm.

Left: In-turn arrival pattern. Right: Simultaneous arrival pattern.

3.2.3 Stability Results for Heading Control Model

As mentioned in the previous sections, the lateral offset model may be considered as

an approximation to the heading control model. The approximation accuracy can

be examined by comparing the reachable position sets (areas) of both models for a

given time horizon interval [T, T + AT]. In this subsection, we use the following four

simulations to illustrate the similarity between the two models.

The first two simulations are run under the same conditions as described in the

simulations of Fig. 3-3 and Fig. 3-4. The left pictures in Fig. 3-7 give snapshots taken

during the conflict resolution process, while the right pictures in Fig. 3-7 show the

distributions of the tested aircraft with respect to their heading changes. There is

significant similarity between the distributions in Figs. 3-3, 3-4 and Fig. 3-7. Note

that a heading change of 0.01 radian results in approximately a lateral displacement

of 1 nm lateral displacement after the aircraft flies 100 nm straight.

The third and fourth simulations use the heading change model to resolve con-

flicts for scenarios with uniform arrival geometry. In these two examples, the initial

separation distances of aircraft are S = 5 nm, while d,,o - de,O are S/2 and 0 respec-

tively. Fig. 3-8 shows the structures of the resulting traffic flow, which are similar

to those observed in Fig. 3-5 (right picture) and Fig. 3-6. Note that in the these
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two simulations we ignore the slight "jostling" which may possibly occur between two

neighboring aircraft.

From the examples presented above, we see that the lateral offset model appears

to be a good approximation to the heading control model, especially for very small

perturbations.

3.2.4 Discussion

The simplicity of the stability analysis stands with no doubt in contrast with the com-

plexity of the observed aircraft behaviors during simulations: While aircraft conflict

avoidance behaviors may display a large number of possible behaviors, it is possible

to determine an upper bound on the lateral deviation by using first principles. The

case study performed here reveals that crucial to the proof of flow stability is the fact

that vehicles behave "intelligently" as they attempt to minimize the deviation from

their intended path. It is worth noting that statistical approaches such as the one

presented in [35], for example, because they perform open-loop analyses, would have

resulted in a very large number of predicted conflicts. In comparison, the present

analysis, because it is performed on the closed-loop system, predicts no conflict will

ever occur and the traffic flow will be handled efficiently (deviations remain bounded).

On the other hand, the current analysis pays no attention to robustness issues and

what happens in case of delinquent aircraft behavior. Such analysis is the object of

future research.

3.3 Generalizations

This section makes several generalizations to the basic conflict scenario of two aircraft

flows. In this section, we assume that the aircraft resolve conflicts via lateral position

changes.
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Figure 3-9: Test cases for two aircraft flows with different encounter angles. Left: En-
counter angle is 30 deg. Right: Encounter angle is 150 deg.

3.3.1 Arbitrary Encounter Angles

Let 0 be the encounter angle between aircraft flows: 0 = 0 deg corresponds to the

case when the two flows are parallel and 0 = 180 deg corresponds to the two flows

going opposite directions.

A slight generalization of the previous reasoning allows us to prove that for arbi-

trary flow encounter angles, the lateral deviation of each aircraft is bounded above

by
d (3.2)

|sin(0/2)|

Detailed proof for a generalized version of (3.2) can be found in Section 3.3.4.

Two simulations with different encounter angles of the two aircraft flows are shown

in Fig. 3-9. The aircraft streams in both simulations have fixed initial separation

distance, S = d = 5 nm. The largest lateral displacements of aircraft in the two ex-

amples are 19.3 nm and 5.2 nm respectively, exactly the same as the bounds obtained

by (3.2). Note that the lateral displacement of aircraft could be very large when the

encounter angle is small. It is also observed that when 9 approaches 180 deg, there

could be a large number of aircraft involved in the same conflict. In the example

presented in Fig. 3-9 (right picture), the maximum number of aircraft involved in the

same conflict is 16, while this number is 6 for the case of 0 = 90 deg.
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Figure 3-10: Two aircraft streams maneuvering at different times to conflict.

3.3.2 Aircraft Maneuvering at Different Times to Conflict

The time to conflict is defined as the period of time that is needed by an aircraft to

fly, at the original velocity before resolution, from the point where the aircraft enters

the control volume to the conflicting point, i.e., the intersection point of the aircraft

nominal paths. In the above definition, the distance between the point where an

aircraft enters the control volume and the conflicting point is called the distance to

conflict.

In our previous discussions, the control volume is assumed to be circular. However,

our proof of stability has no specific requirement on the shape of the control volume.

The control volume only needs to satisfy that each aircraft entering the control volume

maneuvers at the same time to conflict.

This subsection will discuss the situation where the aircraft maneuver at different

times to conflict. Consider two crossing aircraft flows, one eastbound and the other

southbound. All aircraft fly at the same speed. Let di and d2 be the distances to

conflict for the eastbound aircraft and southbound aircraft, respectively. If di #4 d2 ,

then the eastbound aircraft and southbound aircraft maneuver at different times to

conflict. Without loss of generality, assume di < d2.

Following the similar steps as given in the stability proof of Section 3.1, we can
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derive that, in the conflict resolution for the above scenario, the lateral deviation of

each eastbound aircraft is bounded by

v 2d + Id1 - d2f, (3.3)

and the lateral displacement of each southbound aircraft is bounded by

V 2d. (3.4)

This conclusion can also be treated as a corollary of the result in Section 3.3.4, where

a detailed proof is given.

Fig. 3-10 shows a test example, in which the control volume is a square with

di = 100 nm and d2 = 115 nm. The aircraft streams in this simulation have fixed

initial separation distance, S = d = 5 nm. The largest lateral displacement is 22.1 nm

for the eastbound aircraft, and is 5 nm for the southbound aircraft, both of which are

within the bounds obtained by (3.3) and (3.4). Also we could notice that the aircraft

responding later to a conflict will on average experience larger lateral deviation to

resolve the conflict.

3.3.3 Two Streams of Aircraft with Different Speeds

This subsection relaxes the assumption of "same aircraft speed" to "different aircraft

speeds". Let vi and v2 be the speeds of aircraft in the two streams, respectively, and

denote y = v2/vI. For simplicity, we assume the encounter angle between the two

aircraft flows is 90 deg, and in order to be fair to the aircraft in different streams,

we assume that each aircraft maneuvers at the same time to conflict. (These two

assumptions will be relaxed in the next subsection.) Therefore we have d2 = pdi,

where di is the distance to conflict for aircraft with speed vi, i = 1 or 2.

Denote O6 as the angle between the aisle and the flying direction of the aircraft with

speed vi, i = 1 or 2. It can be tested that 01 = cos- 1( 1 ) and 02 = cos-1( )

Then we can derive that, in the conflict resolution for the above scenario, the lateral
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Figure 3-11: Two aircraft streams with different speeds (ratio 2 : 1), but maneuvering at

the same time to conflict.

deviation of aircraft with speed vi is bounded by

d 1+ 2 , (3.5)

and the lateral deviation of aircraft with speed v2 is bounded by

d 1±,p2 (3.6)
P.

Fig. 3-11 gives a test example for two streams of aircraft with speed ratio 2 : 1.

3.3.4 Existence of Conflict Resolution for General Encounter

Patterns

In this subsection, we analyze the system performance of the two aircraft flows, taking

into account all the generalizations we made previously: The two flows of aircraft

considered here may have arbitrary encounter angles, different times to conflict and

different speeds.

Consider two aircraft streams, stream 1 and stream 2. Let vi and v2 be the speeds
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of aircraft in stream 1 and stream 2 respectively, and denote p v2/vi. Let 0 be

the encounter angle between the two aircraft streams. Denote di as the distance to

conflict for the aircraft in stream i, and let 0i be the angle between the aisle (or the

relative velocity vector) and the flying direction of the aircraft with speed vi, i = 1 or

2. Without loss of generality, we consider a conflict scenario as shown in Fig. 3-12, in

which the axes are chosen such that the aircraft in stream 1 are originally located on

the x axis, flying towards the positive direction of x axis, and the original tracks of

the two aircraft streams intersect at the origin. In Fig. 3-12, the aircraft to perform

the resolution is from stream 1, and is indicated in bold.

An estimate of the performance bound for the above system is presented in the

following theorem. Without loss of generality, the estimate is given for the aircraft

from stream 1. (The estimate for stream 2 is just a matter of changing notation

indices correspondingly.)

Theorem 3.1: 01 is determined by

cos 1 ( .-PCOS (3.7)
/1+ p2 -2p cos 0

If p = s or p = cos 0, the aircraft from stream 1 or stream 2 can not resolve

potential conflicts via lateral position changes only. If p # and p : cos 0, the

aircraft with speed vi can always execute a lateral displacement maneuver that results

in a conflict-free trajectory. Further, the lateral displacement is bounded above by

d
c + max{d 2 sin 0 + d 2 cos 0 tan 01 - di tan 01, 0} (3.8)|Cos 0i 1

Proof: It is not difficult to obtain the expression for 01 through checking the relations

among the edges and angles of a triangle. We skip over the details.

If p = 1/ cos 0 or p = cos 0, cos 01 or cos 02 will be equal to 0. That is to say the

aisles of aircraft in stream 1 or stream 2 will be perpendicular to the flying direction

of the aircraft. Thus, the aircraft from stream 1 or stream 2 can not resolve conflicts
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via lateral position changes only.

Assume p =h 1/ cos 0 and p $ cos 0. We will show that the aircraft entering

the control volume (bold in Fig. 3-12) can always execute a lateral offset maneuver

that results in a conflict-free trajectory, if L, the width of the maneuver corridor, is

sufficiently large. As in the stability proof of Section 3.1, we start with the hypothesis

that such a maneuver does not exist, and then consider the following two cases.

Case 1: di/vi < d2 /v 2 . In other words, the aircraft in stream 1 respond to

conflicts no earlier than the aircraft in stream 2. It can be tested that di/vi < d2 /v 2

is equivalent to

d2 sin 0 + d2 cos 0 tan 0 1 > di tan 0 1 .

Please refer to Fig. 3-12 (upper picture).

Under the hypothesis we made previously, there should be no aircraft from stream

1 in the following region:

{(x, y) -L/2 < y + tan 01 (x + di) < L/2}. (3.9)

Otherwise, the aircraft in bold (denoted by Ai) could hide behind such aircraft (from

stream 1) in region (3.9), and therefore, succeed in finding a lateral displacement (no

greater than L/2) that results in a conflict-free trajectory.

At the same time, all maneuvered aircraft from stream 2 have already performed

minimum lateral displacement conflict resolution maneuvers. By hypothesis, their

aisles intersect the protected circle of Ai, wherever its location is, since no conflict

resolution is possible. Especially, at least one aisle intersects the protected circle Ai

when Ai deviates fully to the left or right, as shown in Fig. 3-12 (upper picture).

(Note: We consider the case of "fully to the left" when cos 01 > 0, while consider the

case of "fully to the right" when cos 01 < 0. The arguments for these two situations

are similar to each other. Without loss of generality, we only consider the case of

cos 01 > 0 in the rest of this proof.)

For aircraft Ai to deviate fully to the left of the maneuver corridor, the location
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(xj, yj) of the corresponding aircraft from stream 2 (denoted by Aj) must satisfy

y + tan 0 (xi + di) < -L/2 + d/l cos 011. (3.10)

Assume
d

L/2 > + d2 sinO + d2 cos 0 tan 01 - di tan 0 1. (3.11)
1 cos 01 l

This assumption implies that aircraft A3 is inside region (3.9). From the above

argument about region (3.9), we see that aircraft A3 need not make any lateral dis-

placement maneuver for conflict avoidance, because there is no aircraft from stream

1 inside this region. Therefore, the location (xj, yj) of AJ should stay on the nominal

path of stream 2, with a distance to the origin no greater than d2. Thus, we have

yj + tan 01 z > -d 2 sin 0 - tan 0 1 (d 2 cos 0). (3.12)

From (3.10) and (3.12), we may derive

L/2 < d + d2 sin0 + d2 cos 0 tan 01 - di tan 0 1, (3.13)
| cos 01

which causes contradiction with assumption (3.11).

Case 2: di/vi > d2 /v 2 , which is equivalent to

d2 sin0 + d2 cos0tan01 < d1 tan01 .

Please refer to Fig. 3-12 (lower picture).

Similar to the argument in Case 1, we see that there should be no aircraft from

stream 1 in the region of (3.9), and there must be at least one aircraft from stream

2, say A3 , whose aisle intersects the protected circle Ai when Ai deviates fully to the

left (in the maneuver corridor). Thus the location (x,, yj) of Aj satisfies (3.10).

Because d2 sin 0 + d2 cos 0 tan 01 < d1 tan 01, we may induce that it is needed of

aircraft A3 to make a nonzero lateral displacement maneuver for conflict resolution.

For this to happen, there must exist an aircraft from stream 1, say Ak, whose aisle
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intersects the aisle of A, on the other side of Aj opposite to Ai. Therefore, (Xk, Yk),

the location of aircraft Ak, should satisfy

Yk + tan 01 Xk = yj + tan 01 xj + d/| cos 01 1. (3.14)

According to (3.10), we have

yk + tan01 Xk < --L/2 - tan 01 di + 2d/Icos01|. (3.15)

Further, since Ak is not included in region (3.9) and is on the other side of region

(3.9) opposite to Ai, we have

yk + tan 01 z > L/2 - tan01 di. (3.16)

Assume

L/2 > d/| cos 011. (3.17)

It is easy to test that under such assumption, (3.15) and (3.16) are contradictory with

each other. Therefore, there must exist a conflict avoidance maneuver for Ai with

L/2 < d/ cos 0 1 1. (3.18)

The arguments in Case 1 and Case 2 have shown the existence of the conflict

avoidance maneuver. The largest displacement of aircraft is bounded above by (3.13)

when d2 sin 0+d 2 cos 0 tan 01 > di tan 01, and by (3.18) when d2 sin 0+d 2 cos 0 tan 01 <

di tan 01. Equivalently, the largest displacement of aircraft is bounded by (3.8).

Q.E.D.

It is easy to test that the conclusions of Sections 3.3.1-3 are just special cases of

Theorem 3.1: (1) When vi = v2 and di = d2, (3.8) becomes (3.2), the performance

estimate for arbitrary encounter angles; (2) Under conditions of 0 = 90 deg and

VI = v2, (3.8) is equivalent to (3.3) and (3.4); For the case of di/vi = d2/v 2 and
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0 = 90 deg, Theorem 3.1 reveals the same conclusion as obtained in Section 3.3.3.

3.3.5 Multiple Aircraft Flow Streams

The conflict resolution for two aircraft streams has been investigated in the previous

sections. The theoretical arguments and the simulation experiments have shown it

is possible to quantify the efficiency and stability of the simple decentralized conflict

avoidance rules used in two aircraft flow streams. We now address the following

question: What happens when multiple (more than two) aircraft flow streams are

involved? This question is being investigated using numerical simulations, and the

results indicate this problem might be considerably more difficult to investigate than

that involving two aircraft flows only.

Consider three streams of aircraft, initially uniformly separated by the distance

S = 10 nm. (The total arriving rate of aircraft in this three streams is smaller than

that of the two stream aircraft problem with separation distance S = 5 nm.) The

three crossing aircraft flows are oriented 120 degrees with respect to each other. The

conflict area is a circle centered at the intersecting point of the nominal paths of the

three streams. The radius of the circle is 150 nm. It is assumed that aircraft from each

flow enter the conflict area simultaneously and that the same decentralized conflict

resolution is applied with priority given first to the northeast-bound aircraft (stream

1), then to the northwest-bound aircraft (stream 2) and finally to the southbound

aircraft (stream 3).

An illustration of the conflict resolution geometry and a time history of the lateral

displacements experienced by the first 240 aircraft is given in Fig. 3-13. Note that,

in order to identify easily the aircraft from different streams in the snapshot of the

resolution, we use different symbols to represent the aircraft from different streams.

The largest displacement experienced by the first 240 tested aircraft is 34.6 nm.

Although the aircraft flow has uniform arrival geometry, the resulting flow is very

complex and shows large deviations from the nominal path; this flow exhibits no

apparent periodicity in the resolution maneuver amplitude.

Let us look at another example of three aircraft flows, in which the conflict reso-
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lution even does not exist. Please refer to Fig. 3-14. The initial separation distance

of aircraft is S = 5 nm, and the aircraft from each stream enter the conflict area

simultaneously. We can prove for this example that the lateral displacement of the

aircraft (except the first one) in each stream will linearly increase as the aircraft

number increases. Therefore, under the decentralized conflict avoidance rules and the

lateral offset maneuver model, there will be no resolution for this three aircraft flow

problem. Fig. 3-14 presents a snapshot of the conflict resolution and a time history

of the lateral displacements experienced by the first 105 aircraft (35 in each stream).

Compared with two aircraft flows, three aircraft flow scenarios are much more

difficult to handle. This comes into being not only because of the possible increase

in the aircraft density inside the conflict area, but also because the heading change

maneuver or the lateral position change maneuver can not provide efficient platooning

patterns for three aircraft flows. In the case of two aircraft streams, it is possible for

the aircraft to organize platoons using the proposed conflict avoidance rules. The

platoons have the property that from the view point of the aircraft in the other

stream, the aircraft in a platoon can hide behind the shadows (aisles) of the aircraft in

the same platoon. However, this is no longer true for three aircraft flows. Intuitively,

for more dispersed aircraft streams, it is difficult for an aircraft in one stream to hide

in the shadow of another aircraft in the same stream, because the conflicting aircraft

may be coming from more than one direction.
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Figure 3-13: Upper: Test case for three aircraft flows with uniform and simultaneous

arrival geometry using the lateral offset model. The initial separation distance is 10 nm.

The largest displacement experienced by the tested 240 aircraft is 34.6 nm. In the plot,

we use different symbols to represent the aircraft from different streams. Lower: Deviation

histogram for three aircraft flow streams.
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Figure 3-14: Upper: Test case for three aircraft flows with uniform and simultaneous
arrival geometry using the lateral offset model. The initial separation distance is 5 nm.
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Chapter 4

Aircraft Flow Stability under

Offset Model and Velocity Change

Model

This chapter builds upon the developments of Chapter 3 by expanding the range of

allowable aircraft behaviors from lateral position change to general position change,

and from heading control only to both speed and heading control. As mentioned

previously, the offset model can be viewed as an approximate model of the velocity

change model, and takes the advantage of its simplicity for analysis purposes. In

this chapter, the theoretical analysis, including the proofs of existence of conflict

resolution maneuvers and the estimates of performance bounds, will be concentrated

on the offset model, while simulation examples are designed and run for both the

offset model and velocity change model.

In comparison with Chapter 3, this chapter considers the aircraft modeled with

more control freedom in the conflict resolution. We notice that the increase of free-

dom of individual aircraft may possibly bring about "greedy" decision making for

such aircraft. As a consequence, the maneuvering aircraft may possibly leave serious

conflicting situations to the aircraft that have not yet maneuvered. Will this yield

instability of the whole system? That is the question we are about to answer in this

chapter.
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4.1 A Special Type of Penalty Functions and Sys-

tem Stability

4.1.1 Penalty Functions

We assume in the offset model each aircraft attempts to minimize the "amplitude"

or penalty function of the required relative position deviation while remaining within

prescribed lateral and longitudinal bounds. Each aircraft may use a different penalty

function to reflect pilot preferences. And the aircraft may use different weights on

the lateral position displacement and the longitudinal position displacement in their

penalty functions due to the consideration of physical limitations of the aircraft or

specific conflict conditions, etc.

In fact, the lateral offset model can be treated as an offset model with the choice

of penalty functions revealing that the longitudinal deviation is much more costly

than the lateral deviation.

In this section, we assume that each aircraft attempts to minimize the amplitude

of its lateral deviation, irrespective of the amplitude of its longitudinal displacement,

under the premise that the largest backward and forward displacements of each air-

craft, b and f, are restricted to be no greater than a fixed value. According to this

assumption, the aircraft use the penalty functions which put much "heavier" weight

on the lateral displacements than on the longitudinal displacements. We know that

the lateral displacements of the aircraft in a stream determine the size of the "maneu-

ver corridor". The smaller the corridor size is, the less airspace we need to reserve for

the conflict resolution, and the more free airspace there is available for handling other

air traffic. With such concern, we emphasize on minimizing the lateral displacements

of aircraft in this section.

However, we should be noted that this choice of penalty functions is not very

realistic. It is intended with more concern as an exercise aimed at comparing with

what happens in the more realistic case when general penalty functions are being

used. Discussions for offset model with general penalty functions will be given in the
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third section of this chapter.

4.1.2 Conflict Geometry

For simplicity, we assume that the two crossing aircraft flows with same speed are

oriented 90 degrees with respect to each other, as shown in Fig. 3-1. (These assump-

tions may be relaxed to general situations like those in Section 3.3.) And we assume

that aircraft resolve conflicts via lateral and longitudinal position changes.

Considering lateral and longitudinal position change maneuvers, an aircraft not

only needs to consider the possible conflict with the aircraft in the other aircraft

stream, it should also take into account the possible conflict with the aircraft in the

same stream. Physical considerations made earlier indicate that physically significant

longitudinal aircraft maneuvers may not exceed 5 nm over a 10 min time horizon to

conflict. Thus we will assume in this chapter that the largest backward and forward

displacements of each aircraft (b and f) are no greater than the safety distance d

(usually 5 nm).

Based on the assumptions for the conflict resolution rules, an aircraft solving a

conflict does not consider the potential conflicts with the aircraft that have not yet

maneuvered. Therefore, when an aircraft is relatively moving backward, it may pos-

sibly "jostle" the following aircraft before that aircraft enters the control volume.

However, we know that the position change (offset) maneuvers can not be performed

instantaneously, because they must be realized by velocity changes and must be the

effect of the integration of velocity deviations over a period time. Thus the maneu-

vering aircraft could at most jostle the following aircraft to a very small extent before

the following aircraft maneuvers to avoid conflicts. We ignore such slight jostling in

the offset model.

4.1.3 Existence of Conflict Resolution Maneuver

We will show that, if the width of the maneuver corridor, L, is large enough, any

aircraft entering the control volume can always execute an offset maneuver that results
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Figure 4-1: Existence of conflict resolution maneuver.

in a conflict-free trajectory. We proceed with the proof by contradiction. First,

assume that such a conflict-free maneuver does not exist.

The aisles of the eastbound aircraft ahead of Ei should not cover the protected

circle of Ei, wherever E is located within its "reachable area". Otherwise, aircraft

Ei could safely hide behind one of these aisles. Hence, there should not exist any

aircraft other than E in the shaded area shown in Fig. 4-1. This area is the sum of

the area P that is reachable by aircraft Ei after maneuvering, the right triangle S

whose hypotenuse is inclined 45 degrees, minus the trapezoid T, whose dimensions

are shown in the picture. It is easy to see that if there exists any eastbound aircraft

Ek (other than Ei) located in the area P + S - T, then aircraft E could arrange

a position change such that it is able to hide behind Ek to avoid conflicts from the

southbound aircraft.

The maneuvered southbound aircraft must have performed conflict resolution ma-

neuvers with minimum lateral displacement. Their aisles should intersect the pro-

tected circle Ei, wherever its location is, since no conflict resolution is possible for

aircraft Ei. At least one aisle must intersect the protected circle Ei when Ei deviates

backwards with amplitude d and to the left with amplitude L/2, as shown in Fig. 4-1.

Assume

L > 2 /2d. (4.1)
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Figure 4-2: A constructed example showing that the estimated bound is tight.

Since the aisle of S, should overlap the protected circle of Ej when E deviates fully

backwards and to the left with amplitude L/2, S, must have deviated backwards with

amplitude d and have deviated to the right (from its nominal path) by a distance larger

than L/2 - V2d > 0. However, from the optimality assumption on the maneuver

of S1, S, need not deviate sideways after deviating fully backwards, because after

the backward offset maneuver S, would have had no conflict with any maneuvered

southbound aircraft and eastbound aircraft (note that there is no eastbound aircraft

in the shaded area of P + S - T in Fig. 4-1). Thus we reach a contradiction. Hence

there must exist a conflict avoidance maneuver for Ej with lateral displacement not

greater than V2d, and the closed-loop system is therefore stable.

We now show the bound on the maximum lateral displacement, V2d, is tight.

Fig. 4-2 constructs an example in which the aircraft in bold must make a position

change with the lateral displacement amplitude v/_d to resolve the conflict. In this

example, we assume that for all aircraft b = f = d. If two aircraft enter the control

volume simultaneously, the southbound aircraft is assumed to maneuver first. Assume

4 southbound aircraft and 2 eastbound aircraft enter the control volume. Let R be

the radius of the control volume. The initial positions of the southbound aircraft are

(0, -R - id), i = 1, 2, 3,4, and the two eastbound aircraft's positions in the (x, y)

coordinate system shown are (-fR - 2d + V'-d, 0) and (-R - 4d, 0) respectively. It can

be seen the resulting aircraft behavior under conflict resolution is as follows: The first
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Figure 4-3: Test case for random arrival geometry using the offset model. The largest

backward and forward displacements are restricted to be 5 nm. The initial separation

distance is subject to a uniform distribution on the interval [5, 10] nm, and the number of

the tested aircraft is 500. Left: A snapshot taken during the conflict resolution process.

Right: Aircraft deviation distribution.

eastbound aircraft need not maneuver; Each of the southbound aircraft will undergo

a backward longitudinal displacement of amplitude d, and will not change position

laterally; The aircraft in bold then has to move backward a displacement of amplitude

d first and then make a lateral position change which is exactly v/2d.

4.2 Simulations

For comparison purposes, this section presents simulations of traffic under the same

initial conditions as described in Chapter 3. The goal of the simulations is also to

provide experimental test to the previous theoretical analysis.

We will assume in the first two and the fourth subsections that the aircraft resolve

conflicts via lateral and longitudinal position changes. We restrict the backward

and forward displacements to be no greater than 5 nm, i.e., b = f = d = 5 nm.

Simulations and discussion for velocity change maneuvers will be given in the third

subsection. For experiments in this subsection, each aircraft has the initial speed

of 500 knots, and the speed is restricted to vary without exceeding [475, 525] knots

during the conflict resolution.
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Figure 4-4: Test cases for uniform arrival geometry using the offset model. The largest
backward and forward displacements are restricted to be 5 nm. The separation distance is
5 nm. Left: In-turn arrival geometry. Right: simultaneous arrival geometry.

4.2.1 Random Arrival Geometry

We first examine the lateral displacement of aircraft in two intersecting streams for

random arrival patterns. The aircraft in either stream are initially separated by a

distance chosen from a uniform distribution over the interval [5, 10] nm, and a total

of 500 aircraft have been simulated. Fig. 4-3 gives a snapshot of the traffic flow

taken during the conflict resolution process. Also shown in Fig. 4-3 is a histogram

of the lateral deviations experienced by the 500 tested aircraft. The largest lateral

displacement found in this simulation is 5.3 nm. The average of the (absolute) lateral

displacement over all aircraft is 1.5 nm, and 23.8% of the 500 tested aircraft deviate

laterally more than half of the upper bound. Fig. 4-3 also shows that a relatively

large number of aircraft have deviated with a lateral displacement of VZd/2. This

deviation corresponds to an offset maneuver by which the maneuvering aircraft could

hide inside the aisle of its "neighbor" and keep contact with this neighbor, while this

neighboring aircraft does not deviate sideways.

4.2.2 Uniform Arrival Geometry

We then consider the conflict resolution problem for two aircraft streams with fixed

initial separation distance, shown in Fig. 4-4.
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Figure 4-5: Test case for random arrival geometry using the velocity change model. The

speed of each aircraft is allowed to vary within [475, 525] knots. The separation distance is

subject to a uniform distribution on the interval [5, 10] nm, and the number of the tested

aircraft is 500. Left: A snapshot taken during the conflict resolution process. Right: Aircraft

deviation distribution.

For the case shown on the left of Fig. 4-4, the initial separation distance between

every pair of neighboring aircraft is S = d = 5 nm, and d,,o - de,o is chosen to be

S/2. The example shown on the right of Fig. 4-4 considers the case when d8,O - de,o

decreases to 0.

Fig. 4-4 shows the structure of the traffic flow after conflict resolution. In the

example with in-turn arrival geometry (left picture), the largest lateral displacement

experienced by the aircraft is 4.2 nm. In the example with simultaneous arrival

geometry (right picture), the largest aircraft deviation is 6.8 nm, which is very close

to the estimated upper bound (7.1 nm).

From the above two examples we also observe that uniform aircraft arrival flows

generate periodic, conflict-free aircraft flow patterns, and the conflict avoidance rule

groups the aircraft in "platoons", which are quite similar to those observed in the

simulations of the previous chapter but are grouped in a more compact manner.

4.2.3 Stability Results for Velocity Change Model

Simulations in this subsection are designed to compare qualitative aircraft behaviors

under the velocity change model with that observed under the offset model. We
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Figure 4-6: Test cases for uniform arrival geometry using the velocity change model. The
speed of each aircraft is allowed to vary within [475,525] knots. The separation distance is
5 nm. Left: In-turn arrival geometry. Right: Simultaneous arrival geometry.

assume in this subsection that each aircraft attempts to minimize its heading change,

with its speed change being restricted within [475, 525] knots during the conflict

resolution.

The first simulation is run under the same conditions as described in the simulation

of Fig. 4-3. In Fig. 4-5, the aircraft in each stream are initially separated by a distance

chosen from a uniform distribution on the interval [5, 10] nm. Fig. 4-5 (left picture)

gives a snapshot taken during the conflict resolution process, while Fig. 4-5 (right

picture) shows the distribution of the heading changes for the 500 tested aircraft.

There is significant similarity between the two distributions in Fig. 4-3 and Fig. 4-5.

The next two simulations, as shown in Fig. 4-6, consider the same scenarios as

described in Fig. 4-4, but use the velocity change model to resolve conflicts. The

initial separation distance of aircraft is S = 5 nm for both figures. Fig. 4-6 shows the

structures of the resulting traffic flows, which are similar to that observed in Fig. 4-

4. Note that in the these two simulations we ignored the slight jostling which may

possibly occur between two neighboring aircraft.

The examples presented above support the conclusion that the offset model is a

good approximation to the velocity change model.
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Figure 4-7: Test case for three aircraft flows with uniform and simultaneous arrival geom-
etry using the offset model. The initial separation distance is 5 nm. The largest lateral
displacement experienced by the first 105 aircraft is 30.4 nm. (In the plot, we use different
symbols to represent the aircraft from different streams.)

4.2.4 Three Aircraft Flow Streams

Considering a problem of three aircraft streams, initially conditioned as same as the

problem in Fig. 3-14: The initial separation distance of aircraft is S = 5 nm, and

the aircraft from each stream enter the conflict area simultaneously. This time the

decentralized resolution is performed under the offset model. Compared with the

resolution under lateral offset model, Fig. 4-7 shows a new platooning pattern of

aircraft, where the linear structure observed in Fig. 3-14 has been cut into "pieces"

as presented in Fig.4-7. The largest lateral displacement of the 105 tested aircraft is

30.4 nm.

4.3 General Penalty Functions

4.3.1 An Example

In the previous two sections, we considered the conflict resolution problem for two

aircraft flows with both longitudinal and lateral position displacements, based on
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Figure 4-8: An example of conflict resolution for the aircraft using different types of penalty
functions. The initial separation distance is subject to a uniform distribution on the interval

[5, 6] nm.

the choice of penalty functions which emphasize on minimizing the lateral position

change. Under such penalty functions, we have shown that the lateral displacements

of any aircraft in the two streams are bounded by vFdd. This performance bound is

tight, and is exactly the same as the bound for the lateral offset model.

Now we ask the following question: Assuming the aircraft may use other types of

penalty functions, and each aircraft may use different penalty functions for decision

making, will the whole system keep running correctly? The answer to this question

will be given in the following subsections.

In this subsection, we present an example showing that the lateral displacements

of aircraft could greatly exceed V2d if the aircraft use different penalty functions.

Considering two intersecting streams, the aircraft in either stream are initially sepa-

rated by a random distance subject to a uniform distribution over the interval [5, 6]

nm. The aircraft in each stream are randomly chosen from the following two types

with equal probabilities: One type of aircraft resolve conflict via lateral position

change only, and the other type of aircraft use both lateral and longitudinal changes

for conflict resolution as described in Chapter 4.1. A total of 200 aircraft have been

simulated. Fig. 4-8 gives a snapshot of the traffic flow taken during the conflict reso-

lution process. The largest lateral displacement found in this simulation is 14.0 nm,

approximately twice the value of x/2d, and 11% of the 200 tested aircraft deviate
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laterally more than v/2d.

4.3.2 Penalty Functions and Conflict Resolution

Consider two streams of aircraft as described in Sections 3.1 and 4.1. The eastbound

aircraft are denoted as Ej, i = 1, 2, ..., and the southbound aircraft are denoted as

S, j= 1,2,.... The x and y axes are chosen such that the eastbound aircraft are

originally located on the x axis and the southbound aircraft on the y axis, and the

two streams of aircraft are flying towards the positive directions of the two axes,

respectively. The circular control volume (conflict area) is centered at the origin with

radius R. Without loss of generality, we assume that the next aircraft to perform the

resolution maneuver is eastbound, and is denoted as Ej.

In the following we focus our attention at the moment when E enters the con-

trol volume. Denote (XEk,O, YEk,O) as the original position of aircraft Ek, k = 1, ... , i

and (XEk, YE.) the expected position after resolution. Denote AXEk = XE - XEk,o

and AYEk YEk - YEk,0* We use (AXE, , AYE,.), the relative position deviation vec-

tor to represent the offset maneuver (or resolution) made by aircraft Ek, and use

PEk (AXEk, YE) to represent the penalty function of aircraft Ek. For the southbound

aircraft S1, 1 = 1, ..., j, the subscript of the notations will change to Si accordingly.

Our proof of stability in this section does not require the penalty functions to be

the same for all the aircraft. Given an aircraft A (A could be Ek or SI), the penalty

function of A only needs to satisfy the following conditions: For any AXA, AXA, AYA,

and Ay',

e PA(AXA, AYA) < PA (AA, AYA) if AXA| < AXA

e PA(AXA,AYA) < PA(AXA,AYA) if AYAl < AYA.

Any norm on the position offset (AXA, AYA) satisfies the above two conditions.

As in the previous sections, we would assume that the largest backward and

forward displacement of each aircraft is restricted to be no greater than the safety

distance d.
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Then the conflict resolution for aircraft Ei is equivalent to finding a solution to

the following optimization problem:

minimize PE(AXE , AYE) (4.2)

subject to

dEi,Ekd k=.. i-i (4.3)

AXEJ < d,

where dA,B is the miss distance between aircraft A and B.

4.3.3 Performance Bounds

We now show that, under the proposed decentralized conflict resolution rules and

penalty functions for the aircraft flows, an aircraft entering the control volume can

always execute a position change maneuver that results in a conflict-free trajectory.

A statement of this conclusion with an estimate of system performance bound is

presented in Theorem 4.1.

Theorem 4.1: There exists at least one optimal solution to problem (4.2). Let

(AXEi, AYE) be an optimal solution. Then IAYEi , the lateral displacement of Ei, is

bounded by d + 2v/Zd.

This theorem is proved based on the following three lemmas.

Lemma 4.1: Let (AXEi, AYE) be an optimal solution to problem (4.2). If there

exists a lateral position change maneuver (0, Ay',) which is conflict-free for aircraft

Ei, then |Ay, I is an upper bound for |AYEil, the lateral displacement of Ei.

Proof: Since (0, Ay'.) is a feasible solution and (AXEi , AYE) is an optimal solution of
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Figure 4-9: Illustration of existence of conflict resolution for Lemma 4.2.

problem (4.2), we have PE (A.XEj, AYE) < PE (0, AY' ). According to the property of

the penalty function, we have PEj(O, YE.) PE(AXEj, AYE.) < PE(0, AYE9), hence

AYEj I < AE1. Q.E.D.

Lemma 4.2: If XEi,o XEj- 1 - d (i.e., when moving laterally only, aircraft Ej has

no conflict with the eastbound aircraft ahead of it), then there exists at least one

optimal solution to problem (4.2). Further, the lateral displacement of Ej, IAYEi , is

bounded by 2v'2d.

Proof: We begin with the hypothesis that there does not exist such a maneuver with

lateral displacement less than or equal to 2V'dd.

In the following, we only consider the lateral position change maneuver of aircraft

Ei: (0, Ay7s). From the above hypothesis, |AyO I must be greater than 20d. Other-

wise, if I Ay| I 2Vfd, then by Lemma 4.1 the lateral displacement of Ej is bounded

by |Ay. I < 2v'-d, which is contradictory with the hypothesis.

We also know from the hypothesis that the aisles of the eastbound aircraft ahead of

E should not cover the protected circle of Ej, wherever aircraft Ej is laterally located

within the maneuver corridor of total width L = 4/d centered along the nominal

path. That is to say there should not exist any aircraft in the shaded triangular area
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T in Fig. 4-9. Otherwise, E could find a safe location within the maneuver corridor

by hiding its protected circle inside the aisle of such aircraft.

At the same time, the maneuvered southbound aircraft have performed conflict

resolutions which minimize their penalty functions, and their aisles intersect the pro-

tected circle of Ei, wherever E is located within the maneuver corridor. Especially

at least one aisle of a southbound aircraft, say, SI, intersects the protected circle of

E when Ei deviates fully to the left. For this to happen, xS, + ys, must be less than

(XEi,o + 0) + (YEi,o - L/2) +V'Fd = -R - 2v'2d + v/d, i.e.,

Xs, + ys, < -R - v'ad. (4.4)

Next we show by enumeration that (4.4) is contradictory with the optimality

assumption we made for the maneuver of S1.

Case 1: Ays, < 0, and S, is not in contact with S1_1. We know that ys, Ys1 ,o -d

> -R -d. So from (4.4), xs, < -R - /d -(-R -d) = -- dd+d < 0. Since Si is not

in contact with Si_1, we could laterally move Si a little bit closer to the y axis without

"jostling" S1_1, i.e., we could find a Ax' which satisfies (1) Axs, < Ax's < 0 and (2)

with offset maneuver (Ax'sl, Ays,) aircraft S, is not in contact with SI-1. Hence, with

such maneuver, S, will not be in conflict with any southbound aircraft ahead of it.

Also we could see that with the new position change, the aisle of S, will not overlap

any aisles of the eastbound aircraft, i.e., S, will not be in conflict with the maneuvered

eastbound aircraft. Further, Ps1 (Ax's, Ays1 ) < Ps,(Axs, /Ays,) for |AX' < IAXS-

So (Ax's,, Ays,) is a "better" resolution than (Axsl, Ays,), which is contradictory

with the assumption that (,Axs, Aysl) is an optimal maneuver.

Case 2: Ays, < 0, and S is in contact with Si_1. In Case 2, we further consider

the following four sub-cases (please refer to Fig. 4-10):

Case 2.1: xs_ < 0 and xsl > 0. From (4.4) we can derive ys, < -R - Vd,

which is contradictory with ys , > ys,,o - d > -R - d.

Case 2.2: xs,_1 < 0, xS1 < 0, and xs 1 < xs1. It is easy to see that in this

case (0, Ays,) is also a conflict-free resolution for S1. Since |Axs > 0, we have
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Figure 4-10: Illustrations of some relative positions of S and S1- 1 when Ays, < 0 and Si is

in contact with S _1. From left to right: (1) xs, < 0 and xs, > 0; (2) xs, < 0, xs, < 0,

and xs, 1 < xs,; (3) xs,_1 < 0, xsj < 0, and xs, > xsj; (4) xs,_1 > 0.

Ps, (0, Ays) < PSI (Axs 1, Ays,), which is contradictory with the optimality assumption

for (Axsl, Ays,).

Case 2.3: xs1 < 0, Xs, < 0, and Xs 1 1 > xs,. Let Ax', = 2xs,_ -XS 1 . Obviously,

Ax's,I < |Axsl. And it can be tested that (Ax'sl, Ays,) is a conflict-free resolution

for S1. Therefore, (Ax's1, Ays,) is a "better" conflict resolution than (Axsl, Ays).

Again this causes contradiction with the optimality assumption.

Case 2.4: xs,_1 > 0. Since S, is in contact with Se-1, we can derive

xs 1 + ys 1 > xs 1 1 + Ys1e - vfEd. (4.5)

According to both (4.4) and (4.5), we have xs + ys,_ 1 < XS1 + ys, + /d < -R. At

the same time, since ys, 1 > -R and xs, > 0, we have xs_1 + ys 1_1 > -R. These

two inequalities are contradictory with each other.

Case 3: Ays, > 0. In this case, S must be in contact with Sj_1, and further

ys1 > ysm1 . Otherwise, we could longitudinally move Si backwards a little bit without

"jostling" Sz_1, i. e., we can construct a new resolution maneuver (Axs 1 , Ay',) with

0 < Ay', < Ays, for S, such that (1) S, is not in contact with any southbound

aircraft Sk, k < 1; (2) S, is not in conflict with any eastbound aircraft E3 , j < i.

Therefore (Axs1 , Ay',) is a resolution with smaller penalty function value than that

57



L51 Si

SI Sj Si

Figure 4-11: Illustrations of some relative positions of Si and S1 when Ays, > 0. From

left to right: (1) xs 1 1 < 0 and xs, > 0; (2) xssi < 0, xs, < 0, and xs, < xs,; (3)

xs 1 1 < 0, xs, < 0, and xs 1i > isI; (4) xsa1 > 0.

of (Axs, Ays,), which is contradictory with the optimality assumption we made for

the maneuver of S1.

In Case 3, we further consider the following four sub-cases (please refer to Fig. 4-

11):

Case 3.1: xs, 1 < 0 and xs, > 0. From (4.4) we can derive ys, < -R - v/2d,

which is contradictory with ys, > ys 1,o > -R.

Case 3.2: xsl- < 0, xs, < 0, and Jxs, I < ixs, 1. Because of the relative location

of S, with respect to SoI, it can be tested that the following two situations can not

occur simultaneously: (1) Si1 is in contact with some Sk (k < 1 - 1) and XSk > is 1- 1 ;

(2) S, is in contact with some Sk (k < 1 - 1) and xS, > xs,. If situation (1) does

not happen, then we can laterally move S 1 -1 a little bit closer to the y axis without

"jostling" any other southbound aircraft ahead of it, i.e., we can construct a new

resolution maneuver (Ax' 1 1, Aysi) with Axs 1  < Ax' < 0 for Si-1 such that

S1_1 is not in contact with any southbound aircraft Sk (k < 1 - 1) and S1_1 is not

in conflict with any eastbound aircraft Ej (j < i). Therefore (Ax', Ays,_) is a

resolution with smaller penalty function value than that of (Axs,-1, Ays,_1), which

is contradictory with the optimality assumption we made for the maneuver of S1-1.

Similarly, if situation (2) does not happen, then we can construct a "better" resolution

for S, by laterally moving S a little bit closer to the y axis without "jostling" any

58



southbound aircraft, therefore inducing contradiction with the optimality assumption.

Case 3.3: xs11 < 0, xs, < 0, and |xsjI > lxs,_1 |. Let x's, = 2xs 1 - xS, and

Y = 2ys11 - Ys,. Obviously, IAx's, < IdxsI and |Ay', < I Ays, (because Ays, > 0

and ys,_ 1> ys 1 ,o - d > ys,o). And it can be tested that (Ax',, Ay' 1 ) is a conflict-

free resolution for S1. Therefore, (Ax',, iAy'S) is a "better" conflict resolution than

(Axs, Ays,). Again this causes contradiction with the optimality assumption.

Case 3.4: xs,1 > 0. Since Si is in contact with Si1, we can derive

XS1 + ys1 > xs 1 1 + ys 1 1 - V2-d. (4.6)

According to both (4.4) and (4.6), we have xs1 -1 + ys, xsl + ys, + V"d < -R. At

the same time, since ys 1 1 > -R and xs,_1 > 0, we have os, + ys1 _ > -R. These

two inequalities are contradictory with each other.

From the above discussion, we have induced contradiction based on the hypothesis

we made at the beginning of this proof. So the hypothesis can not hold. Therefore,

we prove that 2V2dd is an upper bound for the lateral displacement of Ej. Q.E.D.

We have considered the aircraft flow stability for the case of Ei,o XEj_ 1 -d.

For the case of XEi,o > XEj_1 - d, the argument in the above proof is no longer valid,

because aircraft Ej, when moving laterally only, may not be able to hide inside the

aisles of some eastbound aircraft due to the possible "push" from aircraft Ei 1. Before

proceeding with our further discussion, we define a region {(x, y)|xEi_1 + YEj-1 - dl <

x + y < XEi- + YEj- 1 + d2} called the forbidden region, which is an aisle that totally

covers the aisle of Ei_1 and does not overlap the aisle of any southbound aircraft. The

forbidden region has the property that aircraft E could not safely hide its protected

circle inside the forbidden region because of the push from aircraft Ei- 1. It can be

tested that di and d2 should satisfy:

di + d2 < 2d + 2d. (4.7)
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Figure 4-12: Illustration of existence of conflict resolution for Lemma 4.3..

Lemma 4.3: If XEi,o > XE_ 1 - d, then there exists at least one optimal solution

to problem (4.2). Further, the lateral displacement of Ej, |AYEJ , is bounded by

5d±+2V F2d.2dd

Proof: Consider the maneuver corridor centered at the x axis with width L = 5d +

4V2d. Again we proceed with the proof by contradiction: First assume that there

does not exist such a maneuver with lateral displacement less than or equal to L/2.

In this proof we only consider the lateral offset maneuver of aircraft Ej: (0, Ay)

The above assumption implies that |Ay' | > L/2. Otherwise, if |Ay I < L/2, then

by Lemma 4.1 the lateral displacement of Ej is bounded by L/2, which is contradictory

with the assumption.

Please refer to Fig. 4-12. There should not exist any aircraft in the shaded area

- a triangular area excluding the forbidden region in Fig. 4-12. Otherwise, Ej could

find a location within the maneuver corridor by hiding inside the aisle of such air-

craft. At the same time, any maneuvered southbound aircraft must have performed

conflict resolutions which minimize their penalty functions. Therefore, there exists a

southbound aircraft, denoted as S1, satisfying

XS, + ys, < -R - L/2+ d,
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Figure 4-13: Illustrations of some relative positions of S and S1_ 1 when Ays, < 0 and Si

is in contact with Sz_1. Left: S1_ 1 is in contact with the forbidden region. Right: Si- 1 is

not in contact with the forbidden region, and xS 1_1 < 0.

i. e.,

XS 1 + ys, < -R - . (4.8)
2

Next we show by enumeration that (4.8) is contradictory with the optimality

assumption we made for the maneuver of S1.

Case 1: Ays, < 0, and S, is in contact with Si-1. Since Ays, < 0, there must be

Ys1 <_ ys,_ 1. In Case 1, we further consider the following three sub-cases.

Case 1.1: S1_1 is in contact with the forbidden region (please refer to Fig. 4-13

(the left picture)). It is easy to see that in this case

XS 1_1 + Ys 1_1 = XEi_1 + YEj_ 1 - di - -d/2.

Since S, is in contact with SI_1, we have

XS, + Ys1  XS,_ 1 + YsI- 1 - -v2d.

Hence

xS1 + ys , XEi_1 + YEj_ 1 - di - 3 2d/2,
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or

-XS, - YS, ~ XEi-1 - YEi_1 + d1 + 3v/id/2. (4.9)

As (Axs,, Ays,) is an optimal maneuver for S1, its penalty function value must

be no greater than any feasible (conflict-free) maneuver of S on the other side of

the forbidden region. Especially, considering for S the "best" conflict-free lateral

offset maneuver (Axs,, 0) on the other side of the forbidden region, we have IAxs, I _

|Axs, 1. Further, Ax, must be greater than 0; Otherwise, from the relative positions

of (xos,, ys o), (xs,, ys), and the y axis, there should be IAxoI < |Axs,|, which is

contradictory to IAxOs, I jAxs,|. Therefore, at location (xos,, ys1,) S, must be in

contact with the forbidden region, because Axos, > 0 and S, (at location (xs,, ysI,0 ))

can not be jostled by any other southbound aircraft Sk, k < 1. Then we have

xs, + Ys,,0 = XEi_1 + YEi_1 + d2 +Vd/2,

s, -ys 1,0 + XEi_ 1 + YEi- 1 + d 2 ±v/2d/2. (4.10)

Taking into account that ys , > ysl,o - d, we induce from (4.10) the following inequality

X0- Ys, < - 2 Ys1, 0 ±+Ei±Y~ d2 + d + V'~d/2.
xS, s -2s~ + x Ei_1 + yEi_1 2 -

Since Axos > 0, |Ax) I >AxsI implies Ax 1 > -Axsl or x~l > -xs,. Then we have

-Xs 1 - ys, < -2 y s1,0 + XEi 1 + YEi_1 + d2 ± d + Vd/2. (4.11)

Adding (4.9) and (4.11) together, we have

-2xs, - 2ys, < - 2ysi,0 + d + d2 +d + 2-\Fd.
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Since ys 1o > -R, and according to (4.7), we obtain

XS1 + ys, > -R - 3d.+3v'd (4.12)
2

It is easy to see that (4.12) is contradictory with (4.8).

Case 1.2: S1_1 is not in contact with the forbidden region, and xs,_1 > 0. Since S,

and S1_1 are in contact with each other, xs 1_1 > 0 implies xS, > -d. As ys, > -R - d,

and according to (4.8), we have -d - R - d < xs, + ys, < -R - dd2 , inducing

contradiction.

Case 1.3: S1_1 is not in contact with the forbidden region, and xS1_1 < 0

(please refer to Fig. 4-13 (the right picture)). Let us consider the offset maneu-

ver (2Axs 1  - Axs, Ays,) for S1. We claim that the protected circle of S, after this

maneuver must overlap the forbidden region. Otherwise, such maneuver is conflict-

free. Further, it is easy to test that this maneuver has smaller penalty function value

than that of (AxS1 , Ays,). Therefore, (2Axs,_1 - Axs,, Ays,) is a "better" resolution

than (Axs,, Ays,), which is contradictory with the optimality assumption.

Since the protected circle of S, after maneuver (2Axs - AxS1, Ays,) overlaps

the forbidden region, we have

(2xs1 1 - XS) + Ys1  XEj_1 + YEj_ 1 - 1 - vf§I/2.

For xS1_1 - xS1 < d, we can derive the following inequality from the above one

~XS 1 - YS1  -XE_ 1 - YEj 1 + d1 + 2d + 2d/2. (4.13)

Next we follow the discussion in Case 1.1, and could get (4.11). Add (4.13) and (4.11)

together, then we have

-2xs, - 2 ys, < -2ys 1,0 + d1 + d2 + 3d + 2d.
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Figure 4-14: Illustrations of some relative positions of S and S 1 when Ays, < 0 and S
is not in contact with SI_1. Left: At location (x'.,, ys 1,0 ) (aircraft plotted in dotted lines),
S, is in contact with the forbidden region. Right: At location (x%,, ys 1 0 ) (aircraft plotted

in dotted lines), S is in contact with S11 and xs,_, > 0.

Since ys, 0 > -R, and according to (4.7), we obtain

XS, + Ys,1 > -R - 5d + 2v.2d (4.14)
2

Obviously, (4.14) is contradictory with (4.8).

Case 2: Ays, < 0, and S1 is not in contact with Si_1. It is easy to see that

if Axs, > 0, it must be true that |Ayog| < L/2, which is contradictory with the

hypothesis we made previously. So we only need to consider the case of Axs, < 0.

Since S is not jostled by any southbound aircraft Sk (k < 1), the aisle of S must be

in contact with the forbidden region:

XS1 + Ys, = XEi_ 1 + YEi_ 1 - d1 - 2d/2,

or

-XS 1 - Ys, = -XE 1 - YEi_ 1 + di + V'2d/2. (4.15)

Now we consider for S, the "best" conflict-free lateral offset maneuver (Azox1 , 0)

on the other side of the forbidden region, we have Ax" ;> I|Axs, . Further Ax",

must be greater than 0 (for the reason, please refer to the arguments in Case 1.1).
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Therefore, at location (XSJ, ys1, 0), there are only two possibilities for aircraft Si: Either

S, is in contact with the forbidden region or not (if not, then S, must be jostled by

S1_1). We discuss these two possibilities in the following three sub-cases.

Case 2.1: At location (Xs, ys1 0 ), S, is in contact with the forbidden region (please

refer to Fig. 4-14 (the left picture)). Similar to the discussion in Case 1.1, we have

-XS1 - Ys,  - 2ys10 + XEi_ 1 + YEi_ 1 + d2 + d + V'2d/2. (4.16)

Add (4.15) and (4.16) together, then we have

-2xs, - 2ys, < - 2 ys1,0 + d1 + d2 + d + v'-d.

Since ys ,,o > -R, and according to (4.7), we obtain

Xs, + ys, > -R - 3d.+2V-d (4.17)
2

It is easy to see that (4.17) is contradictory with (4.8).

Case 2.2: At location (xI, ysi,o), Si is in contact with Se-1, and xs,1 < 0.

Since S, and Sh_1 are in contact with each other, xs,_1 < 0 implies x, < d. Hence

XS, > -x0 > -d because of the optimality assumption of maneuver (Axs, Ays,). As

ys , > -R - d, and according to (4.8), we have -d - R - d < xs + ys, < -R - I+2

inducing contradiction.

Case 2.3: At location (x),, ys1,0), S, is in contact with SI_1, and xs1_1 > 0 (please

refer to Fig. 4-14 (the right picture)). Let us consider the offset maneuver (2Axsli -

AxOS1, 0) for S1. We claim that the protected circle of S, after this maneuver must

overlap the forbidden region. Otherwise, such maneuver is conflict-free. Further,

it is easy to test that this maneuver has smaller penalty function value than that

of (Ax01 , 0). Therefore, (2Axs,_ - Ax",, 0) is a "better" resolution than (Axo,, 0),

which is contradictory with the assumption we made for (Axo,, 0).

Since the protected circle of S, after maneuver (2Axs,_1 - Ax",,, 0) overlaps the
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forbidden region, we have

(2xs,_1 - xs,) + ys, 0 < XEi_ 1 ± YEi- 1 + d 2 -F d/2.

Since xs,_1 - x'g, > -d, we can derive the following inequality from the above one

x 1 + Ys1, 0 < XEi_1 + yEi-1 + d2 + 2d + V'd/2.

Note that x01 > -xs, and ysl,o < ys, + d. So we have

-XS, - Ys,  - 2 ys1 ,0 + XEi_ 1 + YEi 1 + d2 ±3d +F \/d/2. (4.18)

Add (4.15) and (4.18) together, then we get

-2xs, - 2ys, < -2ys 1,0 + d1 + d2 + 3d + V'-d.

Since ys,,o > -R, according to (4.7), we obtain

xs, + y,>R 5d + 2 .vFd (4.19)
2

Obviously, (4.19) is contradictory with (4.8).

Case 3: Ays, > 0. In this case, S, must be in contact with S1_1, and further

Ys, > ys 11 . Otherwise, we could longitudinally move S backwards a little bit without

"jostling" S1-1, i.e., we can easily construct a new resolution maneuver (Axs, Ay')

with 0 < Ay' < Ays, for S, such that (1) S, is not in contact with any southbound

aircraft Sk, k < 1; (2) S, is not in conflict with any eastbound aircraft Ej, j < i.

Therefore (Axs, Ay's,) is a resolution with smaller penalty function value than that

of (Axs1 , Ays,), which is contradictory with the optimality assumption we made for

the maneuver of S,.

In Case 3, we further consider the following three subcases.

Case 3.1: SI_1 is in contact with the forbidden region (please refer to Fig. 4-15
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Figure 4-15: Illustrations of some relative positions of S1 and S1 when Ays, > 0. Left:

S1_ 1 is in contact with the forbidden region. Right: S 1 _1 is not in contact with the forbidden

region, and xsl_1 < 0.

(the left picture)). Obviously,

sSI- + ysi_1 = XEi1 + YE-1 - di - -d/2.

Since S, is in contact with SI_1, we have

XS1 + Ys, > s1+ys_1 -±d-

Hence

XS1 + Ys, > XEi 1 + YEj_ 1 - d1 - 32/2,

or

-XS - Ys -XEj_ 1 - YE_ 1 + di + 3<2+d/2.

Following the discussion in Case 1.1, we can also obtain

-XS 1 - Ys, < - 2ys,o + XEj_1 + YEj_ 1 + d2 + d + vf2-/2.

Adding (4.20) and (4.21) together, we have

-2xs, - 2ys, < - 2 ysj, 0 + d1 + d 2 + d + 2 2d.
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Since ys, 0o > -R, and according to (4.7), we obtain

XS1 + ys, > -R - 3d + 3 .'2d (4.22)
2

It is easy to see that (4.22) is contradictory with (4.8).

Case 3.2: S1_1 is not in contact with the forbidden region, and xS1_1 > 0. Since S,

and S1_1 are in contact with each other, xs,_1  0 implies xS, > -d. As ys , > -R - d,

and according to (4.8), we have -d - R - d < xs, + ys, < -R 5d2/' d inducing
2

contradiction.

Case 3.3: S1i is not in contact with the forbidden region, and xs,_1 < 0 (please

refer to Fig. 4-15 (the right picture)). In Case 3.3, we only consider the situation when

XS1 < Xs . (When xs, > xs 1 1 , the aisle of aircraft Sz_1 must intersect the protected

circle of Ej when Ej deviates fully to the left. In such case, we would rather choose

Si1 as the aircraft under consideration instead of S at the beginning of the proof.

Since ys, > ys,_1 , there should be Ays, < 0. Then we can induce contradiction by

using the arguments in Case 1 and Case 2 upon aircraft Swi.)

Now let x's = 2xs1_1 - £s, and y' = 2ys1 - ys,. Obviously, |Ax'sl < |AxsI

and |Ay'| I <Ays, I (because Ays, > 0 and ys, > Yso - d > yso). So maneuver

(A's1, Ay[S) has smaller penalty function value than that of (Axsl, Ays,). Therefore

the protected circle of S, after maneuver (Ax's,, Ay's) must overlap the forbidden

region. Otherwise, such maneuver is conflict-free, and as we have shown that it has

smaller penalty function value than that of (Axs,, Ays,), (Ax's, Ay') is a "better"

resolution than (AWS1, Ays,), which is contradictory with the optimality assumption.

Since the protected circle of S, after maneuver (Ax's, Ay[',) overlaps the forbidden

region, we have

's4, + y'S > XEi_1 + YE 2_1 - d1 - vF~d/2.

For xs,_ - xs, < d and ys, > y's,, we can derive the following inequality from the

above one

-s, -- Ys, -X E1 - YE_1 -± d1 + 2d + -VFd/2. (4.23)
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Next we follow the argument in Case 1.1, and can get the same inequality as (4.11).

Adding (4.23) and (4.11) together, we have

-2xs, - 2 ys < --2 ysi,0 + d1 + d2 + 3d + vf2d.

Since ys,o > -R, and according to (4.7), we obtain

XS, + ys, > -R - 5d2vd (4.24)
2

Obviously, (4.24) is contradictory with (4.8).

From the above discussion, we have induced contradiction based on the hypothesis

we made at the beginning of this proof. Q.E.D.

It is easy to see that Theorem 4.1 is a direct consequence of Lemma 4.2 and

Lemma 4.3.
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Chapter 5

Comparison with Centralized

Resolution Strategies

In this chapter, we compare the solutions provided by decentralized conflict resolution

strategies with centralized solution strategies that may be obtained for a finite set

of aircraft. The goal of this study is to evaluate the degree of "inefficiency" of the

decentralized conflict resolution scheme discussed in the earlier chapters.

Our computational approaches (including those presented in this chapter and in

[14]) follow the spirit of previous authors: In [29], Niedringhaus proposed linear pro-

gramming as a convenient modeling framework to formulate and solve efficiently con-

flicts arising among several aircraft. In [11], Durand, Alliot and Chansou considered

the same problem and proposed to use genetic algorithms and linear programming

to determine optimal maneuvers to solve conflicts arising among multiple aircraft.

While both approaches emphasize (but are not limited to) planar conflict problems,

the latter approach differs from the former in that it also optimizes the conflict resolu-

tion maneuver over possible crossing patterns, whereas the former approach requires

a priori knowledge of the crossing pattern among aircraft.
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Figure 5-1: Conflict avoidance constraints for offset model.

5.1 Centralized Resolution for Offset Model

5.1.1 Mixed Integer Linear Programming

The lateral offset model makes it possible and fairly easy to realize centralized conflict

resolution via the mixed integer linear programming.

Considering two aircraft streams as introduced previously, we assume that the

number of aircraft is now finite (the two streams are truncated). The centralized

optimization is that of minimizing the maximum lateral deviation experienced by

any aircraft, subject to the constraint that all conflicts should be solved. Such an

optimization problem may be easily written as a mixed integer programming problem,

as follows. Referring to Fig. 5-1, aircraft A. and Aj, assumed to travel at the same

constant speed on orthogonal courses, will not be in conflict if and only if the protected

circle Ai does not intersect the aisle projected by aircraft Aj. Let (Xi, yi) and (xj, y3 )

be the coordinates of aircraft Ai and Aj and let d be the minimum allowable miss

distance. Ai and A3 are not in conflict if and only if

Xi + y > Xi + y3 + --vd

or (5.1)

XZ + YZ < z + Y3 -j d.

These constraints are linear in the decision variables y, and x, which are the lateral

deviations for the eastbound and southbound aircraft, respectively. The centralized
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Figure 5-2: Conflict resolution for two streams of aircraft using the centralized algorithm

under lateral offset model. The initial separation distance is 5 nm. The largest lateral

displacement experienced by the aircraft is 6.1 nm.

conflict resolution problem may therefore be written as

minimize max{maxAi is eastbound I Yi

maxAj is southbound I l} (5.2)

subject to (5.1).

This problem may be easily recast as a mixed-integer linear programming problem

minimize -y

subject to -y < y < -y, Ai is eastbound,

-- y < xj < 7, Aj is southbound,

Mt-j + Xi + yi ;> X + YJ + V2Zd,

M(tig - 1) + xi + yi < x + y, - V/Zd,

(5.3)

where the continuous decision variables are yi for the eastbound aircraft and xj for

the southbound aircraft, and tij are binary decision variables. x and yj are fixed

parameters, and M is a large constant. This problem may be solved efficiently using

powerful linear programming optimization software such as CPLEX [7].

Fig. 5-2 shows the conflict resolution for the two streams of aircraft, with a total
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of 82 aircraft. In this example, the initial separation distance between aircraft is

S = d = 5 nm and the aircraft are initially configured as described in Fig. 3-6.

Compared with Fig. 3-6, Fig. 5-2 reveals a slightly more compact conflict resolution

structure: The largest lateral displacement experienced by the aircraft in Fig. 5-2 is

6.1 nm, which is slightly smaller than 7.1 nm, the largest displacement of aircraft in

the decentralized test.

Similarly to problems involving two aircraft streams, it is possible to set up the

centralized conflict resolution problem for three aircraft flows as a mixed integer

linear programming problem. The same three aircraft flows as in Section 3.3 (S = 5

nm) have been truncated down to twenty aircraft per stream due to computational

limitations.

Fig. 5-3 represents a snapshot of the aircraft flows after conflict resolution. The

largest lateral displacement experienced by the aircraft is 23.1 nm, which is smaller

than the maximum deviation experienced by the first 60 aircraft (20 in each stream)

shown in Fig. 3-14, which is 60.7 nm. This indicates that for more than two intersect-

ing aircraft flows, there may be considerable inefficiencies in aircraft conflict resolution

amplitudes if they follow decentralized, strategies based on limited information.

5.1.2 Worst-case Performance Estimates for Centralized Res-

olution

In the previous subsection, we considered the centralized conflict resolution for lateral

offset model. For general offset model allowing longitudinal displacement, we need to

add a few more nonlinear and nonconvex constraints to problem (5.3):

(x 1 - Xk) 2 + (YI - Yk)2 d2, (5.4)

where aircraft with index I and k are in the same stream. Therefore, the centralized

conflict resolution for offset model will in general need much more computation than

the centralized resolution for lateral offset model. Besides getting exactly the optimal

resolutions, we may predict the performance of centralized conflict resolution for offset
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Figure 5-3: Conflict resolution for three streams of aircraft via the mixed integer linear
programming under lateral offset model. The initial separation distance is 5 nm. The
largest displacement experienced by the aircraft is 23.1 nm.
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Figure 5-4: A way to partition airspace for two perpendicularly oriented aircraft streams.

model based on a study of conflict geometry of the aircraft flows.

Considering two intersecting aircraft streams, we know from the conflict geometry

that the aisles of aircraft in both steams are parallel to each other. It is easy to

see that the conflict resolution is equivalent to finding a partition of the airspace

such that (1) the aisles of aircraft are distributed in a way where the aircraft from

different streams will not overlap their aisles after resolution, and (2) the aircraft in

the same stream with overlapped aisles should never overlap their protected circles.

Since any feasible airspace partition described as above determines a solution to the

centralized resolution problem, it determines an upper bound for the optimum value

of the optimization problem for conflict resolution. In such sense, we may easily

predict the performance of the centralized conflict resolution.

For example, Fig. 5-4 gives a way of partitioning airspace for two perpendicularly

oriented aircraft streams. Considering the same conflict scenario of two aircraft flows

as presented in Section 3.1, we can easily derive upper bounds for the largest lateral

displacement of aircraft under the centralized conflict resolution, based on the parti-

tion in Fig. 5-4: For the lateral offset model, the bound is V'2d; For the offset model

allowing longitudinal displacement, the bound is x/2d/2, only half the value of V/2d

(note that v/2d is the largest lateral displacement we obtained in the decentralized

resolution for the two aircraft flow problem in Section 4.1, Fig. 4-2). Obviously, this

75



partition will still apply when the aircraft streams have more density, e.g., involving

parallel aircraft.

The above idea of partitioning airspace can also be generalized to three aircraft

streams. Note that in this case an aircraft projects two aisles, each of which is oriented

along the relative velocity vector of this aircraft and the aircraft in one of the other

two streams. As an example, Fig. 5-5 constructs a safe aisle distribution for three 120

deg oriented aircraft flows. The aisles in different streams have been identified with

different darkness or patterns. From this construction, we see that the centralized

conflict resolution strategies can always find an offset resolution with lateral position

displacement no greater than 4d ~ 11.5 nm (note that in the example of three

aircraft flows under the decentralized resolution and offset model, as shown in Fig. 4-

7, the largest lateral displacement of the 105 tested aircraft is 30.4 nm).
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Figure 5-5: A way to partition airspace for three 120 deg oriented aircraft streams.

77



5.2 Centralized Resolution for Velocity Change Model

In our previous work [14], we have proposed an optimization algorithm for central-

ized resolution of conflicts involving multiple aircraft. The aircraft maneuver model

is chosen to be the velocity change model, and the conflict resolution is based on

semidefinite programming and random search. In this section, we use the mixed in-

teger linear programming as the technique for centralized aircraft conflict resolution.

This approach experimentally proves to run much faster than the one in [14].

5.2.1 Problem Formulation

Let n be the number of aircraft involved in one conflict and let each aircraft be

identified by its index i E {1, ..., n}. Denote the initial position of aircraft i by pio

and its initial velocity by vio. Denote its position at any time t by pi(t) or the

shorthand pi. Denote the commanded velocity changes by ui. We use a double-index

notation for aircraft relative positions and velocities. Thus, the relative position pij

is defined by pij pi - pj, and the relative velocity vij is defined by vij = vi - vj.

Further, pijo = pio - pjo and vijo = vio - vjo. Denote dij as the miss distance between

aircraft i and j.
There are three components in the optimization problem formulation for central-

ized conflict resolution: collision avoidance constraints, maneuvering constraints, and

cost function.

Conflict resolution constraints can be expressed in many ways. In the present

context, we express collision avoidance constraints in terms of a given minimum miss

distance. Assume (i) a minimum safety distance d, (ii) no initial conflict between

aircraft, and (iii) that aircraft follow straight trajectories at constant velocity. The

conflict avoidance constraint is then shown graphically in Fig. 5-6 for a given aircraft

pair (i, j) and can be written as dij > d, which is equivalent to

p jo(vigo + uig) + ||vigo + Uij11| pugo| 2 - d2 > 0, (5.5)
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Figure 5-6: Conflict avoidance constraints for velocity change model.

where ||x| represents the Euclidean norm of vector x. As may be seen from Fig. 5-6,

the conflict avoidance condition may be seen as the union of the half planes defined

by the two linear constraints

(viso + uij)Tniji > 0 (5.6)

and

(vijo + uij)Tnij 2 > 0 (5.7)

where nij1 and nij2 are shown in Fig. 5-6.

The maneuvering constraints of an en route aircraft are significant. In particular at

high altitude, the speed range of an aircraft is narrow. Usually, aircraft heading is not

limited over the time scales under consideration. However, due to some specific flight

conditions and consideration of passenger comfort as well as trajectory smoothness

preference, we also need to put constraints on the heading changes sometimes. In the

conflict resolution for the two aircraft flow problem, we restrict the velocity changes

to stay within a given set around the current aircraft velocity: The set of possible

changes is the convex set of possible velocity commands shown in Fig. 5-7. Denote

ni, and nih as two unit vectors which are respectively parallel and perpendicular

to the initial velocity vector of aircraft i. If the velocity deviation of an aircraft is

small, then the velocity change along the direction of nih is for most part the result
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Figure 5-7: Maneuvering constraints for the two aircraft flow problem.

of the aircraft heading change, while the velocity change along the direction of ni, is

mainly the consequence of the aircraft speed change. We write the resolution velocity

command ui as

ui - uisni, + Uihnih. (5.8)

It is easy to see that the constraint on ui (shown in Fig. 5-7) is equivalent to the

following constraints on uis and uih:

luis < Us,max, lUihl < Uhmax, (5.9)

where the values of us,max and Uh,max are determined by the size of the "rectangle" in

Fig. 5-7.

The cost function is chosen so as to minimize the velocity deviations from the

original velocities or desired velocities. For the purpose of comparison with the de-

centralized resolution in Section 4.2, we use the following cost function for the aircraft

flow problem:

J = max {titlUih|}, (5.10)

where t, is the time to conflict for aircraft i. The above cost function is a measure of

the maneuver corridor size of the aircraft flows.
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5.2.2 Mixed Integer Linear Programming

Now we show that the optimization problem presented in the previous subsection can

be formulated as a mixed integer linear programming problem:

" The constraint (5.5) (i.e., the union of the two linear constraints (5.6) and (5.7))

is equivalent to the following mixed-integer-linear constraints:

Mtij + (vijo + ui)Tniji > 0, (5.11)

M(1 - tii) + (vijo + uij)Tniji > 0,

where tij's are binary decision variables, and M is a sufficiently large constant.

" The cost function (5.10) is similar to the cost function of (5.2), and could be

rewritten as

J = Y (5.12)

together with a set of linear constraints

7 tiUh ; 7, i 1, ..., n. (5.13)

Therefore, the optimization problem is to minimize the cost function (5.12) sub-

ject to constraints (5.13), (5.11) and (5.9). Obviously it is a mixed integer linear

programming problem. As an example, we test the above formulation on a conflict

resolution problem for two streams of aircraft, with a total of 18 aircraft. In this

example, the initial separation distance between aircraft is 5 nm and the aircraft

are initially configured as the example of Fig. 4-6 (right picture). Fig. 5-8 shows a

snapshot of the centralized conflict resolution, which reveals a more compact conflict

resolution structure than that of the first 18 aircraft shown in Fig. 4-6 (right picture).

The largest heading deviation of aircraft is 1.62 deg in the example using centralized

resolution, and is 3.78 deg in the example using decentralized resolution.
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Figure 5-8: Conflict resolution for two streams of aircraft using the centralized algorithm

under velocity change model. The initial separation distance is 5 nm.
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Chapter 6

Conclusions

This thesis considers the problem of demonstrating stability of two interacting aircraft

flows in a Free-Flight environment when these aircraft obey simple conflict resolution

strategies. A new maneuver model with reduced complexity, the offset model, is

proposed for analysis purposes, and has provided compact arguments establishing

properties on the trajectories of aircraft after resolution. It is shown that this model is

a very good approximation to the velocity change model, especially for small velocity

deviations. Simulations are presented for both models to test the theoretical results as

well as to generate some insight about the structure of the traffic flow after resolution.

It is shown for the lateral offset model (in Chapter 3) that the interacting aircraft

flows remain stable under decentralized closed-loop conflict avoidance and derived a

simple upper bound on the maximum deviation experienced by the aircraft. Numer-

ical examples indicate the obtained bounds are consistent with the observed aircraft

displacements. Then the arguments are extended (in Chapter 4) to general offset

models with more control freedom for individual aircraft. Finally, a comparison is

made (in Chapter 5) with centralized approaches to conflict resolution.

Further research effort will address the evolution of the interrelation between air-

craft flow constraints and proposed centralized/decentralized conflict resolution sys-

tems.
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