
Introductory Educational Laboratory Experience for
Computer Engineering Undergraduates

by

Michael L. Jacknis

B.S. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1998

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

ELECTICAL ENGINEERING AND COMPUTER
SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1999

@ 1999 Michael L. Jacknis. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document, and to grant others the right to do so.

Signature of Author:
Department of Electrical Engineering and Cmputer Science

May 2-1 19A9

Certified by:
Gill A. Praff

Associate Professor of Electrical Engineering and Computer Science
Thesis Stipervisor

Accepted by:
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 1 5 1999
1

LIBRARIES

Introductory Educational Laboratory Experience for
Computer Engineering Undergraduates

by

Michael L. Jacknis

Submitted to the Department of Electrical Engineering and Computer Science on
May 21, 1999 in partial fulfillment of the requirements for the degree of Master of

Science in Electrical Engineering and Computer Science.

Abstract

This thesis presents a series of laboratory experiences directed toward students of
introductory computer engineering. The design goals of the series and of individual
projects are discussed. One project, a digital piano, is implemented and analyzed; the
others are works-in-progress.

It is difficult to introduce students to this subject using hands-on design work because
modem systems are constructed as monolithic integrated circuits using tools that are too
advanced, expensive, and time-consuming for beginners. This thesis offers a way to
abstract each of the important concepts so the student can experiment with them in the
laboratory. Additionally, the projects are arranged such that they can be completed in a
top-down sequence: Students use and experiment with simple processors before they are
taught the digital logic composing them.

The projects are intended for student construction on a specialized laboratory kit
consisting of an array of Field Programmable Gate Arrays. The staff provides final
programming images for the FPGAs, so that the students may think of them as black
boxes.

Thesis Supervisor: Gill A. Pratt
Title: Associate Professor of Electrical Engineering and Computer Science

2

Acknowledgements

Many people and events influenced, inspired and made possible this work. I have had the
pleasure of being a Teaching Assistant for several related MIT EECS classes. The
students and fellow staff members I've worked with were patient, receptive, forgiving,
and gave me valuable feedback concerning the art of teaching in general and the specific
task of designing meaningful laboratory experiences.

Thank you to Marc D. Tanner and Rachael Lea Leventhal, who gave me the inspiration
and confidence to pursue this project in the first place.

Thank you to Andrew "Bunnie" Huang, who designed and constructed the ingenious,
reconfigurable, feature-packed hardware laboratory kits in a summer and a semester,
using mostly his personal resources, and who went above and beyond the call of duty to
provide temporary lab assignments for students during the Fall 1998 semester.

Thank you to Om Prakash Gnawali, Andreas Sundquist and Jason Woolever who are
spending January 1999 and beyond implementing the lab assignments described in this
thesis as works-in-progress, and who are providing feedback, support and continuity for
this project.

Thank you to Gill Pratt, whose Leg Lab and free-form style gives one (in Bunnie's
words), "the license to do cool things."

Thank you to my parents, without whom none of this would be possible in the first place.

This thesis is dedicated to the smart people who learn best in unconventional ways.

3

Table of Contents

ABSTRACT ... 2

ACKNOW LEDGEM ENTS... 3

TABLE O F CO NTENTS.. 4

LIST OF FIGURES .. 6

CHAPTER 1: INTRODUCTION .. 7

The Problem .. 7

Curriculum of MIT's Computation Structures Course: From Bottom Up to Top
Down..7

CHAPTER 2: HISTORY OF LABORATORY COMPONENT FOR
COM PUTATION STRUCTURES .. 10

The Beginnings..10

The Saga of the "New" Labs ... 10

W hich New Lab is Best? .. . 11

Computer Engineering Education at Other Universities 12

CHAPTER 3: THE 6.004 DIGITAL PIANO .. 13

W hat is a Digital Piano? .. . 13

Designing the 6.004 Digital Piano Assignm ent... 16
Prebuilt Note Interpreter ... 18
Preprogrammed Control ROM ... 18
Frequency Indexing M odule (M ultiplier) ... 18

Im plem enting the Digital Piano... 20
Organization of Implementation Files ... 20

Expected Student Response ... 22

Improvem ents..22

4

CHAPTER 4: DEVELOPING THE NEW 6.004 LAB CURRICULUM 23

What is a good lab assignment?... 24

Intended 6.004 Lab Assignments for Spring 1999 .. 25
T he C urriculum ... 25

Results of Lab Development Effort: What do we do now?................. 27

CHAPTER 5: PHYSICAL LAB ENVIRONMENT.. 29

CHAPTER 6: REMAINING WORK ... 30

APPENDIX A: 6.004 DIGITAL PIANO INSTRUCTIONS FOR STUDENTS...... 31

APPENDIX B: DIGITAL PIANO FPGA MODULE SCHEMATICS.................. 56

BIBLIOGRAPHY.. 68

5

List of Figures
Figure 1: Simple Single-Note Generator.. 13
Figure 2: Simple Multiple-Note Generator ... 14
Figure 3: Multiple-Note Generator with Accumulator .. 14
Figure 4: Multiple-Note Generator with Accumulator and Waveform Indexing Multiplier

... 15
Figure 5: Simple Frequency Generator .. 16
Figure 6: Standard Appearance for Module Contents Macro 21

6

Chapter 1:
Introduction

The Problem

The advancement of modem digital computation circuits presents an interesting challenge
to educators: Modem circuits are usually constructed as single VLSI elements designed
with several layers of software tools. The software assumes a prior understanding of the
concepts of digital logic circuit design. However, most people in industry today have
obtained this understanding through experiencing simpler logic circuits, from the days
when it was common to prototype them by physically connecting hardware elements.

How do you impart a solid understanding of the fundamental principles of logic design
when the simple logic circuits upon which they are based are no longer in common use?

How do you give students an introductory construction set for logic design, that offers an
experience and understanding equivalent to hacking primitive hardware logic circuits,
while involving the issues associated with the convenience and capability of modem
VLSI design?

It is difficult to teach modem computer architecture and digital electronics: the state of
the art involves sufficient miniaturization and integration that it is no longer possible to
give a student a box full of digital parts and have them physically construct a modem
digital computer. The concepts and techniques that enable modem computational
machinery evolved from earlier, simpler, less integrated technology. In order to
understand the latest innovations, and eventually introduce new ones, an engineer must
understand the basic concepts underlying digital circuit design and construction.
Engineering schools face the challenge of filtering the history of innovation and to
provide students with an abbreviated experience that is equivalent to having experienced
the evolution of technology first-hand.

This thesis will examine the current Computation Structures curriculum at M.I.T. It will
define a set of laboratory experiences that will help students understand the curriculum.
Some of these experiences will then be directly implemented and tested. Because of the
amount of work that must be done to implement everything, some lab experiences will be
implemented by people under the direction of this author and his supervisor.

Curriculum of MIT's Computation Structures Course: From Bottom Up to
Top Down

MIT requires all of its Electrical Engineering and Computer Science undergraduates to
take course 6.0041, Computation Structures. Traditionally, the course covers the

1 MIT students always refer to the course by number, even in casual conversation. They likely never heard
of the name.

7

elements that make up the modem digital computer and how they are integrated. A
conventional semester, prior to Fall 1998, might cover, in this approximate order:

* Boolean logic; DeMorgan's law
" Schematic symbols for logic gates
e Static and dynamic discipline for logic representation as voltage levels
e Flip-flops, registered logic
e Finite State Machines
e Binary number system
" Arithmetic Logic Unit
e Simple microprocessor
e Assembly Language
e Exceptions
" Memory; Caches
e Pipelining
e Theory of Computation and Information

People introduce new technology by using what they have and know to create something
new and innovative. They explain their invention to others both in terms of the function
of the new device and the already existing components and concepts that make it up.
When an idea or product is sufficiently new, the best way to teach people about it is to
explain it in terms of its more familiar parts. Digital computers were created from
simpler digital circuits; in the early days of digital computing, the concept was easy to
teach because people first became familiar with concepts of digital circuits. Digital
circuits were created as special cases of analog amplifiers with a special nonlinear
transfer curve that proved useful in this application. Then, digital circuits became a
primitive concept, and they were used to design the digital computer. The digital
computer is now a primitive concept, popularly used, studied and programmed without
any understanding of its internal workings.

Soon, however, the new idea gains wide acceptance and use. People without the expert
knowledge of the inventor begin to use the innovation without having a full
understanding of its internal workings. The new invention soon becomes a primitive,
familiar idea, from which new ideas and their explanations may be based. Computers
soon became commonplace, and people started to talk about computers and their
applications (software, files, etc.) without an understanding of the inner workings of the
machines.

At this point, it no longer makes sense to explain the now established innovation in terms
of more basic elements, because many people are not familiar with them. Instead, a
reversed educational process is required to assist those people who are familiar with the
new idea, but not with the components that were originally involved with its formation.
These students need to be familiarized with the components of the innovation in terms of
the innovation itself.

8

Gill Pratt refers to this as the Top-Down approach to teaching Computation Structures. It
is possible to teach the high-level concepts before teaching the components, as long as
the lessons and design problems are carefully thought out.

An important goal of this thesis is to support the top-down approach for teaching
Computation Structures. A careful design of laboratory experiences allows for hands-on
design and construction using the tools and concepts, while being accessible to the
student at each point along the way of the top down curriculum.

By contrast, the traditional method is to review all the ideas leading up to the main goal
of the course, by establishing a structured curriculum with a series of prerequisites. A list
of concepts to be taught, in order, might appear as:
1. Basic (analog) circuit theory;
2. Digital circuit abstraction;
3. Logic gates;
4. Registered logic;
5. Finite state machines;
6. Datapaths;
7. The basic computer;
8. Bus architecture;

Unfortunately, this approach suffers from many disadvantages. With time, the
elementary concepts at the top of the list become less familiar to students on an informal
basis. Students find it hard to relate what they are learning to the ultimate goal of
understanding computation. Modern progress brings additional concepts, added to the
bottom of the list. This increases the total burden on the teaching facility and the
students, who begin to feel that there is too much to learn before achieving any sense of
satisfaction. It becomes difficult to introduce realistic-seeming lab design and
construction problems involving the primitive elements, because in modem devices, these
elements are integrated and not easily manipulated individually. Also, the state of the art
has advanced sufficiently, that only a few specialists in industry need to continue to have
a detailed design problem understanding of the low-level concepts. These specialists
design automated software tools that are used by other engineers working at higher
levels. Therefore, most engineers in training would make better use of their initial effort
to concentrate on the problems involved with the concepts at the end of the list.

9

Chapter 2:
History of Laboratory Component for Computation Structures

The Beginnings

When 6.004 was initially established in 1980, a laboratory program was introduced
whereby students would construct a simple 8-bit computer (called the MAYBE) using
Mimimal Scale Integration (MSI) parts. The schematics for the computer were
completely provided to each student, along with a schedule for parts of the machine to be
constructed and tested. Although there was valuable observation of the machine and
experience constructing it, students were not actively engaged in a design effort.
Furthermore, many students did not appreciate the details of the design of the machine,
and it became a large effort at wiring with little engineering educational value.

As the years advanced, the course sought to teach the inner workings of more
complicated 32-bit processors. An easily understood, typical 32-bit processor, called the
Beta, was studied in class. Because of the significant investment in the original MAYBE
labs, they were retained, and the staff wrote emulation software that could run on the
MAYBE to simulate a Beta using several MAYBE instructions per Beta instruction. This
further separated the lab component of the course from the rest of the course, because
students were no longer wiring up the machine they were studying, and because the
students were not directly engaged in the design of the Beta-on-MAYBE emulator.

By 1993, in addition to the academic and educational-value concerns, the lab hardware
was becoming damaged and unreliable. Teaching Assistants were spending much time
debugging the wiring and physical parts of student's MAYBE computers, further
reducing the benefit of the project to students. It was clear that new labs were needed for
the course.

The Saga of the "New" Labs

There have been three efforts to develop new labs, of which this thesis forms a part of the
third. All efforts tried to incorporate more modern logic design techniques. The first and
third efforts involved use of Field Programmable Gate Arrays, while the second involved
a specialized hardware description language called Curl.

The first effort required students to construct a Beta processor in a Xilinx FPGA using
Xilinx schematic capture tools. While well-intentioned, the software for this effort was
difficult to support and took unacceptably long times to compile. Students spent too
much time learning the nuances of the design software, and could not glean the high-level
ideas the labs were trying to teach. Also, the ultimate result of the student's effort was
not physically visible: the FPGA was programmed with the student's design, and the
FPGA then behaved just like the simulator did (except faster). It was not possible to
open up the FPGA and place scope or logic analyzer probes, nor could students observe
or rearrange separate physical entities as part of the construction process.

10

The second effort eliminated hardware labs and had students construct a Beta using a
specially-developed hardware description language. Some students enjoyed the project
and felt it helped them understand the structure of the Beta, but many found that the lack
of graphical or physical correspondence frustrated them and made it difficult to learn
from the experience.

The third (current) revision features a lab kit with an array of sixteen FGPAs available to
students in the shape of a 4x4 grid. Students may connect physical wires between the
FPGA modules. Instead of students programming the logic circuits in the FPGA
themselves, the staff provides a large variety of pre-compiled bit image files
specifying an array of parts of various complexity. Students then use the pre-
programmed parts to construct their project by connecting them with real wires.
Students choose what parts they would like to use, and where in the 4x4 grid they should
be placed, from a computerized list. Parts include:

e Basic arithmetic and logic elements: 32 bit adders, AND gates, OR gates, MUXes,
etc.

0 Clocked logic elements such as registers and counters.
0 Parts from which a 32-bit Beta processor may be constructed, such as register files,

larger and slower memories, student-configurable control ROMs, etc.
0 1/0 parts, such as D/A converters (currently implemented as a D/A converter chip

driving interface, with ribbon cable connecting to the chip located on a protoboard).
0 Other specialized parts from which specific lab projects (discussed later) may be

constructed.

To reduce the physical wiring effort, blocks have the ability to transmit and receive 32
bits of data over one physical student wire, using a 20 MHz serial data protocol. The
staff can decide, for any given part, which connections will offer or receive serialized
data.

Which New Lab is Best?

At this point, both the second and third revisions offer reasonable advantages to be used
for the class. They are two different ways to look at the same thing. Advocates of the
hardware description language point out that the simulator conveys concepts just as easily
as using physical wires, and offers students the added convenience of being able to see as
a text exactly what connections are being made, while working from any computer at any
location. The use of hardware description languages is much more common in modern
logic design than is the physical connection of discrete logic parts. Some people feel that
the Curl HDL is an appropriate simplification that can most effectively introduce students
to the concepts of HDLs in general. Proponents of the FPGA module lab kits feel that
using physical wires to connect parts gives students who are seeing the material for the
first time a more intimate, real understanding of the circuits being constructed. Students
take this experience with them when they move on to modern logic design using software
tools, and it may be the only experience they will have in which they are able to

11

physically test and observe the actual hardware in an open, exposed configuration. The
kit is the best way we have found to open up a realistic modem digital computation
circuit, usually buried in an integrated circuit, for direct testing and study. Also, some
people find that constructing something using separate physical entities conveys an
enhanced understanding of what is being constructed and how it works.

Computer Engineering Education at Other Universities

Xilinx Corporation currently maintains a University Program whereby FPGA products
are donated to educational efforts such as this one. Their website,
http://www.xilinx.com, includes a section on the University Program, with links to our
website and those of other participating Universities.

The Georgia Institute of Technology recently introduced a very interesting laboratory
experience, targeted to students who have mastered the basics of digital design. Students
work in teams to simultaneously design the hardware and software for a computing
system of their choice. After extensive simulation, the hardware design is downloaded
into a device known as a Hardware Emulator, essentially a grid of connected FPGAs.

Specialized software optimizes the location of parts from the design into specific FPGAs.
Subsequently, FPGA implementation software routes the internal circuits targeted for
individual FPGAs. Students observe the behavior of their system using hardware logic
analyzers; this is a very satisfying conclusion to the experience.[2]

The hardware emulator enabled students to observe and test their designs on actual
hardware without performing physical wiring. This process exposed the difference
between simulation and reality, and encouraged students to work more diligently on their
projects, knowing they would actually be implemented. Students observed problems on
the hardware that had not been caught by the simulation. Also, the way the projects were
organized into teams allowed each student to specialize on some aspect of the system,
while allowing all students on the team to become generally familiar with the big picture.
Communication skills and well-formed abstraction barriers were a must. The logistical
use of the hardware emulator was considered; an FPGA was used to route signals to the
logic analyzer, allowing students to quickly program their designs into the machine and
continue where they left off, and avoiding mechanical wear. [2] Although the projects
pursued on the Georgia Institute of Technology system are too advanced for 6.004
students, who are not expected to enter our course with prior digital design experience or
knowledge, the success of their program should be used to help guide us.

12

||||ll|||Illlilil1Efi"P' 11 hine111 II EMElllllillllli idiF'R-""- --irrh all llhlil UN . 4 i e---

Chapter 3:
The 6.004 Digital Piano

An important design goal for educational labs is that students experience variations on
the material, allowing them to see the same concept applied in a different situation. I
wanted there to be a lab for 6.004 that would require students to design a specialized
datapath with data flow control, other than the Beta processor architecture that is
extensively emphasized as a running example throughout the course. Additionally, I
wanted the project to be apparently useful or functional, and enjoyable to use. I also
wanted the students to study the basics of digital arithmetic processing. In short, the lab
needed to cover:
" Finite State Machines
e Datapaths
" Digital Arithmetic in Hardware
I came up with the project of constructing a digital piano.

The Digital Piano assignment is reproduced in Appendix A. The reader is urged to
review it in conjunction with the following discussion.

What is a Digital Piano?

The basic idea behind a digital piano is that data from a ROM representing a waveform is
output through a digital to analog converter. If the ROM is programmed correctly, its
address inputs are increased linearly and allowed to roll over, causing its data output to
represent the wave changing in time. The rate at which the address lines are increased
determines the frequency of the resultant wave.

frequency

Address Waveform D/A
generator ROM converter
(counter)

Figure 1: Simple Single-Note Generator

It is possible for more than one musical note to be sounded at once. Since multiple
sounds superpose in air (pressure levels add together), an adder can be used to sum
multiple simulated sounds:

13

Figure 2: Simple Multiple-Note Generator

To save hardware and allow for a more interesting control system, a single waveform
ROM can be used with an accumulator that stores values, and a multiplexer that selects
which address generator to use:

Figure 3: Multiple-Note Generator with Accumulator

14

In this approach, the Phase Counter in turn activates each of the frequency generators.
When the Phase Counter rolls over, after giving each generator a chance to add its
corresponding waveform point to the accumulated value, the final accumulation is passed
to the D/A converter, and the accumulator is cleared. The maximum value of the Phase
Counter and the speed of the clock driving the system should be determined based on the
speed of the individual components in the system, the desired frequency range of the final
audio output, and the desired maximum number of simultaneously playable tones. (The
number of simultaneously playable tones is not the same as the total number of possible
tones.)

This method requires several separate counters, each set to a separate frequency. To
further save hardware, the address generators can be integrated into a single unit that
outputs values proportional to the desired frequency:

Figure 4: Multiple-Note Generator with Accumulator and Waveform Indexing
Multiplier

There are several possible compact designs for the Frequency Generator. If this is to be
used as a digital piano, the keys of the piano may be considered inputs to the frequency
generator. If the Phase Counter counts up to at least the number of notes on the
keyboard, one approach is to use a ROM that stores the note values for each key on the
keyboard, and some gating circuitry that zeros out the frequency except when the key is
pressed:

15

From Piano
K e yboard
B u llu II

x AND gate
zeros oUt

C unplaye d
note s.

Z

-- _ F re q ue n c y

L__ R O M

Select in (from phase counter)

Figure 5: Simple Frequency Generator

This is not the only possible architecture for the frequency generator. For example, one
may desire to have a greater number of possible playable notes than the maximum value
of the phase counter. In this case, a system is needed to allocate phase counter values to
specific notes being played. Or, one may want a simple architecture for playing a
prerecorded musical sequence. This may involve a large ROM containing a time-
sequenced list of notes or frequencies.

Designing the 6.004 Digital Piano Assignment

These days, the availability of fast, cheap microprocessors means that one is unlikely to
actually construct a digital piano as described above. One would more likely get an off-
the-shelf microprocessor or microcontroller, with supporting circuitry, and write a
program to perform the desired task. However, the purpose of this project is not to build
a product that could be successfully marketed. The goal is for students to gain
experience, in an alternative context, with some of the hardware elements that make up a
digital computer. There are several choices to be made, including which of the above
designs should be utilized. Decisions should be made in terms of how they affect what
students encounter.

The fourth design above was chosen as the base design for implementing the 6.004
Digital Piano. It allows for multiple notes, it is compact, and it involves several different
kinds of components. The fourth design also implies a more complicated control strategy
than the others. It also includes the use of a fixed-point fractional multiplier, which

16

M usical

students must construct from primitive elements. The first design is too simple. The
second and third designs, while possibly useful in industry, involve too much repetition
and not enough variety. Additionally, the fourth design allows for a variation in the
system clock or rate of computation, as long as the master address generator counts at the
correct rate. If the computations are made twice as quickly, the resulting sound wave is
defined with twice as much resolution, but the frequencies don't change. This is good
because it allows for a design in which various elements take unequal amounts of time to
compute, more closely simulating real-world problems.

The next step was to constrain the design so that it could be completed in a reasonable
amout of time, and so that the student effort could be directed toward understanding the
concepts being covered in class. At the time this lab was introduced, in the Fall of 1998,
there were not enough lab kits for each student, requiring students to submit their designs
in advance, work in groups, and sign up for time-limited kit appointments.

It was decided early on that the lab would be intended to be solved in only one way. It is
more of a puzzle than a true design problem; students are provided with exact quantities
of parts with limited connections available between them. This approach is appropriate
because the Digital Piano is intended as an early introduction to the use of digital logic
parts. Students will later be given design problems involving less constraints and a free
supply of parts. Also, the logistics of scheduling 250 students to use 10 lab kits during
time-limited periods necessitated a standard technique for constructing the Digital Piano,
so that overworked, underpaid staff members could become competent more quickly, and
then assist students more expediently.

Designing a lab assignment like a puzzle requires the designer to first build a completed
Digital Piano, and then break it down into sections. The granularity of the sections
depends on the goals of the assignment and the restrictions imposed by the hardware lab
kits. To do this, I roughly broke the design down into eight subcomponents, using
varying levels of granularity, with the goal of each component fitting on one Lab Kit
module:

e Button Press Sensor outputs a value representing the state of the lab kit's buttons.
" Control ROM contains a preprogrammed FSM controlling the rest of the system.

The reasons for making it preprogrammed are outlined below.
" Note Interpreter contains circuitry from Figure 5 that determines what sets of

frequencies should be sounded when.
" Frequency Indexing Modules contain the components from which the multiplier

pictured in Figure 4 may be constructed. Unfortunately, because of lack of pins, it
had to be arbitrarily split into two modules.

e Waveform ROM contains a sine function lookup table.
* Superposition Processor contains the register and adder in Figure 4 needed to

allow multiple notes to be sounded at once.
" Digital to Analog Output accepts the final digital waveform and outputs it to

amplification circuitry and a loudspeaker.

17

Details of the connections and behavior of each of these modules are included in the
instructions to students, in Appendix A.

Prebuilt Note Interpreter
There are many ways to construct the circuit in Figure 5. If each count of the Phase
Counter is regarded as a separate "voice" --- each count represents the opportunity to add
one more sound to the accumulation - there are several strategies for allocating and
using each voice. Each voice can be assigned to a specific frequency, as shown in the
example in Figure 5, or each voice can be assigned frequencies using an algorithm.

Additionally, the association of musical frequencies to musical notes requires a minimal
amount of musical training, which the students are not expected to have.

Because of the ambiguity of this problem, I decided it was inappropriate for students to
deal with in this introductory assignment. I provided students with a device that outputs
frequency values in response to a phase count input.

Preprogrammed Control ROM
Originally, this was to be an assignment covering the design and application of Finite
State Machines. I increased the complexity of the Note Interpreter, to accomodate
multiple notes, in the hopes of having students experience the construction of a nontrivial
FSM (something that cannot be reduced to a simple counter or linear sequence of states).
I also wanted to necessitate the use of an advanced digital math module, the multiplier.
Unfortunately, the additional complexity of the datapath, along with the desire to keep a
single solution to the assignment, required the FSM to be given to the students.
Additionally, at the time the assignment was issued, there did not exist software to allow
a student to program data into an EPROM-like device. It was therefore impossible to
enable students to build an FSM, because there was no way for them to enter a state
transition table into the hardware. As a compromise, an FSM was provided, but students
were required to figure out how to connect its inputs and outputs to the status and control
ports of the rest of the logic.

Frequency Indexing Module (Multiplier)
The Frequency Indexing Module is a fancy name for a bit serial multiplier. It is so
named because it multiplies the frequency being played, and because the result of the
multiplication is an index into the sine wave lookup table.

The Frequency Indexing Module was partitioned down into the finest granularity, so that
students could have experience with very low level logic components, and experience a
significant design challenge.

Additionally, it contains its own concealed state machine, separate from the main state
machine, that students build out of elementary logic gates. This allows students to see
the same idea from several points of view. It receives a "start" bit, and several clock
cycles later, it outputs a "ready" signal. The state of the multiplier is stored within the
data being multiplied. There is something for everyone here: the ordinary students can

18

figure out how to build it, and the advanced ones can try to draw an equivalent state
transition table.

There are just enough parts to construct the multiplier in the Frequency Indexing Module.
The placement of the AND and OR gates is possibly the trickiest aspect of the
assignment, because there is only one way (known so far) that it will work.

The multiplier includes a number of fractional bits. The frequencies contain two
fractional bits, and the address counter contain five fractional bits. Therefore, the initial
multiplication result has 7 bits. This is explained in the lab handout, because it is the first
exposure students have to this concept.

The multiplier takes several clock cycles to complete its computation, whereas the rest of
the system could theoretically compute a new value every clock cycle. As a result, there
needs to be a system to manage the unequal computation times, and wait for a valid
multiplication result. This is done by defining the multiplier to be a black box that
accepts a "start" signal and returns a "ready" signal. The multiplication is carried out
using two shift registers to store the numbers to be multiplied, and an adder/accumulator
combination to keep a running total of partial multiplication results. The multiplication is
initiated by loading fresh values into the shift registers. When either of the shift registers
becomes zero, after all bits have been shifted out of them, the multiplication is considered
to be finished. The key to constructing the multiplier out of the available parts is for the
student to realize that:

1. Multiplication is performed by selectively adding shifted copies of one of the
multiplicands based on the contents of the other multiplicand.

2. The state of the multiplier can be determined by the contents of the shifters,
because, given enough cycles, they will eventually shift in all zeros. This
state is used to control the shifters, as well as to create the "ready" signal.

3. Different values may take different amounts of time to multiply.
4. To start the multiplier, you simply load fresh values.

The multiplier as currently designed is not fast enough to accommodate the level of
quality and resolution initially expected of the piano. The multiplier is limited by the rate
at which serialized data is currently transferred between modules on the lab kit. In order
to make the multiplier work, the student must connect the output of the left shifter to the
input of the accumulator. This is a critical bottleneck connection, because it is possible
for a number to need to pass through there on every multiplier clock cycle. In order to
speed up the multiplier, that connection must be done internally. Fortunately, both ends
of the required connection reside on frequency indexing module B, so it was possible to
make an internal 32-bit parallel connection between the two, instead of routing the
number through the wire the student is supposed to connect.

The next version of the multiplier will have to take advantage of the internal 32-bit
connection to run with a faster clock than the rest of the system. From the student's
perspective, this is a simple as reprogramming the affected module with a new, "fast"

19

frequency indexing module B. I recommend that students first experience the current
implementation's audio output using a speaker and oscilloscope. It is instructive to see
the expected frequencies being played, but with very jagged and distorted waveforms, so
that the problem is fully understood before trying to solve it. I consider this problem to
be an important feature of the project.

Implementing the Digital Piano

Xilinx Foundation Series tools were used to create fuse files that students can download
into their nerdkits. The Xilinx tools support an easy to use schematic capture interface
that allows digital circuits to be described as if they were built out of discrete logic parts.
Appendix B contains a complete printout of these source schematics; the reader is
encouraged to take a moment to study them.

Several logistical issues had to be addressed when using the Xilinx tools. The tools are
intended to be used to construct a hierarchical project to be burned into one FPGA; there
is no direct support for breaking a project down into parts burned into several separate
FPGAs. Care was needed when storing the parts of the project in libraries, so that a
single master copy commonly used parts could be altered when viewing any of the
individual FPGA designs, rather than having several copies of commonly used parts that
could become differentiated. Additionally, the implementation of the piano raises
questions of the students' user interface: Students should be able to probe the parts and
experiment with them individually, as well as having visual confirmation that a part was
actually programmed. Lastly, a minor flaw in the Fall 1998 edition of the nerdkits caused
one of the 1/0 module pins to be nonfunctional; this required a change in the Digital
Piano pinouts to compensate.

Organization of Implementation Files
Xilinx tools refer to each FPGA design as a separate project. Each project may contain
several schematic pages arranged in a hierarchical manner. The user can define macros
for commonly used parts, and insert them into higher levels of the design. However,
when designing a 6.004 lab, one must create several different projects with a similar
structure. I created a standard appearance for a macro with all the connections for
interfacing to the physical features of the module: the 1/0 pins, the clocks, and the LEDs,
shown in Figure 6.

20

H1

SYNC

SLOWCE

FCLK

CTL,-VAL4

STJ{20:11] CFSMO[10:I]

CONST[31 :0] CFSMLEDfl5:0]

CTL FSM

Figure 6: Standard Appearance for Module Contents Macro

I created a new project to store the macros for all modules in the Digital Piano. I then
created a separate project for each module that used the macro from the project with the
macros, connecting the macro pins to physical FPGA pins. This standardized the
locations for all the module designs. In the future, if a complete piano were to be
constructed on a single large FPGA, it would be as simple as wiring together the macros
representing the modules, in the same manner that a student would wire together the
piano using the current nerdkit.

Each module that is a member of the Digital Piano can be identified by means of a
flashing leftmost LED. The number of times the LED flashes before pausing and
repeating allows one to distinguish modules from each other. This technique helps
students to confirm that the FPGA was successfully programmed. Additionally, the other
LEDs in each module are used to represent important I/O pin states or internal states that
might be interesting or useful to the student. In the next edition of this assignment,
students should be encouraged to study the flow of information by single-stepping their
clock and examining the LEDs. This approach should be used when designing other
nerdkit labs.

If several modules are to be provided to students with very similar behaviors, the
circuitry to implement all possiblities may be constructed for a single FPGA design, with
only one of the structures activated when the system is running. This is an alternative to
using a separate project for each module. A signal sent from the nerdkit to the module
determines the module's identity and which structure should be used. This approach
saves disk or EPROM space to store compiled fuse files and time to download them to
the nerdkit. I did not use this approach because all the part of the digital piano have

21

vastly different behaviors, and I was not able to fit more than one of my designs onto a
single FPGA.

Expected Student Response

The 6.004 Digital Piano should be thought of more like a puzzle than a true design
exercise. There is only one known solution (with possibly one minor variation)
considering the limitations of the available parts and pin connections. Most students,
working in groups of three, were able to work through the problem. It is hoped that more
advanced projects will involve greater latitude and require more student creativity.

The solution to the 6.004 Digital Piano is left as an exercise for the reader.

Improvements

Several things can be improved for the next edition of the 6.004 Digital Piano, and for
other projects based on the 6.004 Rev. 3 nerdkit:

" Standardized look-and-feel: Each of the modules used in the piano has its own
individual connection pinout. Additionally, internal state for each module was
connected as much as possible to the LEDs on the modules, so that students can
easily observe the behavior of the hardware. However, the scheme by which these
connections and mappings were made was not systematic. Perhaps preprinted labels
or cardboard cutouts, depicting the pinouts of the various available modules, and
provided for students to use as they wish, would assist students in identifying which
module was programmed as which, and what connections and displays are available.

* Additional observation of the hardware: The lab should include a more detailed
section on debugging, testing and observation of the hardware. Students should
single-step their clock and explain the results. Students should connect an
oscilloscope to the analog output as well as serialized digital data.

" More flexibility in design: If each student had their own lab kit (a separate
problem), it might not be necessary for the staff to constrain the design as much as we
did. In addition to the specialized modules intended to build the piano, students could
be given a general library of parts, that can also be used for other projects during the
semester. The piano would be more of a design exercise than a puzzle.

" Build-and-test in stages: If enough lab kits were available, students could be
instructed to build a small part of the piano, then observe and debug it, instead of
trying to first design on paper and then wire up the entire project at once. Students
could wire and test simple circuits during the early design phase, to enable them to
better and more quickly understand the behavior of the parts available to them.

" More Testing Functionality: A number of modules could be made available to
students to assist in debugging, such as a device that outputs notes corresponding to a
pre-recorded song, or output the data they are receiving on the LEDs.

e Clarification of instructions: Most digital piano parts have registered outputs.
This information, as well as the LED arrangements and pinouts, should be
documented for students.

22

. NN...n. - ---- - -

Chapter 4:
Developing The New 6.004 Lab Curriculum

A sequence of assignments is needed for the Computation Structures class, that supports
the new top-down curriculum and that uses the new laboratory kits. A complete lab
assignment package includes:
e Instructions to the student, specifying the goals, procedures and requirements for

credit;
e A specification of the kinds of pre-programmed specifications that may be loaded

onto kit modules;
e The actual downloadable module files that are used to program the lab kits.

Several downloadable module specifications are used in more than one lab assignment;
some are unique to a particular lab assignment.

I have worked with Professor Gill Pratt to assemble a team of lab assignment developers,
each of which was charged with the development of one lab assignment. Additionally, I
developed one assignment myself. These two efforts constitute the deliverable results of
this thesis.

The 6.004 curriculum focuses on the architecture of the Beta microprocessor, and uses it
as an example to explain general concepts applicable to any current or future architecture.
Students are expected to have a thorough understanding of the Beta; thus, a central lab
assignment is for the student to construct one out of basic elements. However, not all lab
assignments need to use the Beta example; in fact, it is too complicated for such subjects
as pipelining. Therefore, while the academic curriculum will primarily use the Beta, the
lab curriculum may use other architectures or specialized architectures. This adds variety
to the assignments, keeps them simple and focused on specific concepts, demonstrates the
use of a concept from different points of view, and makes them more fun.

In the future, additional lab assignment developers may need to be hired, in addition to a
lab kit developer. Lab assignment developers work with a lab kit development
environment using the Xilinx Foundation Series development tools. Lab kit developers
improve the kit itself by constructing special-purpose modules that provide memory,
digital to analog conversion capability, etc.

Here is the suggested lab assignment curriculum, as originally discussed with the lab
assignment developers, for MIT's 6.004:

1. Use a Beta in simulation. Students use Betasim, a Beta simulator developed by
Mike Wessler, to learn about the Beta instruction set, assembly programming, and
register transfer architecture. Students build a program that produces fractal images.

2. Fibanacci. Students wire up a fibanacci number generator using a mux, a couple of
registers, an adder, and other basic parts. This is an introduction to the mechanics of
using the hardware lab kits.

23

3. Use a Beta in hardware. Students wire up a pre-built Beta to memory units. This is
an introduction to the use of the memory unit module, and to running programs on a
Beta on the lab kit. This lab was designed by Andrew Huang, using an FPGA-based
Beta from previous 6.004 labs. Students use a pre-built line drawing output devices
(see the Vector Graphics Lab, below) to observe their fractal code from the simulator
executing on the hardware lab kit.

4. Design the Beta control ROM. Students wire a Beta lacking a control ROM, to a
ROM they program themselves. This lab was designed by Omprakash Gnawali.

5. Construct a Beta from basic elements. Students fully construct a Beta out of
individual elements. This lab will not be used until each student can be lent his or her
own lab kit.

6. Ant Controller FSM Lab. Students design the controller for an ant to solve a maze.
The ant has antenna for sensors, and it can choose the direction it wants to walk.

7. The piano lab. This lab introduces students to special-purpose datapaths and control
FSMs, and to analog I/O. Students use special pre-built parts to construct an electric
piano.

8. Vector graphics lab. Introduction to pipelining and data dependency. Students use
several special-purpose modules that can be combined to create a 3-d vector graphics
engine. A cube or other object is displayed on an oscilloscope in X-Y mode. The
object rotates about its axis in response to the user's command. Students must design
a specialized hardware processor using the available parts. Students must program
the processor so that it meets or exceeds minimum performance criteria; students
discover that they must be careful about the sequence of operations to achieve the
required performance.

9. CMOS Gate; Transmission line lab. This lab was offered during a previous term of
6.004 (Spring 1997). Students construct and observe an inverter using individual
MOSFETs. Students observe a periodic signal traveling along a coaxial cable with
taps at regular intervals.

10. Cache Controller Lab. Students design a cache controller of their choice using
basic parts, such as big slow memories, small fast memories, and an FSM.

11. Virtual memory lab. Students design or observe a virtual memory controller. They
differentiate between the features of the VM controller and the Cache controller built
previously. Finally, students integrate the two controllers and explore how cacheing
and virtual memory interact.

These labs conform to the design goals originally set forth. Each one is progressively
more challenging and less constrained than the previous.

What is a good lab assignment?

We discussed various design goals in general:

e Proceeds week-by-week thru the course, following the lecture notes and expanding
upon the concepts.

" Demonstrates, isolates, differentiates, and creatively applies concepts.
" Incrementally constructs large systems from their easily-understood parts.

24

* If lab kits are not available per student, and there is no way to preserve wiring,
components simulating the results of a previous assignment may be used to allow
continuity from week to week. Alternatively, such blocks may be provided first,
for high-level understanding, after which the students construct the lower-level
parts.

" Provides more than one way of seeing the same thing.
" Involves more than just wiring up a device presented in the lecture notes - there

should be a small challenge or design problem involved:
" The students may be given parts slightly different from the ones in the lecture

notes.
* Students might be asked to figure out how to connect new parts together to form a

device with a desired behavior.
" No grunge - wiring is reduced by integrating parts with which the student need not be

concerned.
e The assignment is fun - wherever possible, concepts are applied to new or cool tasks.
e The documentation clearly explains the goals, procedures, results, and requirements

for credit.
e The assignment works as expected, such that the student should be expected to know

or figure out problems without doubting the integrity of what she has been asked to
assume.

" Lab assistants have a clear, easy procedure for check-off. Diagnostics are built into
the lab if necessary. If the assignment was sufficiently challenging, the check-off
procedure should not have to involve a zillion questions or take a lot of time.

e There is a lab-wide standard for the identification of programmed modules (IE the
Morse Flasher on LED 15) so students and TAs can visually confirm the kit
configuration.

e The lab sequence progresses to less constrained and more design-oriented labs later in
the semester.

Intended 6.004 Lab Assignments for Spring 1999

To design a lab curriculum, we first list the major concepts of the course. We then list
the lab assignments available and to be developed (based on cool toys people like to build
and play with, applied to illustrate and feature blocks of concepts). Lastly, we identify
what concepts each of the assignments is intended to cover.

The Curriculum
e Beta Programming: C to Beta assembly.
" Beta instruction set architecture
* Beta hardware architecture
" Digital Building Blocks
e The Digital Abstraction
" CMOS gates
* Construction of physical memory from gates and capacitors.
e Transmission line effects.

25

" Asynchronous inputs; metastability.
" Large memories: caching
e Large memories: virtual memory system with disk drive.
" Large memories: the TLB and integrating a set-associative cache with a virtual

memory system.
. High-level performance issues.
e Quantum computers; DNA computers; other nonconventional computers.

Lastly, the most important new assignments were prioritized and assigned to developers.
There were several concerned raised when developers started working:

e Build a Beta computer from its parts. Omprakash Gnawali is developing this
assignment. Issues include the sense of satisfaction the student should have from
using the parts to build the Beta. But what is the challenge involved with the lab,
other than reading the lecture slide and wiring? Also, it is grungy. We may alter the
Beta for this lab such that parts are missing, and the student needs to figure out a
macro definition to make up for the missing parts (MUXes, constant inputs,
memories, etc). We may also investigate the deployment of a wiring block device
that each student can take home, so they may construct their Beta over a couple of
weeks while preserving the wiring between sessions. This will be a one or two week
lab. Some of the concerns about too much wiring and not enough thinking are
mitigated by the fact that this lab will be offered early in the semester. Students need
practice building things by the book... they will be challenged to design their own
thing later on.

e Vector Graphics Engine. Andreas Sundquist plans to teach students about ALUs
and pipelining by having them build a special-purpose mathematical processor that
takes 2-d projections of 3-d coordinates as viewed from changing angles. The results
are displayed through a pair of digital to analog converters on a standard Oscilloscope
screen in X-Y mode. The challenge will be to design the mathematical processing
devices using available parts. Students will learn about floating-point operations.
The speed of computation will require simple pipelining of the circuit. Students will
have to think about the time it takes for computations from each element to be
completed. If there are elements that take a variable amout of time to finish, stalling
of the pipeline will become an issue. Expected to be a two-week assignment, one
week for design and one for implementation. Parts for the project include basic
computation elements that must be combined, as well as support circuitry that draws
lines between points by moving the scope beam smoothly over time. Students will
need to implement a basic FSM controller for this lab.

" Cacheing and Virtual Memory. This is a three-week unit being developed by Jason
Woolever with possible future assistance from Alexander Yip. A major goal of this
assignment is to clear up the confusion among Cacheing and Virtual memory and
show how these two strategies can be integrated into one large system. Jason will
provide students with a "fast" memory and an intentionally "slow" memory, along
with basic computational blocks (comparitors, counters, etc.) Students will need to
design a cache controller of their choice from the computational elements, and
connect it to the memories provided. A separate instruction memory, a Beta Lite

26

processor, and a "performance evaluation" device that snoops the memory bus rounds
out the system. The second week, students use a prepared memory module, forget
about cacheing, and construct a virtual memory system. They must build the virtual-
to-physical conversion system. The third week, the students use a prepared cache
device and prepared virtual memory device; these are combined into a final system
that illustrates how they work together. Students have to keep track of which bits of
the address go where. Students get to evaluate how well their system works, using a
pre-made Beta program that does something useful...

The following assignments were considered, but not developed:

" Serial data communication line between two kits. Teaches asynchronous inputs,
transmission line effects, maximum frequencies, clock skew issues, and 1/0 data
communication protocols. The students might have to discover that they must "center
the reception" by making the receiver delay a half clock period before sampling the
data, otherwise the data changes on the clock and metastability issues may arise.
(There should be an intentional 'bug' in the lab such that the output is random if you
sample while the data is changing). A fun toy for possibly sending audio data in
digital form, if a single pre-made audio-in and audio-out block is available.

e The Beta Multiprocessor. Students are challenged to design a memory system for
sharing data amongst Beta Lite processors. Bus snooping, etc. The advanced
students can construct a cache on top of the shared memory.

Results of Lab Development Effort: What do we do now?

There were a number of problems during Spring 1999. We did not have the resources to
maintain the hardware lab kits, which still had mechanical design problems and were
failing. Support for the hardware kits was reluctantly withdrawn mid-semester, and
students worked instead on various software simulations.

The lab developers offered the following comments: [3, 4]
e The lab kits have reliability issues that must be addressed before reintroducing them.
" Although it is fun for lab kit developers to use the Xilinx tools to create interesting

labs, it can be very constraining for the student to use these labs. Until a very large
library of programmable modules is made available generally, there are not too many
ways students can use their creativity to construct novel circuits with these kits.

" Once the concepts of wiring and debugging are out of the way, it would be helpful to
use software simulation for further concepts. It is difficult to write a lab teaching
very advanced concepts, such as pipelining or cacheing, using the Revision 3 lab kit
hardware, because the amount of wiring is still too much, and the amount of creativity
and flexibility afforded to the student is minimal.

" The lab kit can be thought of as a piece of hardware that simulates another piece of
hardware. The use of serialized signals is a representation (i.e. simulation) of a 32-
bit bus. Therefore, the developers thought that the same could be accomplished, more
directly, using good software simulation.

27

It is not possible to expect students to debug their implementations on the new lab kits,
because students have very little debugging tools at their disposal. Not only can't they
observe the behavior of their project, but they cannot observe or debug the inner
workings of the lab kit, which plays a role in the success of what is built on it. Questions
arise, such as:
e Are my signals being transmitted correctly through my wires?
e Is this module functioning, and was it actually programmed?
e Did the data for this RAM module make it from the computer to the kit?
e Is there a clocking or timing issue with regards to data arriving through the student-

attached wires? Did any wires fall out?

If the purpose of having a hardware kit is to promote a sense of practical reality and teach
the student debugging and problem solving skills, then the student needs tools such as
oscilloscopes, logic analyzers, specialized modules, and software to assist in observing
the behavior of the kit. Students need to understand how to use these tools to observe the
problem and reach a solution. In many cases, problems with the behavior of the kits were
caused by loose internal kit connectors and low-level software problems with the
underlying kit infrastructure. These are issues that the student cannot be expected to deal
with, because we haven't taught the student how the kit works internally, nor provided
any documentation or debugging tools. We need to obey the abstraction barrier we
have established for our students, and own up to our maintenance responsibilities
on our side of this barrier.

Feedback was also sought from previous students who took the class using the original
Maybe hardware labs, constructed with Minimum Scale Integration TTL parts. That
experience had the important side-effect of teaching debugging skills. Students had to
reason through what they built, what they expected, and what they observed, in
attempting to locate the cause of the problem. This skill helped one student immensely
when moving on to problems in industry[5]. It is very difficult to duplicate this
experience using only software simulations. Simulations are imperfect, and they tend to
hide many issues and work more optimally than real life does.

There is a discrepancy between the opinions of the current lab developers and the recent
graduates who experienced the original Maybe labs. The developers generally think that
a wired kit is no longer necessary. The graduates think that the original wired kit was
very helpful in certain limited ways.

A hybrid solution, involving some use of a wired nerdkit, some software simulation,
and a hardware emulator as in the Georgia Institute of Technology[2], may be
needed to teach modern concepts while also giving the student a sense of practical
reality. Some labs using Mimimum Scale Integration parts, a breadboard, real wire
and real debugging still have their place in an introductory curriculum. At each
stage in the curriculum, the most appropriate laboratory medium should be selected
to convey the concepts.

28

Chapter 5:
Physical Lab Environment

Students work more effectively in pleasant surroundings. Unfortunately, it is nontrivial
to configure a laboratory with 32 workstations and a lab kit connection for each.

For security reasons, the computers had been locked inside standard 19" equipment racks.
Fans used to cool the enclosed equipment generated excessive noise in the lab. The use
of GFCI circuit breakers caused excessive false alarms; workstations would frequently
turn off in the middle of being used because of a tripped breaker. Workstations and
connections were not identified, causing confusion when attempting to use a computer
with an attached lab kit.

I first implemented a numbering standard so that each workstation location could be
uniquely identified. I then hired students to identify the electrical power feeds from each
desk area, and separate power circuits feeding computers and monitors from those
feeding tabletop power strips intended for powering the lab kits. A detailed map of the
power distribution in the room was placed at each station and in the circuit panels. I then
had an electrician rearrange the circuit breakers as needed so that computers would not be
"protected" (in actuality, turned off excessively) by GFCI. Circuits protected by GFCI
were clearly labeled at their destination outlets.

All the wires associated with a particular workstation and table (power, monitor,
keyboard, mouse, serial cable, and parallel cable) were physically bundled, so they would
be identified and so that the desks could be more conveniently moved for maintenance
access. This allowed students to connect their nerdkits to the workstation they were
using, rather than a different one with a similar-looking cable.

Lastly, I obtained fan speed controllers and standard electrical boxes, and, with the help
of TAs, assembled these into units that were placed inside each cabinet. The sound level
was significantly reduced, while maintaining sufficient air flow.

If these issues are carefully considered when a new laboratory facility is planned, it will
not be necessary to redo the installation work later. If a formal procedure is established
for initiating and concluding the semester, then security concerns and storage issues can
be adequately met.

29

Chapter 6:
Remaining Work

A significant effort is still needed for the 6.004 labs to be acceptable over the long term:

Lab Assignments:
e Develop several more assignments, including an MSI-based lab.
" Integrate the labs into an environment with standard look-and-feel (i.e. with standard

LED lighting configurations)
" Implement a large suite of modules so that students have more flexibility using the

lab kits. Allocate organized disk space so that advanced students who design their
own modules can upload them into the general distribution, for other students to use
in the future.

" Provide the software and documentation needed to enable interested students to
design their own modules.

" Future Lab development: make a developer's platform that minimizes the amount of
work and learning a lab developer must do to create new modules and have access to
all the kit's capability. (Can also be used by advanced students.)

* Decide what assignments are more appropriate for software, and select an appropriate
platform for simulation.

Lab Kit Hardware:
" Implement other hardware application modules, such as D/A conversion and

memory; either as boards that screw into the kit or boards that connect to the 20-pin
connectors.

" Program the EPROM and microprocessor inside the lab kit to store the images for the
commonly used library of parts, so that the lab kit becomes self-contained and
independent of the computer, for basic operation. Program the kit to persistently
remember the location of modules.

" Improve the software interface, JTerm.
" Document the use, internal workings, construction and repair procedures for the Rev.

3 nerdkit.
* Identify and standardize multiple platforms that can host labs, including the Rev. 3

nerdkit, a breadboard with MSI parts, and software simulation, such as Mike
Wessler's Betasim and Pspice.

It is hoped that future students will benefit from and enjoy new introductory 6.004
labs. We hope to give them an appreciation for the foundations of modern digital
computing, allow them to construct devices that represent recent advances, and
encourage them to explore future innovations, while maintaining a sense of reality
and developing practical design and problem-solving skills.

30

Appendix A:
6.004 Digital Piano Instructions for Students

On the next pages, the original instructions provided to students in Fall 1998 are
reproduced. The paper describes the purpose and usage of the hardware lab kits,
specifies the modules available to students for the piano, and guides students in
completing the project. Although there were a limited number of lab kits available, it
was hoped that one kit per student would be made available in future terms.

31

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Fall 1998

Lab Assignment #2 Issued: Wednesday, 11/11/98
The 6.004 Digital Piano Design Due: Wednesday, 11/18/98

Implementation Due: Wednesday, 11/25/98
Early points start 3 weekdays prior to due dates. Late points deducted per weekday (holidays
excluded). Limited lab kit availability makes early completion to your advantage (see below).
Earliest day to get design checked off: Friday, 11/13/98.
Earliest day to use the lab kits: Wednesday, 11/18/98.

Labs this term are new and experimental; we are asking foryour patience and understanding. Be sure to ask a staff
member if there is any instruction or step that does not seem clear. It could easily have been our omission in the
handout. This assignment involves the use of new hardware lab kits, and we hopeyou enjoy it!

TABLE OF CONTENTS

T able o f C o n ten ts .. 1
O b jectiv es..2
P rerequisites..2
Steps for completion; Deadlines; Lab Partners.. 3
Introduction to the New Lab Kits.. 5

P arts o f th e kit..5
T he R econfigurable B locks.. 6
Conventions for Specifying Building Blocks ... 7
Multiple Components on one Module..8

Getting Started: The 6.004 Digital Piano ... 8
Playing and Hearing Musical Notes ... 8
D igital Piano Block D iagram ... 9
Available Building Blocks for the Digital Piano...11

N ote In terp reter..12
W aveform R O M ... 13
Frequency Indexing Counter .. 13
Superposition P rocessor .. 17
Digital to Analog converter; output stage.. 19
C o n trol F SM .. 19
T esting M odule ... 2 1

Putting it All Together: Writing a Design Proposal ... 22
Implementation on the 6.004 Lab Kit..22

Q u estio n s..2 3
C leaning U p Y our L ab K it .. 23
F u ture U p dates .. 24

W hat w e hope you learned ... 24

32

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

OBJECTIVES

In this lab project, you will use the new 6.004 lab kits to construct a digital piano. Don t panic!

Prefabricated subcircuits and detailed instructions will make this task accessible to you. @

You will gain additional experience designing datapaths. This project uses logic parts you
are familiar with to construct a special-purpose datapath.

You will use a simple Finite State Machine to control the system.

You will learn about the reuse of circuitry through time multiplexing.

> You will gain additional experience with binary representation of numbers, specifically with
sign extension, the representation of fractional values, and arithmetic such as multiplication.

> You will design a serial multiplier, optimized to reduce the amount of circuitry at the
expense of increased computation time.

> You will be introduced to the New 6.004 Lab Kits the greatest thing since the Maybe

> You will learn about interfacing digital projects to the outside world, by using circuitry that
receives input from buttons and produces audio output with a Digital to Analog converter.

> You will have fun constructing and using a cool toy!

This project is either very easy, or very hard. It depends on whether or not you plan your
time and your work. As explained below, you will be working in teams, and a clear wiring
diagram is required before physical implementation can take place. If you work
systematically, collaboratively, and confidently, and ask questions of your teammates and the
staff, you should have no problem.

PREREQUISITES

In order to understand and complete this assignment, you should understand basic circuits and
laboratory procedure. You should understand how to use wire, wire strippers, a protoboard, and
an oscilloscope. You should understand the pin numbering standard for DIP ICs. If you feel
unfamiliar with any of these things, a staff member will be happy to bring you up to speed; get help
now!

You need to understand material presented earlier in the course concerning logic
ALUs, binary representation, and timing.

elements, FSMs,

Page 2 of 24
33

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO FALL 1998

STEPS FOR COMPLETION; DEADLINES; LAB PARTNERS

You will construct this project on the brand-new reconfigurable 6.004 lab kits designed by

Andrew Bunnie Huang. We only have 20 of these lab kits available for use by the entire class, and

we are still fixing some of them. Therefore, we have developed the following policies:

* You should form a group of two or three people. Although all members of the team will help

each other and construct the final project together, one person can specialize in the datapath,
one in the FSM, and one in the serial multiplier design. As you design the part of the system you

specialize in, you should consult your teammates for help, and to ensure the three designs are

mutually compatible. There is an unavoidable dependency in that the datapath needs to be

designed or at least specified before the FSM can be completed. (Two-person teams can share

the work of one of the three components; no big deal.)

e If you have trouble forming a team, please write your contact information on the laboratory

blackboard, or talk to your T.A.

* The collaboration policy for this assignment is similar in principle to what is on the Web,
applied to teams: Teams should do their own work, consulting other teams as needed. Members

of teams should consult other teammates, but each member will present what s/he created.

* The team will need to present a completed wiring diagram to a staff member in lab before

being allowed to implement its design on a lab kit. Each of the team members can present their

part of the design, and the team as a whole will discuss it with the staff member.

* Each team will work together in one sitting using one lab kit to implement its design.

* Once the team has checked off its design, it may either proceed to a lab kit immediately (if one is

available) or make an appointment to use a lab kit later. It is to your advantage to check off

your design early to have more of a selection of appointment times.

* If you don t show for your appointment (or arrive late), another group will be allowed to use

the kit, and you will need to choose from remaining available appointments, or try your luck

coming to lab without one. We 11 allow until five after the hour in case you are coming from

another class, but that s about it. If one of your team members shows, he/she may begin work,
but your project needs to be finished ten minutes before the end of your team s appointment.

(explained below)

* We may store the lab kits in a secure location, in which case you will be told how to obtain one

when your design is checked off.

" Although you may change your appointment, you will need to select from currently remaining

ones, and irreversibly give up your old one.

* With all team members present and working together, and with a completed wiring diagram

available, wiring up the kit should be a breeze. @

Page 3 of 24
34

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

* The amount of time your team may work on the kit is regulated. Selecting an earlier day to
implement your design allocates you additional time to use the kit (at your one session), making
things more convenient. (see table below)

* If your project is not finished ten minutes before your kit time expires, and people are
waiting to use the kits, a staff member will ask the team for a demonstration of partial
functionality. You will then be required to disassemble your unfinished project. (The ten
minutes is the time for the staff member to check you off, and you to clean up.)

" For simplicity, the same grade (hopefully a good one) will usually be given to each member of
the team. However, the staff reserves the right to assign individual grades in cases of partial
functionality or if a team member requests this (with an explanation). We want to give you good
grades for good work, but we will consider difficult situations on a case-by-case basis.

* Depending on how things go, we may announce lab kit availability over the 6.004 Zephyr
instance, or through some other real-time electronic means. You can also call the lab at 3-7976
and hope that the person who answers is friendly enough to help you. @

* Despite these restrictions, we think you will finish your project quickly and have fun with the
results. We welcome comments about the kit allocation policy to 6004-head-la@mit.edu.

* This policy is subject to change via emails and web-based announcements.

The following table indicates for how many hours you may use the kit, based on the date and time
period you do so (whether or not you have an appointment). The last row of the table suggests the
approximate maximum number of appointments that could be booked that day. This does not
consider that some of the shorter appointments might not allow sufficient time for students to
complete their project, especially if they don t have thorough plans. You are encouraged to get your
design completed early so you may earn a longer appointment. Overnight appointments must be
checked off the next morning, when a staff member returns. Individual cases may vary depending
on the density of surrounding appointments and availability of staff.

Time Wed 11/18 Fri 11/20- M 11/23 T 11/24 W 11/25 R 11/26 & on
-Th 11/19 Sun 11/22

10AM- All Day 5 4 3 2 Staff not available during holiday. If
9PM you work on the lab, you should

ensure that you can get checked off.

9PM- Overnite Overnite Overnite Overnite Holiday
10AM

Max. 40 60 60-80 80-100 80-100
appts?

There are approximately 300 five-hour, all-day and overnight slots, and 250 students in the class (only
about 85-125 teams). You can get a long appointment.

Page 4 of 24

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

INTRODUCTION TO THE NEW LAB KITS

You should understand the hardware we you will be using to implementyour design. However, ifyou have trouble
understanding this section, reread it afteryou study the rest of the lab and examine a lab kit.

The new 6.004 lab kit, AKA Electric Lego, is a general platform for allowing students to build
digital systems out of components specified by the teaching staff. The kit features reconfigurable
blocks composed of Field Programmable Gate Arrays. Each block can assume arbitrary behavior,
and students can wire signals to connect the blocks together to form a larger system. The 6.004 staff
can reprogram the FPGAs as required for the desired lab assignment. For example, the staff might
choose to provide an ALU, some registers, and a control ROM as basic building blocks for one
assignment. Students would wire these parts together to form a Beta computer. The staff could later
reprogram the kits for the next assignment to provide students with more basic building blocks, so
students can wire up their own ALU out of its typical parts. The staff could lastly provide an entire
Beta computer pre-built on each of the modules, and students could wire the Betas together to form
a Symmetric Multiprocessor.

The kit interfaces to the Serial and Parallel ports of a P.C. Software allows the student to specify the
physical locations on the kit for the building blocks available for the current lab project. Additional
software allows the student to specify the contents of ROMs. Future software will help the student
analyze how she configured and wired her kit, and assist with troubleshooting.

PARTS OF THE KIT

The important parts of the kit are illustrated in the following picture: Note: Despite our best intentions, we
goofed and the kit cover will not close. Do not force the cover closed! Just leave the kit where it is, (or
follow our directions for obtaining and returning it) and leave the AC cord and serial line
connected (unless specifically directed otherwise).

5

13

7
oooooooooo 81808i8

Z1II0nWE
1. AC Power Cord

2. AC Power Switch

Page 5 of 24
36

FAIL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

3. Reset Button (disregard)

4. NMI Button (disregard for now)

5. Parallel port connector to computer (for high speed data transfer; not used for now)

6. Serial port connector to computer (for data transfer and kit configuration)

7. Buttons for student use; can control projects.

8. There are 15 general configurable LEGO blocks.

9. There is one block specially designed for use as a Control ROM. (not used in this lab)

10. The Control ROM block has many connectors for the address and data lines.

11. There is a small protoboard for constructing circuits.

12. Inter-kit connector (disregard for now)

13. Future location of fancy display screen.

THE RECONFIGURABLE BLOCKS

Students can wire connections between the reconfigurable blocks. Each block has 20 electrical
connections. Connections may only be made from one point to another; signals may not be
connected to multiple destinations, because of electrical constraints (transmission line effects). To
allow for multiple destinations, several output pins may reproduce the same signal, at our option.

The following is an enlarged illustration of a block:

16 individual LEDs

oooooooooo
20 input/output pins
oooooooooo

Page 6 of 24

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

Each lab assignment will list a choice of personalities that each module may assume. Each possibility
has a unique pinout associated with it. Your job is to assign each module a particular behavior,
construct a wiring diagram based on the pinouts of the modules, and wire the kit to demonstrate the
final result. You may also have to specify the contents of ROMs.

An underlying serial protocol makes some physical wires convey multiple bits of
information. Each bit is transferred over the wire one-at-at-time; the kit takes care of this for you
so you can pretend the wire is really a bundle of wires. The pinout for each possible configuration
specifies which pins are inputs, which are outputs, and which pins are serialized (contain several bits
of data).

Some basic signals, such as a clock, are already distributed to all modules for use in
registered logic (through the kit s substrate). If a register or counter is provided, the part is
assumed to be clocked by the system clock unless otherwise noted.

CONVENTIONS FOR SPECIFYING BUILDING BLOCKS

In this class, the staff will provide you many building blocks that you may choose to load into the
modules on your lab kit. We need a straightforward way to define what each one does and how to
use it. We will do this using a description of the component, a diagram (if necessary), and a pin
list showing how you can wire it up. If the circuit uses the LEDs on the module on which it is
running, that will be explained, too.

The pin list will refer to each pin location by number. If you look closely at the electrical connector
on the 6.004 Electric Lego module, there are two rows of pins. It looksjust like a Dual Inlinepar, so we
will use the same pin numbering convention. In case you have forgotten from 6.002, the numbering looks
like this:

120 19 18 17 16 15 14 13 12 11
>notch | (right edge)

1 2 3 4 5 6 7 8 9 10

-------------------------- I
Additionally, we will have the loose convention that the top pins, 11-20, are inputs, and the bottom
pins, 1-10, are outputs. This makes visual sense. There are times when we need to violate this rule for
one reason or another. So, the pin list will include the following information for each used pin:

e Pin number.(s)

* Pin description. What other kinds of pins might it be expected to connect to?

* Is it an input or an output?

* Is it a single bit or is it serialized, and to how many bits?

You may leave unused pins disconnected.

Page 7 of 24
38

M 0110 ANY

FAIL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

MULTIPLE COMPONENTS ON ONE MODULE

Sometimes we will want to provide many small parts for you to build from: a collection of registers,
MUXes, gates, etc. If we do this, we may choose to provide several independent subparts on one
module. Don t mix these up when referring to the pin list.

GETTING STARTED: THE 6.004 DIGITAL PIANO

For this project, you will be constructing a specialized datapath that functions as a musical
instrument. You will be constructing this device out of preconstructed modules. Some building
blocks have many things pre-made for you; other building blocks contain more elementary
components.

You complete this project in three steps:

* Design the system out of the given parts. This
and the Control FSM (which we ve provided
divides nicely into a team of two or three people,

includes the datapath, the multiplier circuit,
with unlabeled control signals). This project
each specializing in a part of the system.

* Present your design to a staff member for a design review.

* Implement your design using Andrew Bunnie Huang s Electric Lego Lab Kits, Mike
Wessler s Betasim Simulator, or both. This document includes instructions for
implementation on the lab kits. If we choose to accommodate implementation on Betasim, you
will be updated. Your final implementation should require about 25 wires in total.

Author s note: This project was designed with the consideration that students would need to share lab kits, and that
each student team would have a limited amount of time to build, demonstrate and use their creation. Therefore, the
project is more cookbook and less design and debug than what one might desire. It is hoped thatfuture revisions of
this assignment will accommodate greater variations in the finalproject, and allow students more freedom to desin their
own system andfigure more things out, while remaining within students reach.

PLAYING AND HEARING MUSICAL NOTES

Briefly, sound is composed of vibrations that occur at various frequencies. Music is composed of
sounds called notes. If you look at a piano, each of the keys on the piano corresponds to a specific
note, heard when you strike that key. Here is a picture of part of a piano, with the names of the
notes and the corresponding frequencies filled in:

Page 8 of 24
39

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

C# D# F# G# A#

C D E F G A B 4
CD 11

The C on the right has twice the

... pattern repeats

frequency of the C on the lE

Note N Frequency = 440 * 2"12

Name Hertz
C
C#
D
D#
E
F
F#
G
G#
A
A#
B
C

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

261.63
277.18
293.66
311.13
329.63
349.23
369.99
392.00
415.30
440.00
466.16
493.88
523.25

Each note is assigned a frequency using a formula based on how many notes away from A it is. In
the table, n represents this distance. Only the frequencies in the table, and other frequencies
computed similarly, may be sounded by a musical instrument (simplistically speaking).

If more than one key on the above pictured piano is pressed together, the notes superpose (the
corresponding parts of the waves add together). If we wish to create a digital piano, all we have to
do is make a device that can generate sounds of these specific frequencies, and add these sounds
together in case of several notes being played at once. The piano should also know how to output
sound waves that are realistic (one could start with a sine wave)

DIGITAL PIANO BLOCK DIAGRAM

Based on the above explanation, here are the design goals for the 6.004 Digital Piano:

Page 9 of 24
40

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

* It should have a set of buttons, each of which correspond to one of the frequencies listed in the

above table (since there are 8 buttons on your lab kit, we 1 use only the white piano keys:
C,D,E,F,G,A,B,C).

* When a user presses one or more of the buttons, a sine wave is produced and a sound heard
containing the appropriate frequencies.

* The user should be able to have the piano play automatically by referring to a stored song
represented as lists of notes.

In order to achieve these goals, the 6.004 Piano will need to have the following basic parts: (details
are provided later)

* A note interpreter receives button presses (or simulated button presses when the piano is
automatically playing) and produces a list of frequencies to be played. We have constructed this
part for you, using the buttons that are already on your lab kit, a ROM that knows the
frequencies of all the notes, and some other things. We have included another ROM with some
favorite songs, which you can hear using a special button on your lab kit.

* A waveform ROM contains a lookup table of the sine function. The piano simply needs to
cycle through reading this ROM at different rates of speed depending on which note is
to be played. There are 256 locations in the ROM, each of which represents the sine function
to eight bits of precision. The ROM contains one full period sine wave.

* A frequency indexing counter cycles through the waveform ROM addresses at different rates
of speed, depending on the frequencies provided by the note interpreter. You will play an
active role in designing this device from simpler elements. You will need to construct a
multiplying circuit for this part.

* A superposition processor takes the waveforms of all the notes currently being played, adds
them up, and scales them. We ve built this for you.

* A Digital to Analog converter takes the final waveform from the superposition processor,
scales it, and converts it into an analog voltage. From there, a power amplifier drives a speaker.
We have provided this part for you with some circuitry on the protoboard.

" Most importantly, a Control Finite State Machine orchestrates the entire process, searching for
notes that need to be played and shuttling the data through the system. We ve provided the FSM
for you, but you will need to figure out which signals go where.

* A Test and Debug Module provides test signals useful when constructing the system.

Here is a basic block diagram of the system: (part of your job is to augment this diagram with an
exact specification of what signals pass through each interconnection):

Page 10 of 24
41

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

AVAILABLE BUILDING BLOCKS FOR THE DIGITAL PIANO

Your job is to figure out how to use all these parts to construct the piano. Some parts are built up to
a high level; others require you to perform additional design work. The pinout list provided for
each part indicates what connections the part needs; the pin numbers are used when you wire up
your design on the actual lab kits. You might find it helpful to check off each signal on the pin lists
as you figure out all places where it should connect.

It might help to draw a picture of each part as you study it. For example, here is a picture of the
Note Interpreter:

the parts of the Note Interpreter module:

unt enable
INPUTS

OUTPUTS

Page 11 of 24
42

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

Often in the following descriptions, a part will refer to how a single note is processed, but our piano
can play more than one note at a time. The Control FSM will cycle through all the notes that want to
be played simultaneously, shuttling this data through the system in an orderly manner.

Note Interpreter

This part allows the piano to know what notes are to be played. Each of the notes that currently
simultaneously want to be sounded is assigned a three-bit identification index number. The Note
Interpreter receives one index number (between 0-7) as input, and outputs a corresponding
frequency for that note in Hertz. It also outputs an enable bit to indicate whether the note wants to
be played, as it is rare that all 8 notes want to be played at a time. The Note Interpreter might output
a high enable bit only for a few of the possible index numbers. Lastly, the Note Interpreter outputs a
volume control signal that we explain how to use.

The recommended way to poll the Note Interpreter is to have a counter cycle through all the index
numbers, while using the enable bit to decide whether to play the output frequency. Therefore, as a
separate part, we have provided on the same module a 3 bit counter with count enable and overflow
(zero) detection.

Pinout for the Note Interpreter:

Pin Number Signal Direction Signal Serialization Description

11 Input Serialized, 3 bits. Index number

1,2 Output Single Bit Note enabled? 1 =enabled

3,4,5 Output Serialized, 13 bits Frequency in Hertz. Low two bits
are fractional.

15 Input Single Bit Count Enable for independent
counter: 1 =count on next clock.

6,7 Output Serialized, 3 bits Count value for counter

8,9 Output Single Bit Count overflow = 1 when value = 0

10 Output Unspecified Volume Control; connect to
Superposition Processor below.

How to operate the Note Interpreter: All 8 lab kit buttons are a piano with the buttons playing, in
order, CD,EF,GA,B,C. However, if you hold down the two rightmost buttons (B and C) for a
couple of seconds, the piano stops playing. After you release the two buttons, the eight buttons
now correspond to prerecorded test patterns and songs you can play. The rightmost button brings
you back to piano mode.

Page 12 of 24
43

FAIL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

You will later receive more information on the specific test patterns available. Although some of
them will play a song, not all of them will play real notes; for example, one test button will play 440
Hz and 441 Hz together, so that you can hear a 1 Hertz beating effect.

The note interpreter will display the notes being played using the LEDs.

Waveform ROM

This ROM stores a digitized image of a sine wave. There are 256 = 28 locations in this ROM, and
each value is an 8 bit signed number. The 256 locations store one complete period of a sine wave.
This part is pretty much constructed for you, so here is the pinout. This ROM is provided on a
normal Electric LEGO module. The special control ROM module is not used for this lab:

Pin Number Signal Direction Signal Serialization Description

11 Input 8 bits Address

1,2,3 Output 8 bits Data

12 Input 3 bits Instrument Select (ignore; reserved
for use in future 6.004 terms)

The ROM will have a single LED lit to identify it, and other LEDs will flash during access.

Frequeng Indexing Counter

The purpose of this part is to create a counting number that increases at a rate of speed proportional
to the frequency of the note being played. In order to do this, the device will need to multiply the
value of the frequency by the output of a free-running counter. A free-running counter is a counter
that keeps counting at a regular rate; it is always clocked and count enabled, and it is never loaded or
reset. When it reaches its maximum value, it simply rolls over to zero.

The final unit you construct should have a frequency input, an index output, a start control input,
and a ready status output. You construct them from simpler elements we give you, contained in two
modules, A and B, as pictured below.

Frequency in Frequency of note to be played

Index out Index into the Waveform ROM

Start in Goes high when data is ready to be multiplied

Ready out Goes high when multiplier has finished and produced result.

Page 13 of 24
44

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

Constructing the Frequency Indexing Counter from given elements:

frequency in

Module A

start in

Module B

You create this using the module contents.

ind x out rea y out

Here are useful parameters. If you don t get all this information at first, don t worry. Do your best
to understand how these were derived, although we ve already done the work to make them self-
consistent and give you pre-made parts based on them:

* Approximate minimum output frequency: 128 Hertz

* Approximate maximum output frequency: 2047 Hertz

" Desired sampling rate of audio output: 16384=214 samples/second (well above Nyquist rate;
determined based on maximum output frequency)

* Number of samples in ROM: 256 samples/period (This was determined based on how many
samples we d need for the minimum output frequency, considering the desired sampling rate.
It s also a nice round number, digitally speaking. @)

* Format of note frequency: bbbbbbbbbbb.bb (13 bits, with 2 fractional bits; number of bits
based on maximum output frequency. For our purposes, this specification well exceeds the
ability of the ear to distinguish pitches, or the machine s output stage to reproduce them. @)

e Rate of free-running counter: 16384=214 counts/second (equal to output sample rate)

e Number of bits in free-running counter: 16. (based on total number of bits needed for the
ROM index, including fractional index bits that are thrown away; see multiplication example
below.) This means that the counter rolls over once every four seconds.

Page 14 of 24
45

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

* Fractional bits in free-running counter: 6 (calculated by comparing the rate at which the counter
counts with the number of samples per period in the ROM.
[Samples/second]/ [samples/period] = unitless ratio relating counting rate of counter to counting
rate required for ROM index.)

Therefore, here is a picture of the required multiplication. Each © represents a bit; each 0
represents an unused result bit: All numbers are unsigned.

@ © © @ @ © © © © @. @ @ @ © @ @ free-running counter)
X @ @ @ @ @ @ @ @ @ D @ @.@ @ (requen

... @ @ @@ .0 @ @ @ @ 0 @ @ (resultingindex into ROM)

utilize 8 low nonfractional bits |

In other words, when you multiply a number with 6 fractional bits by one with 2 fractional bits, you
get a number with 8 fractional bits. You then ignore the resulting fractional bits, because addresses
to ROMs must be integers, and you take the 8 low nonfractional bits, because the ROM only has 256
samples in it.

How do you multiply? One way is to do it the same way you multiply by hand. You start by
examining the low bit of one of the numbers (say the bottom number). If the bit is a 1, you add to
the subtotal the other (top) number. Then you access the next higher bit of the bottom number, and
shift the top number left. You keep shifting the numbers and adding a subtotal if the low bit of the
bottom number is 1, until you run out of 1 bits for either number. In this example, only the low bits
of the result of the multiplication are desired, so you can stop once the numbers to be multiplied get
shifted out of this range. You might want to draw a picture of thisprocess, or talk about it with a friend,
and we leave you to do so.

You will need to construct a multiplying machine to do this. The multiplying machine should
have two data inputs. It should also have a one-bit input called start that goes HI for one clock cycle
to indicate that the data is ready to be multiplied. It should have a one-bit output called ready to
indicate that the multiplication has completed and the result is correct. Ready should be LO during
the multiplication, and the multiplier should ignore further pulses of Start until the multiplication has
completed. We give you the following parts:

* Free-running counter, 16 bits of output, rolls over every 4 seconds.

* One two-input single-bit OR gate:

* One two-input single-bit AND gate.

* 16 bit left shift register with load enable, value output, and zero flag output (returns 1 when all
bits of contents of register are zero) Shifts in 0 bits on the right side. Shifts when not load
enabled --- load enable = 1 to load, 0 to shift.

Page 15 of 24
46

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

* 13 bit right shift register with load enable, low bit output (of the currently stored value), and zero
flag output (returns 1 when all bits of contents of register are zero) Shifts in 0 bits on the left
side. Shifts when not load enabled --- load enable = 1 to load, 0 to shift.

* 16 bit adder/accumulator unit, with load enable and clear enable. Receives 16 bits of input, but
outputs high 8 bits of the accumulator:

Adder/accumulator for the multiplication process

Because there are many parts to give you, we are spitting this part up over two physical modules.
The gates, the counter, and the right shifter will be on Counter Module A. The left shifter and the
accumulator will be on Counter Module B. Here are the pinouts:

Counter Module A: LEDs will flash based on the outputs; a more detailed spec. is forthcoming.

Pin Number Signal Direction Signal Serialization Description

1,2 Out 16 bits Counter Output

11 In Single bit AND input 1

12 In Single bit AND input 2

3,4,5 Out Single bit AND output

13 In Single bit OR input 1

Page 16 of 24
47

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

14 In Single bit OR input 2

6,7,8 Out Single bit OR output

15 In 13 bits Right shift Data in

16 In Single bit Right shift Load enable

9 Out Single bit Right shift Low Bit out

10 Out Single bit Right shift Zero flag (1 =all zeros)

Counter Module B: LEDs will flash based on the outputs; a more detailed spec. is forthcoming.

Pin Number Signal Direction Signal Serialization Description

11 In 16 bits Left shift Data in

12 In Single bit Left shift Load enable

1,2 Out 16 bits Left shift Data out

3,4 Out Single bit Left shift Zero flag (1 =all zeros)

14 In 16 bits Accumulator Data in

15 In Single bit Accumulator Load enable

16 In Single bit Accumulator Clear enable

5,6,7 Out 8 bits Accumulator Data out

Remember: you are not allowed to plug more than one wire into any hole on your kit. Each wire
connects one input and one output. We have provided everything you need. Think about the
behavior of the signals, and discuss this problem with your teammates. It might be a little tricky, but
you 11 get it. @

Superposition Processor

This part sums up the waveforms of all the notes that are currently being played, scales each note
based on the volume specified by the Note Interpreter, and scales the sum so as not to exceed the
range of the D/A converter.. Originally, we were going to make you build this part yourself, but we
decided to be nice and built it for you. So be sure you understand it so you can explain it to us:

Page 17 of 24
48

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

Pinout for the Superposition Processor:

Pin Number Signal Direction Signal Serialization Description

11 In 8 bits Data In

12 In Single Bit Load Enable

13 In Single Bit Clear Enable

14 In Not Specified Volume Control (from Note
Interpreter)

1,2,3 Out 8 bits Data Out

The LEDs on the Superposition Processor will flash to indicate activity (specification forthcoming)

The Superposition Processor sums up multiple waves, and depending on how many waves are being
summed, the peak (maximum point of the wave) could be at different levels. If the peak of the wave
exceeds the maximum range of the D/A converter chip, there would be a discontinuity in the final
signal it produces:

Page 18 of 24
49

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

DiAmax-range-

digital numbers

D/A min range

resultant audio

Discontinuities from exceeding D/A range.

Therefore, the superposition module has an automatic rangefinding circuit that scales the output
values according to the peak amplitude. A simple way to do this is to take the top 8 out of 11 bits,
although there are fancier ways.

Digital to Analog converter; output stage

These parts are pre-built. The D/A module contains a register with load enable, and a nonserialiZed
output. Notice a colored ribbon cable connecting one of the modules to the protostrip. This
transfers the value in the register to the D/A converter chip. You can leave all this wiring alone, and

just use two of the pins on the module: the D/A data, and the D/A load enable:

Pin Number Signal Direction Signal Serialization Description

20 Input 8 Bit serialized D/A data

19 Input Single bit Load Enable (on next clock)

3-18 Unspecified Single Bits To D/A chip via ribbon cable

LEDs on the output stage will flash to indicate the magnitude of the signal being processed.

Control FSM

Ah the moment we ve been waiting for. The control FSM loops through all the notes that
want to be played. For each note, it decides whether the note should be played; if so, it plays
the note. When finished, it outputs the resulting audio level. Don t be fooled this is not a
trivial FSM! However, it is not very big.

Page 19 of 24
50

FALL 1998

-- - --------------- ----- - ---- ----------- ----- ----

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

We ve used a Mealy implementation, because this allows you to choose different possible outputs for
each state, thus reducing the total number of states.

We are providing you with a pre-built FSM, pictured below. You just need to figure out
which signals go where. Match up the generic In{1,2,3} and Out{1,2,3,4} with real signals from
the datapath you built. You might start by making a list of all the signals that should be connected to
the FSM.

Remember the notation for a transition arc:

conditions to take this arc | outputs activated in the state behind the arc, before it is taken.

For example, in this arc, the FSM will output yl while in state S1, and
then transition to S2, all if x1 is active. (This excerpt does not specify what S2 will output.)

6.004 Digital Piano Control FSM

efault I out2 i

in2&in1 I out1 I
State 0: State 1:

Note not being played fWait for multiplication.

in2 I out4
n

\V in1 I outs efault I out2;out3

State 3: in1 I out1 State 2:Ste2isrqrdfoWaitthenState 2 is required for
Output to speaker. transfer answer timing reasons with

from multiplication. which you need not
concern yourself.

Here is the hardware implementation of the FSM:

Inputq Outputeo
__State Transition ROM__

Current State Next State

--- State Vector

Page 20 of 24
51

m 111 IIIIIBMIEMIW 11itO 1 11=1 11 M 01111 INrW m- "hl i i Illillilt '- - r / .

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

Pinout for the Control FSM; this part is provided on a normal Electric LEGO module. The
special control ROM module, in the lower left corner of the kit, is not used for this lab:

Pin Number Signal Direction Signal Serialization Description

11 In Single Bit Input 1

12 In Single Bit Input 2

13 In Single Bit Input 3

1,2 Out Single Bit Output 1

3,4 Out Single Bit Output 2

5,6 Out Single Bit Output 3

7,8 Out Single Bit Output 4

9 Out Serialized, 4 bits Current State (testing purposes only)

10 Out Serialized, 4 bits Next State (testing purposes only)

The LEDs of the
unexpected input.

FSM will indicate the current state. Other LEDs will flash in case of an

Testing Module

As you construct the system, you may wish to check how each part of your system is doing. There is
a component on your lab kit that provides signals you can use to test your multiplier circuit. Let us
know (6004-labs@ai.mit.edu) if you have any ideas for additional signals or devices that we should
provide to allow you to test other modules.

The testing module is in the upper-left corner of the kit, because it uses a special module with an
alphanumeric display instead of just a bar graph LED.

If you connect the multiplication signals to the multiplier, and view the multiplication result on the
alphanumeric LEDs, you see a test pattern scroll by in a marquee style.

Pinout for the Testing Module:

Pin Number Signal Direction Signal Serialization Description

11 In Serialized, any Displays input value on special
number of bits. alphanumeric LEDs.

12 In Single bit Ready signal in from multiplier

Page 21 of 24
52

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

1,2 Out Single bit Output start signal to multiplier

3,4 Out 16 bits 16 bit number to multiply

5,6 Out 13 bits 13 bit number to multiply

PUTTING IT ALL TOGETHER: WRITING A DESIGN PROPOSAL

Because of limited lab kit availability, and because we want to encourage you to plan your work
carefully, we require a simple written design proposal that will be reviewed in person with a staff
member. The proposal should include:

e Complete wiring diagram, with labeled wires. This can be done in schematic form or in a way
that corresponds to how the modules are physically laid out on the kit. Most importantly, it
must be clear and readable. Include pin numbers on both ends of every wire.

" Short paragraph explaining the high-level workings of the datapath.

* Wiring connections for FSM and brief explanation of what it is doing.

" Wiring diagram for the multiplier can be included in the master-wiring diagram, but its
functionality should be specifically explained in a short paragraph.

* Verbal presentation of all these materials to a staff member, by the individual team members
who created each part.

This proposal may be done by hand or machine. You may use any size paper or format you wish.
Your team will keep these materials. Do not waste time to make it unnecessarily fancy or elegant.

Staff members will only check you off if, to the best of their ability, they believe that your design will
work. Otherwise, you will be sent back to do revisions.

IMPLEMENTATION ON THE 6.004 LAB KIT

You must have an approved design proposal with circuit diagram and wiring information
before you will be allowed to implement your design on a lab kit.

Please come on time for your appointment to use the lab kit. Many students need to use them. With
all your teammembers at the appointment, implementation can proceed in parallel. The datapath and
multiplier can be wired up simultaneously; then the FSM can be connected to the rest of the system.
If the system does not work, a staff member can help you test it piece-by-piece. Good luck!

Page 22 of 24
53

FALL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

The power to the kit should be kept off while adding or changing wires. Before turning the
power on, please check that each wire goes from an input (upper row of pins) to an output
(lower row of pins). Specifically, outputs should not be connected to other outputs.

Once you think you have it working, try some of the preprogrammed songs (directions forthcoming).
You should also try the 440-441 beat test, in which two sounds of 440 and 441 Hertz are made
together. You should hear 1 Hertz beating (apparent swells in volume every second) that you learn
more about in 6.003.

QUESTIONS

As you work on this project, you may wish to ponder the following issues. These are open-ended
questions, and some of them are very hard. You are not required to provide complete answers.

* In general, an FSM will not work if an output is dependent on an input that will immediately
change if the output changes. In other words, your Mealy FSM must not have a combinational
cycle from an output, through the datapath, back to the input.

" Do a timing analysis for the system, considering the propagation delays for the serializers
(information forthcoming). What is the limiting factor in your piano performing? The number
of notes you play at a time? The frequencies of those notes? Both?

* If the machine starts running out of time to make its computations, how will it fail? Does the
design minimize the visible effects of this failure?

* Draw a state transition diagram for your serial multiplier. Yes, you can do it! © You can think
of its different modes of operation as states.

* View the serialized signals on an oscilloscope. There might be one somewhere in the lab on a
cart. @ View the FSM state.

* Consider alternatives to the design we presented. Give us feedback on what components we
should provide on the kit to give students more options.

CLEANING UP YOUR LAB KIT

After you demonstrate your project to the staff (and your friends), please remove all circuitry you
constructed. You should leave the wiring that supports the D/A functionality and the lab kit buttons
(the ribbon cables and the wiring on the protostrip).

Page 23 of 24
54

FAIL 1998

6.004 COMPUTATION STRUCTURES LAB #2: DIGITAL PIANO

FUTURE UPDATES

The following information will further assist you and is forthcoming:

* Possible use of Mike Wessler s Betasim software for this lab.
with getting your design and lab kit wiring plans ready)

(for now, just concern yourself

* How to play preprogrammed songs.

* Exactly how the LEDs appear under different circumstances.

* Updates on the availability of the lab kits.

* Additional precautions for using the lab kit.

* Timing information.

* A schematic diagram for the analog audio output and amplification portion of the circuit, for
your reference.

" Additional instructions on using the JTerm software to assign components to physical locations
on the kit.

* Instructions on single-stepping your machine and FSM.

* Additional things to try/test/observe when you get your kit working.

" How to fill out the feedback form for this lab, after you are finished.

Good Luck! @

WHAT WE HOPE YOU LEARNED

This project gave you experience with some of the components that make up a digital computation
system. We hope your experience with this example enlightens you to various datapath design
techniques.

We can design a special-purpose digital computation system with datapaths optimized for the one
thing it can do. Researchers are currently investigating the idea of reconfigurable computers. Just as your
lab kit can be reprogrammed by the staff to give you a different parts box for a new assignment, and
you can rewire the available parts to create your project, reconfigurable computers use FPGAs with
supporting compilers and programming circuitry. A specialized circuit is temporarily constructed to
compute the algorithm you specify when you execute your program.

Page 24 of 24
55

FALL 1998

Appendix B:
Digital Piano FPGA Module Schematics

The pre-designed FPGA modules are pictured here. Note that these schematics are a tool
by which the user of the Xilinx software specifies the design. They have nothing to do
with the physical internal layout of the circuits implemented in FPGA hardware - that is
specified by the compilation software.

Since there were several FPGAs with some similar properties, a template was first
created with a space to insert the specific logic specifications of each of the desired
modules. The template is first illustrated. These specifications were then created in one
large project, illustrated next. The remaining illustrations represent the designs of
specific modules.

56

I

2 3 4 5 6

H10

Test sheet for display and ediing of MaCrOS - N3

- N2

H9 H1l N1

GROUND[31:0] IN[15:0] OUT[15:0] NO
--- FOLKIN LEDOUT -

GROUNDBUS BUF16 MORSE
MORSE

H1 H3 H2

SYNC

SLOWCE

FCLK

CTLVAL4

STjl[20:1 1] CFSMO[10:1]

CONST[31:0] CFSMLED[15:0]

CTLFSM

H8

SYNC

SLOWCE

FCLK

CTLVAL4

ST 1[20:1 1] BUT_0[10:1]

CONST[31:0] BUTLED[15:0]

BUTINT

H7

SYNC

SLOWCE

FCLK

CTLVAL4

STj1[20:1 1] WAVO[10:1]

CONST[31:0] WAVLED[15:0]

WAVEFORMROM

SYNC

SLOW CE

FCLK

CTLVAL4

ST 1[20:11] FIAO[10:1]

CONST[31:0] FIALED[15:0]

FREQINDEXA

H4

SYNC

SLOWCE

FCLK

CTLVAL4

ST 1[20:11] FIB_0[10:1]

CONST[31:0] FIBLED[15:0]

FREQINDEXB

H6

SYNC

SLOWCE

FCLK

CTLVAL4

STjl[20:1 1] SUO[10:1]

CONST[31:0] SULED[15:0]

SUPERPOSITIONPROC

SYNC

SLOWCE

FCLK

CTL VAL4

ST-l[20:1 1] DAO[10:1] =
CONST[31:0] DALED[15:0] =

DIGITALTOANALOG

H5

SYNC

SLOW-CE

FCLK

CTL VAL4

ST-1[20:11] NI_0[10:1] m

CONST[31:0] NI_.LED[15:0] =

NOTESINTERPRETER

H17

SYNC

SLOWCE

FCLK

CTLVAL4

STJ[20:11] TEST1 O[10:1] -
CONST[31:0] TEST1_LED[15:0] -

PTEST1

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

7

H-I20- SIGNALIN

TIMEDELAY[15:0]

- FCLK

8

ZEROS

SIGNAL

ONES-

GLITCH

OUT -

OUT -

OUT -

OUT -

H19

- SYNC

- SLOW CE

- FCLK

- CTLVAL4

ST-l[20:11] TEST2_0(10:1]

C CONST[31:0] TEST2 LED[15:0]

H21

SYNC

SLOWCE

FCLK

CTL VAL4

* STjl[20:11] MULTESTO[10:1]

= CONST[31:0] MULTESTLED[15:0]

MULTEST

H25

SYNC

SLOW CE

FCLK

CTL VAL4

* ST_1[20:11] NOTHING_0[10:1]

= CONST[31:0] NOTHINGLED[15:0]

P-NOTHING

Project: P-MACROS

Sheet: P-MACRO4

Date: 11/28/98

1 2 3 4 5 6 7 8

1

00

H

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

Z ==

1
1 2 3 4 5 6 1 7 1 8

1 2 3 4 5 6 7 8

H1

vcc GND t[| N30

T GND 111 N2

GND till N

FCLK - FCLK IN LEDOUT - -- - BUTLIED15

H13

GRUN[3:0 BUT_O[1 0:2]

GROUNDBUS H3

STI1[18:11] OUT[15:01 BUTLED[1 4:8]

BUF16

Button Press Interpreter module (BUT
Pinout: 11 -18 = ribbon input; 1 = serialized output.

H6

IN[15:0] OUT[15:] - BUT LED[7:0]
BUF1 UTFOOA[7:0],GROUND[31:8] U4

FD8RE FCLK CLK SDOUT -

STIl[18:11] D[7:0} O[7:S -
SLOWCE CE SYNC

FCLK > C SYNC

H7

GROUND[31R:0] GROUND[31:0]

GROUNDBUS
- BUTLED[15:0]

BUT_0[10:1]

-4ST_[20:11]

-4 CONST[31:0]

- FCLK

.- || SYNC

*-iSLOWCE

_01

=GND

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: BUTINT

Date: 11/28/98
1 , 456

H

G

F

E

D

C

B

H

G

F

E

D

C

B

A A

1 1 2 1 3 4 1 5 6 7 8

2 1 3 4 5 6 7 8

2 3 4 5

Note Interpreter Module (NI)
Note interpretation circuitry

NI FOOR!7O1

H

G

- NILED[7:0

H2

VCC GND gi N3

GNDII N2

N1

No

FCLK FCLKIN LEDOUT - NI LEDI

-NLO3
-NLO4

-NI_06

NILED[14:11]NI-FOOC[2:0]

6 7
8

H1

GROND1O]ROUND[31:0]

GROUNDBUS

H12

GROUND[31:3 NIO[10: 10]

GROUNDBUS
5

SNLLED[15:0]

SNIO[10:1]

T 1[20:11]

GCONST[31:0]

SFCLK

~SYNC

LSLOWCE

CTLVAL4

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: NOTEINTERPRETER

Date: 11/28/98

1 2 3 4 5 6

-4

U5 buttons in

FCLK CLK DATA[31:Ot C t B :0

SYN'- SYNC NLFOOB1D1
STM SDIN N FOOB2D2N

NIFOOB[7:0] N1 FO 3 O
N1 FOOBEDS

U6 index count in NFO)6BF NI_02

FCLK--- CLK DATA[31:o]0.....

SYNCr SYNC NIFO11 VC
ST_114- SDIN NIFC OC[2:0] N OC2

NIFOOC[2:0]

E

D

C

0

H

G

D

C

B

A A

1 1 8

1 1 2 1 3 14 15 161

3 4 5 6

H

G

F

E

D

C

B

A

H12

GROUND[31:0] CFSM_0[10:9]

GROUNDBUS

H6
VC GND 1l-- N3

N2

NI

NO

FCLK - FCLK IN LED-OUT - CFSM-LEDi 5

Project: [None]

Macro: CTLFSM

Date: 11/28/98

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

1 2 3 4 5 6 7 8

CON

Control FSM (CFSM)
Should the outputs be protected by additional buffers? They're already there...

H9

lG O UN[10 G RO UN D[31:0]

GROUNDBUS
I CFSMLED[15:0]

- CFSMO[10:1]

------4ST -l[20:11]

-4 CONST[31:0]
FCLK

0--- SYNC Library Bug: cfsm.mem must be copied to p-cfsm
-JSLOWCE L52

S1 S0 13 1211 E1 EO S1 SO 04 03 02
w----CTLVAL4 Sl O 3 2 1 DO[7:0] CF f

ST_111 CFSMAO SApntrol ROM
BUF

ST l12 CFSMA1 B

BUF CF _D5

ST_113 CFSM T
BUF

H

G

F

E

D

C

B

A

6 78

CFSM-03 U CFSMLEDO

SBUF CFSMB86CFSM D CFS F 7 CFSMILED2

6~U CFSMO8jb

CFSMILED3

UF CSE4BUF

-- F UF CFMLEDS

GRSO3]SMED[1 2:8]

GROUNDBUS
eventually has to go to serializer?

81 1 2 6 7

1 1 2 3 1 4 5

41

H

SLOWCE-

ST-'''

H4

AND2

This 16 bit accumulator is being used as an 11 bit accumulator.

H17

GROUND[31:0] - SUO[10:2]

GROUNDBUS

_LED15

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: SUPERPOSITIONPF

Date: 11/28/98

1 2 3 4 5 6 7 8

H5

Superposition Processor (SU) GROUND[31:0]R GROUND[31:0]

U10GROUNDBUS
SULED[15:0]

FCL CLK DATA[31:0 SUFOOA[7:0] SUO[10:1]

SYN-- - SYNC SU-FOOA[7:0] - ST[20:11]
H6 -- 4 CONST[31:0]
IN[15:0)OUT[15:0] - SULED[4:0] -K FCLK

BUF16 o--< SYNC

0 (SLOWCE

*--- -- CTL-VAL4

SU_FOOA7,SUFOOA7,SUFOOA7,SUFOOA7,SUFOOA7,SUFOOA7,SUFOOA7,SUFOOA7,SUFOOA[7:0]

SUFOOB[1 0:3],GROUND[31:11],GROUND[2:0]
U11

ACC16 FCLK-- - _ CLK Sei'eSDOUT - SU-01

H3 GND iII Cl Q[15:0] DATA[31:0]
B[15:0] CO SYNC SYNC

GROUND[311:0] D(15:0] OFL UFOOB[15:0]

G

F

E

D

C

H

G

F

E

D

C

B

A

B

A
iOC

1 2 3 4 1 5 1 6 7 8

1 1 2 1 3 4 5 1 6 7 8

H

Digital to Analog interface (DA)
U19

H

G

F

E

D

C

B

A

H2

N12

GND 1[- -- NO

FCLK-- FCLKIN LED OUT - DALED15

H3

GROUND[31:0] D DA LED[14:8]

GROUNDBUS

H4

DA_0[10:1] mN{15 O DALED[7:0]

BUF16

H18

I 1 GROUND[31:0]- - DAO [2:1]

GROUNDBUS

Negate top bit!

DATOINV DA_010

Inverted top output bit

H7

GROUND[31:0] GROUND[31:0]

GROUNDBUS
b DALED[15:0]

E DAO[10:1]

--- ST l[20:1 1]

- CONST[31:0]

-KFCLK

-T SYNC

*-KJSLOWCE

-KI- CTL VAL4

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: DIGITAL TOANAL

Date: 11/28/98

1 2 3 4 5 6 7 8

AND2

G

F

E

D

C

B

A
OG

2 1 3 1 4 5 6 7 8

1 1 2 3 1 4 1 5 6 7 8

Morse Flasher

LED OUT

Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

6

-1

Bibliography

[1] Ward, Stephen A. and Robert H. Halstead, Jr. Computation Structures. Cambridge,
MA: MIT Press, 1990.

[2] Hamblen, James 0., et. al. "An Undergraduate Computer Engineering Rapid
Systems Prototyping Design Laboratory." IEEE Transactions on Education,
Volume 42, Number 1, 8-14, February 1999.

[3] Gnawali, Om Prakash. Personal interview, May, 1999.

[4] Sundquist, Andreas. Personal interview, May, 1999.

[5] Nadkarni, Vivek. Personal interview, May, 1999.

68

