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Abstract

The orthogonal polarization gyroscope (OPFOG) is a novel gyroscope that does not
require a phase bias in the fiber ring. By exploiting two orthogonal polarization states such
that they propagate along a single axis in a polarization maintaining (PM) optical fiber coil
a sensitive gyroscope can be developed. However, thermally induced birefringence
changes in the biasing element degrades the bias drift performance of the instrument. This
thesis explores a method to actively measure the thermal error and remove it numerically.
The temperature monitored OPFOG was constructed and characterized for bias drift and
angle random walk performance. The temperature monitored OPFOG shows improved
bias drift over the original instrument.
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Chapter 1 Introduction

1.1 Motivation

The first gyroscopes were mechanical spinning mass gyroscopes. Other

mechanical gyroscopes include the tuning fork gyroscope and resonator gyroscopes.

However, these systems involve moving parts, which shorten the lifetime of the

instrument. By moving to a fiber optic gyroscope (FOG), many advantages can be reaped:

longer reliability and lifetime, ability to withstand shocks and vibrations, large dynamic

range, and very fast startup times. By utilizing large fiber coils, extremely accurate rates

can be measured. Hence, the FOG can be used for tactical grade applications, as well as

aeroplane and ship navigation.

The FOG does not have the size advantages of mechanical gyroscopes. The

technology of micro-machining electronics can be directly transferred to mechanical

gyroscopes, while the fiber coil of the FOG imposes a limit upon the minimum size of the

instrument. However, new technology in micro-machining optical components makes it

possible to reduce the size of current FOGs if the majority of the components are bulk

optical devices.

1.2 Sagnac Effect

The fiber gyroscope is based upon the Sagnac effect, which is defined as a phase

shift in counter-propagating light waves around a rotating closed path. For a system at

rest, the two light waves return in phase traveling at a constant velocity, c. Under

rotation, the counter-rotating path is shorter than the co-rotating one, as shown in Figure

1. Therefore, one wave will take a shorter amount of time to arrive at the starting point.

By interfering the two waves, a phase time difference, A#, is measured which is

proportional to the rotation rate, D. The Sagnac phase difference becomes

A0 = -A 2 (1)AAbc
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where A is the wavelength of light in a vacuum, D is the coil diameter, and L is the fiber

length. Since the waves are traveling at the speed of light, the Sagnac effect is very small.

An enhancement of the effect is obtained by enlarging the area around which the waves

travel.

Optical
Path

CW
Light

CCW
Light

Figure 1: Sagnac effect with rotation rate U

Assuming a lossless 3dB beamsplitter coupling light into the fiber coil, the

clockwise and counter-clockwise beams would interfere to give an output intensity that is

a raised cosine function. Therefore, a phase bias of n/2 is required to operate at the point

of maximum slope, which is also the maximum sensitivity point.

1.3 Interferometric Fiber Optic Gyroscope

The widely adapted interferometric fiber optic gyroscope (IFOG) architecture,

shown in Figure 2, consists of a sensor coil with a phase bias modulator to maximize

sensitivity and allow for optical closed loop operation. Placing the phase modulator

asymmetrically within the fiber coil introduces a carrier into the signal via a non-reciprocal

effect. By adjusting the carrier amplitude a maximum sensitivity bias point is established.

An integrated optical circuit (IOC) phase modulator is typically the biasing mechanism of

a gyroscope. The phase modulation provided by the IOC often results in a costly system

with high frequency electronics to demodulate the output signal. The IOC performance

requirements limit the size of the gyroscope to four inches in diameter for high
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performance instruments. The length of the IOC also has a direct impact upon the

performance of the gyroscope, hence the size limitations of the system. Angle random

walk (ARW) performance of 10~5 deg/rt-hr and la bias drift of 10A deg/hr have been

achieved with the conventional IFOG.

IOC/ Phase Fiber Coil50/50 Modulator
, Coupleri

Modulated Reference

Output
Rotation Rate

Figure 2: Conventional IFOG Configuration
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Orthogonal Polarization Fiber Optic Gyroscope

In 1984, Kajioka [1,2] presented a novel IFOG design, shown in Figure 3, which

eliminates the modulation problems associated with the conventional IFOG. The major

advantage of the orthogonal polarization gyroscope (OPFOG) is that it does not require a

phase bias in the fiber ring. By eliminating the IOC, the size of the gyroscope can be

reduced to a diameter of 2". The OPFOG uses to its advantage two orthogonal

polarization states such that they propagate along a single axis in a polarization

maintaining (PM) optical fiber coil.

BSPBS PM Fiber Sensor

/Y

/4 Plate

O1 ta 'PBS

in E,

E. E.,

out E,

SE.

After

4T

A/4A4 Ey
Plate 

E.
-11 -

Figure 3: Conceptual Schematic of Kajioka's
Original OPFOG. The insets display the
polarization states at various locations along the
optical train. The solid line represents the system
under no rotation, while the dashed line
represents ring rotation.
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2.1 Principle of OPFOG Operation

The concept of the original OPFOG is shown above. This architecture is the basis

for all further improvements. The input light, linearly polarized at 450, is split from the

source via a non-polarizing beamsplitter (BS), which later acts as an output coupler, into a

polarizing beamsplitter (PBS). The PBS splits the input beam into two orthogonal waves,

which propagate in opposite directions around a PM sensor coil. The two orthogonal

modes travel along the same birefringence axis. This is accomplished by orienting the

slow axis, Er, of the fiber coil parallel to the PBS output polarization mode. After

traversing the fiber coil, the two modes are recombined at the PBS, but are not mixed at

this point, as in the conventional IFOG. A portion of the returning light is reflected by the

BS to a balanced detector.

Under no rotation, the output of the sensor coil is still linearly polarized.

However, when the coil is rotated the output becomes elliptically polarized due to the

added Sagnac phase, which can be seen in the insets of Figure 3. The Sagnac phase

information is contained in one polarization, while the orthogonal mode is a reference.

One polarization mode can be thought of as a local oscillator, while the orthogonal

polarization represents the signal. The rotation signal can be biased outside of the ring by

a quarter-wave plate because both modes are still accessible outside of the sensor coil.

The waveplate is oriented such that there is a n/2 relative phase shift between the modes.

The two waves are mixed at a detector beamsplitter at 45* and then undergo balanced

detection. The difference in the measured power is proportional to the gyroscope rotation

rate at its most sensitive operating point.

2.2 Improvements upon the OPFOG

The original OPFOG has an advantage over the conventional IFOG in that it does

not require a phase bias in the ring and it effectively cancels intensity noise by balanced

detection. However, if the retardation of the biasing waveplate changes due to source
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wavelength shifts or temperature induced birefringence changes first order errors will

occur in the rotation signal.

In 1994, Doerr [3,4] improved upon the above OPFOG by removing these false

rotations to first order. These false rotation signals were due mainly to temperature

variations in the environment. Temperature variations across elements induce a local

birefringence change in the material. The stability of the OPFOG is dependent upon two

critical components, the output port of the NPBS and the detector PBS. These elements

are especially sensitive because the light only traverses them in one direction. Elements

that are traversed twice are not as critical because each mode travels through the material

in both birefringence axes. Take for example the PM spatial filter shown in Figure 4, one

mode will traverse the fast axis while being launched into the fiber coil, then traverse the

slow axis after transmission through the coil. The temperature variations are much slower

than the propagation time though the system. The local birefringence variations induce a

phase difference between the orthogonal modes, which appears as a false rotation at the

gyroscope output. By replacing these elements with environmentally stable ones, Doerr

was able to design a system that eliminated first order false rotation rates.

In this system, shown in Figure 4, the input NPBS from Figure 3 is replaced by a

prism at Brewster's angle. The optical train is designed to have no material between the

output splitting point and the quarter-waveplate bias, which is accomplished by a special

prism. By eliminating the material beyond the output splitting point, local birefringence

variations can be avoided after the beam has acquired the Sagnac phase shift. The silica

prism acts like a special beamsplitter, transmitting all of the TM polarization, and both

reflecting and transmitting the TE polarization at less than 50%. By launching vertically

(TE) polarized light into the system, the gyroscope operates in a manner similar to the

original OPFOG. However, there is a slight reduction in the local oscillator signal because

losses are incurred through the reflection port of the prism.
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Si Prism @

A/4

PBS PM Fiber

Source E E, oE , PrA/4 E,
outut Plate

Figure 4: Conceptual Schematic of Doerr's
OPFOG Configuration

Another modification made by Doerr is to replace the detector PBS with a

birefringent wedge, the Wollaston prism as shown in the above figure. This wedge

eliminates excess phase delay due to local birefringence changes in the beamsplitter

because both polarization modes travel the same distance within the same material in the

prism. In a normal PBS, the two modes are split and travel in different glass wedges,

which will introduce a false rotation rate when there is a temperature variation. The

Wollaston prism has the same functionality as the PBS, but the two output modes are only

separated spatially by 15*, instead of by 90*, and temperature sensitivity is not introduced.

By using this architecture, first order false rotation rates have been eliminated.

However, a change in source wavelength or a temperature change will still cause an error

in the phase bias of the quarter-wave plate. This, in turn, affects the performance of the
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gyroscope. By monitoring the phase bias of the quarter waveplate as it varies with the

environment, the false rotation rates associated with it can be eliminated numerically.

2.3 Temperature Monitored X/4 Waveplate OPFOG

One error source, mentioned above, is temperature-induced fluctuations affecting

the waveplate bias retardation. By performing a Jones matrix analysis on the Doerr

OPFOG, the dependence of the output rotation signal upon the biasing error was found to

be

Pou, = cos(e,,) sin(2#) (2)

where P. is the output of the balanced detector circuit, e, is the retardation error of the

quarter waveplate, and # is the actual rotation rate.

For example, consider a 5 *C temperature change (lab environment) of a zero-

order V4 plate made of quartz. Such a plate was used to provide maximum sensitivity

bias in the OPFOG experiment. According to the manufacturer, the retardation error due

to temperature is 0.0001 W*C. This retardation error of 3.1E-3 rad corresponds to an

output error of 4.9 ppm in the instrument scale factor.

The retardation waveplate is also wavelength dependent. If the optical source

wavelength changes then the phase bias provided by the waveplate introduces a higher-

order scale factor error. For example, if wavelength changes 1 ppm in the optical source,

this will result in less then 1 ppm scale factor change.

One way to reduce this error further is to monitor the phase bias retardation of the

quarter waveplate and actively remove the error associated with it. Only elements that are

not traversed by both polarization modes need to be included. Furthermore, both the

signal and monitor paths should be as similar as possible. Ideally these paths should use

the same components. The proposed system is shown in Figure 5. In this configuration,

part of the source light has been diverted to monitor the quarter waveplate retardation. As

mentioned above, the sensing path is neglected and the same components are used for

both the signal and monitor paths.
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Chapter 3 Experiments

3.1 Quarter Waveplate Phase Drift Measurement

A benchtop experiment was devised to determine whether the retardation error

due to temperature could be reliably measured. A system similar to the proposed OPFOG

monitor was constructed as illustrated in Figure 6. A small thermal oven enclosed a zero-

order quartz quarter waveplate so that temperature could be accurately controlled and

recorded. The temperature controller is capable of controlling the oven to within 0.20 C.

A thermistor was placed upon the waveplate to monitor its temperature fluctuations. The

other components, which do not affect the experiment, were exposed to the room

temperature of the lab, which varies approximately 5* C. These components were not

temperature controlled. An opaque box enclosed the entire testbed to eliminate noise

from the ambient light of the lab.

Thermal Oven

Collimating V/4 Plate Wollaston Balanced
Lens Polarizer Prism Detector

Source

Thermistor Temperature+
Temperature Phase Error

ControllerP

Figure 6: Quarter Waveplate Phase Drift with
Temperature Experiment

In the experiment, a polarizer is used to linearly polarize the source output. The

linearly polarized light is launched into the quarter waveplate such that the output is

circularly polarized. The Wollaston prism separates the two orthogonal polarizations,

which are detected by the detectors.
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The expected output of the experimental setup was derived using Jones Matrixes.

The Jones Matrix representation of a quarter waveplate is

(cos(-6) sin(-G) i() ' cos0 sinG

- -sin(-6) cos(-6) 0 1 -sinG cos (3)

where 0 is the quarter waveplate rotation angle, and E is the retardation error due to

temperature. For this experiment, the angle 0 was set at 45*. Ideally the output will be

circularly polarized if there is no retardation error. Since the light is perfectly circular, the

amplitudes of the two polarization modes are the same. Therefore, the output of the

detector should be completely balanced by subtracting the two detectors, Dl and D2,

which monitor the polarization states.

If there is a perturbation e in the retardation of the waveplate, then the output

polarization, J,, will be elliptical.

1 1+ j e j
Jowt= (4)

2-1+j e'

The change in the output of the detector will be proportional to the retardation error in the

waveplate. The intensity measured by the first detector is

D1=1(1+jeJ e (l+je e) (5)
4

while the intensity of the orthogonal polarization is given by

D2=!(-l+ j e)(-l+ j e je). (6)
4

Subtracting the two signals given by Equations 5 and 6 results in a differential power, AP,

AP = Dl-D2 (7)

which is directly related to the retardation error due to temperature

AP = -sin(C) (8)

16



By using the small angle approximation for a sine curve, the output of the detector is

proportional to the retardation error of the waveplate.

The output phase error of the quarter waveplate and the resistance of the

thermistor were monitored to correlate phase retardation and temperature. Data was

collected at seven different temperatures, six of which are shown in Figure 7. The power

incident upon the two detectors was measured, taking the ratio of the sum and difference

to obtain the detector output. This eliminates any errors that may occur due to source

intensity fluctuations, as will be discussed later in Section 3.3. The detector output is

proportional to the phase error in radians. Using the experiment outlined above, the data

obtained of retardation error due to temperature is plotted in Figure 7.

The data was used to calculate a temperature sensitivity coefficient by taking the

ratio of the mean phase error and mean temperature over an hour. This was performed

taking every combination of pairs of temperatures, T and T, resulting in 21 calculated

coefficients, a.

V.-V.
a= V -(9)

T - Tj

where V and V are the mean balanced detector retardation error over an hour for

temperatures T and T, respectively.

Using the raw data relating temperature to quarter waveplate retardation error, a

temperature sensitivity coefficient was extrapolated. The calculated temperature

coefficients are plotted in Figure 8 for different temperature steps. The trend in the

groupings of the calculated temperature coefficients comes from a slightly non-linear

retardation error from the waveplate. As the waveplate temperature increases, there is a

slightly smaller relative retardation error than at lower temperatures. This causes the

groupings shown in Figure 8 when the pairs of mean data points are taken. Temperature

pairs that are father apart will yield a slightly lower coefficient than temperature pairs that

differ by only a few degrees. It can be seen from Figure 8 that the mean measured

temperature coefficient is 6.47E-4 rad/*C. This value is very close to the manufacturer-

estimated coefficient of 6.28E-4 rad/*C [5].
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This experiment is a proof that the retardation error of the quarter waveplate can

be actively measured. By inserting this module into the OPFOG, the rotation rate error

due to temperature fluctuation of the OPFOG biasing element can be monitored and

eliminated numerically.
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Figure 7: Waveplate Retardation Error vs.
Temperature.
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Figure 9: Photograph of Quarter Waveplate
Phase Drift Experiment; Waveplate at 45* inside
Thermal Oven
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3.2 PBS Splitting Ratio Measurement

The splitting ratio of the beamplitter is important because it causes a bias error due

to the Kerr Effect. This calculation is shown in Appendix A. A benchtop experiment was

devised to determine the dependence of the splitting ratio upon temperature. It is very

similar to the quarter waveplate experiment discussed in Section 3.1. The same test

conditions were used in the experiment as in previous experiment, except the thermal oven

enclosed the beamsplitting module. A schematic of the system is depicted in Figure 10.

Thermal Oven

Collimating PBS Balanced

Lens Polarizer Detector

Source

Splitting
Ratio Error

Thermistor
Temperature
Controller

Figure 10: PBS Splitting Ratio with
Temperature Experiment

In the experiment, a polarizer is used to create linearly polarized light at 450*. The

linearly polarized light is launched into the polarizing beamsplitter's fiber such that there is

an equal amount of light coming out of the two output ports. The two detectors measure

the power from the output ports.

The splitting error of the beamsplitter and the resistance of the thermistor were

monitored to correlate splitting error and temperature. The data was collected at five

different temperatures. The power incident upon the two detectors was measured, taking

the ratio of the sum and difference to obtain the detector output. This eliminates any

errors that may occur due to source intensity fluctuations, as will be discussed in the next

21



section. The detector output is proportional to the percent split error. Using the

experiment outlined above, the data is plotted in Figure 11.

Using the raw data relating temperature to splitting error, a temperature sensitivity

coefficient was extrapolated, shown in Figure 12. Ideally the temperature dependence is

zero. However, the temperature coefficient was found to be 0.082 % split/degC. Here,

the percent split is the change in one arm of the splitting ratio. For example, is the device

moves from a 50/50 split to a 49/51 split, the change in the percent split is 1%.

The gyroscope bias error due to the Kerr effect [6,7], DKerr, is dependent upon the

splitting ratio, k,, of the beamsplitter

2 c n6 p
QKerr .(1-2k ). 0 (10)

-D A..,,rN ,

where i/nS is the Kerr coefficient of silica fiber, D is the coil diameter, Ac,, is the area of

the fiber core, P0 is the power into the beamsplitter, and N,,, is the number of modes in

the source. For this system an approximate Kerr coefficient for the fiber is 10-14 pm2 /W,

a coil diameter of 6.8", core diameter of 9pm, power of 63gW, and 104 modes were used.

For the measured coefficient of the beamsplitter, a bias due to the Kerr effect of 1.25E-6

*/hr /A*C occurs.
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Figure 11: Beamsplitter Retardation Error vs.
Temperature.
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Figure 13: Photograph of Beamsplitter Splitting
Ratio with Temperature Experiment;
Beamsplitter in Thermal Oven
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3.3 Source Intensity Fluctuations

If the source intensity, I, fluctuates, then the scale factor, K

A c
K = 2 rLDi (11)

of the gyroscope will also change. One way to eliminate this phenomenon is to measure

the intensity at the output, then divide it out of your output signal. This is practically done

by taking the ratio of the difference and sum of the detectors. The difference gives you

the rotation rate information, while the sum gives the total intensity from the source. A
drawback to this configuration is that it reintroduces the excess intensity noise that was

significantly reduced by balanced detection [8]. While the system has large noise sources,

the extra noise in not dominant. However, as the noise floor approaches the shot noise

limit, it will become a major source of noise in the system, limiting the resolution of the

gyroscope. If this is the case, a control loop will have to be added to stabilize the source

intensity.

This phenomenon was discovered when doing temperature experiments upon the

gyroscope. The output changed significantly during an overnight test run. It was

surmised from the time at night that the output started changing that the change was

occurring when the air-conditioning was turned off at night. To determine which

component was heavily temperature dependent, a heat gun was aimed at each element

until the gyroscope output noticeably changed. The high-powered SLD with an exposed

fiber pigtail, shown in Figure 15, was the sensitive element.

A thermistor was placed upon the pigtail and the source power and temperature

were measured. The data is shown in Figure 14. This data, which was taken overnight,

shows a distinct correlation between room temperature and output power. As the

temperature of the pigtail increases, the output power of the SLD decreased. The

temperature caused a misalignment of the SLD chip output and the fiber pigtail, whose

placement varies due to expansion of the epoxy holding the pigtail. Replacing the SLD
with an Anritsu SLD, which does not have an exposed fiber pigtail, solved this problem.

The Anritsu SLD, described in Section 4.1, has an output power that is stable with

temperature.
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Figure 14: SLD Power and Temperature vs.
Time. Black - Source Power; Grey -
Temperature

Figure 15: Photograph of high-powered SLD
with exposed pigtail
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Chapter 4 Components

4.1 Superluminescent Diode

In order to have a well-behaved gyroscope, a broadband source with a high output

power is desirable. A broadband source is needed so that the coherence length of the

output light is very short. This destroys the interference contrast of parasitic waves

caused by backreflection, backscattering, and polarization cross coupling within the sensor

coil.

An Anritsu superluminescent diode (SLD) operating at 1550 nm wavelength was

employed. It was temperature stabilized using a temperature control unit produced by

ILX Lightwave Corporation, providing temperature stability of 0.1 *C. The output power

of the SLD should be above 1 mW for adequate power at the detectors. A nominal

operating current is 125 mA, which gives an optical output of 1 mW. Figure 16 shows the

SLD output versus current level when measured with a FC connector at the end of the

fiber pigtail. If the source is spliced into the system, the output power is expected to

increase because of the decreased loss through the interface.

The spectrum of the SLD was measured using a HP optical spectrum analyzer to

characterize the full width at half maximum. The measured spectrum is shown in Figure

17. This measurement is used to calculate the coherence length, Le, and the relative

intensity noise, RIN, of the source

L=- (12)

RIN= (13)
2 c AA

where A is the center wavelength of the source. The 3 dB bandwidth was measured to be

64.8 nm when the driving current is 125 mA. This leads to a coherence length of 37.1 gm

and a RIN noise of 2.49E-7 rad/rt-Hz.

The coherence ripple of the source, measured in Figure 18, is the self-modulation
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Figure 16: SLD Output Power vs. Driving
Current Curve
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Figure 17: SLD Spectrum
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Figure 18: SLD Spectral Ripple
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of the SLD spectrum due to backreflections into the resonant cavity. This can be caused

by backreflections from the interface of splices or connectors. This value has an effect

upon the gyroscope bias due to the Kerr Effect, which can be seen in Appendix A. This

value is calculated by taking the ratio of the ripple to the maximum amplitude of the

spectrum. The measured lo-spectral ripple is 2.1%.

Figure 19: Photograph of Apparatus for
Measuring Spectral Ripple of SLD; Consists of a
Michelson Interferometer
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4.2 Recirculator

As mentioned in Section 4.1, the SLD must be isolated from optical back

reflections, as they induce spectral ripple and degrade system performance. It is also

important to have as broadband a source as possible. However, it is difficult to find

commercial optical isolators that have a flat passband over the entire bandwidth of 65 nm.

It has been found that a recirculator can be used to isolate the source from back

reflections. This device does have a relatively flat response over a wide wavelength range,

providing 60 dB of isolation, while maintaining a low insertion loss of 0.8 dB.

The isolation is achieved by using two polarizers and a Faraday rotator. The input

beam passes through a polarizer and becomes linearly polarized. The Faraday rotator

rotates the beam 45*, then the light passes through the second polarizer, which is oriented

450 with respect to the first one. However, if light is entering from the opposite direction,

it is rotated 45* such that its polarization is perpendicular to the polarized transmission

axis. In this way the back reflected light is attenuated 60 dB. The JDS recirculator used is

pigtailed to PM fiber at all ports.

4.3 Silicon Prism

The Si Prism, shown in Figure 20, is designed so that there is no material between

the beam splitting point and the detector. By having it at Brewster's angle, it acts like a

special polarizing beamsplitter, splitting the TE polarization approximately equally

between the reflected and transmitted ports, but only transmitting the TM polarization.

The measured transmittance of the polarizations is plotted in Figure 21. The prism is not

perfectly anti-reflection coated, reflecting about 26 percent in power. These reflections

cause increased loss in the OPFOG.
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Figure 20: Design of Si Prism at Brewster's
Angle
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Figure 21: Si Prism Transmittance vs. Input
Angle

The Si prism has an advantage in that it does not introduce a relative phase delay

between the two polarizations. The prism has very little wavelength sensitivity, but the

output beam direction changes with wavelength. There is also a dependence between

input angle and output direction.

This directional change could cause difficulties in coupling into the PM spatial

filter and detectors. By using Snell's Law, the output angle can be calculated. For a

prism with an index of refraction of 3.49 and a rotational stage stability of 0.10, the output
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beam can move ± 0.35*. This should not cause a coupling problem into the detectors

because they have a large active area.

4.4 Polarizing Beamsplitter

The polarizing beamsplitter (PBS) used for coupling into and out of the fiber coil is

an ETEK custom pigtailed package. The package contains a PBS and three pigtailed

ports with angle polished (APC) connectors on the fiber. The axis of the PM fiber must

be oriented with the slow axis parallel to the polarization mode of the port. Otherwise,

the OPFOG will not operate properly. The schematic of the PBS used is shown in Figure

22. The beamsplitter was mounted inside of the coil, being careful that the two output

port fibers were in close proximity, so that temperature gradients would not cause

birefringence variations in only one fiber.

output E,

E,

0

input E ouputE,

0

Figure 22: Pigtailed PBS Schematic

The splitting ratio of the beamsplitter is optimally 50-50 when light polarized at

450 is launched into the fiber. However, at room temperature it was measured to be 44-

45.6 split with a 0.8dB insertion loss. This results in a nominal splitting constant, k,, of

0.491. The splitting ratio changes with temperature 0.08 % /*C as outlined in Section 3.2.

The splitting ratio error effects the bias due to the optical Kerr Effect, calculated to be

1.4E-5 deg/hr for the splitting constant given above.
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4.5 Fiber Sensor Coil

The fiber on the coil is a polarization maintaining single mode fiber. The fiber coil

is 6.8-inches in diameter wound upon a titanium mandrel. A titanium mandrel is used

because it has an index of thermal expansion similar to that of the fiber. This reduces the

amount of thermally induced mechanical stress upon the fiber, which may degrade its

performance. Mechanical stresses and temperature fluctuations induce variations in the

birefringence of the fiber, resulting in unpredictable polarization drift in the system. The

coil was characterized for extinction ratio, which measures how well the coil preserves the

input polarization state. It was measured to be 36.6 dB with an insertion loss of 1.6 dB.

The fiber coil was also potted to reduce acoustic and vibrational sensitivities in the

instrument. The coil is encapsulated in an epoxy that is matched to the thermal expansion

and mechanical properties of the fiber. The epoxy absorbs the vibrations and maintains the

integrity of the fiber position locked in by the winding process. Without the epoxy

encapsulation the gyroscope output will reflect the vibrations in the surrounding area,

including people talking.

The wind of the fiber upon the mandrel is important to reduce thermally induced

birefringence changes that may decrease the reciprocity of the instrument. Ideally,

opposite ends of the fiber should be adjacent in the winding pattern so that both ends of

the fiber will experience the same thermal gradients at the same time. There are different

winding patterns that can accomplish this, like quadrapole winding, octopole winding, and

hybrids of these and other schemes. The coil used in the OPFOG is quadrapole wound,

which reduces the thermal sensitivity of the gyroscope well.

Rayleigh backscattering is reflections off of the fiber core that travel back towards

its source. This causes a bias when the forward beam and backscattered wave are

coherent with one another, producing an error in the detected rate of the gyroscope. The

bias [9] due to this effect, I2,leigh, is

ALcS arTrB (14)
=K (1-2 k,) 24core
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where K is the gyroscope scale factor, k, is the beamsplitter split ratio, A is the source

wavelength, Le is the coherence length of the source, S is the backscattering factor, ar is

the Rayleigh scattering coefficient, Tr is the coherence time of Rayleigh scattered phase, B

is the bandwidth, and n,,,, is the index of refraction of the fiber core. Using the

parameters listed in Appendix A, the Rayleigh bias for this instrument is 0.034 deg/hr.

Figure 23: Photograph of Coil Assembly
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4.6 Plate Beamsplitter

For the plate beamsplitter a microscope slide cover was used. This component

was chosen because it is extremely thin, causing little difference between the signal and

monitor paths. The reflection from the face provides a 15-83 percent split with an

insertion loss of 0.1 dB. This provides ample signal to the detectors to implement the

temperature-monitoring scheme proposed.

4.7 Detector

The detectors are Epitaxx 3mm diameter InGaAs detectors with responsivities

matched to within 2%. Large area free space detectors were chosen so that the signal

beams would not have to be focused down into a fiber. If it were focused into a fiber,

some signal would be lost through the coupling, and the system now depends upon

mechanical alignment stability. By using a large active area, the alignment can shift

slightly, and the optical signal would still be detected, whereas with a fiber pigtailed

detector, the focused beam would "walk off' the fiber core causing errors in the detected

signal.

The shot noise, Shot, is the fundamental limit of the detectors. It is caused by

photons creating electron-hole pairs, which translate into current.

2 1 A B P,
IShot =2 e (15)

h c

where r7 is the detector quantum efficiency, A is the source wavelength, B is the bandwidth

of the receiver, Pdt is the incident power upon the detector, and h is Plank's constant. A

factor of 2 is added in the calculation of the shot noise to account for both detectors in the

balanced detector circuit. Using a quantum efficiency of 0.88, bandwidth of 2.6 MHz and

an incident power of 30 pW, the shot noise of the balanced detector is 26.3 nA.

Johnson Noise arises from thermal fluctuations in the load resistor of the

photodetector. The thermal energy from the resistor allows electrons to move randomly,

causing a random current, Ii.
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I= 4 _I (16)
RL

where kE is the Boltzmann's constant, B is the bandwidth of the reciever, T is the

temperature, and Rj is the load resistor. For an operating temperature of 50 *C, detector

bandwidth of 2.6 MHz, and a load resistor of 10 MU, the Johnson noise is 68.1 pA.

The noise equivalent power, NEP, is the amount of incident power for which the

signal-to-noise ratio of the detector is unity.

NEP = Itotal (17)
p

where p is the responsivity of the detector. It is therefore the minimum detectable power

on the detector. For a responsivity of 0.95 A/W, the minimum detectable power is 27.7

nW.

4.8 Electronics

The electronics consisted of a balanced detector circuit with summing and

differencing nodes. A shunt feedback configuration [8] could not be used because access

to both detector signals is necessary to implement an output ratio, as mentioned above.

Instead, a trans-impedance amplifier with a gain of 3E5 is used for each diode, followed

by a sum and difference circuit. The electronics are shown in Figure 24.
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R2 + Vdiff
100 k Ohm
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Figure 24: Balanced Detector Trans-Impedance
Amplifier Circuit. The two diodes are the
photodetectors.

For detectors with responsivity, p, and incident power, P, the output current of the

photo-detector is I.

I1 =P P
I2 =P P2

(18)

(19)

After the trans-impedance amplifier, the voltage at nodes V1 and V2, respectively, are

V, = RII,

V2 =RI2

(20)

(21)

The output of the differencing circuit, Vdiff is

(22)

The output of the summing amplifier, V.,, is
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Rv~~5 (23VSU =-- , +V2 ) (23)

By substitution into equations 21 and 22, Vdig and V,. are

Vayif = - R2R~ (P1 - P2 ) (24)

V = - RRp (P + P2 ) (25)

Therefore, the output ratio of the difference and sum, Vrat, is proportional to the ratio of

the difference and the sum of the detector power.

Vraft RAR P - P2

V,. 5 = (26)R2 R5 P + P2

By using the selected resistor values the output ratio becomes

Vaio = 1 2 (27)
P + P2

High precision resistors with tolerances of 0.1% are used for resistors RI to ensure that

excess noise is not added to the system when the diode signals were being amplified.

4.9 Connections

All of the connections between the fiber to fiber interfaces are angle polished

connectors at 10*. This reduces the backreflections that are coupled back into the fiber to

less than 4%. The two connections between the ETEK beamsplitter to the fiber coil are

spliced together in order to achieve the best alignment between the polarization axes.
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Chapter 5 Analysis

5.1 Power Budget

Using Doerr's OPFOG configuration and an input power of 1 mW, an estimated

18.1 dB loss through the system would yield a total output power at the detectors of 15.5

gW. The power estimates and measured component losses are shown in Table 1. In the

actual system at rest, there is 16.8 dB of loss resulting in a power of 10.5 gW to each

detector.

Table 1: System Power Loss

However, when the temperature-monitored configuration of Figure 5 is

implemented, losses in the system are significantly higher. The original temperature

monitoring system, shown in Figure 25, employed the use of two polarizers to obtain the

correct polarizations for the signal and monitor beams. The output of the SLD is primarily

linearly polarized (85% in one polarization). A quarter waveplate is used to circularly
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Element Estimate Measured

Recirculator 0.80 dB 0.40 dB
(linearly pol. light)
Polarizer 0.80 dB 0.71 dB

Plate Beamsplitter 0.10 dB 0.09 dB

Half Waveplate 0.10 dB 0.06 dB

Prism Reflection 5.50 dB 5.2 dB

ETEK Beamsplitter 1.00 dB * 2 0.95 dB *2

Coil 1.60 dB 1.60 dB

Prism Transmission 3.60 dB 3.60 dB

Quarter Waveplate 0.10 dB 0.06 dB

Wollaston Prism 0.50 dB 0.53 dB

Collimating Lens 1.0 dB * 3 0.83 dB * 3

TOTAL 18.10 dB 16.64 dB



polarize the light, which is then split into a signal and monitor path. The signal path

requires light polarized vertically. However, the monitor path requires light polarized at

450 in order to probe the biasing quarter waveplate. By using a quarter waveplate to

create circularly polarized light, both polarizations can be made. The polarizers produce

the appropriate polarization, but this implementation adds an extra 3 dB of loss through

the system.

Another scheme, shown in Figure 26, was implemented to eliminate the excess

loss. This implementation uses two half waveplates to rotate the polarization, resulting in

a significantly smaller insertion loss. A polarizer filters the SLD output to produce linearly

polarized light, which then passes through the plate beamsplitter. The signal branch passes

through a half waveplate oriented at 00, thus passing though without changing the

polarization. The monitor branch passes through a half waveplate oriented at 22.5*,

rotating the polarization by 45*. The insertion loss of this is significantly less, losing only

0.1 dB through the half waveplates. The second method was implemented for the

temperature monitored OPFOG.
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Figure 26: Improved Optical Input Train
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5.2 Bias Analysis due to Polarization

The bias analysis performed in Mathcad, detailed in Appendix A, followed an

approach presented by Kintner [10] to examine the bias error due to polarization. The

analysis used to calculate the bias drift of the standard fiber optic gyroscope could not be

directly used because of the different configuration of the polarization axes of the fiber.

Kintner unfolded the gyroscope into two fiber delay lines connected at the ends by the

beamsplitter. By calculating the total effective polarization filtering through the system,

the bias error due to polarization crosstalk in the system can be estimated.

The crosstalk values used in this estimate were very conservative. The

conventional gyroscope contains an IOC that polarizes light extremely well. The OPFOG

configuration provides most of its polarization filtering through the polarizing

beamsplitter, which is traversed twice, effectively doubling its filtering capacity. By using

conservative 30 dB polarization control of the input beam, and -28 dB for the

beamsplitter extinction ratio, a gyro bias error of 5.2E-3 deg/hr can be expected.

By using active alignment for the launch polarization with the beamsplitter axis, 35

dB polarization control can be obtained for the input beam. It is also possible to purchase

polarizing beamsplitters with more than -30 dB extinction between the polarization axes.

With the more rigorous polarization constraints, a la gyroscope bias of 7.4E-4 deg/hr can

be realized. A similar conventional gyroscope with an IOC polarization filtering of -70

dB and a launch of -30 dB yields a gyro bias of 1.1E-3 deg/hr.

5.3 Minimum Detectable Rotation Rate

The minimum detectable rotation rate is calculated to characterize the best

performance that can be expected from the instrument. The total noise, NT, of the system

is the root sum of the squares of the RIN, Shot noise, Johnson noise, and thermal noise.

NT = RIN 2+I +I' (28)

42



which leads to a total noise of 8.87E-8 rad/rt-Hz and a minimum detectable rotation rate

of 2.3E-2 deg/hr. For a similar conventional gyroscope, the minimum detectable rotation

rate is 3.8E-2 deg/hr.

5.4 Scale Factor Errors

The scale factor of the gyroscope will change due to changes in the coil diameter,

the length of the fiber, and source wavelength fluctuations. The sensitivity to each of

these errors is found by differentiating the gyroscope scale factor with respect to each of

these terms. This gives an error of 5.4E-5 ppm due to diameter changes, 9.3E-9 ppm due

to fiber length variations, and 4.5 ppm due to source center wavelength fluctuations. This

leads to a total 4.5 ppm scale factor change for the OPFOG or conventional gyroscope

with the same source and sensor coil. This calculation is carried out in detail in Appendix

A.

The biasing quarter waveplate will add an error to the scale factor when the source

center wavelength varies and when the temperature changes. The added scale factor

error, SFqT, will vary in a sinusoidal fashion.

SFp = sin(a AT) (29)

where a is the temperature coefficient of the waveplate and AT is the temperature control

of the gyroscope. For the measured waveplate coefficient of 6.47E-4 rad/*C and a

temperature control of 0.1 *C, the scale factor error will be 64.7 ppm.

When the source center wavelength changes, the scale factor error, SF,, will also

change in a sinusoidal manner.

Sqwpl = sin(2 A.) (30)

where A, is the source wavelength stability. If the wavelength is controlled to 1 ppm, the

resulting scale factor error is 1.6 ppm. Altogether, the waveplate adds a total scale factor

error of 64.7 ppm.
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5.5 Magnetic Faraday Errors

The magneto-optic Faraday effect is caused by a longitudinal magnetic field

changing the polarization of the light wave by the Verdet coefficient of the medium, in this

case the optical fiber. In a fiber ring, it will manifest itself as a phase difference, AGF, in

the counter-propagating waves, causing a false rotation rate in the gyroscope output

[11,12].

AGF = 42 r NW, (31)
A/3

where V is the Verdet coefficient of the fiber, B is the applied magnetic field, D is the

diameter of the coil, AB is the difference in propagation constants of the fiber axes, N is

the number of turns in the coil, and W is the spectral twist characteristic of the fiber coil.

From the Earth's magnetic field, a phase difference of 15 prad causes a bias of 0.013

deg/hr in the tested gyroscope. However, other sources of magnetic radiation can cause

higher drift in the instrument due to the Faraday effect.

Typically, a g - metal shield is used to reduce the bias error from the Faraday

effect. This shield is composed of high permeability metal that blocks the magnetic

radiation from the sensing coil. This can result in a reduction of the error by one or two

orders of magnitude.

Another method of reducing this error source is controlling the spectral twist of

the fiber as it is wound upon the mandrel. As PM fibers are manufactured, the fiber is

drawn from a silica preform into long optical fibers. As the fiber is pulled, the stress

member will twist slightly within the cladding, resulting in a twist spectrum that is built in

during the manufacturing process. There is an additional twist element added when the

fiber is wound upon a take-up spool or coil mandrel. Usually, the fiber is not wound such

that the stress member is oriented in the same direction during the wind. The fiber is

allowed to twist of its own accord when made into a coil. However, if the stress member

were monitored during the winding process such that the twist was minimized, the total

twist in the fiber coil would be limited by the twist frozen into the fiber during
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manufacturing and the gyroscope error due to the Faraday effect would be significantly

reduced.
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Chapter 6 OPFOG Data

Gyroscope performance can be characterized by several parameters, angle random

walk, bias drift and scale factor stability. Angle random walk is the short term random

fluctuations that are caused by white noise, like shot noise, source relative intensity noise

(RIN), and mechanical and acoustical vibrations. Angle random walk is typically

measured in deg/rt-hr. Bias drift is the long term peak-to-peak variation of the mean value

of the output signal. Thermal variations and mechanical alignment drifts cause the long-

term drift, which is usually measured in ± deg/hr. For a fiber gyroscope, the scale factor

has to be accurate to measure high rates of rotation. For inertial grade instruments, an

angle random walk of less than 0.001 deg/rt-hr, a bias drift of less than 0.01 deg/hr and a

scale factor accuracy of less than 5 ppm need to be met [13].

6.1 Experiment

A gyroscope using the temperature monitored OPFOG scheme was constructed

and tested. It was built according to Figure 5 with the improved optical input train of

Figure 24. The components used are as described in Chapter 4. A photograph of the

system a rate table is shown in Figure 27.

To calibrate the gyroscope, the optics and sensor ring were placed on a rotatable

platform that has an angular velocity capable of micro-radian accuracy. The scale factor

of the gyroscope was determined by rotating the table in one direction, then reversing the

rotation and repeating to check for hysterisis.

To measure long-term stability, the coil assembly and optics were exposed to room

temperature initially. Later they were placed into a large foam box to insulate the

gyroscope from large thermal gradients. The output from the balanced detector was

connected to a voltmeter and computer, which recorded the data.
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Figure 27: Photograph of OPFOG on rate table:
Coil is mounted on plate suspended above optics
to fit on 12" x 12" area
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6.2 Scale Factor Measurement

The scale factor, SF, was determined by rotating the gyroscope at a velocity of

150 deg/hr clockwise for two minutes, then counter clockwise for two minutes. To check

for instrument hysterisis the gyroscope was rotated clockwise again to make sure that the

output signal returned to its original signal value.

SF =-
AV

(32)

where AD is the difference in the rotation rate and AV is the change in the gyroscope

output signal.

The scale factor calibration data is shown in Figure 28. A change in the balanced

detector output voltage of 10.55 mV was measured, resulting in a scale factor of 28.4

deg/hr /mV.

C

.0

1 2 3 4 5 6
Time [min]

Figure 28: Scale Factor Calibration Data for
Original OPFOG
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6.3 Angle Random Walk

The angle random walk (ARW) of the instrument is measured from the last two

minutes of the scale factor calibration, when the instrument is not under rotation. The

high frequency jitter of the output is due to shot noise, RIN noise, mechanical vibrations

from the room, and acoustical vibrations. Thermal variations do figure into the ARW

because its low frequency nature.

ARW = ' --- (33)
6 4B5 60

where A4Q is the measured peak-to-peak value of the high frequency gyroscope signal in

deg/hr and B is the detection bandwidth in Hz. For a detection bandwidth of 10 Hz and a

peak-to-peak jitter of 0.05 mV, the measured ARW is 1.2E-3 deg/rt-hr. The data set used

is shown in Figure 29. The spikes in the data set are due to the vibration of the building,

15 Hz, leaking through to the instrument. These spikes were ignored when calculating the

angle random walk value. The measurement was repeated with the long-term bias drift

data and was found to be consistent with the above value.

The model predicted a value of 3.2E-4 deg/rt-hr. The discrepancies between the

measured and predicted results come from a variety of sources. The RIN is not

completely cancelled, as assumed in the model, because the detectors are not perfectly

matched. There is more than just Johnson noise from the detector circuitry because a

shunt configuration was not used, as discussed in Section 4.8. The mismatch of the trans-

impedance resistors will add noise to the output.
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Figure 29: Angle Random Walk Data - exploded
view of last two minutes of Figure 28

6.4 Bias Drift

The bias drift data was taken overnight for a period of 13 hours. The usable area

of this data is in the middle of the night because that is when the thermal transients from

the air conditioning system die down. There is also no traffic in the lab causing vibrations

to the rate table. The data taken in Figure 30 was enclosed in an insulting foam box to

reduce air currents between the optical elements. The optics and sensing coil were

exposed to a temperature change of five degrees Celsius during the course of the night.

The la bias drift is measured to be 1.1 deg/hr over a 3-hour interval and 0.33

deg/hr over a 15-minute interval. Doerr measured a peak-to-peak drift of 1.2 deg/hr over

a 15- minute interval. The model predicted a drift of 9E-4 deg/hr. A major source of drift

appears to be air turbulence in the bulk optics near the detectors. Another error is that the

coil assembly was not magnetically shielded. In order to get better performance, the
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gyroscope should be enclosed in a p-metal shield. Birefringence changes and splitting

ratio change due to temperature in the ETEK polarizing beamsplitter also increase the

drift.

-30

-40

-40. .. ........... ........... ... .... ... ...... .......... .. .. ....

-10..........

-30.............................................

-140'
5.5

Figure 30: Bias Drift Data over 3 hours -
starting around midnight
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Chapter 7 Conclusions

7.1 OPFOG Advantages/Disadvantages

The IFOG has several disadvantages, such as high cost, complicated electronics,

gyroscope drift, and a relatively large instrument size. This is driven by the high cost per

unit length of PM fiber and the integrated optical circuit. The phase modulation needed to

attain maximum sensitivity is provided by the IOC and often results in bias drift due to the

instability of the LiNbO3 crystal and requirements for the high frequency electronics to

demodulate the output signal. To attain a large dynamic range, conventional gyroscopes

operate closed loop, resulting in complex electronics. The length of the usually establishes

the minimum size of the IFOG's fiber coil.

The OPFOG has several advantages over the conventional IFOG, listed in Table 2.

The first is that the fiber coil, which can be reduced due to the absence of the IOC. The

optical train is composed of bulk optical components, which can be miniaturized to fit into

a reduced instrument diameter. The second advantage is that the balanced detection

scheme effectively eliminates excess intensity noise from the source. The passive bias is

introduced outside of the fiber ring, allowing for a medium dynamic range and simpler

electronics. Lastly, this configuration allows us to use a squeezed light approach to

reduce the noise below the shot noise limit [4].

The are also problems associated with the OPFOG. The dynamic range of the

instrument is medium because the system is operating open loop. The output signal of the

OPFOG is also intensity dependent. Since the OPFOG operates at baseband, it is subject

to 1/f noise. All of the above issues can be addresses by digital post-processing or by

feedback loops in the instrument.
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Table 2: Comparison between IFOG and OPFOG

7.2 Gyroscope Size

The major advantage to the OPFOG is that the gyroscope can be made relatively

small compared to the conventional IFOG and still achieve similar performance. This is

achieved because all of the optical components are bulk optic elements and can be

machined using micro-mechanical methods upon one silica substrate.

The major limitation of all fiber optic gyroscopes is the fiber coil diameter. As the

coil diameter decreases, there are more losses in the fiber and added birefringence induced

by mechanical stresses will degrade the polarization maintaining properties of the PM

fiber. The following is the theoretical limit of the minimum fiber optic coil size. There is a

critical bend radius, Rc, of a fiber coil where optical losses sharply increase [14].

R c = ore (34)
2 NA2

where Dcore is the fiber core diameter and NA is the numerical aperture of the fiber. For a

core diameter of 9 gm and a numerical aperture of 3.86E-2, the critical coil diameter is 6

mm. By allowing the fiber coil to be 2 inches in diameter, the insertion loss factor due to

bending is small, and sufficient polarization extinction ratio exists to meet the performance

53

IFOG OPFOG
Instrument Size 3" < 2"
RIN Noise Minimally reduced Significantly

reduced
Modulation High frequency No modulation
1/f Noise Small due to Can be reduced by

modulation electronic chopping
amplifier

Dynamic Range Many orders of Medium
magnitude

Intensity Dependant N/A Can be eliminated
by sum/difference
approach

Squeezed Light N/A Can integrate into
unused BS port



requirements. Sufficient space to insert all of the components into the center of the coil

mandrel is also maintained, as shown in Figure 31.

2"

Figure 31: Schematic of gyroscope layout. Wire
frame - fiber coil; shaded area - optical substrate
with components

The shrinking of the coil diameter will allow the overall OPFOG size to be just

over 2 inches in diameter. The conventional gyroscope has a size limitation of

approximately 4 inches in diameter due to the size of the IOC, its biasing element. The

IOC needs to be about 2 inches long in order to achieve the necessary polarization filtering

level needed by the conventional IFOG.

7.3 Squeezed Light

To eliminate quantum-mechanical noise, quadrature squeezing can be utilized,

where a squeezed vacuum is injected into an empty port of the gyroscope interferometer.

By using either photon-number squeezing or quadrature squeezed light, the output noise

of the instrument can be more than 3 dB below the shot noise limit. But this will only

work for balanced detection, as in the OPFOG. The conventional IFOG does not use true

balanced detection, and consequently cannot employ squeezed light technology.

7.4 Dynamic Range

The dynamic range of the OPFOG is medium because the instrument is operating

open loop and needs to be closed either by digital post-processing or a waveplate

feedback loop in order to achieve sufficient dynamic range. Since the output signal is
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sinusoidally dependent upon the rotation rate, small rotation rates are measured very

accurately. However, large rotation rates will be in a very low sensitivity bias point. The

IFOG overcomes this failing by operating closed loop, adjusting the bias so that no matter

what the rotation the instrument is always at a high sensitivity bias point. This method can

also be applied to the OPFOG with a variable retardation plate that can provide a nominal

bias of t/2 and will vary linearly around this point.

A second method is to close the loop digitally by using a high speed digital

processor. A third approach would be to mount a micro-mechanical gyroscope that

measures relatively high rotation rates within the OPFOG. The OPFOG would be used to

measure low rotation rate, and the mechanical gyroscope to measure high rates. By

switching between the two, and instrument with a large dynamic range can be built.

7.5 Output Intensity Dependence

As discussed in Section 3.3, the stability of the scale factor of the instrument is

dependent upon the source intensity stability. As the scale factor changes, so does the

measured rotation. One way to eliminate this phenomenon is to measure the intensity at

the output, then divide it out of your output signal. This is practically done by taking the

ratio of the difference and sum of the detectors. A drawback to this configuration is that it

may reintroduces the excess intensity noise that was eliminated by balanced detection if

not properly processed. While the system has noise sources, the excess noise in not

dominant. However, as the noise floor approaches the shot noise limit, it will become a

major source of noise in the system, limiting the resolution of the gyroscope. If this is the

case, a control loop will have to be added to stabilize the source intensity.

7.6 Instrument Modulation

The OPFOG operates at baseband. While this eliminates the need for complicated

high frequency electronics to demodulate the output signal, it makes the system

susceptible to 1/f noise. This could be eliminated by modulating the signal before it

reaches the detector, after it is detected, or at the source. The signal could be chopped
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optically before it reaches the detectors to modulate the signal and move it away from

baseband. Or, the signal could be chopped digitally within the electronics after it has been

detected. Lastly, a pulsed source could be used to provide the modulation. The

modulation carrier frequency would not have to be high, on the order of 10 kHz, to

significantly reduce the 1/f noise in the system.

7.7 Recommendations

By developing a method to accurately align the polarizations of the optical

components, the current system can be miniaturized. A first step would be to build the

system using half-inch diameter bulk components upon a stable substrate or in a tube to

ease alignment. The miniaturized optics would ideally be contained within an inch and a

half diameter circle. This would allow development and test of a two-inch diameter coil.

The next step is to micro-machine the optical elements into a piece of silica, such that

alignment issues are taken care of when the components are machined. At this point,

integration into a viable gyroscope should be relatively simple.

A pulsed source with an intensity control loop should be used to reduce the 1/f

noise of a baseband instrument. With the intensity control loop, simple balanced detection

will eliminate excess intensity noise, while allowing the possibility of squeezing the light to

reduce the output noise below the shot noise limit.

The coil assembly should be magnetically shielded to reduce errors due to the

Faraday effect. The gyroscope should be enclosed to reduce air currents between the

optics and temperature controlled to reduce the thermally induced errors in the coil. By

performing these improvements, the bias drift of the instrument should decrease even

more than was shown in this thesis.
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Appendix A: Mathcad Analysis

This Appendix contains the code to the Mathcad file that contains the analysis for

the OPFOG. Each section contains the references that were used in that section of the

analysis.

Define fundamental units:

M 1

pm 10 6 -m

in 2.54 - cm

cm .01 - m

m 10 ~ m

sec := 1 ps := 10 - 12 - sec min 60 - sec

hr 3600 - sec

Hz
sec

6
MHz : 10 - Hz

-3MW 10 * .wW 1

C 1 F := 1

9W 10 -6 W

H 1

C
A

sec
J W - sec

rad := 1

deg rad
180

W

C

S =1

Gauss

degC 1

rad := 10 -6 rad

degarcsec := 0
3600

-3mV 10 - V

X Q = 10 6.

Oe 1- Gauss

ppm 10 - 6

turn 2 - r- rad

deg
arcmin :=

60

dB := 1
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km := 10 3- m



Define Constants:

h := 1.054 - 10 ~4- J - sec

e 1.6021892

c 299702590

- 10 - c

M
sec

The Plank's (this is Nh bar") const;

The electron charce in Coulombs

The speed of liaht

Eo : 8.8542 10 -12. F
M

4 - 7r- 10 7.
H

kb := 1.3807 - 10 - 23

Permittivity of free space

Permeability of free space

Boltzmann's constant in J/degK

EarthRate 10.4 deg
hr

Earth rate at Boston

E : 2.71828

po

In(E)=1
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Define Gyro Constants:

Source:

:- 1550 nm

AX 64.8 nm

CV :- -

pin := 1- mW

d XdT

dI_dT

Fiber:

ncore

nclad

300 - ppm

100 - ppm

Center wavelength of Anritsu SLE

The optical source linewidth

Optical frequency

The input power from source

The wavelength sensitivity to
temperature

The wavelength sensitivity to
current

1.457

( 1 - .035 % )ncore

A n := ncore nclad

The index of refraction of the fibei
core - pure silica core

The index of refraction of the fibei
cladding
nclad = 1.45649

The difference in fiber index
An = 5.0995 -10

Hparam = 1.5 10 -
M

Lbeat
A n

H-parameter of fiber

Beatlenath of fiber
Lbeat = 3.03951

frozentwist

Dmode

Dcore

Dclad

Djac

0.004 rad
M

10.5 - gm

9.0 -gm

125 -gm

:- 160 - am

Fiber twist frozen into fiber from
manufacturer - estimate

The mode field diameter

The fiber core diameter

The fiber cladding diameter

Fiber iacket outside diameter
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Fiber (cont)

1.35 - 10 - 1
degC

5.5 - 10 7-
degC

Loss_Fiber

dL-dT := 4 - ppm

Index chanae with temperature

Linear thermal expansion
coefficient of fiber

Fiber insertion loss
dE

-1.6 -

Fiber length change with
temperature

The coil diameter
D = 0.17272

D 6.8 - in

L 1000 - m

L
IC- D

- 36.6 - dB

1 turn
:M

:= 100

:= Loss_Fiber

m

The lenqth of fiber used on coil

The number of turns of fiber on c

The extinction ratio of the PM
fiber coil - measured

Fiber twist parameter before
unwindinq machine - estimate

Reduction factor of 100 from
unwindinq machine - estimate

Coil insertion loss

dDdT := 4 - ppm

Detector:

p := 0.95
A

-w-

h- c- p

e - X

Bd 2.6 - MHz

Rtrans := 10 - x Q

Change in coil diameter with
temperature (combination of fibe
epoxv, and fiber support structur

Responsivity of Epitaxx detector

Quantum efficiencv of detector

Detection bandwidth of gvro

Transimpedance resistance of
detector
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dn dT

alin

Coil:

N :=

CoilExt

twist

TwistRedu

LossCoil

C



Si Prism:

nPrism 3.49

nair := 1

Epr := 0.1 - deg

GB := atan

B- 360

Index of refraction of Si

Index of refraction of air

Error in aligning beam
perpendicular to prism fac(

Brewster anale of prism
nair

nPrism

15.98875 deq

asin nprism sin
\ nair

( GB ) ) The ideal output angle of ti
Si prism

Gout - 360
2 - n

(nfairasin -
nPrism

sin ( Epr ) ) The error angle within Si
Prism

:= asin (nPrism

nair
sin

Omax - 3 = 74.36401

:= asinf
nPrism Sinl

nair

( B +) Gerr ) ) The maximum output
anale of the Si prism

deq

(GB - Gerr ) ) The minimum output
anale of the Si prism

Omin - 360
2 - 7

- Omin ) 360
2. -r

0.69816

tT : 95 %

tTE 43.7 %

rTE 29.4 %

The angular error from inp
aliqnment

The power transmission
coeffient of TM polarizatior

The power transmission
coeffient of TE polarization

The power reflection
coeffient of TE polarization
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Gout

Gerr

74.01125 deq

Omin

73.66585

( Omax

deg



ETEK Beamsplitter:

BSExt := - 28 - dB The extinction ratio of the
beamsplitter before the coi
conservative estimate

The splitting ratio of the BC
into the coil - measured

k := 0.491

Temperature:

Op_Temp := 50 - degC

A T := 0.1 - degC

A Tgrad 0.001 degC
hr

Optical Fiber Splice:

Splice.ext

Loss-Splice

-40 - dB

- 0.1 - dB

Operating temperature of
system

Temperature control of qvr(

Temperature gradient
between inner and outmr
fiber laver per hour

Polarization alignment of a
PM fiber

Splice insertion loss

Miscellaneous:

ax := 6.47

Kagshield

RINFlag

10 rad
degC

100

:= 1

B := 1- Hz

Recirculator:

Isolation

Temperature coefficient of
V/4 Plate - measured

Magnetic shielding factor
100 with shieldina

Flag for RIN control -
dependant upon approach
0 - differencing
1- sum/difference

Detection bandwidth of avr<

Return loss from output bat
to input

:= 39 - dB
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Errors:

QWPtemperr

pbr := 26.9 %

:= X- A T

pTlerr := 5 %

V/4 plate retardation error
due to temperature

Power backreflection from
Si prism

Power reflection error in Si
prism's Brewster angle

Component Insertion Loss Parameters:

:= - 0.8 - dB

-0.71 - dB

10 - log (pbr

The insertion loss of the
JDS recirculator

The insertion loss of the
polarizer - measured

The loss of the Si Prism
from backreflections

= -5.7 dB

LossTE := 10 - log ( tTE ) The loss of the Si Prism
from transmitting some of
the TE field

LossTE = -3.6 dB

LossETEK := - 0.56 - d3

Loss_to_coil := LossPol + LossRecirc

The insertion loss of the
ETEK beamsplitter -
measured

+ LossTE + LossPrism

Po := Pin - 10

The losses up to input of
coil

Losutocoil
10 Power launched into coil BS

:= 2- LossPrism + LossTE + 2- LossETEK + LossCoil

The insertion loss of the system in dE
LossTotal = -17.72 dB
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LossRecirc

LosPol

LossPrism

inpot

LossPrism

LossTotal

)



Calculation of Power on the Detector:

(LoEsTotalThe optical power falling on the
detector (AC and DC)

Pdet = 1.69039 -10 W

The Calculation of the Gyro Scale Factor:

R 2 - D LC Open loop scale factor
K = 0.42806 rad/sec / rad

The Calculation of the Shot Noise:

ShotNoise

ShotNoise

2 h - de

jil- Pdet

= 7.40632

NOTE: The normal shot noise
equation is doubled because the
detection scheme requires two
detectors

-10 rad/rt-Hz

The Calculation of the RIN Noise:

2cARIN R= N
2-c - AX

RIN :=RIN -RINFlag

The Calculation of the Johnson Noise:

Relative Intensity Noise of the source

RIN = 2.48705

RIN after reduction

RIN = 2.48705

4 - kb (Op_Temp + 273

Rtrans - p 2- Pdet 2

= 2.63009

Thermal noise from detector

rad/rt-Hz
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Pdet Pin 10

-10 -7

-10 -7

rad/rt-Hz

rad/rt-Hz

Nj ohn

Nj ohn

4
.10 -9



The Calculation of the Thermal Noise:

Knudsen, et. al. "Measurements of Fundamental Thermal Induced Phase
Fluctuations in the Fiber of a Sagnac Interferometer"
IEEE Photonics Technologv Letters, Vol 7, pg 90-92, 1995.

Temp := 273 + Op_Temp

K 1.37 - -
m- degC

6M2
td 0.82 - 10 m 2

sec

V :=

kmax

C
ncore

Operating temperature in degK

Thermal conductivity

Thermal diffusity

Velocity of light in fiber

Dmode

kmin = 4.81
Dclad

0 2 - 7- 100 - Hz

2 + ( ) 2

c1 : kmax 2

c3

Frequency of operation

2 + 
2

c2 :=kmin2,

CA0

td

:= kb.L - 1n C 2

(c2 ) + ( c3 )
1

sin ( oL)

co L

V

Therm_Noise
2 Temp (dndT

x + ncore - alin ) - varience

Noise due to thermal fluctuations

Therm_Noise = 3.95286

varience

-10 rad/rt-Hz
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The Minimum Detectable Rotation Rate:

2: ShotNoise + RIN 2 + Njohn 2 + Therm_Noise

Total noise of the system

Noise
QWP.temperr

2

NOTE: The cosine term is due to biasing
errors from th6/4 plate

$min = 2.59542 -10 rad/rt-H

: min

= 0.02292

Pad Umin

Pad Omin

Pad Omin

Pad Omin

360

2 -
3600

deq/hr / rt-Hz

: min 2 1

= 3.71321 -10

Pad Umin - B
hr

= 3.21161 -10

RMS (deq/hr;/Hz

deq/rt-hr
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Noise

$min
cos

2

OQmin

Qmin

)



The Calculation of Polarization Bias Error

:= - 30.0 - dB

CinFdB := CoilExt + BSExt

pedB := 2- BSExt

pedB

10 10

ConLdB

10 10

CinFdB

10 10

PolExt - 2.0 - ConL - CinF

ConLdB

$emax = 5.90242 -10 rad

Apo1 : Emax - K 3600 - 360
2 - 7r

The gyro bias drift due to polarization
error.

Apol = 5.21141 -10 -3 deq/hr

NOTE: For best realistic performance for bias drift, you should use active
alignment for -35dB launch crosstalk. You need beamsplitters with -30dB
polarization extinction. You need a coil that has at least -25dB extinction.
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The polarization crosstalk on launch i
a coil is defined by laB/aAl. If using
active alignment, this value could be
as low as -35dB. Hand alignment
vields -25dB.

The crosstalk in the fiber defined by
ItAB/tAAI. The extra factor is from thi
PBS. The PBS strips the polarization
into which most of the error is
accumulated in the second pass of li(
through the fiber from crosscoupling i
fast axis of the coil.

The effective extinction through the
PBS. It is doubled bacause the bE an
traverses it twice.

The polarizer extinction in amplitude
form.

The launch crosstalk in amplitude
form.

The crosstalk in fiber in amplitude
form.

The maximum gyro error due to
polarization.

PolExt

ConL

CinF

$Emax



The Calculation of Polarization Bias Error - another way

Lefevre, "The Fiber-optic Gyroscope"
Artech House, pa 73-80, 1992.

2 Coherence lenath of source
Lc = 3.70756 - 10 m

Ld Lc - Lbeat

Ncoup

Depolarization length
Ld = 0.0727

L
Ld

Cons := 10

m

Number of couDlina Doints in fiber
Ncoup

coilExt
10

= 1.38 - 10

Extinction of coil

EBS 
:SE=t

FES 10 10

Beamsplitter extinction in amplitude
form

E BS

2 Cons

NCoup ES

= 0.03981

RMS phase deviation

acoup

Qcoup := K - acoup - 3600
360
2. -7c

= 2.95652 - 10 ~9 rad

Bias due to polarization coupling

i coup = 2.61039 - 10 1 dea/h
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The Calculation of Bias from Kerr Effect

Frigo, et. al. "Optical Kerr effect in fiber gyroscopes: effects of non-chromatic
sources" Optics Letters, Vol 8, pa 119-121, 1983.

2- ir-AnA@ := The difference in propagation
constants

A$ = 2.06717 -10 3 rad/m

7.4 - 10 -

Mnode
2

M
41W

) 2

The Kerr coefficient

The mode field area

Amode = 8.65901 -10 mA2

Po := Pin - 10

Lostocoil
10

F := ( 2.097 % ) 2

Power launched into coil BS

Coherence peale-1% 1a
aTpl itude modulation
measured

0.5 - $kerr - (1 - 2- k )- Po

Amode
Kerr constant

4 = 6.38616

1- E LosuCoil

- LossCoil
Effective fiber lenqth [1]
Leff = 498.81454

:=K - 4- Leff

= 1.2368 -10

IF- 360 3600
2.0 - 7

-4

Bias from Kerr Effect

deq/hr
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s kerr

Amode

Leff

KerrBias

KerrBias

m



The Calculation of Kerr Effect Bias - Another Way

et. al. "Compensation of the optical Kerr effect in fiber-optic gyroscopes"
Letters, Vol 7, pg 282-284, 1982.

et. al. "Source statistics and the Kerr effect in fiber-optic gyroscopes"
Letters, Vol 7, pq 563-565, 1982.

2

10 - i JM
p W

:= (-

Approximate Kerr coefficient of the silic
fiber [1]

Cross-sectional area of fiber coreDcore

2

PO := Pin - 10

Losstocoil

10 Power launched into coil BS

Po = 8.30297 -10 -5 W

Approximate number of modes in SLD
source

2 -c - n2 8-

D Acore
(1 - 2- k ) - PO 3600

Nmodes
360

Bias from Kerr Effect
Nmodes from [21

Okerr = 1.68164 0 10
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Bergh,
Optics

Bergh,
Optics

11 n2 8

Acore

Hmodes := 10 4

Okerr

dea/hi



The Calculation of Faraday Effect Bias

Hotate and Tabe, "Drift of an optical fiber gyroscope by the Faraday effect: influn
of the Earth's magnetic field", Applied Optics, Vol 25, No 7, pg 1086-1092, 1986.

Hotate and Tabe, "Drift of an Optical Fiber Gyroscope Caused by the Faraday
Effect: Experiment", Journal of Lightwave Technology, Vol LT-5, No 7, pg
997-1001, 1987.

CRC Handbook of Chemistry and Physics, pg 12.164,1997.

Note: Conversion between Gat() and Oerste<Oe)
Maxwell's Eqns: Byo H

go = 4n 1O-7 H/m= 4n 1017 Wb/(A m)
1 Oe= 10^3/(4n) A/m

*= (4n 10W-7 Wb/Am) * (1000/4n A/m)
= 10 G4 Wb/n^2

=1 Gaus

Vfe

twist

Wfe

0.013 aramin
Oe -

twist
TwistReduc

(twist

\ 2- F ) 2

rad 2

m 2

Emag := 1- Gauss

Vfe - Emag
AagShield

4- C- D
A 2 7r-N -We

Verdet constant of fiber [3]

Vfe = 3.78155 - 10 rad/(Gauss m)

Fiber twist in system

Spectral twist characteristic of fiber

Magnetic field amplitude

Faraday Rotation per unit length

3.78155 - 10 ~ rad/m

Phase difference due to magnetic field (1

A$ = 3.02117

:= A0 - K - 3600
360

2 - 7c
Bias due to Faradav Effect

91farad = 2.66747 -10 0
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i2farad

-10 rad

dea/h



The Calculation of Rayleigh Backscattering Bias

Takada, "Calculation of Rayleigh backscattering noise in fiber-optic gyroscopes"
Optical Society of America, Vol A2, pg 872-877, 1985.

Brinkmeyer, "Backscattering in single-mode fibres," Electronic letters, Vol16, pg
329-330, 1980.

Bohm,
64-66,

et.al., "Low-noise fiber-optic rotation sensing," Optics Letters, Vol 6, No 2,
1981.

Derickson, "Fiber Optic Test and Measurement," Prentice Hall, pg 448, 1998.

Saleh, Teich, "Fundamentals of Photonics," John Wiley & Sons, pa 279-280, 199

+ 0.51 - An

10 6'
Rayleigh scattering loss in dB/km for
Germanium doped fiber [41

Ravleiqh scatterinq coefficient

Coherence lenqth of source

LC = 3.70756 -10 m

Tr :- 0.01 - sec Coherence time of Rayleigh scattered
due to environmental fluctuations- Not
NOT coherence time of source [31

NA := 4 ncore 2 - nclad 2

Vf 2~* Wore
Vf 2- ic- .NA

2-X

Numerical aperture of fiber
NA = 0.03855

V parameter of the fiber f5]
Vf = 0.70312

0 := 0.65 + 1.619 - Vf -1.5 + 2.879 - Vf -6

Normalised spot-sizEwo/a [2]

Backscatterina factor r2]

S = 1.41667 -10 6

ar :=
0.76

(X.
-a E

Er : -10

Lc :=

1.5

0 -. V 2

ncore 2 - nclad 2

ncore 2
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Lc -S- ar- Tr -B 360gray K- ( 1 - 2 - k ) - S r - 3600 -
2 - ncore 2 - 7

Bias from Rayleiqh Scatterinq [1]

Qray = 2.11968 -10 - deq/hr

The Calculation of Thermal Non-Reciprocity Bias

"Thermally induced nonreciprocity in the
Optics, Vol 19, No 5, pg 654-655, 1980.

A Tgrad - ncore L

6 N- N- D 2

Otherm - 3600

(dnA..dT

fiber-optic interferometer"

+ ncore - alin )

360

Bias from thermal qradients in the fiber

A th = 1.15203 -10 -3 deq/hr

2
+ Mkerr

2
+- Lray

TBias = 5.34395

2

-10 -3

2

+ Oth 2 + [Ofarad 2

deq/hr

TotalBiasError

TotalBiasError = 8.90658 -10 deq/hr
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The Calculation of Scale Factor Errors

Scale Factor chanqe due to diameter term

dK-dD - dDdT = 5.41025 -10 ppm

Scale Factor chanqe due to lenqth term

dK-dL - dL-dT

Xreduc

d XAdT

:= 100

d AdT

kreduc

dK d X :=

X 2 - C

SF1 dK-dD - dDdT

SF2 dK-dL - dL-dT

SF3 d]Kd X dXdT

= 9.34459 -10 -9 ppm

Optical source wavelength control loop reduct
factor

Reduction due to feedback loop control

Scale Factor chanqe due to wavelenqth term
dKd X - d A_dT = 4.52158 ppm

SFstability := j( SF1 + (SF2 ) 2 + ( SF3 )2

Total scale factor change from temperature
chanqes and source wavelenqth chanqes

SFstability = 4.52158
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Bias due to Quarter Waveplate

qwpretarderr = a- AT

:= sin ( qwpretarderr ) - 10 6

Retardation change from
temperature in quarter
waveplate

Scale factor error from
temperature variations across
Quarter waveplate

qSF1 = 64.7 ppm

Xcontrol

sourceretarderr

:= 1- ppm

:= 2- control
2 -

Control of source wavelength
shift - assuming wavelength
control/stabilization

Retardation change from
source wavelenqth shift

QSF2 := sin ( sourceretarderr ) 10 'Scale factor error from
wavelength shifts
in source changing waveplate
retardation

qSF2 = 1.5708 ppm

Coil Design Issues

Lofts, et.al., "Development of sensing coils for an untraminiaturized tactical fiber
qvroscope," SPIE Fiber Optic Laer Sensors X1, Vol 2070, p 142-151, 1993.

Dcore

2 - NA 2

Critical bend radius where
optical loss sharply increases

Rc = 3.02881 m
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