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Abstract

Factory capacity can only be utilized when three resources are simultaneously available:
equipment, material, and operator. Over time, the variation in availability of these three
resources interacts to produce an uneven distribution of inventory in the factory. This work
examines the impact of cross-training on responding to factory disruptions that cause spikes
in factory workload. Strategic cross-training creates a flexible workforce that can provide
short term burst capacity to mitigate these disruptions. A simulation model is presented to
predict where cross-trained operators offer the greatest impact on factory output. A pilot
study implements the recommendations of the simulation model, and the Machine
Interference metric is introduced as a metric to isolate and assess the benefits of cross-
training. Pilot results indicate that cross-training appears to contribute to factory
performance in staffing areas characterized by both high workload and high variability of
workload. Cross-training also provides several second order benefits that are not easily
linked to financial performance. An implementation plan is introduced to speed future
expansion of cross-training programs.
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1 Introduction

Motivation for Study

Semiconductor wafer fabrication is a capital intensive process due to the extreme

technological requirements and rapid obsolescence of subsequent generations of processing

equipment. Facility and equipment depreciation can contribute more than half of overall

manufacturing costs. Since staffing decisions have a second or third order effect on

manufacturing costs, issues of labor productivity do not receive the same priority or

analytical attention that is typically given to equipment productivity. Cross-training usually

happens by default rather than by design. Most decisions are executed casually or

automatically without explicit recognition that a problem even exists, much less that a

solution is obtained. In some cases, the lack of attention to operator resources can undermine

the gains in equipment performance. This research focuses on understanding the impact of a

pilot cross-training program to better utilize factory capacity.

Understanding Capacitv

Factory capacity is typically viewed as a simple function of the quantity and capacity of

equipment on the factory floor. From this perspective, equipment is the resource that limits

factory output. Even though factory output cannot exceed equipment capacity, it is also

important to recognize that three resources must be simultaneously available to turn capacity

into output: equipment, material, and operator. The implication is that capacity can be

further constrained by material release policies and operator staffing policies so that actual

factory output in practice may fall well below demonstrated equipment capacity. Staffing

policies (as well as material release policies) can be simple but effective ways to insure that

expensive equipment capacity is not wasted. Operator cross-training is an example of a

staffing policy that provides the flexibility to distribute operators in response to workload

spikes throughout the factory.

At the time of the pilot study, the market is willing to absorb all of the production that Intel

can flow through its factories. During these times of strong demand, plant capacity can be
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labor constrained, where understaffing results in inefficient use of capital equipment. During

periods of low demand, the factory may find itself overstaffed for the existing market

conditions. This demonstrates the fundamental cost tradeoff between idle labor resources

and idle capital equipment (Stafford, 1988). Additional operators increase payroll cost, while

fewer operators cause lost capacity due to the inability to keep equipment running. This

dilemma falls under the academic categorization of dual resource constrained systems

(Treleven, 1989), where both equipment and operator resources constrain capacity. This

occurs when there are not enough operators available to keep all of the equipment

continuously running at capacity. In a steady-state system, the inability of the workforce to

keep up with the production equipment will result in idle equipment. Idle equipment hurts

overall system performance either by reducing capacity at the bottleneck or by starving the

bottleneck operation. By understanding the interaction of staffing decisions with equipment

capacity in this dual resource constrained environment, overall factory performance can be

improved.

Understanding Flexibility

In the complex and dynamic environment of semiconductor wafer fabrication, there is a

continuing drive to be organizationally flexible to keep pace with both technological

advances and global competition. Shorter development lifecycles and increasing competitive

pressure require a more agile manufacturing environment that can meet the needs of a

growing number of product segments. As a result, flexibility is gaining acceptance as one of

the competitive dimensions of manufacturing strategy (Malhotra, 1990). From the shop floor

perspective, short term factory performance is strongly influenced by the variability of each

processing step. As Gershwin (1994) points out, there are only two possible solutions to

improving performance in this environment: eliminate the source of variability or limit the

diruptions caused by variability. Though both avenues should be pursued in the course of

factory improvements, cross-training focuses on limiting disruptions from existing

variability.

One difficulty in understanding the role of flexibility in a manufacturing operation is the

choice of performance measures. Manufacturing performance measures focus on cost,
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quality, resource availability, customer lead time, and level of product customization. Every

day, managers balance these competing and sometimes conflicting objectives to provide both

short term and long term value to key stakeholders, including stockholders, customers, and

employees (Hopp, 1996). By balancing short term (tactical) objectives with long term

(strategic) growth, the factory is positioned to continue delivering value to stakeholders over

time. In general, factory performance measures are used to help highlight the tradeoffs

involved with each management decision. Different weights will be given to different

performance measures based on how the firm delivers value to customers. It is important to

isolate the contribution of cross-training on each of these performance measures to quantify

the impact of the cross-training program.

Tactical Horizon vs. Strategic Horizon

Labor assignment decisions cover two different time horizons. The long-term strategic

horizon is used to prepare aggregate production plans at the plant management level, while

the short-term tactical horizon is used to control day-to-day operations at the level of first

line supervisors (Holstein, 1970 and Uzsoy, 1992). Tactical decisions are typically made

within the boundaries of the strategic constraints. For example, once a staffing level for each

shift is established, adding staff is no longer a tactical option. The tactical decision consists

of where to best use the operator headcount that is allocated to each shift. This research

focuses on quantifying and improving the short term performance of tactical decision-

making. Current approaches such as simulation and queueing models emphasize steady-state

solutions. However, the transient problems are of immediate consequence in shop floor

control. Investigations of these transient problems often do not take into account the impact

on long-term performance. As Johri (1993) notes, tactical decisions are "difficult enough to

handle without having to worry about their (long-term) implications on performance

measures. There are few, if any, indications of how these local decisions affect long-term

goals." It is important to clearly define the scope of the tactical decisions that can be

affected once strategic decisions have been locked in place.

In order to relate staffing decisions to factory results, performance metrics must match the

scope and frequency of the decision-making environment. Decision-making scope can be
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arbitrarily divided into strategic, policy, and tactical decisions. Decisions must be made for

labor, equipment, and material resources at the appropriate decision making frequency.

Examples of this categorization scheme at Intel are shown in Table 1-1. To support strategic

decisions, information needs to be aggregated over long-term horizons to help support

decisions on the size of the workforce (usually updated each quarter), the quantity of

equipment purchased, and the number of product families offered. All of these are beyond

the control of the tactical decision maker. At a more intermediate scope, policies are set to

provide a rule-of-thumb for allocating resources among staffing areas, equipment, or lots

based on their priority in the factory. Policies are usually the direct results of industrial

engineering or other analytical studies. These policies can be overridden on a case-by-case

basis, but the majority of the time the policy decision will represent the default behavior that

is followed on the shop floor.

Decision Decision Manufacturing Resource Tactical Strategic
Making Making Control Control

Scope Frequency
Labor: Size of factory workforce
Equipment: Quantity of

Strategic Annually, equipment purchased for each No Yes
As needed process step

Material: Number of product
families
Labor: Priority for staffing

Poc Every assignments Policy Analytically
Poquarter Equipment: Priority for Override Based

equipment maintenance/loading
Material: Priority for lots to run
Labor: Beginning of shift staffing

Every shift asgmn
change, assignment

Tactical cae' Equipment: Equipment taken Yes No

Evde lot down for PM
Material: Lot loaded in tool

Table 1-1 Decision Making Scope and Frequency

Tactical decisions are made by both supervisors on a daily basis and individual operators on

a lot-by-lot basis in direct response to the factory environment. Supervisors assign operators
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to cover specific equipment, and there is usually some flexibility around preventive

maintenance schedules and lot loading sequences to minimize disruptions where possible.

This leaves a great deal of discretion in the hands of the tactical decision maker, and very few

tools (other than policies) to analytically guide decisions. For real performance improvement

on a tactical level, it is important to bring some decision support information to the tactical

level. The important distinction between policy decisions and tactical decisions is that policy

decisions represent average or expected behavior over time, while tactical decisions represent

the day-to-day and hour-to-hour decisions that will fluctuate with the dynamics of the factory

environment.

Literature Review

Analysis of Dual Resource Constrained Production Systems

A dual resource constrained system has operators who are responsible for running more than

one piece of semiautomatic equipment. Since the equipment is not permanently staffed,

operators move between equipment as needed. This is a useful model for dealing with

semiconductor equipment where operators cover several machines. Operators are expected

to set up recipes, load wafers, unload wafers, and perform some preventive maintenance.

Equipment that is processing does not require an operator to be present. In wafer fabs,

processing times are very strictly controlled by recipes, so the non-availability of operators

becomes a source of variation affecting otherwise relatively deterministic processing times

(Johri, 1993). Operators are typically cross-trained to run any equipment technology in their

home area. When capacity is constrained by both equipment and operators, moving

operators can increase capacity in an area that is falling behind and causing a temporary

bottleneck. Models for adding resources such as operators are found to reduce cycle time

(increase throughput) with diminishing returns as operators are continually added (Uzsoy,

1992). These results are consistent with the results of the simulation study for operators

working in the pilot areas at Intel's development factory.

In a machine-limited job shop (where operators are assumed to always be available) research

focuses on material dispatching rules. However, when there are multiple machines that
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require an operator at the same time, at least one of the machines must wait and is interfered

with by the machine getting serviced. This is called machine interference. Stecke (1992)

describes how industrial engineers approach the machine interference problem. The typical

machine interference formulation focuses on the optimal number of machines to assign to an

operator to maximize production through the system. An alternative formulation is to decide

on the number of operators needed to run a particular number of machines to optimize

production or some other performance measure. This research follows the latter formulation

of the machine interference problem. Stecke points out that "an assessment of the amount of

machine interference is required to determine machine efficiencies, the amounts of

production, and hence profits which are obtained by varying different factors, such

as.. .changing the number of machines assigned to an operator." Typical performance

measures affected by machine interference include production rate, cost, and idle resource

time. Because of the difficulty in capturing data about the interaction of multiple operators

with multiple machines, many of the analytic methods used to quantify machine interference

are based on probability, queueing theory, or simulation. In this research machine

interference is calculated based on historical data captured directly from the equipment status

which is used to infer labor performance.

Treleven (1989) points out that the modeling research on dual resource constrained systems

has pointed to the conclusion that the frequency of reassigning operators to equipment was a

significant driver of factory performance. This result leads directly to the importance of

cross-training to provide the labor flexibility to make frequent reassignments possible. The

initial motivation for this research was based on some of the key insights collected by

Treleven, starting with the idea that cross-training has proven to be very beneficial for

factory performance. Cross-trained workers can be reassigned to match variation in

production requirements due to changes in product mix or general factory disruptions such as

material shortages. Fryer (1974) suggests that interdivisional labor flexibility has a greater

impact on shop performance than intradivisional labor flexibility. Even when long run

workload is equally distributed across divisions, having workers quickly respond to short

term changes in the workload conditions can improve factory performance more than moving

workers between work centers within the divisions. A caveat acknowledges the
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understanding that it is easier to implement intradivisional cross-training because individual

work centers share similarities, whereas divisions can have unique work environments. Each

Intel factory is organized as a collection of departments that have a high level of

intradepartmental staffing flexibility but very little interdepartmental staffing flexibility. It is

expected that cross-training between interdepartmental skill sets will provide benefits to the

overall factory.

Cross-training benefits are affected by the ratio of operators to machines, where high

machine staffing levels restrict flexibility and performance, and low staffing levels limit the

efficient use of capital resources. Dual resource constrained systems operate most efficiently

with staffing levels from 50%-75% of the number of machines. Intel staffing areas operate

over a broad range of staffing levels with pilot areas falling in the 15-55% range. When

focusing on small dual resource constrained systems, results tend to be more sensitive to

changing initial conditions than larger systems. However, the ranking order for both small

and large systems tends to be stable, suggesting that results from studies involving smaller

systems can be applied to larger systems. Since the pilot study is done at one of Intel's

smaller development fabs, it is expected that any beneficial pilot results will scale to larger

factory environments.

Cross-Training

Hopp (1996) points out that cross-training adds flexibility to an inherently inflexible system

by extending the ability to cope with changes in product mix and fluctuations in demand.

Multifunctional workers can move where needed to maintain a smooth flow of production.

In U-shaped work areas (as are common at Intel) one operator can see and attend all of the

machines with a minimum of walking, and additional operators can be brought in to respond

to changing production requirements. Having a flexible workforce is one more option

available to production managers to achieve smooth and orderly movement of material

(Holstein, 1970). According to Holstein's research, the benefits of a flexible workforce can

be offset by unnecessarily large control costs to execute assignment decisions. Holstein

recommends putting the highest priority on moving people to tools with long queues, on

main flow paths, with short downstream queues, and with processing times greater than
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downstream processing times. This research follows Holstein's insight that system

performance will be improved by local decisions that move operators to target areas with

very long material queues thus providing short term burst capacity until the target area

returns to a normal queue size. This leads to the expectation that cross-training benefits will

be greatest when flexible resources are used to respond to workload spikes.

Cross-training receives special attention from Treleven (1989) in his survey of dual resource

constrained system research, as a means of achieving more efficient use of labor resources.

An increase in operator flexibility (measured in terms of number of operator certifications or

frequency of transfers) is shown to positively affect system performance. A similar

performance benefit can also result from purchasing general-purpose flexible equipment.

However, the combination of both flexible workforce and flexible equipment only marginally

improves performance over either isolated change. In the case of highly specialized wafer

fab equipment, general purpose machines are not an economically feasible approach, so

cross-training proves to be a more realistic means of introducing flexibility to the

manufacturing floor. Malhotra (1990) employs similar logic to recommend increasing

resource flexibility to buffer manufacturing systems against variability in contrast to the less

attractive alternatives of growing inventory buffers or purchasing excess equipment capacity.

With the high value of work-in-process inventory and capital equipment at Intel, it makes

sense to design flexibility into the system wherever possible to provide a cushion against

variability.

Most of the benefits of cross-training are achieved without going to the extreme of total

flexibility, where all operators are trained to run all machines (Treleven, 1989). A goal of

this research, then, is to help understand the conditions under which a cross-trained

workforce provides the most impact. The simulation modeling for the cross-training pilot

follows the general approach of O'Ferrell (1995), by assuming that there is always an

adequate inventory of materials needed for the process. The models of O'Ferrell and this

research both build off of deterministic operator performance numbers from industrial

engineering time studies with processing times captured in the historical factory data

collection system. Simulation models use the same inputs and general data sources to
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generate the pilot area simulations. O'Ferrell carries out experiments to determine the

optimum staffing levels to maximize throughput while minimizing operator idle time.

Concave graphs show the results in terms of actual throughput through the area. The

simulation results for the pilot areas are found to mimic this qualitative behavior. Additional

results from O'Ferrell show that cross-training prevents decreased throughput when absence

rates are increased. The conclusion is that cross-training improves operator utilization while

also providing a larger pool of potential operators to cover for unexpected absences.

O'Ferrell points out that this modeling process proved very useful in extending understanding

of the manufacturing process and illuminating the benefits of cross-training. It is expected

that this research will also provide insights and intuition to the participants in Intel's complex

factory environment.

New Concepts

This research extends the current dual resource constrained system and cross-training

literature along three important dimensions. The first contribution is the application of

solutions to a real world factory environment. Several authors (Conway, 1967 and Treleven,

1989 and Gershwin, 1994) have pointed out a disappointing chasm between theory and

practice. Uzsoy (1994) sums up the general consensus in the statement: "Thirty years of

research on deterministic scheduling has had very little evidence of industrial application,

and is viewed as solving theoretical research without a sense of actual factory practice." By

simulating actual factory performance, implementing a cross-training program, and then

comparing actual factory performance both with and without cross-training, it is possible to

observe whether the theoretical benefits of cross-training are strong enough to impact a

dynamic factory environment.

This research also provides a more accurate model of manufacturing capacity for labor-

limited production systems. A better model of manufacturing capacity is needed to link the

objectives of production planning and shop floor control decisions in a wafer factory (Uzsoy,

1994). This research uses simulation to demonstrate that capacity is a non-linear function of

the number of operators available. Factory data are then collected to break down the separate

impacts of the availability of equipment, material, and operators to quantify the disruptions to

16



processing time. Machine interference (as defined in Chapter 2) is used as a factory metric to

measure the impact of cross-training, suggesting that machine interference can be used as a

feedback mechanism to address both the needs of production planning and shop floor control.

The final area for extending existing research, mentioned by Treleven (1989), is the use of

look-ahead information about the anticipated workload at work centers when making labor

assignment decisions. Semiconductor wafers flow through many processing steps with re-

entrant flow, where a wafer may return to the same machine for multiple processing steps.

Because of the large number of total processing steps, queues at individual steps are kept

relatively short to ensure low cycle times through each operation. To assess the workload at

a given work center, it is necessary to not only look at all of the wafers currently in these

queues, but also the expected arrivals of upstream wafers within the time horizon of the labor

assignment decision. This is a non-trivial calculation because of multiple product types, re-

entrant flow, and variable resource availability at each processing step.

Factory Context

This research study was carried out at one of Intel's development factories. The factory is a

dual charter facility responsible for both developing manufacturing processes for new

products and also maintaining production performance on current technologies. This

research focuses on those operators who are primarily responsible for maintaining production

performance with standardized activities. Like most semiconductor manufacturers, Intel

operations are dominated by the concerns of high capital equipment costs and a make-to-

stock mentality where production lots are rarely associated with a specific customer order.

This results in a clear management emphasis on maintaining high wafer throughput and high

equipment utilization (Uzsoy, 1992). Even though an adequate labor force is required to

sustain factory output, Intel management does not traditionally give rigorous analytical

attention to labor performance, instead focusing on the performance of capital equipment.

Because of the high equipment costs, improvements in capital equipment performance have a

first order impact on Intel's bottom line. For the purposes of this analysis, the number of

machines, capacity per machine, and factory layout are treated as fixed constraints, with the
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understanding that significant time and effort is already being applied to these high-leverage

challenges.

Long term factory staffing is acknowledged to have a second order effect on factory

productivity, typically receiving management attention through negotiating the optimal

staffing levels. There is a continual positive tension to meet increasing production targets as

factory floor personnel want higher headcount and upper level managers want higher

productivity out of the same headcount to meet the production goals. Operators are currently

assigned to a home area where they are cross-trained to run most or all of the equipment.

This is necessary to cover for absences such as vacations, sick time, and training. However,

it is not easy for current staffing to respond to workload spikes in one area without calling in

operators from other shifts to put in overtime. Since workload spikes cannot always be

anticipated, and have an uncertain duration, it is not always possible to quickly staff up an

area by using overtime. Cross-training across functional areas is expected to help factory

floor personnel deliver higher productivity by being better equipped to respond to workload

fluctuations.

Factorv Environment

Every physical system has a finite capacity that changes with time and events. For the wafer

factory, each critical processing step has a dynamic capacity that changes with product mix,

equipment availability, factory congestion, setup requirements, rework, quality (yield), and

operator availability. In contrast to other types of manufacturing, wafer fabs spend a large

part of clock time performing scheduled and unscheduled maintenance (Johri, 1993). Uzsoy

(1992) makes the statement that "the main cause of uncertainty in semiconductor

manufacturing operations is due to unpredictable equipment downtime." Interactions

between separate equipment failures can cause conditions to quickly propagate through the

factory as a result of re-entrant flow where multiple steps can take place on the same tool.

Another source of variation is the diverse equipment characteristics, where processing times

can range from several minutes to several hours and the quantity of wafers simultaneously

processed on a single machine can range from 1 to 125. This causes very different arrival

patterns for downstream tools. Because of re-entrant flow, a single tool can be fed by a mix
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of steady and lumpy processing volumes. The factory environment is also characterized by a

large volume of data collection (Uzsoy, 1992). The challenge is to identify the key pieces of

data that can be used to assess factory conditions and recommend appropriate actions that

increase the dynamic capacity as well as the utilization of that capacity.

Currently, Intel's factories are designed around constraint tools, near constraint tools and

non-constraint tools. These categorizations are based on the availability-utilization gap that

represents an allowable amount of idle time when equipment is available but not processing.

This idle time represents how much of a capacity buffer is built in to each tool. Constraint

tools (usually the most expensive) are expected to run with the least amount of idle time, and

require the highest material buffers to achieve the required utilization. Near constraint tools

are scheduled to have a moderate amount of idle time as well as a moderate queue size. Non-

constraint tools (usually the least expensive) have the highest idle time, providing the largest

capacity buffer, and are characterized by the shortest queues. From a scheduling perspective,

lots should quickly travel through non-constraint processing steps with individual cycle times

kept close to processing times. Longer cycle times (still on the same order of magnitude as

processing times) are expected for constraint tools.

The factory is labor constrained, meaning that there are not enough operators to keep all of

the tools in the factory running at the same time. This makes the effective capacity of each

equipment technology depend on whether there is an operator available to load it. Effective

capacity is defined by Hopp (1996) to be the natural capacity (based on processing time

alone) adjusted to reflect the expected availability of resources. Factory capacity can only be

utilized when three resources are simultaneously available: equipment, material, operator.

Since multiple operators cover multiple tools, the number of operators in a factory staffing

area is one factor in determining the usable capacity of the area. Cross-training can increase

workforce agility to ensure that certified operators are available to provide the excess burst

capacity in response to inventory build up. Operators who have been with Intel for a long

time become cross-trained as changes in technology and market conditions change the

demands on the different functional areas within the factory. However, as long as a

technology does not become obsolete, specialization is usually encouraged. It is typical for
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senior operators to be promoted to maintenance technicians as part of career progression.

Specialization keeps maintenance technicians in their home area, where they can also fill in

for operator vacations, training, and breaks as long as there are not equipment failures or

other maintenance activities required in the area. It is a novel concept at Intel to value the

skills of cross-trained generalist operators who provide manufacturing flexibility.

Tactical Performance Measures Already In Use

Manufacturing performance is currently tracked along a variety of dimensions. At Intel's

development Factory, typical daily performance measures are listed in Table 1-2.

Performance measures are aggregated at the levels of individual process steps, equipment

families. departments, and across the entire factory depending on the audience of the report.

Typically, if reported metrics fall significantly below goals, factory conditions are

investigated to look for staffing issues, excessive equipment down time, inventory build-up,

quality problems, or other unplanned occurrences. Labor performance is only measured

Performance Metric Performance Goal
Dimension

Production Value-added processing steps Shift goal for value-added
Volume completed during shift processing steps (set by

(irreversible) Industrial Engineering)

Total processing steps completed Shift goal for total processing
during shift (including inspection, steps (set by Industrial
washing, etc.) Engineering)

Manufacturing WIP turns (shift output divided Shift goal for WIP turns (set by
Lead Time by work in process) Industrial Engineering)

Cycle time (weekly average) Average shift cycle time goal
(set by Industrial Engineering)

Idle lots (in queue for given Zero idle lots
length of time)

Quality Line Yield Shift goal for line yield (set by
Industrial Engineering)

Work In Process Beginning of shift inventory Inventory goal (set by Industrial
Inventory End of shift inventory Engineering)
Equipment Availability Availability-Utilization gap goal

Utilization (set by Industrial Engineering)

Table 1-2 Typical Factory Performance Measures
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implicitly as a component of the shift-end goal formulas which assume a static labor

efficiency. Currently, Intel does not provide regular feedback to assess the impact operator

coverage has on factory performance.

Labor performance is a difficult manufacturing variable to quantify in a meaningful and

consistent way. Variables such as operator training, experience, vacation schedules, break

schedules, efficiency, and skill sets interact so that any given factory event may result in a

range of responses. For example, when a visual inspection uncovers an irregularity in the

surface of a wafer, an expert operator may be able to troubleshoot the problem on her own, a

typical operator may need to involve quality specialists or engineers, and an operator in

training may need to pull a senior operator off of another job to get a second opinion.

Usually, variables such as equipment status and lot status are tracked in detail to summarize

the aggregate impact on equipment capacity and inventory build up. However, for each

factory event, it is not clear how long it takes an operator to notice the event, how many

additional operators are involved in responding to the event, and how efficient the response

measures are. Factory data is currently tracked for equipment and material, but not for

operators. This research uses the detailed equipment and material performance data, and

infers operator performance based on assumptions about how factory data is segregated into

distinct tool states (listed in Table 2-1). This inferred operator performance fulfills a need for

better feedback to the tactical decision makers on the factory floor as well as to the long

range production planners who set targets for capacity and productivity that are used to

forecast future production capability.
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2 Measuring Cross-Training Impact

Decision Making Context

Tactical decisions to assign cross-trained workers are primarily based on identifying areas

that need an immediate boost in output or effective capacity to handle workload spikes.

Typically, capacity is calculated based on tool processing speed without incorporating the

availability of operators. Effective capacity, as defined by Hopp (1996), represents the

maximum amount of output for a given set of tools and operators and a given product mix.

The decision to assign a cross-trained worker to a target area is based on three factors: 1) the

effective capacity benefit of having surplus operators in a target area, 2) whether the

workload exceeds the current effective capacity (before a worker is added), and 3) the

relative effective capacity benefit from adding operators to the target area rather than an

alternative area. Because people represent the most flexible manufacturing resource, it is

difficult to track and quantify the behavior of individuals interacting with the manufacturing

system. At the same time the factory has multiple objectives that are constantly balanced to

meet changes in markets and technology. In the complex, dynamic factory environment it is

challenging to quantify these benefits and tradeoffs.

Interdepartmental cross-training enhances tactical options by increasing staffing flexibility.

Increasing flexibility through interdepartmental cross-training is the scope of this pilot study,

shown as a pyramid (Figure 2-1). At the bottom of the pyramid, the first step (with the

highest impact) is to establish a plant layout and to decide how to group different equipment

technology. Intel's departmental grouping of equipment results in a similar grouping of

operator specialists. Flexibility is enhanced by pooling similar equipment. At the second

level of the pyramid, intradepartmental cross-training helps to increase flexibility by pooling

similar operators who can all run the pooled equipment. The third level, where the scope of

the pilot study starts, represents interdepartmental cross-training which improves flexibility

by allowing operators to move among their home areas. This extends the pool of operators

who may be available depending on the workload in their own home area. When two

separate areas have similar skill sets, cross-training has a very low cost, and provides a

pooling benefit to handle workload spikes in either area. The pyramid is capped by an
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Figure 2-1 Impact of Staffing Flexibility

iterative fine-tuning of implementation and optimization, where refinements on all three

levels are made based on performance results.

Effective Capacity and Expected Output

The effective capacity of a department or other staffing area in the factory is determined by

the equipment run rate, equipment availability, and operator availability as illustrated in

Figure 2-2. Effective capacity, expected material, and expected output are all measured in

units of wafer volume per unit of time. The thick dashed-line curve in the middle represents

the baseline effective capacity for a given set of equipment. Effective capacity increases and

then levels off as the number of operators increase. When there are zero operators, no

material can be loaded, resulting in an effective capacity of zero. As operators are added,

equipment can be loaded to the extent that there are operators available. The effective

capacity approaches the limit set by equipment run rate and equipment availability (assuming

there is always an operator available for each setup, loading, and unloading operation). The

entire curve shifts upward if additional equipment capacity is added, as represented by the

top curve.
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Figure 2-2 Expected Output vs. Number of Operators

The expected material per unit time is independent of the effective capacity. If the expected

material is less than the effective capacity, as shown by the horizontal line in Figure 2-2. then

the expected output will be limited by both effective capacity and expected material, as

shown in the bottom curve. On the left end of the Expected Output curve, the area is

understaffed and capacity limits the output. As the number of operators increases, the

effective capacity increases, but the Expected Output can never exceed the Expected

Material. For a sufficiently high expected material, the expected output is the same as the

effective capacity since it is no longer constrained by material. Adding operators increases

effective capacity, but the additional capacity will only be used to the extent that there is

material available to run.

In general, the effective capacity is a function of the processing speed of each tool (where

processing speed is determined by product mix) as well as equipment availability. A product

mix that can be processed faster or a higher equipment availability shifts the effective
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capacity curve up. A product mix that must be processed slower or a lower equipment

availability shifts the effective capacity curve down. Each new factory event that causes a

significant change in the product mix becomes a new decision point for adjusting staffing

assignments. From the perspective of the tactical decision maker, product mix is a constant

quantity over the time horizon of the decision (by definition). Since product mix is set

exogenously, the only tactical decision is the number of operators to allocate to each area. At

the next event that substantially shifts the curve, another staffing decision will be made.

Expected Workload

Equipment downtime or personnel absence in certain key pinch points in a wafer factory

causes an immediate queue explosion where material builds up in one location

(O'Ferrell. 1995). This can cause a sudden increase in cycle time through the factory until

the long queue is processed through the area. Expected output will only approach effective

capacity when the expected workload exceeds the effective capacity. Expected workload is

the expected amount of material to be processed during a given time period including both

material in the queue and material expected to arrive from upstream processes. Low

workload relative to effective capacity will result in idle resources (tools or operators).

Adding resources when the queue is zero increases effective capacity, but does not increase

the expected production output of the area, because the additional resources are expected to

be idle. High workload relative to effective capacity will result in high utilization of

resources and high expected output. Holstein (1970) warns against assigning operators to

areas with short queues because they will quickly reduce the material queue to a very low

level and therefore soon cause the potential for another transfer to another area. Moving

operators from areas of low workload to areas of high workload provide the best performance

when choosing between staffing locations for a cross-trained operator.

Capacity Tradeoff

The marginal benefit of adding an operator is the product of complex interactions between

sequencing and the simultaneous availability of three resources: material, equipment, and

operator. Long term strategic plans are based on expectations of average workload and
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Effective Capacity Tradeoff

Area A Area B
Ceg'A Ceff B

an an A aC eff,B

an'.

Increase Staffing

nA nR

*y = Staffing before transferring operators from B to A
g = Staffing after transferring operators from B to A

CeffgA = Effective capacity for area A
Ceff B = Effective capacity for area B

nA = Number of operators in area A
nB = Number of operators in area B

fA marginal benefit of nA th operator in area A

aB - marginal benefit of n, th operator in area B

Figure 2-3 Capacity Tradeoff

effective capacity to set overall factory headcount. Short term tactical decisions require

knowledge of the concave relationship between effective capacity and the number of

operators. Priority for staffing is given to the area with the higher workload relative to

effective capacity. Since there is a finite supply of operators, every cross-trained operator

added to Area A becomes unavailable to work in Area B. Figure 2-3 illustrates the tradeoff

of moving operators from Area B to Area A. The gray dot on each curve represents the initial

distribution of operators, where Area A has a relatively low number of operators and Area B

has a relatively high number of operators. The effective capacity of Area A is on the left end

of the curve, while the effective capacity of Area B is well into the right end of the curve.
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After operators are transferred from Area B to Area A, the distribution of operators shifts to

the points identified by the black dots on each curve. Because of the concave shape of the

curves. additional operators provide a diminishing marginal benefit in. This corresponds to

an increasingly negative marginal impact on Area B. If the objective of the decision maker is

simply to maximize the aggregate output of Area A and Area B, she will set staffing levels so

that the marginal benefit of additional manhours in Area A is equal to the marginal benefit of

additional manhours in Area B. However, tactical decisions are primarily based on

identifying areas that need an immediate boost in effective capacity to handle workload

spikes. The tradeoff focuses on how many operators Area B can afford to give up to provide

short-term burst capacity to Area A. Burst capacity is an increase in effective capacity

beyond normal capacity levels usually in response to the buildup of a large queue of material.

The key assumption is that Area A has a high workload where output will be close to

effective capacity, while Area B has a low workload (a small queue of material) so that

decreasing capacity will not significantly change output. Operator transfers should move

operators from areas of low workload to areas of high workload to provide the best

performance improvement.

Performance of a Single Tool

Machine Interference Definition

Machine interference refers to the time that equipment is available to run but is waiting for

an operator to finish servicing other equipment (Stecke, 1985). By definition, equipment

must be in one of the following mutually exclusive states: 1. Processing, 2. Down

(unscheduled repair or scheduled maintenance), 3. Starved (equipment available but no

material), 4. Machine interference (equipment and material available but no operator) as

summarized in Table 2-1. Machine interference only counts the time when both equipment

and material are simultaneously available but the machine is not processing. If equipment is

down at the same time an operator is unavailable, the state is defined as down. This

hierarchy reflects the fact that equipment and material availability set the maximum effective

capacity within the horizon of tactical decisions.
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Equipment Conditions Included in State

State

Processing - Processing material
- Loading/unloading material (usually staged while tool is processing)
- Processing at partial capacity (not all chambers processing)

Down - Tool failure
- Scheduled maintenance
- Quality excursion (may require operator time)
- Other tool disposition (may require operator time)

Starved - No lots to run on tool
- Batch delay waiting to accumulate multiple lots (for batching tool)

Machine - Tool and material available, tool not running (waiting for operator)
Interference

Table 2-1 Distinct Tool States

Machine Interference Calculation

Machine interference is on a percentage scale from zero to 100%. Zero machine interference

indicates that an operator is available every time both equipment and material available to

run, while 100% machine interference indicates that operators are never available forcing

available equipment to remain idle. Stecke (1992) points out that it has long been recognized

that machine interference times are inconvenient to obtain directly because it is difficult to

directly time simultaneous events for several machines. As a result, most studies define the

amount of machine interference by developing mathematical relationships that either treat

events deterministically, or use queueing theory or binomial expansions.

For Intel's factory, machine interference for a given tool is based on observations of the tool

state recorded every 15 minutes. Individual observations are counted across a shift and then

divided by the total number of observations to come up with the measures of processing time,

down time, and starved time that are used to indirectly calculate machine interference. This

formulation refines the formulations suggested by Stecke (1992) by also separating out

starved equipment.

28



n = Total number of state observations (collected every 15 minutes)
p, = 1 when equipment is processing at observation i

= 0 otherwise
di = 1 when equipment is down at observation i

= 0 otherwise
si = 1 when equipment is starved at observation i

= 0 otherwise

m = Average equipment machine interference across n observations

_E Pi Edi Ysi
M =1- - L - ' (2.1)

n n n

Equation (2.1) represents the machine interference performance of a single tool. It is

indirectly measured as the percent of observations where the tool is not processing, not down,

and not starved (based on the categorizations given in Table 2-1).

Availability- Utilization Gap

Intel typically focuses on the availability-utilization gap as a measure of how efficiently

capacity is used. The gap measures the amount of time that equipment is available to run,

but is not processing. The equipment is idle either because of lack of material or lack of

operators. The availability-utilization gap is used to evaluate actual performance versus

planned performance. As shown in Figure 2-4, when there is low workload (low queue and

infrequent arrivals), additional material is needed before the amount of processing time will

increase. The distribution of low workload states (Down, Starved, Processing) does not

change when operators are added. However, when material is added to produce a high

workload (without any additional operators), the equipment has material to run and is no

longer starved. The gap does not change, since the available equipment and material both sit

idle waiting for an operator (machine interference). When there is high workload and

operators are added to cover the additional production volume, the elimination of machine

interference can significantly increase output. Idle equipment no longer has to wait for an

operator to load material and the availability-utilization gap is reduced. Adding operators to

increase effective capacity provides more of a benefit when there is high workload.
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Figure 2-4 Role of Workload in Reducing Gap

Performance of Multiple Tools

Staffing Areas

Factory bays, grouped roughly by processing technology, serve as the natural units for

staffing decisions. A given staffing area may consist of one or more bays covering

anywhere from 5 to 25 tools. Each staffing area is characterized by the following traits:

. Tools are roughly grouped by process technology

. Each area can have multiple types of tools

. Operators are 100% cross-trained to run all tools in their home area

. All area operators report to the same supervisor
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Figure 2-5 Staffing Areas A and B

An example of two single bay staffing areas is shown in Figure 2-5. Four Area A operators

are all trained to run the two types of tools found in Area A, and three Area B

operators are trained to run the two types of tools found in Area B. One additional cross-

trained operator is trained to run all four types of tools. Strategic planning decisions set the

staffing levels in each area based on the expected maximum effective capacity (which is

calculated from long run averages or future expectations of product mix and tool

availability). For an operator who does not have a home staffing area, tactical decisions can

simply assign the cross-trained operator to either Area A or Area B based on the area with

the higher workload. A more realistic tactical environment would assign the cross-trained

operator to home Area B, and then shift the cross-trained operator whenever Area A

experiences a significant spike in workload at the same time that Area B has low workload.
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Extension of Single Tool Formulation

The benefits of assigning cross-trained workers are based on boosting the effective capacity

to handle workload spikes across an entire staffing area. The machine interference formula

given in Equation (2.1) for a given tool is easily extended in Equation (2.2) to give a single

machine interference value that represents the performance of the entire staffing Area A,

consisting of k tools.

n = Total number of state observations (collected every 15 minutes)
Pki = 1 when tool k is processing at observation i

= 0 otherwise
dk, = 1 when tool k is down at observation i

= 0 otherwise
s, = 1 when Tool k is starved at observation i

= 0 otherwise

M~ = Average machine interference for all tools in Area A

Pki Z Z di Z Z Sk,

m, =1- k i - k i k i (2.2)
n n n

Equation (2.2) is used to evaluate the how well a group of operators assigned to a single

staffing area are able to sustain a high level of effective capacity across a set of equipment.

The average machine interference for Area A is indirectly measured as the percent of all

Area A tool observations where the observed tool is not processing, not down, and not

starved. High effective capacity is only important when there is a high workload (and low

starvation) so that the availability-utilization gap closes. If there is a specific bottleneck tool

that should receive priority over other tools in the staffing area, then Equation (2.1) is more

appropriate to assess the performance of the bottleneck tool in isolation. The appropriate

formulation of machine interference measures the performance of the staffing area. Because

the staffing area represents the tactical decision-making unit for assigning operators,

reporting on machine interference is a useful way of both providing feedback and evaluating

the performance of the tactical decision-maker who assigns cross-trained operators.
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Data Collection

Performance measures need to reflect the scope and frequency of the decisions they are

supporting. Strategic planning performance measures can be aggregated across families of

equipment and products and across long time horizons. Tactical performance measures need

to feed back more detailed and current information. For Intel's cross-training pilot, the

natural decision-making cycle for labor assignments repeats at the beginning of each shift

based on the status of equipment, work in process inventory distribution throughout the

factory, and the labor pool available for staffing. This environment is monitored throughout

the shift and adjusted as needed.

One of the obstacles in establishing an analytical treatment of labor has been that current

factory data collection systems do not collect and report data from the perspective of staffing

areas. A set of equivalent tools can be spread out across multiple staffing areas, and in some

cases can be paired with different process technologies. Factory reports tend to aggregate

across the entire set of equivalent tools, regardless of where they are physically installed or

how they are staffed. The resolution of factory data collection and archiving determines

whether the performance of individual tools, individual lots, and individual operators can be

separately monitored. Intel's historical data collection system archives availability data about

individual tools, but aggregates the other information across tool types to simplify the

calculation of various performance measures. If a tool fails, it is possible to find out

specifically which tool went down. However, if four tools are running and a fifth tool is

starved, for the purposes of performance metric computation, it is not possible to identify

which tool was starved. This presents a problem for tools installed across multiple staffing

areas, because the data resolution does not provide enough information to correctly assign the

starved tool to only one staffing area. Since it is difficult to track the specific interaction of

each operator with each tool, the machine interference calculation given in Equation (2.2) is

not always feasible.

As a practical measure, machine interference metrics are calculated only for those types of

tools that are either entirely within one staffing area, or that are dominated by the

performance of one staffing area. For example, the first two tools of Area A shown in Figure
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2-5 are the same type of tool. If there are also three additional tools of that same type

scattered in different areas, the Intel data collection system will automatically sum the

performance across all five tools before archiving the data. This prevents the machine

interference calculation from isolating the performance of the two tools in Area A. The

convention used in this research is to leave ambiguous tools out of the calculation, instead

using the performance of the remaining tools as a proxy for the actual performance of the

entire staffing area. As staffing areas get more analytical attention, data will be archived at a

finer resolution to allow more flexible analysis and reporting, so future information systems

will eliminate the need for using a proxy. However, actual simulation models and

performance metrics in this research used the proxy method in order to isolate cause and

effect within the constraints of Intel's current factory collection system.
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3 Identifying and Simulating Pilot Areas

Selecting Pilot Areas

With the theoretical benefits of cross-training understood, a pilot cross-training program is

established to empirically capture results in the actual factory environment. A cross-

functional team representing first-level supervisors, second-level supervisors, the training

department, and the industrial engineering department is responsible for defining the pilot

program. Operators are typically trained to run all of the tools in their home staffing area.

The cross-training in this research refers to further training of operators to become

proficient running all the tools in some complementary staffing area where they can be

moved in response to factory needs. Since the key benefit of cross-training operators

between staffing areas is to provide additional burst capacity to a given area, a good pilot

should focus on an area with high workload as well as high variation in workload. The first

staffing area in the pilot, Area A. is a high-traffic area for material in the factory, so it

exhibits both high workload as well as high variation. For the pilot study, a second staffing

area, Area B, must be selected so that cross-trained operators will be able to move between

Area A and Area B as needed.

Complementary Workload

Cross-trained operators will only be available to supply burst capacity at times when their

home area can afford to give them up (usually when workload is below capacity). Analysis

of the correlation between workload in the home area and workload in other areas in the

factory can be used to filter out staffing areas that are unlikely to have surplus operators

available when needed. If two areas are perfectly correlated, then a workload spike in the

home area corresponds to a workload spike in the complementary area, so both areas will be

capacity-constrained regardless of where the cross-trained operator is assigned. However, if

the two areas have perfect negative correlation, then a spike in workload in the home area

corresponds to low workload in the complementary area, so the complementary area can

afford to run short-handed. Similarly, a lull in workload in the home area corresponds to a

spike in the complementary area, so the home area can afford to give up the cross-trained
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Figure 3-1 Queue Size Variability for Areas A and B

operator to provide additional burst capacity where it is needed. The variation of queue size

at the beginning of each shift is used as a measure of workload as shown in Figure 3-1. The

vertical axis is scaled in terms of the number of standard deviations from the mean. Each

data point represents the queue length at the beginning of a shift. Opportunities for cross-

training are indicated in the high spikes for either area by itself. Since baseline staffing

levels are set based on static estimates of workload using aggregate demand forecasts, sudden

spikes can overwhelm the baseline effective capacity and create a need for additional short

term burst capacity. Similarly, queues falling significantly below the mean indicate that

operators can be made available to an area in need. The correlation between Area A and

Area B is 0.031, so that the two areas are essentially uncorrelated. This makes the two areas

reasonable candidates for cross-training because the timing of workload spikes are spread

over different shifts. This allows operators to move to the area that is experiencing a

workload spike. A cross-trained workforce does not add value when demand for burst
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capacity is synchronized between the two areas. When multiple areas are experiencing

workload spikes, having cross-trained workers will not provide any additional benefit beyond

the existing intradepartmental cross-training.

Operator Availability

Cross-training pays off when an operator is available to immediately leave her home area in

response to a workload spike in another area. The decision on where to cross-train operators

(for the pilot as well as for normal operations) is largely determined by expectations for both

operator availability and operator effectiveness as listed in Table 3-1. Operator availability

is viewed from the perspective of the area experiencing a workload spike. A cross-trained

operator is available to immediately provide burst capacity only when she has the necessary

certifications and there is not a spike in workload in her home area. The amount of flexibility

in responding to factory workload spikes is driven by the size of the cross-training pool. This

pool of operators can be quickly expanded by aggressively pursuing cross-training in those

areas that require a minimum of training time and then keeping those certifications current

Goal Selection Description
Criteria

Operator Complementary - Negative or weak workload correlation
Availability workload

Minimize - Operators who already have certifications outside
training time their home area

- Tools with similar technology and operator
procedures

Stable process - Operator procedures do not change frequently
- Operator certification stays current without

additional training requirements
- Tools with low complexity that do not require

special expertise
Operator Operator fit - Ability to deal with ambiguity
Effectiveness - Works well with new people

- Positive attitude
Low risk of - Avoid tools that can damage many wafers
misprocessing simultaneously

- Avoid tools that require setup expertise

Table 3-1 Pilot Area Selection Criteria
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with the minimum amount of additional effort. Operators spend at least six weeks training

for each new equipment certification. Leveraging existing certifications and looking at

equipment with similar operator procedures can minimize the amount of time operators

spend in training. For equipment that does not change dramatically across product

generations, operator certifications are less likely to incur future re-training costs. If

operators are cross-trained on rapidly changing technology, then their certifications are likely

to be out of date when a workload spike triggers demand for those skills. Increased operator

availability drives the process for selecting which areas to add to the cross-training pool.

Operator Effectiveness

Operator availability contributes to the effective capacity, but delivering on this gain also

requires the operator to be effective outside of his home area. Individuals who are expected

to join the pool of cross-trained workers need to be comfortable dealing with ambiguity,

working with new people, and promoting a positive attitude. Because the reporting

relationships at Intel are based on the home area, when an operator moves, he is working

outside of the responsibility of his direct supervisor. This will likely result in exposure to a

different management style and different expectations. The teams that run each area also

have their own ways of handling work and dividing responsibilities among team members.

The cross-trained operators helping out in the area need to be able to seamlessly integrate

into the flow of the team and sense how best to help alleviate the spike in workload. People

who do not possess these skills and sensitivities will not likely provide a great deal of value

even when they are physically available to work. It is also important to recognize and

control the risk of misprocessing for new operators inserted into a dynamic team situation.

To minimize the exposure to misprocessing costs, temporary relief operators should not be

responsible for batch tools, where a mistake can simultaneously damage many wafers, or for

tools that require a great deal of setup expertise. Instead, home area operators who run those

high-risk tools every day should be responsible for continuing to run them in periods of high

workload. The cross-functional team responsible for defining the pilot program screened the

selection of pilot areas and operators for this research through the criteria for operator

availability and operator effectiveness.
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Pilot Staffing Areas

Two pilot areas are selected to empirically investigate the benefits of cross-training. Since

there are four different shifts at Intel, two shifts were involved in the pilot and two shifts

maintained their pre-existing workforce as an experimental control (no newly cross-trained

operators within scope of pilot program) as shown in Table 3-2. Area A includes a single

room with operators that reports to one supervisor while Area B includes two rooms with

operators that report to another supervisor. All operators with a home in Area A are certified

to run all of the A equipment and all of the operators in Area B are certified to run all of the

B equipment. Typically five operators are on the payroll for each shift for Area A but only

four actually staff Area A during each shift. The extra operator slot covers vacation, sick,

training, or other reasons operators are not working in the factory. Area B has six operators

on the payroll for each shift but only five actually staff Area B during each shift. Flexible

staffing for Areas A and B comes from two newly cross-trained operators for the pilot

program for each of the pilot shifts. These pilot operators start in other areas in the factory,

but they already have certifications on most of the equipment in Areas A or Area B. As they

are cross-trained, they rotate in to Areas A and B in such a way that the total number of

operators on the payroll stays fixed. All shifts (including the control shifts) have the option

of calling in Area A and B operators from each other's shift for overtime work. In general,

the flexibility within each area is used to cover for vacation, training, and sick leave. This is

a common dynamic in many of Intel's staffing areas that already provides a first order benefit

of pooled operators and pooled machines. The benefit of cross-training between these

existing pools is additional burst capacity to handle increases in workload spikes.

Areas Payroll Typical Source of Staffing Flexibility
Operators Staffing

A 5 4 - Newly cross-trained operators for pilot (2/shift)

B 6 5 - Overtime operators from other shifts

Table 3-2 Cross-Training Pilot

39



Modeling Effective Capacity of Pilot Staffing Areas

To help understand the marginal tradeoffs for staffing, a simulation model was created for

each pilot area using ASAPT M software from AutoSimulations Inc. Intel has a simulation

modeling team that has created a factory model called NexSIM. It primarily models factory

performance without taking labor resources into account. The pilot area models started with

the maintenance schedules and failure rate information already loaded into the NexSIM

model and added specific tool performance and operator performance variables for the pilot

areas from the sources shown in Table 3-3. Most machine and operator times are assumed to

be deterministic based on the high level of automation covering both processing and the

operator interface. Operator maintenance, preventive maintenance, and tool failures are

defined to follow statistical distributions as listed in Appendix A. All values assume a

constant product mix, representing the planned factory loading for the duration of the pilot.

Operators are assumed to work 80% of their shift, with 20% of the time off for breaks. Break

times are staggered to avoid having more operators than are necessary take a break

simultaneously.

Variable Source
Tool name Factory tool matrix (maintained by
Number of tools in each pilot area the equipment planning group)
Tool processing time Actual cycle time report (from

factory computer system)
Operator class Labor script files
Operator get (from queue) time (based on industrial engineering
Operator put (to next queue) time studies)
Operator load time
Operator unload time
Lot identification time
Mean time between operator maintenance events
Mean time to complete operator maintenance
Operator break schedule Existing NexSIM files (based on
Mean time between preventive maintenance events Intel's simulation modeling team)
Mean time to complete preventive maintenance
Mean time between tool failure
Mean time to repair

Table 3-3 Source of Simulation Inputs
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Modeling Approach

The two pilot areas are characterized in Table 3-4. Area A has 11 total tools grouped into

three different process technologies. Each process technology requires a separate operator

certification. There are only two independent material queues because two of the

technologies are always processed in series before sending material to the next downstream

process. Of the 11 total tools in Area A, only 9 proxy tools are used to report simulation

output. The number of proxy tools represents those process technologies that can be easily

separated out in factory data collection systems (as discussed in the Data Collection

Considerations section in Chapter 2). The average processing time per lot is 41 minutes

which drives the frequency of demand for an operator. The average amount of time required

for an operator to get, load, and unload a lot is 6 minutes. Area B has 23 tools representing

nine different process technologies, fed by 7 independent material queues. Only 13 proxy

tools in Area B can be easily separated out in factory data collection systems. The average

processing time is 100 minutes per lot with 6.5 minutes of operator time required to get, load,

and unload each lot.

Pilot Rooms Proxy Tools/ Process Material Average Average
Area Total Tools Technologies Queues Process Operator

(Certifications) Time Time
Area A 1 9/11 3 2 41 min/lot 6 min/lot

Area B 2 13/23 9 7 100 min/lot 6.5 min/lot

Table 3-4 Characterization of Pilot Areas

Each simulation run starts with empty tools, and an infinite queue of wafers in each

independent queue. Simulation runs lasted for one 12-hour shift, with twenty repetitions to

average out the occurrence of random events. In order to capture the marginal benefit of an

additional operator, the first simulation run starts with just one operator for each pilot area.

An operator is added on each round of simulation runs until ten operators are staffing each

pilot area. Simulation output provides the number of lots complete, final tool utilization and

lot cycle time. The simulated data does not provide an exact prediction of the output

expected for each staffing level, since there are factors unrelated to queue length such as

downstream queue conditions, tools out of service for extensive upgrades, or other dynamics
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that would be known by a supervisor at the time of a staffing decision but are not captured in

the simulation model. Because the simulation model takes into account the first order

effects, the relative marginal value of adding an operator is still valid and considered to be

useful decision support information by the supervisors.

Model Output

The simulation runs produced two sets of curves for each of the pilot areas (Figure 3-2).

Production rates are given as a percent of maximum throughput, tool utilization is the percent

of time the tools are processing, and cycle time is given in number of minutes to

process each lot, including any waiting that occurs after leaving the initial queue. The

horizontal axis represents the number of operators working for a full shift in the area. An

operator working for half of a shift counts as half of an operator. The simulation curves

represent the effective capacity which is the maximum possible output for each area. The

actual pilot production and staffing levels are shown as individual data points below the

simulation curves. Operators are needed to load and unload each tool before and after each

processing step. Since the simulation assumes an infinite queue of material, the total number

of tools and the average process time dominates the performance of each pilot area. Area A

has 11 tools with a relatively short average processing time of 41 minutes, resulting in high

demand for operator time. The first graph in Figure 3-2 shows that throughput and tool

utilization both increase dramatically until a staffing level of about five operators. The

marginal benefit of additional operators in Area A drops as the throughput approaches the

limit determined by tool processing speed. With only one operator, processed material waits

to be unloaded from tools, causing high cycle times. As operators are added, they become

available to load and unload tools, resulting in a drop in cycle time, increased tool utilization

and increased throughput. The actual results indicate that output stays relatively close to

effective capacity for Area A, and staffing levels are typically kept near the steep slope at the

left end of the curve.
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Area A - Simulation Results
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Figure 3-2 Simulation Results

Area B has 23 tools with a long average processing time of 100 minutes. The curves for

Area B (Figure 3-2) more slowly approach the limiting case because there are so many tools

to load and unload. Additional operators fill in gaps caused by break schedules and better

respond to simultaneous demands for operator time. Because of the long processing time and
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the large number of tools, the marginal increase in output for each additional operator is less

in Area B than in Area A. The actual results indicate that output stays well below effective

capacity for Area B, and staffing is kept near the middle of the curve where it has already

started to flatten out. This indicates that Area B is more likely to be overstaffed than Area A.

Tactical Decision Support

The simulation output is used to assist in the allocation of operators across the pilot areas,

rather than to specify an optimal solution. The role of a decision support tool is to get the

user into the neighborhood of a good solution that can then be modified manually to

accommodate constraints not captured in the model. Any model simplifies the problem in

order to be generally applicable to many situations. As a result, model output should be

combined with judgment and data from other aspects of the real problem. The decision

maker should have an idea of the consequences of simple alternatives that might not

dominate the decision. but should at least be considered in making it (Conway, 1967). By

understanding the expected availability of equipment, material, and operators for each pilot

area, supervisors can better distribute operators to areas of high workload to provide

additional burst capacity without significantly lowering output in low workload areas.

Workload Report

Current factory reports do not present data separated and summarized by staffing units. In

order to predict the incoming WIP for a shift, supervisors must spend time every shift

reorganizing and recalculating the standard reports. To support tactical decision-making for

the supervisors in the pilot areas, a separate report was created to present workload

information in the proper grouping, together with the results of the simulation. This report

captures both current queue levels and expected arrivals based on historical cycle times and

current queue levels for upstream process steps. An additional piece of data in the report

shows ergonomic impact in terms of number of lot lifts and lowers required by each operator

to meet a given level of output for each staffing level. The estimate is based on predicted

material flow and the ergonomic model for each pilot area. This reminds the supervisor that

operators should not be exposed to repetitive motions beyond a factory-wide threshold. The

supervisors compare current workload, the marginal output tradeoffs of transferring

44



operators, and ergonomic impact for different staffing levels to help decide where to best

utilize cross-trained operators during the shift. By knowing the actual workload as a percent

of equipment capacity, supervisors can use the curves in Figure 3-2 to assess the relative

costs and benefits of overstaffing or understaffing each area.
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4 Results and Conclusions

Analysis

The role of labor in factory performance is not clearly understood and labor policies are not

consistently deployed, making it difficult to precisely measure the costs and benefits of

implementation. Staffing movements and equipment assignments can be highly variable and

are usually not tracked on a very detailed level. Current staffing models take a static

approach by modeling labor based on average behavior. Because capacity for a specific

group of equipment over a specific shift is the product of complex interactions between

sequencing and the simultaneous availability of material, equipment, and operators,

short-term factory performance is not well predicted by static analysis.

This creates an obstacle to understanding and demonstrating good or bad policies, and creates

a blind spot for potential improvements in factory performance.

For the pilot, Intel's four shifts are divided into two that undertook addition cross training

(the Cross-trained shifts) and two that did not (the Control shifts). The goal of the pilot is to

increase factory output. Since output is a function of equipment availability, material

availability, product mix, and operator availability, it is difficult to isolate the contribution

due to cross-training by looking at output alone. Instead, the machine interference metric

discussed in Chapter 2 is used to isolate the effect of operator availability on tool processing

time. Since labor practices and machine interference performance are similar across all four

shifts before cross-training, it is assumed that any relative change in machine interference

between the Cross-trained and Control shifts is attributable to deploying cross-trained

operators on the Cross-trained shifts. By increasing the flexibility of the workforce, cross-

trained operators can move away from areas that are running significantly below capacity

without much of a loss in productivity. These cross-trained operators then become available

to respond to workload spikes in other areas that are capacity constrained.

Because Intel uses automatic equipment with more tools than operators, additional operators

can increase the amount of time the tools spend processing rather than waiting for an

operator to load or unload material. The simulation results of Chapter 3 model the relative
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benefits of adding operators to either pilot area. For normal operations, some baseline

staffing of each pilot area is usually maintained. Cross-trained operators should be deployed

so as not to disrupt this balance when workload is evenly distributed between pilot areas.

When a flood of material causes a workload spike in one pilot area, that area becomes

capacity constrained. As long as the other pilot area is not similarly capacity constrained,

cross-trained operators can respond to the workload spike to provide burst capacity. The

performance gain will be reflected in lower machine interference and a corresponding higher

processing time.

Cross-trained vs. Control Shifts Across Pilot Areas

Any performance difference between the Cross-trained and Control shifts is captured in the

machine interference metric. Machine interference is calculated for Baseline values (before

pilot), Control shifts (after pilot starts), and Cross-trained shifts (after pilot starts) as

illustrated in Figure 4-1. During the course of the cross-training, there was a shift in product

mix with less material processed through both Area A and Area B while a new product is

ramped to full production. The charts demonstrate how actual tool capacity was distributed

among the four possible equipment states: Processing, Down, Starved, and Machine

Interference (defined in Table 2-1). Processing time represents throughput, while the other

three states represent non-value-added burdens on equipment capacity. Since equipment

availability is not a by-product of manufacturing policy decisions, it is viewed as an external

constraint. Any effort to improve the non-value-added states is only successful if it improves

the availability-utilization gap, either by reducing starvation or reducing machine

interference.

For Pilot Area A, machine interference is 30.1% during Baseline observations and stays

steady at 29.9% for the Control shifts during the pilot study. Area A has only 25.8%

machine interference on the Cross-trained shifts, however, representing a 4.1% improvement

on the Cross-trained shifts relative to the Control shifts. There is a 3.4% improvement in

processing time as well as a 1.1% decrease in starvation time, balanced by a 1.8% increase in

downtime. It is important to note that the improvement in Machine Interference did not
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Figure 4-1 Results for Each Pilot Area

translate into an increase in Starved time. Any increase in Starved time would occur when an

operator moves to an area with low demand relative to capacity, where she quickly processes

the entire queue of material, resulting in a starved state (and an idle operator). On the other

hand, if the operator moves to an area with high demand relative to capacity (a workload
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spike), all of that operator's additional work can keep equipment processing without running

short of material.

After the Baseline period, material queues decreased in Areas A and B to phase in a new

product line. This caused a significant jump in the frequency of equipment starvation for

both the Control and Cross-trained shifts for both pilot areas. As a result, the processing

times during the Baseline period are higher than the processing times after cross-training was

completed. The equipment availability is not systematically affected by the shift in product

mix, and any difference in down time between the Baseline, Control, and Cross-trained

observations for either Area A or B are assumed to be random fluctuations.

Area B is characterized by a high availability-utilization gap, composed of both starvation

and machine interference. With such high starvation (low workload), the benefit of

additional operators is expected to be negligible for Area B. Both the Control shift and the

Cross-trained shifts demonstrate improved machine interference performance than the

Baseline period, with a 4.9% improvement in the Control shifts and a 4.5% improvement on

Cross-trained shifts. However, for areas with low workload, machine interference does not

have a clear link to performance improvement. As operators are added to an area with low

workload, machine interference will quickly be eliminated, as material queues become very

short. This indicates that instead of having idle equipment with short queues, adding

operators runs the queues down to zero, causing idle equipment with zero queues. In areas of

low workload there is idle equipment, regardless of whether or not there is machine

interference. The performance of Area B across all observations is dominated by equipment

starvation, which occurs greater than 50% of the time during both the Control and Cross-

trained observations. With such low material queues, improving machine interference

performance would most likely show up as increased starvation, without impacting the

availability-utilization gap. As expected, Area B does not seem to benefit from the flexibility

of a cross-trained workforce. Instead the system works as planned; operators can be moved

from an area (B) of low demand to and area (A) of high demand and improve the

performance of the high workload area without negatively affecting the performance of the

low workload area.
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In summary, significant improvement occurred in Area A, where there is a moderate

workload. Comparing the Control and Cross-trained shifts for the overall pilot study shows a

significant reduction in availability-utilization gap for the shifts using cross-training in

Area A. There was no relative performance difference between the Control and Cross-

trained shifts for Area B, where there is a light workload. Cross-training does not show a

significant reduction in the availability-utilization gap for the shifts using cross-training in

Area B. Both Area A and Area B have high workload variability. The results indicate that

cross-training is effective in areas with both high workload and high workload variability,

and doesn't detrimentally affect those areas with low workload that are called upon to share

their workers.

Statistical Signficance

For the purposes of the pilot experiment, Intel's four shifts are divided into two Cross-trained

shifts and two Control shifts. The two Cross-trained shifts have operators cross-trained

between Area A and Area B. The two Control shifts do not have any operators cross-trained

between these areas. The main performance variable is the machine interference metric

discussed in Chapter 2. The statistical significance of the cross-training pilot is based on the

difference in machine interference performance between the Cross-trained and Control shifts

both before and after operators have been cross-trained. Since there are no systematic

differences between the operator practices of any shifts before cross-training, it is expected

that the performance of the Cross-trained and Control shifts will be the same in the period

before cross-training was completed. After cross-training it is expected that any performance

difference can be attributed to the cross-trained workforce that was only available for the

Cross-trained shifts.

Analysis was performed using the Paired t-Test for means with a hypothesized difference of

zero as described by Vining (1998). Observations were collected for 19 days before cross-

training and 19 additional days after cross-training, resulting in 19 data points for each pilot

area both before and after cross-training was completed. This results in 18 degrees of

freedom for determining the critical region for Area A or Area B alone, and 37 degrees of

freedom for determining the critical region for Area A and B combined. The hypothesis of
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the test is that there is no difference between the Cross-trained and Control shifts for either of

the time periods investigated. A two-tailed distribution is used to define the critical region

because any departure from zero difference in machine interference represents a performance

difference between the Cross-trained and Control shifts. Tests use a critical region bounded

by Iti = 2.1009 for 18 degrees of freedom and a critical region bounded by It = 2.0262 for 37

degrees of freedom. Results are summarized in Table 4-1. In the period before the

completion of cross-training, Cross-trained and Control shifts had similar machine

interference performance for Area A and Area B. The conclusion is that there is no statistical

difference in performance between the Cross-trained and Control shifts for before cross-

training. This demonstrates that there is no pre-existing bias between the shifts selected for

the Cross-trained and Control groups before the cross-training actually started.

Pilot Area Machine t-Statistic Conclusion
Interference (t Critical)
Comparison

Area A Two Cross- -0.5580 Fail to reject hypothesis. No
trained shifts vs. (It|<2.1009) statistical difference between
Two Control Area A Cross-trained and Control
shifts before shifts before cross-training.
cross-training
Two Cross- 2.2458 Reject hypothesis. Cross-trained
trained shifts vs. (It|>2.1009) Area A performance is
Two Control statistically different than Control
shifts after performance after cross-training.
cross-training

Area B Two Cross- 0.6481 Fail to reject hypothesis. No
trained shifts vs. (ItI<2.1009) statistical difference between
Two Control Area B Cross-trained and Control
shifts before shifts before cross-training.
cross-training
Two Cross- -0.2278 Fail to reject hypothesis. No
trained shifts vs. (It|<2.1009) statistical difference between
Two Control Area B Cross-trained and Control
shifts after shifts after cross-training.
cross-training

Table 4-1 Results of Statistical Analysis
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With cross-training completed, machine interference performance is improved in Area A for

Cross-trained shifts relative to Control shifts to a statistically significant degree. Area B did

not display a statistically significant change in performance between the Cross-trained and

Control shifts. The interpretation of these results is that Area A has a high workload and high

workload variability and can benefit from having cross-trained operators to reduce machine

interference and reduce the availability-utilization gap. Area B has a low workload and high

workload variability and was not harmed by the additional cross-training.

Frequency of Transfers

Operators are transferred between Areas A and B as part of the targeted cross-training

efforts, but operators can also be pulled in from other areas (using pre-existing cross-

training). The effect of both of these actions is to add an additional operator to the pilot area,

though in the case of transfers from outside areas, it is not clear how the staffing is covered in

the outlying home area. Because of the difficulty of accurately tracking operator

assignments, operator transfers are tracked over a period that does not exactly overlap with

the pilot data for machine interference, but is representative of the frequency of transfers

throughout the pilot study. Observations are made for 14 Control shifts and 36 Cross-trained

shifts as summarized in Table 4-2. For the control shifts, only one operator is transferred to

area A (from an outside area) in 14 shifts worth of observations. For the Cross-trained shifts,

17 transfers are made over 36 shifts worth of observations. This includes four transfers from

Area B to Area A and three transfers from Area A to Area B using the newly cross-trained

operators for the pilot. This also includes ten transfers in from other areas outside of the pilot

areas. The Cross-trained shifts are much more aggressive about changing staffing levels

while the control shifts are content with static staffing assignments.

Transfer Control Cross-trained
From Area B: 0 From Area B: 4

From other areas: 1 From other: 6
From Area A: 0 From Area A: 3

From other areas: 0 From other: 4
Total transfers 1 transfer/14 shifts 17 transfers/36 shifts

Table 4-2 Operator Transfers
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Implementation

Intel has a well-developed training program, so it is not difficult to get operators cross-

trained. Industrial engineering literature and the simulation results from this research

indicate that there is a benefit from having cross-trained workers. The pilot study

demonstrates improved performance for the high workload and high workload variability of

pilot Area A with no measurable impact for the low workload and high workload variability

of Area B. However, theoretical models and controlled pilot studies do not insure long-term

success in the real world. Even if a proposed program demonstrates unambiguous

improvement, threatened constituencies can still undermine implementation. Implementation

requires buy-in from key decision-makers, clear communication to all affected

constituencies, and project priority backed up by management actions.

Implementation Steps

Implementation of the pilot program follows a series of steps that provide a framework for

future expansion of the cross-training program to other areas. The starting point is

identifying the decision-makers and constituencies who will eventually be responsible for

execution of the cross-training program or who will be directly affected by the cross-training

program. It is important to strike a productive balance between challenging conventional

thinking and acknowledging what is actually feasible. The specific sequence of steps

recommended for future expansion is:

1. Identify decision-makers and affected constituencies

2. Involve decision makers

3. Map current operator certifications to staffing areas

4. Identify staffing areas with complementary workloads

5. Select target staffing areas for cross-training

6. Establish baseline performance metrics for target staffing area

7. Identify operators who match operator selection criteria

8. Begin operator cross-training in target areas

9. Monitor performance after cross-training is complete
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10. Analyze results

11. Make system self-sustaining through intelligent automation

These represent the steps successfully employed during this study to implement the pilot

cross-training program. It was not unusual for several iterations between steps as new

information surfaced. Accurate operator certification records help identify candidate

equipment/operator pools that can benefit from existing training and can also help identify

prospective flexible workforce team members. Workload correlation between candidate

staffing areas is analyzed to identify areas where cross-trained operators will have the

greatest impact. Performance tracking is most constructive if baseline data is tracked before

deploying the flexible workforce and then continued through implementation. This helps

assess the relative impact of the flexible workforce separate of other factory variables and

provides feedback for further improvements. Once the system is running smoothly, it is

important to make the system self-sustaining, where the participants in the system have

responsibility and authority to make changes to the system. This role can often be simplified

by the intelligent use of information technology.

Data Resolution

Intel's wafer fabs have no shortage of factory data generation. Transactions are constantly

generated at every processing step to monitor both material flow through the factory and

process conditions at each step. Because of the massive volume of data generated, there

needs to be some reasonable filtering of data into meaningful feedback for the different

manufacturing constituencies. Operators tend to be more concerned with real time

information about equipment status and lot status. Engineers focus on statistical excursions

from stable behavior in process conditions as well as quality inspection results. Supervisors

want up-to-date information on how their specific department is performing on the current

shift. The management team wants summarized factory performance at the end of a shift, and

detailed information about any deviations from expected performance. Individual reports as

well as entire computer systems have emerged to address these diverse information needs. It

is important to store factory data at a fine enough resolution so that data can be re-aggregated

to meet different informational requirements. Otherwise, information needs are left
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unanswered. For example, pilot data are required for individual factory tools, but historical

data are already summarized for all tools with the same process technology. This prevents

supervisors from getting feedback on the effectiveness of their staffing policies.

Current data collection and reporting at Intel do not allow easy analysis of labor

performance. Without improvements in this area, analysis of the labor impact of staffing

modifications will continue to be a highly labor-intensive activity itself. Feedback systems

live and die by the quality and reliability of the data. Quality means that observed events

match reported events, with all exceptions clearly understood. This is extremely difficult to

do for new pilot reporting systems, which typically overlook many of the complexities

involved in the mature data collection systems. Tactical planning and reporting tools need to

be accessible from computers on the factory floor in the hands of the people running the

equipment. This includes 24-hour x 7-day technical support for the systems that report the

data. An improvement in information delivery will drive more effective deployment of

cross-trained operators.

Keys to Success

Successful implementation requires the resources and support to overcome obstacles and

maintain a clear priority within the factory. A strong mandate from management is required

to ensure successful training and utilization of cross-trained operators. The foundation of this

project involves the initial training of operators in new staffing areas. This causes an

immediate negative effect in the new area as a senior operator is drawn away from his or her

primary responsibilities to serve as a trainer. Even after the initial training is complete, there

is still a period where the newly trained operator is honing skills in the new area. It is often

difficult to convince a staffing area to absorb the short-term burden of training in return for

the long-term benefit of increased flexibility. By clearly communicating the priority of

cross-training, even over short-term performance, the management team sets the tone and

establishes the credibility of cross-training as a lasting factory initiative.

Implementation can be simplified by working to align the path to success with the path of

least resistance (recognizing that the latter is more likely to occur naturally). An example of
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this type of thinking is to track the cross-training that happens as a result of employee

turnover and movement from area to area within the factory, rather than mandating

independent cross-training efforts. Typically, as operators move off their previous jobs, they

eventually lose touch with their previous skill set. With better visibility of pooled operator

certifications across the factory, existing options for flexibility can be maintained with

minimal training disruption. A planned rotation back into the former staffing area protects

the knowledge base as well as the potential to provide burst capacity without the short-term

pain of additional training. One pilot shift identified an operator and an equipment technician

who recently had moved to new positions. As a result, one day every two weeks they rotate

back into their former staffing area for a shift. This provides a simple way of leveraging

existing skills that would otherwise go to waste.

Demonstrating performance has beneficial results for both target staffing areas and

prospective staffing areas for implementation. Areas that are successful in deploying a

flexible workforce get immediate performance feedback on their efforts and motivation to

continue expanding as long as performance continues improving. Prospective staffing areas

that have not yet implemented a cross-training program are presented with a quantifiable

performance benefit that they can expect from participating in the program. This provides

the incentive for prospective staffing areas to accelerate the implementation schedule in order

to capture the performance improvements as soon as possible. Without clear performance

feedback, it becomes extremely difficult to get consensus on decisions between the multiple

constituencies with a stake in staffing policies. Demonstrating performance is a key driver

for making any initiative weave its way into the fabric of daily factory operations.

Set deployment rules are necessary to avoid multiple interpretations of the same data. At

some level of expected workload or with some number of tools down an additional operator

must be moved to better allocate factory resources in response to changing conditions.

Providing resources to one area means making a capacity tradeoff with another area. This

tradeoff must be analyzed to predict the best total allocation of operators. Ideally, the areas

involved are chosen due to a negative correlation of workload requirements through time.

Nevertheless, rules must be in place to ensure that the required resources are in fact moved to

56



the area that needs them the most. Clearly stated rules and objectives will help insure that the

benefits of flexible labor pools are consistently delivered.

It is important to anticipate training and ramping complexities during the implementation

phase. In selecting pilot areas for each shift, data was used for the product mix initially

running in the factory. As the training proceeded, the development factory moved into

preparation for the next generation product ramp. This caused a shift in management

priorities where cross-training fell behind the higher priority installation and qualification of

new process technologies. Conflicts in training and installation priorities contributed to

difficulties in completing the pilot for some of the shifts. Because of the new technology

ramp and a shift in product mix, there was a shift in the distribution of workload between

staffing areas causing a reevaluation of the selected areas. The training and ramping

complexities were not well anticipated in this study, and it is recommended that future work

should incorporate full consideration of planned training and ramp activities along with

predictions of future factory product profile.

Conclusions

The flow of material through Intel's wafer manufacturing environment is affected by a large

number of interrelated events. Individual lots go through hundreds of processing steps on

equipment characterized by a high frequency of preventive maintenance, equipment failures,

and process changeovers. This presents a formidable challenge for scheduling the factory

and then executing the schedule. Because of the high costs of capital equipment, the amount

of variation in the availability of resources, and the make-to-stock environment, schedulers

must strike a balance between overloading the factory with too much material and allowing

expensive resources to sit idle. Schedulers respond to day-to-day fluctuations by modulating

wafer starts into the factory. Once a schedule has been set, the shop floor must work to

maintain the flow of production. Cross-training provides a flexible labor pool to help the

shop floor react to factory variation.
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Cross-training Benefits

The success of any business improvement is always measured in terms of the impact on the

bottom line. This thesis shows that cross-training does indeed make a positive contribution

to the bottom-line of the company by reducing machine interference and thus increasing

machine processing time. Increased processing time in turn reduces costs by lowering

average inventory levels, increasing equipment utilization (throughput), and preventing late

orders. Cross-training is, as expected, most valuable in areas with high workload and high

workload variability. A flexible workforce positions the factory to better respond to

disruptions in material flow. Efforts should be made to eliminate variation wherever

possible. but some type of resource buffer is needed to respond to variability that cannot be

avoided. These resources can be additional material buffers, additional equipment capacity,

or additional operator capacity (in the case of a dual constrained system). A flexible

workforce is a relatively inexpensive way to prevent temporary disruptions from negatively

impacting factory performance.

The machine interference metric creates a common understanding of how staffing decisions

affect overall factory performance. Machine interference captures how well the factory is

providing operators where and when they are needed. One benefit of the machine

interference metric is to help create a shared understanding of how critical it is to have the

manufacturing resources of material, equipment, and operators all come together. Since

machine interference is viewed from the perspective of the equipment, improvements in

machine interference can be directly linked to more efficient use of capital equipment.

Ideally, labor performance metrics should be captured directly. However, since labor is the

most dynamic, flexible, and variable resource in any factory environment, it is difficult to

meaningfully catalog operator activities and unambiguously link each activity to overall

system performance. The machine interference metric is calculated indirectly in order to

focus only on the availability of operators when equipment and material are both ready to

run.

The simple act of tracking the cross-training history of all operators is helpful in assessing

current skill sets and speeding implementation of a flexible workforce. Accurate records
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make it clear who is certified in what areas and increases the awareness and visibility of

cross-training options. Also by continuing to communicate the relationship between the

availability of equipment, material, and operators, better tactical decisions can be made in

operator staffing assignments.

Implementing a cross-training program has several second order benefits that are not easily

linked to financial performance. Having a cross-trained workforce creates a variety of job

assignments in a repetitive factory environment. This helps improve morale by providing

changes to the daily routine and a chance to mingle with different co-workers. Even when

there is not a workload spike, rotating operators keeps skills sharp in multiple areas and

lowers the ergonomic exposure to repetitive motions. From the supervisor's perspective,

having cross-trained operators increases the tactical options available to respond to different

factory conditions. By regularly thinking in terms of sharing resources across the factory, the

decision to assign cross-trained operators to a given staffing area encourages supervisors to

think about improving performance at a system-wide factory level rather than at a local

department level.

Data Collection and Performance Evaluation

One of the obstacles in establishing analytical treatment of labor is that current factory

systems do not collect and report data from the perspective of staffing areas. It is critical to

track progress and evaluate performance to provide meaningful feedback for pilot

participants. If individual operators cannot be clearly linked to specific performance on a

specific shift in a specific staffing area, then it is hard to demonstrate a clear cause and effect

relationship between operator actions and performance measures. Resolving this requires

either a major information technology overhaul to handle increased data resolution,

programming custom solutions for ad hoc requests, or approximating and inferring

information as best as possible from existing reports. As a result of time and budget

constraints the latter two solutions are usually pursued, building in additional layers of

complexity and confusion for future data collection and reporting efforts. The recommended

approach, which is being pursued at Intel, is to make temporary changes on an as needed

basis, while pursuing an aggressive data standardization program to create a common
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database with the appropriate level of data resolution across the entire manufacturing

organization.

Future Direction

Results of the pilot study suggest several areas that require further study. Cross-training is

valuable for areas with high workload and high workload variability. This research explored

the impact of cross-training on one area (Area B) with low workload and high variability and

on one area (Area A) with higher workload and high variability. Greater benefits may be

realized from implementing cross-training in areas with even higher levels of workload

relative to capacity, and even higher variability relative to average workload. These are areas

that merit further study. The machine interference calculation is a first step in establishing a

feedback mechanism to link labor deployment to factory performance. Data for this study

are primarily collected from tracking equipment and material status. Future studies would be

better served by detailed operator tracking to calculate machine interference directly rather

than indirectly. If the distribution of the labor and equipment pools shifts frequently over the

course of a shift, then information on individual operator and equipment interactions and

sequences might be necessary to understand the dynamics of the system. On a strategic

level, it would be useful to apply the cross-training analysis to recommend how staffing areas

should be formed during plant layout discussions. Continued expansion and tracking of the

cross-training program at Intel should provide more information on how best to leverage a

flexible workforce.

60

I ____ , Z I __ - ___ _.



Appendix A

Model Inputs

First in first out processing, Infinite queue (no starvation)
Scope Variable Variable Type

Area Area name Label
Tool family Cross-reference
Number of tools in each family Constant

Operator Operator class Label
Number of operators Constant (Varied between runs)
Break schedule Constant (staggered for each oper)

Operator/Tool Mean time between preventive maintenance (hours/pieces) Uniform ( 10%)
PM Events Mean time to repair (hours) Uniform ( 10%)

First occurrence time (hours) Uniform (MTBPM/2± 10%)
First occurrence time (pieces) Weibull (3, MTBPM/2)

Tool family Tool famly Label
Operator class Cross-reference
Operator load time Constant
Operator unload time Constant
Operator get (from queue) time Constant
Operator put (to next queue) time Constant
Processing time Constant
Lot ID time (where applicable) Constant
Tool capacity (lots/tool) Constant

Tool PM Mean time between preventive maintenance (hours) Uniform (± 10%)
Events Mean time to repair (hours) Constant

First occurrence time (hours) Uniform (MTBPM/2i10%)

Tool Failure Mean time between preventive maintenance (hours) Uniform (± 10%)
Events Mean time to repair (hours) Constant

First occurrence time (hours) Uniform (MTBPM/2±1 0%)

Model Outputs
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Scope Metric
Throughput Lots complete

Pieces complete
Average lot cycle time
Final lot cycle time

Tool Utilization (%) = Load (%) + Unload (%) + Processing (%)
Down (%)
Starved (%)
Machine Interference (%)

Operator Operator Utilization (%) = Load (%) + Unload (%) + Processing (%) + Operator PM (%)
Break (%)
Idle (%)
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