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ABSTRACT

The present work presents an integrated framework to study the behavior of highly flexible wings
with distributed actuation control, providing the ability to explore structural flexibility to enhance
flight performance and reduce overall weight.

A non-linear analysis tool is used for the aeroelastic analysis. It is a combination of a
geometrically-exact mixed formulation for dynamics of moving beams and finite-state unsteady
aerodynamics with the ability to model dynamic stall. It includes the appropriate constitutive law
to incorporate the effects of distributed integral anisotropic actuators.

An active composite beam cross-sectional model has been developed to supply the properties
required by the aeroelastic analysis. It is derived from three-dimensional electroelasticity, where
the original problem is reduced via the variational asymptotic method. The resulting cross-
sectional analysis is able to take into consideration passive and active anisotropic, non-
homogeneous materials and to represent general cross-sectional geometries. The developed
formulation is numerically implemented in VABS-A, and several numerical and experimental
tests cases are used to support validation of the proposed theory.

A Linear Quadratic Gaussian regulator is implemented for the control of a linearized plant about
a non-linear equilibrium. Several interfacing tools including three-dimensional and two-
dimensional simulators of the complete aeroelastic model are developed to assist in the design
process.

The viability of the present framework as an aeroelastic analysis tool is proven by computer
simulation of selected cases on a proposed wind-tunnel model. Different controllers are simulated
for set flight velocities in order to study the impact of parameter variation in flight performance,
namely angle of attack, actuation orientation and grouping, and sensor location and type. A
normalized control cost denoting the actuation energy and a normalized state cost denoting the
total energy of the wing are the selected performance parameters. The results indicate that the
regulator offers linearized increased stability margin together with effective gust alleviation even
above the flutter airspeed.
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Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

High Altitude Long Endurance (HALE) aircraft are gaining importance for future

military and civilian missions. HALE aircraft need very high lift-to-drag ratio wings, thus

leading to high aspect ratios. HALE Uninhabited Reconnaissance Aerial Vehicle

(URAV) is essentially autonomous with as little manual inputs as possible. Uninhabited

Combat Aerial Vehicles (UCAV) will push for high maneuverability and high loads,

extending the flight envelope. If the classical aeroelastic approach of stiffening the

structure to extend the aeroelastic stability margin is used, the final design is too heavy

and poorly maneuverable.

This poses new challenges to the aeroelastician. Among them, there is the potential

ability to explore structural flexibility to enhance flight performance, reduce structural

weight and control aeroelastic instabilities. Due to the nature of such systems, non-linear

aero-structural interactions will become important and will have to be tightly coupled

with active controls. This can be achieved by means of an embedded array of distributed

anisotropic strain actuators and sensors.

Robust active control systems are required due to inherent uncertainties in the

modeling. Distributed sensing and actuation technologies are necessary for increased

controllability and optimality of the controller. These sensing and actuation devices must

be embedded as an integral part of the structural system for optimal performance.

There is clearly the need for a framework that tightly integrates the aerolastic

modeling, the analysis and the control. The aeroelastician requires a development

environment where the interactions between structures, aerodynamics and controls can be

investigated without the need for costly experimental results. Such a design tool would

allow the designer to
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* model complicated built-up wing structures of moderate to high aspect ratio with

the presence of embedded strain actuation and sensors distributed throught the structure.

* model representative flow about the wings (including stall effects) without the

complexity of CFD.

e understand the mechanisms of controlled aeroelastic interactions in highly flexible

aerodynamic surfaces

" comprehend the interactions of sensors and actuators with an anisotropic structure

" validate the performance and robustness of the control methodology for aeroelastic

instabilities of highly flexible wings

e provide a framework for straightforward aeroelastic tailoring

" provide a sufficiently high degree of fidelity to ensure that a control system

designed for the model will work for real systems as well.

o reduce the overall development time for a new design

Such a design framework would be an invaluable tool for the aeroelastician and would

provide decisive savings in cost and development time.

1.2 Previous Work

There is important work in the literature that covers some of the concepts just

introduced, even though the goal of the present work is to incorporate all of them into a

single framework. This section will review some of the most significant efforts.

Nonlinear aeroelastic analysis has gathered a lot of momentum in the last decade due

to the availability of mathematical tools which help to model non-linear dynamic

systems. The studies conducted by Dugundji and his co-workers are a combination of

analysis and experimental validation of the effects of dynamic stall on aeroelastic

instabilities for simple cantilevered laminated plate-like wings [1]. There, the ONERA

stall model was used for aerodynamic loads, which is the model also adopted in the

current work. Tang and Dowell have studied the flutter and forced response of a flexible

rotor blade [2]. In this study, geometrical structural non-linearity and free-play structural

20



non-linearity are taken into consideration. Again, high angle of attack unsteady

aerodynamics was modeled using the ONERA dynamic stall model. Virgin and Dowell

have studied the non-linear behavior of airfoils with control surfaces free-play and

investigated the limit-cycle oscillations and chaotic motion of airfoils [3]. Gilliatt,

Strganac and Kurdila have investigated airfoil non-linear aeroelastic behavior both

experimentally and analytically [32]. A non-linear support mechanism was constructed

and is used to represent continuous structural non-linearities. Drela presented an aircraft

simulation model with aerodynamics, structures, flight dynamics, and control laws fully

and nonlinearly coupled [60]. In order to get a better understanding of the non-linear

aeroelastic phenomena involving the entire vehicle, Cesnik and his co-workers have been

developing a low-order high-fidelity aeroelastic model for preliminary design and control

synthesis (Refs. [5] and [6]). It focuses on a very flexible high-aspect ratio (passive)

composite wing with discrete flap control, and models the entire aircraft. The non-linear

aeroelastic model adopted in the present framework is essentially based in that work.

Aeroelastic control can be more difficult than traditional aeroelastic problems, in that

the control system introduces a second potential source of instability [6]. Ref. [13]

describes an aeroelastic control experiment conducted both at MIT as well as at NASA

Langley Research Center (LaRC) for a relatively rigid transonic transport wing. That

resulted in the PARTI wing, which stands for Piezoelectric Aeroelastic Response

Tailoring Investigation, which concentrated in linear aeroelasticity and its corresponding

linear control law. This study examines the effects of the composite tailoring, geometric

wing sweep, piezoelectric coverage, thickness and grouping, and the wing taper ratio on

the passive and active aeroelastic behavior. However, since it represents a transport-like

aircraft wing it does not address issues related to very flexible wings. Various approaches

have been developed over the past years for the control of structures. Linear Quadratic

Gaussian (LQG) control has been the most common control method adopted so far [14].

Lin [15] used a Sensitivity Weighted LQG for better performance by adding sensitivity to

parameter variation in the cost function. This was compared against a compensator

designed using a weighted average of LQG cost for a discrete set of plants (even there is

no guarantee for the latter to yield stable intermediate plants). Recent approaches to

control design take into account real parameter uncertainty optimally by using the Popov
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stability criterion. These control methodologies have been applied to benchmark

problems [16] and Middeck Active Control experiments with great success [17].

Finally, some selected physical means to achieve aeroelastic vibration and control

are reviewed. There have been considerable efforts in the area of aeroservoelasticity.

Livne [7] and Giurgiutiu and Rogers [49] present a good survey, reviewing recent

applications of smart materials to suppress aeroelastic effects and vibrations in

helicopters and in fixed wing aircraft. Conventional active flutter and vibration control

technology, relying on the use of servo-hydraulic actuators, has given way to high-

performance induced strain actuators. Loewy reviews the use of such smart materials

technology in detail [8]. Millott and Friedmann highlighted the benefits of an

aerodynamic servo-flap for active helicopter rotor control. They used and extensive

aeroelastic model coupled with a vibration-reduction controller, which included

geometrical nonlinearities and advanced unsteady 2-D aerodynamic models [53]. Hall

and Prechl have implemented an effective servo flap and tested in hover [56]. Chen and

Chopra [51] induce twist through PZT wafers embedded in the composite blade structure.

Rodgers and Hagood [52] incorporated active fiber composites (AFC) into the

construction of a 1/6th Mach scale CH-47D blade model for wind tunnel testing at Boeing

Helicopters. Cesnik and Shin [41] have also been working on developing the

NASA/Army/MIT Active Twist Rotor blade. Successful bench test were conducted at

MIT and hover tests at NASA Langley Transonic Dynamics Tunnel. The AFC consists of

a laminated structure of PZT-fibers in an epoxy layer. The AFC will be the strain actuator

used for the numerical results in Chapters 2 and 4 of the present work. Alternative

concepts for controlling airplane aerodynamic surfaces have been under investigation,

e.g. the Active Flexible Wing technology [9], other variable stiffness concepts [31], the

Smart Wing effort by Northrop Grumman [11], and the aforementioned NASA PARTI

wing [12].
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1.3 Present Work Overview

The goal of the present work is to develop an integrated framework to study the

behavior of highly flexible wings with distributed actuation. In particular, it should be

able to model the interactions of sensors and actuators with an anisotropic structure. By

exploring flexibility, the model will assist the designer in pursuing three fundamental

objectives. Firstly, the ability to increase the stability margin of operation. Secondly, the

capacity to perform gust alleviation. And thirdly, the minimization of the actuation

energy needed in the active wing. By achieving those three goals, the designer will be

able to minimize the total weight of the structure.

The present framework consists of three main building blocks: the active aeroelastic

analysis, the aeroelastic control design and the simulator. They are introduced now and

are described in detail in the following chapters. The block diagram in Figure 1.1

represents a complete overview of these blocks. It depicts the three main areas in which

the framework is divided showing all the interactions between them and how the flow of

data is fed or retrieved from the blocks. The figure should help to understand the

explanation of the three pillars that make the framework that follows.

Chapter 2 is dedicated to the active aeroelastic analysis (which corresponds to the top

half of Figure 1.1). It consists of two parts: the non-linear aeroelastic model (on the left),

and the active composite wing cross-sectional model (on the right).

The non-linear aeroelastic model is able to handle representative flow about realistic

high aspect ratio wings. It needs structural as well as aerodynamic data as input. Flight

conditions and aerodynamic data are simply fed into the model as numerical values. On

the contrary, the structural data (essentially the cross-sectional stiffness and the actuation

constants) needs to be computed.

The active cross-sectional model handles this calculation. It allows general cross

sectional geometries with anisotropic materials. Its finite element implementation is

labeled as VABS-A (Variational Asymptotical Beam Sectional-Active analysis).

Chapter 3 addresses the control of the wing. The LQR is introduced first as a

fundamental building block of the LQG, a much more realistic regulator. Upon study of a

nominal configuration in open loop, the need for a regulator is realized and the LQG is
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chosen. Appropriate tools to quantify that performance close up the chapter. The left part

of the diagram in Figure 1.1 symbolizes the aeroelastic control design block.

In Chapter 4, the viability of the presented framework as an aerolastic tool for

analysis and tailoring is demonstrated. A Linear Quadratic Gaussian regulator (LQG) is

designed and simulated at set flight velocities on a wind-tunnel model representative of a

UAV wing. Simulation on a digital computer allows to study the impact of parameter

variation in flight performance, namely angle of attack, actuation orientation and

grouping, and sensor location and type. Two are the selected performance parameters, the

control cost denoting the actuation energy and the state cost denoting the total energy of

the wing. Finally, a simple robustness checked is performed on the LQG regulator.

Appendix C deals with the two simulators: a two-dimensional and a three-

dimensional one. The lower half of Figure 1.1 represents both simulators, each one in a

comer of the figure. The simulator interfaces with the control design and provides an

extremely intuitive way to visualize the behavior of the wing.
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Chapter 2

Active Aeroelastic Analysis

This chapter describes in detail the active aeroelastic analysis model, which is a

fundamental building block for the framework outlined in Chapter 1. The non-linear

active aeroelastic model is introduced first. Due to the fact that the anisotropic strain

actuators are embedded in the wing structure, the model requires an active composite

beam cross-sectional formulation, which is presented next. The cross-sectional model is

implemented in a finite element code, and several numerical and experimental tests cases

are used to support validation of the proposed theory. Lastly, a cross-section mesh

generator that provides the input for the model is introduced.

2.1 Aeroelastic Model

An active aeroelastic model that extends the non-linear aeroelastic formulation of

Ref. [6] is developed here. It is a combination of a geometrically-exact mixed

formulation for dynamics of moving beams and a finite-state unsteady aerodynamics with

the ability to model dynamic stall. It includes the appropriate constitutive law to

incorporate the effects of distributed integral anisotropic actuators. The basic theory is

based on two separate works, viz. i) mixed variational formulation based on exact

intrinsic equations for dynamics of moving beams [18] and, ii) finite-state airloads for

deformable airfoils on fixed and rotating wings [19], [20].

The former theory is a non-linear intrinsic formulation for the dynamics of initially

curved and twisted beams in a moving frame. There are no approximations to the

geometry of the deformed reference line or to the orientation of the cross-sectional

reference frame. A compact mixed variational formulation can be derived from these
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equations, which is well suited for low-order beam finite element analysis. The exact

intrinsic equations are extended to reflect the new constitutive law that also includes the

effects of the anisotropic actuation. The vector that contains the actuation effects is a

function of an external parameter (e.g. applied voltage in the case of piezoelectric

actuators) that can be modulated by the controller as function of the sensing parameters

(time dependent).

The latter work presents a state-space theory for the lift, drag, and all generalized

forces of a deformable airfoil. The theory allows for a thin airfoil performing arbitrary

small motions with respect to a reference frame that can perform arbitrary large motions.

2.1.1 Basic Geometry

Let a be the global frame, with its axes labeled as a,, a2 and a3. The undeformed

reference frame of the blade is named b, with its axes labeled as b1 , b2 and b3 , and the

deformed reference frame named B, with its axes labeled as BI, B2, and B3 as represented

in Figure 2.1.

a
3

a2

B3

--..... b3 B2

... ... b2

b,

Figure 2.1 Wing frames of reference.

Any arbitrary vector Z represented by its components in one of the basis may be

converted to another basis like

Zb = C"Za ZB =cBaZa (2.1)

where Cba is the transformation matrix from a to b, and CBa is that from a to B. There
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are several ways to express the transformation matrices. Cb" can be expressed in terms of

direction cosines from the initial geometry of the wing, while CB" contains the unknown

rotation variables.

2.1.2 Structural Analysis

As described in details in Ref. [18], the variational formulation is derived from

Hamilton's principle, which can be written as
'2 - -+ dxdt = 6A (2.2)

where ti and t2 are arbitrarily fixed times, K and U are the kinetic and potential energy

densities per unit span, respectively. 8A is the virtual action at the ends of the beam and

at the ends of the time interval, and 8W is the virtual work of applied loads per unit span.

Taking the variation of the kinetic and potential energy terms with respect to VB and

(the linear and angular velocity column vectors) and with respect to y and K (the

generalized strain column vectors) yields

jU )U

B ay aK
PB =M HB '

PB ' a T B j )T (2.3)
dVB )aB

where FB and MB are internal force and moment column vectors, and PB and HB are linear

and angular momentum column vectors.

The geometrically exact kinematical relations in the a frame are given by

*Ba 
ab(C )

* 6kba _ 2  (2.4)
K =C _ -.
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VB (Va a a + a)

* =Cba 2 - +CBaoB OT

4

where Ua is the displacement vector measured in the a frame, 0 is the rotation vector
Texpressed in terms of Rodrigues parameters, ei is the unit vector [1, 0, 0] , A is the 3 x 3

identity matrix, and Va and COa are the initial velocity and initial angular velocity of a

generic point on the a frame. The (operator applied to a column vector is defined as:

0 -Z3 Z2

Z= 0 - Z (2.5)

-Z2 Z, 0

The operator () denotes the derivative with respect to time, ( )' denotes the derivative

with respect to x1 , and ( )* denotes the expression of all the exact kinematical relations.

To form a mixed formulation, Lagrange's multipliers are used to enforce VB, , y and K

to satisfy the geometric equations in Eq. (2.4).

Manipulating the equations accordingly [21], one can obtain the variational

formulation based on an exact intrinsic equations for dynamics of moving beams with

respect to the fixed frame a as

fSl1 Iadt = 0 (2.6)

where
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H = +uCC"F Taa abp
fi~ ~ &ia C aF,+U[(CCapB)O CP]+

+58W aCTCabM B -6w, C T Cab (j, + )FB +6fa[(C T CfabHB)±

+UjaCTCaHB +C T Cab B B] Fa[CT Cab(e +y)-Cabej]

'T T ~0 00T

-SF aUa -6Ma (A+-+-)CabK<_6M 'O+ (2.7)
2 4

+ P(CCabVB a -T
+ 6pa ~ Va -O6aUa) - Pa a +

T OOT T- T
+6Ha(A+--+- )(C C"bCB Wa) SHa-ufa f -aSma }dxl -

2 4

-u~Fa+ NWaM,-Faa - 6MaO
0

and the rotation matrix C is the product and Cba Cla, and it is expressed in terms of 0 as

OTOI + OOT
1- A -0+ -

4 2
C = ' (2.8)

4

In Eq. (2.7),fa and ma are the external force and moment vectors respectively, which

result from aerodynamic loads. The ) terms are boundary values of the corresponding

quantities, while the ( ) terms refer to the steady-state solution. 6W is associated with

virtual rotation and is not the variation of a function [18]. The generalized strain and

force measures, and velocity and momentum measures are related through the

constitutive relations in the following form:

FB =K -FBa

MB K) M (a"

(2.9)
PB _mA - m] VB

HB Zm I -g2B

and these expressions are solved for y, K, VB and as function of the other measures

and constants, and used in Eq. (2.7). In the inertia matrix, m is the mass per unit length,

mC is the static unbalance, and I is the second moment of inertia. The stiffness [K] is in

general a 6 x 6 matrix, function of material distribution and cross sectional geometry. As
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described in [22], the 6 x 6 stiffness matrix is related to the 4 x 4 one. The latter is used in

this work, where the stiffness matrix and column vector for the piezoelectric actuation are

described in Ref. [23].

Adopting a finite element discretization by dividing the wing into N elements, Eq.

(2.6) is written as

f t 2Slidt = 0 (2.10)

where index i indicates the i-th element with length Al,, -HI is the corresponding spatial

integration of the function in Eq. (2.8) over the i-th element. Due to the formulation's

weakest form, the simplest shape functions can be used. Therefore, the following

transformation and interpolation are applied within each element, similarly to the ones

employed by [21]:

x=x1 + Ali, dx =Alid , I 1 d (
Ali d

Sua = Su1 (1- )+u,+14, Ua = Ui

-wa = 6w, (0- +6w,, 6=01

SFa = 6F i(1-)+8Fi+i, FB = F(

8Ma =M,(1-)+M ,41, MB= M(

8Pa= 6 Pi, PB=

6Ha=6Hi, H B=H

where ut, O6, Fi, Mi, Pi and Hi are constant vectors at each node i, and all 6 quantities are

arbitrary. varies from 0 to 1.

With these shape functions, the spatial integration in Eq. (2.10). can be performed

explicitly to give

~{ Su f + f~ +6F If F -6MM -TH +u+ 1f u

T -T T -T
+ 6ij,f + 8 F+1fF, + 8M i41fM, } = 8u 1 FN+1 +8WN+1MN+1 (2.12)

-T -T UA T^ T, -A
- SFN+1UN+1 - 6M N+1 0N+1 - F1  j1 M 1 +6F iG -SM iO

where the f , f,,..., fm, are the element functions explicitly integrated from the

formulation.
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Both y and K in each element function have to be replaced with a form that is a

function of FB and MB using the inverse form of Eq. (2.9), along with the piezoelectric

forcing vector F(a) and M("). So does VB and QB with a form function of PB and HB.

This substitution, which accounts for the presence of actuators embedded in the structure,

leads to the following element functions:

c~cabm Al. b+M()]

f~ = -C IC"M M 1 C C"b -[el +r(F, + Fa))+t(Mi +M1 "))]F +

+ iL(5G0 CTCab H +CTIC"b ~!.CTC"a HZ) -m~

2 1 2
Al+

fF -i [CT Cab -[e, +{r(F+ (a) )+t(M +M "))}-Cab
2
Al. 5 0 OO

fMi =0, (A+-±+ i I )cb -{tT (F + F(a))+s(M +M a)}
2 2 4

= C C" M AC Cab -[e +{r(F +F " )+t(M +Ma>)}]F +

+ C Cab + CT Cab ) (CTCab -
2 2

f = Ali {CTCab -[e1 +r(F + F(a)) + t(Mi + M(a))] - Cabe,}

Al. 0 0 T
fM+, =-0 I (A+-+ I )C" it (+ F|a) )+ s(M, + M(a)}

2 2 4 (2.13)

where r, s and t are the components of the flexibility matrix expressed as

[K]-' =L t (2.14)
It Ts]

2.1.3 Aerodynamic Analysis

The aerodynamic loads used are as described in detail in Ref. [19]. The results are

presented here. The theory calculates loads on a deformable airfoil undergoing large

deformation in a subsonic flow. Certain aerodynamic parameters for the particular airfoil

are required and are assumed to be known empirically or through a CFD analysis.

Let the mean chord line deformation of the airfoil cross section be described by

h(x 2 ,t) where x2 is along the mean chord line. The frame motion along x2, x3 -directions

are, respectively, uO, v(x 2 ,t). Let X denote the induced flow due to free vorticity. Let
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L(x 2 ,t) denote the distribution of force perpendicular to the mean chord line. Let D be

the drag on the airfoil. The integro-differential airloads equations can be converted into

ordinary differential equations (ODEs) through a Glauert expansion. The ODEs are in

terms of the expansion coefficients which are represented by a subscript n.

1 {L, } = -b2[M]ht +2- buo[C]&i, + vn - _ U [N]{h, } -
2np 0(2.15)

-b[G ]{dehn + iC --uov, + uoX I

1 {D,1}=-b(N, + v, - X} [S]{, + v, - X0} J+ bfi + Y}[G]{h } -2ntp (2.16)

- {uhN +vn -X 0 Y[N-H]{h}+{dehn +io( -uovn +uOXO}[H]{h}

where p, b are the air density and semichord respectively, and i0 is the velocity of the

external bound vortex in the x2 direction. The matrices denoted by [N], [C], [G], [S], [H],

[A] are constant matrices whose expressions are given in Ref. [19].

The required airloads for lift and moment about mid chord are obtained as a linear

combination of L,. The inflow is obtained through the finite-state inflow theory [24]. The

theory described so far is basically a linear, thin-airfoil theory. But the theory lends itself

to corrections and modifications from experimental data. Thus, corrections such as

thickness and Mach number can be incorporated very easily as described in Ref. [20]. It

can also be extended to include dynamic stall effects according to the ONERA approach.

LT = Ln + PUTF, (2.17)

where

ur = u+ (vo +N -0 oOY

c 2 3 (2.18)
'+u I + ur 2 _ Acn _ 2 UT (uAc)b b b dt

The parameters Ac., 11, w 2, and e must be identified for a particular airfoil. The

airloads are inserted into the Hamilton's principle to complete the aeroelastic model.
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2.1.4 Solution of the Aer oelastic System

Eq. (2.12) yields a set of non-linear equations. These equations can be separated into

structural (Fs) and aerodynamic (FL) terms and written as

Fs (X, X,E)- FL (X,Y, X)= 0 (2.19)

where X is the column matrix of structural variables, Y is a column matrix of inflow states

and E is the column matrix of magnitudes of the electrical field distribution shape.

Similarly we can separate the inflow equations into an inflow component (F) and a

downwash component (Fw) as

- Fw (X)- F,(Y,Y )=0 (2.20)

The solutions of interest for the two coupled sets of equations (Eqs. (2.19) and

(2.20)) can be expressed in the form

(X X 5c(t) ( . 1I}= I- + { )}(2.21)
Y Y Yt

where ) is the steady-state solution and ( ) denotes the small perturbation on it.

For the steady-state solution one gets Y identically equal to zero (from Eq. (2.20)).

Thus, one has to solve a set of non-linear equations given by

Fs (X,0, E)- FL (X,0,0) = 0 (2.22)

The Jacobian matrix of the above set of non-linear equations can be obtained analytically

and is found to be very sparse [4]. Note that the presence of the actuation on the blade

changes the original terms of the Jacobian in a similar manner it does in Eq. (2.12). The

steady-state solution can be found very efficiently using Newton-Raphson method.

A dynamic stability (flutter) analysis about the steady-state can be performed once

the solution is obtained. By perturbing Eqs. (2.19) and (2.20) about the calculated steady

state using Eq.(2.21), the transient solution is obtained from

aFs aFL aFL f F 0 ~ ~Fs
aX aX aY + ax aX 3 X + a -FF, iFF F, y_ 00 . . 0 0 X=x

aY _x=xY _ x=x - - Y=0
Y =0 Y =0

(2.23)
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Now assuming the dynamic modes to be of the form e", the above equations can be

solved as an eigenvalue problem to get the modal damping, frequency and mode shape of

the various modes:

x = Ax+Bu+Gw

y= Cx+ Du 
(2.24)

where y is the output vector corresponding to any combination of three types of sensors

distributed along the wing (accelerometers, bending and torsion strain gauges), u is the

input vector corresponding to the electrical field applied to the piezoelectric actuators

(where u=e/max(E)), and w is the disturbance (gust).

The reduced state vector x is defined as

x11
21

21 51

0 031 61

x- (2.25)

lofI n In

2n 2n

03n,

5n

where, again, 0 are the Rodrigues parameters, A are the inflow states, and n is the number

of elements in which the wing is discretized. This reduced state vector is the result of

assuming small (linear) deformations (with negligible axial deformation) about a fully

non-linear steady-state.
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2.2 Active Composite Beam Cross-Sectional Model

As presented in Section 2.1.2, the aeroelastic formulation requires the knowledge of

the cross-sectional properties of the active wing. Therefore, a numerical analysis for

modeling active composite beams with anisotropic actuation is presented here. This has

been a major contributor to the present work and is presented in detail here. It is derived

from three-dimensional electroelasticity, where the original problem is reduced via the

variational asymptotic method. The resulting cross-sectional analysis is able to take into

consideration passive and active anisotropic, non-homogeneous materials and to

represent general (thin-walled, thick-walled, solid) cross-sectional geometries, requiring

neither the costly use of 3-D finite element discretization nor the loss of accuracy

inherent to any simplified representation of the cross section. The developed formulation

is numerically implemented in VABS-A, and several numerical and experimental test

cases are used to support validation of the proposed theory. The generality of the method

and accuracy of the results should increase confidence at the design stage that the active

beam structure will perform as expected and, consequently, should lower costs from

experimental tests and further adjustments.

2.2.1 Previous Work

The technology of embedded piezoelectric actuators in a composite structure

provides a new degree of design flexibility for advanced aircraft systems. The key to the

technology is the ability to allow the structure to sense and react in a desired fashion,

improving performance in the areas of structural vibration, acoustic signature, aeroelastic

stability, and overall aircraft performance.

Due to their geometry, high-aspect ratio wings can often be treated as a beam, a one-

dimensional (1-D) body. This idealization of the actual structure leads to a much simpler

mathematical formulation than would be obtained if complete three-dimensional (3-D)

elasticity formulation were used to model it. To do so, one has to find a way to capture

the behavior associated with the two dimensions that are being eliminated by correctly

accounting for geometry and material distribution over the cross section, which includes
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the characterization of the active material as well. The process that takes the original 3-D

body and represents it as a 1-D one is called "dimensional reduction."

There has been a significant amount of work in the literature dealing with capturing

the two-dimensional (2-D) effects, even though few do it in a systematic way. Among the

leading efforts in cross-sectional modeling is the work presented in [26]. There, a finite-

element-based non-homogeneous anisotropic initially curved and twisted beam theory is

formulated from geometric non-linear, 3-D elasticity. The kinematics are derived for

arbitrary warping (which includes out-of-plane as well as in-plane deformations) based

upon the concept of decomposition of the rotation tensor. The 3-D strain energy based on

this strain field is dimensionally reduced via the variational-asymptotical method [27].

The 3-D warping is calculated in terms of the 1-D strain measures and the functions in

the strain energy become independent of the cross-sectional variables. The resulting

equations govern both sectional and global deformation, as well as provide the 3-D

displacement and strain fields in terms of beam deformation quantities. The formulation

also naturally leads to geometrically exact, 1-D kinematical and intrinsic equilibrium

equations for the beam deformation presented in Section 2.1.2.

Figure 2.2 shows an overview of the beam analysis. The developed theory was

implemented numerically in a finite-element computer code called VABS (Variational-

Asymptotical Beam Sectional Analysis). Correlations with experimental results and

specialized analyses show excellent accuracy of the method. However, even though

VABS can deal with cross sections that may have arbitrary geometry (solid or thin-

walled, closed or open) and made of different materials, it only takes into account passive

materials.

While good advances have been made in the area of passive cross-sectional

modeling, the same cannot be said about cross sections with embedded orthotropic active

layers. In fact, the latter concentrates on thin-walled beams, and most of the formulations

are for single-cell active beams and are based on the passive beam model of Ref. [28]

(see, for example, Refs. [29], [10], and [30]).
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Figure 2.2 Overview of the proposed beam analysis (shaded areas represent the scope of

this section).

The fundamental problem with those formulations is that there is no guarantee for

consistent accuracy on the results due to lack of asymptotical correctness of the theory, a

fact already established for passive composite cross-sectional analyses [26].

The first attempt in the literature to asymptotically analyze a multi-cell thin-walled

composite beam with integral orthotropic active plies was presented in Ref. [4]. The

variational-asymptotical method is used to formulate the stiffness constants of a two-cell

cross section with the active plies consisting of piezoelectric fibers. This cross-sectional

analysis is a particular case of the general framework established in Ref. [26]. It provides

the expressions for the asymptotically-correct cross-sectional stiffness constants in closed

form, facilitating design-trend studies. These stiffness constants are then used in a beam

finite element discretization of the beam reference line. The exact intrinsic equations for

the one-dimensional analysis of rotating beams considering small strains and finite

rotations developed in Ref. [18] is extended to take into account the changes in the

constitutive relation. Subject to external loads, active ply induced strains, and specific

boundary conditions, the one-dimensional (beam) problem can be solved for

displacements, rotations, and strains of the reference line. Finally, these results can be

combined with information from the cross-sectional analysis in a set of recovering
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relations for stress/strain distribution at each ply of the blade. For purely thin-walled

beams, the asymptotic formulation of Ref. [4] was shown to present very good

correlation with experimental results and numerical results from other specialized

theories. However, the formulation breaks down when the cross section departs from

being a thin-walled one. In practice, wings or helicopter blades can have thick walls and

quite often have honeycomb or foam as integral part of the structure.

This section presents a flexible, general, and accurate formulation to deal with

orthotropic active plies embedded in a composite construction within the same

asymptotic framework for analyzing 3-D slender structures previously proposed in Refs.

[4] and [26]. As pointed out before Ref. [33], the relation of the induced strain and the

stiffness constants associated with the cross-sectional modeling is not uncoupled or

trivial. It depends among other things on the warping field, which should be determined

by the asymptotical procedure instead of being imposed a priori.

2.2.2 Formulation

In what follows, we replace the 3-D beam problem is replaced by an approximate 1-

D one by taking advantage of the presence of certain small parameters in the modeling.

The resulting 1-D strain energy per unit length is a function only of x, (length along a

reference line r within an undeformed beam; x2 and x3 denote lengths along lines

orthogonal to the reference line r). This dimensional reduction is done with the aid of the

variational-asymptotical formulation (Refs. [27] and [26]). The kinematics of the beam

are based on the general formulation of Ref. [34]. Local rotation, as defined therein, is

taken to be of the order of the strain. Since only geometrically non-linear behavior is

considered, the strain can be treated as small relative to unity without imposing any

explicit restrictions on the magnitudes of the displacement of the reference line or the

section rotation. The 3-D electroelastic constitutive behavior is assumed to be linear.

Subject only to these restrictions, all possible deformations of beams are taken into

account in the analysis and in the corresponding effects of an applied electric field.
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2.2.2.1 Three-Dimensional F ormulation

To start the asymptotical modeling process, we need to first define the 3-D

formulation, the solution of which shall be considered the exact solution of the beam

problem.

2.2.2.1.1 Strain Field

From Refs. [34] and [26], under the condition of small local rotation, Jaumann strain

components can be expressed by

1
F =-Fh v+ e

h
e +Fv + Fv

where v is the 3-D general warping field, and Fh, F7, FR and 1 are linear (matrix)

operators defined as

Fh-
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Again, ( ), = -enm ( ),. The column matrix e represents the 1-D measures of

deformation

hKY
(2.28)

where y is the average cross-sectional extensional strain (the axial force strain measure)

defined as

y = R'- B -1 (2.29)

with R being the position vector to the cross-sectional reference point in the deformed

beam, and B is the orthogonal reference triad in the deformed state (see Figure 2.3). The

column matrix Y, = [Ki K2 K3 Y contains the so-called moment strain measures

Kn = K -kn (2.30)

where k is the initial curvature vector. The metric determinant g can be calculated as

V=1- x 2 k3 ±x 3 k 2
(2.31)

where x ={x2 ,X3 } are cross-sectional local Cartesian coordinates which vary in the

prescribed domain S, with area ISI. The characteristic size of the domain S is denoted by h

and the dimensionless coordinates ( { 2 /h, 3 = 3 /h} are introduced.

The small parameter 9 can be now specified as

9 = max|E (2.32)

A few non-linear terms in the strain field, which couple v and e , have been neglected

in Eq. (2.26) because a physically linear beam theory is to be developed. The form of the

strain field is of great importance because it is now linear in e, v and its derivatives. This

is the only point where t as a small parameter needs to be taken into account.
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Figure 2.3 Kinematics of a slender (beam) structure.

2.2.2.1.2 Energy Functional of an A ctive Beam

Consider the linear 3-D electroelastic constitutive relation in the coordinate frame

attached to the piezoelectric poling direction [35]

Z DE __T{ =[D (e F (2.33)
S _e E E

where Z is the 3-D Jaumann stress, conjugate of the 3-D Jaumann (mechanical) strain F;

) is the electrical displacement, and , is the electrical field. Also, DE is the material

stiffness matrix at constant (zero) electrical field, Er is the piezo-dielectric matrix at

constant strain, and e is the piezoelectric field-stress coupling matrix. The latter is related

to the piezoelectric field-strain coupling matrix d through the relation:

e = dDE (2.34)
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Since the mechanical properties are normally expressed in the material frame, and

later in the global frame r, a transformation matrix J is introduced that relates the poling

frame to the global frame such that the electroelastic constitutive relation, Eq. (2.33), can

be rewritten as

{Z ~VD E _T eT]- (2.35)

so that the piezoelectric constants, X, and E are still defined in the poling frame.

The energy density for an active beam per unit length can be written as [36]

U = -1(z-I' (J9E) (2.36)
2 2

where the notation

(e)= s J Ndx2 dx3 = h2 e d( 2 d( 3  (2.37)

is used throughout the formulation.

It is important to state at this point that the non-mechanical strain (coming from the

piezoelectric effect) is considered to be of the same order as the strain, i.e., of order E.

2.2.2.2 Small Parameters

Before one moves further on the asymptotical method, a definition of the small

parameters present in the problem is necessary. There are four characteristic parameters

in the considered theory, two of which, h and E, have already been introduced. The

others are the characteristic length 1, over which the deformation state varies in the

longitudinal direction, and the characteristic length of the initial curvature and twist

R = 1/maxJ|kJ|. Let us consider the situation in which the parameters h, 1, R (even though

initially twisted or curved beams are not the subject of this work) and E are present. The

parameter E does not need to be considered small any more, since the main problem has

become linear with respect to the unknown functions v,, (x, C) and the 1-D strain measure

e. As a small parameter, E has already been taken into account when deriving Eq. (2.26).

The warping v,, (x, () is expanded as a series with respect to the small parameter h/7

and h/R. Since both of them have the same numerator, the expansion in those parameters
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is the same as the expansion in h only, and, therefore, both is simply represented by h (in

spite of its dimension).

2.2.2.3 Discretization

To reduce the original 3-D problem to a I-D one, the 3-D warping field v must be

approximated as function of 1-D variables only. This approximation should carry the

information of the geometry and material distribution of the cross section. In order to

asymptotically evaluate this approximation, no closed form solution is available for an

arbitrary cross-sectional geometry [26]. Therefore, the finite element method is used for

this solution. The problem may be solved numerically by discretizing it with respect to

the cross-sectional coordinates (a , where o=2,3.

Considering the finite element discretization, the unknown functions v,, (x, () can be

represented as the product of a shape function matrix S((a) and a column matrix of

nodal values of v(x, (), denoted as V(x).

v(x,) = S(() -V(x) (2.38)

Using Eqs. (2.26) and (2.33) into Eq. (2.36), one obtains:

22U=V TEV +2 T (DE E+DhR + DhV'- D l-+

(2.39)
+(1)(eT DeeE +VTD RRV +V'TDlV'+2VTDR e+2V'TD,, e= +

+2VTDRiV' TD --VTD v:-V'TD )-z TD -

in which the following definitions were introduced

E= []T D[ff S] D =F ]T D[F ]
(I (I )(2.40)

D K1S]T D[F] DhR (rh S]T D[FRS])

D h S]T D[ISI) DR =KrR sT D[F]

D =([F S]TD[F] DRR ([]Rs ]TD(FRS]

DR are R peT D[I S]t Dme =hn [ S]T D[ R and

which are due purely to the mechanical properties, and
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D - [F S]T Dd D = [FF ]T D d =
hV G V E(2.41)

DR, =[R S]T Dd7[) D=K [FS]T DdF)

D, = ([DdH]TDd )

which contain the electrical properties of the material as well (subindex v denotes

association with electric fields). Here, = represents the electric field distribution within

the domain of integration, and _ is the magnitude of such distribution shape.

2.2.2.4 Warping Field for a Prismatic Beam

Even though the formulation presented above can handle initial twist and curvature

effects in the structure, in what follows we consider only the case of prismatic beams.

Therefore, all the terms on the energy that are function of h/R (the D matrices with at

least one of the subscripts R) are neglected.

According to the variational asymptotical procedure, in order to get an

approximation, one should retain only the leading terms in the energy expression. These

"leading" terms are so with respect to the small parameter that contains the unknown

functions and the leading intersection terms between the unknown function and the rest

of the functional (for more details see Ref. [27]).

We are then left with the following expression

2U= 2VTEV +2 TDh E- VTDh (2.42)

This functional must be minimized with respect to the variable V, subject to the

constraints

VTHW =0 (2.43)

where

H =(STS) (2.44)

and TI is a matrix with four columns, each corresponding to one of the constraints

defined in Ref. [37]. The set of columns TP1 is determined by the kernel (null-space) of

the matrix E, and has the physical meaning of possible rigid-body motion associated with

each of the beam degrees of freedom. This implies that:
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EA'I =0 (2.45)

Let us suppose that the set of columns of T(.1 is normalized such that

,IH'Pz = 1 (2.46)

The Euler equation for the minimization problem defined by Eqs. (2.42) and (2.43) is

given by

EV+De E -D,8= HTC, (2.47)

where pt/h is the column matrix of Lagrange multipliers associated with Eq. (2.43). By

pre-multiplying Eq. (2.47) by 'V , one can show that

p ='Yi(DE -DhF) (2.48)

Subsequently, Eq. (2.47) can be rewritten as

EV = -(I - HIp T)(DE _ DhV) (2.49)

The matrix E possesses a zero eigenvalue of multiplicity four, and thus its inverse

does not exist. However, let us introduce the matrix E+ with the following properties

[37]

EE) =I - H Te V

E+E =I -WclW H (2.50)

E EE+ = E+

The solution of Eq. (2.49) is then represented by

V =-hE (DE --Dhvs)=h(V +VOa)) (2.51)

which explicitly shows the dependence of the warping field on the applied electric field,

which is what the VOga) term represents. The structural-only term of the warping (VO) is

the same as obtained previously [26].

2.2.2.5 Stiffness and Actuation Constants

By substituting the above solution into the discretized energy density, Eq. (2.40), and

keeping only terms with the lowest order, which are of order h0 =1, one obtains

47



2U =ET Ke +2CT F(a) -UB(a)E (2.52)

where the beam stiffness matrix K is

K = De, -D ED (2.53)

and the actuation vector is

F(a) - (Ds,--DhETE3DI)j (2.54)

The matrix associated with the quadratic term for the electric field (ii) is found to be

B(") = D + DT E D, (2.55)

but it plays no role on the actuation problem under consideration here.

Therefore, the active beam constitutive relation is written as:

F K K12  K13  K14  Y Fa)

M K 2 1 K 2 2  K 23  K 2 4 K1 _ M(a) (2.56)

M 2  K 3 1 K 3 2  K 33  K 34 K2  M (a)

M 3  K41  K42  K 43  K44 K3  M a

2.2.3 Finite Element Implementation: VABS-A

The theoretical development presented above has been numerically implemented in

VABS, referred here as VABS-A to indicate its ability to handle anisotropic actuation.

All VABS-A solutions are based on discretizing the cross section with 6-node

isoparametric elements. The finite element implementation of this framework needs the

cross-section to be discretized for input. A multi-cell airfoil-shape cross section mesh

generator coded in Fortran was developed in-house for that objective. It generates 6-node

element meshes for airfoils with any number of spars. It handles both the interior and

exterior for symmetric airfoils and the outer skin for non-symmetrical. VABS-A is

implemented in FORTRAN 77 and all the runs take less than 1.5 minutes (CPU time) on

a Pentium II machine.

2.2.4 Validation

To validate VABS-A, several cases are considered where other numerical or

experimental results are available. Even though the formulation is not restricted to this,
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the integral actuation in the study cases is achieved through the use of active fiber

composites (AFC) with interdigitated electrodes [38] (see Figure 2.4). This actuator

concept provides a feasible way of integrally actuating the structure instead of the direct

use of piezoceramic crystals, providing higher levels of actuation authority. Basic

material characterization and proof of concept of an integral twisted-actuated rotor blade

have been under investigation at MIT's Active Materials and Structures Laboratory ([39],

[40], [4] and [41]).

2

Figure 2.4 Active Fiber Composite: (a) mode of operation, showing axial extension

along fibers and contraction transverse to fibers; (b) SEM photo of the cross section

For all the cases, actuation is obtained by using active fiber composites packs

embedded in the composite construction. The asymptotic theory presented in Ref. [4] is

used to support the numerical validation of the current formulation. It has been tested

against experimental results and it correlates fairly well for thin-walled closed cross

sections (a key assumption on the derivation of that formulation). For the experimental

results, three different experiments conducted at MIT will provide the needed data

associated with the global behavior of the beam.

2.2.4.1 Active Box-Beam Cases

Due to the nature of the asymptotic formulation, the present theory and the one

developed in Ref. [4] should coincide at the limit when the wall thickness goes to zero.

Therefore, as a starting point on the validation of the new formulation, two active box-

beam cases were selected for numerical evaluation of the two main actuation

mechanisms: axial force and twist moment.
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Figure 2.5 Geometry and material distribution of the box-beam BB 1 numerical test case

25 mm

Figure 2.6 Geometry and material distribution of the box-beam BB2 numerical test case
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Table 2.1 Material properties for the numerical box-beam cases ("L" direction is along

the fibers and "N" is normal to the laminate).

AS4/3506-1 AFC

EL (GPa) 142 42.2

ET (GPa) 9.8 17.5

GLT (GPa) 4.8 5.5
1,LT 0.3 0.354
Thickness (mm) 0.127 0.127
d11 (pmV) - 381

d12 (pm/V) - -160
electrode dist. (mm) - 1.143

Consider the two box-beam described in Figures 2.5 and 2.6, named BB1 and BB2,

respectively. The material properties used in these cases are given in Table 2.1. For both

cases, a constant excitation of 2800 V was applied to the AFCs with +45' orientation, and

-1200V to the AFCs with -45' orientation.

Using 320 elements (2400 degrees of freedom) to discretize these box-beams,

VABS-A results for both the stiffness matrix and actuation vector can be found in Tables

2.2 and 2.3. Also in these tables are corresponding results extracted from Ref. [4].

Table 2.2 Non-zero stiffness and actuation constants for box-beam BB1.
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VABS-A Ref.4 %Diff

K11 (N) 5.518E+06 5.518E+06 0.00

K12 (N m) -5.246E+00 0.OOOE+00 -

K2 2 (N m) 5.468E+01 5.425E+01 0.79

K3 3 (N M2 ) 6.294E+02 6.291 E+02 0.05

K4 (N m) 4.745E+02 4.742E+02 0.06
F1 a (N/m) 3.457E+01 3.501 E+01 -1.27

M1 a) (N m/m) 1.678E+00 1.719E+00 -2.44



Table 2.3 Non-zero stiffness and actuation constants for box-beam BB2.

VABS-A Ref.4 %Diff
K11 (N) 9.924E+05 9.925E+05 -0.01

K12 (N m) 4.672E+03 4.670E+03 0.04

K22 (N m2) 9.71 0E+01 9.627E+01 0.85

K33 (N m2) 7.526E+01 7.494E+01 0.43
K4 (N m2) 7.852E+01 7.821E+01 0.39
F1(a) (N/m) 8.757E+01 8.712E+01 0.51
M (a) (N m/m) 1.382E+00 1.378E+00 0.29

As one can see, the agreement is excellent with the exception

twist coupling neglected by the thin-walled assumption in Ref. [4].

of a small extension-

2.2.4.2 Simple Active NACA 0012 Wing

The second selected test case is a NACA 0012 airfoil-shape cross section with

piezoelectric actuators attached at the upper and lower surfaces (see Figure 2.7). This is

one of the model beams fabricated and tested using AFC actuators [10]. The complete

wing has a span of 0.45 m (beyond the clamping area at the root), with an active length of

0.372 m. In each pack of AFC, the piezoelectric (PZT-5H) fibers are aligned in +45' in

order to maximize the actuation force in twist. Material properties for this case are

presented in Table 2.4.

AFC[±45]1 EEls[]

20mm

50mm

Figure 2.7 Geometry and material distribution of the simple active NACA 0012 cross

section case.

52



The cross section has been discretized with 384 elements (2958 d.o.f.). The predicted

stiffness coefficients and forcing vector induced by an electric field of -1800V/1. 114 x

10-3 m are given in Table 2.5.

A good correlation is shown when comparing those constants with the ones obtained

using the thin-walled asymptotic formulation. The discrepancies verified in the stiffness

constants, again, are within the expected due to the thin-wall assumption present in Ref.

[4]. If one drives the wall thickness to zero, the two formulations will coincide.

Table 2.4 Material properties used in the Simple Active NACA 0012 wing Qj are the

laminate reduced stiffnesses of the actuator pack-"L" direction is along the fibers and

"N" is normal to the laminate).

EL (GPa) 14.8

E-Glass Er (GPa) 13.6
(Style 120 Fabric) GLT (GPa) 1.9

vLT 0.19
Ply thickness (mm) 0.2
011 (GPa) 32.8

Q12 (GPa) 6.26
AFC Q22 (GPa) 17.3

(PZT-5H) Q66 (GPa) 5.5

d11 (pmN/V) 381

d12 (pnV) -160
Ply thickness (mm) 0.17

Table 2.5 Non-zero stiffness and actuation constants for simple active NACA 0012 wing

(N, N m, N m2 for stiffness constants, and N/m, N m/m for the actuation constants).

[ VABS-A Ref.4 %Diff
K11 (N) 7.416E+05 7.508E+05 -1.24

K12 (N m) 4.225E+01 4.024E+01 4.76

K14 (N m) 1.470E+02 1.501E+02 -2.11

K22 (N m2) 1.660E+00 1.450E+00 12.70

K33 (N m2) 3.413E+00 3.175E+00 6.97

K44 (N m2) 1.451 E+02 1.465E+02 -0.96
F,(a) (N/m) -3.156E+01 -3.249E+01 2.95
M1(a) (N n/r) -1.001 E-01 -1.038E-01 -3.70
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Considering the global behavior of the wing, Figure 2.8 shows the tip twist results

for VABS-A, the thin-walled analysis of Ref. [4], and the thin-walled analysis and

experimental data from Ref. [10] as function of the applied voltage. As one can see, all

the theoretical results are in close agreement among each other, and with fair agreement

with the experiments. For these theoretical results, the piezoelectric constants (in d

matrix) are obtained for high-voltage fields, and used throughout the analyses, even for

low-voltage fields (corresponding to low voltages in Figure 2.8). Due to the non-linearity

of the piezoelectric behavior, this approach is expected to overpredict actuation as

verified from the results. However, no further material characterization was available for

a more precise comparison.

1.6-

1.4- --- -ii

.o0.6-

0.4-
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Figure 2.8 Tip twist induced by

Present

Cesnik & Shin [1998]

duPlessis & Hagood [1996]

Experiment- duPlessis &
Hagood [1996]

4..
0

0

600 800 1000 1200 1400 1600 1800 2000
Applied Voltage (V)

the applied voltage for the simple active NACA 0012

cross section case.

2.2.4.3 ATR Prototype Blade

As part of a joint program between NASA Langley/Army Research Laboratory and

MIT, a prototype blade for the active twist rotor (ATR) system has been designed, built,

and preliminary bench tests were conducted [41]. The cross-sectional analysis was
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conducted using the active multi-cell thin-walled formulation of Ref. [4], and the final

cross-sectional design is shown in Figure 2.9. The airfoil shape is a NACA 0012. As one

can see, the main blade structure is composed of E-Glass, S-Glass, and piezoelectric fiber

composites, the properties of which are given in Table 2.6. Also, the front and rear cells

are filled with Rohacell 71 to facilitate its manufacturing.

Active Region
Nose E-Glass 0/+90
E-Glass 0/+90 AFC +45

S-Glass 0 E - Glass +45/-45

E-Glass +45/-45 AFK -45
E-Glass 0/+90 E-las1 s 0/+90

Wrap Joint Region

Plies of Active
Region *

Web +

Fairing

/ Fairinq

0.181 E-Glass 0/+90

0.476

Web
E-Glass 0/+90
E-Glass 0/+90

424

(Unit inch)

Figure 2.9 Schematic diagram of the final ATR blade section design. Dimensions are in

inches.

Two subcases of this ATR prototype blade are studied here. First, the front spar

without the fairing is characterized and tested. Second, the full blade including the fairing

is studied.

2.2.4.3.1 Front Spar

Considering only the front spar from Figure 2.8 and not including the foam inside it,

the cross section is discretized using 336 elements for a total of 2448 d.o.f., and the

corresponding VABS-A results are presented in Table 2.7, along with the ones based on
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the thin-walled formulation of Ref. [4]. In addition, results for VABS-A modeling the

foam inside the spar with a total of 393 elements (2709 d.o.f.) are included (the

formulation of Ref. [4] is limited to thin-walled sections, and therefore cannot represent

the foam). From these results, one can see that there is a good correlation between the

thin-walled approximation and the present formulation on the stiffness constants as well

as on the actuation constants. The discrepancies are within the expected range and are

associated with the extra restriction of thin-walled beams in Ref. [4]. Also, the inclusion

of the foam in the model has some effect on stiffenning the structure and, consequently,

increasing the actuation twist moment M(") and reducing the actuation force F(").

However the effects are small and do not change the resulting induced twist rate (see

Figure 2.11).

Table 2.6 Material properties used in the ATR prototype blade

reduced stiffnesses of the actuator pack-"L" direction is along

normal to the laminate).

(Qij are the laminate

the fibers and "N" is

56

EL (GPa) 19.3

E-Glass ET (GPa) 19.3

(Style 120 Fabric) GLT (GPa) 4.1
1 /LT 0.148
Ply thickness (mm) 0.114
EL (GPa) 43.4

S-Glass ET (GPa) 12.0

(Uni-tape) GLT (GPa) 3.6
1 LT 0.28
Ply thickness (mm) 0.229
Q11 (GPa) 33.6

Q12 (GPa) 7.54

AFC 0 22 (GPa) 16.6

(PZT-5H) Q66 (GPa) 5.13
d11 (pmV) 309

d12 (pm/V) -129
Ply thickness (mm) 0.203

Foam E 90.0
(Rohacell 71) G 28.0



Experimental tests were conducted on this spar for torsional stiffness and twist

actuation, and results are presented in Figures 2.9 and 2.10, respectively. As one can see

from Figure 2.9, the thin-walled approximation (Ref. [4]) correlates well with a more

complete analysis presented by VABS-A (labeled as "VABS-A w/o foam"), but both are

about 20% lower than the experimental result. By incorporating more details on the

model (the first one being the effect of the foam), the result from VABS-A shows a much

better correlation with the experimental result, with a discrepancy of about 11% (notice

that the experimental result has a variation of ±5% [41]). This indicates that VABS-A is

capable of processing the details that will improve the representation of the structure. For

further improvements, components like the ballast weights on the nose and web should be

included and this is beyond the scope of the present work.
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Figure 2.10 Torsional stiffness results for the ATR spar (only)-Experimental result has

±5% deviation.

Regarding the actuation due to induced twist deformation, Figure 2.11 shows the

results for the ATR spar for a 2000 Vpp excitation. Due to a series of electrical

difficulties with the AFC packs [41], the bar labeled "Experiment" are extrapolated

results considering that all packs would be working. As one can see, all three theoretical

results are basically the same, and the inclusion of the foam does not affect the actuation
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twist rate. However, all of the theoretical results are basically two-times higher than the

measured experimental result. The exact reason of the discrepancy is still under

investigation, and this makes a further comparison with this data extremely hard. There

are few things, however, that could help understand this discrepancy.

Table 2.7 Non-zero stiffness and actuation constants for ATR spar (N, N m, N m2 for

stiffness constants, and N/m, N m/m for the actuation constants).

VABS-A VABS-A
Ref.4 w/o foam with foam

K,1 (N) 1.637E+06 1.377E+06 1.416E+06

K12 (N m) O.OOOE+00 2.454E+01 2.472E+01

K14 (N m) 4.007E+02 1.432E+03 2.480E+03

K2 2 (N M2) 3.622E+01 3.131E+01 3.434E+01

K2 4 (N M2) O.OOOE+00 1.748E-02 8.202E-02

K3 3 (N M2) 4.023E+01 3.681E+01 3.712E+01
K44 (N m) 1.020E+03 3.161E+02 3.249E+02

F1(a) (N/m) 7.264E+01 6.935E+01 6.842E+01

M1(a) (N m/m) 1.714E+00 1.572E+00 1.761E+00

M3(a) (N m/m) 5.171 E-01 -6.329E-02 -4.753E-03

First, the piezoelectric properties used for the predictions are based on a linearization at a

higher field (with an applied voltage of 4000 Vpp) than the one possible to be reached in

the experiments, and, therefore, overestimated. Also, the piezoelectric properties are

characterized based on free strain conditions. It is still not known what non-linear force-

stroke characteristics these new AFCs present, and preliminary indications show that they

can potentially be large. Finally, due to a sequence of pack failures in the actual prototype

blade (only 19 out of the original 24 were working after a sequence of bench tests), it is

possible that some packs lost their original electric properties, causing a degraded overall

performance.
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Figure 2.11 Actuation twist rate results for the ATR spar (only) for a 2000 Vpp.

2.2.4.3.2 Full Blade

The complete ATR cross section was discretized with 604 elements for a total of

4851 d.o.f. after adding the fairing to the spar described previously, without the core

foam being modeled. For the case with the foam core in the model, a total of 789

elements (5691 d.o.f.) were used. The theoretical results for all the non-zero stiffness

components and actuation constants are presented in Table 2.8.

As one can see, these results follow similar trends to the isolated spar. Particularly,

the torsional stiffness correlation when foam is added to the model improves

significantly, and the difference between experimental and theoretical results is

approximately 5% (see Figure 2.12).
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Table 2.8 Non-zero stiffness and actuation constants for ATR prototype full blade (N, N

m, N M2 for stiffness constants, and N/m, N m/m for the actuation constants).
VABS-A VABS-A

Ref.4 w/o foam with foam

K,1 (N) 1.637E+06 1.633E+06 1.712E+06

K12 (N rn) 0.OOOE+00 2.467E+01 2.694E+01

K14 (N m) 4.007E+02 6.487E+02 2.023E+04

K22 (N M2) 3.622E+01 3.684E+01 4.277E+01

K24 (N M2) 0.OOE+00 1.780E-01 5.478E-01

K33 (N M2) 4.023E+01 4.078E+01 4.136E+01

K44 (N M2) 1.020E+03 9.735E+02 1.279E+03

F1 7) (N/m) 7.264E+01 6.931 E+01 6.844E+01

M1 (a) (N rn/rn) 1.714E+00 1.654E+00 1.940E+00

M3(a) (N m/m) 5.171 E-01 4.575E-01 1.289E+00

50-

45

'E40
E35

(030
a>

25

20

o215

010-

5

0
Thin-walled VABS-A VABS-A Experiment

model (no foam) (foam)

Figure 2.12 Torsional stiffness results for the complete ATR blade-Experimental results

has ±5% deviation.
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Figure 2.13 Actuation twist rate results for the complete ATR blade.

The twist actuation results are shown in Figure 2.13, and the exact cause of

discrepancy between the theoretical results and the experimental one is still under

investigation (see discussion above for the ATR spar).

A remarkable result is that, even though the foam affects the stiffness and actuation

constants, it does not (theoretically) change much the induced (active) twist rate. The

mechanism for this to happen is for the foam to be compliant compared to the walls, such

that the "local stiffness" on the active part of the structure is not significantly changed

(mathematical discussion on this issue is presented in Ref [42]). A graphical way of

seeing this is by looking at the warping mode associated with the actuation, V(a ), defined

in Eq (2.51). The result of the warping modes associated with extension, torsion, two

bendings, and the actuation are shown in Figures 2.14 and 2.15 for the models without

foam and including foam, respectively. As one can see, they are virtually the same,

particularly the two main warping modes for this actuation mechanism, namely the

torsional warping (mode 2) and the actuation warping (mode 5).
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Figure 2.14 Warping modes for the ATR blade model without including the foam core

(different magnifications were used to facilitate visualization).
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Figure 2.15 Warping modes for the ATR blade model including the foam core (different

magnifications were used to facilitate visualization).
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2.2.4.4 Mach-Scaled CH47-D Active Blade Section

Finally, consider the 1/6th Mach scaled CH-47D blade built and tested at MIT [39].

Particularly, let us consider the blade section that runs from the root to 0.54 radius as

shown in Figure 2.16 (along with the detailed cross-section layup).

9.093'" 16.406' 39.402" 51.526' 60.619'
0.15R 0.27 0.65R 0.85 1.00

lead-lag pin

Spar Laminate
3 plies 45 E-glass Fairin Skin
2 plies 0 Graphite,S-glass I 5 E-glass Fabric
3 plies AFC Actuators t=0.0045" (0.11 mm)
t=0.047" (1.19mm)

nose trailing edge
o:1

5.388

Web
3 plies 45 E-glass Fabric
t=0.0135" (0.34 mm)

Figure 2.16 1/6th Mach-scaled active CH47-D blade

Similar to the ATR blade described above, the CH-47D blade section was built in

two steps so one had access to first test the front D-spar and once the fairing was

attached, the full blade. Both cells are filled with foam, being Rohacell 300 WF (high

density/high strength foam) for the front D-spar, and Rohacell 71 IG for the fairing. The

experimental setup, and blade material properties are described in details in Ref. [39].

The maximum twist at the end (0.54R) was measured corresponding to a maximum

applied voltage of 4000 Vpp and only 10 out of the 12 packs working. Active twist rate

results of the experimental test, the theoretical thin-walled analyses of Refs. [10] and [4],

and the present analysis are presented in Table 2.9. For VABS-A results, a finite element

mesh with 629 elements (4299 d.o.f.) for the D-spar and with 827 elements (6252 d.o.f.)
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for the full blade were used. The foam could not be modeled for this case due to

limitations on the automatic mesh generator for the interior regions when dealing with

non-symmetric airfoils.

Table 2.9 Peak-to-peak twist actuation results for the 1/6th Mach-scaled CH47-D active

blade-based on 54% span and 4000 Vpp/800 VDC

D-Spar Only I D-Spar+Fairing
Ref.4 3.13 deg/m 2.65 deg/m
Ref.10 3.13 deg/m -

VABS-A 3.05 deg/m 2.25 deg/m
Experiment 2.46 deg/m 2.06 deg/m

As one can see, all the theoretical results overpredict the twist actuation, particularly

in the case of the isolated spar. But better than the other ones, VABS-A captures the spar

tip twist actuation within 24% and the full blade within 10%, which is a remarkable

correlation, even if by including the foam the tip twist actuation may not change much.

Due to the flexibility of the finite-element formulation, more details could have been

added to the model in order to more realistically represent the blade. This, however, is not

a trivial task for an automatic mesh generator, and future mesh generation for this

particular configuration could be done in a CAD environment. Then one could conclude

on the influence of the foam core, flex circuit, ballast weight, and other construction

details of the blade on the actuation performance.
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Chapter 3

Aeroelastic Control Design

This chapter addresses a particularly challenging task for the aeroelastician: the

control of the aerodynamic surface. Every element that shapes the control problem within

the aeroelastic framework as introduced in Chapter 1 is presented next. The LQR is

introduced first as a fundamental building block of the LQG. The LQG is more realistic

than the LQR and is presented after. The appropriate formulation necessary to introduce

the sensing as well as the disturbance into the model are presented next. Finally, several

useful tools to help the designer in identifying the working point of the wing as well as

tools to quantify that performance close up the chapter.

3.1 The LQR Regulator

The Linear Quadratic Regulator (LQR) is presented hereafter as a basic element of

the Linear Quadratic Gaussian Regulator (LQG), which is the subject of the following

section. The LQR in its own is useful to determine a design weight a priori, as is

described in detail later on.

Figure 3.1 shows the schematics of the LQR regulator. The state space formulation

that describes the plant is the following:

xi(t) = A -x(t) + B -u,(t) (3.1)

where x is the state vector and ue is the input to the plant. In essence, the LQR provides a

control vector u(t) such that a given performance index J is minimized:

J = L(x,u)dt (3.2)
0
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Uref

Figure 3.1 Linear Quadratic Regulator (LQR) Diagram

A usual choice is [57]

J = (xT -Q-x+u T  -Ru)dt (3.3)
0

where R and Q are positive-definite Hermitian matrices. This poses a least-squares

minimization problem, which results in the input related to the state vector through a

constant gain matrix K:

u(t) =-K -x(t) (3.4)

The matrix K is found by solving

K = R 1 B P (3.5)

where P is the solution of the following Riccati equation:

AT -P+P -A-BP -BB- R- -BT P+Q=0 (3.6)

The state space representation of the complete general system (i.e., plant plus

regulator) is given by

= A-x+ Bue (3.7)
y=C-x+D-u,

where uref - u = ue . The regulator expressed by Eq. (3.4) can be rewritten as

Ue =Uref -K-x (3.8)

Substituting Eq. (3.8) into Eq. (3.7) results in
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= A-x+B-(uref -K -x)

y C-x+D(uref -K-x)

or after regrouping terms,

= (A -B -K) x + B u(3.10)
y = (C - D- K) x + D Ure

which is the global state space representation sought, with the new stability matrix

A =A-B-K (3.11)

The LQR may seem a reasonable closed-loop regulator, but unfortunately it is far

from being optimal in a real flying wing scenario. In particular, the LQR

" assumes that the complete state vector x is known for feedback,

* has no knowledge of any disturbance affecting the system nor does it account for one

in its formulation, and

" does not take into account any noise in the sensing or affecting the states, or the

sensor readings.

With these limitations in mind, another type of regulator must be used for the problem

under consideration in this thesis.

3.2 The LQG Regulator

The Linear Quadratic Gaussian regulator (LQG) does not have the shortcomings of

the LQR, providing a much more realistic controller in a model where arbitrary discrete

sensing is present. It accounts for random noise (w) as shown in the block diagram in

Figure 3.2.

The state space equation that describes the plant is now

i(t) = A -x(t) + B -u,(t) + G -w(t)

y(t) = C -x(t)+ D -u,(t)+ H -w(t )+v(t)
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V

w
+ ue A,B,CD,G,H y

LQG 4---

Figure 3.2 Linear Quadratic Gaussian Diagram

where x is the state vector, Ue is the input to the plant, w is the process noise and v is the

disturbance noise. w and v are zero mean white noise processes with uncorrelated spectral

density matrices Q and R.

As mentioned above, this is a more realistic scenario in which there is no complete

knowledge of the plant states. The LQG combines a LQR with a Kalman filter to estimate

those states based on measurements affected by noise. The estimation algorithm satisfies

two criteria:

" The expected value of the estimate is equal to the expected value of the state;

" The estimation algorithm minimizes the expected value of the square of the

estimation error.

The dynamics of the estimation state X^ yielded by the Kalman filter are equal to

X= A -+B-ue+L-(y -C-X-D -u) (3.13)

where L is equal to

L = P. CT -R- (3.14)

and P is obtained by solving the Riccati equation

P = A -P + P -AT +G-Q-G T-P-CT -R- 1 -C-P (3.15)

The Kalman filter can then be expressed in state space formulation as
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N =[A-L-C-(B-L-D)-K-i+ L- y (3.16)

y =-C -X+D-u

The LQG regulator is formed by combining the Kalman filter with the constant gain

matrix K obtained in the LQR regulator, which satisfies

u = -K -X (3.17)

The state space formulation of the regulator can then be obtained by combining Eqs. 3.16

and 3.17:

X=,AK -*+BK y (3.18)
u=-CK - DK 'Y

Substituting the second equation in Eq. (3.12) in the second one in Eq. (3.18) and

assuming the reference input uref equal to zero results in
u=-CK -K-D -x-D -Du-D -H-w (3.19)

CK -^ K KK

This result is substituted in the first equation in Eq (3.12), yielding

x=A-x-B-CK B-DK -Cx-B-DDu-BDK -H-w+G-w
K - - K* CK *D- u- B DK*H~wG~w (3.20)

x=(A-B-DK -C)-x-(B-CK)-2-(B-DK -D)-u+(G-B-DK -H)-w

Similarly, the second equation in Eq. (3.12) is substituted in the first equation in Eq.

(3.18) to obtain

.i=AK -i+ BK -Cx+BK -D-u+BK -H-w (3.21)

All there is left to be done for the new matrices A and B is to write Eqs. (3.20) and (3.21)

in state space form:

S=BA-B-DK -C B-CK x -B-DK D G-B-DK -H.
i BK C AK _X} BK -D 3BK -H

For matrices C and D a similar procedure is followed. Eq. (3.19) is substituted in the

second equation in Eq. (3.12) and written in state space form yielding

Y=[C-DK -C -D-C K]- (D-DK D)-u+(H-D-D H) -w (3.23)

Finally, rearranging Eqs. 3.22 and 3.23, the complete system (plant plus regulator) can be

written as
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x -B-DK -C B-CK] x [G-B-DK -H -B-DK -D v
X BK K BK-H BK-D

{~}ABDK C -. C ] x} ~H -D D H -

Y =[C-DK-C -D-CK].{ } DKD]{}
X D-D, -*D u

3.3 Structural and Aerodynamic Modes

Knowledge of the structural and aerodynamic modes is key to the design. Firstly, it

allows to determine which two modes coalesce in flutter. Secondly, it establishes the

most critical gust frequency the wing will encounter at any configuration. And thirdly, it

provides the essential information for optimal sensor placement.

The structural and the aerodynamic modes result from solving the following

eigenvalue problem:

Ax = px (3.25)

where A is the corresponding matrix in the state space formulation as in Eq. (3.12), and x

is the state vector as in Eq. (2.25). A useful way to present the resulting eigenvectors is to

plot them in terms of the wing displacements u and rotations 0 and the inflow states X

rather than in their original state representation x = f(0, 6, X). The following steps

accomplish this.

The cross-sectional strain y is defined as

Yu1
Y = j2y2 a(3.26)

2y13

It is a function of the rotations 0 and the displacements u, which can be represented as

y = f (u,)= 0 => u = f (0) (3.27)

Once these equations are linearized (assuming small deformations) and the extensional

strain is neglected, the displacements can be expressed in terms of the rotations as
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U; =0

(u+1 - u) (0 i + O6+*) (3.28)

2(u+* -U u )= (0i + Oi**)

where the subscripts are the direction of u or 0 and the superscripts stand for the finite

element number of the discretization. Al is the distance between contiguous elements in

the discretization. This allows to write the displacements as a function of the Rodrigues

parameters:

u = TUO -0 (3.29)

where Tuo is the matrix mapping the rotations to the displacements. The conversion can

be completed then as

u T'O 0 0 0

I = I 0 0 e(3.30)X 0 0 I X

The structural modes can be visualized by plotting u and 0. The aerodynamic modes

can be visualized by plotting X. This has been done in Matlab and actual examples of the

output are presented in Chapter 4.

3.4 Sensing

The two types of sensor that are considered in the wing are introduced in this section,

along with the equations that allow their modeling in the state space formulation. The

best placement of the sensors is treated next.

3.4.1 Sensor Types

As mentioned above, there are two kinds of sensors considered in this study. The

first type, the strain gauge, provides local strain information. The other type, the

accelerometer, provides kinetic information. These two sensors are small enough in their

real form to be attached to a wing, which allows their distribution along the structure in
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high numbers if necessary. The best placement of the sensing devices is studied in later

sections.

Strain gauges: The strain gauges measure the local strain in the direction of the

gauge. Clever placement and orientation of the strain gauges can allow for bending or

torsional curvature measurements. It is shown here how to obtain the bending curvature

from the placing of two gauges at 0' (the same holds for the twist curvature placing the

two strain gauges at ±45').

Figure 3.3 shows a longitudinal section (along the beam axis, xi) of a beam and two

strain gauges, one on the top and the other on the bottom.

From elasticity theory, the curvature measured by each of the gauges can be written

as

E1u -K2*h 
(3.31)

E11 = K2 -

where , denotes the strain, K the curvature and h, and h2 the distance from the neutral

axis to the top and bottom of the section respectively.

Combining these two equations results in

Ell - E = K 2 -(h2 + h) (3.32)

Since h2+h1 is a known quantity, the curvature can be expressed in terms of the strain

measured by the gauges:

K2 = "l "lu (3.33)
h2 + h

x3

neutral top strain h,

axis gauge h

bottom strain
gauge

Figure 3.3 Placement of two strain gauges at 00 in a non-symmetric longitudinal cross-

section
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Accelerometers: Differentiating Eq. (3.29) twice yields

ii = T0 -0 (3.34)

The only thing left to know is how to express 0 in terms of the state vector x, the

input u and the disturbance w. From the reduced state space representation, the following

equation holds:

1A F 0 B 1 [Gil
tA2 + B2 u+ G2 w (3.35)

A B3 _ G3_

Then,

0

= A2 - 0 + B2 u+G2 w (3.36)

Combining Eqs. (3.34) and (3.36) yields

0

ii = TuO -A2 uO -B2 *u +TUO -G 2 -w (3.37)

which expresses the acceleration in terms of x, u and w.

All the sensor information is written to a file that the Matlab implementation then

reads. This file has as many entries as elements in the wing discretization. For every

element, a series of three flags tells which type of sensor (bending strain gauge, torsion

strain gauge or accelerometer, or a combination of the three) is embedded in the element.

3.4.2 Sensor Placement

Knowledge of the different structural modes is key to the sensible placement of the

gauges. There are two kinds of sensors: accelerometers and strain gauges. In order to

increase modal observability, the sensors have been placed along the span after a modal

analysis. The first three bending modes and the first three torsion modes can be computed

for a wing. The shape of the mode indicates where the curvature of the structure (and

hence the measured strain) is maximum. Placing the strain gauges at these maxima

should provide enough information with a minimal set of gauges. The accelerometers
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should be placed where the modal amplitude has a maximum. For the first bending mode,

the best location should be the tip element, where the displacement (and therefore the

acceleration) is greater.

A practical way to obtain the maximum curvature locations is to numerically derive

the mode shape obtained as described in Section 3.3. The disadvantage of this direct

approach is that the mode shapes obtained will be a simple linear interpolation of the

discrete values associated with the relatively small number of nodes used in the finite

element discretization of the wing. This is particularly problematic when one tries to

numerically evaluate the second derivative of the nodes required for the curvature

calculation. To overcome this problem, an approximation to the modes can be computed

using the influence coefficients of a cantilever wing both for bending and torsion. Rrefer

to Appendix B for a detailed explanation.

3.5 Gust model

The gust model adopted as the system disturbance w is a simple harmonic

disturbance embedded in the atmosphere described in Refs. [50] and [45] as

WV 2n(-U t )w = Mx _cos( xGU ) (3.38)
2 xG

where U_ is the flight speed. Figure 3.4 more clearly describes the model and the

different parameters.

X3

wmax

XG

Figure 3.4 1-Cosine gust model
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When the undisturbed wing encounters this disturbance model, it begins to oscillate.

For a stable system, once it has advanced through the gust, it settles down in some time

which is one of the performance parameter used to evaluate gust alleviation.

3.6 Cost Calculation and Normalization

It is intuitive that different actuation and sensor configurations in a wing result in

different performances. What is more: a certain actuation distribution may effectively

reduce excessive wing displacements at the expense of higher power consumption.

Clearly, a way to normalize actuation and response is necessary in order to compare

different configurations. The concept that is to be introduced next provides a consistent

way to compare the performance of different configurations.

3.6.1 Formulation

A rational way to evaluate the performance is by normalizing the cost minimization

functional presented in Eq. (3.3) and which is written again with an additional weighting

term p:

J = (x .Q.x+p.u T - R -u)dt (3.39)
0

There are two contributors to this cost function: the state cost (Js) and the control

cost (Je):

J =J (XT Q. x)dt (3.40)
0

J, = f(uT R -u)dt (3.41)
0

Defining Q as

Q =[ 01 (3.42)

results in the state cost being the integral with respect to time of the total energy of the

77



system, i.e., strain energy and kinetic energy. The control cost happens to be the actuation

input to the system integrated over time.

3.6.1.1 Cost Functions for a LQR Regulator

A way to compute the improper integrals in Eqs. (3.40) and (3.41) has to be

devised in order for the whole normalization procedure to be implemented on a digital

computer. The method uses the Lyapunov equation.

The Lyapunov's Second Method studies the asymptotic stability of i = A -x (Ref.

[49]). If A and x are real, then a positive-definite Hermitian matrix P is chosen and the

following function V is defined:

V(x)= x T -Px (3.43)

The time derivative of the function is then

V(x) = (A .x) T P. x + - P -(A -x) = x
T -(A T- P + P -A) x = T - P - x + x .P -

(3.44)

The following matrix Q is also defined:

Q=-(A T -P+ P -A) (3.45)

and then V(x) becomes

Y(x) = -Q-x (3.46)

For asymptotic stability #(x) is required to be negative definite (since V(x) was chosen as

positive definite), or alternatively, Q has to be positive definite. In fact it is more practical

to choose a positive-definite matrix Q and examine whether P is positive-definite from

AT -P+P -A =-Q (3.47)

Eq. (3.47) is the Lyapunov Matrix Equation. The matrices A and Q have to be

determined next so that the Lyapunov equation matches the present problem. A state

space representation of a plant with full state feedback is given by

x = A -x + BB-u

-K (3.48)
u = --K -x (.8

which can be combined as

x= A-x -B K -x=(A-B-K)-x (3.49)
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In other words, the A matrix sought, which is renamed A , is equal to

A =A-B-K (3.50)

The matrix Q is obtained by rewriting Eq. (3.39) using the last equation in Eq. (3.48)

as follows:

(3.51)J =J(x' -Q-x+u' -R-u)dt =f xT -(Q+K T -R-K)-x-dt
0 0

By direct comparison between Eqs. (3.46) and (3.5 1), Q is found to be

Q=Q+K T -R -K

and therefore, Eq. (3.47) (the Lyapunov matrix equation) can be written as

(A-B-K) T .P'+P'.(A-B-K) = -(Q+K T -.R-K)

(3.52)

(3.53)

and P' can be obtained by solving this equation. Furthermore, the cost function can be

written as

J = fx .(Q+ K T

0

-R -K) -x -dt =x - P -x( = -x T (oo). P'. x(oo) + x T (0). . x(0)

(3.54)

But since x(oo) --> 0,

J =xT -(Q+K T -R -K)-x -dt =xT(0).P.x(0)=trace(x(0)-xT(0)- P')
0

(3.55)

Similarly, we can also set up the Lyapunov equation using the identity matrix I

instead of Q, which is completely valid because the only requirement is for Q to be

positive-definite:

(A-B -K)T -P+P -(A -B -K)=-I (3.56)

In this case,

J, =fxT -I-x.dt=xT (0)P-x(0) = trace(x(0). x T (0). P)
0

(3.57)

Multiplying Eq. (3.57) by (Q + KT - R -K) yields

SxT -(Q+K T

0

-R -K) -x -dt = trace(x(0) -xT (0) - P -(Q + KT -R -K))
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Comparing Eqs. (3.55) and (3.58) one obtains

P'=P-(Q+K -R-K) (3.59)

There are several LQR-like controllers designs that include gust, but how to

consistently include it is unclear. There is one based on the assumption of a white noise

disturbance to the system (with no gust state equation) [47]. For this model, the cost

function J for the white noise disturbance is written independently of any initial

conditions:

J = trace(P') (3.60)

Similarly, using the result in Eq. (3.59),

J = trace(P -(Q + K T -R -K)) (3.61)

Js = trace(P -Q) (3.62)

Je = trace(P -KT - R -K) (3.63)

3.6.1.2 Cost Functions for a LQG Regulator

Using a similar derivation to the one employed above for a LQR regulator, the

different costs can be calculated as

J = trace(P2 -Q + PI -P2 ' y2 2) (3.64)

Js =trace((P2 + P3) Q) (3.65)

Jc =trace(P -P -aCI P) (3.66)

where P1 and P2 result from solving the following Riccati equations

A I-P +p -A-P, -, -P, +Q=0 (3.67)

A-P2+P2'AT -P 2 '2' -2+G=0 (3.68)

while P3 results from solving the following Lyapunov equation

(A - PA, -Pp) -PJ + P - ( - cy, -PT = -P2 '2 * P2 (3.69)

and the following definitions are introduced

a,= B -R~' -B T  (3.70)

a 2 = CT -H-1 -C (3.71)
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3.6.2 Implementation

The purpose of the term p in Eq. (3.39) is to penalize one cost term more than the

other in the minimization process. Essentially, it determines whether one allows large

oscillations at the expense of little control power involved or otherwise. Using this term

we can normalize the state as well as the control costs, which we denote Js and Jc.

Js = is

- __ 
(3.72)

p

Plotting these normalized costs is an effective way to compare the performance of

different configurations. Fixing one of the performance parameters (actuation orientation

or number of active regions) yields a curve close to a hyperbola, as shown in Figure 3.5.

This behavior is completely expected. Wing oscillations can be limited at the

expense of high control authority. On the other hand, setting low power consumption

results in high displacements. The present analysis framework allows to simultaneously

plot these hyperbolas for an arbitrary change in a wing configuration parameter. Actual

examples are presented in Chapter 4.

The state cost vs. control cost plot is the key to manage the energy requirements. At

this design point, the exact meaning of the control (actuation) energy is somewhat

arbitrary. For instance, the exact calibration of the sensors is unknown, and it is

determined by the real hardware. Since the regulator uses the information from the

sensors to set the required voltage to the actuators, this may get scaled once the actual

sensor parameters are entered into the system.
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Figure 3.5 Locus of the points that minimize the total energy of the system

Without a firm limitation on the state or control costs, a potentially useful operating

point lies in the vicinity of the intersection between the bisectrix of the quadrant and the

hyperbola itself, as shown in Figure 3.5. It is a valid preliminary design point, which

should be refined as the exact configuration parameters are known. This point determines

the minimum equally weighted state and control cost (Js and Jc respectively). These two

values are all there is to be known to determine the weighting parameter p in Eq. (3.39)

(see Section 3.6.1).

3.7 Transfer Function Sinusoidal Disturbance to

Normalized Voltage Magnitude

An important tool for the design is the ability to tell how much authority the

controller requires to reject a certain sinusoidal disturbance of given amplitude and

frequency. In fact during conceptual design, even more useful than plotting the required

voltages in the time domain (which is done in the simulation), is to plot them in the

frequency domain. The Bode plot displays the magnitude of the normalized actuation

voltage signal with respect to the frequency of the sinusoidal disturbance exciting the

wing. Obviously, one Bode plot results for every active region in the structure.
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3.7.1 Formulation

The goal is to find the appropriate transfer function between the sinusoidal

disturbance affecting our model and the voltage thus required by every active region for a

given configuration of the actuators.

In Section 3.2 the LQG was already introduced. The starting point is its state space

representation in Eq. (3.24), which simplifies to:

= A r + B T u
X X U(3.73)

Y = CrT + DrT

Since the objective is to obtain the transfer function Tu4. as

uw -- (3.74)

everything has to be expressed in terms of u and w.

By definition of the LQG, the input is related to the state vector estimation as

u=-CK - (3.75)

and the matrix C can then be altered so that y, the output, becomes u, the input:

C =[0 -CK] (3.76)

Since the disturbance w is actually a scalar, BT can also be split as shown below,

where the columns are denoted as G and B respectively,

b1  b12  ... bm b1 --- b

b 21  b 2 2 --- b 2 ,n b2 2  ... b2m

BT = b3 l b3 2 ... b = G b3 2 -- b = =G B

bni bn2  --- b _ _ b ... b

where n is the dimension of the state vector x and m is dim(w)+dim(uref)=1+dim(uref). The

state space representation of the plant plus the regulator can be written as

83



=AT - . +B-u+G .w

U=C.X(3.77)u = C. {-
or equivalently, in vector notation,

k= AT -x+B u+Gw (3.78)

U =C -x

The second equation is substituted in the first equation to obtain

=AT -x+B -C -x+G -w (3.79)

and x is isolated using the Laplace Transform, assuming that x(O) = 0:

s-x-Ar -x=B -C -x+G -w

(s-I - AT B -C)-x=G -w (3.80)

x =(s-I - A - -C)-' G-w

This last result is substituted into the last equation in Eq. (3.78), yielding

u = C - (s - I - AT- B -C)- -G -w (3.81)

and the transfer function can be readily obtained by dividing this last equation by w:

= = C G (3.82)

The voltage applied to the actuators is provided as peak-to-peak values (see section

2.3.2.1). As a result, the active forces and moments are output per maximum voltage.

This means that the output u obtained by means of Eq. (3.81) is already normalized.

Therefore, u varies from -1 to +1, a value of +1 meaning that maximum positive voltage

is required for the actuation.

3.7.2 Implementation

Plotting in the frequency domain allows the user to detect which gust frequencies

would require more actuation power at a glance. It can even provide clues on which

modes have low controllability. The current implementation in Matlab produces plots as

the ones shown in Figure 3.6.
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Figure 3.6 Bode plot of the transfer function sinusoidal disturbance to normalized

voltage.

3.8 Stability Cost and Pole-Zero Mapping

Two fundamental tools in the stability analysis are developed in this section: a

measure of the control power required for stability and a pole-zero mapping for visual

flutter identification.

3.8.1 Stability Cost

The measure for stability is the stability control cost, which is the minimum cost

necessary to render the plant stable. When every dimension in the process noise and the

sensor noise vectors is assumed to be affected by uncorrelated white noise, setting G=I,

H=I, Q=O and R=I in Eq. (3.63) will yield the root mean square value of the stability

control cost (Ref. [47]):

Je = trace(P -KT -K) (3.83)
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3.8.2 Pole Zero Mappin g

The open loop matrix A determines the open loop poles and zeros of the plant. By

plotting those poles, a typical behavior can be observed. At zero airspeed any wing is

inherently stable. As the speed increases, some of the poles may enter the right semi-

plane, rendering the system unstable (see Figure 3.7).

Im

XXXXX
Flutter

XXXX Re
Xxx

Figure 3.7 Flutter onset detection by pole movement tracking

The present analysis implementation (also coded in Matlab) is able to plot this pole

variation with airspeed in the real-imaginary axes plane, which allows to detect the onset

of flutter easily. In addition, the closed loop poles of the A matrix corresponding to the

complete system (plant plus regulator) Eq. (3.11) can be plotted to check the stability of

the controller. Numerical examples are given in Chapter 4.

3.9 Stall Detection

Controlling the wing poses a number of challenges, the most important of which are

mode uncertainties and non-linearities. During the preparation of this thesis work, an

attempt was made to control the wing to improve aerodynamic performance while

preventing or reducing the effects of stall. This included the detection of lift and moment

through pressure sensors. This work is included here as a feasible method to detect and

control non-linear stall
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3.9.1 Formulation

One approach to control the non-linear system is to use a describing function, in

which approximate gain and phase of the non-linearity is found for a sinusoidal input to

the plant [58]. This results in a quasi-linear model of the system, which is a function of

the vibration amplitude. By designing a linear controller that is stable for all possible

quasi-linear models, a stable close-loop system should result.

A more direct approach is to try to control the non-linear effect directly. The

approach for doing so is shown in Figure 3.8.

Accelerorneters ,Linear control
& strain gauges law

_, Prssure _ Sensor Control
sensors preprocessing salaugmentation

States

Nonlinear Strain
plant actuators

Figure 3.8 Diagram of a stall detection and control model

One of the features of the method is that pressure sensors are the means by which the

lift and moment affecting each station at every time are estimated. Those two

measurements are used to detect the stall forming a parity signal, which indicate the

existence of it. The parity signal is generated as follows. It is observed that, in the linear

range, lift and moment are linear dynamic functions of angle of attack, so

L (s)= GL (s))7a(s)
(3.84)

M (s)= GM (s)-(s)

where L (s), M (s) and U(s) are the Laplace transforms of the lift, moment and angle of

attack, L(t), M (t) and x(t). GL(s) and GM(s) are transfer functions determined by

Theodorsen theory. However, when the wing or part of it stalls, the magnitude of the lift

fails to follow a linear behavior and its application point moves along the chord. This

introduces variations in the moment, which subsequently diverges from the linear

moment to be expected had the airfoil remained in the linear region.
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This difference in moment is what it is detected by means of constructing the stall

parity function. When the wing is stalled, the parity function is non-zero, and increases its

magnitude as the plant goes deeper into non-linearities. The parity signal is given by

P(s)= G,(s)L (s)- G2 (s)M (s) (3.85)

where G, and G2 are chosen so that

G,(s)GL (s)= G2(s)Gm (s) (3.86)

Then, so long as the wing is unstalled and Eq. (3.84) holds,

P(s)= 0 = p(t)= 0 (3.87)

When the wing is stalled, Eq. (3.84) no longer holds, and generally p(t) is non-zero.

3.9.2 Simulation results

In order to be able to present some theoretical results, the real plant has been

replaced with a fully non-linear model of it, consisting of the ONERA stall model and a

series of inflow states to model the aerodynamic lags. This model should be

representative enough of the real airfoil, and the parity function behavior can be

computed from it. The overall plant was implemented in Simulink and is depicted in

Figure 3.9. The aerodynamics block and the lift stall detection model have been included

in full detail too (Figures 3.26 and 3.27). The moment stall detection block is analogous

to the lift one.

Next, the airfoil is commanded to follow a sinusoidal motion. The angle of attack is

gradually increased from 00 to 60' peak to peak 1 Hz oscillations (well beyond stall). It

remains then oscillating at constant amplitude for 20 seconds, time at which the

oscillations are brought down to ±10 oscillations (below stall).

The results have been plotted in Figure 3.12. The spikes in the Parity Function when

the airfoil stalls are self-evident, and could therefore be used for stall detection.

3.9.3 Control design usi ng the parity signal

Given the parity signal, there are two control options. First, linear feedback could

be applied, designed to add damping to the system. This additional term would reduce the
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optimality of the controller with respect to other objectives, such as improving

performance, but would stabilize, say, stall flutter.

The second option is to use the parity signal as a stall indicator to trigger a switch

between a linear to a nonlinear controller. Whenever a stall is indicated, a non-linear

control response would be initiated to reduce the average angle of attack, alleviating stall,

again perhaps at the expense of other objectives.

Both of these options are beyond the scope of the current work, but should be

pursued in the future.
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Figure 3.9 Simulink block diagram of a stall detection and control model
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Figure 3.10 Simulink block of the aerodynamics model

USO01a~b *'U^2DetaDOi

Figure 3.11 Simulink block of the lift stall model
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Figure 3.12 Generation of the parity function.
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Chapter 4

Results

In this chapter, the viability of the framework as an effective aeroelastic analysis and

tailoring tool is demonstrated. A wind-tunnel model representative of UAV wings is

selected and different LQG controllers are designed and simulated at set flight velocities.

Simulation of the resulting aeroelastic systems are run to study the impact of parameter

variation in flight performance, namely angle of attack, actuation orientation and

grouping, and sensor location and type. A normalized control cost denoting the actuation

energy and a normalized state cost denoting the total energy of the wing are the selected

performance parameters. Finally, a simple robustness checked is performed on the LQG

regulator.

4.1 A Proposed Wind Tunnel Model Wing

Typical High Altitude Long Endurance (HALE) vehicles fly under M=0.5 and tend

to have a tapered wing with a half aspect ratio between 8 and 15 (Refs. [43] and [44]).

Typical examples are the Lockheed Martin/Boeing DarkStar and Aurora's Theseus and

Perseus among others. A wing concept that allows for the investigation of all the relevant

phenomena of interest that are representative of present and future UAV wings is

presented here.

The wing for this study is a proposed wind tunnel model geometrically and

dynamically representative of existing and potential new HALE UAV wings. The model

is tapered (taper ratio 1:2) through 75% of the wing (Figure 4.1) for aerodynamic

performance.

The most prominent features of this wind tunnel model are the following:
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" Presents non-linear aeroelastic characteristics due to large structural deflections.

* Presents flutter at subsonic speed.

" Fits in the NASA Langley Transonic Dynamics Tunnel with the appropriate

clearances (for future experimental test).

Figure 4.1 Planform diagram of the proposed wing design showing the distribution of the

actuation (dimensions in cm).

Key parts in the cross-sectional design are the cross-sectional shape, including

number of spars and location, and the composite lay-up. The decision was to have a

single spar at 40% chord, helping to reach the torsional rigidity that would help in flutter.

Leading Edge (active)
E-Glass 0/90

Nose E-Glass 0/90 Trailing Edge (active)
E-Glass 0/90 AFC +45 E-Glass 0/90
E-Glass 0/90 E-Glass 45/-45 E-Glass 0/90
E-Glass +45/45 AFC -45 AFC +45
E-Glass 0/90 E-Glass 0/90 E-Glass 45/-45

AFC -45
E-Glass 0/90

4.6% Web

E-Glass (0/90)4

Figure 4.2 Lay-up of the wind tunnel model's cross-section (NACA 0014)
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This one-spar construction is in fact used in certain UAVs, as in the case of Aurora's

Perseus. The spar placement and composite lay-up were optimized for low maximum

stress and best aeroelastic performance. The airfoil shape used for design was the NACA

0014, approximating the NACA 6514 that is representative of high-altitude flight,

presently in use by some of the HALE vehicles. The lay-up of the airfoil is depicted in

Figure 4.2. The lay-up shows the actuators placed at -45', but their lay-up angle will be

varied from 0' to the ±45' shown in order to investigate the effect of their orientation on

the aeroelastic performance of the wing. The different cross sections have been

discretized using 6-node isoparametric elements. The resulting meshes range from 1993

nodes and 823 elements at the root to 1021 nodes and 422 elements at the tip. Detailed

cross sectional stiffness, mass and actuation properties are detailed in Appendix A. Note

that the stiffness properties change with the actuator orientation since they are an integral

part of the structure.

0.07
E E
a) -0.06

curvature a)

505
CO,

.0 3 -0.04-

2- -0.02 c"

0 1 twist rate

a-)

0 5 10 15 20 25 30 35 40 45
AFC ply angle (deg)

Figure 4.3 Maximum actuation for twist and bending as function of the AFC actuator ply

angle.

The integral actuation in the study cases is achieved through the use of active fiber

composites (AFC) with interdigitated electrodes (see Section 2.2.4), as used to validate

VABS-A in Chapter 2. The AFC packs are embedded in the composite construction, and

they provide a feasible way of integrally actuating the structure with high levels of
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actuation authority. Figure 4.3 shows the maximum values of both induced twist rate and

bending curvature that is expected from the configuration shown in Figure 4.2. This

actuation anisotropy will be explored for performance enhancement.

Finally, the discretization along the span of the wing is done using 10 finite elements

based on previous convergence study [54].

4.2 Open Loop Performance

The present section uses the open loop response to point out the special attributes of

an aerolastic plant. The differences have to do with the non-linearity in the structure and

in the flow, and above all, the onset of instability as airspeed is increased.

4.2.1 The Effect of Airsp eed

One of the key performance parameters is the airspeed at which the wing presents

flutter. A very convenient way to obtain this information is to plot the variation of the

poles of the plant with increasing airspeed making use of the theoretical formulation and

subsequent Matlab implementation developed in Section 3.8.2. At zero speed, the plant is

stable. As the wing flies faster it reaches a point where a pair of poles enter the right half

plane (where the real part of the eigenvalues become positive). As a preliminary study,

consider the dynamic stability of the proposed active wing in an open loop configuration

for the actuation oriented at ±450 and the root angle of attack set at 20 (see the plot in

Figure 4.4). The following step is to identify which mode corresponds to every branch in

the figure. The first 20 modes for zero airspeed are plotted in Figures 4.33 and 4.34.

Table 4.1 summarizes the first 12 modes with the lowest frequency.

Figure 4.5 indicates that some of the modes have already some coupling due to the

wing set at 2' root angle of attack. Table 4.1 also shows these interactions. As the speed

increases, the modes become more coupled due to the aeroelastic interaction. Consider

for instance the case of the wing with the AFCs oriented at ±45'. The exact flutter speed

for that configuration is 43.4 m/s. This is a typical case of frequency coalescence flutter

[45], as can be seen in Figure 4.4. The fact yet to determined is what two modes coalesce

in the instability. Figure 4.7 shows the 10 modes with the lowest frequency for the wing
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flying at flutter speed. By direct comparison of the frequency of the modes in Figures

4.32 and 4.34 one can deduce that the unstable mode is the first chordwise bending which

is clearly coupled with the first torsion mode coalescing with the second flatwise bending

mode, at a 14.3 Hz frequency. The flutter frequency for the +22', and 0' actuator

orientations at the 20 angle of attack are 16.7 Hz and 18.0 Hz, respectively. The flutter

type and modes are the same as the ones discussed for the ±450 actuator orientation.

Table 4.1 Structural modes for zero airspeed, 2' angle of attack and AFCs at ±45'

Hz Mode
2.9 1st Bending

14.0 2nd Bending
14.7 1st Chordwise Bending
38.1 3rd Bending/1st Torsion
41.8 1st Torsion/3rd Bending
67.5 2nd Chordwise Bending
81.0 4th Bending/2nd Torsion
91.3 2nd Torsion

148.8 3rd Torsion
157.2 5th Bending
170.1 3rd Chordwise Bending
228.3 4th Torsion

One of the challenges then is to design a LQG regulator around the plant that renders

the wing stable above flutter speed and that effectively rejects gust disturbances, both

above and below flutter. The sections that deal with the closed loop performance show

that such an accomplishment may be feasible.
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Figure 4.4 Open loop pole variation of the plant with airspeed (zoomed below)
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Figure 4.7 Open loop structural modes at flutter speed, 2' angle of attack and AFCs

oriented at ±450 (modes 1 to 10).

4.2.2 The Effect of Angle of Attack

The aeroelastic characteristics of the open loop system is function of the "steady-

state" loading, reflected here as the root angle of attack. A detailed discussion of the

impact of this parameter in the passive aeroelastic stability of a flexible wing is presented

in Ref. [54]. Figure 4.8 exemplifies the variation of flutter speed and flutter frequency

with angle of attack for the ±45' actuation orientation case. As the angle of attack

increases, so do the loads on the wing and the corresponding deflections, and the

geometric non-linearities lead to frequency coalescence at lower velocities and thus to a
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decrease in flutter speed. In fact, there is a jump clearly observable in the flutter

frequency plot at very low angles of attack. The reason for this jump is the change in the

two modes that coalesce in flutter. At zero root angle of attack, the modes coalescing are

the first torsion mode and the third bending mode. At any other angle of attack, the

unstable modes about the nonlinear steady condition are the first chordwise bending/first

torsion (together) and second flatwise bending modes. Therefore, the case studies that

follow will be set to 20 angle of attack as a representative instability mode.
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o Flutter Freq.

80 - x Flutter Speed

60 -

S40--

E

20 -
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Root angle of attack [degrees]

Figure 4.8 Effect of non-linear steady state on flutter

4.3 Closed Loop Performance

The present low-order active model allows to analyze different configurations

dynamically. The following sections investigate how the LQG regulator performs on

different wing configurations. In particular, they investigate the effect of changes in

airspeed, angle of attack, actuation orientation, number of control regions and sensor type

and placement. The configuration varies from section to section depending on the effect

being investigated. A reasonable arrangement of the different configuration parameters is
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set a priori at the beginning of every section. The different analysis parameters that are

investigated are the following

* The actuators orientation is chosen based in the static actuation results for the

previous configuration in terms of induced twist rate and bending curvature (see Figure

4.3). Based on the figure, the actuators are placed at three different orientations: 0',

which provides maximum (flatwise) bending actuation, 45' (labeled '45T'), which

provides maximum torsion actuation, and +220, which represents a balanced twist-

bending actuation. These last two cases, the ±45' and the ±22' orientation, can be

actually actuated in bending or in torsion by varying the shape of the electric field applied

to the AFC at each cross-section of the wing. These two additional configurations are

also tried. They are labeled '45T' and '22T' when actuated in torsion, and '45B' and

'22B' when actuated in bending.

* The number of active zones range from one (covering the full span of the wing) to

10, which implies that every element in the discretization can be actuated independently.

e Combinations of the three different types of sensors are studied too: bending strain

gauges, torsion strain gauges, and accelerometers in the flatwise direction.

The performance is measured in two different ways. First, a stability analysis is

carried out to determine under what circumstances the LQG regulator rends the plant

stable. Secondly, the capacity of the LQG regulator to reject a gust affecting the wing is

studied. The wing is flown above flutter speed for stability and at two speeds for gust

alleviation (one above flutter and the other below flutter).

4.3.1 Stabilizing the pla nt by determining the weighting

parameter p

Section 3.6 described how to obtain a design point that minimizes the total energy of

the system. A simple configuration case flown above flutter is set up now in order to get a

numerical example of the formulation presented there. Once the working point has been

determined, a regulator will be designed to stabilize the plant. The configuration is the

following:

& The wing is flown above flutter speed (15% over flutter speed).

103



* The root angle of attack is set to 20.

e It was shown in the previous section that the mode going unstable under these

conditions is the first chordwise bending /first torsion mode coupled with the second

flatwise bending one. For this reason, the actuators are oriented at ±45' in order to

maximize torsion control (there is no direct controllability on the chordwise bending

modes), but all orientations will be plotted in the state cost vs. control cost plot to

demonstrate the procedure.

e The number of active regions is set to 10, that is, every element is an independently

actuated zone. This guarantees the maximum possible controllability within the current

discretization.

9 One sensor of each type is placed at the center of every element, that is, a bending

strain gauge, a torsion strain gauge, and an accelerometer.

The resulting curves after the appropriate numerical calculation for this configuration

is presented in Figure 4.9.

With the proper scaling as explained in Section 3.6, the intersection of the bisectrix

and the hyperbolas determine a potentially good minimum energy design point. The

resulting value of p after the appropriate iteration is then used in the LQG regulator. p is

set to unity for this example. This design point does not imply that the potential and

kinetic energy in the system are a minimum, but rather that it is the most cost-effective

solution. In other words, it minimizes both the total energy in the wing and the actuation

energy. This procedure is the one used in the following sections to establish a working

point for the regulator.

A regulator will be designed next using this design point for the sample

configuration to show that the plant can be rendered stable above flutter. Evidently, the

plant is stable for airspeeds below flutter and unstable otherwise without any regulator

(see Figure 4.4). Now that the speed is set at 49.91 m/s (15% over flutter speed) for the

±45' actuation orientation case under study here, the LQG regulator should render those

poles stable.
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Figure 4.9 State cost vs. control cost plot for a configuration flown at 15% over the

flutter speed and at 2' root angle of attack.

Figure 4.10 explicitly shows the closed loop poles (which are now stable) against the

open loop poles plotted in Figure 4.4, from flutter speed to 15% above flutter in 2.5%

intervals. The symbol 'x' denotes the open loop poles and the symbol '0' denotes the

closed loop poles. The plant is stable under the LQG for speeds above flutter. The

following section deals with the real cost implied in turning the plant stable for the three

orientations.
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Figure 4.10 Open loop (x) - closed loop (0) pole map of the ±450 actuator orientation at

20 root angle of attack from flutter speed (43.4 m/s) to 15% above flutter (49.9 m/s) in

2.5% intervals (zoomed below).
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4.3.2 The Effect of Actu ation Orientation

The parameter most intimately related with the active structure is the orientation of

the anisotropic strain actuation. Consider the dynamic stability of the proposed active

wing in an open loop configuration. Due to the embedded nature of the strain actuators,

these become an integral part of the structural wing, that is, by varying the orientation of

the AFCs, besides changing the actuation characteristics, the (passive) wing stiffness

constants change. This results in a variation of the flutter speed for each case, as

mentioned in the previous section. Table 4.2 presents the flutter speed for each

configuration of the actuators.

Table 4.2 Flutter velocities for the different orientation of the AFC lamination angle for a

root angle of attack of 20.

AFC Orientation Flutter Speed [n/s]
00 49.6

±220 46.8
±450 43.4

In what follows, the effect of actuation orientation on both stability enhancement and

gust alleviation will be investigated for the proposed wind tunnel model. The gust study

will be conducted both above and below flutter speeds. To account for the changes in the

flutter speed for the different active configurations, the velocities are normalized with

respect to the corresponding flutter speed. Therefore, in what follows, conditions above

and below the flutter speed are set to ±15% of the corresponding flutter speed,

respectively.

Finally, the control cost J, has to also be normalized so that the different velocity

settings, which correspond to different flow energies, can be factored when comparing

costs of different LQG designs. The normalization adopted in this study is given by
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)n~ornialized kp- uc (4.1)

kgwhere kp- =1kg is just an adjustment constant, and uo is the (uniform flow) flying

speed.

The relative performance between three orientation angles is studied: 00, ±22' in

bending actuation, (22B), ±220 in torsion actuation (22T), ±45' in bending actuation

(45B), and ±450 in torsion actuation (45T). The 0' orientation maximizes the forcing

bending moment on the structure while ±45' actuated in torsion maximizes the twist. The

rest of the performance parameters are set as follows:

" The root angle of attack is set to 20 to simulate a realistic operating condition.

" The number of active regions is set to 10, that is, every element is an independently

actuated zone.

e One sensor of each type is placed in every element, that is, a bending strain gauge,

a torsion strain gauge, and an accelerometer.

4.3.2.1 The Effect of Actuation Orientation on Stability

Section 3.8.1 showed how to quantify the amount of control required for stability

(the stability cost). That formulation is used to compare the relative performance of all

the orientations. The result is shown in Figure 4.11. Placing the piezoelectric actuators at

+45' and actuating them in torsion ("45T" curve) proves to be the most effective way of

stabilizing the plant. At that orientation, maximum twist authority is available from the

given set of AFC actuators, and the normalized stability control cost is the lowest.

Therefore, by orienting the actuators at lower angles than ±45' and exciting them for

twist actuation, the authority will be lower and the control cost higher, requiring more

actuation power. This is verified for the ±22' being actuated in torsion (labeled "22T" in

Figure 4.11). Since the 0' orientation in torsion does not produce any net twist actuation

(Figure 4.3), it is not shown in the plot. However, since the unstable mode is also

composed of bending deformation, an alternative actuation mode is possible for

stabilization of the plant. Even though not as efficient as the "45T," having maximum

bending actuation from the AFC at 0' ("0" curve in Figure 4.11) presents a reasonable
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option for stabilizing this plant within the defined speed regime. In fact, this bending

actuation is equivalent in terms of control cost to the "22T."

0)
0

0
U

U)

0 5 10
Percentage over flutter speed

15

Figure 4.11 Normalized stability control cost vs.

wing flying at 20 root angle of attack (zoomed

orientations.

0 5 10
Percentage over flutter speed

15

percentage over flutter speed for the

on the right) for different actuator

Similarly as explained above, by orienting the strain actuators to angles different than 00

will reduce the bending authority. This can be seen on the results of ±22' and ±450

actuated in bending, labeled "22B" and "45B," respectively.
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4.3.2.2 The Effect of Actuation Orientation on Gust Alleviation

The first step is to set a gain for the regulator. Unfortunately, the optimum gain is

linked to the nature of the disturbance (essentially its frequency). The current wing under

study is a scaled model of a representative wing typically 8 times larger. A typical gust

scale length varies from 15 m to 150 m (Ref. [50]). Since the wing is flying close to 50

m/s, a simple calculation yields a frequency bandwidth between 0.3 and 3.5 Hz. From the

power spectral density of real gusts, it can be inferred that their low frequency content is

high (Ref. [50]). Since the gust model adopted is a single-frequency one, a reasonably

low gust frequency of 3 Hz roughly matching the first bending mode of all configurations

is chosen as the excitation frequency. The amplitude of the disturbance is set to 5 m/s for

the ±45' case, and will be corrected for the other cases accordingly so the normalized

gust amplitude by the flying speed is a constant. Table 4.3 summarizes the gust

magnitudes for each configuration, and Figure 4.14. shows the gust profile.

The previous section detailed how to determine the working point of the regulator by

inspection of hyperbolic curves as the ones depicted in Figure 4.9. This design point

yields an acceptable performance point for any frequency. Since the disturbance

frequency is now set (3 Hz), the performance of the regulator for that particular

frequency can be improved by refining the weight p through iteration. This iteration

process implies determining the weight for which the disturbance can be rejected without

saturation of the actuators. A very convenient way to do this is to use the sinusoidal-

disturbance-to-voltage transfer function Bode plot provided by the proposed framework

(see Section 3.7). The resulting transfer function for the ±45' orientation at 15% over

flutter speed for all 10 actuation regions is shown in Figure 4.12. Figure 4.13 shows the

same type of plot for the 0' orientation. Both plots correspond to the optimum weight for

the 3 Hz disturbance.
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Figure 4.12 Sinusoidal disturbance to voltage T.F. for ±45" actuation orientation actuated

in torsion (above) and bending (below), at 2' root angle of attack and 15% above flutter.
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Figure 4.13 Sinusoidal disturbance to voltage T.F. for the 0 actuation orientation

actuated in bending at 20 root angle of attack and 15% above flutter.

The Bode plots provide valuable information on the maximum voltage level required

by any sinusoidal disturbance. That maximum corresponds in fact to the spikes located at

around 100 Hz, which in turn correspond to the higher chordwise bending modes, of

which the system has no direct controllability. This is not an upsetting situation, since

their frequency is much higher than that associated with the gust. For the selected 3 Hz,

the voltage required (value of the transfer function) is approximately 0.2. That means that

20% of the available voltage limit is required to reject a I m/s gust. This confirms that

rejection of the 5 m/s gust will exactly require the maximum voltage available (or in this

case, tolerated by the AFCs).

It is obvious that the process above could not have been carried out if the regulator

did not rend the plant stable. Without an external disturbance the wing would be

theoretically stable even when flying above the flutter speed. The slightest disturbance

would then render the wing unstable. This case, gust alleviation above flutter is studied

next.
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Table 4.3 Gust amplitudes used in the study of the different active configurations.

AFC Orientation Gust Magnitude m/s]
00 5.7

±220 5.4
±450 5.0

4.3.2.2.1 Wing Flying Above Flutte r Speed

The configuration is the same as the one used in the stability analysis. Figures 4.17

and 4.19 show the time response of the tip of the wing to the 3 Hz gust disturbance

(Figure 4.14) for the ±450 actuation orientation actuated in torsion and bending

respectively. As one can see, the maximum magnitude of the flatwise tip deflection about

the nonlinear equilibrium position is about 15% of the wing semi-span, and the maximum

tip rotation is about 3'. The chordwise tip deflection remains roughly about its steady

value (maximum unsteady deflection of about 2 mm). Figures 4.18 and 4.20 show the

voltage history of both configurations to the same disturbance. Note that in all the cases

the actuators never saturate, which was expected since the gust amplitude was chosen

based on the disturbance to voltage transfer function. Figures 4.15 and 4.16 show the

evolution with time of the control and state energy. The time response of the tip and

voltage history for the 0' actuation orientation is also included for comparison in Figures

4.21 and 4.22.

Table 4.4 summarizes the time response of the configurations to the gust. A

minimum "maximum state energy times control cost" ratio means the regulator is able to

dampen down the deflections on the wing with less actuation, thus giving a more

effective controller in terms of gust alleviation. The reason for this parameter will be

explained in detail in the following subsection. As one can see in the table, the bending

actuation is the most effective way of achieving such gust alleviation. In fact, even the

less direct way of realizing bending actuation through the ±45' actuation orientation in

bending is more effective than the twist actuation configurations. The settling time,

however, is significantly shorter for the twist actuation configurations due to the unstable

condition (15% above flutter speed).
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Table 4.4 Effect of the actuation orientation on the response settling time due to a gust

disturbance of a wing flying at 15% above corresponding flutter speed and for a 2' root

angle of attack.

Gust Gust Actuation Control Cost State CostI Settling Max. State MaxSE-Jc (x1e3)
Freq. Amplitude orientation p (Jc) [mA3-s] (Js) [J-s] time [s] Energy [J] [J.mA3-s]

5.7 m/s 00 1.2589E+00 8.0405E-05 7.6329 0.3956 49.8641 4.0093
5.4 m/s 220 (B) 1.1220E+00 9.1358E-05 7.2650 0.4712 45.6848 4.1737

3 Hz 5.4 m/s 220 (T) 3.3884E-01 3.4083E-04 4.1659 0.8136 23.5121 8.0136
5 m/s 450 (B) 5.6234E-01 9.8248E-05 7.7726 0.5370 44.4597 4.3681
5 m/s 450 (T) 3.1623E-01 4.0350E-04 3.4138 1.0925 17.4684 7.0485

a)
05

0.5
time [s]

Figure 4.14 Profile of the '1-Cosine' gust disturbance (5 m/s, 3 Hz).
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Figure 4.15 State energy for actuation oriented at ±45' actuated in torsion under a 5 m/s,

3 Hz gust disturbance at 15% above flutter speed and wing at 2' root angle of attack.
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Figure 4.16 Control energy for actuation oriented at ±45' actuated in torsion under a 5

m/s, 3 Hz gust disturbance at 15% above flutter speed and wing at 2' root angle of attack.
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Figure 4.17 Gust alleviation for twist actuation oriented at ±45'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (us), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% above flutter speed and root angle of attack is 2'.
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Figure 4.18 Voltage history for twist actuation oriented at ±45' under a 3 Hz gust

disturbance at 15% above flutter speed, and 2' root angle of attack.
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Figure 4.19 Gust alleviation for bending actuation oriented at ±45'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (us), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% above flutter speed and root angle of attack is 2'.
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Figure 4.20 Voltage history for bending actuation oriented at ±450 under a 3 Hz gust

disturbance at 15% above flutter speed, and 2' root angle of attack.
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Figure 4.21 Gust alleviation for bending actuation oriented at 0'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (u3), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% above flutter speed and root angle of attack is 2'.

Linear Simulation Results

I-

0

CO

E-
0

8 :- T. - - - - - -T - - -

0 - -

0-I

E0 -

0

0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (sec.)

Figure 4.22 Voltage history for bending actuation oriented at 00 under a 3 Hz gust

disturbance at 15% above flutter speed, and 20 root angle of attack.
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4.3.2.2.2 Wing Flying Below Flutter Speed

Rejecting a gust at speeds over flutter gives information on the robustness of the

regulator, but it is perhaps more useful in practice to study the effect of gust rejection

below flutter. Consider now the same configurations discussed before but now flying at

15% below flutter speed. So, stability is not a concern at this point, and all the energy of

the actuators can be concentrated in rejecting the gust. Table 4.5 summarizes the results.

The low frequency of the gust is expected to primarily excite the first bending mode, but

the results in Table 4.5 indicate that actuating in torsion yields shorter settling times and

lower maximum state energy than actuating in bending. The reason is that the

implementation of the system does not let the actuators saturate, and a closer look to the

voltage distribution would show that actuating in bending quickly saturates the root

actuator while the voltage level in the other regions is still low. Ideally, the root element

would saturate and the rest of the elements would be allowed to draw more voltage,

making the bending actuation more effective. The metric "maximum state energy times

control cost" can be used to account for this limitation.

Another option is to have less individually controlled actuation regions, that is, from

the current 10 regions, to two or one. Section 4.3.3 discusses the effect of different

number of independently actuated regions within this non-saturation condition.

Moreover, the much higher control cost required by the actuation in torsion confirms the

fact that the bending actuation configurations are not driving as much control energy as

available. Looking at the results for the "maximum state energy times control cost"

metric presented in the last column of Table 4.5, it is obvious that bending-actuated

configurations are more effective for gust rejection, providing smaller "maximum state

energy times control cost." Very low values are obtained by all the orientations in

bending in the expected order: 0', ±22', and ±45'. The performance of the two

configurations actuated in torsion is well behind those actuated in bending.

Figures 4.23 to 4.32 show the time responses of the tip of the wing as well as the

voltage history for every orientation. Notice that the maximum tip twist amplitude is

higher in the torsion configuration than in the bending ones. This is due to the fact that

the twist actuation configurations use exactly the wing twist to control the flatwise

bending motion.
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Table 4.5 Effect of the actuation orientation on the response settling time due to a gust

disturbance of a wing flying at 15% below corresponding flutter speed and for a 2' root

angle of attack.

Gust Gust Actuation Control Cost State Cost Settling Max. State MaxSE-Jc (x1e3)
Freq. I Amplitude orientation p (Jc) [mA3-s] [(Js) [J-s] time [s] Energy [J] [J.mA3-s]

5.7 m/s 0* 1.0471E+00 1.9718E-04 4.5075 0.4741 29.779 5.8718
5.4 m/s 220 (B) 1.0000E+00 2.0796E-04 4.4771 0.5049 28.2691 5.8788

3 Hz 5.4 m/s 22- (T) 2.8184E-01 6.0258E-04 3.3131 0.4059 20.2847 12.2232
5 n/s 450 (B) 4.5709E-01 2.8822E-04 5.2665 0.5720 29.6361 8.5417
5 m/s 450 (T) 2.5119E-01 7.5492E-04 3.0596 0.6290 16.8474 12.7184
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Figure 4.23 Gust alleviation for twist actuation oriented at ±45'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (u3), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% below flutter speed and root angle of attack is 2'.
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Linear Simulation Results
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Figure 4.24 Voltage history for twist actuation oriented at ±450 under a 3 Hz gust

disturbance at 15% below flutter speed, and 2' root angle of attack.
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Figure 4.25 Gust alleviation for bending actuation oriented at ±45'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (us), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% below flutter speed and root angle of attack is 2'.
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Linear Simulation Results
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Figure 4.26 Voltage history for bending actuation oriented at ±45~ under a 3 Hz gust

disturbance at 15% below flutter speed, and 2~ root angle of attack.
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Figure 4.27 Gust alleviation for twist actuation oriented at ±22'. (i) chordwise tip

deflection (U2), (ii) flatwise tip deflection (us), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% below flutter speed and root angle of attack is 2'.
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Linear Simulation Results
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Figure 4.28 Voltage history for twist actuation oriented at ±220 under a 3 Hz gust

disturbance at 15% below flutter speed, and 20 root angle of attack.
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Figure 4.29 Gust alleviation for bending actuation oriented at ±22'. (i) chordwise tip

deflection (u2), (ii) flatwise tip deflection (us), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% below flutter speed and root angle of attack is 20.
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Linear Simulation Results
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Figure 4.30 Voltage history

disturbance at 15%

E

for bending actuation oriented at ±22' under a 3 Hz gust

below flutter speed, and 2' root angle of attack.
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Figure 4.31 Gust alleviation for bending actuation oriented at 0'. (i) chordwise tip

deflection (U2), (ii) flatwise tip deflection (u3), (iii) tip rotation (03). Gust frequency is 3

Hz at 15% below flutter speed and root angle of attack is 2'.
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Linear Simulation Results
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Figure 4.32 Voltage history for bending actuation oriented at 0' under a 3 Hz gust

disturbance at 15% below flutter speed, and 2' root angle of attack.

4.3.3 The Effect of Multiple Control Regions

It seems to agree with intuition that the more actuators that we can control

independently, the better. Grouping all actuators into a single control (that is, identically

actuating all of them with the same phase and magnitude) only provides controllability of

very low order structural modes. The question is how much better can be done by further

dividing them into a higher number of smaller regions.

As done before, the theory and implementation described in Section 3.8 is used. Four

configurations have been chosen: 1, 2, 5 and 10 active regions. One active region means

that all actuators are excited simultaneously, while 10 means that every actuator in every

element is powered independently (in terms of magnitude only). The configuration used

in this section is the following:

e The root angle of attack is set to 20.
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* The actuation is oriented at ±45' (maximum twist actuation).

e One sensor of each type is placed in every element, that is, a bending strain gauge,

a torsion strain gauge, and an accelerometer.

4.3.3.1 The Effect of Multiple Control Regions on Stability

Following the procedure used in the previous sections, one obtains the results shown

in Figure 4.33. Increasing the number of zones does reduce the minimum cost needed for

stability, though not linearly. Increasing the actuation regions from 5 to 10 does not

improve much the performance, and they practically coincide in the graph. The reason is

that 5 regions approximate very well the first torsion mode of the cantilever wing that is

the one requiring stability enhancement. Higher actuator distribution than that has very

low impact on the final distribution of voltage on the actuators.
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Figure 4.33 Normalized stability control cost vs. percentage over flutter speed for the

wing flying at 2' root angle of attack (zoomed on the right) for different number of twist

active regions.
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4.3.3.2 The Effect of Multiple Control Regions on Gust Alleviation

Tables 4.6 and 4.7 show the settling times for the (1-Cosine) gust disturbance both

above and below flutter, respectively. The same pattern observed in the stability control

study where higher numbers of regions improved the cost response, is also visible in the

gust alleviation case. By looking at both tables, one can verify that a higher number of

active regions yields shorter rejection times, the reason being the possibility for the active

forcing to both extend its actuation to higher modes and better excite the lower ones.

Table 4.6 Effect of the number of twist active regions on the response settling time due

to a gust disturbance of a wing flying at 15% above corresponding flutter speed and for a

20 root angle of attack

Gust Gust Active I Control Cost State Cost Settling Max. State MaxSE-Jc (xle3)
Freq. I Amplitude Regions p (Jc) [mA3-s]I (Js) [J-s] time [s] Energy [J] [J-mA3-s]

1 region 5.8884E+00 2.6147E-04 4.1976 0.8920 22.9229 5.9937
3 Hz 5 m/s 2 regions 3.1623E+00 2.6852E-04 4.1002 0.9230 22.2804 5.9827

5 regions 1.2589E+00 2.7019E-04 4.0182 0.9450 21.7336 5.8722
10 regions 6.3096E-01 2.1010E-04 4.0063 0.9475 21.6543 4.5496

Table 4.7 Effect of the number of twist active regions on the response settling time due

to a gust disturbance of a wing flying at 15% below corresponding flutter speed and for a

2' root angle of attack

Gust Gust Active Control Cost State Cost Settling Max. State MaxSEJc (x1e3)
Freq. Amplitude Regions p (Jc) [mA3-s] (Js) [J-s] time [s] Energy [J] [J-mA3-s]

1 region 9.1201E+00 2.4025E-04 4.1696 0.5220 23.7411 5.7038
3 Hz 5 m/s 2 regions 4.8978E+00 2.3540E-04 4.1447 0.5230 23.5954 5.5544

5 regions 1.9953E+00 2.3282E-04 4.1182 0.5210 23.4500 5.4596
10 regions 1.OOOOE+00 2.3295E-04 4.1113 0.5210 23.4113 5.4537

4.3.4 The Effect of Sens or Type and Placement

As explained in Section 3.4.1, there are three types of sensors available: bending

strain gauges, torsion strain gauges, and accelerometers. Every element in the

discretization can have any combination of these three.

The type and especially the placement of the sensors are fundamental for the

performance of the controller. One must remember that in the LQG the full state is not
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known, and it has to be estimated from the available information coming from the

sensors. Obviously, the more the sensors, the better. An ideal situation under the given

conditions would be to have the two types of strain gauges plus an accelerometer in every

element. The candidate locations for the accelerometers are obviously away from the

root, where element displacements are greater. More interesting is to investigate the

placement of the two types of strain gauges. Thus, a configuration with a strain gauge of

every type in every element is the baseline for this part of the study. In addition, two

other configurations are tested that try to take advantage of the knowledge of the behavior

of the structure. Finally, these four configurations will be compared against a maximum

sensing distribution with all possible strain gauges and accelerometers mounted.

As described in Section 3.4.2, sensor placement benefits from knowledge of the

structural modes. Appendix B explained how to obtain the structural modes of the

structure. In order to maximize their sensing, the strain gauges should be placed at the

maximum curvature locations. (Refer to Appendix B for a way to obtain the approximate

bending and torsion modes.) This is essentially a preliminary step in order to obtain the

maximum curvature location along the span for every one of the first few modes. Since

the bending and torsion sensors actually measure the curvature, placing the strain gauges

at those locations guarantees maximum (and therefore optimum) sensing within the

simplifying assumptions.

The bending and torsion modes are shown in Figures 4.34 and 4.35 along with their

curvatures. Table 4.8 summarizes the maximum curvature information obtained from the

plots.
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Figure 4.34 First bending modes and their curvatures with the actuators oriented at ±450
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Figure 4.35 First torsion modes and their curvatures with the actuators oriented at ±450.
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Table 4.8 Locati n of the maximum curvature for the first three modes

Bending [m] Torsion [m]
1st 0 0.92

2nd 1.34 1.49
3rd 1.6 1.68

This information allows to place the strain gauges as depicted in Figure 4.36,

showing only the best location for every bending or torsion mode. Only the first three

modes are considered.

If a minimal set of sensors wants to be used in order to avoid manufacturing

complexity, it is rational to use just one to detect the first torsion mode, which is the

unstable mode. For the same reason, it is also interesting to have a bending strain gauge

to measure the second bending mode, which coalesces with the first torsion mode in

flutter. Due to the low frequency component of gusts, which excite the low energy

bending modes, it also makes sense to have a bending strain gauge at the root measuring

the first bending mode. These three cases are compared with the "full strain gauge

sensing mode", which assumes the two type of strain gauges placed at every element in

the wing, and with a "maximum" mode which is equivalent to the "full" strain gauge

sensing mode plus all possible accelerometers.

0.2 m

450

(2ndT)

0.2 m 0 450 00 457
(1stB) (1 stT) (2ndB) (3rdT' T . M

(3rdB)

2 m

Figure 4.36 Optimum locations if one strain gauge is used to sense each bending or

torsion mode for a wing divided into 10 elements.

130

o



4.3.4.1 The Effect of Sensor Type and Placement on Stability

Consider the wing flying at 15% above flutter speed with twist actuation oriented at

±450. The control cost required to stabilize the wing for every type of sensor is shown in

Figure 4.37. It can be inferred from the plot that having a strain gauge sensing the first

torsion mode is almost equivalent to having one sensing the second bending mode. One

must remember that those are the two modes coalescing in flutter, thus making sense to

use them in stabilizing the wing. The first bending mode is not an effective way of

stabilizing the plant, since it is not directly related to the instability as Figure 4.37 clearly

demonstrates. The plot also shows the effect of adding the accelerometers to a wing with

full strain gauge sensing. The stability control cost can be successfully reduced in half at

15% above flutter by adding the accelerometers.
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Figure 4.37 Stability control cost for five sensor configurations ("max" means the three

types of sensors are present in each element; "full" implies there is a bending and a

torsion sensor in each element; "It" means first torsion, "Ib" means first bending and

"2b" means second bending).
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4.3.4.2 The Effect of Sensor Type and Placement on Gust Alleviation

Table 4.9 details the settling times resulting when the wing is disturbed by the 3 Hz

gust. The configuration is the same as in the stability study. The ratio "maximum state

energy times control cost" is not needed in this table because, except for the maximum

sensing case, all cases are far from saturating the actuators. By inspection of the table,

one realizes that having maximum sensing greatly improves gust alleviation and reduces

the maximum state energy in the wing in the process. The rest of the options entail

similar settling times. The full strain gauge sensing option takes slightly less time than

the second bending strain gauge, even though at a slightly higher cost. This explanation

lies in the better knowledge of the wing behavior that the full sensing provides, which

allows the controller to better react to the disturbance at the expense of a little more

actuation cost. In fact, due to the high low frequency content of the gust, which

significantly affect the bending modes, it is a very cost effective solution to use bending

strain gauges in the configuration. Notice, however, that detecting the second bending

mode is effective only in this particular configuration due to the fact that it is involved in

the flutter coalescence. This advantage will disappear when the wing is flown below

flutter speed.

Table 4.9 Effect of the sensor placement on the response settling time due to a gust

disturbance of a wing flying at 15% above corresponding flutter speed and for a 2' root

angle of attack.

Gust Gust Sensor Control Cost State Cost Settling Max. State
Freq. Amplitude Detection p (Jc) [mA3-s] (Js) [J-s] time [s] Energy [J]

Maximum 6.3096E-01 2.1010E-04 4.0063 0.9475 21.6543
Full 3.1623E-05 1.0961E-08 8.2861 0.7367 47.2498

3 Hz 5 rn/s 1st Torsion 3.1623E-05 9.7625E-10 8.2956 0.7380 47.2986
1st Bending 3.1623E-05 3.9474E-07 8.2931 0.7370 47.2847

.2nd Bending 3.1623E-05 3.1749E-08 8.2856 0.7370 47.2420

The results for a speed 15% below flutter (see Table 4.10) are very similar to the

ones in Table 4.9, except for the second bending mode. Since the configuration is now

stable per se, measuring the second bending mode is no longer that effective. The full

strain gauge case is the best choice as expected (other than the maximum sensing option,
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obsioiusly), and again, it is more helpful to detect the first bending mode than the first

torsion mode.

Table 4.10 Effect of the sensor placement on the response settling time due to a gust

disturbance of a wing flying at 15% below corresponding flutter speed and for a 2' root

angle of attack.

Gust Gust Sensor Control Cost State Cost Settling Max. State
Freq. Amplitude IDetection p (Jc) [mA3-s] (Js) [J-s] I time [s] Energy [J]

Maximum 1.0000E+00 2.3295E-04 4.1113 0.5210 23.4113
Full 3.1623E-05 1.2009E-08 5.8858 0.9017 32.5345

3 Hz 5 m/s 1st Torsion 3.1623E-05 1.7999E-15 5.8876 0.9033 32.5276
1st Bending 3.1623E-05 6.9895E-11 5.8873 0.9033 32.5277

.2nd Bending 3.1623E-05 8.0860E-11 5.8875 0.9033 32.5287

4.3.5 Robustness Check

This chapter has proven the soundness of the regulator working on a linearized plant

about a non-linear equilibrium. But the non-linearities intrinsic to the plant require a

particularly robust regulator. Ideally, the linear regulator would be tested against a

completely non-linear plant to check its solidity, but this is clearly beyond the scope of

the present work. Nevertheless, a simple check can be made using the linear plant to get a

flavor of the robustness of the linear regulator. In essence, a regulator is designed around

a linearized plant above flutter, for a given airspeed or angle of attack. Then, either the

speed or the angle are varied and another linearized plant is obtained, but the original

regulator is the one applied to the new plant. In other words, one regulator designed in a

given flight condition is checked at some other setting. A robust regulator should be able

to withstand the change of the new plant (i.e., to a new speed or angle of attack).

A regulator is therefore designed around the following wing configuration:

" The root angle of attack is set at 20.

* The actuators are oriented at ±450.

e The number of active regions is set to 10, that is, every element is an independently

actuated zone.
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* One sensor of each type is placed in every element, that is, a bending strain gauge,

a torsion strain gauge, and an accelerometer.

4.3.5.1 Robustness of the Re gulator under Changes in the Airspeed

The regulator is designed at 7.5% over the flutter speed and then tested on speeds

that range from 0% to 15% above flutter. The stability control cost required to stabilize

the plant under those conditions is shown in Figure 4.38. Note that if the speed is

increased beyond the design speed (7.5%), the regulator is unable to stabilize the plant.

Percentage over flutter speed

Figure 4.38 Stability control cost for a regulator designed at 7.5% over flutter speed and

tested at other speeds.

Considering the multiple LQG design as the nominal design cost, one can translate

these values into percentages over the nominal cost (see Figure 4.39). The stabilization

cost is several times the nominal value for speeds between 0% and 7.5% over the flutter

speed. Beyond that speed, the system is unstable as mentioned above. The flying

conditions are therefore too demanding for the regulator to stabilize the plant for speeds
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outside the LQG regulator design airspeed. A future study should try the possibility, for

example, of a simple nonlinear controller designed as a dynamic gain scheduling.
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Figure 4.39 Percentage over the nominal stability control cost for a regulator designed at

7.5% over flutter speed and tested at other speeds.

4.3.5.2 Robustness of the Re gulator under Changes in the Root Angle of

Attack

An identical check is tried now for the same conditions but for a LQG designed at a

specified root angle of attack (2') also at a 7.5% over flutter speed. The angle at the wing

root is varied ±20 around the specified value, resulting on the plot shown in Figure 4.40.

This is a much worse scenario, as inferred by the vertical scale of the plot. The regulator

is extremely sensible to changes in the angle of attack. In those conditions, one can

conclude that the regulator will lack enough robustness to control the plant, since the

required stabilization control increases by several orders of magnitude very quickly.
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Figure 4.40 Stability control cost for a regulator designed at 2' root angle of attack and

7.5% over flutter speed and tested at a ±20 interval.
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Figure 4.41 Percentage over the nominal stability control cost for a regulator designed at

20 angle root of attack and 7.5% over flutter speed and tested at a ±20 interval.
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Chapter 5

Conclusions

An integrated framework to study the aeroelastic response of highly flexible active

wings was presented. The framework consists of three main pillars: the active aeroelastic

analysis, the control design block and a simulator. The present work successfully

combines the three in a complete environment that offers the designer both aeroelastic

analysis and tailoring capability, providing potential ways to understand the mechanisms

of active aeroelastic response and instability of such wings.

The low-order, high-fidelity aeroelastic model effectively handles the non-linearity

inherent in the structure and in the aerodynamics. It consists of an asymptotically correct

active cross-sectional formulation, geometrically-exact mixed formulation for dynamics

of moving beams, and a finite-state unsteady aerodynamics with the ONERA dynamic

stall model. It represents the link between the physical model and the controller by

providing a linearized plant about a non-linear equilibrium. For this purpose, a wing can

be trimmed at a given flight speed and the deformations are calculated. The resulting

state-space equations are then used in the control design and simulation.

The cross-sectional model is able to analyze general (thin-walled, thick-walled,

solid) non-homogeneous and non-isotropic beams with embedded anisotropic actuation.

It is an asymptotical analysis that reduces the original three-dimensional electroelastic

formulation to a one-dimensional problem. The two dimensions eliminated from the

problem are replaced by a stiffness matrix and an actuation vector. The developed

analysis is then validated against several test cases: two box-beams, one single cell

NACA 0012 wing, the two-cell Active Twist Rotot (ATR) prototype blade, and the 1/6 th

Mach-scale CH-47D blade section. All of the cases employed active fiber composites

(AFC) embedded in the structure for actuation purposes. Comparison of the present

formulation with another asymptotical analysis (limited to multi-cell thin-walled beams)

shows very good correlation, and discrepancies are within the limitations of the thin-
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walled approximation. Comparison of the present analysis with experimental twist

actuation shows somewhat conflicting results. The correlation was extremely good for the

simple airfoil-shape cross section and the complex CH-47D blade section, but

inconclusive for the ATR blade. The reason for the latter is believed to be a combination

of difficulties on the characterization of the active material properties, as well as the

limitations on the linear piezoelectric model used to characterize the behavior of

piezoelectric fiber composites on a more complex structure.

In order to test the impact of parameter variation in flight performance, a

representative HALE-type composite wing was selected. The actuation was also obtained

by means of active fiber composites. The open loop performance of the wing was studied

first to determine the onset of flutter and the structural modes involved. The effect of

varying the root angle of attack was included in this research, showing that the flutter

speed decreases as the angle increases. Variations in the angle of attack may also change

the modes that coalesce in flutter. A Linear Quadratic Gaussian (LQR) regulator was

chosen as a potential method for controlling the structure, where only a limited number of

states were available for feedback. Even though the LQG regulator is a robust controller

when distributed sensing is involved around a linear plant, it has proven not to be robust

enough over variations about a specified flight condition above flutter speed in the

present nonlinear model.

Different controllers were simulated for set flight velocities in order to study the

impact of parameter variation in the aeroelastic performance. Firstly, the impact of the

orientation of the actuators was studied. Due to their anisotropy, one of the conclusions of

the research was that the stiffness properties of the wing vary as the actuation is rotated

thus changing the stability boundary. Setting the orientation of the actuation to ±45' and

actuating it in torsion reduces the control required to stabilize the structure by

maximizing the twist-authority. When gust alleviation is concerned, the closer the

orientation is to 00, the easier the disturbance is rejected. For other orientations, the

aeroelastic response to gust improves if the AFCs are actuated in bending, since the

bending frequencies are most excited by gust due to its low-frequency content.

Secondly, the investigation focused on the grouping of the piezoelectrics. Increasing

the number of zones does reduce the minimum cost needed for stability, but the
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improvement is small beyond 5 regions. The reason is that 5 regions already approximate

very well the first torsion mode of the cantilever wing that is the one requiring stability

enhancement, but higher actuator distribution than that has very low impact on the final

distribution of voltage on the actuators. A higher number of active regions also yields

shorter gust rejection times and less kinetic and potential energy in the wing, since the

active forcing can both extend its actuation to higher modes and more accurately excite

the lower ones.

Thirdly, research was carried out into the observability of the system. Proper

placement of the sensors helps in reducing the total number of sensors with a minimum

performance penalty in estimating the states. Sensing the modes that coalesce in flutter

was the most effective approach, particularly sensing the unstable mode. The study

showed that a single strain gauge measuring that mode is enough to stabilize the wing,

with a performance closer than expected to that of full bending and torsion sensing.

However, adding the accelerometers to the wing dramatically increases the observability

and stabilization of the system. As far as gust rejection is involved, sensing the bending

modes proves to be the most effective solution, particularly the first bending mode.

The results conclude that anisotropic strain actuation tailoring is successful in

improving the performance of high aspect ratio wings, in particular in controlling linear

aeroelastic instabilities and performing gust alleviation. By carefully orienting the

embedded actuators in independent regions, placing the right type of sensors, and

selecting the electric field profile, a single configuration may be able to satisfy all the

requirements for performance on stability augmentation and gust alleviation.

Fundamental conclusions have been drawn from the control design. Firstly, the

stability margin of operation in flutter can be increased within the limits of the embedded

actuators. Secondly, the regulator has proven to be effective in rejecting gust disturbances

even above the flutter speed. And thirdly, the control design method allows the

optimization of the amount of actuation required. Unfortunately, the control methodology

used in the present study was unable to deal with the nonlinearities of the plant.

Finally, the research itself confirmed the two-dimensional simulator as a valuable

virtual environment where any desired configurations can be validated.
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Chapter 6

Future Work

The present work pretends to be a complete analysis environment, which should not

only facilitate the design of high aspect ratio wings, but also the study and understanding

of their aeroelastic response.

An integral analysis environment is a tremendous task, and it should not surprise the

reader to learn that there is room for improvement and additions. The LQG regulator has

proven to be efficient for linear plants. However, preliminary tests indicated that the LQG

is not robust enough to the levels of change in the plant as experienced in this nonlinear

aeroelastic case. Future work should look into nonlinear controllers and their

effectiveness for the present problem.

The present work has considered several actuation orientations ('0, ±22', and ±45'),

actuated either in bending or in torsion. This implicitly assumes all actuators

simultaneously operated with the same electric field pattern to obtain either bending or

twist along the span. But an interesting studied could be carried out in which some of the

regions would be actuated in bending and others in torsion. This could better adapt the

strain actuation to whatever mode or modes were necessary to be controlled, providing a

more effective aeroelastic control system.

In all numerical examples, active fiber composites have been used as the means to

provide strain actuation (even though the formulation is not restricted to this). The simple

robustness check has made apparent the limitations in terms of maximum strain actuation

of the currently available AFC packs. The effectiveness of the regulator would

undoubtedly benefit from any improvements on the active response of that media.

The present closed loop simulator implementation in Matlab relies on a convenient

built-in function to perform the numerical integration necessary to obtain the time

response of the system to a disturbance. It does not allow, however, saturation of the
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actuators or the possibility to trigger the regulator at a time other than the initial time. The

Simulink implementation of the simulators overcomes these limitations, but there is a

much higher computational time associated with Simulink's versatility. Future work is

necessary to develop a more flexible numerical integration scheme to handle these

features.

There are some details in the current numerical implementation that could be

improved. In particular, there are two aspects of the mesh generator which would benefit

from further coding: (i) improvement of the 6-node element mesh generator so that it

properly handles the interior region of the airfoil, and (ii) improvement of the "Pro-

Engineer"-"VABS-A" interface for the 8-node element meshes.

The computer front-end developed to completely integrate and automate the

presented design tool is general enough to handle all the cases presented here. However,

more work could be put into the Tk code to improve the user interface. An example

would be to have a refined file opening dialog window and an improved file tracking

system that would allow working from any directory.
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Appendix A

Cross-Sectional Properties for the Wind Tunnel

Model (NACA 0014)

Table A.1 Material properties for the wind tunnel model's cross section (NACA 0014).

[ E-Glass AFC
E, (GPa) 19.3 42.2
E2 (GPa) 19.3 17.5
E3 (GPa) 9.8 17.5
G 12 (GPa) 4.1 5.5
G 13 (GPa) 4.1 5.5

G23 (GPa) 3.28 4.4

1' 12 0.148 0.354

1113 0.148 0.354

/23 0.207 0.496
Thickness (mm) 0.1143 0.127
d1, (pmN) - 309

d12 (pmN) - -129
electrode dist. (mm) - 1.143

Mass (m)

Units: [Kg/m].

9 Elements 1-3:

0.4000

* Element 4:

0.3733

& Element 5:

0.3467

* Element 6:

* Element 7:

0.2933

* Element 8:

0.2667

* Element 9:

0.2400

e Element 10:

0.3200 0.2133
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Center of gravity offset

Center of gravity offset with respect to the reference axes, located at 30% of the

chord, expressed as (spanwise, chordwise, up/down).

Units: [m].

9 Elements 1-3:

0.OOOOOE+00 -0.40000E-01 0.00000E+00

* Element 4:

0.00000E+00 -0.37330000E-01 0.00000E+00

* Element 5:

0.OOOOOE+00 -0.34670000E-01 0.OOOOOE+00

* Element 6:

0.OOOOOE+00 -0.320000E-01 0.00000E+00

Inertia Moment (I)

Units: [Kg-m].

& Elements 1-3:

0.40000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

e Element 4:

0.32520000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

* Element 5:

0.26040000E-02 0.OOOOOE+00 0.00000E+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

* Element 6:

0.20480000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.00000E+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

* Element 7:

0.OOOOOE+00 -0.29330000E-01 0.OOOOOE+00

* Element 8:

0.OOOOOE+00 -0.26670000E-01 0.OOOOOE+00

* Element 9:

0.OOOOOE+00 -0.240000E-01 0.OOOOOE+00

e Element 10:

0.OOOOOE+00 -0.21330000E-01 0.OOOOOE+00

e Element 7:

0.15770000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

* Element 8:

0.11840000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

e Element 9:

0.08640000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02

* Element 10:

0.0610000E-02 0.OOOOOE+00 0.OOOOOE+00

0.OOOOOE+00 0.59540E-05 0.OOOOOE+00

0.OOOOOE+00 0.OOOOOE+00 0.38500E-02
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Stiffness and actuation constants

Nomenclature:

Stiffness results: 1-extension; 2-twist; 3- and 4-bending

Actuation results: 1-Force; 2- 3- and 4-Moments

Units:

K(1,1) = [N], K(1,2) = [N-m], K(1,3) = [N-m] , K(1,4) = [N-m],

K(2,2) = [N-m2], K(2,3) = [N-m2], K(2,4) = [N m2,

K(3,3) = [N m2], K(3,4) = [N-m2], K(4,4) = [Nm2].

F(a) = [N/m], M,(a) = [N-m/m], M2(a) = [N-m/m], M3(a) = [N-m/m].

Gamma is the extensional actuation and Kappa1, Kappa2 and Kappa3 are the

actuation rates in [deg/m].

Actuation oriented at 00: Stiffness

* Elements 1-3: e Element 4:

9060847.09

-1.32929933

0.0126881075

-11322.1957

-1.32929933

426.709675

-9.78359929E-07

-0.0731824933

0.0126881075

-9.78359908E-07

721.948201

-0.000787058162

-11322.1957

-0.0731824933

-0.000787058163

24204.6879

K( I 1)=

K( 1 2) =

K( 1 3)=

K( 1 4) =

K(2 1)=
K( 2 2) =

K(2 3)=

K( 2 4) =

K( 3 1) =

K( 3 2)=

K(3 3)=

K( 3 4)=

K(4 1)=

K(4 2)=

K(4 3)=

K( 44) =

K(2 2)=

K(2 3)=

K( 2 4)=

K( 3 1) =

K( 3 2)=

K( 3 3)=

e Element 5:

7960754.71

-0.824759919

-0.00315629108

-8559.43057

-0.824759919

8534259.08

-0.906606834

-0.00510207086

-9958.21154

-0.906606834

347.947237

4.87494607E-07

-0.036068645

-0.00510207083

4.87494608E-07

584.969568

0.000254921793

-9958.21154

-0.036068645

0.000254921792

20092.373

277.598781

3.95341111E-07

-0.0303092876

-0.00315629117

3.95341117E-07

465.517193
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K( 11) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K(3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3) =

K( 44) =

K( 1 1) =

K( 1 2)=

K( 1 3) =

K( 1 4) =

K( 2 1)=



K( 3 4) =

K( 4 1) =

K( 4 2) =

K( 4 3) =

K( 44) =

e Element 6:

K( 1 1) =

K( 1 2) =

K( 1 3) =

K( 1 4) =

K( 2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K( 4 3) =

K( 4 4)=

e Element 7:

K( 1 1) =

K( 1 2) =

K( 1 3) =

K( 1 4) =

K(2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1)=

K( 4 2) =

K( 4 3) =

K( 4 4) =

e Element 8:

0.000198984015

-8559.43057

-0.0303092876

0.000198984015

16287.585

7360346.42

-0.599442086

-2.98218133

-7216.92526

-0.599442086

216.845776

0.0002189648

-0.0148259802

-2.98218133

0.0002189648

363.047034

0.176736231

-7216.92526

-0.0148259802

0.176736231

12907.6178

K( 1 1)=

K( 1 2) =

K( 1 3) =

K( 1 4) =

K( 2 1) =

K( 2 2)=

K( 2 3)=

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3)=

K( 3 4) =

K( 4 1) =

K( 4 2)=

K(4 3)=

K(4 4) =

" Element 9:

K( 1 1) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2) =

K( 2 3) =

K( 2 4)=

K( 3 1) =

K( 3 2) =

K( 3 3)=

K( 3 4) =

K(4 1)=

K(42)=

K(4 3)=

K( 4 4) =

" Element 10:

6873409.43

-0.481217923

-0.00874607484

-6461.41176

-0.481217923

166.637628

9.29233468E-07

-0.00992354013

-0.00874607483

9.29233463E-07

279.053321

0.000450164674

-6461.41176

-0.00992354013

0.000450164673

9981.94962

K(1 1)=

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2)=

K( 2 3) =

6233787.34

-0.364847041

0.000358744914

-5244.17272

-0.364847041

123.595793

2.47754845E-06

-0.00482374387

0.000358744906

2.47754845E-06

206.760384

0.000354887574

-5244.17272

-0.00482374387

0.000354887574

7505.31611

5590756.42

-0.282134877

0.00591295996

-4166.26383

-0.282134877

88.5393303

2.30946825E-06

-0.00189367069

0.00591295994

2.30946825E-06

148.148889

7.76585528E-05

-4166.26383

0.00189367069

7.76585527E-05

5464.0786

4948403.4

-0.169653704

0.00629680026

-3271.6001

-0.169653704

60.8834341

-4.41627393E-07
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K( 2 4)= 0.00170007942

K( 3 1) = 0.00629680025

K( 3 2) = -4.41627391E-07

K( 3 3) = 101.834126

K( 3 4) = -0.000259926206

K( 4 1) = -3271.6001

K( 4 2) = 0.00170007942

K( 4 3) = -0.000259926206

K(44)= 3826.79666

Actuation oriented at 00: Bendin2 actuation constants

" Elements 1-3:

Fa) = 3.15696774

M" (a = 5.49593972E-05

M 2(a) = -2.56980014E-07

M3a>= -0.108725298

Gamma: 3.43006146E-07

Kappal: 7.3982482E-06 [deg/m]

Kappa2: -2.10105772E-08 [deg/m]

Kappa3: -0.00024817455 [deg/m]

" Element 4:

F (a) = 2.79998265

M (a) = 0.000104353862

M2a) = -1.48370027E-06

M3(a) = -0.07113824

Gamma: 3.24143558E-07

Kappal: 1.72120604E-05 [deg/m]

Kappa2: -1.4507704E-07 [deg/m]

Kappa3: -0.000193654378 [deg/m]

" Element 5:

F (a)= 2.4011032

M (a)= 6.30087558E-05

M2(a) = -1.90280293E-06

M 3(a) = -0.0383329423

Gamma: 2.9925615E-07

Kappal: 1.30420724E-05 [deg/m]

Kappa2: -2.34026652E-07 [deg/m]

Kappa3: -0.000125835385 [deg/m]

" Element 6:

F,(a)= 2.11292691

M(a)= 5.75070279E-05

M2 (a) = 9.21814255E-05

M 3(a) = -0.0166796458

Gamma:

Kappal:

Kappa2:

Kappa3:

2.85958789E-07

1.52355582E-05 [deg/m]

1.47141562E-05 [deg/m]

-6.48788926E-05 [deg/m]

" Element 7:

F(a) = 1.88638282

M" (a = 8.7172875E-05

M2(a) - 2.58933417E-07

M3 (a)= -0.000291825878

Gamma: 2.74586093E-07

Kappal: 3.00189901E-05 [deg/m]

Kappa2: -5.26854587E-08 [deg/m]

Kappa3: 8.50884621E-06 [deg/m]

* Element 8:

F (a) = 1.6767818

M (a) = 5.37834832E-05

M 2 (a)= -1. 12828241E-07

M 3 (a)= 0.00939968966

Gamma: 2.70195269E-07

Kappal: 2.49815402E-05 [deg/m]

Kappa2: -3.14349516E-08 [deg/m]

Kappa3: 8.25745352E-05 [deg/m]

* Element 9:

F(a) = 1.51243733

M 1 (a)= 2.37547805E-05

M 2 >(a= 8.21978149E-07

M 3(a)= 0.0140846442

Gamma: 2.72600442E-07
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Kappal: 1.54254339E-05 [deg/m]

Kappa2: 3.17188321E-07 [deg/m]

Kappa3: 0.00015959928 [deg/m]

9 Element 10:

F a)= 1.3908675

M "a = 6.29580348E-05

M2 ") = -5.49996052E-07

M3(a>= 0.0174558563

Gamma: 2.84250482E-07

Kappal: 5.92858296E-05 [deg/m]

Kappa2: -3.09753021E-07 [deg/m]

Kappa3: 0.000275277045 [deg/m]

Actuation oriented at ±220: Stiffness

o Elements 1-3:

K( 1 1) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K(2 1)=

K(2 2)=

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K(4 1)=

K( 4 2) =

K( 4 3) =

K( 44) =

* Element 4:

K( 1 1)

K( 1 2)

K( 1 3)

K( 1 4)

K(2 1)

K( 2 2)

K(2 3)

K( 2 4)

K( 3 1)

K( 3 2)

K(3 3)

K( 3 4)

K( 4 1)

7719454.31

338.674765

0.0164353273

-7395.53281

338.674765

717.617859

0.000136233316

1.18130924

0.0164353273

0.000136233316

848.261579

-0.000762272687

-7395.53281

1.18130924

-0.000762272685

20817.2736

7319928.44

322.682757

0.000603093396

-6530.60182

322.682757

587.775575

0.00014809963

1.10484767

0.00060309335

0.00014809963

690.439391

-0.00110085671

-6530.60182

K(4 2) =

K(4 3) =

K( 44) =

* Element 5:

K( 1 1) =

K( 1 2) =

K( 1 3) =

K( 1 4) =

K(2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2)=

K( 4 3) =

K( 44) =

o Element 6:

K( 1 1) =

K( 1 2) =

K( 1 3) =

K( 1 4) =

K( 2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

1.10484767

-0.00110085672

17348.9439

6864886.92

300.557005

-0.000471691614

-5710.56759

300.557005

471.418624

9.67543833E-05

0.916573046

-0.00047169159

9.67543833E-05

551.655393

-0.000562611623

-5710.56759

0.916573046

-0.000562611623

14109.5255

6378887.27

282.778998

0.0123446917

-4864.44009

282.778998

369.868205

8.59679613E-05

0.721094431

0.0123446917

8.59679613E-05
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K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3)=

K( 44) =

" Element 7:

K( 1 1) =

K( 1 2) =

K( 1 3) =

K( 1 4) =

K( 2 1) =

K( 2 2)

K( 2 3)=

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3)=

K( 4 4) =

" Element 8:

K( 1 1) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2)=

K( 2 3) =

K(2 4)=

K( 3 1) =

K( 3 2)=

K( 3 3) =

K( 3 4) =

K(4 1)=

K( 4 2) =

K(4 3) =

K( 44) =

. Element 9:

431.886319

-0.000518368257

-4864.44009

0.721094431

-0.000518368259

11208.0464

5868079.2

256.690743

-0.0068317651

-4135.81377

256.690743

283.305197

-1.20586977E-05

0.666484441

-0.00683176511

-1.20586977E-05

330.32518

0.00050537407

-4135.81377

0.666484441

0.000505374069

8672.41538

5343951.9

235.388447

0.0021933679

-3409.56258

235.388447

210.918696

5.85654121E-05

0.380203387

0.00219336791

5.85654121E-05

245.751117

-0.000545759771

-3409.56258

K( 1 1) =

K( 1 2) =

K(1 3)

K( 1 4) =

K( 2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2)

K(4 3)=

K( 4 4) =

0.380203387

-0.000545759772

6527.61918

4809548.4

211.285714

0.0106257907

-2729.01238

211.285714

151.401151

3.79138767E-05

0.502425638

0.0106257907

3.79138767E-05

176.841966

0.000132329684

-2729.01238

0.502425638

0.000132329685

4752.17543

o Element 10:

K( 1 1) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2)=

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3)=

K( 3 4) =

K(4 1)=

K( 4 2) =

K(4 3)=

K( 4 4) =

4270248.69

185.959143

0.00524953617

-2142.85387

185.959143

104.320464

2.05239915E-05

0.469139844

0.00524953615

2.05239915E-05

122.127349

0.000272097977

-2142.85387

0.469139844

0.000272097977

3326.51488

Actuation oriented at ±22*: Bending actuation constants

eElements 1-3:

F(a)= 0.189091468

M1(a) = -0.171739569

M2(a)= 25.7298025
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M3 , = -0.0182542229

Gamma: 3.41169817E-08

Kappal: -0.0137131401 [deg/m]

Kappa2: 1.73791812 [deg/m]

Kappa3: -4.87051901E-05 [deg/m]

e Element 4:

F1 = 0.202235358

M1 a= -0.141185052

M 2a)= 22.5542681

M3a)= -0.0178889881

Gamma: 3.73234212E-08

Kappal: -0.0137641172 [deg/m]

Kappa2: 1.87165515 [deg/m]

Kappa3: -5.72790119E-05 [deg/m]

* Element 5:

F, a, = 0.200548602

M a,= -0.115976797

M2(l,= 19.498046

M 3a, = -0.0162801277

Gamma:

Kappal:

Kappa2:

Kappa3:

3.90562592E-08

-0.0140974298 [deg/m]

2.02509722 [deg/m]

-6.42079078E-05 [deg/m]

" Element 6:

F1 a = 0.188776156

M a) = -0.0911860232

M 2a) = 16.6053757

M3a, = -0.0139001179

Gamma: 3.95309896E-08

Kappal: -0.0141276123 [deg/m]

Kappa2: 2.20293617 [deg/m]

Kappa3: -6.90638736E-05 [deg/m]

" Element 7:

F1 a) = 0.19102346

M (a) = -0.0702856734

M2"= 13.911412

M 3 ay = -0.0127033534

Gamma: 4.24494736E-08

Kappal: -0.0142165176 [deg/m]

Kappa2: 2.41297147 [deg/m]

Kappa3: -8.18150284E-05 [deg/m]

* Element 8:

F ay = 0.171631674

M (a) = -0.0532338768

M 2 a)= 11.4356253

M 3 ;")= -0.010342455

Gamma: 4.22326687E-08

Kappal: -0.0144641929 [deg/m]

Kappa2: 2.66616529 [deg/m]

Kappa3: -8.8450982E-05 [deg/m]

e Element 9:

F1a= 0.155686133

M(a)= -0.0370525409

M2L"= 9.19090471

M3a)= -0.00839324869

Gamma: 4.20348341E-08

Kappal: -0.0140258289 [deg/m]

Kappa2: 2.97780039 [deg/m]

Kappa3: -9.84122465E-05 [deg/m]

* Element 10:

F (a) = 0.178413225

M 1(a)= -0.0252695621

M 2"= 7.185599

M 3(a)= -0.00862558993

Gamma: 5.09907383E-08

Kappal: -0.0138839852 [deg/m]

Kappa2: 3.37110826 [deg/m]

Kappa3: -0.000145002568 [deg/m]

Actuation oriented at ±22*: Twist actuation constants
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* Elements 1-3:

F,(a= 3.73739457

Mia)= 16.283186

M 2la,= 1.23996215E-06

M3(a,= 0.00153852882

* Element 7:

F1 a,= 2.29850487

M/(a)= 8.86542374

M2 a= - 1.26617102E-06

M3(a= 0.0588559924

Gamma: -8.71359348E-07

Kappal: 1.75721849 [deg/m]

Kappa2: -1.49384357E-07 [deg/m]

Kappa3: -9.88874718E-05 [deg/m]

* Element 4:

F, a = 3.30028406

M 1 a) = 14.3290405

M2a)= -2.02778599E-07

M 3(a= 0.0229250257

Gamma: -1.00389837E-06

Kappal: 1.89370713 [deg/m]

Kappa2: -1.26696696E-07 [deg/m]

Kappa3: -3.18014622E-05 [deg/m]

" Element 5:

Fi a) = 2.92939659

Mi (a = 12.4000835

M 2(a)= 7.02950753E-07

M3a= 0.042580152

Gamma: -1.14702891E-06

Kappal: 2.05184127 [deg/m]

Kappa2: -5.19250277E-08 [deg/m]

Kappa3: 3.30689796E-05 [deg/m]

" Element 6:

F 1(a) = 2.70827672

Mi a) = 10.5665352

M 2(")= -0.000374426064

M 3(a)= 0.0509004846

Gamma: -1.30519787E-06

Kappal: 2.23429427 [deg/m]

Kappa2: -1.22622375E-05 [deg/m]

Kappa3: 0.000113211632 [deg/m]

Gamma:

Kappal:

Kappa2:

Kappa3:

o Element 8:

-1.48312127E-06

2.45402661 [deg/m]

-3.32071647E-07 [deg/m]

0.000204754584 [deg/m]

F (a = 2.2043578

M (a) = 7.27957381

M2')= -6.44271627E-06

M3(a) = 0.0541912149

Gamma: -1.68336995E-06

Kappal: 2.71626681 [deg/m]

Kappa2: -1.99998264E-06 [deg/m]

Kappa3: 0.000291900614 [deg/m]

" Element 9:

F =(a) = 1.92499874

M (a)= 5.84797741

M2(a) - 2.85491463E-06

M 3(a)= 0.0620162419

Gamma: -1.93871829E-06

Kappal: 3.04552671 [deg/m]

Kappa2: -1.80522735E-06 [deg/m]

Kappa3: 0.000430028692 [deg/m]

" Element 10:

F (a) = 1.63045224

M, (a = 4.5766845

M 2 (a)= 1.69499776E-06

M 3(a)= 0.0536100028

Gamma:

Kappal:

Kappa2:

Kappa3:

-2.24069877E-06

3.46385073 [deg/m]

3.47455766E-07 [deg/m]

0.000514141335 [deg/m]
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Actuation oriented at ±450: Stiffness

e Elements 1-3:

K( 1 1) =

K( 1 2) =

K( 13)

K( 1 4) =

K( 2 1) =

K( 2 2) =

K( 2 3) =

K( 2 4)

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3)=

K( 44)

e Element 4:

K( 1 1)=

K( 1 2) =

K( 1 3) =

K( 1 4) =

K(2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1)=

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3)=

K( 44) =

5646151.72

204.137272

0.0157910716

-267.883142

204.137272

854.389753

-0.000210587573

3.02193601

0.0157910716

-0.000210587571

615.817763

-7.20740632E-05

-267.883142

3.02193601

-7.20740588E-05

15440.8911

5353002.67

192.863574

0.00160694481

-216.440373

192.863574

699.573685

9.90850646E-05

2.5046933

0.00160694488

9.90850645E-05

501.394326

-0.000749793439

-216.440373

2.5046933

-0.000749793436

12865.5541

e Element 5:

K( 1 1) = 5018200.26

K( 1 2) = 177.888648

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2) =

K( 2 3) =

K( 2 4) =

K( 3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3) =

K(4 4) =

* Element 6:

K( 1 1) =

K( 1 2)=

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2) =

K(2 3)=

K( 2 4) =

K(3 1) =

K( 3 2) =

K( 3 3) =

K( 3 4) =

K(4 1) =

K( 4 2) =

K(4 3) =

K( 44) =

* Element 7:

K( 11) =

K( 1 2) =

K( 1 3)=

K( 1 4) =

K( 2 1) =

K( 2 2) =

0.000872380181

-170.108251

177.888648

561.038306

5.24756304E-05

1.9558965

0.00087238019

5.24756302E-05

400.706755

-0.000311181993

-170.108251

1.9558965

-0.000311181995

10459.3993

4662498.97

165.606959

0.0139759738

-150.770305

165.606959

440.02237

-0.000171361322

1.52896524

0.0139759738

-0.000171361322

313.815134

-5.51043203E-05

-150.770305

1.52896524

-5.51043229E-05

8309.34095

4288654.94

148.556117

-0.00352413007

-136.954495

148.556117

337.036381
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K(2 3) =

K( 2 4) =

K(3 1)=

K( 3 2) =

K( 3 3) =

K( 3 4) =

K(4 1) =

K( 4 2) =

K(4 3) =

K( 44) =

e Element 8:

K( 11) =

K( 1 2) =

K( 1 3) =

K( 1 4)

K( 2 1) =

K( 2 2)

K( 2 3)=

K( 2 4)=

K( 3 1)=

K( 3 2) =

K( 3 3) =

K( 3 4)=

K( 4 1)=

K( 4 2) =

K(4 3)=

K( 4 4) =

-2.44972636E-05

1.20847588

-0.00352413003

-2.44972637E-05

240.124895

0.000443661668

-136.954495

1.20847588

0.000443661667

6428.77729

3905268.12

134.897853

0.00073746597

-114.782616

134.897853

250.852085

6.93433321E-05

0.84382027

0.000737465928

6.93433322E-05

178.732335

-0.000463986794

-114.782616

0.84382027

-0.000463986795

4838.76601

K( 1 3) =

K( 1 4)

K( 2 1) =

K( 2 2) =

K( 2 3)

K( 2 4) =

K( 3 1)=

K( 3 2) =

K( 3 3) =

K( 3 4)=

K(4 1)=

K(4 2)=

K( 4 3) =

K( 4 4) =

0.0139734437

-85.8681822

119.607256

179.940132

-0.000156418231

0.730680625

0.0139734437

-0.000156418231

128.693954

0.000439325119

-85.8681822

0.730680625

0.000439325119

3521.97257

o Element 10:

K( I 1)=

K( 1 2) =

K( 1 3) =

K( 1 4)=

K( 2 1)=

K( 2 2) =

K( 2 3) =

K( 2 4) =

K(3 1)=

K( 3 2) =

K( 3 3) =

K( 3 4) =

K( 4 1) =

K( 4 2) =

K(4 3) =

K( 44) =

* Element 9:

K( 1 1) = 3514212.01

K( 12) = 119.607256

3119449.89

104.649162

0.0095805776

-47.6575911

104.649162

123.918996

-0.00012074851

0.544808546

0.00958057758

-0.00012074851

88.946838

0.000479439834

-47.6575911

0.544808546

0.000479439834

2464.20586

Actuation oriented at ±450: Bending actuation constants

Kappa2:

Kappa3:
* Elements 1-3:

F1 (a) = 0.321245753

M(a) = -0.247796017

M 2(a) = 9.21606499

M 3(a)= -0.0367222011

Gamma: 6.72305752E-08

Kappal: -0.0166175573 [deg/m]

0.857464142 [deg/m]

-0.000132940277 [deg/m]

o Element 4:

F(a)= 0.319173726

M(a)= -0.203748205

M 2(a)= 8.0799537

M3(a) - 0.0329650979

161



Gamma: 7.00128937E-08

Kappal: -0.0166879043 [deg/m]

Kappa2: 0.923319721 [deg/m]

Kappa3: -0.000143437464 [deg/m]

* Element 5:

F, a= 0.356958049

M(a) = -0.166797357

M 2 a) = 6.98730628

M3 = -0.032851206

Gamma: 8.1564663E-08

Kappal: -0.0170350636 [deg/m]

Kappa2: 0.999092667 [deg/m]

Kappa3: -0.000176665103 [deg/m]

" Element 6:

F, a>= 0.278163299

M, a= -0.131519715

M2(a) = 5.95264278

M 3 a) = -0.0233828528

Gamma: 7.01303717E-08

Kappal: -0.0171258624 [deg/m]

Kappa2: 1.08682241 [deg/m]

Kappa3: -0.000158001494 [deg/m]

" Element 7:

F (a>= 0.261816026

M1 a)= -0.10108013

M 2 a) = 4.98967239

M 3 al = -0.0199002184

Kappa2: 1.19057702 [deg/m]

Kappa3: -0.000174123264 [deg/m]

" Element 8:

F a= 0.212308743

Ma)= -0.0764822442

M 2(a)= 4.10373914

M3a)= -0.0146670509

Gamma: 6.48056934E-08

Kappal: -0.0174706873 [deg/m]

Kappa2: 1.3155255 [deg/m]

Kappa3: -0.000170411516 [deg/m]

" Element 9:

F,(a> = 0.170937429

M1 (a)= -0.053104912

M 2(al= 3.30055217

M3(al= -0.0102769742

Gamma: 5.8514781E-08

Kappal: -0.0169097295 [deg/m]

Kappa2: 1.46943745 [deg/m]

Kappa3: -0.000163780191 [deg/m]

* Element 10:

F/a>= 0.199636408

M (a)= -0.0357362982

M 2a= 2.58268629

M 3(a)= -0.0104468768

Ga

Ka

Gamma: 7.13578376E-08 Ka

Kappal: -0.0171845927 [deg/m] Ka

Actuation oriented at ±450: Twist actuation constants

* Elements 1-3:

Fi(a)= 5.07837124

M1(a = 25.6498103

M 2 al = -2.58551417E-05

M 3 al = 0.150889006

mma:

ppal:

ppa2:

ppa3:

Gamma:

Kappal:

Kappa2:

Kappa3:

7.35193128E-08

-0.0165240898 [deg/m]

1.663657 [deg/m]

-0.000239491512 [deg/m]

-1.85797174E-07

1.72009021 [deg/m]

-1.81705829E-06 [deg/m]

0.000223073223 [deg/m]

* Element 4:

F1 a) = 4.86539844
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M (a) = 22.6277814

M 2 a>= 4.04777526E-06

M 3 a= 0.134793043

Gamma: -2.56286116E-07

Kappal: 1.85324105 [deg/m]

Kappa2: 9.67201347E-08 [deg/m)

Kappa3: 0.000239250807 [deg/m]

" Element 5:

F, la,= 4.65212346

M(ay = 19.6544122

M 2(a= 1.97953401E-06

M3(a) = 0.102240789

Gamma: -3.14689982E-07

Kappal: 2.007203 [deg/m]

Kappa2: 2.03710758E-08 [deg/m]

Kappa3: 0.000184429093 [deg/m]

" Element 6:

F (a) = 4.24640585

M (a) = 16.7791689

M 2 (a)= -2.48216274E-05

M(a) = 0.1030697

Gamma: -4.43500572E-07

Kappal: 2.18484197 [deg/m]

Kappa2: -3.33764982E-06 [deg/m]

Kappa3: 0.000308217042 [deg/m]

" Element 7:

FI(a) = 3.8098284

M(a) = 14.1103179

M2(a) = -2.34915086E-06

M3 a) = 0.0893576578

Gamma: -5.61670417E-07

Kappal: 2.39875014 [deg/m]

Kappa2: -3.16918421E-07 [deg/m]

Kappa3: 0.000344789953 [deg/m]

* Element 8:

Fa= 3.49577947

M (a>= 11.6167853

M2 a = 7.23001739E-06

M(a) = 0.0784084307

Gamma: -7.04269822E-07

Kappal: 2.6533479 [deg/m]

Kappa2: 1.28965427E-06 [deg/m]

Kappa3: 0.000464765594 [deg/m]

" Element 9:

F (a) = 305472204

M(a) 9.33728535

M_ (a) -2.89908268E-05

M 3 (a)= 0.075400204

Gamma: -8.96639171E-07

Kappal: 2.97317092 [deg/m]

Kappa2: -9.28981826E-06 [deg/m]

Kappa3: 0.000608540778 [deg/m]

" Element 10:

F (a) = 2.93883349

M (a) = 7.30545454

M2 (a= -2.44034773E-05

M3 (a)= 0.0525800218

Gamma: -1.03553209E-06

Kappal: 3.37783307 [deg/m]

Kappa2: -1.1130324E-05 [deg/m]

Kappa3: 0.000474600592 [deg/m]
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Appendix B

An Approximation for the Structural Modes

Section 3.4.2 expressed the need for an approximation to the structural modes, which

is now detailed in this Appendix. The bending stiffness and torsion stiffness (EI(s) and

GJ(s) respectively) will be obtained by fitting a spline along the bending and torsion

stiffness of each individual element, and will be entered in the lumped parameter

formulation of a beam undergoing bending along its longitudinal axis:

[M ]{i 3 } + [K]{u3 } = { F,):}rnal I (B.2)

where U3 is the transversal deflection, M is the mass matrix, K the stiffness matrix, and

Fexterna the external forces on the beam. Eq. (B.2) is turned then into an eigenvalue

problem:

{U3} =A[C][M]{u31 (B.3)

which effectively has the form A-x=2-x. C is the flexibility matrix, i.e [C] =[K]-'. The

flexibility influence coefficients Cj are found next.

#

xi

Figure B. 1 Unit force applied on a cantilever beam (U3 measures the deflection)

Figure B. 1 shows a unit force acting on a cantilever beam. It holds that
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dzu3
EIdX2  M(x) =1.(x 3 -x) (B.4)

Isolating U3 from Eq. (B.4) yields the values of Ci;, since Ci; = us(xi) for a unit force acting

at xj. After integrating Eq. (B.4) twice, one obtains

x x--ds -d x > xC,= 0 dEI(s) (B.5)

Iu (xi)- (xi - x) + u,(xi) x1 < xi

where

u (x) = fx xj -s ds
0 EI(s)

U3 (X)) = {xi jjs ds -d
ix fEI (s)I

Working similarly for the torsion case in a cantilever beam yields

fxi ds i>X
0 GJ(s) (C.. = -(B.6)

' f x, ds i<x
0 GJ(s)

All there is left to do is to fit a curve along the bending and the torsion stiffness of the

beam (EI(s) and GJ(s) respectively):

EII = EIO -2'' x ! 0.5m

EI(x) = El 3.5 X) x >0.5m (B.7)
1.5

GJ=GJO 2e2 x 0.5m
GJ(x) = 3.5 - x e (B.8)

S31.5

where El0 = 60 kg-m2, GJo = 78 kg-m2, el = 3.1 and e2 = 3. The equations that describe

the influence coefficients for the bending case are the following:

xI Y xjs ds] d x >(x9
Cii = oi[( EI(s) I - (B.9)

u3x) -(x, -- x,)+u 3 (Xj) x3 < xi

where
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uI (x)= ( ds
0

4 ~AJ El (s)

X1 X -s1
U3 (X )=ds -d

L f3oj) [fJOJEI(s)j

The following step is to compute the integral jo -(sds.

For (<0.5m,

.J -S ds = x S- x - (B.10)
El (s) I S]2=LXJIIj

For (>0.5m,

0 ds = fo ds + fo5 ds = 0.5xi --0. 125)-~El(s) J ElI 05 E(s) E '

1.5 x, - 3.5 - - e2 x -e }- 1 3. )2-e - e2'-
EIO 1 -el 1.5 ) 1-e, 1-el 2-el 1.5)

(B.11)

The equation for the torsion mode flexibility influence coefficients is

xi ds

C = 0 GJ(s) (B.12)
x. < x

Substituting Eq. (B.8) into Eq. (B.12) after calculations yields

--1.5y 1 3. - -e2 _ 3.5)1-e2 X X

CGJO 1-e2 1.5 )-e 1.5 )-2-(B 3
1C e(B.13)

-1.5 1 3.5 - x 2 3.5 1e2] <
GJO 1-e2 1.5 (1.5)
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Appendix C

Simulation

One of the advantages of the digital computer is that it allows models to "become

alive." One is not restricted to look at a data printout but can actually watch the motion of

the system, which gives the aeroelastician much insight into the design. Both the two-

dimensional and the three-dimensional simulations that are presented in this chapter

accomplish this. The three-dimensional simulation provides a more realistic

representation of the wing behavior, while the two-dimensional simulation provides

much more flexibility and information.

Formulation

Displacements and Rotations

The key concept in the simulation is to precisely know the displacements and

rotations of any element with time. The procedure to obtain both was detailed in Section

3.3, which resulted in

0

un = [T,, 0 0] (C.1)

0=[] 0 0 (C.2)

where u, is the displacement vector, and 0 the rotation vector expressed as Rodrigues

parameters. These are a non-singular, minimal coordinate representation of a rigid body

orientation. The Rodrigues parameters can be defined through a transformation from the

Euler parameters:
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1+ $3
(C.3)

with i=1,2,3, or in terms of the principal rotating axis E and the principal rotating angle

$ as

0 = e -tan -
4

(C.4)

In order to implement the simulation in the three-dimensional space, the cosine

rotation matrix must be expressed in terms of the Rodrigues parameters [59]:

4(0 _ 0 _0)+ 2 8+ 1 2 +40 3 1 8003 -40 2  1
C(0) = 80102 -40 3X 4(-02 +02 - 0) +Z 2  80203 +401 (C.5)

A2 13 231 2 23 1j

800 +40Z2 8020 +401 4(-02 - 02 + 0 )+12

where A =1+06 and X=1-OT O.

Once the rotation matrix is known, any element can be correctly placed in space as

shown in Figure C.1.

x
3 x

x
2

x
3

x

v'

x

Figure C.1 Element Rotation in Space

Any vector can be transformed as

v'= d+C(0).v +u (C.6)

where d is the distance from the center of the element to the reference axes and un is the

displacement vector for the element center point.
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Normalized Output

In Section 3.7.1 it was already shown how to obtain the normalized inputs u as

outputs by defining

C=[o -CK] (C.7)

This is enough to plot the normalized voltage response to a given gust disturbance

with respect to time:

u=[0 -CK]. {+D{- (C.8)

Implementation

In the present work, two simulations have been implemented: a two-dimensional

simulation (where the motion of selected elements of the wing is plotted) and a more

realistic three-dimensional one (where the whole wing oscillates, even though not in real

time).

Two-Dimensional Simulation

The 2-D simulation has been designed almost as a "virtual oscilloscope." The input

is the disturbance due to gust and several outputs are available as functions of time. The

2-D simulation has been coded as a Matlab script and, as the regulator implementation, is

able to handle discretizations of any number of elements.

Data Requirements

The input to the simulation is a gust disturbance with respect to time. Any function

explicitly described with respect to time is straightforward to implement. The following

models are already built in:

" 1-Cosine gust model (see Section 3.5).

" Sinusoidal

" Step

" Pulse

" Ramp and plateau
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Graphical Output

The Matlab implementation produces graphical outputs such as the one shown in

Figure C.2 and Figure C.3.

Voltages[V/Vmax]

. .......

LI

- -- ---- ----

.... -_ _ ------ I . -
>7-

0 0,06 CIA 0,2i 0J2D 0.3 0 4

Time (sec.)

Figure C.2 Normalized voltages with respect to time for a wing divided into 5 active

regions

u2[m], u3[ml & thetal[rad] at tip element

0 <

10 . ..... ... .....- ----

0 5 0 1 0 15 0~r~ 2 25 0.3 055 ] 4

E 0

U 011105 01 .2 C !F 3 0,5 :

Timp (qpe

Figure C.3 Two displacements and a rotation at the tip after a disturbance: (i) chordwise

tip deflection (u2), (ii) flatwise tip deflection (u3 ), (iii) tip twist (01).
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Three-Dimensional Simulation

The 3-D simulation may not provide as much numerical data as the 2-D one, but it

certainly provides greater insight on how the wing behaves under some disturbance. The

graphical simulation handles wings discretized in any number of elements. It has been

implemented in Simulink using Matlab scripts for the different element position and

rotation calculations. Unfortunately, the motion is not fast enough to simulate a highly

flexible wing oscillating in real time on a desktop computer. A movie generation

algorithm was implemented in the simulation code to overcome this problem.

As the simulation marches, every new picture drawn on the screen is saved as a

frame at some At determined by Simulink's numerical integrator. After the total

simulation time, a Matlab script generates the whole animation in the right time sequence

and at a reasonable pace.

Figure C.4 shows one frame in a simulation of a 5-element wing hit by a sinusoidal

disturbance.

General View

10

5

-10
10

0 1015
5

-10 0

Figure C.4 One frame in a 3-D simulation of a 5-element wing hit by a sinusoidal

disturbance
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Appendix D

The Tcl/Tk Computer-Based Framework

The present formulation consists of different building blocks, each one implemented

in a convenient computer language or script. Thus, the nonlinear aeroelastic model is

coded in C++ with some Fortran 77 routines, VABS-A is programmed in Fortran 77, and

the aeroelastic control design is implemented as Matlab scripts. The need for a computer

infrastructure to integrate all the different elements under a common interface to facilitate

the design was clear. This appendix concentrates on the software that accomplishes that

integration. The code is named "Aeroelastic Modeling", its current version is 1.1, it is

programmed in Tcl/Tk and runs on a Pentium II computer under the Linux operating

system.

Tcl and Tk were developed by John Ousterhout (Ref. [55]). Tcl stands for "tool

command language," and is both a language and a library. It is a simple textual language,

intended primarily for issuing commands to interactive programs such as text editors,

debuggers, illustrators, and shells; it can also be used as a library package embedded in

application programs. Tk is an extension to Tcl which provides an interface to the X-

Windows environment. Everything that follows is coded in Tcl/Tk. For more details on

the language itself, please refer to Ousterhout's excellent book (Ref. [55]).
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The Tree Directory Structure

Everything in the program is relative to the main program installation directory.

All the different aeroelastic options available have their own directory. Even though it is

not essential for the user to know the exact tree structure (except for the input directory),

it gives a good overview of what the program does and how it handles the data. The

different directories are the following:

" input holds all new files that the user wants to input to the system,

e data contains the project names,

" aerosolv contains the aeroelastic solver information,

e flightcond contains the information relative to the flight conditions,

" meshgen contains everything relative to the mesh generator,

" vabs holds everything related to the beam cross-sectional model, and

* wingplan contains the wing planform dimensions.

Most of these directories are divided into data and code. code contains all the

executable files while data holds the associated data. The data is in turn classified in

different directories, each one labeled as the correspondent project. There are two

possibilities for file input:

1. placing the files directly in the appropriate subdirectories in the event that those

directories have already been created, or

2. placing them directly in the input directory.

The program will always look first in the appropriate subdirectory for the required

files in each aeroelastic option. If the directory or the files do not exist, the program

will automatically revert to the input directory.
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The Main Menu

Once the program is started by typing main, the welcome screen appears:

Clicking anywhere on the window leads to the main menu screen:
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The main menu dialog window allows three options:

" To start a new project by typing a new name in the input box.

" To read the data from a previous project.

" To delete any of the previous projects.

Once the project has been selected, the option selection screen pops up:

For a new project, the different options should be executed in sequence. All these options

are described in the following sections.

Defining the Wing Planform

The wing planform template is shown below.

The program allows the user to discretize the wing in an arbitrary number of elements

and it automatically updates the picture to reflect the changes. The wing can be

symmetrically tapered and SI or English units can be selected via the radio buttons.
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Defining the Flight Conditon

This template only serves as a reminder for the user, but it does not automatically

update the appropriate analysis files in the current version.

Obtaning the Wing Cross-Section Properties

The wing cross-section option starts with another template with three options:

Select Option:

Generate mesh y Yes yNo

Run VABS-A yYes y No

Visualize results y Yes y No

OK CANCEL

Mesh Generation

The dialog that pops up is a front-end for the files that the mesh generator requires.

The user must enter them using any of the two options mentioned above.

The top half of the window allows to select one basic. f file, which is a Fortran

source file to contain the mathematical equations defining the airfoil profile. This file will

be compiled by the program upon leaving the dialog window. Note that the program

always looks for files starting with the string "basic.f," and will display them on the left

subwindow. This applies to every option in the program, and must be remembered when

reading the following sections. File selection is always accomplished by clicking the file

on the left subwindow and then pressing the '->' button, which copies it to the selection

window on the right.
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The bottom half of the dialog window allows the selection of as many

input .dat files as elements in the discretization of the wing. Each file must contain

the lay-up information together with their location within the cross-section at every

station (see the readme file in the meshgen/code directory for more information on the

file syntax). If the same input . dat file wants to be used for every element (for a

straight wing, for instance), the user may just select one file and the program

automatically will replicate it as necessary.

Choose source file from lhone/miquelltk/neshgen/datafaf45/basic*.f*

basic.f.AFOSR basic.f.AFOSR

Choose 10 input files from lh/qeltmeshgen/dataa45/iputdat*

inputudateaf45.1 input.dat.af45.1
input.dtataf45.1 0 input.dataf45.2
input.dataf45.2 input.dataf453
input.dataf45.3 input.dat.af45.4
inputdataf45.4 inputdat.af45.5
nputdat.a5.5 inputdat*45.6
inputdat.af45.6 input.dat.af45.7
inputdataf453 input.dat.af45.8
input.dat.af45.6 inputdataf45.9

______ ______ / .- input~dataf45.1 0

OK CANCEL

Running VABS-A

This option provides a front-end for VABS-A, running it for every discretization

element. The dialog window is shown on the following page. The top half allows the

selection of the input .dat files that VABS-A needs, which are basically the ones

output by the mesh generator routine. If the mesh generation option has been already run,

the generated files will automatically be shown on the left. If the wing is straight, the

program will allow to select only one file for all the stations. In that event, VABS-A will

only be run once, since all files are the same. The program also avoids to run VABS-A on

the sections of a tapered wing that share the same properties.
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OK CANCEL

The bottom half of the window allows the material file selection, which must have

the prefix info . dat. Please refer to the readme file in the VABS-A subdirectory for

the right syntax.

Visualization of the Results

Even though the program pre-processes VABS-A output files for visualization,

Matlab has to be started as a separated process in this version to view them, due to an

incompatibility between the two.
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Running the Aeroelastic Solver

The Model File

New Model File

tapered beef
tapered beef.af45.1
taperedbeef.af45.10
taperedbeef.af45.2

Read Model File taperedbeef.af45.5

0 K CANCEL

The aeroelastic solver dialog window allows to select data from an existing model

file or to create a new one. In its current implementation, the program looks for model

files starting with the prefix taperedbeef. The task of this template is to incorporate

the stiffness and active constants from VABS-A into a more general file that is the input

for the solver. In fact, the template allows to embed current VABS-A results into an

existing file. To do this, the old file must be read first. Then, the new file must be created,

at which point the program will ask if it should erase the old data in memory. Canceling

this dialog will preserve the old data and just include the new VABS-A results.

.h .

Want to reset all values in template before starting?

OK CANCEL

Once a name has been selected, a series of templates will appear on the screen for input:

Element Data

One template for every discretization element will pop on the screen. One is given

for reference on the following page. Please refer to the readme file in the aerosolvicode

directory for a detailed description of every entry box in the template.
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Force Data

Additional forces can be added to the wing model using a template similar to the one

below.

Piezoelectric Data

One template for every independent actuation region allows to enter the

corresponding active forcing constants. One must bear in mind that this information is

automatically entered by the program if VABS-A has been run previously. These

templates should be considered only as a way to modify that data.
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The Analysis File

The current version of the program only allows selection of an existing analysis file

(with the helicheck prefix), but it does not provide templates for creation of new

files or modification of existing ones. After the selection, the aerolastic solver is

automatically run by the program.
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