
Neurocontrol of a Cantilever Beam

by

Nicolas Aplincourt

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2000

@ 2000, Massachusetts Institute of Technology. All rights reserved.

A

Author
De~ Environmental Engineering

December 20, 1999

I-'

.Certified by......
Jerome J.J. Connor

Professor, Department of Civil and Environmental Engineering
Thesis Supervisor

-77

Accepted by Z...............................
Daniele Veneziano

Chairman, Departmental Committee on Graduate Studies

.FEB8 14 2 000

Neurocontrol of a Cantilever Beam

by

Nicolas Aplincourt

Submitted to the Department of Civil and Environmental Engineering
on December 20, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The civil engineering community is currently moving towards the continuous moni-
toring of civil structures in order to forecast their unavoidable failure with enough
precision. So-called smart technologies seem to be well adapted to this specific task.

For a civil structure, such as a bridge or a dam, a monitoring smart system often
includes a set of sensors, whose data is passed onto a controller. The latter analyzes
the data and outputs commands to a set of actuators that will modify the structure
properties in response to the new sensors' environment. Therefore, the structure can
continuously adapt to its surrounding environment.

Artificial neural networks are electronic devices whose structure resembles the struc-
ture of the human brain. Such devices can be trained to output desired signals when
fed with specific inputs. Consequently, neural networks can theoretically act as con-
trollers in monitoring smart systems.

This thesis first presents artificial neural networks in details, since this topic remains
unfamiliar in the civil engineering literature. An entire chapter is also devoted to the
training of these artificial neural networks that are likely to be used in civil engineering
applications. The thesis then introduces the new concept of neurocontrol, i.e. control
using neural networks. Finally, a simulation run under MATLAB applies this concept
of neurocontrol to a cantilever beam supporting fluctuating loads.

Thesis Supervisor: Jerome J.J. Connor
Title: Professor, Department of Civil and Environmental Engineering

Acknowledgments

I would like to sincerely thank Professor Jerome J.J. Connor, my thesis advisor, who

took the time to structure the writing of this thesis.

I am immensely grateful to the Rotary Foundation of Rotary International, who fi-

nancially supported my graduate studies at MIT. In addition, members of the Rotary

Club of Boston, especially my host, Peter Griffin, transformed my stay into a true

American experience.

I wish to express my unconditional love to my brothers, Gilles and Philippe, my sis-

ter, Florence, and my grandparents, Yvonne, Jean, and Genevieve, whose phone calls

and e-mails brightened my darkest days at the Institute.

Finally, this thesis is dedicated to my parents, Michel and Marie-Agnes, who instilled

in me the value of continuous learning. To their education, I owe what I am today,

and what I will achieve in the future.

Contents

1 Introduction

1.1 Structural Control

1.2 The Need for Infrastructure Health Monitoring . . .

1.3 Smart Technology

1.3.1 What makes a Material or Structure Smart?

1.3.2 Existing Smart Materials

1.3.3 Existing Smart Structures

1.4 Objectives and Organization of the Thesis

2 Foundation of Artificial Neural Networks

2.1 Defin n of Artificial Neural Nctworks . .w. .l. . .

2.1.1 The Beginning: Interest in the Human Brain

2.1.2 A First M odel

2.1.3 Definition of a Neural Network

2.1.4 Mathematical Representation of a Neural Netx

2.2 Training a Neural Network

2.2.1 Neural Networks Can Learn

2.2.2 Learning Paradigms

2.2.3 Generalization

2.3 Taxonomy of Network Architectures

2.3.1 An Example of Classification

2.4 Some Well-known Networks

2.4.1 Perceptron

york

4

11

11

12

13

15

17

18

19

21

21

21

23

25

27

37

37

38

41

42

42

43

43

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.5 Neural

2.5.1

2.5.2

2.5.3

Adaptive Linear Filters

Back-Propagation Network

Hopfield Network

Radial-Basis Function Network

Kohonen Networks

Networks in Engineering

A Brief History of Neural Network Models

Why Neural Networks Appeal?

Neural Network Applications

3 Improving the Performance of Supervised Feed-Forward

works

3.1 Training Algorithms .

3.1.1 Learning Algorithms

3.1.2 The Back-Propagation Algorithm

3.1.3 Better Algorithms

3.2 Other Considerations for an Improved Training

3.2.1 Sequential or Batch Mode of Training

3.2.2 The Network Design Problem

3.2.3 Early Stopping

3.2.4 Pre-Processing of Data

3.2.5 Genetic Algorithms

4 Neurocontrol

4.1 Definition of Control . .

4.2 Concepts of Control. . . .

4.2.1 Linear Control . .

4.2.2 Non-Linear Control

4.2.3 Optimal Control

4.2.4 Robust Control .

4.2.5 Adaptive Control

48

49

49

50

55

56

56

57

59

Neural Net-

62

. 63

. 63

. 64

. 76

. 82

. 82

. 83

. 85

. 85

. 8 7

92

. 9 2

. 9 4

. 9 4

. 9 6

. 9 8

. 9 9

. 9 9

4.2.6 Intelligent control

4.3 Fundamental Approaches to Neurocontrol

4.3.1 Template learning

4.3.2 Learning Plant Inversion

4.3.3 Closed-Loop Optimization

4.3.4 Critic Systems

4.4 A New Direction for Control: Fuzzy Neural

4.4.1 History of Fuzzy Logic

4.4.2 What is Fuzzy Logic?

4.4.3 Fuzzy Control

. 103

. 103

. 103

. 104

. 105

. 106

Networks 107

. 108

. 109

. 112

5 Case Study: Neurocontrol of a Cantilever Beam

5.1 The Beam Model .

5.1.1 Describing the Beam Model

5.1.2 Lim itations

5.2 Theoretical Study

5.2.1 Plane beam

5.2.2 Straight Beam

5.2.3 Relation displacement-applied forces

5.2.4 Simple Cases

5.3 Using the MATLAB Environment

5.3.1 The MATLAB Neural Network ToolBox . . .

5.3.2 An Example: Comparing Training Algorithms

5.4 Control scheme and Simulations

5.4.1 Real m odel

5.4.2 Neurocontrol scheme

5.4.3 Simulation and Results

5.4.4 D iscussion .

6 Conclusion

6

117

. 118

. 118

. 119

. 121

. 121

. 124

. 127

. 130

. 133

. 133

. 143

. 147

. 147

. 148

. 149

. 151

154

A Simulating a Beam Using Different Training Algorithms 156

A.1 The "simulation1" MATLAB program 156

A.2 The "beam" MATLAB function 158

B Control Scheme for a Cantilever Beam 162

B.1 The "simulation2" MATLAB program 162

B.2 The "beam-control" MATLAB function 163

7

List of Figures

1-1 Logic of a smart system.

2-1 A biological neuron

2-2 A first neuron model

2-3 The Heavyside function.

2-4 An electronic representation of a neuron

2-5 Biological and artificial neural networks

2-6 Single neuron with scalar input

2-7 Neuron with an R-element input vector . .

2-8 Abbreviated notation for individual neurons

2-9 A Network Layer

2-10 A One-Layer Network

2-11 An S-neuron R-input 1-layer network . .

2-12 An example of multi-layer network

2-13 Block diagram of learning with a teacher

2-14 Fully connected feed-forward network .

2-15 The original perceptron

2-16 A multi-layer perceptron

2-17 Examples of transfer functions

2-18 Linear transfer function used in ADALINE

2-19 An example of Hopfield network

2-20 An example of RBF network

2-21 An RBF neuron

8

. 16

. 22

. 23

. 24

. 25

. 26

. 28

. 29

. 30

. 32

. 33

. 34

. 36

. 39

. 44

. 45

. 46

. 47

. 48

. 50

. 51

. 52

3-1

3-2

3-3

69

89

90

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

A random neuron x in a network

Top -level description of a genetic algorithm

Genetic synthesis of neural networks

Feedback Control .

Basic structure of an adaptive controller

Block diagram of a model-reference adaptive system (MRA

Block-diagram of a self-tuning regulator

Template Learning .

Plant Inversion Learning

Closed-loop Optimization

Closed-loop Optimization with Reference Model

The simulated beam .

The simulated beam with forces

The two dimensional model of a cantilever beam

Studying a beam using the Frenet reference

Fd = f(X 1 , F1) .

The MATLAB class "Network"

Additional MATLAB classes

A complicated example of MATLAB network

Initializing MATLAB classes for civil engineering networks

A cable-stayed bridge .

Model of a cable-stayed bridge

. 102

. 104

. 105

. 106

. 107

. 118

. 119

. 120

. 121

. 132

. 136

. 137

. 138

. 142

. 147

. 148

5-12 The control scheme 150

9

. . . . 93

. . . . 100

. . . . 101C)

List of Tables

2.1 Classification of neural networks . 44

5.1 Training Performances . 146

5.2 Minimum and maximum values of the beam tip displacement 151

10

Chapter 1

Introduction

1.1 Structural Control

The field of civil engineering is changing. Although civil engineers have the reputation

of being utterly cautious about new technologies, the recent years have seen the

emergence of new ideas on the building sites. The use of artificial neural networks is

one of these ideas.

Artificial neural networks belong to a broader family of technologies used in civil

engineering, the so-called smart technologies, which represent the context of this

thesis. Artificial neural networks themselves do not form a smart technology. Rather,

they are often bundled with a set of actuators and sensors, such as passive strain

gauges, and incorporated into a structure, which suddenly acquires "smartness."

The very first question is why one needs structures with a degree of intelligence,

instead of the existing bridges, buildings, or dams which just sit there, albeit beauti-

fully. One reason is monitoring. As explained in section 1.2, there is a strong need for

technologies that allow engineers to know the condition of every part of a structure

at every second of its life.

Another reason is adaptability. It is valuable to know about the degree of change,

of decay, of a structure. However, civil engineers want structures that can adapt

themselves to their changing condition. The goal of having a structure adapt not

only to its inner condition, but also to its surrounding environment, which comprises

11

elements such as wind, rain, or traffic, is now feasible.

That this kind of structures was tagged "smart" shows how much expectation civil

engineers have put in the concept. Section 1.3 presents these new civil engineering

design concepts. This section also shows where neural networks fit in the framework

of a smart system. Namely, they are used as (neuro)controller.

This thesis focuses on this latter concept, namely, controlling elements of civil

structures with neural networks. The first two chapters are dedicated to artificial

neural networks, since this field of study is rather new in the civil engineering com-

munity. Then, neurocontrol, in parallel with the classical methods of control, is dis-

cussed. Finally, neurocontrol of a cantilever beam is simulated using the MATLAB

environment.

1.2 The Need for Infrastructure Health Monitor-

ing

Infrastructure is the focus of increasing public and government concern throughout

the world. In the United States, hardly a week goes by without a major media report

highlighting the failure of a bridge, a building, a pipeline, or some other civil structure.

Earthquakes, floods, freezes and hurricanes exacerbate structural degradation due to

the passage of time and daily use. As commuters, concert-goers, and apartment

dwellers, we take the integrity of our highway bridges, stadiums and high-rises for

granted and afford them a degree of permanency increasingly undeserved. Recent U.S.

government studies conclude that structural failure and precautionary over-design,

resulting from an inability to measure and predict impending failure, cost the U.S.

economy over $100 billion every year. Despite this rather startling conclusion, little

quantitative information is available to unambiguously document declining safety

margins and rising maintenance requirements. Along with the post-war "baby-boom"

in this country, came a "bridge-building boom", peaking in the fifties. Many of those

structures were built with a 40 to 50 year design life, irrevocably marking our current

12

decade with the stigma of "suddenly" deficient structures.

The integrity of our infrastructure legacy can no longer be taken for granted.

Yet in a society that bothers to track, record and monitor the billions of credit card

transactions made every year, the duration and number of every telephone call and

the temperature in every city every hour, why the structural health of our bridges

and buildings is not monitored remains a mystery.

Federal law mandates a visual inspection of each highway bridge approximately

every two years. For buildings, so long as they are built to code, there are, with few

exceptions, no annual inspection requirements for their entire lives. These precedents

were set in an era when the equipment required to obtain structural data was complex,

the accuracy it returned questionable and the per-dollar benefits negligible. Today,

that cost-benefit model has inverted. It is getting cheaper and easier by the day to

take greater amounts of more and more accurate data. The technology to implement

reliable and economical structural health monitoring systems, which can reduce the

life cycle cost of maintaining safe infrastructure, is available. That, for both the

producers of infrastructure and the consumers, is a new bottom line.

1.3 Smart Technology

Smart technology could be the answer to the problems described in the previous

section.

Smart technology has already made its mark as a beneficial and practical discipline

in many areas of science and engineering. Recently, this new way of thinking has

gained more and more interest from the civil engineer. This short section describes

what smart technology is.

The study of smart materials and structures is a field that has been cited by

Scientific American as one of the key technologies for the 21st Century. A structure

or material can be considered "smart" when it has the ability to sense internal or

external conditions and respond in some manner appropriate to alter the effects of

those conditions in a favorable way. "Smart" technology has been around for several

13

decades, debuting in the early 1960's when Corning Glass Works started developing

a new kind of glass. This new "photochromic" glass was able to react to the amount

of light present in its environment - automatically darkening in the light and auto-

matically lightening in the dark. This is the same glass that now makes-up the large

number of sunglasses with variable and self-adjusting transparency. The application

of photochromic glass was not limited to sunglasses. It was soon expanded to include

glass in buildings and automobiles and was considered for just about every application

where glass or mirror was needed.

Soon after the introduction of photochromic glass, scientist, researchers and engi-

neers began to recognize the potential for such "smart" technology. A material that

could respond to its environment could be useful far beyond the glass industry. De-

signs incorporating piezo-electric ceramics and shape memory alloys were a few of the

innovations to comprise the next wave of these new smart materials and structures.

More and more, designs are sought for materials and structures that not only

serve the purpose for which they are contrived, but do so actively in the most efficient

manner possible. "Smart technology" is not only a new kind of technology, it is a

new way of thinking.

Smart technology quickly found its way into the designs of the aeronautical,

aerospace and mechanical engineers. However, civil engineers are notorious for abid-

ing by methods that are tried-and-tested, and for this reason smart technology is

only slowly making its way into the civil engineering community. The most notable

examples of smart designs in civil engineering are the active or intelligent buildings,

several of which exist in Japan and only one or two of which exist in the United

States. These buildings detect movements or vibrations caused by winds or earth-

quakes, and respond accordingly using damping systems that reduce the effects of

such stimuli. Similar designs have been proposed to reduce the wind-induced vibra-

tions on long-span bridges. However, unlike the active building systems, this smart

design for bridges has not yet found its way into practical use.

Smart technology, like any newly emerging technology, is not without sizable cost.

It is obvious that a smart building with fiber optics, sensors, actuators and other

14

"smart parts" would be more expensive than its "dumb" counterpart. But when

the big picture is considered, the economical feasibility of a smart building becomes

evident. Not only are resources such as concrete and steel reduced in a smart bridge,

but more importantly, the cost of service and maintenance is reduced while the service

life is greatly increased. Furthermore, the technology itself will decrease in cost as it

becomes more widely used, thus making smart design more economical than current

design.

1.3.1 What makes a Material or Structure Smart?

A material or structure can be considered "smart" when it has the ability to sense

internal or external conditions and respond in some manner appropriate to alter

the effects of those conditions in a favorable way. The difference between smart

materials and smart structures is vague. Many smart structures are smart only so

far as the materials they are comprised of are smart. Likewise, the "intelligence"

of a lone smart material that is not incorporated in an overall structural system is

contestable. Therefore the term "smart technology" has come to encompass not only

smart materials and smart structures, but also the way of thinking in which the

desired result is a system, structural or otherwise, that can detect and respond to

external and/or internal stimuli. This can be as complex as the multi-story building

that can detect large vibrations and counter them by actively altering the stiffness of

individual structural members.

In general, smart systems include three basic components or ideas:

1. sensors, or the ability to sense or detect important internal or external infor-

mation;

2. a control mechanism to act as the brain of the system. It interprets the infor-

mation gathered by the sensors and decides on a course of action.

3. actuators, or the ability to respond, react, or in some way alter the state of the

system; and

15

Note that in some systems, the only role of the actuator is to inform some third party

of the information the sensors have collected, and not alter the system itself.

A general pattern of logic that all smarts systems follow is illustrated in Figure 1-1.

All processes start with the acquisition of information by the sensors. This informa-

Figure 1-1: Logic of a smart system.

SENSORS ECHAN SM ACTUATORS

ENVIRONMENT REACTION

tion is then sent to some control mechanism for processing. The control mechanism is

programmed to act on this information in a pre-specified way. If called-for, the con-

trol mechanism will signal the actuators to alter the system in some way. This entire

process of sensing, control processing, and active response is repeated continuously

in a smart system.

In order for this model to accurately represent all smart systems, each of the terms

used should only be taken in its most generic form.

" By "sensor," it is meant anything that has the ability to collect any type of

information, including material properties, mechanical properties, and environ-

mental conditions, to name a few.

" By "actuator," it is meant anything that has the ability to produce an action,

or otherwise alter the state, properties, or environment of a system.

" The control mechanism is anything that links the sensors to the actuators in a

logically structured way. And this is where artificial neural networks can be of

16

great help. Indeed, they represent a possible link between signals output from

the sensors and signals input to the actuators. This thesis examines the use of

neural networks as possible control mechanisms for smart structures.

1.3.2 Existing Smart Materials

There are many kinds of smart materials out there, but some show more potential,

and more promise than others. Research focuses on three main classes of smart

materials:

1. Piezoelectric ceramics and polymers,

2. shape memory alloys, and

3. electrorheological or magnetorheological fluids.

Piezoelectric ceramics can act as either pressure sensors or mechanical actuators.

The electric polarity of their crystal structures allow them to quickly transform any

mechanical forces into electric current, or conversely, transform electrical current into

mechanical vibrations. They can produce these mechanical vibrations at very high

frequencies, and thus are of utmost importance in the development of smart systems

that counteract damaging vibrations.

Shape memory alloys are better suited for slower, stronger responses. Below a

certain temperature, a shape memory alloy will take on any shape it is bent into. But

when heated back above this temperature, it will try to return to its original shape.

If something is hindering the restoration of the alloy's shape, it will exert a constant

force. This force is the result of the atoms in the alloy attempting to toggle between

different geometric arrangements.

An electrorheological fluid is a fluid whose viscous properties may be modified

by applying an electric field, and a magnetorheological fluid is one whose viscous

properties are modified by applying a magnetic field. This change in the viscosity of

17

these actuator materials may be so extensive that they in effect change from liquid to

solid. These fluids consist of fine polarizable particles of ceramic or polymer suspended

in a liquid such as silicone oil. When an electric or magnetic field is applied, the

particles "organize themselves into filaments and networks", thereby stiffening the

material. When the electric field is removed, the process reverses and the organization

of the particles disappears - the material becomes fluid again.

1.3.3 Existing Smart Structures

The difference between smart materials and smart structures can be seen as one of

scale. The three components that lend smart materials their intelligence operate on a

microscopic scale, while those of the smart structures operate on a macroscopic scale.

Often in a smart structure, the sensors, actuators and control mechanisms are items

that are used regularly in other fields, but not in such a way that they create a smart

system.

A typical smart building designed to detect and counteract earthquake movements

may include such items as accelerometers, actuators that operate on basic hydraulic

principals, and a basic microcomputer as the control mechanism, to interpret the data

gathered by the accelerometers and send the appropriate message to the hydraulic

actuators. This type of smart structure is commonly known as an active bracing

system.

A smart building has been erected on the campus of the University of Vermont

incorporating fiber optics, thermistors, and strain gauges to collect different types of

information from different parts of the structure. The sensors monitor the building

for "cracks and vibrations due to wind, temperature changes, thermal expansion,

and occupant loads." This building does not employ any actuators that can bring

about a change independent of human interaction, but the control mechanism - the

microcomputer that logs the information gathered by the numerous sensors can double

as an actuator by alarming when action needs to be taken.

It is obvious that the same type of smart technology described above is useful far

beyond the monitoring of buildings. This same system and the same techniques can

18

be used to monitor just about any structure made of materials, which includes every

structure possible. The more researchers, scientists and engineers experiment with

the ideas of smart technology, the more possibilities they uncover. They spread their

findings to try and include other disciplines so that the overall benefit and value of

their work is maximized.

1.4 Objectives and Organization of the Thesis

This thesis evolves in this context of smart technologies. The objectives are twofold,

namely:

1. to present neural networks,

2. to demonstrate that neural networks can be used to control an element of a

structure. The study is restricted to the control of an horizontal rectangular

cantilever beam supporting fluctuating vertical loads.

The material is therefore divided into three section:

" The first part, which comprises chapter 2 "Foundation of Artificial Neural Net-

works" and chapter 3 "Improving the performance of Supervised Feed-Forward

Neural Networks," is dedicated to neural networks. While chapter 2 introduces

the basic concepts in this field of study, chapter 3 gives a more detailed descrip-

tion of the neural networks used in civil engineering applications.

" The second part, represented by chapter 4, is about neurocontrol, i.e. control

using artificial neural networks. Indeed, as described in previous sections, people

in civil engineering entertain the idea that neural networks should be used as

control mechanism in smart structures. This chapter 4 presents these new

advances in control.

" Ultimately, chapter 5 presents a case study in neurocontrol. Using the MAT-

LAB environment, and more precisely its extensive neural network toolbox, a

19

neurocontroller is built whose task is to keep a cantilever beam as straight as

possible, when it is subjected to loading.

Finally, the conclusion sums up the results of the case study, and proposes direc-

tions for further research in the area of neurocontrol.

20

Chapter 2

Foundation of Artificial Neural

Networks

2.1 Definition of Artificial Neural Networks

2.1.1 The Beginning: Interest in the Human Brain

Understanding how the brain works has long been an area of interest to the scien-

tific community. And although physiologists and cognitive scientists started their

experiments on animals, their final goal has always been to understand the human

brain, which is the most powerful of all brains. Physiological observations inside the

brain yield information about the operations of neurons (brain cells) connected in a

fixed configuration, but relatively little concerns the detailed temporal evolution of

the connectivity structure among neurons.

Because scientists did not (and still do not) know how groups of neurons operate

together functionally, the best they could to do at that time was to imitate the brain

structure and hope that some of the functionality would be reproduced. Duplicating

the structure in its entirety was impractical. However, there has been a well-esta-

blished belief that much of the information processing in the brain is not only parallel,

but also somewhat localized by function. Evidence from neuropathology, neurohis-

tology, and neuropharmacology indicates that there are about 1,000 localized regions

21

where the bulk of the computation takes place. Because they wanted imitate the

behavior of sections of the brain, scientists came up with an artificial tool that locally

copied the structure of the brain.

At this point, a brief discussion of brain physiology is presented. The human brain

is composed of 109 to 1012 neurons, linked together to form a very complex network.

This is acknowledged as a biological neural network. The anatomy of a biological

neuron consists of:

" a branching structure, comprising what are called dendrites, where the neuron

is believed to pick-up signals from other neurons;

" a cell-body called soma;

" a long transmission-linelike structure, called the axon; and

" brushlike structures at the tail of the axon, called synaptic buttons.

Figure 2-1 shows the above structure.

Figure 2-1: A biological neuron

Nucleus

Axon Synaptic buttons

,Soma

The points at which neurons come into close proximity with one another are

called synapses. At these points of "contact," neurons influence each other electro-

chemically. A synapse, in reality, is not a physical connection. When a signal arrives

at a synapse, it elicits the release of a neurotransmitter (chemicals present in the

22

brain), which builds up until its concentration exceed a certain threshold. When this

happens, an action potential is elicited in the receiving cell.

A neuron receives signals (typically in the form of a train of pulses) from its

neighbors via the synapses, performs a weighted algebraic summation of the inputs,

computes a thresholding function of this sum, and when the function value exceed

the threshold, produces an output (or "fires"). Because of the one-way transmission

at the synapses, both the input and the output pulses normally travel one way from

the dendrites, to the soma, on to the axon, and finally to the synaptic button. It

is estimated that a typical neuron receives its inputs from as many as 10,000 other

neurons and sends its output to perhaps 1,000 neurons.

2.1.2 A First Model

With the information from the previous section, one can already propose a model.

Figure 2-2 presents the simplest mathematical abstraction of a single biological (i.e.

real) neuron:

Figure 2-2: A first neuron model: ai = f (nj) = H(Z'I wjs- p.)

P1

P2

Aj

Pi

Here, pi, . . . , pR represent the inputs received by neuron j. The wji's are the

23

synaptic strengths (more commonly called weights)1 . They may be positive or nega-

tive so some inputs will be excitatory (positive) and some will be inhibitory (negative)

As a result, the net input to the single neuron j is:

i=R

net input = nj Wji -pi

The output of neuron j is denoted as yj. It depends on the thresholding function

f used. As a first approximation of the behavior of a real neuron, the Heavyside

function H((also called step function, see Figure 2-3) is used.

Figure 2-3: The Heavyside (or step) function

Y

14

I

k

y = H(x)

4x

Consequently, we obtain:

i=R

yj = H(E wji -pi)
i=1

One of the advantages of such a representation is its facility of implementation. Fig-

ure 2-4 shows an electronic-circuit representation of the above mathematical abstrac-

'The notation wg for a synaptic weight may seem a bit strange. The j means that this weight
concerns neuron j. The i means that it links input i to neuron j. As will be seen later, this notation
is used to deal with more complex representations of neurons and neural networks.

24

tion.

Figure 2-4: An electronic representation of a neuron

P1Wjl

Wj2
P2

WjR
PR

Here, each pi is a voltage and each wj is represented by a potentiometer. The tri-

angular box, with a summation symbol inside it, is an operational amplifier configured

as an adder. The quantity f is any suitable non-linear squashing function.

Now, if several of these artificial neurons are combined, one obtains an artificial neural network.

Figure 2-5 presents one example of such a structure.

A word on semantics: when one speaks about neural networks, one should more

properly specify whether these neural networks are "biological" or "artificial." In this

thesis, the terms "network(s)," "neural network(s)," and "artificial neural networks"

will always refer to the mathematical concept of neural network or to its electronic

implementation.

2.1.3 Definition of a Neural Network

There is no universally accepted definition of an artificial neural network. However,

most people in the field would agree that an artificial neural network is a network

of many simple processors ("units"), each possibly having a small amount a local

memory. The units are connected by communication channels ("connections"), which

usually carry numeric (as opposed to symbolic) data. The units operate only on their

local data and on the inputs they receive via the connections.

25

Figure 2-5: Biological and artificial neural networks

Output

(a) Biological neural network (b) Artificial neural network

Here is a sampling of definitions from the literature. None will please everyone.

Perhaps for that reason many neural networks textbooks do not explicitly define

neural networks.

According to the DARPA Neural Network Study [1][p60]

... a neural network is a system composed of many simple processing

elements operating in parallel whose function is determined by the net-

work structure, the connection strengths, and the processing performed

at computing elements or nodes."

According to Haykin [2]:

"A neural network is a massively parallel distributed processor that

has a natural propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

26

2. Inter-neuron connection strengths, known as synaptic weights, are

used to store the knowledge."

According to Nigrin [3][pll] :

"A neural network is a circuit composed of a very large number of

simple processing elements that are neurally based. Each element op-

erates only on local information. Furthermore, each element operates

asynchronously; thus, there is no overall system clock."

According to Zurada [4][pXV] :

"Artificial neural systems, or neural networks, are physical cellular

systems which can acquire, store, and utilize experiential knowledge."

2.1.4 Mathematical Representation of a Neural Network

In this section, the notation is introduced gradually, starting from a single neuron

with a single input to a full complex neural network. Graphical representation is used

extensively, since it is the most effective way of communicating concepts.

Simple Neuron

A neuron with a single scalar input is shown on the left below.

The scalar input p is transmitted through a connection that multiplies its strength

by the scalar weight w, to form the product wp, again a scalar. This product is called

the net input n = wp. Here, the net input is the only argument of the transfer

function f, which produces the scalar output a.

The neuron on the right has an additional property, namely a bias b. A bias value

can be treated as a connection weight from an input cell called a "bias unit"with

a constant value of one. The single bias unit is connected to every unit that needs

a bias value. The bias is simply being added to the product wp as shown by the

summing junction.

27

Figure 2-6: Single neuron with scalar input

Input Neuron without bias Input Neuron with bias

P w n a p w n a

ff

b

a= f(wp) a=f(wp+b)

Neurons were given this bias property early in the development of neural networks.

It improves their performance as described in a later section of this memoir. The bias

is an example of digression from the real (biological) neural networks; this is not

the only one. Even though artificial neural networks stem from biological networks,

the similarity between the two has kept shrinking as scientists, in their search of

improvement, have added properties to artificial neural networks.

The transfer function net input is now the sum of the product wp and the bias

b: n = wp + b. Here f is a transfer function, not the Heavyside function any more,

but typically a step function or a sigmoid function2 , that takes the argument n and

produces the output a. The variety in transfer functions is another property that was

introduced by researchers not from experimental observations but to improve network

performances.

Note that w and b are both adjustable scalar parameters of the neuron.The central

idea is that such parameters can be adjusted so that the network exhibits some desired

or interesting behavior. Thus, we can train the network to do a particular job by

adjusting the weight or bias parameters, or perhaps the network itself will adjust

these parameters to achieve some desired end.

2 These two types of transfer functions, as well as others, are described in section XX.

28

Neuron with Vector Input

The single input neuron is rarely encountered in network architectures. Most neural

networks use multiple input neurons. This set of input is represented by a vector.

Figure 2-7: Neuron with an R-element input vector

Input Neuron with bias

pl

p2 W1

p3

W3

WR

pR b

a = f (Wp + b)

Figure 2-7 shows a neuron with an R-element input vector, i.e. a neuron with R

scalar inputs. The individual element inputs Pi, P2, - - , PR are multiplied by weights

WiW 2,- -.- , WR and the weighted values are fed to the summing junction. Their sum

is simply W, the dot product of the row-matrix W and the vector p.

The neuron has a bias b, which is summed with the weighted inputs to form the

net input n.
i=R

n= (w. -pi + b =Wf+ b
i=1

This sum n is the argument of the transfer function f.

This model of a neuron with vector input needs improvement:

* First of all, in a complex network, a neuron is not alone. However, we need to

know which parameter (such as weight, input, or bias) belongs to which neuron.

Therefore, another index is used to identify neurons. For example, applying the

29

previous expression to a random neuron k would give:

i=R

nk Wki p +i bk = Wk -j+ bk
i=1

Here, the input vector jis not given a neuron identifying index since it does not

belong to a single neuron. Indeed, several neurons can share the same input.

Second, the figure of a single neuron shown above contains a lot of detail.

When networks with many neurons are considered, there is so much detail that

the main thoughts tend to be lost. Thus, an abbreviated notation is used for

individual neurons. This notation is used later in circuits of multiple neurons,

and is illustrated in the Figure 2-8.

Figure 2-8: Abbreviated notation for individual neurons

Input Neuron

p a
W--

Rx1 1xR X
n n f1x1

1 bI

a f (Wp +b)

Here the input vector J is represented by the solid dark vertical bar on the

left-hand side. The dimensions of ' are shown below the symbol ' in the figure

as R x 1. Thus, j is a vector of R input elements. These inputs post multiply

the single-row R-column matrix W (or Wk if neuron k is concerned). As before,

a constant 1 enters the neuron as an input and is multiplied by a scalar bias

b (or bk if neuron k is concerned). The net input to the transfer function f is

the scalar (dimension 1 x 1) n (or nk). This net input is passed to the transfer

30

function f to get the neuron's output a (or ak), which, in this case, is a scalar

(also dimension 1 x 1).

Each time this abbreviated network notation is used, the size of the matrices

will be shown just below their name. Hopefully, this notation allows the reader to

understand the architectures and follow the mathematics associated with them.

Layer of Neurons

Neural networks are complex gatherings of neurons but scientists managed to some-

how order them in a visually convenient way. They chose to group them by layers.

A layer of network is defined in Figure 2-9.

A layer includes the combinations of the weights, the multiplication and summing

operations (here realized as vector products Wp), the biases b's, and the transfer

functions f's. The array of inputs, the vector ', will not be included in or called a

layer.

Note that it is common for the number of input elements to a layer to be different

from the number of neurons (i.e. R # S). A layer is not constrained to have the

number of its inputs equal to the number of its neurons.

One-Layer Network

Figure 2-10 shows a one-layer network with R input elements and S neurons.

In this network, each element of the input vector jis connected to each neuron

i through the single-row R-column matrix Wi. The net input of the ith neuron is

the scalar ni. The various ni's taken together form an S-element net input vector n.

Finally, the neuron layer outputs form a vector a. If we assumed that:

" all neurons in the same layer share the same transfer function f (this is very

often the case in neural network theory), and

" the neuron biases form a vector called b, of dimension S,

31

Figure 2-9: A Network Layer

Layer of Neurons

al

1
a2

b2

1

aS

bS

1

32

Figure 2-10: A One-Layer Network

Input Layer of Neurons

n1 al

p1

bl

p2 a2

p3 b2

1

fs a

WSR
pR 1

33

then, the expression for a becomes:

a= f(W .+5b)

where W is the following S x R matrix:

/ W1

W 2

Wi

Ws

I Wn

W 21

W 1

Ws1

W1 2

W 22

Wi 2

Ws2

... W2

WsJ

... WIR

... W2R

... WiR

WSR)

Note that the row indices on the elements of matrix W (this time a full matrix, not

a row-matrix) indicate the destination neuron of the weight and the column indices

indicate which source is the input for that weight. Thus, the indices in W12 say that

the strength of the signal from the second input element to the first neuron is W12-

The S-neuron R-input 1-layer network also can be drawn in abbreviated notation.,

as shown in Figure 2-11.

Figure 2-11: An S-neuron R-input 1-layer network

Input One-layer network

Sx1

Here ' is an R-length input vector, W is an S x R-matrix, and I and b are S-

34

length vectors. As defined previously, the neuron layer includes the weight matrix,

the multiplication operations, the bias vector b, the summer, and the transfer function

boxes.

Multi-Layer Network

To discuss networks having multiple layers, the notation needs to be expanded.

Specifically, a distinction must be made between weight matrices that are con-

nected to inputs and weight matrices that connect between layers. Source and des-

tination for each weight matrix need to be identified as well. Finally, the notation

should be specific about which output vector a, which bias vector b, or which net

input vector n' belongs to which layer. Therefore, from now on:

" Weight matrices connected to inputs are called input weights (IW), and weight

matrices coming from layer are called outputs layer weights (LW).

" Besides, a superscript doublet of numbers will identify the source layer (2nd

number of the doublet) and the destination layer (1st number of the doublet) of

each weight matrix. To come back to the one-layer network example, its weight

matrix should more properly be called IW' (input weight matrix from input

set 1 to layer number 1).

" As far as the vectors are concerned, a superscript number will now identify

which layer they belong to. For instance, the jth layer in a neural network will

have bias vector W, net input vector iP, and output vector di.

The use of this notation can be seen in the multi-layer network shown in Figure 2-

12.

Note that, in a multi-layer network,

e it is common for different layers to have different numbers of neurons.

e As stated previously, neurons in the same layer often have the same transfer

function. Thus, there is only one index associated with a transfer function,

namely, the layer number.

35

Figure 2-12: An example of multi-layer network

Input First Layer Second Layer

p1

pR

I I

al= fl (IWllp +bl) a2= f2(LW21al +b2) a3= f3 (LW32 a2+ b3)

a3=f3(LW32* f2(LW21* fl (IW I* p+ bl)+b2)+b3)_

SlxR
p

Rxl

S2xSI
al

SIxI

36

Third Layer

a2
S3xS2

a3

I

I

* the outputs of each layer are the inputs to the same or (more often) to another

layer.

The equations below the figure highlight the relations between each layer.

How Many Layers in a Network?

The layers of a multi-layer network play different roles. A layer that produces the

network output is called an output layer. All other layers are called hidden layers.

The network shown in Figure 2-12 has one output layer and two hidden layers.

Now, is this network a 3- or 4-layer network? How to count layers is a matter of

considerable dispute.

" Some people count layers of units. But of these people, some count the input

layer and some don't.

" Some people count layers of weights. But how do they count skip-layer connec-

tions is a mystery.

To avoid ambiguity in the rest of the thesis, a 2-hidden-layer network means a network

with an input layer, two hidden layers, and one output layer. Terminology such as

"4-layer network" or "3-layer network" is avoided. And if the connections follow any

pattern other than fully connecting each layer to its adjacent layer, this deviation will

be pointed out.

2.2 Training a Neural Network

2.2.1 Neural Networks Can Learn

The property that is of primary significance for a neural network is the ability to learn

from its environment, and to improve its performance through learning. A neural

network learns about its environment through an interactive process of adjustments

applied to its synaptic weights and bias levels. Ideally, the network becomes more

knowledgeable about its environment after each iteration of the learning process.

37

A definition of learning has been proposed by Mendel and McClaren [5] :

"Learning is a process by which the free parameters of a neural network

are adapted through a process of simulation by the environment in which

the network is embedded. The type of learning is determined by the

manner in which the parameter changes take place."

This definition of the learning process implies the following sequence of events:

1. The neural network is stimulated by the environment.

2. The neural network undergoes changes in its free parameters as a result of this

stimulation.

3. The neural network responds in a new way to the environment because of the

changes that have occurred in its internal structure.

A set of well-defined rules for the update of free parameters is called a learning

algorithm. As one would expect, there is no unique learning algorithm for the design

of neural networks. Rather, several learning algorithms are available, each of which

offers advantages of its own. Basically, learning algorithms differ from one another in

the way in which the adjustment to the synaptic weights and bias levels of a neuron

is formulated.

2.2.2 Learning Paradigms

How different neural network trainings may be, they all fall into two neatly separated

categories.

Learning with a Teacher

In this form of learning, an external actor is present. The actor knows the environment

in which the neural network evolves, and provides the network with a desired response

for each training vector. In other words, for each set of inputs presented to the

network, there is a set of targets to be reached. The difference between the set of

38

targets (desired response) and the outputs of the network (actual response) is called

error or error signal. Then, the network parameters, such as its weights and bias

levels, are adjusted according to this error signal. This adjustment is carried out

iteratively in a step-by-step fashion with the aim of eventually making the neural

network emulate the teacher. In this way, knowledge of the environment available

to the teacher is transferred to the neural network through training. One may then

dispense with the teacher and let the neural network deal with the environment

completely by itself. Figure 2-13 illustrates the concept of learning with a teacher for

a neural network. Learning with a teacher is also called supervised learning.

Figure 2-13: Block diagram of learning with a teacher

Vector describing state
of the environment

Environment Teacher

Desired
response

Actual

.. , .. ,. ngresponseLearning

Error signal

Learning without a Teacher

In learning without a teacher, also called unsupervised learning, there is no teacher

to oversee the learning process. This is to say, there are no labeled examples of the

function to be learned by the network.

At this point, a question can arise:

"What does unsupervised learning learn ?"

Most of the time, unsupervised learning is used to get some information on the data

that are fed to the network. Indeed, one of the properties of neural networks is to be

39

able to assign inputs to one of a prescribed number of classes. This property is also

called "pattern recognition." Accordingly, neural networks can also perform what is

called "pattern association." In this case, the neural network is required to store a

set of patterns (this can be done by repeatedly presenting a set of patterns to the

network). The network is subsequently presented a partial description or distorted

(noisy) version of an original pattern, and the task is to retrieve that particular

pattern. Applications of unsupervised learning can therefore be found in hand-writing

or speech recognition.

There exists a flavor of unsupervised learning that is called competitive learning.

In this paradigm, the output neurons of a neural network compete among themselves

to become active (or fired). In other words, only one single output neurons is active

at any one time. This feature makes competitive learning highly suited to discover

statistically salient features that may be used to classify a set of input patterns. There

are three basic elements to a competitive learning rule (RUMELHART and ZIPSER,

1985):

1. A set of neurons that are all the same except for some randomly distributed

synaptic weights, and which therefore respond differently to a given set of input

patterns.

2. A limit imposed on the "strength" of each neuron.

3. A mechanism that permits the neurons to compete for the right to respond to

a given subset of inputs, such that only one output neuron is active at a time.

The neuron that wins the competition is called a winner-takes-all neuron.

Accordingly, the individual neurons of the network learn to specialize on ensembles

of similar patterns. In doing so, they become feature detectors for different classes of

input patterns.

40

2.2.3 Generalization

Supervised learning teaches a network to output a desired vector each time it is fed

with a corresponding input vector. In this process, the teacher already knows the

two sets of input and output vectors and also knows which output vector corresponds

to which input vector. Therefore, if a neural network could only do this, from the

teacher's point of view, it would not be very useful. However, the teacher's hope in

supervised learning is that the neural networks becomes able to generalize, i.e. to

output a correct vector even if the input vector does not belong to the initial set of

training data.

Generalization is not always possible. There are three conditions that are typically

necessary (although not sufficient) for good generalization.

1. The first necessary condition is that the inputs to the network contain sufficient

information pertaining to the target, so that there exists a mathematical func-

tion relating correct outputs to inputs with the desired degree of accuracy. One

can not expect a network to learn a non-existent function. Neural networks are

not clairvoyant. For example, if one wants to forecast the price of a stock, a

historical record of the stock's prices is rarely sufficient input. Finding good

inputs for a net and collecting enough training data often take far more time

and effort than training the network.

2. The second necessary condition is that the function to be learned (that relates

inputs to correct outputs) be, in some sense, smooth. In other words, a small

change in the inputs should, most of the time, produce a small change in the

outputs. Very non-smooth functions such as those produced by pseudo-random

number generators and encryption algorithms cannot be generalized by neural

nets.

3. The third necessary condition for good generalization is that the training cases

be a sufficiently large and representative subset of the set of all cases that

one wants to generalize to. The importance of this condition is related to

41

the fact that there are, loosely speaking, two different types of generalization:

interpolation and extrapolation. Interpolation applies to cases that are more

or less surrounded by nearby training cases; everything else is extrapolation.

Interpolation can often be done reliably, whereas extrapolation is notoriously

unreliable. Hence, it is important to have sufficient training data to avoid the

need for extrapolation. Methods for selecting good training sets are discussed

in numerous statistical textbooks on sample surveys and experimental design.

2.3 Taxonomy of Network Architectures

Because of the huge number of parameters that a single neural network can have,

and also because of the various possibilities of connections that exist to link neurons,

there are now many types of neural networks. Nobody knows exactly how many.

New ones (or at least variations of existing ones) are invented every week. Below is

a collection of some of the most well known networks, not claiming to be complete.

For one new to the field of neural networks, this variety of network types gives the

impression that a new type of neural network is created each time somebody builds a

neural network. Besides, in this list of neural network types, it is hard to find the one

that will do what is desired. The purpose of the following classification is to clarify

the field.

2.3.1 An Example of Classification

First of all, as seen in section 2.2.2, neural networks can be classified according to the

learning scheme they require, either supervised or unsupervised. Another distinctive

property is the presence (or absence) of feedback loops in a neural network. Feedback

is said to exist in a dynamic system whenever the output of an element in the system

influences in part the input applied to that particular element, thereby giving rise to

one or more closed paths for the transmission of signals around the system.

* If a neural network has at least one single feedback loop, it is called a recurrent

42

network. For example, a recurrent network may consist of a single layer of

neurons with each neuron feeding its output signal back to the inputs of all the

other neurons, as illustrated in the architectural graph in Figure 2-19.

e On the contrary, a neural network without any feedback loop is called a feed-

forward network. Usually, in such a network, environmental parameters are fed

to the source nodes in the input layer, which become activated. Their output

signals constitute the input signals to the neurons in the second layer (i.e. the

first hidden layer). The output signals of the second layer are then used as inputs

to the third layer, and so on for the rest of the network. The architectural graph

in Figure 2-14 illustrates the layout of a multi-layer feed-forward network for

the case of a single hidden layer.

Besides, the neural network in this same figure is said to be fully connected in

the sense that every node in each layer of the network is connected to every other

node in the adjacent forward layer. If, however, some of the communication links

are missing from the network, the network is said to be partially connected.

Finally, for each combination of learning paradigm and network architecture, there is

a variety of learning algorithms that further classify neural networks into categories.

Table 2.1 contains a listing of the major categories of neural networks. Network types

written in bold face in this table are described in more detail in the following section

of the thesis.

2.4 Some Well-known Networks

2.4.1 Perceptron

The single-layer perceptron is the simplest form of a neural network used for the

classification of patterns said to be linearly separable, i.e. patterns that lie on the

opposite sides of a hyper-plane. Basically, it consists of a single neuron with adjustable

synaptic weights and bias, as presented in Figure 2-15. Note that the transfer function

43

Figure 2-14: Fully connected feed-forward network

Table 2.1: Classification of neural networks

44

Architecture
Recurrent Feed-forward

Supervised Boltzman Machine Single-layer Perceptron
(clamped conditions) Multi-Layer Perceptron

Learning Radial-Basis Function
Scheme Adaline and Madaline

Support Vector Machine
Committee Machine

Unsupervised Principal Component Analysis
Sigmoid Belief Network

Cognitron and Neocognitron
(Competitive) (Self-Organizing Map)

(Vector Quantization)
(Learning Vector Quantization)

of a perceptron is the Heavyside function H(), a graph of which was presented in

Figure 2-3.

Figure 2-15: The original perceptron

P1 L

{o,1}

P2[

{0,1}

W1

- a
{0,1}

W2

The algorithm used to adjust the free parameters of this neural network first

appeared in a learning procedure developed by Rosenblatt (1958,1962) for his per-

ceptron brain model. Indeed, Rosenblatt proved that if the patterns used to train

the perceptron are drawn from two linearly separable classes, then the perceptron

algorithm converges and positions the decision surface in the form of a hyper-plane

between the two classes. The proof of convergence of the algorithm is known as

the perceptron convergence theorem. The perceptron built around a single neuron is

limited to performing pattern classification with only two classes.

Single-Layer

By extending the output layer of the perceptron to include more than one neuron,

one may correspondingly form classification with more than two classes. However,

the classes have to be linearly separable for the perceptron to work properly.

45

Multi-Layer

The Multi-Layer Perceptron or MLP is a further generalization of the perceptron,

this time to the field of multi-layer feed-forward networks. One example of MLP is

provided in Figure 2-16.

Figure 2-16: A multi-layer perceptron

{0,1} ,10)

{0,1) {0 }

{0,1} ,)

{0,1}{0,1}

f o,1} {o,1

{0,11 {0,1}

Although neurons in the first studied multi-layer perceptrons still had the Heavy-

side function as transfer function, this limitation was soon overcome by the introduc-

tion of non-linear transfer functions.

Today, it is agreed in the neurocomputing society that a multi-layer perceptron

has three distinctive characteristics:

1. The model of each neuron in the network includes a nonlinear activation

46

function. The important point to emphasize here is that the non-linearity is

smooth, i.e. differentiable everywhere, as opposed to the step-function used in

the initial perceptron. A commonly used form of non-linearity that satisfies this

requirement is the sigmoidal non-linearity, an example of which is given by the

logistic function:
1

1 + exp(-ni)

where ni is the net input of neuron i, and a is its output. Figure 2-17 present

other commonly used transfer functions.

Figure 2-17: Examples of transfer functions

+1

0

-1

+1

0

-1

Heavyside function Step function

+1

0

-1

+1

0

-1

Linear function Sigmoid function (usually y=tanh(x))

2. The network contains one or more layers of hidden neurons. These hidden

47

A

neurons enable the network to learn complex task by extracting progressively

more meaningful features from the input patterns.

3. The network exhibits a high degree of connectivity, determined by the synapses

of the network.

It is through the combination of these characteristics together with the ability to

learn through training that the multi-layer perceptron derives its computing power.

These same characteristics, however, are also responsible for the deficiencies of

our present state of knowledge on the behavior of the network. First, the presence

of a distributed form of non-linearity and the high connectivity of the network make

the theoretical analysis of a multi-layer perceptron difficult to undertake. Second, the

use of hidden neurons makes the learning process harder to visualize.

2.4.2 Adaptive Linear Filters

The Adaptive Linear Neuron Network (or ADALINE) is similar to a single-layer

perceptron, except that the transfer functions of its neurons are linear rather than

hard-limiting. An example of such a function is given in Figure 2-18.

Figure 2-18: Linear transfer function used in ADALINE

y

1

x

-1

This allows its outputs to take on any value, whereas the single-layer perceptron

output is limited to either 0 or 1. Both the ADALINE and the perceptron can

48

only solve linearly separable problems. However, Adaptive Linear Neuron Networks

make use of the so-called Least Mean Squares (or LMS) learning rule to update their

synaptic weights and bias levels. The LMS learning rule was invented by Widrow and

Hoff, and is much more powerful than the perceptron learning rule.

Linear neurons can also be gathered in a multi-layer network. In this case, such a

network is called a MADALINE (Multi Adaptive Linear Neuron Network), and also

uses the LMS learning rule to set its weights and bias levels.

Note the evolution in neural networks. Scientists started with simple transfer func-

tions, such as the Heavyside function or step functions, and discovered the perceptron

rule to update the network parameters. This was the perceptron era. Then, they up-

graded to linear transfer functions, and this started the ADALINE and MADALINE

era, and introduced the LMS algorithm . As they subsequently chose sigmoid func-

tions for their transfer functions, they needed a better algorithm, which happened to

be the back-propagation algorithm. This started the back-propagation era.

2.4.3 Back-Propagation Network

Multi-layer perceptrons have been applied successfully to solve some difficult and

diverse problems by training them in a supervised way with a highly popular algorithm

known as the error back-propagation algorithm or, in short, back-propagation. Back-

Propagation Networks are only Multi-Layer Perceptron trained with this algorithm.

See section 3.1.2 for a detailed description of the back-propagation algorithm.

2.4.4 Hopfield Network

All networks considered until now assumed only forward flow from input to output,

namely non-recurrent connections. The theory proves that this guarantees network

stability. Since biological neural networks incorporate feedback, (i.e. they are recur-

rent), it is natural that certain artificial networks will also incorporate that feature.

The Hopfield neural networks do indeed employ both feed-forward and feedback. Once

feedback is used, stability cannot be guaranteed in the general case. Consequently,

49

the Hopfield network must be one that accounts for stability in its settings.

Figure 2-19 illustrates a single-layer Hopfield network. In this figure, every z 1

Figure 2-19: An example of Hopfield network

represents a unit-delay operator.

2.4.5 Radial-Basis Function Network

The construction of a radial-basis function (RBF) network, in its most basic form,

involves three layers with entirely different roles. The input layer is made up of source

50

nodes (sensory units) that connect the network to its environment. The second layer,

the only hidden layer in the network, contains specific neurons called RBF neurons.

The output layer is linear, supplying the response of the network. Figure 2-20 presents

an example of RBF network:

Figure 2-20: An example of RBF network

x11 x12 x13 x1R

p1

p2

p3

pR

RxI

Note that each neuron is the hidden layer is connected to all source nodes in the

input layer. Besides, the output layer consists of a single linear unit (i.e. a neuron

with a linear transfer function), being fully connected to the hidden layer.

51

All the properties of an RBF network come from the specific structure of the

neurons in its hidden layer. The model of such a neuron is presented in Figure 2-21.

Figure 2-21: An RBF neuron

x1x2 x3 xR

p1

p2 a

p3 - - diSt || 00\

pR a = radbas (x - pII)

Such a neuron adopts a different point of view on its input. For instance, in a

perceptron, the input is considered as a set of scalar elements, whose weighted sum

is of importance.

On the other hand, for an RBF neuron, the input is considered as a vector, and

the scalar elements are the coordinates of this vector in an input space. Each RBF

neuron stores a specific vector in its memory. Then it computes the distance between

the input vector and the stored vector, using a so-called radial basis function. Usually,

a radial basis function is close to a Gaussian function, i.e. close to the following form:

ai= exp(- || P - Xi ||2)

where as is the output of the RBF neuron, p the input vector, and s' the stored vector

of this neuron i. | -| can represent any norm, but usually:

j=R

j=1

52

where:

Pi xii

PR XiR

The set of distances so calculated represents the coordinates of the input vector in

the hidden space.

For instance, imagine an RBF network with 10 source nodes in the input layer

and only 2 RBF neurons. The dimension of the input space is therefore 10, whereas

the dimension of the hidden space is 2. Each input vector presented to the network

is associated with two distances that are the coordinates of this input vector in the

hidden space. The hidden layer is said to perform a mapping from the input space to

the hidden space. In this example, if one draws a graph, with the first distance as the

x-coordinate and the second distance as the y-coordinate, one can plot the position

of an input vector in the hidden space.

Each RBF neuron then transmits the calculated distance to the single linear neu-

ron, whose role is to output a weighted sum of all the distances. In its turn, the

output layer does a mapping from the hidden space to the output space, which hap-

pens to be of size 1 (space of real numbers). In our example, every input vector can

therefore be associated with a single output number. If one draw a line representing

the output space, one can now plot the position of each input vector.

This process can be generalized. An RBF network is designed to perform a non-

linear mapping from a m-dimension input space to an hidden space, followed by a

linear mapping from the hidden space to the 1-dimension output space. The network

can therefore be written as:

map: Rm -

This map is represented by a hyper-surface F drawn in Rm+1, just as, for instance,

the map s : R1 -+ R1 where s(x) = x 2 is represented by a parabola drawn in R 2 . The

53

surface F is a multi-dimensional plot of the output as a function of the input. In a

practical situation, the surface F is unknown.

Thus, we are led to the theory of multi-variable interpolation in high-dimensional

space. The interpolation problem may be stated:

Given a set of N different points | i 1, 2,..., N and a corre-

sponding set of N of real numbers di C R 1 i 1, 2,.. . , N, find a function

F:R"m - R 1 that satisfies the condition:

F (X-) = dii = - 1,72, ...,7 N

The radial basis function technique consists of choosing a function F that has the

following form:
i=N

F(zi)= Zwisi(|'| - ||
i=1

where the oj are arbitrary non-linear functions. The known data points E "', i =

1, 2, ... , N are said to be the centers of the radial basis functions.

Given the previous theoretical analysis, it should be clear that RBF networks are

used in interpolation and function approximation. The challenge in RBF networks is

to use as few RBF neurons as possible. Indeed, if your training contains a lot of data,

i.e. lost of input vectors, it would be prohibitive to build an RBF network with as

many hidden neurons as there are input vectors in the training set. An RBF network

with fewer hidden neurons needs to be built but it should still be able to approximate

well when fed with an unknown vector.

As a conclusion, note that the adjustable parameters of the network are:

1. the synaptic weights of the connections between the neurons in the hidden layer

and the output neuron.

2. the parameters of the radial basis function in each neuron of the hidden layer.

54

2.4.6 Kohonen Networks

Teuvo Kohonen is one of the most prolific researchers in neurocomputing, and he has

invented a variety of networks. However, many people refer to "Kohonen networks"

without specifying which kind of Kohonen network, and this lack of precision can

lead to confusion. The phrase "Kohonen network" most often refers to one of the

following three types of networks:

1. Vector Quantization (VQ), competitive networks closely related to cluster anal-

ysis (the exercise of finding "clusters" of data in the overall set of input vectors).

In a VQ, each competitive unit corresponds to a cluster, the center of which is

called a "codebook vector." Kohonen's learning law is an algorithm that finds

the codebook vector closest to each training case and moves the "winning"

codebook vector closer to the training case.

2. Self-Organizing Map (SOM), competitive networks that provide a "topological"

mapping from the input space to the clusters. The SOM was inspired by the way

in which various human sensory impressions are neurologically mapped into the

brain such that spatial or other relations among stimuli correspond to spatial

relations among the neurons. In a SOM, the neurons are organized into a grid,

usually two-dimensional. The grid exists in a space that is separate from the

input space. A SOM tries to find clusters such that any two clusters that are

close to each other in the grid space have codebook vectorclose to each other in

the input space.

3. Learning Vector Quantization (LVQ), competitive networks for supervised clas-

sification. Each codebook vector is assigned to one of the target classes. Each

class may have one or more codebook vectors. A case is classified by finding

the nearest codebook vector and assigning the case to the class corresponding

to this nearest.

55

2.5 Neural Networks in Engineering

2.5.1 A Brief History of Neural Network Models

In 1943, W. McCulloch and W, Pitts proposed a theory of information processing

based on networks of binary switching elements, which were, somewhat euphemisti-

cally, called "neurons," although they were far simpler than their real biological coun-

terparts. Each one of these elements could only take the output value 0 or 1, where

0 represented the resting state and 1 the active state of elementary unit. (they just

chose a step function normalized to [0,1] as their thresholding function). McCul-

loch and Pitts showed that such networks could, in principle, carry out any imag-

inable computation, similar to a programmable digital computer. The designers of

McCulloch-Pitts-type neural networks now faced the problem of how to choose the

weights wji so that a specific cognitive task was performed by the machine. This

question was addressed in 1961 by E. Casaniello, who gave a "learning" algorithm

that would allow the determination of the synaptic strengths of a neural network.

Around 1960, F. Rosenblatt and his collaborators extensively studied a specific

type of neural network, which they called a "perceptron," because they considered

it to be a simplified model of the biological mechanisms of processing sensory infor-

mation, i.e. perception. In its simplest form, a perceptron consists of two separate

layers of neurons, representing the input and output layer, respectively, as illustrate

in Figure 2.4.1.

The neurons of the output receive synaptic signals from those of the input layer,

but not vice versa, and the neurons within one layer do not communicate with each

other. The flow of information is thus strictly directional; hence a perceptron is

a feed-forward network. Rosenblatt's group introduced an iterative algorithm for

constructing the synoptic weights wi such that a specific input pattern is transformed

into the desired output pattern, and even succeeded in proving its convergence.

However, M.Minsky and S. Papert pointed out a few years later that this proof

applies only to those problems which can, in principle, be solved by a perceptron.

What made matters worse was that they showed the existence of very simple problems

56

which cannot be solved by any such two-layered perceptron! The most notorious of

these is the "exclusive-OR" (XOR) gate, which requires two input neurons to be

connected with a single output neuron in such a way that the output unit is activated

if, and only if, one of the input unit is active. The logic XOR gate being a standard

problem easily solved in computer design, the result of Minsky and Papert represented

a severe blow to the perceptron concept.

Another very fruitful development began when W. Little pointed out the similarity

between a neural network of the type proposed by McCulloch and Pitts and systems

of elementary magnetic moments (or spins) in solid state physics. Indeed, a lattice of

atoms with alternate spins strongly resembles a two-dimension network of switching

neurons. The development of this analogy, at first pursued by Little and G. Shaw, but

then also by J. Hopfield, led to the introduction of physical concepts in the study of

neural networks, such as energetic and thermodynamic properties. Neural networks

also acquired stochastic laws of evolution, involving probabilistic functions.

In recent years, the interest in layered, feed-forward networks has been revived.

This development was initiated by the discovery of an efficient algorithm for the

determination of the synaptic weights in multi-layered networks with hidden lay-

ers. The power of this method, initially suggested by Werbos and now known as

error back-propagation, was recognized around 1985 by several groups of scientists.

2.5.2 Why Neural Networks Appeal?

Everyday observation shows that the modest brains of lower animals can perform

tasks that are far beyond the range of even the largest and fastest modern electric

computers. Just imagine that any mosquito can fly around at great speed in unknown

territory without bumping into objects blocking its path. No present-day electronic

computer has sufficient computational power to match this and similar accomplish-

ments. They typically involve some need for the recognition of complex optical or

acoustical patterns, which are not determined by simple logic rules.

Great efforts were made in the past two decades to solve such problems on tradi-

tional computers. One product of these efforts was the emergence of the techniques

57

of artificial intelligence (AI). While the products of Al, which are more appropriately

described as expert systems, had a number of impressive successes, e.g. in medical

diagnosis, they are much too slow to perform the analysis of optical or speech patterns

at the required high rate. Moreover, the concept of AI is based on formal logical rea-

soning, and can thus only be applied when the logical structure of a certain problem

has been analyzed.

Another source of dissatisfaction is that the speed of solid-state switching ele-

ments, the basic units of electronic computers, has reached a point where future

progress seems to be limited. In order to accelerate computational tasks further, one

has therefore turned to the concept of parallel processing, where several operations

are performed at the same time. Three problems are encountered here:

1. The basic unit of a traditional computer, the central processing unit (CPU), is

already a very complex system containing hundreds of thousands of electronic

elements that cannot be made arbitrarily cheap. Hence, there is a cost limit to

the number of CPUs that can be integrated into a single computer.

2. Most problems cannot be easily subdivided into a very large number of logically

independent subtasks that can be executed in parallel.

3. The combination of a large number of CPUs into a single computer poses

tremendous problems of architectural design and programming which are not

easily solved if one wants to have a general-purpose computer and not a machine

dedicated to one specific task.

These two obstacles (inadequacies of Al and speed limitation) have led to a resur-

gent interest in neural networks since 1980. One now considers neural networks as

prototype realizations of the concept of parallel distributed processing. Indeed, in

contrast to the great complexity of the CPU of a traditional electronic computer, the

neurons of a neural network are relatively simple electronic devices, which contain

only a switching element and adjustable input channels. Even with presentably avail-

able technology, it is not unimaginable to arrange tens of thousands of binary decision

58

elements on a single silicon chip. Many thousands of such identical chips might be

integrated into a single neural computer at a reasonable cost. Thus neural computers

with a billion or more neuron-like elements appear technically feasible, and a system

approaching the complexity of the human brain (about 10" neurons) does not belong

to the realm of science fiction.

Finally, a potentially important advantage of neural networks is their high degree

of error resistivity. A normal computer may completely fail in its operation if only a

single bit stored information or a single program statement is incorrect. In contrast,

the operation of a neural network often remains almost unaffected if a single neuron

fails, or if a few synaptic connections break down. It usually requires a sizable frac-

tion of failing elements before the deterioration is noticeable. In view of the rapidly

increasing use of electronic data processing in vital areas, this is an attractive feature

of neural computing, which may become of practical importance.

2.5.3 Neural Network Applications

Non-Civil Engineering Applications

Various neural network applications are listed in the 1988 DARPA Neural Network

Study, beginning in about 1984 with the adaptive channel equalizer. This device,

which is an outstanding commercial success, is a single neuron network used in long

distance telephone systems to stabilize voice signals. The DARPA report goes on

to list other commercial applications, including a small word recognizer, a process

monitor, a sonar classifier, and a risk analysis system.

Neural Networks have been applied in many other fields since the DARPA report

was written. A list of some of applications mentioned in the literature follows:

Aerospace High performance aircraft autopilot, flight path simulation, aircraft con-

trol systems, autopilot enhancements, aircraft component simulation, aircraft

component fault detection.

Automotive Automobile automatic guidance system, warranty activity analysis.

59

Banking Check and other document reading, credit application evaluation

Defense Weapon steering, target tracking, object discrimination, facial recognition,

new kinds of sensors, sonar, radar and image signal processing including data

compression, feature extraction and noise suppression, signal/image identifica-

tion.

Electronics Code sequence prediction, integrated circuit chip layout, process con-

trol, chip failure analysis, machine vision, voice synthesis, nonlinear modeling.

Entertainment Animation, special effects, market forecasting.

Financial Real estate appraisal, loan advisor, mortgage screening, corporate bond

rating, credit line use analysis, portfolio trading program, corporate financial

analysis, currency price prediction.

Insurance Policy application evaluation, product optimization.

Manufacturing Manufacturing process control, product design and analysis, pro-

cess and machine diagnosis, real-time particle identification, visual quality in-

spection systems, beer testing, welding quality analysis, paper quality predic-

tion, computer chip quality analysis, analysis of grinding operations, chemical

product design analysis, machine maintenance analysis, project bidding, planing

and management, dynamic modeling of chemical process system.

Medical Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, op-

timization of transplant times, hospital expense reduction, hospital quality im-

provement, emergency room test advisement.

Oil and Gas Exploration

Robotics Trajectory control, forklift robot, manipulator controllers, vision systems.

Speech Speech recognition, speech compression, vowel classification, text to speech

synthesis.

60

Securities Market analysis, automatic bond rating, stock trading advisory systems.

Telecommunications Image and data compression, automated information ser-

vices, real-time translation of spoken language, customer payment processing

systems.

Transportation Truck brake diagnosis systems, vehicle scheduling routing systems.

Civil Engineering Applications

They have not been as numerous as in some other fields, but their number has kept

growing in the recent years.

The collections of articles published by B.H.V Topping have focused on the ap-

plications of advanced technologies in civil engineering. Several of these collections

have revealed interesting neural network applications, such as:

" Computing in structural engineering

" Computer automation of structural design

" Modeling of non-linear structures using recurrent neural networks

" Control of large flexible manipulator systems

" Hydro-meteorological modeling

" Evaluation of seismic liquefaction

As stated in the introduction, one of the purposes of this research is to prove the

possibility of control of a cantilever beam using neural networks. From this point of

view, this thesis describes another application of neural networks in civil engineering.

61

Chapter 3

Improving the Performance of

Supervised Feed-Forward Neural

Networks

The previous chapter provided an introductory but thorough description of what

neural networks are and what their applications can be. In this chapter, the theory

of neural networks is explored in a deeper way since it is explained how an artificial

neural network can be modified so that it performs a desired computation. At the

same time however, the field of study is restrained. Firstly, only supervised learning,

which is also called learning with a teacher (see section 2.2.2), is considered. Secondly,

the chapter focuses on feed-forward neural networks only, i.e. networks with no

feedback loops.

A thorough understanding of how a neural network learns is indeed necessary if

one wants to improve the learning process in one's specific application. In the last

part of this thesis, neural networks are used in the study of a cantilever beam that

supports fluctuating loads. In other words, neural networks are here considered as

possible function approximators and interpolators. Supervised learning is therefore

mandatory, and mostly feed-forward networks have been used in this type of appli-

cation.

As stated in section 2.2.1, neural networks are of interest because they can learn

62

how to perform a desired computation. Imagine that one has a table of input vectors

and output targets corresponding to each other, and wants a device that outputs

the right target each time it is fed with an input vector. One can build a neural

network and assign random values to all its parameters, which are, for the moment,

its synaptic weights and bias levels.

It is highly unlikely at this point that if the network is fed with the first input

vector, it will give the desired first target. Somehow, one has to modify the parameters

of the network to make it perform the right computation with the elements of the

input vectors. This modification is what is called neural network training, and is

addressed in the first section of this chapter.

But training is only one side of the process that allows one to improve the perfor-

mance of a neural networks. Indeed, training occurs only once some basic elements

have been chosen, such as what kind of architecture (i.e number of neurons, of layers)

will be used, and what kind of data will be fed to the network. Both these elements in-

fluence the performance of a network, and, therefore, should not be chosen randomly.

The second section of this chapter is devoted to this matter.

3.1 Training Algorithms

3.1.1 Learning Algorithms

Artificial networks learn to perform various tasks by adapting their parameters. Given

the number of parameters even in a small neural network, an organized method is

needed to update them. Such a method is called a learning algorithm. As previously

stated in section 2.2.1, a learning algorithm is "a set of rules used to update the

synoptic weights and bias level of a network during its training period."

Finding better, i.e. faster and less memory-consuming, training algorithms is

one of the most actively pursued research topics for neural network scientists. Since

the first studies of neural networks, many algorithms have been found, and literally

hundreds of improvements have been made to them. Section 3.1.3 describes the

63

most famous algorithms that have resulted from this search for efficiency. Among

the original algorithms that have been found, the most famous is certainly the back-

propagation algorithm (also called backprop, or BP). The following section (3.1.2) is

therefore devoted to its study.

3.1.2 The Back-Propagation Algorithm

Concept

The Back-Propagation algorithm was proposed in 1986 by Rumelhart, Hinton, and

Williams for setting weights and hence for the training of multi-layer perceptrons.

Once the Back-Propagation of Rumelhart et al. was published, it was very close to

algorithms proposed earlier by Werbos in his Ph.D. dissertation in Harvard in 1974,

and then in a report by D.B.Parker at Stanford in 1982, both unpublished and, thus,

unavailable to the community at large. It goes without saying that the availability of a

rigorous method to set intermediate weights, namely to train hidden layers of artificial

neural networks, gave a major boost to the further development of neural networks,

opening the way to overcome the single-layer shortcomings that had been pointed out

by Minsky, and which nearly dealt a death blow to artificial neural networks.

Explanation

Since the back-propagation algorithm for a general feed-forward network is developed

in this section , the convenient notation introduced in section 2.1.4 is used. This

notation involves the use of vectors and matrices, which are easy to implement in a

computer algorithm.

Consider a feed-forward network with a number 0 of layers.The output layer is

numbered 0 (letter 0) whereas the input layer is numbered 1 (number 1).

" In each layer j, there is a number S' of neurons.

" As this is usually the case, each neuron in the same layer has the same activation

function, i.e. there is only one kind of activation function per layer. Therefore,

64

the activation function of neurons in layer j will be noted fi 1

* The input vector to this network is called p and is composed of I elements. The

size of this vector is noted I x 1.

" Each neuron in layer j has a bias level. All these bias levels form a vector of

size Si, which is noted bi.

* The network is assumed to be fully connected, i.e. each neuron in layer j - 1

is connected to every neuron in layer j. Therefore, there is always a connection

from a neuron in layer j - 1 to a neuron in layer j. The case where the network

is not fully connected can easily be deduced from this study by setting some

connection weights to 0.

" The matrix of weights for the connections from layer j - 1 to layer j is noted

LWj's- 1 , and is of size Si x Si-1. The matrix of weights for the connection to

the first layer (layer 1) is temporarily called IW 1'1 , as specified by the notation

in section 2.1.4

* The output elements of layer j form a vector that is called ad.

* The net inputs to neurons in layer j form a vector that is called uj.

" The target elements of the network form a vector called ti which is of size T x 1.

Since there are as many target elements as output neurons, necessarily So = T.

1 Note that for a better understanding, indexes devoted to layers are written in superscript on
every variables.

65

As a result, the network generates the following equations:

-01 = f ~I) = f(IW1, -+)

2 f 2(2) f 2(LW 21 -1 +2)

a3 f 3(3) f 3(LW 3,2d 2 +3)

o-1 __f o-1 0-1 o-1(LWo- 1,- 2 d0 - 2 + b0 - 1)

f 0 (n0) - f 0 (LW 0 '0 -1 d0- +

For the sake of simplification, the vector jwill instead be called a0 in the rest of the

BP algorithm explanation. Indeed, input vectors can be considered as outputs from

a virtual 0th layer. Thus, IW' 1 can instead be written LW' 0 . And the network can

finally be summarized by the following set of equations:

d7 = fj(Wi) = fi(LW'j-ild- + E') ,for j C 1,...,0

A training example represents a couple (input vector,target) from the data set.

Each training example is presented to the network sequentially, i.e one at a time. The

error signal at the output of neuron x in layer j and at iteration n (i.e. presentation

of the nth training example) is defined by

el(n) =t(n) - a' (n), (3.1)

where tk(n) represents the desired target corresponding to the input vector, and al(n)

represents the actual output of this neuron consequent to the initial presentation of

the input vector, maybe several layers before.

Note that here, a difference must be made between a neuron x belonging to the

output layer 0 and a neuron x belonging to a hidden layer j.

" For the output neuron, t((n) is an AVAILABLE target element. A vector of

such element is known before the network training.

" On the other hand, there is no way to get targets readily for hidden neurons,

since, as their name specifies it, there are hidden, and then, unobservable. For

66

such neurons, virtual targets, and therefore virtual error signal, will have to be

computed from other parameters of the network. Here is the whole point of the

back-prop algorithm: getting targets and error signals of neurons for which no

target value is known, so as to be able to correct their free parameters. Output

neurons are the only "visible" neurons for which error signals can be calculated

directly.

Hence, an error signal is defined for every single neuron in the network, but finding

its value will require some computation.

The instantaneous value of the error energy for neuron x in layer j is defined as

1(ej(n))2 . Correspondingly, the instantaneous value Ei(n) of the total error energy

of layer j is obtained by summing I(ek(n))2 over all neurons in the jth layer. As a

result:

Es (n) - E (ei(n) (3.2)
2=1

Among this error energies, one is more important than the other, namely the one of

the output layer

e4 (n) - (e (n))2 (3.3)
2 X=1

Indeed, this instantaneous error energy E0 (n) is a function of all free parameters (i.e.

synaptic weights and bias levels) of the network. The objective of the learning process

is to adjust the free parameters of the network to minimize this error energy. This

minimization can be done using two different ways.

1. Every training example is presented to the neural network. For each training

example n, the error E0 (n) is computed and the free parameters are updated

according to it. In this case, the error energy to minimize is indeed E&(n) and

there are as many updates per epoch 2 as there are training examples in the data

set. This is called sequential training.

2. Likewise, each training example is presented to the neural network, and again,

2one complete presentation of the training set, i.e. the presentation of all the training examples
in the data set, is called an epoch

67

the error energy C 0 (n) is computed. However, the free parameters are not

updated after each training example has been presented. Instead, all training

examples of the training set are presented and an average squared error energy

is obtained by summing C0 (n) over all n and normalizing with respect to the

set size N (i.e. the number of training example in the data set), as shown by

1 N
Eav E 60 (n) (3.4)

N n_1

In other words, an average error energy is computed for each epoch. After one

epoch only, the free parameters are updated, this time using C 3 . Thus, there

is only one update per epoch. This is called batch training

The details of both types of training are highlighted in section 3.2.1. The reader

will realize that there is little difference in the reasoning caused by this difference in

the training process. Indeed, an explanation of the back-propagation algorithm using

sequential training, thus invoking E(n), can be turned into an explanation using

batch training, simply by replacing each E (n) with E. Therefore, in the rest of this

section, C0 is used to show that both cases are considered at the same time.

Consider now Figure 3-1 which depicts neuron x in layer j being fed by a set of

function signals produced by neurons in layer j - 1 to its left. The net input to the

activation function of neuron x at iteration n is therefore

y~S
3 -'I

n I (n) = wjly'-'(n)al (n) + b(x(n)
y=1

where Sj- 1 is the total number of inputs applied to neuron x, which is equal to

the total number of outputs in the (j - 1)th layer in a fully connected feed-forward

network. Note that:

1. The inputs to this neuron x are either elements of input vectors if this neuron

belongs to the input layer, or output of earlier neurons if this neuron belongs

se0, like E6(n), is also a function of all the free parameters in the network

68

Figure 3-1: A random neuron x in a network

Neuron x in layer jj- 1
a I
j-1

a
2

j-1
a 3

j-1
a 4

j-1
as j-1

I

to a hidden or the output layer. This is why, to preserve generalization, they

are called aj- 1 (n), a name devoted to neuron outputs.

2. The bias can be considered as a weight of a special connection, namely the one

from input ao, which is always equal to 1. As a result, w - = 1 for any x, j,
and j - 1, as well as ao = b1 for any x, j, and j - 1.

As a result, the previous equation can be written:

y=Sj-1

y=0
(3.5)

The output of neuron x is then

aj = fi(ni) (3.6)

where fi is the activation function of all neurons in layer j.
The back-propagation algorithm then applies a correction Awij to the synaptic

weight wJ -1, which is proportional to the partial derivative 0 _1 . The correction

is indeed defined by:

(3.7)Awi- O-77
AWXY &w-1

69

iax

where 17 is the learning rate parameter of the back-propagation algorithm. The use of

the minus sign in equation 3.7 accounts for steepest gradient descent in weight space,

i.e. seeking a direction for weight change that reduces the value .

According to the chain rule of calculus, this gradient can be expressed as:

9J9 aai Ori?,
'a- - - - . 1 (3.8)

aa'x On? OwX

Differentiating equation 3.5 with respect to wi'j 1 yields:

(9n3
1 a- (3.9)

j 1 Yj

Therefore, the weight correction becomes:

a'AWX - 7=(--- - --) - ay- (3.10)

The value of the expression in parenthesis is different for every single neuron in the

network (every x and j), and is called the local gradient. The following notation is

introduced:

With this notation, equation 3.10 takes the form:

(3.11)

(3.12)i' - 6j - aj1

The key factor involved in the computation of the weight adjustment Awi -1 is the

local gradient oP. In this context, two cases can be identified, depending on where

layer j is located in the network.

* In case 1, layer j is an output layer, which exactly means that j = 0. Again,

the chain rule of calculus is used in equation 3.11:

Be Be0 &ao?
60=- - n (3.13)

70

Differentiating both sides of equation 3.3 with respect to e leads to:

=C 0

De0
a;

(3.14)

Then differentiating both sides of equation 3.1 with j=O and with respect to

ao leads to:
ae _

aa= 1 (3.15)

Finally, differentiating equation 3.6 with j = 0 and with respect to nx yields:

(3.16)

where f0/ stands for the first derivative of f 0 , the transfer function of layer 0.

As a result, the expression of the local gradient for neuron x in layer 0 becomes:

60 = e -f 0'(no) (3.17)

* In case 2, layer j is an hidden layer. According to equations 3.11 and 3.16, the

local gradient 6ff for a hidden neuron x in layer j may be defined as:

fi'(nJ)X (3.18)

To calculate the partial derivative of , one may proceed as follows. Firstly,

equation 3.2 is differentiated with respect to the function signal a{. This yields:

(3.19)
0e z=so 0e
3 - E e - -

ax z=1 2 a

Next, the chain rule is used for the partial derivative on the right-hand side:

Z=S 0

z=1

0 (3.20)
aro ao- 2 -

71

X = fD/(no)

80
63 =-

Ba

Equation 3.1 applied to neuron Z in layer j yields:

0 0t 0a Qt-f/Q\0e =to - ao - to - fofo)

Therefore,
Be
Ono=

Thus,

Oa

z=S 0

z e1 -f O'(no)z=1

and temporarily,

6 - fI'(n3)
z=S0

zz
f 0 '(no) . Oa (3.23)

which, given equation 3.17, is equivalent to:

Z=S 0 On0

o3 = f'(nJ) - E o0 - .x X)z=1 Oa~x
(3.24)

This relation is of no use for the moment, so it needs to be developed. This is

done gradually.

- Consider the specific case j = 0 - 1:

z=S0 On
. 0 o z

z '8a0-1z=1 x

Given that

one gets

x=S 0

n = wz' a-
x=O

Ono

Oa 1 zx

Therefore,
z=S 0

-1 = f0 -'(n- 1) -
z=1

72

(3.21)

(3.22)

(3.25)

(3.26)

(3.27)

(3.28)

go-1 _ f o-i1(0g-1)

o0 - w0'O-1

- Consider next j = 0 - 2:

z=S0

60-2 0 -2/(no -2)
z=1

Now,

y=SO-1

nK = E wy'0 - ay-
y=O

00-f0-1 (n0-)

which is equivalent to:

y=so-
1

n= wy 0 4 Z
y=O

0=S-2

fo-(E
X=O

0-1,0-2 0-2)

As a result:

2
0,00 1 f 0 -1'(n'-)Wo i 0 2

which yields to:

o-2 f 0 - 2 0 - 2)
z=S

z=1

y=SO-1

y=0

o,o-1 - 1o(n)w 1,0-2

(3.33)

Then, switching the two 1_ signs, one obtains:

y=SO-1

60-2 f- 2 (no- 2)
y=0

z=So

[ff0 - 1(no-') 0,0-1 01,0-2

z=1

(3.34)

Using equation 3.28, this yields:

60-2 = fO - 2/(n0-2)
y=S -1

y=O

o0-1 o 1,0-2
y yx

Analyzing equation 3.28 and 3.35, the following pattern is highlighted:

73

Ono

Bao-2X
(3.29)

= E
y=O

(3.30)

(3.31)

y
Y=O

(3.32)

(3.35)

z=Sj+1

f f/'(n]) - 6 +1,ggs
ZT1

This pattern can be generalized for all j'.

The relations that have been derived for both cases of

gorithm are now summarized. Firstly, the correction Awj

weight connecting neuron x in layer j - 1 to neuron y in

delta rule:

Weight

correction

Axw'y-1'9 I/Ilearning - rate

parameter

/

Secondly, the local gradient 6 depends

hidden node:

1. If neuron x is an output neuron:

I local

gradient

6j

* I *

the back-propagation al-

1 applied to the synaptic

layer j is defined by the

inputsignal

ofneuronj*

ay-1Y I(3.37)

on whether neuron x is an output node or a

6x = = f D(n je

2. If neuron j is a hidden node:

z=Sj+1

o3X =- fi'(njx) - 61+1 jpx
z=1

As a result, the application of the back-propagation algorithm consists of two

passes through the different layers of the network: a forward pass and a backward

pass.

* In the forward pass, an input vector is applied to the input nodes of the network,

and its effect propagates through the network layer by layer. Finally, a set of

outputs is produced as the actual response of the network.

74

(3.36)

* During the backward pass, on the other hand, the synaptic weights are all

adjusted in accordance with the error-correction rule. Specifically, the actual

response of the network is subtracted from a desired (target) response to pro-

duce an error signal. This error signal is then propagated backward through

the network, against the direction of the synaptic connections - hence the name

"back-propagation." The synaptic weight are adjusted to make the actual re-

sponse of the network move closer to the desired response using the delta rule

of error correction.

Matrix representation of the back-propagation algorithm

In each layer of a neural network, a local gradient vector can be defined as:

6 = c (3.38)

6sJ

Therefore, the expression:

Awi' "= - 6 - aj-- V x, Vy, (3.39)

can now be represented as:

AW '6-1 (a -1 (3.40)

where T indicates the transpose of vector a 1.

The previous formula gives the rule for weight-update between two presentations

of data to the neural network. An index n is then given to each presentation. In

other words,

* In batch mode, each n corresponds to the presentation of the whole data set.

" In sequential mode, each n corresponds to the presentation of one test case of

75

the data set.

After presentation n, the weight update for the back-propagation algorithm is there-

fore:
-+T

Awi --1(n) r- 63 (n) - (a -- (n) (3.41)

Drawbacks of the back-propagation algorithm

The discovery of the back-propagation algorithm dramatically boosted neural net-

work-based research. Backprop allowed scientists and engineers to train artificial

neural networks with hidden neurons and layers, which was not possible before. In

a very short time, the use of this algorithm spread throughout the neural network

community. However, this algorithm is not a panacea, and the following section shows

that great resources have been invested to improve it, or to find better algorithms.

Among others, the drawbacks of back-propagation are:

(1) Although the elements of the training set may be presented in any order, the

training set has to be presented to the network many times, typically hundreds or

thousands of times, to bring the error down to an acceptable value.

(2) BP becomes computationally cumbersome as the number of hidden layers is

increased. One of the major limitations of artificial neural network technology is the

vast amount of computational power required to make the methods converge, even

for moderately sized problems. This computational burden is felt during the training

phase for the back-propagation method. In any event, the high computational burden

is due to the high connectivity 4 of the network.

3.1.3 Better Algorithms

This section is devoted to other algorithms that either differ in some little improve-

ments from the back-propagation algorithm, or implement new ideas but that can

4 The connectivity of a neural network can be considered as the average number of neighbors
to which a specific neuron is connected. It is NOT a measure of the strength of this network
connections.

76

converge from ten to one hundred time faster than the raw back-propagation algo-

rithm. Overall, they still follow the same pattern, which is:

1. Initialize weights and bias levels

2. Present inputs and desired outputs

3. Calculate actual outputs

4. Adapt weights and bias levels

5. If error is too big, repeat by going to step 2. Otherwise, stop.

Naturally, the goal of these new algorithm is to optimize step 4, since this is the most

demanding as far as computation is concerned.

Steepest/Gradient Descent

This subsection discusses faster algorithms that use heuristic techniques, which were

developed from an analysis of the performance of the standard steepest descent algo-

rithm, back-prop.

Steepest Descent with Momentum This is another incremental learning algo-

rithm for feed-forward networks that often provides faster convergence. Momentum

allows a network to respond not only to the local gradient, but also to recent trends

in the error surface. Acting like a low pass filter, momentum allows the network to

ignore small features in the error surface. Without momentum, a network may get

stuck in a shallow local minimum. With momentum, a network can slide through

such a minimum.

Momentum can be added to back-propagation learning by making weight changes

equal to the sum of a fraction of the last weight change and the new change suggested

by the back-propagation rule. The magnitude of the effect that the last weight change

is allowed to have is mediated by a momentum constant, mc, which can be any number

between 0 and 1. When the momentum constant is 0, a weight change is based solely

77

on the gradient. When the momentum constant is 1, the new weight change is set to

equal the last weight change and the gradient is simply ignored.

As a result, the updating rule for the algorithm of steepest descent with momen-

tum is:

-+ T

A wi's"(n) = mc -A wi'"- 1 (n - 1) + (1 - mc) - r (n) - (a-(n) (3.42)

Steepest Descent with Variable Learning Rate With standard steepest de-

scent, the learning rate is held constant throughout training. The performance of the

algorithm is very sensitive to the proper setting of the learning rate. If the learning

rate is set too high, the algorithm may oscillate and become unstable. If the learning

rate is too small, the algorithm will take too long to converge. It is not practical to

determine the optimal setting for the learning rate before training and, in fact, the

optimal learning rate changes during the training process, as the algorithm moves

across the performance surface.

The performance of the steepest descent algorithm can be improved if the learning

rate is allowed to change during the training process. An adaptive learning rate will

attempt to keep the learning step size as large as possible while keeping learning

stable. The learning rate is made responsive to the complexity of the local error

surface.

An adaptive learning rate requires some change in the training procedure used by

steepest descent. First, the initial network output and error are calculated. At each

epoch, new weights and biases are calculated using the current learning rate. New

outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a prede-

fined ratio, the new weights and biases are discarded. In addition, the learning rate

is decreased (typically by multiplying by a constant between 0 and 1). Otherwise,

the new weights and biases are kept. If the new error is less than the old error, the

learning rate is increased (typically by multiplying by a constant greater than 1).

78

The variable learning rate procedure can be represented by the following formula:

A wili-(n) = r/(n)- fln) -1d(n) (3.43)

Resilient Back-Propagation Multi-layer networks typically use sigmoid transfer

functions in the hidden layers. These functions are often called squashing functions,

since they compress an infinite input range into a finite output range. Sigmoid func-

tions are characterized by the fact that their slope must approach zero as the input

gets large. This causes a problem when using steepest descent to train a multi-layer

network with sigmoid functions, since the gradient can have a very small magnitude,

and therefore cause small changes in the weights and biases, even though the weights

and biases are far from their optimal values.

The purpose of the resilient back-propagation training algorithm is to eliminate

these harmful effects of the magnitudes of partial derivatives. Only the sign of the

derivative is used to determine the direction of the weight update; the magnitude of

the derivative has no effect on the weight update. The size of the weight change is

determined by a separate update value. The update value for each weight and bias

is increased by a factor Ainc whenever the derivative of the performance function

with respect to that weight has the same sign for two successive iterations. The

update value is decreased by a factor Adec whenever the derivative with respect to

that weight changes sign from the previous iteration. If the derivative is zero, then

the update value remains the same. Whenever the weights are oscillating, the weight

change will be reduced. If the weight continues to change in the same direction for

several iterations, then the magnitude of the weight change will be increased.

Resilient back-propagation is generally much faster than the standard steepest

descent algorithm. It also has the nice property that it requires only a modest increase

in memory requirements. A storage for the update values of each weight and bias is

still needed, which is equivalent to storage of the gradient.

79

Conjugate Gradient Algorithm

The basic back-propagation algorithm adjusts the weights in the steepest descent

direction (negative of the gradient). This is the direction in which the performance

function is decreasing most rapidly. It turns out that, although the function decreases

most rapidly along the negative of the gradient, this does not necessarily produce the

fastest convergence. In the conjugate gradient algorithms, a search is performed along

conjugate directions.

In the training algorithms that have been discussed so far, a learning rate is used

to determine the length of the weight update (step size). In most of the conjugate

gradient algorithms, the step size is adjusted at each iteration. A search is made

along the conjugate gradient direction to determine the step size which will minimize

the performance function along that line.

Newton's and Quasi-Newton's methods

Newton's method is an alternative to the conjugate gradient methods for fast op-

timization. Suppose that one has a function V() to minimize with respect to the

parameter vector X, then Newton's method would be:

AZ= [72V(5)] -vV(

where X2 VQs) is the Hessian matrix, and VV(z) is the gradient. In addition, if it is

assumed that V(s) is a sum of squares function:

N

V(X) = ECe()
i=1

,it can be shown that

VV(- = T

v2V(-) =JT (-) - + S(-)

80

where J(7) is the Jacobian matrix

ae1 (Y) aei (S) .. Bei(l)
8X1 OX2 axn

Be2(Y) Be2(y) e2 (Y)

J(X) = 9X1 X2

DeN (Y) aeN(Y) aeN (x)
. OxI 8x2 axn -

and
N

S(,) = .e(z)-2

For the Gauss-Newton method, it is assumed that S() ~ 0, and the update becomes

A =[JT(I) -J(z) - JT -

Applying this method to a neural network problem requires some explanations.

First, the function V(5) to minimize is the error function E. This is a function of

all the parameters of the network. Therefore, these parameters can be gathered in a

vector called Y, of dimension n if there are n weights and biases in the network, and

then the Gauss-Newton's method can be applied.

This algorithm requires more computation in each iteration and more storage than

the conjugate gradient methods, although it generally converges in fewer iterations.

The approximate Hessian matrix must be stored, and its dimension is n2 x n2, where,

again, n is equal to the number of weights and biases in the network. For very large

networks, it may be better to use resilient back-propagation or one of the conjugate

gradient algorithms.

The Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to

approach second-order training speed without having to compute the Hessian matrix.

81

The Marquardt-Levenberg modification to the Gauss-Newton method is:

Ax = (JT (z) - J(x) + p (-JT (X) - 2(z)

The parameter t is multiplied by some factor whenever a step would result in an

increased V(Y). When a step reduces V(7), t is divided by this same factor. Notice

that when t is large, the algorithm becomes steepest descent (with step 1/p), while for

small At the algorithm becomes Gauss-Newton. The Marquardt-Levenberg algorithm

can be considered a trust-region modification to Gauss-Newton.

Newton's method is faster and more accurate near an error minimum, so the aim

is to shift towards Newton's method as quickly as possible. Thus, y decreased after

each successful step (reduction in performance function) and is increased only when a

tentative step would increase the performance function. In this way, the performance

function will always be reduced at each iteration of the algorithm.

3.2 Other Considerations for an Improved Train-

ing

3.2.1 Sequential or Batch Mode of Training

From an "on-line" operational point of view, the sequential mode of training is pre-

ferred over the batch mode because it requires less local storage for each synaptic

connection. Moreover, given that the patterns are presented to the network in a ran-

dom manner, the use of pattern-by-pattern updating of weights makes the search in

weight space stochastic in nature. This, in turn, makes it less likely for the back-

propagation algorithm to be trapped in a local minimum.

In the same way, the stochastic nature of the sequential mode makes it difficult

to establish theoretical conditions for convergence of the algorithm. In contrast, the

use of batch mode of training provides an accurate estimate of the gradient vector;

convergence to a local minimum is thereby guaranteed under simple conditions. Also

82

the composition of the batch mode makes it easier to parallelize than the sequential

mode .

When the training data are redundant, it is found that, unlike the batch mode, the

sequential mode is able to take advantage of this redundancy because the examples

are presented one at a time. This is particularly so when the data set is large and

highly redundant.

3.2.2 The Network Design Problem

While learning algorithms are practical methods of properly choosing the synaptic

weights and thresholds of neurons, they provide no insight into the problem of how

to choose the network architecture and learning rule parameters that are appropriate

for the solution of a given problem.

For instance, focusing on the number of neurons and layers in the network, we

come to the following compromise: if the number of hidden neurons is too small, no

choice of the synapses may yield the accurate mapping between input and output, and

the network will fail in the learning stage. If the number is too large, many different

solutions exist, most of which will not result in the ability to generalize correctly for

new input data, and the network will usually fail in the operational stage. Instead

of learning salient features of the underlying input-output relationship, the network

simply learns to distinguish somehow between the various patterns of the training set

and to associate them with the correct output.

Typically, the understanding of such aspects as architecture and learning param-

eters is primarily empirical, various rules of thumb are followed that are derived from

experience in practical applications. This heuristic approach presents two shortcom-

ings:

1. The space of possible artificial neural network architectures is extremely large.

2. What constitutes a good architecture is intimately dependent on the applica-

tion, i.e. on the problem that needs to be solved and the constraints on the

83

neural network solutions (e.g. fast learning and/or low connectivity and/or high

accuracy).

As a consequence of these shortcomings, some significant amount of manual trial-

and-error experimentation is necessary before adequate performance is achieved. No

meaningful attempt is made to determine optimal architectures. Therefore, most

applications adopt simple structures, and conservative values of learning parameters.

There are several approaches to finding the optimal network architecture. They

are described in the following sections.

Pruning

This first method involves starting from a larger than necessary topology which is

trained to learn the desired mapping. Then, individual connections or entire neurons

are eliminated if they are not actively used or carry little weight. By this process of

clipping or pruning, the network is eventually reduced in size.

The shortcomings of this approach are that one first has to deal with an unneces-

sarily large network, which is computationally wasteful, and that the pruning process

may get stuck in an intermediate-size solution, which cannot be smoothly deformed

into the optimal network architecture.

Growing

The second approach, which is also called the dynamic-node-creation method, follows

an opposite line, starting with a small network and growing additional neurons until

a solution can be found. If performed in a sufficiently careful manner, this method

is guaranteed to find the smallest possible network that solves the task, at least for

architectures involving only a single layer of hidden neurons.

However, it is necessary to retrain the complete network after the addition of each

single new neuron, in order to make sure that a further increase in size occurs only if

convergence of the learning procedure cannot yet be achieved. The simplified version

of this approach, where only the newly added neuron and its synapses are trained

and all old parameters remain frozen, does not, in general, find the optimal solution.

84

3.2.3 Early Stopping

Another method for improving generalization is called "early stopping." In this tech-

nique, the available data is divided into three subsets:

* The first subset is the training set which is used for computing the gradient and

updating the network weights and biases.

" The second subset is the validation set. The error on the validation set is mon-

itored during the training process. The validation error will normally decrease

during the initial phase of training, as does the training set error. However,

when the network begins to overfit the data, the error on the validation set

will typically begin to rise. When the validation error increases for a specified

number of iterations, the training is stopped, and the weights and biases at the

minimum of the validation error is returned.

" The test set error is not used during the training, but it is used to compare

different models. It is also useful to plot the test set error during the training

process. If the error in the test set reaches a minimum at a significantly different

iteration number than the validation set error, this may indicate poor division

of the data set.

Early stopping can be used with any of the learning algorithms which were de-

scribed earlier in this chapter. One simply needs to pass the validation data to the

training methods.

3.2.4 Pre-Processing of Data

There is another factor that has to be taken into account when training an artifi-

cial neural network, namely its input and output data. And, in this domain, two

possibilities are imaginable:

1. Dealing with raw data. i.e. data that has not been transformed before input to

the network, and that will not be transformed after output. The main advantage

85

of this method is that no information is lost. However, there are times when

one does want to lose information, for instance when one wants to get rid of

data values that lie far outside the possible range, and that must come from an

experiment error or imprecision.

2. Pre-processing the input data and post-processing the output data using some

standard statistical methods. Here, the salient features of your data is isolated.

However, processing of input-output data should be approached with caution

because it discards information. If this information is irrelevant, then standard-

izing cases can be helpful. If this information is important, then standardizing

data can be disastrous.

Before starting a discussion on data processing, some definitions are needed.

" "Rescaling" a vector means to add or subtract a constant and then multiply or

divide by a constant, as one would do to change the units of measurement of

the data, for example, to convert a temperature from Celsius to Fahrenheit.

* "Normalizing" a vector most often means dividing by a norm of the vector, for

example, to make the Euclidean length of the vector equal to 1. In the neural

network literature, "normalizing" most often refers to rescaling by the minimum

and range of the vector, to make all elements lie between 0 and 1.

" Finally, "standardizing" a vector most often means subtracting a measure of

location and dividing by a measure of scale. For example, if the vector con-

tains random values with a Gaussian distribution, one might subtract the mean

and divide by the standard deviation, thereby obtaining a "standard-normal"

random variable with mean 0 and standard deviation 1.

Now the question is, why do neural network designers do any of these things to

their data ? First, if your output activation function has a range [0,1], then obviously

it is mandatory to ensure that the target values lie within that range. But the main

emphasis in the neural network literature has been on input values and the avoidance

of saturation, hence the desire to use small random values.

86

Besides, standardizing input variables can have more important effects on initial-

ization of the weights than simply avoiding saturation. Assume one has a multi-layer

perceptron with one hidden layer applied and is therefore interested in the hyper-

planes defined by each hidden unit. Each hyper-plane is the locus of points where the

net-input to the hidden unit is zero and is, thus, the classification boundary generated

by this hidden unit considered in isolation. The connection weights from the inputs

to a hidden unit determine the orientation of the hyper-plane. The bias determines

the distance of the hyper-plane from the origin. If the bias terms are all small random

numbers, then all the hyper-planes will pass close to the origin. Hence, if the data is

not centered at the origin, the hyper-plane may fail to pass through the data cloud.

If all the inputs have a small coefficient of variation, it is quite possible that all the

initial hyper-planes will miss the data entirely. With such a poor initialization, local

minima are very likely to occur. It is therefore important to center the inputs to

get good random initializations. In particular, scaling the inputs to [-1,1] will work

better than [0,1], although any scaling that sets to zero the mean or median or other

measure of central tendency is likely to be as good or better.

3.2.5 Genetic Algorithms

What are genetic algorithms?

Genetic algorithms were invented to mimic some of the processes observed in natural

evolution. The latter takes place on chromosomes, which can be thought of organic

devices for encoding the structure of the living beings. A living being is created partly

through a process of decoding chromosomes. The specifics of chromosomal encoding

and decoding processes are not fully understood, but here are some general features

of the theory that are widely accepted:

9 Evolution is a process that operates on chromosomes rather than on the living

beings they encode.

e Natural selection is the link between chromosomes and the performance of their

decoded structures. Processes of natural selection cause those chromosomes

87

that encode successful structures to reproduce more often than those that do

not.

e The process of reproduction is the point at which evolution takes place. Mu-

tations may cause the chromosomes of biological children to be different from

those of their biological parents, and recombination processes may create quite

different chromosomes in the children by combining material from the chromo-

somes of two parents.

e Biological evolution has no memory. Whatever it knows about producing in-

dividuals that will function well in their environments is contained in the gene

pool-the set of chromosomes carried by the current individuals-and in the struc-

ture of the chromosome decoder.

These features of natural evolution intrigued John Holland in the early 1970's.

Holland believed that, appropriately incorporated in a computer algorithm, they

might yield a technique for solving difficult problems in the way that nature does.

These algorithms, using simple encodings and reproduction mechanisms, displayed

complicated behavior, and they turned out to solve some extremely difficult prob-

lems.

There are three important components to the genetic method. First, the technique

for encoding solutions, which may vary from problem to problem and from genetic

algorithm to genetic algorithm. In Holland's work, and in the work of most of his

students, encoding was carried out using bit strings. Second, the evaluation function,

which is the link between the genetic algorithm and the problem to be solved. An

evaluation function takes a chromosome as input and returns a number or list of num-

bers that is a measure of the chromosome's performance on the problem to be solved.

Given these initial components - a problem, a way of encoding solutions to it, and a

function that returns a measure of how good any encoding is - a genetic algorithm

can be used to carry out simulated evolution on a population of solutions. Figure 3-2

contains a top-level description of the genetic algorithm. If all goes well throughout

this process of simulated evolution, an initial population of unexceptional chromo-

88

Figure 3-2: Top -level description of a genetic algorithm

The genetic Algorithm

1. Initialize a population of chromosomes

2. Evaluate each chromosome in the population

3. Create new chromosomes by mating current chromosomes;
apply mutation and recombination as the parent chromosomes mate.

4. Delete members of the population to make room for the new chromosomes

5 Evaluate the new chromosomes and insert them into the population

6. If time is up, stop and return the best chromosome; if not, go to 3.

somes will improve as parents are replaced by better and better children. The best

individual in the final population produced can be highly-evolved solution to the

problem.

Relevance of the genetic approach to the neural network design problem

The problem of optimizing a neural network structure for a given set of performance

criteria is a complicated one. They are many variables, and they interact in a complex

manner. The evaluation of a given design is a noisy affair, since the efficacy of training

depends on starting conditions that are typically random. In short, the problem is a

logical application for genetic algorithms.

In 1990, Steven A. Harp and Tariq Samad built a system called NeuroGenesys,

which goal was the genetic (i.e. using genetic algorithms) synthesis of neural network

architectures. In their experiments , the system NeuroGenesys begins with a popula-

tion of randomly generated networks. The structure of each network is described by

a chromosome or genetic blueprint - a collection of genes that determine the anatom-

ical properties of the network structure and the parameter values of the learning

algorithm. They use back-propagation to train each of these networks to solve the

89

same problem, and they evaluate the fitness of each network in a population. They

previously defined fitness to be a combined measure of worth on the problem, which

may take into account learning speed, accuracy, and cost factors, such as the size and

complexity of the network. Networks blueprint for a given generation beget offspring

according to a reproductive plan that takes into consideration the relative fitness of

individuals. A network spawned in this fashion will tend to contain attributes from

both of its parents. A new network may also be a mutant, differing in few randomly

selected genes from a parent. Novel feature may arise in either case: through synergy

between the attributes of parents or through mutation. The basic cycle is illustrated

in Figure 3-3. This process of training individual networks, measuring their fitness

Figure 3-3: Genetic synthesis of neural networks

Genetic

sampling and synthesis Algorithm blueprint fitness
of network blueprints estimates

Population Network
Performance

Evaluation

trained
new, untrained network

Instantiation network testing

training

*! H
training simuli test simuli

and applying genetic operators to produce a new population of networks is repeated

over many generations. If all goes well, each generation will tend to contain more of

the features that were found useful in previous generation, and an improvement in

overall performance can be realized over the previous generation.

90

Several interesting research issues are involved in using genetic algorithms for

designing neural networks. These include the representation of the blueprint that

specifies both the structure and the learning rule, the choice of the underlying space

of network architecture to explore, adaptations of the genetic operators used to con-

struct meaningful network structures, and the form of the evaluation function that

determines the fitness of a network.

91

Chapter 4

Neurocontrol

A detailed discussion of neural networks was presented in chapter 2. In this chapter,

their application to civil engineering is described. Neural networks in civil structures

are part of smart systems, where they act as controllers. This kind of application gave

birth to the field of "neurocontrol," literally, control using artificial neural networks.

In what follows, a brief overview of control is first presented, and then key aspects of

neurocontrol are considered.

4.1 Definition of Control

Dimitris C. Dracopoulos [6] defines the concept of control as follows:

"Although the study of a particular dynamic situation is sometimes

motivated by the simple philosophic desire to understand the world and

its phenomena, many analyses have the explicit motivation of devising

effective means for changing a system, so that its behavior pattern is, in

some way, improved. The means for affecting behavior can be described

with the term control.

Control of a process means the ability to direct, alter, or improve its

behavior, and a control system is one in which some quantities of interest

are maintained accurately around a prescribed value. Control becomes

truly automatic when systems are made to be self-regulating."

92

The latter is done by introducing the concept of feedback, which consists of the triad:

" measurement

" comparison

" correction

By measuring the quantity of interest, comparing it with the desired value, and

using the error to correct the process, the familiar chain of cause and effect in a

process is converted into a closed loop of interdependent events. Generally in the

control literature, the process to be controlled is called the plant and interacts with

its environment by means of two types of input and output (see Figure 4-1). The signal

Figure 4-1: Feedback Control

W

PLANT

u y

CONTROLLER <

w contains all input that cannot be directly affected by the controller. The signal y,

which is the measured output of the plant, contains all data which are available to the

controller, such as the values of the state variables. The control signal u is the part

of the plant input which can be manipulated. This closed sequence of information

transmission, referred to as feedback, underlies the entire technology of automatic

control based on self-regulation.

93

4.2 Concepts of Control

In his book [7], Tomas Hrycej reviews the important results of classical control theory;

all of them are useful for neurocontrol. The following sections give an overview of

these results.

4.2.1 Linear Control

Linear control theory provides valuable insight into the nature of control. It has

developed fundamental frameworks and concepts for the investigation of stability,

optimality, robustness, and adaptivity.

Linear control is concerned with systems of the form

z = A -z + B -u (4.1)

with state z, input u, and measurable output

y = C -z (4.2)

and controllers of the form

U = -K - z + M - r (4.3)

with r the reference state, that is, the state to which the plant is to be brought with

the help of the controller. A, B, C, K, and M are matrices of appropriate dimensions.

The goals of linear design are as follows:

" Stability of the closed loop, that is, convergence back to an equilibrium point

after being moved away from this point by a disturbance.

" Optimality of the closed-loop behavior in some user-defined sense.

For linear systems, local stability is identical with global stability, which is the con-

vergence to an equilibrium point from all points of the state space. A stability guided

design is based on the analysis of closed-loop eigenvectors. The condition to be sat-

94

isfied is that real parts of all eigenvectors must be negative. Negative eigenvectors

real parts are synonymous with the trajectory of the closed loop experiencing either

damped oscillations or exponential convergence.

However, with the stability condition satisfied, the controller is still under-deter-

mined. There are two additional requirements:

1. A complete model for the closed-loop response (reference model)

2. Optimization

In using a reference model, the properties of a closed loop (consisting of, say, a plant

and a feedback controller) can be specified in terms of eigenvalues. Because eigen-

values completely describe the behavior of a linear system, a plant with arbitrary

dynamic properties can be transformed, with the help of a feedback controller, into a

closed loop with arbitrarily different dynamic properties. This is true under some con-

ditions that, at least in principle and with limited precision, are relatively frequently

satisfied in practice. In theory, with an appropriate sequence of control actions , linear

discrete systems with n state variables are guaranteed to be able to reach an arbitrary

goal state within n steps. But the possibility of changing the dynamic properties of

a closed loop can hardly be applied in practice.

Another, and perhaps more straightforward, way to close the under-specification

gap is by defining a cost (or utility) function that is to be minimized (maximized).

Most of the methods can be applied under the following two conditions:

Controllability All state variables are affected by control action.

Observability All state variables affect the measurable variables and can thus be

reconstructed with the help of consecutive observations.

For both the plant model and the controller, the theory gives hints to the way in

which the information about measurable output and input can substitute for the

knowledge of a complete state. This defines the structure of such sufficient models

and controllers - a valuable help for neurocontrol formulations.

95

A basic theorem setting the limits of what can be done, under formal conditions,

is as follows:

"A controllable and observable plant (i.e. even one that is unstable in

an open loop) can be stabilized by complete feedback.

4.2.2 Non-Linear Control

Non-linear control theory is concerned with general systems of the form

F(z, u) (4.4)

with measurable output

y = H(z) (4.5)

and controllers of the form

u = G(z, r) (4.6)

An analytical solution is known only for subclass of non-linear systems described by

z = F1 (z) + F2(z) -u (4.7)

The above analytical approach describes a fairly broad class of real problems. How-

ever, the problem of its applicability resides in the computational expense for evalu-

ating the controller (matrix inversion in every sampling period).

The possibilities of formulating control are, in principle, the same as for linear

systems: they depend on a reference model or a cost function. The difference is in

the feasibility of reference-model-based formulation. The behavior of simple linear

reference models, in particular, first- and second-order models can be described in

terms of intuitively comprehensive concepts such as damping and time constants.

By contrast, higher-order linear models have no such intuitive representation. For

non-linear systems, a lot of control engineering competence is necessary to find refer-

ence models that can be exactly followed by the plant and, in addition, can express

96

controller design preferences.

This is why formulating control goals via cost function is frequently the better

alternative. Then, some general optimal control approach such as dynamic program-

ming is applied.

The difficulties with genuine non-linear controller designs suggest instead the lin-

earization approach, also known as gain scheduling. It consists of the following steps:

1. The main working points of the plants are elaborated

2. The plant is linearized for each working point

3. Linear design is applied to each working point

4. An interpolation method is used for determining the controller action in states

between the distinguished working points.

Stability of non-linear systems

One of the most important achievements of non-linear control theory are the concepts

and tools for investigating the stability of non-linear systems. There are several

definitions of stability:

Lyapunov Stability , in which the system is sure not to leave a certain region, or

Lyapunov asymptotic stability, in which the system is sure to converge to an

attractor point.

Input/Output Stability , with a closely related bounded input/bounded output sta-

bility, in which certain types of input behavior will lead to a certain types of

output behavior.

Total Stability , in which stability is guaranteed under certain types of distur-

bances.

The Lyapunov stability concepts seem to be most flexible. A function of the closed-

loop state, the Lyapunov function, is constructed with the following properties.:

97

1. The function is positive definite and has its minimum in the point (or region)

for which the stability is to be proved.

2. The time derivative of the function is negative. That is, the trajectory of closed

loop follows a path along which the Lyapunov function value diminishes.

Lyapunov stability is somehow intuitive. It assigns to each state a value that can

be interpreted as a distance from the goal state. The closed-loop state follows the

trajectories along which the distance monotically decreases.

The importance of the Lyapunov function can be made more obvious if we take

into account that it defines, to a certain degree, the controller, or, at least, a class

of stable controllers for a given problem. Suppose a Lyapunov function (for discrete

time) is explicitly known. Then, the controller action is to be such that the next state

of the plant has a lower Lyapunov function value than the present state.

4.2.3 Optimal Control

The goal of optimal control theory is to design controllers that are optimized to (or

even can be proved to be the best with regard to) a certain performance criterion. For

a linear plant and a quadratic performance criterion, the Ricatti controller represents

an explicit and global solution of the problem.

Another setting in which a globally optimal control solution can be found is in a

discrete space with discrete actions. For each state, one selects and assigns to that

state the action producing the best cost-function value resulting from immediate cost

of the present state, the cost of the action, and the cumulative recursively computed

cost of the next state and all subsequent states passed under the assumption of the

optimal action sequence.

Dynamic optimization is a general scheme for state evaluation and selection of the

optimal action. Alternatively, if each state at each sampling period is represented by

a node in a directed graph and actions are represented by connecting edges of the

subsequent states, then the task can also be transformed to the critical path problem

of graph theory.

98

4.2.4 Robust Control

Robust control addresses the problem of controlling a plant whose behavior is slightly

different from that of a plant model. The reasons for the difference may be the dif-

fering structure or parameters of exact and approximate models, a systematic distur-

bance, or a random disturbance.

A popular approach to robust control is concerned with preserving stability. The

closed-loop eigenvalues are chosen so that they remain in the stability region even if

the plant model should change in a defined range.

Another approach is concerned with preserving the closed-loop equilibrium point

under plant modifications or systematic disturbances. The means to reach this goal

is error integration. Since the integrated error grows with time if the error itself does

not converge to zero, a controller using an integral of error as an additional input can

be designed for a closed loop to converge to the desired equilibrium point even under

model imprecision or systematic disturbance.

Some classical results are available about systematic disturbances and necessary

controller inputs:

1. Controller input including an error integral is necessary if stability under con-

stant additive disturbance is to be reached

2. Controller input including the error integral is necessary if stability under lin-

early changing additive disturbance (i.e., a ramp) is to be reached.

4.2.5 Adaptive Control

According to Dimitris C. Dracopoulos [6], the concept of adaptive control is as follows.

"There are many design techniques for generating control strategies

when the model of the system is known. When the model is unknown,

on-line parameter estimation could be combined with on-line control. This

leads to adaptive, or self-learning, controllers."

The basic structure of an adaptive controller is shown in Figure 4-2 An adaptive con-

99

Figure 4-2: Basic structure of an adaptive controller

troller can be defined as a feedback regulator that can modify its behavior in response

to changes in the dynamics of the process and the disturbances, so as to operate in

an optimum manner according to some specified criterion. Adaptive control tech-

niques have been developed for systems that must perform well over large ranges of

uncertainties due to large variations in parameter values, environmental conditions,

and signal inputs. These adaptive techniques generally incorporate a second feedback

loop, which is outside the first feedback loop. This second loop may have the capabil-

ity to track system parameters, environmental conditions, and input characteristics.

Then feedback control may vary parameters in compensation elements of the inner

loop to maintain acceptable performance characteristics.

As Tomas Hrycej explains it in [7],

"Adaptive control is another way to reach a goal similar to that of ro-

bust control. Instead of designing robust controllers that work under con-

ditions different from those for which they have been designed, adaptive

controllers recognize the difference between the assumption and reality

and change to perform better in the new conditions."

100

The following paragraphs describe two of the most well known traditional adaptive

control techniques.

The Model-Reference Adaptive Control

The desired performance is expressed in terms of a reference model, which gives the

desired response to a command signal. The system also has an ordinary feedback

loop composed of the process and the regulator. The error e is the difference between

the output of the system y and the reference model yin. The regulator has parameters

that are changed based on the error. There are thus two loops in Figure 4-3: an inner

Figure 4-3: Block diagram of a model-reference adaptive system (MRAC)

loop which provides the ordinary control feedback, and an outer loop which adjusts

the parameters in the inner loop. The inner loop is assumed to be faster than the

outer loop.

101

The Self-Tuning Regulator

In an adaptive system, it is assumed that the regulator parameters are adjusted all

the time. This implies that the regulator parameters follow changes in the process.

However, it is difficult to analyze the convergence and stability properties of such

systems. To simplify the problem, it can be assumed that the process has constant

but unknown parameters. When the process is known, the design procedure speci-

fies a set of desired control parameters. The adaptive controller should converge to

these parameter values even if the process is unknown. A regulator with this prop-

erty is called self-tuning, since it automatically tunes the controller to the desired

performance.

Figure 4-4: Block-diagram of a self-tuning regulator

The self-tuning regulator (STR) is based on the idea of separating the estimation

of unknown parameters from the design of the controller. The basic idea is illustrated

in Figure 4-4.

The unknown parameters are estimated on-line, using a recursive estimation

method. The estimated parameters are treated as if they were true.

102

4.2.6 Intelligent control

The objective of the design of an intelligent control system is similar to that of the

adaptive control system. However, there is a difference. For an intelligent control

system, the range of uncertainty is substantially greater than can be tolerated by

algorithms for adaptive systems. The main objective with intelligent control is to

design a system with acceptable performance characteristics over a very wide range

of uncertainty.

4.3 Fundamental Approaches to Neurocontrol

The definition of neurocontrol is very simple, namely, "control using artificial neural

networks." Chapters 2 and 3 show that neural networks have diverse capabilities.

Their ability to approximate functions given a set of points is considered in this

section.

In neurocontrol, the task performed by neural networks is indeed function approx-

imation, where the function to be approximated is the optimal controller. However,

the function values to be approximated (i.e control actions) are usually not explicitly

known. What is known are general conditions or optimality criteria for the conse-

quences of these actions.

The problem of finding the relationship between the functional values and their

evaluated consequences is called the credit assignment problem. This problem is cen-

tral for neurocontrol methods. So it is appropriate to classify the fundamental ap-

proaches to neurocontrol by the way they address the credit assignment problem.

Such a classification is attempted in the following sections.

4.3.1 Template learning

One way to solve the credit assignment problem is to take a template controller as

a generator of control actions. Then, the functional values are known, and some of

the standard learning methods for neural network based functional approximation

103

can be used. In other words, the fundamental cost function for template learning

measures the dissimilarity between template outputs and outputs computed by the

neurocontroller for given controller inputs. The scheme of the method is given in

Figure 4-5. The drawing suggests the critical question of why one should train a neural

Figure 4-5: Template Learning

CONTROLLER

Z

controller if the template controller is already available. There are some applications

where this approach is reasonable:

" The template controller is available, but not as an automatic device. For exam-

ple, one is trying to mimic the behavior of a human controller, which is difficult

if the latter is an expert with long experience in process control.

" The template controller is too complex for the target setting. Some controller

types such as multidimensional look-up tables gained by dynamic optimization

are too large for implementation on micro-controllers.

4.3.2 Learning Plant Inversion

The basic principle in "learning plant inversion is the following." The plant output

is viewed as a function of the plant input, that is, the existence of the mapping

104

input-±output is assumed. Basically, the inverse mapping output-+input is sought,

as can be seen in Figure 4-6. An important asset of the plant inversion approach is

Figure 4-6: Plant Inversion Learning

V Z
PLANT

V Z

that it can use well-known, frequently implemented, and conceptually simple methods

for training by input/output pairs such as back-propagation-based methods.

4.3.3 Closed-Loop Optimization

The next group of control approaches is characterized by relating the control perfor-

mance to an explicit cost function. The only condition this cost function has to satisfy

is that it must be a function of plant states and inputs (i.e. of controller actions) in

a closed loop. Credit assignment is done by figuring out what effect free controller

parameters have on the cost function in a mathematical way.

This approach uses a mathematical description of the plant, referred to as the plant

model, which also involves an artificial neural network. A general scheme for control

loop optimization is presented in Figure 4-7. The fundamental cost function for plant

model identification measures the dissimilarity between measured plant outputs and

outputs computed by the neurocontroller for given plant inputs.

Several basic variants of this scheme have been proposed. The scheme using a

reference model of closed loop tunes the controller to minimize the deviation between

105

Figure 4-7: Closed-loop Optimization

V Z
>. PLANT

: ----------- OPTIMIZATION <----------

the behavior of the closed loop made by a real plant and the controller on the one

hand, and the behavior of the predefined reference model on the other hand. The

reference model plays the role of generator of sample pairs for neurocontroller training.

Figure 4-8 shows the architecture for this variant.

4.3.4 Critic Systems

A large group of neurocontrol approaches are categorized as critic systems. In such

systems, two neural networks are present and they perform different functions.

" The first is the neurocontroller, usually called the action network. This neuro-

controller is completely analogous to that of other neurocontrol approaches.

" The second network is the critic. Like the plant model network in closed-loop

optimization, this network's role is to train the neurocontroller. In contrast to

106

Figure 4-8: Closed-loop Optimization with Reference Model

V Z
PLANT

A

REFERENCE

MODEL

the closed-loop optimization, this network does not model the plant but models

individual plant states from the viewpoint of the optimality criterion.

The study and training of a critic system are difficult complex topics beyond the

scope of this thesis. Therefore, they are not discussed here. However, a definitive

treatment is contained in [7].

Optimization of a closed loop is currently the preferred choice for industrial ap-

plications. It is selected for the case study presented in the next chapter.

4.4 A New Direction for Control: Fuzzy Neural

Networks

This section describes another advance in control, namely, the use of Fuzzy Logic.

Ultimately, fuzzy logic and neural networks can be merge together into a control

107

system which, on the one hand, seems to have very interesting properties but, on the

other hand, still remains to be fully understood.

4.4.1 History of Fuzzy Logic

In 1965, when Lotfi Zadeh at UC Berkeley's Department of Electrical Engineering

published his first paper on fuzzy sets, he was implicitly advancing the thesis that

one of the reasons humans are better at control than currently existing machines

is that they are able to make effective decisions on the basis of imprecise linguistic

information. Hence it should be possible to improve the performance of electro-

mechanical controllers by modeling the way in which humans reason with this type

of information.

The theory developed slowly at first, but by the early 70's it had attracted a small

international following. In those days, the interest was spurred primarily by intellec-

tual curiosity, although even then there was a pervasive belief in the theory's ultimate

applicability. During this time, investigations focused mainly on the mathematical

properties of fuzzy sets and closely related notions, and numerous variants of fuzzy

logic were explored.

By the late 70's, interest in fuzzy systems had grown rather explosively, attracting

many researchers from around the world and spawning bibliographies with citations

numbering in the thousands. Still, most of the work was theoretical. The main topics

included fuzzy knowledge representation and reasoning schemes, the philosophical

ramifications of fuzzy logic and fuzzy set theory, fuzzifications of various branches

of classical mathematics, and several foundational challenges posed by probability

theorists and the classical Al community. Partly in response to this, Zadeh put forth

"possibility theory", which showed how the fuzzy-sets model of natural language

reasoning could be provided with an intuitively acceptable foundation, and at the

same time explained how this was distinct from probability theory.

108

4.4.2 What is Fuzzy Logic?

The problem: real-world vagueness

Natural language abounds with vague and imprecise concepts, such as "Sally is tall,"

or "It is very hot today." Such statements are difficult to translate into more precise

language without losing some of their semantic value: for example, the statement

"Sally's height is 152 cm." does not explicitly state that she is tall, and the statement

"Sally's height is 1.2 standard deviations about the mean height for women of her

age in her culture" is fraught with difficulties: would a woman 1.1999999 standard

deviations above the mean be tall? Which culture does Sally belong to, and how is

membership in it defined?

While it might be argued that such vagueness is an obstacle to clarity of meaning,

only the most staunch traditionalists would hold that there is no loss of richness

of meaning when statements such as "Sally is tall" are discarded from a language.

Yet this is just what happens when one tries to translate human language into classic

logic. Such a loss is not noticed in the development of a payroll program, perhaps, but

when one wants to allow for natural language queries, or "knowledge representation"

in expert systems, the meanings lost are often those being searched for.

While some of the decisions and calculations could be done using traditional logic,

fuzzy systems afford a broader, richer field of data and manipulation of that data than

do more traditional methods.

Basic concepts

The notion central to fuzzy systems is that truth values (in fuzzy logic) or mem-

bership values (in fuzzy sets) are indicated by a value on the range [0.0, 1.0], with

0.0 representing absolute falseness and 1.0 representing absolute truth. For example,

consider the statement:

"Jane is old."

If Jane's age was 75, the statement might be assigned the truth value of 0.80. The

statement could be translated into set terminology as follows:

109

"Jane is a member of the set of old people."

This statement would be rendered symbolically with fuzzy sets as:

mOLD(Jane) = 0.80

where m is the membership function, operating in this case on the fuzzy set of old

people, which returns a value between 0.0 and 1.0.

At this juncture it is important to point out the distinction between fuzzy systems

and probability. Both operate over the same numeric range, and at first glance both

have similar values: 0.0 representing false (or non-membership), and 1.0 representing

true (or membership). However, there is a distinction to be made between the two

statements: the probabilistic approach yields the natural-language statement, "There

is an 80corresponds to "Jane's degree of membership within the set of old people is

0.80." The semantic difference is significant: the first view supposes that Jane is or is

not old. By contrast, fuzzy terminology supposes that Jane is "more or less" old, or

some other term corresponding to the value of 0.80. Further distinctions arising out

of the operations will be noted below.

The next step in establishing a complete system of fuzzy logic is to define the op-

erations of EMPTY, EQUAL, COMPLEMENT (NOT), CONTAINMENT, UNION

(OR), and INTERSECTION (AND). Before this can be done rigorously, some formal

definitions are needed:

Definition 1 Let X be some set of objects, with elements noted as x. Thus, X = x.

Definition 2 A fuzzy set A in X is characterized by a membership function mA(x)

which maps each point in X onto the real interval [0.0, 1.0]. As mA(x) ap-

proaches 1.0, the "grade of membership" of x in A increases.

Definition 3 A is EMPTY iff for all x, mA(x) = 0.0.

Definition 4 A = B iff for all x : mA(x) = mB(x) (or, mA = mB).

Definition 5 mA' =1 - mA.

110

Definition 6 A is CONTAINED in B iff mA <= mB.

Definition 7 C = A UNION B, where: mC(x) = MAX(mA(x), mB(x)).

Definition 8 C A INTERSECTION B where: mC(x) = MIN(mA(x), mB(x)).

It is important to note the last two operations, UNION (OR) and INTERSECTION

(AND), which represent the clearest point of departure from a probabilistic theory

for sets to fuzzy sets. Operationally, the differences are as follows:

9 For independent events, the probabilistic operation for AND is multiplication,

which (it can be argued) is counterintuitive for fuzzy systems. For example, let

us presume that x = Bob, S is the fuzzy set of smart people, and T is the fuzzy

set of tall people. Then, if mS(x) = 0.90 and uT(x) = 0.90, the probabilistic

result would be:

mS(x) * mT(x) = 0.81

whereas the fuzzy result would be:

MIN(uS(x), uT(x)) = 0.90

The probabilistic calculation yields a result that is lower than either of the two

initial values, which when viewed as "the chance of knowing" makes good sense.

However, in fuzzy terms the two membership functions would read something

like "Bob is very smart" and "Bob is very tall." If one presumes for the sake of

argument that "very" is a stronger term than "quite," and that "quite" would

be correlated with the value 0.81, then the semantic difference becomes obvious.

The probabilistic calculation would yield the statement:

"If Bob is very smart, and Bob is very tall, then Bob is a quite tall, smart

person."

The fuzzy calculation, however, would yield

111

"If Bob is very smart, and Bob is very tall, then Bob is a very tall, smart

person."

* Another problem arises as more factors are incorporated into our equations

(such as the fuzzy set of heavy people, etc.). The ultimate result of a series

of AND's approaches 0.0, even if all factors are initially high. Fuzzy theorists

argue that this is wrong: that five factors of the value 0.90 (let us say, "very")

AND'ed together, should yield a value of 0.90 (again, "very"), not 0.59 (perhaps

equivalent to "somewhat").

o Similarly, the probabilistic version of A OR B is (A + B - A * B), which

approaches 1.0 as additional factors are considered. Fuzzy theorists argue that

a sting of low membership grades should not produce a high membership grade

instead, the limit of the resulting membership grade should be the strongest

membership value in the collection.

The skeptical observer will note that the assignment of values to linguistic mean-

ings (such as 0.90 to "very") and vice versa, is a most imprecise operation. Fuzzy

systems, it should be noted, lay no claim to establishing a formal procedure for as-

signments at this level; in fact, the only argument for a particular assignment is its

intuitive strength. What fuzzy logic does propose is to establish a formal method of

operating on these values, once the primitives have been established.

4.4.3 Fuzzy Control

The first steps

The first paper describing a fuzzy logic controller was published by E.H. Mamdani

and S. Assilan of Queen Mary College, England, in 1975. For their study, they

chose the example of a simple steam engine. The controller for this engine has four

input variables-pressure error, speed error, change in pressure error, and change

in speed error-and two output variables-heat change and throttle change. The

essential idea was strikingly simple. In the conventional PID (Proportion, Integral,

112

Derivative) controller, the system being controlled is modeled analytically by a set

of differential equations whose solution tells what adjustments should be made to

the system's control parameters for each type of system behavior. The proposed

fuzzy logic controller, on the other hand, was based on a logical model which directly

represents the thinking processes that a human operator might go through while

controlling the system manually.

Such a logical model is expressed as a set of inference rules of the form "if behavior

variable B (input to the controller) is observed to be in the state X, then change control

parameter C (output from the controller) by an amount Y" (or perhaps to state Y).

The model earns the designation "fuzzy" by virtue of its specifying the amounts X

and Y linguistically, using terms like "positive big", "positive medium", "positive

small", "no change", "negative small", etc., where each such term is represented as a

fuzzy subset of the associated measurement domain.

This experiment, together with a few closely related experiments conducted by

others, clearly demonstrated that this was an effective means of automated control.

Indeed the logical models have a definite advantage over the traditional analytical

models in that

1. they work well even when the relation between the controller's input and output

variables is nonlinear, and

2. they are much more robust with respect to changes in the controlled system's

parameters, e.g., the desired engine speed.

It is generally held that classical PID controllers cannot be designed for the case of

nonlinear control and that, even for linear control, they typically must be designed

anew whenever one resets the basic system parameters.

Mamdani's work generated interest in Japan, and approximately 10 years later,

Hitachi Corporation announced the Sendai Railway as the first fully automated sub-

way system employing a fuzzy logic controller. Hitachi had for many years been in the

business of designing subway control systems, particularly safety mechanisms, and so

this next step was a natural evolution of their existing product lines. The new system

113

controlled all aspects of accelerating to speed and braking for corners or stopping at

the next platform, so that the only human operator served essentially as a conductor,

watching out for passengers' safety while getting on or off the train.

Also in 1987 occurred another event, which, together with the Sendai Railway,

served as the catalyst for an explosion of interest in the subject of fuzzy control. This

was Takeshi Yamakawa's demonstration of his inverted pendulum experiment at the

Second Congress of the International Fuzzy Systems Association (IFSA-87), held in

Tokyo. The inverted pendulum is a classic control problem, amounting to balancing

a vertical pole that is attached to a belt by a hinge, so that the pole can fall to the

right or the left. The idea is to monitor the angular position and speed of the pole

and move the belt to the right or left accordingly, so as to maintain the pole in an

upright position.

There were a few negative responses. The latter stemmed from the fact that

the controller only maintained vertical, and not horizontal, stability of the inverted

pendulum, whereas the classical problem entails both. Moreover, it was shown rather

easily that, with that particular system, accomplishing both was impossible. Hence

Yamakawa suffered criticism for publishing results that were as yet incomplete.

Less than a year later, however, Yamakawa was able to vindicate himself by pro-

ducing a system that performed both vertical and horizontal stabilization at the same

speed as before. Since that time, Yamakawa has demonstrated the robustness of his

system for nonlinear control by attaching a small platform to the top of the inverted

pendulum, on which is then placed a wine glass filled with liquid, or even a live white

mouse. The controller nicely compensates for the turbulence in the liquid, as well as

the totally erratic movements of the mouse. Thus in the latter case, a claim could

be made for executing control even beyond nonlinearity, and into truly random, or

"chaotic" domains.

Commercializing fuzzy controllers

Before reporting these results, Yamakawa applied for patents on his chips in Japan,

the US, and several European nations. He then proceeded to trade his patents to

114

several Japanese corporation in return for their subsidizing a laboratory in which

he could continue his research. Omron, a major producer of second tier electronic

devices, was a major proponent and has subsequently decided to invest heavily in

fuzzy control. They have been rapidly expanding on Yamakawa's original designs,

producing a host of new chips, both analog and digital, and churning out scores of

applications. Due to their purchase of Yamakawa's patents, in fact, they have recently

become the first Japanese corporation to ever obtain a US patent. As of July 1991,

Omron boasted 700 patents for fuzzy logic devices either acquired, pending, or in

application. Most of these devices either have appeared, or will appear, in commercial

products. Three or four dozen alone are earmarked for use in automobiles, e.g.,

antilock brakes, automatic transmissions, impact warning and monitoring, windshield

washers, and light dimmers. Omron's is also incorporating fuzzy control into products

for use in industrial and manufacturing processes.

Numerous commercial products using fuzzy technology are currently available

in Japan, and a few are now being marketed in the US and Europe. Canon uses

a fuzzy controller in the autofocus mechanism of its new 8mm movie camera. The

Matsushita/Panasonic "Palmcorder", currently being promoted on US television, uses

fuzzy logic for image stabilization. This happens to be very the first video camera to

appear with image stabilization capability. Each of Matsushita, Hitachi, Sanyo, and

Sharp now have their own "fuzzy washing machine," which automatically adjusts the

washing cycle in response to size of load, type of dirt (soil v.s. grease), amount of

dirt, and type of fabric. Other products using fuzzy control include vacuum cleaners,

air conditioners, electric fans, and hot plates. One senses that the possibility for such

applications is virtually endless.

The future of fuzzy controllers

These few examples illustrate the variety of possible applications for fuzzy logic con-

trol. Japanese manufacturers are in fact now opting for fuzzy controllers even where

conventional controllers would serve just as well. The reasons are that simple fuzzy

logic controllers are much easier to design, require fewer electronic components, and

115

are therefore cheaper to produce.

The problem of how to design more complex controllers, however, has only recently

met with what appears to be a practical solution. Typically the most difficult part of

designing any fuzzy logic controller lies in selecting the fuzzy sets to use for the mean-

ings of the linguistic terms appearing in the inference rules. As the number of rules

grows large, the trail-and-error method of selecting the optimal collection of member-

ship functions becomes less feasible. Somewhat of a breakthrough on this problem ap-

pears to have been achieved by Akira Maeda at Hitachi's System Development Labo-

ratory. Maeda's idea is to use a form of neural net with back propagation to learn the

needed membership functions from a set of training examples. As a test case, Maeda

and his coworkers applied this technique to the development of a controller which had

been designed previously by trail and error. Using this technique, they were able to

accomplish in one month what had formerly taken six.

The possibilities for future work, leading to far more sophisticated logic-based

controllers, are very clear. This movement will involve shifting from simple one-step

rule-based systems to systems employing multi-step reasoning-i.e., rule chaining,

together with the necessary truth maintenance systems-and which are integrated

with other knowledge representation, reasoning, and learning schemes (e.g., semantic

nets, frames, conceptual graphs, neural nets, and case-based reasoning). Taking the

theory to this next stage will accordingly require progress in a number of important

subareas before realizing the more advanced levels of automatic control.

116

Chapter 5

Case Study: Neurocontrol of a

Cantilever Beam

Chapter 2 explained what artificial neural networks were and presented their different

kinds. Chapter 3 gave a more thorough description of feed-forward networks, how

they can be trained and how this training can be improved. On the other hand,

chapter 4 shifted to control and studied the new advances in this field, one of which

being neurocontrol, namely, control using neural networks.

This chapter 5 applies what has been presented so far to a simple element of civil

engineering structure. Indeed, a cantilever beam supporting fluctuating loads, i.e.

loads whose position on the beam as well as value change over time, is simulated.

Firstly, section 5.1 presents the characteristics of the cantilever beam. Then,

section 5.3 introduces MATLAB, the computer environment in which the simulations

have been performed. Section 5.4 displays the scheme that has been adopted to

control the beam. Finally, section 5.4.3 develops the simulations and explains their

results.

117

5.1 The Beam Model

5.1.1 Describing the Beam Model

Figure 5-1 presents the chosen model of cantilever beam. As can be imagined, the

Figure 5-1: The simulated beam

beam is embedded into a fixed support, so that neither displacements nor rotations

are allowed at the junction between the beam and its support. The beam is composed

of an homogeneous material, such as concrete or steel, so that the beam behavior is

the same all along its length. Besides, the beam is in straight line and included in

the plane perpendicular to the beam support.

In the simulation, forces are applied on this beam, as represented by Figure 5-2.

Under the influence of these forces, the tip of the beam moves. However, at the free

end of this beam is a device that can apply a force in any direction. Therefore, it

counters the influence of the other forces, and keeps the beam tip stable.

The purpose of this case study is now to build a neural network that will control

this free-end device. Assuming that the values and directions of the forces applied

to the beam, and also some parameters proper to the beam, are input to this neural

network, the latter should output a signal to the device. The device then translates

this signal into a force value and a force direction, and exerts the specified force on

118

Figure 5-2: The simulated beam with forces

the beam. As a result, although the positions and values of the forces exerted to the

beam change, the beam tip should remain in a restricted portion of space thanks to

the conjugate influences of the neural network and the free-end device.

5.1.2 Limitations

A good model should be close to the reality of the physical effect one wants to simulate,

but also simple enough so that its study becomes easy. In the case of a cantilever

beam, the following simplifications were chosen:

" The beam behavior is governed by the laws of elasticity, which are presented in

subsection 5.2.

" Any effect other than mechanical is not considered in this model. For example,

the consequences of dilatation when the beam heats up during its movements

are not taken care of.

" The beam has a square cross section. This does not limit the model at all but

simplify the calculations later. The area of this square cross section is noted

a x a. Besides, the beam section is constant.

" Only forces along the y axis are applied to the beam. This is a strong limit, but

119

the number of spatial dimensions involved in the problem needs to be reduced.

Later, in another study, the three dimensions might be considered.

As a consequence, the only possible movement of the beam is a bending around

the z axis. I do not consider other movements, such as torsion around the x

axis. Figure 5-3 shows how the model looks like now.

Figure 5-3: The two dimensional model of a cantilever beam

y
F1

F2

F3

x

Beam

Support

Fdevice

* Except for the beam weight, which is a "distributed" force, all forces exerted

on the beam are "concentrated" forces, i.e. forces localized in one point of the

beam. For instance, magnetic forces that can influence a beam made of steel

are not considered here.

Because of these limitations, the model has been greatly simplified, and, as will

be shown in the next section, the beam behavior now depends on a restricted set of

parameters only. These parameters are the following:

p Mass density of the material composing the beam.

E Young modulus of the material composing the beam.

pu Coulomb modulus of the material composing the beam.

1 Beam length.

120

a Beam height (or Beam width).

Fd Force exerted by the free-end device.

Fi's and Xi's Forces supported by the beam, and their position along the beam.

5.2 Theoretical Study

The purpose in this part of the memoir is to get an expression for the displacement

of the beam tip when one exerts various forces on the beam. The development starts

by giving the expression of this tip displacement as a function of the resultant force

and moment at the beam tip. I then develop these resultant values into expressions

involving the values of the actual forces supported by the beam, and therefore get a

relation between the beam tip displacement and the exerted forces.

5.2.1 Plane beam

Consider a random beam, with the only important characteristic of being contained

in a plane, namely, the plane (z, g) in Figure 5-4. In order to study the displacement

Figure 5-4: Studying a beam using the Frenet reference

y

x

F1
F2

F3

121

and rotation of each section of this beam, two systems of reference are envisioned:

* A global one, represented by the (', ', Z) vector system in Figure 5-4.

" A local one, represented by the famous Frenet triad, which, for any section of

the beam, is composed by the vector F1 tangent to the beam curve, the vector

F2 normal to the beam curve, i.e. pointing in the direction of the curvature

center, and the binormal vector F3, which is just the vector product of the two

previous vectors. The Frenet reference system is different for any beam section.

In other words, the Frenet reference is a function of the curvilinear distance s.

This variable represents the distance between the beginning of the beam and a

specific point, but through the beam. The Frenet reference system of a beam

section located at s is therefore noted (Fi(s), F2 (s), F3 (s)).

Fortunately, the Frenet vectors can be expressed using the global vectors. Indeed,

dx dz
F1(s) = -(s).xf±-(s)- (5.1)

ds ds

F2(s) = d z + (5.2)
2() ds~s ds(S-

F 3(s) =- (5.3)

Note that F3(s) is not, in fact, a function of s since the beam is contained in the plane

(7, .). Given these two sets of vectors, the equations of Navier and Besse, from the

theory of elasticity, give us the expressions of the displacement vector u(s) and the

rotation vector p(s) of each section of the beam. These equations are the following:

d o(s)
ds = D(s) -F 1(s) + E(s) -F 2(s) + F(s) - F3 (s) (5.4)
ds

du(s)
as)= p(s) x Fi(s) + A(s) -Fi(s) + B(s) - F2(s) + C(s) -F3(s) (5.5)

As can be seen, these two vectorial equations introduce six variables A(s), B(s),. .. ,

and F(s). These six variables contain the specific parameters of the beam. Their

122

expression is:

A(s) = R,(s) (5.6)
E(s)S(s)

B(s) R 2 () (5.7)
p(s) S2 (s)

R 3 (s) - Mi(s)

C(s) = 8 r(s) (5.8)
pu(s) S3(s)

D(s) = MI(S) (5.9)
pu(s) J(s)

E(s) M2 (S) (5.10)
E(s)I2(s)

F(s) = M3 (s) (5.11)
E(s)13 (s)

All the variables introduced here represent specific properties of the beam. Note that

they all depend on the curvilinear distance s since no hypothesis have been made

about the shape of the beam yet. The only requirement so far is that the beam be

contained in a plane.

All of these new variables require explanations:

" (RI(s), R 2 (s), R 3 (s)) are the coordinates of the vector R(s) in the Frenet coor-

dinate system. Vector R(s) is the resultant force for the beam section located

at the curvilinear distance s.

* (Mi(s), M 2(s), M 3 (s)) are the coordinates of the vector M(s) in the Frenet

coordinate system. Vector M(s) is the resultant moment for the beam section

located at s.

" E(s) is the Young modulus of the material composing the beam section located

at the curvilign absis s.

* S(s) is the area of the section at s.

* pu(s) is the Coulomb modulus of the material composing the beam section at s.

p is given by the relation y = 2 where v is the Poisson coefficient.

123

" S2(s) is called the "reduced section" and is used in the calculation of the elastic

potential of the beam. Its expression will be given later in the development of

this chapter. The 2 means that this section is computed in relation to the F 2

axis. By the same token, S3(s) is the reduced section computed in relation to

the F3 axis.

* rc(s) represents the curvature radius of the section at s.

" J(s) is the torsion modulus of the section at s.

" I2(s) and 13(s) are the principal moment of inertia, in relation to, respectively,

axis F2 (s) and axis F3 (s)

Although this seems like a very long series of variables to deal with, many of them

will disappear when a straight beam is considered.

Then, the vectorial equations from Navier and Besse are developed into the global

reference (', ', 5), which yields six scalar equations:

du, dz dx dz
dsx= y (s)d + A(s)d B(s)dzds ds ds ds

dudx dz"u = P2(s)--x - O2(S) dz- C (S)
ds ds ds

duz dx dz dx
ds ds ds ds

dye _ dx dz
= D(s)--(s) - E(s) d(s)ds ds ds

d,, = -F(s)
ds

dso dz dx
= D(s)--(s) + E(s) (s)ds ds ds

where (Wx(s), ypy(s), (v2(s)) and (ux(s),uy(s),uz(s)) are the coordinates of, respec-

tively, the vectors W(s) and u(s) in the global reference system.

5.2.2 Straight Beam

The beam considered in the simulations is a straight beam, say, along the x axis.

Therefore, the curvilinear distance s represents now the same thing as the x coordi-

124

nate, and:

ds = dx

dz = 0

'c oo

As a result, the six previous equations become:

dux = A(x)
dx
duy - Pz(X) -C(X)

dx
du, - -w(x) - (x)
dx
dpx - D(x)
dx
d =, - -F(x)

dx
dW, - E(x)
dx

Besides, the Frenet reference system is now constant along the beam, from a global

point of view, and the following equalities are obtained:

2 z

F3 = -Y

All variables expressed in relation to the Frenet reference can be expressed in relation

to the global system, using the equalities above to switch from one to the other.

What is the influence of the model on the six variables A(x), B(x),..., F(x) ?

The forces exerted on the simulated beam are all along the y axis. This has two

consequences:

1. Only coordinate 3, i.e. the y coordinate, of the resultant force R is not null.

125

2. Only coordinate 2, i.e the z coordinate, of the resultant moment M is not null.

This leads to:

A(x) 0

B(x) 0

0(x) R3 (x) _ RY(x)
p(x)S3 (x) i(x)Sy(x)

D(x) 0

Mz(x)
E(x) = z(X

E (x)Iz (x)
F(x) 0

The model added another set of requirements, expressed by the sentence:

"The behavior of the beam is the same all along its length."

This tells us that the quantities involved in the expression of the variables 0(x) and

E(x) that represent internal properties of the beam are, in fact, constant all along

the beam. They are not functions of x. As a result, the expressions for C(x) and

E(x) become:

C(x) R (X)
pSY

E(x) M (X)
EI2

Inserting these results back into the Navier and Besse equations yields:

dy(RY(x)
dx pS,
dpz Mz(x)
dx EI

When looking for an expression of the displacement of the beam tip when the beam

supports forces, the variable of interest is uy(l), where I is the length of the beam.

126

Given equations 5.12 and 5.12, it appears that:

U(x) = uM(x) + uR(x)

where
d2 nu_ Mz(x) duft R___x)
d2

- EI Land - RY(W
dx2 EI ' dx pSy

However, the beam tip displacement can be found using the resultant force and resul-

tant moment for each section of the beam, but there is still no direct relation between

the tip displacement and the exerted forces. This relation is unveiled in the following

section.

5.2.3 Relation displacement-applied forces

The positions of the forces exerted along the beam will be given by X, for i =1 to N,

where N is the number of forces. The value of each one of these forces will be given

by F. Given the convention adopted in the model, these forces can be represented

by the vectors:

Tdf

The force applied by the free-end

0

FJ , for i = 1 t

0

device will be noted:

0

Fd

0 I
The position of this last force is naturally 1 (beam length). Since these forces can

be either upward or downward, Fd and F will be either positive (upward force) or

negative (downward force).

Although the only forces applied to the beam are "concentrated" forces, meaning

localized in one point, there is one "distributed" force that the beam sustains, namely,

127

(5.12)

(5.13)

) N

its weight. If p denotes the weight of one unit section of the beam (one section of

length 1),
2p-p~a .*g (5.14)

where p is the mass density of the material composing the beam, a2 is the area of

the beam section, and g is the gravity constant (g = 9.81Nkg 1). As can be seen, p

is not a function of x but a constant. This is logical since the beam keeps the same

inner properties all along its length.

Given these notations, the expression of the resultant vectors is:

RY(x)

Mz(x)

F) + Fd - p
X<l

= Xx i>=x
xj<1

=E F - (Xi -
xi>=x

x)) + Fd - (I - x) - p(l - t)dtx
In other words,

F)
xj<l

xi>=x

+ Fd - (1 - x)p

F - (Xi - x)) + F - (- x) -

The above results can now be inserted into equations 5.12 and 5.13. This yields,

F - (Xi - x)

) + Fd -(---

+ F (1 - x) -

x)p

The process of finding the expression of uy(l) from the above equations is tedious,

and I will save it to the reader. In short:

1. one needs to integrate the previous equations to get the expression of uM(x)

and UR(X). Adding the two together, one gets the expression of uy(x).

2. however, these integrations bring up some constants. The values of these con-

128

RY(x)

M(x)
(I _ X)2

p 2

EIz
d 2u (X)

dx 2

duR(X)

dx

x <1

x>1_

P -(xi>KI F E

__ 2

stants can be found by using boundary conditions. Indeed, since the beam is

embedded into its support, the following applies: u,(O) = 0 (no translation at

the origin) and u' (0) = 0 (no rotation at the origin).

3. having u.(x), it is now very easy to get u.(l).

The whole computation leads to the following expression for ny(l):

12 1 1 Xi< X p12 1 12
y (1) = Fdl(E +) + E FX (l - i) - 2 + (5.15)

3EIz pSy 2EIz xj>= 3 2 ptSy 4EIz

Three terms are distinguishable in this expression:

- Fdl(jj, + /4) represents the influence of the force Fd,

0 1 T go FiX2 (1 _') represents the influence of all the other localized forces

Fi, and

S-2 (/4 + 12) represents the influence of the beam weight. Naturally, this

term is negative since weight is a vertical downward force.

The expression of u(l) can be simplified to make the parameter a (beam width or

height) appear. Indeed, the following relations apply:

F

p = pa g
5a 2

(5.16)

(5.17)

(5.18)

6
a4

Relation 5.16 has already been presented. Relation 5.17 would need too much ex-

planation about "reduced sections" and "elastic potential." The interested reader is

invited to refer to the available documentation on structural engineering. Finally, the

expression of I, directly comes from the its definition, namely, Iz f f y2 dxdy.

Inputing these relations in equation 5.15 yields:

4l 2 6 6 Xi<1 X pgl 2 6 312
u(l) = Fdl(4+ 2)+ E FoX(l) 2 (+-F + 2)Eas 5pa2 Eaa Xi>= 3 2 p5 Ea2

129

(5.19)

Sy

As promised, the expression of the beam tip displacement now depends only on a

restricted set of parameters. These are:

p The mass density of the material composing the beam.

p The Coulomb modulus of the material composing the beam E
2(1-hi) , where

v is the Poisson modulus of the material composing the beam.

E The Young modulus of the material composing the beam.

l The beam length.

a The beam side.

Fd The force applied by the free-end device.

F's and X2's The values of the vertical forces applied and their respective positions.

5.2.4 Simple Cases

It is hard to figure out the implications of formula 5.19 because of its length. Simple

cases are helpful in managing the learning curve.

No Exerted Forces

In this case, only the free-end device is active. The beam tip displacement is then:

u(l) = F 4l(F(Ea4
6

5pa2)

pgl 2 6

2 p5
312

Ea2
(5.20)

It can be seen that for the beam to remain horizontal, without the presence of any

concentrated forces, the free-end device must already exert a force equal to:

6 312

Fd P9 +55 Ea2
Al42 + 6
Ea4 5pa2

Since the goal of this example is to get an approximate value for the free-end device

force, one usual simplification can be made. Indeed, a closer look at the equation

130

(5.21)

reveals that some terms are negligible. Consider the numerator of the expression in

parenthesis. Comparing the two fractions that form it yields:

Ea2 5 2 (,2
-0 - >> 1 (5.22)

(5p) 3 \E a a

given the expression that links E and p. In addition, the same conclusion can be

drawn from comparing the fractions in the denominator. As a result, an approximate

expression for Fd is:
pgl 3a2

Fd = -. (5.23)
2 4

For a regular concrete beam, the values of the parameters in the previous equations

are well known.

" g is equal to 9.81Nkg 1

" p is approximately equal to 2, 500kg.m-3. This depends on the quantity of rebar

in the concrete, but for an armed concrete, 2, 500 is the usual number.

" For a regular concrete, E can vary between 30, 000 MPa and 43, 000 MPa.

Above 43, 000 MPa, this is the domain of high-performance concretes. A value

of 35, OOOMPa is chosen in the example.

" It can be inferred from the relation that links E and y that t is also going to

vary depending on the quality of concrete. However, the Poisson coefficient v

is relatively stable for concrete, and, usually, v = 0.2 . Given the value chosen

for E, 15, 000MPa is the value obtained for p.

And if a beam with the following dimensions is considered:

l= 5m (5.24)

a =0.2m (5.25)

then,

Fd ~ 1, 840 N (5.26)

131

One Downward Force

In this case, and if the approximation of the previous section is still considered,

expression 5.19 becomes:

4Fdl3 6F 1 X 2 (X pgl 2 312
u(l) = E 4 + 3) 2 E- (5.27)

Ea4 Ea4 3 2 Ea2

where F1 is negative. If the free-end device is set up to keep the beam horizontal,

this yields:

F = 3pgla2 3F 1X,(1 X,? (5.28)
8 213 3

Keeping the same values as the ones given in the previous paragraph for the beam

parameters, this expression collapses into:

Fd = 1, 840 - 0.06F1 X2 5 - (5.29)
1(3

Figure 5-5 presents Fd as a function of X1 and F1 .

Figure 5-5: Fd f (X1 , F1)

8000- - - .-.-

6000- -- - .

4000-

0-

2000-

.55

LL 0

-2000- 0

F1 (force value) Xl (force position)

132

As can be seen, when F1 is located at the very beginning of the beam, very close

to the beam support, its influence is negligible. However, the greater X1, i.e. the

closer F1 to the beam tip, the greater its influence, and, therefore, the greater the

required action Fd of the free-end device. Naturally, the action of the free-end device

counters the one of F1 , which is why, for a specific position X 1, the more negative F1,

the more positive Fd.

5.3 Using the MATLAB Environment

The previous section represented the theoretical foundation for neural network simu-

lations. However, before performing the latter in section 5.4, the MATLAB environ-

ment, i.e. the environment in which artificial neural networks are built and trained,

is introduced.

If one browses the Internet today, one will find more than a hundred programs

that offer neural network simulation possibilities. This goes from the limited (but

often free) simulators written by graduate students working on their research, on to

the package added to an existing mathematics-oriented program, and finally to the

comprehensive (but often costly) independent piece of software.

5.3.1 The MATLAB Neural Network ToolBox

MATLAB, developed by people at The MathWorks, is now a famous mathematics-

oriented program. Its Neural Network Toolbox belongs to the second aforementioned

category. According to The MathWorks:

"The Neural Network Toolbox is a powerful collection of MATLAB

functions for the design, training, and simulation of neural networks. It

supports a wide range of network architectures, with an unlimited num-

ber of processing elements and interconnections (up to operating system

constraints)."

133

Although the MATLAB Neural Network Toolbox may not be the most attractive

(in terms of user interface) package, it is comprehensive and was, above all, freely

available from any station connected to the MIT network.

The following section describes the architecture of the MATLAB Neural Network

Toolbox. One needs a clear picture of the MATLAB implementation of neural net-

works to know what is simulated, and which results mean what. Besides, having

this clear picture in mind makes it possible to customize one's own neural network(s)

without getting lost in a jungle of parameters, and therefore to fully benefit from the

power of the MATLAB functions.

For MATLAB people, a neural network is an object with components and param-

eters. This object can be passed to MATLAB functions that will alter its components

and parameters, and so perform the simulation. By functions, it is meant:

o building functions, which actually reserve space for the network object in the

memory of the computer;

o initializing functions, which initialize and set the network components and pa-

rameters;

o training functions, which really change the components and parameters of the

network object; and

o displaying functions, which graphically display the state of the network at any

time in the simulation process.

Readers familiar with object-oriented programming might have recognized here

the description of classes and methods. Indeed, The MathWorks selected an object-

oriented approach and, in that sense, their Neural Network Toolbox closely resembles

a C++ library. The following section describes the classes and variables involved in

the composition of a MATLAB neural network.

134

MATLAB classes

Figure 5-6 provides an overview of the components and parameters that form a neural

network object. Since this memoir is not geared at object-oriented programming gurus

in the first place, some paragraphs are devoted to the explanation of this figure.

First of all, the following notation is considered:

* "class" signals the beginning of an object definition. The next word after "class"

is actually the name of this object.

e Typically, variables in a class are declared using a sentence like datatype variable-

Name. If brackets ([dim]) follow, this variable is actually an array of datatype,

of dimension dim. If there are two series of brackets, this is a 2-dimensional

array.

* "unsigned integer" or "integer" both mean an integer greater than zero in the

context of this memoir.

* "double" means, roughly, a decimal number.

* "boolean" is the datatype of a variable that can only take true or false as a

value. In MATLAB, true is represented by 1, and false is represented by 0.

* "function" is a generic datatype for methods, i.e. black boxes getting input

parameters and outputting some results.

Figure 5-7 presents additional MATLAB classes that fall into the composition of a

MATLAB neural network.

135

Figure 5-6: The MATLAB class "Network"

class Network {

unsigned integer numInputs

unsigned integer numLayers

boolean biasConnect [numLayers]
boolean inputConnect [numLayers] [numInputs]
boolean layerConnect [numLayers][numLayers]
boolean outputConnect [numLayers]
boolean targetConnect [numLayers]

unisgned integer numOutputs *

unsigned integer numTargets *

unsigned integer numInputDelays *
unsigned integer numLayerDelays *

function adaptFctn ==> double adaptParam
function initFctn ==> double initParam
function performFctn ==> double performParam
function trainFctn ==> double trainParam

InputSet inputs [numInputs]
Layer layers [numLayers]
OutputSet outputs [numLayers]
TargetSet targets [numLayers]
BiasesSet biases [numLayers]
InputWeightSet inputWeights [numLayers] [numInputs]
LayerWeightSet layerWeights [numLayers][numLayers]

doubleMatrix IW [numLayers][numlnputs]
doubleMatrix LW [numLayers][numLayers]
doubleVector b [numLayers]

}

136

Figure 5-7: Additional MATLAB classes

class BiasesSet {

integer size
function initFctn
boolean learn
function learnFctn

}

class LayerWeightSet {

integer delays []
function initFctn
boolean learn
function learnFctn
integer size [2]
function weightFctn

}

137

class TargetSet {

integer size

}

class InputSet {

integer size
integer range [size] [2]

}

class OutputSet {

integer size

class Layer {

integer size
integer dimensions [2 or 3]
function distanceFctn
function initFctn
function netlnputFctn
function topologyFctn
function transferFctn

}I

class InputWeightSet

integer delays []
function initFctn
boolean learn
function learnFctn
integer size [2]
function weightFctn

}

Before explaining these various classes, some insights about how complex a neural

network can be are gained. Figure 5-8 gives an idea of a quite complicated piece of

network that can be built using the MATLAB Toolbox.

Figure 5-8: A complicated example of MATLAB network

Inputs

P 1

Layers 1 and 2 Layers 3 Outputs

As can be seen:

* An artificial neural network can have several input sets. These may be linked

to different layers in the network.

" Each layer may or may not have a set of biases.

" There can be zero of many feedback loops in the network.

" Some of these feedback loops may involve what is called "Taped Delay Lines

(TDL)." Basically, the delay is the amount of time between the moment an

138

output is collected and the moment it is put back into the network. The greater

the delay, the later the network is fed back with the output.

* There can be more than one set of output values. Accordingly, there can be

more than one set of target values for a neural network.

Because an artificial neural network can be so complex, its theoretical representation

is not an easy task. This is why the MATLAB implementation of artificial neural

networks requires the use of all the above classes, whose description is given below:

class InputSet This class gathers the properties (not the values) of a set of inputs

to the network. These properties are:

" The size of this input set, namely, the number of input values.

" The ranges of each input value, given by a size x 2 array of doubles. The

two values in each row of the array represent the lower and upper limits

of the range of the associated input value.

class Layer This class gathers the properties of a network layer. These properties

are:

" The number of neurons in this layer, given by the variable size.

* The physical dimensions, i.e. the number of neurons along the x, y, and z

axis in a 3-dimension space. This property is represented by an array of 3

integers, each integer representing the number of neurons along one axis.

" The function used to calculate distances between neurons in the layer (dis-

tanceFctn). These last two properties concern specific networks that won't

be used in this study.

" The function (initFctn) used to initialize the bias values and weights of

these layer. This function only calls, in its way though, the initFctn of all

its bias sets and weight sets.

* The function (netlnputFctn) used to compute the net input of each neuron

in this layer.

139

" The function used to calculate a neuron's position given the layer dimen-

sions (topologyFctn).

" The transfer function (transferFctn) of this layer, which is the function used

to compute the output from the net input. MATLAB provides different

possibilities for all three functions (init, netInput, transfer).

class TargetSet and OutputSet These classes bundle up the properties (not the

values) of a set of, respectively, targets and outputs. These properties are:

* The size of this target or output set, namely, the number of target or

output values.

class BiasesSet This class gathers the properties (not the values) of a set of biases

associated with a network layer. These properties are:

" The size of bias set, namely, the number of bias values.

" The function (initFctn) used to initialize these bias values. MATLAB

provides, among others, two interesting initialization functions,namely,

initzero, which initializes all bias values to 0, and rands, which give bi-

ases random values.

" A boolean (learn) whose value tells if these bias values are updated during

the learning process (learn = true) or not (learn = false).

" If learn equals true, then learnFctn describes the function used to update

these bias values. MATLAB also provides an extensive set of learning

function for biases, which are described later in this chapter.

class InputWeightsSet and LayerWeightSet These classes gather the proper-

ties (not the values) of a set of, respectively, input weights and layer weights.

Whereas input weights link an input set to a network layer, layer weights rep-

resent the junction between two network layers. These properties are:

* An array of integers (delays) representing the Tape Delay Line (TDL)

associated with these weights.

140

* The function (initFctn) used to initialize the weights.

" A boolean (learn) whose value tells if these weights are updated during the

learning process (learn = true) or not (learn = false).

" If learn equals true, then learnFctn describes the function used to update

these weights. There are more than ten possible learning function for input

or layer weights.

* The dimensions of the matrix holding the actual weight values. These

dimensions are given by size, an array of two integers.

" The function weightFctn, which is used in the computation of a neuron

net input. Indeed, a neuron net input is composed of the bias and another

element, which depends on this neuron weights and input values. This

other element is the result return by weighFctn.

As the reader may have guessed now, these properties are tightly intertwined with

one another. For instance, the size of an OutputSet is naturally equals to the size

of the corresponding output Layer. When building an artificial neural network with

MATLAB, one only specifies some properties. The others are either deduced from

what is provided, or assigned default values.

In chapter 3, the neural networks used in civil engineering applications were pre-

sented. Given this kind of neural networks, a value can already be assigned to many

properties in each one of the above classes. The network parameters will be initial-

ized randomly, using the 'rands' function. Besides, the net input of each layer is the

sum ('netsum' in class Layer) of the biases and the product ('dotprod' in class In-

putWeightSet and LayerWeightSet) of the inputs with the weights. Figure 5-9 sums

up the choices made so far.

141

Figure 5-9: Initializing MATLAB classes for civil engineering networks

class TargetSet {

integer size = (read only)

class OutputSet {

integer size = (read only)

I

class Layer {

integer size = (read only)
integer dimensions [2 or 3] = (not used)
function distanceFctn = (not used)
function initFctn = 'initwb'
function netlnputFctn = 'netsum'
function topologyFctn = (not used)
function transferFctn = (depends on layer'

}

class InputWeightSet {

integer delays [] = (depends on network)
function initFctn= 'rands'
boolean learn = true
function learnFctn = "

integer size [2] = (read only)
function weightFctn = 'dotprod'

}

class InputSet {

integer size = (depends on network size)

integer range [size] [2] = (use of MATLAB
minmax function)

class BiasesSet {

integer size = (read only)
function initFctn = 'rands'
boolean learn = true
function learnFctn ="

class LayerWeightSet {

integer delays [] = (depends on net.)
function initFctn = 'rands'
boolean learn = true
function learnFctn = "
integer size [2] = (read only)
function weightFctn = 'dotprod'

}

142

Figure 5-6 is now considered again. Many variables in this class are self-explanatory.

numInputs and numLayers give, respectively, the number of inputs and the number

of layers in this network.

The xxxConnect variables describe the connection between inputs, layers, outputs,

biases, and targets.

The following numXXX variables are read-only and cannot therefore be customized.

The following four variables are very important. They hold the different function

that the network is going to use during the simulation process:

" adaptFctn is the function used during sequential training.

* initFctn describes the method used to initialize the network,

e performFctn is the function used to measure the network performance, and

" trainFctn is the function used during batch training, which is the training

method used in the simulation.

Then come the different objects composing a network, along with their own proper-

ties.

Finally, IW, LW, and b hold the values (and not the properties this time) of the

weights and biases of the whole network. MATLAB use matrices of matrices to

store these values.

5.3.2 An Example: Comparing Training Algorithms

This first use of the MATLAB environment is to be linked with section 3.1.2 and sec-

tion 3.1.3 of this thesis, where better alternatives to the traditional back-propagation

algorithm were presented.

In this section 5.3.2, the goal is twofold:

143

1. The MATLAB Neural Network Toolbox is used to create a neural network that

models a straight cantilever beam supporting one force and the force of the

free-end device. The desired network output is the beam tip displacement.

2. To train this neural network, the different training methods presented in sec-

tion 3.1.3 are used, and their speed and efficiency are compared.

When a straight cantilever beam supports one force and the free-end device force, the

displacement of its tip is given by formula 5.30

A l412 6 6 X 1 pgl 2 6 312
u(E + a) + F1X(l - 3 - 2 + E) (5.30)Ea4 5pa2 Ead 3 2 p-t5 Ea2

The program "simulation1" presented in appendix A.1 is a MATLAB snippet of code

that repeatedly calls the MATLAB function "beam" with different training functions.

This function "beam", which is presented in appendix A.2, creates a network that

simulates a beam, and train it with the specified training function. "beam" itself

makes use of functions in the MATLAB Neural Network Toolbox.

As can be seen in the code, the network is provided with 3 inputs, namely, X 1,

F1, and Fd. F1 is supposed to be always negative for sake of simplification. This feed-

forward network is composed of 2 layers. The first one contains 12 neurons with a

sigmoid function as transfer function. The second (output) layer is composed of only

one neuron, with a linear function as transfer function. All parameters of this network

are initialized with random values. The performance of the network is measured by

the error function described in section 3.1.2, called 'mse' in MATLAB. As can be

seen in the code of function "beam," the goal assigned to the network is to get this

error down to 10-6. To do so, the network can make use of one of the nine following

training functions:

traingd which uses gradient descent back-propagation, i.e. the initial back-propagation

algorithm describes in section 3.1.2 .

traingda which uses gradient descent back-propagation with variable learning rate.

traingdm which uses gradient descent back-propagation with momentum.

144

traingdx which combines gradient descent back-propagation with momentum and

variable learning rate. traingda, traingdm, and traingdx have been presented

in section 3.1.3, sub-section "Steepest/Gradient Descent."

trainbfg which uses a specific kind of quasi-Newton back-propagation, whose gen-

eral concept was presented in section 3.1.3, sub-section "Newton's and Quasi-

newton's methods."

traincgb,traincgf, and traincgp which use three different kinds of the same algo-

rithmic concept, namely conjugate gradient back-propagation, an overview of

which was given in section 3.1.3, sub-section "Conjugate Gradient Algorithms"

of this memoir.

trainlm which implements a back-propagation that makes use of the Levenberg-

Marquardt algorithm presented in section 3.1.3, sub-section "The Levenberg-

Marquard Algorithm" of this memoir.

Each run of the "beam" function creates a network trained using a different al-

gorithm. As a result, some training procedures take more time to reach the assigned

goal of 10-6. Table 5.1 compares these different training procedures. In this table,

"NUMBER OF EPOCHS" represents the number of epochs it took the network to

reach the performance goal. A limit of 1, 000 epochs is imposed, to allow the sim-

ulation to run in a reasonable amount of time. When a training procedure could

not make the network reach the goal within 1, 000 epochs, the performance was still

recorded in the column "ERROR REACHED." The column "GOAL MET" simply

assets the network performance from the previous column.

All the values in this table are in fact averages, since the simulation was run 10 times.

In the table above, training methods have been gathered by the algorithm they use.

As can be seen:

* Methods directly improving from the back-propagation algorithm perform poorly.

They take an enormous amount of time or number of epochs to reach a (not

145

Table 5.1: Training Performances

TRAINING NUMBER OF ERROR GOAL
ALGORITHM EPOCHS REACHED MET?

traingd 1,000 6.8e-03 NO
Back-propagation traingda 1,000 5.8e~ 04 NO

improvements traingdm 1,000 8.1e- 03 NO
traingdx 1,000 1.5e-04 NO

Quasi-newton trainbfg 359 9.9e-07 YES

Conjugate traincgb 333 6.6e- 06 NO
Gradient traincgf 258 1.2e- 05 NO

traincgp 398 1.2e-o 5 NO
Lev.- Marquardt trainim 22 9.2e- 07 YES

so low) goal. In the simulations, all these methods could not reach the goal of

10e- 6 they were assigned, and their performance after 1, 000 epochs was about

10e-3. Note that the introduction of a variable learning rate or momentum does

not do much.

" The quasi-newton method used in these simulations performed quite well, since,

on average, it reached the goal of 10e- 6 after 359 epochs.

* The behavior of the conjugate gradient methods was different in these simula-

tions. On average, they did not manage to reach the assigned goal, not because

the number of epochs was too small, but because the algorithm could not reduce

the error any more after about 300 epochs. 1.2e- 5 or 6.6e- 6 were the minimum

error that these methods were able to reach. Note that these are not far from

the required goal of 10e- 6 though.

" The Levenberg-Marquardt algorithm is, from far, the best algorithm to train

this kind of feed-forward network, since it results in the fastest and most precise

training procedure.

This series of simulation shows what a breakthrough the introduction of the

Levenberg-Marquardt algorithm was in the field of neural network training. In the

simulations, it cut the required number of training epochs from 359 (if one chooses

146

the next successful method) to 22. This is why, in the remaining simulations of this

memoir, in section 5.4.3, "trainlm" is used extensively.

5.4 Control scheme and Simulations

5.4.1 Real model

It is now time to implement a real control scheme using an artificial neural network.

Imagine one span of a cable-stayed bridge as represented by figure 5-10. Consider

Figure 5-10: A cable-stayed bridge

now one of the horizontal slabs supported by the cables. Two kinds of forces influence

the position of this slab:

" upward forces, exerted by the cables. The position of these forces is constant,

but their amplitude is not, since the wind, the rain, or some other weather

conditions can make the cables sway, and therefore, can increase or decrease

the tension they exert.

" downward forces, exerted by the cars or trucks driving on the bridge. The forces

147

have a constant amplitude, as the mass of a car is constant, but their position

changes rapidly.

Consider the very simple model presented by Figure 5-11: The numerous slabs com-

Figure 5-11: Model of a cable-stayed bridge

A A A

V
CABLES

CARS

posing the horizontal element of a bridge are so tightened together that the whole set

of slabs is usually considered as one single beam. Therefore, the model in Figure 5-11

can be useful in the study of cable-stayed bridges.

Now, if sensors are provided to monitor the different loads on the bridge, and

actuators, to move the slab tip up or down, one wants a device that controls these

actuators from the information collected by the sensors. The hypothesis is made

that this device can be a neuro-controller, and such a controller is built in the next

paragraph.

5.4.2 Neurocontrol scheme

The closed-loop control scheme developed in section 4.3.3 is chosen. As a result (see

Figure 5-12):

148

" First, a neural network that models a concrete beam supporting the kind of loads

described in the previous section is built. A 2-layer feed-forward network should

do the job, as it has been seen that such networks, trained by the Levenberg-

Marquardt algorithm, can reach good performances. This model network is

created in the first part of the code presented in appendix B.2.

" Then, a 4-layer network is created. The first two layers of this network are

the ones to be trained. The last 2 layers are filled in using the model network

parameters and will not changed during the training process. The inputs to

this total network are the loads and their positions on the beam. Its output

is the displacement of the controlled cantilever beam, which is targeted at 0.

The back-propagation of the training error represents the feedback part of the

closed-loop control scheme.

* Once the training is over, the first two layers of the previous 4-layer network

are transferred in a 2-layer controller network, which is now a controlling device

for the cantilever beam.

" This controlling device can finally be tested by inputing loads to the controlled

beam, and see how the beam reacts. This is done in the last part of the program

in appendix B.2

5.4.3 Simulation and Results

The program "simulation2" in appendix B.1 performs the aforementioned simulations.

It calls the MATLAB function "beam-control()" several times and records its output.

This latter function simulates the entire process of building a control scheme, from the

model network creation to the control network testing. Note that the different loads

and their positions, as declared in the first few lines of the code for "beam-control(),"

match the influences of cables and cars on the beam. After the control network

testing, the "beam-control()" function returns the minimum and maximum values of

149

Figure 5-12: The control scheme

1) THE MODEL NETWORK

>LE

.4

2) THE CONTROL SCHEME (TOTAL NETWORK)

Last 2 layers = model network
(not trained)

I
First 2 layers (trained) - --- - - ----- -- ------ - - --- ---- -

Training error is back-propagated to first 2 layers
feedback of the closed-loop control scheme

3) THE CONTROL NETWORK
I

X2

F3

150

Fl
xi
F2
X2
F3

Fl
xi
F2
X2
F3
X3

??Targets

I X31

[Fd]

the tip displacement of the controlled beam. Program "simulation2" records these

minimum and maximum values for each run of the "beam-control()" function.

In other words, each run of the beam-control() function creates and customizes

a new randomly-initialized neural network. The control efficiency of the latter is

then tested by inputting some loads and positions, and by getting the corresponding

tip displacements. "simulation2" records the minimum and maximum among these

controlled tip displacements.

The output of the program "simulation2" was the following:

Table 5.2: Minimum and maximum values of the beam tip displacement

RUN MINIMUM VALUE MAXIMUM VALUE
1 -0.014 0.024
2 -0.016 0.022
3 -0.024 0.013
4 -0.021 0.017
5 -0.027 0.014
6 -0.027 0.018
7 -0.023 0.021
8 -0.007 0.015
9 -0.011 0.008
10 -0.022 0.003

AVERAGE -0.019 0.016

As can be seen in table 5.2, the control network now manages to keep the beam

tip not farther than 2 centimeters from the horizontal line. Considering the length of

the simulated beam, namely, 5 meters, it can be deduced than this neurocontroller

does a very good job.

5.4.4 Discussion

The previous simulations confirmed that artificial neural networks can be used to

control a simple element of structure. However, there is already a plethora of con-

trollers out there that can perform this same task, and their architecture is not based

on neural networks. So, what is the advantage of neurocontroller upon those ?

151

The key advantage of neurocontroller is adaptability.

Indeed, every structure is by essence a mutable edifice. Year after year, materials

composing the structure deteriorate and their properties change. Under the influence

of creep for instance, even the dimensions of the structure can be altered. Standard

controllers can not compensate for these deteriorations and the risk is that they

become out-of-date, and do not control the structure for which they were designed

any more. What structures need is a "self-adaptive" controller, one that alters its

parameters to finely tune the control action to the structure condition.

The idea is not far that neural-networks could be used successfully to build this

kind of controllers. To see why, consider the simple example of the cantilever beam.

The flow of signals in the monitoring process of the beam is the following: sensors

connected to the beam transmit a picture of the structure condition to the controller.

If necessary, the controller chooses a course of action to correct this condition. This

is characterized by a flow of signals sent by the controller to some actuators having

an influence on the structure.

It is not far-fetched to think of the following process. If one adds a sensor that

measures the position of the beam tip in relation to the designed position of equi-

librium, the neurocontroller now has the possibility to evaluate its own performance.

One can now imagine that if this performance is not within a pre-designed range for a

specified number of controlling cycles, the neurocontroller switches to learning mode.

In other words, the neurocontroller now adapts its parameters during each controlling

cycle. Given the performance of the Levenberg-Marquardt algorithm highlighted in

previous sections, this update could be very fast. Then, when the error reaches again

an acceptable level for a specified number of controlling cycles, the controller could

switch back to control-only mode.

As a result, the implementation of a neurocontroller would be done along the

following pattern:

1. An artificial neural network is build and trained to simulate the beam.

2. Another network is randomly initialized and connected to the former to act as

152

a controller.

3. This second network is switched to learning-mode for the first time, so that it

learns how to control a perfect beam.

4. Then the control network is connected to the real beam, and some error range

and re-learning period numbers are plugged into its memory.

5. Time goes by. The controller works well.

6. Eventually the beam deteriorates so much that the neurocontroller switches

back to learning mode to get a clearer picture of the controlled element.

7. This process is repeated several times throughout the life of the structure.

However, this process is not entirely safe. What if the neural network, which

has just switched back to learning mode, cannot meet its acceptable performance

objective ? It is highly likely that some controllers could end up looking for a picture

of the structure so far from the real one that their actions could endanger the latter.

From this point of view, artificial neural networks represent a promising concept, but

the idea that they can be routed leads to scary conclusions.

153

Chapter 6

Conclusion

As stated in the introduction, the goals of this thesis were to provide a description of

the field of artificial neural networks appropriate for the civil engineering audience,

and, to demonstrate that such networks can be used to control a simple structural

system.

As presented in chapter 2, the fundamental definition attached to artificial neural

networks is that they are signal processing units with the ability to be trained and to

learn in order to adapt to their environment. Moreover, chapter 3 highlighted that

fully-connected feed-forward networks, the kind of networks most likely to be used

within the civil engineering community, can have their efficiency improved by several

ways, i.e (1) better training algorithms, (2) some input data pre-processing, and (3)

a number of neurons that can evolve during the training phase.

New control devices require new control theories, one of which, the closed-loop

neurocontrol method, was introduced in chapter 4 and used in the simulations of

chapter 5.

In the latter chapter, the study of a cantilever beam supporting fluctuating loads

emphasized the superiority of the Levenberg-Marquardt algorithm over the other ex-

isting training methods. In the simulations performed in this thesis, this algorithm

cut the number of training cycles on average by a factor of 45, and allows neural net-

work scientists to consider the idea of "instant learning." After presenting simulations

which demonstrate that a simple element of structure can theoretically be controlled

154

by a neurocontroller, chapter 5 proposes the idea of "self-adaptive" controller, which

would certainly be an interesting direction for further research.

155

Appendix A

Simulating a Beam Using Different

Training Algorithms

A.1 The "simulation1" MATLAB program

%% This program calls function BEAMO several times with different

%% training functions. It stores the result of each simualtion in

%% files called simulation results_X, where X is a number.

nbOfTrainFunc 9 ;

nbOfTraining = 10;

records{1,1} =

records{1,2} =

records{1,3} =

records{

records{

records{

records{

records{

records{

records{

2,1}

3,1}

4,1}

5,1}

6,1}

7,1}

8,1}

'TRAINING FUNCTION';

'AVER. EPOCH NB';

'AVER. PERF'

'traingd ';

'traingda'

'traingdm'

'traingdx'

'trainbfg'

'traincgb'

'traincgf'

10

156

records{ 9,1}= 'traincgp'

records{10,1} = 'trainlm ' 20

for i=2:(nbOfTrainFunc+1)

for j=2:3

records{i,j} = 0

end

end

i = 0;

name = ['simulationresults_' , char(i+48)]

fid = fopen(name , 'w'); 30

fprintf(fid, '%s\tYs\t\tYs\n',records{1,1} ,records{ 1,2},records{1,3});

for 1=2:10

fprintf(fid, 'Xs\t\tf \t\te\n' ,records{l,1},records{l,2} ,records{l,3});

end

fclose(fid);

for i=1:nbOfTraining

name = ['simulationresults_', char(i+48)]

for j=2:(nbOfTrainFunc+1) 40

temp = beam(records{j,1}

records{j,2} = ((i - 1)*records{j,2} + temp(1))/i

records{j,3} = ((i-1)*records{j,3} + temp(2))/i

fid = fopen(name , 'w');

fprintf(fid, 'X s\ts\t\ts\n' ,records{1,1 },records{1 ,2},records{1,3});

for 1=2:10

fprintf(fid, '%s\t\tf\t\te\n' ,records{l,1} ,records{l,2},records{l,3});

end

fclose(fid);

end 50

end

157

A.2 The "beam" MATLAB function

function perf = beam(trainFunc)

% BEAM Simulates a beam using specified training function

% BEAM('trainFunction') builds a feed-forward neural network

% that simulates a beam. The network is trained using trainFunc.

%%%%%%%%%%%%%%%%%%%% creating the data

rho = 2500;

g = 9.81

nu = 0.2; 10

E= 35000000000;

mu = E/(2*(1+nu));

I= 5 ;

a= 0.2;

F1 = 10000 * rand(1,4000);

X1= 1 * rand(1,4000);

Fd = 10000 * rand(1,4000);

inputs = [Fl ; X1; Fd];

20

%%%%%%%%%%%%%%%%%%%% computing targets

u = Fd*l*((4*l^2)/(E*a^4)+(6)/(5*mu*a^2))+(6/E/a^4)*F1.*(X1.^2).*(1-X1/3)...

-rho*g*1^2/2*((6/(mu*5))+(3*1^2)/(E*a^2));

%%%%%%%%%%%%%%%%%%%% data pre-processing

% mean and stand. dev.

[inputs1,meaninputs1,stdinputs1,ul ,meanul ,stdul] = prestd(inputs,u)

%min and max 30

[inputs2,mininputs1,maxinputs1,u2,minul,maxul] = premnmx(inputs 1 ,u 1);

%%%%%%%%%%%%%%%%%%%% network creation

158

% 1st number of inputs

% 2nd number of layers

beam = network(1,2) ;

%%%%%%%%%%%%%%%%%%%% network customization

40

beam.biasConnect = [1;1]

beam.inputConnect = [1;0]

beam.layer Connect = [0 0;1 0];

beam.outputConnect = [0 1];

beam.targetConnect = [0 1];

beam.inputs{ 1 }.range = minmax(inputs2);

beam.inputs{1}.size = 3

beam.layers{1}.size 12 ; 50

beam.layers{1}.initFcn = ' initwb'

beam.layers{1 }.netInputFcn = 'net sum'

beam.layers{1}.transferFcn = 'tansig'

beam.layers{2}.size = 1 ;

beam.layers{2}.initFcn = ' initwb'

beam.layers{2}.netlnputFcn = 'net sum'

beam.layers{2}.transferFcn = 'purelin'

beam.biases{ 1 } .initFcn = 'rands' 60

beam.biases{1}.learn = 1;

beam.biases{1}.learnFcn =

beam.biases{2}.initFcn = 'rands'

beam.biases{2}.learn = 1

beam.biases{2}.learnFcn =

beam.inputWeights{ 1 }.initFcn = 'rands

beam.inputWeights{1 } .learn = 1;

beam.inputWeights{1}.learnFcn = '' 70

159

beam.inputWeights{ 1 } .weightFcn = 'dotprod'

beam.layerWeights{2}.initFcn = 'rands'

beam.layerWeights{2}.learn = 1;

beam.layerWeights{2}.learnFcn =

beam.layerWeights{2} .weightFcn = 'dotprod'

beam.adaptFcn =

beam.initFcn = ' initlay'

beam.performFcn = 'mse'

beam.trainFcn = trainFunc;

80

90

beam.trainParam.epochs = 1000;

beam.trainParam.goal le-6;

beam.trainParam.show 30;

%%%%%%%%%%%%%%%%%%%% network initialization

beam = init(beam)

%%%%%%%%%%%%%%%%%%%% network training

figure(1)

[beam,records] = train(beam, inputs2, u2)

perf(1) = records.epoch(size(records.epoch,2));

perf(2) = records.perf (size(records.perf ,2));

%%%%%%%%%%%%%%%%%%%% network simulation

100

results2 = sim(beam, inputs2) ;

%%%%%%%%%%%%%%%%%%%% data post-processing

results1 = postmnmx(results2 ,minu lmaxu 1);

results = poststd (results 1,meanul,stdul);

160

%%%%%%%%%%%%%%%%%%%% post-training analysis

figure(1) 110

[m,b,r] = postreg(results,u);

161

Appendix B

Control Scheme for a Cantilever

Beam

B.1 The "simulation2" MATLAB program

%% This program calls function BEAMCONTROL() ten times.

%% Each time, the output of BEAM CONTROL() is appended to

%% the file simulation2_results.

for i=1:10

temp = beamcontrol;

fid= fopen('simulation2_results' , 'a');

fprintf(fid, '%f \tf \n', temp(1), temp(2));

fclose(fid);

end 10

162

B.2 The "beam-control" MATLAB function

function stats = beamcontrol

% BEAMCONTROL first creates a model network that simulates

a beam supporting fluctuating loads. Then, it incorporates

% this model network into a total network implementing the

% closed-loop control scheme. This total network is trained,

% so that its controlling part now constitutes a control

% network for the beam. Finally, the system {controller +beam}

% is tested to see wether the controller really manages to keep

% the beam stable. MINMAX is an array of 2 doubles, representing

% the min and max of the tip displacement of the beam under the 10

% influence of the control network.

echo off ;

format long g

clear

c;

%%%%%%%%%%%%%%%%%%%%%%% CREATING THE DATA

%% The beam

g 9.81; 20

1 =5;

a=0.2;

rho 2500;

nu = 0.2 ;

E 35000

mu = 35000/(2*(1+nu));

%% The loads

t = [0:1:600] ; % 10mn of sinusoidal movement

30

F1 - 10000*sin(t)+1;

X1 =1 ;

F2 - 10000*sin(t+pi/4)+1;

X2 2 ;

163

F3 = 10000*sin(t+pi/2)+1;

X3 = 3;

F4 = 10000*sin(t+3*pi/4);

X4 = 4 ;

F5 = - 10000; 40

X5 = 1/2 *(1+sin(t));

F6 = - 10000 ;

X6 = 1/2 *(1+cos(t));

input = [F1;F2;F3;F4;X5;X6];

%% MODEL NETWORK 50

%%%%%%%%%%%%%%%%%% Data creation

Fd = -10000 + 20000 * rand(1,size(t,2));

u = Fd*l*((4*1^2)/(E*a^4)+6/(5*mu*a^2))- rho*g*1^2/2*(6/(5*mu)+(3*1^2)/(E*a^2))

u = u + 6/(E*a^4)*(F1*X1^2*(1-X1/3) + F2*X2^2*(1-X2/3) + F3*X3^2*(1-X3/3)); 60

u = u + 6/(E*a^4)*(F4*X4^2*(1-X4/3) + F5*X5.^2.*(1-X5/3) + F6*X6.^2.*(1-X6/3));

inputToMod = [input ; Fd] ;

%%%%%%%%%%%%%%%%%%% Data pre-processing

[inputToMod1,meanlnputToModl,stdlnputToModl] = prestd(inputToMod);

[inputToMod2,minlnputToModl,maxlnputToModl] = premnmx(inputToModl);

[ul,meanul,stdul] = prestd(u); 70

164

[u2,minul,maxul] = premnmx(ul);

%%%%%%%%%%%%%%%%%%%% network creation

modnet = network(1,2) ;

%%%%%%%%%%%%%%%%%%%% network customization

modnet.biasConnect = [1;1] ;

modnet.inputConnect = [1;0] ; 80

mod net.layerConnect = [0 0;1 0];

modnet.outputConnect = [0 1];

mod-net.targetConnect = [0 1];

mod_net.inputs{ 11.range = minmax(inputToMod2);

modnet.inputs{1}.size = 7

modnet.layers{1}.size = 12

modnet.layers{1}.initFcn = ' initwb'

modnet.layers{ 1} .netInputFen = 'net sum' ; 90

modnet.layers{1}.transferFcn = 'tansig'

mod_net.layers{2}.size = 1 ;

modnet.layers{2}.initFcn = ' initwb'

mod net.layers{2}.netInputFcn = 'net sum'

mod_net.layers{2}.transferFcn = 'purelin'

modnet.biases{1}.initFcn = 'rands'

modnet.biases{1}.learn =1

modnet.biases{1}.learnFcn = ' ' ; 100

modnet.biases{2}.initFcn = 'rands'

modnet.biases{2}.learn = 1

modnet.biases{2}.learnFcn = ''

modnet.inputWeights{ 1} .initFcn = 'rands'

165

modnet.inputWeights{1}.learn = 1;

modnet.inputWeights{1}.lcarnFcn =

modnet.inputWeights{1}.weightFcn 'dotprod'

110

modnet.layerWeights{2}.initFcn = 'rands'

modnet.layerWeights{2}.learn = 1;

modnet.layerWeights{2}.learnFcn =

modnet.layerWeights{2}.weightFcn = 'dotprod'

modnet.adaptFcn = ' ;

modnet.initFcn = ' initlay;

mod net.performFcn = 'mse'

modnet.trainFcn = 'trainlm'

120

modnet.trainParam.epochs = 1000

modnet.trainParam.goal le-6

modnet.trainParam.show 5

%%%%%%%%%%%%%%%%%%%% network initialization

modnet = init(modnet)

%%%%%%%%%%%%%%%%%%%% network training

130

figure(1)

modnet = train(mod-net, inputToMod2, u2)

%% TOTAL NETWORK

140

%%%%%%%%%%%%%%%%%% Data creation

166

targets = zeros(1,size(t,2));

%%%%%%%%%%%%%%%%%%% Data pre-processing

[input 1,meanInput1 ,stdInput1] prestd(input);

[input2,minlnput1,maxInput1] premnmx(input1);

150

%%%%%%%%%%%%%%%%%%%% network creation

totnet = network(1,4)

%%%%%%%%%%%%%%%%%%%% network customization

totnet.biasConnect = [1;1;1;1]

tot_net.inputConnect [1;0;1;0]

tot_net.layerConnect = [0 0 0 0;1 0 0 0;0 1 0 0;0 0 1 0];

tot_net.outputConnect [0 0 0 1]; 160

totnet.targetConnect [0 0 0 1];

tot_net.inputs{ 1 .range = minmax(input2);

tot_net.inputs{1}.size 6

tot_net.layers{1}.size 12

tot_net.layers{1}.initFcn = ' initwb'

tot_net.layers{1}.netInputFcn = 'netsum'

tot_net.layers{1}.transferFcn = 'tansig'

170

totnet.layers{2}.size = 1;

tot_net.layers{2}.initFcn = 'initwb'

totnet.layers{2} .netlnputFen = 'netsum'

totnet.layers {2} .transferFcn = 'purelin'

totnet.layers{3}.size = 12 ;

totnet.layers{3}.initFcn = ' initwb'

totnet.layers{3} .netInputFcn = 'netsum'

167

tot-net.layers{3} .transferFcn = 'tansig'

180

tot-net.layers{4}.size = 1;

tot net.layers{4}.initFcn = 'initwb'

tot net.layers{4}.netlnputFcn = 'netsum'

tot-net.layers{4} .transferFcn = 'purelin'

totnet.biases{1}.initFcn = 'rands;

totnet.biases{1}.learn = 1;

totnet.biases{1}.learnFcn

190

totnet.biases{2}.initFcn = 'rands'

totnet.biases{2}.learn = 1

totnet.biases{2}.learnFcn =

totnet.biases{3}.initFcn = '

totnet.biases{3}.learn = 0

totnet.biases{3}.learnFcn =

tot net.b{3} = mod-net.b{1}

200

totnet.biases{4}.initFcn =

totnet.biases{4}.learn = 0

totnet.biases{4}.learnFcn =

tot net.b{4} = mod-net.b{2}

totnet.inputWeights{1,1}.initFcn = 'rands'

totnet.inputWeights{1,1}.learn = 1

tot-net.inputWeights{1,1}.learnFcn =

totnet.inputWeights{1,1}.weightFcn = 'dotprod' ; 210

totnet.inputWeights{1,1}.delays = [0 1 2];

totnet.inputWeights{3,1}.initFcn = I ' ;

168

totnet.inputWeights{3,1}.learn = 0

totnet.inputWeights{3,1}.learnFcn =

totnet.inputWeights{3,1 }.weightFcn = 'dotprod'

totnet.IW{3,1} = mod-net.IW{1,1}(:,1:6);

220

totnet.layerWeights{2,1}.initFcn = 'rands;

totnet.layerWeights{2,1}.learn = 1

totnet.layerWeights{2,1}.learnFcn =

totnet.layerWeights{2,1}.weightFcn = 'dotprod'

totnet.layerWeights{3,2}.initFcn =

tot net.layerWeights{3,2}.learn = 0

totnet.layerWeights{3,2}.learnFcn =

totnet.layerWeights{3,2}.weightFcn = 'dotprod'

230

totnet.LW{3,2} = mod-net.IW{1,1}(:,7);

totnet.layerWeights{4,3}.initFcn =

totnet.layerWeights{4,3}.learn = 0

totnet.layerWeights{4,3}.learnFcn = ;

tot_net.layerWeights{4,3}.weightFcn = 'dotprod'

totnet.LW{4,3} mod net.LW{2,1}

tot_net.adaptFcn = ' ; 240

totnet.initFcn = 'initlay'

tot_net.performFcn = 'mse '

totnet.trainFcn = 'trainlm'

totnet.trainParam.epochs = 1000

totnet.trainParam.goal = le-6

totnet.trainParam.show = 5 ;

%%%%%%%%%%%%%%%%%%%% network initialization

250

169

totnet = init(tot-net)

%%%%%%%%%%%%%%%%%%%% network training

figure(1)

totnet = train(totnet, input2, targets)

%%%%000%%%%%%%%%%%%%%%%%%%%

%0% 260

%% CONTROL NETWORK

%%%%%%%%%%%%%%%%%%%% network creation

contnet = network(1,2) ;

%%%%%%%%%%%%%%%%%%%% network customization 270

contnet.biasConnect = [1;1] ;

contnet.inputConnect = [1;0]

contnet.layerConnect [0 0;1 0];

contnet.outputConnect = [0 1];

contnet.targetConnect = [0 1];

contnet.inputs{ 1 .range = minmax(input2);

contnet.inputs{1}.size = 6

280

contnet.layers{1}.size = 12

contnet.layers{1}.initFcn = ' initwb'

contnet.layers{1}.netInputFcn = 'netsum'

contnet.layers{1}.transferFcn = 'tansig'

contnet.layers{2}.size = 1 ;

170

cont_net.layers{2}.initFcn = ' initwb' ;

cont-net.layers {2}. netlnputFcn = 'net sum'

contnet.layers{2} .transferFcn = 'purelin'

290

contnet.biases{1}.initFcn =

contnet.biases{1}.learn = 0

contnet.biases{1}.learnFcn =

cont-net.b{1} = totnet.b{1}

contnet.biases{2}.initFcn =

contnet.biases{2}.learn = 0

contnet.biases{2}.learnFcn =

300

cont-net.b{2} = totnet.b{2}

contnet.inputWeights{1}.initFcn =

contnet.inputWeights{1}.learn = 0

contnet.inputWeights{1}.learnFcn =

cont-net.inputWeights{1}.weightFcn 'dotprod'

cont-net.IW{1,1} = totnet.IW{1,1}(:,1:6)

cont-net.layerWeights{2}.initFcn = '' ; 310

cont_net.layerWeights{2}.learn = 0

cont-net.layerWeights{2}.learnFcn

contnet.layerWeights{2}.weightFen = 'dotprod'

contnet.LW{2,1} = tot net.LW{2,1}

%% NETWORK SIMULATION 320

%% AND FINAL CHECK

171

%%%%%%%%%%%%%%%%%%%% network simulation

result2 = sim(contnet , input2) ;

result1 = postmnmx(result2,minInputToModl(7,1),maxInputToModl(7,1)); 330

result = poststd(result1 ,meanInputToMod1 (7,1),stdlnputToMod1 (7,1));

inputToMod = [input;result] ;

[inputToMod1,meanlnputToModl,stdlnputToModl] prestd(inputToMod);

[input ToMod2,minInputToMod1 ,maxInputToMod1] = premnmx(inputToModl);

result = sim(mod-net , inputToMod2) ;

%%%%%%%%%%%%%%%%%%%% final check 340

stats(1) = min(result);

stats(2) = max(result);

172

Bibliography

[1] DARPA. Neural network study. Technical report, MIT Lincoln Laboratory,

1988.

[2] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,

1999.

[3] A. Nigrin. Neural Networks for Pattern Recognition. Cambridge, MA: the MIT

Press, 1993.

[4] J. Zurada. Introduction to Artificial Neural Systems. PWS Publishing Company,

1992.

[5] J.M. Mendel and R.W. McLaren. Reinforcement-learning control and pattern

recognition systems. In J.M. Mendel and K.S. Fu, editors, Adaptive, Learning,

and Pattern Recognition Systems: Theory and Applications, volume 66, pages

287-318. New York: Academic Press, 1970.

[6] D.C. Dracopoulos. Evolutionary Learning Algorithms for Neural Adaptive Con-

trol. Springer, 1997.

[7] Tomas Hrycej. Neurocontrol: Towards an Industrial Control Methodology. Wiley-

Interscience, 1997.

[8] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-

sity Press, 1996.

[9] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford:New

York:Clarendon Press; Oxford University Press, 1995.

173

[10] http://glimpse.cs.arizona.edu/japan/kahaner.reports/fuzzy-ds.91.

[11] http://www.eng.usf.edu/ slaven/thesisbody.html.

[12] http://www.strainmonitor.com/text/exec.html.

[131 James F. Brule. http://life.csu.edu.au/complex/tutorials/fuzzy.html.

[14] D. Nguyen and B.Widrow. Improving the learning speed of 2-layer neural net-

works by choosing initial values of the adaptive weights. In Proceedings of the

International Joint Conference on Neural Networks, volume 3, pages 21-26, 1990.

[15] W.H. Pitts W.S. McCulloch. A logical calculus of ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[16 D. 0. Hebb. The organization of behavior. New York: Wiley, 49.

[17] M. Menhaj M.T. Hagan. Training feedforward networks with the marquardt

algorithm. IEEE Transactions on Neural Networks, 5(6):989-993, 1994.

[18] J.L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

[19] Robert J. Marks Russell D. Reed. Neural smithing: supervised learning in feed-

forward artificial neural networks. Cambridge, Mass. : The MIT Press, 1999.

[20] F. Rosenblatt. Principles of Neurodynamics. Washington DC: Spartan Press,

1961.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. Parallel Data Processing, 1:318-362, 1986.

[22] D. E. Rumelhart, J.L. McClelland, and the PDP Research Group. Parallel Dis-

tributed Processing, volume 1 and 2. Cambridge, MA: The MIT Press, 1986.

174

