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ABSTRACT

This thesis develops a theory of target detection and classification from physics-based Syn-

thetic Aperture Radar (SAR) signatures. The intermediate-frequency (IF) signal model

consists of the return from a single or multiple-component target embedded in the clutter

return from a random rough-surface reflector plus white Gaussian receiver noise. The target-

return and clutter-return models are developed from electromagnetic theory. The modes of

radar operation considered are stripmap and spotlight SARs. For a single-component target,

we present adaptive-resolution processors created by varying the processing durations of the

conventional chirp-compression stripmap-mode SAR processor and the conventional polar-

formatting spotlight-mode SAR processor. We also develop the likelihood-ratio (optimum

whitening-filter) target detectors for both stripmap- and spotlight-mode raw radar-return

data. The Neyman-Pearson target-detection performance of the adaptive-resolution pro-

cessors and the whitening-filter processors are compared. The signal and processor models

for the single-component target are extended to multi-component targets. Likelihood-ratio

detectors, sub-optimum detectors, generalized likelihood-ratio detectors, and approximate

generalized likelihood-ratio detectors are constructed respectively, for the detection of multi-

component targets with random phases, positions, amplitudes, and target pose. Approxi-

mate methods are proposed to calculate the receiver operating characteristics of these detec-

tion problems. The multi-component target detection performances for the whitening-filter

processors and the conventional SAR processors are compared. Based on the theories and

results from the study of SAR target detection problems, we present a preliminary perfor-

mance analysis for the multi-component target classification problem.

Thesis Supervisor: Jeffrey H. Shapiro

Title: Julius A. Stratton Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

Radar has been a powerful sensor technology for both military and non-military purposes

such as reconnaissance, remote sensing, positioning and navigation. The basic principle of

radar is as follows. An electromagnetic wave propagates from the radar's transmitter to a

distant object, where it is scattered and part of the wave propagates back to the radar's

receiver. At the receiver, the returned waveform is processed to obtain information about

the object such as its location, geometry, velocity, and composition.

The precision with which an object's position can be identified is restricted by radar

resolution. For a diffraction-limited antenna, the spatial (cross-range) resolution is AcL/a,

where Ac is the carrier wavelength of the electromagnetic waveform, L is the target range,

and a is the radius of the antenna aperture. For a pulsed radar, its range resolution is c/4W,

where c is the speed of light, and W is the pulse bandwidth (W = 1/2T for a transform-

limited pulse of duration T). To improve the range resolution, a typical method is to increase

the bandwidth of the transmitted pulse by modulating it with a frequency chirp [1-3]. To

enhance the cross-range resolution, two approaches could be adopted: operating at shorter

wavelengths, e.g. using a laser radar [4] in lieu of a microwave radar, or increasing the size

of the "equivalent" antenna aperture via signal processing. The latter technique, known as

Synthetic Aperture Radar (SAR) [5][6], is the subject area of this thesis.

The basic principle of synthetic aperture radar is to record the complete phase history

of return signals as the radar antenna is moved along a predetermined path. Using the

precise information about the radar antenna's path, the recorded phase history of return
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signals is then coherently processed to produce a radar image with higher resolution than

could otherwise be obtained. In this sense, the equivalent "synthetic" antenna aperture is the

space the physical aperture sweeps out during the processing duration of the complete phase

history. A SAR can be interpreted either as a radar system with a phased-array antenna

or as a radar system in which the radar return contains a frequency chirp along the cross-

range direction due to its time-dependent propagation delay [5]. From both perspectives,

the enhanced spatial resolution is obtained via appropriate signal processing.

1.2 Related Work and Motivation

In recent years SAR has been used in detection and discrimination of man-made targets

from natural background. A SAR-based Automated Target Recognition (ATR) system

requires a fast and effective discriminator to suppress a vast amount of natural clutter, to

detect the presence of a target, and to classify the type of target from its radar return [7].

Such a system relies on models for the different components of the radar return, namely, the

returns from (different types of) artificial targets, natural clutter, and background noise. One

typical approach is to model the target return as a parametrized deterministic signal pattern,

and the clutter and noise as stochastic processes characterized by their statistics. In [8], the

clutter and noise are modeled as Gaussian random processes with given covariance matrices,

and the target return is modeled as a pre-specified spatio-temporal pattern multiplied by

complex-amplitude parameters. In [9], the target return is composed of the contributions

from several scattering centers. Each scattering-center component contains an amplitude

and phase which are determined by the radar's carrier frequency and look angle plus the

scattering centers' positions. The unwanted part of the radar return, i.e. the noise, is

assumed to be a white-Gaussian process. In [10], the target signal is taken to be a Gaussian

intensity function, the clutter a sinusoid with random phase, and the noise a Gaussian

process.
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Another approach for radar-signal modeling is to assume that the target return and the

unwanted part (clutter plus noise) are random processes characterized by different statistics.

In [11], the target return consisted of a deterministic part and a random part, with the latter

coming from scattering-amplitude and scattering-center uncertainties. In [12], the radar

signal is a target return multiplied by an uncorrelated speckle noise; the covariance matrices

of the target return and the speckle noise are estimated by principal-component analysis.

This approach also implies that different clutter types have different statistics. The work in

[13] models the full polarimetric radar clutter as a product of a gamma-distributed textural

variable and a Gaussian random vector whose covariance matrix is determined empirically.

The numerical values for the covariance-matrix elements calculated from real SAR data are

different for trees, shadows, grass, and mixed scrub.

The approaches mentioned above can also be applied to multiple radar images, i.e. to

images of the same scene obtained from different sensors and/or at different resolutions.

The signal model in [14] is similar to that in [8] except that an image point is a vector

whose components represent sensor data collected at different bandwidths. In [15] and

[16], radar images at different resolutions are modeled as Markov random fields, and the

parameter values in their statistical models are used as a basis for classification or texture

segmentation.

Recent studies on multiresolution radar images have revealed a promising potential for

solving target identification problems. The work in [17] indicates that, from millimeter-

wave SAR data, a processor based on an autoregressive model among multiresolution images

provides a useful discriminant between natural clutter and man-made targets. In [18] it is

demonstrated that, with ultra-wide-band foliage-penetrating SAR data, adaptive-resolution

imaging can exploit the aspect-dependent reflectivity of man-made objects. In [19] it is

shown that, based on the different variation-vs.-resolution patterns of targets and clutter,

discrimination can be accomplished via adaptive multiresolution processing.
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None of the above works is founded on a rigorous, physics-based theory that, taking into

account the effects of the transmitter pulse shape, antenna beam pattern, free-space wave

propagation, relates the radar return from targets and clutter to their respective physical

characteristics in terms of an electromagnetic scattering model. In [1] and [2], the return

signals corresponding to a spotlight-mode SAR and stripmap-mode SAR are constructed via

a comprehensive consideration of radar-pulse transmission and propagation. The resultant

return signal is formulated as a spatial integral of the Lambertian reflectivity pattern within

the region of interest and the Green's function corresponding to the mode of radar operation.

This approach, however, is not directly derived from a rigorous electromagnetic scattering

theory, and therefore does not capture certain important features, such as aspect-angle

dependence, in the return from a specular object. The work in [20] claims to build a physics-

based ultra-wideband (UWB) radar return model of a specular target from the observed fact

that an UWB pulse incident upon a flat reflector produces two return pulses, because of

the discontinuities at the reflector's edges. This phenomenon is predictable from scattering

theory. But using this phenomenology rather than electromagnetic scattering theory as a

basis for constructing the signal model can fail to capture other significant features in the

radar return. In [21][22], a UWB SAR target-return model is constructed using physical

optics and the physical theory of diffraction. The pulse shape is considered via the UWB

specification, and the antenna beam pattern could be incorporated by multiplying the return

with a weighting function with respect to location. In [21] [22], however, the region of

interest is only the parabolic trajectory corresponding to the footprint of a fixed target at

the SAR image plane, rather than the whole two-dimensional image plane. In this sense, the

processor is only one-dimensional, not two-dimensional. Moreover, the unwanted part of the

radar signal does not include the clutter scattered from the environment. It only consists of

white Gaussian noise.

To exploit the multiresolution characteristics in SAR imagery using a physics-based
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approach seems promising. The mathematical formulation of the radar-return signal and

chirp-compression processor in [3][ 4], together with a physical-optics model for the target

scatterer were used in [6][23] to provide a first-principles analysis for discerning specular

returns from diffuse returns in synthetic aperture radar imagery by means of their distinct

multiresolution patterns. Because the scattering pattern of a specular reflector is directional

rather than isotropic, its corresponding optimum processing duration should be shorter than

that of a conventional chirp-compression processor. This verifies the empirical results from

real SAR data that were reported in [18]. However, the scenario considered in [6][23] is

restricted to a simple case: one-dimensional, continuous-wave, non-polarimetric, stripmap-

mode, and single reflector only. To establish a comprehensive first-principles analysis for

target identification in SAR imagery, a significant amount of work remains to be done.

Motivated by the work of [6][23], this thesis proposes to make a complete analysis for

target detection from a physics-based model of SAR imagery. The operational conditions

will be extended to a more realistic case: two-dimensional, chirp-pulse waveform, and full

polarimetric data collection. The radar scenarios of interest include stripmap-mode and

spotlight-mode SARs. The targets consist of a repertoire of geometrically-simple reflectors

such as a specular mirror, a dihedral reflector, and a dielectric volume, and the clutter is

assumed to originate from a reflecting rough surface. Both targets and clutter are modeled

from electromagnetic scattering theory. The purpose of adopting electromagnetic theory

is not to produce an accurate and comprehensive simulation of SAR images, but to pro-

vide a fundamental signal-model understanding for optimizing certain SAR signal-processing

schemes. Both single reflector and multiple reflectors within a footprint area are considered.

The observed multiresolution and adaptive-resolution features from the empirical studies are

exploited for target recognition. In some cases, in which the optimum processors for target

detection problems are available in analytical forms, their performances are compared with

the performances of the multiresolution or adaptive-resolution processors.
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1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2, we construct the radar

system model for a stripmap-mode, two-dimensional, pulse waveform, polarimetric SAR.

The basic principle by which 2-D stripmap SAR gives imagery with enhanced resolution

is presented. To build the radar return signature, models for the transmitted chirp-pulse

waveform, the radar's antenna pattern, and free-space wave propagation are combined. The

return from a target reflector is formulated in terms of the scattering coefficient derived

from physical optics and physical theory of diffraction. A repertoire of geometrically-simple

targets, including specular reflector, dihedral reflector, and dielectric volume, are considered.

The radar clutter is modeled as the return from a random rough surface, as calculated from

the Kirchhoff approximation [24] and incorporated into the return signal via the backprop-

agation formulation [3]. The receiver noise is modeled as a white Gaussian process.

In Chapter 3, we present an adaptive-resolution signal processing scheme for 2-D stripmap

SAR imagery. The scheme is similar to the conventional 2-D stripmap SAR processor. It

consists of chirp compression filters for both range and cross-range directions, however, in our

adaptive-resolution scheme the processing durations for these filters are variable. Numerical

calculations show that the adaptive-resolution signatures for different types of targets are

different. For this adaptive-resolution processor, we also pose the target detection problem

of deciding on the presence or absence of a simple reflector, with known geometry and loca-

tion. For the same detection problem, the Neyman-Pearson optimum processor, composed

of a whitening filter for clutter and noise and a matched filter corresponding to the fil-

tered target-return, is also presented. Numerical values of signal-to-noise-plus-clutter-ratio

(SNCR) for these two processors are compared. As was the case in the 1-D work of [6],

our 2-D SAR formulation captures the broad-side flash phenomenon reported in [18], imply-

ing an optimum adaptive-resolution processing duration that is smaller than the full dwell

time. There are some features, however, which are revealed in a our polarimetric 2-D SAR
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model that are absent from the scalar 1-D SAR work. First, the dihedral reflector has an

orientation-dependent polarimetric signature that is quite different from that of a specular

reflector. Second, the dielectric volume has a range-spread return that is unlike those for

the surface-reflector cases. Third, there is no operating regime in which the SNCR of the

optimized adaptive-resolution receiver approximates that of the optimal, whitening-filter

receiver.

In Chapter 4, we develop the single-component target detection theory for spotlight-

mode SAR imagery. The fundamental principle for spotlight-mode SAR is first explained.

Unlike the stripmap-mode SAR that exploits the time-dependent phase delays of radar

returns along the cross-range direction, the spotlight-mode SAR imager interprets radar re-

turns from different aspect angles as a tomographic rendition of the 2-D terrain-reflectivity

profile. After a brief introduction of basic spotlight-mode SAR principles, we construct the

radar return models. Similar to Chapter 2, the target return model is based on physical

optics and geometric optics approximations of the electromagnetic scattering theory, the

clutter's statistical model is the result of Kirchhoff approximation of random rough surface

scattering, and the noise is modeled as white Gaussian. The repertoire of target reflectors

is also identical to that considered in Chapter 2. Basically, the only essential difference

between the stripmap-mode and spotlight-mode SAR radar return models lies in the an-

tenna beam pattern along the cross-range direction. After the development of radar return

models, we present two processor/detector models for the spotlight-mode SAR signal. The

first one is the adaptive-resolution version of the conventional SAR processor, followed by

a sampler and a threshold detector. To exploit the tomographic rendition of terrain reflec-

tivity, the conventional spotlight-mode SAR processor is a de-chirped polar-formatted 2-D

Fourier transformer [1]. The resolution adaptability allows us to adjust the radial (range)

and angular (cross-range) sizes of the annular region prescribed by the polar formatter.

The second processor is a Neyman-Pearson optimum processor, which is similar to the one
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presented in Chapter 3. The performance analysis for these two types of processors are

presented. First, we compare the cross-range and range image resolutions of the adaptive-

resolution spotlight-mode SAR processor with the resolutions of the adaptive-resolution

stripmap-mode SAR processor. Second, we numerically evaluate the SNCRs for these two

processors and observe their variations with respect to different parameters. The salient

features captured in the study of stripmap-mode SNCR in Chapter 3, such as the broadside

flash of specular reflector, polarimetric effect of dihedral reflector, and frequency dispersion

effect of dielectric volume, all appear in our results for spotlight-mode SAR. The cross-range

processing durations for optimum SNCR are different for stripmap-mode and spotlight-mode

operations due to their distinctive cross-range antenna beam patterns.

In Chapter 5, we extend the target detection theory for stripmap-mode and spotlight-

mode SAR images from single-component targets to multi-component targets. A multi-

component target is defined as a collection of simple reflectors distributed at different loca-

tions. Multi-component target is the norm in SAR ATR applications. To further embody

the practicality, we model the multi-component targets with parameter uncertainties. In this

chapter, four cases for uncertainties are considered: (i) the phase of return from every indi-

vidual target component is random; (ii) the phase and location are random; (iii) the phase,

location, and amplitude are random; (iv) the phase of return from every individual target

component and the overall target pose are random. For each individual case, we develop

a Neyman-Pearson processor followed by a likelihood-ratio, generalized likelihood-ratio, or

other sub-optimum detectors. We also propose methods to calculate, either exactly or ap-

proximately, the numerical values of receiver operating characteristics for these detectors.

The receiver operating characteristics for the conventional SAR detectors are also calculated.

The detection performances of the likelihood-ratio based Neyman-Pearson detectors and the

conventional SAR processors are compared.

In Chapter 6, we extend the binary target detectors developed in Chapter 5 to the
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classifiers for a repertoire of multi-component targets. Based on the calculations of receiver

operating characteristics for individual binary detection problems, we present a preliminary

performance analysis for the likelihood-ratio-based target classifiers.

In Chapter 7, we wrap up with conclusions for the thesis. We point out the contributions

made toward a fundamental understanding of the ultimate performance limits on SAR target

detection, and we indicate areas for possible future research.
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Chapter 2

2-D Stripmap SAR Signal Model

2.1 Basic Principle of 2-D SAR

The scenario for a two-dimensional stripmap-mode SAR is sketched in Figure 2.1. The

radar antenna and receiver are mounted on an aircraft flying with velocity V = zv at an

altitude L m. Thus the position of the aircraft can be described by the vector ft - ivt + L.

The normal direction of the antenna aperture, - ' = -i sin(@) + Q cos(4'), is on the plane

perpendicular to the velocity vector 1 and tilted downward from the horizontal direction

with angle @, making L' = L/ sin(O) the range to the ground. As the aircraft flies, the

footprint of the antenna beam swept along the ground is an elongated strip at distance

L/ tan @ from the projection of aircraft trajectory and with width AcL/d sin(4$), where d is

radar's antenna diameter and Ac is its wavelength.

The purpose of SAR is to improve the radar's spatial resolution. The fundamental

principle of a 1-D CW synthetic aperture operation can be explained as follows [6]. For a

continuous-wave downlooking radar imager, the Doppler-shift time history associated with

the return from a point scatterer is a frequency chirp of rate ilD= -2v2 /AL. The time

duration of the chirp, T, is the length of time during which the scatterer lies within the radar

antenna beam; we shall presume far-field diffraction-limited operation, so that T ~ AcL/vd.

Compressing this chirped radar return through a matched filter then yields a time-domain

output waveform of duration Xres/V, where

v d AcL (2.1)
Xre'.T 2 d

thus providing along-track (cross-range) spatial resolution that is much better than the

diffraction-limited beamwidth of the real antenna aperture. For extended targets, the chirp
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duration is determined by the target's scattering pattern; a large specular reflector will have

a chirp duration much smaller than the dwell time, a fact which an optimum receiver for

that target will exploit.

Similar to the 1-D SAR, the 2-D SAR also makes use of the radar-return chirp to enhance

its resolution. However, there is an additional feature in the 2-D case. The 2-D SAR not only

resolves the imagery in the cross-range direction (2) but also in the range direction (-i').

To accomplish this feature the transmitted waveform must be a train of repetitive pulses

rather than a continuous wave. Thus the time-domain structure of this two-dimensional

configuration consists of a discrete coordinate, m, along the cross-range direction which

is the 2-D SAR counterpart of the continuous-time coordinate from the 1-D case, and a

continuous coordinate, r, along the range direction that corresponds to the time delay of the

radar return [3]. The spatial resolution along the cross-range direction is achieved through

the SAR operation similar to the one described in (1.1); the only difference is that the time

coordinate in the 2-D case is discrete instead of continuous. However, the spatial resolution

along the range direction is achieved by increasing the bandwidth of the individual radar

pulse via chirp modulation rather than synthetic-aperture operation. As described in [4],

two pulse-compressive filters are now employed in the receiver architecture: a discrete-time

matched filter to form the synthetic aperture; and a continuous-time matched filter to realize

the full range resolution capability of the individual chirped pulses. The flight geometry for

the 2-D stripmap-mode SAR is illustrated in Figure 2.1.

2.2 Radar Target Return Model

The intermediate-frequency radar return model includes the transmitter model, prop-

agation and scattering model, and receiver front-end model. A train of modulated radar

pulses is generated at the transmitter. Each transmitted pulse propagates from the trans-

mitting antenna to the target region where it is scattered (reflected) by the object and then
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Figure 2.1 Flight-'eometry for a 2-D stripmap-mode SAR.

propagates back to the receiving antenna. The return pulse field is superimposed with the

field of a superheterodyne local oscillator coherent with the transmitter but operated at

an intermediate frequency (IF) offset from the transmitter carrier frequency. The resultant

signal is passed through a bandpass filter to select the IF component. The block diagram

for the construction of radar-return signal is shown in Figure 2.2.

The radar-return signal is a superposition of target return, clutter, and receiver noise.

Since we are mainly interested in discriminating man-made objects from natural background,

the target return is defined as the return from geometrically simple reflector(s), and the

clutter is defined as the return from a random rough reflecting surface. The receiver noise

is modeled as a white Gaussian random process.

2.2.1 Radar Transmitter Model

The transmitted signal is assumed to be a repetitive train of pulses with period T,

complex envelope p(t) and carrier angular frequency Q s-1 that is radiated from an aperture
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Figure 2.2 Radar return signal block diagram.

Sa. The resulting electric field on the surface of this aperture is

Ea(fa, t) = Re a7qPTUant(fa) E p(t - mT.e-m' . (2.2)
. m=-00

In (2.2), fa is the spatial coordinate of any point on the aperture Sa in the radar's rest-

frame, whose origin is at the center of Sa. The vector na, which must be orthogonal to

the normal direction of Sa, represents the polarization of the transmitted field Ea. In this

study, we assume uniform polarization throughout the aperture, i.e. nia = constant. PT is

the peak power of the transmitted field, and r = 1p0/e 0 is the natural impedance of free

space. Uant(fa) is the stationary spatial antenna aperture pattern in the radar's rest-frame.

We use an elliptical-Gaussian spatial pattern to model the finite aperture dimensions of the

transmitter antenna [23].

Uant (a) = exp[-(Xa/ax) 2 - (ya/ay) 2 ], (2.3)

where xa is the coordinate in the along-track (cross-range) direction, Ya is the coordinate in

the across-track (range) direction, ax and ay are the radii of Sa associated with the along-
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track and across-track directions, respectively. We assume that the antenna aperture S,

does not appreciably truncate the Gaussian spatial pattern in (2.3), i.e.

I ISa df.aIUant() 2  f dxdy|Uant (7)2 = 1. (2.4)

Thus, when we define the time-independent part of transmitted electric-field phasor E0 (fa) =

naV/yPTUant(fa), the associated Poynting vector satisfies the normalization condition:

JJ dfa|E"(fa)| = PT. (2.5)
fSa 77

The complex envelope p(t) is assumed to be a chirped Gaussian pulse with duration TO and

chirp bandwidth WO:

p(t) = exp[--irWot 2 /To - 4(t/To) 2]. (2.6)

From the equivalence principle [25], the electromagnetic field induced by the transmitted

electric field Ea(fa, t) on the antenna surface Sa in (2.2) could be generated by an equivalent

electric surface-current density Ka (fa, t) and zero magnetic surface-current density on Sa:

Ka(fa, t) = SEa(fa, t)
77

=Re f6a 8 Pr expl-(Xa/ax)2 - (ya/ay)2 ] E p(t - mT,) exp(-iQct)1 . (2.7)

2.2.2 Propagation

To simplify the propagation problem, we first consider the case of a single target located

at f, = Lcot@' (see Figure 2.1). Throughout our work, we will neglect atmospheric effects

and employ free-space propagation theory. From electromagnetic wave theory [25], the

electric field E(f, t) produced in free space by a monochromatic surface current density

K(f', t) = Re [KO (') exp(-iQt)] distributed on the source surface S' can be calculated via

the Green's-function formulation

ikr

E~ft) Reipo(I f f1 df'kO(f') exp(-ikf - F') exp(-z~t) (2.8)
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under the far-field conditions kr >> 1, ka 2 /r << 1. Here r = If|, = f/f|, f' is the local

coordinate of the surface S', k = Q/c is the wave number (c is the speed of light), [o is

the free-space permeability, and a is the diameter of the surface S'. To render this far-field

(Fraunhofer) approximation valid around the target located at f, in our stripmap SAR, the

preceding conditions become

kL'>> 1, ka 2/L' << 1, ka 2/L' << 1. (2.9)

The surface current density Ka in (2.7) is not monochromatic. Thus the electromagnetic

field E2 generated by Ra at far-field region is obtained by carrying out spectral analysis of

(2.7) and employing (2.8) for every Fourier component of Ka, namely,

f ot dC R{ _8P_ ei(kc+k)r

t) Re P(Q)e-in(t-mT)i1o(QC + Q) T
J-0 27 =74raxay 47r

-ia da exp[-(xa/ax) 2 - (ya/ay) 2 ] exp[-i(kc + k) - fa] exp(-iQet) }, (2.10)

where kc = Qc/c is the wave number at the carrier frequency, and

P(Q) = J dt p(t)eiQt

/ exp[-Q 2 /4(i7rWo/To + 4/To)]. (2.11)i7rWo/To + 4/To

Equation (2.10) is the superposition of radar transmission fields at all frequencies. Each

individual frequency component is, rather than a plane wave, a spherical wave ei(kc+k)r/r

modified by the antenna beam pattern £ fSa dia exp[-(xa/ax) 2 -- (ya/ay)2 ] exp[-i(kc+k)?ifa-].

However, in the far-field region around the target location f,, this field can be approximated

by a plane wave with propagation direction f, = (fp - ft) /| - ft 1, and amplitude and phase

determined by (2.10). Thus the overall transmission field around the target center becomes

5 -G e itk+k)ri
Ri(f", t) ~ Re{ J dQ ( i(tmTs)o (Qc + Q) T i)

2 -0 27r --- o 12r 3aay 47rri
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lisa dfa exp[-(Xa /ax) 2 - (ya /ay) 2 ] exp[-i(kc + k)i -Fa] exp[i(ke + k) j -f"] exp(-icQt) },

(2.12)

where f" = f- is the local coordinate centered at f,, fi = f, - ft, ri = Ifil. When the

entire target is small enough to be within the Frauhofer region of the radar beam, equation

(2.12) is an approximation for the transmission field around the whole target area. Under

(2.12), the stripmap radar-return is non-negligible only within a cross-range region that is

much smaller than the target range, namely,

VOt/L' << 1. (2.13)

Therefore we can use

t~ -Y + ovt/L', (2.14)

and

ri L' + (vt) 2/2L', (2.15)

to carry out the integral over Sa in (2.12), obtaining

Ei(fI", t) ~ Re{ J d _ _mTL'/c)io(Qc + Q) Taa 1(I - i) fta
x 2 _00 2x77 L

x exp[ikc(L'+ (vt) 2 /2L')] exp[-((kc+k)avt)2/4L'2 ] exp[i(kc+k) i -f"] exp(-iQct) }. (2.16)

2.2.3 Target Scattering

The return of the incident radar wave from a target can be modeled via scattering theory.

Electromagnetic scattering theory indicates that, for an incident monochromatic plane wave

with propagation direction ki, angular frequency Q, and wave number k = Q/c, namely,

E (i, t) = Re {Eo exp[i(kki - f - Qt)]}, the scattered wave in the far-field zone kr > 1 is

Es (f, t) = Re Irs(, ki, Q) Eioe-Qt . (2.17)
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Here f is in the local coordinate whose origin is at the object center, and S(f, ki; Q) is the

object's bistatic scattering tensor as a function of the incident direction = i/|f|, scattering

direction P, and (angular) frequency Q.

The incident radar pulse in (2.16) is a superposition of monochromatic plane waves.

Therefore the field scattered from the target can be obtained by summing all the scattering

fields corresponding to the individual monochromatic plane-wave components. The result is

a superposition of spherical waves modulated by the scattering tensors:

E 5 i~, ) ~ 0e{f dQ 0"PTa aY
(f", t) ~e o d P(Q)e-in(t-mr-L'/c)iPo(Qc + Q) 2L S(P", h; Qc + Q)S -x0 27rM=0 277iL,

2,i(kc+k)r" -i t
- iji) - fa exp[ikc (L' + (vt)2 /2L')] exp[-((ke + k)axVt)2/4L'2 e r/1t }. (2.18)

Strictly speaking, for the synthetic aperture radar emitting a pulse at time t s toward a

target a distance L' m away, the locus of the transmitter antenna, ft = ,vt + L, is different

from that of the corresponding receiver antenna, rt+w2L/c ~ sv(t + 2L'/c) + L. This is

because it takes 2L'/c s for round-trip pulse propagation to occur. In this study, we assume

that the bistatic angle between the transmitter, target, and receiver is extremely small, i.e.,

v(2L'/c) << L', so that the scenario can be approximated as monostatic.

Only the scattered field in the vicinity of the receiver antenna enters into the calculation

of the radar-return signal. Hence similar to the procedure in Section 2.2.2, we approximate

the ensemble of spherical waves in (2.18) as an ensemble of plane waves. The radar-return

field near the receiver antenna then becomes

E,(fc, t) ~ Re{ _td i(tmT8 2 '/c)ipo(Qc + Q) Y 1
J- 2w M=__o 2977 L

x S(s, i; Qc + Q) ( ii) - n,, exp[i2kc(L' + (vt) 2 /2L')]

x exp[-((ke + k)aVt)2/4L,2] exp[i(ke + k)^, - fc] exp(-i~ct) }, (2.19)
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where fe is in the local coordinate with origin at the center of the receiver antenna aperture

SC, and the scattering direction satisfies

-fi ~eZ z' - VOt/L', (2.20)

according to the monostatic approximation and (2.14). To make the radar-return formu-

lation in (2.19) symmetric, we define a "modified" scattering tensor S'(?S, ?j; Qc + Q) such

that

c + Q) A0 ( -§ S(, ?j; Qc + Q) = S(iS, i; Qc + Q),
47r

(2.21)

and substitute (2.21) into (2.19). Thus the result becomes

Es(fct) -Re{J
-x0

dQ 0 0

2 _ E
P(Q)_in(t-rnT 2L/c) 2(Q, + ) 2  PTa.ay 1

327p7 L 2

(I - ?S ?) - S'/(S, j ; Qc + Q) - (I - fifi) - ia exp[i2kc(L' + (vt) 2 /2L')]

x exp[-((kc + k)ax Vt)2/4L' 2 ] exp[i(kc + k)?S - fc] exp(-iQet) }. (2.22)

Notice that S'(?8 , fi; Qc + Q) is the volume (or surface if the target is a perfect conductor)

integral of e-i(kc+k),--f times the induced volume (surface) current density over the target.

2.2.4 Receiver Front-End Model

The radar return is collected by a receiving antenna and downconverted to an inter-

mediate frequency via a heterodyne process. We can represent the conversion of the field

returned from the target, Es (fc, t), to a front-end electronic signal, yfront (t), by mixing with

a virtual local-oscillator surface current density, Rc(fe, t), on the receiver antenna aperture

Sc. Thus,

yfront(t) = Jj dcKc(fc, t) - ES(fc 1).. (2.23)

The local-oscillator surface current density Re is assumed to be a CW field with carrier

frequency Qc - QIF and the same spatial beam pattern as the transmitted surface current
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density Ra, namely,

kc(f, t) = Re {Tc Pto 2 2] exp[-i(Qc + QIF)ft, (2.24)
r/77raxa Y

where ftc is the polarization of the local oscillator field.

Because of the mixing operation, the front-end signal Yfront(t) contains an RF component

with carrier frequency 2Qc - IF and an IF component with carrier frequency QIF. To extract

the IF component, the front-end signal is passed through an IF bandpass filter with center

frequency QIF. From (2.23), it can be shown that, yIF(t), the IF component of yfront(t), is

yIF(t) = Re dicK*(fe, t) -Es (fe, t) , (2.25)

where * denotes complex conjugate, Rc(f, t) is the phasor of the CW field Rc(f, t), and

ES (fc, t) is the "time-dependent" phasor of the pulse field E (f, t). These phasors satisfy

the following relations:

Kc(fc, t) = Re (Rc(fc, t) exp[-i(Qc + QIF)t] (2.26)

E, (fe, t) = Re [fE(fe, t) exp(-iQct)] . (2.27)

The phasor (complex envelope) y(t) of the IF signal yIF(t) satisfies the relation yIF(t)

Re [y(t)e-iIFt]. From (2.22), (2.24), (2.25), we have that:

(I) ~$ P(Q)eiQ(t-ms-2L'/c) (Q, + 2
-oo 27r M__0P

V/PPL 0axal r V)2t 2 ]

x ,T2 exp[i2kc(L' + (vt) 2 /2L')] exp[-((ke + k axvt)2 /2L' 2

ue - (I - fS S) S (fS, fi; Qc + Q) - (I - fifi) - na, (2.28)

where fi and i, are obtained from (2.14) and (2.20), respectively.

The radar return in (2.28) is a train of pulses separated by T, s. Because the returns

associated with two adjacent pulses are ordinarily non-overlapping, we can reformulate y(t)
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as a two-dimensional signal r(m, T), using the discrete index m to represent the pulse number,

and the continuous time 7r to span the interval (-T,/2, T,/2]. That is,

00

y(t) E r(m, t - mT, - 2L'/c), (2.29)
-=00

where

d) 2 vPTPLOaXaY
(M 2) E P(Q)e- P + Q2 2 "exp[i2ke(L' + (mvT,)2 /2L')]

F-x 27 4xyqL

x exp[-((kc + k)azmvT,)2 /2L' 2  t (I - fsPs)

(+ smvT,/L', -' - smvT,/L'; Qe + Q) - (I - fifi) -a. (2.30)

Also notice, in (2.28) and (2.30), that the polarimetric signature that is embedded in the

scattering function can be exploited by choosing different incident (ita) and receiving (ic)

polarizations. In what follows, we will define the aircraft flight direction i to be vertical

polarization, and the direction Q', which is orthogonal to - and the antenna's nominal

direction 2', to be horizontal polarization. In all cases we will consider the HH, VV, and

HV components of the radar return; VH, being identical to HV because of reciprocity, will

not be explicitly treated. We shall use the boldface symbol to denote the fully polarimetric

return signal, namely, [r H H m, T)
r(m, r) rV (m, T) . (2.31)

rHv(m, T)

The formulation in (2.30) describes the radar return from a scatterer at the scene center

(x, y, z) = (0, L' cos(#), 0). When the scatterer is located at (x, y, z) = (AX, Ay + Lcot(@), 0)

away from the scene center, its radar return can still be calculated by the same method. In

this case, the target's location offset changes the incident and scattering directions which

modify the antenna beam patterns and scattering coefficient in (2.30). The location offset

also causes additional phase delay. Taking these effects into account, we can extend (2.30)

to the case when the target position is (AX, Ay + Lcot(4'), 0) away from the scene center

with the following result:
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r(m, T) - 0 dQP( e-ii[r-2Ay cos(,O)/c],( 2Q)/PTPLOaxay
x-oo 2 7r 4 r L ,2

x exp{i2kc[L' + AY cos(4) + (A, sin(V)) 2 /2L']} exp[ikc(mvT, - A")2/L']

x exp[-((ke + k)a.(mvT, - A,)) 2 /2L' 2] exp[-((kc + k)ay Ay sin(V)) 2 /2L' 2 ]

'L' + ImvTsIL' - 26A - QAy -2'L' - smvT8/L' - xA - Z\ Y Qc±Q) a(.2
|z'L' + ,mvT,/L' -:26x - QAy|' 12'L' + imvT,/L' - . - QAy|I

where Ax << L' and Al,, < L'. In contrast to (2.30), it is clear in (2.32) that additional

phase factor and different antenna beam patterns and scattering coefficient are incorporated.

Since the location offset is much smaller than the slant range L', the incident and scattering

directions are still approximately orthogonal to the plane of antenna aperture. Thus (I -

ifi) - ia and (I - i fc) in (2.30) are approximated by la and fic, respectively.

2.3 Target Model

In this study, we consider several types of objects with simple geometry and material

composition, including a specular reflector, a dihedral reflector, and a dielectric volume. The

radar return signal in (2.30) is related to the target object through the modified scattering

tensor S'. Hence target modeling reduces to calculating this scattering tensor. The target

types of interest are sketched in Figure 2.3.

2.3.1 Specular Reflector

The specular reflector we shall model is a flat plate with a perfectly conducting surface.

Its bistatic scattering tensor can be calculated, in the physical optics limit, by assuming that

the induced surface current density on the plate is k = 2nl8b x Hi, where ntSb is the surface

normal and Hi is the incident magnetic field. We will consider a square reflector, with sides

of length 2 pt, and surface normal nTsb = X sin(Ob) cos(#$b) + 9 sin(6,b) sin(#8 b) + 2 cos(Ob),

where 6,s and #sO are polar and azimuthal angles. When the reflector's normal direction lines
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Figure 2.3 Types of targets.
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up with the antenna aperture's normal direction, we have 0 ,b = 7r/2 - 0)0,#s -7r/2. Thus

the modified dyadic scattering tensor in (2.30) under the physical optics approximation is

S ( '+ smvT,/L', -' - smvT,/L'; Qe + Q)

2
~ -[ifnsb - ( bi - n)I 4pt2 sinciL[ + )axbPt/C] sinc[(Qc + Q)aybpt/c],

7

axb 2mvT sin(#sb) - 2 cos(0/) cos(#Sb),=LI

(2.33)

(2.34)

2mvT
ayb = - L' cos(Oob) cos(#Sb) + 2 cos((0) cos(Ob) sin (#Sb) + 2 sin(/) sin(,b). (2.35)

Substituting (2.33) into (2.30), we find that the 2-D polarimetric radar return from this

target is
00 d _iQv/PTPLO(QC + Y2 axay i2keL'r(m, T)specuiar ~ -]RG()ei~ 2r2 '(Tl ~peuir - oo 27r 27rc2L'2

x exp[(ike/L' - (ke + k) 2 a /2L' 2)(mvT ) 2 4p 2' .b

xsinc[(Qc + Q)axbpt/c] sinc[(Qc + Q)ayobpt/c] 1 . (2.36)

.0_
Equation (2.36) implicitly assumes that when the target at QLcot@ is within the antenna-

beam footprint, I, = -fj is approximately orthogonal to nta and ic.

2.3.2 Dihedral Reflector

The dihedral reflector we shall consider consists of two perfectly-conducting rectangular

plates 1 and 2 whose edges meet at a right angle. The orientation of this dihedral is defined

by two unit vectors: the dihedral axis, naxis, is the intersecting edge of the two plates, and

the normal axis, face, is perpendicular to ntaxis and bisects the 900 angle formed by two

plates. Four terms in the reflected field from this dihedral are significant: specular reflection

from plate 1 to the radar; specular reflection from plate 2 to the radar; double reflection
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from plate 1 to plate 2 to the radar; and double reflection from plate 2 to plate 1 to the

radar. To calculate these terms, we parallel the approach in [26]. The two single-reflection

terms are obtained as was done in the specular reflector case. The two double-reflection

terms are obtained by using geometric optics to calculate the reflection from the field from

the first plate to the second. This field is then used as the incident wave for calculating the

double-reflection contribution to the radar return via the physical optics approximation.

The complete analytic form of the scattering tensor of a dihedral reflector is presented in

Appendix A. Here we will limit ourselves to noting two interesting points. The first concerns

shadowing. Previous treatments of dihedral reflectors treat them as point scatterers when

they are irradiated by plane waves whose propagation directions are perpendicular to naxis.
This is justified from geometric optics in that every incident plane wave is reflected back

to exactly the opposite direction. However, when calculating the double-reflection terms in

our scattering model, the field incident on the second plate is a piece of plane wave-due to

the geometric optics approximation-but it does not irradiate the entire area of the second

plate because of shadowing. The higher the look angle with respect to nface is, the larger

the shadow area is, therefore the smaller the monostatic scattering coefficient becomes. As

a result, the dihedral is not rigorously a point scatterer. The second point arises when the

direction that bisects the dihedral, nftace is parallel to i' and the antenna position is near its

m = 0 location. Under these conditions, the two double-reflection terms are approximately

proportional to exp[-((ke + k)lz cos(#)/2L') 2 (mvT,)2 ], where # is the angle between 2 and

dihedral axis. This implies that the duration (in the cross-range direction) of the radar

return from a dihedral varies with the orientation of that target in a manner previously

reported in [23].

2.3.3 Dielectric Volume

The dielectric volume we shall study is a rectangular-parallelepiped body filled with
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homogeneous dielectric material of relative permittivity ,.. To calculate the scattering co-

efficient of a dielectric volume, we first calculate the electric and magnetic fields inside the

medium-from the infinite-layer approximation-and then obtain the induced current den-

sity from the internal field. Finally, the scattered field is found from the induced current by

using the dyadic Green's function approach, cf. [27]. The complete analytical formulation

of the scattering tensor of a dielectric volume is presented in Appendix B. The geometry of

the dielectric volume has no intrinsic difference from that of our specular reflector. Its radar

return is different, however, from that of the specular reflector, because the resonant struc-

ture of the dielectric body gives a range-dependent signature that the perfectly-conducting

(surface-reflecting) mirror does not.

2.4 Clutter Model

Clutter typically refers to the radar return from anything other than the desired target.

In this study, the only component other than the single target that contributes to the radar

return will be assumed to be reflection from an infinite rough ground surface. To calculate

this clutter return, we use a backpropagation formulation [3]. The backpropagation for-

mulation for the radar return is based on the reciprocity of the free-space dyadic Green's

function and the condition of narrow bandwidth. A complete derivation of the backpropa-

gation formulation is provided in Appendix C. From Appendix C and using (2.24) to show

that Rc is real, we find that the complex envelope of the IF waveform due to clutter can be

expressed as follows:

y(t) = 1JjdicN*(fe, t) - E(fet)

dtS [ks~, t - L'/c) -E (b, t - L'/c) - N,(4b, t - L'/c) -HM(b, t - L'/c)] (2.37)

where Sb is the ground surface, E c and Hfb are backpropagated electric and magnetic fields

generated from the local oscillator surface current density kc, and R, and N, are the equiv-

alent electric and magnetic surface current densities induced by the incident radar wave.
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Note that the local oscillator current density is CW, having only harmonic time-dependence.

Therefore its backpropagated fields Ec and fRb are identical to the forward-propagated fields

Ec and H.

The surface current densities K, and N, in (2.37) do not imply that the rough surface

is a perfect conductor. They are "equivalent" surface current densities representing the

rough-surface scattering effect in the sense that the scattered field E, from the surface can

be expressed in terms of R, and N, via Huygens' principle,

Es(f, t) = e-t J f dh{ iuo(Qe + Q)G(r, rb; Qc + Q) - [nb(fb) x H(fb, Q)]
f-oo 2'r sb

+V x G(f, f; Oc + Q) - [nb (4) x E(fb, )] }, (2.38)

where nb(fb) is the normal vector of the rough surface at fb, E(fb, Q) and H(fb, Q) are the

Fourier components of the time-dependent phasors E(fb, t) and H(fb, t) at frequency Q, that

is'

E(fb, Q) = 7f dtE(fb, t)emt, (2.39)

H(fo, Q) = J dtR(f,, t)e", (2.40)

and the surface current densities are

Ks = no x H, (2.41)

NS = -nb x Es. (2.42)

Therefore, calculating the current excited on the rough surface is equivalent to solving a

rough-surface scattering problem.

To facilitate a simple, analytical construction of a clutter model, we solve the rough sur-

face scattering problem via the Kirchhoff approximation presented in [24], which computes

the scattered field from an arbitrary point on the rough surface by using Snell's law with

respect to the plane tangential to the surface point of interest. Substituting the electric and
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magnetic surface current densities K, and N, obtained from the Kirchhoff approximation

into (2.37), we get the following expression for the IF complex envelope of the clutter return

from the rough surface,

y(t) J() ~ei(t-L'/c) j b~() -- { [ --(n(V) - fi) 4i(fb) 4i(fb) (1- R Q(, Oc + Q))
-oo= 0 27r s '7

+nf)x j(ib)) (13(i ) (1 + Rv(fb, c + Q))

+ri -[(nb(fb) - fi) di(fb) Pi~b) (1 - Rv (fb, Qc + Q))

(n )x di( Vb)) di(fb) (1 + Rh (fb, Qc + Q)) } -a(fb, Q), (2.43)

In (2.43) the dyad Fi is defined such that for any vector A, i x A = A -.. The vectors Pi (fb)

and 4i (4) are the localized vertical and horizontal polarizations with respect to the incident

vector Ti at fb on the rough surface Sb (see Figure 2.4). In other words, 4i(b) = nib(fb) x ii,

Pi(b) = hb(fb) X di(fb). Rh(fb, Qc + Q) and Rv(fb, Qc + Q) are the horizontally and vertically

polarized reflection coefficients at location fb and frequency Qc + w. From Snell's law,

Rh(ifbQc + Q) = cos(01)(fb) - Ver1(Qc + Q) - sin2 0,(fb) (2.44)

cos(01)(4) + eri(Qc + Q) - sin 2 Oib)

R (fi Q± + Q) = Er(c + Q) cos(01)(4b) - eIr1(1e + Q) - sin2 01 (fb) (2.45)

Eri (Qc + Q) cos(6)(0() + C,1(Qc + Q) - sin 2 01(b)

where 01 (fb) is the angle between j and nb (4b), cri (Qc + Q) is the relative permittivity of the

medium below the rough surface Sb at frequency Oc + w (see Figure 2.4). Here the relative

permittivity is assumed to be independent of position within a local region. On a coarser

scale, the relative permittivity could be different in different regions since the terrain texture

is not homogeneous in general.

The term in braces between the transmitter forward propagating field and the receiver

backpropagation field in the integrand of (2.43) corresponds to the effect of rough-surface

reflection. In general, it is a complicated dyadic factor depending on the dielectric constant

and the orientation of the local surface tangent. For a given surface profile, it requires an
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Figure 2.4 Local incident angle and polarization vectors for the rough surface.

intensive amount of computation to obtain this factor. Moreover, in a real situation it is

almost impossible to get the exact profile of terrain surface. Therefore, for practical reasons,

we adopt a generic, quasi-phenomenological approach based on (2.43) to model the effect

of rough-surface reflection. Assume the rough surface Sb in concern is defined by a surface

height profile h, namely, Zb = -h(xb, Yb). Then the generic clutter model is constructed as

follows.

First, for the rough surface Sb, we introduce a dyadic reflector tensor R(fb, Qc + Q) to

represent the term in braces in the integrand of (2.43). Second, we project the domain of

the surface integral in (2.43) from Sb to the Zb = 0 plane. Thus the integrand of the surface

integral over Zb= 0 plane becomes the product of the transmitter forward propagating field

at Zb = 0, the dyadic reflection tensor R, the receiver backpropagation field at Zb = 0,

and the Jacobian corresponding to the domain conversion from Sb to Zb = 0 plane, and

the round-trip phase delay corresponding to the wave propagation of the transmitter and

receiver fields between Sb and Zb = 0 plane. The Jacobian is 1/ cos(((Xb, Yb)) where (Xb, Yb)

is the angle between 2 and nb at (Xb, Yb). Third, we apply (2.16) for the forward propagating

transmitter field and the receiver backpropagation field at Zb = 0, and assume that: (i) the

curvature of the surface Sb is small enough that the variation of the Jacobian over (Xb, Yb)
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can be neglected; (ii) the relative perrnittivity of the medium below the surface is almost a

constant over the bandwidth of the radar pulse so that the reflection tensor R is frequency-

independent; and (iii) the bandwidth of the radar pulse does not resolve the surface height,

i.e., that Ih| << cTo/2(ToWo + 1). Then the polarimetric 2-D clutter return from a rough

surface becomes:

VPTPLO0Q2 axay 2 kL' 0 0
reiutter (m, T) ~ - T L sin() bdybp(T - 2Yb cOS(?/c)

x exp[(ike/L' - k2a2 /2L, 2 )(xb - mvT,)2 ] exp[(ike/L' - k2a2 12L' 2 ) 2 sin2 b)1

[RHH (Xb, Yb)

x exp[i2kc[yb cos() + h(xb, Yb) sin(4')]] Rvv(xb, Yb) , (2.46)

[RHV(xb, Yb)

where RHH, RvV, and RHV are the HH, VV, and HV components of the dyadic reflection

tensor R.

Equation (2.46) describes the radar return from a deterministic rough surface. As a

practical matter, it is too complicated to pursue the deterministic approach in detail, so

we shall model h(xb, Yb), RHH (Xb, Yb), Rvv(xb, Yb) and RHv(xb, Yb) as stochastic processes.

Paralleling the work in [3][4] we define a field transition coefficient:

~ RHH(Xb, Yb)

T(Xb, Yb) = exp[i2kch(xb, Yb) sin(4')] Rvv(xb, Yb) . (2.47)
RHV xb, Yb)

Assuming that h2) >> Ac, and that the reflection coefficients Rap are independent of the

surface height profile h, we can take T to be a zero-mean, circulo-complex, white, vector-

Gaussian random process, fully characterized by

A 2
(T(xb,Yb)T T x'b, yb)) = s2c J(X - ')6(Yb - Yb)bb sin (@) -X

(R H H(xb, Yb) 2) (RHH(xb, Yb)R*vy(Xb, Yb)) (RHH (xb, Yb)R*V(Xb, Yb))

x ( RHHxb, yb)RVV(Xb, yb)) (|RVV(xb, yb) 2 {RyV(xb, Yb)Rvv(Xb, Yb))
(R HH (xb, Yb) RHv (Xb, Yb)) (R*V (xb, Yb)RHv (Xb, Yb)) (IRHV (xb, Yb) 2)

(2.48)
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Note that the correlation matrix in (2.48) includes the polarimetric behavior of the clut-

ter return, which can depend significantly on the geographic region under inspection. In this

paper we shall assume there is a statistically-uniform terrain texture within the radar foot-

print. Therefore the correlation matrix in (2.48) is approximately independent of Xb and Yb.

Empirical work [13] suggests that: all the off-diagonal components in (2.48) are insignificant

except for the HHxVV terms; the HHxHH and VVxVV terms are approximately equal;

and the strength of HVx HV term is significantly smaller than that of HH x HH term, unless

multiple scattering is prominent. Thus, in our radar clutter model, we use

A2 1 p0 0~
(T (xb, yb) T (x, y --) - (Xb'4)6(Yb - Y') p* 1 0 , (2.49)

bb sin ($) 0 0e

where 0 < IpI < 1 and 0 < c < 1.

A diffuse target is modeled as a finite square piece of the rough surface with sides of

length 2 pt. Hence, referring to (2.46), (2.47), the 2-D radar return from a diffuse target

becomes

y/2PO axay iPtkcL'
rdiffusepm, T ) VP~TPL ,2 Y e i2kL'sin($b) dxbdybp(T - 2 Yb cos($))/c)

2xc2L -Pt -Pt

x exp[(ikc/L' - k2a2/2L'2 )(Xb - mvT,) 2] exp[(ikc/L' - k2a 2/2L'2 )y2 sin2(0)

x exp[i2kcyb cos($)]T(Xb, Yb) (2.50)

In Chapter 3 we will use the model described in (2.50) to demonstrate that the radar return

from a diffuse target is much more isotropic than that from a specular reflector.

2.5 Noise Model

Noise refers to the contamination of the radar return by the receiver system at the front

end. Typically, this is thermal noise, and has a white spectrum. In this paper, the receiver

noise rnoise(m, T) is assumed to be a zero-mean, circulo-complex, vector-Gaussian stochastic
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process that is white in all its domains, viz., its discrete-time index, m, its continuous-time

parameter, T, and its vector (polarimetric) domain. Thus it is completely characterized by

the following correlation matrix,

1 0 0'
(rnoise(m, r)raoise(m', T')) = No6[m - m']o(r - T') 0 1 0 (2.51)

0 0 1

Both of the unwanted components of the radar return, the clutter and the noise, are stochas-

tic in our model. Since the receiver noise and the radar clutter have completely different

physical origins, we assume that they are statistically independent of each other.
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Chapter 3

Performance of 2-D Stripmap SAR

3.1 Stripmap SAR Processor Models

To get useful information from the radar return modeled in the previous chapter requires

the use of appropriate signal processing. In this chapter, two types of SAR image processing

systems are considered: an adaptive-resolution processor and a whitening-filter processor.

System models for these two processors are described here.

3.1.1 Adaptive-Resolution Processor

Figure 3.1 shows the architecture for our adaptive-resolution 2-D SAR processor. The

incoming radar return is passed through chirp compression filters in both the cross-range

(discrete-time) and range (continuous-time) domains. The output from these chirp compres-

sion filters is then video detected to form a radar intensity image. The impulse responses

for the chirp compression filters are

hi[m] = exp[(-ikc/L' - k2a2r/2L'2 )(mvT)2] and h2 (r) = exp[(iirWo/To - 4v 2 /TO2)T 2].

(3.1)

A conventional 2-D SAR processor uses chirp-compression filters hi [M] and h2 (r) arranged-

by setting K = v = 1-to be matched filters for the radar return from a point scatterer.

As noted earlier, an extended specular target can have a very different return duration

than that from a point scatterer. Thus our adaptive-resolution processor will be optimized

over K and v to achieve best detection performance for such an extended target. We will use

Itaget(m,T), Icl ter(m, ), and lAlo (m, T) to denote target-return, clutter, and noise outputs,
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Figure 3.1 Block diagram of adaptive-resolution 2-D SAR processor.

respectively, from the adaptive-resolution chirp-compression filters in (3.1). They are given

by

cmponent (m,r) = h2 (T) * h1 [m] * rcomponent (M, T)

=Z hi[m - m'] dT'h 2 (T - T')rcomponent (mi' T'), (3.2)

where * denotes convolution, and "component" could be target, clutter, or noise.

3.1.2 Whitening Processor

Optimized adaptive-resolution processing, of the type just described, can enhance SAR

image resolution. However, for binary detection of a deterministic target return embedded

in stochastic clutter and noise, the optimum Neyman-Pearson processing scheme uses a filter

to whiten the clutter-plus-noise component of the IF waveform, followed by a matched filter

corresponding to the target-return waveform passed through the whitening filter, followed

in turn by video detection, sampling, and a threshold test. This processing architecture is

shown in Figure 3.2.

The form of the whitening filter is determined by the covariance function of the clutter-

plus-noise component of the radar return's IF complex envelope. Because the clutter and
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the noise are independent, their overall covariance function is the sum of their individual

covariance functions. The covariance of the receiver noise is given in (2.50). From (2.46),

(2.47), and (2.49), the covariance of the radar clutter can be calculated. The resulting

covariance function of the clutter-plus-noise component r, is:

1 0 0~

(rv (m, r)rt(m', T')) = No6[m - m']6(T - T') 0 1 0
0 0 1_

1 p 0
+Po exp[-B(AOT2 + COT' 2 - 2TT')] exp[-Do(m - m') 2] p* 1 0 ,

0 0 J
(3.3)

where

PO 2 a 2 PTPLo0i-
\ cL'2 / [32cos 2 ($)/c 2 T2+ k2a sin 2 (0)/L'2](kla2/L'2 ),

k 1 a2 sin2 (0)/L'2

(-i7rWo/To + 4/T)(4cos2 ($)/c 2 )>

B_ = [(4/TO)2 + (0rWo/To)2 )(4 cos 2(0)/c 2 )
32cos 2 (4')/T2c2 + k a sin2 (0)/L'2

k 2 a2 sin 2 (g)/L 2

CO = 1 + Y
(iIWo/To + 4/T )(4cos 2 ($)/c 2 ),

Do = k [(k2a 2/2L'2)2 + (k/ L') 2]. (3.4)

From (3.3) we see that the clutter rciutter(m, T) is stationary with respect to the discrete

cross-range coordinate m, a result consistent with the work in [6] [23], but it is non-stationary

with respect to the continuous range coordinate T, unless Ao = Co = 1. To derive the

whitening-filter impulse response for the non-stationary process r(mi, T), one may employ

the Karhunan-Loeve expansion of (3.4). However, the functional form of the non-stationary

whitening filter is cumbersome and difficult to calculate. To avoid its direct manipulation in

our performance calculations we will come up with a simpler form by imposing constraints on

the radar parameters. It can be shown that when (1/4) tan2 (0)(kcay/L') 2 (cTo) 2 << 1, the
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parameters AO and Co in (3.4) are approximately equal to 1, hence the r,(m, T) covariance

function in (3.3) is approximately stationary. Combining this condition with the Fraunhofer

far-field limit kca2/L' << 1, (3.3) reduces to:

1 0 0
(rv(M, T)r(m', T')) = No6[n - m']6(r - T') 0 1 0

0 0 1_

[1 p 0
+P exp[-A(T - T')2] exp[-B(m - m') 2 ] p* 1 0 , (3.5)

0 0e

where
Ge Qaxa,) 2 L'cTo

P = 2 )2 TPL VcoT
cL' 4f2Vcos($)kcax'

1 [421
A = + (rWo) 2 ]

8 To

B= ( .)2  (3.6)

Note that (1/4) tan2 (g)(kcay/L') 2 (cTo) 2 << 1 is not an unreasonable assumption for a

typical SAR system. For example, in Lincoln Lab's ADTS, the slant range L' ~ 7000 m,

the antenna beamwidth 1/(kcay) ~~ 7r/90, and the pulse width To is of the same order of the

reciprocal bandwidth, 1/600 MHz [28]. Hence (kcay/L')(cTo) ~ 1/486 << 1 for this system.

Let us define the shift-invariant covariance function Kv,(m, r) = (rr(m + m', - + T')

r(', T')), and define the Fourier transform of Kvrn(m, T) to be S, (w, Q), where

00 00O

S VV(W) Q) E ~ e -']f0 d-reigTKvv (r7 T), (3.7)

and w, Q are frequencies associated with the discrete and continuous time coordinates, m

and r, respectively. To whiten the spectrum in (3.7), the frequency response of the whitening

filter Hm(w, Q) must satisfy the following relation:

Hw(wQ ) - S,,(w, Q) -Ht(w, Q) = I, (3.8)
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where I is the 3x 3 identity matrix. In other words, the filter H,(w, Q) whitens the stochastic

signal v in the discrete cross-range coordinate, continuous range coordinate, and polarimetric

domains. Plugging (3.5) and (3.7) into (3.8), the frequency response of the whitening filter

H.(w, Q) can be obtained. The result is

p*lx'lp\ 1/ V" 0
No+(1+p)a(w,Q) VNo+(1+p)a(w,Q)

H(w, Q) - 0 , (3.9)
No+(1-|pl)a(wQ) VNo+(1-p)a(wQ)

0 0 1
No+(1+ca(w,Q)) _

where

a(Q, w) = P e 2/4A e- em (3.10)
-=00

Let the impulse response of the whitening filter, which is the inverse Fourier transform

of H,(w, Q), be h,(m, T). Then the impulse response of the matched filter hM(m, T) is the

transpose conjugate, time reverse of the receiver front-end target waveform passed through

the whitening filter, namely,

ht (-m, -T) = h,(m, T) * rtarget (m, r)

E dT'h (m - m', r - T') - rtarget (m', T'). (3.11)

Note that the whitening-filter output is a 3x1 vector, whereas the matched-filter impulse

response is a 1 x 3 vector. Hence the matched-filtered radar signal is a scalar, unlike the

output from the adaptive-resolution processor, which is rather a 1 x 3 polarimetric vector.

The scalar output components of target return, clutter, and noise after the whitening filter

and the matched filter are

lcomp(onent (M r) = hM (m, T) * h,(m, T) * rcomponent (m, T), (3.12)

for "component" = target, clutter, and noise.

The whitening-filter processor is seldom as practical as the adaptive-resolution proces-

sor; it requires exact knowledge of the clutter and noise statistics, as well as the waveforms

51



Whitening Matched Video Threshold
' Filter Filter Detector Test

Radar m=0
ReturnI

Target
Detection
Block

Figure 3.2 Block diagram of whitening-filter processor.

scattered from the target types of interest. Nevertheless, the whitening-filter processor is

conceptually important in that it is the Neyman-Pearson optimum processor for the target

detection problem. As such, its receiver operating characteristic-its detection vs. false-

alarm probability behavior-bounds the performance of any realizable processor. By com-

paring the detection performance of a adaptive-resolution processor with that of a whitening

processor, we can have a better idea about how far the adaptive-resolution processor's de-

tection performance is from the ultimate theoretical limit. By comparing the detection

performance of the optimized adaptive-resolution processor with its conventional-processor

(r = 1, v = 1) limit, we can learn how important it is to treat extended targets differently

from point scatterers.

3.2 Performance Analysis

We now explore the performance of the adaptive-resolution SAR processor under several

interesting operating conditions. We begin by studying its SAR-imagery spatial resolution

as we vary the processing durations for the cross-range and range filters. Then we formu-

late a likelihood-ratio test for the associated target detection problem and show that its
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performance is totally characterized by the signal-to-noise-plus-clutter-ratio (SNCR). Fi-

nally, we present numerical results comparing the SNCRs of the adaptive-resolution and

whitening-filter processors.

3.2.1 Spatial Resolution Behavior

For a target located at a known position (x, y, z) = (0, L/ tan(O), 0) on the ground, the

intensity image produced by our adaptive-resolution processor has its maximum value at

m = = 0. Let us define the image resolution in the cross-range (range) direction as the

width of the region around r 0 (around cross-range m = 0) within which the intensity

exceeds 1/e of the peak value. Figure 3.3 shows numerical results for these resolutions as

functions of the processing duration parameters, r, and v. Five target types are considered:

specular reflector; dihedral reflector with orientation angle # = 00; dihedral reflector with

orientation angle # = 900; diffuse target; and dielectric volume with relative permittivity

er = 10+ i5. All targets have the same geometric size. The diffuse-target image is defined as

the ensemble average of the processor output intensity based on the statistics of the clutter.

Several interesting features are revealed in Figure 3.3. First, the cross-range adaptive-

resolution signatures of the specular reflector and the diffuse target are different, and this

difference is accentuated as the processing duration decreases, i.e., as K increases. For

sufficiently large K the spatial resolution of the diffuse target is much larger than that of the

specular reflector. This behavior is easily explained. When the processing duration is very

short the cross-range component of radar return undergoes almost no pulse compression,

so its SAR image is nearly return-duration limited. The coherent scattering structure of a

specular reflector produces a strongly directional reflected beam, whereas the diffuse target

scatters into the hemisphere. The resulting difference in target-return durations accounts

for the resolution difference seen in Figure 3.3.

The second interesting feature in Figure 3.3 is the orientation-angle dependence of the
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dihedral reflector's adaptive-resolution signature. When the dihedral axis lines up with

direction, y, its spatial-resolution behavior is very close to that of the diffuse target, whereas

when its axis lines up with the aircraft-flight direction, -, its spatial-resolution behavior is

like that of the specular reflector. This trend is also consistent with our physical intuition.

When the dihedral axis lines up with Q, the dihedral looks like an isotropic scatterer insofar

the cross-range direction is concerned so a strong return is observed from every direction.

When the dihedral axis lines up with i, such isotropy is not present, hence the cross-range

behavior of the scattering pattern is similar to that of the specular reflector.

The final feature worth noting about Figure 3.3 is that the cross-range behavior of the

dielectric volume is very close to that of the specular reflector. This phenomenon can be

explained by recalling that the scattering coefficient depends on the incident/scattering

directions and the frequency. Roughly speaking, the direction dependence of the scattering

coefficient determines the cross-range behavior, whereas its frequency dependence determines

the range behavior. Typically these two dependences are coupled. However, when the radar

bandwidth is much smaller than the carrier frequency, the space and frequency dependent

terms are approximately separable. For the dielectric volume, the direction-dependent part

of the scattering coefficient is almost identical to that of the specular reflector. Therefore

the cross-range spatial resolutions of these two target types are quite similar.

Spatial resolution behavior in the range direction is different from what we have just

discussed for the cross-range direction. Although there are differences in the range-direction

spatial resolutions among our various target types, the differences are not very large. This

indicates that, over the radar's pulse bandwidth, the frequency dependences of the target

scattering coefficients are all quite similar.

3.2.2 Target Detection Problem

Suppose that a single target may or may not be located at (x, y, z) = (0, L/ tan(4), 0),
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on top of a clutter-generating rough-surface ground. Thus, the IF complex envelope at the

input to either the Figure 3.1 or Figure 3.2 processor is

r(m, T) = rciutter (m, T) + rnoise(m, 'r), (3.13)

when the target is absent (hypothesis Ha), or it is

r(m, T) = eirrtarget (m, T) + rciutter(m, T) + rnoise(m, T), (3.14)

when the target is present (hypothesis H1 ). Here, <p, is an uniformly-distributed random

phase representing the incoherence of target return with respect to the clutter and noise,

and the target is a known choice from our set of possibilities: specular reflector, dihedral

reflector of known orientation, or dielectric volume.

For both the adaptive-resolution (Figure 3.1) and the whitening-filter (Figure 3.2) pro-

cessing architectures, we wish to optimize Neyman-Pearson detection performance, viz., we

wish to maximize the detection probability

PD = Pr(sayHi Hitrue), (3.15)

at a prescribed false-alarm probability,

PF = Pr(sayHi Hotrue). (3.16)

It is known [29] that the threshold tests shown in Figure 3.1 and Figure 3.2 are indeed

the optimum post-filter decision rules, for the hypothesis test specified above, and that

the Figure 3.2 system is the optimum processing of the raw data specified in (3.13) and

(3.14). Moreover, the receiver operating characteristic-the PD vs. PF curve traced out as

the threshold is increased from zero to infinity-for either of these tests takes the following

simple form,

PD = Q(v'2 -SNCR, --2ln(PF)), (3.17)
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where

Q(a, ,) = dzz exp(-a2/2 - z 2/2)Io(az), (3.18)

is Marcum's Q function, Io(x) fO2'(d@/27r)e" "(0) is the zeroth-order modified Bessel

function, and SNCR is the signal-to-noise-plus-clutter ratio of the processor under consid-

eration. As indicated in (3.17) and (3.18), the PD-PF curve is parametrized by the SNCR

value. Hence the performance of the binary target detection problem is fully characterized

by this parameter.

The SNCR in (3.17) and (3.18) is defined as the signal-to-noise-plus-clutter after the pro-

cessor. For the adaptive-resolution processor, the SNCR has three polarimetric components,

HH, VV, and HV, since the processor output is a 3x 1 vector, hence,

SNCRAR,a taRat(m = 0,T = 0(3.19)
(lMtte=(m = 0, r = 0)12) + (IlAosa# (m = 0, T = 0)

where a# = HH, VV, HV. For the whitening-filter processor, the SNCR has only one com-

ponent since the processor output is a scalar, hence

SNCRwhite _ ta e (m = 0, T = 0)2 (3.20)

(|ltter(m = 0,'r = 0) 2) + (|eiste(m= 0,= ) 2

3.2.3 Signal-to-Noise-plus-Clutter-Ratio

In this subsection, we will compare numerical SNCR values for our adaptive-resolution

(AR) processor and the optimum whitening-filter processor. The parameter values used in

our computations are given in Table 3.1. These parameters are not based on any real SAR

imaging system, but they are not far from the specification of such a system. Compared

with the Lincoln Laboratory 35 GHz airborne SAR imaging system [28], our radar carrier

frequency is lower (35 GHz vs. 10 GHz), bandwidth is smaller (600 MHz overall bandwidth

vs. 10 MHz chirp bandwidth), and slant range is about the same (7000 m vs. 7070 m). The

cross-range and range resolutions for the Lincoln Laboratory system are both 0.3 m. When
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Table 3.1 Table of parameter values for SNCR calculations.

the target is a point scatterer and r = v = 1, the parameter set in Table 3.1 implies a 1 m

cross-range resolution width and 16.1 m range resolution for stripmap-mode operation, and

0.7 m cross-range resolution and 19.1 m range resolultion for spotlight-mode operation.

3.2.3.1 Adaptive-Resolution Processor

Figure 3.4 illustrates the variation of the specular reflector's SNCR with respect to

processing durations. In this figure, CNR is the clutter-to-noise spectrum ratio at zero

frequency. The two panels on the left in Figure 3.4 are under clutter-dominant conditions

(SNCR _ SCR, where SCR is the signal-to-clutter ratio) whereas the two on the right are

under noise-dominant conditions (SNCR ~ SNR, where SNR is the signal-to-noise ratio).

The top two panels in Figure 3.4 show the cross-range-processing duration behavior, and the

two lower panels give the range-processing duration behavior. For the cross-range features,

different curves represent different antenna aperture sizes. All the curves shown are for HH

polarization, because the VV values turned out to be very close to the HH, and the HV

values were negligible.
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Flight Parameters Radar Parameters Reflector Parameters

aircraft altitude antenna radii target radii
L = 5000m ax = ay = 1m pt = 1.5m

aircraft speed Tx and LO powers relative permittivity
v = 100m/s PT = PLO = 1W er= 10+i5
slant angle radar frequency HV clutter strength
S= 45' fc = Qc/27r = 10 GHz e = 0.2

pulse-repetition period HH x VV correlation
T, = 10ms p = 0.57
pulse width
To = 0.05 ps

chirp bandwidth
Wo = 10 MHz



Figure 3.4 makes it clear that the clutter-dominated regime is very different from the

noise-dominated regime. This is because the clutter has a colored-noise spectrum that is

quite different from the white spectrum of the receiver noise. When noise dominates, the

SNCR is a unimodal function of K, with a maximum K = Kpt. This optimum K value best

matches the duration of the cross-range processor to the radar return from the target. The

return duration for the specular reflector is shorter than that for the isotropic/diffuse target,

hence K,0 t > 1 for the specular reflector. If we presume the return beam to be approximately

a Gaussian pattern, we can show that Kopt l + 2p /ax.

Turning now to the range-processing duration behavior in the noise-dominant regime,

we see from Figure 3.4 that the SNCR value is unimodal in v, with an optimum value fixed

at unity. The optimum v value does not change because the shape of each individual radar

pulse is unaffected by surface reflection from the specular reflector. Figure 3.4 also shows

that in the noise-dominant regime the SNCR is independent of chirp bandwidth Wo.

Figure 3.5 illustrates the orientation-angle dependence of the SNCR for a dihedral mirror.

The orientation angle, #, is the angle between the dihedral axis and ,. The most significant

feature in Figure 3.5 is the polarimetric effect. The SNCR values for HH and VV are almost

identical. They both have local maxima at # = 00 and # = 90', as well as minima at # = 45'.

Unlike the specular reflector case, the SNCR values for HV do not vanish. With respect to

orientation angle, their behavior is opposite to that of HH and VV: at # = 00 and # = 900

local minima occur, at # = 45' a maximum occurs. Such #-dependent characteristics are

generated by the double-reflection terms of the dihedral mirror's scattering function. As the

dihedral axis is rotated, the polarization of the doubly-reflected electromagnetic field rotates

twice as fast. At # = 450, the rotation is 900, hence the cross-polarized component, HV, be-

comes much stronger than the co-polarized components, HH and VV. The different patterns

of SNCR variation at different polarizations implies that the full polarimetric information

is essential to the detection and recognition of a dihedral mirror (or other types of targets
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Figure 3.4 SNCR vs. chirp-compression filter durations: AR processor, specular reflector.
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involving multiple scattering).

The dihedral's orientation affects its return-beam pattern too. Figure 3.6 illustrates the

variation of a dihedral reflector's SNCR with respect to , when the noise dominates the

clutter. At the three orientation angles # = 0', 45', 90', the SNCR variations are similar to

each other, as well as to their counterparts for a specular reflector. However the optimum K

values are different for different #: the larger 4 is, the smaller K,0 t becomes. This is because

the scattering beamwidth of a dihedral mirror in the cross-range direction is a function of

its orientation angle. The larger # is, the closer its scattering pattern is to being isotropic,

hence the longer its return duration. By treating the scattering coefficient of dihedral mirror

as approximately Gaussian, the optimum K can be taken to be nope ~ 1 ± (pt/ax) cos 2(q).

Notice that even though the return-beam pattern for a dihedral reflector at # = 900 is very

close to isotropic, it is not identical to that of an isotropic scatterer. The radar return is

not equally strong at all look angles. At large look angles, more dramatic shadowing is

encountered, and hence the radar return becomes weaker. So a directional scattering beam

pattern still exists for a dihedral oriented at 90'. This effect becomes significant when the

antenna footprint is large enough to irradiate the target at a look angle that is well off the

slant direction: at # = 90' with ax/pt = 1/3, Figure 3.6 shows that K 0pt differs significantly

from unity.

Figure 3.7 illustrates the dielectric volume's SNCR variations with respect to K and v

when the noise dominates the clutter. The -dependent features here are identical to those

seen for the specular reflector: the optimum K values are the same, and the SNCR values for

different aperture sizes are in the same proportion. The v-dependent behavior is different,

however, from the previous (surface-scattering) cases. The radar return from a dielectric

volume has a SNCR that decreases with increasing chirp bandwidth Wo. These results are

consistent with the comments made in Section 2.3.3. The cross-range beam pattern of the

radar return from a dielectric volume is the same as that of a specular reflector. Volume
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scattering, however, disperses individual radar pulses, and this effect becomes more serious

with increasing pulse bandwidth.

3.2.3.2 Whitening Processor

Here we shall compare the SNCR values for the AR processor with those for the optimum,

whitening-filter processor. Note for the parameters in Table 3.1, the value

(1/4) tan2 (g)(kcay/L')2 (cTo)2 ~ 7r2/200 << 1.

Hence the clutter is approximately stationary, and the whitening filter in (3.9) can be applied.

By construction, the clutter-plus-noise part of whitening filter's output has a white spec-

trum. Thus, the SNCR value for the whitening-filter processor in (3.20) reduces to the

"energy" of the impulse response of the matched filter described in (3.11):

00 0

SNCRwhite = E dThm(-m, -T) - ht (-m, -T)

/ 7r do o d
W f c~ R - arget (w, Q) -Ht (w, Q) - H,,(w, Q) -Rtarget (W, Q), (3.21)

7r 2K - 27r

where Rtarget(W, Q) is the 2-D Fourier transform of rtarget (mi, r), and the equality is derived

from (3.11) and Parseval's theorem. Plugging the whitening filter from (3.9) into (3.21), we

obtain:

SNCRwhite m0( dQ f dw [(No + a)(|SHHI2 + SVV) - 2Re[apSHHSvv] + SHy 2]
1-o 27r 1-o 27r [No + (1 + |pl)a][No + (1 - |p|)a] No + c '

(3.22)

where S., is the target-return spectrum for input and output polarizations u and v, respec-

tively.

If we approximate the variations of the target return along the range and cross-range

directions by Gaussian shapes, then the two filters hi[m] and h2 (T) in the r-v-optimized AR
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processor are the matched filters for the target return waveform. By Parseval's theorem, the

SNCR for the -v-optimized AR processor is approximately.

SNCR " 27 -o 27 ] (3.23)
fCAR oo 2ooo Suo 2 (No + ccr)

where cuv is reflection-coefficient covariance between polarizations u and v, which is the u - v

element of the matrix in (2.49).

Several significant aspects can be discerned from (3.22) and (3.23). In the noise-dominant

regime, i.e., when No >> a(Q, w) for all (Q, w), we see that SNCRwhite reduces to the sum

of target-return energies over all three polarizations divided by the noise spectrum No,

whereas SNCRAR becomes the target-return energy at a specific polarization divided by the

noise spectrum. Therefore SNCRwhite/SNCRAR becomes a polarimetric-effect-dependent

constant. Regardless of the polarimetric effect, SNCRAR in this case has reached its upper

bound.

When we are not in the noise-dominant regime, the relationship between SNCRwhite and

SNCRAR is more complicated, and the AR processor might not be able to achieve the op-

timum, white-noise limit. Figure 3.8 plots the numerical results for SNCRwhite/SNCRAR

versus CNR for different target types. All the curves in Figure 3.8 have a similar trend:

SNCRwhite >> SNCRAR prevails when clutter dominates. As the white-noise spectrum is

increased, however, the performance gap between the optimum processor and the AR pro-

cessor decreases. Eventually, the noise-dominant regime is reached and SNCRwhite/SNCRAR

becomes independent of CNR and equal to 2 for the specular reflector, the dielectric volume,

and the dihedral reflector at # = 0 and 90', and equal to one for the dihedral reflector at

#= 45'.

The work of [6] on 1-D SAR showed that when the size of a specular target becomes

much larger than the antenna aperture SNCRwhite/SNCRAR ~ 1 prevails regardless of the

clutter strength. The reason this occurs in 1-D SAR is that a very large specular reflector
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produces a very short duration return. Over the small chirp bandwidth associated with

such a short-duration return the clutter spectrum is almost white, so the whitening filter is

superfluous and the optimum receiver is the duration-optimized AR processor.

Our analysis shows that the preceding result of [6] does not extend to 2-D SAR. The

most critical difference between the 1-D and 2-D configurations is that the latter has two

frequencies-w and Q-representing variations along the cross-range and the range direc-

tions. Having a large specular target indeed renders the clutter spectrum flat within the

narrow w-bandwidth of that target's short-duration return. But the Q-bandwidth of the tar-

get, which is not significantly altered by target size, is still comparable to the Q-bandwidth

of the clutter. So the clutter spectrum cannot be approximated as white within the 2-D

bandwidth of the target return, hence omitting the whitening filter inevitably leads to sub-

optimum detection performance. Figure 3.9 plots SNCRwhite/SNCRAR versus target size.

Increasing target size does reduce SNCRwhite/SNCRAR to some extent, but this improve-

ment is limited by CNR. The minimum SNCRwhite/SNCRAR is not always optimum (2

or 1, depending on polarimetric condition). The larger CNR is, the higher the minimum

SNCRwhite/SNCRAR value becomes.
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Chapter 4

2-D Spotlight SAR: Signal Model
and Performance Analysis

4.1 The Basic Principle of Spotlight-Mode SAR

From the viewpoint of antenna synthesis, increasing the time duration over which a

coherent radar-return is available from a target improves the resolution that can be achieved.

In stripmap-mode SAR, the dwell time of a target in the radar footprint area is restricted

by the antenna beam width. This implies that the resolution length after synthetic aperture

formation cannot be smaller than the size of the real antenna aperture [23]. To release this

resolution limitation, a different mode of synthetic aperture operation- spotlight-mode

SAR- has been developed.

In spotlight-mode SAR, the antenna beam "spotlights" a fixed region all the time. In

other words, its footprint area on the ground is kept approximately stationary, rather than

allowed to sweep along an elongated strip as in the case of the stripmap-mode SAR. Figure

4.1 illustrates the physical scenario of a 2-D spotlight-mode SAR. Comparing Figure 4.1

with Figure 2.1, almost all the aspects of the two modes of SAR operations are identical:

the aircraft is flying along a linear path at a constant altitude, the radar mounted on

the aircraft is continually transmitting discrete pulses toward the region of interest on the

ground, and so on. The only difference is the normal direction of antenna aperture. For

stripmap-mode operation, the normal direction of antenna aperture is fixed at -2'. For

spotlight-mode operation, on the other hand, the normal direction of antenna aperture is

adjusted along the flight path to constantly point toward the region centered at (x, y, z) =

(0, Lcot(O), 0). More explicitly, the antenna normal direction for the mth pulse is (-2' -

smvT/L')/ 1+ (mvTS/L') 2 .
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Figure 4.1 Flight geometry for a 2-D spotlight-mode SAR.

The principal advantage of spotlight-mode SAR over conventional stripmap-mode SAR is

its enhanced resolution. In stripmap-mode operation, the duration that a region of interest is

illuminated is at most the antenna-beam size divided by the speed of the aircraft. Extending

the synthetic-aperture formation (signal processing duration) beyond this limit does not

improve the image resolution. In contrast, in the spotlight-mode operation, the duration

that a region of interest is illuminated can be arbitrarily long in principle. Therefore, in the

ideal situation, phase information from every aspect angle concerning a region of interest

can be collected and integrated via SAR operation. This implies that the resolution size

of a spotlight-mode SAR image can be very small, provided the signal processing duration

is very large. Because of this characteristic, the processing duration of a spotlight-mode

SAR is often longer than that of a stripmap-mode SAR. In reality, the choice of arbitrarily

long processing duration does not guarantee an arbitrarily fine resolution. The aspect-angle

dependence of the terrain reflectivity in the region of interest restricts the image resolution.

A 2-D spotlight-mode SAR image is often interpreted as a tomographic rendition of
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the 2-D terrain-reflectivity profile. The conventional processor for 2-D spotlight-mode SAR

data is designed based on such tomographic signal model. Typically, it consists of: a phase

modulator that compensates for the quadratic phase term with respect to cross range and

de-chirps the chirped pulse of the radar return; a sampler that discretizes the "short" time

along the range direction; a polar formatter that arranges the sampled data in an annular

domain; and a 2-D inverse Fourier transformer applied to the annular domain [1][5]. In this

Fourier transformer, the radial and angular resolutions are determined by the processing

durations along the range and cross-range directions. Therefore, in a manner similar to the

one we used for stripmap-mode SAR, we will define an adaptive-resolution processor for the

spotlight-mode SAR to be a conventional spotlight-mode SAR processor containing a 2-D

inverse Fourier transformer with variable processing durations along both range and cross-

range directions. Similarly, we will define a whitening processor for the spotlight-mode SAR

to consist of a whitening filter that whitens the spectrum of clutter plus noise, followed by

a matched filter for the waveform of the target-return.

In this chapter, we will explore the same topics that we considered in the last two

chapters, for the 2-D spotlight-mode SAR. First, we will construct the radar return sig-

nal models for the spotlight-mode SAR scenario. The radar signals of interest include the

returns from a target with simple geometry and constitution, clutter from rough surface

scattering, and noise, and once again the models are derived from electromagnetic prop-

agation and scattering theories. Second, we will lay out the detailed descriptions for the

adaptive-resolution processor and the whitening processor. Third, we will present numerical

performance-analysis results, including resolution and binary detection performance (which

is completely characterized by SNCR, the signal-to-noise-plus-clutter ratio). The variations

of SNCR with respect to different parameters are compared. All these variation conditions

are identical to those set out in Chapter 3 for the stripmap-mode SAR. Hence we can directly

compare the performance (SNCR) of these two modes of SAR operations.
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4.2 Radar Return Model

Similar to the stripmap-mode SAR, the intermediate-frequency radar return model of

the spotlight-mode SAR consists of the transmitter model, the propagation and scattering

model, and the receiver front-end model. A train of discrete radar pulses is generated at

the transmitter. Each pulse is propagated toward the objects to be observed, scattered

or reflected, and propagated back to the radar receiver. The return pulse is mixed with

a superheterodyne local oscillator field, and the resultant signal is passed through an IF

bandpass filter. Such process is identical to the one depicted in Figure 2.2.

The radar return signal of a spotlight-mode SAR also includes three components: target

return, clutter which is the return from the rough ground surface, and receiver noise which

is modeled as a white Gaussian random process. The repertoire of targets considered in this

chapter is identical to that in Chapter 2: a specular mirror, a dihedral mirror with different

directions for its axis, and a dielectric volume.

The transmitted radar signal is assumed to be a train of chirped pulses with period Ts,

and the complex envelope of each individual pulse, p(t), is described by (2.6). The field

distribution pattern on the antenna aperture is modeled as an elliptical Gaussian, as that

in (2.3). Thus the effective surface current density Ra(fa, t) can be described by (2.7).

For the surface current density of the transmitted antenna aperture given by (2.7), the

incident electric field Ri around the scene center on the ground is approximated by (2.12).

To further approximate the formulation in (2.12), we have to bear in mind two significant

differences between stripmap-mode operation and spotlight-mode operation. First, the sur-

face integral over Sa in (2.12) represents the antenna beam factor along the direction of wave

propagation from the transmitter antenna aperture to the scene center. For stripmap-mode

operation, the antenna normal direction is fixed at -i', which implies the local coordinate

f, does not depend on time. But the incident direction toward the scene center, fi, varies
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with time (pulse number) (see (2.14)). So j -i . in (2.12) is a function of time. This result

gives a time (pulse number)-dependent antenna beam factor exp[-((kc + k)axvt) 2 /4L' 2 ] for

the incident electric field around the scene center, as indicated in (2.16). For spotlight-mode

operation, the antenna normal direction follows the scene center as the aircraft flies. Hence

the normal direction of f, is parallel to the incident direction toward the scene center, rj.

The quantity fi -fa is therefore equal to 0, which implies the antenna beam factor in the in-

cident field is 1 rather than exp[-((kc + k)azvt) 2 /4L' 2]. Second, since the antenna aperture

direction of a stripmap-mode SAR is fixed along the path, the radar return is non-negligible

only within a cross-range distance much smaller than the range distance. Thus the range

distance ri = L'2 + (Vt) 2 can be approximated by its first-order expansion L' + (vt) 2 /2L'

for the phase terms, and its zeroth-order expansion L' for the amplitude terms. (Equations

(2.13) to (2.15) describe this approximation condition.) However, for a spotlight-mode SAR,

the antenna beam can illuminate the region of interest throughout the flight path. Thus

the radar return is not necessarily negligible when the antenna aperture is far away from its

nominal (t = 0) position. Therefore, the approximation formulations in (2.14) and (2.15)

cannot be applied. We should retain the definitional formulation ri = L' 2 + (vt)2

The scattering field from a target located at the scene center can also be calculated from

the incident field in (2.16) and electromagnetic scattering theory by following the procedures

in Section 2.2.3. Similar to (2.22), the resultant scattering field is represented in terms of

the incident field and the bistatic scattering tensor.

The receiver front-end model is identical to the one in Section 2.2.4. The returned

electrical field E is mixed with a CW heterodyne local oscillator surface current density I[c,

which is modeled by (2.24). The resultant signal is then passed through an IF filter to extract

its IF component. Finally, the complex envelope of the IF signal, y(t), is reformulated as

a two-dimensional signal r(m,,r), using the discrete index to represent pulse number, and

the continuous time T to denote the time delay along the range direction. Following the
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same convention of transmitting and receiving polarizations as that in Section 2.2.4, the

fully polarimetric 2-D radar returns rHH(m, T), rv(m, T), and rHV(m, T) can be defined.

Based on the above discussion, we now present our formulations for the 2-D spotlight-

mode radar return signals corresponding to target return, clutter, and noise. The target

return is the radar-return signal from a target with simple geometry or composition: a

specular mirror, a dihedral mirror, or a dielectric volume. The location of the target is

assumed known. Therefore the antenna beam can be adjusted such that the target is at the

scene center (x, y, z) = (0, L' cos(9), 0). Thus target return is then as follows:

r~dQ 2 PTPLoa~aY
rtarget(m, T) d _(Q)eip(Qe + ) ( Q)o 2 ± )2] exp[i2ke L'2 ± (mvT )21-oo 27r 47rrq[L' +(mvT,)

2 1 =rVL' + smvTV|L' - 'L' -- smvT,/VLx exp{i2(Q/c)/L'2 + (mvT ) Uc- S ( ,'; 'c + Q) -Ua,
|'L' + smvT8/L'I' |'L' + JmvT,/L'|

(4.1)

where
UH UH

Ua = y ; Uc = v y ,(4.2)

are the tensors associated with the polarizations of the transmitted field and the receiver

local oscillator field.

The modified scattering tensors S of the specular mirror, the dihedral mirror, and the

dielectric volume are given by (2.33), (A.35), and (B.15), respectively, because the incident

and scattering directions are independent of the SAR operation mode.

When the target center is not exactly located at the scene center, the formulation in

(4.1) has to be slightly modified in two aspects. First, the distance between the target and

the antenna aperture is different. Therefore the phase delay must be changed accordingly.

Second, the scene center is equivalent to the peak position of the spotlight-mode SAR's

antenna beam pattern. So when the target location deviates from the scene center, its radar

return experiences an attenuated antenna beam factor. For a target located at (x, y, z) =
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(A2A, AV + Lcot(4), 0), the radar return is therefore

oo d Q _*Q / 2 VPTPLoaxa Yrtarget (m, T) ~ - PQ e po(Qc + Q) 2 2) L-oo0 27r 47rr/[L + )2]

x exp[i2ke (L' + A cos(4))2 + (mvT, - A2)2 + (AY sin(V)) 2

x exp{i2(Q/c) (L' + AY cos(#)) 2 + (mvT, - Ax)2 + (Ay sin(V))) 2 1

" exp -{ c + k)]2aL2][A + (mvT, cos(@)/L')Ay]2
2[L' )2] L2 + (mvTs)[

{ [(kc + k)] 2 ay2 -1 (V
exp -- + MV [AY sin())]2

2[L'2 + (mvT )21

=Ui ' YL' + &mvT8 /L' -- 6 - pLy -i' L' -- imvT3 /L' - 2 ,- DAQc+QU
xU -S ( - cQ-a-

" |'L' + dmvT 8/L' - iAx - 9A,\' |'L' + smvT,/L' - 2 A, - Q6y|
(4.3)

Notice here the propagation distance is (L' + A, cos(@)) 2 + (mvT, - AX)2 + (,AY sin (,0)) 2

rather than L'2 ± (mvT3 )2. The beam factors along two orthogonal directions of the an-

tenna aperture plane, exp{ 2[L'2 (mvT) L!
2

) 2 [Ax + (mvT, cos(4')/L')Ay]2

and exp{- ] [A, sin(4)] 2 }, are obtained by measuring the target location's offset

from the antenna normal direction. This shows that when the target location is not ex-

actly at the scene center, the antenna beam factor is not invariant with respect to the pulse

number in a strict sense: the spotlight region moves slightly relative to the target.

Clutter is modeled as the radar return from a random rough ground surface. Equation

(2.46) gives the formulation for the clutter of a stripmap-mode SAR. Paralleling our devel-

opment of (2.30), the clutter can be interpreted as the sum of contributions from all points

on the ground plane, whose scattering coefficients are proportional to the local reflectivities.

Following the reasoning used in Section 2.4, we can obtain the spotlight-mode radar clut-

ter as the sum of contributions from all individual points on the ground plane, where each

point-contribution is calculated by (4.3). Thus the clutter of a spotlight-mode SAR is

-Fr PLOO - xay ( * dxdy
rciutter(m, 2) - ,2 (m dxb dyb27rc 2 L'-o o
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x exp{i2kcV(L' + yb cOs(@)) 2 + (mvT - Xb) 2 + (Yb sin/)) 2 1

xp[r - (2/c) V(L' + yb cos(I/P)) 2 + (mv Ts - Xb) 2 + (Yb sin(4/)) 2 ]

(exp{- kcav) L'2  [Xb + (mvT, cos(@)/L')yb]2}ex 2[ L'2 + (mVT,)2 ] L'2 + (mvT )2

2 2 RHH (Xb, Yb1
x exp{- 2 ± 2 [yb sin(0/)] 2 } exp[i2kch(Xb, yb)(m] Rvv(x:,yb) , (4.4)

2[L2 + (mvT,) | _ RHv (Xb iyb) _44

where (m = L/I[Lcsc(0)]2 + (mvT,)2 . Here RHH, Rvv and RHV are the HH, VV, and HV

components of the dyadic reflection tensor. The ground surface is assumed to be random.

So the reflection tensor and the surface height h are random Gaussian processes. Following

(2.47), we can define a transition tensor T, whose statistics are given by (2.49).

The receiver noise of the spotlight-mode SAR return is modeled as a zero-mean, circulo-

complex, Gaussian stochastic process that is white in range-time, cross-range-time, and

polarimetric domains. Its correlation matrix is given by (2.51). The random noise is assumed

to be independent of the random clutter.

4.3 Spotlight SAR Processor Models

In this chapter, we consider two types of SAR processors that deal with the 2-D radar-

return signal from spotlight-mode operation: an adaptive-resolution processor, and a whitening-

filter processor. The first one extends the standard polar-formatting-Fourier-transform

spotlight-mode SAR processor to different resolutions via a technique similar to the one

adopted in Section 3.1.1: varying the processing durations of the 2-D Fourier transformer.

The second one, as the optimum binary detector, applies a whitening filter to whiten the

unwanted part of the radar return (clutter plus noise), and a matched filter corresponding

to the shape of the target return. In this section, we will introduce the system model of the

standard spotlight-mode SAR processor, as well as the two processor schemes of concern.
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4.3.1 Standard Spotlight-mode SAR Processor

Depending upon different interpretations for the 2-D radar returned signal of the spotlight-

mode operation, different synthetic aperture processors are designed. A standard way of in-

terpreting the radar return is to conceive it as a convolved form of the 2-D Fourier transform

of the terrain reflectivity profile, namely, the tomographic rendition of the terrain-reflectivity

distribution [1] [5]. So the task of the processor is to convert the radar-return signal into a

straight-forward 2-D Fourier transform of the terrain reflectivity, and carry out the inverse

Fourier transform to recover the reflectivity profile.

Figure 4.2 illustrates the block diagram of a standard spotlight-mode SAR processor [5].

The radar-return signal is first multiplied by a complex waveform to de-chirp along both

the range and cross-range directions. The de-chirped signal, which is still continuous for the

range-time, is sampled to become a discrete-time signal in both directions. The sampled

signal is then rearranged by a polar formatter, and passed through a 2-D discrete Fourier

transformer. We will justify this SAR processor by demonstrating that for a target located

sA' + QAy away from the scene center, the processor produces sharply-peaked image at

For a target located o,, + QAY away from the scene center, the spotlight-mode radar-

return signal is given by (4.3). Assume that the bandwidth of the transmitted pulse is

narrow enough to neglect the frequency dispersion effect in the antenna beam factors and

the scattering tensor. In other words, we assume that these factors are all approximately

functions of the carrier frequency only. Thus we can take these factors out of the frequency

integral, and what is left inside the integral is just the spectrum of the transmitted pulse

with a phase shift proportional to time. Therefore,

A '2 vrPT PLoax ayrtarget(m, T) ~ -- p+ c 24,rr[L' + (mvTs) 2]

x z'L' + iimvT 8/L' - &Ax - QAy -z'L' - &mvT,/L' - &Ax -QAy
|'L' + &mvT /L' - &AX - A/y|' |2'L' + &mvT8/L' - &Ax - QAy|
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Figure 4.2 Standard spotlight-mode SAR processor.

k[ 2 2 L'2
(mT2c 2  2  (T 2 [Ax + (mvT, cos($)/L')AY] 2 1

2[ L' +m ')2 ] L'2 + (mvT,)

x exp{- kc ay2 [AY sin
2[L2+ (mvT) 2]

x exp[i2kc (L' + AY cos(b)) 2 + (mvT, - Ax)2 + (Ay sin (b)) 2]

XP[T - (2/c) (L' + A, cos (0)) 2 + (mvT, - x)2 + (Ay sin($)) 2 ], (4.5)

where p(T) = exp[-i-r(Wo/To)T2 - (4/To2 ) 2]

In (4.5), the phase terms that correspond to the frequency chirps along the cross-range

and range directions vary with the pulse number m. A basic principle of spotlight-mode

SAR processing is to calibrate the phase such that when the target is at the scene center

the phase shift, similar to the antenna beam pattern, is independent of the pulse number.

Therefore a de-chirping waveform

qref (m, T) = exp[-i2ke L' 2 + (mvTs) 2 ] exp[ilr(Wo/To)(r - (2/c) L'2 + (mvT 8 )2 )] (4.6)

is mixed with the returned signal in (4.5). The result is denoted by rtarg (M, T), where

rtargp (m, T) = qref (m, T) x rtarget (M, T). (4.7)
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Figure 4.3 The geometric denotations of 0m and #m-

Following the convention of spotlight-mode SAR processing, we define two angles and

use them to represent the de-chirped signal in (4.7). They are

6m - tan-,±(LcotQV>+)) 21 , O=m tan 1 [Lot . (4.8)
L Lcot ($)

Both of these two angles have geometric connotations. The elevation angle Om denotes the

angle between the vertical axis (2) and the slant-range vector (with respect to the scene

center), while the azimuth angle #m denotes the angle between the broadside axis (Q) and

the direction projected from the slant-range vector onto the ground plane. Both angles are

functions of the pulse number m since the slant-range vector is dependent upon the aircraft

position. The geometric scenario for Om and #m is illustrated in Figure 4.3.

The equivalent synthetic aperture of a spotlight-mode SAR can be larger than that

of a stripmap-mode SAR, because the spotlight-mode dwell time for a fixed region is not

restricted by the size of antenna beamwidth. However, this does not mean that the spotlight-

mode synthetic aperture will be arbitrarily large. In particular, it is still reasonable to assume
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that mavT, « L' cos(), where -ma/2 < m < ma/2 is the discrete processing duration.

So, for the 2-D signals within the domain of concern, we can approximate the slant range

(+ A cos()))2 + (mvT, - 6,)2 + (Ay sin(0)) 2 by its first-order expansion:

I(L' + AY cos(@)) 2 + (mvT, - 6")2 + (Ay sin(4)) 2

L' 2 + (mvT,)2 + sin(0m)[Ay cos(#m) - Ax sin(#m)]. (4.9)

Plugging (4.9) into the 2-D radar return (4.5) and mixing with the reference waveform (4.6),

we get two phase factors in the de-chirped signal (4.7). They correspond to the radar carrier

and the frequency chirp of the transmitted pulse, respectively,

exp{i2kc[(L' + Zy cos())) 2 + (mvT -6o;)2 + (A, sin(V)) 2 - L' 2 + (mvT5) 211

~ exp{i2kc sin(Om) [Ay cos(#0m) - A,, sin(0#m)],

exp{-i rWo [(T
TO

- (L' + AY cos(@b)) 2 + (mvT - AX) 2 + ( V sin(4)) 2 )
c

2 / 2 2
-(T - L'2 + (mvTs) 2 2c

= exp{ilr(Wo/To)(4/c)[T - (2/c) L'2 + (mvTS) 2 ] sin(Om)[Ay cos(#m) - Ax sin(#m)]},

(4.11)

where, in addition to (4.9), we have neglected quadratic terms involving Ax and Ay [5].

The de-chirped signal r agr(m, r) is passed through a sampler to discretize the contin-

uous range-time r with a sampling period T,. Thus the output Ctarget fn, n] is

Ctarget [M, n] = rtaret ( Tr + (2/c) L'2 + (mvT) 2)

A2 Q 2  VP/TPLOaxay exp{- k 2  L'2  2A
47rr[L'2 + (nvT,) 2] 2[L'2 + (mvT,)2

+ (nvT, cos($)/L')y A ]2 1

xkexp{- ay [A sin(@)] 2}
2[L+ (mvT 8 )2]

i 'L' -+ ismvTs/L' - 2ZXX - QI.\ -z'L' - smnvT 8|L' - 2 - AQ~ ) UXUe . ST( /c)+-Ua
|z'L' + s mvTs|L' -. 2Ax - Q94' |s'L' + : mvT,|L' - , Ax - Q Ay|'
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x exp{-(4/TO)[nT, - (2/c) sin((6m)(-Ax sin(0#m) + AV COs(#m))] 2 }

x exp{i(2/c)[Qc + 27r(Wo/TO)nT,] sin(Om)[--Ax sin(#m) + AV cos(#$m)]}. (4.12)

Notice the sampler not only discretizes the range-time r but it also adds a time shift

(2/c) L'2 + (mvT 8)2 to each individual pulse, to compensate for the propagation delay

between the antenna aperture and the scene center.

The signal Ctarget[m, n] exists only within a limited region of m and n. For the cross-

range index m, ctargetIm, n] is restricted to -m/2 < m < m,,/2, where ma is the pro-

cessing duration of the synthetic aperture operation; namely, mavT, is the size of syn-

thetic aperture. As indicated above, we assume that the processing duration ma is small

enough that mvTs/(L'cos(O)) << 1 holds. Thus the scattering tensor and the inverse-

square distance factor in (4.12) are approximately constants within the processing du-

ration. For the range index n, Ctarget[m, n] is restricted by the pulse envelope. Sup-

pose the Gaussian envelope in (4.12) is replaced by an unit-height rectangular envelope

with width To, then the region of n in which Ctarget [im, n] is appreciable is approximately

-(To/2T) + (2/cTr) sin(9m)(vr L'/kcay) < n < (To/2T) - (2/cTr) sin(6m)(V/L'/kcay) (a.

is the antenna aperture size along range direction). We also approximate the two Gaussian

antenna beam patterns in (4.12) by unit-height rectangular patterns (namely, 1 when the

target is located within the antenna beam footprint area, and 0 when it is out of the foot-

print area), and assume that (AX, AV) is within this footprint. So both factors are equal to

1.

Based on these assumptions, the sampled signal Ctarget[m, n] can be represented in a very

simple form:

., A,2 N PT PLoaxay 1
ctarget [m, n] ~ -p47c ,2 Uc S (21 -z; Qc) -Ua

x exp{i(2/c)[Qc + 27(WO/To)nT] sin(Om)[-A, sin(# m ) + A, cos(#m)]}. (4.13)

The points (m, n) at which Ctarget does not vanish form a rectangular array in the 2-D
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Figure 4.4 The polar formatting scheme.

plane. Different points on a line of constant m represents different discrete samples of the

range time at a fixed cross-range index. However, (4.13) indicates it is more advantageous

to rearrange this array in a polar format. To be specific, we define

K[m, n] (2/c)[Qc + 27r(Wo/To)nhTr] sin(Om),

and map the point (in, n) on the 2-D plane where the x and y coordinates are K2[m, n] and

Ky[in, ni]. As indicated in Figure 4.4, this mapping is equivalent to rearranging the constant-

mn points from a vertical line to a radial line from origin, tilted angle --#m with respect to the

vertical axis (a line of constant #m). In the terminology of spotlight-mode SAR processing,

such arrangement is called "polar formatting" [5]. When mna is small, sin(Om) in (4.14) is

approximately equal to cos(@) over the whole region of interest. Thus the distance between

two sample points along a line of constant #bm is almost a constant, and the region mapped

from a rectangular domain of (mn, n) is annular.
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After polar formatting, the the sampled signal Ctarget in (4.13) becomes dtarget[Kx, Ky],

which can be interpreted as discrete samples of a 2-D complex waveform on the Kx - Ky

plane:

d0K,] Qc2 %/PTPLOaXaY Uc - S'(', -i'; Qc) Ua exp[iKxA2 + iKyAy]. (4.15)
dtarget[Kx A47rr/L

The formulation of the polar formatted signal dtarget in (4.15) is simple and desirable: the

target reflectivity is proportional to its amplitude, while the information of the target posi-

tion appears as phase modulation. If we consider the radar return from a terrain in which

every point contributes, then the polar formatted signal in (4.15) becomes exactly the Fourier

integral (sum) of the terrain reflectivity profile. Hence, the most straightforward method

to recover the reflectivity profile from the polar formatted signal is to carry out the inverse

Fourier transform.

The polar formatted signal in (4.15) is passed through a discrete 2-D Fourier transformer:

Itarget(x, y) = E E dtarget[Kx, Ky] exp[-iKrx - iKyy]. (4.16)
K. Ky

Thus the output ltarget has a sharp peak at the position (x, y) = (2, Ay) whose amplitude

is proportional to the target reflectivity. The actual resolution of this output image (the

width of the peak) is determined by the size of the annular (Kx, Ky) region in Figure 4.4.

If movT,/L'cos(4) << 1 and 27rWo << Q, then the annular region is approximately a

rectangular window with lengths (2Qc/c)(mavT,/L') and 47rWo cos(O)/c along the horizon-

tal and vertical directions, respectively. It can be shown [1] that the resolution widths of

the output image along the horizontal and vertical directions are 1/(2Qc/c)(mavTs/L') and

c/47rWo cos($), respectively. It is clear that the cross-range (horizontal) resolution is con-

trolled by the synthetic aperture processing duration ma, and the range (vertical) resolution

is controlled by the chirp bandwidth Wo. Thus, it is preferable to increase ma and WO to

obtain an image with finer resolution. However, it is not possible to increase ma indefi-

nitely. As indicated above, an important assumption under the working principle of the
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standard spotlight-mode SAR processor is that ma is small enough to ensure that the de-

chirped, sampled, delay compensated radar signal Ctarget[m, n] in (4.12) can be interpreted as

a polar-formatted 2-D Fourier transform of the target scattering tensor. This requires that

the scattering tensor and the inverse-square distance factor be invariant with the cross-range

index m, which is true only for small enough ma.

In a real SAR processor, more elaborate schemes such as interpolation-FFT and

convolution-backprojection [1][5][30] are often implemented to carry out the 2-D discrete

Fourier transform in (4.16). The idea under most of these schemes is preparing the data in a

form more germane to the Fast Fourier Transform algorithm and hence taking advantage of

the computational efficiency of the FFT. But all of these schemes involve subtle numerical

issues. In this chapter, we directly carry out the 2-D Fourier transform in (4.16) instead of

adopting any elaborate scheme, because the principal purpose of this thesis is not to analyze

the performance of a particular system, but to achieve fundamental understanding of SAR

performance limitations.

4.3.2 Adaptive-Resolution Processor

The image resolution of a standard spotlight-mode SAR processor is determined by

the size of the annular region over which the Fourier transform is carried out. In Section

4.3.1, we mentioned that the angular width of the annular region is determined by the

processing duration along the cross-range direction, and the radial width is determined by

the width of the radar pulse as well as the length of the antenna footprint along the range

direction. The former is a free variable, while the latter is fixed by the radar front-end system.

Thus compared with the standard stripmap-mode SAR processor that fixes the processing

durations of the chirp compression filters along the cross-range and range directions, the

standard spotlight-mode SAR processor has one more degree of freedom. This is because

the dwell period of a target under the spotlight is not restricted by the size of antenna beam.
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The idea of the adaptive-resolution spotlight-mode SAR processor is similar to the one

for the corresponding stripmap-mode SAR in Section 3.1.1: we adopt the architecture of

a standard SAR processor described in Section 4.3.1, but vary the cross-range processing

duration (angular width of the annular region) and the range processing duration (radial

width of the annular region). To be specific, let the cross-range index m of the discrete

de-chirped signal Ctarget chosen for further processing be from -ma/2 to ma/2, and let the

range index n for further processing be from -n,/2 to n,,/2. Thus ma and na represent the

cross-range and range processing durations, respectively. To be consistent with the notation

in (3.1), we define
2v 2L' _To

ma 2 ,12LT na T V- (4.17)
skeaxvTs'V v,

Thus for the same K and v, the processing durations of the adaptive-resolution stripmap-

mode SAR and the spotlight-mode SAR processors are identical. The case , = v = 1

corresponds to the conventional spotlight-mode SAR processor.

We can obtain the output image of the adaptive-resolution SAR processor by plugging

the radar return (4.3), (4.4) or (2.51) into the processor. For the radar return from a target

located (Ax, Ay) from the scene center, the output image is

ma/2 na/2 PTPLOaxaYIO 2

Itarget (x, y) ~ E exp(-iK[m, n]x - iKy[m, n]y) x (-) 47rr4 ,2 + (mvT8 ) 2]
m=-Ma/2 nf--a/2

x exp{i2ke sin(Om)[Ay cos(#m) - Ax sin(#m)]} exp[i7(Wo/To)(nT) 2]

-dQ 2 EQ2/ /T2)](c + Q)2

SJ-o 2r ir Wo/To + 4/To

x exp (ke + k) 2 ax2 [Ax + AY cos 2 (o) tan(#m)]2

2L'2  [1 + cos 2 (O) tan(#"m)] 2

(kc + k) 2 ay2 [Ay sin(0)]2

x exp k2L'2  [1 + cos 2(g) tan(#m)]

--i S'L' + smvT/L' - 6, x - pLy -'L' - JmvT/L' -:26, - AQ C + Q) UaxU- - SA - -0 Ay-U" 'L' + ±mvT,/ L' -Ax - QAy|' |'L' + smvT/L' - -

(4.18)
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where K,[m, n] and Ky[m, n] are defined by (4.14), 0m 0#m are defined by (4.8). Similarly,

the output image of a clutter return is

lciutter (X, y)
2 2

m=-- n=- -0 -o

(-)PTPLOaxaYQC
2

dxb dyb (- 1 2 L,2

2
x exp{-i-[Qc + 27r(Wo/To)nT,] sin(Om)[(x - Xb) sin(-#m) + (Y - Yb) COs(-m)]}

C

kc2 a22 [Xb + Yb cos2 ( ) tan(#m)] 2

2L'2 [1 + cos 2 (0) tan(#m)]2
exp {- ay

2L'2

[Yb sin())]2

[1 + cos 2 (V)) tan(#m)]

x exp{-(4/To2 )[nTr - (2/c) sin(Om)[xb sin(-#m) + Yb COS(-4m)]] 2 } cos(Om)T(Xb, Yb),

(4.19)

where the statistics of the transition matrix T(Xb, Yb) are given by (2.49). The output image

corresponding to the receiver noise is

2 2

L E exp{
m=-m n=-n2 2

2
-i-2[Q + 27r(Wo/To)nT] sin(Om)[x sin(-#m) + Y cos(-#m)]}c

x exp{-i2kc L' 2 + (mvTs) 2 }exp[ir(W/To)[(nT,)2 ]rnoise(m, nT + (2/c) L'2 + (mvT,) 2

(4.20)

where the correlation function of the discretized white-Gaussian receiver noise r(m, n) is

01
0 .

t 1 0

(rnoise(m, n)rnoise (m', n')) e No6[m - m']6[n - n') 0 1
0 0

(4.21)

Equation (4.21) is derived by plugging the approximation

(4.22)

into (2.51).

Notice that when x = y = 0, the target component of the output from the adaptive-

resolution spotlight SAR processor is approximately the sum (integral) of the de-chirped

radar return over the given processing durations (see (4.18)). If the processing durations ma
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and na are chosen to match the dwell durations of the target return along the cross-range and

range directions, then this result is approximately equal to the output of the (original) target

return from a matched filter sampled at m= r = 0. In addition, for a white input noise,

the intensities from an adaptive-resolution processor and from a matched-filter processor

are both proportional to the processing durations. So the adaptive-resolution spotlight

SAR processor with properly chosen processing durations is equivalent to the matched-filter

processor at the sampled point corresponding to the scene center: m = n = 0.

4.3.3 Whitening Processor

As indicated in Section 3.1.2, for binary detection of a deterministic target return embed-

ded in random clutter and noise, the optimum Neyman-Pearson processor is the whitening

processor. The architecture of a spotlight-mode whitening processor is depicted in Figure

4.5. It is essentially the same structure as the stripmap-mode whitening processor illus-

trated in Figure 3.2: a filter that whitens the stochastic clutter and noise; a matched filter

corresponding to the target-return waveform after the whitening filter; a video detector; and

a detection block. The differences between the spotlight-mode and stripmap-mode whiten-

ing processors lie in the time-shift compensation at the spotlight-mode front-end, and the

sample impulse responses of the whitening filter and the matched filter.

The impulse response of the whitening filter is determined by the covariance function of

clutter-plus-noise at the receiver front-end. For convenience, we compensate the parabolic

time-shift of the IF complex envelope of radar return first:

i(m, T) = r[m, T + (2/c) L'2 + (mvTs)2 ]. (4.23)

The compensated complex envelope i(m,r) contains three components: target return

rtarget(Mi, T), clutter felutter(mT), and noise noise(mIT). Since clutter is independent of

noise, the covariance function of clutter-plus-noise is the sum of the two individual covari-

ance functions. The noise rnoise(m, T) is a circulo-complex zero-mean Gaussian process that
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Figure 4.5 The spotlight-mode whitening-filter processor.

is white in all domains. It can be shown that the time-compensated noise incise(m, T) is

also a circulo-complex zero-mean white Gaussian process. Thus the covariance function of

rnoise(m, T) is also described by (2.51). From (4.4), (2.47), (2.49), and the definition (4.23), we

can calculate the covariance function of the time-compensated clutter iciutter(m, T). Hence

we obtain the following covariance function for the time-compensated clutter-plus-noise,

fr(m, T) iciutter (m, T) + inoise (m, T):

1 0 0~

(rv (m, T)r(m', T')) = No6[m - M']o(T - T') 0 1 0 + Po exp[-B(AT 2 + COr'2 - 2TT')]

0 0 1

1 p 0~
x exp{-(vTs/a) 2 [(1 - ikea2/L')m2 + (1 + ikca2/L')m'2 - 2mm']} p* 1 0 (4.24)

-0 0 E _

where Po, A0 , BO, and Co are described by (3.4). Comparing the covariance function

of clutter-plus-noise in (4.24) with that in (3.3), we find that the T-dependences of the

stripmap-mode clutter and the spotlight-mode clutter are identical, as are their amplitudes

and reflectivity matrices. But their m-dependences are different. The stripmap-mode clutter

is stationary with respect to the cross-range index m. The spotlight-mode SAR, due to its

cross-range-independent antenna footprint pattern, has a non-stationary clutter with respect
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to m. However, as can be seen from (4.24), as long as the radar is operated at the Fraunhofer

far-field range such that kca./L' << 1, the non-stationarity of the spotlight-mode clutter

with respect to m can be neglected. Thus the covariance function of clutter-plus-noise for

the spotlight-mode SAR is approximately equal to that of the stripmap-mode SAR in (3.3).

Similarly, we can impose the constraint (1/4) tan2( )(kcay/L')2(cTo) 2 << 1 to achieve the

clutter-plus-noise stationary with respect of the range-time r. Therefore, the covariance

function of clutter-plus-noise for the spotlight-mode SAR is also described by (3.5) and

(3.6). This conclusion reveals that different modes of directing the antenna beam patterns

cause only minor difference to the statistics of the random components at radar return,

which can be ignored when the radar is operated at the far-field region with respect to the

area of interest.

Because the covariance function of the clutter-plus-noise for the spotlight-mode SAR

is governed by (3.5), the whitening filter for the spotlight-mode SAR is identical to the

whitening filter for the stripmap-mode SAR, which is described by (3.9) and (3.10). In

addition, we can define the impulse of the spotlight-mode matched filter by following (3.11):

ht (-m, -T) =h,(m, T) * target(m, T)

= J dT'h (m - m', T - T') - ftarget (m',T '). (4.25)

Thus the scalar output components of target return, clutter, and noise after the whitening

filter and the matched filter are

lwhite t(m, r) = hM(m, T) * hm(m, T) * icomponent (m, T), (4.26)

for "component" = target, clutter, and noise.

4.4 Performance Analysis

In this section, we present numerical performance results for the spotlight-mode adaptive-

resolution processor and the whitening-filter processor under certain interesting operating
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conditions. First, we examine the spatial-resolution variations of the images formed by

the adaptive-resolution spotlight SAR processor as its cross-range and range processing

durations are changed. These results are compared with their counterparts generated by

the adaptive-resolution stripmap SAR processor, which were presented in Section 3.2.1.

Second, the signal-to-noise-plus-clutter-ratio (SNCR) corresponding to the sampled output

of the adaptive-resolution processor and the whitening-filter processor are presented. The

SNCR behaviors are also compared with those of the stripmap SAR processors given earlier

in Section 3.2.3.

4.4.1 Spatial Resolution Behavior

For a target at the scene center (x, y, z) = (0, L/ tan(4), 0), the intensity image produced

by the adaptive-resolution spotlight SAR processor, Itarget(x, y) (see (4.16)), has its maximum

value at x = y = 0. Following the definition in Section 3.2.1, the image resolution in the

cross-range (range) direction is the width of the region around y = 0 (x = 0) within which

the intensity exceeds 1/e of its peak value. Figure 4.6 shows numerical results for these

resolutions as functions of the processing-duration parameters, r and v. The same five

target types from Section 3.2.1 are considered here: specular reflector; dihedral reflector

with orientation angle # = 0'; dihedral reflector with orientation angle # = 900; diffuse

target; and dielectric volume with relative permittivity E, = 10 + i5. All targets have the

same geometric size. The diffuse-target image is defined as the ensemble average of the

processor output intensity based on the statistics of finite-size clutter.

Some interesting characteristics can be seen in the numerical results in Figure 4.6. First,

unlike the adaptive-resolution behavior of stripmap-mode SAR, the spotlight-mode SAR's

cross-range resolution length at lower processing duration (r, > 1) is the same for all the

targets we have considered. On the other hand, when the processing duration is long enough

(n < 1), significant differences in cross-range resolution for different targets become appar-
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ent. As rK approaches 0, the cross-range resolution lengths all converge to constant values.

Similar to the stripmap-mode SAR, these finest resolution lengths depend on target type

and, in a decreasing order, are as follows: specular mirror/dielectric volume, diffuse target,

dihedral with 0' orientation angle, and dihedral with 900 orientation angle. The cross-range

resolution behavior of a dielectric volume is identical to that of a specular reflector. This

can be explained, as we did in Section 3.2.1, by the approximate identity of the scattering

beam patterns of the specular reflector and the dielectric volume. Moreover, the cross-range

resolution behaviors of dihedral reflectors with various orientation angles are also different.

As indicated in Section 3.2, dihedral reflectors with different orientation angles generate

scattering beam patterns of different sizes. Within [00, 90'], the larger the orientation angle

is, the wider the beam pattern is. Thus in terms of return duration, a dihedral reflector with

large orientation angle is equivalent to a flat reflector with smaller size. In short, the finest

cross-range resolution length decreases with decreasing equivalent target size.

Similar to the stripmap-mode SAR, the range-resolution behavior of spotlight-mode SAR

images throughout all the range processing durations do not have significant target-type

differences. This is shown in the lower panel of Figure 4.6. However, the variation trends are

different for the two modes of SAR operation. For the stripmap-mode SAR, the resolution

length decreases with decreasing processing duration (increasing V) under our current choice

of time-bandwidth product WoTo = 0.5. On the other hand, for the spotlight-mode SAR, the

resolution length associated with the same time-bandwidth product increases with decreasing

processing duration.

Analytical forms for the target-return image resolution lengths of the adaptive-resolution

SAR processing can be obtained via the following approximation procedure. Let us consider,

for simplicity, a specular reflector with edge length 2 pt located at the scene center. We neglect

the m-dependence of the 1/r amplitude-attenuation term, assume the radar pulse has a

narrow-bandwidth such that Qe + Q -c Q in the Green's function, and approximate the sinc
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waveform in the target scattering pattern by a Gaussian waveform. Then the co-polarized

radar target return takes the simple approximation form,

rtarget (MI, T) ~ Ae [kc(2p +a)/2L'2](mvTs) ei(kc/L')(mvT )e (-ixWo/To-4/TT 2  stripmap

rtarget (Mi, T) ~ Ae(kp/L'2 )(mvT8 ) i(ke/L')(mvTs )2 (iWo /To 4/T)r 2  spotlight, (4.27)

where A is a proportionality constant. According to Section 3.1.1, the adaptive-resolution

stripmap-mode SAR processor consists of duration-variable chirp-compression filters along

the cross-range and range directions. Thus the output stripmap-mode SAR image is

M=00itarget (m,7T) ~~ A e-(k a22L 2 )[(mm)vTs]ei(keL')[(m-m)vTs]
2 -[k(2p?+a )/2L' 2 )(m'vT) 2

m'-oo

Xei(kc/L')(M'Vs) 2  dI (iWo/To-4v2 /T2)(,_r') 2 (_ixWo/To-4/TO)r, 2 . (4.28)

In (4.28), the Gaussian integral over T can be carried out analytically. Also, the m-

summation can be approximated by another Gaussian integral. Converting the pulse widths

into length units (meters), we obtain the resolution lengths along the cross-range and range

directions:
a (1 + r2)/2 + pt2

Xres \ 1+ (kcal/2L) 2K2(1 + 2p2/a2)

c 1+v 2

y ~ + (4.29)res 7rWo cos(VP) \1 + (4v/7rWoTo)2

On the other hand, according to Section 4.3.2, the adaptive-resolution spotlight-mode

SAR processor de-chirps the target return in (4.27) and carries out the polar-formatted

Fourier transform of the de-chirped return. Thus the output spotlight-mode SAR image is

ma/2

ltarget ,y) ~Ae -i2ke cos(?P)y i(2kc/L')(mvT)x -(kpt|L)(mvT )

m= ---ma|2

na/2

X Z e-i[4xWocos(#)/cTo](nTr)y e -(4/T.)(nT 30)
n=-na /2
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In (4.30), the summations over m and n can be approximated by integrals with finite upper

and lower limits. To get analytical results, the "hard limit" of the integrand, corresponding

to the upper and the lower bounds, are replaced by the Gaussian-shaped factors. Thus

the amplitude of the output image itarget (x, y) is also Gaussian in terms of both x and y.

Plugging (4.17) into the integrals, we can obtain the resolution lengths along the cross-range

and range directions in length units (meters):

Xres ~ 2 a / 2 + pt

C2

Yres v. (4.31)
rWo cos(') (.1

Figure 4.7 compares the analytical and numerical results for the stripmap- and spotlight-

mode SAR image resolution lengths of a specular reflector. As illustrated in the figures, the

approximation formulae (4.29) and (4.31) have good agreement with the numerical results.

Some interesting features of the spatial resolution behaviors obtained from Figure 3.3 and

Figure 4.6 can be well explained by using the approximate formulae. First, the cross-range

resolution lengths for stripmap-mode and spotlight-mode SARs exhibit a significant differ-

ence in (4.29) and (4.31) when the processing duration is very small. When t goes to infinity,

Xres for the stripmap SAR in (4.29) approaches a constant value (2L'/kcax) 1/2 + pt/ax,

which corresponds to the dwell duration of the target return determined by the target scat-

tering beam pattern and the antenna beam pattern. As we explained in Section 3.2.1, this

result is a natural consequence of using a chirp-compression filter with infinitely small pro-

cessing duration such that its output is actually the unprocessed radar return. However,

when , goes to infinity, Xres for the spotlight SAR in (4.31) increases with r, to infinity,

which is much longer than xres for the stripmap SAR. Moreover, at large r, xres in (4.31)

is totally dominated by the term O2a2/2, and thus independent of pt. Therefore, unlike the

stripmap SAR whose cross-range resolution length at large r is proportional to the radar

return dwell duration and hence largely affected by the target scattering pattern, the cross-
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range resolution length for the spotlight-mode SAR at large r, is determined only by the

processing duration. This is because the spotlight-mode SAR processor (along the cross-

range direction) is not a chirp-compression filter for the chirped radar return but rather a

Fourier transformer for the de-chirped radar return. The waveform of the de-chirped radar

return is indeed determined by the target size. However, when the processing duration

(which sets the domain for the Fourier integral) is very small, the de-chirped radar return is

approximately a constant, hence the shape of its waveform is irrelevant. The width of the

pulse after Fourier transformation is totally determined by the processing duration. The

smaller the duration is, the larger the width is.

Now consider what happens when the processing duration becomes large. In this limit

Xres of the spotlight SAR has a stronger dependence on pt than does Xres of the stripmap

SAR. From (4.29) and (4.31), when K goes to 0 the value of Xres approaches fa2/2 + p? and

pt for the stripmap and spotlight SAR, respectively. This explains why the quasi-isotropic

scatterer-a dihedral reflector with 90' orientation angle-has a significantly smaller reso-

lution length for the spotlight SAR than it does for the stripmap SAR.

Equations (4.29) and (4.31) also explain the opposite variation trends for the stripmap

and spotlight SARs' range resolution behaviors. For the stripmap SAR, Yres in (4.29) is

proportional to 1(1 + v 2 )/(1 + (4/wWoTo) 2 v2), so that the time-bandwidth product WoTo

plays a key role. When the factor 4/rWoTo exceeds 1, Yres decreases with v; when 4/7rWoTo

is less than 1, Yres increases with v. Figures 3.3 and 4.6 assume WoTo = 0.5, so the factor

4/wWoTo is greater than 1, and hence yres decreases with increasing v. For the spotlight

SAR, on the other hand, the Yres in (4.31) is proportional to /1 + v2 , which is independent

of the time-bandwidth product. Therefore the spotlight SAR's Yres always increases with

increasing v. This is because the frequency chirp of the radar return is compensated via

the de-chirping process of the spotlight SAR processor. Thus the parameter Wo does not

have any effect except in proportionally determining the processing duration of the Fourier
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transform. For the pulse waveform after the Fourier transformer, the smaller the processing

duration is, the larger the resolution length is.

4.4.2 Signal-to-Noise-plus-Clutter-Ratio

It is shown in Section 3.2.2 that for a stripmap SAR single-target binary-detection prob-

lem, the receiver operating characteristic is completely characterized by the signal-to-noise-

plus-clutter-ratio (SNCR). It is a straightforward exercise to extend this conclusion to the

same problem of a spotlight SAR. So in this section, we study the numerical SNCR values

for the adaptive-resolution processor and the whitening-filter processor of spotlight SAR.

The parameters values used in computations are in Table 3.1.

4.4.2.1 Adaptive-Resolution Processor

Figure 4.8 illustrates the variation of the specular reflector's SNCR with respect to

processing durations. In this figure, CNR is the clutter-to-noise spectrum ratio at zero

frequency. The two panels on the left in Figure 4.8 are under clutter-dominant conditions

(SNCR ? SCR, where SCR is the signal-to-clutter ratio) whereas the two on the right are

under noise-dominant conditions (SNCR ~ SNR, where SNR is the signal-to-noise ratio).

The top two panels in Figure 4.8 show the cross-range-processing duration behavior, and the

two lower panels give the range-processing duration behavior. For the cross-range features,

different curves represent different antenna aperture sizes. All the curves shown are for HH

polarization.

Similar to what we saw in Figure 3.4, Figure 4.8 makes it clear that the clutter-dominated

regime is very different from the noise-dominated regime. This is because the clutter has

a colored-noise spectrum that is quite different from the white spectrum of the receiver

noise. As we described in Section 4.3.2, for the sample point at the scene center, the
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adaptive-resolution processor with proper processing durations approximates a matched-

filter processor. Therefore when noise dominates, the SNCR is a unimodal function of r,

with a maximum K = Kopt. This optimum r, value best matches the duration of the cross-

range processor to the radar return from the target. If we presume the return beam to be

approximately a Gaussian pattern, we can show that nopt ~ v'pt/ax. Compared with 'sept

of the stripmap SAR, 1+± 2p/a2 in Figure 3.4, the optimum , of the spotlight SAR lacks

a term 1 within the square root; this 1 corresponds to the cross-range antenna beam pattern

of the stripmap mode.

The SNCR behaviors with respect to varying range-processing duration in the spotlight-

SAR case is quite similar to what we have previously seen in the stripmap-SAR case. In

the clutter-dominant regime, both Figure 3.4 and Figure 4.8 indicate that the SNCR values

increases with increasing chirp bandwidth Wo. In the noise-dominant regime, we see from

Figure 4.8 that the SNCR value is, like Figure 3.4, unimodal in v, with an optimum value

fixed at unity. The optimum v value does not change because the shape of each individual

radar pulse is unaffected by surface reflection from the specular reflector. Figure 4.8 also

shows that in the noise-dominant regime the SNCR is independent of chirp bandwidth Wo.

The curves of SNCR versus processing duration parameters in Figure 4.8 are not as

smooth as those in Figure 3.4: in the former there are some bumps and apparent discon-

tinuities. The reason is that the adaptive-resolution spotlight SAR processor, unlike the

stripmap SAR processor, cannot continuously vary its processing durations. As indicated in

Section 4.3.2, the processing durations of the spotlight SAR processor are the integers ma

and na that define the domain of the 2-D discrete Fourier transform. The parameters ma

and na are inversely proportional to r, and v (see (4.17)). However, whereas r, and v can

be varied continuously, the parameters that actually control the processing durations, ma

and na, can be only varied discretely since they are integers. So the SNCR is not smoothly

changed with the parameters c and v. The discretization effect becomes more significant
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when ma and na are small, or equivalently, when r, and v are large.

Figure 4.9 illustrates the orientation-angle dependence of the SNCR for a dihedral re-

flector. The orientation angle, #, is the angle between the dihedral axis and 2. The most

significant feature in Figure 4.9 is the polarimetric effect. The SNCR values for HH and

VV are almost identical. They both have local maxima at # = 0' and # - 900, as well as

minima at # = 45'. The SNCR values for HV do not vanish. With respect to orientation

angle, their behavior is opposite to that of HH and VV: at # = 00 and # = 90' local minima

occur, at # = 450 a maximum occurs. Similar to the case of stripmap SAR in Figure 3.5,

such #-dependent characteristics are generated by the double-reflection terms of the dihedral

reflector's scattering function. Thus, no matter what mode the SAR operation is, the dif-

ferent patterns of SNCR variation at different polarizations imply that the full polarimetric

information is essential to the detection and recognition of a dihedral reflector (or other

types of targets involving multiple scattering).

The dihedral reflector's orientation affects its return-beam pattern too. Figure 4.10 il-

lustrates the variation of a dihedral reflector's SNCR with respect to r, when the noise

dominates the clutter. At the three orientation angles # = 00, 450, 90', the SNCR variations

are similar to each other, as well as to their counterparts for a specular reflector. How-

ever the optimum r, values are different for different #: the larger # is, the smaller Kopt

becomes. This is because the scattering beamwidth of a dihedral reflector in the cross-range

direction is a function of its orientation angle. The larger # is, the closer its scattering

pattern is to being isotropic, hence the longer its return duration. By treating the dihedral

reflector's scattering coefficient as approximately Gaussian, the optimum K can be shown to

be Kept ~ pt/ax cos(#). Compared with the stripmap SAR counterparts in Figure 3.6, the

most significant difference occurs when # = 90'. For the spotlight SAR, the approximate

formula suggests that Kept = 0 at # = 90', which implies the SNCR value is monotonically

decreasing with K. This result explains why the curves in the second panel of Figure 4.10 are
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monotonic rather than unimodal. In Section 3.2.3.1, we observed that a dihedral reflector

with 90'-orientation angle is not an ideal isotropic scatterer. So the corresponding optimum

K should be larger than 0, and the SNCR curve also has to be unimodal. We cannot observe

unimodal SNCR curves in the second panel of Figure 4.10 since the peak is beyond the lower

limit of K = 0.1.

Figure 4.11 illustrates the dielectric volume's SNCR variations with respect to K and

v when the noise dominates the clutter. The K-dependent features here are identical to

those seen for the specular reflector: the optimum K values are the same, and the SNCR

values for different aperture sizes are in the same proportion. The v-dependent behavior

is different from the surface-scattering cases. The radar return from a dielectric volume

has a SNCR that decreases with increasing chirp bandwidth Wo. We have explained the

same phenomena for the stripmap SAR in Section 3.2.3: the cross-range beam pattern of

the radar return from a dielectric volume is the same as that of a specular reflector; volume

scattering, however, disperses individual radar pulses, and this effect becomes more serious

with increasing pulse bandwidth.

For both stripmap-mode operation and spotlight-mode operation, the SNCRs for the

adaptive-resolution processors are robust with respect to target size. Suppose we do not

know the exact target size and hence choose a mismatched cross-range processing duration

based on the incorrect information we have on target size. When the target-size error is not

too large, the output SNCR would not deviate too much from the maximum value. Take

the specular reflector with pt/a, = 1.5 as an example. The optimum K is 1+ 2p /ax for

stripmap-mode operation and \/2pt/ax for spotlight-mode operation. When we replace pt

in these optimum K values by 0.8pt or 1 .2pt, the mismatched SNCR values are only 5%

less than the SNCR peak values (see to Figures 3.4 and 4.8). So the mismatched SNCR

deviation is not very sensitive to the information of target size.
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4.4.2.2 Whitening Processor

Here we shall compare the SNCR values for the AR processor with those for the optimum,

whitening-filter processor. Note for the parameters in Table 3.1, we have that

(1/4) tan2 ()(kcay/L') 2 (cTo) 2 ~ ir2 /200 << 1.

Hence the clutter is approximately stationary (see Section 4.3.3), and the whitening filter in

(3.9) can be applied.

By construction, the clutter-plus-noise part of the whitening filter's output has a white

spectrum. Thus, the SNCR value for the whitening-filter processor in (3.20) reduces to

the "energy" of the impulse response of the matched filter described in (4.25). Following

a procedure similar to the one used in Section 3.2.3.2, we can obtain a formula for the

SNCR of the spotlight SAR whitening-filter processor which is identical in structure to the

one described by (3.22). The only difference is that for stripmap and spotlight SARs, the

target-return spectra with respect to the cross-range time index are different.

From the discussion in Section 4.3.2, it is clear that the adaptive-resolution processor

whose processing durations match the (cross-range and range) dwell durations are approx-

imately identical to the matched-filter processor at the sample point corresponding to the

scene center. Moreover, for both stripmap and spotlight SAR, the noise-component output

from the adaptive-resolution processor is roughly proportional to the cross-range and range

processing durations. Thus, the approximate SNCR formulation (3.23) also applies to the

spotlight-mode SAR when noise dominates over clutter. The clutter return can be thought of

as the sum of target returns contributed from all possible locations on the ground. For those

contributions not from the scene center, the output of the stripmap SAR adaptive-resolution

processor does not resemble that of the spotlight SAR adaptive-resolution processor. There-

fore, the sampled outputs of clutter are different for different modes of SAR operation.
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Several significant SNCR aspects observed in the case of stripmap SAR also appear in

the case of spotlight SAR. In the noise-dominant regime, we see from (3.22) and (3.23)

that SNCRwhite reduces to the sum of target-return energies over all three polarizations

divided by the noise spectrum No, whereas SNCRAR becomes the target-return energy at a

specific polarization divided by the noise spectrum. Therefore SNCRwhite/SNCRAR becomes

a polarimetric-effect-dependent constant. Regardless of the polarimetric effect, SNCRAR in

this case has reached its upper bound. The relationship between SNCRwhite and SNCRAR is

more complicated out of the noise-dominant regime. Here the adaptive-resolution processor

is not able to achieve the optimum, white-noise limit. Figure 4.12 plots our numerical results

for SNCRwhite/SNCRAR versus CNR for different target types. All the curves in Figure 4.12

have a similar trend: SNCRwhite >> SNCRAR prevails when clutter dominates. As the

white-noise spectrum is increased, the performance gap between the optimum processor

and the adaptive-resolution processor decreases. Eventually, the noise-dominant regime

is reached and SNCRwhite/SNCRAR becomes independent of CNR and equal to 2 for the

specular reflector, the dielectric volume, and the dihedral reflector at # = 00 and 900, and

equal to 1 for the dihedral reflector at # = 45'. These trends are exactly the same as those

of the stripmap SAR in Figure 3.8. Comparing Figure 4.12 with Figure 3.8, there are two

main differences. First, the SNCRs in both cases decrease with increasing noise level, but

the values at the clutter-dominant side are quite different. As we have explained, this is

because the clutter outputs from the stripmap SAR and spotlight SAR adaptive-resolution

processors are different. Second, at the noise-dominant side, the SNCR values in Figure 4.12

are slightly higher than those in Figure 3.8. This is because the spotlight SAR adaptive-

resolution processor is only an approximate matched-filter processor for the target return

from the scene center. The processing durations of the processor match the dwell durations

of the target return, but the return waveform is not precisely matched in the processor. In

particular, the target return waveform is Gaussian with respect to the range time index and

a sinc function with respect to the cross-range time index, whereas the adaptive-resolution
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spotlight SAR processor uses rectangular windows to limit the processing durations in both

range and cross-range directions. The adaptive-resolution stripmap SAR processor matches

the target return waveform better because the impulse responses of both range and cross-

range chirp-compression filters are shaped by Gaussian functions. So the adaptive-resolution

spotlight SAR processor is less optimum than is the corresponding stripmap SAR processor.

Figure 4.13 plots SNCRwhite/SNCRAR versus target size. The trends are similar to

those indicated in the stripmap-SAR case in Figure 3.9. When noise does not dominate

over clutter, increasing target size reduces SNCRwhite/SNCRAR to some extent. This im-

provement is limited by CNR. The minimum SNCRwhite/SNCRAR is not always optimum

(2 or 1, depending on polarimetric condition). The larger CNR is, the higher the min-

imum SNCRwhite/SNCRAR value becomes. When noise dominates over clutter, the ratio

SNCRwhite/SNCRAR is approximately invariant with target size.
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Figure 4.12 SNCRwhite/SNCRAR vS. CNR. For the AR processor, r, = v'2pt/ax, for the
specular reflector and the dielectric volume, and r = pt/ax cos(4) for the dihedral reflector;
v = 1 in all cases. The chosen polarimetric component is HH for the specular reflector,
the dielectric volume, the dihedral reflector at # = 0 and 900, and is HV for the dihedral
reflector at 450.
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Chapter 5

Multi-Component Target Detection
Problems

5.1 From Single-Component to Multi-Component
Targets

The previous chapters have laid out the foundation for a target-detection theory for

stripmap-mode and spotlight-mode synthetic aperture radar imagery. In these chapters,

however, we only considered the case of a single simple reflector (specular, dihedral reflector

or dielectric volume) on the ground plane. In real SAR campaigns, there are usually more

than one target on the whole image plane, or even within the radar footprint area. Moreover,

real targets such as tanks are composed of many smaller reflectors. For detecting and

recognizing such realistic targets, the extension of the theoretical treatment to the case of

multiple reflectors is necessary.

A multi-component target is defined as a collection of simple reflectors located at dif-

ferent positions. The radar-return signal from a single reflector located at (A, AY, 0) with

respect to the scene center can be obtained from (2.31) (stripmap-mode) or (4.3) (spotlight-

mode). Suppose we neglect the multiple scattering of electromagnetic waves among different

reflectors, then the radar-return signal from a multi-component target is the sum of the

contributions from all its individual reflectors. On the other hand, the clutter and noise

components in the radar return are unaltered by the change of target. Hence the exten-

sion of the radar-return signals in Chapter 2 and Chapter 4 to the case of multi-component

targets is straightforward.

Our theoretical treatment of SAR imagery consists of three aspects: the radar-return

signal model; the processing for recognizing targets from the imagery; and the quantitative
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as well as qualitative performances analysis for these processors. As noted above, the radar-

return models developed for single-component targets can be easily extended to the case

of multi-component targets. However, extending our target detection/classification schemes

and the associated performance analyses is not so straightforward. We can demonstrate the

involved nature of such extension from an example: the 2-D stripmap-mode SAR image after

passing the radar return through the adaptive-resolution chirp compression filters specified

in (3.1). Consider the same 2-D stripmap SAR scenario as the one described by the flight

and radar parameters in Table 3.1. Suppose the multi-component target consists of three

reflectors with center positions (AX, Ay) = (0,0), (-7, -3), (5, -4) on the ground. All the

reflectors are assumed to be specular mirrors of the same size: pt = 1.5 m. The normal

directions of the three reflector plates are all parallel to s', the nominal direction for the target

at (AX, Ay) = (0, 0). The SAR image of this multi-component target after the adaptive-

resolution chirp-compression filters thus can be computed by following Section 3.1.1 for

each reflector. Figure 5.1 plots the computed intensities (on a linear scale) for the 2-D SAR

images of the three-reflector scenario. The three panels correspond to different processing

durations for the cross-range chirp-compression filter hi[m]: K = 1, 10, 100. The range

chirp-compression filter h2 (T) is set to the full dwell time, namely, v = 1, for the three cases.

Neither clutter nor noise is present in the radar return.

When r, = 1, Figure 5.1 shows that the three reflectors can be fully resolved along

the cross-range direction. As the processing duration for hi [m] decreases, the resolution

becomes coarser, hence the SAR image of an individual reflector is blurred over a wider

area, which is consistent with the results in Section 3.2.1. However, the multi-component

SAR images have a new feature that cannot be captured by the single-reflector theory

developed in Chapters 2, 3, and 4. From Figure 5.1, we observe that at coarser resolutions

the overall intensity image is not the superposition of the intensity images corresponding

to individual reflectors. For example, at t, = 100 the SAR image is not composed of three
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overlapping blurred spots. Instead, it is a pattern with a pronounced periodic variation

along the cross-range direction. This is because the overall radar return is the coherent

sum of its individual reflector components. The phases of the individual return components

are different, because their different spatial locations lead to different propagation delays.

Hence when the resolution is coarse enough such that different reflector images overlap, they

interfere with one another.

The results in Figure 5.1 have an interesting implication. In Section 3.2.1 and Section

4.4.1, we have shown that the variations of image resolution with respect to processing

durations are different for different types of reflectors. Thus the SAR image multi-resolution

behavior may be used to classify the type of a single-component target. However, when a

multi-component target is present, the image patterns from individual components might

be mixed with one another rather than distinctively superimposed when the resolution

(processing duration) is low. Therefore, the low-resolution part of the multi-resolution image

repertoire of an individual target component, that is used to classify the reflector type, is

not available.

The low-resolution image, such as the one indicated in the last panel of Figure 5.1, can

also be interpreted as the original radar return (in terms of cross-range direction) before

synthetic-aperture operation. The interference pattern appearing in this unprocessed radar-

return signal is determined by the relative phases of all the individual target components.

Such phases are functions of a variety of radar, propagation, and target factors, such as

the radar carrier frequency, target-component positions, atmospheric disturbances, target

scattering cross section, and the jittering motion of the antenna platform. In order to

plot Figure 5.1, we assume all these factors are given. However, in real applications, it is

not practical to make this assumption. As a matter of fact, when dealing with the radar

images of real-world multi-component targets, we not only lack complete information about

the relative phase of each component, but also about some other parameters such as the

116



position of each target component, the pose/orientation of the whole target geometry, the

scattering amplitude from each component, etc. In other words, if we want to come up with

a multi-component target detection/recognition scheme for SAR images, it is essential to

make such scheme able to handle the uncertainties in some parameters of the radar-return

model.

This chapter is devoted to the multi-component target detection problems for stripmap-

and spotlight-mode SAR images. As a detection problem, it is still a binary hypothesis

test: determine whether a (known) multi-component target is present or absent from the

given radar image corrupted with clutter and noise. Complete information about the multi-

component target includes the geometric type, size, material constitution, orientation, and

center location of each reflector, and the phase of the radar return from each reflector. On

the one hand, a useful target detection scheme does not have to take all of these parameters

as given. Furthermore, a feasible detection scheme may not be able to afford dealing with

the variations of all parameters at once. In this chapter, we choose to investigate four cases:

the phase of each target component is random; the phase and reflector location of each

target component are random; the phase, location, and scattering amplitude of each target

component are random; and the target pose is random.

The rest of this chapter is organized as follows. In Sections 5.2 through 5.5, we develop de-

tectors for uncertain-parameter multi-component targets based on the output images from

the whitening-filter Neyman-Pearson processors described in Sections 3.1.2 and 4.3.3. In

Section 5.2, we come up with a likelihood-ratio detection scheme which is Neyman-Pearson

optimum, a sum-amplitude detection scheme, and a sum-amplitude-square detection scheme

for a multi-component target with random phases. The receiver operating characteristics of

these detectors are computed and compared. In Section 5.3, we come up with a generalized

likelihood-ratio test for a multi-component target with random phases and positions. To

compute the probability of detection and the probability of false alarm for this detector
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requires work on the level-crossing problem for a 2-D random field. We develop an ap-

proximate formula for calculating this probability, and verify its validity with Monte Carlo

simulations. In Section 5.4, we develop an approximate generalized likelihood-ratio detector

for a multi-component target with random phases, positions, and scattering amplitudes. Its

receiver operating characteristic is evaluated by applying the 2-D level-crossing theory pre-

sented in the previous section. In Section 5.5, we also propose a generalized likelihood-ratio

detector for a multi-component target with random pose. A finite-bin approximation to the

random-field level-crossing problem is used to evaluate its receiver operating characteristic.

In Section 5.6, we impose the detection schemes for a multi-component target with any of

the four uncertainty types, as developed in Section 5.2 through 5.5, onto the output image of

the conventional SAR processor. Target detection performances are evaluated and compared

with their whitening-filter-processor counterparts.

The aim of this chapter is not to develop a sophisticated, comprehensive, and power-

ful target detector capable of recognizing realistic man-made targets in SAR applications

with good performance. Instead, it tries to quantify, from a fundamental-principles view-

point, the target-detection performance advantage of multiresolution/adaptive-resolution

processors as compared to conventional SAR imagers. Thus the multi-component target

models chosen to investigate in this chapter do not have to be as complicated as a real-

world object, such as a tank or truck. They could be simple, but embody the characteristics

that highlight the performance differences between single-component and multi-component

targets as well as the differences between conventional SAR full-resolution processing and

multiresolution/adaptive-resolution processing.
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5.2 Multi-Component Target Detection with

Unknown Phases

5.2.1 Detection Schemes

To derive the optimum detector for a multi-component target with unknown component

phases, we start from a simplified scenario. We consider the case of a scalar 1-D radar-return

r(t) from a multi-component target that is corrupted by a zero-mean unit-spectrum white

Gaussian noise w(t). Thus the complex envelope at the input to the detector is

r (t) = w (t), (5.1)

when the target is absent (hypothesis HO), or it is

M

r (t) - e "'sm(t - tm) + w (t), (5.2)
m=1

when the target is present (hypothesis H 1 ). Here, the target contains M components. The

complex envelope sm (t) is the radar-return waveform from the type of reflector corresponding

to the m-th component of the target when it is located at the scene center; its time delay

tm is determined by the actual location of this component. The phases <m from m = 1

to M are mutually independent random variables and uniformly distributed within [0, 27r).

They represent the incoherence of each target-component with respect to other components

as well as the noise.

In order to obtain a tractable solution to the multi-component target detection problem,

we shall assume, in all that follows, that the physical separation between any two reflectors

i and j is large enough to yield

J dts*(t - ti)sj (t - tj) ~ 0. (5.3)

Thus the waveforms sI(t - ti), s 2 (t - t 2 ), ... ,sM(t - tM) are mutually orthogonal, hence we

can use them as basis functions for a series expansion of the radar return r(t). The binary
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detection problem for continuous waveforms depicted in (5.1) and (5.2) can reduced to an

equivalent binary detection problem for random vectors:

HO: r = w, (5.4)

Hi: r = s + w, (5.5)

where r = [ri, r 2 , .... , rM]T, w = [wi, W2 .... , W], s = [e =01si, ei1s 2 . , eiOMsM T,

rm = J dts* (t - tin) r(t), (5.6)

Sm =f dts* (t - t,) sm (t - tm), (5.7)

Wm = dts* (t - tm) w(t). (5.8)

The random variable rm is the projection of the radar-return signal r(t) onto the basis

function sm(t-tm). Because the noise w(t) is zero-mean white Gaussian with unit spectrum,

the random variable Wm is zero-mean complex-Gaussian with variance

< |Wm|I2 >= Em = 0 dis*(t) - sm(t). (5.9)

Here Em is the energy of the mth-component return.

The optimum detection scheme for the binary hypothesis test problem described in (5.4)

and (5.5) is a likelihood-ratio test [29]. Under our orthogonality-condition assumption, the

Gaussian random variables wi, w2 , ... , WM are mutually independent, thus the random

variables ri, r2 , ... , rM are also conditionally independent under both HO and H 1. The joint

probability density function of the random vector r under HO or condition H1 can therefore

be represented as the product of the marginal probability density functions for the individual

components [29]:

PrIHo(r1,r2, ... ,rMIHo)= J exp[-Irm| 2 /Em], (5.10)
mn=1 TrEm

PrIHi (rl, r2, ... , rM|H1) H w exp[- Irm 2/Em - Em]Io(2|rm|), (5.11)
m=1 7rEm
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where Io is the zeroth-order modified Bessel function described in Section 3.2.2. Thus the

likelihood ratio is

1(r) = pr|Hi(r1,T2, -=-,rM H1 =1 exp[-Em]Io(2|rm|). (5.12)
PrIHo (r , r2, .. rM IHo) m-1

The Neyman-Pearson optimum detection scheme for the binary hypothesis test problem is

a threshold detector based on the likelihood ratio, which can be simplified to

say H1
M

H Io(2|rml) < 3, (5.13)
m=1

say HO

where 3 is the threshold.

The optimum detection scheme (5.13) involves the computation of Bessel functions, which

may not be easy to accomplish by traditional analog radar devices. For many radar systems,

the sub-optimal sum-amplitude detection scheme

say Hi
M>

S2|rml Y, (5.14)
m=1

say Ho

or sum-amplitude-square detection scheme

say Hi
M

S21rm| 2  > a, (5.15)
m=1

say HO

are more frequently used [31].

Since we already have the conditional probability density functions ((5.1)) and (5.11)),

the receiver operating characteristics for these three types of detectors can be obtained.

For each of these detectors, the probability of detection (PD) is calculated by integrat-

ing prHi (r1, r 2 , ---, rMIH1) over the r-domains in which the scaled likelihood ratio (5.13),

the sum-amplitude (5.14), and the sum-amplitude-square (5.15) exceed the thresholds #,
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' and a, respectively. Similarly, the probability of false alarm (PF) is calculated by in-

tegrating prIHo(r, r 2, ... , TM|HO) over the r-domains where the scaled likelihood ratio, the

sum-amplitude, or the sum-amplitude-square exceeds its respective threshold. Making use

of the monotonic property of Io( 2 |rm), |rin and |rm 2 with respect to |Tm|, we can obtain

the following multiple-integral expressions for PD and PF. For the likelihood-ratio detector,

we get

PD= Pr(sayHi I Hitrue) = ... fl dr PrIHi (r, r 2 , ... , rMIH1)Hm=1 (2r)#

= 1 - [Io1(o)] 2/4E1 -n E 1 E 3 ) [I_-1 (#/Io (vI4Ein1l))] 2/4E2 d 2e %
-1-dui eul-El o( V4Eiuj) Jf du2 e-U2-

. [ / I2 Io(=/4EmUm))] 2 
/4EM duM e7uMEM0( 4 EMUM),

PF = Pr(sayH1 I Hotrue) = ... fIH 1 Io (2IrmI)>, dr Pr|Ho T1, r2 , ... , rM|HO)

= 10)-1]2/4E1 dul eul j[Io-(/Io( 4Eiui))]2/4E2 du 2 eU 2

0
...k = duM Cum.

For the sum-amplitude detector, we get

PD = Pr(sayHi Hitrue) = / ... fM dr PrIHi (r,, r2, ... , rMIH1)

= 1 - j 2/4 dui e-ul-El10( 4Eiui) du 2 e u2-E210( 4E2U2

. = 4EmUm] /4EM duM e uM-EMJ( 4 EMuM),

PF = Pr(sayH1 I Hotrue) = ... JE dr prIHo (r, r 2 , ... , rMIHO)

2 V -J j2 M M2 q mU-1 2/4E 1  _U1 [7-v4Eiui] /4E 2  [72  m -m1" 1 4Emd2/4E
- f du1 e- dU2 eU .... f

00 0

E2J ( 4E 2u 2 )

(5.16)

(5.17)

(5.18)

duM e-m.

(5.19)

For the sum-amplitude-square detector, we get

PD = Pr(sayH1 | Hitrue) = J J... f
E~m= 2|rm|2>a

dr PrIHi (r1, r2, ... ,rMIH1)
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a/l4E1 - ,- ,0 [a-4E1u1/4E2 - 2 E21 (=1 -- jijE dui e-u1 E1 I0( 4E 131 j~-Eu]4 du2 e u2-E2Jo0( 4E 2u2)
0 0

[a -. = 4Emum-,]/4Em uuE
.... duM e-uM-EMI0( 4EMuM), (5.20)

PF = Pr(sayHi I Hotrue) = f... dr prIHo (r, r 2 , ---, TMIHO)
M= 2rm|2;>a

/ a/4E1 _ 1 [a-4E in/4E2 - 2 [a E m 1M- 4E um]/4Em udui e-" du 2 e-.... duM e-". (5.21)

The above detection schemes for the 1-D radar signals can be extended to the 2-D

polarimetric radar-signal models developed in Chapter 2 and Chapter 4. But in order to

directly apply them, two conditions have to be satisfied. First, the 2-D radar return should

be shift invariant with respect to reflector location. If the shift-invariance condition holds,

then we can use the radar-return waveform from the reflector located at scene center as the

matched-filter impulse response for that same reflector at any location- the only difference

would be the sampling time (m, T). Otherwise we have to construct different matched filters

for the same reflector at different locations, which turns out to be intractable. Based on

the radar-signal models in Chapters 2 and 4, we can show that this time-shift condition

approximately holds for the 2-D radar return. Here, we consider a simple example: a square

specular mirror with edge length 2pt. Suppose that: (i) the radar-pulse bandwidth is much

smaller than the carrier frequency so that frequency dispersion can be neglected; (ii) the

scattering pattern is approximately Gaussian; and (iii) the size of the synthetic aperture is

much smaller than the slant range L'. Then the HH-polarized radar return from the reflector

at scene center is approximately

Ke(ikc/L'-k 2p/L'
2 )(mvTs )2 -k2a/2L'2(mvT )2] exp[(-i7rWo/To-4/T)T 2  (5.22)

for the stripmap-mode (see (2.30)), and

Ke(ike|L'-kcp|L'2)(mvTs )2 e(-irWo/To-4/T)T 2  (5.23)

for the spotlight-mode (see (4.1)), where K is a proportionality constant. Similarly, when

the reflector is located (A2, Av, 0) from the scene center, where Ax and Ay are much smaller
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than L', the HH-polarized radar return is approximately

Keikc/L'(A. sin(?)) 2 i 2 kc A, cos(4) (ikc/L'--k p /L' 2 )(mvT, -aXA)2

x -kla 2/2L,
2 (mvT -AX) 2 e(-irWo/To-4/T)(T-2A, cos(V)/c) 2  (5.24)

for the stripmap-mode (see (2.32)), and

Keike/L'(A sin()) 2 ei 2 kcAy cos(4') e(ikc/L'-k p /L' 2 )(mvT, -z)2

x e(-irwo/ro-4/rg2)(-r-2A, cos(,O)/c)2 (5.25)

for the spotlight-mode (see (4.3)). The phase factor exp[ike/L'(A sin(@)) 2 ] exp[i2kc Ay cos(V)]

can be incorporated into the random phase associated with the reflector. Thus the binary

hypothesis testing problem for the 2-D radar return from an M-component target is as

follows:

When the target is absent (hypothesis HO) we observe

r(m, T) % rciutter (m, T) + rnoise(m, T) (5.25)

and when the target is present (hypothesis H1) we observe

M

r(m, T) i e ri(m - mi, T - T) + rciutter(m, T) + rnoise (m, T) (5.26)
i=1

In (5.25) and (5.26): {<i} are independent identically distributed (iid) random variables

that are uniformly distributed over [0, 27r); ri is radar-return from the ith component at

scene center; and (mi, T) = (A' /vT,, 2Ai cos(@)/c) when the ith component is located at

(Ai, A,). Notice that for the binary hypothesis testing problem in (5.25) and (5.26), the

unwanted part of the radar return is not white. Therefore in order to apply the detection

schemes in (5.13), (5.14) and (5.15), we have to pass the radar return through the whitening

filter.

The second condition for the extension of 2-D detection scheme is the orthogonality

condition. Its specific form is as follows: for two different target components i and j,
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their locations (A, A ) = (mivTs, cTi/2 cos(4')) and (Al, Ai) = (mvT,, cT/2 cos(4')) are

sufficiently far apart to satisfy

S dT st(m - m, r - r-) - sj(m - mj, T - T) ~ 0, (5.27)

where si(m, T) is the output of whitening filter with input ri(m, T).

Figure 5.2 sketches the block diagrams of the optimum, sum-amplitude, and sum-amplitude-

square detectors. Notice that the projection of the radar-return signal onto a basis function

is accomplished by passing the signal through a matched filter and sampling the output

at proper time. The probability of detection and probability of false alarm for these 2-D

detectors can still be calculated by applying (5.16) through (5.21), with the ith component's

energy E computed by integrating the squared signal amplitude over the range-time T, and

then summing the result over the cross-range time m, and the polarization possibilities.

5.2.2 Performance Analysis

In this section, we present receiver operating characteristics for the likelihood-ratio, sum-

amplitude, and sum-amplitude-square detectors for two simple multi-component targets.

The first target of concern consists of three identical square specular reflectors at different

locations. The center locations of the three reflectors with respect to scene center are

(AX, Ay) = (0,0), (-7, -3), (5, -5) (in units of meters). For all target components, the half

length of each square reflector plate, pt, is 0.5 m, and the plate's normal direction is 2'.

The second target we will consider consists of two identical square specular reflectors and a

square dihedral reflector. The center locations of the two specular reflectors are (0, 0) and

(-7, -3) respectively, and the center location of the dihedral reflector is (5, -5). The shape

and orientation of the specular reflectors are the same as those in the first example. The

edge length of the dihedral reflector is v/ pt where pt = 0.5m. The dihedral axis is on the

plane perpendicular to the slant range direction 2'. The angle between the dihedral axis and
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flight direction ±, 4, is 45'. Throughout this chapter, the other parameters are chosen as

follows: the chirp bandwidth WO = 200 MHz, the clutter-to-noise-ratio CNR = 3.14 x 10-2

(noise dominant), and all the remaining parameter values are the same as those in Table

3.1.

Using the preceeding parameter values we have obtained numerical values for the reso-

lution lengths associated with the individual target components. For spotlight-mode oper-

ation, we found the image resolution lengths of the specular component after the whiten-

ing and matched filters were approximately 1.00 m (cross-range) and 1.06 m (range). For

the dihedral component, the spotlight-mode image resolution lengths were the same: 1.00

m (cross-range) and 1.06 m (range). For stripmap-mode operation, the image resolution

lengths of the specular component were 1.25 m (cross-range) and 1.06 m (range), as were

the image resolution lengths of the dihedral component. Thus for the center locations we

have chosen, there is no overlap between the image resolution regions of the three target

components. Therefore, the orthogonality condition (5.27) holds.

Figure 5.3 plots the receiver operating characteristics of the likelihood-ratio, sum-amplitude,

and sum-amplitude-square detectors for the first target example. Figure 5.4 plots the re-

ceiver operating characteristics of the same three detectors for the second target example.

Each figure includes both stripmap-mode and spotlight-mode results. Note that Figures

5.3 and 5.4 are plotted on probability-paper axes to permit accurate display of both high

(near unity) and low (near zero) probability values. A couple of interesting trends can be

observed from these figures. First, for the same target, spotlight-mode operation has better

detection performance than does stripmap-mode operation. The reason is obvious, if we

inspect the numerical SNCR values for the individual target components. For target 1, the

SNCR's at the matched-filter outputs for the reflectors at (0, 0), (-7, -3), (5, -5) are 10.70,

10.08, 10.24 for spotlight-mode, and 6.24, 6.21, 6.21 for stripmap-mode operation. For target

2, the SNCR's at the matched-filter outputs for the reflectors at (0, 0), (-7, -3), (5, -5) are

127



10.70, 10.08, 3.21 for spotlight-mode, and 6.24, 6.21, 1.73 for stripmap-mode operation. The

spotlight-mode target return has higher SNCR values than the stripmap-mode target return

for all individual components. Therefore the PD - PF curves for spotlight-mode operation

go deeper into the desirable (PD= 1, P= 0) upper left-hand corner region than do the

curves for stripmap-mode operation. The physical reason behind this behavior is also clear:

because spotlight-mode operation illuminates the target for a longer time duration than does

stripmap-mode operation, its post-filter signal strengths are correspondingly higher.

Furthermore, when we contrast the PD - F curves of the two different targets under the

same mode of SAR operation, we see that the first target yields better detection performance

than does the second target. Again, this phenomenon is a consequence of the individual

SNCR values reported in last paragraph. The first two components of both targets are

identical. For the target dimensions and orientations we have chosen, the third component

of the second target (dihedral) has a smaller SNCR value than that of the first component

(specular reflector). So the detection performance associated with the second target is

inferior to that of the first target.

Finally, in these two examples, the receiver operating characteristics of the likelihood-

ratio, sum-amplitude, and sum-amplitude-square detectors are nearly identical. As we have

demonstrated in Section 5.2.1, the likelihood-ratio detector is also the Neyman-Pearson

optimum detector. So in these two examples our two simpler but sub-optimal detectors

are actually very close to the optimum performance limit. Such observation cannot be

rigorously extended to the conclusion that the sum-amplitude and sum amplitude-square

detectors per se are close approximations to the Neyman-Pearson optimum detector for

all possible multi-component targets. Nevertheless, there is a high-SNCR justification for

the near-equivalence of the likelihood-ratio detector and the sum-amplitude detector. The

likelihood-ratio from Section 5.2.1 involves the zeroth-order modified Bessel function 10,

which can be approximated by an exponential function (Io(x) ~ ex) when the SNCR value
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Figure 5.3 Receiver operating characteristics: Neyman-Pearson processor, multi-
component target with random phases, 3 specular reflectors. Left panel is stripmap-mode
operation; right panel is spotlight-mode operation.

is high. Applying this approximation reduces the likelihood-ratio detector to the sum-

amplitude detector.

5.3 Multi-Component Target Detection with
Unknown Phases and Positions

In this section, we consider a multi-component target whose component phases and

locations are randomly and independently varied. Similar to what was done in Section

5.2.1, we develop the target detector from the 1-D radar model. The binary hypothesis

testing problem for the scalar 1-D radar return is as follows. We observe

(5.28)r(t) = w (t),

when the target is absent (hypothesis HO), and we observe

M

r (t) = Z esmsm(t - tm) + w (t),
m=1
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Figure 5.4 Receiver operating characteristics: Neyman-Pearson processor, multi-
component target with random phases, 2 specular plus 1 dihedral reflector. Left panel
is stripmap-mode operation; right panel is spotlight-mode operation.

when the target is present (hypothesis H1 ). Equations (5.28) and (5.29) are identical to

(5.1) and (5.2) except for one aspect: the pulse delay time of the mth component tin, which

corresponds to the component's center location, is now taken to be random. The random

variables ti, ..., tM are assumed mutually independent, and each tm is uniformly distributed

within [tO - Tm/2, tO + Tm/2]. This position randomness models the variability or unavail-

ability of exact knowledge about some aspects of a real-world target reflector constellation.

5.3.1 Detection Scheme

When the delay times in (5.29) are random variables, it is difficult to write down the

likelihood ratio for the binary hypothesis testing problem. However, it is possible (and useful)

to formulate the generalized likelihood ratio and develop a detector scheme on that basis [21].

Here we follow the approach of [21] to derive a generalized likelihood-ratio detector scheme

for the target with random component-phases and component-positions. First, suppose

that the orthogonality condition (5.3) continues to hold over the entire range of delay-time
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uncertainty. Then, for a specific realization of the pulse delay times (ti,..., tM), one can

write down the likelihood ratio from (5.6), (5.7), and (5.12):

1 (r; ti,.. tM) = PrIH1(ri, r2, ...-, r |H 1; t I, ..., tm)

PrIHo (r1, T2, ..., T M|HO; ti, ...,7 tM)

M o0
= 1 exp - dts* (t) - sm(t) Io (2 ds*(t - tm) -r(t). (5.30)

M=1 [ -00 -M / 0

For a given radar return r(t), the likelihood ratio is a function of ti,... ,tm. One can obtain

the maximum-likelihood estimate of these parameters from the radar return:

= arg max
-~ ~ t 1E[t0-T1 /2,ti+i2]..tM "-TM/2,tO+TM/2]

[ exp - dts* (t) - Sm(t)] I (2 dts* (t - tm) - r(t) , (5.31)

where ti, ... , tu are the maximum-likelihood estimate. The generalized likelihood ratio is

defined as the likelihood ratio when the maximum-likelihood estimates are plugged into the

unknown parameters. Plugging (5.31) into (5.30), we have that:

GLR = l(r; ii, ... , M)

= max [ exp -- dts* (t) Smt)] 1o (2 dts* (t - tm) -r(t) , (5.32)[M ..,mH It i,., Mm=1 -0 -00
where we abbreviate maxtil[tO-T1/2,tO+T/2],...,tME[t--TM/2,tOTM/2 as maxt1,..,tm.

The generalized-likelihood-ratio detector based on (5.32) can be written in the following

form:
say H1

M>

max Io 2 J dts*(t - tm) - r(t) # (5.33)
ti, ... ,t .m=1

say Ho

where # is the threshold. Furthermore, since the zeroth-order modified Bessel function is

positive with positive argument and ti, ..., tM are mutually independent variables, maxi-

mizing the overall product of Io's in (5.33) is equivalent to maximizing the individual Jo's
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in the product. Hence the generalized-likelihood-ratio detector becomes

say H1

max [Io (2 dts*(t - ti) -r(t) #. (5.34)

say Ho

The form of the GLR detector is similar to the LR detector depicted in (5.13), except that

in the GLR detector the value used to compare the threshold is maximized over the region

of delay-time uncertainty. This operation can be achieved by inserting a duration-limited

peak detector after video detection of the output from each individual matched filter.

Similar to Section 5.2.1, the detection problem for a multi-component target with un-

known phases and positions can be extended to 2-D polarimetric radar signals. The for-

mulation for the binary hypothesis test is almost identical to (5.25) and (5.26), except the

time-shifts mi and ri for each component are now random variables, rather than known con-

stants, because each component center-location (At, A') is now uniformly distributed within

its given uncertainty area. The GLR detector for the 1-D signal case can also be extended

to a detector for the 2-D radar return. For the 2-D GLR detector, the whitening filter and

the matched filter all operate on both range and cross-range times, and the peak detector

exploits the maximum signal amplitude within the given 2-D uncertainty area rather than

a 1-D interval. Figure 5.5 sketches the block diagram of the generalized-likelihood-ratio

detector.

5.3.2 Receiver Operating Characteristic Evaluation

To calculate the detection and false-alarm probabilities for the 1-D generalized-likelihood-

ratio detector, we define

max 2 ] dt s*(t - t,) -r(t) (5.35)
tmE[tOm-Tm/2,tm+Tm/2 -oo
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for m = 1, ..., M. Because of the orthogonality condition that the target components

satisfy, the x 1 , ..., xM are conditionally independent, given either H0 or H1 . The probability

of detection is therefore (see (5.16))

PD Pr(sayH1 I Hitrue)

=1dy1 px1IH 1(y1IH1) J dy2 PX2|H1 (y2H1)....

/10 
I(B/ 

]Y 
I 

Hi

x y x|H(MH) (5.36)

and the probability of false alarm is (see (5.17))

PF = Pr(sayH1 I Hotrue)

1- dy 1 px 1 H(yIHO) (3Io(y) dy2 PX2 H0(y2H0)....

/IO- r(#/ -_ I(ym))
X H Ioy) dyM pxmIHo(yMIHO). (5.37)

0

The conditional probability density functions pxmIHo (ymIHo) and Pxm|H1 (ymH1) can be ob-

tained by taking the derivatives of the conditional cumulative probability functions; in other
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words,
d

Pxm|HO(ymIHo) = Pr{x, < ym\Ho}dym

d r
= Pr max 21 dt s* (t - tm) - w(t) y , (5.38)

dym tme[to-Tm/2,to +Tm/2] ifo

PXmIH1(ym|IH1) d Pr{xm < ym|Hi}
dyy

d 0
Pr max 2 J dt s* (t - tm) - [ e s(t - ti) + w(t)] ym -dym tmE[tom-rm/2,to+rm/2) I Woo Y

(5.39)

The receiver operating characteristic for the 2-D generalized likelihood-ratio detector

can also be calculated by applying (5.36) through (5.39) by replacing the integral over t by

an integral over T followed by summations over m and polarization, and then performing

the maximization operations over the 2-D uncertainty areas rather than 1-D uncertainty

intervals.

The calculation of the conditional cumulative probability functions in (5.38) and (5.39) is

not as straightforward as what has been done in Section 5.2.1, because it involves the level-

crossing theory for a complex random field. As implied by (5.38) and (5.39), to obtain PD and

PF for the 1-D (2-D) detection problem it suffices to solve the following general level-crossing

problem: for a complex 1-D (2-D) random process z(t) (z(m, r)) with a given covariance

function and a fixed threshold level a, what is the probability that |z(t)| (Iz(m, T)I) is smaller

than a for all the t (m, ) within a known interval (area). For the problem of concern in

this Section, the random process is the output signal from the matched filter (corresponding

to an individual component) of the generalized-likelihood-ratio detector. When the target

is absent, this random process is approximately stationary; when the target is present, it is

non-stationary. As a result we ought to consider the level-crossing problems for HO and H1

separately.
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5.3.2.1 1-D Level-Crossing Theory

The level-crossing theory for a 1-D stationary random process has been intensively stud-

ied. Helstrom [31] and Bello [32] have provided lists of relevant literature citations. Siegert

presented a general solution for the first-passage-time probability density of a real Markov

process r(t), which is defined as minus the time derivative of the probability P(T; a) that r(t)

is below the threshold a throughout the interval [33). It turns out that the Laplace trans-

form of the first-passage-time probability density with a given initial condition r(O) = ro

is the ratio of the Laplace transform of r(t)'s transition probability density functions at

initial condition r(O) = ro to the corresponding transform at initial condition r(O) = a.

For a real-valued Gauss-Markov process, or a complex-valued Gauss-Markov process with

mutually independent real and imaginary parts, analytical expressions for the first-passage-

time probability density can be obtained from Siegert's theory [34-36] when the process's

autocovariance function is a two-sided exponential.

In general, the exact analytical solution for the probability P(T; a) of a non-Markov

stationary process r(t) is not available. However, Rice has demonstrated that when the

threshold level a is much larger than the root-mean-square of the process and the interval

duration T is much greater than the correlation time of the process, P(T; a) can be ap-

proximated by a simple formula [31][37]. The basic idea of this approach is to calculate the

average rate at which the stochastic process crosses the threshold level from below, and then

to use this rate to obtain the probability P(T; a). When the interval duration T is much

longer than the correlation time, the process has negligible correlation with its initial value

and initial time derivative throughout most of the duration-T interval. So P(T; a) is almost

independent of the initial condition. Thus one can define an average rate A(a) as the average

number of r(t) upward crossings of the level a per unit time. For a stationary process, such

rate is independent of time. Furthermore, when the threshold level is very high, upward

crossings are rare events. Their occurrences are very far apart hence they can be taken to be
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statistically independent. Thus the number of upward crossings in an interval of duration T,

n(T; a) can be modeled as a Poisson process [38]. The probability P(T; a) that the process

is below the threshold level a throughout an interval of duration T, is then equivalent to the

probability that a Poisson-distributed variable with mean A(a) is zero, i.e.,

P(T; a) r e-(a)T. (5.40)

Equation (5.40) reduces the computation of P(T; a) to the calculation of the crossing rate

A(a) of the stochastic process. For a stationary process r(t), Rice proposed the following

approximate formula for A(a) [37]:

A(a) j di p(a, f), (5.41)

where f dr/dt and p(r, ) is the joint probability density function of r and r.

The task of obtaining P(T; a) is to evaluate the integral in (5.41). Suppose the complex

random process of concern is a Gaussian process z(t) = x(t)+iy(t), with covariance functions

< z(t)z*(t') >= u(t - t'), < z(t)z(t') >= 0. (5.42)

Then x(t) and y(t) are independent Gaussian processes with the same covariance function

u(t)/2. Whenever |z(t) is above (below) the threshold level a, we have that r(t) = [x(t)]2 +

[y(t)]2 is also above (below) the threshold level a2 . Notice that r, the sum of the squares

of two independent identically distributed Gaussian processes has a chi-square distribution,

and the conditional density for , which is equal to 2xi + 2yy, is Gaussian given x and y.

One can then use these facts along with the Bayes rule to derive the joint probability density

function p(r, ?), and hence obtain A(a) via (5.41). It can be shown that [31]

A(a) ~ # exp 0 , (5.43)
g7ru(0) 7r u(0)

where

2 = U"(0) (5.44)
IU(0)|
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and u"(t) = d2'/dt 2 . The time-domain representation of # can be converted to a frequency-

domain representation:

2 f_ dQ Q2 U(Q)
# = (5.45)

f dQ U(Q)

where U(Q) is the Fourier transform of u(t). Notice that 1/0 is, in essence, the correlation

time of the process. When the covariance u(t) = Ae-(t/t ) 2 , 3 is equal to v/2/t1 .

To sum up, for a zero-mean circulo-complex Gaussian process z(t) with covariance func-

tion u(t), the probability P(T; a) that Jz(t)| is below a threshold level a throughout an

interval with duration T is approximately

I- a2 - a2

P(T; a) -rxp exp -OT a2 exp u(O) (5.46)
gru(0) u0

when #T >> 1 and a2 >> u(O), where

72 |u"(0) f_ dQ Q2 U(Q)
u(0)| f_ d2 U(Q)

5.3.2.2 Resolution-Bin Model

There is another approach to approximate the value of P(T; a). In the laser-radar litera-

tures, it is a common practice to apply the resolution-bin model to calculate the level-crossing

probabilities [39]. The basic idea is to divide the interval of concern, [0, T], into a sequence

of N resolution bins with center locations t1 , t 2 , ---, tN, where the bin size is on the order of

the correlation time for the random process under consideration. Then it is reasonable to

approximate the probability that the real random process r(t) is smaller than a within the

whole interval [0, T] by the joint probability that r(ti) < a, r(t 2 ) < a .... , and r(tN) < a.

Furthermore, if the bin size is not significantly smaller than the correlation length, then

the random variables r(ti), r(t 2 ) .... , r(tN) can be taken, approximately, to be statistically

independent. The joint level-crossing probability is then the product of level-crossing prob-

abilities for each individual sample point. For a stationary random process, r(ti), r(t 2 ),
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.... , and r(tN) have the same probability density function. The resulting joint level-crossing

probability is then the Nth power of a sample point's level-crossing probability. In other

words,

P(T; a) = Pr{r(t) < a; 0 <t < T} r Pr{r(ti) < a & r(t 2 ) < a & .... & r(tN) < a}

N

= }J Pr{r(ti) < a} = [Pr{r(ti) < a}]N. (5.48)
i=1

For a zero-mean circulo-complex Gaussian process z(t) with covariance function u(t), the

approximate probability P(T; a) that Iz(t)| < a within [0, T] can also be obtained from the

resolution bin model via (5.48). To calculate the probability that |z(ti)| < a, the chi-square

distribution is applied. The result of the probability P(T; a) is

a 2 -T/ti'm
P(T; a) = {1 - exp -} , (5.49)

[_(0)_

where tbin is the bin duration. Notice that (5.49) gives a different formula for P(T; a) than

the analytical result in (5.46).

The validity of the resolution-bin approach depends on two conditions. The first is that

a sample point chosen a priori from a bin interval can well represent the level-crossing char-

acteristic of the whole bin interval, i.e., if any point within the bin exceeds the threshold

level, it must be almost the case that the chosen sample point exceeds the threshold level

as well. The second is that the correlation among the sample points representing different

resolution bins is small. Both conditions are determined by the size of the bin tbin. The an-

alytical form of the optimum tbin that best fits (5.49) to the actual level-crossing probability

is not available. But one can obtain its approximate numerical value by fitting (5.49) to the

level-crossing probability from Monte Carlo simulations.

We have two reasons for presenting the resolution-bin approach for the level-crossing

problem. First, the result from the resolution-bin approximation can be very useful when the

duration of the uncertainty interval T is not much longer than the correlation length of the
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random process; this is a case in which the analytical level-crossing theory is not applicable.

Second, in the limit when the interval duration is much longer than the correlation time, so

that the analytical formula (5.46) is more accurate than the approximate result (5.49), the

resolution-bin approach per se provides an interpretation for (5.46) that is important to our

extension of level-crossing theory from 1-D to 2-D. The approach we will take is a Markovian

representation of the level-crossing probability. Suppose the interval [0, T] is divided into

a sequence of bins I1 = [0, t 'in], I2 = [tbin, 2tbin], ... , IN = [(N - 1)tbin, T], where the bin

size tbin is identical to the correlation time of the random process and N = T/tin. Then,

via Bayes' rule, the level-crossing probability P(T; a) can be represented as the following

product of conditional probabilities:

P(T; a) = Pr{|z(t)| < a : 0 <t T}= Pr{|z(t)| < a : t E i2 & .... & t E IN}

= Pr{|z(t)| < a: t E II} x Pr{|z(t)f < a : t E 12 | |z(t)| < a : t E Ii}

xPr{|z(t)| < a : t E 13 1 z(t)| < a : t E '1 & t E 12 X .---

x Pr{|z(t)| < a :t E IN | |z(t)| < a :t E 1& .... & t E IN-11- (5.50)

Because each bin's duration is one correlation time, the behavior of the random process

within bin Ii is almost statistically independent of the behaviors within any other bins

except Ii_1 and 'i+1. Therefore, the Bayesian representation (5.50) can be rewritten in a

more concise form:

N-I

P(T; a) ~ Pr{|z(t)I < a : t E 1i - Pr{Iz(t)I < a : t E Ii+1 I |z(t)I < a : t E Ii}. (5.51)

When the random process is stationary, the conditional probability Pr{|z(t) < a : t E Ii+1

Iz(t)l < a : t E Ii} is the same for all bins. Thus

P(a; T) ~ Pr{Iz(t)| < a : t E I} - [Pr{|z(t)| < a : t C Ii+1 I |z(t)I < a : t E Iij}]N-1. (5.52)

When the interval T is much longer than the correlation length, P(a; T) in (5.52) is domi-

nated by the (N -- i)h power of the conditional probability. the contribution of Pr{ Iz(t)| <
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a : t E Ii} is unimportant. Thus we can approximate Pr{|z(t)| < a : t E Ii} by

Pr{|z(t)| < a : t E Ij+1 I |z(t)I < a : t C hi}, and get

P(a; T) e [Pr{|z(t)I < a : t E Iji+ | |z(t)I < a : t E Ii}]N. (5.53)

Equation (5.53) indicates that an approximate evaluation of the probability that jz(t)| < a

within an interval with long duration T follows fairly easily from knowledge of the conditional

probability that Iz(t) < a within a correlation time, given the fact that Iz(t) I < a prevailed

within the preceding correlation time. The formulation from analytical level-crossing theory

(5.46) implies that

Pr{|z(t)| < a : t E Ij+1 | Jz(t)j < a : t E Ii} - exp -ftcorr a exp (5.54)
\ -ru(0) _ I-U(0) (.4

where tcorr is the correlation time of z(t). For simplicity, we use Pr{Ii+1Ii} to denote the

probability in (5.54). Similarly, we use Pr{ti} to denote the probability that Iz(tj)| < a,

where tj is the midpoint of Ii. The chi-square density of |z| implies that

Pr{ti} =1 - exp a2 ] . (5.55)
[_U(0)_

When the probability of crossing from below is very low (a 2 >> u(0)),

Pr{ti} = exp log I - exp [ ]] } exp exp [- . (5.56)

Comparing (5.56) with (5.54), a simple relation between Pr{ti+1 } and Pr{I 1j|I} can be

obtained when a 2 >> u(0),

Pr{Ii+1}I) ~ [Pr{t 1 1}0tcorrA+ 12}/Iru(). (5.57)

This relation will be the basis for our extension of 1-D level-crossing theory to the 2-D

problem.
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5.3.2.3 2-D Level-Crossing Theory

The level-crossing problem whose solution determines the SAR receiver operating charac-

teristics we need in this chapter is 2-D rather than 1-D. For simplicity, let us at first assume

that both the range-time index and the cross-range-time index of the radar return signal

are continuous. So in order to evaluate PF, we need to solve the following problem. For

a stationary zero-mean circulo-complex Gaussian process z(x, y) with covariance function

u(x, y), what is the probability P(A; a) that Iz(x, y)I is below a threshold level a for all (x, y)

within a 2-D region A. To simplify the derivation, we assume that A is a rectangular region

A = {(x, y) : 0 < x < X, 0 < y < Y}.

Some prior work has been done on the theory of level crossing for a 2-D random field

[32]. Longuet-Higgins analyzed a variety of geometrical characteristics of a 2-D Gaussian

stationary random field, such as the average of number of zero crossings along a line, the

average length per unit area of contours generated by some fixed level of the field, and the

average number density of relative maxima, minima, saddle points [40]. Kessler and Freund

studied the probability density of level crossings along specific directions in an isotropic

2-D Gaussian random field [41]. Adler and Hasofer defined the excursion set associated

with a random field in a multi-dimensional space, and constructed the characteristic of the

excursion set, which is related to its number of connected components. Cast into the 1-D

case, such characteristic represents the number of crossings from below [42]. However, to

the author's knowledge, no prior studies provide a direct answer to the probability of level

crossings of the 2-D circulo-complex Gaussian random process within a given area.

In this Section, we propose formulations to evaluate the 2-D level-crossing probability.

The formulations are derived from heuristic extension of the 1-D level-crossing theories

presented in Section 5.3.2.1 and Section 5.3.2.2, and are verified by comparing with the

results from Monte Carlo simulations. We consider first the case in which X and Y are

much longer than the x- and y- correlation lengths of the random process. The basic
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idea is similar to the discussion at the end of Section 5.3.2.2. As indicated in Figure 5.6,

the rectangular uncertainty area A is divided into a sequence of strips {Ji}/_1, where Ji =

{(x, y) :(i - 1)XcXr < x .Xco, 0 < y < Y}, and Xcorr is the correlation length of z(x, y)

along the x-direction. Following the argument given in Section 5.3.2.2, the probability that

jz(x, y) is below the level a within the whole region of A can be approximated by a product

of conditional probabilities:

P(a; X, Y) e [Pr{|z(x, y) < a : (x, y) E Ji+1  z(x, y) < a : (x, y) E Ji}]Nx, (5.58)

where Nx = X/Xcorr. Also, the conditional probability Pr{|z(x, y)| < a : (x, y) E JI+1 

jz(x, y)| < a : (x, y) C Ji} may be obtained via a formulation similar to that used for its 1-D

counterpart. In (5.57), the conditional probability that the amplitude of the 1-D random

process is smaller than a level within a bin interval, given the fact that it is below the level

within the previous bin interval, is a function of the probability that the amplitude is smaller

than the level at the center point of the bin interval under consideration. Here we argue

that the same relation holds for a 2-D random field. In other words,

Pr{JiJ} ~ [Pr{xi+1}]xcr a2/u(0,0), (5.59)

In (5.59), Pr{Ji+1|Ji} = Pr{|z(x,y)| < a : (x,y) E Ji+1 I |z(x,y)|

Pr{x+ 1 } Pr{Iz(x, y)I < a : x = (i - 1/2)xcrr, 0 < y < Y}, and

O2 _ lUXX(0, 0)|

|u(0,0)|

where uxx(x, y) = (02 /0x2)u(x, y). Notice that Pr{xi+1 } is the proba

from below along a line parallel to y axis with length Y. Such prob

calculated from the analytical formula (5.46). Hence

Pr{xi}+1) ~e-0 exp a2  exp [ 2

ru(0, 0) u(0, 0)

where

2 _uY(O,0)f
Y |u(0,0)| '

< a : (x, y) C Ji},

(5.60)

)ility of no crossing

ability can also be

(5.61)

(5.62)
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Figure 5.6 The strip-bin division of the uncertainty area for the 2-D random field.

for uYY(x, y) = (82 /y 2 )u(x, y). Plugging (5.61) into (5.59) and then (5.59) into (5.58), we

have a formula for the 2-D level-crossing probability:

P(a; X, Y) ~ exp -x#YXY 0 exp - . (5.63)
7rU(0, 0) 1u(0, 0)_

Equation (5.63) is a consistent formulation for the 2-D level-crossing probability in two

senses. First, equation (5.57) asserts that the "interval probability" p (the conditional

probability that a random process is below the threshold level within an interval) and the

"point probability" pp (the probability that it is below the threshold level at a point) have

a power relation pi = pQ. It can be shown that the same power relation would hold for the

"strip probability" Ps (the conditional probability that it is below the threshold level within

a strip) and the "line probability" p (the probability that it is below the threshold level

along a line) if the relations between p, and pi and between pi and pp are identical power-law

forms, namely, p, = p, and p, = p'. From the 1-D level-crossing theory, p, and pp satisfy

this power-law condition. We may also argue that the same relation must be approximately

true for p, and pi, because a strip can be conceived as a collection of intervals and a line

as a collection of points. Second, if we derive the 2-D level-crossing probability from the
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conditional probabilities of the strips along the x direction, the result would be identical to

the one in (5.63). As a matter of fact, (5.63) suggests that the probability is function of the

area of the uncertainty region; the direction of the vector ±X +Q Y should be unimportant.

When the dimensions of the uncertainty region is not much larger than the correlation

lengths of the random process, the formula (5.63) does not apply. In this case, the level-

crossing probability is approximated by the resolution-bin approach, where the 1-D bin

interval is replaced by the 2-D cell area. From (5.49), it can be shown that

F21- XY/xbun Ybi

P(X, Y; a) {1 - exp - }o ,J} (5.64)
(0 40)_

where Xbin and Ybin are bin sizes along x and y directions.

We verified our 2-D level-crossing probability formulas (5.63) and (5.64) by comparing

them with the results from Monte Carlo simulations. The parameters chosen for the simu-

lations were as follows. The complex stationary 2-D random field z(x, y) was modeled as a

zero-mean, circulo-complex Gaussian process with a Gaussian-shaped, separable covariance

function

<z(x, y)z*(x', y') >= u(x - x', y - y') = A exp[-(x - x') 2  2/y]]exp[-(y , (5.65)

where x, = Xcorr/2 and yj = Ycorr/2 are the half correlation lengths. The correlation lengths

along the two orthogonal directions were assumed to be equal, and sampling periods x1/10

along the x direction and y1/10 along the y direction were used. The edge lengths of the

uncertainty region, namely X and Y, were also assumed to be identical. The number of

realizations for the profiles of z(x, y) was 1000. To generate a realization of z(x, y), we first

generated a complex Gaussian random profile whose value at each point on the 2-D plane

was uncorrelated with its value at any other point (i.e., a white-Gaussian process), and then

passed this 2-D signal through a shaping filter to form a 2-D signal with the prescribed

spectrum (the Fourier transform of (5.65)). The white Gaussian complex random profile
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was generated by independently producing the complex value at each point from magnitude

and phase random variables that followed Rayleigh and uniform distributions, respectively.

The fraction of realizations whose maximum jz(x, y) within the uncertainty region exceeded

different threshold levels were then recorded, for comparison with our theoretical work.

Figure 5.7 plots the probability of level-crossing versus the threshold level for different

sizes of the uncertainty region. In the figure, the Monte Carlo simulation results are com-

pared with the values from formulations (5.63) and (5.64). For a covariance function with a

separable and Gaussian form in (5.65), we find that (5.63) can be written as

XY 2a 2  ~ a 2

P(a; X, Y) ~ exp --- exp -. (56
X1 Yr u(0, 0)

For the curves corresponding to (5.64), the bin sizes are identical along x and y directions,

and optimized to get the best fit for the Monte Carlo simulation results. The four panels

of the figure correspond to the cases when X/xj = Y/y = 2.0, 4.0, 8.0 and 16.0. In other

words, the edge length is one, two, four, and eight times the correlation length. From Figure

5.7, it is clear that (5.63), as an extension of the 1-D level-crossing theory to the 2-D cases,

reasonably matches the Monte Carlo simulation results when the probability of crossing-

from-below is not too large. Therefore, (5.63) is a valid formula for 2-D level-crossing

probability. When the size of the uncertainty region becomes smaller, it is the optimized

resolution-bin approximation (5.64) that has a better fit to the simulation results. Figure 5.8

plots the optimized bin size of (5.64) for different sizes of uncertainty region, and Figure 5.9

plots the average error of the 2-D level-crossing formula (5.63) and resolution-bin formula

(5.64) with respect to the Monte Carlo simulation results for different sizes of uncertainty

region. From the figure, when X/zx = Y/y, is equal to or smaller than 1, (5.63) has a

significantly higher error compared with (5.64). Therefore, in the rest of this thesis, we will

apply (5.63) when the edge length of the uncertainty region is larger than the correlation

length, and (5.64) when the edge length of the uncertainty region is less than the correlation

length.
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Probablity of False Alarm vs. threshold, X/) = Y/y = 2.0
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Figure 5.7 Comparison of the Monte Carlo simulation results with the 2-D level-crossing
formulations (5.63) and (5.64). The covariance function of the complex random process is
described in (5.65). The panels from top to bottom: X/xi = Y/y, = 2.0, 4.0, 8.0 16.0. For
each panel, the horizontal axis stands for the threshold level, and the vertical axis stands
for the probability that the intensity of the complex random process exceeds the threshold
(in log scale). Notice that the bin sizes of (5.64) along x and y directions are equal and
optimized to fit the simulation results.
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Optimum resolution bin size vs. uncertainty size
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Figure 5.8 The optimized
size of uncertainty region.
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Figure 5.9 The average errors of (5.63) and (5.64) with respect to the Monte Carlo simu-
lation results versus the size of uncertainty region. The average error is defined as the mean
of the difference for the log of probability from simulation and the log of probability from
formula.
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5.3.2.4 Evaluation of PD

The analytical level-crossing theory associated with the calculation of PD is more diffi-

cult to obtain, since the random process of concern is not stationary when the target return

is present. However, when the signal-to-noise-plus-clutter-ratio is high, a simple approxi-

mation can be applied to evaluate PD: the probability that the maximum intensity of the

output within the uncertainty region exceeds the threshold level is equal to the probability of

detection for the same threshold level and the same target return with known position [31].

The justification for this approximation is as follows. When a strong target return is present,

the peak value of the output from each component's matched filter occurs at a position very

close to the true position of this component. When such peak is well above the threshold

level and the noise fluctuation is much smaller than the peak strength, it is unlikely that

the noise will cause the output to fall below the threshold level. In other words, once the

output maximum within the uncertainty region exceeds the threshold level, its sample at

the target's true position must also exceed this level. Therefore, we can directly apply (5.16)

to calculate PD.

5.3.3 Performance Analysis

In this section, we present the receiver operating characteristic for detecting targets with

independent component-position uncertainties. The multi-component targets of concern are

similar to those described in Section 5.2.2. But here the center location of every target com-

ponent is not deterministic and exactly known. Instead, it is uniformly distributed within

a given uncertainty region. To be more specific, the first target consists of three identical

square specular reflectors each with edge length 2pt, and the second target consists of two

identical square specular reflectors each with edge length 2pt and a square dihedral reflector

with edge length v 2pt, where pt = 0.5 m. For both targets, the center locations of the first,

second, and third components are uniformly distributed within given square uncertainty
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Figure 5.10 Specifications for the uncertainty-region geometries. Left panel: uncertainty

specification 1. Right panel: uncertainty specification 2. Notice that (0,0) is the scene

center of the antenna footprint area. The aircraft flies along the x direction.

regions centered at (0, 0), (-7, -3), (5, -5) with respect to scene center. In this section, we

consider two sets of specifications for the dimensions of these uncertainty regions. In the first

set, the edge lengths of the square uncertainty regions for components 1, 2, and 3 are 4 m,

6 m, and 4 m, respectively. In the second set, the edge lengths of the square uncertainty re-

gions for components 1, 2, and 3 are 3 m, 3 m, and 3 m, respectively. Figure 5.10 plots these

two uncertainty specifications. All the other parameter values, including target component

orientations, signal-to-noise-plus-clutter-ratio, flight parameters, and radar parameters, are

the same as those specified in Section 5.2.2.

For both specifications in Figure 5.10, the separations among the uncertainty regions

of the three components are large enough that the minimum possible distance between any

pair of components still exceeds the sum of the half-resolution lengths of their corresponding

image spots after the matched filters. In other words, the output image spots still do not

overlap, even though their locations are allowed to vary within different uncertainty regions.

Therefore, the orthogonality condition (5.27) still applies. Furthermore, in Figure 5.10, the
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dimensions of the uncertainty regions along both x and y directions are more than twice

the correlations lengths of the random field after the matched filter, which are the image

resolution lengths of the corresponding target components. Therefore we use the 2-D level-

crossing formula (5.63) to calculate the probability of false alarm.

Figure 5.11 plots the receiver operating characteristics of the likelihood-ratio detectors

for the first example target. Figure 5.12 plots the receiver operating characteristics of the

same detectors for the second example target. Again, in each figure, both the results from

stripmap-mode and spotlight-mode operations are presented. There are three curves in

each panel, corresponding to the behavior of the likelihood-ratio detector for the multi-

component target with no position uncertainty, the generalized likelihood-ratio detector

for the multi-component target with position uncertainty specification 1 in Figure 5.10,

and the generalized likelihood-ratio detector for the multi-component target with position

uncertainty specification 2 in Figure 5.10. The numerical results in Figures 5.11 and 5.12

are consistent with intuition: (i) when the precise information on the target components'

locations is lost, the detection performance of the generalized likelihood-ratio detector is

degraded; (ii) the larger the uncertainty regions are, the greater this degradation becomes.

In addition, we see that the ROC curves in Figures 5.11 and 5.12 that correspond to the

stripmap-mode and spotlight-mode operations have different slopes. This is a consequence of

different target-return spectra (along the cross-range direction) between the two synthetic-

aperture operations.

5.4 Multi-Component Target Detection with
Unknown Phases, Positions, and Amplitudes

In this section, we consider a multi-component target where the phases, locations, and

scattering amplitudes of individual components are randomly and independently varied.

Similar to Section 5.3.1, we develop a generalized likelihood-ratio target detector for this
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Figure 5.11 Receiver operating characteristics: 3 specular reflectors; likelihood-ratio de-
tector for target with no position uncertainty, generalized likelihood-ratio detector for target
with position uncertainty specification 1, generalized likelihood-ratio detector for target with
position uncertainty specification 2. Left panel is stripmap-mode operation; right panel is
spotlight-mode operation.
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Figure 5.12 Receiver operating characteristics: 2 specular reflectors and 1 dihedral reflec-
tor; same arrangement as Figure 5.11.
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scenario by building up from the 1-D radar model. The binary hypothesis for the scalar 1-D

radar return in this case is the following. We observe

r (t) = w (t), (5.67)

when the target is absent (hypothesis HO), and we observe

M

r(t) = E Akeickmsm(t - tm) + w(t), (5.68)
m=1

when the target is present (hypothesis H1 ). In (5.67) and (5.68), the pulse delay time and the

scattering amplitude of the mth component, tm and Am, are random. The random variables

ti, .tM are assumed mutually independent, and each tm is uniformly distributed within

[to - Tm/2, tm + Tm/2]. The random variables A 1 , ..., AM are also assumed to be indepen-

dent, and also uniformly distributed within [Ami", Amax], ... , [Ami", Amax]. The randomness

of target component positions models the variability or unavailability of exact knowledge

about some aspects of the target constellation. The scattering-amplitude randomness mod-

els the variability or unavailability of exact knowledge about some aspects of target geometry

and material constitution, such as the shape of scatterers and the distribution of dielectric

constants within the scattering body.

5.4.1 Detection Scheme

Paralleling the work in Section 5.3.1, we can derive a generalized likelihood-ratio for this

binary hypothesis problem. First, the likelihood ratio for the binary conditions described in

(5.67) and (5.68), given a specific set of values for the parameters t1 , ..., tM, A1 , ...AM, can

be obtained as a straightforward extension of (5.30):

1(r; ti, ..., tM, A1, ... Am) = rH r7r,..Ir H;t . m 1 . m

Pri I-o (ri, r2 , ..., rM|IHo; ti, ...,7 tM, A1,,.., Am)

M/

= f e-AEmIo (2Am J dts*(t - tm) -r(t) , (5.69)
m=1 -
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where

Em J dts*(t) - sm(t). (5.70)

Second, the maximum-likelihood estimate of the parameters ti, ..., tm, A1 , ...AM is the set

of values ti, ..., tm, A1 , ... AM, that maximizes 1(r) in (5.69). Thus the generalized likelihood

ratio, which is defined as the likelihood ratio when the maximum-likelihood estimate values

are plugged in for the unknown parameters, is:

GL.R = (r; i1, ... , im, A1, ... ,A m)

m1
M M

=A max-Em 2A(2A dIs* (t - ti) -r(t)
ti, ... ,)tmA1,...,AM m =1 -00

M

max e- Em0 2Am sm - tm) -T(t) (5.71)
m=1 tm,Am J-oo

The second equality of (5.71) follows because tm's an Am's for different m's are independent

of one another.

The values tm and Am that maximize

f-m Am) =enEmo (2Amn J dts (t - tm) -r (t))f (tm, Am) =e-A m 10 ( m sm-0m0

can be obtained separately. It can be shown that

tm = arg nax dts*(t - tm) - r(t) (5.72)

A necessary condition that Am must satisfy is that the partial derivative of f(tm, Am) with

respect to Am be zero. This condition is also sufficient, because f(tm, Am) is unimodal in

tm. We thus have that

2AmEmIo (2Amjfml) - 2|Im|Io (2AmjmI) = 0, (5.73)

where

im J dts*(t - im) -r(t), (5.74)

and I(x) = dIo(x)/dx.
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Equation (5.73) does not have a simple analytic solution. One has to solve for Am

numerically for each input waveform r(t). Thus it is quite involved to implement the strict

generalized likelihood-ratio detector. To simplify the problem, we adopt the approximation

o (2A~mrm|) ~e 2A "." (5.75)

which applies when the signal-to-noise-plus-clutter-ratio is high [36]. Applying (5.75), we

obtain the simple expression for Am:

Zm Em (5.76)

Plugging (5,72) into (5.74) and (5.74) into (5.76), we have

1 f
Amn rEm I ax0_ dts* (t - m) - r (t). (5.77)

Em tm _o0

Substituting (5.72) and (5.77) into (5.71), the approximate expression of the generalized

likelihood ratio becomes:

M o0 2

GLR I exp max dts*(t - tm) - r(t) . (5.78)
M=1 Em em -00

The approximate generalized likelihood ratio in (5.78) can be easily extended to the

case of 2-D polarimetric radar signal by replacing the single integrals in (5.70) and (5.78)

with double integrals and the scalar radar signal waveforms and matched filter impulse

responses with their polarimetric versions, The block diagram of the approximate generalized

likelihood-ratio detector, given in (5.78), for multi-component targets with unknown phases,

positions, and amplitudes is plotted in Figure 5.13. As indicated in the figure, the complex

multi-resolution images after the whitening filter and the matched-filter bank are passed

through square-law detectors, peak detectors, and energy (1/Em) normalization prior to

being added together at the input to a level detector with threshold 0.
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Figure 5.13 Generalized-likelihood-ratio detector for the multi-component target with
unknown phases, positions, and amplitudes.

5.4.2 Performance Analysis

In this section, we calculate the receiver operating characteristic for the detector depicted

in Section 5.4.1. First of all, we define

Xk - max 2 E oMk ,ik I M__ J 0-0
drs (m - Mk, r - T) - r(m,

for each target component. Then the false-alarm probability of the approximate generalized

likelihood-ratio detector for a given threshold 0 is

M 2

k=1 4Ek
> 0 |Ho , (5.80)

and the probability of detection is

M 2

k=1 AEk
> 0 H1 }. (5.81)

To calculate PF, we apply the orthogonality condition to claim that when HO is true, the

random variables x1 , x 2, ..., XM are all independent of one another. So the joint probability
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density function (pdf) can be expressed as the product of the individual pdf's, which gives

a succinct representation of PF:

/v4E 
2[6-(x2/E)

PF 1 I_ dxip(xi1Ho) 1 dx 2p(x2 |H0 )....
0 0

x 4E[6(z/4E)--( 1/4 Em-1)] dxMp(xM|Ho). (5.82)

where the conditional pdf p(xk HO) is equal to the derivative of the level-crossing probability

(5.63) or (5.64) in Section 5.3.2.3. Notice the parameters u(O, 0), #2, and , are all deter-

mined by the impulse responses of the matched filters. In this section, their values are the

same as those in Section 5.3.2.

To calculate PD, we again apply the orthogonality condition to separate the joint condi-

tional pdf. In addition, we use the same approximation as employed in Section 5.3.2.4, i.e.,

we assume that the probability the detector's output exceeds the threshold when a multi-

component target with unknown phases, positions, and amplitudes is present is almost equal

to the probability of exceeding the threshold when the same multi-component target with no

position uncertainty is present. Thus we do not need to deal with the level-crossing theory

of a non-stationary random field. The return-amplitude uncertainties, however, must be

considered. This consideration is accomplished by weighting the probability of detection for

a fixed amplitude target with the probability density functions for the return amplitudes

and then integrating over all possible amplitude values. The result for PD is given as follows:

PD ~%1 - J dA1p(Ai) j dyiyle AE1IO(Ai 4Eiy1) x ...

x J dAMp(AM) dyme-yme -AEmIo(Am 4EMyM), (5.83)
0

where p(Ak) is the pdf of amplitude factor Ak.

Numerical receiver operating characteristics results for some examples are presented be-

low. The multi-component targets of concern are similar to those described in Section 5.3.3:
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one contains three identical specular reflectors, and the other contains two specular reflectors

and a dihedral reflector, whose orientations and geometries are specified in Section 5.2.2 and

spatial distributions specified in Section 5.3.3. But here the multi-component targets have

another degree of complexity: the amplitudes of the individual target-return components

are random. In this section, we assume that all target-return components are scaled by

independent identically distributed random variables that are uniformly distributed on a

finite range.

Figure 5.14 plots the receiver operating characteristics of the likelihood-ratio detectors for

the first example target. Figure 5.15 plots the receiver operating characteristics of the same

detectors for the second example target. Results for stripmap-mode operation and spotlight-

mode operation are included. There are three curves in each panel, which correspond to the

detection performances of the likelihood-ratio detector for the multi-component target with

no position uncertainty, the generalized likelihood-ratio detector for the multi-component

target with position uncertainty specification 1 in Figure 5.10, and the approximate gener-

alized likelihood-ratio detector for the multi-component target with amplitude uncertainty

range [0.7,1.3] and the same position uncertainty specification. The numerical results in

Figures 5.14 and 5.15 indicate that the detection performance for the target with amplitude

uncertainty range [0.7,1.3] is inferior to the performance for the target without amplitude

uncertainty for most PD and PF values. Notice that the effect of amplitude uncertainty is

twofold. On the one hand, the lack of precise information degrades the detection perfor-

mance. On the other hand, the uncertainty of amplitude may either enhance or decrease

the SNCR value. These two trends compete with each other when the whole or part of the

amplitude uncertainty range exceeds 1. For the first example in Figure 5.14, the trend of

degrading detection performance dominates the trend of enhancing SNCR. For the second

example in Figure 5.15, the trend of degrading detection performance dominates the trend

of enhancing SNCR except when PD and PF are small.
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Figure 5.14 Receiver operating characteristics: 3 specular reflectors; likelihood-ratio de-
tector for target with no position uncertainty, generalized likelihood-ratio detector for target
with position uncertainty specification 1, and approximate generalized likelihood-ratio de-
tector for the multi-component target with amplitude uncertainty range [0.7, 1.3]. Left panel
is stripmap-mode operation; right panel is spotlight-mode operation.
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5.5 Multi-Component Target Detection with

Unknown Pose

Both Section 5.3 and Section 5.4 dealt with multi-component targets with position ran-

domness. For those targets, the position randomness associated with individual target com-

ponents were taken to be independent of one another. In radar signal processing, one often

encounters another type of position randomness, which results from a random shift and/or

rotation of a fixed target-component constellation. The locations of individual target com-

ponents are still not fixed, but they are tied together to vary as a whole instead of varying

independently. To generate different realizations of this position randomness is equivalent

to randomly displacing or rotating the local coordinate system with respect to which the

relative locations of all the individual components are fixed. In the practical sense, this

model simulates a target that contains more than one scattering center and is subject to

pose or location uncertainty. In this section, we choose to deal with a subset of this type

of target: a multi-component target with random pose. To be more accurate, the locations

of different target components rotate around a pose center on the 2-D image plane with a

common random rotational angle.

5.5.1 Detection Scheme

Recognition problems for multi-component targets with different poses have been ex-

tensively studied. In [42], a computationally efficient approach based on the concept of

mutual-information maximization is developed to do target matching and alignment. The

automatic target classifier presented in [43] and [44] compares the data target with a bank

of model hypothetical targets of different types, positions, and view angles via a vote-based

approach for the similarities between extracted model target features and data target fea-

tures. The target classifier in [45] also matches a feature vector extracted from SAR image

chip data with a feature vector predicted from a hypothetical target class and pose by using
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a Bayesian likelihood metric. Even though the definitions of match measure are different, all

the works listed above are centered on a common concept: to recognize a model target with

specific pose and location from the image data one should compare the data with a bank of

hypothetical model targets. Incorporating this concept into the context of this thesis, the

multi-component target detector for target with unknown pose can also be accomplished via

such a comparative approach. In this section, we construct a generalized likelihood-ratio

detector for the target with unknown pose. The generalized likelihood ratio maximizes the

likelihood ratio with respect to a discrete subset of the pose angle # within the overall un-

certainty range: {#'Ag, O, ...}. In this sense, the generalized likelihood-ratio detector derived

in this section is consistent with the basic concept of [42-45]. The only distinction is that

here the measure of match is the likelihood ratio obtained in Section 5.2.

Before constructing the generalized likelihood-ratio detector for a target with unknown

pose, we should have a clear definition for the target pose. For a multi-component with

deterministic positions, the location of the ith component center (A', A') can be expressed

in terms of the polar coordinate with respect to the pose center (xO, yo):

(At, A') = (xo + ri cos(#i), yo + ri sin(#i)), (5.84)

where ri is the distance between (A', A') and (xo, yo), and #i is the azimuthal angle of

the vector connecting (xO, Yo) to (A', A') with respect to x axis. When we incorporate a

pose-angle uncertainty into the target model, the center location of component i becomes

(At, A') = (xo + ri cos(#i - #), yo + ri sin(#i - #)), (5.85)

where # is the random pose angle. The geometric constellation of a multi-component target

with random pose is illustrated in Figure 5.16.

In Section 5.2, we have derived the likelihood ratio for a multi-component target with

known component positions (see Eq. (5.12)) from which we see that the likelihood ratio
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Figure 5.16 The geometric constellation of a multi-component target with random pose.

parameterized by the target pose angle is:

M dT
l~; ) Be-Eio J(2 f dTr S (m - mi(, T - Ti d) r (m, T) , (5.86)

i=1 =-0o -00

where

(mj($), Ti(#)) = ((xo + ri cos(#i - #))/vT,, 2 (yo + ri sin(#i - #)) cos($)/c). (5.87)

The generalized likelihood ratio is the maximum value of the likelihood ratio in (5.86) with

respect to the pose angle # within the uncertainty range:

M 0o 0o
GLR = max f eEio 2 f dT st(m - mi(#), T - Ti(#)) - r(m, T) (5.88)

i= m=-o 00 

Even though the likelihood ratio in (5.86) is a continuous function of #, the operation of

maximization in (5.88) is easier to implement under a discrete basis; namely, the likelihood

ratio is maximized over a discrete set of # values {f0, #', ...} sampled from #'s uncertainty

range. In this sense, a matched-filter bank followed by a 2-D sampler associated with a

particular pose angle matches the data to a particular target model, and the measure of

comparison is the overall likelihood ratio. Figure 5.17 depicts the block diagram of the

generalized-likelihood-ratio detector for the multi-component target with unknown phases

and pose.
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Figure 5.17 Generalized-likelihood-ratio detector for the multi-component target with
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5.5.2 Performance Analysis

In this section, we calculate the receiver operating characteristics of the generalized-

likelihood-ratio detector for the multi-component target with unknown pose. First of all,

under the same assumption used in Sections 5.3.2.4 and 5.4.2, the probability of detection PD

is approximately equal to the probability of detection when the target-component locations

are exact and known, which is calculated in (5.16). So we only need to find the probability

of false alarm PF for the detector depicted in Figure 5.17.

It can be shown that for a given threshold -y, the probability of false alarm can be

obtained as follows:

PF = 1-Pr max ['10(2 0 JdT S (m- Mi(), T - Ti()) -w(m,T) < 

(5.89)

where w(m, T) is the white random process of clutter-plus-noise. The generalized likelihood

ratio in (5.89) is a stochastic function of 4, so apparently (5.88) can be solved by using

the 1-D level-crossing theory presented in Section 5.3.2.1 with a slight modification from the

continuous to the discrete case. But there is an obstacle that prohibits the direct application

of the formula (5.46) to this new problem: the generalized likelihood ratio in (5.88) is not

a stationary random process with respect to #. Stationarity is the foundation of the whole

level-crossing theory presented in Section 5.3.2.1. Thus the level-crossing formula for (5.89)

cannot be easily derived from available results.

We can use the resolution-bin approximation in Section 5.3.2.3 to evaluate the approxi-

mate value of PF. The process of calculation has two steps. First, in (5.88), the probability

that the generalized likelihood ratio is smaller than a threshold for a discrete sampled set

of the uncertain range of 0, [<Dmin,< bm..], is approximated by the probability that the gen-

eralized likelihood ratio is smaller than a threshold for the whole uncertain range of 4.
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Namely,

PF - 1-Pr max f TS m-mi(#),T-Ti(#))-W(mT) [ J1
min 1m,Cmax].1 \M=-oo -00/.

(5.90)

Second, this probability is approximated by the probability that the generalized likelihood

ratio is smaller than a threshold for another discrete set of the uncertainty range of # whose

sampling interval is the resolution-bin size A#. Since the level-crossing probabilities of the

samples at different resolution bins are assumed independent, we have

PF e 1-

Pr[HIo 2 fo dr st(m - mi(kA#),T - Ti(kA#)) -w(mT) }

k=4min/de i1 m=-oo -0

-1- Prm [Io (2 d r s (m-mi(), r}-r}#)w(m,rT) y

i=1 m=-oo -00

(5.91)

The angle # in (5.91) could be any value within the uncertainty range because the probability

within the product of second equality does not depend on # at all. In contrast to (5.17),

equation (5.91) can be easily expressed in terms of the PF for the same multi-component

target with known component positions, PF,

-max- 'min

PF r%,1 ~ (1 - -F) A (5.92)

There still remains the task of choosing the size of the pose-angle resolution bin, i.e., the

problem of choosing A#. Our idea for solving this problem is to come up with the sizes of

linear resolution bins, Xres and yres, when the regions of uncertainty for target components are

2-D and independent of one another, and then to use such sizes to determine the the size of

angular resolution bins, A#, from Xre, and Yres. The procedures are as follows. (i) We obtain

the average size of linear resolution-bins Xres = yres by fitting the 2-D level-crossing formula

(5.63) with the resolution-bin approximation (5.64) at PF = 0.1 averaged over different

sizes of uncertainty regions X = Y. (ii) There are eight possibilities in making a discrete
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Figure 5.18 The geometry of angular increment with respect to linear resolution bins.

movement of a target component from the center point of its uncertainty region to the

center of its adjacent resolution bin. Thus there are eight corresponding values for a discrete

variation of the orientation angle of the line connecting the overall target center and a target

component center (see Figure 5.18). We average such discrete angular variations over the

eight possibilities. (iii) Finally, we average the angular increments obtained from procedure

(ii) over different target components to obtain the average size of angular resolution bins

A04.

Figure 5.19 plots the receiver operating characteristics of the likelihood-ratio detectors

for the first example target. Figure 5.20 plots the receiver operating characteristics of the

same detectors for the second example target. Results from both stripmap-mode opera-

tion and spotlight-mode operation are shown. There are three curves in each panel, which

correspond to the detection performances of the likelihood-ratio detector for the multi-

component target with no position uncertainty, the generalized likelihood-ratio detector for

the multi-component target with position uncertainty specification 1 in Figure 5.10, and

the generalized likelihood-ratio detector for the multi-component target with a pose uncer-

tainty where the range for the pose uncertainity region is 400 wide. The average sizes of

linear resolution bins, the sizes of angular resolution bins for each target components, and

the average angular-resolution-bin sizes corresponding to Figures 5.19 and 5.20 are listed in

Table 5.1. The numerical results in Figures 5.19 and 5.20 indicate that when neither PD
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Scenario Xres = Yres A$, comp. 1 A#, comp. 2 Aq, comp. 3 ave. A#

Spec. 1, Spotlight 0.62 m 10.30 4.00 4.60 6.30

Spec. 1, Stripmap 1.23 m 21.20 8.60 9.20 13.20
Spec. 2, Spotlight 0.55 m 10.30 4.00 4.00 6.30

Spec. 2, Stripmap 0.94 m 21.20 8.60 6.90 12.00

Table 5.1 Table of uncertainty cell sizes for target pose angles.

nor PF is close to 1, the detection performance for target with pose uncertainty is superior

to that for target with position uncertainty. This behavior can be intuitively explained by

two facts: the pose uncertainty region for each individual component is 1-D (curve) whereas

the position uncertainty region for each individual component is 2-D (square area), and that

the pose uncertainties for all the components of a multi-component target are constrained

whereas the position uncertainties for all the components of a multi-component target are

independent. Thus the pose variation is less uncertain than the independent 2-D position

variations, provided the target component traces swept via the pose variation do not greatly

exceed the area of 2-D position uncertainty. In specification 1 of Figure 5.10, the maximum

wedge angles between the lines connecting target center and the four corners of an uncer-

tainty area are 139.40, 83.7' and 42.3' for components 1, 2, and 3, respectively. Notice that

the resolution-bin formula for 2-D position uncertainty, that is used to come up with the size

of average annular resolution bin matches the analytical level-crossing formula at PF = 0.1.

Thus as both PD and PF approach 1, the pose-uncertainty ROC curves in Figures 5.19 and

5.20 become less accurate. So the fact that the ROC curves for uncertain pose and uncertain

position cross in this region may be an artifact.

5.6 Multi-Component Target Detection:
Conventional SAR Processors

The target detectors presented from Sections 5.2 through 5.5 are Neyman-Pearson op-
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Figure 5.19 Receiver operating characteristics: 3 specular reflectors; likelihood-ratio de-
tector for target with no position uncertainty, generalized likelihood-ratio detector for target
with position uncertainty specification 1, and generalized likelihood-ratio detector for the
multi-component target with a pose uncertainty where the uncertainty range for the pose
angle is 400. Left panel is stripmap-mode operation; right panel is spotlight-mode operation.
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Figure 5.20 Receiver operating characteristics: 2 specular reflectors and 1 dihedral reflec-
tor; same arrangement as Figure 5.19.
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timal, i.e., they optimally combine polarimetric, whitening-filter, and adaptive-resolution,

processing. As in our early work on single-component target detection (presented in Chapters

3 and 4), the target detection performance of optimum multi-component target processors

must exceed that of conventional SAR processors for such targets. In this section, we explic-

itly compare the receiver operating characteristics of the Neyman-Pearson processors with

those of the conventional SAR processors to quantify the former's performance advantage.

In Chapter 3 and Chapter 4, we have introduced the conventional stripmap-mode SAR

processor, which is a chirp-compression processor, and the conventional spotlight-mode SAR

processor, which is a polar-format-Fourier-transform processor, for a single-component tar-

get. The conventional SAR processors for a multi-component target are straightforward ex-

tensions of these two schemes. Figure 5.21 sketches the block diagrams of the conventional

SAR processor for a multi-component target with deterministic position and amplitude, with

independent component position uncertainty, with position and amplitude uncertainties, and

with pose uncertainty. In contrast to the Neyman-Pearson processors that possess a bank of

matched filters, a conventional SAR processor has only one full-resolution (K = v = 1) chirp-

compression SAR imager for stripmap-mode operation, or one full-resolution (K = v = 1)

polar-format SAR imager for spotlight-mode operation. In addition, instead of the fully

polarimetric signal dealt in the Neyman-Pearson processor, only one single polarization is

considered in the conventional SAR processor (here we choose HH). The target detectors

after the SAR imager are similar to their counterparts in Neyman-Pearson processors: they

sample this output image according to the available information on target-component loca-

tions and calculate the likelihood ratio or generalized likelihood ratio.

In order to compute the receiver operating characteristics of the target detectors sketched

in Figure 5.21, we have to obtain the statistics for the random part (clutter-plus-noise) of the

radar return after SAR imager. The statistical models for clutter and noise under stripmap-

mode and spotlight-mode operations are described in Sections 2.4, 2.5, and 4.2. The models
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Figure 5.21 Conventional SAR processors for multi-component target detection; in order:
(a) target with no position or amplitude randomness, (b) target with independent compo-
nent position randomness, (c) target with independent component position and amplitude
randomness, (d) target with pose randomness. The factor Ki equals 2SNCRj/|Sj|, where Si
is the sampled complex envelope of it" component target return.
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of conventional SAR imagers under stripmap-mode and spotlight-mode operations can be

found in Sections 3.1.1 and 4.3.1. Combining the random radar return models with the

conventional SAR imager models, we can obtain the statistics of the random radar signal

after SAR imagers. It can be shown that the clutter and noise after the conventional SAR

imagers are zero-mean and circulo-complex Gaussian random processes for both stripmap-

mode and spotlight-mode operations. When we approximate the sum over cross-range index

by an integral and replace a hard limit on integration by a Gaussian shaping function with

equal width, the covariance functions for clutter output lutter and noise output 'noise can be

derived with the following results.

For stripmap-mode operation, we find:

< 'ciutter (Mi, 7) -lI'lutter (M 2 , T2 ) >~< lciutter (0, 0) -'llutter (0, 0) > e(mim2/2mfese(n -2/2Ts,

(5.93)

< lnoise (ni, T1) - lnoise (n 2, 2 ) > e< Inoise (0, 0) -noise (0, 0) > e-(mi-m2/mese-(n -r2 e,

(5.94)

where
Xres 2

mres = vTI, Tres = - cos(P)yres. (5.95)
vT, C

The point-scatterer resolution lengths Xres and Yres in (5.95) are related to the parameters

in Table 3.1 via (4.29) with r. = v = 1 and pt = 0.

For spotlight-mode operation, we find:

< lciutter (Xi, Y1) - 4llutter (X2 , Y2) > < Iciutter(0, 0) - lutter (0, 0) > e~(xx2/2xes (Yi-Y2)/2Yge,

(5.96)

< Inoise(Xi, Y1). 1oise (X2 ,Y2) >~< Inoise(0, 0) -noise(0, 0) > e-(x1-x2/xese2(Y1-2)/yes. (5.97)

The point-scatterer resolution lengths Xres and Yres in (5.97) are related to the parameters

in Table 3.1 via (4.31) with r. = v = 1 and pt = 0. The intensities of covariance functions

< Iciutter(O, 0) ' I iutter(0, 0) > and < Inoise(O, 0) - lnoise (0, 0) > have already been calculated in

Chapters 3 and 4.
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Equations (5.93), (5.94), (5.96), and (5.97) imply that if the separation between two

sample points is appreciably larger than the resolution lengths of a point scatterer, then

the correlation between these two sampled output clutter-plus-noise signals is very small.

In other words, when different components of a target are all separated enough such that

they are quite far away from the (point scatterer) resolution areas centered around each

other, then the clutter-plus-noise image chips associated with different target components

are independent identically distributed random fields whose spectra are prescribed by (5.93),

(5.94), (5.96), and (5.97). Therefore, similar to the previous sections of this chapter, we

can independently calculate the probability density function associated with each sampled

output. So the formulae developed in Sections 5.2, 5.3, 5.4, and 5.5 for calculating PD and

PF of the Neyman-Pearson processors are still valid for the conventional SAR processors

after two modifications. First, we replace Ej, the output energy of component i, by the

conventional-SAR-processor output SNCR of component i. Second, we replace the Neyman-

Pearson processor output clutter-plus-noise spectrum with the conventional-SAR-processor

output clutter-plus-noise spectrum, which was described in (5.93), (5.94), (5.96), and (5.97).

Figures 5.22 and 5.23 compare the receiver operating characteristics of the conventional

SAR processor and of the Neyman Pearson processor when the target-component locations

and radar-return amplitudes are exactly known. Figures 5.24 and 5.25 are the similar

comparison when the target-component locations are independently random within 2-D

uncertainty regions. Likewise, Figures 5.26 and 5.27 give the similar comparison when

the target-component locations are independently random within 2-D uncertainty regions

and the return amplitudes are independently random within uncertainty intervals. Finally,

Figures 5.28 and 5.29 give the similar comparison when the target pose is random. It is

clear in all cases from Figures 5.22 through 5.29, that the Neyman-Pearson processor has a

better detection performance than the conventional SAR processor. Thus the motivation of

studying the polarimetric, whitening-filter, adaptive-resolution processor is verified: we have
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demonstrated from a first-principles approach that this kind of processor indeed outperforms

the conventional full-resolution SAR processor in terms of not only single-component but

also multi-component target detection.

The better target-detection performance of the Neyman-Pearson processors is the re-

sult of higher SNCR values corresponding to target components. There are three factors

that give the Neyman-Pearson processors its higher SNCR values than the conventional

SAR processors: the effect of the whitening filter, the polarimetric effect, and the adaptive-

resolution effect. In the multi-component target examples we have considered so far, noise

dominates over clutter. Thus the whitening filter does not have a major contribution. The

polarimetric effect has a significant influence on the enhancement of SNCR: in a Neyman-

Pearson processor, it can enhance the SNCR value of each component by a factor up to 2.

The adaptive-resolution effect is not as significant as the polarimetric effect in the examples

we have considered, but it still contributes somewhat. In addition, theoretically it could be

very important when the size of reflector is much larger (stripmap-mode and spotlight-mode)

or smaller (spotlight-mode) than the diameter of antenna aperture. Figures 5.22 through

5.29 also compare the receiver operating characteristics of conventional SAR processors and

Neyman-Pearson processors when the radar signal of only one single polarization is available.

They are actually equivalent to the comparison of adaptive-resolution and full-resolution pro-

cessors. It can be observed that even though the Neyman-Pearson performance improvement

is not as significant as those in Figures 5.27 through 5.29, there is still advantage to adaptive-

resolution processing compared to the conventional full-resolution SAR processing. Figure

5.30 compares the receiver operating characteristics of the conventional SAR processor, the

full-polarimetric Neyman-Pearson processor, and the scalar Neyman-Pearson processor for a

different target scenario. In this case, the multi-component target consists of three specular

reflectors with pt = 1.7 m and the same known (A_, Ay) positions as the one in Figure

5.22. The clutter-to-noise ratio is set to be 6.28 x 10-. The other parameters are identical
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Figure 5.22 Receiver operating characteristics: Conventional SAR processor vs. polari-
metric and non-polarimetric Neyman-Pearson processors, likelihood-ratio detector, multi-
component target with random phases, 3 specular reflectors. Left panel is stripmap-mode
operation; right panel is spotlight-mode operation.

to those used in Figures 5.22 through 5.29. It can be clearly observed in Figure 5.30 that

the performance improvement of the Neyman-Pearson processor due to adaptive-resolution

processing is as significant as that due to polarimetric synthesis.
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Figure 5.23 Receiver operating characteristics: Conventional SAR processor vs. polari-
metric and non-polarimetric Neyman-Pearson processors, likelihood-ratio detector, multi-
component target with random phases, 2 specular and 1 dihedral reflectors. Left panel is
stripmap-mode operation; right panel is spotlight-mode operation.
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Figure 5.24 Receiver operating characteristics: Conventional SAR processor vs. polari-
metric and non-polarimetric Neyman-Pearson processors, 3 specular reflectors; generalized
likelihood-ratio detector for target with position uncertainty specification 2. Left panel is
stripmap-mode operation; right panel is spotlight-mode operation.
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Figure 5.25 Receiver operating characteristics: 2
tor; same arrangement as Figure 5.25.
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Figure 5.26 Receiver operating characteristics: Conventional SAR processor vs. polari-
metric and non-polarimetric Neyman-Pearson processor, 3 specular reflectors, approximate
generalized likelihood-ratio detector for the multi-component target with position uncer-
tainty specification 2 and amplitude uncertainty range [0.7, 1.3]. Left panel is stripmap-mode
operation; right panel is spotlight-mode operation.
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Figure 5.27 Receiver operating characteristics: 2 specular
tor; same arrangement as Figure 5.26.
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Figure 5.28 Receiver operating characteristics: Conventional SAR processor vs. polari-
metric and non-polarimetric Neyman-Pearson processor, 3 specular reflectors, generalized
likelihood-ratio detector for the multi-component target with a pose uncertainty where the
uncertainty range for the pose angle is 400. Left panel is stripmap-mode operation; right
panel is spotlight-mode operation.
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Figure 5.29 Receiver operating characteristics: 2 specular reflectors and 1 dihedral reflec-
tor; same arrangement as Figure 5.28.
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Figure 5.30 Receiver operating characteristics: Conventional SAR processor vs. polarimet-
ric and non-polarimetric Neyman-Pearson processors. Multi-component target with random
phases, 3 specular reflectors with pt = 1.7 m; CNR = 6.28 x 10-3. Left panel is stripmap-
mode operation; right panel is spotlight-mode operation.

178

0.1 0.5 0.9 0.9999 0.9999

- conventional
- ut polarimetric
-NP,HH

1 -07 000
0.9999

Receiver Operating Characteristic

1-6-07 0.0001



Chapter 6

Multi-Component Target
Classification Problems

From Chapter 2 through Chapter 5 we have dealt with target detection problems. Target

detection is, in a sense, binary target recognition: is a particular target present or not. A

normal automatic target recognition system must deal with an N-ary problem: of N > 2

target types, which one (if any) is present, based on radar return information. This problem

is also known as classification. In this chapter, we extend our previous results for target

detection problems to multi-component target classification problems. We will apply the

Neyman-Pearson or conventional SAR target detectors we have already developed to form

Neyman-Pearson or conventional SAR target classifiers. We will also come up with a simple

method for assessing the performance of these classifiers.

6.1 Target Classification Problems and Schemes

We can formulate a multi-component target classification problem in a similar way to

the multi-component target detection problem. We consider a scalar 1-D radar return r(t)

from a multi-component target and corrupted by a zero-mean unitary white Gaussian noise

w(t). Suppose the radar return contains a target return among N possible types. Then, if

Hi denotes target i present, r(t) can be written as follows:

Mi
under Hi : r(t) = E e0em1 sm1 (t - tmi) + w(t),

Ml=1l

Mk

under Hk - r(t) E eik smk (t - tmk ) + W(t),
mk==1
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MN

under HN : r(t) = eimN smN (t - tmN) + W (t). (6.1)
mN=1

The complex envelope s k(t) (for k = 1 to N) is the radar-return waveform from the mk-th

component of the k-th target when it is located at the scene center. The time delay tk for

this component is determined by its actual location. The phases 0 are independent random

variables that are uniformly distributed within [0, 27); they represent the incoherence of each

target-component with respect to other components as well as the noise. A similar target

classification formulation for a 2-D polarimetric radar return can also be easily obtained.

We can develop classifiers for a repertoire of multi-component targets based on the target

detectors presented in Chapter 5. At the output stage of a target detector, a constant

real signal level, which is equal to the likelihood ratio or generalized likelihood ratio, is

compared with a threshold level in order to decide on the absence or presence of that

target. When there can be more than one possible target type, we can pass the radar

return through a bank of target detectors, one for each target type. The resulting real-

valued output levels vi, v2, .... , VN are the likelihood ratios or generalized likelihood ratios

of conditions H 1, H2 , .... , HN (target type 1, 2, ...., N) with respect to condition Ho (clutter

and noise only). To carry out classification, we do not pass the {Vk} through individual

threshold comparators, but select their maximum value. If the p-th detector has maximum

output, then the classifier decides the target to be type p. The classifier scheme proposed

here is likelihood based. In other literature, the quantity chosen to compare in a target

classifier may be vote-based, using radar return point features [43-45], or based on mutual

information [42]. However, their front-stage architectures are quite similar: they all use

matched-filter banks to extract the maximum amount of information pertinent to specific

target types. Figure 6.1 plots the block diagram of a multi-component target classifier. The
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first panel, as an example, sketches the details of a Neyman-Pearson classifier for a repertoire

of multi-component targets with no position or amplitude randomness at all. Notice that

in this architecture each individual detector output is weighted by the factor e-E (E is the

corresponding target-return energy) to compensate for the energy difference among different

target types, which is slightly different from that in Figure 5.2. As indicated in (5.12), such

factor also appears in the formulation of the likelihood ratio. For binary detection, the

absence or presence of this factor does not change the performance at all. The second panel

sketches the generic architecture of a target classifier with all possible scenarios: the targets

of concern could have position, amplitude, or pose randomness.

6.2 Performance Analysis

The evaluation of target classification performance is not a straightforward extension of

the target detection performance analysis presented in Chapter 5. The main reason is that

the radar returns of different multi-component targets of concern often correlate with one

another. For example, to calculate the probability of correct classification under Hi we need

Pr [vi > max,4 vj I Hi], which cannot be found from just the marginal probability density

functions of the individual random variables {vi ... , VN}. One has to use the joint probabil-

ity density function of all the random variables, which could have a dense correlation matrix.

The calculation of such target-classification probability is computationally intensive. There

are a couple of ways to reduce this computational complexity: we can proceed a preliminary

analysis based on the marginal probability density functions of vi, v2, .... to observe the

qualitative behaviors of classification probability; we can carry out Monte Carlo simulation

for calculating the classification probability; or we can further reduce the complicated cor-

relation matrix of vi, v 2 , .... for certain specific target-repertoire scenarios. In this section,

we will present results from the first and the third approaches.

We first carry out a preliminary and qualitative analysis for the probability of target
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Figure 6.1 Multi-component target classifiers; in order: Neyman-Pearson classifier for tar-
gets with no position or amplitude randomness, and generic likelihood-ratio target classifier.
In the second panel, each individual detector will be the one depicted in Figures 5.2, 5.5,
5.13, or 5.17, depending on the specific target scenario.
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classification based on marginal probability density functions. Consider the ith target de-

tector in a classifier (see Figure 6.1). In a binary detection problem, its real output value vi

is compared with a threshold 'yj. When vi > yi, target present is declared; otherwise target

absent (Ho) is declared. In order to normalize the output random variables, let us choose

the thresholds {yi} to ensure that Pi) is equal to a constant a independent of target number

i. The normalized detection variables are then defined to be ui - vi/yi, for 1 < i < N.

We now plot the conditional marginal probability density function pu,|Hj (uilH) for a spe-

cific target-repertoire example. In this example, there are three possible multi-component

targets. The first target contains three specular reflectors, the second one contains two spec-

ular reflectors plus one dihedral reflector, and the third one contains one specular reflector

plus two dihedral reflectors. The radar-return amplitudes and the locations of all target

components are deterministic and known. The detailed specifications are listed in Table 6.1.

The flight and radar parameters are specified in Table 3.1, and the clutter-to-noise-ratio

CNR = 3.14 x 10-2 (noise dominant). The detector block in use is the Neyman-Pearson

(optimum) detector illustrated in Figure 5.2. The conditional probability density function

Pu;IHi (ui Hj) can be simply obtained from differentiating the probability of detection derived

in Section 5.2. To derive the conditional probability density function puJHj (uijHj) for i # j,

we pass the jth target return to the i"^ filter bank, which does not match this target-return

waveform, and then use the resulting output SNCR values to calculate the probability of

"incorrect" detection. The conditional marginal probability density functions puIHj (uiIHj)

of these three targets for stripmap-mode and spotlight-mode operations are plotted in Fig-

ures 6.2 and 6.3, respectively. In these figures, the probability of false alarm PF is fixed at

0.00001.

The numerical results in Figures 6.2 and 6.3 indicate that when Hi is true the random

variable ni has a higher marginal probability density than u3 with j # i in the above-

threshold region. Notice that in both figures the horizontal axis is plotted in log scale. When
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Figure 6.2 Conditional marginal probability density functions of the normalized random
variable outputs ui, U2 , u3 . The target scenario is specified in Table 6.1. The flight and radar
parameters are specified in Table 3.1. The clutter-to-noise-ratio CNR = 3.14 x 10-2 (noise
dominant). The detector block in use is the Neyman-Pearson (optimum) detector. The SAR
operation mode is stripmap. The upper left, upper right, and lower panels correspond to
condition H 1, H2 , H3 , respectively.
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Probability Density Function, PF = 0.00001, Spotlight, Deterministic
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Figure 6.3 Conditional marginal probability density functions of the normalized random
variable outputs u1 , U2 , u3 . The target scenario is specified in Table 6.1. The flight and radar
parameters are specified in Table 3.1. The clutter-to-noise-ratio CNR = 3.14 x 10-2 (noise
dominant). The detector block in use is the Neyman-Pearson (optimum) detector. The SAR
operation mode is spotlight. The upper left, upper right, and lower panels correspond to
condition H 1, H2 , H3 , respectively.
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Target 1 Target 21 Target 3
Component 1 type specular specular specular

Component 1 (AZ\, AY) (0 m, 0 m) (0 m, 0 m) (0 m, 0 m)
Component 1 pt 0.5 m 0.5 m 0.5 m

Component 1 orientation 00 00 0
Component 2 type specular specular dihedral

Component 2 (A, Ay) (-7 m, -3 m) (-7 m, -3 m) (-7 m, -3 m)
Component 2 pt 0.5 m 0.5 m 0.5 m

Component 2 orientation 00 00 450
Component 3 type specular dihedral dihedral

Component 3 (Ax, Ay) (5 m, -5 m) (5 m, -5 m) (5 m, -5 m)
Component 3 pt 0.5 m 0.5 m 0.5 m

Component 3 orientation 00 450 450

Table 6.1 Table of parameter values for SNCR calculations. Notice the orientation angle
of a specular reflector refers to the angle between the slant range and the normal direction
of the plate, the orientation angle of a dihedral reflector means the angle between the SAR
flight path direction and the dihedral axis.

plotted in linear scale, the marginal probability density function of ui under Hi is higher

than those of u3 under Hi for i # j for most possible threshold values larger than 1. This

trend suggests that under Hi, for almost all threshold values larger than 1, the probability

of correct detection of the i'h detector is higher than the probabilities of incorrect detection

of the jth detector for j # i. Such observation does not provide accurate information

regarding the probability of correct classification. But it is still encouraging in the sense

that when operated independently, the correct target detector outperforms the incorrect

target detectors. Under the assumption that vi, v2 , and v3 are mutually independent,

we can calculate the probability of correct classification for a specific condition Hi using

marginal density functions:

Pr{sayHlHj} = Pr{vj > maxvjHi}

= 0 dd dvpvkH i( okH ), (6.2)
- j dvipv I H (vi!IHi) Lvi dvjpvj IH,(vj I H) j~ PkIH V ~) 62
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for distinct {i, j, k}, and therefore the average probability of correct classification

PCC Pr{sayHi H1 }Pr{Hi} + Pr{sayH 2 H 2}Pr{H2} + Pr{sayH 3 |H3 }Pr{H3}

1
= [Pr{sayH1jHi} + Pr{sayH2|H2} + Pr{sayH3 |H3}], (6.3)

3

where Pr{H1}, Pr{H2}, Pr{H3} are assumed to be identical. Plugging the numerical results

for the marginal probability density functions in Figures 6.2 and 6.3 into (6.2) and (6.3), we

obtain the average probability of correct classification to be 0.578 (Pr{sayH|H1} = 0.735,

Pr{sayH 2 |H 2} = 0.514, Pr{sayH 3 |H3} = 0.486) for spotlight-mode operation, and 0.534

(Pr{sayH1|Hi} = 0.709, Pr{sayH 2 |H2} = 0.494, Pr{sayH 3 |H3} = 0.411) for stripmap-mode

operation.

The independence assumption on vi, v2, and v3 is not justifiable, because components of

the different targets are very similar to one another in terms of both location and reflector

type. To obtain an accurate numerical value for the probability of correct classification,

we need the joint probability density function for {v 1 , v 2 , v3 }. As indicated before, this

task is complicated and computationally intensive in general. Fortunately, for the target

scenario specified in Table 6.1, the formulation for probability of correct classification can

be significantly simplified. In the following paragraph, we derive upper and lower bounds

on the probability of correct classification.

Consider first the H1 condition, in which the target return contains three specular reflec-

tor components. Denote the output complex level from the sampler after the jh component

matched filter of the ith detector as aij. We assume that the radar return from a reflector

component is shift-invariant with respect to position. Thus the three real output levels from

target detectors, v1 , v 2 , and v3 , are

vi = e- 3Es 0(2 jau1(210 1a32 l)Io(2a 3D,

V2= e- 2E-E 0(21a2 0)o(2a22J)o(2a 23 J),
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V3= e-Es-2 E0 (2a 3 1)10 (2a 32 j)10(2a 33 j), (6-4)

where E, is the SNCR of the specular reflector return, and Ed the SNCR of the dihedral

reflector return. Due to the characteristics of the target scenario we have chosen, the nine

random variables can be further simplified. The first components of the three targets are

identical specular reflectors, the second components of the first and the second targets are

also identical specular reflectors, and the third components of the second and the third

targets are dihedral reflectors. Thus we have al = a21 = a31 , a 12 = a 2 2 , a 2 3 = a 3 3 . Second,

because the location of the second component is far enough from that of the third component

that the orthogonality condition holds, it can be shown that a13 is independent of a 1 2 and

a 3 2 . Likewise, a 2 3 is independent of a 1 2 and a 3 2 . Third, most of the energy from the specular

reflector comes as a co-polarized return, whereas most of the energy for the dihedral comes

as a cross-polarized return. The resolution lengths of these two returns are also different. So

it can be shown that these two returns are approximately orthogonal to each other, which

implies that a 1 3 is independent of a 2 3 , and a 1 2 is independent of a 3 2 . The above pairwise

independence conditions guarantee that the four random variables a12 , a 13, a23 , and a 32 are

independent of one another. Based on these facts, we can express the four complex random

variables as follows:

a 13  W 1 3 + e 103ES,

a 2 3  W23,

a1 2  W 1 2 + ei2 ES,

a32 ~ w 32 , (6.5)

where 02 and #3 are independent random variables uniformly distributed within [0, 27r), and

w 1 3 , W2 3 , W 1 2 , W3 2 are mutually independent complex Gaussian random variables:

Wis ~ N(0, E,),

W23 ~-N(0, Ed),
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Wi2 ~ N(O, Es),

w32 ~ N(O, Ed). (6.6)

Moreover, we can express vi, v 2 , and v3 in terms of random variables {all, a 12, a13 , a23 , a 32}:

vi = e-3E Io(2alj)Io(2a 1)I101(2a 3 l),

V2 = e- 2Es-E 0(2 a 0l)Io(2a2 10(2 a23 ,

V3 = e-E- 2E 0 1(21a0)Io(2a32 )0I(2a231), (6.7)

Notice that the all dependence is common to vi, v2 , and v3. So in order to obtain the

probability of correct classification, it is not necessary to have the distribution of anl.

According to (6.5) through (6.7), the probability of correct classification for target 1 is

Pr{sayH1|H 1} Pr{vi > v 2 & v1 > v 3 |H1}

Pr{e-Es o(21a3 ) > e-E10(2a 2 3 1)

& e- 2E 10(21a2 j)Io(21a3I) > ed10(2ja32 0)Io(2a23|)IHl}. (6.8)

The computation of probability Pr{sayH|IH1} in (6.7) is still time-consuming since the

second condition e- 2Es 0 I 12 I)10 (21a13I) > -EdIo(2 Ia32 )Io (2Ia23 |) specifies an intertwined

integration domain in four dimensions. To simplify the calculation, we will bound this

probability from above and below, rather than work on an exact evaluation. Combining the

second condition with the first condition in (6.8), it can be shown that

Pr{e-E-0 2a 1 3 ) > 6 -EdIo(2la 231) 6 2E0 (21a 1 2 ) > -EIo(2a32|))|H1}

< Pr{sayHI|H1 } < Pr{e-Es0Io(2al3 ) > -EIIo(2a 23|)|H1}. (6.9)

Moreover, from the fact that a1 3 and a2 3 are approximately independent of a1 2 and a3 2 , we

can express these bounds on Pr{sayH1|H1} in (6.9) as follows:

Pr{e-EsIo(2al3 ) > eEdIo(21a 23|) I H 1 } x Pr{e- 2 E, Io (2 1 2 ) > e7Ed10(2a 32 |)) I H 1 }
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< Pr{sayH1 |H1} < Pr{e-Es10(21a 3 ) > e-E1O(2ja2 3 |) I H1}. (6.10)

By plugging the statistics in (6.6) and (6.7) into (6.10), we can obtain the exact numerical

values for the upper and lower bounds on Pr{sayH1IH 1}. Define

Qi Jjf Es TjO(2 )> -Ed 10 (2 -dY dx dy CxeYE o (2 -Ex) (6.11)

Then (6.10) is equivalent to:

Q2 < Pr{sayH1|H1} < Qi. (6.12)

From similar arguments, we can also obtain the exact value for the probability of cor-

rect classification for target 2, and upper and lower bounds for the probability of correct

classification for target 3. Define

Q2 = -0Ed 1o(2 Edx)>eEslo 2 )>e-Edx dy x6 -y-Elo(2 Edx). (6.13)

It can be shown that

Pr{sayH2 |H2} = Q1Q2, (6.14)

and

Q2 < Pr{sayH3 |H3} Q Q2. (6.15)

From (6.12), (6.14), and (6.15), we can obtain the bounds for the average probability of

correct classification PCC:

1 1

(PCC 1 +(Q 1 + Q1Q2 + Q2), (6.16)

where equally likely hypotheses have been assumed.

For the target scenario given in Table 6.1, clutter-to-noise-ratio CNR = 3.14 x 10-2,

radar and flight parameters given in Table 3.1, the probability of average correct classifica-

tion (calculated by using (6.16)) is between 0.9949 and 0.9966 for spotlight-mode operation,

and between 0.8907 and 0.9260 for stripmap-mode operation. These values are higher than
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the values obtained from the independent-vi assumption (0.578 for spotlight-mode operation

and 0.534 for stripmap-mode operation). Thus, the marginal probability densities for the

detector-bank outputs alone are not adequate to evaluate the probability of correct classifi-

cation. Figure 6.4 plots the upper and lower bounds for the average probability of correct

classification with respect to clutter-to-noise-ratio. In the figure, the quantity 1/CNR mea-

sures the intensity of noise level with respect to a fixed clutter level. The larger 1/CNR

is, the higher the noise level is. As indicated in the figure, both the upper bound and the

lower bound for the probability of correct recognition decrease with increasing noise level.

This is consistent with our intuition: when the noise intensity is higher, the target classifier

performance is more seriously degraded. However, neither the upper bound nor the lower

bound for the probability of correct classification decreases indefinitely with increasing noise

intensity. Instead, they converge asymptotically to constant values (0.41 for upper bound

and 0.25 for lower bound). Such asymptotic behavior can be explained as follows. At very

high noise level, the target-return signatures in the radar signal are totally obscured by the

additive random noise. The radar returns from different types of targets cannot be distin-

guished, in this limit, by the target classifier. Therefore the classification operation simply

becomes a blind guess, which has a 1/3 probability of being correct for the three-target ex-

ample. Interestingly, 1/3 is the mean of the asymptotic upper bound 0.41 and lower bound

0.25.

The above theory of classification performance analysis is for deterministic targets. The

formulation (6.16) can be easily extended to the case of targets with unknown positions.

Consider the same three targets, but let each component of each target have an uniformly

random uncertainty designated by specification 2 of Figure 5.10. By replacing the probability

density functions of a23 and a 32 in (6.5) (which are complex Gaussian random variables) with

the level-crossing probability density function developed in Section 5.3.2.3, we can use the

same approach embodied by (6.4) through (6.16) to evaluate the upper and lower bounds for
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Figure 6.4 Upper and lower bounds for probability of correct recognition versus clutter-
to-noise-ratio (CNR). The target scenario is specified in Table 6.1. The flight and radar
parameters are specified in Table 3.1. The Neyman-Pearson-detector-based classifier is used.
The left panel corresponds to stripmap-mode operation and the right panel corresponds to
spotlight-mode operation. The solid and the dashed curves correspond to the PCC lower
bounds and upper bounds, respectively.

the average probability of correct classification. For spotlight-mode operation, the average

probability of correct classification is between 0.797 and 0.858; for stripmap-mode operation,

the average probability of correct classification is between 0.694 and 0.783. Naturally, these

values are smaller than their deterministic-target counterparts.

A conventional SAR target classifier can be similarly constructed by paralleling the

conventional SAR target detectors associated with the target types of concern. By follow-

ing the procedures similar to those used in Eqs. (6.4) through (6.16), we can also calcu-

late an upper bound and a lower bound for the conventional SAR classifier's performance

for the three targets specified in Table 6.1. There are, however, some differences in the

performance-calculation procedure for conventional SAR classifier compared to that for the

Neyman-Pearson classifier. First, as a result of Figure 5.21 (a), the three output levels from
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conventional SAR detectors, vi, v/, and v', are (cf. (6.4))

e-3E ( 'o(2K12|a'12)o(2K1 3 |a' 3 |),

e - 2Es,-EUd(2K21|a', )Io(2K 22|a'22)Io(2K 23 |a'3 |),

o= e-Es- 2Eo (2K 3 a 100(2K 32|a'2 0fo(2K 33 |a33), (6.17)

where Kij = 2SNCRij /Si 3 |, SNCRij is the SNCR of the Jth component of target i, Sij is the

sampled target-return complex envelope of the jth component of target i after conventional

SAR imaging, E, and Ed are the SNCRs of specular-reflector and dihedral-reflector returns,

respectively.

Second, the complex samples a'. of the conventional SAR classifier have different behav-

ior from their counterparts aij of the Neyman-Pearson processor. For example, under H1

condition, we can express a' 2, a', a' and a' 2 as follows:

a'13 Es +3 eidsG8 ,

a w3 +

2 W12 + e*2Gs,

a' W2 + ei*2Gs, (6.18)

where Gs is the sampled target-return complex envelope of the specular reflector. w 2 and

w3 are independent zero-mean Gaussian random variables with identical variances. Unlike

(6.5), here: (i) the specular target-return is also present in a' 3 and a' 2; and (ii) the random

parts of the (a' 3, a' 3 ) pair or (a' 2 , a32 ) pair, are identical (w 3 or w 2) rather than independent

of each other. These differences are due to the fact that the conventional SAR classifier

uses a common imager rather than distinctive matched filters for specular-reflector and

dihedral-reflector returns.
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Applying (6.17) and (6.18) to the procedures from (6.8) through (6.16), we can calculate

the upper bound and the lower bound for the probability of correct classification for the

conventional SAR classifier. The results are as follows:

1 21 1
(Q + Q'1Q' + Q'2) PCC < -(Q' + Q1Q2 + Q2), (6.19)

3 3

where

j1feE.1O(2 v/E~) >e -Ed Io(2 VEf-) dx eCxe-EIo (2 Ex), (6.20)

-EdI 0(2V)>-EsIf (2V -x -E6e l0 (2 Edx). (6.21)

Figure 6.5 compares the Neyman-Pearson classifier's and conventional SAR classifier's

PCC upper and lower bounds as functions of the clutter-to-noise-ratio. The target-scenario

parameters are specified in Table 6.1. It is clear in the figure that both the PCC upper bound

and lower bound of the conventional SAR classifier are lower than those of the Neyman-

Pearson classifier. We see that the conventional SAR processor has a PCC upper bound

that is lower than the Neyman-Pearson processor's PCC lower bound for 1/CNR > 100

in stripmap-mode operation and 1/CNR > 300 in spotlight-mode operation. In this good-

performance region, we have thus proven that the Neyman-Pearson processor is better than

the conventional SAR processor, even though we did not obtain exact performance results

for either.
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Figure 6.5 Upper and lower bounds for probability of correct recognition versus clutter-
to-noise-ratio (CNR). The parameter specification is identical to the one in Figure 6.4. Both
conventional SAR classifier and Neyman-Pearson classifier are considered. The left panel
corresponds to stripmap-mode operation and the right panel corresponds to spotlight-mode
operation. The solid, dashed, dashed-dot, and cross curves correspond to the PCC lower
bounds of the Neyman-Pearson classifier, the PCC upper bounds of the Neyman-Pearson
classifier, the PCC lower bounds of the conventional SAR classifier, and the PCC upper
bounds of the conventional SAR classifier classifier, respectively.
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Chapter 7

Conclusions

This thesis developed a physics-based target recognition theory for synthetic aperture

radar (SAR) images. The basic idea was to construct radar return signatures from electro-

magnetic scattering theory, and to apply conventional SAR processors, adaptive-resolution

processors, and Neyman-Pearson processors to perform detection or recognition based on

these radar signatures. The contribution of this study is not one of new efficient or power-

ful processing schemes for real radar data or complicated target signatures generated from

CAD models. Instead, it seeks to theoretically quantify the target-recognition performance

improvement of adaptive-resolution, polarimetric, or whitening-filter processing, and to pro-

vide physical interpretations for such advantages. Each individual chapter in this thesis is

a construction block for this overarching framework.

In Chapter 2, we derived the radar return models for 2-D stripmap-mode SAR signatures.

The radar return was assumed to have three components: single-component target return,

clutter, and noise. To construct target return and clutter, the sensor (transmitter/receiver)

model, electromagnetic wave propagation model from sensor to scatterers and vice versa,

and the electromagnetic scattering model, were employed. A repertoire of simple reflectors

were listed as the candidates for the single-component target. To calculate their scattering

effects, we applied the physical optics or geometric optics approximation to the electromag-

netic scattering theory. Clutter was assumed to be the radar return from a random rough

surface. To obtain its statistics, we combined the Kirchhoff approximation for rough-surface

scattering and a semi-empirical statistical model for the localized reflection coefficients.

In Chapter 3, we presented processor/detector schemes for 2-D stripmap-mode SAR im-

ages with a single-component target. The processors of concern included a full-resolution,
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conventional 2-D stripmap SAR processor which consists of the chirp-compression filters

along cross-range and range directions, an adaptive-resolution chirp-compression processor

with variable processing durations for both filters, and a whitening-filter, Neyman-Pearson

optimum processor. Performance analysis indicated that the variations of the cross-range

image resolution lengths of an adaptive-resolution processor with respect to processing du-

ration are different for different types of targets. We also observed that in order to have

maximum signal-to-noise-plus-clutter ratio (SNCR), the cross-range processing duration of

the adaptive-resolution processor should be shorter than that of the conventional SAR pro-

cessor. The polarimetric effect and frequency-dispersion effect of electromagnetic scattering

were observed from the SNCR behavior of a dihedral with respect to its orientation angle and

the SNCR behavior of a dielectric volume with respect to the range processing duration. By

comparing the SNCR values of the Neyman Pearson optimum processor and the optimized

adaptive-resolution processor, it was shown that: (i) when noise dominates over clutter, these

two processors are approximately identical, regardless of polarimetric factor; (ii) unlike the

conclusion obtained from 1-D SAR work [6] [23], the optimized adaptive-resolution processor

cannot approximate the Neyman-Pearson optimum processor when clutter dominates over

noise, no matter how large the target dimension is.

In Chapter 4, we presented processor/detector schemes for 2-D spotlight-mode SAR im-

ages with a single-component target. The processors of concern included a full-resolution,

conventional 2-D spotlight SAR processor which consists of the de-chirped compensation, po-

lar formatting, and Fourier transformation blocks, an adaptive-resolution chirp-compression

processor with variable Fourier-transformation durations for both dimensions, and a whitening-

filter, Neyman-Pearson optimum processor. Performance analysis indicated that the varia-

tions of both cross-range and range image resolution lengths for the same target repertoire

are different between spotlight-mode and stripmap-mode operations. The advantage of

adaptive-resolution processing in enhancing SNCR was also observed in spotlight-mode op-
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eration; the optimum cross-range processing duration is different from that of the stripmap-

mode, though. Except for certain minor differences, the spotlight-mode SNCR behaviors

with respect to processing durations, target orientations, and in terms of comparison of the

optimum Neyman-Pearson processor and the optimized adaptive-resolution processor, are

quite similar to those of the stripmap-mode case.

In Chapter 5, the single-component SAR target detection theory developed in previ-

ous chapters was extended to detection problems for multi-component targets. Four target

scenarios were considered: a target with random component phases; a target with random

component phases and positions; a target with random component phases, positions, and

radar-return amplitudes; and a target with random pose. For the first scenario, we de-

rived the likelihood-ratio detector, sum-amplitude detector, and sum-amplitude-square de-

tector associated with Neyman-Pearson processor (whitening-filter plus adaptive-resolution

matched filter), the conventional SAR processor, and the Neyman-Pearson processor with no

polarimetric factor. For the other three scenarios, we developed the generalized likelihood-

ratio detector or approximate generalized likelihood-ratio detector. To evaluate the detection

performance for a multi-component target with position randomness, we proposed an ap-

proximate 2-D level-crossing theory based on the analytic 1-D level-crossing formula as well

as 1-D resolution-bin approximation, and we verified this theory with Monte Carlo simu-

lations. Performance analysis indicated that as the degree of randomness increases, target

detection performance degrades. Furthermore, it was seen that the performance improve-

ment of the Neyman-Pearson processor over the conventional SAR processor which is due

to the adaptive-resolution effect, the polarimetric effect, or their combination of both could

be very significant.

In Chapter 6, we developed a multi-component target classification scheme based on the

detection schemes in Chapter 5. Such classifier contains a bank of target detectors that

calculate the likelihood ratio of a specific target condition with respect to the clutter-plus-
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noise condition, and a selector that picks the maximum among the individual-detector output

levels. A preliminary performance analysis of this target classifier was given for a specific

target repertoire. The marginal probability density functions associated with the detection

block outputs were compared, and upper and lower bounds for the average probability of

correct classification pertinent in this specific target scenario were derived.

A couple of future directions can be exploited based on this research. First, a compre-

hensive and rigorous performance analysis for the target classifiers in Chapter 6 is lacking.

The analysis scheme and results in Chapter 6 provide reasonable heuristic understanding of

the performances of Neyman-Pearson and conventional SAR likelihood-ratio target classi-

fiers, but more precise information regarding the probability of correct recognition (PCR)

[43-45] is needed. It is both theoretically and computationally involved to calculate the

PCR for a repertoire of spatially overlapped targets, because the classifier output signals

from the detector bank are then correlated with one another. To work on a comprehensive

classification performance, one has to come up with a simplification scheme for this issue.

The other direction is consideration of the layover problem. Synthetic aperture radars

map the geometric constellation of 3-D space onto a 2-D plane. That means two different

points in physical space may be mapped into the same point on the image plane. For a

ground-looking radar, layover occurs when an object elevated from the ground level, but

still within the radar beamwidth, is registered in image space over a point on the ground

plane. Layover casts radar returns at positions where they are not supposed to be. In this

sense, it may be regarded as a kind of clutter. One can use the physics-based approach in this

thesis to understand the characteristics of layover signals, and try to develop useful schemes

to suppress them. One of the primary issues will be to identify whether a radar return is due

to layover. From previous studies [46-48], it is known that layover can only be identified and

its exact characteristics (such as the height of the scatterer) be retrieved via radar returns

from two or more observation directions. Based on this perspective, spotlight-mode SAR
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that collects the complete radar-return phase history of a fixed region from a wide range of

viewing angles may be a potential tool for the further dealing with the layover phenomenon.

A demonstration of this potential appears in [46]. At different viewing angles the high-rising

scatterer is laid over different points on the ground, the spotlight phase history of its return

signature after registration is not stationary within a limited region, which is different from

the radar return of a scatterer on the ground.

The multi-component target articulation problem is also a worthwhile topic to pursue.

In this thesis, the target-component position uncertainties we considered were either mutally

independent or bound together as a whole such that only one degree of freedom was left.

In the real world, some multi-component targets have a more complicated arrangement

for position uncertainties. In such arrangement, target components are divided into several

groups. The components in each group are bound together and may have a pose uncertainty.

But the pose uncertainities of different groups are mutually independent. An example for

this type of target is a tank with a rotatable turrent. The analytical tools developed in this

thesis are able to deal with this problem, even though we have to construct a more elaborate

generalized likelihood ratio detector that takes all the independent pose uncertainities into

account.
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Appendix A

Dihedral Scattering

The bistatic scattering tensor of a right-angle dihedral reflector is obtained by calculating

the scattered field for a given incident plane wave. For convenience, we will start in the local

coordinate system defined by the orientation of the dihedral reflector.

A.1 Scattering Tensor of a Dihedral Reflector

As indicated in Figure A.1, the local rectangular coordinates for the right-angle dihedral

reflector as defined by the dihedral axis Zb, and two directions Xb and Qb corresponding to

the wedge formed by its two plates. Plate 1 is on the plane defined by Xb and Zb, and plate

2 is on the plane defined by 9b and 4b. The edge lengths of the dihedral along &b, Yb, and Zb

directions are l, ly and l, respectively.

Suppose the incident electric field is a monochromatic plane wave with the phasor

Ei f) = Eioeikki', (A.1)

where

-e = :4 sin(0) cos(#j) + Qb sin(04) sin(0j) + Zb cos(0 2), (A.2)

and O6 and #i are measured with respect to the local coordinates. Similar to [26], we only

include the single-scattering terms and double-scattering terms in the expression for the

overall scattered field 5,(f). Hence

5s(f) E E1 (f) + 52 (f) + E 12 (f) + E 2 1 (f). (A.3)

In this expression, E1 is the single-scattering field from the surface current on plate 1, which

is directly induced by the incident field E; 52 is the single-scattering field from the surface
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Figure A.1 The right-angle dihedral reflector.

current on plate 2, which is directly induced by the incident field E; E 12 is the double-

scattering field from the surface current on plate 2, which is induced by the single-scattering

field from plate 1; and E 2 1 is the double-scattering field from the surface current on plate

1, which is induced by the single-scattering field from plate 2.

The single-scattering term E1 is obtained from the physical optics approximation:

- iZpo eikrs
= wO exp{-ik[(sin(Oi) cos(0$) + sin(6) cos(#))l/2 + (cos(06) + cos(Os))l/2]}
2,7rr71 r,

x (I - siS) - [kfi~ - (k- I] ll,, sinc[k(sin(O6) cos(40) + sin(0,) cos(#s))l,/2]

xsinc[k(cos(O6) + cos(O))lz/2] - Eo, (A.4)

where HA = ki x Ei/r/ is the incident magnetic field, and the normal direction of plate 1

hi = Yb. The surface integral in (A.4) was evaluated by substituting in the expression for

Hi, shifting the local coordinate center of f' to the center of plate 1, and integrating the

result.
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Similar to 51 , the single-scattering term E 2 is also obtained from the physical optics

approximation. The result is

-7- iQAPo e ikrs52 (fs) -z2pe exp{-k[(sin(6i) sin(#i) + sin(08 ) sin(#,))ly/2 + (cos(02 ) + cos(O6))lz/2]}

x (I - [ksits - (k - -b)1 ly1z sinc[k(sin(O0) sin(#i) + sin(O,) sin($,))ly/2]

xsinc[k(cos(O6) + cos(98 ))lz/2] - Eo, (A.5)

To calculate the double-scattering term E 12 , we first obtain the (single) scattered field

E,1 from plate 1, and then use it as the incident field to calculate the scattering field from

plate 2. Based on the argument in [26], the field 5,1 is obtained from geometric optics.

Assuming that the wavelength of the electromagnetic wave is much smaller than the size

of plate 1, Eri can be modeled as the reflected field of the incident plane wave E from an

infinitely-large, perfectly-conducting plane. Thus we have

Eri(f) ~ (-hr ii + iri1ii) -Eoeikk''-f', (A.6)

where

- 1 X b (A.7)
|ki X Qb|

41= ki x hil (A.8)

kri = - sin(02 ) cos(oi) + Qb sin(02 ) sin(#i) - 4b cos(Oi), (A.9)

hr1 =Ni (A.10)

V,1 = kri x hr1  (A.11)

However, no matter how much larger plate 1 is compared to the electromagnetic wave-

length, it is not truly infinite. From geometric optics, the collection of all the rays reflected

from a finite plate does not permeate all of space, but rather forms a conical bundle. Hence

it is probable that the reflected rays from plate 1 do not irradiate all of plate 2. From ray
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tracing, we find that the area on the Qbb plane that is irradiated by the reflected field E,1

is a parallelogram with corner points (Yb, Zb) = (0, 0), (0, lz), (l tan(#$), -locot(6)sec(#5)),

and (l tan(#i), lz - locot(O6)sec(#$)).

The double-scattering field E 12 induced by the field E,1 on plate 2 is calculated from

the physical optics approximation. The incident field that induces surface current on plate

2 is expressed in (A.6), but the domain over which the surface integral is carried out is the

irradiated area of plate 2 rather than the whole plate. This area turns out to be a trapezoid

bounded by the corner points: (Yb, Zb) = (0, 0), (0, l), (min[ly, 1., tan(#i)],

max[0, --lcot(O6)sec(#2)]), and (min[ly, l tan(#i)], lz - min[0, -l1cot(6)sec(# )]). Therefore

the double-scattering term E 1 2 (f) is

E12 (fs) i kexp{ik[(sin(i) sin(#i) - sin(O6) sin(#,))ly/2 - (cos(64) + cos(O3))lz/2]}
27rI r,

X (I - ?sis) . [krl12b - (kri -Xb)I] (-hrihii + Orisi1)

1 exp i exp i ky +- exp ky +kz - )

x ik exp ikz -a 2

2 .i ky+kz

( 7+ ) exp i (ky + kZ a -exp i (ky + k4)
.exp ik 2- -- a }e

ikz a+ 1.ik~

-Eso, (A.12)

for cot(Oi)sec(#i) > -lz/l, and sin(63) cos(#j) > 0, where

ky = k[sin(O) sin(#i) - sin(05) sin(#,)], (A.13)

kz= -k[cos(0j) + cos(0,)], (A.14)

a = min[1y, l tan(#)] - ly/2, (A.15)

# = -min[0, -locot(Oj)sec(#i)] + lz/2, (A.16)

= max[0, -locot(6)sec(#i)] - lz/2, (A.17)
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For cot(j)sec(#$) < -l1/l or sin(63) cos(#i) < 0, we get 5 1 2 (r3) ~ 0.

Similar to E 12 , the double-scattering term E 2 1 can also be obtained from the geometric

optics and physical optics approximations. The result is

iQ 0 eikrs
E 2 1 (fs) 2 exp{ik[(sin(i) cos(#i) - sin(08 ) cos(#,)

2xr -r r+

x< (I -ss)-[Ier1Qi -- (ri -yb)I] -(-hr 2h 2 + Vr2 Vi2 )

)1 /2 - (cos(9j) + cos(68))lz/2]}

- exp [i (k
x{ exp ikz

ikrz I

(' /-exp a k)
#' -0 a' 2'

a'I + - i (k + kz,

a'+ 22

exp [i (k kz + a/ ] - exp [i (kx

+ kz I)

lyI++± za/

for cot(j)csc(#$) > -lz/l, and sin(j) sin(#$) > 0, where

Ni2 = ^
|ki X xb|

D2= ki x hi2

kr 2 = z4sin(0) cos(#0) - yb sin(0j) sin(#j) - 4 cos(0i),

Vr2 k Ir2 X hr2

k_ = k[sin(63) cos(#b) - sin(6,) cos(#,)],

a = min[lx, lycot(#i)] -x/2,

3' = -min[0, -lycot(j)csc(#)] + lz/2,

1' = max[0, -lYcot(j)csc(#)] - 1z/2,

For cot(6j)csc(#i) < -lz/ly or sin(9j) sin(#5) < 0, we get 5 21 (i8 ) e 0.
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Based on (2.17), the overall bistatic scattering tensor of a dihedral reflector is obtained

from the scattered fields in (A.4), (A.5), (A.12) and (A.18).

A.2 Dihedral Orientation in a 2-D SAR Scenario

The orientation of a dihedral is defined by two mutually orthogonal vectors: the dihedral

axis 4b, and the bisecting direction of the 900 wedge, (2b + 9)/'/2. These two vectors form a

right-angle pair which can be arbitrarily pointed. In Chapter 2, we only considered a set of

special cases in which the bisecting direction (.4 + &))/v/2 is identical to the radar's nominal

direction 2'. Even so, the dihedral axis Zb can be rotated on the x - y' plane. Using # to

denote the angle between 4b and 2, we have that

1
Xb = [2' + 9'cos(#) -1 sin(#)], (A.28)

1
9b = [' - q'cos(#) + sin(#)], (A.29)

Zb = 2'. (A.30)

Suppose the target on the ground is located at the nominal center, namely, the slant direction

at m = 0, from (2.14) and (A.2) the direction of the incident plane wave is then

/ci =-b sin(0j) cos(#j) - 9b sin(0j) sin(0j) - 4b cos(6)

= f-%~ -2' + smvT,/ L'. (A.31)

From (A.28), (A.29), (A.30), and (A.31), we can calculate Oj, #j, 0, and #, as follows:

6i = cos-1 (-ki -) = cos-1 (mvT, cos(#)/L'), (A.32)

o1  - _(1 1/V(1 - mvT, sin(#)/L')
0i = cos (-/i -z/ sin (0j)) = cos ,1-CS 0 (vI') (A.33)

S- cos2()(mvT/ L) 2  (A3)

Os =O6, #s=i ( A.34)
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By plugging the results for Oj, #j, O, and #, from (A.32), (A.33) and (A.34) into (A.4),

(A.5), (A.12) and (A.18), we obtain the scattering tensor when the dihedral is observed at

the antenna locations determined by the 2-D SAR scenario. Notice when l2 = ly and the

antenna position is close to m = 0 (i.e., mvT/L' << 1), we get

S12 r 321  - 2 exp[-ikl, cos(#) (mvT,/L')]

x[(& cos(#) + Q'sin(#))(s cos(#) + 9'sin(4)) - (& sin(#) - Q'cos(#))(s sin(#) - Q' cos(#))]

S1 S $2 e 0 (A.36)

Furthermore, in the Fraunhofer limit klz cos(#)/L' << 1, the sinc function in (A.37) can be

approximated by a Gaussian function exp[-(klz cos(#)/L') 2 (mvT) 2 ]. This outcome, which

is consistent with the radar return model for a dihedral in [23], implies that the footprint

size of the radar return from the dihedral target varies with its orientation angle #. When

the aircraft flight path is perpendicular to the dihedral axis, namely at # = 90', the dwell

time for the target return is the largest.

Finally, from Figure 2.3, l, = ly = lZ = '/2pt.
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Appendix B

Dielectric Volume Scattering

This appendix calculates the scattering tensor of a dielectric volume. As indicated in

Figure 2.3, the dielectric volume is a homogeneous, rectangular body with thickness d and

square top-bottom faces of edge length 2pt. Similar to the case of dihedral scattering, the

bistatic scattering tensor of a dielectric volume is obtained by calculating the scattered

field for a given incident plane wave. The volume scattering from a dielectric body can

be conceived as a re-radiating process. For a monochromatic plane wave with the phasor

5i(f) = Eoeikkif incident upon the dielectric body V, a volume current density Jind(f) is

induced within the scatterer. This induced current then produces the radiation field E,(f),

in which

-ff - eikrs --ff r),(s)= i po I tGr ' iat o( -ifl 4w- .1J di'e-ikra.r'J

(B.1)

The approximation shown holds in the far-field region kr, >> 1. From [49], the induced cur-

rent density Jind (f) has the following relationship with the electric field within the dielectric

volume Eint(f):

Jind(f) = -iG(es - co)Eint(f), (B.2)

where E. is the permittivity of the dielectric body.

The internal field Eint includes the incident field E and the field radiated by the Ej-

induced current density. In a rigorous approach, this quantity should be treated as an

unknown in the radiation equation (B.1), which is an integral equation, and solved for

via numerical methods such as the Method of Moments [49]. In this thesis, we adopt
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an approximate analytical approach to avoid the complication of numerical methods: the

infinite-layer approximation [271.

To calculate the internal field, the infinite-layer approximation assumes that the dielectric

volume is a homogeneous horizontal layer bounded by free space at the top and the bottom.

Defining the normal direction to the top-bottom planes of dielectric volume to be Zb, we

express the incident k-vector as

Ii = kki = pbkip - Zbkiz, (B.3)

where

kip+ z = 2 p'co, (B.4)

and Pb is the unit vector along the projection of ki onto the surface perpendicular to Zb.

For a plane wave incident upon such three-layer (free space-dielectric-free space) struc-

ture, the electromagnetic field inside the dielectric layer contains downgoing and upgoing

plane waves whose propagation directions are determined by phase-matching conditions [25].

These directions are

ks = kki = pbkip - Zbksz, (B.5)

s= kki = pikip + 2bksz, (B.6)

where

kip+ Sz = poes. (B.7)

Thus the internal electric field Eint is [25][27]

Eint(r) ={(hAhiAh + AfVi co/es A,)ea + (hB hiBh + VB0Vieo/esBv)efsr} -Ejo, (B.8)

where
=2 (i + - ei(kiz+k2)d/2

Ah _ + k.2 z I'(B.9)(1 7 + _k§(1 e-ik,,d + (1-k ( - g ik, d
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2 (1 - e-i(kiz -ksz)d/2

Bh =k; j"I (B.10)
+ ) (1+ k) i e ksz+( - i)(

2 1 + ) e-i(kiz+ksz)d/2

(1 + + c*k*z) e-ikszd + -- )_ 1_ - (0. e11
\ 6ksz /\ eskiz Eo6ksz Eskiz

2 (1 - f ) e-i(kiz-ksz)d/2

BV = '0s* ( B. 12)
1 + f*iz) 1 + fos) e-ikzd + 1 -- " 1 ) eikszd

60ksz 63skiz Eoksz E.9kiz

The vector hi in (B.8) is the horizontal polarization of the incident plane wave, which is

orthogonal to the plane determined by 4b and kI, the vector i9 in (B.8) is the vertical

polarization of the incident plane wave, which is equal to ki x hi, and

hA = hB = h, (B.13)

A s XhA, 'B =Ks X hB- (B.14)

Plugging the internal field in (B.8) into (B.2), and plugging the induced current density

in (B.2) into (B.1), we can perform the volume integral over V, where V = {(x', y', z') I-pt

X' < pt, -pt < y' < pt, -d/2 < z' < d/2}, to obtain the following expression for the scattered

field:
-Z -2(C' _ Ceikr,

Es(s)~ - c)Z- it) - 4pt sinc(kaxbPt) sinc(kaybpt)
47rr,

{ (hAhiAh+AEi c0 /EsAv) d sinc(kfld/2)B(h iBh+B~i5 6OEsB,) d sinc(k32d/2)},

(B.15)

where

axb = (k - zb, (B.16)

ayb = -(k - is , (B.17)

k 1 =-ksz - k(zb - s), (B.18)

k0 2 =ksz - k(b - s). (B.19)
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Again, based on (2.17), the overall bistatic scattering tensor of a dielectric volume can

be obtained from the scattered field in (B.15). To apply this result to the 2-D SAR problem,

we only have to specify the orientation of the target normal direction Zb with respect to the

radar scenario, and determine the incident and scattering directions kI and ?, from the radar

antenna location. When the target on the ground is located at the nominal center, ki - s

can be obtained via (2.14).
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Appendix C

Backpropagation Formulation for the
Pulse Radar Signal

The backpropagation formulation for the radar signal model is based on the reciprocity

of free space. For a continuous-wave radar signal waveform, the derivation of the backprop-

agation formulation in [23] from the reciprocity theorem in [25] is straightforward. In this

appendix, we will demonstrate that for the non-monochromatic condition, provided the radar

signal bandwidth is not too large compared to the carrier frequency, the backpropagation

formulation is approximately valid.

Suppose there are two surfaces Sb and S, in free space with center locations no and ic,

respectively. On these two surfaces electric and magnetic currents are distributed. Without

loss of generality, we assume that there are only electric surface current densities Kb(f, t) and

Kc(f, t). Both Rb(rf, t) and Kc(f, t) have angular carrier frequency Qc However, they are

not monochromatic in general. Therefore the time-dependent phasors, Kb( , t) and K,(f, t),

of the surface current densities Rb(f, t) and kc(f, t) are:

K,(f, t) = Re {K,(f, t)e-ct} , (C.1)

for p = b, c. We will express the surface current densities in terms of their frequency

components,

R,(f, t) = Re {K,(, r e-Qc+f 7 , (C.2)-~o 27r

for p = b, c, where K,(f, Q) is the Fourier transform of KN(f , t).

From (C.2), the electric field E,(f, t) induced by the surface current density R,(f, t) on
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the surface Sp can be represented in terms of Green's function,

Ep(fIt) = Re { dfi i(Qc + Q)poG(fI, f,; Qe + Q) -K,(fp, Q)e-CQt, (C.3)

for p = b, c, where G(f, f,; Qc + Q) is the free-space Green's function at (angular) frequency

Qc + Q.

We are interested in the induced electric field only within a restricted region. To be more

specific, we only need to know Eb(f, t) for f E Sc, and Ec(f , t) for f E Sb. Suppose that:

(i) every point fb on Sb is in the far-field region of kc(fc, t) on Se for all of its frequency

components, and vice versa; and (ii) Ifr - fc I is much larger than the diameters of Sb and

Sc. Then the Green's function can be approximated as follows:

G(f, fi, Qe + Q) ~ eGC)I - (fp, ,9 Qc), (C.4)

for (p, q) = (b, c), (c, b). Plugging (C.4) into (C.3), and assuming that the bandwidth of

K,(f, t) is much smaller than the carrier frequency c, we get

Ep(Fq, t) ~ Jj dfiQcp60(fq, Ip; Qc) - KE(f, t - - ic||c). (C.5)

Following the notation in [25], we define

< p,q > (t) f dfpEq(fpt) -Kp(fpt) (C.6)

for (p, q) = (b, c), (c, b). Plugging (C.5) into (C.6), we obtain

< p, q > (t) = J djp dg JJ d-qKp(fpt) Qcp0G(fp, fq; Qc) Kq(fqt -|fo - fc|c). (C.7)

Paralleling the radar scenario discussion in Chapter 2, we see that Sb can be taken to

be the target/clutter surface, Sc the receiver antenna aperture, kb the induced current

density on the target/clutter surface due to the incident radar transmitting pulse, and Kc

the conjugate of the complex envelope of the local oscillator current density on the receiver
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antenna aperture. Hence the moment < c, b >= f fsc dfb(fcI, t) - c(fc, t) is exactly the

complex envelope of the radar return signal in (2.25). Referring to (C.5), we define the

backpropagation electric field Ecb induced by the surface current density Rc on Sc, with the

time-dependent phasor around Sb to be

t)(b .-t) Jj diQe o&(rb re; e)* - (f et + Ifo - fc/c). (C.8)

The name "backpropagation field" is derived from the time-reversal propagation character-

istics revealed in (C.8). For example, when the source current Kc at Sc emits a pulse at

t = 0, the forward-propagation field around Sb is a pulse at t =fo - fe,|/c. However, from

(C.8), the backpropagation field Ec around Sb is a pulse at t = -| - fc|/c.

Define

< bic > (t) =fb dbEc (fbt) -Kb (ft). (C.9)

Then from (C.7), (C.8), (C.9), and the reciprocity of the free-space Green's function,

G(fp, q; Qc) = G (fq, f p; Qc), (C.10)

it can be shown that

< c, b > (t) =< b, cb > (t -_ - e4|/c), (C.11)

which is the backpropagation formulation for the radar return signal.
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