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Abstract

Geometric control refers to the judicious use of the non-commuting nature of inputs and
natural dynamics as the basis for control. The last few decades in control system theory
have seen the application of differential geometry in proving several important properties of
systems, including controllability and observability. Until recently, however, the results of
this mathematical geometry have rarely been used as the basis for designing and implement-
ing an actual controller. This thesis demonstrates the application of a judicious selection of
inputs, so that if the system is proven to be controllable using geometric methods, one can
design input sequences using the same geometry. A demonstration of this method is shown
in simulating the attitude control of a satellite: a highly non-linear, non-holonomic control
problem. Although not a practical method for large re-orientations of a typical satellite,
the approach can be applied to other nonlinear systems.

The method is also applied to the closed-loop performance of a quantum mechanical
system to demonstrate the feasibility of coherent quantum feedback-something impossible
using a conventional controller. Finally, the method is applied in the open-loop control of
a quantum mechanical system: in this case, the creation of Greenberger-Horne-Zeilinger
correlations among the nuclei of an ensemble of alanine molecules in a nuclear magnetic
resonance spectrometer. In each case, the data demonstrate the usefulness of a geomet-
ric approach to control. In addition to demonstrations of geometric control in practice,
the quantum mechanical experiments also demonstrate for the first time peculiar quantum
correlations, including GHZ correlations, that have no classical analog. The quantum ex-
periments further establish nuclear magnetic resonance as a viable and accessible testbed
of quantum predictions and processes.

Thesis Supervisor: Seth Lloyd
Title: Associate Professor of Meciuicaiigieering
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3-1 Comparison of Feedback Systems. (a) The standard picture of classical

feedback involves transfer of classical information (the solid single line). First,

a sensor measures the state of the system, destroying any quantum coherence

in the process. The information is then compared with a reference state to

produce an error signal (the difference between measured and desired states).

The controller processes the information, using the error as the basis to act

on the system (via actuators) that drives the system from an unknown initial

state to the desired final state. The control system is clearly stochastic and

irreversible due to the measurement that must be made in order to compare

the states of the system and desired reference. (b) A fully-coherent feedback

system transfers "quantum information", i.e., information about amplitudes

and phases (the double solid lines). In this case, sensor, controller, and

actuator are themselves quantum systems that interact with each other and

with the system to be controlled in a coherent fashion. Although the reference

state must change during implementation of the feedback loop in order to

contain the information originally contained in the initial state of the system,

the elements of sensor (to obtain information about the system), controller

and actuator (to drive the system to the desired state based on the acquired

information) are still present. In addition, fully-coherent quantum feedback

can perform tasks impossible for the classical controller: transfer of quantum

correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-2 NMR Spectrum of Alanine. The spectrum is the Fourier transform of

the free induction decay signal observed after each spin's magnetic moment

is rotated into the transverse plane from equilibrium. The spectrum shows

a multiplet of four lines for each of the three 13C nuclei, each correspond-

ing to an allowed energy transition, and plotted with frequency (or energy)

increasing from right to left. The frequency of each of the four lines in a

multiplet corresponds to the resonant frequency when the other two spins

are either |--), -+), 1+-), or 1++). For example, the spectrum for the

B spins shows the four lines that correspond to the case when the A and C

spins are, respectively (from left to right): I-)AI-)c, I-)A|+)c, |+)AI-)c,

and |+)Al+)c. . . . . . . . . . . . . . . . . . . . . . - - - - - - - - - - . 53
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3-3 A Quantum Correlation. The controller spin (B) and an ancilla spin (C)

are perfectly correlated. For example, the B spins are |+) whenever the C

spins are -), and are I-) whenever the C spins are J+). Neither B nor C

is correlated with A, since half of the B spins (and half of the C spins) are

|+) and half are I-) whenever A is |+). The same is true when A is I-). No

classical controller can transfer the correlation between B and C to A. . . . 58

3-4 The Controller Acquires Quantum Information. Instead of making a

von Neumann measurement, the purely quantum controller B becomes cor-

related with the system A. B acquires both amplitude and phase information

about the state of A. However, no irreversible measurement is made. . . . . 59

3-5 Closing the Feedback Loop. Allowing the controller B to interact with

system A in a coherent and controlled manner has allowed B to transfer its

initial correlation with ancilla C to A. At this point, A and C are correlated,

although they have no direct interaction between them. In the trace, A is

|-) whenever C is 1+), and A is |+) whenever C is I-). The same is true of

C with respect to A. The B spins, in contrast, end in the same uncorrelated

state in which A began. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-1 Confirmation of the quantum prediction of GHZ correlations. The

four figures show the spectrum of spin B for each of the measurements. An

"up" line indicates the state 1+) for spin B, and a "down" line indicates

the state I-). Plot (a) confirms the GHZ correlation that the product of

measurements of a on the A spins, o-y on the B spins, and a-y on the C spins

yields the result +1. For example, the first line in (a) indicates that when

spins A and C give the result (-1) and (-1), respectively, spin B gives the

result +1; the second line indicates that when spins A and C give the result

(-1) and (+1), spin B gives the result -1; etc., so that the product of the

results is always +1. Similarly, (b) and (c) confirm that the products ofAoB oC

and orAooYa also yield the result +1. Plot (d), by contrast, shows that the

product oAoBoC yields the result -1, in contradiction to the predictions of

the classical hidden variable theory. . . . . . . . . . . . . . . . . . . . . . . . 74
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A-1 Satellite with 2 Control Moment Gyroscopes. The axis system (ei, e 2 , e 3 )

is chosen along the three principal axes of inertia for the satellite platform.

Single-gimbal gyroscope "a" has a 2 as the gimbal axis, pointing along e 2 ,

around which torque T is applied; a 3 points along the axis of symmetry for

the gyroscope, making an angle of a, with the e3 axis. Similarly, gyroscope

"b" has b 1 as the gimbal axis, fixed along ei, around which torque rb is

applied; b 3 points along the axis of symmetry for the gyroscope, making an

angle of ab with the e3 axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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Chapter 1

Introduction

1.1 Overview

All control methods use actuators as inputs that augment the natural dynamics of the

system to be controlled. The direct application of an actuator (in the presence of the natural

dynamics of the system to be controlled) provides a "push" along a certain direction, or

degree of freedom, in the configuration space of the system. For controllability at a point

in configuration space, one must be able to "push" in all directions at that point. However,

it is not always necessary to have the same number of independent actuators as there are

degrees of freedom: if the application of two different inputs does not commute, then it is

possible to "push" in a third direction. Geometric control refers to control systems that take

advantage of, or at least address, the inherent geometry in a system's dynamics through

the judicious use of the non-commuting nature of inputs and natural dynamics.

The origins of geometric control are found in the mathematical application of differential

geometry, especially the application of Lie groups and Lie algebras to nonlinear control the-

ory, including the works of such notable mathematicians and theoreticians as W. Chow [1],

K. Chen [2], R. Brockett [3], A. Bloch [4], H. Hermes [5], H. Sussmann [6], and V. Ju-

rdjevic [7]. The result of such applications has been a set of theorems whose aim is to

characterize the accessibility [8] and controllability [9, 10] of a nonlinear control system,

especially in the ubiquitous fields of robotic control, non-holonomic motion planning, and,

in general, nonlinear control problems (see, for example, [11-13]). In all these cases, es-

tablishing the a priori controllability of the nonlinear classical control system using these

differential geometric methods has become standard practice before the task of finding and

15



implementing an actual control strategy.

Quantum control refers to the theory and application of control to systems whose dy-

namics obey the laws of quantum physics. Formal quantum control principles have been

established over the last two decades [14-20], accompanied by experiments using atoms,

solid state systems, and lasers. In general, open quantum systems (quantum systems that

interact with a large or even infinite degree-of-freedom environment) have nonlinear dy-

namics. Even for closed quantum systems that obey a linear evolutionary state equation

(the Schr6dinger equation), the problems of measurement and implementation preclude the

possibility of wholesale adoption of linear control theory directly to the quantum control

problem. In any case, for most problems of practical interest, the number of actuators

available is much smaller than the number of degrees of freedom in the quantum system to

be controlled, thus necessitating the use of geometric methods.

The contributions of this thesis address the application of control to quantum mechanical

and classical nonlinear systems using the results of geometric control theory as a framework.

The rest of this chapter introduces the concept of geometric effects in linear systems (specif-

ically, a closed quantum mechanical system) by expanding the time evolution of the system

in terms of commutation relations; then, a simple method for producing motion in the di-

rection of a specific commutator at a desired order is presented. The main contributions of

the dissertation are then presented in the following three chapters.

Chapter 2 extends the linear model of closed-system quantum mechanics (i.e., systems

governed by the Schr6dinger equation) to classical systems. Some specific mathematical

tools are developed that make it possible to apply many of the geometric ideas developed

for the quantum case directly to the classical mathematics. The control scheme using

geometric control in the classic case is then applied to a non-linear, non-holonomic system:

attitude control of a satellite using gyroscopes.

Chapter 3 contains a theoretical and experimental demonstration of novel concept:

closed-loop quantum feedback that preserves quantum coherence. Although this experimen-

tal work is a new application of existing technology, the results are important to emerging

fields, such as quantum information processing. In addition to constructing the world's

smallest man-made feedback loop, the experiment also reconfirms the usefulness of NMR

as a convenient and accessible system for demonstrating quantum dynamics.

Chapter 4 describes an open-loop quantum control experiment. In addition to highlight-
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ing the usefulness of geometric control to generate a pulse sequence in a nuclear magnetic

resonance (NMR) spectrometer, the experiment serves to demonstrate-for the first time-

the peculiar and uniquely quantum mechanical Greenberger-Horne-Zeilinger correlations

that have no classical analog.

1.2 Geometric Effects in Quantum Systems

Geometric effects emerge in systems when the order of dynamic operators is important.

The dynamics of quantum systems typically includes a natural Hamiltonian that governs

the uncontrolled evolution of the system, and other "control" Hamiltonian terms that can

be added at the discretion of the control engineer. Based on the important work of J.

Waugh on average Hamiltonian theory [21], the resultant dynamics can be used to drive the

system in directions not possible under the natural Hamiltonian alone; for example, control

Hamiltonians can be used to average undesirable terms in the natural Hamiltonian to zero

at the end of a specified time period. The genesis of geometric effects in closed quantum

systems is presented below.

Consider the Hamiltonian evolution of a quantum system under the Schr6dinger equa-

tion:

T) =0 )(1.1)at h

where |1F) is the wave function (or "state vector"), and where 7i is the Hamiltonian that

describes the system dynamics. If the Hamiltonian is constant over the time interval 0 <

t < At, then the formal solution to the linear, time-invariant (LTI) version of Eq. 1.1 is

|W(At)) = ek iwAt |II(0)) . (1.2)

To be specific, the wave function-or state-of the system is given by an exponential op-

erator operating on the initial state, where the exponential operator is a shorthand for the

formal Taylor series expansion:

e- = Ath k (At)k .(1.3)

k=O

Suppose in the present case that only one input (A) is available. The control A allows

17



input along one direction only: we can only "push" the system in either the direction of A

(or -A), but in no other direction. In quantum systems the inputs are typically applied

potentials that make the system affine in the control; that is, the system dynamics can be

decomposed into the sum of natural Hamiltonian (Wo) and control Hamiltonians. Thus, in

this case, the complete Hamiltonian for the system over the time period in question is:

S-= 7o + A , (1.4)

and the lowest order terms in the exponential expansion of the trajectory are:

|'I'(At)) - e+(o+A) At |1(0))

= {1- (Wo + A) At - 2  o + A) 2 (At)2 + ...} |(0)) . (1.5)

If the system begins at equilibrium (i.e., -ojP(O)) = 0), then to first order in time At the

dynamics take the state to -kA TI(0))-that is, in the direction of A.

Now suppose that it is possible to change the dynamics of the system to Wnew (by

changing the input) over the time interval At < t < 2 At. It is simple to show that the new

state of the system is now

IW(2At)) = e-inew I'I(At))

= e-Lnew At e- A M 'I(0)) . (1.6)

If the "new" Hamiltonian is ne W = o - A so that the dynamics evolve according to

Wo + A 0 < t < t(17){ o - A At < t < 2At

then application of Eq. 1.6 shows that the end state is

|'(2 At)) = e -(oA)At e-i(Wo+A)At |Ip(0))

= 1 - 27o At - 1 (2W2 + [Wo, A]) (At)2 + ...} |4(0)) , (1.8)

where

[o, A] = 7o A - A -o (1.9)

18



is the commutator between Wo and A. Note that if the system begins at equilibrium, to

lowest order the motion is along [Wo, A], which in general is altogether different from the

direction A (unless, of course, A satisfies the general eigenvalue problem 7oA = AA); in

addition, the system does not return to its equilibrium |W(0)) unless Wo and A commute.

As a specific example, consider a single quantum particle with only two eigenstates (such

as a spin-1 particle in an external magnetic field). Suppose that the natural Hamiltonian

is -o = a, and the only input available is A = as, where {1, ux, ay, Z} are the usual

Pauli spin operators that generate SU(2). In addition to possible motions along oz and ax,

motion along ay is also possible since [az, Ux] = 2iay. In the classical world, this example

is analogous to the fact that one needs the ability to rotate around only 2 of the 3 normal

Cartesian axes that span SO(3) in order to move any unit vector to any location on the

unit sphere [22].

1.3 How to Produce Bracket Directions

The previous section suggested how it is possible to move the state in a direction given by

the commutator between two matrices (if the higher order terms are negligible). If motion

in the direction of a particular commutator is necessary, one specifies the input control law

to produce such motion. This dissertation considers only discontinuous step inputs, valid

for applications in which the controller switching time is much shorter than the fastest time

constant of the natural dynamics.

To produce the zero order bracket A, the control input is applied for a time At, where

At < 2hIjAII/||(-o + A)AII. As seen in the previous section, it is possible to produce the

first order bracket [Wo, A] by applying A for a time At and then applying -A for another

time At. In this case, the second period of evolution serves to "undo" the first order

effects, leaving second order effects as the lowest order terms (in addition to the natural

Hamiltonian). This pattern can be extended to higher order brackets when the control term

appears an odd number of times in the desired bracket: applying the "inverse" sequence (i.e.

the same sequence in reverse order and with opposite sign on the control-or equivalently,

the same sequence run "backward" in time) will cancel the previous "odd" bracket and leave

the next higher-order term as the lowest-order response. For example, for "simple" brackets

of the form [(-), [(.), [...[(-), (-)]...]]], where the (-) can represent either W or A, the kth order

19



brackets can be produced by using 2 k periods of evolution, during which the control inputs

during the last 2 (k-1) evolution periods repeat, in reverse order and with opposite signs, the

control inputs during the first 2 (k-1) evolution periods. Examples can be seen in Table 1.1.

Table 1.1: Producibility of Some Simple Brackets.

expansion

= 1 + (No + A) At
+ ( + oA + A-o

= 1 + 2Ho At

+ (-2 + [to,A]) (At)2

+ (1H + [Ho, A]7-o +
3~ 0

+ A2 ) (At) 2 +...

Wo[No, A]

I[A, [No, A]]) (At) 3 +

[Wo, [71o, A]] e(ho+A)Ate(Wo -A)At

e(WO-A)Ate(Wo+A)At = 1 + 47to At + 8712 (At)2

+ 32  + 2 [No, [-to, A]] - [A, [7 lo, A]]) (At) 3

+ 7TQ +4 [No, [No, A]]No +4 No[No, [No, A]]

- 'No[A, [No, A]] - ![A, [No, A]]No) (At) 4 +

However, brackets with an even number of A terms cannot be canceled this way.

In general, finding a sequence of control operations that yield the desired lowest-order

bracket direction is difficult. To date, symplectic methods and application of the Campbell-

Baker-Hausdorff formula [2] have been the tools of geometric control. In addition, heuristic

methods using a digital computer can reveal a suitable if not optimal sequence. For example,

it is simple to show that the sequences

e('o -A) Ate(WO +A) At

e WOAte(Ko-A) Ate?'o Ate(to+A) At

e(Wo-A) At e Wo Ate(Wo+A) At eWo At

, and

all have motion along [?o, A] as the lowest order response, but the last two operators take

twice as long to implement.

Use of the computer coupled with analytic methods to find suitable sequences seems

20
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particularly useful, since computers need only add and multiply-things a computer does

well (instead of, say, differentiate). For example, to produce motion in the direction

[[-o, A], [7to, B]] from equilibrium with two inputs {A, B} available, and knowledge that

[A, [to, A]] = [B, [-o, B]] = 0, a simple program finds the operator

e(Wo+B) Ate( (-o-B) Ate(Wo+A) Ate(Wo-A) Ate(Wo-B) Ate( tho+B) Ate(Wo-A) Ate(Ho+A) At X

e(Wo-B) Ate(Wo+ 3) Ate(Wo-A) Ate(io+A) Ate(Wo+B) Ate (Ro-B) Ate (o+A) Ate(7o-A) At X

e(R-B) Ate (Wo+B) Ate (Wo-A) Ate(Ho+A) Ate(Wo+B) Ate(Wo -B) Ate(Wo+A) Ate (No-A) At X

e(Wo+B) At e(io-B) Ate(Wo+A) Ate(No-A) Ate(No-B) Ate(Lo+B) Ate(Wo-A) Ate (o+A) At

(1.10)

since the expression has a Taylor series expansion equal to:

1 + 32o At+512t (At)2

+ 16384 -_ 8 [A8 [o, A]] -- [B, [Ro, B]] (At) 3

+ 131072 W4 - 4 [[Wo, A], [Wo, B]]
3136

- 40 [A, [NIo, A]]7o - 136 [A [-o, A]]

- 40 [B, [-to, B]]?Io - 136 Wo[B, [o, B]] (At)4

+ (1594304W - 64 o [[Io, A], [o, B]] - 64 [[7o, A], [to, B]]to

+ 512 [-to, [lo, I[-o, [No, A]]]] + 512 [Io, I[-o, [I-o, [7-to, B]]]]
106 106

15 15

- 5 [Io, ['o, [A, [No, A]]]] - 5 [Io, ['o, [B, [Wlo, B]]]]

- 1[A, [A, [A, [o, A]]]] - A[B, [B, [B, [7-to, B]]]]

+ 4 [B, ['o, ['o, ['o, A]]]] + 4 [A, [to, ['o, ['o, B]]]]

-4 [Wo, [B, [Wo,7 [No,7 A]]]] - 4 [WoI [A, [Wo,7 [Wo, B]]])
4096 256

3 3
- 40 9 6 o[B [Wo, B]]No - 256 [B, [-to, B]]]'I-to) (At) +3 3y-'-o ... (1.11)

Since the "even" brackets ([A, [Io, A]] and [B, [to, B]]) are zero, motion from equilibrium
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has -4[7W, A], [7o, B]](At) 4 as the lowest order response.

In summary, once a control system has been shown to be controllable by examining the

system's geometry, motion in the necessary bracket directions is accomplished by application

of a sequence that produces the bracket as the lowest order response, and over a time scale

small enough to keep higher order effects at acceptably low levels. The following chapters

discuss examples of how the accumulated knowledge about the geometric properties of the

system can be used as the basis for a control algorithm.
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Chapter 2

Classical Control Using Geometric

Methods

2.1 Introduction

One of the most important questions regarding any control system is the question of con-

trollability [23]: can the controller drive the system to be controlled from an arbitrary

initial state to a desired final state? The question is easily answered in the affirmative if

independent and arbitrarily large inputs are available for all possible directions in the con-

figuration space, although rarely is this the case. For the so-called under-actuated systems,

a large body of literature exists on the subject, using differential geometry as the basis for

determining the controllability of the system in question [1-7]. Of particular import is Suss-

mann's general theorem on local controllability [10], which is reviewed below. Establishing

controllability via the theorem requires computing the Lie brackets of the control system

vector fields.

Once it is determined that the control system in question is indeed controllable, the

question of algorithm arises: what inputs (or control law) will drive the system to be

controlled from an arbitrary initial state to a desired final state? General strategies for

computing such an algorithm using the Lie brackets as a basis do exist for dynamic systems

without natural dynamic terms [24]; otherwise, rarely are the Lie brackets used directly

to implement a control algorithm. This chapter shows how it is possible to construct a

control strategy that successfully drives the initial state in the direction of the final state by
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directly using the Lie brackets. The strategy is then applied to the attitude control of an

under-actuated satellite using two single-gimbaled control moment gyroscopes, where the

initial and final states lie on the equilibrium manifold of the control system.

2.2 Classical Formalism

2.2.1 Small time local controllability

Consider a general affine control system defined by the dynamic equation

x = f (x) + E uk(t)gk , (2.1)
k

where x(t) = [X I(t), X2(t), ... , Xn(t)]T is the vector of state variables (or, simply, the state),

f = [fi (x), F2 (x), ... , fn(x)]T are the natural dynamics (or "drift"), the gk are avail-

able control vector directions, and the Uk are the control inputs. Let the vector fields

(f, gi, ..., gm) be appropriately defined on the set M of allowable states, which is locally a

subset of R"; in addition, let xr(xo, t) denote the set of reachable states from initial state

xO in exactly time t. The following preparatory definitions are standard [25]:

Accessibility: The system in Eq. 2.1 is accessible at xO if, for any time tf > 0, Ut<tf xr(XO, t)

has a non-void interior with respect to M. If this holds for every xO in M, then the system

is called accessible.

Small Time Local Controllability: The system in Eq. 2.1 is said to be small time locally

controllable (STLC) at xo if, for any tf > 0, xo is an interior point of Ut<tfxr(Xo, t).

Lie Bracket of Two Vector Fields: The Lie bracket of two vector fields fi(x) and f2 (x) is

[fi, If2l = afi ,- f2 .(2.2)ax 09x

The Lie bracket is itself a vector field, and iterated Lie brackets can found by repeating the

differentiation and multiplication in Eq. 2.2. The order of a Lie bracket is the sum of the

number of times each vector field appears in the bracket. In general, Lie brackets represent

directions in which the system can be "pushed"; the specific control sequence to obtain

motion in a given bracket direction is presented in later subsections.
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Establishment of small time local controllability consists of tests on the vector fields

(f, gi, ... , gm) and iterated Lie brackets between them: the Lie algebra for the system.

Following Sussmann [10], let Lr (x) denote the smallest Lie algebra of vector fields containing

(f, gi, ..., gm), and let L be any bracket in Lr (x). Furthermore, let (nrf , ngi ... ngm) denote

the number of occurrences of the vector fields (f, gi, ... gm), respectively, in bracket L.

Finally, denote as "bad" brackets all those Lie brackets that have both nf odd and all ngk

even. Using these definitions, the small time local controllability theorem is:

The system defined in Eq. 2.1 is STLC if.

1. its dynamics are accessible; and

2. every "bad" bracket at x can be expressed as a linear combination of brackets of lower

order at x.

Establishing accessibility is equivalent to demonstrating that Rank(Lr) = Dim(M) for

every x E M, a condition known as the Lie algebra rank condition (LARC) [25]. Proof of

the STLC theorem can be found in [10]. Simply put, controllability of a system (at least

for small times) indicates that the available inputs and input directions allow motion in

all directions in the configuration space of the system, and that any undesirable motions

("bad" bracket directions) can be canceled out by lower order effects. Note that the lowest

order "bad" bracket is f itself (i.e., the "drift" term), which can never be expressed by lower

order brackets; consequently, controllability for systems with drift is necessarily restricted

to the equilibrium manifold where f = 0.

2.2.2 Trajectory expansion using the exponential operator

While demonstrating controllability via application of the STLC theorem reduces to com-

puting and performing tests on Lie brackets, it does not directly address how motion in

the direction of the Lie brackets may be accomplished. In the quantum mechanical case (in

Chapter 1), motion along a desired commutator direction could be achieved as the lowest-

order response when constant control inputs were applied for a time, and then switched.

The same is possible for classical systems that have autonomous dynamics, as shown below.

This section shows how expansion of the state trajectory for autonomous systems that

have analytic dynamics is conveniently written in terms of the exponential operator. As in
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the quantum mechanical case, the formal exponential operator represents the formal Taylor

series of the operators in the exponential argument. (Similar results can be found in the

literature [26, 27].) In this case, the argument is the covariant derivative, defined similar to

the Lie derivative as follows:

Covariant Derivative: For two vector-valued functions of the state, f(x) and g(x), appro-

priately defined on some region M C R", the covariant derivative of f with respect to g is

given by

Dgf (x) = Vf g = E g] . (2.3)
1 k I )

Higher order covariant derivatives can be defined iteratively, as in the case of ordinary Lie

derivatives, provided that the appropriate order of derivatives of both f and g exist. In

addition, define Dof = 0.

The covariant derivative operator Dg simply takes the Lie derivative of each component

of its vector argument and stacks them into a new vector. It is possible to write the Lie

bracket of two vector fields as

[f, g] = Dfg - Dgf . (2.4)

In addition, if g = gi + g2, we have

Dg1 g2 =Dg1f + Dg2 f = (Dgi + Dg2 ) f . (2.5)

Finally, the commutator [Dgi, Dg2] of two covariant derivative operators is a simple ex-

tension of the Jacobi identity [27]; i.e., provided that each of the vector fields is of the

appropriate dimension, we have

[Dg 1 , Dg2] f = Vf (Vg 2 - g 1 - Vg1 -g 2 ) + g2 T v (Vf) .gi - giT. V (Vf) -g 2

= Vf [gi, g2] = D[gg 2 f , (2.6)

where the bracketed expression in the first line is identically zero because of the symmetry

a 2! = a . It is important to note the order of the vector multiplication in Eq. 2.6,OXjDaXk u'XkIJXj)

since in general covariant derivative operators do not commute.

Eq. 2.6 shows that the commutator operator is equivalent to the Lie bracket between

the operator fields; in fact, the reason for defining the covariant derivative in this manner is
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to facilitate a clear parallelism between the quantum and classical formalisms. Specifically,

during a period of time in which the input to the system is constant, the dynamics in Eq. 2.1

can be written

i = F(x) . (2.7)

For the states of physical systems whose state variables are analytic functions of time, x(t)

may be expanded in a convergent Taylor series about the initial state for times less than

the escape time of the system (At < tesc):

x(At) = x(O) + *(0)At + i(0)At2 + .+ x()At + ... , (2.8)

where the terms are to be evaluated after the appropriate number of derivative operations.

If F is of class C', Eq. 2.7 and the chain rule allow the time derivatives to be written as

5* F = Vx -F = DFX
dF M F2

R= = VF - F = Dx (2.9)

x(k) =Dx.

The right side of Eq. 2.8 can then be written as a convergent Taylor series of the vector

field F in the neighborhood of x(0) and for small times (At < tesc) as:

x(At) = D Ato + D At' + DAt2 + ... + D Atx()

= (eDFAt x) (2.10)

where the vertical bar is written as a reminder that all the operations must be performed

considering the state as a variable before evaluating the expression at the specific initial

state. The notation e DFAt for the Taylor series expansion of the state in terms of covariant

derivatives is henceforth denoted the exponential operator.

Note that Eq. 2.10 reduces to the familiar form if the system is linear: a linear time-

invariant system automatically satisfies the Lipschitz condition for all At > 0, and if in

addition the input is constant over time At, then F(x) = Ax; hence,

x(At) = 1+DAxAt+ ... +-DxAtk+ -[ k- X + ) x(0)
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= x+Vx - AxAt+ ... + IV(...(Vx - Ax)...) AxAtk+
k! x(0)1I

= x(0) + Ax(0)At ... + -Akx(0)Ahtk +

- eAAtx(0)

as expected. It is important to note that the operator DF / A, even for linear F; indeed,

although the domains of the operators DF and A may be the same, DFg : Ag(x) for

arbitrary g, and it is necessary to derive the exponential operator in terms of A from the

relation F = Ax.

2.2.3 Trajectory expansion with different dynamic intervals

The expression in Eq. 2.10 is valid for short times during which the autonomous dynamics

(including the input) are given by F. Consider now the system given by

F (x(t)) 0 < t < At (2.11)
G (x(t)) t > At

It would be convenient to express the state for t > At as a Taylor expansion near the initial

state x(O), although in general this is formidable and perhaps unenlightening except in the

special case when t = 2 At. If F and G are of class C' on regions containing x(0) and

x(At) (i.e., if F and G are analytic at these points), and if F and G are autonomous, then

Eq. 2.10 indicates

x(At) = (eDF At X)

x(2 At) = (eDG At x(At) (2.12)

for small enough At such that the system is locally Lipschitz. Since G is analytic at x(0),

the second line in Eq. 2.12 can be further expanded in a Taylor series about the point x(0):

x(2 At) = [( D Ati x
.(j=0 (t

00 1  00o 00 1 k

= E _ EVk (Dbx G - (DF)X 0) (At) m  (At)j
3=0 i k=0 G)l() m=0 I F XO
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= 0 00 0 .. 00 1 m i ... m ! " DDmi Fm )x(0) (At (j+mi+ ... m O)

j=0 k=0 mi=I1 mk =1 M!.. k

S (eDF At eDG At x) x(O) (2.13)

where the last line follows by grouping like orders of At.

The last line of Eq. 2.13 is the main result for the expansion of the system trajectory for

small times and in the vicinity of the initial state. The order of the operators is important,

since in general [F, G] # 0. Although the order of the exponential operators may seem

reversed in this formalism, it is correct given the definition of the covariant derivative in

Eq. 2.3 and a straightforward application of Taylor's theorem for analytic functions [26].

For example, it is simple to verify Eq. 2.13 in the LTI case where F = Ax and G = Bx; in

this case,

x(2 At) = eDAx A eDBx At X) x(O)

= eDAx At x + BxAt + -B2x At2 + ... BixAti +
2 j! x(0)

= x+ (A + B) x At + A2 +BA+ B 2 At2 + ..

= eB At eAAt x(O)

as expected.

Finally, it is now possible to take advantage of the linear structure of the quantum control

scheme developed in the preceding chapters by generalizing Eq. 2.13 to multiple dynamic

periods. Thus, if {F 1 , F 2 , ... FN} are all autonomous vector fields of class C' in the vicinity

of initial state x(O), and if the dynamics of the system can be written as x(t) = Fj (x (t))

during time interval (j - 1) At < t < j At for At < ming (tesc,j), j = 1, 2, ... N, then the

state of the system at time t = N At is given by

x (N At) = (eDF1 At eDF 2 t... eDFN A) x(O) (2.14)

As in the example of the quantum system in Chapter 1, it is possible to construct motions

in the desired bracket direction by applying an (exponential) operator for some time, and

then reversing the order and sign of the operator to cancel lower order effects. Moving

in any desired direction, then, is performed by building up small motions in the bracket
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directions. Since the vector fields are analytic, the higher order "error" terms in the Taylor

series expansion can theoretically be made as small as necessary by making At small.

2.3 Satellite Attitude Control: A Case Study

Geometric control theory has found particular applications in non-holonomic systems, such

as the attitude control of space platforms, or satellites [28-33]. After the system is shown

to be controllable, various control schemes are presented, motivated by sliding mode con-

trol [33], energy considerations [28, 29], or others [31, 32]. Satellite attitude control usually

involves gas jets (as in [34]), control moment gyroscopes (as in [35]), or some other momen-

tum exchange device through which the input torques are applied to the system. Typical

configurations for attitude control systems that use single gimbaled control moment gyro-

scopes include four gyroscopes, with the major axes arranged in a pyramid style, in order

to maintain controllability of the satellite around three independent directions in the event

that one of the gyroscopes should become inoperable [35]. The simulation provided below

explores whether a "fault-mode" operation requiring only two non-collinear single-gimbal

control moment gyroscopes is possible while still maintaining controllability of the satellite.

2.3.1 The satellite dynamics

A detailed state-space model for a satellite equipped with two identical, non-collinear single-

gimbal control moment gyroscopes is supplied in Appendix A. Considering only the orien-

tation of the system (the attitude), there are at most 18 degrees of freedom: three angular

measures and three rotation rates for each of the two gyroscopes and for the platform. Holo-

nomic constraints include the fixed mounts that secure the gyroscopes to the rigid platform,

reducing the number of degrees of freedom for each gyroscope to two: the rotation angle of

the gimbal (a), measured with respect to the platform, and the angular rate of rotation of

the gimbal (&). The orientation of the platform is conveniently represented by three Euler

angles (V), 0, #), and the angular rotation rates (w1 , W2 , W3 ) are measured around axes that

coincide with the principal moments of inertia. Using "a" and "b" subscripts as labels for

the two gyroscopes, the state can then be written as

x = [V@, 0, #, o-a, O-, L0i, W2, W3, 6a, 6A]T (2.15)
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with configuration space

M x| X-- r < (, #) < 7r 2 <(, Ua, O-b) < , (wi, W2, W3, &a, 6b) c R} (2.16)

Torques on the gimbal axes are the only inputs to the system. The model assumes that the

rotational inertia of the gyroscopes is much smaller than that of the platform, and that the

rate of rotation of the gyroscopes is always much greater than the platform. Appendix A

derives the model and shows that the system can be written in the form of Eq. 2.1.

Since no external torques are applied to this system, the equations of motion must also

satisfy conservation of angular momentum; these constraints are non-holonomic, indicating

that they cannot be integrated a priori to reduce the number of state variables. Conse-

quently, not all of the state variables are independent: the state is constrained to evolve on

a 7 degree-of-freedom manifold M' (M' C M, Dim(M') = 7). Note that the equilibrium

manifold (c = 0) is a sub-manifold of M', and requires that the natural dynamics (f) be

zero everywhere on the sub-manifold. Physically, the platform and gyroscopes must be at

rest at equilibrium, although the orientation angles of the platform may take on any valid

values. Since the net angular momentum for the system must be zero at equilibrium, the

gyroscopic moments of the control moment gyroscopes point in opposite directions on the

equilibrium sub-manifold. It is assumed that the initial state of the system is an equilib-

rium position, which without loss of generality can be set to the origin in configuration

space; thus the controllability of the system at the origin represents the controllability of

the system at any point on the equilibrium sub-manifold.

The small time local controllability theorem can be applied to the system by computing

elements of the Lie algebra. Significantly, the vector fields (f, gi, g2) are analytic at the

origin. Calculating the necessary Lie brackets is efficiently done using a digital computer;

however, the length and complexity of even low-order brackets make displaying the general

results impractical. Of import are the pertinent brackets evaluated at the origin, which, for

the parameters used in the simulation (see Table 2.2) are:

g1(0) = 10-6 [0, 0, 0, 0, 0, 0, -0.001, 0, 0.002, O]T (2.17)

g2(0) = 10-6 [0, 0, 0, 0, 0, -0.001, 0, 0, 0, 0. 0 0 2 ]T (2.18)

[f, g1] (0) = 10-6 [0, 0.001, 0, -2.00, 0, 1.00, 0, 0, 0, O]T (2.19)
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[f, g2] (0) - 10~6 [0, 0, 0.001, 0, -2.00, 0, 1.00, 0, 0, 0 ]T (2.20)

[f, [f, gil] (0) - 10-6 [0, 0, -1.00, 0, 0.17, 0, 0.42, 0, -1.00, 0 ]T (2.21)

[f , [f, g 2]] (0) =10~6 [0 , -0.83, 0, -0.17, 0, 0.50, 0, 0, 0, -0.83]T (2.22)

[[f, g1), [f, g2]] (0) = 10~6 [-1.75, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]T (2.23)

These seven brackets constitute seven independent directions; thus, the LARC is satis-

fied, and the dynamics are accessible on M'. Restricting attention to the equilibrium

sub-manifold, the "bad" brackets are found to be identically zero:

f(0) = 0 , (2.24)

[gi, [f, gil] (0) = 0 , (2.25)

[g2, [f, g2]] (0) = 0 , (2.26)

Thus the requirements for controllability are satisfied for small times on the equilibrium

manifold.

The remaining problem is to specify the control inputs (the torques to the the gimbal

axes) that will bring about maneuvers in the 7 independent bracket directions. Here the

parallelism between the Lie bracket in nonlinear differential geometric control theory and

and commutator in linear control (as introduced in Chapter 1) greatly simplifies the task. In

fact, using the formalism in the previous section, the sequence of torque inputs to "push" in

any of the independent bracket directions given in Eqs. 2.17-2.23 was presented in Chapter

1. In light of Eq. 2.14, simple reversal of the time ordering of the comparable operation from

Chapter 1 will produce the desired motion. Specifically, compare the brackets in Eqs. 2.17-

2.22 with the entries in Table 1.1, substituting f for Wo and gi or g2 for A. Moving in

the direction of gj (or g2) requires applying a torque to the gimbal axis of gyroscope "a"

(or to gyroscope "b") while maintaining zero torque on the other gimbal axis. To bring

about [f, gi] or [f, g2] as the lowest-order response at equilibrium, apply the sequence of

operators as in the production of [Wo, A]-although in reverse time order. A sequence for

"pushing" in the direction of the brackets in Eq. 2.21 and Eq. 2.22 is ascertained in like

manner. Finally, motion in the direction of [[f, g1], [f, g2]] from an equilibrium position

can be found by reversing the order of operators in Eq. 1.10.

Table 2.1 summarizes the sequence input operations that yield the desired bracket direc-
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tion from equilibrium as the lowest-order term in the Taylor series response of the system.

The right column indicates the order in which the constant torque input of magnitude Jul

should be applied to the gimbal of the subscripted gyroscope for time At while the torque

on the complementary gyroscope is zero.

Table 2.1: How to Produce Bracket Directions from Equilibrium.

Bracket Sequence of Inputs (each for time At)

91 +Ua

92 +Ub

[f, g1 -Ua, +Ua
[f, g2) -Ub, +Ub

[f, [f, gil] +Ua, -Ua, Ua, +Ua

[f, [f, g2]] +Ub, -Ub, -Ub, +Ub

[f,1 [f, 92 ] ±Ub, -Ub, -Ua, +Ua, -Ub, +Ub, +Ua, -ua,

-Ub, +Ub, +Ua, -Ua, +Ub, -Ub, -a, ±Ua,

-Ub, +Ub, +Ua, -Ua, +Ub, -Ub, -Ua, +Ua,

+Ub, -Ub, -Ua, +Ua, -Ub, +Ub, +Ua, -Ua

From equilibrium, motion in any direction that also leads to an equilibrium state is pos-

sible. It is not possible to move from one equilibrium state to another without leaving the

equilibrium set in the interim; errors are therefore possible in returning to the set of equi-

librium states. The errors incurred in using the above sequences of inputs are represented

by higher order terms in the Taylor series expansion of the system dynamics. In theory the

error in moving from one equilibrium state to another can be kept within arbitrary bounds

by reducing the time step (At). Control of the satellite from one orientation to another is

thus possible by decomposing the displacement vector from the origin to the desired equi-

librium position in terms of the above independent brackets, and then weighting the terms

in the input sequence to produce those brackets.

2.3.2 Simulation

This section provides simulations of the motion of the state variables in moving in the

7 independent directions elucidated above. It can be verified that motion in all seven

independent bracket directions is possible by directly simulating the actual dynamics in a

regime where
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1. the inputs (torques) are small enough so that the assumptions made in the model

derivation are satisfied; and

2. the time per operation is small enough so that contributions due to higher order effects

are negligible. For the simulation, errors of less than 1% from the predicted bracket

direction for each state variable were considered acceptable.

The simulations used the model derived in Appendix A with parameter values as given in

Table 2.2.

Table 2.2: Parameter Values in the Attitude Control Simulation.

Parameter Symbol Simulation Value
Platform inertia around ei 1 1000 kg m 2

Platform inertia around e 2  12 1200 kg m 2

Platform inertia around e3  13 2000 kg m 2

Inertia of gyroscopes ("a" and "b") 1 10 kg m 2

Angular speed of gyroscopes ("a" and "b") w9  1000 rad/s

The results of the simulation for each bracket direction are shown in Figs. 2-1-2-7. In

each case, the sequence in Table 2.1 drove the state in the direction of the desired bracket:

the values of the state variables at the end of the input sequence are proportional to the

brackets in the table. The time for each sequence of input operations was set at 10 ps

in order to satisfy the model assumptions (w. much smaller than the angular velocity of

the platform), maintain acceptable error levels, and keep all dimensionless torque inputs

< 0(1). Note that in order to remain within the operating regime defined by the model

assumptions and by the acceptible errors in the motion, only small displacements from

the origin are possible. To illustrate, if the goal of the control system is to reorient the

platform by changing the Euler angle V) from its initial value (0) to (7r), the control scheme

applied to the simulation model would require approximately 1013 s to reorient the space

craft. Although the control scheme works in theory, it may be practical only for very fine

control near an equilibrium position.

2.4 Conclusions

The control scheme presented in this chapter demonstrated how a strategy to control non-

linear affine systems on equilibrium states can be created directly from the geometric con-

34



Xo -- > - g(0)

X 10-12 Platform Orientation
2-........................................................

-- 0V

0-0

-2 -..........................

X 10-12 Gyroscope Orientations
2-........................................................ -

- b
a) 0

-2 -

X 10-12 Platform Velocity
2 -............. . . . . . . . . . . . . . . . . . . . . . . . . . .
2 - - V

v
_ -_ _v2

0 . 2v

E ~ -- - -

5
-2--

X 10-12 Gimbal Velocities

a>
CV

0
0

E

x 10-10 Control Inputs

0 2 4 6 8 10
Time [s] x 10 6

Figure 2-1: Pushing in the Direction of gi. The final state (at 10ps) after execution

of the control sequence for this bracket (see Table 2.1) is proportional to the theoretical

prediction in Eq. 2.17. Errors due to higher-order terms in the Taylor series expansion axe

less than 1% for each state variable. The same scale is used for the plots of all 7 brackets.
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Figure 2-2: Pushing in the Direction of g2. The final state (at 10 ps) after execution

of the control sequence for this bracket (see Table 2.1) is proportional to the theoretical

prediction in Eq. 2.18. Errors due to higher-order terms in the Taylor series expansion are

less than 1% for each state variable. The same scale is used for the plots of all 7 brackets.
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Figure 2-3: Pushing in the Direction of [f, gi]. The final state (at 10 ps) after execution

of the control sequence for this bracket (see Table 2.1) is proportional to the theoretical

prediction in Eq. 2.19. Errors due to higher-order terms in the Taylor series expansion are

less than 1% for each state variable. The same scale is used for the plots of all 7 brackets.
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Figure 2-4: Pushing in the Direction of [f, g2]. The final state (at 10 ps) after execution

of the control sequence for this bracket (see Table 2.1) is proportional to the theoretical

prediction in Eq. 2.20. Errors due to higher-order terms in the Taylor series expansion are

less than 1% for each state variable. The same scale is used for the plots of all 7 brackets.
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execution of the control sequence for this bracket (see Table 2.1) is proportional to the

theoretical prediction in Eq. 2.21. Errors due to higher-order terms in the Taylor series

expansion are less than 1% for each state variable. The same scale is used for the plots of

all 7 brackets.
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theoretical prediction in Eq. 2.22. Errors due to higher-order terms in the Taylor series
expansion are less than 1% for each state variable. The same scale is used for the plots of
all 7 brackets.
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trol algebra. Once controllability has been established by verifying the small-time local

controllability of the system using the pertinent Lie brackets, sequences of inputs can be

immediately designed that can move the system in any of the bracket directions. Theo-

retically the error in moving along the bracket directions can be made arbitrarily small by

making the time step per input small.

Application of the control scheme to the attitude control of a space platform or satellite

suggests that the system would be of practical use only very fine control near equilibrium

positions given the scale of possible displacements. While larger motions may be possible

with gyroscopes of rotational inertia comparable to that of the platform, or with greatly

increased angular momentum, such scenarios are not practical.
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Chapter 3

Coherent Feedback Control of a

Quantum Mechanical System

3.1 Introduction

The objective of a control system is to drive a dynamic system from an unknown initial state

to a desired final state. To accomplish this objective, a feedback controller gets information

about a system and feeds it back to alter the system's behavior in a desired fashion. The

resulting closed-loop system can exhibit better controllability, stability, and disturbance

rejection than the open-loop system. Feedback control of classical dynamic systems involves

measuring system variables, computing inputs, and applying those inputs back to the system

to be controlled. These three main tasks are carried out by elements in the feedback

loop usually called sensors, controller, and actuators, respectively. Traditionally, when

this control scheme is applied to a quantum mechanical system, the result is a feedback

loop that necessarily destroys quantum coherence because some or all of the elements are

semi-classical [12, 14-16, 18-20, 36-44] For example, if the sensor is a semi-classical device

that measures the spin state of a spin-1/2 quantum system, the measurement causes the

wave function to collapse probabilistically to one of two possible eigenstates, irreversibly

destroying the original wave function in the process. In addition, if the controller is a digital

computer, then a von Neumann type (i.e., wave function collapse-inducing) measurement

must be made to digitize the measurement to classical data that can be processed by the

This chapter proposes and provides an experimental demonstration of a novel quantum
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feedback technique in which sensors, controller, and actuators are all quantum systems

that operate in a way that preserves quantum coherence. This method can be used to

control quantum systems in ways that cannot be accomplished by "conventional" control

of a quantum system using a classical feedback loop. In particular, the classical feedback

loop cannot be used to transfer quantum information. As a result, a variety of quantum

correlations cannot be transferred from one system to another using a classical feedback

loop. For example, if two systems are entangled, then a quantum controller cannot be used

to make measurements on one system and to transfer its entanglement with the second

system to a third, initially uncorrelated system.

To demonstrate the potential of coherent quantum feedback, this chapter defines a class

of intrinsically quantum correlations that cannot be transferred using a classical feedback

loop. In fact, it is shown that two systems can be in state that is separable, i.e., unentangled,

and still possess correlations that cannot be transferred classically. The experiment reported

on here created such states, and used a quantum feedback loop to transfer those non-classical

correlations. In addition, the experiment is also another demonstration the accessibility of

NMR as a convenient demonstration system for quantum dynamics.

3.2 Description of Coherent Quantum Feedback.

3.2.1 Classical vs. quantum coherent feedback

To distinguish between coherent control of a quantum system using a quantum feedback

loop, and coherent control using a classical feedback loop, consider the following example

of the latter. Monroe et al. employed classical feedback using optical measurements and

laser as actuators to control coherently the 2 S1 12 hyperfine states

IF = 2,mF =2)4) ,

IF = 1,mF = 1) 1T),

of a single 9 Be+ ion in an ion trap [45]. The ion is originally in an unknown superposition

100) = o'| 4) + #| t) , (3.1)

44



and the goal of the classical feedback loop is put the ion in the state

IO)=I T) -(3.2)

The control loop begins by measuring the state of the ion by driving the cycling

I 4) -+ 2 P3/2 IF = 3 , mF = 3)

transition with o-+ polarized light and detecting the resulting ion fluorescence: fluorescence

indicates that the ion is in the state I 4). If the ion is found to be in the state I 4), the

controller (a classical digital computer) instructs the actuators (lasers) to effect a 7r pulse

by driving a Raman transition through the virtual 2P/2 level to flip the atom into the I T)

state. The net effect of the feedback loop is to put the ion in the state I t). The feedback

loop is classical in the sense that the measurement provides a classical bit of information,

and a classical controller decides on the basis of that bit whether or not to supply a Raman

pulse to drive a coherent quantum transition in the ion.

The classical control scheme in the previous paragraph is pictorially represented in Fig. 3-

1(a), where the single solid lines indicate the flow of classical information: information from

the measured system is compared to desired values from the reference, and the resulting

error is used as the basis for the input back to the system. Once the error is reduced to zero,

the feedback ends; the system has been driven to the desired final state 10d). If the goal of

the control design includes "tracking", or following a desired time-varying state |@d(t)), the

feedback loop may be invoked repeatedly where the measurement of the system at each time

T is compared with the reference input 1d(T)) to produce the updated error. Note that

regulation of the system near a constant desired state (in the presence of disturbances that

may cause evolution of the system away from 10d)) represents a special case of tracking. In

any case, each instance of feedback requires comparison with a new reference.

Monroe's semi-classical control scheme is a method for controlling the spin of a proton

in the nucleus of an ion using a classical feedback loop. Such a control scheme is clearly

probabilistic: the initial measurement has a stochastic outcome; it is also destructive: the

relative phase between a and # is irreversibly lost in the course of the measurement. The

probabilistic, destructive nature of the classical feedback loop arises because the detector is

a classical measuring device that irreversibly decoheres the quantum system in the course
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SYSTE

REFERENCE REFERENCE

Figure 3-1: Comparison of Feedback Systems. (a) The standard picture of classical
feedback involves transfer of classical information (the solid single line). First, a sensor
measures the state of the system, destroying any quantum coherence in the process. The
information is then compared with a reference state to produce an error signal (the difference
between measured and desired states). The controller processes the information, using the
error as the basis to act on the system (via actuators) that drives the system from an
unknown initial state to the desired final state. The control system is clearly stochastic and
irreversible due to the measurement that must be made in order to compare the states of
the system and desired reference. (b) A fully-coherent feedback system transfers "quantum
information", i.e., information about amplitudes and phases (the double solid lines). In
this case, sensor, controller, and actuator are themselves quantum systems that interact
with each other and with the system to be controlled in a coherent fashion. Although
the reference state must change during implementation of the feedback loop in order to
contain the information originally contained in the initial state of the system, the elements
of sensor (to obtain information about the system), controller and actuator (to drive the
system to the desired state based on the acquired information) are still present. In addition,
fully-coherent quantum feedback can perform tasks impossible for the classical controller:
transfer of quantum correlations.
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of becoming correlated with it. This destructive feature of quantum measurement holds

even for the least invasive type of measurement, a so-called "non-demolition" measure-

ment [46-49]. For a quantum feedback loop to be non-destructive, the sensors must get

information without making any measurements. Although this requirement sounds at first

self-contradictory, it can be fulfilled if the sensor in the quantum feedback loop is itself a

quantum system that interacts coherently with the quantum system to be controlled. Such

a sensor can be thought of as obtaining "quantum information" that carries information

about quantum phases as well as amplitudes. For the complete quantum feedback loop to

preserve quantum coherence, the controller and actuator must also be quantum systems:

the controller must process the quantum information obtained by the sensor in a coherent

fashion, and the actuator must feed back that information into the system in a way that

preserves quantum phases. Fig. 3-1(b) depicts a graphical representation of fully coherent

quantum feedback.

At first, it might seem that a coherent quantum feedback loop requires a quantum

controller capable of performing large-scale quantum computations, a technically difficult

task [50-54]. In fact, a controller need not be complex to be effective: a useful classical

controller can be constructed from a single operational amplifier, and as will be shown

below, an effective quantum controller can consist of a single nuclear spin. The idea of

using one nuclear spin to influence another in a controlled fashion is a familiar one in

nuclear magnetic resonance (NMR), and has been used in double-resonance processes since

the 1950's [55-57] to exchange or "swap"5 the states of two spins. Double-resonance swaps

figure prominently in NMR quantum computation [52, 55, 58]: they can be used to realize

the quantum information exchange process proposed by Feynman [59] and elucidated by

Lloyd [52], Barenco et al. [60] and Zukowksi et al. [61]. In the experiment below, the use of

a double-resonance "swap" is used to construct an experimental realization of a quantum

feedback loop that performs a task that is not possible using a classical feedback loop. Like

Monroe's classical feedback loop [45], the quantum feedback loop constructed here also

controls the behavior of a proton in a nucleus, but uses nuclear magnetic resonance rather

than optical techniques.
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3.2.2 The "No Cloning" theorem and coherent control

It is perhaps not surprising that the fully coherent quantum feedback loop proposed and

demonstrated in this paper uses a "swap" operation. In fact, if in addition to the initial state

of the quantum system the desired reference state is also unknown, then a "swap" operation

using fully coherent quantum feedback is the only method of control. This is true because it

is impossible to characterize the unknown reference using the classical information required

by the comparison step in the classical feedback algorithm-impossible because of the well-

known "no cloning" theorem [62, 63]. For similar reasons it is not possible to regulate the

system near an unknown desired reference state. Specifically, to preserve quantum coherence

the information contained in the initial unknown state of the system must be contained in

the final state of the quantum controller; therefore, the reference state after the feedback

loop has been closed is no longer the desired reference state. Coherent regulation of the

system near the desired state therefore requires multiple copies of the reference state, which,

as noted, is prohibited if the desired reference state is unknown.

If instead the desired state is a known state, the system can still be controlled using the

same "swap" operation that guides the unknown initial state of the system to the desired

final state and stores the unknown initial state in another system. Furthermore, regulation

of the system near the desired state is possible by repeated application of feedback. In

this case, as in the classical case, each instance of feedback requires a fresh copy of the

reference system. The inclusion of multiple copies of the reference in the controller does not

therefore diminish the essential role of the quantum feedback loop as a system that must

obtain quantum information and then act back on the system based on that information.

Finally, the coherence-preserving quantum feedback loop can perform a control operation

impossible for a classical feedback loop: transfer of quantum correlations.

3.2.3 Quantum correlations

It has been known since the work of Einstein, Podolsky and Rosen in the 1930's that quan-

tum systems can exhibit types of correlation that are not permitted classically [64-68]. Such

peculiar quantum correlations are of considerable importance in quantum communications

and computation: they are required for quantum teleportation and in some schemes for

quantum cryptography [69], and their systematic manipulation is the key for the exponen-
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tial speed-up of computations such as factoring using quantum computers [70-73.

There are a variety of ways in which quantum systems can exhibit non-classical corre-

lations [64-68]. The best known example of non-classical correlation is entanglement (see,

for example, Eqs. 4.2 and 4.3); however, two quantum systems can be in a separable, i.e.,

unentangled, state, and yet still exhibit intrinsically quantum mechanical correlations that

cannot be transferred by means of a classical controller. When the density matrix for two

systems B and C can be written in the form

PBC Z akPBPC (3.3)
k

where

Tr P BOC Okk'

then it is possible for a classical controller to transfer B's correlation with C to a third

system, A, by making a measurement on B to determine which of the p states B is in, and

preparing A in that state. Conversely, when the state for B and C cannot be written in the

form of Eq. 3.3, any measurement that the controller makes on B necessarily destroys off-

diagonal terms in the density matrix for B and C. Accordingly, the intrinsically quantum

correlation between two systems whose state cannot be written as in Eq. 3.3 cannot be

transferred by conventional feedback control of quantum systems using a classical controller.

This correlation is non-classical, as any classical correlation can in principle be transmitted

down a classical communications line. Note that if B and C are spins, Eq. 3.3 is equivalent

to the condition that their density matrix is proportional to

p oc 1 + bIB + cIC + dIC (3.4)

for some generalized Pauli matrices IB, IC, and I'C. As will be seen below, there exist

states of the form of Eq. 3.4 that are separable: as a result, there are separable states that

possess a form of non-classical correlation.
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3.3 Using NMR to Demonstrate Quantum Dynamics

3.3.1 Density matrix description of the state

The spins in an NMR sample containing of order o(1018) molecules can to good approxi-

mation be treated as a macroscopic ensemble of isolated spins [56, 74]. Weakly-polarized

macroscopic ensembles of spins in an NMR sample are conveniently described by an average

density matrix (rather than a wave function, or "state vector"), which contains the same

information with respect to measurement. In an external, z-oriented magnetic field at room

temperature, the equilibrium Boltzmann distribution over an ensemble of homonuclear spins

in a liquid NMR sample gives the average density matrix (per molecule) approximately pro-

portional to

ptot oc 1 + o jou,(35ptto1+f Zu (3.5)

where

f3 = 2pjBo/kBT = hwj/kBT ~ hw/kBT 1 (3-6)

is the Boltzmann factor for the j'th spin. For a typical nuclear spin of interest, the Boltz-

mann factor is << 1; for example, with w 100 MHz for 13C in a static magnetic field

of Bo = 9.6 Tesla, the room-temperature (T 300 K) Boltzmann factor is of order 10-6.

Higher order terms in the density matrix expansion can be neglected [56]. Only the devi-

ation of the density matrix from unity, rescaled in the rest of this paper (at equilibrium,

Peq = ' o- ), represents surplus or deficit populations in energy levels whose transitions

are observable in NMR. For the rest of the dissertation, "density matrix" shall refer to the

rescaled deviation density matrix.

Evolution of the density matrix is conveniently expressed in the Heisenberg picture,

where the Schr6dinger equation (Eq. 1.1) becomes

' [I , p] (3.7)at h

For piecewise time-independent Hamiltonians, the solution to Eq. 3.7 is given by

p(tk + Atk) = e Tiwk Atk p(tkek tk . (3.8)

Therefore, for a unitary operator U = eki, a new density matrix is found by applying U:
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p(tk + Atk) = Up(tk)U-4. For convenience, in all that follows h will be set to 1.

The equilibrium density matrix represents a highly mixed, thermal state. Techniques

now exist whereby it is possible to create an effective pure state in a liquid sample of

essentially non-interacting molecules at room temperature, meaning that the density matrix

transforms under unitary operations exactly as a pure state density matrix [74, 75]. Since

only the deviation density matrix, averaged over the whole sample, contains observable

magnetization, the results obtained from unitary transformations on a pseudo-pure NMR

state are identical to those that would be found were one to perform the same operations

on a single quantum system. For example, the same unitary operator (e.g., U = eY o f )

that transforms a pure state (e.g., 1+ + +)) into a GHZ state (e.g., 1p)) also transforms the

deviation density matrix of an ensemble pseudo-pure state into a density matrix with the

identical, non-classical correlations. (See Chapter 4 for details about this unitary operator

and GHZ correlations.)

3.3.2 Experimental setup

Construction of the quantum feedback loop (and the verification of GHZ correlations in the

following chapter) were performed on a Bruker AMX400 spectrometer. In our experimental

setup, coils were available to provide a gradient in the z-oriented Bo across the sample. The

result of a gradient is to introduce phase variations in the sample that vary spatially, which,

when averaged over the whole sample, represent non-unitary operations on the ensemble

density matrix. A gradient pulse produces a net loss of any bulk magnetic moment along

the gradient direction by destroying phase coherence and thus removing the single-quantum

coherence elements in the density matrix that are off the main diagonal.

In addition, another set of coils in the x - y plane provided rf pulses that cause nearly

unitary rotations of the density matrix. Selective pulses can be created using shaped pulses

(e.g., sinc or gaussian wave forms) whose net effect in the frequency domain is to rotate

on-resonance spins. These selective pulses can be used to provide o or o'y rotations in the co-

rotating reference frame. Similarly, unitary transformations that at a desired time average

to zero unwanted terms in the Hamiltonian (io) are possible by applying appropriately-

named [7r] refocusing pulses.

The rf coils were also used as pick-up coils to measure magnetization in the x - y

plane. For three spins (as in the demonstration below), the observable magnetization is the
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spatially-averaged signal (S) during NMR signal acquisition, which is proportional to

SMt - Tr [PMt)(aj + 'aj)j (3.9)

Other elements of the density matrix are unobserved. Correlations between spins can be

read directly from the spectra produced by plotting the Fourier transform of the induction

signal.

The sample used in the feedback loop demonstration was triply-labeled (13 C) alanine

(C 3 H 7NO 2 ). The principal terms in the Hamiltonian for the spin system are

1 A 1 B 1 C 7r A01B 7r B C (0
WO WAnz + -WBrz + -WCrz + -JABUz z+ JBCUz .z

where wj is the Larmor precession frequency (including the effects of chemical shift) for spin

j, and where Jk is the usual scalar coupling between spins j and k. The experiment used

'H decoupling to effectively remove (average to zero) the terms in the Hamiltonian that

couple the hydrogen and carbon nuclei. The strengths of the coupling interactions between

the carbon spins in alanine are JAB 53.4 Hz and JBC = 35.3 Hz. The scalar interaction

between spins A and C is small (JAC = 1.4 Hz); this term in the Hamiltonian, and all other

interactions (including the effects of diffusion and relaxation), can be neglected over the

- 160 ms during which the entire experiment takes place. A typical spectrum is shown in

Fig. 3-2.

Table 3.1: Constants in the Alanine Experiments.

Constant Symbol Value
Background magnetic field Bo 9.6 Tesla
Transmitter frequency Wf 100.617360 MHz
Resonant frequency of A spins (relative to wf) WA 12580 Hz

Resonant frequency of B spins (relative to wf) WB 0 Hz
Resonant frequency of C spins (relative to wf) wC -3442 Hz
Scalar coupling constant JAB 53.4 Hz
Scalar coupling constant JBC 35.3 Hz
Scalar coupling constant JAC 1.4 Hz
Relaxation time constant T1 el s
Decoherence time constant T2 r450 ms
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Equilibrium Spectrum of Alanine
A B C

12580 0 -3442
Frequency [Hz] (Relative to 100.617360 MHz)

A spins B spins C spins

JtL 

12630 12580 12530
Frequency [Hz]

50 0 -50
Frequency [Hz]

-3392 -3442 -3492
Frequency [Hz]

Figure 3-2: NMR Spectrum of Alanine. The spectrum is the Fourier transform of the

free induction decay signal observed after each spin's magnetic moment is rotated into the

transverse plane from equilibrium. The spectrum shows a multiplet of four lines for each of

the three 13 C nuclei, each corresponding to an allowed energy transition, and plotted with
frequency (or energy) increasing from right to left. The frequency of each of the four lines

in a multiplet corresponds to the resonant frequency when the other two spins are either

I--), I-+), I+-), or I++). For example, the spectrum for the B spins shows the four lines
that correspond to the case when the A and C spins are, respectively (from left to right):

|-)AI-)c, I-)Al+)c, |+)AI-)c, and |+)Al+)c-
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3.4 Quantum Feedback Control

3.4.1 Controllability of closed-loop quantum systems

As in classical control, two important questions for any quantum control method concern

controllability and observability [23]. For Hamiltonian quantum systems with dynamics of

the form

= r (t)O O6 (3.11)
k

where OA and B are Hermitian operators acting on the system (A) and the controller

(B), respectively, and where the rk(t) are controls, S. Lloyd extended the classical measures

of controllability and observability for fully coherent quantum systems [76]. It is assumed

that at least one interaction between system and controller is non-trivial; that is, for some

k, neither O nor O is the identity. Following the notion that a system is controllable if it

can be driven from an arbitrary initial state to any desired final state, Lloyd proposes the

following: a quantum system with Hamiltonian R is controllable by a quantum controller

if and only if the algebra generated from {W7o, Ok} by commutation is the full algebra of

Hermitian operators for the system.

The dynamics for the control system presented here consists of the natural Hamiltonian

(Wo in Eq. 3.10) and selective rf pulses (A , oA, oB, o, etc.) as described in the Ex-

perimental Setup section above. Note that the natural Hamiltonian contains the coupling

term of the form ~ JABf a_, (with fixed coupling constant JAB). This term provides the

coupling between the system and the controller, and can be "turned off," or averaged to

zero, at a desired time t by applying refocusing [7r] pulses on A and/or B such that the

sign of the ao- term is (+) for net time i and (-) for the other net time 1. Given

the usual commutation relations among the Pauli spin operators, the algebra generated by

{ao-,o-B,oAf O,rA , o-} easily satisfies Lloyd's controllability criteria, even without using

oA and oB:

o A o -
ci X

orB aB
Xi =

A AAOy 2 -[or 7, z~
B 2 B BB Y2 [ r 0
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oA = orz z

01B = rB
z z

AB = I[[ 0,A ], [ffB 0 ,], 0 A 0 B

oo = [[oA O-A],BoAoB|
ofX o = 16 o o z LX, I, ZoJ]

o.xjo = [ooo]

y 7,1A B = 1[[o , o], A o ]

Ar 1 BZ[O~ rA0 i o rB

oAo = ~[oBCofoB]

ojo 0 .  = ARo

z z z x

Therefore, the quantum system is controllable via fully coherent quantum feedback.

3.4.2 Controlled-NOT: A geometric effect

An integral part of coherent feedback is coherently correlating spins; it is necessary for

coherent sensing and actuation, and in general is required for all schemes in quantum infor-

mation processing. Correlating spins can be accomplished using a C-NOT gate (similar to

the XOR gate in digital logic) [74]. In effect, the C-NOT gate applies a unitary transforma-

tion that "flips" the state of one of the spins conditional on the state of another spin [77].

Specifically, application of

UC-NOT = e 2 a (B)' 2 (3.12)

rotates the A spins by [ir] about the axis a(O) (axis in the x-y plane with phase 0) only if the

B spins are in the state I-)B. The gate can be decomposed using unitary transformations

that involve only scalar coupling terms in the natural Hamiltonian and selective rotations;

using the algebraic rules of Ref. [77] produces:

UC NOA A i A0 B i3A
UC-NOT = e e We- e ' (9O (3.13)
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Pulse sequences that implement this transformation are shown in the experiment below.

3.4.3 Experiment

The goal of the quantum feedback experiment is to control the state of a "system" spin

(spin A) by constructing a quantum feedback loop via a "controller" spin (spin B). More

specifically, the experiment sets up an initial quantum correlation between the controller

spin and a third, "ancilla" spin (spin C). The ancilla spin is not part of the controller

and does not participate in the feedback loop; it is coupled only weakly to the system spin

and effectively does not interact with the system spin over the time scale that the feedback

loop operates. A quantum feedback loop is then used to transfer the correlation from the

controller spin to the system spin.

Since the scalar coupling between spins A and C is small (see Table 3.1), we identify

the system with spin A, the sensor/controller/actuator with spin B, and the ancilla with

spin C-all distinct 13C nuclei in an alanine molecule. (See Fig. 3-2.) All spins are initially

in the thermal state (Eq. 4.4); thus, the spins are initially uncorrelated.

The experimental procedure for setting up the entangled state and accomplishing the

coherent quantum feedback is as follows:

I. Quantum Correlation: a correlated state is set up between the controller spin B and

the ancilla spin C. The pulse sequence

[, ] BC _11

Peq -[XC[ - - > Pinit
2y 4JBC 4JBC 2x

puts the spins in a state whose reduced density matrix is:

pinit = -0oA + 0 Ba - a o-aC

or, in matrix form,

(BC)

10 0 1
(A)

-1 0 0 -1 -1 0
Pinit = ) 0. (3.14)

1 0 0 1
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In the pulse sequence notation, each bracket containing an angle represents a rotation of

the spins in the superscript around the axis in the subscript by the angle enclosed within

the bracket, and the terms containing Jjk indicate a delay of the indicated time for the

scalar coupling between spins j and k to develop before the next rotation is applied. A

representative spectrum of this state is shown in Fig. 3-3.

The density matrix prepared by the above pulse sequence cannot be written in the form

of Eq. 3.3 (or Eq. 3.4), and so cannot be transferred by a classical controller. Note that

the correlation procedure puts B and C in a mixture of Einstein-Podolsky-Rosen (EPR)

entangled states [60, 61, 64-68]. As noted in [67], this state is a separable, i.e., unentangled

state; it nonetheless exhibits quantum correlation that cannot be transferred classically. If

the same pulse sequence were applied at zero temperature, B and C would be in a pure

EPR state and would be strongly entangled. The quantum feedback loop created below

transfers any form of quantum correlation, including entanglement.

II. Coherent sensing: the controller acquires quantum information from the system. The

pulse sequence

1 B i C - ["rB

Pinit -- - -[Ar]- - - - -- +Psens
2 X 4JAB 4JAB 2 y

flips B if and only if A is in the state I-)A: a C-NOT gate. B becomes coherently correlated

with A, i.e., B has now acquired quantum information about A. At this point the spins are

in the state

Psens A 0z -_z BC B C

See Fig. 3-4.

III. Coherent control and actuation: the controller processes the quantum information

and feeds it back to the system. The C-NOT pulse sequence

Psens ~--+ ~- ~~ - X- - - -] Pact
2 , 4JAB VJAB y

first flips A if and only if B is in the state I-). This sequence causes B to coherently process

the quantum information acquired in step II and to feed it back to act on A. A and B are
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Correlation Between Spins B and C

B spins

I 1
12630 12580 12530

Frequency [Hz]

I I 1

50 0 -50
Frequency [Hz]

-3392 -3442 -3492
Frequency [Hz]

Figure 3-3: A Quantum Correlation. The controller spin (B) and an ancilla spin (C)
are perfectly correlated. For example, the B spins are 1+) whenever the C spins are |-),
and are I-) whenever the C spins are 1+). Neither B nor C is correlated with A, since half
of the B spins (and half of the C spins) are 1+) and half are I-) whenever A is |+). The
same is true when A is I-). No classical controller can transfer the correlation between B
and C to A.
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After Coherent Sensing

B spins

12630 12580 12530
Frequency [Hz]

50 0 -50
Frequency [Hz]

-3392 -3442
Frequency

Figure 3-4: The Controller Acquires Quantum Information. Instead of making a
von Neumann measurement, the purely quantum controller B becomes correlated with the
system A. B acquires both amplitude and phase information about the state of A. However,
no irreversible measurement is made.
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still correlated at this point. A final C-NOT pulse sequence

Pact - -- - [r], - - - pf
4J]_ ,] [ AB 4VAB. 2y

completes the feedback loop, decorrelating A from B and completing the transfer from B

to A of B's initial quantum correlation with C. The spins are now in the state

pf = -oA + o z or - oy yC
Pf z +tU z Y

or, in matrix form,

Pf = ( -1

0

0

1)
(B)

0 L
1

0

0

1

0

-1

-1

0

0

-1

-1

0

1

0

0

1

(AC)

(3.15)

A representative spectrometer trace of this state is shown in Fig. 3-5.

3.4.4 Results

As Figs. 3-3 and 3-5 show, the quantum feedback loop operates as expected. The measured

initial and final density matrices, as determined via tomography, were experimentally found

to be

Pinit o (-1.0

0.01

-0.96
Pf OC

0.12

0.01

1.0

(A)

0

(B)
0.12

0.96

0.99

-0.04

0.12i

1.0

0.92

-0.03i

0.05i

0.97

(BC)
-0.04

-0.99

-1.0

0.08i

0.03i

-1.04

-0.93

0.05i

-0.12i

-1.0

-0.99

0.04

-0.05i

-0.93

-0.92

-0.03i

1.0

-0.08i

0.04

0.99

0.97

-0.05i

0.03i

1.04

(AC)

I
60



Closing the Quantum Feedback Loop

B spins

I I

12630 12580
Frequency

12530
[Hz]

1
50 0

Frequency

1

-50
[Hz]

I 1 1
-3392 -3442 -3492

Frequency [Hz]

Figure 3-5: Closing the Feedback Loop. Allowing the controller B to interact with

system A in a coherent and controlled manner has allowed B to transfer its initial correlation

with ancilla C to A. At this point, A and C are correlated, although they have no direct

interaction between them. In the trace, A is I-) whenever C is 1+), and A is |+) whenever

C is I-). The same is true of C with respect to A. The B spins, in contrast, end in the
same uncorrelated state in which A began.
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respectively. The fidelity of the transmission of the quantum correlation, defined for the

initial and final reduced density matrices as

F(pi, pf) = 1 - (3.16)

was 91.5%. Errors were mainly due to imperfect flip angles, especially miscalibration of

the refocusing [7r] pulses, and to signal noise incorporated in the data during numerical

analysis. Decoherence caused by the relaxation processes contributed only minor errors

since the entire program execution time of 42.3 ms was much smaller than the smallest T2

for the nuclei (approximately 450 ms for the C spins). The low errors for the transfer of

correlation (8.5%) and for the transmission of the initial system state to the final controller

state (11.5%) indicates the high degree to which the transformations were unitary.

3.5 Conclusions

The quantum feedback loop accomplishes several tasks that cannot be performed by con-

ventional feedback control of quantum systems. First, it is non-destructive: the initial state

of the system spin is not destroyed by sensors but instead transferred to the controller spin.

Second, it is deterministic: because no irreversible measurement is made, no probabilistic

element is introduced. Third, the transfer of quantum correlation to A could not be ac-

complished by a classical controller, as any measurement that a classical controller makes

on B would destroy some off-diagonal terms in the correlated state 2II - 2Ij IC. To

transfer quantum correlation from B to A, A and B must interact directly via an intrin-

sically quantum-mechanical interaction such as the quantum feedback loop demonstrated

here. In addition, the weak interaction between A and C, (JAC = 1.4 Hz), precludes any

direct transfer of correlation from C to A over the short time scale < 0.05 seconds over

which the experiment takes place.

In addition to transfer of quantum correlation, potential applications of coherent quan-

tum feedback control include stabilizing quantum dynamics [78](e.g., to improve frequency

standards), quantum trajectory tracking, and quantum error correction [70-73].

As this experiment suggests, the implementation of a quantum feedback loop in NMR

is particularly straightforward to accomplish. The concept of fully quantum feedback is not
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limited to NMR, however, and coherent quantum feedback loops might also be constructed,

albeit with more difficulty, in the context of quantum optics, ion and atom traps, and Bose-

Einstein condensates. Essentially any system that allows quantum information processing

can be used to construct a coherent quantum feedback loop.
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Chapter 4

GHZ: An Open-Loop Control

Experiment

4.1 Introduction

The GHZ experiment presented below serves to establish two main objectives: first, to

explicitly demonstrate the design and construction of an open-loop quantum mechanical

controller; and second, to demonstrate Greenberger-Horne-Zeilinger correlations in an en-

semble of quantum mechanical systems.

4.1.1 Quantum mechanics and paradoxes

As noted in the previous chapter, quantum mechanics is well-known to exhibit strange

effects. Perhaps the strangest of these effects is the possibility of correlations between

quantum-mechanical systems that, under certain measurement scenarios, defy an intuitive

explanation of the results when a classical view of physics serves as the basis for that in-

tuition. The original such effect is the Einstein-Podolsky-Rosen (EPR) effect [64, 65]. In

the version of this effect due to Bohm and to Bell [66, 79], two particles in an entangled,

or quantum-correlated, state exhibit correlations between the results of measurements that

cannot be explained under the assumption that those results were predetermined by the

states of hidden variables. Specifically, consider two spin-! particles in a quantizing mag-

netic field oriented along the z-axis. The standard product basis for the pure states of such
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a system is

where |+) and I-) respectively represent the state of a spin: aligned ("up") or anti-aligned

("down") with the external magnetic field. Suppose the two-spin system is prepared in the

pure state 1++), and subsequently rotated via the unitary operator

us = e /( 2 ) 1  (4.1)

where o-k is the Pauli spin matrix representation proportional to the angular momentum

operator along the k-axis, and the superscript indicates to which spin the operator is applied.

Then the resulting state is the singlet state,

|@s) = (1+-) - |-+)) . (4.2)

Such a state is maximally entangled with respect to the product basis since the state of

the system can be completely described by the single, inseparable wave function of Eq. 4.2

while the uncertainty in the state of either spin-whether "up" or "down" -is maximal.

It is clear that the singlet state (Eq. 4.2) could in principle be used to verify the non-local

effect of quantum mechanics. For example, if a measurement were made of the polarization

of the first spin along, say, the x-axis, quantum theory predicts that the wave function

for the two-spin system would collapse to either 1+-) or |-+), each with probability 1.

Then, if a measurement were subsequently made of the polarization of the second spin

along the x-axis, quantum mechanics predicts with certainty that the second spin will be

anti-aligned with respect to the first spin. Although in this example the x-axis was chosen

as the measurement axis, the result (i.e., anti-aligned spins) is independent of this choice;

however, it is perhaps counterintuitive that the result is also independent of how temporally

close the two measurements are made, regardless of the spatial distance between the two

particles. A collection of data on a statistical number of such measurements would reveal

that this particular correlation violates Bell's inequalities.

Original attempts to reconcile intuition about local effects with the non-local quantum

predictions led some scientists to propose additional variables, called "hidden" variables,

to describe the outcomes of quantum measurements [64, 65, 79]. However, in 1964 J. Bell
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demonstrated that no classical probability distribution over a finite set of variables could

reproduce the quantum-theoretic predictions [66, 80-83].

In the EPR effect, the contradiction with the classical hidden variable picture is statisti-

cal: the probabilities for the results of measurements on the quantum systems violate Bell's

inequalities, which set limits on the maximum amount of correlation possible between two

classical systems. A long series of experiments are required to convincingly establish the

existence of the EPR correlations. A more striking contradiction with the local hidden vari-

able picture is obtained in the Greenberger-Horne-Zeilinger (GHZ) effect, in which a single

set of measurements on three correlated quantum particles gives results that are perfectly

correlated in a pattern that is classically impossible [84]. While experimental evidence to

support the non-local predictions of quantum theory using EPR-like experiments have been

performed using visible photon-correlation experiments [85-91], double-slit scattering exper-

iments [92], and gamma-ray experiments [93-95], the GHZ effect has resisted experimental

demonstration until recently.

4.1.2 The Greenberger-Horne-Zeilinger experiment

The following version of the GHZ experiment is due to Mermin [96]. Consider three spin-1/2

particles, labeled A, B, and C, prepared in the state

1
|$)) = 7=(1+ + +) -| ) 43

where as above, I+) represents "up" along the z-axis and |-) signifies "down" along the

z-axis. Now consider the results of the following products of spin measurements, each made

on state 10):

(i) particle A along x, particle B along y, and particle C along y. Note that since

oA9 BoC|) = +I@), the product of the results of these measurements should be +1, where

+1 corresponds to the result |+), and -1 corresponds to |-).

(ii) particle A along y, particle B along x, and particle C along y. As in scenario (i),

since orAUoU<V|) = +IV)), the product of these results should be +1.

(iii) particle A along y, particle B along y, and particle C along x. Again, since

OA o lof|) = +1@), the product of these results should also be +1.

(iv) particle A along x, particle B along x, and particle C along x. In this case, there
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is a significant sign difference: oAo B 7fof|p) = -1@), so the product of the results should be

-1.

The minus sign in the final scenario is crucial for those who attempt to differentiate

between quantum mechanical and classical (i.e., hidden-variable) descriptions of reality.

No classical hidden-variable model that assigns a classical variable (such as +1 or -1) to

the measurement of each individual particle's spin along axes x and y could reproduce

the quantum predictions: classically, the product of the four scenarios above for a hidden-

variable model must yield +1 because each particle is measured along each of the two axes

exactly twice.

In addition to demonstrating purely quantum correlations that have no classical ana-

log, the above set of measurements has the potential to verify the hallmark of quantum

"weirdness": non-locality. The GHZ experiment-as originally conceived-requires that

the measuring apparatuses for the three particles be sufficiently distant from each other

so as to eliminate the possibility of local, classical interactions between measurements that

might duplicate the quantum mechanical predictions. In NMR experiments, the effective

distances between any three spins in a molecule are typically a few angstroms at most; as

such, it is practically impossible to demonstrate non-local effects using NMR. However, the

NMR experiment below shows how it is possible to create correlations in an ensemble of

spins that collectively represent the same quantum GHZ correlations that would be present

in a pure 3-spin system in a GHZ state.

4.1.3 Using NMR to demonstrate GHZ correlations

GHZ experiments on pure, 3-particle systems are difficult to realize in the laboratory where

the problems associated with faithfully preparing the required state 10) and carefully making

the necessary measurements pose formidable obstacles. An experiment by Bouwmeester et

al. exhibits an optical version of the GHZ state for widely separated photons [97]. However,

the way in which this experiment was performed made it difficult to exhibit the full set of

GHZ correlations. Recent discoveries in the field of quantum information processing using

NMR make possible an analog GHZ experiment that validates the GHZ correlations required

by a quantum mechanical description of the universe [55, 58, 74]. The idea of using NMR

to demonstrate GHZ correlations was proposed in [98], and an effective GHZ state was first

created using NMR in [99].
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NMR offers a number of advantages in performing tests of few-particle quantum me-

chanics, including: (1) weak measurements that allow the direct determination of ensemble

density matrices; (2) long decoherence times; (3) simple, well-understood Hamiltonians; (4)

gradient techniques that allow the construction of effective pure states and the controlled

decoherence of samples. These features of NMR make it possible to use quantum systems

in mixed states at room temperature to mimic precisely the dynamics of a quantum system

in a pure state at low temperature. As a result, NMR is an ideal demonstration system for

the predictions of quantum mechanics involving few-variable systems.

Despite the advantages of NMR quantum information processing techniques listed above,

it is important to note that demonstrating GHZ correlations using room-temperature NMR

differs in significant ways from performing the GHZ experiment as originally envisaged. In

particular, because the NMR experiment is inherently local, the NMR demonstration of

GHZ correlations cannot rule out nonstandard interactions between classical hidden vari-

ables that conspire to exhibit apparently quantum mechanical correlations. In addition,

because the NMR experiment is performed on thermal states, though the spins in the ex-

periment mimic the effects of entanglement, they are not in fact entangled: as a result, the

NMR experiment cannot rule out local hidden variables. Nonetheless, like the optical exper-

iment reported in [97], the NMR demonstration of GHZ correlations provides unambiguous

results that clearly follow the predictions of quantum mechanics. The correspondence of

these results from very different physical systems provides confirmation (though not proof)

of the underlying quantum nature of physical dynamics and strongly suggest that a full

GHZ experiment would lead to the same results.

It is important to keep in mind that although the density matrix for an ensemble in an

effective pure state is the same as the density matrix for an ensemble in which some fraction

of the systems are in a pure state and the remainder are in a completely mixed state, these

two ensembles are not the same. Two different ensembles may have the same density

matrix [100]. In particular, when an effective GHZ state is constructed in an ensemble

composed of some systems in a pure state and the remainder in a fully mixed state, the

systems in a pure state are in fact in GHZ states. In the ensemble constructed here, each of

the systems is in a unitarily-transformed version of a thermal state; none are in GHZ states.

Nevertheless, since two ensembles with the same density matrix are indistinguishable with

respect to measurement, the effective GHZ state constructed is just as effective as an actual
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GHZ state for demonstrating the correlations predicted by quantum mechanics.

4.2 Demonstration of Open-loop Control of a Quantum Sys-

tem

As in the previous chapter, the experiment below used the three 13 C nuclei in an ensemble

of alanine molecules. (See Fig. 3-2). The experiment creates correlations in the ensemble

which, when measured, reveal the same correlated pattern that would be present in a pure

three-particle GHZ experiment.

4.2.1 Experiment

The experiment works as follows:

(I) Equilibration. The sample is allowed

density matrix is:

A B C
Peq -O' + 0z +O~ =

/

to come to thermal equilibrium, in which the

3

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

-3

(4.4)

/
(II) Preparation. The

states using the following

sample is prepared in an

operations:

incoherent mixture of two pseudo-pure

7- [B] o [rH[7] z00z0

2 _ 8JBC 0* 2 IBC 1350 []

[.7]r A 1 H [ 7]0 z2 -90* [SAB - -8JAB 2 1350 O

- B [ H [ B -- 00~o - -- p,2oo AJAB AVAB 2 -90*
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As in the previous chapter, each bracketed expression represents one matrix operation:

brackets containing angles indicate an rf pulse that selectively rotates the superscripted

spin by the specified angle, where the subscripted "phase" designates the axis of rotation

in the x - y plane of the co-rotating frame; and brackets containing a coupling constant

indicate free evolution of the system under the natural Hamiltonian for the time indicated to

allow the pertinent scalar coupling term to correlate spins. Brackets with partial derivatives

indicate an applied gradient in the magnetic field along the direction in the denominator; the

effect of the gradient pulses is to change the eigenstructure of the density matrix. Brackets

with a superscript (H) represent hard pulses on the hydrogen channel. Selective pulses in

this experiment required a pulse length of 2 ms.

The result of the preparation sequence is the density matrix:

ppp

01
4 z

1

0

0

0

0

0

0

0

+1 aB

4 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

4 z zz

0 0
0 00 0

0 0

0 0

0 0

0 0

0 0

0 -1

(4.5)

which transforms like a balanced mixture of two pseudo-pure states:

- -|) .

(III) Rotation. The density matrix for the sample is now

e 4 x xE using the sequence:

Ppp -- + - [ ]- 00
-j-90. - AB -AB

[.r]B,C 
[7]H

02 Ao BC 00 4JBC

rotated via unitary operator
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- BC ' [ A

2 1800 4 JAB. .4JAB .- 90

The density matrix thus rotated becomes

PGHZ x y o-= +1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-1 0 0

Note that this matrix has the identical

from the pure state of Eq. 4.3:

-7A0 r U U
4 yx y

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

+

0

0

0

0

0

0

0

0

0A -B C A 1 B C

4 y Y x 4 xx x;

-1

0

0

0

0

0

0

0

off-diagonal structure as the density matrix formed

PGHZ O C H + -(+- -- I - - - - X+ + +) -

Thus the NMR sample as prepared above represents the same quantum correlations that

would be present in a pure, three-particle GHZ state.

(IV) Measurement. An NMR measurement that demonstrates one of the (cToYBc-c),
ooUC A .Bocc), or (o-Ao- oC correlations is now performed by applying rf pulses

to the sample to rotate the desired correlation into observable magnetization. Specifically,

to measure (A Bor), the pulse sequence

PGHZ - - -
S j-90o [2-900

followed by data acquisition with the absorptive signal phased along k will reveal the mag-

nitude and sign of the desired correlation in the spectrum on resonance with the B spins.

Steps (I)-(III) of the experiment are %en identically repeated three times, each with a

different measurement sequence (IV).
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4.2.2 Results

The results of the four measurements on the sample prepared in state PGHz are shown in

Fig. 4-1. For example, to determine the correlations between (o A aC ), look at Fig. 4-1(a).

The fact that the phase of the first line from the left is (+) confirms the GHZ correlation

that when spin A is |-) along x and spin C is I-) along y, spin B is 1+) along y. Similarly,

the second line (from the left) shows a negative peak, confirming the correlation that when

spin A is +) along x and spin C is I-) along y, spin B is I-) along y. Likewise, the third

line, with a negative peak, confirms the GHZ correlation that when spin A is I-) along

x and spin C is 1+) along y, spin B is I-) along y. Finally, the last line confirms the

correlation that when spin A is |+) along x and spin C is |+) along y, spin B is 1+) along

y. Thus all four lines in Fig. 1(a) confirm that the product of the spin of particle A along

x, particle B along y, and particle C along y yields the result +1, as in scenario (i) of the

GHZ experiment explained above.

Note that Fig. 4-1(b) shows the same four lines in the spectrum for spin B, except

that in this case the measurement sequence reveals the correlation that corresponds to

oA AaBac. As in Fig. 4-1(a), all four lines indicate that the product of the spin of particle A

along y, particle B along x, and particle C along y is +1, as predicted in scenario (ii) above.

Likewise, Fig. 4-1(c) shows the analogous +1 result when the product of spin measurements

of particle A along y, particle B along y, and particle C along x is computed.

Significantly, Fig. 4-1(d) shows a different spectrum when a measurement of the corre-

lation or A was made. In this case, when spin A is |-) along x and spin C is |-)

along x, spin B is I-) along x, as seen in the first line; when spin A is |+) along x and spin

C is I-) along x, spin B is 1+) along x; and so forth. In this case, the product of the spin

measurements of particle A along x, particle B along x, and particle C along x is not +1,

but rather -1. Taken together, the four spectra in Fig. 4-1 clearly demonstrate the GHZ

correlations predicted by quantum mechanics.

Although the NMR experiment demonstrates GHZ correlations, it cannot eliminate lo-

cal interactions as the cause of those correlations because of the close proximity of the

nuclei involved. However, no known interaction in the natural Hamiltonian (Eq. 3.10) could

be responsible for the "communication" between the nuclei that caused the GHZ corre-

lations. Specifically, measurement step (IV) required only 4.043 ms to implement; this

73



Demonstration of GHZ Correlations

(b):A B C
Y X y

(c): aA B C
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Figure 4-1: Confirmation of the quantum prediction of GHZ correlations. The four
figures show the spectrum of spin B for each of the measurements. An "up" line indicates
the state 1+) for spin B, and a "down" line indicates the state |-). Plot (a) confirms the
GHZ correlation that the product of measurements of a, on the A spins, ay on the B spins,
and uy on the C spins yields the result +1. For example, the first line in (a) indicates that
when spins A and C give the result (-1) and (-1), respectively, spin B gives the result
+1; the second line indicates that when spins A and C give the result (-1) and (+1), spin
B gives the result -1; etc., so that the product of the results is always +1. Similarly, (b)
and (c) confirm that the products oAUBUC and aAUaBaC also yield the result +1. Plot (d),
by contrast, shows that the product orABUC yields the result -1, in contradiction to the
predictions of the classical hidden variable theory.
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represents the amount of time after the GHZ preparation steps (I)~(III)-common to all

four experiments-but before data acquisition, in which the culpable classical local inter-

action could "inform" the spins of which axes were being measured for which spins and

then adjust the phase of the acquisition signal to reveal the quantum mechanical correla-

tions. Since the fastest coupling term in the natural Hamiltonian is slower than 4.043 ms

(1/2JAB = 9.36 ms), the culpable "classical demon," if it exists, would have to be a non-

standard interaction.

In addition, the NMR experiment cannot completely rule out classical hidden variables.

The effective pure state used to demonstrate GHZ correlations is in fact a mixed state of an

ensemble in which individual members are unitarily transformed from a thermal state. It can

be shown that such states can be described by non-negative discrete Wigner functions [101].

Accordingly, the results of the experiment could be "explained" by a hypothetical ensemble

of classical systems each of which possesses a definite state for its hidden variables. As

in the case of local interactions in the previous paragraph, however, to be consistent with

the measured properties of the states above (Eqs. 4.4, 4.5, 4.6), the preparation of such

an ensemble from the thermal ensemble with which the experiment begins would require a

conspiracy of non-standard interactions.

4.3 Conclusions

This chapter reported on an experiment that displays GHZ correlations using nuclear mag-

netic resonance. Creation of the GHZ correlations relied on the use of geometric control

ideas by implementing available transformations in order to guide the initial state at thermal

equilibrium to the final state in which the off-diagonal elements of the ensemble density ma-

trix displayed the same quantum correlations as a pure, three-particle GHZ state. Although

the NMR experiment performed cannot entirely rule out classical local hidden variables,

it nonetheless provides an unambiguous demonstration of the apparently paradoxical GHZ

correlations and puts significant constraints on the set of viable hidden variable theories.

Since the measured density matrix contains the same correlations as would be present in a

pure 3-particle GHZ state, the experiment underscores the ability of quantum information

processing using NMR to demonstrate quantum-mechanical predictions.
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Appendix A

Satellite Attitude Model Using

Two Single-Gimbal Control

Moment Gyroscopes

This appendix shows the derivation of the state-space model for the attitude control of a

satellite using two single-gimbal gyroscopes. In general, each body needs 6 independent

equations to describe its orientation in space: three rotation angles and three angular speed

values. Thus, in general, 18 independent equations of motion are needed to describe the

attitude state of a satellite with two gyroscopes. In the model presented below, this number

is reduced to 10 independent equations by the introduction of holonomic constraints.

The orientation of the platform is conveniently expressed using the so-called "3-2-1" Eu-

ler angles, which, unlike spherical coordinates, avoids the singularity at the origin. Imagine

an orthonormal axis system (x, y, z), attached to the satellite, that instantaneously coincides

with an inertial reference frame. The Euler angles are given by the following procedure:

1. Rotate around z (in the right-hand sense) by an amount 4, where -7r < 0 _< 7r; label

the new axis directions with respect to the inertial reference frame as (x', y', z').

2. Rotate around y' by an amount 0, where -! < 0 < !; label the new axis directions

with respect to the inertial frame (x", y", z").

3. Rotate around x" by an amount #, where -7r < # < 7r.

The attitude of the satellite can then be given by the triplet (, 0, #).
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In the system described herein, the satellite frame of reference is spanned by the axis

system (ei, e 2 , e3 ), chosen to coincide with the principal moments of inertia (-1, I2, 13) for

that body. Similarly, the axis systems for the gyroscopes (called "a" and "b" for conve-

nience) are chosen along the principal moments of inertia for the gyroscopes, respectively,

as (ai, a 2 , a3 ) and (bi, b 2 , b 3 ). Letting (wI, w2 , W3) denote the components of the satellite's

angular velocity vector as expressed in the rotating satellite frame, the kinematic equations

for the three Euler angles are:

sinq# cosq#= 02 + W3 (A.1)Cos 0) cos 6

S (cos ) w 2 - (sin #) w3  (A.2)

= wi + (sinq0tan 0) w 2 + (cos # tan ) w 3 . (A.3)

The orientation of the gyroscopes is developed in the consideration of the constraints (be-

low).

The development of the dynamic equations of motion begins with Euler's equations for

a rotating body; in general,

Ix x = (Iy - Iz) Wy wz + Text x (A.4)

I Ly = (Iz - Ix) Wx Wz + rext y (A.5)

Iz Cz = (Ix - Iy) Wo Wy + rext z, (A.6)

where the axis system (x, y, z) are unit vectors along the three orthogonal principal moments

of inertia in the body reference frame, and the (Ix, Iy, Iz) are the rotational inertias around

the respective axes. In addition, rext designates all external torques on the body.

The gimbal axes are arbitrarily set I apart for convenience (although any angle that is

not an integer multiple of ir will suffice). The specific orientation is represented in Fig. A-1.

In addition, the gyroscopes are modeled as thin solid disks with the a3 and b 3 chosen along

the axisymmetric directions for the gyroscopes, so that

Ia Ia,3 = 21a,2 = 2 Ia,1 (A.7)

Ib Ib,3 = 2 I4,2 = 2 1 b,1 . (A.8)
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gyro b
a3

I a
gyro a

platform

Figure A-1: Satellite with 2 Control Moment Gyroscopes. The axis system
(ei, e 2 , e3 ) is chosen along the three principal axes of inertia for the satellite platform.
Single-gimbal gyroscope "a" has a2 as the gimbal axis, pointing along e 2 , around which

torque Ta is applied; a3 points along the axis of symmetry for the gyroscope, making an
angle of oa with the e 3 axis. Similarly, gyroscope "b" has b1 as the gimbal axis, fixed
along ei, around which torque Tb is applied; b 3 points along the axis of symmetry for the
gyroscope, making an angle of ob with the e3 axis.
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The dynamic equations of motion are thus:

Ii 1 (12 - 13) W2W3 - (7a,p ei) - (rb,p - ei) (A.9)

12 w 2  = (13 - Ii) Wi W3 - (ra,p e 2 ) - (-rb,p e 2 ) (A.10)

13 w 3  = (1 - 12) W1 W2 - (ra,p e 3 ) - (T b,p e 3 ) (A.11)
1 1

Ia (,1 = IaWa,2Wa,3 + (ra,p ai) (A.12)2 2

Ia Wa,2 Ia Wa,1 Wa,3 + (Ta,p - a 2 ) (A.13)
2 2

Ia Wa,3 = (7a,p - a3 ) (A.14)
1 1
1Ib b,1 = 21 AWb,2Wb,3 + (rb,p - bi) (A.15)

1 1
Ib Wb,2 = Wbi Wb,3 + (rb,p -b2 ) (A.16)2 2

Ib b,3 = (rb,p - b3) . (A.17)

In this notation, a subscript "p" indicates the platform or satellite, and "a" and "b" signify

the respective gyroscopes. The symbol ra,p represents the torque applied to gyroscope "a"

due to the action of "p", etc.

The constraints are as follows:

1. Gyroscope "a" is constrained by its mounts to move with the satellite such that the

gimbal axis a2 always coincides with e2. It is convenient to introduce angle Ua as

the angle between the axes systems of gyroscope "a" and the satellite, as shown in

Fig. A-1. Then the constraint implies:

a1  = (cos Ua) ei - (sin oa) e 3  (A.18)

a2  = e2 (A.19)

a3  = (sin-a) ei + (cos Ua) e3 . (A.20)

2. Gyroscope "b" is similarly constrained (see Fig. A-1), with reference angle -b with

respect to the satellite:

bi = ei (A.21)

b2 = (cos Ub) e2 + (sin Ob) e3 (A.22)

b3 = - (sin Ob) e2 + (cos Ob) e 3 . (A.23)
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3. In addition to the angle constraint above, gyroscope "a" must have Wa,1 = Wp- ai; in

other words,

Wa,1 = W1 cos 0a - W3 sinua . (A.24)

This constraint can be differentiated to produce

Wa,1 = i1 cos Oa - W3 sin 0a - Wi 6a sin 0a - Ws a cos 9a . (A.25)

4. As with gyroscope "a", gyroscope "b" has ob,2 = wp -b 2 , implying:

Wb,2 = W2 cOs Ob + W3 sin Ob (A.26)

Wb,2 = w 2 cos Orb + 3 sin Ob - W2 6b sin Ob + W3 6b cos Ub - (A.27)

5. The gyroscope mounts are assumed frictionless: no torque is referred to either gyro-

scope along its main spinning axis. One constraint is

Ta,p a3 = 0; (A.28)

6. similarly,

rb,p b3 = 0. (A.29)

7. Constraint 5 implies Wa,3 = 0, which can be integrated immediately to yield one of

the states. This particular state variable is uninteresting because of the assumed

uniformity of the gyroscope anyway. For simplicity, let wa= Wa,3-

8. Constraint 6 implies Wb,3 = 0, and like constraint 7, can be used to immediately

eliminate one of the states that describes the angular orientation of gyroscope "b".

For simplicity, let Wb Wb,3-

Having introduced o,, and Ub, it is convenient to relate Wa,2 and Wb,1, respectively, to

these relative angles. Referring again to Fig. A-1, we have:

wa,2 = 2+Ua (A.30)

Wb,1 = 1 +b , (A.31)

which can both be trivially differentiated to produce

Wa,2 = 62 + &a (A.32)

Wb,1 = L1 + Ub. (A.33)
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The kinematic expressions for the gyroscope orientations is now relatively simple; it is

natural to use a, and cab as the states that describe the orientation of the gyroscopes:

dt (d a = Ua (A.34)

d
- (Ob) = Ub. (A.35)

Finally, the inputs to the gyroscopes are the torques along the gimbal axes:

Ta Ta,p * e2 (A.36)

Tb 1-b,p ' 1  (A.37)

The constraints reduce the number of dynamic equations to five, which, when the

equivalent torque terms have been eliminated, may be solved for derivatives of interest

(C1, ;2,c)3, ab) to give:

1 r1 = I Wb Sin (20a) sin 9b (w 1 + fb &b)
=8 R 13I~sfl2as~

1 1 ral I 2
- 1 ra [1_ - R I sin2 0oa a wa cos 0a (w2 + fa 6a)

1 ra (I1 - Ia 1 rarb (13 - 1i) Ia'b sin (2a) sin ( 2 rb) wIw3

+4 R I3 si 2-)ww -16 R I213 s 2a i 2-)ww

1 2
+ 1 2) a sin2 (2o-a) (12 - R3) 12 W316 R1 113  12~aI

+ 1 rarb aIb sin (2ora) sin (2o b) ra
16 R 1213

-ra [+ 1 ra 2 sin2 (29-a) Tb (A.38)16 R I1I31
1l1rblb

12 W2 = rb 1 - R 3 Asin2ab IbWb cos Ob (w1 + fb b)21 2 R 13 
Srarb Ia Wa sin O-a sin ( 2 0xb) (W2 + fa 6a)8 R ( Ia - a 1 (rb3a &.

1 rb (I - 12) sin (2b) w1w2 + rb 1 + 1 R I3 sm2 (2b) (13 -) W134 R 13 [16im s 1213w~w

- ra (I2 - 13) Ialb sin (20-a) sin (2 0b) w2 w3

-rb + 1 rb Ib .2 (b) Ta
16 R 1 213 s

+ - sin (2o-a) sin (20-b) Tb (A.39)
16 R 1113

1rb 1ir
13 6 3 = 2 RIb Wb sin b (W1 + fb b) + Ia Wa Sin 0a (W2 + fa &a)2 R 2 R
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1 1 rb (I3 - 1) Ib
+Rj1-I 2 )wl12-4 12 sin (2R )1123

+ Ira (12 - 13) Ia sin (20ra) W2 W3

lrbl A1rala (A.40)
+4 1 sin (20u) Ta - sin (20'a) rb

1 1 rbb 2 -b
a = rb I 2- --- sin Ob o b cos Ob (W1 + fb b) + Wa COS Ua W12= 2b 2 t Rj3 12

S1 l sin ab a sin (20u) (W2 + fa 6a) - Wa sin Oa W3+ ft 12 13 W 1 1 -  b 1 ~

+1 r (Ii - I2) Ib sin ( 2 Ub) W1W2 - rb L + 1 rb Ib sin 2 (20-b) (3 - I) 0103

1 rarb (12 - 43) Ia'b s (20a) sin ( 20-) W2 W3
16 Rif 111213

21+ a 1 + 1 rb b sin2 ( 2 0-b) Ta2 021 16 R 1213  JJIa

- rarb Iabsin (2ra) sin (2Grb) rb (A.41)
1 6 ft 1J2113

ab 8 1 1b ab s n ( a sin Ob (W1 + fb Ub) - Wb COS Ub W2

+ ra 1 ] sin2 Wa a Coa (W2 + fa 6a) - Wb sin O W32 1 2fRt13  1I1

1 ra (I1 12) Ia sin (20-a) W1 o2 + 1 rarb (13 - ) Iab sin (20'a) sin (20'b) W1W3
4f R 113 16 ft 111213

[ 1 ra a s 2 (2 -13)
r1+ 16 R Iis in(23 1 13

1 rJ ft 111213sin (20-a) sin (2Cb) ra

+2{1 1 II+ 1 r I2 sin 2 (20'a) Tb, (A.42)

where we have used

1
ra ra(Ua) = 2(A.43)

1
r = rb( -)1= , (A.44)

rb rb ( U 1 + .1 A c o s22 12 
0- b

R R(a, b) + r sin2 Ca + 1rb sin2 O.b (A.45)
2 \13 213

and

fa fa(W1, W3, Ua) =1 -sin-a - cos0oa , (A.46)

fb fA(w2, w3, Ob) = 1 + W sin Ub - 3 COS O . (A.47)
Wb Wb
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To make the equations more manageable, introduce the following assumptions:

1. The rotational inertia of the platform around any axis is much larger than that of

either of the gyroscopes:

Ik >> I and Ik > Ib for all k = 1, 2, 3; (A.48)

thus, ra, rb, R, and all bracketed expressions in Eq. A.38-A.42, are very close to 1.

2. The angular speed of the gyroscopes is always (i.e., at all times t) much larger than

the the angular speed of the platform around any axis:

Wk < Wa and Wk<<Wb forall k=1, 2, 3; (A.49)

in other words, fa ~1 and fb a 1.

In addition, let the two gyroscopes be identical, with the gyroscopes spinning in opposite

directions when the state vector (see Eq. A.71) is at the origin; i.e.

w -Wa = -Wb (A.50)

I, Ia = ; (A.51)

this eliminates unnecessary complexity while still demonstrating the important features

of the system. Finally, it is convenient to non-dimensionalize the dynamic equations; we

therefore introduce:

i= W1 (A.52)
(Igog)

/2 = 12 W2  (A.53)

v3 = 13 W3  (A.54)
(Igog)

/a = (A.55)
W9

1b = - (A.56)
W

9

Ta = T2 (A.57)
I9W

Ub = . (A.58)
I9 Wo

84



The kinematic equations of motion (Equations A.1, A.2, A.3, A.34, and A.35) can be written

= sin (#)v±Q cosk (A#)9
= 1,2 v 0)12 + Q 1,3 V3 (A.59)

cos (0) cos (0)

= cos (#) V2 - Q2,3 sin (#) v3 (A.60)

Q3,1 V1 + Q3,2 sin (#) tan (0) v 2 + Q3,3 cos (#) tan (0) v 3  (A.61)

a = Q4,4 va (A.62)

6b= Q5,5 vb (A.63)

where the Oj,k are elements, indexed by (j, k), of a (10 x 8) array Q that contains only the

constants (I1, 12, 13, Ig, wg); see Eq. A.69.

With these simplifying assumptions, the dynamic equations reduce to:

6 1 ~ - Q6 ,1 sin (20a) sin (Ub) Vi - Q6,2 cos (Ua) V2

- Q6,4 cos (0a) Va - Q6,5 sin (2Ua) sin (Ob) Vb

+ Q6,6 sin (20a) ViV2 - Q6,7 sin (20a) sin (20b) vIv 3 + Q 6,8v2v3

+ C6,1 sin (2Ua) sin (ab) Ua - C6,2Ub (A.64)

2 e - Q7 ,1 cos (ab) vI - Q7,2 sin (Ua) sin ( 2 0b) v2

- Q7 ,4 sin (Ua) sin (2Ub) va - Q7,5 cos (Ob) Vb

- Q7 ,6 sin (2 Ub) v1v2 + Q7 ,7V1V3 - Q7,8 sin (20a) sin ( 2 Ub) v2v3

- 07,1Ua + C7,2 sin (2aa) sin (20b) Ub (A.65)

i'3 - Q8,1 sin (ab) V1 + Q8,2 sin (Ca) V2 + Q8 ,4 sin (9a) Va - Q8 ,5 sin (Ob) Vb

+ Q8,6ViV2 - Q8 ,7 sin (20b) v1v3 + Q8,8 sin (2Ua) V2V 3

+ C8,1 sin (2Crb) Ua - 08,2 sin (2Ua) Ub (A.66)

S 9 ,1 [cos (a) + ()cos (cb) V1 + 9,2 sin ((Ta) sin (2 0b) V2 - Q9,3 Sin (9a) V3

+ Q9,4 sin (Oa) sin ( 2 ab) va + Q9,5 cos (orb) vb

+ Q9,6 sin ( 2 0-b) VIV2 - 09,7VIV3 + 9,8 sin (20a) sin (2Ub) V2V3

+ C9,1Ua - C9,2 sin (2Ua) sin (20b) Ub (A.67)

7b Q10,1 sin (2Ua) sin (ab) Vi + Q10,2 [ (i)cos (ea) + cos ((b) V2 + Q 10,3 sin (ob) V3

+ Q10, 4 COS (Ua) va + Q10,5 sin (20'a) sin (Ob) vb

- Q10, 6 sin (2Cra) v1v2 + Q10 ,7 sin (20'a) sin (2ob) V1v3 - 910,8v 2 v 3

- C10,1 sin (2ca) sin (2Ub) Ua + C1o,2Ub , (A.68)
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where Q is given by

0 _I E 0 0 0 0 012 13

0 1 0 0 0 0 0I 2 13

IE -I L o 0 0 0 0
0 12 13

0 0 0 1 0 0 0 0

o 0 0 0 1 0 0 0
QW9  1 0 1 1 (Ii1- I2)I2  (13Il) (2-I3)I '

81113 2 12 2 8 13 4 111213 16 I1I2I 1213

-g- 0 1 (Ii -12)I q (I3-I1)Ig 1 (12-Ir3)I1
211 8 1213 8 13 2 4 111213 il3 16 I1I2I3

I1i 1 1, 0 1 1 (Il-I2)g I(3-)1)Ig i(I2-I3)12
211 212 2 2 1112 4 111213 4 111213

i _ I3 Ii I 1 I i (1 -I2)I 3  (13-Il)Ig 1 (I2-I3)I
I1 8127Is 1

3 8 1213 2 12 4 111213 16 I1If I

1 Is Ig I i 1 I 1 (I1-I2)I 1 (3-I1)I (12-13)Ig2
\g7I2I 2 1 81I3 4 I2/3 16 I2 2 iI/11 3  12 13 21 1 3 1i~ 1 2 3~2 11213

(A.69)

and where the C matrix is

0 0

0 0

0 0

0 0

0 0
C = og 1 . (A.70)

16 1213
16l

1 1 __1

4 12 411

2 1 'g
16 111213

16 II1213

Equations (A.59), (A.60), (A.61), (A.62), (A.63), (A.64), (A.65), (A.66), (A.67), (A.68)

constitute the state space model given in the text. The states are contained in the vector

x, where

X[p 0 9a Ob V1 V2 V3 Va Vb]T . (A.71)

In this case, of the 18 equations needed to describe the full state of the satellite and gy-

roscopes, there are eight holonomic constraints, leading to ten equations of motion. The

ten equations are further constrained by three non-holonomic constraints, namely, the three

equations that express conservation of angular momentum.
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For the simulation, it is convenient to express the state-space model as

5 = A (o-, O-b)

V1

1V2

113

1 1/2

111113

V12 V3

+ B (oa, O-b) a ,
Ub

where A is a (10 x 8) array containing the constants in the Q matrix and the pertinent

trigonometric functions of o-a and ob, and where B is a (10 x 2) array, likewise containing

the C matrix of constants and the pertinent trigonometric functions of o-a and o-b. Note

that the system can be written

(A.73)5C= f (x) + 1 Uk gk .
k
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