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ABSTRACT
Embedded systems dominate the consumer electronics market. Two factors that greatly affect a
product's success are cost and time-to-market. In order to reduce costs a custom design is needed.
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1 Introduction

An embedded system is a system which contains a programmable processor and is used in an

application other than general purpose computing. Embedded systems constitute the core of most

consumer electronics (e.g., VCRs, cellular phones, and handheld video games). Integrating as

much of the system onto one chip has benefits such as reduced manufacturing costs. A system

that is built with this methodology is called a System on a Chip (SOAC).

One of the most important parameters that determines the success of a consumer electronic

product is its time-to-market. Time-to-market is the time it takes a product to start and complete

its design and testing phases and be ready for production and shipment to the consumer market.

In order to cut down on manufacturing costs and improve the performance and efficiency of an

embedded system, it is important to have a custom architecture with a processor that is well suited

to the application, termed an Application Specific Instruction-set Processor (ASIP). Software and

hardware are strongly coupled so they should be designed together to achieve a more optimal

implementation (this is called Hardware/Software co-synthesis).

Once an initial design is formulated it goes through many iterations, many incremental changes

in order to improve certain parameters or trade one parameter off for another. A conflict arises

because it takes time to design a custom processor so as the time-to-market increases, the chance

of success for the product decreases. In order to get a product with an embedded system onto the

market fast the design process and evaluation needs to be automated. Automatic generation of the

design evaluation tools allows rapid evaluation of target architectures, increasing the coverage of

the design space while shortening the design time and, thus, the time-to-market.

An approach to designing embedded systems in an automated way is with the Architecture

Exploration System ARIES shown in Figure 1.
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Figure 1 The Architecture Exploration System ARIES

Given a system specification the ARIES system produces the software and hardware imple-

mentations for that system. ARIES takes as input an initial system specification which it parti-

tions into software and hardware design portions of the system. The hardware portion is dealt

with by an ASIC (Application Specific Integrated Circuit) design tool in the ARIES system. The
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software portion is divided into ASIP generation and code generation. This thesis focuses on the

automated design of the ASIP.

The Hgen Hardware Synthesis System handles the evaluation of the ASIP. In order to generate

the ASIP the Hgen system uses the description of the architecture produced by the Architecture

Synthesis System. The Architecture Synthesis system generates the description of the architec-

ture from the feedback information provided by Hgen and the other tools in ARIES. One critical

part in determining the ASIP is the binary code that will run on it. The application code is first

analyzed and then an initial architecture is generated and described in a machine description lan-

guage. The application code is compiled for the architecture and then the compiled code is

assembled into a binary code. This binary code is then simulated in the Instruction Level Simula-

tor for the given processor. Hgen gives a hardware model of the processor that is used to derive

performance measurements. The performance measurements are fed back to the Architecture

Synthesis System for the next iteration of the design. This information allows it to decide how to

vary the parameters for the next iteration of the design. Figure 2 shows the Hgen system and the

design through iterative improvement ideology
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Figure 2 Design Through Iterative Improvement

1.1 Purpose

In order to evaluate any design it is necessary to have accurate measurements of its perfor-

mance. To evaluate the programmable portion of the system (i.e., the ASIP and its application

code) the following information is needed:

- Number of cycles to run the application code on the target architecture

- Length of the clock cycle (clock period)

- Die Size

- Power consumption

The Hgen Hardware Synthesis System provides three of the four parameters needed for perfor-

mance evaluation. The ILS provides the number of clock cycles while the Hgen system provides

the physical costs of the design: the clock period, die size, and power consumption. The physical

costs are absolutely necessary to evaluate the design accurately.
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Not only does the Hgen system provide these necessary physical costs but as an added benefit

the output can serve as a first draft of the actual hardware implementation. This can cut down on

the time-to-market even further because hardware model produced for the performance measure-

ments can also be used to derive the actual hardware implementation. Most of the work needed to

get a actual silicon implementation of the design is then done by the silicon compiler.

2 Hgen Overview

The Hgen Hardware Synthesis System takes in an ISDL description of an architecture and out-

puts a synthesizable Verilog file that is a hardware model for that ISDL description.

The Hgen system needs to meet the following requirements:

- The input must be an ISDL description. ISDL was designed for ARIES to support the auto-

matic generation of all the tools. It is important to have only one description that all the tools

are based on. If all the tools use the same description language, inconsistencies between the

tools are avoided. All the tools in the ARIES system use ISDL, thus Hgen must use ISDL.

- The Hgen system outputs a synthesizable Verilog file. This output can be used by most syn-

thesis tools to create a hardware implementation in any kind of underlying technology. Syn-

thesizable Verilog also provides a clear hardware model that is readable for humans.

- The hardware model produced must be efficient. The synthesizable Verilog that the Hgen sys-

tem produces must be comparable to a hand-coded version. The goal of the Hgen system is to

produce a good design. We will define SH as the silicon area needed for the Hgen design of

an architecture x. Similarly S is the optimal design (e.g., a hand-coded design by the best

hardware designer) for architecture x. In order for the automated design process to be useful

we need to be able to compare different architectures at least at some qualitative level. This
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means the equation SAH > SBH => SAP > SB must hold. We can then define efficiency as E

= Sj / S XH. We see that when E = 1 we have an optimal design. We see that as the hardware

model becomes more efficient, the equation we must satisfy has a greater chance of holding.

- The Hgen system has to take a reasonable amount of time to give its final design. Many itera-

tions are needed to produce a reasonable design so the Hgen system must produce its output,

the output for each iteration, in a reasonable amount of time.

3 ISDL

The input to the Hgen system is a description of the candidate architecture in the machine

description language ISDL. ISDL is a behavioral language that explicitly lists the instruction set

of the target architecture. It is based on an attributed grammar in which the production rules are

used to abstract common patterns in operation definitions. ISDL models the processor as a set of

state elements and a set of operations that modify the state elements. This section only provides a

brief description of the ISDL language. For a complete description of the ISDL language refer to

[3].

An ISDL description is divided into six sections:

1. Format Section - This section describes the binary representation of the instruction word.

The instruction word is divided into fields and subfields for clarity.

2. Global Definitions Section - This section defines abstractions that will be used in later sec-

tions of the ISDL description are defined here. Two important types of definitions are:
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1. Tokens: These represent the syntactic elements of the assembly language of the architec-

ture. They can also group together syntactically related entities (such as the register names in a

register-file). Tokens are provided with a return value that identifies the different options.

2. Non-terminals: Non-terminals abstract common patterns in operation definitions (e.g.,

addressing modes). A non-terminal definition consists of the non-terminal name and a list of

options. Each option consists of the same six parts that make up an operation definition (see

Instruction Set Section below).

3. Storage Section - All the visible state in the system is given a name, size, and type.

4. Instruction Set Section - This section is broken into a list of fields, each with a list of opera-

tion definitions. This is to accommodate for VLIW architectures. Each field roughly corresponds

to a separate functional unit that runs in parallel with the other fields. An instruction is formed by

taking one operation (at most) from each field.

1. Operation Syntax - Operation name and a list of parameters. A parameter is a token or

nonterminal.

2. Bitfield Assignments - Describes how to set the instruction word bits to the appropriate

values.

3. Operation Action - A set of RTL-type statements that describe the effect of the operation

on the processor state.

4. Operation Side Effects - RTL-type statements that describe the side-effects of an opera-

tion (such as setting the carry bit).

5. Operation Costs - ISDL pre-defines three costs:

1. Cycle: the number of cycles the operation takes on hardware in the absence of stalls.

2. Stall: the number of additional cycles that may be necessary during a pipeline stall.
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3. Size: the number of instruction words required for the operation.

6. Operation timing - Defines the timing of the operation effects. ISDL pre-defines two tim-

ing parameters:

1. Latency: Describes when the results of the operation become available.

2. Usage: Describes when the functional unit becomes available.

5. Constraints Section - An instruction word is formed by grouping together operations, one

from each field. Not all combinations are valid. The constraints section describes all the valid

combinations by listing constraints for each instruction which must be satisfied in order to have a

valid instruction. Constraints help provide information about the implementation of the hardware

which helps to generate more efficient hardware for a particular description.

6. Optional Architectural Information Section - This section provides additional information

that is not necessary for the tools to function but may produce better tools. This section can be

used for information such as the presence and structure of caches or describing exceptions and

interrupts. The current version of ISDL (Version 1.0) does not predefine any Optional Informa-

tion.

3.1 The SPAM2 Example Architecture

We illustrate the structure and features of ISDL using the following example:

The SPAM2 architecture is a simple load/store architecture. It has three arithmetic units, each

with its own register-file. The register-files are eight bits wide and contain four registers each.

This architecture has two buses that move data to/from the register-files from/to the data and

instruction memories. For the complete ISDL description of the SPAM2 architecture refer to
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Appendix A. For the complete Synthesizable Verilog model of the SPAM2 architecture refer to

Appendix B. An overview of the architecture is shown in Figure 3:

U1 U2 U3

Register-file Register-file Register-file

ADD ADD
ADD SUB MUL
SUB MUL

DB1 DB2

Instruction Memory

Data Memory

Figure 3 The SPAM2 Architecture

The U1 arithmetic unit has three operations: ADD, SUB, and NOP. ADD and SUB perform

integer addition and subraction on the registers in the Ul register-file. Similarly U2 has ADD,

SUB, MULT, and NOP. U3 has ADD, MULT, and NOP. DB1 and DB2 are data buses that can
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move data between registers in different register-files. The data buses can also be used together to

move data from a register to data or instruction memory and vice versa.

3.1.1 Format Section

The Format section of the ISDL description shows how to form the instruction word. For this

architecture the Format section is as follows:

Section Format

U1 = OP[2], RA[2], RB[2], RC[2];

U2 = OP[2], RA[2], RB[2], RC[2];

U3 = OP[2], RA[2], RB[2], RC[2];

DB1 = SRC[5], DEST[5];

DB2 = SRC[5], DEST[5];

The terms on the left-hand side of the lines (U1, U2, U3, DB1, DB2) are the major divisions in the

instruction word and are called fields. Each field can further be divided into subfields (i.e., for the

Ul field, the subfields are OP, RA, RB, RC). Figure 4 shows the binary image of the instruction

word in Figure 4. In the ISDL description we can refer to portions of the instruction word by

<fieldname.subfieldname>. For example, the first two bits of the instruction word in this architec-

ture can be referred to as UL.OP.

1<-U1 Field--> 1<-U2 Field--->1 1<-U3 Field--->1<---DB1------->||<-----DB2------>1

>I I<-I1<-> I<-I <- I<-1<->1<-> <-I 1<-> <-I 1<->4 T B m -o >1 I- n>1<------>11<- >1
c Cc 7cc C c_ ccc cc

Figure 4 The Binary Image of the SPAM2 Instruction Word
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3.1.2 Storage Section

The storage elements used in the architecture are explicitly listed in the Storage section of the

ISDL description. The following is the Storage section for the SPAM2 architecture:

Section Storage

Instruction Memory INST Ox1O , Ox2C
Memory DM = Ox20 , Ox8

RegFile U1 = 0x4 , 0x8
RegFile U2 = Ox4 , Ox8

RegFile U3 = Ox4 , Ox8

ProgramCounter PC Ox8

Each line in the storage section gives the type, name, depth (if any), and width of the storage. For

example the third line in this section declares Ul as a register-file that has a depth of 4 and a width

of 8. Figure 5 shows the complete programmer's model for these memories.
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1 311 -n A-A

7 0
PC

0

7 0
3

02

U2

7 0
3

0 1

U1

0

7 0
3

0

U3

Figure 5 The Programmer's Model for the SPAM2 Architecture

3.1.3 Definitions Section

The Definitions section defines abstractions that will be used in later sections of the ISDL

description. An example of a token definition for the SPAM2 architecture is seen below:

Token "U1.R"[O..3] U1R { [0 . .3] ; } ;
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This token's name is UlR. It represents any of the values U1.RO, U1.R1, UI.R2, and UL.R3

which represent the registers in the U1 register-file. U2_R and U3_R are defined similarly to rep-

resent the registers in the U2 and U3 register-files.

NonTerminal UlRA: Ul_R { $$ = Ul_R; } {U1[Ul_R]} {} {} {} ;

This non-terminal's name is UlRA. It references the appropriate storage element in the Ul reg-

file.

NonTerminal SRC: Ul_R { $$ = OxO UlR; } {Ul[UlR]} {} {} {}
U2_R { $$ Ox04 U2_R; } {U2[U2_R]} {} {} {}|
U3_R { $$ = Ox08 U3_R; } {U3[U3_R]} {} {} {}

This non-terminal SRC has three options: UlR, U2_R, and U3_R. Each option references the

corresponding register-file. This nonterminal references any of the registers in the 3 register-files.

3.1.4 Instruction Set Section

The Instruction Set section is divided into fields. Each field has a list of operations that are

mutually exclusive (i.e., cannot operate in parallel). Part of the Instruction set section of the

SPAM2 architecture is shown below:

Field Ulf:

Uladd UlRA, UlRB, UlRC

{ Ul.OP = OxO; Ul.RA = UlRA; Ul.RB = UlRB; Ul.RC = UlRC; }

{ UlRC <- ADDm(UlRA,UlRB); }

{}

{ Cycle = 1; Size = 1; Stall = 0; }

{ Latency = 1; Usage = 1; }

The name of the first instruction is Ul_add. The third line provides the RTL action statement

which shows that this is an integer add instruction that takes any two registers from the Ul regis-

ter-file (given by the nonterminals Ul_RA and Ul_RB) and writes the result into a register in the

Ul register-file (given by the nonterminal UlRC). The second lines show the bitfield assign-

ments for this operation. If we wanted to do an addition of the second and third registers in the U1
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register-file and write the results to the 4th register the instruction word would look like this

(underscores are added for clarity to show the field boundaries defined by the Format section and

an x denotes a bit that is not affected by this operation):

00011011_xxxxxxxx xxxxxxxx xxxxxxxxxx xxxxxxxxxx

The Operation Side Effect are shown in the fourth line. We see that there are no side-effects for

this operation. Since this is an addition operation a possible side-effect could have been setting a

carry bit. The costs and timing information in the last two lines show that this instruction com-

pletes in one cycle and the results of this instruction are available to the next instruction.

3.1.5 Constraints Section

The Constraints section is a list of boolean equations that must be satisfied by any instruction in

order for the instruction to be valid. We have provided one constraint for the SPAM2 architecture

below:

-( ((DB*_move *,*) (DB*_nop))& ((DM_* *) (IM_ *))

The '*' designates a wildcard. What the boolean equation above says is that the operations in the

DB 1 and DB2 fields cannot be used in parallel with the operations in the DM and IM fields. It

states that if there is a data bus move or nop operation and a data or instruction memory operation

at the same, then the operation is not a valid instruction. From this we can infer that the architec-

ture is sharing the buses that perform these two classes of operations.
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4 Translation

Hgen

uperations z

b 9
Interconnect

e

Figure 6 Hgen Methodology

4.1 Methodology

The methodology we use to produce synthesizable Verilog from an ISDL description can be

seen in Figure 6. The Hgen system takes in the ISDL description and parses it using an already

existing ISDL parser. The parser outputs a C++ data structure of the parsed ISDL in addition to

performing some sanity checks to ensure the validity of the ISDL file. The data structure is exam-

ined by a Hgen system which then translates the ISDL code.
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Figure 7 Synthesizable Verilog Code Structure

The translation occurs in parts. This division is seen in Figure 7. It is divided as follows:

- Decode Logic : This takes in the instruction word and output signals that will control which

operations will be active for that instruction.

- Storage: Handles creating all the storage for the architecture

- Operations: Takes in the control signals from the decode logic and performs the necessary

operations on the storage in the system.

- Interconnect: Handles the wire connections between the other sections.

4.2 Generating Efficient Models

In order to generate efficient hardware we need to make sure that we are sharing as much of the

resources between operations as possible. When going from ISDL to synthesizable Verilog it is

not easy to know when parts of the hardware can be shared by different operations. This is called

the Resource Sharing problem. Consider a move operation that is implemented using a bus and

load and store operations that are mutually exclusive with the move. The move operation resides

20
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in a different field than the load and store operations. A naive scheme would generate additional

data paths to handle the load and store operations even though it is possible to implement these

with the same bus that implements the move (i.e., move, load, and store can share the bus).

4.2.1 Solution to Resource Sharing Problem

There is a systematic way of determining what can be shared. The RTL expressions for all

operation definitions are broken up into a number of nodes that can be mapped to a circuit. Each

of the n nodes is given a distinct number between 1 and n. Then an n X n matrix is created with

entry Aij= 1 if the two nodes i and j would never operate in parallel (can be shared) and Aij = 0 if

the two nodes could possibly operate in parallel (cannot be shared). To determine the entries in

the matrix the following criteria are used:

- 1. Nodes that are part of the same RTL statement will have to operate in parallel so they can-

not be shared.

- 2. Nodes that perform completely different tasks (for example a shift operation and a bitwise

XOR operation) cannot be shared and so are automatically assigned 0. Pairs where one node

is a subset of another (e.g., the add and subtract operations) could be shared if the rest of the

rules allow it.

- 3. Nodes belonging to operations in the same field in the Instruction Set Section will never

run in parallel so they can be shared. This is due to the fact that operations in the same field

are mutually exclusive by definition.

4. Nodes that belong to operations in different fields will probably have to operate in parallel

(since the operations will probably have to operate in parallel) so it is assumed they cannot be

shared.
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When the constraints section is taken into account then more sharing may be possible because

our last assumption (which is necessary if no information is given) can be overturned since infor-

mation is available that will specify two nodes can (and should) be shared.

Once all the entries are filled in the matrix, maximal cliques of the nodes that can be shared can

be created. A clique is a set of nodes such that for any pair of nodes i and j in the clique, Aij = 1.

A maximal clique is a clique such that if any node is added to the clique, the resulting set of nodes

is no longer a clique. The maximal cliques can be synthesized into circuits. Routing and glue

logic completes the implementation. Pseudocode for this algorithm is shown in Figure 7.

Label each RTL operation with an integer

for each i from 0 to n

for each j from 0 to n

Aij = 0

if i and j functionally equivalent

if i and j operations in same field

or constraint between i and j
Aij = 1

end

end

Generate maximal cliques for A

Generate hardware for maximal cliques

Figure 8 Resource Sharing ALgorithm
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4.3 Decode Logic

The decode logic provides the means for decoding the instruction word into signals which will

become the control logic for the architecture.

The ISDL bitfield assignments provide the assembly function. This is a function that, for a

given operation (or nonterminal option) and a given set of parameters, provides the values of the

relevant bits of the instruction word.

Assembly Function: f(<operation, a, b, ... >) -> Instruction Word

The decode logic implements the disassembly function. In order to generate decode logic we

need to reverse the assembly function ( i.e., given the values of the bits in the instruction word we

must first identify the operation and then provide the values of the parameters).

Disassembly Function: g(Instruction Word) -> <operation, a, b, ...>

We use the following model to derive the disassembly function from the bitfield assignments of

an ISDL description (see Figure 9).

Field 1
119 1811711611511411311211111019 1, 17 1, 15 14 13 12 11 10

op1 a,b 1 xlxlx a a

op2 01 x1 li x x x x x x x x x x xxxxx

op3 c, a 0 0 0 x aa a a a, a c c6 c c co

Figure 9 Operation Signatures

We associate a signature with each operation in every field of the Instruction Set section. A signa-

ture is an instruction word with symbols placed in for each bit. The following symbols are used:

- The constant "0" or "1" it implies that the assembly function for this operation sets the corre-

sponding bit to the given constant.
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- A parameter symbol (such as "a'o") implies that the assembly function for the operation sets

the corresponding bit to a function of the value of one of the parameters.

- "Don't care" entries (represented by "x") imply that the assembly function for this operation

does not set the corresponding bit.

Our methodology is based on the following axiom:

Axiom 1 Each parameter symbol in a signature is a function of a single parameter only.

All architectures known to us have this property. It is clear why this property should be satisfied

in all architectures: the purpose of bits carrying a parameter symbol is to convey the value of the

original parameter to the hardware. Complex encodings involving more than one parameter are

unnecessary. This combined with the fact that this encoding has to be reversed by a simple

decode mechanism in hardware almost guarantees that such architectures will not occur.

With the signature of each operation and the axiom above we can reverse the assembly function

as follows:

We attempt to match the constant part of the signature for each operation against the current

instruction word. The match is guaranteed to be unique for a decodeable assembly function. We

can then reverse the encoding of each parameter symbol bit in the instruction word to obtain the

original parameter value. The axiom above guarantees that the encoding is reversible. Most of

the time the encoding can be reversed symbolically (i.e., dealing with multiple bits at the same

time). Figure 9 shows this algorithm in pseudo-code. The algorithm shown is recursive. It is pre-

sented this way for clarity. When generating the decode logic the number of recursions needed

will determine the number of instantiations of each particular circuit (i.e., a recursive circuit is not

actually produced, instead copies of the same circuit for each level of iteration needed are pro-

duced.).
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Generate signatures for each operation in each field
Generate signatures for each option in each non-terminal

disassemble(i)
for each f in description

disassemble field(i, f)
end

disassemblefield(s, f)
for each operation o in f

if signature of o matches s
for each parameter p in o

case (p)
token: reverse s to get token value t
non-terminal: reverse s to get return value r

disassemble ntl(r, p)
end

return OK
end
return ILLEGAL INSTRUCTION

disassemble ntl(s, n)
for each option o in n

if signature of o matches s
for each parameter p in o

case (p)
token: reverse s to get token value t
non-terminal: reverse s to get return value r

disassemblentl(r, p)
end

return OK
end
return ILLEGAL INSTRUCTION

Figure 10 Decode Algorithm

There is one more complication that needs to be solved. In VLIW architectures it is possible

for an operation opI in field X to temporarily borrow the bits assigned by operations in field Y. In

particular, if these bits belong to the op-code of field Y4, then the field Y must be disabled if opI

is active since it no longer corresponds to a real operation. In order to do this we define a prece-
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dence relationship between operations and fields which identify when an operation in one field

disables the operations of another. We then construct predicates which disable field Y if operation

opi was present in field X.

Note that neither the assembly nor the disassembly function are complete (valid for all inputs).

However, the constraints describe invalid inputs to the assembly function, while invalid inputs to

the disassembly function are allowed to result in undefined behavior since they should never occur

in a valid program.

4.3.1 Generating Decode Logic

For each operation in a field we define a decode line which will be active if the operation is

instantiated in the current instruction. The decode lines are grouped by the field they correspond

to in the Instruction Set section of the ISDL description. These lines are collectively referred to as

the "identification code" for the corresponding field.

We can derive an equation for each decode line by simply examining the constants in the oper-

ation signature. For example, the equation for the operation op2 in Figure 9 is 119 118 116 115.

This results in a very efficient two-level implementation. Similarly, logic can be generated from

the decode functions that reverse parameter encodings. Finally a set of multiplexers and glue

logic completes the decode circuit.

4.4 Storage

The ISDL description provides a list of all the storage in the architecture but it does not explic-

itly give the number or type of ports needed for each storage unit. We can derive the number of

ports by counting in how many different fields in the Instruction Set section there are accesses to

26



that storage unit. Finding the number of ports is an instance of the resource sharing problem that

we deal with using the method described in section 4.2.1.

To determine the type of port we examine the type of access that the operations in each field

could make. If the operations can only do either one read or one write then this is merged into a

bi-directional port.

4.5 Operations

The functional units are created from the information provided in the Instruction Set section of

the ISDL description. Each field in the Instruction Set section roughly corresponds to a functional

unit and so the field boundaries are used to provide modularity in the synthesizable Verilog out-

put.

The modules in the synthesizable Verilog output each have a set of inputs and outputs that con-

nect to the storage units and to the decode logic. One of the inputs to the module is its identifica-

tion code discussed in section 4.3.1 . This informs the module which operation is active if any.

The decode logic for the nonterminals is determined and placed within the module. Determining

if different modules can share the decode logic for a nonterminal is subject to the resource sharing

problem. The nonterminals used will partly determine the input, output, or inout ports for the

memory accesses that the module needs to make. These ports are determined by the memory

accesses made by the nonterminals. The other ports are determined through the direct memory

accessed made by the module.
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4.6 Interconnect

The connections between the storage, decode logic and operations are relatively simple since

most of the work is done during the creation of the other modules. Determining which connec-

tions are necessary for each module is done during the creation of the module itself. The ports on

each module name the inputs and ouputs the module according to a set formula. If there is to be a

connection between two ports on different modules then the name generated for the connecting

wire will be the same since the same fore each port. This designates a connection in Verilog. The

same formula will be used by each module and so the connections are created as the module is

created. There are a few extra connections which connect to external signals, such as the clock

signal, which are taken care of separately once all the other connections are determined.

4.7 Deriving Structural Information

We have already seen that we can obtain information about the datapaths in an architecture

through the Constraints section of an ISDL description. ISDL is a behavioral language and thus

structural information needs to be inferred. We can derive information about pipelines and bypass

logic from the costs and timing information that is provided in the Instruction Set section.

For simplicity we will discuss ISDL descriptions with all operations having the same cost and

timing information. These are some examples of the different types of pipelines:

- A Cycle cost of 1, a Stall cost of 0, and a Latency cost of 4 implies a 5-stage data-path pipeline

with no bypass logic.

- A Cycle cost of 1, a Stall cost of 4, and a Latency cost of 1 implies a 5-stage data-path pipeline

that is fully bypassed

- A Cycle cost of 1, a Stall cost of 0, and a Latency cost of 1 implies either no pipeline or a pipe-

line that is fully bypassed with no stalls.
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A Cycle cost of 4, a Stall cost of 0, and a Latency cost of 1 implies a microcoded machine that

takes 4 cycles per instruction.

Pattern matching on these parameters in the ISDL description will be our method of determin-

ing the existence of a pipeline.

5 Related Work

This section describes previous work related to machine description languages and hardware syn-

thesis. The systems described are compared to our system as appropriate.

5.1 Mimola

The Mimola[6] design system was created as a high-level design environment for hardware,

based on the Mimola hardware description language[7]. Later on, the system evolved to a hard-

ware-software co-design environment. The system was designed for development and evaluation

of implementations at a much lower level than ISDL. The Mimola language is a structural

description at a relatively low level, and thus results in unnecessarily long and complex descrip-

tions, and in slower simulators. On the other hand, the low-level detail makes it much easier to

synthesize hardware from the descriptions.

5.2 nML

The nML machine description language[8] is a high-level machine description language that

can be used to support automatically generated tools. It was used in the CHESS[9] system for

retargetable code-generation as well as a variety of other tools[10]. nML is very similar to ISDL
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in that it is a behavioral language based on attributed grammars. The main difference between

nML and ISDL is the way constraints are handled. nML can only describe valid instructions.

Therefore, it must work around invalid combinations by using additional rules to describe interac-

tions between operations. Thus, nML descriptions are longer and less intuitive than ISDL

descriptions. It is also unclear how well suited nML would be for hardware generation, since the

constraints provide a lot of structural information used to generate efficient hardware.

5.3 FlexWare

FlexWare[1 1,12] is a software-firmware system for the development of custom ASIPs and

commercial processors. It was developed specifically to support the development of DSP proces-

sors and embedded system software. It consists of the code-generator CodeSyn[1 1] and the simu-

lator Insulin[ 12]. The FlexWare system can be used to rapidly evaluate architectures.

FlexWare suffers from the fact that it uses two different machine descriptions for the code-gen-

erator and the simulator. This raises consistency issues and makes the work of generating tools

for a given architecture harder. It is unclear whether the system is well suited to hardware genera-

tion since there are no publications describing attempts to implement such a system.

5.4 LISA

The LISA[13] language was developed as a machine description language specifically

designed to support the generation of simulators for specific architectures.

LISA contains a lot of structural information and can model most of the complicated timing

effects that are likely to be encountered in embedded applications.
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LISA is very effective at generating good simulators. Given the structural content in a LISA

description, hardware generation should also be possible although we are unaware of any publica-

tions describing such a system. However, LISA is not well suited for generating code-generators

and assemblers. If it was used in a system such as ours, a separate language would have to be used

for code generation, thus resulting in consistency issues as well as making it harder to generate,

describe, and evaluate architectures.

5.5 HMDES/Playdoh

HMDES [14] is a machine description language that was developed specifically for the Trimaran

compiler system. It is based on a parameterizable architecture called Playdoh[15]. Playdoh repre-

sents a very general class of architectures which includes features as complicated as predicated

execution and complex instructions.

HMDES is designed around the Playdoh architecture and supports all of its features. It is a

mixed language containing both structural and behavioral information. Both the Playdoh architec-

ture and the HMDES language were specifically designed to support VLIW architectures.

While Playdoh is very general and can encompass a wide variety of architectures, it is still a

parameterized architecture and thus has a limited scope. Similarly Hmdes supports a parameteriz-

able instruction set and therefore has a more restrictive scope than ISDL. Like nML, Hmdes does

not support constraints which may result in longer and less intuitive descriptions. Note, however,

that Hmdes, like Lisa, contains a slightly more extensive timing model than ISDL does, and can

thus describe architectures that ISDL cannot. However, we believe that architectures that make

use of such features will rarely occur in practice.
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6 Conclusion and Future Work

Our experimental results show that the Hgen system can generate efficient hardware even for

large complex designs.

Archi- Cycle Lines of Die Size Synthesis
tecture (nsec) Verilog (cells) time (sec)

SPAM1 32 1042 31443 827

SPAM2 28 405 4465 100

SCU 20.5 961 35647 728

Table 1 Hardware Synthesis Statistics

In table 1 we see some results produced by Hgen. SPAMI is a floating-point VLIW architecture

that can do 4 operations and 3 parallel moves at the same time. The synthesis was run on a Sun

Ultra 30/300 running Solaris2.6. We use the Santa Clara University SCU RTL 98 DSP as a refer-

ence point to compare our results. We see that the synthesis time and die size for the SPAMI

architecture is comparable to that of the SCU architecture. This is to be expected from the relative

complexities of the designs. The SPAM2 architecture is much smaller and takes less time to syn-

thesize than the other two architectures. This is also expected since the SPAM2 has an 8-bit data

path while the other two architectures have 32-bit data paths. The cycle length for SPAMI is

larger than that for SCU because SPAMI has floating point hardware.

The Hgen system provides the performance measurements that the ARIES system needs to

optimize the entire system design. The run time of the Hgen system is reasonable (on the order of

minutes for one interation) and is dominated by the time taken by the synthesis tool. Future work

on Hgen includes the implementation of pipelines in the hardware model.
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Appendix A

Complete ISDL Description for the SPAM2 Architecture

Section Format

OP[2],

OP[2],
OP[2],

SRC [5]
SRC[5]

RA[2], RB

RA[2], RB
RA[2], RB

DEST [5];
DEST[5];

[2],

[2],

[2],

RC[21;

RC [2];

RC[2];

// -----------------------

Section GlobalDefinitions

// assembly

Token "U1.R"[0. .3]
Token "U2.R" [0. .3]
Token "U3.R"[E..3]

token

UlR

U2_R

U3_R

value

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

UlRA:

U1_RB:
UlRC:

U2_RA:
U2_RB:

U2_RC:

U3_RA:
U3_RB:

U3_RC:

UlR

UlR

Ul_R

U2_R

U2_R

U2-R

U3_R

U3_R

U3_R

SRC: Ul_R {
U2_R

U3_R

DEST: Ul_R

U2_R

U3_R

$$
$$
$$

$$
$$
$$

$$
$$
$$

U1_R;

UlR;

UlR;

U2_R;

U2_R;

U2_R;

U3_R;

U3_R;

U3_R;

$$ = OxO
$$ = 0x04
$$ = Ox08

$$ = OxO
$$ = 0x04
$$ = Ox08

{Ul

{U1

{Ul

{U2
{U2
{U2

{U3
{U3
{U3

UlR;

U2_R;

U3_R;

UlR;

U2_R;

U3_R;

}
}
}

}
}
}

[UlR]

[UlR]

[UlR]

[U2_R]
[U2_R]

[U2_R]

[U3_R]

[U3_R

[U3_R]

{Ul [UlR]

{U2 [U2_R]
{U3 [U3_R]

{Ul [UlR]

{U2 [U2_R]}
{U3 [U3_R]}

#define REG SRC

#define LOC DEST
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U1
U2

U3
DB1

DB2

{
{
{

[0

[0

[0

.3

.3

.3

};

{}
{}
{}

{}
{}
{}

{}
{}
{}

}
}
}

{
{
{

}
}
}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

,
,

]
]

]

;
;
;



// --------------------------------------------------------------

Section Storage

//
Instruction Memory INST

Memory DM

RegFile Ul

RegFile U2

RegFile U3

ProgramCounter PC

= entries , bitsperentry

Ox1O , Ox2C
= 0x20 , Ox8
= Ox4 , Ox8
= Ox4 , Ox8
= Ox4 , Ox8

0x8

// --------------------------------------------------------------

#define DEFINENULLOP {} { NULLOP(; } {} {} {}

#define ADDm(x,y) ADD(x,y,8,"trn")

#define SUBm(x,y) SUB(x,y,8,"trn")

#define MULm(x,y) MUL(x,y,8,8,"trn")

Section InstructionSet

Field Ulf:
UlNULL DEFINENULLOP

Uladd U1_RA, UlRB, UlRC

{ Ul.OP = OxO; Ul.RA = UlRA; Ul.RB = Ul_RB; Ul.RC

UlRC; }
Ul_RC <- ADDm(UlRA,UlRB); }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Ulsub UlRA, U1_RB, UlRC

{ Ul.OP = Oxl; Ul.RA = UlRA; U1.RB = UlRB; Ul.RC
= UlRC; }

{ Ul_RC <- SUBm(UlRA,UlRB); }
{}

Ulnop

{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U1.OP = 0x3;
NOP(;

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Field U2f:
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U2_NULL DEFINENULLOP

U2_add U2_RA, U2_RB, U2_RC

{ U2.OP = OxO; U2.RA = U2_RA; U2.RB
U2_RC; }

= U2_RB; U2.RC

{ U2_RC <- ADDm(U2_RA,U2_RB); }
{}
{ Cycle =1; Size =1; Stall =0; }
{ Latency = 1; Usage = 1; }

U2_sub U2_RA, U2_RB, U2_RC

{ U2.OP = Ox1; U2.RA = U2_RA; U2.RB
U2_RC; }

{ U2_RC <- SUBm(U2_RA,U2_RB); }
{}

= U2_RB; U2.RC

{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U2_mul U2_RA, U2_RB, U2_RC

{ U2.OP = Ox2; U2.RA = U2_RA; U2.RB
= U2_RC; }

{ U2_RC <- MULm(U2_RA,U2_RB); }
{}
{ Cycle = 1; Size = 1; Stall 0;

{ Latency = 4; Usage = 1; }
U2_nop

= U2_RB; U2.RC

}

{ U2.OP = Ox3; }
{ NOP(; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Field U3f:
U3_NULL DEFINENULLOP

U3_add U3RA, U3_RB, U3_RC

{ U3.OP = OxO; U3.RA = U3_RA; U3.RB = U3_RB; U3.RC

U3_RC; }
{ U3_RC <- ADDm(U3_RA,U3_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U3_mul U3_RA, U3_RB, U3_RC

{ U3.OP = Ox1; U3.RA = U3_RA; U3.RB U3_RB; U3.RC
= U3_RC; }

{ U3_RC <- MULm(U3_RA,U3_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 4; Usage = 1; }

U3_nop
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{ U3.OP = 0x3; I
{ NOP(; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// DB1 is used for the data

Field DB1:

DB1_NULL DEFINENULLOP

DBl_move SRC, DEST

{ DB1.SRC = SRC; DB1.DEST = DEST; }
{ DEST <- SRC; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DBl_moveim INT, DEST

{ DB1.SRC = Ox10 (INT & OxF); DB1.DEST DEST; }
{ DEST <- INT; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DBlnop

{ DB1.DEST OxlF; I
{ NOP(; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// DB2 is used for the address

Field DB2:

DB2_NULL DEFINENULLOP

DB2_move SRC, DEST

{ DB2.SRC = SRC; DB2.DEST DEST; }

{ DEST <- SRC; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DB2_moveim INT, DEST

{ DB2.SRC = 0x10 (INT & OxF); DB2.DEST = DEST; }
{ DEST <- INT; }

{}
{ Cycle = 1; Size = 1; Stall = 0; }

{ Latency = 1; Usage = 1; }
DB2_nop

{ DB2.DEST = Ox1F; }

{ NOP(; I
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{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

#define DMdata OxOC

#define DMaddr OxOD

Field DMf:

DMNULL DEFINENULLOP

// DB1.SRC gets code for DMDATA, DB2.DEST gets code for

DMADDR

DMld REG, LOC

{ DB1.SRC = DMdata; DB1.DEST = REG;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ REG <- DM[LOC]; }
{}
{ Cycle = 1; Size = 1; Stall = 1; }
{ Latency = 1; Usage = 1; }

// DB1.DEST gets code for DMDATA, DB2.DEST gets code for

DMADDR

DMst REG, LOC

{ DB1.SRC = REG; DB1.DEST = DMdata;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ DM[LOC] <- REG; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

#define IMdata 0x0E

#define IMaddr OxOF

Field IM:

IM_NULL DEFINENULL_OP

// DB1.SRC gets code for IM_DATA, DB2.DEST gets code for

IM_ADDR

IM_ld REG, LOC

{ DB1.SRC = IMdata; DB1.DEST = REG;

DB2.SRC = LOC; DB2.DEST = IMaddr; }
{ REG <- INST[LOC]; }
{}
{ Cycle = 2; Size = 1; Stall = 1; }

{ Latency = 1; Usage = 1; }
// DB1.DEST gets code for IM_DATA, DB2.DEST gets code for

IM_ADDR

IM_st REG, LOC

{ DB1.SRC = REG; DB1.DEST = IMdata;
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DB2.SRC = LOC; DB2.DEST = IMaddr;
INST[LOC] <- REG; }

{}
{ Cycle = 2; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

//--------------------------------------------------------------

Section Constraints

// SRC and DEST cannot be the same on either bus

~ DB*_move U@[l].R*, U@[l].R* )

// Can not use buses for a move between register files if a memory
// operation is using the buses
~( ((DB*_move *,*) | (DB*_nop))& ((DM * *) (IM * *))

// Can not do both a DM and IM operation because they use the same
buses

~ (DM_* *) & (IM * *)

// Can not write to same register from two different operations

~( (DBl_move *,@[1]) & (DB2_move *,@[l]) )

//---------------------------------------------------------------

Section Optional
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Appendix B

Synthesizable Verilog Model for the SPAM2 Architecture

module SPAM2 (clk,PC);

input cik;

parameter PCW = 'h8; /

output [7:0] PC;

reg [PCW-1:0] PC;

reg [43:0] ir;

'define U1 ir[43:36]
'define UlOP ir[43:42]

'define UlRA ir[41:40]

'define UlRB ir[39:38]

'define U1_RC ir[37:36]

/program counter width

U2 ir

U2_OP

U2_RA

U2_RB

U2_RC

U3 ir

U3_OP

U3_RA

U3_RB

U3_RC

[35:28]
ir [35:
ir[33:
ir[31:
ir[29:

[27

ir

ir

ir

ir

:20]
[27:
[25:
[23:
[21:

DB1 ir[19:
DB1_SRC ir
DB1_DEST i
DB1_SRC42

DB1_SRC10

DB1_DEST42

DB1_DEST10

DB2 ir[9:0

DB2_SRC ir

DB2_DEST i

DB2_SRC42

DB2_SRC10

DB2_DEST42

DB2_DEST10

34]
32]

30]

28]

26]
24]
22]

20]

10]
[19:15]
r [14:10]
ir[19:17]

ir[16:15]
ir[14:12]
ir[11:10]

]
[9:5]

r [4:

ir[9:

ir[6:

ir[4

ir[l

0]

7]

5]

:2]

:0]

'define

'define

'define

'define

'define

'define

'define

'define

'define
'define

'define

'define
'define

'define
'define

'define

'define

'define

'define

'define

'define
'define
'define

'define
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wire [43:0] IMdata;

wire [7:0] DMaddr;

wire [7:0] b1dataul, b2dataul, bldatau2, b2datau2, b1datau3,

b2datau3, DMdata, IMaddr,

U1RA,U1RB,U1RC,U2RAU2RB,U2RC,U3RA,U3RB,U3RC;

wire [1:0] bladdrul, b2addrul, bladdru2, b2addru2, bladdru3,
b2addru3;

ulmodule

u2module

u3module

U1
U2

U3

(enableul

(enableu2

(enableu3

urfmodule

enableul,

'hO)),
== 'h0)|

U1RF (clk, 'UlRA,

bladdrul, bldataul,
('DB1_DEST42 'hO)

('DB2_DEST42 == 'hO)

U1RA, 'UlRB, U1RB, 'UlRC, U1RC,

(('DB1_SRC42 == 'hO)||('DB1_DEST42

b2addrul, b2dataul, (('DB2_SRC42

), ('DB2_DEST42 == 'hO));

urfmodule U2RF (clk, 'U2_RA, U2RA, 'U2_RB, U2RB, 'U2_RC, U2RC,

enableu2, bladdru2, bidatau2, (('DB1_SRC42 == 'hl)||('DB1_DEST42

'hl)) , ('DB1_DEST42 == 'hl) , b2addru2, b2datau2, (('DB2_SRC42

'h1)l('DB2_DEST42 == 'hl)) ,('DB2_DEST42 == 'hl) );

urfmodule U3RF (clk, 'U3_RA, U3RA, 'U3_RB, U3RB, 'U3_RC, U3RC,

enableu3, bladdru3, b1datau3, (('DB1_SRC42 == 'b1O)II('DB1_DEST42
='b1)), ('DB1_DEST42 == 'b10) , b2addru3, b2datau3, (('DB2_SRC42

== 'b10)||('DB2_DEST42 == 'biG)) , ('DB2_DEST42 == 'b10) );

dbmodule DB1 ('DB1_SRC, 'DB1_DEST, bidataul, bldatau2, b1datau3,

DMdata, IMdata[7:0]);

dbmodule DB2 ('DB2_SRC, 'DB2_DEST, b2dataul, b2datau2, b2datau3,

DMaddr, IMaddr);

DM dm (clk, DMaddr, DMdata, ('DB1_DEST == 'hOc), ('DB2_DEST ==

'hiO));
//IM im (clk, (('DB1_DEST == 'h14) ? IMaddr : PC), IMdata,

('DB1_DEST == 'hl4), ('DB2_DEST == 'h18))

IM im (clk, PC, IMdata, l'bO 1'b1

always @(posedge clk)

begin
PC <=
ir <=

end

PC + 1;
IMdata;
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module ulmodule (enable, U10P, U1RA, U1RB, UlRFRC);

output enable;

reg enable;

input [1:0] U10P;

input [7:0] U1RA, U1RB;

output [7:0] U1RFRC;

reg [7:0] U1RFRC;

always @(UlOP or U1RA or UlRB

begin

case (U10P)

2'b00 : begin
enable <= 1;

U1RFRC <= add8(UlRA, UlRB); //uladd

end

2'b01 : begin
enable <= 1;

U1RFRC <= sub8(UlRA, U1RB); //ulsub

end

default : begin

enable <= 0;

U1RFRC <= 8'b0;

end

endcase

end

/ ***********************************************/

function [7:0] add8;

input [7:0] a, b;

begin

add8 = a + b;
end

endfunction

/ **********************************************/

function [7:0] sub8;

input [7:0] x, y;

begin

sub8 = x - y;
end

endfunction

endmodule //ulmodule
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module u2module (enable, U20P, U2RA, U2RB, U2RFRC);

output enable;

reg enable;

input [1:0] U2OP;

input [7:0] U2RA, U2RB;

output [7:0] U2RFRC;

reg [7:0] U2RFRC;

always @ (U2OP or U2RA or U2RB
begin

case (U20P)

2'b00 : begin
enable <= 1;

U2RFRC <= add8(U2RA, U2RB); //u2add

end

2'b01 : begin
enable <= 1;

U2RFRC <= sub8(U2RA, U2RB); //u2sub

end

2'b10 : begin
enable <= 1;

U2RFRC <= mul8(U2RA, U2RB); //u2mul

end

default : begin

enable <= 0;

U2RFRC <= 8'b0;

end

endcase

end

/ *********************************************** /

function [7:0] add8;

input [7:0] a, b;

begin

add8 = a + b;
end

endfunction
/ ******* **** *********************************** /

function [7:0] sub8;

input [7:0] x, y;

begin

sub8 = x - y;
end

endfunction

/ ********************************************** /
function [7:0] mul8;

45



input [7:0] x, y;

begin

mul8 = x * y;
end
endfunction

endmodule / /u2module

module u3module (enable, U30P, U3RA, U3RB, U3RFRC);

output enable;

reg enable;

input [1:0] U30P;

input [7:0] U3RA, U3RB;

output [7:0] U3RFRC;

reg [7:0] U3RFRC;

always @(U30P or U3RA or U3RB

begin

case (U30P)

2'b00 : begin
enable <= 1;

U3RFRC <= add8(U3RA, U3RB); //u3add

end

2'bOl : begin
enable <= 1;

U3RFRC <= mul8(U3RA, U3RB); //u3sub

end

default : begin

enable <= 0;

U3RFRC <= 8'bO;

end

endcase

end

/ ***********************************************/

function [7:0] add8;

input [7:0] a, b;

begin

add8 = a + b;
end

endfunction

/ ********************************************** /

function [7:0] mul8;

input [7:0] x, y;

begin
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mul8 = x * y;
end

endfunction

endmodule //u3module

module dbmodule(DBSRC, DBDEST, U1R, U2R, U3R, DM, IM);

input [4:0] DBSRC;

input [4:0] DBDEST;

inout [7:0] DM;

inout [7:0] IM;

inout [7:0] U1R;

inout [7:0] U2R;

inout [7:0] U3R;

reg [7:0] DMtmp;

reg [7:0] IMtmp;

reg [7:0] U1Rtmp;

reg [7:0] U2Rtmp;

reg [7:0] U3Rtmp;

reg [7:0] DB;

always @(DBSRC or DBDEST or DM or IM or U1R or U2R or U3R)

begin

case (DBSRC)

5'hO : DB = UlR;
5'hl : DB = U1R;
5'h2 : DB = U1R;
5'h3 : DB = U1R;
5'h4 : DB = U2R;
5'h5 : DB = U2R;

5'h6 : DB = U2R;

5'h7 : DB = U2R;
5'h8 : DB = U3R;
5'h9 : DB = U3R;
5'ha : DB = U3R;
5'hb : DB = U3R;
5'hc : DB = DM;

5'he : DB = IM;

default : DB = 32'bz;

endcase

U1Rtmp = 8'bz;
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U2Rtmp = 8'bz;
U3Rtmp = 8'bz;

DMtmp = 8'bz;

IMtmp = 8'bz;

case (DBDEST)

5'hO : UlRtmp = DB;
5'hl : UlRtmp = DB;
5'h2 : U1Rtmp = DB;
5'h3 : U1Rtmp = DB;
5'h4 : U2Rtmp = DB;
5'h5 : U2Rtmp = DB;
5'h6 : U2Rtmp = DB;
5'h7 : U2Rtmp = DB;
5'h8 : U3Rtmp = DB;
5'h9 : U3Rtmp = DB;

5'ha : U3Rtmp = DB;
5'hb : U3Rtmp = DB;

5'hd : DMtmp = DB;

5'hf : IMtmp = DB;
endcase

end

assign U1R = UlRtmp;
assign U2R = U2Rtmp;

assign U3R = U3Rtmp;
assign DM = DMtmp;
assign IM = IMtmp;

endmodule //dbmodule

module urfmodule(clk, READaddrl, READdatal, READaddr2, READdata2,
WRITEaddrl, WRITEdatal, WRITEenab1, BIWRITEaddrl, BIWRITEdatal,

RWRITEenabl, RWrwl, BIWRITEaddr2, BIWRITEdata2, RWRITEenab2,
RWrw2);

input clk;

input [1:0] READaddrl, READaddr2, BIWRITEaddr1, BIWRITEaddr2; //
read indexes

output [7:0] READdatal, READdata2;

inout [7:0] BIWRITEdatal, BIWRITEdata2;

tri [7:0] BIWRITEdatal, BIWRITEdata2;

reg [7:0] BIWRITEdatalreg, BIWRITEdata2reg;

input WRITEenabl, RWRITEenabl, RWrwl, RWRITEenab2, RWrw2;
input [1:0] WRITEaddrl; //write indexes

input [7:0] WRITEdatal;

parameter RFW = 'h8;
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parameter RFD

reg [RFW-1:0]

= 'h4;
RF [RFD-1:0];

always @(posedge clk)

begin

if (WRITEenabl == 1)

RF[WRITEaddr1] <= WRITEdatal;

if ((RWRITEenabl ==
RF[BIWRITEaddrl]

if ((RWRITEenab2 ==
RF[BIWRITEaddr2]

1) && (RWrwl ==
<= BIWRITEdatal;

1) && (RWrw2 ==
<= BIWRITEdata2;

1))

1))

end

assign READdatal = RF[READaddr1];

assign READdata2 = RF[READaddr2];

always @(RWRITEenabl or RWrwl or BIWRITEaddrl or RWRITEenab2 or
RWrw2 or BIWRITEaddr2)

begin

if ((RWRITEenabl 1) && (RWrwl == 0))

BIWRITEdatalreg = RF[BIWRITEaddrl];

else

BIWRITEdatalreg = 8'bz;

if ((RWRITEenab2 == 1) && (RWrw2 == 0))

BIWRITEdata2reg = RF[BIWRITEaddr2];
else

BIWRITEdata2reg = 8'bz;

end

assign BIWRITEdatal

assign BIWRITEdata2

endmodule //urfmodule

= BIWRITEdatalreg;
= BIWRITEdata2reg;

module DM (clk,addr, data, rw, enable);

input clk,rw, enable;

input [4:0] addr;

inout [7:0] data;

reg [31:0] datareg;

parameter DMD = 'h20;

parameter DMW = 'h8;
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reg [DMW-1:0] DM [DMD-1:0];

always @(enable or rw or addr)

if (enable == 1)

begin

if (rw 0)
datareg = DM[addr];

else

datareg = 32'bz;

end

else datareg = 32'bz;

always @(posedge clk)

begin

if (rw == 1)

DM[addr] <= data;

end

assign data = datareg;

endmodule //DM

module IM (clk,addr, data, rw, enable);

input clk,rw, enable;

input [7:0] addr;

inout [43:0] data;

reg [43:0] datareg;

parameter IMD = 'h100;

parameter IMW = 'h2c;

reg [IMW-1:0] IM [IMD-1:0];

always @(enable or rw or addr)

if (enable == 1)

begin

if (rw == 0)

datareg = IM[addr];
else

datareg = 32'bz;

end

always @(posedge clk)

begin

if (rw == 1)
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IM[addr]

end

assign data = datareg;

endmodule //IM

endmodule / / SPAM2
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