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Abstract
SFS/NT is a Microsoft Windows NT client for the MIT Laboratory for
Computer Science's Secure File System, a decentralized, distributed file
system which utilizes strong public-key cryptography for authentication
and encryption. SFS/NT is implemented as a Common Internet File
System loopback server via the Framework for Implementing File
Systems, and is compatible with Secure File System servers based on the
UNIX operating system. SFS/NT provides support for symbolic links and
case-sensitive names, which are features not commonly supported under
Windows NT. It is structured as a stackable file system. Each component
is located in a separate layer, which makes it simple to add or remove
components, as well as to reuse components in other file systems.
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1 Introduction

This thesis presents SFS/NT, an implementation of the MIT Laboratory for

Computer Science's Secure File System for the Microsoft® Windows NT® operating

system. This implementation is among the first significant academic research file

systems to be brought to the Windows NT platform. In the past, the utility of Windows

NT in the research of such systems was severely hampered by the complexity of the file

system driver interface and researchers' relative lack of familiarity with it as compared to

UNIX®. Recently though, a new framework, FIFS, was introduced for the creation of

Windows NT file systems in the hope that it would simplify the process enough to make

the platform a viable file system research alternative to UNIX. In this thesis, we seek to

validate this claim via the implementation of SFS under Windows NT using the FIFS

framework. We also seek to advance further development of the Secure File System by

bringing it to a new and widely-used platform.

In the remainder of this section, we first briefly examine the Secure File System

and the FIFS framework. This is followed by a discussion of the goals and contributions

of the SFS/NT project.

1.1 The Secure File System

The Secure File System (SFS) was designed by and is currently under continued

development by David Mazieres of the Laboratory for Computer Science's Parallel and

Distributed Operating Systems group. The version of SFS which is considered in this

thesis is release 1.0, which is a later version of the system described in [11]. SFS is a

distributed file system, which utilizes strong public-key cryptography to provide
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authentication and privacy. Unlike the Andrew File System (AFS) and the Distributed

File System (DFS), SFS neither requires nor uses a centralized system to maintain a list

of known servers in the distributed system or to prove the authenticity of those servers [8,

18]. Nor does it require a centralized directory to keep track of authorized users. Each

individual SFS client and server negotiate with each other in order to confirm the identify

of the user and the server.

Central to SFS is the notion of a self-certifying pathname. Each network-accessible

file system has an associated public and private key pair, and is identified by such a

pathname. In essence, the self-certifying pathname contains not only the network address

of the server responsible for the file system, but also the server's public key. This

permits the server to authenticate itself to a client by demonstrating that it possesses the

private key associated with the public key named in the pathname of the client's

requested file system.

Each user also has an associated public and private key pair. The public key serves

as the user's "name" by which the server knows him. By demonstrating to the server

possession of the private key, a user proves that he is the rightful owner of the public key.

The server can then grant or deny access permissions based on the user's proven identity.

For security, the user's private key is never revealed to the SFS client. It is stored

inside of a user agent, which is kept separate from the client. The client can request that

the agent digitally sign an authentication request that can then be used by the client to

prove the user's identity to the server. A rogue client, planted by an adversary, can never

steal the user's private key because it never sees the private key. Although the agent

must know the key, each user is free to supply their own trusted agent.
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Following the exchange of identities between the client and the server, access to the

secured file system is permitted. Such access is encrypted using symmetric key

encryption for privacy. The symmetric keys used are agreed upon during the server

authentication phase of the protocol.

In a global file system, it is useful to be able to tie file systems exported by

different servers together into the appearance of a single namespace. In SFS, these ties

are provided by symbolic links, which point to the self-certifying pathnames of other

servers. When the user follows such a symbolic link, the client is expected to

automatically establish a connection with the named server. The user is unaware of this

transition, except to the extent that he may have different access rights on the new file

system.

Originally, reference implementations of the SFS client and server were written for

the OpenBSD platform. The client was implemented as a Network File System (NFS)

loopback server. As a result, an SFS file system appears to the workstation to be a

mounted NFS file system which is being served by an NFS server (namely, the SFS

client) located on the local machine. The client translates NFS requests into SFS protocol

requests and communicates with the SFS server across the network using the Open

Network Computing Remote Procedure Call (ONC RPC) mechanism' and the External

Data Representation (XDR) [19, 20].

1 Formerly known as, and still frequently referred to as, the Sun RPC mechanism
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1.2 The FIFS Framework

An NFS loopback server is a sensible implementation for SFS under UNIX and

its descendents, given those platforms' built-in NFS capabilities. However, it is a poor

choice for supporting SFS under Windows NT, as the operating system lacks any

integrated NFS clients.

Nor is the alternative of building a native file system driver for Windows NT

particularly attractive. Windows NT device drivers must conform to a complex,

asynchronous I/O interface, be fully re-entrant, and use only a minimal stack. They must

interface with Windows NT's I/O Manager, Cache Manager, and Virtual Memory

Manager (see Figure 1). Being kernel-mode code, debugging such drivers can be quite

difficult, and any failures will bring down the entire system [7]. Information about

implementing file systems under Windows NT is scarce, and generally requires licensing

an expensive, non-redistributable development kit from Microsoft, a barrier even in a

research environment [12, 13].

These difficulties led to the development of a Framework for Implementing File

Systems (FIFS) for Windows NT at the MIT Laboratory for Computer Science's Parallel

and Distributed Operating Systems group [1]. FIFS runs entirely in user-mode and

implements a Common Internet File System (CIFS) loopback server. Its design is shown

in Figure 2. CIFS, also known as the Server Message Block protocol, is Window NT's

native network file system protocol, and a client for it is supplied by Microsoft as part of

the operating system [10]. This client communicates with the FIFS loopback server

running on the local machine. In turn, FIFS makes function calls to a Windows dynamic

link library, responsible for implementing the actual file system, via a well-defined file
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Figure 1: Windows NT File System Architecture (Adapted from [17])
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system dispatch interface. This interface consists of high-level file operations such as

create, read, and delete, which each file system "driver" implements as appropriate for its

file system. Thus, new file systems can be developed as user-level code and then

"dropped-in" to the FIFS framework for use.

In addition, the FIFS driver model uses stackable layers. It is possible to

interpose one or more filter drivers between the FIFS loopback server and the file system

driver. This makes it possible to encapsulate functionality in a way that is independent of

both the loopback server and the particular file system driver being used. For example, a

caching filter driver could be created, which would provide caching for any FIFS-

implemented file system, without the need to rewrite the FIFS loopback server itself to

implement caching.

1.3 Goals

The goals of SFS/NT are threefold. The first is to solve several issues that are

important in any file system, but that are not addressed by the FIFS framework. The

second is to bring SFS to the Windows NT operating system, thereby creating new

opportunities to extend and evaluate the file system. The third is to validate the utility of

FIFS itself as a tool for file system research. These goals are examined in more detail in

the next three sections.

1.3.1 Resolve Issues Not Addressed by FIFS

While FIFS simplifies the process of developing Windows NT file systems, it

leaves several issues open. These problems had to be solved in order for FIFS to fulfill

its purpose as a tool for file system research.
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First, FIFS lacks a locking mechanism and support for notification of changes to

files or directories. As a result, it does not cache any information retrieved from the file

system because there is no way for a file system driver to notify it when the information

has changed. Caching, however, is generally considered critical to the performance of a

distributed file system like SFS. If the file server is located on the other side of the

planet, requiring the local computer to access it for every file operation could pose an

unreasonable overhead.

Second, provision is made for neither symbolic links nor case-sensitive file names

in FIFS. Both are identified as issues for further research in the original FIFS paper [1].

Both are essential if a FIFS-implemented distributed file system is to operate in a

heterogeneous environment. Case sensitivity is vital to resolving Window NT's

expectation of case-insensitive file names with the requirements of case-sensitive UNIX

servers. Symbolic links are especially critical in SFS, since they permit a mapping from

a human-readable name to a self-certifying pathname, and thus can link the file system on

one SFS server to an SFS file system on a different server. Unfortunately, though, the

CIFS protocol on which FIFS is built does not support symbolic links, so while FIFS

permits a file system driver to expose functions for reading and creating links, it will

never actually make use of those functions.

In this thesis, these issues are addressed and solved. Means of supporting

symbolic links and case-sensitive names within any Windows NT FIFS-implemented file

system are developed, as is a caching mechanism for the SFS/NT client.
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1.3.2 Bring the Secure File System to a New and Widely-Used Platform

The best way to identify weaknesses, benefits, and opportunities for further

research within a new system like SFS is to use it. SFS is an on-going research project in

the Parallel and Distributed Operating Systems group, and part of that work involves

expanding the range of systems which it supports, with the goal of eventually replacing

NFS on all the group's systems. Adding SFS support to NT is an outgrowth of that

project and was, in fact, the original reason for creating FIFS.

SFS/NT also makes it possible to test SFS in environments that do not base their

infrastructure on the UNIX operating system. With some notable exceptions, such as

AFS, file systems that originated in the research community have not made the transition

to wide-spread deployment in the world at large. Part of this is no doubt due to the fact

that many of these systems have been only available for UNIX, while much of the

computing world is dominated by other platforms. By making SFS available to this

wider community, it is hoped that the additional feedback and experience gained will

help identify new opportunities for research.

1.3.3 Validate FIFS as a Tool for File System Research

The tests which have been done with FIFS prior to this thesis have focused on

measuring its performance overhead as compared to a kernel-mode driver. It has been

tested via the creation of a Windows NT file system driver, which simply accesses the

machine's local file system via the Win32 API. A prototype NFS version two driver was

also created for it, minus some functionality such as caching and support for symbolic

links. However, no attempt had been made to use FIFS to implement a new and novel

file system, its intended purpose. By using FIFS to create an SFS client, we establish its
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utility as a tool for researching and developing new file systems using the Windows NT

operating system.

1.4 Contributions

This thesis contributes SFS/NT, an SFS client for the Windows NT operating

system created using the FIFS framework. SFS/NT is designed as a stackable file

system. It is composed of FSSFS, a layer that provides an initial implementation of the

SFS client driver for FIFS, as well as FSSYMILINK and FSCASE, filter driver layers that

provide support for symbolic links and case-sensitive file names in any FIFS-

implemented file system. This implementation of SFS is believed to be among the first

implementations of a significant academic research file system under the Windows NT

operating system.

The SFS/NT client is fully interoperable with UNIX-based SFS servers. It

supports SFS's encryption capabilities, as well as server and user authentication. It also

supports case-sensitive names and the use of symbolic links to reference files and

directories stored on either the same server as the link or on a different server.

At present, caching support in SFS/NT is implemented in FSSFS, and provides

for write-through caching of attributes, names, and data. No write-back caching is

performed, so all operations which modify the file system must be performed

synchronously. FSSFS also lacks support for concurrent operations that require

accessing the server. This reflects the lack of thread-safety in the only available freely-

distributable ONC RPC implementation for Windows NT, and is not attributable to any

fundamental design limitation of FSSFS [5].
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1.5 Organization

In Section 2, previous work related to file system research using Windows NT is

discussed. Section 3 examines the Secure File System and its related protocols in greater

detail. The design of SFS/NT is discussed in Section 4, and its implementation is

considered in Section 5. Section 6 looks at the performance of the initial implementation

of SFS/NT. Finally, opportunities for future work are considered in Section 7.
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2 Related Work

Minimal file system research has been done on the Windows NT platform. This

may be partly due to the fore-mentioned difficulties involved in programming for its

device driver interface, and partly because of the traditional focus on UNIX and UNIX-

like operating systems in academic research. The Windows NT work that has been done

has focused primarily on measuring and optimizing the performance of the native NTFS

file system, rather than on developing new file systems.

Bradley et al. compared the performance of Windows NT, Windows for

Workgroups, and NetBSD in the areas of system calls, program load, memory access,

graphics bit-blitting, network throughput, and file systems [4]. The Windows FAT and

NTFS file systems were compared with the Berkeley Fast File System. NTFS was found

to have significantly more overhead when accessing files on disk or in the disk cache, but

was faster at operations involving manipulation of file metadata. This latter result occurs

because NTFS logs metadata changes in memory and delays writing them to disk, while

Berkley FFS forces these changes immediately out to the disk.

Riedel, van Ingen, and Gray investigated means of optimizing NTFS for access to

large sequential files using SCSI disks [14, 15]. The study found that a combination of

techniques permitted achievement of half the maximum peak advertised performance of

the hardware (which does not take into account system overhead, bus contention, and

other issues that must be dealt with in realistic use but that are often ignored by system

manufacturers in an attempt to make throughput figures look more impressive). This is a

significant improvement over the "out-of-the-box" performance. The optimization

techniques included using large I/O requests (at least 8 kilobytes each, and preferably 64
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kilobytes), disabling file system buffering to minimize processor load on large requests,

compensating for the loss of buffering by enabling write-caching on the SCSI disk

controllers, and constantly maintaining a queue of asynchronous requests to keep the disk

saturated.

Borr presented a mechanism for resolving the differences between the advisory

locking mechanism of NFS and the Network Lock Manager, and the mandatory locking

required by CIFS [2, 3, 10]. In an environment where servers for both protocols supply

access to the same files, care must be taken to ensure that an NFS client does not violate

the stricter locking semantics expected by CIFS clients. SecureShare, the system

presented in the paper, implements and enforces a uniform locking protocol in such a

mixed environment.

Stackable file system architectures, like those supported by FIFS and used in

SFS/NT, are an active area of research. Heidemann and Popek set forth two basic

principles of stackable architecture: symmetric interfaces and extensibility [6].

Symmetric interfaces require that the interface into a particular layer be the same as the

interface out of that layer into the layer below. This makes it possible to add, remove,

and reorder layers arbitrarily, without any syntactic constraints imposed by differing

interfaces. Extensibility states that it should be easy to add new layers. Existing layers

should not need to be rewritten every time a new layer is added. Similar principles had

previously been incorporated into an extensible file system architecture for the Spring

system [9]. A layered architecture is also used in the Windows NT I/O subsystem,

making it possible, for example, to improve fault tolerance simply by inserting a disk
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mirroring layer between the NTFS file system driver and the disk hardware driver,

without modifying either driver [17].
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3 Secure File System

Each SFS server maintains a public and private key pair (ps, ss), and each SFS

client maintains a key pair (pe, se). The server's self-certifying pathname is of the form

/ s f s /Location: HostID. Location is the network name of the file server that exports

the file system. HostID is a cryptographic hash of the server's host name and public key

ps. These pathnames are self-certifying in that an SFS server can prove its identity to the

client, without relying on a third-party certificate authority or other form of centralized

control, by demonstrating that it possesses the private key ss associated with ps. Any

server other than the server for the named file system will not know ss, and will therefore

not be able to decrypt messages sent using the key ps named in HostID. Since HostID is

a cryptographic hash, it is computationally hard for a server to discover some key pair

(p,', ss') such that ps' and ps hash to the same HostID. The best known techniques for

doing so require trying a number of potential values for ps' that is exponential in the

length of the hash, and therefore require an infeasible amount of time for a hash of

significant length.

Upon initiation of access to the file system by a client, the server proves its

identity by supplying its public key ps to the client, who verifies that a hash of ps and the

host name matches the hash, HostID, found in the name of the desired SFS server (see

the top portion of Figure 3). The client then randomly chooses values for its portion of

each of two session keys, kes and kse. These session keys are used to perform symmetric

key encryption of data exchanges from the client to the server and the server to the client,

respectively. Both the client and server contribute part of each session key, so that a

faulty implementation of either will not compromise the security of the entire system.
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Client

(1) Client initiates a connection
with the server

(3) Client verifies the hash, then
sends its public key and its
portions of the session keys,
encrypted with the server's public
key

(6) Client sends the user's public
key and an authentication request,
digitally signed with the user's
private key

Server Authentication Phase

Connection Request

Ps

peg [kcsclientj k5 client, Ps

[kesserver, kscserver] Pc

(5) Client and server then hash
together the portions of the
session keys to obtain the final
keys

User Authentication Phase
(encrypted with ke, and kse)

P., [authreq] signed with s,

authno

Server

(2) Server responds with its
public key

(4) Server sends its portions of
the session keys, encrypted with
the client's public key

(7) Server grants appropriate
access to the user and returns an
authentication number for that
user

Figure 3: SFS Encryption and Authentication Protocol

The client sends pc and its portion of the session keys to the server, encrypted

using ps. The server's ability to decrypt the session key components using the private key

ss, which only it possesses, is the proof of the server's authenticity. The server then

chooses its own components of kes and kse, and sends them to the client encrypted with pc

for security. Both the client and server then hash together the session key components

each decided on to arrive at the final kes and kse, which are used to encrypt all subsequent

communications.
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At this point, the client can then prove the identity of its user to the server, if

necessary. This is shown in the bottom portion of Figure 3. Each user has their own

public and private key pair (pu, s,) that may differ from the client's key pair. This key

pair is used to uniquely identify a particular user of the client. In the UNIX

implementation of SFS, the key pair is stored in a user agent, which is a separate process

from the client and communicates with the client via remote procedure calls. These calls

permit the client to request that the agent perform actions on its behalf, such as digitally

signing a message, but do not permit the client to request a copy of the user's private key.

Since the user's private key never leaves the confines of the agent, rogue clients are

prevented from stealing the key and impersonating the user. Each user may provide their

own agent if they do not wish to trust the default agent supplied with the SFS client.

To perform user authentication, the client provides the server with the user's

public key pu along with an authentication request that the user's agent has digitally

signed using s. The server can confirm that this request did in fact come from the user

who owns pu by verifying the digital signature, and can grant appropriate access

permissions based on the user's identity. It then returns to the client an opaque

authentication number to be used as proof of the user's identity in all future requests. All

communications during the user authentication phase are encrypted using the session

keys that were chosen during the server authentication phase.

Once the server and client authentication is complete, file system access is

provided via the SFS read/write protocol. This protocol is closely based on the NFS

version three protocol with the addition of symmetric key data encryption, using the

session keys, to provide privacy [3]. However, SFS is designed to be extensible, and it is
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possible to replace this read/write protocol with another protocol while keeping the same

authentication and encryption protocol.
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4 Design

In designing SFS/NT, we chose to make use of FIFS's layered driver architecture.

SFS/NT consists of three separate drivers: FSSFS, FSSYMLINK, and FSCASE. This

architecture is shown in Figure 4. The first implements the SFS protocol and provides

access to the remote file system. The second is a filter driver which sits between FSSFS

and FSCASE. It provides a symbolic link emulation layer that supports symbolic links to

files and directories, including those whose targets are located on different SFS servers

than the link itself. The third, FSCASE, is another filter driver, and adapts the case-

insensitive naming convention of CIFS to the case-sensitive names of SFS.

The FSMUNGE layer shown in the figure is not part of SFS/NT, but rather is a

filter driver supplied by FIFS. Given a file operation which names a file or directory

using a pathname containing multiple parts (such as /user/smith/thesis . txt), it splits

the pathname into its component parts and retrieves in turn a directory handle for each

part of the pathname up to but not including the final part. It then performs the requested

operation using the last directory handle retrieved and the final component of the

pathname (e.g., the file named thesis . txt with the directory handle for smith). This

saves the underlying layers from having to process multiple part pathnames, simplifying

their implementation.

This layered approach avoids overburdening each layer with too much

functionality, which would be both hard to maintain and conducive to errors. It also

makes it easy to replace layers (for example, if a more efficient implementation is

devised) or remove them altogether (either for testing purposes or, in the case of

FSSYMLINK and FSCASE, if the underlying system were to be revised to natively
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Network

Figure 4: SFS/NT Architecture

support these features). Previous research on stackable file systems supports the idea that

such a design is both practical and flexible [6, 9].

4.1 FSSFS

The FSSFS file system driver encapsulates all SFS-specific functionality. It is

responsible for mounting the remote SFS servers, including negotiating encryption and

user authentication. It is also responsible for translating FIFS file access requests

presented via its file system dispatch interface to the NFS-like requests used by SFS, and

for translating the results of these requests into a format understandable by the FIFS

loopback server.

As part of user authentication, FSSFS is required to digitally sign an

authentication request on behalf of the user using the user's private key, as proof of the

user's identity. However, since multiple users may share a single computer and a single

copy of FSSFS, it is questionable whether all of those users would (or should) want to
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share their private keys with FSSFS. Doing so would create the risk of one user secretly

replacing FSSFS with a program that collects other user's private keys and steals their

identity.

To prevent such an attack, we adopted a solution similar to that used by the UNIX

version of the SFS client. FSSFS is never permitted to know the user's private key,

which is encapsulated inside of a user agent. Instead, it must ask the agent to sign the

authentication request for it. The user may supply her own agent, and so can be assured

that no secret attempt to steal her private key is underway. The agent is discussed in

more detail in Section 4.4.

4.2 FSSYMLINK

The FSSYMLINK filter driver is a symbolic link emulation layer. It provides

support for symbolic links in a manner completely transparent to the FIFS loopback

server and the Windows NT CIFS client which accesses the loopback server. When the

FIFS loopback server retrieves a handle to a symbolic link, it is given a handle to the

symbolic link itself. However, subsequent attempts to use that handle are mapped to

operations either on the link or on the target of the link, as appropriate, by FSSYMLINK.

FSSYMLINK provides the usual UNIX "semi-transparent" symbolic link semantics (e.g.,

a read operation on a symbolic link reads from the file pointed to by the link, while a

rename operation alters the name of the symbolic link, not the name of the object that is

the link's target). It also supports symbolic links whose targets are other symbolic links,

and will follow the chain of links as necessary to reach the final target.

Since FSSYMLINK is a separate layer from FSSFS, and contains no SFS-specific

details, it could also be used to supply symbolic link support in other FIFS-implemented
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file systems. On the other hand, if the CIFS protocol is ever extended to include

symbolic link support, and if the FIFS loopback server is modified accordingly, the

FSSYMLINK layer can be removed. No code changes to FSSFS will be required, and

the user will see no change other than a possible performance gain from being able to

bypass this emulation layer.

4.3 FSCASE

The FSCASE filter driver provides support for file systems which use case-

sensitive file names. The CIFS protocol is case-insensitive but case-preserving.

Unfortunately, though, implementation decisions made in the FIFS loopback server

sometimes cause a failure to preserve the case of the pathname when requesting access to

a file or directory [1]. Since the NFS protocol currently used by SFS is case-sensitive,

presenting a name to it whose case has been "mangled" in this fashion will lead to

erroneous file not found errors.

To solve this problem, upon receiving a case-insensitive name from FIFS,

FSCASE reads the directory where the object is located and does a case-insensitive

match between the desired name and the names returned by the read. If it finds exactly

one match, it passes the name with the correct case to the driver beneath it. Otherwise, it

returns an appropriate error code. Note that if there is more than one file or directory

which matches, it returns an error as it has no way to determine which one the user is

referring to. Making a mistake, such as deleting the wrong file, could be catastrophic, so

this is the safest course of action. Experience suggests that directories which contain

multiple entries whose names are identical except for their case are fairly uncommon. An

alternative means of addressing this limitation is discussed in Section 7.3.
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Operation Description

AgentInitialize Given the name of a user and a string identifying a key, returns a key
handle for that user's public and private key pair

AgentDone Given a key handle, terminates access to the key pair associated with that
handle

AgentGetPublicKey Given a key handle, returns the public key associated with that handle

Given a key handle and an authentication request, returns the
AgentSignAuthinfo authentication request signed using the private key associated with that

handle

AgentPostSignAuthinfo Called once the signed authentication request is no longer needed, to
clean up any dynamically-allocated resources

Figure 5: SFS Agent Operations

4.4 SFS Agent

The agent is used during user authentication to digitally sign an authentication

request, which permits an SFS server to check whether the request is in fact being made

by the user who claims to be making it. While FSSFS itself could sign the request, doing

so would require it to know the user's private key. An adversary could surreptitiously

replace FSSFS with a modified version that collects and records users' keys, and thereby

steals users' identities and accesses their private files. Clearly, this is an undesirable trait

in a supposedly secure file system.

The solution is to separate FSSFS from the user's private key, and this is the

purpose of the agent. In the UNIX implementation of the SFS client, the agent is a

separate process which communicates with the client by means of remote procedure calls.

In SFS/NT, the agent is a dynamically-linked library which supports the operations

described in Figure 5. None of these operations require revealing the private key to the

caller. Instead, after initializing the agent, an opaque handle to the key is provided to

FSSFS, which can be used later to ask that a given key be used to sign a particular
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authentication request. The use of these handles permits a single agent to support

multiple keys for multiple users.

Each user, if they wish, can specify their own agent to be called by FSSFS, as part

of SFS/NT's per-user configuration settings. Furthermore, while if multiple agents are

installed on one machine it is possible for one user to specify that her requests be signed

by another user's agent, a well-designed agent should provide password protection or

another suitable means of restricting access to the private key. Thus, while any user can

specify any agent, only the user who legitimately owns the private key will be able to use

it.
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5 Implementation

The implementation of SFS/NT consists of a caching SFS file system driver,

FSSFS; the symbolic link emulation driver, FSSYMLINK; and the case-sensitive driver,

FSCASE. It also includes a prototype implementation of a user agent.

5.1 FSSFS Implementation

The implementation of FSSFS includes support for automatically mounting

remote SFS servers on an as-needed basis. The client internally maintains a table of

currently mounted servers. Whenever it tries to access an object named by a self-

certifying pathname (for example, /s fs /flex. ics.mit. edu: 97bch9th269cyb73u8896

ihggztidpte/user/smith/thesis .txt), it consults the table to determine whether the

server (flex.ics.mit.edu:97bch9th269cyb73u8896ihggztidpte, in this case) has

already been mounted. If it has not, it mounts the named server, adds it to the table of

mounted servers, and accesses the desired object on the new server. If the server is

already mounted, FSSFS proceeds directly to accessing the named object.

In conjunction with FSSYMLINK, this automounting capability makes it

possible to tie multiple SFS servers into a single, unified distributed file system via the

use of symbolic links. A link located on one server can name a target that is the self-

certifying pathname of a file or directory on a different server. FSSFS will automatically

mount the necessary server upon the first attempt to access the link. From the point of

view of a user, accessing a symbolic link that refers to an object on another server is no

different than accessing a symbolic link whose target is located on the same server,

except that her access rights on each of the servers may differ.
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The automounting capability is also used to automatically recover from server

failures, such as when a server crashes. When FSSFS is unable to access a previously

mounted server, it marks it as dead in the server table and returns an error. Subsequent

attempts to access a server labeled dead will cause FSSFS to try to remount the server. If

it succeeds, unimpeded access to the server is restored. Otherwise, a suitable error is

returned to the user, and the user may retry the operation, possibly at a later time, if she

wishes.

The current implementation of FSSFS provides write-through caching of file data

and of file and directory attributes. It also caches the contents of directories, to reduce

the amount of time it takes to perform a directory read. Section 5.5 discusses the caching

mechanisms of FSSFS.

5.2 FSSFS Configuration

The FSSFS driver is configured via settings stored in the Windows NT registry.

These settings include what network protocol and port to use (only TCP is supported at

the present time), as well as the self-certifying pathname of the initial SFS server to

mount at startup. Settings are also provided to adjust the size of the caches and the length

of time data is kept in the caches.

In addition to these global settings, additional settings are stored per user. These

include the name of the user's agent, a string to be passed to the agent that identifies the

user's key (to permit one agent to support multiple keys), and options for encryption and

user authentication. These options permit the user to specify that the connection to the

SFS server either must be encrypted, in which case failure to establish encryption during

the mount procedure will cause the mount to fail; should preferably be encrypted, in
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which case fallback to a non-encrypted session is permitted; or should never be

encrypted. A similar set of options are provided to control user authentication. These

options exist to permit the individual user to choose between maximum security

(permitting only encrypted connections) and convenience (falling back to an unencrypted

session if encryption is unavailable), instead of hard-coding this decision into FSSFS. In

the case of user authentication, the "never authenticate" option is useful if a user only

needs access to publicly-available files and wishes to maintain her anonymity. If the user

does not explicitly specify these options, FSSFS defaults to requiring encryption and user

authentication. For additional security, compile-time options are provided that can be

used to instruct FSSFS to ignore these settings and always require the use of encryption

and user authentication.

5.3 FSSYMLINK Implementation

Since the CIFS protocol does not support symbolic links, it does not provide a

symbolic link attribute for files. Thus, each directory entry returned by FSSYMLINK

must be designated as either a file or a directory. Since Windows NT permits a user to

perform different operations on an object depending on whether it has the attributes of a

file or a directory, FSSYMLINK must determine whether the target of a symbolic link is

a file or directory whenever it needs to return the attributes of that link, so as to be able to

give the link the same type attribute as the object which is its target. Otherwise, if it were

to return a symbolic link to a directory but mark it as a file, Windows NT would not

permit the user to traverse the symbolic link into the target directory. This contrasts with

UNIX, where it is not necessary to know the type of the symbolic link's target until a user

actually tries to use that link.
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Unfortunately, this requirement to know the type of a symbolic link's target up

front can require extra RPC calls to the SFS server to be made every time the attributes of

a symbolic link are retrieved, including every time the directory containing the symbolic

link is listed. These RPC calls are performed by FSSFS to look up the attributes of the

link's target in response to requests by FSSYMLINK. In the worst case, the target of the

link is located on a different server that FSSFS must first mount. Links to the root

directory of a server (e.g., /s fs/flex.cs.mit. edu: 97bch9th269cyb73u8896

ihggztidpte/) do not require automounting to retrieve their target attributes, however,

as they can be handled as a special case since FSSFS always knows that their target is, by

definition, a directory.

The extra overhead caused by the frequent need to retrieve the target's attributes

is reduced by FSSFS's attribute caching. By caching the file and directory attributes

retrieved from the server the number of additional RPC calls required is reduced. This

caching is discussed in Section 5.5.

5.4 FSCASE Implementation

Although the implementation of FSCASE is straight-forward, it shares with

FSSYMLINK the requirement to perform extra RPC calls. These calls are done to read

the directory every time a file or directory name is used, and thus for every file lookup or

create operation, in order to search for a case-insensitive match. Worse, each directory

read causes additional operations to be performed in FSSFS to retrieve the attributes for

each object in the directory, since the directory entry format specified by FIFS includes

not just the names of the objects, but their attributes as well. Like in FSSYMLINK, the
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potentially substantial overhead this could create when repeatedly accessing a large

number of files is addressed by caching in FSSFS.

5.5 Caching in FSSFS

The frequent need of FSSYMLINK and FSCASE to retrieve attributes and of

FSCASE to retrieve directory listings would impose a burdensome performance overhead

if every retrieval caused a remote procedure call to be made. Measurement of an

uncached version of FSSFS found that the addition of FSCASE made SFS/NT seventeen

times slower when performing the Sprite LFS small file microbenchmark as compared to

SFS/NT without FSCASE [16]. Furthermore, informal observations suggest that the

Windows NT CIFS client tends to make a significant number of redundant requests in the

course of a single operation. For example, in opening a 40 KB file using the WordPad

text editor that is included with Windows NT, it retrieves the attributes of the file twelve

times. Taken collectively, these results show the importance of caching in achieving

acceptable performance from SFS/NT.

Unfortunately, at the time SFS/NT was developed, the SFS read/write protocol,

like the NFS version three protocol from which it was derived, provided only weak

support for caching. It did not provide a locking mechanism, and did not support strict

cache consistency. It did support a weak form of cache consistency, in that operations

which modify the state of the file system optionally returned the time the object was last

modified, the time its attributes were last changed, and the size of the object prior to the

operation. A client could use this information to determine whether a cached object had

been changed by another client since it was last cached, and could update its cache if

necessary [3].
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Nonetheless, the popularity of NFS suggested that even this weak form of

consistency was acceptable for many purposes. In a distributed file system like SFS,

where servers may be scattered across a wide range of geographical locations with

network connections of varying speed and reliability, caching can provide particularly

significant performance gains.

Therefore, ad hoc caching support was added to FSSFS in order to make it

possible to measure the performance offered by a caching SFS/NT client, after initial

experiments with an uncached client yielded unacceptable performance. This caching

takes three forms. The first form is an attribute cache. File and directory attributes that

are returned by file system operations are stored in this cache and used to satisfy future

operations that retrieve attributes. In addition, for symbolic links the name of the link's

target is stored, to reduce the number of RPC calls required when accessing a file or

directory through a symbolic link.

The second cache is a names cache which stores the contents of directories. For

each cached directory, the names of every file and subdirectory in that directory are

stored in this cache. Directories are added to the cache in response to directory read

requests, and the cached results are updated as entries are added or removed to the

directory. In conjunction with the attributes cache, once a directory is in the cache, a read

request for that directory can be satisfied without the involvement of the SFS server,

eliminating much of the overhead of FSCASE.

The third cache is a data cache for the contents of files. The cache manages data

in blocks of a fixed maximum size. Each block contains a portion of a file that begins at

an offset from the start of the file that is a multiple of the block size. Read operations
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read an entire block's worth of data at a time, which is stored in the cache to satisfy

future reads. Write operations update the cached data as well as the file on the server.

All three caches use write-through semantics, and contain a fixed maximum

number of entries at any time. The size of each cache, and the size of the data cache

blocks, may be independently configured via the Windows NT registry. When a cache

runs out of space, entries are evicted using a least recently used algorithm. Weak cache

consistency is maintained both by using the weak cache consistency data supplied by the

read/write protocol and by associating an age in seconds with each entry. When an

entry's age exceeds the user-configurable maximum age for that cache, the entry is

invalidated.

Very recently, work has been done on the SFS 1.0 read/write protocol to improve

the support offered for caching. These changes have not yet been incorporated into

SFS/NT. Section 7.1 discusses this and other future opportunities to improve caching in

SFS/NT.

5.6 SFS Agent Implementation

The prototype implementation of the user agent in SFS/NT reads the user's key

pair from disk upon a call to AgentInitialize. Each key pair is stored in a separate file,

and the key identification string that is stored in the registry and passed to the agent (see

Section 5.2) is the name of the file. The private key is optionally password protected

using the Blowfish encryption algorithm to prevent anyone other than its owner from

using it.

The key file is initially generated using a separate program, s fs keygen, which

generates a public and private key pair for the user and, if the user desires, password
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protects it. The length of the public key in bits may be specified by the user. The format

of the key file written by s fskeygen is compatible with the UNIX client's version of

s fs keygen, so a user can transport their identifying keys between the UNIX and

Windows NT SFS clients. This transportation may be safely done across an unencrypted

communications link if the private key was encrypted at the time of key generation.

Since the agent is a dynamically-linked library used by FSSFS, it runs in the

same process, and thus the same address space, as FSSFS. Therefore, it is theoretically

possible for a rogue version of FSSFS to try to steal the user's private key by directly

reading the agent's memory. However, it is possible to write an implementation of the

agent that does not suffer from this weakness. The agent library need not handle the

user's private key itself, but could instead be a thin wrapper to a separate agent process

that runs in its own protected memory space. Furthermore, if the wrapper library and the

agent process were to communicate using remote procedure calls (with appropriate

encryption to prevent third-party interception of signed authentication requests), it would

be possible for a user to isolate her private keys on a separate machine. Since the UNIX

version of SFS uses an agent that is implemented in this fashion, it would be possible for

a user to share one agent, running on a secured machine, between both SFS/NT and the

UNIX SFS client.
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6 Results

To determine whether a caching SFS client implemented using FIFS could yield

acceptable performance, we made performance measurements using the four possible

combinations of the three SFS/NT components: FSSFS by itself, FSSFS with

FSSYMLINK, FSSFS with FSCASE, and FSSFS with both FSSYMLINK and FSCASE.

For comparison, we also evaluated the performance of the local NTFS file system, and of

accessing the local file system through FIFS using the FSWIN32 driver. FSWIN32 is a

test driver supplied with FIFS that uses Win32 function calls to access the computer's

local file system, and makes it possible to measure the overhead imposed by the FIFS

framework [1].

The Sprite LFS large file and small file microbenchmarks were used for the

performance measurements [16]. Additional performance measurements were made

using an application benchmark that attempts to simulate normal use of the file system.

These benchmarks are the same tests which were used in [1], except that an updated copy

of the FIFS source code was used in the application benchmark as the older source code

could not be compiled with the most recent version of the compiler. The newer Windows

NT header files installed by the compiler contained several type declarations that

conflicted with declarations in the older version of the FIFS source code, and the addition

of namespace qualifiers to the source code was required to resolve these conflicts.

The SFS/NT client machine was a 200 MHz Pentium Pro with 64 MB of RAM,

running Windows NT 4.0 with Service Pack 3. The SFS server was a 200 MHz Pentium

Pro with 128 MB of RAM, running the OpenBSD 2.5-Beta operating system. Both

computers were equipped with SMC EtherPower 10/100 100 Mbps Ethernet cards, and
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were connected via 100 Mbps Ethernet switches. The SFS/NT data cache was configured

to hold 1,024 8 KB blocks, while the sizes of the attribute and names caches were 1,024

and 256 entries, respectively. Blocks in the data cache expired after sixty seconds, and

entries in the others caches expired after ten seconds. The cache sizes were chosen to

balance performance with memory usage, and the cache timeouts were selected to

realistically represent settings that might be used in a situation where file system

consistency between multiple users must be considered. All benchmark tests were

repeated three to six times to insure that observed results were not due to temporary

anomalies, and the results obtained were averaged.

6.1 Large File Microbenchmark

The large file microbenchmark creates an 8 MB file using sequential writes, reads

it sequentially, performs 8 MB of random writes, performs 8 MB of random reads, and

finally rereads the entire file sequentially. The benchmark was performed using 1/0 sizes

of 8 KB and 256 KB. The results are shown in Figures 6 and 7.

As expected, the SFS/NT throughput in general is less when using 8 KB I/O

requests than 256 KB I/O requests, because of the greater number of requests that must

be processed. The exception is the random write test, which yields identical results in

both cases. It is unclear why this is the case. The results for FSWIN32 do not exhibit

this behavior, so it is attributable to either the SFS client or server. Since the SFS/NT

client only performs write-though caching, and because measurements of an entirely

uncached version of FSSFS exhibited similar results, it may be an interaction with

caching on the server.
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seq write seq read rand_write randread re-read
NTFS 2238.55 136338.67 2040.44 102254.29 129847.33
FSWIN32 1767.66 6119.95 1583.85 6166.08 6276.47

FSSFS 255.22 5883.51 307.85 5949.37 5933.52
FSSFS + FSSYMLINK 252.99 5401.03 306.73 5342.21 5325.57
FSSFS + FSCASE 249.95 5463.71 306.54 5378.52 5389.07
FSSFS + FSSYMLINK + 256.92 5417.17 305.18 5294.70 5364.44

FSCASE

Figure 6: Throughput in kilobytes per second
(8 MB file using 8 KB I/O size)

for Large File Microbenchmark

In both the 8 KB and 256 KB cases, SFS/NT read throughput greatly exceeds the

write throughput. Since SFS/NT uses a write-though cache, which was configured to

hold 8 MB of data, the read operations can be performed entirely from local memory. All

write operations, however, are performed synchronously and require accessing the SFS

server, accounting for the poor performance. Reducing the size of the cache to be smaller

than the test file would cause a reduction in read performance, as data would have to be

fetched from the server to satisfy the reads. The greatest reduction would occur in the
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60000 i

seq write seqrread randwrite randread re-read
NTFS 2468.88 53399.05 2394.34 50124.06 54535.17
FSWIN32 1789.53 8033.90 1925.56 8405.14 8278.23

FSSFS 299.51 7022.47 307.44 5980.51 6495.65
FSSFS + FSSYMLINK 299.31 6865.24 306.20 6068.87 6026.04
FSSFS + FSCASE 285.00 6288.88 289.22 6363.44 6314.05
FSSFS + FSSYMLINK + FSCASE 299.02 6394.07 308.29 6339.50 6299.32

Figure 7: Throughput in kilobytes per seconds for Large File Microbenchmark
(8 MB file using 256 KB I/O size)

case of the sequential read following the sequential write. Since the sequential read

begins with the oldest data, which has already been evicted from the too-small cache to

make room for more recently used data, virtually every read will cause a cache miss.

The high read performance for the NTFS local file system is due most likely to an

efficient kernel-mode caching system. Since the test system had 64 MB of memory,

NTFS can easily cache the entire test file. Interestingly, NTFS exhibits much better

throughput in the case of both random and sequential reads when using 8 KB I/O than
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using 256 KB I/O. Why NTFS should exhibit such behavior is unclear. This result can

not be related to the SFS/NT random write result, since the SFS servers do not use NTFS

as their underlying file system. However, the FSWIN32 results show that any

performance gained by using the smaller 1/0 size is exceeded by the performance lost by

processing the increased number of CIFS requests.

In both the 8 KB and 256 KB cases, there was minimal performance difference

between the four SFS/NT configurations. This is because the majority of time is spent

performing read and write operations on the file contents, and neither FSSYMLINK nor

FSCASE add any overhead to such requests. The variations in performance that are seen

are due in part to the fact that the high read throughput relative to the size of the 8 MB

test file causes any small deviations in timing (for example, if Windows NT's virtual

memory manager should pick an inopportune time to flush a page to disk) to be greatly

magnified and affect the overall results even after averaging.

6.2 Small File Microbenchmark

The small file microbenchmark creates 1000 1 KB files across 10 directories. It

then reads each file, writes each file, writes each file again flushing the disk cache after

each write, and finally re-reads each file. The results of this benchmark are shown in

Figure 8.

Unlike the large file microbenchmark, the addition of FSCASE does cause a

performance decrease. Even with caching, there is still some overhead associated with

FSCASE performing a complete directory read on every operation that specifies a file or

directory name, in order to find a case-insensitive match.
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create read write write/sync delete
NTFS 128.57 321.34 556.79 65.01 182.82
FSWIN32 112.71 264.13 214.32 78.14 279.02

FSSFS 23.12 73.53 31.77 31.98 46.70
FSSFS + FSSYMLINK 22.95 58.82 30.20 29.38 45.73
FSSFS + FSCASE 15.13 21.33 15.27 15.18 35.49
FSSFS + FSSYMLINK + FSCASE 14.44 20.42 14.84 14.85 35.21

Figure 8: Performance in files per second for Small File Microbenchmark
(1000 1 KB files in 10 directories)

Unlike FSCASE, FSSYMLINK imposes a much smaller performance decrease.

While there is some overhead each time a file is created or opened in order to determine

if that file is a symbolic link, it adds no other cost when the file is not a symbolic link.

Had this benchmark been performed instead with 1,000 symbolic links to other files, an

additional performance decrease would have observed because of the need to read each

symbolic link to determine its target and to open the target file.

The SFS/NT results for the write and synchronous write phases of the benchmark

are virtually identical. This is a consequence of FSSFS currently performing all writes
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synchronously. On the other hand, NTFS actually yields better synchronous write and

delete performance when accessed through FIFS (the FSWIN32 case) than when used

directly. The interposition of the CIFS client may provide additional caching that

accounts for this result. Since Microsoft does not supply the source code for the CIFS

client, however, it is difficult to determine this for certain.

6.3 Application Benchmark

Unlike the LFS microbenchmarks which do not try to directly mirror real-world

usage of a file system, the application benchmark attempts to measure performance in a

realistic situation. It is modeled after the process of compiling a source tree on a remote

machine. The source tree is a copy of the current FIFS source code and measures 870

KB in size. It contains 193 files, with an average size of 4.5 KB. It is stored as a 220 KB

zip archive.

The benchmark begins by making a copy of the archive, unzipping it, and copying

the source tree to a new directory. It uses the du utility to check the size of every file in

the source tree, and uses dif f to compare the new source tree to the old tree. Microsoft

Visual C++ 6.0 is then used to build the project. The du and di f f tests are repeated on

the built source tree. The built tree is then zipped twice, once as a new archive and once

as an update to the original zip file. The two source trees and the updated zip file are then

deleted.

The results are shown in Figure 9. The "compare" category corresponds to the

di f f operations, and the "attributes" category reflects the time spent in the du operations.

The remaining categories are self-explanatory. Overall, performance as compared to

NTFS is limited by the relatively slow write throughput of SFS/NT. Stages such as
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Copy Unzip Attributes Compare Remove Compile Zip Total

NTFS 2.95 3.60 3.43 4.65 1.64 155.65 66.04 237.96

FSWIN32 7.94 10.72 7.23 11.77 3.30 165.78 89.66 296.40

FSSFS 40.08 53.70 27.29 58.19 23.45 626.64 287.43 1116.78

FSSFS + FSSYMLINK 42.73 56.46 29.54 61.02 24.02 659.97 292.90 1166.64

FSSFS + FSCASE 47.55 61.78 32.86 71.07 24.89 656.85 309.99 1204.99

FSSFS + FSSYMLINK + 50.53 66.24 34.94 75.93 25.69 662.45 317.26 1233.04
FSCASE
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compare, which do not perform any writing, are limited by the fact that the cached data

only stays valid for sixty seconds. By the time the compare stage is reached, the time

limit has expired and the data must be refetched. Increasing the data cache timeout so

this is no longer an issue decreases the time of the comparison stage by one-third, but

increases the risk of cache inconsistency if multiple users are modifying the same files

simultaneously.

The results among the four SFS/NT configurations follow a pattern similar to that

of the small file microbenchmark. The FSCASE-induced performance decrease is least

in those phases of the benchmark which place a strong emphasis on reading and writing,

such as compilation or zipping, and greatest in those phases which emphasize just

retrieving attributes. In the former case, the addition of FSCASE to FSSFS and

SFSYMLINK yields a 8% average slowdown, while in the latter case there is

approximately a 25% decrease.

Both of these measurements are well below the average 50% decrease in

performance that occurred in the small file microbenchmark, however. This reflects the

fact that the application benchmark performs actual work (compiling the source tree) in

addition to accessing the file system, rather than merely creating and deleting files as fast

as possible. This, in turn, shows that while the raw performance of the file system may

be of great importance, as is visible in the difference between NTFS and SFS/NT, it is not

the only factor affecting the overall performance of the system. The use to which the

system will be put must also be considered. In the case of SFS/NT, if the file system is to

be used primarily for sequential reads of large files (streaming video, for example), then

the inclusion or removal of FSCASE produces no significant performance difference, as
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shown by the large file microbenchmark. On the other hand, if the file system is to be

used primarily in a situation which more closely resembles that of the small file

microbenchmark, then the performance difference may be worth consideration. But in

either case, the use of a layered design for SFS/NT permits the user to choose which file

system modules to include based on performance and functionality requirements, without

the need to edit any source code or to recompile the file system.
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7 Future Work

The current implementation of SFS/NT permits access to Secure File System

servers by computers running the Windows NT operating system. However, opportunity

for future improvement remains. In this section, several of these opportunities are

discussed.

7.1 Improved FSSFS Caching

The current FSSFS caching can be improved. Replacing the current write-

through mechanism with write-back could yield substantial performance improvements

by permitting writes to take place asynchronously. This should make the performance of

SFS/NT more competitive with other available network file systems for Windows NT

that exploit caching, while still avoiding the complexity of a kernel-mode device driver

and the Windows NT Cache Manager.

At a more fundamental level, work has recently begun on improving the SFS

read/write protocol's caching support, with the aim of making it possible to perform

aggressive caching while still maintaining cache consistency. Initially, this work has

taken the form of permitting an SFS server to grant a client a lease to cache the attributes

of a file or directory for a certain period of time, and to recall that lease if the attributes

should be modified during the lease period. These protocol enhancements have not yet

been incorporated into SFS/NT. If they are, they should make it possible to provide the

user with improved cache consistency while maintaining performance equal to, if not

better than, the current caching mechanism.
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7.2 Modularity of the SFS Protocol

SFS was designed to be extensible, by providing a means to add support for new

file protocols within the existing security framework. The SFS protocol is conceptually

separated into two components. The first is responsible for negotiating encryption and

authentication, and never changes. The second provides for performing operations on the

file system, and may be replaced as desired. For example, the current NFS-derived

protocol could be replaced by one optimized for read-only access on an SFS server that

exports a static file system.

In its current incarnation, FSSFS is a single module which implements both

components of the SFS protocol. However, it would be straight-forward to redesign it to

mirror this separation. Doing so would make it easier to write support for new SFS file

protocols as they are added. One potential approach is to use FIFS's support for layered

drivers, and implement the encryption and authentication portions of the protocol as a

filter driver which calls through to an underlying driver that implements a particular file

protocol.

7.3 Better Disambiguation for Case-Sensitive Names

As was discussed in Section 4.3, FSCASE has the drawback that when there are

two files in one directory with names that differ only in case, it does not permit access to

either file. This is for safety, as it has no way to know which file the user intended to

operate on as the case information has been lost (which is why FSCASE is needed in the

first place). But, while this may be safe, it is clearly not optimal.

Instead, a means of disambiguating such file names without relying on case is

needed. Appending an identifier to the names of these files in the FSCASE layer could
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serve this purpose. These identifiers would only be a part of the local view of the file

system presented by SFS/NT, and would not be stored on the SFS server. One approach

is to append a number that represents the lexicographic order of the file names. For

example, a directory containing the files thesis, Thesis, Thesis, problemset,

ProblemSet, and notes would appear to contain, when listed:

thesis-1 problemset-1
Thesis-2 ProblemSet-2
ThesiS-3 notes

Furthermore, attempts to access such a file name would be mapped by FSCASE to the

actual name on the server.

Such an implementation would suffer from a problem, however. If one user was

to list the directory and another user was to then delete the file Thesis, Thesis would

change from ThesiS-3 to ThesiS-2. If the original user then attempted to delete

Thesis-2, without knowing of the second user's action, he would delete the file Thesis

instead of the intended file Thesis.

An approach which fixes this problem, at the expense of longer identifiers, is to

directly encode the capitalization in the identifier. Using hexadecimal identifiers in

which the most significant bit corresponds to the first character of the file name, a 1 bit

corresponds to a capital letter, and a 0 bit corresponds to a lower case letter, number or

symbol, the above example becomes:

thesis-0 problemset-0
Thesis-20 ProblemSet-204
ThesiS-21 notes

This does not resolve a second problem, though, which is shared by any

disambiguation scheme that attaches additional information to the file names. Suppose a

user creates a reference, in a configuration file or some other location, to the file notes.
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If a second file named Notes were to be created in the same directory, possibly without

the knowledge of the user, the use of identifiers would be required to access either of the

files and the pre-existing reference to notes would become broken. Short of always

requiring the use of identifiers even when there is no current ambiguity, which would be

unacceptable to most users, it seems that any identifier-based method will have this

limitation.
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8 Conclusion

SFS/NT has demonstrated the usefulness of the FIFS framework. It was certainly

easier to develop and debug the file system as a user mode application than it would have

been as a kernel mode device driver. The file system dispatch interface which it exposes

is sufficient for developing a usable file system, and its stackable driver architecture

made it relatively straight-forward to develop support for symbolic links and case-

sensitive file names. The addition of caching to the FIFS-implemented file system also

proved to be fairly simple. However, although additional work could be done to improve

the caching in FSSFS, building support instead for a cache mechanism into the

framework would permit all FIFS file system drivers to benefit without each driver

having to implement its own cache.

SFS/NT has succeeded in bringing Secure File System access to the Windows NT

platform. We hope that, with further work on caching, additional performance

improvements will be obtained over the current results, making the performance of

SFS/NT more competitive with that of other available file systems.
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