
Term Rewriting System Models of Modern Microprocessors

by

Lisa A. Poyneer

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 14, 1999

@ Lisa A. Poyneer, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis and to grant others the right to do so.

Author.....................................

Department of Electrical Engineering and imputer Science
May 13, 1999

C ertified by

Johnson Professo

.. ,., ... A v

of Computer Science

Thesis Supervisor

-Th

Accepted by Art

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Term Rewriting System Models of Modern Microprocessors

by

Lisa A. Poyneer

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Term Rewriting System models and corresponding simulators represent a powerful, high-level ap-
proach to hardware design and testing. TRS principles are discussed, along with modeling tech-
niques such as pipelining and modularity. Two RISC Instruction Set Architectures are the focus
of the modeling. Eleven models are presented, varying in complexity from a single-cycle version to
a speculative, modular, out-of-order version. Principles of generating simulators for TRS models
are discussed. Five simulators are presented and used on a test-suite of code as an example of the
benefits of simulation.

Thesis Supervisor: Arvind
Title: Johnson Professor of Computer Science

2

Acknowledgments

I would like to thank Arvind for giving me the opportunity to work with him and CSG and for his

many hours of both professional and technical guidance. I sincerely appreciate his efforts on my

behalf. Thank you to James Hoe for being a great mentor, collaborator and role model. Thanks

to Dan Rosenband for a great proof-read of my thesis and for being a good officemate. Thanks to

everyone else is CSG, particularly Mitch Mitchell, Jan-Willem Maessen and Alex Caro.

3

4

Contents

1 Introduction

1.1 Problem statement

1.2 Term Rewriting Systems

1.2.1 Definition of Term Rewriting System

1.2.2 Applicability of TRS

1.3 Processors

1.3.1 Pipelining

1.3.2 Speculative Execution

1.3.3 Out-of-order execution

1.4 The Instruction Sets

1.4.1 AX ISA

1.4.2 DLX ISA

1.5 Basic TRS Building Blocks

1.6 Summary

2 Simple Non-Pipelined Models

2.1 Harvard Model and design principles

2.2 The Harvard AX Model, Max

2.2.1 Definition

2.2.2 Rules

2.2.3 Example of execution of Max

2.3 The Harvard DLX Model, Mdlx . . .

2.3.1 Definition

2.3.2 Rules

2.4

2.5

The Princeton Model and design principles

The Princeton AX Model, MPax

2.5.1 Definition

5

13

. 13

. 14

. 14

. 15

. 16

. 16

. 17

. 17

. 18

. 18

. 18

. 20

. 20

21

. 2 1

.... 22

. 22

. 22

. 23

........................ 23

....... 24

.. 25

.. 27

. 27

- -- - - - - 2 7

.

2.5.3 Example of execution . 29

2.6 Alternatives and discussion . 29

2.6.1 Definition . 31

2.6.2 Rules . 31

2.7 Summary . 32

3 Simple Pipelined models 35

3.1 Pipelining in hardware and TRS models 35

3.2 New types for TRSs . 36

3.3 The Stall Pipelined AX Model, M pipea .. 37

3.3.1 Definition . 37

3.3.2 Rules . 37

3.3.3 Example of execution . 39

3.4 The Bypass Pipelined AX Model, M bypax - - 41

3.4.1 Definition . 41

3.4.2 New Rules . 41

3.4.3 Example of execution . 43

3.5 Summary . 43

4 Complex models 47

4.1 New types for TRSs . 48

4.2 Branch Prediction Schemes . 48

4.2.1 Branch Prediction Schemes . 49

4.3 The Speculative AX Model, M specax - - 49

4.3.1 Definition . 49

4.3.2 Rules . 49

4.4 Register Renaming and Multiple Functional Units 53

4.5 The Register-Renaming AX Model, M rr, . 53

4.5.1 Definition . 53

4.5.2 Rules . 53

4.6 Summary . 61

5 Simulation 63

5.1 Principles of Simulation . 63

5.1.1 Clock-centric Implementations . 63

5.1.2 Rule-centric Implementations . 67

6

2.5.2 Rules 27

5.2 The Simulators for AX TRSs . 67

5.2.1 M x . 67

5.2.2 Mpipeax. - - - - - . 67

5.2.3 Mbypax 68

5.2.4 Mspecax 68

5.2.5 Mrrax . 68

5.3 Test results on simulations. 69

5.4 Summary . 70

6 Conclusions 71

A DLX Models 73

A.1 The Princeton DLX Model, MPx . 73

A.1.1 Definition . 73

A.2 The Pipelined DLX Model, Mpipedix . 75

A.2.1 Definition . 75

A .2.2 R ules . 76

A.3 The Speculative DLX Model, Mspecdlx.. 81

A.3.1 Definition . 81

A .3.2 R ules . 81

B Hardware Generation via Compilation 85

7

8

List of Figures

1-1 Example execution trace for Mgcd 15

2-1 Example initial state forM 23

2-2 Example execution trace for Max.. 24

2-3 Example initial state for MP.. 29

2-4 Example execution trace for M P 30

3-1 Example initial state for Mpipea.. 39

3-2 Example execution trace for Mpipea, 40

3-3 Example initial state for Mbypax. 44

3-4 Example execution trace for Mbypa . 44

4-1 2-bit prediction 50

4-2 Schematic of the units of Mrrx 54

4-3 Definition of Mrrx. 55

4-4 State transitions for IRB entries in ROB 60

9

10

List of Tables

5.1 Relations between Mpipeax rules 68

5.2 Relations between Mspeca rules 69

5.3 Instruction Mix for Testing Code 69

5.4 Results of simulators for AX models 70

11

12

Chapter 1

Introduction

1.1 Problem statement

Term Rewriting Systems (TRSs) have long been used to describe programming languages. Recent

work ([1],[2] and[3]) has investigated using TRSs to describe modern computer hardware such as

processors and memory systems. This research has lead toward the development of a complete

system for design, testing and production of hardware using TRSs.

TRSs, used in conjunction with simulators and hardware/software compiler, will greatly improve

the processor development process. TRS models are intuitive to write, are modular, and allow a

complete description to be written in days or even hours. They are easy to reason with and are

amenable to proofs. Simulators, which are straightforward to write, are easily modifiable if the

TRS changes and, with instrumentation, allow for testing and profiling throughout the development

process. Debugging, corrections and design changes can be done at high-level and in earlier design

stages, instead of after the hardware is generated. The compiler will automatically generate target

code (either Verilog or a high-level programming language) removing the burden of hand-coding

from scratch.

Instead of designing a chip, hand-writing the Verilog code, waiting for the hardware to return

and testing it and iterating the above for design changes, TRS will allow the designer to write and

manipulate high level descriptions, testing in software and making changes on the fly. The compiler

will automatically generate the hardware description at the end of the design process. Just as the

use of high-level programming languages and their compilers was a great improvement over writing

assembly code, we hope that the use of TRS and its simulators and compilers will similarly improve

hardware design.

This thesis is concerned with the modeling and simulation steps described above. The Intro-

duction discusses the basics of TRS and fundamental concepts in computer architectures that are

13

built on later. Chapters 2, 3 and 4 present many new models of the DLX and AX ISAs and provide

discussion on the relative merits and design challenges. Chapter 5 addresses the issues involved in

simulation and synthesis of hardware from these TRS models and presents several simulators, along

with the results of running them on a small test-suite of code.

1.2 Term Rewriting Systems

1.2.1 Definition of Term Rewriting System

A Term Rewriting System model consists of a set of terms, a set of rules for rewriting these terms

and a set of initial terms. To begin, the model has a definition, or declaration, of all the state

elements by type.

The definition is followed by the rules. Each rule has an initial state and if clause, which

together represent the precondition that must be met for the rule to be enabled. The rule also has

a specification of the rewritten state, with an optional where clause to contain bindings used. (In

Section 5.1 we work further with the format of a TRS) For a set of rules, a TRS executes as follows.

Whenever a rule has its precondition satisfied, it has been triggered. Multiple rules may trigger at

the same time. However, only one rule can fire at once, and this firing happens atomically. With

multiple rules triggered, the one to fire is chosen randomly. A system proceeds until no rules are

triggered. If, given a specific initial state, a system always reaches the same final state no matter

the order of rule firing, it is called confluent.

A simple example of a TRS is one describing Euclid's GCD algorithm. This algorithm is both

simple and well-known, so its proof is omitted here. This model, called Mgcd, begins with the two

numbers and ends when just one number, the greatest common divisor, is left after rewriting.

PAIR = Pair(VAL, VAL)|| Done(NUM)
VAL = Num(NUM)II Mod(NUM, NUM)

NUM = Bit[32]

Rule 1
Pair(Num(x), Num(y))

if y = 0
-> Done(x)

Rule 2
Pair(Num(x), Num(y))

if y > x
== Pair(Num(y), Num(x))

Rule 3
Pair(Num(x), Num(y))

if x > y and y 5 0
- + Pair(Num(y), Mod(x, y))

14

Rule 4
Mod(x, y)

if x > y

=-> Mod(v, y)
where v := x - y

Rule 5
Mod(x, y)

->~ Num(x)
if x < y

Figure 1-1: Example execution trace for Mcd The left column shows the state, the right column
the triggered and fired rule. Given the numbers 231 and 98, Mcd correctly calculates the gcd, which
is 7. 231 has prime factorization 7 * 33 and 91 has factorization 7 * 13.

1.2.2 Applicability of TRS

TRSs have traditionally been used to describe software languages. A classic example is the SK

combinatory system, which is generally expressed as the following two rules.

K x y -+ x

S x y z - (x y) (y z)

These rules may be expressed in our TRS notation as follows:

PAIR = Ap(E,E)
E = S 1| K Ap(E,E)

15

State Rule Applied
Pair(Num(231), Num(98)) Rule 3
Pair(Num(98), Mod(231,98)) Rule 4
Pair(Num(98), Mod(133, 98)) Rule 4
Pair(Num(98), Mod(35, 98)) Rule 5
Pair(Num(98), Num(35)) Rule 3
Pair(Num(35), Mod(98, 35)) Rule 4
Pair(Num(35), Mod(63, 35)) Rule 4
Pair(Num(35), Mod(28, 35)) Rule 5
Pair(Num(35), Num(28)) Rule 3
Pair(Num(28), Mod(35, 28)) Rule 4
Pair(Num(28), Mod(7, 28)) Rule 5
Pair(Num(28), Num(7)) Rule 3
Pair(Num(7), Mod(28, 7)) Rule 4
Pair(Num(7), Mod(21, 7)) Rule 4
Pair(Num(7), Mod(14, 7)) Rule 4
Pair(Num(7), Mod(7, 7)) Rule 4
Pair(Num(7), Mod(O, 7)) Rule 5
Pair(Num(7), Num(O)) Rule 1
Done(7)

First
Ap(K, Ap(x, y)))
-=> Ap(K, x)

Second
Ap(S, Ap(x, Ap(y, z))))

-> Ap(Ap(x, z), Ap(y,z))

SK formalism, unlike the lambda calculus, has no variables and ye has the power to express all

computable functions. The study of these two rules has inspired a lot of theoretical and languages

research. The TRSs considered in this thesis are much less powerful.

1.3 Processors

Modern Microprocessors are very different from the first computers that emerged forty years ago.

To improve performance, most microprocessors can execute instructions in a pipelined manner.

Modern microprocessor pipelines are complex and permit speculative and out-of-order execution

of instructions. The models presented later in this work follow the evolution of microprocessors

and become progressively more complex. Below is a summary of the key concepts and styles of

implementations.

1.3.1 Pipelining

Pipelining seeks to exploit the fact that in a single-cycle implementation, most of the resources are

idle during the long clock period. For example, after instruction fetch the instruction memory lies

idle for the rest of the clock cycle, waiting for the register file, ALU and data memory to be used

in turn. By splitting the data path into multiple stages, each with independent resources, multiple

instructions can be executed at once, as on an assembly line. The reduction in combinational logic in

each stage brings a corresponding reduction in the clock period. The initial pipelined model will not

include floating point (FP) instructions, and will have linear order instruction issue and completion.

Pipelining, however, creates many new issues that the control logic must deal with. Execution of

code in a pipelined implementation must be equivalent to execution on a non-pipelined implementa-

tion, so data, control and structural hazards must be solved. Data hazards arise when an instruction

produces data necessary for a later instruction. Basic pipelines will have Read-after-Write (RAW)

hazards, where one instruction reads data written by a preceding instruction. RAW data hazards

can be solved with stalls or bypasses. Control hazards occur when one instruction controls what

instructions are executed after it, possibly necessitating nullification of instructions already in the

pipeline. Branches and interrupts cause control hazards. Structural hazards arise from competition

for a single resource. Examples of structural hazards are competition for functional units. A cor-

rect pipelined implementation needs to correctly handle all of the hazards present to ensure correct

16

execution and handle them as efficiently as possible to improve performance. Pipelined models are

presented in Chapter 3.

1.3.2 Speculative Execution

A significant percentage of instructions in normal execution are changes in the flow of control. In

a simple pipelined implementation, a branch or jump will cause a few stalls during execution. In

a more deeply pipelined implementation doing out of order execution, changes in control are much

more difficult to deal with. All instructions before a branch must commit, while no instructions

after (excepting the delay slot in DLX) may modify processor state. Changing the flow of control is

also more expensive, because multiple instructions can be executing on different functional units at

once.

If the target of a control flow change can be predetermined with reasonable accuracy on instruc-

tion issue, the costly flushing of the pipeline and/or delaying of instructions can be avoided. On issue

some mechanism, frequently called the Branch Target Buffer, is accessed to determine the predicted

next address. Execution is speculated with this new address until the actual target is resolved in

later stages. If the prediction is correct, the processor wins, otherwise it undo the effect of incorrect

instructions and transfer control to the correct target. If prediction has a high rate of accuracy, this

strategy will be highly effective. There are many different ways to predict branch behavior, including

one and two-level prediction and various adaptive strategies. Speculative models are presented in

Chapter 4.

1.3.3 Out-of-order execution

In an inefficient implementation of a pipelined integer and FP data path, the long latencies of the

FP units will cause a large number of stalls. By deviating from the linear paradigm, out-of-order

issue and out-of-order completion can generate higher utilization of resources, with a corresponding

jump in system complexity.

A modern processor has multiple functional units. These multiple units introduce a new set of

problems for a pipelined implementation. Because different units will have different latencies (e.g.

an add will be faster than a divide) enforcing in-order completion will cause backwards pressure on

the pipeline. If out-of-order completion is allowed, care must be taken to avoid Write-after-write

hazards. This can be done at either the issue stage or via write-back stage arbitration.

The variable latency of the units can also cause stalls in the issue stage while instructions wait

for certain units to become available. Out-of-order execution can alleviate these delays. However,

care must be taken to avoid Write-after-read anti-dependence hazards on issue. There are several

common approaches to non-linear execution, most notably register renaming and score-boarding. A

register renaming model is presented in Chapter 4.

17

1.4 The Instruction Sets

For this thesis two RISC ISAs have been chosen. RISC ISAs where chosen because the smaller

number of instructions and standard instruction format would make comprehension easier, and the

prevalence of RISC ISA in current industry development. AX, a minimalist RISC ISA has been used

purely for research and teaching purposes. It's small size and simplicity make it ideal for introducing

and illustrating new concepts. The more realistic DLX ISA, described in [4], is similar to current

industry ISAs and provides an illustration of the power of TRS methods.

1.4.1 AX ISA

AX has only six instructions. It is a basic load/store architecture. Its instructions are as follows:

" Load Constant: r := Loadc(v), RF[r] +- v

" Load Program Counter: r := Loadpc, RF[r] <- pc

" Arithmetic Operation: r := Op(rl, r2), RF[r] <- rsl op rs2

" Jump: Jz(rl, r2), if r1 == 0, pc +- RF[r2]

" Load: r:= Load(rl), RF[r] <- Memory[RF[rl]]

" Store: Store(rl, r2), Memory[RF[rl]] +- RF[r2]

1.4.2 DLX ISA

DLX features a simple load/store style architecture, and has a branch delay slot. DLX specifies the

following:

* 32 1-word (32-bit) general purpose integer registers, with RO as the bitbucket.

* 32 1-word floating point registers.

* Data types of 8-bit, 16-bit or 1-word for integers and 1-word or 2-word for floating point.

Instruction format

DLX was designed to have a fixed-length instruction format to decrease decode time. There are

three instruction types: I-type, R-type and J-type.

I-Type [opcode(6)j rs1(5) Ilrd(5) ||immediate(16)]

R-Type [opcode(6)||rs1(5)||rs2(5) IIrd(5) IIfunc(n)

J-Type [opcode(6) |of f set(26)]

18

Types

Within the three instruction types above, there are 7 basic types of instructions that can be described

in register transfer language. An example of each basic type is listed below.

* Register-register ALU operations (R-type): rd := rsl func rs2

* Register-immediate ALU operations (I-type): rd := rsl op immediate

* Loads (I-type): rd := Mem[(rsl + immediate)]

* Stores (I-type): Mem[(rsl + immediate)] := rd

" Conditional branches (I-type): if rsl, pc pc + 4 + immediate else pc pc + 4

" Jumps register (I-type): pc := rsl

" Jumps (J-type): pc := pc + 4 + displacement

DLX Instructions

Name Description RTL

ADD(U), SUB(U),

MUL(U), DIV(U) arithmetical operations rd = rsl op rs2

AND, OR, XOR logical operations rd = rsl logicalop rs2

SLL, SRL, SRA Shifts, logical and arithmetical rd = rsl << (rs2)

SLT, SGT, SLE, Set logical operations if (rsl logicalop rs2) {rd1 11

SGE, SEQ, SNE else rdl = 0

ADD(U)I, SUB(U)I,

MUL(U)I, DIV(U)I arithmetic immediate operations rd = rsl op immediate

ANDI, ORI, XORI Logical immediate operations rd = rsl logicalop immediate

SLLI, SRLI, SRAI Shifts by immediate, logical and arithmetic rd = rsl << immediate

BEQ, BNEZ Branch (not) equal to if (rs1) {pc = pc + 4 + immediate}

else pc = pc + 4

J, JAL Jump (optional link to r31) pc = pc + 4 + immediate

JR, JALR Jump register (optional link to r31) pc = rsl

LB Load byte

LH Load half-word

LW Load word rd = Mem[(rsl + immediate)]

LF, LD Load single or double precision floating point

SB Store byte

SH Store half-word

SW Store word Mem[(rsl + immediate)] = rd

19

1.5 Basic TRS Building Blocks

There are several basic elements that we will use throughout this thesis in TRSs. There are two

basic types that we will use: the single element (e.g. a register) and the labeled collection of these

elements (e.g. a memory or register file.) A single element is represented as a single term of the type

of data it contains. The program counter is therefore just a term of type ADDR. For a collection of

elements, we use an abstract data type and define simple operation on it.

PC = ADDR
RF = Array[RNAME] VAL
RF = Array[ADDR] INST
RF = Array[ADDR] VAL

For both register files and memories we adopt a shorthand convention for reading and writing

elements. To mean "the value of the second element of the pair with label r" we write rf [r]. To

mean "set the value of the second element of the pair with label r to be v" we write rf [r := v]

The types RNAME, VAL, ADDR, and INST must also be defined. For our purposes we have a

32-bit address space in memory, 32 registers store data in 32 bit blocks. To be thorough, ADDR

should be the conjunction of 232 different terminals (i.e. ADDR = 0 || 1 ... || 232 - 1) but as

shorthand we instead say Bit[n], where 0 is the first and 2" - 1 is the last terminal. The INST type

is specified as being one of six different instructions.

ADDR = Bit[32]
INST = Loadc(RNAME, VAL) || Loadpc(RNAME)II

Op(RNAME, RNAME, RNAME) || Load(RNAME, RNAME)II
Store(RNAME, RNAME) || Jz(RNAME, RNAME)

RNAME = RegO 1Reg1| Reg2 Reg3l
VAL = Bit[32]

As we introduce new terms to cope with increasing model complexity, they will be discussed.

1.6 Summary

This Chapter has presented the basic concepts of Term Rewriting Systems, modern computer proces-

sor architecture techniques and two ISAs. The statement that TRS techniques and models present

a powerful new way to design hardware will be justified in the following chapters. Chapters 2, 3 and

4 will present many models, increasing in complexity of both model and hardware for AX and DLX.

Chapter 5 will discuss how to simulate these models and provide an example of the advantages of

easily generated simulators.

20

Chapter 2

Simple Non-Pipelined Models

In this chapter the simple beginnings of TRS processor models are discussed. We begin with the

most basic model, the Harvard model, and then use the Princeton model to show how to break

functionality up across rules.

2.1 Harvard Model and design principles

A Harvard style implementation has separate memories for instructions and data. A very basic

processor can be designed using this style and a single-cycle combinational circuit that executes one

instruction per clock cycle. It can be easily designed by laying down the hardware necessary for

each instruction. For example, a register add would require connections from the PC to the register

file to read the operands then connections to the ALU. The ALU result and the target register from

the PC are also connected to the register file.

Conceptually, the Harvard model is very simple, and the TRS description is likewise. For this

model the state is the different state elements of the machine: the pc, register file, instruction

memory and data memory. The functions that the hardware performs, such as addition or resetting

the pc on a jump, are embodied in the where clauses of the rules. For each instruction that has a

different opcode (e.g. add versus load) a different rule is needed to describe the different hardware

action.

First the Harvard model for the AX ISA, Ma,, is presented, along with a sample execution trace

to illustrate the execution of a TRS model. Next, the considerations for modeling the more complex

DLX ISA are discussed along with that model, Mdl .

21

2.2 The Harvard AX Model, Max

As described in Section 1.4 AX has only six instructions. Max has only seven rules (two for the Jz),

with each rule containing all the functionality of a complete instruction execution.

2.2.1 Definition

This model is very simple. It contains only a program counter, register file and instruction and data

memories. For definitions and discussion of the building block types, see Section 1.5

PROC = Proc(PC, RF, IM, DM)

2.2.2 Rules

The Loadc instruction is the simplest. The value specified in the instruction is stored to the target

register. The pc is incremented to proceed with linear program execution.

Rule 1 - Loadc

Proc(pc, rf, im, dm)
if im[pc] == Loadc(r, v)

-= Proc(pc + 1, rf[r := v], im, dm)

The Loadpc instruction stores the current pc into the target register.

Rule 2 - Loadpc

Proc(pc, rf, im, dm)

if im[pc] == Loadpc(r)

-> Proc(pc + 1, rf[r := pc], im, dm)

The Op instruction adds the values stored in the two operand registers and stores the result in

the target register.

Rule 3 - Op

Proc(pc, rf, im, dm)

if im[pc] == Op(r, ri, r2)

->~ Proc(pc + 1, rf[r v], im, dm)
where v Op applied to rf[r1], rf[r2]

The Load instruction reads the data memory at the address specified by the contents of register

r1 and writes the data to register r.

Rule 4 - Load

Proc(pc, rf, im, dm)

if im[pc] == Load(r, r1)

-- > Proc(pc + 1, rffr v], im, dm)
where v dm[rf[rl]]

The Store instruction stores the value of register reg at the address is data memory specified by

22

register ra.

Rule 5 - Store

Proc(pc, rf, im, dm)
if im[pc] == Store(ra, ri)

->~ Proc(pc + 1, rf, im, dm[ad := v])
where ad := rf[ra] and v := rf[rl]

If the value of register rc is 0, the branch is taken. In the successful case, pc is set to the contents

of register ra. Otherwise the pc is incremented as normal.

Rule 6 - Jz taken

Proc(pc, rf, im, dm)
if im~pc] == Jz(rc, ra) and rf[rc] == 0

-= Proc(rf[ra], rf, im, dm)

Rule 7 - Jz not taken

Proc(pc, rf, im, dm)
if im~pc] == Jz(rc, ra) and rf[rc] $ 0

=-> Proc(pc + 1, rf, im, dm)

2.2.3 Example of execution of Max

An example of Max from a initial start state is given as follows. Keep in mind that rules fire

atomically and if many rules can fire, one is randomly chosen to fire. In this simple case, at most

one rule can fire for any given state. independence and is discussed further in Chapter 5.

Figure 2-1: Example initial state for Max

2.3 The Harvard DLX Model, Mdx

As described in Section 1.4, DLX is a more complex ISA. At this simple stage this just means more

rules to write for each different type of instruction. The main difference from AX, besides the larger

23

State Value
PC 0
rf all zeros
im im[0] = Loadc(rO, 1)

im[1] = Loadc(r2, -1)
im[2] = Loadc(rl, 16)
im[3] = Load(r3, rl)
im[4] = Loadpc(r10)
im[5] = Op(r3, r3, r3)
im[6] = Jz(rO, rl)
im[7] = Op(rO, r2, rO)
im[8] = Jz(rO, r10)
im[9] = Op(r3, rO, r3)

dm dm[16] = 5

Figure 2-2: Example execution trace for Max The current state is shown in the first four columns,
followed by the triggered rules and single rule that fires. The next state is shown in the following
line of the table.

number of instructions, is the branch delay slot. This is dealt with by using an extra term to store

the next pc.

2.3.1 Definition

There are only a few elements of state necessary in the Harvard model: the PC, the register file, the

next PC and the instruction and data memories. This next PC field is necessary to implement the

branch delay slot required by DLX. Our TRS model of a Harvard processor is then:

PROC
NEXT

= Proc(PC, NEXT, RF, IM, DM)
- ADDR

We need new definitions of instructions because this is a different instruction set:

INST =

REGREGOP =

RRTYPE =

SETLOGOP =

SLTYPE =

REGIMMOP =

RITYPE

JUMPOP =

MEMOP =

REGREGOP || SETLOGOP || REGIMMOP
JUMPOP || MEMOP
Regregop(RNAME, RNAME, RNAME, RRTYPE)
Add || Sub || Mul || Div || Addu Subu
Mulu || Divu || And || Or || Xor Sll || Sri || Sra
Setlogop(RNAME, RNAME, RNAME, SLTYPE)
Slt || Sgt|| Sle || Sge || Seq || Sne
Regimop(RNAME, VAL, RNAME, RITYPE)
Addi | Subi || Muli || Divi || Addui Subui
Mului Divui || Andi Ori || Xori Slli || Srli || Srai
Beqz(RNAME, VAL) Bnez(RNAME, VAL)
J(VAL) || Jal(VAL) || Jr(RNAME) || Jalr(RNAME)
Lw(RNAME, VAL, RNAME) || Lh(RNAME, VAL, RNAME)
Lb(RNAME, VAL, RNAME) | Sw(RNAME, VAL, RNAME)
Sh(RNAME, VAL, RNAME) || Sb(RNAME, VAL, RNAME)

24

State fired
pc rf im
0 im[0] = Loadc(rO, 1) 1
1 rqo] = 1 im[1] = Loadc(r2, -1) 1
2 rf[2] = -1 im[2] = Loadc(rl, 16) 1
3 rf[1] = 16 im[3] = Load(r3, r1) = 5 4
4 rf[3] = 5 im[4] = Loadpc(r10) 2
5 rf[10] = 4 im[5] = Op(r3, r3, r3) 3
6 rf[3] = 10 im[6] = Jz(r0, r1) 7
7 im[7] = Op(r0, r2, rO) 3
8 rf[0] = 0 im[8] = Jz(rO, r10) 6
4 im[4] = Loadpc(r10) 2
5 rf[10] = 4 im[5] = Op(r3, r3, r3) 3
6 rf[3] = 20 im[6] = Jz(rO, r1) 6
16 im[16] = nop -

2.3.2 Rules

The rules for a Harvard style implementation are straightforward to write. The Instructions can be

divided into three semantic groups and the rules are a direct translation from the instruction set.

Register Instructions

The arithmetic and logical operations simply apply the operator to the two register values (or one

value and immediate) and save the result in the register file.

Reg-Reg Op
Proc(ia, nxt, rf, im, dm)

if im[ia] == Regregop(rs1, rs2, rd, rrtype)

-->' Proc(nxt, nxt + 1, rfqrd, v], im, dm)
where v := rrtype(rf[rsl], rf[rs2])

Set-Logical
Proc(ia, nxt, rf, im, dm)

if im[ia] == SetlogOp(rsl, rs2, rd, sltype) and sltype(rf[rsl], rf[rs2]) == true

=-> Proc(nxt, nxt + 1, rf[rd, 1], im, dm)
Proc(ia, nxt, rf, im, dm)

if im[ia] == Setlogop(rsl, rs2, rd, sltype) and sltype(rf[rsl], rf[rs2]) false

-> Proc(nxt, nxt + 1, rf[rd, 0], im, dm)

Reg-Imm Rule
Proc(ia, nxt, rf, im, dm)

if im[ia] == RegimmOp(rs1, imm, rs2, ritype)

=-+ Proc(nxt, nxt + 1, rf[rd, v], im, dm)
where v := ritype(rf[rs1], imm)

Control Flow Instructions

Due to DLX's branch delay slot, the instruction after a branch or jump is always executed. The

following jumps modify the next pc instead of the pc to account for that.

BEQZ
Proc(ia, nxt, rf, im, dm)

if im[ia] == Beqz(rsl, imm) and rf[rsl] == 0

:->' Proc(nxt, ia + 1 + imm, rf, im, dm)

Proc(ia, nxt, rf, im, dm)
if im[ia] == Beqz(rsl, imm) and rf[rsl]= 0

m Proc(nxt, nxt + 1, rf, im, dm)

BNEZ
Proc(ia, nxt, rf, im, dm)

if im[ia] == Bnez(rsl, imm) and rf[rsl] O= 0

-> Proc(nxt, ia + 1 + imm, rf, im, dm)

Proc(ia, nxt, rf, im, dm)
if im[ia] == Bnez(rsl, imm) and rf[rsl] == 0

m. Proc(nxt, nxt + 1, rf, im, dm)

Jump
Proc(ia, nxt, rf, im, dm)

if im[ia] == J(imm)

25

==> Proc(nxt, ia + 1 + imm, rf, im, dm)

Jump and Link
Proc(ia, nxt, rf, im, dm)

if im[ia] == Jal(imm)
->~ Proc(nxt, ia + 1 + imm, rffr3l, nxt + 1], im, dm)

JumpRegister
Proc(ia, nxt, rf, im, dm)

if im[ia] == Jr(rsl)
== Proc(nxt, rf[rsl], rf, im, dm)

JumpRegister and Link
Proc(ia, nxt, rf, im, dm)

if im[ia] == Jalr(rsl)
=-> Proc(nxt, rf[rs1], rf[r31, nxt + 1], im, dm)

Memory Instructions

Memory operations are straightforward. The half-word and byte load operations return a padded

version of the low two or one bytes of that memory location. The store versions write only part

of the word by loading the current whole word and combining the new data before writing. Note

that these store rules present a problem in implementation because they both read and write data

memory in a single cycle.

Load Word
Proc(ia, nxt, rf, im, dm)

if im[ia] == Lw(rsl, imm, rd)
-> Proc(nxt, nxt + 1, rf[rd, dm[addr]], im, dm)

where addr := rf[rsl] + imm

Load Half-Word
Proc(ia, nxt, rf, im, dm)

if im[ia] == Lh(rsl, imm, rd)
=-> Proc(nxt, nxt + 1, rfqrd, v], im, dm)

where v := LogicalAnd(OxOO1, dm[addr]) and addr rf[rs1] + imm

Load Byte
Proc(ia, nxt, rf, im, dm)

if im[ia] == Lb(rsl, imm, rd)
->~ Proc(nxt, nxt + 1, rf[rd, v], im, dm)

where v := LogicalAnd(OxOOO , dm[addr]) and addr rf[rsl] + imm

Store Word
Proc(ia, nxt, rf, im, dm)

if im[ia] == Sw(rs1, imm, rd)
=-> Proc(nxt, nxt + 1, rf, im, dm[addr, rffrd]])

where addr := rf[rs1] + imm

Store Half-Word
Proc((ia, nxt, rf), im, dm)

if im[ia] == Sh(rs1, imm, rd)
-=> Proc(nxt, nxt + 1, rf, im, dm[addr, v])

where addr := rf[rsl] + imm and v xor(LogicalAnd(Ox1100, dm[addr]), Logica-
IAnd(OxOO11, rf[rd]))

26

Store Byte

Proc((ia, nxt, rf), im, dm)

if im[ia] == Sb(rsl, imm, rd)

> Proc(nxt, nxt + 1, rf, im, dm[addr, v])

where addr := rf[rsl] + imm and v := xor (LogicalAnd(Ox111O, dm[addr]) ,Logica-

lAnd(OxOO01, rf[rd]))

Further DLX models are all in Appendix A.

2.4 The Princeton Model and design principles

The Princeton model was another of the original style models. It has identical data and instruction

memories, (Note that the proliferation of instruction and data caches make the Harvard-model

assumption that instructions and data are stored in different memories more appropriate.) Having

only one memory prevents more than one memory access per clock cycle. Therefore whenever an

instruction access data memory (i.e. load or store) it cannot also access the instruction memory in

the same cycle. this leads to a resource conflict for the memory.

This problem gives us our first modeling challenge. How do we solve this resource conflict? We

solve this by creating the TRS equivalent of a two-state controller. In the first state, we fetch the

instruction. In the second, we execute it. Every instruction takes two states (or cycles) to execute.

The Princeton model for the AX ISA, MPax, is now presented, followed by a sample execution

trace to illustrate the execution of a TRS model.

2.5 The Princeton AX Model, MPax

2.5.1 Definition

In addition to the four state elements from Max, we add a flag to indicate which state we are in and

a register to hold the fetched instruction.

PROC = Proc(PC, RF, MEM, INST, FLAG)
MEM = Array[ADDR] VI

VI = VAL || INST
FLAG = fetch execute

2.5.2 Rules

First comes the instruction fetch state. Here we fetch the current instruction, and toggle the flag.

The notation of - indicates that we don't care about that variable in the term.

Rule 0 - Fetch

Proc(pc, rf, mem, -, fetch)

27

->~ Proc(pc, rf, mem, mem[pc], execute)

The rules in the execute state are very similar to the ones in Max. We simply execute the

instruction and increment the pc. The Loadc instruction is the simplest. The value specified in the

instruction is stored to the target register.

Rule 1 - Loadc

Proc(pc, rf, mem, inst, execute)
if inst == Loadc(r, v)

= Proc(pc + 1, rfqr := v], mem, -, fetch)

The Loadpc instruction stores the current pc into the target register.

Rule 2 - Loadpc

Proc(pc, rf, mem, inst, execute)
if inst == Loadpc(r)

== Proc(pc + 1, rf[r := pc], mem, -, fetch)

The Op instruction adds the values stored in the two operand registers and stores the result in

the target register.

Rule 3 - Op
Proc(pc, rf, mem, inst, execute)

if inst == Op(r, r1, r2)
-=> Proc(pc + 1, rf[r v], mem, -, fetch)

where v rf[rl] + rf[r2]

The Load instruction reads the data memory at the address specified by the contents of register

r1 and writes the data to register r. Here, if a load is detected, the instruction is saved to the special

register, the flag is set and the pc incremented.

Rule 4 - Load

Proc(pc, rf, mem, inst, execute)
if inst == Load(r, r1)

=-> Proc(pc + 1, rf[r v], mem, -, fetch)
where v mem[rf[rl]]

The Store instruction stores the value of register reg at the address is data memory specified by

register ra. Here, if a store is detected the instruction is saved to the buffer and the flag is set.

Rule 5 - Store

Proc(pc, rf, mem, inst, execute)
if inst == Store(ra, reg)

-=> Proc(pc + 1, rf, mem[ad := v], -, fetch)
where ad := rf[ra] and v := rf[reg]

If the value of register rc is 0, the branch is taken. In the successful case, pc is set to the contents

of register ra. Otherwise the pc is incremented as normal.

Rule 6 - Jz taken

Proc(pc, rf, mem, inst, execute)

28

if inst == Jz(rc, ra) and rf[rc] == 0
-=> Proc(rf[ra], rf, mem, -, fetch)

Rule 7 - Jz not taken

Proc(pc, rf, mem, inst, execute)

if inst == Jz(rc, ra) and rf[rc] # 0

==> Proc(pc + 1, rf, mem, -, fetch)

2.5.3 Example of execution

One might argue: what happens if the flag is set to be true and the instruction in inst is not a load

or store? Then there is not a rule that can fire and MPax will halt. Ensuring that the initial state

of the terms has the flag set to false, then the flag will be set to true only concurrently with the

instruction buffer being set to a valid load or store.

Initialization of terms is necessary for any simulation or hardware execution, though initial terms

are not a part of a TRS. In the case of either hardware or software implementations, an initialization

is just contents of the memories, register file and pc (usually set to the first point in the instruction

memory.)

An example of MPax from a initial start state is given as follows. Keep in mind that rules fire

atomically and if many rules can fire, one is randomly chosen to fire. Note how the 'modes' toggle

back between fetch and execute, with each instruction taking two rules to be executed.

Figure 2-3: Example initial state for MPax

2.6 Alternatives and discussion

There is an alternative to the two state MPax just presented. That model always takes two states

to execute instructions that can be executed in only one, since there is no resource conflict. This

29

State Value
Pc 0
rf all zeros
im im[0] = Loadc(rO, 1)

im[1] = Loadc(r2, -1)
im[2] = Loadc(rl, 16)
im[3] = Load(r3, rl)
im[4] = Loadpc(rlO)
im[5] = Op(r3, r3, r3)
im[6] = Jz(rO, r1)
im[7] = Op(rO, r2, rO)
im[8] = Jz(rO, r10)
im[9] = Op(r3, rO, r3)

dm dm[16] = 5

Figure 2-4: Example execution trace for MPax The current state is shown in the first four
columns, followed by the rule that fires. The next state is shown in the following line of the table.

30

State fired
pc rf inst flag dm
0 - - fetch - 0
0 - Loadc(rO, 1) execute - 1
1 rf[O] = 1 - fetch - 0
1 - Loadc(r2, -1) execute - 1
2 rf[2] = -1 - fetch - 0
2 - Loadc(rl, 16) execute - 1
3 rf[1] = 16 - fetch - 0
3 - Load(r3, rl) execute - 4
4 rf[3] = 5 - fetch - 0
4 - Loadpc(rlO) execute - 2
5 rf[1O] = 4 - fetch - 0
5 - Op(r3, r3, r3) execute - 3
6 rf[3] = 10 - fetch - 0
6 - Jz(rO, r1) execute - 7
7 - - fetch - 0
7 - Op(rO, r2, rO) execute - 3
8 rf[0] = 0 - fetch - 0
8 - Jz(rO, r1O) execute - 6
4 - - fetch - 0
4 - Loadpc(rlO) execute - 2
5 rf1O] = 4 - fetch - 0
5 - Op(r3, r3, r3) execute - 3
6 rf[3] = 20 - fetch - 0
6 - Jz(rO, r1) execute - 6
16 - - fetch - -

version, MP - altr, instead tries to execute every instruction completely, and breaks into two cycle

mode only when confronted with a load or store.

2.6.1 Definition

In addition to the four state elements from Max, we add a flag to indicate which state we are in and

a register to hold the fetched instruction.

PROC = Proc(PC, RF, MEM, INST, FLAG)
FLAG = regular || special
MEM = e Mem(ADDR, VI);MEM

VI = VALI|INST

2.6.2 Rules

The Loadc instruction is the simplest. The value specified in the instruction is stored to the target

register. The pc is incremented to proceed with linear program execution. Here we introduce the

notation of - to indicate don't care in the term.

Rule 1 - Loadc

Proc(pc, rf, mem, -, regular)
if mem[pc] == Loadc(r, v)

==> Proc(pc + 1, rf[r, v], mem, -, regular)

The Loadpc instruction stores the current pc into the target register.

Rule 2 - Loadpc

Proc(pc, rf, mem, -, regular)
if mem[pc] == Loadpc(r)

==> Proc(pc + 1, rf[r, Pc], mem, -, regular)

The Op instruction adds the values stored in the two operand registers and stores the result in

the target register.

Rule 3 - Op
Proc(pc, rf, mem, -, regular)

if mem[pc] == Op(r, ri, r2)

=-+ Proc(pc + 1, rfqr, v], mem, -, regular)

where v := rf[rl] + rf[r2]

The Load instruction reads the data memory at the address specified by the contents of register

r1 and writes the data to register r. Here, if a load is detected, the instruction is saved to the special

register, the flag is set to special.

Rule 4a - Load

Proc(pc, rf, mem, -, regular)
if mem[pc] == Load(r, ri)

=e Proc(pc, rf, mem, inst, special)

31

where inst := Load(r, rl)

In the second step, if the flag is set to special, the pc is ignored and the instruction in the buffer

is executed. The flag is then set to regular, the pc is incremented and execution will continue as

normal.

Rule 4b - Load
Proc(pc, rf, mem, inst, special)

if inst == Load(r, r1)

->~ Proc(pc + 1, rf[r, v], mem, -, regular)

where v := mem[rf[r1]]

The Store instruction stores the value of register reg at the address is data memory specified by

register ra. Here, if a store is detected the instruction is saved to the buffer and the flag is set to

special.

Rule 5a - Store

Proc(pc, rf, mem, -, regular)

if mem[pc] == Store(ra, reg)

Proc(pc, rf, mem, inst, special)

where inst := store(ra, reg)

In the second step, the store is executed and the flag reset to false.

Rule 5b - Store

Proc(pc, rf, mem, inst, special)

if inst == Store(ra, reg)

->~ Proc(pc + 1, rf, mem[ad, v], -, regular)

where ad := rf[ra] and v := rf[reg]

If the value of register rc is 0, the branch is taken. In the successful case, pc is set to the contents

of register ra. Otherwise the pc is incremented as normal.

Rule 6 - Jz taken
Proc(pc, rf, mem, -, regular)

if mem[pc] == Jz(rc, ra) and rf[rc] == 0
->. Proc(rf[ra], rf, mem, -, regular)

Rule 7 - Jz not taken

Proc(pc, rf, mem, -, regular)

if mem[pc] == Jz(rc, ra) and rf[rc] # 0

->~ Proc(pc + 1, rf, mem, -, regular)

2.7 Summary

With these first simple models we have laid the foundation for future work. Max, Mdlx, MPax are

very short and elegant descriptions of simple implementations of the two instruction sets. The next

chapters add complexity in both modeling techniques and hardware concepts. MPax presented an

32

important idea - breaking the functionality of one rule into many and using intermediate storage.

The obvious next step to take is to pipeline these two states (or stages) if the model is to become

more efficient. This idea will be expanded to deal with pipelining in Chapter 3.

33

34

Chapter 3

Simple Pipelined models

In this section we introduce the technique for pipelining TRS models. The fact that processors are

frequently pipelined makes comprehension of this method easy, but it can be applied to any type

of model, not just one that we would normally think of as being pipelined. We begin by discussing

general principles and then describe three pipelined models, followed by discussion of pipelining

strategies.

3.1 Pipelining in hardware and TRS models

In hardware, pipelining seeks to increase parallelism by exploiting idle functional units. In a single

cycle circuit, most the circuit lies idle at any given point. By breaking the circuit into stages

separated by registers, multiple instructions (or input) can be executed in parallel in a lockstep

fashion on the circuit. Though this cannot decrease the latency of a single instruction through

the circuit (and in general increases latency because the clock cycle must be long enough for the

longest-latency part to complete) it does dramatically increase the throughput of the circuit. In the

best case where there are no hazards between stages, throughput increases from 1 to the number of

pipeline stages.

In a TRS model, pipelining similarly tries to break large computations, usually expressed in

a rule's where clause, into smaller units across many rules. In order to do this, state elements

to maintain the intermediate stages must be created. We have modeled these with queues. For

convenience of notation, not semantic necessity, we have modeled the queues as unbounded in size.

In practice, only bounded size queues can be implemented.

Though any hardware implementation or simulation of a TRS written with unbounded queues

will be correct but not complete. Some behavior will be lost, but none new will be gained. For

example, supposed we bound queues to be of length three. It is possible that a TRS execution on a

given state could have more than three elements. Our simulation will not capture these behaviors,

35

but will capture all those execution traces that never exceeded the queues bounds. In simulation we

are interested in implementing one possible execution order, not all of them.

Since multiple rules check the same queue, deadlock is a consideration. Deadlock will not occur

in a pipelined TRS if the pipelines don't have circular dependencies and if no rule examines more

than the top element of the FIFO. Specifically, we have only forward dependences (i.e. a specific

stage does not depend on the behavior of a previous one) and only examine the heads of the queues.

The general pipelining strategy is to decide where to make the breaks, and insert queues in

between them. Each stage them reads from its input queue and must forward the instruction with

any new state to the next stage, meeting all requirements. To be correct, the model must be

equivalent to an unpipelined version. Though the proof is omitted here, intuitively the pipeline

must not have forward dependencies preventing instructions from draining completely.

Another hardware similarity is the choice between resolving RAW data hazards by stalling or by

bypassing. Stalling means waiting until the register is written to and then proceeding; bypassing

means finding the new value as soon as it appears in the pipeline and using that value (bypassing

the writeback wiring.) These choices are written in to the TRS itself. Therefore two variations on

Mpipeax are presented.

3.2 New types for TRSs

For storing information between stages, queues are used. This is the standard first-in-first-out (FIFO)

buffer. For its definition, another abstract data type is used. A queue is an ordered collection of

elements, concatenated with ;'s. A queue of two elements ei, e2 is written as ei; e2 In our notation

ej can be either have the type of a single element or a queue of that type of element. Enqueueing

an element e to the end of a queue q is written as q; e. Removing an element from the head of the

queue e; q leaves q as the queue. Queues here are modeled as having unbounded length. Note that

a valid queue can be empty. ELEM is whatever type the queue needs to contain.

Also needed now is a buffer for storing instructions in the queue: the instruction buffer. This

buffer holds an instruction and address. Later on we will introduce different buffers to deal with

increased complexity.

IB = Ib(ADDR, INST)

As instructions move through the pipeline, the register names become values. Therefore, a few

modifications to the previous definition of INST (see Section 1.5) are necessary. First, the standard

instructions can now hold RNAMEs or VALs. Second, a new instruction is introduced to represent

writing single value to a register. This instruction is called Reqv (or "r equals v"). The new definition

if INST is as follows:

36

INST = Loadc(RNAME, VAL) |1 Loadpc(RNAME)|
Op(RNAME, RV, RV) 11 Load(RNAME, RV)|
Store(RV, RV) || Jz(RV, RV) || Reqv(RNAME, VAL)

RV = RNAME1|VAL
RNAME = RegO 1 Regi1| Reg2|.. Reg3l

VAL = Bit[32]

3.3 The Stall Pipelined AX Model, Mpipeax

In Mpipeax, the standard choice was made to break the instruction execution into five stages.

These five stages are the instruction fetch, where the instruction memory is read at the pc value; the

decode stage, where the register file is read and instruction type determined; the execute stage, where

arithmetic operations and other tests are performed; the memory stage, where the data memory is

either read or written; the writeback stage, where the register file is written to.

In this stall version, instructions cannot move through the Decode stage until there are no RAW

hazards (i.e. no instruction farther along the pipeline writes to a register that needs to be read.)

3.3.1 Definition

PROC = Proc(PC, RF, BSD, BSE, BSM, BSW, IM, DM)
BSD, BSE, BSM, BSW = Queue(IB)

3.3.2 Rules

In the Fetch stage the next instruction is fetched, added to the bsD queue, and the pc is incremented.

When Jz's are fetched, the pc is still incremented instead of stalling until the branch target is

determined. (This is a passive form of speculative execution, which is discussed in Chapter 4.)

Rule 1 - Fetch

Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm)

-> Proc(ia+1, rf, bsD;Ib(ia, inst), bsE, bsM, bsW, im, dm)

where inst := im[ia]

In the decode stage the different instruction types are determined. In this stall version, the

registers to be read from the register file are checked against those to be written in later queues.

The decode rules fire only if there are no RAW hazards.

Rule 2a - Decode Op
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Op(r, r2, r3) and r2, r3 are not dests in (bsE, bsM, bsW)

-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, din)
where inst2 := Op(r, rf[r2], rf[r3])

Rule 2b - Decode Loadc

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Loadc(r, v)

=-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

37

where inst2 := Reqv(r,v)

Rule 2c - Decode Loadpc
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Loadpc(r)
> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Reqv(r, sia)

Rule 2d - Decode Load
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Load(r, r1) and r1 is not dest in (bsE, bsM, bsW)
=> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Load(r, rf[r1])

Rule 2e - Decode Store
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dn)

if inst1 == Store(rl, r2) and rl, r2 are not dests in (bsE, bsM, bsW)
-=>~ Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Store(rf[r1], rf[r2])

Rule 2f - Decode Jz

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Jz(rl, r2) and r1, r2 are not dests in (bsE, bsM, bsW)

-=+ Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)
where inst2 := Jz(rf[r1], rf[r2])

In the execute stage Op instructions undergo the equivalent of ALU use, and Jz's are resolved.

If a Jz is taken, the pc is reset and the now-invalid queues bsD and bsE are flushed, otherwise the

failed Jz is discarded. Memory instructions and already completed value determinations (loadc and

loadpc) are passed on to the next stage untouched.

Rule 3 - Exec Op
Proc(ia, rf, bsD, Ib(sia, Op(r, v1, v2);bsE, bsM, bsW, im, dm)
==>. Proc(ia, rf, bsD, bsE, bsM;Ib(sia, ReqV(r, v)), bsW, im, dm)

where v := Op applied to (v1, v2)

Rule 4 - Exec Jz taken
Proc(ia, rf, bsD, Ib(sia, Jz(O, nia);bsE, bsM, bsW, im, din)
==> Proc(nia, rf, e, e, bsM, bsW, im, dm)

Rule 5 - Exec Jz not taken
Proc(ia, rf, bsD, Ib(sia, Jz(v, -);bsE, bsM, bsW, im, din)

if v # 0
-=> Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm)

Rule 6 - Exec Copy

Proc(ia, rf, bsD, Ib(sia, it);bsE, bsM, bsW, im, dm)
if it $ Op(-, -, -) or Jz(-, -)

=e Proc(ia, rf, bsD, bsE, bsM;Ib(sia, it), bsW, im, dm)

In the memory stage, data memory is accessed by Load and Store instructions. All other in-

structions (which have the form r=v) are passed on to the writeback stage.

Rule 7 - Mem Load

sys(Proc(ia, rf, bsD, bsE, Ib(sia, Load(r, a));bsM, bsW, im), pg, dm)

38

=-> sys(Proc(ia, rf, bsD, bsE, bsM, bsW;Ib(sia, Reqv(r, v)), im), pg, dm)
where v := dm[a]

Rule 8 - Mem Store

sys(Proc(ia, rf, bsD, bsE, Ib(sia, Store(a, v));bsM, bsW, im), pg, dm)
-=> sys(Proc(ia, rf, bsD, bsE, bsM, bsW, im), pg, dm[a:=v])

Rule 9 - Mem Copy

Proc(ia, rf, bsD, bsE, Ib(sia, ReqV(r, v));bsM, bsW, im, dm)

-=> Proc(ia, rf, bsD, bsE, bsM, bsW;Ib(sia, Reqv(r, v)), im, dm)

In the final writeback stage, values, determined by Op, Loadc, Loadpc or Load instructions, are

written to the register file.

Rule 10 - Writeback

Proc(ia, rf, bsD, bsE, bsM, Ib(sia, Reqv(r, v));bsW, im, dm)
= Proc(ia, rffr := v], bsD, bsE, bsM, bsW, im, dm)

3.3.3 Example of execution

An example of Max from a initial start state is given as follows. Keep in mind that rules fire

atomically and if many rules can fire, one is randomly chosen to fire. As displayed in the trace,

this pipelined version does not actually exhibit the standard lock-step progression of instructions

through the stages. To do this in simulation we need to fire multiple rules at once. This will be

discussed in Chapter 5.

Figure 3-1: Example initial state for Mpipeax

39

State Value
Pc 0
rf all zeros
im im[0] = Loadc(rO, 1)

im[1] = Loadc(r2, -1)
im[2] = Loadc(rl, 16)
im[3] = Load(r3, r1)
im[4] = Loadpc(rlO)
im[5] = Op(r3, r3, r3)
im[61 = Jz(rO, r1)
im[7] = Op(rO, r2, rO)
im[81 = Jz(rO, r1O)
im[9] = Op(r3, rO, r3)

dm dm[16] = 5
bsD -
bsE -
bsM -
bsW -

State Can fire Did
pc rf bsD bsE bsM bsW
4 Ld(r3,r1);Ldc(rl,16) r2=-1 - rO=1 1, 2b, 6, 10 2
4 Ld(r3,rl) r1=16; r2=-1 - rO=1 1, 6, 10 6
4 Ld(r3,rl) r1=16 r2=-1 rO=1 1, 6, 9, 10 1
5 Ldpc(rlO);Ld(r3,rl) r1=16 r2=-1 rO=1 1, 6, 9, 10 10
5 r[O]=1 Ldpc(rlO);Ld(r3,rl) r1=16 r2=-1 1, 6, 9 9
5 Ldpc(rlO);Ld(r3,rl) r1=16 r2=-1 1, 6, 10 6
5 Ldpc(rlO);Ld(r3,rl) - r1=16 r2=-1 1, 9, 10 10
5 r[2]=-1 Ldpc(rlO);Ld(r3,rl) - r1=16 - 1, 9 9
5 Ldpc(rlO);Ld(r3,rl) - - rl=16 1, 10 10
5 r[1]=16 Ldpc(rlO);Ld(r3,rl) - - - 1, 2d 2

9 Jz(rO,rlO) rO=0 r3=10 1, 9, 10 9
9 Jz(rO,rlO) - - rO=0; 1, 10 1
- more of previous line - - r3=10
10 Op(r3,rO,r3);Jz(rO,rlO) - - rO=0; 1, 10 10
- more of previous line - - r3=10
10 r[3]=10 Op(r3,rO,r3);Jz(rO,rlO) - - rO=0 1, 10 10
10 r[0]=0 Op(r3,rO,r3);Jz(rO,rlO) - - - 1, 2f 2
10 Op(r3,rO,r3) Jz(0,4) - - 1, 2f, 4 2
10 - r3=Op(0,10);Jz(0,4) - 1, 4 4
4 - - - - 1 1
5 Ldpc(rlO) - - - 1, 2c 2

Figure 3-2: Example execution trace for Mpipea, The current state is shown in the first four
columns, followed by the triggered rules and single rule that fires (the rule to fire is chosen randomly.)
The next state is shown in the following line of the table. Note that r:=v is used as a shorthand for
Reqv(r, v) to save space. The first window shows stalling occurring. Rule 2 is not triggered because
r1, which the Load instruction reads, is being written to farther on in the pipeline by the Loadc
instruction. The second window shows the reset of the pc and flush of earlier pipeline stages when
the Jz resolves. Note that some instruction names have been abbreviated to save space. Two lines
have been split over multiple rows also.

40

3.4 The Bypass Pipelined AX Model, Mbypax

This model is the same as the previous, with the exception of the six Decode stage rules. These

rules have been changed to implement bypass instead of stall. The definition and other rules remain

the same are are not repeated.

3.4.1 Definition

The bypassed version has the same term definition as the stalled as is not repeated here.

INST = Loadc(RNAME, VAL) || Loadpc(RNAME)II
Op(RNAME, RV, RV) || Load(RNAME, RV)||
Store(RV, RV) || Jz(RV, RV) || Reqv(RNAME, VAL)

RV = RNAME1|VAL
RNAME = RegO 1Reg1| Reg2||.. Reg3l

VAL = Bit[32]

3.4.2 New Rules

To determine how to bypass, we must figure out two things. First, at which pipeline stage are the

values of the source register needed? In a stall model all operands are read from the register file in

the decode stage. The instructions vary, however, on when the operands are actually used. Op and

Jz use them in the execute stage. Load uses them in the Memory stage and Store in the Memory

and Writeback stage. Loadc and Loadpc have no register operands. Therefore Op cannot proceed

from the decode stage without both operands. Load and Store can proceed to the Execute stage

but no farther without operands.

Second, when are new values for registers produced? Loadc and Loadpc produce the values in the

decode stage (since the values are encoded in the instruction.) Op produces a value in the Execute

stage. Load produces a value in the Memory stage. Jz and Store produce no values. Because we

have written the model such that whenever a value for a register is computed, the instruction in

converted to r = v, we simply look down the pipeline for the newest r = v statement for the register

we want.

The rules for Loadc and Loadpc remain the same since they have no need for bypassing.

Rule 2b - Decode Loadc

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if instl == Loadc(r, v)

==> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)
where inst2 := Reqv(r, v)

Rule 2c - Decode Loadpc

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Loadpc(r)

-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := ReqV(r, sia)

41

The four bypassed instructions have the additional rules below. Note that due to the non-

deterministic execution of TRS models, we cannot let any instruction get past the Decode stage

without having values for all its register operands. This is because even if a r = v for the register

operand will appear after another rule fires, it can then go through the pipeline and disappear before

the bypass rule can be triggered!

For ease of rule writing, we define x Ei y to be the first occurrence of an item matching x's type

occurring in y, which is ordered. Not that for two operand we have four possibilities for the registers

being current in the register file.

Rule 2a-1 - Decode Op, no bypass
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Op(rl, r2, r3) and r2, r3 are not dests in (bsE, bsM, bsW)
-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Op(rl, rf[r2], rf[r3])

Rule 2a-2 - Decode Op, bypass r2
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Op(rl, r2, r3) and r2 == v2 El bsE;bsM;bsW and r3 == v3 is not dest in
(bsE, bsM, bsW)

->. Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)
where inst2 := Op(rl, v2, rf[r3])

Rule 2a-3 - Decode Op, bypass r3
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Op(rl, r2, r3) and r3 == v3 Ei bsE;bsM;bsW and r2 v2 is not dest in
(bsE, bsM, bsW)

=-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dn)
where inst2 := Op(r1, rf[r2], v3)

Rule 2a-4 - Decode Op, bypass both
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if instl == Op(rl, r2, r3) and r2 == v2 E1 bsE;bsM;bsW and r3 v3 E bsE;bsM;bsW
==> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Op(rl, v2, v3)

Rule 2d-1 - Decode Load, no bypass
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, din)

if inst1 == Load(r, ri) and r1 is not dest in (bsE, bsM, bsW)
-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, din)

where inst2 := Load(r, rf[rl])

Rule 2d-2 - Decode Load, bypass
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Load(r, r1) and r1 == vI Ei bsE;bsM;bsW
=-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Load(r, vI)

Rule 2e-1 - Decode Store, no bypass
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

if inst1 == Store(rl, r2) and rl, r2 are not dests in (bsE, bsM, bsW)
-=> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, din)

where inst2 := Store(rf[rl], rf[r2])

Rule 2e-2 - Decode Store, bypass ri
Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)

42

if inst1 == Store(rl, r2) and r1 == vi El bsE;bsM;bsW and r2 v2 is not dest in

bsE;bsM;bsW
-+ Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Store(v1, rf[r2])

Rule 2e-2 - Decode Store, bypass r2

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Store(rl, r2) and r2 == v2 Ei bsE;bsM;bsW and r1 v1 is not dest in

bsE;bsM;bsW
=> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, din)

where inst2 := Store(rf[rl], v2)

Rule 2e-4 - Decode Store, bypass both

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dn)
if inst1 == Store(r1, r2) and ri == v1 Eli bsE;bsM;bsW and r2 == v2 Ei bsE;bsM;bsW

-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dn)
where inst2 := Store(vl, v2)

Rule 2f-1 - Decode Jz, no bypass

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Jz(rl, r2) and rl, r2 are not dests in (bsE, bsM, bsW)

-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dn)
where inst2 := Jz(rf[ri], rf[r2])

Rule 2f-2 - Decode Jz, bypass r1

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, dm)
if inst1 == Jz(r1, r2) and ri == v1 Eli bsE;bsM;bsW and r2 v2 is not dest in

bsE;bsM;bsW
=-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dn)

where inst2 := Jz(vi, rf[r2])

Rule 2f-3 - Decode Jz, bypass r2

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, din)
if inst1 == Jz(rl, r2) and r2 == v2 Ei bsE;bsM;bsW and r1 == v1 is not dest in

bsE;bsM;bsW
->~ Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dn)

where inst2 := Jz(rf[ri], v2)

Rule 2f-4 - Decode Jz, bypass both

Proc(ia, rf, Ib(sia, instl);bsD, bsE, bM, bsW, im, din)

if inst1 == Jz(rl, r2) and ri == v1 Eli bsE;bsM;bsW and r2 == v2 Ei bsE;bsM;bsW

=-> Proc(ia, rf, bsD, bsE;Ib(sia, inst2), bsM, bsW, im, dm)

where inst2 := Jz(vi, v2)

3.4.3 Example of execution

An example of Max from a initial start state is given as follows. Keep in mind that rules fire

atomically and if many rules can fire, one is randomly chosen to fire.

3.5 Summary

In this Chapter we explored pipelining and separating functionality in TRS models. Mpipea, was

a standard stalled pipeline. Mbypax was a bypassed version. In the next Chapter we expand the

43

Figure 3-3: Example initial state for Mbypax

State Can Fire Did
pc rf bsD bsE bsM bsW
4 Load(r3,rl);Loadc(rl,16) r2=-1 - rO=1 1, 2b, 6, 10 2
4 Load(r3,rl) rl=16; r2=-1 - r0=1 1, 2d, 6, 10 6
4 - r3=Load(16);rl=16 r2=-1 r0=1 1, 2d, 6, 9, 10 2d
4 - r3=Load(16);rl=16 r2=-1 rO=1 1, 6, 9, 10 1
5 Loadpc(rlO) r3=Load(16);rl=16 r2=-1 r0=1 1, 2c, 6, 9, 10 10
5 r[0]=1 Loadpc(rlO) r3=Load(16);rl=16 r2=-1 1, 2c, 6, 9 9

Figure 3-4: Example execution trace for Mbypax The current state is shown in the first four
columns, followed by the triggered rules and single rule that fires. The next state is shown in the
following line of the table. Note that r:=v is used as a shorthand for Reqv(r, v) to save space.The
first window shows bypassing occurring on the Load instruction. Compare this with the execution
example for Mpipes,

44

State Value
pc 0
rf all zeros
im im[O] = Loadc(r0, 1)

im[1] = Loadc(r2, -1)
im[2] = Loadc(rl, 16)
im[3] = Load(r3, rl)
im[4] = Loadpc(rlO)
im[5] = Op(r3, r3, r3)
im[6] = Jz(rO, r1)
im[7] = Op(rO, r2, rO)
im[8] = Jz(r0, r1O)
im[9] = Op(r3, rO, r3)

dm dm[16] = 5
bsD -
bsE -
bsM -
bsW -

use of queues as communication mechanisms between modules instead of within the same (single)

module here.

45

46

Chapter 4

Complex models

In this chapter we discuss using modularity in TRSs, and use it to model more complex hardware

designs. Part of the benefit of modularity is conciseness in writing out models. Another part is

the standard benefits of modularity in software design - it allows for the clean interfacing between

separately developed parts and isolates changes. This allows current research (e.g. the cache coher-

ence work done by Xiaowei Shen, Arvind and Larry Rudolph [5]) to be simply plugged in to these

processor models. Then two important but orthogonal concepts are discussed: speculative execution

and register renaming.

Speculative execution seeks to reduce the delay penalty incurred while waiting for a branch target

to be resolved in a pipeline. As pipeline length increases, the delay until branch target resolution

increases as well. Because many program structures, such as loops and function calls, exhibit regular

behavior we can exploit this regularity to predict the future.

First the method of speculation and correction of errors must be defined. This is discussed more

in depth and proofs of correctness are given in [2]. In the fetch stage the branch target buffer

(described below) is consulted and a predicted target for a jump is used as the next pc. When the

branch resolves later on in the pipeline, any incorrect execution must be fixed. If the prediction was

correct, nothing happens. If the prediction was incorrect, all instructions behind the branch in the

pipeline must be flushed. Because the branch is resolved before and state is changed there are no

worries about fixing state.

Secondly, the method of prediction needs to be defined. The method (and accuracy) of prediction

has no bearing on the overall correctness of the speculative execution. Though a bad prediction

method will generate more inefficient execution, it will not generate incorrect execution. Common

methods are discussed in Section 4.2.

Register renaming stems from a different hardware constraint. As multiple functional units

are introduced (e.g. floating-point units, multiple ALUs) instructions can complete out-of-order.

47

Data hazards place constraints on whether instructions can be issued. The number of register also

nominally constrains the number of instructions simultaneously active: since two instructions cannot

change the same register, the number of register limits the number of instructions that can execute.

Register renaming works around this problem, but has a corresponding increase in effort else-

where. Each time an instruction is issued, its target register is assign a tag, and its operands are

read as either a tag or real value from the register file. Note that an operand having a tag instead of

a value indicates an instruction writing that register has not yet resolved. When all operands have

values instead of tags, the instruction can be executed. Upon completion the target tag is updated

in all following instructions to be of the new value. A more in depth discussion of this can be found

in [4].

4.1 New types for TRSs

Here the two new modules are defined. For speculative execution the BTB stores the predictions

for branch targets based on pc. It is a memory using the Array abstract type.

BTB = Array[ADDR] Entry(BITS ADDR)
BITS = Bit[32]

Operations on the btb are defined similarly to for memory and have the following semantics.

Looking up an instruction address returns a predicted address. If the the instruction address ia is

not in the btb, ia + 1 is returned. If ia is in the BTB, ia + I is returned if the prediction is 'not

taken' and pia (the predicted target) is returned if the prediction is 'taken'. Note that in practice

BTBs are implemented using some hash of the provided address.

Updating the BTB is done by providing it with the instruction address it predicted for, the

predicted address and the result (correct or not correct) of the prediction. Note that since we are

creating an interface here and not specifying either the internal methods of storage in the BTB or

the method of prediction (which are discussed in Section 4.2.

For the register renaming model the ROB (re-order buffer) is introduced. It is an ordered list

that we can access both the head and tail of (like a queue) as well as scanning the contents of. The

templates inside hold all the necessary information about each instruction, including the tag of the

target register and the state of completion. Details are discussed more fully in Section 4.5.

ROB = List IRB Re-Order Buffer
IRB = Itb (TAG, PC, INSTTEMP, STATE) Element of ROB

4.2 Branch Prediction Schemes

In order for speculative execution to be effective, the prediction must be highly accurate. There

are several different schemes possible for branch prediction. In the models in this chapter we have

48

chosen to model the branch target buffer as a black box.

4.2.1 Branch Prediction Schemes

Here two prediction methods are presented. It is important to note that the correctness of speculative

execution is independent of the prediction scheme chosen. The two described below (and many more

that are possible) differ in performance, not correctness.

1-bit prediction Rules

This is the simplest scheme. It uses the heuristic that the most likely branch target is the target from

the most recent execution of the instruction. If the last instance of the jump at ia was taken, the

last branch target is predicted. If the last instance was not taken, ia + 1 is predicted.This prediction

scheme provides good predictive accuracy for long loops.

2-bit prediction Rules

The 2-bit method is another common approach to branch prediction. This method uses the infor-

mation from the previous two jumps instead of previous one to predict the outcome.

The two-bit name comes from the fact that the two bits represent the behavior of the last two

occurrences. Two states represent sure predictions of taken or not taken. Two others represent

marginal confidence.

This is shown in Figure 4-1.

4.3 The Speculative AX Model, Mspeca.

4.3.1 Definition

Because we are speculating, we need to keep track of what the speculated address was so that it can

be checked later on in the pipeline. To do this we modify the buffer to hold three elements, not two.

PROC = Proc(PC, RF, BSD, BSE, BSM, BSW, IM, DM, BTB)
BSD, BSE, BSM, BSW = Queue(ITB)

ITB = Itb(ADDR, ADDR, INST)

4.3.2 Rules

This model introduces speculative, in-order execution. Only two significant changes are necessary

from Mpipeax: modify the fetch stage to speculate and modify the jump resolution rules to correct

any mistakes. First, Jz instructions must be speculated on in the fetch stage. Here, the distinction

is made between Jz and non-Jz instructions to reduce size of the btb. Fetch of a Jz necessitates

49

Correct

Sure Taken
Predict Taken

Incorrect

Sure Not Taken
Predict Not Taken

Correct

Incorrect

Incorrect

Correct

Unsure Taken
Predict Taken

Incorrect

Sure Not Taken
Predict Not Taken

Correct

Figure 4-1: 2-bit prediction scheme Note how it takes two mispredictions in a row to change the
next prediction.

50

consultation with the btb, which produces the next pc. Fetches on other instructions proceed as

normal.

Rule la - Fetch Jz

Proc(ia, rf, bsD, bsE, bsM, bsW, im, din, btb)
if inst == Jz(-,-)

->~ Proc(nia, rf, bsD;Itb(ia, nia, inst), bsE, bsM, bsW, im, dm, btb)

where inst := im[ia], nia := lookup(btb, ia)

Rule lb - Fetch, not Jz

Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm, btb)
if inst #= Jz(-,-)

->~ Proc(ia+1, rf, bsD;Itb(ia, ia+1, inst), bsE, bsM, bsW, im, dm, btb)
where inst := im[ia]

Rule 2a - Decode Op

Proc(ia, rf, IB(sia, -, instl);bsD, bsE, bM, bsW, im, dm, btb)
if inst1 == Op(rl, r2, r3) and r2, r3 are not dests in (bsE, bsM, bsW)

e Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, dn, btb)
where inst2 := Op(rl, rf[r2], rf[r3])

Rule 2b - Decode Loadc

Proc(ia, rf, Itb(sia, -, instl);bsD, bsE, bM, bsW, im, din, btb)
if inst1 == Loadc(r, v)

==> Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, dm, btb)
where inst2 := Reqv(r, v)

Rule 2c - Decode Loadpc

Proc(ia, rf, Itb(sia, -, instl);bsD, bsE, bM, bsW, im, dm, btb)
if inst1 == Loadpc(r)

=> Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, dn, btb)
where inst2 := Reqv(r, sia)

Rule 2d - Decode Load

Proc(ia, rf, Itb(sia, -, instl);bsD, bsE, bM, bsW, im, dm, btb)
if inst1 == Load(rl, r2) and r2 is not dest in (bsE, bsM, bsW)

= 4 Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, dm, btb)
where inst2 := Load(rl, rf[r2])

Rule 2e - Decode Store

Proc(ia, rf, Itb(sia, -, instl);bsD, bsE, bM, bsW, im, dm, btb)
if inst1 == Store(rl, r2) and r1, r2 are not dests in (bsE, bsM, bsW)

=-> Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, din, btb)
where inst2 := Store(rf[rl], rf[r2])

Rule 2f - Decode Jz

Proc(ia, rf, Itb(sia, -, instl);bsD, bsE, bM, bsW, im, dn, btb)
if inst1 == Jz(rl, r2) and rl, r2 are not dests in (bsE, bsM, bsW)

=> Proc(ia, rf, bsD, bsE;Itb(sia, -, inst2), bsM, bsW, im, din, btb)

where inst2 := Jz(rf[rl], rfqr2])

The second change occurs in the execution stage. In rules 4a,b and 5a,b, the correct Jz target

is determined and two things must occur - the state must be made correct (e.g. wipe any invalid

instructions, reset pc) and the btb updated to improve future predictive performance. In Rules 4a

and 5a, the prediction is correct, so only the btb needs to be updated. In rules 4b and 5b, the

51

prediction was wrong, so bsD and bsE are flushed, the pc set to the correct value and btb updated.

Rule 3 - Exec Op
Proc(ia, rf, bsD, Itb(sia, -, Op(r, v1, v2);bsE, bsM, bsW, im, dm, btb)
-=4 Proc(ia, rf, bsD, bsE, bsM;Itb(sia, -, Reqv(r, v)), bsW, im, dm, btb)

where v := Op applied to (vI, v2)

Rule 4a - Exec Jz taken correct
Proc(ia, rf, bsD, Itb(sia, pia, Jz(O, nia));bsE, bsM, bsW, im, dm, btb)

if nia == pia
-4 Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm, btb')

where btb' := update(btb, sia, nia, correct)

Rule 4b - Exec Jz taken incorrect
Proc(ia, rf, bsD, Itb(sia, pia, Jz(O, nia));bsE, bsM, bsW, im, dm, btb)

if nia := pia
- 4 Proc(nia, rf, e, e, bsM, bsW, im, dm, btb')

where btb' := update(btb, sia, nia, incorrect)

Rule 5a - Exec Jz not taken, correct
Proc(ia, rf, bsD, Itb(sia, pia, Jz(v, -));bsE, bsM, bsW, im, dm, btb)

if v 5= 0 and pia sia + 1
=4 Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm, btb')

where btb' := update(btb, sia, nia, correct)

Rule 5b - Exec Jz not taken incorrect
Proc(ia, rf, bsD, Itb(sia, pia, Jz(v, -));bsE, bsM, bsW, im, dm, btb)

if v Inot == 0 and pia !== sia + 1
- o Proc(sia+1, rf, e, e, bsM, bsW, im, dm, btb')

where btb' := update(btb, sia, nia, incorrect)

Rule 6 - Exec Copy
Proc(ia, rf, bsD, Itb(sia, -, it);bsE, bsM, bsW, im, dm, btb)

if it := op or Jz
==4 Proc(ia, rf, bsD, bsE, bsM;Itb(sia, -, it), bsW, im, dm, btb)

Rule 7 - Mem Load
Proc(ia, rf, bsD, bsE, Itb(sia, -, Load(r, a));bsM, bsW, im, dm, btb)
==> Proc(ia, rf, bsD, bsE, bsM, bsW;Itb(sia, -, Reqv(r, v)), im, dm, btb)

where v := dm[a]

Rule 8 - Mem Store
Proc(ia, rf, bsD, bsE, Itb(sia, -, Store(a, v));bsM, bsW, im, dm, btb)
=- Proc(ia, rf, bsD, bsE, bsM, bsW, im, dm[a:=v], btb)

Rule 9 - Mem Copy

Proc(ia, rf, bsD, bsE, Itb(sia, -, Reqv(r, v));bsM, bsW, im, dm, btb)
=>- Proc(ia, rf, bsD, bsE, bsM, bsW;Itb(sia, Reqv(r, v)), im, dm, btb)

Rule 10 - Writeback

Proc(ia, rf, bsD, bsE, bsM, Itb(sia, -, Reqv(r, v));bsW, im, dm, btb)
-> Proc(ia, rf[r:=v], bsD, bsE, bsM, bsW, im, dm, btb)

52

4.4 Register Renaming and Multiple Functional Units

This model represents two major changes from the previous ones. First, it has several functional

units. This modularity is useful not only in accurately modeling current designs, but in providing

an easily changeable model. Secondly, it uses register renaming.

In this register renaming model, instructions continuously enter the reorder buffer (ROB) Upon

entry, all registers are looked up in the buffer. For the operands, if a register is not being written to

already, the value of that register is assign. Otherwise the tag (or new name) that is being used by a

previous operation is assigned. Destination register are assigned fresh tags. Whenever an instruction

has values for all of its operands, it is dispatched to a functional unit. When a value is received for

the destination register, that value is propagated through the ROB to previous entries.

Branch resolution in the ROB is more complicated then in a pipelined model. Just as before, the

pc needs to be reset and all instruction following the branch need to be removed. In the ROB two

additional steps must now be taken. To reset the pc a message must be sent to the Fetch unit. To

remove invalid instructions, all the following entries in the ROB must removed. This is done once

all of them have completed and returned from other modules (e.g Memory).

4.5 The Register-Renaming AX Model, Mrr..

4.5.1 Definition

Mrra, contains five main functional units. Communication between these units is done with queues.

The flow of information among these units is illustrated in Figure 4-2. The Funit contains the

program counter, instruction memory and Branch Target Buffer (BTB.) Instructions are fetched

from the memory and sent to the decode unit. The BTB provides predictions of the next pc. The

Decode contains the register file, Re-Order Buffer (ROB) and the reset counter. The ROB does most

of the work in the decode unit. It uses register renaming, assigning tags to register and keeping

track of updating tags and registers with values. From the Decode, instructions are dispatched for

execution to the three smaller units: Exec for ALU operations, Mem for Memory accesses and BP

for branch resolution. The results are returned to Decode, where instructions are either committed if

correctly speculated, or removed if incorrectly speculated, with appropriate reseting of the instruction

fetch. The grammar for Mrr, is defined in Figure 4-3.

4.5.2 Rules

The rules below are formatted to simplify comprehension. In each old TRS expression the key

triggering terms are in bold face. In each new expression the changed terms are in bold face.

Operations described in the where clauses are abstractions for concepts discussed in the text.

53

bsfq

FUNIT

PC -

imem rstq

btb | btbq

execd

pb qBP

Figure 4-2: Schematic of the units of Mrraz. Information flows through the processor through
the queues connecting the units. Speculative instruction fetch and branch prediction occur in Funit.
Instruction decode and dispatch, as well as committal and completion occur within the Decode Unit.
The Re-Order Buffer (ROB) takes care of register renaming. The three smaller functional units take
care of actual execution of the instructions.

Fetch

The Funit optimistically fetches rules, speculating with the predictions of the BTB. When a pre-

diction has been determined to be incorrect, a message arrives from the Decode unit via the reset

queue (rstq), causing instruction fetch to continue at the new, correct pc provided in the message.

Update messages for the BTB are received from the branch target buffer queue (btbq.) Though we

do not discuss them here, there are many different branch prediction schemes possible.

Instruction Fetch
Funit(pc, btb, prog): btbq, e : bsfq

-> Funit(pc', btb, prog): btbq, e : bsfq;Ib(pc, pc', inst)
where pc' = btb[pc] and inst prog[pc]

Restart at new PC
Funit(pc, btb, prog): btbq, (newpc);rstq: bsfq
- - Funit(newpc, btb, prog): btbq, rstq: Restart;bsfq

Update branch prediction
Funit(pc, btb, prog): (pc', npc, res);btbq , rstq : bsfq
-= Funit(pc, btb', prog): btbq, rstq : bsfq

where btb' = updateBTB(btb, pc', npc, res)

Decode

The Decode unit receives instructions from the Funit through the instruction fetch queue (bsfq.)

Instructions are speculatively decoded and enqueued in the Re-Order Buffer (ROB) unless a non-

zero reset counter (rstcntr) indicates that the incoming instructions are known to be invalid. Invalid

instructions are discarded until a reset acknowledgment is received.

Discard mispredicted fetches
Decode (rf, rob, cntr) : Ib(-,-,-);bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

if cntr : 0
->~ Decode (rf, rob, cntr) : bsfq, execq, memq, bpq : btbq, rstq, execd, memd, bpd

54

= Sys(<FUNIT: BTBQ, RSTQ: BSFQ>,
<DECODE: BSFQ, EXECQ, MEMQ, BPQ:
BTBQ, RSTQ, EXECD, MEMD, BPD>,
<EXEC:EXECD:EXECQ>,
<MEM:MEMD:MEMQ>,
<BP: BPD: BPQ>)

Funit(PC, BTB, IMEM)
Decode(RF, ROB, RSTCNTR)
Exec
Mem(V)
Bp

= List IRB

= Queue (IA, IA, RES)
= Queue (IA)
= Queue IB

Queue IDB
= Queue IDB
= Queue IDB
= Queue IDB
= Queue IDB
= Queue IDB

= Ib (PC, PC, INST) Restart
= Itb (TAG, INSTTEMP)
= Itb (TAG, PC, INSTTEMP)
= List IRB
= Itb (TAG, PC, INSTTEMP, STATE)
= Wait || Exec || Done || Miss 1| Kill
= Correct || Miss

= r:=loadc(tv) || r:=loadpc | r:=Op(rl, r2)
|| Jz(rc, ra) | r:=load(ra) | Store(ra, rv)

= r:=loadc(tv) | r:=loadpc | r:=Op(tvl,tv2)
Jz(tvc,tva,ppc) || r:=load(a) || Store(a,tv) r:=tv

JzIncorrect(pc) || JzCorrect() || StoreDone || v

Fetch Unit
Decode Unit
Execution Unit
Data Memory Unit
Branch Resolution Unit

Re-Order Buffer

Decode to Funit
Decode to Funit
Funit to Decode
Exec to Decode
Mem to Decode
BP to Decode
Decode to Exec
Decode to Mem
Decode to Bp

Instruction Buffer
Instruction Template Buffer
Instruction Template Buffer
Re- Order Buffer
Element of ROB
States used in IRB
Result of prediction

Instructions

Instructions

Figure 4-3: Definition of Mrrax

55

SYS System

FUNIT
DECODE

EXEC
MEM

BP

ROB

BTBQ
RSTQ

BSF
EXECQ
MEMQ

BPQ
EXECD
MEMD

BPD

IB
IDB

IBPB
ROB
IRB

STATE
RES

INST

INSTTEMP

Restart on cue
Decode (rf, rob, cntr) Restart;bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

-> Decode (rf, rob, cntr - 1) : bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

If the rstentr is zero, instructions are decoded. There are two cases for enqueueing instructions

in the ROB. If the value of an assignment can be determined immediately (e.g. r := Loadc(v) or r

:= LoadPCO) there is no need for the instruction to be dispatched to an execution unit. The ROB

assigns the target register a tag and enqueues that instruction with state Done.

Decode LoadC instructions
Decode (rf, rob, 0) Ib(pc, -, r: = Loadc(v));bsfq, execq, memq, bpq : btbq, rstq, execd,
memd, bpd

-> Decode (rf, rob', 0): bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd
where rob' enqueue-done(pc, insttemp) and insttemp = v

Decode LoadPC instructions
Decode (rf, rob, 0) Ib(pc, -, r: = Loadpc();bsfq, execq, memq, bpq : btbq, rstq, execd,
memd, bpd

-> Decode (rf, rob', 0): bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd
where rob' enqueue-done(pc, insttemp) and insttemp = pc

The second case is when the instruction requires an execution unit for the result to be determined.

In this case, tags are assigned to the target register if necessary, and the instruction is enqueued with

state Wait. The register operands of the instruction are looked up in the ROB and the correct tag

or value is returned. The enqueued instruction will then wait to be dispatched to the appropriate

functional unit.

Decode Op instructions
Decode (rf, rob, 0) : Ib(pc, -, r: = Op(r1,r2));bsfq, execq, memq, bpq : btbq, rstq, execd,
memd, bpd

-> Decode (rf, rob', 0): bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd
where rob' = enqueue(pc, insttemp) and insttemp = r: = Op(vtl,vt2) and vtl =
lookup(rl,rob,rf) and vt2 = lookup(r2,rob,rf)

Decode Jz instructions
Decode (rf, rob, 0): Ib(pc, ppc, Jz(rc,ra));bsfq, execq, memq, bpq: btbq, rstq, execd, memd,
bpd
- > Decode (rf, rob', 0): bsfq, execq, memq, bpq : btbq, rstq, execd, memd, bpd

where rob' = enqueue(pc, insttemp) and insttemp = Jz(vtc,vta,ppc) and vtc =
lookup(rc,rob,rf) and vta = lookup(ra,rob,rf)

Decode Load instructions

Decode (rf, rob, 0) Ib(pc, -, r: = Load(ra));bsfq, execq, memq, bpq : btbq, rstq, execd,
memd, bpd
==> Decode (rf, rob', 0): bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

where rob' enqueue(pc, insttemp) and insttemp = r: = load(vta) and vta
lookup(ra,rob,rf)

Decode Store instructions

Decode (rf, rob, 0): Ib(pc, -, Store(ra,rv));bsfq, execq, memq, bpq: btbq, rstq, execd, memd,
bpd
=> Decode (rf, rob', 0): bsfq, execq, memq, bpq : btbq, rstq, execd, memd, bpd

where rob' = enqueue(pc, insttemp) and insttemp = store(vta,vtv) and vta =
lookup(ra,robrf) and vtv = lookup(rv,rob,rf)

56

Dispatch

Instructions with state Wait are dispatched to the appropriate functional units and changed to

state Exec only when certain conditions are met. First, all the operands must be values, not tags.

Second, if any instructions ahead in the ROB are in state Miss (incorrectly predicted jump) then the

instructions are not dispatched because they are sure to be discarded. Finally, memory operations

cannot be dispatched until they are at the head of the ROB. This strict memory model insures that

memory reads and writes will only occur when the instruction is known to be correctly speculated,

and in proper order with all other reads and writes. Instructions to the Execute Unit are dispatched

through the execute dispatch queue (execd.) Instructions to the Memory Unit and sent through the

memory dispatch queue (memd). Likewise, instructions to the BP are sent through the bp dispatch

queue (bpd.)

Dispatch Op instructions
Decode (rf, robl;Itb(tag, pc, insttemp, Wait);rob2, cntr) bsfq, execq, memq, bpq : btbq,
rstq, execd, memd, bpd

if insttemp = r := Op(vl,v2) and no-miss(robl)
->. Decode (rf, robl;Itb(tag, pc, insttemp, Exec);rob2, cntr) bsfq , execq, memq,

bpq: btbq, rstq, execd;Idb(tag, insttemp) , memd, bpd

Dispatch Jz instructions
Decode (rf, robl;Itb(tag, pc, insttemp, Wait);rob2, cntr) bsfq, execq, memq, bpq : btbq,
rstq, execd, memd, bpd

if insttemp = Jz(vc,va,ppc) and no-miss(robl)

=>~ Decode (rf, robl;Itb(tag, pc, insttemp, Exec);rob2, cntr)
bpq: btbq, rstq, execd, memd, bpd;Idb(tag, pc, insttemp)

Dispatch Load instructions
Decode (rf, Itb(tag, pc, insttemp, Wait);rob, cntr) bsfq, execq,
execd, memd, bpd

if insttemp = r: = Load(a)

=4. Decode (rf, Itb(tag, pc, insttemp, Exec);rob, cntr) bsfq,
btbq, rstq, execd, memd;Idb(tag, insttemp), bpd

Dispatch Store instructions

Decode (rf, Itb(tag, pc, insttemp, Wait);rob, cntr) bsfq, execq,
execd, memd, bpd

if insttemp = Store(a,v)
= Decode (rf, Itb(tag, pc, insttemp, Exec);rob, cntr) bsfq,

btbq, rstq, execd, memd;Idb(tag, insttemp), bpd

bsfq , execq, memq,

memq, bpq : btbq, rstq,

execq, memq, bpq:

memq, bpq : btbq, rstq,

execq, memq, bpq:

Instructions are received from the functional units in three queues. These queues are the execute

queue (execq), memory unit queue (memq) and bp queue (bpq.) The results returned in these

queues are used to update the ROB. If the instruction returned a value (i.e. was Load or Op) that

value is given to the ROB, which updates all occurrences of the destination tag following it in the

ROB. These instructions and StoreDone acknowledgments are marked as Done in the ROB.

Complete an Op Instruction
Decode (rf, rob, cntr): bsfq, Idb(tag, insttemp);execq, memq, bpq: btbq, rstq, execd, memd,
bpd
=-> Decode (rf, rob', cntr) bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

57

Complete

where rob' = updaterob(rob, tag, insttemp)

Complete an Load/Store Instruction

Decode (rf, rob, cntr) bsfq, execq, Idb(tag, insttemp);memq, bpq: btbq, rstq, execd, memd,
bpd
-=: Decode (rf, rob', cntr): bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

where rob' = updaterob(rob, tag, insttemp)

Results returning from the BP fall into one of three cases. If the jump was correctly predicted,

the instruction is marked Done. If the result was incorrectly predicted, the ROB searches for a

Missed jump ahead. If there is another misprediction ahead in the ROB, the current misprediction

is ignored and marked as Done. If there is not a misprediction, the flow of control must be changed,

so a Reset message is sent to the Funit via the rstq, the rstcntr is incremented and the state of the

instruction is marked Miss.

Complete a JzCorrect Instruction
Decode (rf, rob, cntr) bsfq, execq, memq, Idb(tag, JzCorrect());bpq : btbq, rstq, execd,
memd, bpd

-> Decode (rf, rob', cntr) bsfq, execq, memq, bpq: btbq, rst q, execd, memd, bpd
where rob' = updaterob(rob, tag, insttemp)

Complete a JzInCorrect() Instruction
Decode (rf, robl;Itb(tag, pc, -, Exec);rob2, cntr) bsfq, execq, memq, Idb(tag, JzInCor-
rect(newPC));bpq : btbq, rstq, execd, memd, bpd

if not no-miss(robl)
==> Decode (rf, robl;Itb(tag, pc, insttemp, Done);rob2, cntr) bsfq, execq, memq,

bpq: btbq, rstq, execd, memd, bpd

Complete a JzInCorrect() Instruction

Decode (rf, robl;Itb(tag, pc, -, Exec);rob2, cntr) bsfq, execq, memq, Idb(tag, JzInCor-
rect(newPC));bpq : btbq, rstq, execd, memd, bpd

if no-miss(rob1)

->~ Decode (rf, robl;Itb(tag, pc, insttemp, Miss);rob2, cntr + 1) bsfq, execq,
memq, bpq: btbq, rstq;(newPC), execd, memd, bpd

Rewind

When an instruction with state Miss is in the ROB, the instructions following it must be removed.

This can only occur if no instructions following it are still being executed. If Exec state instructions

were removed, the functional units could return with values and attempt to update the ROB with

non-existent tags and values. Despite having to wait for all the rules currently being executed to

return, this rule can be assured of firing. This is because no new instructions will be decoded (since

the reset counter is non-zero) and no Waiting instructions will be dispatched (because there is an

instruction in state Wait ahead.) Therefore, the safe-to-kill operation on the ROB used below will

always eventually be true.

Rewind

Decode (rf, robl;Itb(tag, pc, insttemp, Miss);rob2, cntr) bsfq, execq, memq, bpq : btbq,
rstq, execd, memd, bpd

if no-miss(robl) and safe-to-kill(rob2)

58

->~ Decode (rf, robl;Itb(tag, pc, insttemp, Done), cntr) bsfq, execq, memq, bpq:

btbq, rstq, execd, memd, bpd

Commit

Commitment of an instruction only occurs when it reaches the head of the ROB. This is to ensure

that an instruction is never committed when it should not be. If an interrupt or misprediction occurs

in front of a Done instruction, it should not be committed. All committed instructions are removed

from the ROB and the tag is freed. Committed jumps send update information back through the

btbq. Committed assignment to a register produces actual writing to the RF.

Commit to register and remove

Decode (rf, Itb(tag, pc, v, Done);rob, cntr) bsfq, execq, memq, bpq : btbq, rstq, execd,

memd, bpd
-> Decode (rf', rob', cntr) bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

where rf' = update(rf,r,v) and rob = dequeue(rob)

Commit a store completion

Decode (rf, Itb(tag, pc, Store(-,-), Done);rob, cntr) bsfq, execq, memq, bpq : btbq, rstq,

execd, memd, bpd
-> Decode (rf, rob', cntr) bsfq, execq, memq, bpq: btbq, rstq, execd, memd, bpd

where rob' = dequeue(rob)

Commit a Jz complete, and update btb

Decode (rf, Itb(tag, pc, JzCorrecto, Done);rob, cntr) bsfq, execq, memq, bpq: btbq, rstq,

execd, memd, bpd
==> Decode (rf, rob', cntr) bsfq, execq, memq, bpq: btbq;(pc ,newpc, Correct),

rstq, execd, memd, bpd
where rob' = dequeue(rob)

Commit a Jz complete, and update btb

Decode (rf, Itb(tag, pc, JzInCorrect(newpc), Done);rob, cntr) bsfq, execq, memq, bpq:

btbq, rstq, execd, memd, bpd
=- Decode (rf, rob', cntr) bsfq, execq, memq, bpq: btbq;(pc ,newpc, InCorrect),

rstq, execd, memd, bpd
where rob' = dequeue(rob)

Throughout these previous sections, the state of an ROB entry changes many times. Figure 4-4

shows these transitions.

Interrupt

Mrra, must handle precise interrupts correctly. Precise interrupts are defined as happening at a

specific point - all the instructions before the one that generated the interrupt or exception have

fully completed execution, and none of the ones after it have begun. To ensure precise interrupts,

all the instructions ahead of the target instruction in the ROB must complete and all those after

it must not complete. For synchronous interrupts, control flow is changed to the interrupt handler

address. The Rewind rule then cleans up the invalid instructions after the target.

59

Dispatch
Wait = Exec

Complete Jz Complete

Miss Done
Rewind

Figure 4-4: State transitions for IRB entries in ROB Decode of an instruction with a value
as an argument creates an IRB with state Done. Decode of other instructions creates the IRB with
the state Wait. Dispatch rules transition to the Exec state. If the IRB is an incorrect jump, the
Completion rules transition the state to Miss. Other IRBs move to Done with Completion rules.
The Rewind rule moves from Miss to Done. IRB's with the state Done are retired by the Commit
rules.

Interrupt Invalid

Decode (rf, robl;Itb(tag, pc, insttemp, state);rob2, cntr) : bsfq, execq, memq, bpq : btbq,
rstq, execd, memd, bpd

if synchronous-interrupt(insttemp) and not no.miss(robl)
-> Decode (rf, robl;Itb(tag, pc, insttemp, Done);rob2, cntr) : bsfq, execq, memq,

bpq: btbq, rstq, execd, memd, bpd

Interrupt Valid

Decode (rf, robl;Itb(tag, pc, insttemp, state);rob2, cntr) : bsfq, execq, memq, bpq : btbq,
rstq, execd, memd, bpd

if synchronous-interrupt(insttemp) and no-miss(robl)

-> Decode (rf', robl;Itb(tag, pc, insttemp, Miss);rob2, entr + 1) : bsfq, execq,
memq, bpq: btbq, rstq;(interruptHandlerPC), execd, memd, bpd

where rf' = update(rf, excep-pointer, pc)

Execute

The three execution units execute specific types of instructions and return results. In an ISA with

more types of instructions, this model could be simply expanded to include floating point or other

specialized units. In Mrrax, the execute unit applies the operation to the arguments. The Memory

unit reads or writes to memory. The BP resolves branches and determines whether or not the

speculation made in the Funit was correct.

Exec

Exec : Itb(tag, r: = Op(vl,v2));execd : execq
--> Exec : execd : execq;Itb(tag, v)

where v = Op(vl,v2)

Mem Load

Mem mem: Itb(tag, r: = Load(a));memd: memq
-> Mem mem: memd: memq;Itb(tag, v)

where v = mem[a]

Mem Store

Mem mem: Itb(tag, Store(a,v));memd : memq

60

-> Mem mem: memd: memq;Itb(tag, StoreDone)

where mem[a = v]

Bp Taken Correct
Bp : Itb(tag, -, Jz(0,va,ppc));bpd : bpq

if va = ppc

=4 Bp : bpd : bpq;Itb(tag, JzCorrecto)

Bp Taken Incorrect
Bp : Itb(tag, -, Jz(O,va,ppc));bpd : bpq

if va $ ppc
=> Bp : bpd : bpq;Itb(tag, JzInCorrect(va))

Bp Not Taken Correct

Bp : Itb(tag, pc, Jz(1,va,ppc));bpd : bqp

if pc+1 = ppc
==> Bp : bpd: bpq;Itb(tag, JzCorrecto)

Bp Not Taken Incorrect

Bp : Itb(tag, Jz(1,va,ppc));bpd : bpq

if pc+1 t ppc
=> Bp : bpd : bpq;Itb(tag, JzInCorrect(pc+1))

Kill procedure

The jump incorrect completion rules and interrupt rule can be viewed as special cases of the kill

function. This function resets the pc to that of a given instruction, and trashes all instructions after

it, without changing the behavior of the processor. For the PS model, the rule would be as follows:

Kill for Ps

(ia, rf, ROB(t, ia', it);rob2, btb, im)
-(ia', rf, E, btb, im)

This function can be extended to Mrrx. Provided there are no misses in front of the target instruction

in the ROB, the pc can be reset. The instructions following this kill are cleaned up by the rewind rule.

Kill for Mrrax

Decode (rf, robl;Itb(tag, pc, insttemp, state);rob2, cntr) : bsfq, execq, memq, bpq : btbq,

rstq, execd, memd, bpd
if kill(insttemp) and no-miss(robl)

==> Decode (rf, robl;Itb(tag, pc, insttemp, Miss);rob2, cntr + 1) bsfq, execq,
memq, bpq: btbq, rstq;(pc), execd, memd, bpd

The Jump Incorrect Completion rule uses the kill rule triggered by a JumpIncorrect(received

in the bpq and resets the pc to the correctly branch target. The Interrupt rule uses the kill rule

triggered by an interrupt and resets the pc to the interrupt handler address.

4.6 Summary

In this final Chapter on modeling techniques we explored a key idea - modularity. Just as in program-

ming, modularity in TRS models provides the benefits of breaking down complexity and allowing

independent development of separate but compatible modules. The Mspeca, and model introduced

61

the btb with transparent modularity. Mrrx, with its several functional units, represented a truly

modular model. Work on subsystems such as memory units can easily be 'plugged in' to this model

if they have the correct communication interface.

62

Chapter 5

Simulation

Simulation of TRS models in software is a key part of the development process. Techniques for

producing accurate simulations of both the TRS itself and the anticipated hardware version are

presented. Several simulators are discussed and used on a test suite to show how effective simulation

can be from a design standpoint.

5.1 Principles of Simulation

There are several different strategies possible for the implementation of a TRS model in software.

Each has its benefits and specific uses. Two general strategies, rule-centric and clock-centric, are

discussed below. Clock-centric seeks to simulate the execution of a TRS turned into standard

hardware, i.e. a instep-execution of a pipeline. Rule-centric seeks to simulate the actual execution

behavior of a TRS model, i.e. multiple rules triggering simultaneously and one firing.

5.1.1 Clock-centric Implementations

A clock-centric implementation simulates how a clocked hardware implementation of the TRS would

behave. A clock-centric implementation tries to execute as many rules as possible during a single

clock cycle, while preserving the semantics of an atomic TRS. This requires analysis of the rules

to ensure that the parallel execution of the rules is equivalent to the true serial, atomic execution.

James Hoe is using this method for the TRS compiler [6].

To conduct this analysis of a TRS, we first need to make some definitions and functions describing

a TRS. Recall that in Section 1.2 it was discussed that a rule has a precondition (defined by the

initial state and optional if clause) and rewrites specified by the new state and optional where clause.

For analysis purposes, we here define two functions for a rule, 7r, and 3 ,. lr, is a function of the

state of the system and is true when the rule's precondition is satisfied and false otherwise.

63

r, : state -+ {true, false}

6r is a function of the state of the system and produces the new state of the system after the

rewrite.

6, : state -+ state

For illustration, recall Rule 1 of Mgcd (the Euclid GCD model in Section 1.2).

Rule 1
Pair(Num(x), Num(y))

if y = 0
=-> Done(x)

For this rule, 7r, is true only when y = 0 and false otherwise. 6, simply rewrites the pair

(X, y) to be x. For Mcd, as any other TRS model, all the rules have 7r, and 6 ,. There are three

important relationships between pairs of rules that are essential for producing a correct clock-centric

implementation. These three relationships are independence, being in conflict (and conversely being

conflict free) and dominance.

Independence

If two rules are independent, they never fire at the same time. (Note that mutual independence,

just as in probability is different than pairwise independence.) Formally, two rules r1 and r2 are

independent if for all possible states, the preconditions of r1 and r2 and never both true::

Vs, (i,1 (s) A 7,2(s)) = false

If two rules are independent, they will never both fire at once, so no problems can possibly arise.

Independent rules can be grouped together in code in a case statement. If rules are not independent,

problems can arise if they execute simultaneously.

Conflict-free

If rules are not independent, we try to further classify them by testing to see if they are conflict-

free. Intuitively, the execution of two rules in parallel needs to be equivalent to either sequential

execution. First, one rule can never cancel the execution of the other, or else firing them together

could be incorrect. Secondly, the final state must be easily derivable from the individual changes

done in parallel. Formally, two rules r1 and r2 are conflict-free if for all states where both rules have

64

satisfied preconditions: 1) firing of one rule always triggers the other (no 'cancelling') and 2) the

final state of the two sequential executions satisfy some least upper bound (are 'easily mergible'):

Vs, (7r1(s) A r2(s)) +

rril(r2(s)) A rr2(r1(s)) = true

least-upperbound(r1 (s), 6r2(s)) = ori1or2(s)) A 6r2(6ri(s))

Determining if two rules are conflict can be a straightforward process. In practice with processor

models, conflict-free rules have the following characteristics. To satisfy the first condition, the rules

just need not modify the state element the other's precondition depends on. To satisfy the state

upper bound, the rules modify disjoint parts of the state. Since proving two rules conflict free is not

necessarily so simple, a way to cope with conflicting rules is needed.

Domination

Dominance applies to rules in conflict. Intuitively, one rule dominating the other means that the

affects of one rule are erased by the other. Formally, r1 dominates r2 (r1 > r2) if for all states where

both rules have satisfied preconditions: 1) rl's predicate is always true after r2's execution and 2)

execution of r1 on the initial state is equivalent to executing r2 then r1:

Vs, (i,1 (s) A 7rr 2 (S)) -+

7ri(1r2(S)) = true

6ri(s) = ori(or2(S))

If r1 dominates r2 and both predicates are true, only rule 1 is fired. In practice, dominator occurs

when one rule modifies a state element the the other's predicate depends on. Jump instructions

resetting the pc dominate over instruction fetch rules. Note that dominance must be dealt with only

on a pairwise basis and is not transitive:

rl > r2, r2 > r3 -/ r1 > r3

If none of the above conditions are met, the rules conflict. In this case, an arbitrary choice on

each cycle is made and only one rule executes. This choice can be either random or in a round-robin

fashion to avoid starvation. Though the TRSs presented here are written to not have conflicting

rules, in the general case conflicting rules are possible (and even probable.)

65

Implementation Details

Using the three principles above, a parallel execution can be constructed from an atomic, serial

TRS. Each pair of rules must be analyzed. Independent pairs can be ignored, since they will never

fired in parallel. Though this adds nothing to increase the parallelism of the implementation, by

integrating independent rules into one case statement or thread can speed up pre-condition checking.

Of non-independent pairs, most rules (in our TRSs, not in general) are conflict-free. Conflict-free

pairs can safely be executed in parallel given the easy way to merge the new states. Rules that

do conflict fall into two classes: dominating and non-dominating. A pair with domination can still

be executed in parallel by cancelling the dominated rule. Nothing within our analysis above can

ameliorate non-dominating, conflicting rules. In this case, a non-deterministic choice must be made

as to which rule of the pair will fire during that cycle while the other rule is delayed.

Actually writing code to do what is described above is not very easy. Analysis by a human can be

done quickly, but automation is much more complex. One approach, developed jointly with James

Hoe for use in his TRS compiler (need to cite his thesis here?) defines sets for the ranges (R(f))

and domains (D(f)) of the ir and 6 functions and uses simple set operations can classify the rules.

The domain of ir or 6 is the set of state elements that affect the result. The range of 6 is the state

elements it modifies.

IN this analysis, independence is not checked, since independent rules will 'take care of them-

selves' and not cause problems. Determining if two rules are conflict-free using the following heuris-

tic: if each rule does not modify any state the other's precondition depends on and the rules do not

modify the same portions of state:

(D(rri) n R(r 2)) = 0

(D(rr2) n R(6ri)) = 0

(R(Jri) n R(6r 2)) 0

Determining if r1 dominates r2 is done with the following heuristic: 1) r2 does not invalidate r1

by modifying any element in rl's domain, 2) r2 modifies only elements of state the r1 does:

R(or2)) n (D(7rri) = 0

R(6r2)) C R(ri)) = true

66

These methods will quickly generate a correct, but not optimal, implementation.

5.1.2 Rule-centric Implementations

In a rule-centric implementation, each rule fires as soon as its precondition becomes true. In order

to have all rules checking at once, a multi-threaded implementation is needed. To enforce the atomic

model of TRS rewrites, as well as prevent the data races inherent in non-controlled multi threading,

it is necessary to use some form of concurrency control on all state elements. In Java this can be done

with synchronized methods and waiting and signaling. This approach, by implementing the true

semantics of an atomic TRS, requires no analysis of the rules. This makes a rule-centric model easy

to implement. A rule-centric implementation, however, lacks many basic features that a hardware

implementation would have, such as a clock. Therefore, while it may serve effectively to simulate a

TRS, it provides no information about how a hardware implementation of a TRS would behave.

Many of the same principles discussed in the previous section for use in clock-centric implemen-

tations can be used to optimize performance in a rule-centric version. For example, rules that are

independent can all be placed in the same thread for execution. This means one thread can check

the conditions for firing for all the rules at once and then execute the single one that will fire. The

Mrra, model discussed later used this technique.

5.2 The Simulators for AX TRSs

All simulators except for the Mrra, simulator, are clock-centric. These first 4 four simulators are

used in Section 5.3 for testing.

5.2.1 Max

All rules in Max are independent, since each is just a different case for the value if im[pc].

5.2.2 Mpipeax

Mpipeax involves the first real analysis of the rules. Here the rules in each pipeline stage are

independent. This is obvious since at each stage it is a 'dispatch' on the type of the instruction

at the head of the queue. Rules between pipe stages are generally conflict free since they involve

different resources. Conflicts do arise with Rule 4, the Jz Taken rule. Rule 4 modifies the pc and

flushes bsD and bsE, which cause conflict with Rules 1 and 2a-f (fetch and decode). However, Rule

4 dominates these other rules. The table below illustrates the relationships.

67

Table 5.1: Relations between Mpipea, rules Independent pairs are marked I, conflict-free pairs
cf and domination by < or >.

5.2.3 Mbypax

Mbypaz is fairly similar to Mpipeax. The addition of the bypass rules to the decode stage poses

an interesting situation. The dependence of the bypass rules on the presence of instructions in the

later queues causes conflicts. Referring back to Mbypax as described in Section 3.4, consider the

following example: Load(rO, r1) is at the head of bsD, ready to be decoded. At the head of bsW

is the instruction r1 = 5. In this case both Rule 2d-2 (Decode Load with bypass) and Rule 10

(Writeback) are triggered. If Rule 10 fires first, it will invalidate Rule 2 by removing the instruction

that is the bypass source. Because of this cancelling of Rule 2, domination cannot apply here either?

The solution to this problem involves a closer look at the implementation. Just as all rules in

the same pipeline stage are independent, so are all the rules for bypassing a certain instruction type.

In Mbypax, Rules 3, 4, 5 and 6 of the Exec stage are independent, as are Rules 2e-1, -2, -3 and -4

in the Decode stage.

5.2.4 Mspecax

Mspeca, is very similar to Mpipeax, except that only the Exec Jz rules that flush the queues (4b,

5b) dominate over Fetch and Decode. The Exec Jz rules that don't (4a, 5a) disappear, and have no

effect on the state.

5.2.5 Mrrax

The fully featured model is the only rule-centric simulator and is quite a departure from the others.

First, it was developed at an early stage before the simulation methodology explained above was

formulated. All the intuitive notions in these concepts were used in the development of the simulator,

however. This model uses multi-threading to implement concurrency, instead of the single master

thread firing rules simultaneously. This multi threaded approach was chosen to effectively model

68

Fetch Decode Exec Mem WB
Rule 1 2a-f 3 4 5 6 7 8 9 10

1 - cf cf < cf cf cf cf cf cf
2a-f - cf < cf cf cf cf cf cf

3 - I I I cf cf cf cf
4 - I I cf cf cf cf
5 - I cf cf cf cf
6 - cf cf cf cf
7 - I I cf
8 - I cf
9 - cf

Table 5.2: Relations between
cf and domination by < or >.

Mspecx rules Independent pairs are marked I, conflict-free pairs

the modularity of the TRS and to deal with concurrency since the ROB, in particular, is accessed

by many different rules simultaneously.

It turns out that this model exhibits true non-determinism. There are rules that conflict and do

not dominate. In this case a choice must be made as to which rule to fire.

There are problems with this implementation. Occasionally a simulation will loop forever due

to the starvation of certain threads. The finite length queues do not accurately model the infinite

length queues for the TRS.

5.3 Test results on simulations

For the testing below I constructed one program designed to be as 'average' as possible. Tables in [4]

show that, on average, instructions types break down as follows: Load, 21% - 26%; Store 9% - 12%;

Branch, 18% - 24%; ALU/other, 43% - 47%. Simulation of this program on Max revealed the

following instruction frequencies shown in Table 5.3.

The simulators were all instrumented, allowing counts of the number of rule executions and

dominance situations. Further instrumentation can easily be added.

Inst type Number Percentage
Load 47020 25.0
Store 24680 13.1

Branch 33479 17.8
Other 82708 44.0

Table 5.3: Instruction Mix for Testing Code The code was designed to have an instruction mix

comparable to the average to provide a more accurate measurement of performance.

Clock time for Max is tmem + trf + talu + tmem + twb. Clock time for Mpipeax and Mspecax is

69

Fetch Decode Exec Mem WB

Rule la,b 2a-f 3 4a 4b 5a 5b 6 7 8 9 10
lab - cf cf cf < cf < cf cf cf cf cf

2a-f - cf cf < cf < cf cf cf cf cf

4a - I I I I cf cf cf cf
4b - I I I cf cf cf cf
5a- I I cf cf cf cf
5b - I cf cf cf cf
6 - cf cf cf cf
7 1 cf
8 - I cf
9 - cf

Max(tmem,trf,talu,tmem,twb). [7]

Max Mpipea, Mbypax Mspecax

Tclock 4 1 1 1
Cycles 187887 364452 266067 328876

Rules Fired 187887 986468 908118 988720

Utilization - 0.54 0.68 0.60
Normalized Time 1.00 0.48 0.35 0.44

Table 5.4: Results of simulators for AX models For each program there are two important
criteria: how fast is the model and how efficient? How fast is measured by the number of cycles
taken and total time. Efficiency is measured by the utilization of each stage. Since rules correspond
to stages (in groups) for a five stage pipeline 5 rules would execute for every cycle. Note that due
to starting and finishing up the instruction flow, no program will show 100% utilization on any
multistage pipeline.

5.4 Summary

In this chapter two important methods of simulation of TRS models were discussed. Both have been

used and can easily and quickly generate correct software simulations of either the pure TRS or an

anticipated hardware version. The usefulness of these simulators was demonstrated by using them

to run a performance comparison between different implementations of the AX ISA. Formalizations

of these simulation principles are the groundwork for automatic generation via a compiler.

70

Chapter 6

Conclusions

The research presented in this thesis is a key part of the development of a complete system for design,

testing and production of hardware using TRSs. The hardware models that were presented exemplify

the descriptive power of TRS models and provide a suite of structures and techniques for creating

new TRSs of more complex hardware. These techniques include modularity and pipelining. The

new structures that were presented in this thesis include queues for communication and interfaces

for connecting modules.

Eleven TRS models were developed for two ISAs. They spanned the range in complexity from

non-pipelined version to variations on simple pipelines, speculative execution and register renaming.

The discussion in Chapter 5 of rule analysis lays the foundation for systematic hardware synthesis

of TRSs. The many simulators demonstrate the testing possible at a software level for hardware

designs. The techniques presented provide for either rule- or clock-centric focused simulation and

show the ease of instrumentation and comparison of results.

Beyond this work on modeling and simulation is efforts on memory models and cache coherence

and hardware synthesis. We hope that the TRS method will improve hardware design just as the

use of high-level programming languages and corresponding compilers was a great improvement over

writing assembly code.

71

72

Appendix A

DLX Models

A.1 The Princeton DLX Model, MPd.

Just as in the previous case, changing to DLX from AX just adds more rules and no significant

complexity. In MPl, the choice was made to use the second method for dealing with the memory

resource conflict, that of always fetching the next instruction during the current execution.

A.1.1 Definition

This Princeton version is analogous to MP,, with the added consideration of the branch delay slot.

PROC = Proc(PC, NEXT, RF, MEM, INST, FLAG)
MEM = Array[ADDR] VI

VI = VAL |INST
FLAG = fetch execute

Register Instructions

The arithmetic and logical operations simply apply the operator to the two register values (or one

value and immediate) and save the result in the register file.

Fetch
Proc(pc, nxt, rf, mem, -, fetch)
e Proc(pc, nxt, rf, mem, mem[pc], execute)

Reg-Reg Op
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Regregop(rsl, rs2, rd, rrtype)

-> Proc(nxt, nxt + 1, rf[rd, v], mem, -, fetch)
where v := rrtype(rf[rs1], rf[rs2])

Set-Logical
Proc(ia, nxt, rf, mem, inst, execute)

if inst == SetlogOp(rsl, rs2, rd, sitype) and s1type(rf[rs1], rf[rs2]) == true

==> Proc(nxt, nxt + 1, rf[rd, 1], mem, -, fetch)

73

Proc(ia, nxt, rf, im, dm)
if inst == Setlogop(rsl, rs2, rd, sltype) and sltype(rf[rs1], rf[rs2]) == false

->~ Proc(nxt, nxt + 1, rf[rd, 0], mem, -, fetch)

Reg-Imm Rule
Proc(ia, nxt, rf, mem, inst, execute)

if inst == RegimmOp(rsl, imm, rs2, ritype)
=-> Proc(nxt, nxt + 1, rf[rd, v], mem, -, fetch)

where v := ritype(rf[rs1], imm)

Control Flow Instructions

Due to DLX's branch delay slot, the instruction after a branch or jump is always executed. The

following jumps modify the next pc instead of the pc to account for that.

BEQZ
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Beqz(rsl, imm) and rf[rs1] 0
==> Proc(nxt, ia + 1 + imm, rf, mem, -, fetch)
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Beqz(rsl, imm) and rf[rsl] # 0
=-> Proc(nxt, nxt + 1, rf, mem, -, fetch)

BNEZ
Proc(ia, nxt, rf, mem, inst, execute)

if im[ia] Bnez(rsl, imm) and rf[rsl] 5= 0
->~ Proc(nxt, ia + 1 + imm, rf, im, dm)

Proc(ia, nxt, rf, mem, -, fetch)
if im[ia] == Bnez(rsl, imm) and rf[rsl] == 0

->~ Proc(nxt, nxt + 1, rf, mem, -, fetch)

Jump
Proc(ia, nxt, rf, mem, inst, execute)

if inst == J(imm)
- Proc(nxt, ia + 1 + imm, rf, mem, -, fetch)

Jump and Link
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Jal(imm)
- Proc(nxt, ia + 1 + imm, rf[r31, nxt + 1], mem, -,fetch)

JumpRegister
Proc(ia, nxt, rf, mem, inst, execute)

if im[ia] == Jr(rs1)
->~ Proc(nxt, rf[rsl], rf, mem, -, fetch)

JumpRegister and Link
Proc(ia, nxt, rf, mem, inst, execute)

if im[ia] == Jalr(rsl)
->~ Proc(nxt, rqrsl], rf[r31, nxt + 1], mem, -, fetch)

Memory Instructions

Memory operations are straightforward. How do I deal with signed and unsigned?

74

Load Word
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Lw(rsl, imm, rd)

> Proc(nxt, nxt + 1, rf[rd, mem[addr]], mem, -, fetch)

where addr := rf[rsl] + imm

Load Half-Word
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Lh(rsl, imm, rd)

-> Proc(nxt, nxt + 1, rf[rd, v], mem, -, fetch)

where v := LogicalAnd(OxOO1, mem[addr]) and addr rf[rsl] + imm

Load Byte
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Lb(rsl, imm, rd)

-=> Proc(nxt, nxt + 1, rf~rd, v], mem, -, fetch)

where v := LogicalAnd(OxOOO , mem[addr]) and addr rf[rs1] + imm

Store Word
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Sw(rsl, imm, rd)

-> Proc(nxt, nxt + 1, rf, mem[addr, rfqrd]], -, fetch)
where addr := rf[rsl] + imm

Store Half-Word
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Sh(rsl, imm, rd)

=-> Proc(nxt, nxt + 1, rf, mem[addr, rfrd]], -, fetch)

where addr := rf[rsl] + imm and v := xor(LogicalAnd(Ox1OO, dm[addr]), Logica-

lAnd(OxOO11, rf[rd]))

Store Byte
Proc(ia, nxt, rf, mem, inst, execute)

if inst == Sb(rsl, imm, rd)

==> Proc(nxt, nxt + 1, rf, mem[addr, rf[rd]], -, fetch)

where addr := rf[rsl] + imm and v := xor(LogicalAnd(Ox111O, dm[addr]), Logica-

lAnd(OxOOO, rf[rd]))

Currently missing rules for LHU, LBU and the floating operations.

A.2 The Pipelined DLX Model, Mpipedx

MpipedL, has the standard division of the circuit into five stages - Instruction memory, register read,

ALU operation, data memory access and write back to the register file.

A.2.1 Definition

For this model we add in queues to connect the pipelines stages (see Section 3.2). We add the

instruction buffer to hold the current pc, next pc and instruction through the pipeline. The in-

structions need to be modified so that they can hold either register names or values, depending on

pipeline stage.

75

PROC
BSD, BSE, BSM, BSW

ITB
INST

REGREGOP
SETLOGOP

REGIMMOP
JUMPOP

MEMOP
LOADOP

LOAD2OP
LTYPE

STOREOP
STORE2OP

STYPE
RV

Proc(PC, NEXT, IM, DM, RF, BSD, BSE, BSM, BSW)
Queue(IB)
Itb(ADDR, ADDR, INST)
REGREGOP 1| SETLOGOP || REGIMMOP
JUMPOP || MEMOP || Reqv(RNAME, VAL)
Regregop(RV, RV, RNAME, RRTYPE)
Setlogop(RV, RV, RNAME, SLTYPE)
Regimmop(RV, VAL, RNAME, RITYPE)
Beqz(RV, VAL) || Bnez(RV, VAL)
J(VAL) || Jal(VAL) || Jr(RV) || Jalr(RV)
LOADOP || LOAD2OP || STOREOP| STORE2OP
Loadop(RV, VAL, RNAME, LTYPE)
Load2op(VAL, RNAME, LTYPE)
Lw || Lh || Lb
Storeop(RV, VAL, RNAME, STYPE)
Store2op(VAL, RNAME, STYPE)
Sw 1Sh 1 Sb
RNAME 1VAL

A.2.2 Rules

Instruction Fetch

When rules are fetched, they are simply passed on to the decode stage.

Fetch
Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ)
=-> Proc(next, next +.1, im, dm, rf, decQ;Itb(pc, next, inst), exeQ, memQ, wbQ)

where inst := im[pc]

Instruction Decode

Since pipelines have hazards, the operands of the inst are read only if they are not being written

by some instruction later on in the pipeline. So if any of the three following queues have a register

being written, then the pipeline stalls. Note here that this first level model includes only reading the

register file in this stage, not do any calculations. Therefore conditional branches are not determined

until the execute stage, which is rather wasteful.

Decode R-type
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Regregop(rsl, rs2, rd, rrtype) and rsl, rs2 0 Dest(exeQ, memQ, wbQ)
-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Regregop(vl, v2, rd, rrtype) and v1 := rf[rsl]; v2 := rf[rs2]

Decode R-type
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Setlogop(rsl, rs2, rd, sitype) and rsl, rs2 0 Dest(exeQ, memQ, wbQ)
-- > Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Setlogop(vl, v2, rd, sitype) and v1 := rf[rs1]; v2 := rf[rs2]

Decode I-type, Reg-Immed Arith
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Regimmop(rsl, immed, rd, ritype) and rsl 0 Dest(exeQ, memQ, wbQ)
=> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

76

where ninst := Regimmop(v1, immed, rd, ritype) and v1 := rf[rsl]

Decode I-type, Loads
Proc(pc, next, im, dm, rf, (ia, inst);decQ, exeQ, memQ, wbQ)

if inst == Loadop(rsl, immed, rd, Itype) and rsl V Dest(exeQ, memQ, wbQ)
->~ Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, ninst), memQ, wbQ)

where ninst := Loadop(v1, immed, rd, Itype) and vi rf[rs1]

Decode I-type, Stores
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Storeop(rsl, immed, rd, stype) and rs1, rd g Dest(exeQ, memQ, wbQ)

-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Storeop(vl, immed, vd, stype) and vi := rf[rs1], vd rf[rd]

Decode I-type, Branches

Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Beqz(rs1, immed) and rs1 V Dest(exeQ, memQ, wbQ)

-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)
where ninst := Beqz(v1, immed) and v1 := rf[rsi]

Decode I-type, Branches
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Bnez(rs1, immed) and rs1 g Dest(exeQ, memQ, wbQ)

-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), rnemQ, wbQ)

where ninst := Bnez(v1, immed) and v1 := rf[rs1]

Decode I-type, Jump Registers

Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Jr(rsi) and rsi V Dest(exeQ, memQ, wbQ)

=-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Jr(v1) and v1 := rf[rs1]

Decode I-type, Jump Registers

Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)
if inst == Jalr(rs1) and rsi V Dest(exeQ, memQ, wbQ)

-> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Jalr(vi) and vi := rf[rsi]

Decode J-type, Jumps

Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == J(immed)
Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := J(immed)

Decode J-type, Jumps
Proc(pc, next, im, dm, rf, (ia, nia, inst);decQ, exeQ, memQ, wbQ)

if inst == Jal(immed)

==> Proc(pc, next, im, dm, rf, decQ, exeQ;(ia, nia, ninst), memQ, wbQ)

where ninst := Jal(immed)

ALU Execution

Here in the execute stage, the vales read in decode are used. For arithmetic operations, the values

are calculated. Jumps and branches are resolved here. Branches have the condition tested, and

register jumps have the target resolved. When a change of control flow occurs, the decQ and exeQ

77

are emptied. When we trash the instructions following us here on a change of control, we have to

carefully find the instruction occupying the branch delay slot and not trash it.

Execute ArithOp
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Regregop(vl, v2, r, rrtype)
-> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, nia, ninst), wbQ)

where ninst := Reqv(r, v) and v := rrtype(vl, v2)

Execute ArithOp
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Regimmop(v1, v2, r, ritype)
->~ Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, nia, ninst), wbQ)

where ninst := Reqv(r, v) and v := ritype(v1, v2)

Execute SetLogicalOp
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Setlogop(vl, v2 , r, sltype) and sltype(vl, v2) == true

->~ Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, nia, ninst), wbQ)

where ninst := Reqv(r,1)
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Setlogop(vl, v2, r, sltype) and sltype(v1, v2) == false

Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, nia, ninst), wbQ)

where ninst := Reqv(r, 0)

Execute BEQZ taken (delay slot in exeQ)
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == Beqz(v, immed) and v == 0
-> Proc(addr, addr + 1, im, dm, rf, e, itb, memQ, wbQ)

where addr := ia + 1 + immed

Execute BEQZ taken (delay slot in decQ)
Proc(pc, next, im, dn, rf, itb;decQ, (ia, nia, inst), mernQ, wbQ)

if inst == Beqz(v, immed) and v == 0
->~ Proc(addr, addr + 1, im, dm, rf, itb, e, memQ, wbQ)

where addr := ia + 1 + immed

Execute BEQZ not taken
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Beqz(v, immed) and v :A= 0
==> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ)

Execute BNEZ taken (delay slot in exeQ)
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == Bnez(v, immed) and v :A= 0
=> Proc(addr, addr + 1, im, dm, rf, e, itb, memQ, wbQ)

where addr := ia + 1 + immed

Execute BNEZ taken (delay slot in decQ)
Proc(pc, next, im, dm, rf, itb;decQ, (ia, nia, inst), memQ, wbQ)

if inst == Bnez(v, immed) and v O= 0
->~ Proc(addr, addr + 1, im, dm, rf, itb, e, memQ, wbQ)

where addr := ia + 1 + immed

Execute BNEZ not taken
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Bnez(v, immed) and v == 0
->~ Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ)

78

Execute JumpRegister (delay slot in exeQ)

Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == Jr(v)

-> Proc(v, v + 1, im, dm, rf, e, itb, memQ, wbQ)

Execute JumpRegister (delay slot in decQ)

Proc(pc, next, im, dm, rf, itb;decQ, (ia, nia, inst), memQ, wbQ)

if inst == Jr(v)

e Proc(v, v + 1, im, dm, rf, itb, e, memQ, wbQ)

Execute JumpRegister and Link (delay slot in exeQ)

Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == Jalr(v)

=e Proc(v, v + 1, im, dm, rf, e, itb, memQ;(ia, ninst), wbQ)

where ninst := Reqv(r31, ia + 2)

Execute JumpRegister and Link (delay slot in DecQ)

Proc(pc, next, im, dm, rf, itb;decQ, (ia, nia, inst), memQ, wbQ)

if inst == Jalr(v)

->~ Proc(v, v + 1, im, dm, rf, itb, e, memQ;(ia, ninst), wbQ)

where ninst := Reqv(r31, ia + 2)

Execute Jump (delay slot in exeQ)

Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == J(v)

==> Proc(addr, addr + 1, im, dm, rf, e, itb, memQ, wbQ)
where addr := ia + 1 + v

Execute Jump (delay slot in DecQ)

Proc(pc, next, im, dm, rf, itb;decQ, (ia, nia, inst), memQ, wbQ)

if inst == J(V)

Proc(addr, addr + 1, im, dm, rf, itb, e, memQ, wbQ)
where addr := ia + 1 + v

Execute Jump and Link (delay slot in ExeQ)

Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);itb;exeQ, memQ, wbQ)

if inst == Jal(v)

-> Proc(addr, addr + 1, im, dm, rf, e, itb, memQ;(ia, ninst), wbQ)

where addr := ia + 1 + v and ninst := Reqv(r31, ia + 2)

Execute Jump and Link (delay slot in DecQ)

Proc(pc, next, im, dm, rf, itb;decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Jal(v)

-> Proc(addr, addr + 1, im, dm, rf, itb, e, memQ;(ia, ninst), wbQ)

where addr := ia + 1 + v and ninst := Reqv(r31, ia + 2)

Execute Loads
Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Loadop(v, immed, r, Itype)
= 4 Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, ninst), wbQ)

where ninst := Load2op(addr, r, Itype) and addr := v + immed

Execute Stores

Proc(pc, next, im, dm, rf, decQ, (ia, nia, inst);exeQ, memQ, wbQ)

if inst == Storeop(vl, immed, vd, stype)

-> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ;(ia, ninst), wbQ)

where ninst := Store2op(addr, vd, stype) and addr := vI + immed

79

Memory

Loads and stores to memory are done here. Everything else is passed on. Note - if we add the

value read plus the offset in the decode stage, or combine with the below rules, we can combine the

memory and execute stages.

Memory Load Word
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if int == Load2op(addr, r, Lw)
==> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ;(ia, nia, inst))

where ninst := Reqv(r, dm[addr])

Memory Load Half-word
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if int == Load2op(addr, r, Lh)
==> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ;(ia, nia, inst))

where ninst := Reqv(r, v) and v == LogicalAnd(OxOO11, dm[addr])

Memory Load Byte Memory
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if int == Load2op(addr, r, Lb)
-=> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ;(ia, nia, inst))

where ninst := Reqv(r, v) and v == LogicalAnd(OxOO01, dm[addr])

Memory Store Word
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if inst == Store2op(addr, vd, Sw)
-> Proc(pc, next, im, dm[addr:= vd], rf, decQ, exeQ, memQ, wbQ)

Memory Store Half-Word
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if inst == Store2op(addr, vd, Sh)
==- Proc(pc, next, im, dm[addr:= v], rf, decQ, exeQ, minemQ, wbQ)

where v := xor(LogicalAnd(Ox1100, dm[addr]), LogicalAnd(OxOO11, vd))

Memory Store Byte
Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if inst == Store2op(addr, vd, Sb)
-=> Proc(pc, next, im, dm[addr:= v], rf, decQ, exeQ, memQ, wbQ)

where v := xor(LogicalAnd(Ox1110, dm[addr]), LogicalAnd(OxOOO, vd))

Memory Other

Proc(pc, next, im, dm, rf, decQ, exeQ, (ia, nia, inst);memQ, wbQ)

if inst == Reqv(r, v)

-=> Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, wbQ;(ia, inst))

Register Writeback

Values are written back to the register file here.

Writeback

Proc(pc, next, im, dm, rf, decQ, exeQ, memQ, (ia, nia, inst);wbQ)
if inst == Reqv(r, v)

== Proc(pc, next, im, dm, rf[r := v], decQ, exeQ, memQ, wbQ)

80

A.3 The Speculative DLX Model, Mspecdlx

A.3.1 Definition

The definition now has a branch target buffer.

PROC = Proc(PC, NEXT, IM, DM, RF, BTB, BSD, BSE, BSM, BSW)
ITB = Itb(ADDR, ADDR, ADDR, INST)

A.3.2 Rules

There are only two changes here from the pipelined model. First, speculation happens on the

instruction fetch. Second, the rules resolving branches and jumps need to correct any mis-speculation

and deal with the branch delay slot correctly. Only these modified rules are presented. The new

buffer to hold instructions through the pipeline has a fourth element, the predicted pc.

Instruction Fetch

When rules are fetched, they are simply passed on to the decode stage.

Fetch
Proc(pc, next, im, dm, rf, btb, decQ, exeQ, memQ, wbQ)

if im[pc] $ Beqz(-,-) or Bnez(-,-) or J(-) or Jal(-) or Jr(-) or Jalr(-)

->~ Proc(next, next + 1, im, dm, rf, btb, decQ;ITB(pc, next, next + 1, inst), exeQ,
memQ, wbQ)

where inst := im[pc]

Fetch Control change
Proc(pc, next, im, din, rf, btb, decQ, exeQ, memQ, wbQ)

if im[pc] == Beqz(-,-) or Bnez(-,-) or J(-) or Jal(-) or Jr(-) or Jalr(-)

-=> Proc(next, target, im, dm, rf, btb, decQ;ITB(pc, next, target, inst), exeQ, memQ,
wbQ)

where inst := im[pc) and target := lookup(btb, pc)

Execute BEQZ taken Correct (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Beqz(v, immed) and v = 0 and pred = ia + 1 + immed

=a Proc(pc, next, im, dm, rf, btb', decQ, execQ, memQ, wbQ)
where btb' = update(btb)

Execute BEQZ not taken Correct
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Beqz(v, immed) and v # 0 and pred = ia + 2
=-> Proc(pe, next, im, dm, rf, btb', decQ, exeQ, memQ, wbQ)

where btb' = update(btb)

Execute BEQZ taken InCorrect (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, memQ, wbQ)

if inst = Beqz(v, immed) and v = 0 and pred $ ia + 1 + immed

=-> Proc(addr, addr + 1, im, dm, rf, btb', e, itb, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BEQZ taken InCorrect (delay slot in decQ)

Proc(pc, next, im, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

81

if inst = Beqz(v, immed) and v = 0 and pred : ia + 1 + immed
=> Proc(addr, addr + 1, im, dm, rf, btb', itb, e, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BEQZ not taken InCorrect (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, memQ, wbQ)

if inst = Beqz(v, immed) and v 4 0 and pred : ia + 1 + immed
-=> Proc(addr, addr + 1, im, dm, rf, btb', e, itb, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BEQZ not taken InCorrect (delay slot in decQ)
Proc(pc, next, im, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

if inst = Beqz(v, immed) and v : 0 and pred : ia + 1 + immed
==4 Proc(addr, addr + 1, im, dm, rf, btb', itb, e, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BNEZ taken Correct (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Bnez(v, immed) and v : 0 and pred = ia + 1 + immed
=>~ Proc(pc, next, im, dm, rf, btb', decQ, execQ, memQ, wbQ)

where btb' = update(btb)

Execute BNEZ not taken Correct
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Bnez(v, immed) and v = 0 and pred = ia + 2
-=> Proc(pc, next, im, dm, rf, bth', decQ, exeQ, memQ, wbQ)

where btb' = update(btb)

Execute BNEZ taken InCorrect (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, menQ, wbQ)

if inst = Bnez(v, immed) and v 0 0 and pred # ia + 1 + immed
=> Proc(addr, addr + 1, im, dm, rf, btb', e, itb, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BNEZ taken InCorrect (delay slot in decQ)
Proc(pc, next, in, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

if inst = Bnez(v, immed) and v # 0 and pred : ia + 1 + immed
==> Proc(addr, addr + 1, im, dm, rf, btb', itb, e, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BNEZ not taken InCorrect (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, memQ, wbQ)

if inst = Bnez(v, immed) and v = 0 and pred # ia + 1 + immed
=-> Proc(addr, addr + 1, im, dm, rf, btb', e, itb, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute BNEZ not taken InCorrect (delay slot in decQ)
Proc(pc, next, im, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

if inst = Bnez(v, immed) and v = 0 and pred # ia + 1 + immed
=> Proc(addr, addr + 1, im, dm, rf, btb', itb, e, memQ, wbQ)

where addr = ia + 1 + immed and btb' = update(btb)

Execute Jump Correct (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Jr(v) or J(v) and pred = v
=- Proc(pc, next, im, dm, rf, btb', decQ, exeQ, memQ, wbQ)

where btb' = update(btb)

82

Execute Jump InCorrect (delay slot in exeQ)
Proc(pc, next, im, dm, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, memQ, wbQ)

if inst = Jr(v) or J(v) and pred : v
-=> Proc(v, v + 1, im, dn, rf, btb', e, itb, memQ, wbQ)

where btb' = update(btb)

Execute Jump InCorrect (delay slot in decQ)
Proc(pc, next, im, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

if inst = Jr(v) or J(v) and pred $ v
-> Proc(v, v + 1, im, dm, rf, btb', itb, e, memQ, wbQ)

where btb' = update(btb)

Execute Jump and Link Correct (delay slot in exeQ)
Proc(pc, next, im, dn, rf, btb, decQ, (ia, nia, pred, inst);exeQ, memQ, wbQ)

if inst = Jalr(v) or Jal(v) and pred = v
-> Proc(pc, next, im, dm, rf, btb', decQ, execQ, memQ;(ia, ninst), wbQ)

where ninst = Reqv(r31, ia + 2) and btb' = update(btb)

Execute Jump and Link InCorrect (delay slot in exeQ)
Proc(pc, next, im, dn, rf, btb, decQ, (ia, nia, pred, inst);itb;exeQ, memQ, wbQ)

if inst = Jalr(v) or Jal(v) and pred : v

Proc(v, v + 1, im, dn, rf, btb', e, itb, memQ;(ia, ninst), wbQ)
where ninst = Reqv(r31, ia + 2) and btb' = update(btb)

Execute Jump and Link InCorrect (delay slot in DecQ)
Proc(pc, next, im, dm, rf, btb, itb;decQ, (ia, nia, pred, inst), memQ, wbQ)

if inst = Jalr(v) or Jal(v) and pred : v
-> Proc(v, v + 1, im, dn, rf, btb', itb, e, memQ;(ia, ninst), wbQ)

where ninst = Reqv(r31, ia + 2) and btb' = update(btb)

83

84

Appendix B

Hardware Generation via

Compilation

After some slight formatting changes and scaling down of some elements, Max was compiled into

Verilog. James Hoe is working on this compiler which allows a hardware architect to rapidly cre-

ate simulatable and synthesizable prototype designs directly from their high-level specifications.

Furthermore, the combination of high-level synthesis with reconfigurable technology found in the

compiler creates a new engineering trade-off point where an application developer could benefit from

a hardware implementation for the same amount of time and effort as software development.

Following the TRS below is the schematic of the hardware.

PROC = Proc(PC, RF, IM, DM)

PC = ADDR

RF = Array [RNAME] VAL

IM Array [ADDR] INST

DM = Array [ADDR] VAL

ADDR = Bit[32]

INST = Loadc(RNAME, VAL) || Loadpc(RNAME) ||

Op(RNAME, RNAME, RNAME) || Load(RNAME, RNAME)|

Store(RNAME, RNAME) || Jz(RNAME, RNAME)

RNAME RegO 11 Regi || Reg2 || Reg3 10

VAL - Bit[32]

"Rule 1 - Loadc"

Proc(pc, rf, im, din)

where Loadc(r, v) := im[pc]

==> Proc(pc', rf Er = v], im, dm)

where pc' := pc + 1

85

"Rule 2 - Loadpc"

Proc(pc, rf, im, dm)

where Loadpc(r) := im[pc]

==> Proc(pc', rf[r := pc], im, dm)

where pc' := PC + 1

"Rule 3 - Op"

Proc(pc, rf, im, dm)

where Op(r, ri, r2) := im[pc]

==> Proc(pc', rf [r := v], im, dm)

where v := rf[r1] + rf[r2]

PC' := pc + 1

"Rule 4 - Load"

Proc(pc, rf, im, dm)

where Load(r, r1) := ii[pc]

==> Proc(pc', rf[r := v], im, dm)

where v := dm[rf[r1]]

pc' := pc + 1

"Rule 5 - Store"

Proc(pc, rf, im, dm)

where Store(ra, rl) := im[pc]

==> Proc(pc', rf, im, dm[ad := v])

where ad := rf[ra]

v rf[rl]

pc' :pc + 1

"Rule 6 - Jz taken"

Proc(pc, rf, im, dm)

if rf[rc] == 0

where Jz(rc, ra) := im[pc]

==> Proc(pc', rf, im, dm)

where pc' := rf[ra]

"Rule 7 - Jz not taken"

Proc(pc, rf, im, dm)

if rf[rc] 0

where Jz(rc, ra) := im[pc]

20

30

40

50

60

86

Proc(pc', rf, im, dm)

where pc' PC + 1

70

87

- ~ 1 00
-_ _ - .00

.a se -4 .= l. , r-. .--.

aer-rwa-e ,aoar -ror- , -H.i t--

Bibliography

[1] Xiaowei Shen and Arvind. Modeling and verification of ISA implementations. In Proceedings of

the Australasian Computer Architecture Conference, Perth, Australia, February 1998.

[2] Xiaowei Shen and Arvind. Design and verification of speculative processors. In Proceedings of the

Workshop on Formal Techniques for Hardware and Hardware-like Systems, Marstrand, Sweden,

June 1998.

[3] Lisa A. Poyneer, James C. Hoe, and Arvind. A TRS model for a modern microprocessor.

Computation Structures Group Memo 408, June 1998.

[4] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann Publishers, San Francisco, California, second edition, 1995.

[5] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-reconcile and fences (crf): A new memory

model for architects and compiler writers. In Proceedings of the 26th ISCA, Atlanta, Georgia,

May 1999.

[6] James C. Hoe and Arvind. Micro-architecture exploration and synthesis via trs's. Computation

Structures Group Memo 408, April 1999.

[7] David A. Patterson and John L. Hennessy. Computer Organization and Design The Hard-

ware/Software Interface. Morgan Kaufmann Publishers, San Francisco, California, 1994.

89

