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Abstract

We provide two contributions to exact security analysis of digital signatures:

1. We put forward a new method of constructing Fiat-Shamir-like signature schemes
that yields better "exact security" than the original Fiat-Shamir method; and

2. We extend exact security analysis to exact cost-security analysis by showing that digi-
tal signature schemes with "loose security" may be preferable for reasonable measures
of cost.
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Chapter 1

Introduction

1.1 Exact Security of Signature Schemes

Goldwasser, Micali and Rivest's ([GMR88]) classical notion of security for a digital sig-
nature scheme is asymptotic in nature. They define a signature scheme to be secure if
no polynomial-time adversary ("forger") can forge a signature after an adaptive chosen-
message attack. Because the current state of knowledge makes it impossible to prove the
security of a signature scheme unconditionally (such a proof would, in particular, imply that

P # NP), arguments that a signature scheme is secure are usually based on an assumption
that some problem deemed hard (such as factoring or discrete logarithm) is impossible to

solve in polynomial time. In essence, a proof of security amounts to a reduction from forging

a signature to solving a computationally hard problem: if a polynomial-time forger exists,

then we can use it to solve the hard problem in polynomial time.

It has been often pointed out that this asymptotic approach, which uses notions such as
"polynomial time" and "sufficiently large," is too coarse for practical security recommen-
dations. Knowing that no polynomial-time adversary has a better than exponentially small

chance of forgery for a sufficiently large security parameter does not provide one with an
answer to the practical problem of finding the appropriate security parameters to ensure
security against adversaries with certain concrete capabilities.

Bellare and Rogaway ([BR96]) argue that, in order to be able to deduce concrete secu-

rity recommendations, it is important to be precise in the reduction from a forger to the
algorithm that solves the hard problem. For example, if one knows that factoring integers
of length 1 is no more than 100 times harder than breaking a certain signature scheme with
security parameter 1, then one could pick I so that even 1% of the work required to factor

integers of length 1 is eonsidered infeasible.
A reduction in which the difficulty of forging and the difficulty of solving the underlying

hard problem are close is called tight; otherwise, it is called loose. (Naturally, "close," "tight"

and "loose" are imprecise terms and make more sense when used in the comparative.) A
scheme whose exact security is tightly related to the difficulty of factoring is also proposed

in [BR96].

1.2 Signature Schemes from ID Schemes

A fruitful method for constructing signature schemes was introduced by Fiat and Shamir

([FS86]). Although claimed for a specific ID scheme based on modular square roots (a
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specific trapdoor function), the method works with a general commit-challenge-respond ID

scheme. This is a three-pass, public-key-based, identification protocol, in which the prover

sends a commitment to the verifier, receives a random challenge from the verifier, and then

provides a response based on the commitment and the challenge. The verifier applies a
verification procedure to the prover's public key, commitment, challenge and response, to
verify that the prover really possesses the corresponding private key.

In order to change the ID scheme into a signature scheme, the verifier's random challenge

is replaced by a publicly known "random" function H evaluated at the prover's commit-
ment and the message being signed. Thus, if the signer publishes the commitment and the
response as the signature, anyone can convince oneself that the signer signed the message
by first evaluating H to find the random challenge and then applying the same verification
procedure as in the ID scheme. If the verification procedure allows for recovery of the com-
mitment from the challenge and the response (as it often does), then instead of publishing
the commitment as part of the signature, the signer can publish the random challenge.
Then the verifier needs to check that the value of H evaluated at the signer's commitment
and the message being signed is actually equal to the challenge given in the signature.

Intuitively, such a signature scheme is secure as long as the ID scheme is secure because
the challenge produced by a random function is just as good as the challenge produced by
a "live" verifier-an attacker cannot produce a challenge that suits its needs because H is
"random" (and hence, in particular, hard to invert).

Since [FS86], many such signature schemes have been proposed (see, e.g., [FFS88],
[Bet88], [GQ88], [0088], [MS88], [Sch89], [BDPW89], [Gir90], [BM90], [OS90], [Oka92],
[Mic94], [Sho96], [Sch96], [PS96], [PS98], [0098]). Many have been proven secure in the so
called "random oracle" model (articulated in [BR93]). Essentially, these are proofs that rely

on some cryptographic assumption (such as the hardness factoring or discrete logarithm)
and the additional assumption that H is a random oracle.

1.3 The Contributions of this Paper

This paper makes two contributions applicable to signature schemes in general.

1. The traditional way of turning ID schemes into signature schemes, as outlined above,
results in signature schemes with loose reductions to the underlying hard problem. In
alternative to this traditional method,

We propose a new method of constructing signature schemes from Fiat-Shamir-
like ID schemes that results in schemes with tight reductions and better exact
security.

Our method can be used on ID schemes based on trapdoor functions, and thus is
less general than the "generalized" Fiat-Shamir (for example, it does not apply do
discrete-log based ID schemes).

2. After proposing a method for creating signature schemes with tight reductions, we
demonstrate that tightness of a reduction alone is insufficient if one wishes to maximize
security while minimizing costs other than key length (e.g., signing time). It is indeed
true that a tighter reduction allows for a lower security parameter, however:
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We show that a "loose" scheme can be so efficient that, though requiring a larger
security parameter for a specified level of security, may deliver better performance

(e.g., in signing time) than a "tight" scheme for the same level of security.

We submit that designers of digital signatures should be aware that "loose" signature
schemes may provide more security for the same cost (or, equivalently, the same
security for less cost) than "tight" signature schemes with respect to one or more
reasonable measures of cost.

Our contributions are better illustrated in the concrete. To this end, we utilize the
signature scheme and corresponding ID scheme of [Mic94] as a running example, henceforth
called the E scheme. Our contributions are thus exemplified as follows:

1'. We analyze the exact security of the E scheme and demonstrate that its reduction to
factoring is quite loose (and a tighter analysis doesn't appear possible). We then pro-

pose a modified scheme called "E-swap" for which we prove a very tight reduction to

factoring. (E-swap's performance is actually comparable to that of schemes currently

used in practice.)

2'. We demonstrate that although E-swap has better exact security than the E scheme,
which of the two schemes to pick depends on what the main factor in the cost is.

If the efficiency of verifying is of main concern, then E-swap should be chosen. If,
however, the efficiency of signing is the main concern, then the E scheme can deliver

more security for less cost. In fact, in that case the E scheme can deliver more security

for less cost than even the schemes of [BR96].

We highlight that our point is not sacrificing security for efficiency. Quite contrary, we

leverage efficiency in order to achieve better security. We submit that measuring the cost

of a signature scheme accurately is just as important as measuring security accurately, and

demonstrate that schemes with worse exact security may actually achieve better security for

the same cost. We hope that this may further the applicability of exact security analysis.

1.4 Roadmap

We begin by introducing formal definitions and dealing with other preliminaries in Chap-

ter 2. We introduce the E signature scheme and analyze its security in Chapter 3. Our

new method for constructing signature schemes is given in Chapter 4. We then show in

Chapter 5 how to apply exact security analysis to choosing a digital signature scheme so as

to optimize a given cost for a given level of security.
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Chapter 2

Definitions

NOTATION. We will denote by A? a (probabilistic) oracle algorithm; A0 denotes that
algorithm endowed with the specific oracle 0, where 0 : {0, 1}* -+ {0, 1}. Because oracles
returning more than one bit per question, as well as multiple oracles, can all be easily
simulated by a single oracle returning one bit per question, we will slightly abuse this
notation and speak of, for example, AG,H, for some G : {0, 1}* -+ {0, 1} and H : {0, 1}* -+
{0, 1}1. Additionally, in some cases we will need to allow one probabilistic oracle algorithm
A? access to another probabilistic oracle algorithm B? with the oracle 0; we will denote
it by ABO. Note that because B? is probabilistic, it is not, strictly speaking, an oracle;
rather, this notation implies that, for each query, B 0 gives a single answer selected, with
the appropriate probability, from the set of all possible answers. When convenient and
clear, we will omit the superscript when speaking about A? or A0 .

We will denote by x <- A the fact that the probabilistic algorithm A output x.

SIGNATURE SCHEMES. Our definition of a signature scheme follows the one found in
[GMR88] and refined in [BR93] to allow for random oracles. As is common, we decouple
the notions of a signature scheme and of its security.

Definition 1 A signature scheme with an oracle is a triple of probabilistic oracle algo-
rithms II = (Gen?, Sign?, Ver?). Gen is a key generation algorithm that, given the security
parameter k, outputs a key pair (pk, sk). 1 Commonly, pk is called a public key and sk a
secret key (sk is sometimes also called a private key). Sign is a signing algorithm: given
a message M and a secret key sk it returns a signature x. Ver is a verification algorithm:
given a public key pk, a message M and a purported signature x, it outputs "accept" or
"reject."

A signature x on a message M is called valid with respect to a public key pk and an
oracle H if VerH(pk, M, x) ="accept." The only required relationship between the three
algorithms is that the algorithm Sign output valid signatures: that is, for any oracle H and
message M, if (pk, sk) +- GenH (1k ) and x +- SignH (sk, M), then x is a valid signature on
M with respect to pk and H.

Signature schemes with more than one security parameter can be defined similarly.

'Usually, we are interested in the running time of Gen as a function of k rather than log k. Therefore,
technically, we need to think of Gen as being given k in unary notation. This is denoted by 1 k.
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Note that in the above definition, we do not specify what the oracle H is or what it
means for a signature scheme to be secure. This is discussed below. Our definition of
security is a modified version of that in [BR963, which is based on [BR93 and [GMR88].
This definition concerns itself with exact, rather than asymptotic, security.

Intuitively, we want to capture the following in our definition of security: there is no
algorithm (called "forger") that, for a random oracle H, is able to produce new valid sig-
natures with reasonable probability in reasonable time without knowing sk. Moreover, we
should assume that an attacker can coerce the signer into signing some number of mes-
sages of the attacker's choice-to carry out the so-called "adaptive chosen-message attack"

[GMR88]. We model this by giving the forger oracle access to the oracle H and to the
algorithm SignH(sk, .).

Definition 2 A forger F?,? is a probabilistic two-oracle algorithm that is given a security

parameter k and a public key pk as input. The first oracle of F is called a hashing oracle and

the second oracle is called a signature oracle. Let H be a hashing oracle, and let (pk, sk) =

GenH (k) for some k. We say that the forger succeeds if (M,x) +- F'Uig" H

and x is a valid signature on M and F did not query its signature oracle on M.

We say that a forger (t, qsig, qhash, e, 6)-breaks the signature scheme if, for a security

parameter k, the following holds:

" its running time (plus the size of its description) does not exceed t(k)

" the number of its queries to the signature oracle does not exceed qsig(k)

" the number of its queries to the hashing oracle does not exceed qhash(k)

* with probability at least 6(k), GenH(lk) generates such a key (pk, sk) that the prob-

ability of the forger's success on input (1k,pk) is at least e(k) (here, the probability

of the forger's success is taken over a random choice of the oracle H, the random

tape of the forger, the random tape of the signer to whom the forger addresses the

chosen-message queries, but not the choice of pk)

Finally, we say that a signature scheme is (t, qsig, qhash, E, 6)-secure if no forger (t, qsig,
qhash, e, 6)-breaks it.

(As an aside for the reader familiar with the definition of [BR96], we point out that if

a scheme is (t, qsig, qhash, e6)-secure in the sense of the [BR96], then it is (t, qsj9 , qhash, e, 6)-

secure in the sense of the above definition. We simply separate the component of the

probability that is due to the selection of the public key.)

MEASURING SIGNATURE SCHEME SECURITY. Now that we have defined what it means

for a signature scheme to be secure, how do we actually prove anything about security? We

will relate the security of a signature scheme to the difficulty of some problem; in our case,

the difficulty of factoring. Let Gen(1) be an algorithm generating I-bit products of two

primes.

Definition 3 We will say that an algorithm A (t, E, 6)-factors integers generated by Gen

if, for a given parameter 1,

* A's running time (plus the size of its description) does not exceed t(l)
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* with probability at least 6(l), Gen(1') generates such an integer n that A has at least
e(l) probability (taken over only the random choices of the algorithm, not the choice
of n) of producing the correct factors of n on input n

We will say that factoring integers generated by Gen is (t, e, 6)-secure if no such A exists.

Given this definition of the difficulty of a problem, we can then explain the security of
a signature scheme II in the following terms, as suggested by [BR96]: if some problem is
(t', E', 6')-secure, then H scheme is (t, qsig, qhash, E, 6)-secure. If t is not much smaller than
t' and e, 6 are not much larger than E', 6', even for a reasonably large qsig and qhash, then
the reduction proving the security is called tight.
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Chapter 3

The E Scheme

3.1 Signature and Verification Algorithms

We describe the following ID and signature scheme from [Mic94J, with similarities to the
Ong-Schnorr ([OS90]) and the Guillou-Quisquater ([GQ88]) schemes.

NUMBER THEORY. Let k and I be two security parameters. Let pi 3 (mod 8) and

P2 = 7 (mod 8) be two primes of approximately equal size and n = PiP2 be an i-bit
integer (such n is called a Williams integer [Wil80]). To simplify further computations, we
will assume not only that n > 21-1, but also that IZ* = n - pi - P2 + 1 > 21-1, and that

P1 + P2 - 1 < 21/2+1. Let Q denote the set of non-zero quadratic residues modulo n. Note
that IQt > 2-3. Note also that for x E Q, exactly one of its four square roots is also in
Q (this follows from the fact that -1 is a non-square modulo pi and P2 and the Chinese
remainder theorem). Thus, squaring is a permutation over Q. From now on, when we speak
of "the square root of x," we mean the single square root in Q; by x2-k we will denote the
single y E Q such that x = y2k*. Also note that 2 is a non-square modulo p1 and a square

modulo P2 (because (g) = (-1)(p2-1)/8), So 1 E Q and -1, 2, -2 0 Q. In general, for any

X E Z*, exactly one of x, -x, 2x, -2x is in Q.
Following [GMR88], define Fo (x) = x2 mod n, F1 (x) = 4x 2 mod n, and, for an m-bit

binary string o- = b1... bm, define F, : Q -+ Q as F,(x) = Fm(- -- (Fb2 (Fbl(x)))...) =
x2 m 4 mod n (note that 4' is a slight abuse of notation, because o- is a binary string, rather
than an integer; what is really meant here is 4 raised to the power of the integer represented
in binary by a). Because squaring is a permutation over Q and 4 E Q, F, is a permutation
over Q.

Note that F,(x) can be efficiently computed by anybody who knows n. Also, if one knows
pi and p2, one can efficiently compute x = F; (y) (as shown by Goldreich in [Gol86]) by
computing s = 1/42-1 mod n and then letting x = y2-o s, mod n (these calculations can

be done modulo p1 and P2 separately, and the results combined using the Chinese remainder
theorem). However, if one does not know pi and P2, then F; 1 is hard to compute, as shown
in the Lemma below.

Lemma 1 If one can compute, for a given y E Q and two different strings a- and -r of equal
length, x 1 = F,- 1(y) and x2 = F,-1(y), then one can factor n.

Proof The proof is by induction on the length of the strings a and -r.
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If Jul = Irl = 1, then assume, without loss of generality, that a = 0 and r = 1. Then
Fo(xi) = F1 (X 2 ) = y mod n, i.e., x 2 4x2 mod n, i.e., ni(xi - 2x 2 )(X1 + 2x 2 ). Note that

X 1, X 2 E Q and +2 Q, so i2x 2 V Q, so Xi E i 2X2 (mod n), so n does not divide either
xi - 2x 2 or x1 + 2X2. Thus, by computing the gcd of xi + 2x2 and n, we can get either p1
or P2-

For the inductive case, let a and r be two strings of length m + 1. Let a' and T'

be their m-bit prefixes, respectively. If F,,(xi) _ F,,(X2 ) (mod n), we are done by the
inductive hypothesis. Otherwise, the last bit of a must be different from the last bit of r,
so, without loss of generality, assume the last bit of a is 0 and the last bit of r is 1. Then
FO (F, (Xi) F1 (F7'(X 2) (mod n), and the same proof as for the base case works here. U

THE ID SCHEME. The above lemma naturally suggests the following ID scheme. A user
has n as the public key and p1,p2 as the secret key. To prove his identity (i.e., that he
knows p1 and P2) to a verifier, he commits to random X E Q and sends it to the verifier.
The verifier produces a random k-bit challenge a and sends it to the prover (the user). The
prover responds with z = F 1 (X) (note that o- here is prefixed with a single 0 bit, whose
use will be explained shortly). The verifier checks that X = Fo,(z) = F,(z2 ) and that z 40
(mod n). Informally, the security of this protocol is based on the fact that if the prover is
able to respond to two different challenges a and T, then, by Lemma 1, he knows pi and P2-
The 0 bit in front of a is to save the verifier from having to check that the prover's response
is in Q (which is a hard problem in itself)-instead, she just squares the prover's response
and thus puts it in Q.

We will say no more about the security of this ID scheme because we are not concerned
with it in this paper. We will, however, point out an efficiency improvement for the prover.
First, as part of key generation, the prover computes, using the Chinese remainder theorem,
s = 1/ 42 k-1 mod n. Then, when committing to a random X E Q, the prover randomly
selects an x E Z* and sets X = x2 k+ mod n (note that X gets selected with uniform
distribution as long as x is so selected). Now, to respond to a challenge a, the prover
simply computes z = xs' mod n.

THE E SCHEME. The standard way to change the above ID scheme into a signature scheme
is to replace the verifier with a random function H : {0, 1}* -+ {0, 1}k. The exact steps of
the algorithms Gen, Sign and Ver follow.

Key Generation

1. Generate two random primes pi = 3 mod 8 and P2 = 7 mod 8 and n = PiP2 so
that n <2', n -p -- p2 + 1> 21 + 1 and pi +p2 - 1< 2/2+1

2. Generate coefficient c = P2- 1 mod p1 for use in the Chinese remainder theorem

3. Compute ui = ( )k+1 mod i1 for i = 1, 2 (note that ui is such that raising
a square to the power ni modulo pi will compute its 2k+1 root)

4. Compute si = (P+ 1) mod pi for i = 1, 2

5. Compute v = (Si - S2)C mod pi and s = s2 + vp2 to get s = 1/42-('+1) mod n

6. Output n as the public key and (n, s) as the secret key

Signing
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1. Generate X by picking a random x E Z* and computing X = x2k+1 mod n (note
that this step can be done off-line, before the message is known)

2. Compute a = H(X, M), and z = FC1 (X) via t = s' mod n (this can be done via
ti = s' mod pi for i = 1, 2, v = (ti - t 2 )c mod pi, t = t2+ vp2) and z =t modn

3. Output (z, a)

Verifying

1. Verify that z 4 0 (mod n) and compute X = F,(z2 ) via ti = z2k+1 mod n,
t2 = 2' mod n, X = tit 2 mod n

2. Verify if a = H(X, M)

3.2 Security of the E scheme

We state the following two theorems that give two different views of the exact security of
the E scheme and demonstrate the tradeoff between running time and success probability.
Their proofs use known methods (see Pointcheval and Stern [PS961 and Ohta and Okamoto

[0098). Our probability analysis is new, however, and results in slightly tighter reductions.

Theorem 1 If there exists a forger that (t, qsig, qhash, E, )-breaks the E scheme with se-

curity parameters I and k, then there exists an algorithm that (t',e',6)-factors integers

generated by Gen for

t'= 2t + 2(qsig + 1)T1 + T2

, E 2 (1 - 2-f) _ -= -1 2y
qhash + 1

where T1 is the time required to perform an E signature verification, T 2 is the time required

to factor n given the conditions of Lemma 1 (essentially, a gcd computation) and -y =

qsig(qhash + 1)2-1+3 (note that -y is close to 0 for a large enough 1).

Proof

MAIN IDEA. Let F be a forger that (t, qsig, qhash. , 6)-breaks E signature scheme. We will

construct a factoring algorithm A that uses F to produce y, z E Z,* and o # r E (.0, 1}k
such that F,(z2 ) = F,(y2 ). This will allow A to factor n by using the method given in the

proof of Lemma 1. .
The main idea of this proof is given by the "forking lemma" of [PS96]. It is to allow F to

run once to produce one forgery-a signature (z, a) on a message M such that a = H(X, M)

where X = F,(z2 ). Note that F had to ask a hashing-oracle query on (X, M)-otherwise

its probability of success is at most 2 -k. Then, run F the second time, giving the same

answers to all the oracle queries before the query (X, M). For (X, M) give a new answer r.

Then, if F again forges a signature (y, T) using X and MI, we will have achieved our goal.

Assuming n is such that F has probability at least E of success, the probability that A

will factor n using this approach is roughly e2 /qhash, because F needs to succeed twice and

we have no guarantee that F will choose to use (X, M) for its second forgery and not any

of its other qhash oracle queries.
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DETAILS. We will now provide the details of the construction. We first have to show pre-
cisely how A interacts with F. We will assume that F performs the necessary bookkeeping
and does not ask the same hash query twice.1 Note that F may ask the same signature

query twice, because the answers will most likely be different. We will also modify F so

that it will not output a signature (z, -) on a message M unless it knows that the signature

is correct; in particular, that means that F has to first ask, in a hash query, for the value of
H(F,(z2 ), M). This may increase the number of hash queries by one and the running time
of F by the cost of one signature verification.

A first comes up with a random tape for F, remembers it, and runs F on that tape. A
maintains two tables: a signature query table and a hash query table.

In order to answer a signature query on a message M, A comes up with a random

zj E Q and I C {0, 1}k, computes Xj = F, (z?), and checks its signature query table to

see if a signature query on M has already been asked and Xj used in answering it. If so,
A changes z3 and o5 to the z and a that were used in answering that query. Then A adds
the entry (j, zj, aj, Xj, M;) to its signature query table and outputs (zj, o7).

In order to answer the i-th hashing query (Xi, Mi), A first checks its signature query
table to see if there is an entry (j, zj, a , Xj, Mj) such that (X, M) = (Xi, Mi). If so, it

just outputs o. Otherwise, it picks a random -i E {0, 1}k, records in its hash query table
the quadruple (i, Xi, Mi, ai) and outputs o-i.

Assume now that F outputs a signature (z, a) on a message M. Let X = F,(z2 ).
Because we modified F to first ask a hash query on (X, M), we have that, for some i,
(X, M, 0-) = (Xi, Mi, ai) in the hash query table (it can't come from the signature query
table, because F is not allowed to forge a signature on a message for which it asked a
signature query). A finds such an i in its table and remembers it.

A now runs F on the same random tape as the first time, giving the exact same answers
to all F's queries before the i-th hash query (it can do so because it has all the answers
recorded in the tables). Note that this means that F will be asking the same i-th hash
query (Xi, Mi) as the first time. As soon as F asks the i-th hash query, however, A stops
giving the answers from the tables and comes up with new answers at random, in the same
manner as the first time. Let rj be the answer given to the j-th hash query for j ; i.

Assume now that F again outputs a signature (y, r) on message M', and let X' = F, (y 2).
We know that F had to ask a hash query on (M', X'). If it was the i-th hash query, then
X = X = Xi, so F_(z2 ) = F(y 2 ). Thus, as long as a 4 r, A can factor n by essentially
performing a gcd computation (described in the proof Lemma 1).

PROBABILITY ANALYSIS. First, we need the following lemma.

Lemma 2 Let a1,a2,.. .,a), be real numbers. Let A = _ a,,. Let S = ZA=1 ay 2 . Then

>A2S > A.

Proof Let a = A/A and b. = a - ap. Note that E, b, = Aa - M 1a,=A-A=0.
Then

A 2 A) 2 2 A 2 2 = A 2
Eat,2=[(a-b,)2=A\a2-2a b,+Eb,>Aa2 A

p=1 ,=1 y=1 y=1

'This may slightly increase the running time of F, but we will ignore costs of simple table look-up for
the purposes of this analysis.
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For this analysis, we assume that n is such that F has probability at least E of success.
By assumption, such n is generated with probability at least 6.

First, consider the probability that A's answers to F's queries are distributed as those
of the true oracles that F expects. This is the case unless, for some signature query j, the
hash value of (X, Mj) has already been defined through a previous answer to a hash query

(call this "A's failure to pretend"). Because zj is picked at random from Q, Xj = F (z )

is a random element of Q. The probability of its collision with a value from a hash query in
the same execution of F is at most (qhash + 1)/IQI; thus, the probability (taken over only

the random choices of A) of A's failure to pretend in either of the two runs of F is at most
2 qsig(qhash + 1)/Qj < qsig(qhash + 1)2

We will now calculate the probability of the event that F outputs a valid forgery based
on the same hash query both times, assuming that A does not fail to pretend. Let pj be
the probability that, in one run, F produces a valid forgery based on hash query number

j. Clearly,
qhash+l

E = E pg
j=1

(qhash + 1 because we added an extra hash query to F). Let pj,s (for a sufficiently long
binary string s of length m) be the probability that, in one run, F produces a valid forgery

based on hash query number j given that the string s was used to determine the random

tape of F and the responses to all the queries of F until (and not including) the j-th hash

query. We have that
2 m Pj = Pjs.

sE{O,1}-

Given such a fixed string s, the probability that F produces a valid forgery based on the

hash query number j in both runs is p4 (because the first forgery is now independent of

the second forgery). Thus, the probability qj that F produces a valid forgery based on the

hash query number j in both runs is

qj = 2 = 2~m 2-m (pj2m)2 2

sE{O,1}m sE{O ,1}m

(by Lemma 2).
The probability that F produces a valid forgery based on the same hash query in both

runs (assuming A does not fail to pretend) is now

qhash+l qhash+l 2

j=1 j=1 gj- hash +

(by Lemma 2). The probability that A does not fail to pretend is at least I - qsi,(qash +
)2 so the probability that A will end up with 0, T, z and y such that F,(z) - F,(y2 )

is at least
e2(1 - qsig(qhash + 1 +4

qhash + 1
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Subtract from that the probability that a and r are equal (they are chosen at random)
to get the desired result. U

Theorem 2 If there exists a forger that (t, qsig, qhash, e, 6)-breaks the E scheme with secu-

rity parameters 1 and k, such that - > 2 -k+1 (qhash + 1)/(1 - qsig(qhash + 1) 2-1+3), then there
exists an algorithm that (t', e', 6)-factors integers generated by Gen for

,i ( 2 qhash + 3)(t + qsig71)
e(1 - -y) - 2-k+l(qhash + 1)

= 1 - - > 0.199,
2 e

where T 1 , T 2 and -y are as in Theorem 1.

Proof

MAIN IDEA. The idea is to iterate the A from Theorem 1 sufficiently many times to get a

constant probability of success. More specifically, run F about 1/e times the first time, to

achieve a constant probability of a successful forgery, and about 2 qhash/e times the second
time, to achieve a constant probability of a successful forgery that uses the pair (X, M).

DETAILS. A here works very similar to the A of Theorem 1. We will make exact same
assumptions on F and modifications to it. For the first run, A simply repeats the procedure
if F does not succeed, up to (E (1 - )f 1 times. Every repetition starts entirely anew-with
a new random tape for F and new random answers from A.

Assuming F succeeds, A moves on to the second run. The second run is repeated until
F succeeds in producing a forgery on the i-th query, up to

2 qhash + 2

e(1 - -y) - 2-k (2qhash + 2)

times. Every repetition starts with the same random tape for F and the same answers for

queries up to the i-th query; the answers to the i-th query and beyond are generated anew
at random.

PROBABILITY ANALYSIS. We need the following lemma for this analysis. It is a restatement
in probabilistic terms of the "heavy row lemma," found, in various forms, in [0098], [PS96]
and [FFS88], among others.

Lemma 3 Let E be an event with probability a. Let E1 , ... , EA be disjoint events such that

E'_= Pr[Ey] = 1. Let I, 1 < < A be a random variable with the following distribution:
Pr[6 = p] = Pr[Ey|E]. Then

Pr Pr [EIEg] > ] >-

Informally, this lemma can be stated as follows. Think of E as the event of an experiment
being successful, and each Ey as the event of the experiment having certain preconditions.
The probability of the experiment's success (regardless of preconditions) is a. The lemma
says that if the experiment actually succeeded, then it is quite likely (probability at least
1/2) its preconditions were such that, if repeated with the same preconditions, its probability
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of success is at least a/2. That is, if the experiment succeeded, probably its preconditions
were not too bad.
Proof In two sentences, the proof is simply that the set of preconditions that contribute
only - to the success of E cannot together contribute more than a half of all the successes
of E. Thus, the other half of successes has to come from preconditions which contribute
more than ' to the success of E.

More formally, suppose Pr [Pr [EJE] > 2] < 1. Then Pr [Pr [EEJ <] > 1. Let
S = {pPr[E|E] < 2}, and let Es = \/ges E,. Then Pr[ E S] > j. But also Pr[ E 5] =

Pr[Es|E] = Pr[EsAE] - EyesPr[EAE.] _ EyESPr[EE.]PrE,] <Ees(a/2)Pr[E,] < 1, whichPr[E - a a a - 2
is a contradiction. N

For this analysis, we assume that n is such that F has probability at least E of success.
By assumption, such n is generated with probability at least 3.

For the purposes of this part of the analysis, we will replace A with A' that operates
similarly to A, except for the following. In the first part of the algorithm, it picks a query
number i (1 < i < qhash + 1) at random and a string s at random for the random tape of F
and answers to all its queries, up to the i-th hash query. Starting from the i-th hash query,
it answers queries at random (rather than from the string s). A' considers a run successful
only if the forgery is based on the i-th hash query.

We define "failure to pretend" the same way as in the proof of Theorem 1. The proba-

bility that F succeeds in producing a forgery in a single run based on the i-th hash query if

A' does not fail to pretend is e/(qhash + 1). The probability that A' does not fail to pretend

is at least 1 - -y. Thus, the probability of a successful forgery in a single first run is at least

a = E (1 - 7) /(qhash + 1). If we now repeat the first run a-' times (as long as a > 0), the

probability of a successful forgery is at least

1 - (1 - a)a1 > 1 - 1/e

(where e is the base of the natural logarithm).

Assume that F did produce a successful forgery, based on hash query number i and string

s. Let pi,s be the probability that, if i and s are picked as above, F produces a successful

forgery based on hash query number i and string s. Note that pi,, is exactly the probability

of a successful forgery on a second run. Also note that, by Lemma 3, Prpi,, 2: a/2] > 1/2.
Assume now that indeed pi,, 2 a/2. Subtract from it the probability that 0- and r

are the same (in that case, just like in the proof of Theorem 1, A does not have enough

information to factor). If we now repeat the second run of F (a/2 - 2-k)-1 times (as long
as a/2 > 2-k), the probability that A' will be able to factor n is at least

1 - (1 - (a/2 - 2 -k) (a/2-2-k) > - ie.

Multiplying together the probability of success in the first run, the probability that

Pi,s > 1/2 and the probability of success in the second run, we get that the probability of
success of A' is at least

(1 - l/e)2 > 0.199.
2

Now replace A' with A to obtain a slight decrease in running time (by a factor of about

1.5) without decreasing the probability of success. The difference is that, in the first part of
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the algorithm, A does not try to guess the number i of the query on which F will succeed,
but rather accepts F's success on any query. This increases the success probability of a
single run by a factor of (qhash + 1) and thus decreases the running time of the first part by
the same factor. We only need to show that this does not affect the success probability of
the second part of the algorithm.

The only difference for the second part of the algorithm is in how the query number i
and the string s are determined. We will show that the distribution of the pairs (i, s) is the
same for A as for A'. Intuitively, this is so because nothing changes in the distribution of
(i, s) simply because A' throws away, at random, successful forgeries by F when they don't
agree with its choice of i. Indeed, in the case of A', for a given pair (i, s) the probability
that it will be used in the second part is

Pr[i and s are picked by A' F forges on the query that is picked by A']

Pr[i and s are picked and F forges on query i]
Pr[F forges on the query that is picked by A']

Pr[F forges on query i and s is picked]

(qhash + 1) Pr[F forges on the query that is picked by A']
Pr[F forges on query i and s is picked by A for random tape and answers up to query i]

Pr[F forges]
Pr[i, s come out of the first run of A I F forges],

which is exactly the probability that (i, s) is picked in the case of A. U

The following two statements follow directly from the theorems just proved once we fix
the parameters to be high enough to avoid dealing with small terms.

Corollary 1 If factoring i-bit integers generated by Gen is (t',e',6)-secure, then the E
signature scheme is (t, qsig, qhash, -, J)-secure for

qsig 2-5/(qhash + 1)
t = t'/2 - (qsig + 1)T1 - T 2 /2

= max (2(qhash + 1)e', 2 -k/2+1 /hash + 1)

Proof The corollary is simply the contrapositive of Theorem 1 with some low-order terms
removed.

Note that the value for t follows directly by solving for t the equation for t' in the
statement of Theorem 1. The value for e is computed as follows: solve for e the equation
for E' to get

E= v(qhash + 1)(&'/ 2-k)( - .2)

Observe that we are allowed to increase this e, as this will only weaken the result. Note
that the condition on qsig ensures that 1 - 2-y 2 1/2, so setting e to vl2(qhash + 1)(E' + 2 -k)
will not decrease it. If e' > 2 -k, then e' + 2 -k < 2e', so setting e to /4 (qhash + 1)e' will
not decrease it. Otherwise, we set e to -/2(qhash + 1)( 2 -k + 2 -k). 0

Corollary 2 If factoring i-bit integers generated by Gen is (t', 0.199,6)-secure, then the E
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signature scheme is (t, qsig, qhash, E, 6)-secure for

(t' -T2et = 2) - qSi9T14 qhash + 6

as long as

qsig < 2'- 5 /(qhash + 1)
& > 2- 3 (qhash + 1).

Proof Similarly to Corollary 1, this corollary is simply the contrapositive of Theorem 2
with some low-order terms removed.

Solving for t the equation for t' of Theorem 2, we obtain

(t' - T2)(E(1 - 7) - 2-k+1(qhash + 1)) qsigT.
2 qhash + 3

Conditions on qsig and E ensure that (e(1 - -y) - 2-k+l(qhash + 1) > e/2. Observe that we

are allowed to decrease t, as this will only weaken the result, so we are allowed to replace

E(1 - -y) - 2-k+1(qhash + 1) by E/2.
Note also that Theorem 2 requires that e > 2-k+1(qhash + 1)/(1 - -y), which is also

assured here by the conditions on qsig and e. M
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Chapter 4

The Swap Method

4.1 Motivation

As exemplified by the proof of Theorems 1 and 2 above, all known results for the security of
Fiat-Shamir-like signature schemes involve losing a factor of qhash (in either time or success
probability) in the reduction from a forger to an algorithm that breaks the underlying hard
problem (see, for example, [FS86], [Sch96], [PS96], [Sho96), [0098]). While no proof exists
that the loss of this factor is necessary, the problem seems inherent in the way signature
schemes are constructed from ID schemes, as explained below.

The security of an ID scheme usually relies on the fact that a prover would be unable to
answer two different challenges for the same commitment without knowing the private key.
Therefore, in the proof of security of the corresponding signature scheme, we need to use the
forger to get two signatures on the same commitment, as we did in the proof of Theorems 1
and 2. The forger, however, has any of its ghash queries to pick for the commitment for the
second signature-hence, our loss of the factor of qhash. We want to point out that qhash is
a significant factor, and its loss definitely makes a reduction quite loose. This is because a
reasonable bound on the number of possible hash queries of committed adversaries is about

qhash = 280 (see Section 4.4).
We therefore devise a new method of constructing signature schemes from ID schemes

so that any one signature from the forger is enough to break the underlying hard problem.

4.2 Method

Recall that in Fiat-Shamir-like signature schemes, the signer comes up with the commitment
and then uses H applied to the commitment and the message to produce the challenge. We
propose that instead the signer first come up with the challenge and then use H applied to
the challenge and the message to produce the commitment. In a way, we swap the challenge
and the commitment.

This method applies whenever the signer can compute the response given only the chal-
lenge and the commitment. It does not apply when information used during the generation
of the commitment is necessary to compute the response. For example, it does not apply
to discrete-logarithm-based ID schemes (such as the Schnorr scheme [Sch89]) in which the
prover needs to know the discrete logarithm of the commitment in order to provide the
response.

Additionally, in order to use this method, one needs to get around the problem that
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the commitment is selected from some structured set (such as Q in the case of E), while H
returns a random binary string. This problem can usually be easily solved. The only case
known to us when it seems to present a real obstacle is in the scheme of Ohta and Okamoto

([0088]) in the case when an exponent L is used such that gcd(L, (pi - 1)(p2 - 1)) > 2.
The key-generation algorithm and the private key may need to be modified slightly

in order to provide the signer with the additional information needed to compute the re-
sponse from a random commitment, rather than from a commitment that it generated. The
verification algorithm remains vastly unchanged.

In the next section, we exemplify our proposed method and explain why it results a

tighter security reduction.

4.3 E-swap

4.3.1 Description

The scheme depends on two security parameters: k and 1. Let H : {0, 1} -* {0, 1}I-1 be a
random function.

Key Generation The key generation is the same as in the E scheme, except for one

additional step (step 6) and extra information in the private key:

1. Generate two random primes pi = 3 mod 8 and P2 = 7 mod 8 and n = PiP2 so
that n < 21, n -pi -P2 + 1> 22 + 1 and pi +P2 -1 <21/2+1

2. Generate coefficient c = P2- 1 mod pi for use in the Chinese remainder theorem

3. Compute ui = (f )k+1 mod P-2 for i = 1, 2 (note that ui is such that raising

a square to the power ui modulo pi will compute its 2 k+1 root)

4. Compute si= (-i+ mod pi for i = 1, 2

5. Compute v (Si - s2 )c mod pi and s = s2 + vp2 to get s = 1/42-(k+1) mod n

6. If ui is odd, make it even by setting ui = ui + P 1 for i = 1,2 (note that now

ui is such that raising a square or its negative to the power ui modulo pi will

compute its 2 k+1 root)

7. Output n as the public key and (n, s, u1, u 2 ,pi,p2) as the secret key

Signing

1. Generate a random o and compute t = s' mod n (note that this step can be

done off-line, before the message is known).

2. Compute X = H(a, M). We will assume X E Z* (i.e., (X, n) = 1), because the

probability of X ( Z* is at most 2-1/2+2. If the Jacobi symbol ( ) = -1, set

X = 2X mod n. Now either X or n - X is in Q. Compute z = Fou-'(±X)

via x = Xui mod pi for i = 1,2, v = (X1 - x 2 )c mod pi, x = x 2 + vp 2 and

z = xt mod n.

3. Output (z, 0).

Verifying
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1. Verify that z # 0 (mod n) and compute X = F, (z2) via ti = z2k1 mod n,
t2 = 2' mod n, X = t1 t 2 mod n (this step is the same as for the E scheme).

2. Let X' = H(a, M). If X + tX' (mod n) or X ± i2X' (mod n), accept the
signature (this step differs slightly from the E scheme).

4.3.2 Security of E-swap

Theorem 3 If there exists a forger that (t, qijy, qhash, e, 6)-breaks the E-swap scheme with
security parameters 1 and k, then there exists an algorithm that (t', e', J)-factors integers
generated by Gen for

t' = t + 2 (qsig + qhash + 1)T1 + T2

E = E(1 - y) - (qhash + qsig + 1)2-1/2+2

where T1 is the time required to perform an E-swap signature verification, T2 is the time
required to factor n given the conditions of Lemma 1 (essentially, a gcd computation) and

y = qsig(qhash + 1)2-k (note that -y is close to 0 for a large enough k).

Proof

MAIN IDEA. Familiarity with the proof of Theorem 1 will be helpful for understanding
this proof.

Let F be a forger that (t, qsjg, qhash, e, 6)-breaks E-swap signature scheme. Similarly to
the proof of Theorem 1, we will construct an algorithm that, after interacting with F, will
produce y, z E Z* and a T A {O, 1 }k such that F,(z2 ) = Fr(y 2).

The main idea is to answer each hash query on (a, M) with an X computed via X =

FT(y 2) for a random y C Z* and arbitrary r that is different from a. Then if F forges a
signature (z, a) on M, we will have F, (z2) = F,(y2 ) and will be able to factor n.

DETAILS. Just like in the proof of Theorem 1, we make the assumption that F does not ask
the same hash query twice and modify F to output only correct signatures-in particular,
to ask a hash query on (a, M) before outputting a signature (z, o-) on M.

A here also maintains two tables, for signature query answers and for hash query answers.
To answer the j-th signature query on a message Mj, A picks a random Tr E {0, 1}k and
checks its signature query table to see if a signature query on M has already been asked
and if rj was used in answering it. If so, it returns the answer from the table. If not, it picks
a random y E Q and a random pC {1, -1,2, -2}, computes Xj = F, (y 2)/p mod n, and

checks if Xj < 21-1. If not, it restarts with new random y and p. The expected number

of trials is less than 2, because Xj is a random element in Z* (because F. (yr2) is a random

element in Q and p is also random) and |Z* < n < 2'. Once Xj satisfies the desired
condition, A outputs (y, T) as the signature and records (j, y', Tr, X, M) in its signature

query table.
To answer the i-th hash query on (ri, Mi), A first checks if an entry (j, y , Tr, X, Mj)

such that Ti = rj and Mi = Mj already exists in its signature table. If so, it returns X.
Otherwise, it picks ri # ai, computes yi, pi and Xi in the same way as when answering a
signature query, outputs Xi and adds (i, yi, ri, piXi, Mi) to its hash query table.

Once F outputs a forgery (z, o) on a message M, A computes X = F, (z2) and searches
its hash query table such an i that X = piXi and Mi = M (such an i has to exist for the
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same reasons as in the proof of Theorem 1). In that case, F (z2 ) = X = pi= F (yr),
and - ri because of the way ri was picked, so A can easily factor n by the method given
the proof of Lemma 1

PROBABILITY ANALYSIS. For this analysis, we assume that n is such that F has probability
at least e of success. By assumption, such n is generated with probability at least 6.

Define A's "failure to pretend" as the event that for some signature query j, the hash
value of rj, Mj has been already defined through a previous hash query. The probability of

this event for a given signature query is a most (qhash+1)2-k, because r is picked at random

from {0, I}k. Thus, the probability of A's failure to pretend is at most qig(qhsh + 1)2-k.
If A does not fail to pretend, then A's answers to the queries are distributed just like

those of the real oracles, except that X in the answers to hash and signature queries is
distributed uniformly over Z*nf{0, 1}1-1, thus excluding the multiples of pi and P2 that a real
hash function could possibly hit. Since there are at most P1 +P2 - 1 < 21/2+1 such multiples

in Z, this will reduce the forger's probability of success by at most 2 = 2 -1/2+2 per
query.

So the probability of successfully factoring n is

e' > e(1 - qsig(qhash + 1) 2 -k) - (qhash + qsig + 1)21/2+2.

Theorem 4 If there exists a forger that (t, qsig, qhash, e, 6)-breaks the E-swap scheme with

security parameters I and k, such that e > (qhash+qsig+1)2-/ 2 +2/ (1 - qsig(qhash + 1)2 -k)
then there exists an algorithm that (t', e', 6)-factors integers generated by Gen for

t + 2(qsig + qhash + 1)T1
-y) - (qhash + qsig + 1)2-1/2+2

= (-) >M0.632,

where T and T 2 are as in Theorem 3.

Proof Let
a = e (1 - y) - (qhash + qsig + 1)2-/2+2

By assumption, a > 0. So if we repeat the algorithm constructed in the proof of Theorem 3
up to 1/a times (except for the final gcd computation, which need only be done once), we
will get the desired el, similarly to the proof of Theorem 2. U

Similarly to the E scheme, we have the following two corollaries.

Corollary 3 If factoring i-bit integers generated by Gen is (t',e',6)-secure, then E-swap

signature scheme is (t, qsig, qhashe , 6)-secure, where

qig < min(2k-2I(qhash + 1), e21/2- 4 ~ qhash - 1)

t = t - 2(qsig + qhash + 1)T1 - T2

e = 2e'.
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Proof The condition on qsig ensures that e(1 - -y) - (qhash + qsig + 1)2-1+2) e/2. The
rest follows, similarly to the proof of Corollary 1, from solving the equations of Theorem 3
for t and e. U

Corollary 4 If factoring i-bit integers generated by Gen is (t',0.632, 6)-secure, then the
E-swap signature scheme is (t, qsig, qhash, e, 6)-secure for

qsig < min(2k-2(q 8hash + 1), E21/2-4 - qhash - 1)

t (t' - T2 )E - 2(qsig + ghash + 1)T 1.2

Proof The condition on qsig ensures that -(1 - Y) - (qhash + qsig + 1)2-1+2) > e/2. The
rest follows, similarly to the proof of Corollary 2, from solving the equations of Theorem 4
for t and e. U

4.4 Parameter Choice

The formulas in the Corollaries 1-4 are quite different. Nonetheless, it is immediately clear
that E-swap loses no factor of qhash, neither in time nor in probability. This is a big
advantage for E-swap because qhash can be quite big.

A fuller comparison, provided in the next section, depends on the actual values of the
parameters qsig, qhash, k and 1. Let us deal here, however, with the preliminary problem of
assigning reasonable values to these parameters.

We believe it reasonable to set qsig = 230 and qhash = 280 - 1. This is so because
signature queries have to be answered by the honest signer (who may not be willing or able
to sign more than a billion messages), while hash queries can be computed by the adversary
alone (who may be willing to invest extraordinary resources). Notice that we recommend a
higher value for qhash than suggested in [BR96].

We recommend setting k = 130 for the E scheme and k = 112 for E-swap. For the E
scheme, this is so because, from Corollary 1, we see that 2 -k/2+1 h/qash + 1 has to be small.
Therefore, we need 2 -k/2+41 to be small, and by setting k = 130 we make it less than 10-.
(Notice that, mutatis mutandis we are again more conservative than [BR96].) For E-swap,
this is so because 2 k-2 has to be at least qsig(qhash + 1) = 2110 from Corollaries 3 and 4.

As for 1, notice that both E and E-swap are immediately broken if the adversary succeeds
in factoring the i-bit modulus. Therefore, l ought to be at least 1000. Given the above
choices for the other parameters, such a minimum value for 1 is large enough to make all
the constraints involving I in Corollaries 1-4 satisfied (for any reasonable e in the case of
Corollaries 3 and 4). Thus, the value of I depends on the presumed security of factoring, as
discussed in the next chapter.
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Chapter 5

The Case for Exact Security-Cost

Analysis

5.1 The Costs of Security

The desired level of security is usually dictated by the specific application. It is after settling
on the desired amount of security that choosing among the various secure schemes becomes
crucial. Indeed, when choosing a signature scheme, the goal is to maintain the desired level

of security at the lowest possible cost. In a sense, picking a signature scheme is similar to

shopping for an insurance policy for the desired face value.

The costs of a signature scheme, however, are quite varied. They may include the
sizes of keys and signatures, the efficiencies of generating keys, signing and verifying, the

amounts of code required, and even "external" considerations-such as the availability of

inexpensive implementations or off-the-shelf hardware components. In this paper, we focus

on the efficiencies of signing and verifying. These are particularly important when signing

or verifying is performed by a low-power device, such as a smart card, or when signing or
verifying needs to be performed in bulk quantities, as on a secure server.

It is for these costs, then, that below we compare the E and E-swap schemes. We also
provide a comparison of the E scheme with the PRab scheme from [BR96], arguably the
most practical among those tightly related to factoring. (The reason for choosing PRab
rather than its PSS variant is that the latter is tightly related to RSA, and thus potentially
less secure than factoring.)

5.2 Comparison of E and E-swap

The efficiency of signature verification in E is about the same as in E-swap. The security

of E-swap is generally higher than the security of E for the same security parameters.

Therefore, if the efficiency of verifying is the only significant component in the cost, E-swap

will be able to provide the same amount of security for less cost than E.
A more difficult case to analyze is the case when the efficiency of signing is of main

concern. We will limit our analysis to the case when we are only concerned with the on-line

part of signing. In both cases, this involves mainly a modular exponentiation. Therefore,
a variety of sophisticated algebraic methods can be used here, but these methods apply

equally to E and E-swap. We thus find it simpler to compare the two under "standard"

implementations using the Chinese remainder theorem (CRT). The E scheme then involves
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two exponentiations of a fixed 1/2-bit base to a k-bit power, modulo two 1/2-bit primes.
One modular multiplication of two 1/2-bit numbers takes about 12/4 steps; about 3k such
multiplications are required (1.5k for each of the primes), so the total amount of time
required for on-line signing in the E scheme is about 3kl 2/4. Similar analysis applies for
E-swap, except that about 1.51 multiplications (1.51/2 for each of the two primes) are
required, so the total amount of time required for on-line signing in E-swap is about 3l3/8,
not counting the (relatively small) cost of computing the Jacobi symbol. (In sum, on-line
signing is l/(2k) times faster for E than for E-swap if one used the same value of 1 for both.1 )

Let us now see how the security of the two schemes compares assuming the on-line
signing costs are the same. Let 1E and kE be the security parameters for E, and lES and
kES be the security parameters for E-swap. The on-line signing costs for E and E-swap are
the same if

IES = (2kE E) 1/3 . (5.1)

The best known factoring algorithms take time about

T(l) = Cexp (( 14) 1/3 g/ 3 (1 1)2/3)

for some constant C [LL93]. Therefore, we will assume that factoring i-bit integers generated
by Gen is (C'T(l), 0.199, 6)-secure for some 6 and some constant C'. This means that, for
a large enough e and small enough qsig, the E scheme is about

(C'T (l E) - T2(lEE ,kNE))E -Tl''(C' (W - 2 (E, --) qsigT1 (lE , k E), qsig , qhash, E7,O secure
4 qhash + 6s

and the E-swap scheme is about

((C'T(ES) - T2(ES, kES)e- 2(qsig + ghash + 1)T 1 (lES, kES), qsig, qhash, E, ) -- secure

(by Corollaries 2 and 4).
Keeping the signing costs equal, let us now find out when the E scheme becomes more

secure than E-swap, that is, when

(C'T(lE) - T2(lE, kE))E- qsigTi (1E, kE) >
4 qhash + 6

(C'T(lES) - T2(lES, kES)E _ 2(qsig + ghash + 1)T1(lES, kES)2

Given the discussion of Section 4.4 and Equation (5.1), we will now plug in qsig = 230,
ghash = 280 - 1, kE = 130, kES = 112, and IES = (2kElE)1/3 to the above inequality. These
values allow us to omit the terms in T and T 2 , noting that they decrease the security of
E-swap much more than they decrease the security of E. Thus, we are now interested in

'Moreover, an optimization available to E but not to E-swap is precomputing some powers of the fixed
base; this requires additional memory, so we will assume it is not implemented for the purposes of this
analysis.
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when
C'T (lE ) C/T((2602 )1/3)
282 + 2 2

After taking the natural logarithm of both sides, we are left with the inequality

li / E3(In lE) 2/3 ( )81 + (220/ In 260 In E , (5.2)

which holds as long as long as lE > 6749.
Thus, at lE = 6749, IES = 2280, kE = 130, kES = 112, E and E-swap provide about the

security and the same performance for on-line signing.

In Sum. The signing algorithm of the E scheme is so fast that

Provable security and signing efficiency are the same when E uses 6749-bit moduli
and E-swap 2280-bit moduli.

In both cases, the security is that of factoring a 2280-bit integer generated by Gen. (The
E scheme may actually be even more secure, but we cannot prove it!)

It just so happens that this computed level of security is currently considered adequate
for many applications. (Therefore, for these applications E-swap is preferable: E-swap has
faster verification for the same level of security, as well as shorter keys and, therefore, shorter
signatures.)

However, whenever the application calls for an higher level of security, and the domi-
nant cost is that of signing, then it is the "loose" E scheme that becomes preferable. In
fact, Inequality (5.2) implies that the security gap between E and E-swap, given the same
performance, increases exponentially. In essence, this is so because, in order to guarantee

the same performance, lES is a fixed function of lE: i.e., by Equation (5.1), 1ES = O( 2 3 ).
Thus security for both E and E-swap is measured by Inequality (5.2) in terms of lE, and the

dominant factor in the exponent of the adversary's running time is 11/3 for the E scheme

and 12/ 9 for E-swap.

5.3 Comparison of the E Scheme with Bellare-Rogaway's
PRab

The security of PRab is tightly related to that of modular square roots, rather than factoring.
A factor of 2 in probability is lost (as compared to E-swap) when one relates the security
of PRab to that of factoring. PRab's performance for on-line signing is about the same as
E-swap's (PRab requires a few more Jacobi symbol computations, but no separate modular
multiplication). 2 A vastly similar analysis leads to the following conclusion:

Provable security and signing efficiency are the same when E uses 6619-bit moduli,
and PRab 2251-bit moduli.

Also here this is a "cross-over" point: the gap in security for the same performance increases

exponentially in favor of the E scheme. As we can see, this cross-over point is just slightly

more in favor of E than the cross-over point of E and E-swap. This is because of the factor

of 2 difference in the security of E-swap and PRab.

2Unlike E-swap, however, PRab has no off-line component in signing.
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