
Monotonicity Testing

by

Sofya Raskhodnikova

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts Institute

May 1999

otTechnology 19J9. All rights reserved.

A uthor *
Department of Electrical Engineering and Computer Science

May 24, 1999

Certified by
Michael Sipser

Professor of Mathematics
Thesis Supervisor

A ccepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

M10Ila S USTTS I
OF T

JUL 1 5*

LIBARIES

I

Monotonicity Testing

by

Sofya Raskhodnikova

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

We present improved algorithms for testing monotonicity of functions. Namely, given the
ability to query an unknown function f : E' -+ E, where E and E are finite ordered sets,
the test always accepts a monotone f and rejects f with high probability if it is e-far from
being monotone (i.e., if every monotone function differs from f on more than an E fraction
of the domain). For any E > 0, the query complexity of the test is O((n/c) -log|JE- log|E|).
The previous best known bound was O((n 2 /E) - II2 .

We also present an alternative test for the boolean range E {0, 1} whose query com-
plexity O(n,/E2) is independent of alphabet size (E.

Thesis Supervisor: Michael Sipser
Title: Professor of Mathematics

3

Acknowledgments

I am very grateful to my advisor, Professor Michael Sipser, for indispensable discussions,

advice, patience, and support. This work was done in collaboration with Yevgeniy Dodis,

Oded Goldreich, Eric Lehman, Dana Ron, and Alex Samorodnitsky. I am especially thankful

to Eric Lehman who proposed this problem to me. My sincere gratitude goes to Yevgeniy

and Eric for many fruitful discussions and sleepless nights. I am happy to acknowledge

Michael Krivilevich and Madhu Sudan whose suggestions are incorporated into this thesis.

In particular, Proposition 12 is due to Michael Krivilevich. I cannot find words to thank

Boris enough for his support and help in all aspects of my life.

This work was supported by NSF grant 9503322CCR.

4

Contents

1 Introduction

1.1 Gap Property Testing

1.2 Formulation of Our Problem

1.3 Overview of our Results . . .

1.4 Organization

2 Preliminaries

3 Binary Alphabet and Range

3.1 Shifting Operator Si

3.2 Improved Shifting Operator S.

4 Testing Monotonicity on a Line (the n = 1 case)

4.1 Matching Lemma

4.2 Simple Distribution pi

4.3 Optimal Distribution P2

4.4 Distribution P3 for Boolean Range

5 Dimension Reduction for Boolean

5.1 Sorting Operator

5.2 Dimension Reduction

5.3 Proof of Theorem 3

Functions

6 Testing Monotonicity over General Ranges

6.1 Operators SQUASH, MONO, and CLEAR

5

7

7

8

9

12

13

15

16

18

21

21

22

23

25

27

28

30

32

34

35

. .

. .

. .

. .

.

.

.

.

-. -. .-. - -. -

.

.

.

.

6.2 Range Reduction . 37

6.3 Proof of Theorem 4 . 39

7 Open Problems 40

6

Chapter 1

Introduction

1.1 Gap Property Testing

Gap Property Testing' (cf., [13, 9]) is a general formulation of computational tasks in which

one is to determine whether a given object has a particular property or is "far" from any

object having the property. By "far" we mean that one needs to modify the object at

many places to obtain an object with the property. Thus, we exclude from consideration

input objects which are borderline, that is, which lack the property but are close to others

having it. Allowing arbitrary errors on borderline instances enables us to design much more

efficient tests.

Typically, the goal is to perform gap property testing within complexity smaller than

the size of the object. If a testing algorithm received an object as its input, just reading the

description of the object would take more time then testing. Instead, to avoid that problem,

the algorithm is given oracle (black box) access to a natural encoding of the object as a

function. The complexity of the algorithm is measured in terms of the number of queries

to the oracle.

Since algorithms employed in gap property testing might not have time to read the

entire input, it is natural to allow for errors. Therefore, gap property testers are usually

probabilistic. Thus, a gap property tester has to determine with high probability whether

a function, specified by the oracle, belongs to some class or is "far" from this class.

A primary advantage of gap property testing algorithms is that their complexity can be

'Also referred to as probabilistic property testing, property testing, and spot checking.

7

exponentially smaller than that of exact decision procedures. In applications where some

errors are tolerable gap property testers can save a lot of time. They are also useful as

preprocessors for procedures that require input with particular properties. In addition,

they can be used in program testing to check if the output of the program is close to having

required properties (e.g. a list returned by a sorting program is close to being sorted [6]).

Much work in this area was devoted to testing algebraic properties of functions such as

linearity (e.g., [5, 1, 4, 3]) and low-degree properties (e.g., [5, 7, 13, 12, 2]). Recently, some

attention was given to testing combinatorial properties of functions; first, for functions

representing graphs [9, 10, 11], and more recently for functions per se [6, 8]. A natural

combinatorial property of functions is monotonicity, and in this thesis we focus on testing

monotonicity.

1.2 Formulation of Our Problem

We consider functions with a totally ordered range , which are defined on n-symbol strings

over a totally ordered alphabet E. There is a natural partial order -< defined on the strings

in the domain: XiX2 ... Xn -< Y1Y2 ... Yn if Xi < yj for every i and xi 0 yj for some i, i.e.

x -< y if y can be obtained from x by increasing one or more alphabet symbols.

Definition 1 A function f : E" , = is monotone if f(x) 5 f(y) holds for every x -< y.

That is, a function is monotone if increasing an input symbol does not decrease the output.

The distance of a given function from monotone is measured by the fraction of points in

the domain on which it has to be modified to become monotone.

Definition 2 The relative distance of a function f : E" , E from the set of monotone

functions, denoted eM(f), is the minimum over all monotone g : E n B of

|{X E E" : f(x) $ g(x)}j

A function f is c-far from monotone if EM(f) > e.

Our goal is to find a gap property tester for monotonicity of functions.

8

Definition 3 A probabilistic oracle machine M is said to be a tester of monotonicity if

2
Prob[Mf(e, n, IE, IIE) = 1] ;> for any monotone function f, AND

3
2

Prob[Mf(En, E1, IE) = 0] ;> for f which is E-far from monotone.
3

Monotonicity of functions in the context of gap property testing was first considered by

Goldreich, Goldwasser, Lehman and Ron [8]. Their main result is a tester of monotonicity

for the case E = E = {0, 1} having query and time complexities of the form poly(n)/e.

Specifically, the analysis of the query complexity in [8] yields a bound of O(n 2 /E), where

O() is the same as 0() with suppressed polylogarithmic factors.

The authors also show that Q(n/e) is a lower bound on the query complexity of their

algorithm. For general E and E, the bounds obtained in [8] are proportional to |E12

1.3 Overview of our Results

The main technical contribution of this work is improving both the algorithm and the

analysis in [8] to obtain the following.

Theorem 1 (main result): The monotonicity tester in this work has query complexity

def n - (log JE)- (log JJ
q (n, E, I E 1, JE|) = 0

The tester works by selecting independently q(n, e)/2 pairs of n-symbol strings over E, and

comparing the two f-values obtained for the elements of each pair.2

Thus, the global feature of being monotone or far from it is determined by a sequence of

many independent random local checks. Each local check consists of selecting a pair, (x, y),

so that (without loss of generality) x -< y, according to some fixed distribution and checking

whether f(x) < f(y). If the algorithm ever finds a pair for which this does not hold (i.e.,

local violation of monotonicity), then it rejects. Otherwise, the algorithm accepts. Thus, it

never rejects a monotone function. The challenge is to analyze the dependence of rejection

probability on the distance of the given function from being monotone.

2 Since the algorithm is comparison-based, its complexity depends only on the size of the image of the
function. Thus, one may replace E in the above bound by Ef = {f(x) : x E E'}. In particular, log |fI <
n - log |EJ; so, by Theorem 1, q(n, e) is never worse than O(n 2 . (log ID 2 /).

9

The only thing left unspecified in the above description of the testing algorithm is

the distribution by which the pairs are selected. In case E = {0, 1} there seems to

be a very natural choice: Uniformly select dimension i E {1, ..., n}, independently and

uniformly select zi, ... , z i1 , znE {0, 1}, and set x = zi ... z_ 1Ozi 1 - z, and

y = zi - zi_11zi+1 ... zn. Our improvement over [8] in the case where E = EE {0, 1}

comes from a better (and in fact tight for E = {0, 1}) analysis of this test, which allows us

to obtain the following theorem.

Theorem 2 (E = E = {0, 1}): If (x, y) is drawn according to the distribution specified

above, then

Prob[f (x) > f (y)] ;> 2M
n

In case of non-binary E = {1, ..., d} there seem to be several natural possibilities for

the distribution by which the pairs are chosen: Even if we restrict ourselves (as above) to

select only pairs of strings which differ on a single coordinate i, there is still the question

of how to select the corresponding pair of symbols. We study several natural possibilities

of randomly selecting pairs (k, f) E E x E.

1. Select uniformly a pair (k, k + 1) with k C {1, ... , d - 11.

2. Select uniformly a pair (k, f) with k < f.

3. Select uniformly a pair (k, f) from a particular subset of all pairs of size O(d log d).

A key result of this work is the reduction of the analysis of testing algorithms as above for

any n and E, and for E= {0, 1}, to their behavior in the special case of n = 1 (where we

simply select pairs (k, f) according to one of the above distributions and check the order

between f(k) and f(e)). Using this reduction we derive the following theorem.

Theorem 3 (Monotonicity Testing of Boolean Functions): Efficiently samplable distribu-

tions on pairs (x, y) C E' x E' can be constructed so that for every function f : En -4 {0, 11

the following holds:

1. If (x, y) is drawn according to one distribution (which is determined by the third dis-

tribution on pairs in E2 mentioned above), then

Prob[f (x) > f (y)] = 9 Mf
\n - (log JED)

10

2. If (x, y) is drawn according to the other distribution (which is determined by the second

distribution on pairs in E2 mentioned above), then

Prob[f (x) > f (y)] = Q (M 2

We note that the first part of the theorem can also be derived by applying our reduction

and using an alternative distribution on pairs in E2 which was previously suggested and

analyzed for the case n = 1 in [6].

The reader may be tempted to say that since our algorithm is comparison-based, the

analysis should also hold for non-boolean functions. However, this is not so. For example, by

part (2) above, boolean functions over E may be tested for monotonicity within complexity

independent of |E|. In contrast, a lower bound in [6] asserts that arbitrary functions over E

(e.g., with B = E) cannot be tested for monotonicity within complexity independent of |EJ

but rather require complexity 0(log |E) for some fixed distance parameter c > 0. Thus, a

natural question arises: Under what conditions and at what cost can results regarding testing

of monotonicity of boolean functions be transformed to results for testing monotonicity of

arbitrary functions? Our most general result is the following.

Theorem 4 (Monotonicity Testing - Range Reduction): Consider the task of testing mono-

tonicity of functions defined over any partially ordered set S (with partial order -<s). Sup-

pose that for some distribution on pairs (x, y) E S x S with x -<s y and for every function

f : S -+ {0,1},

Prob[f (x) > f (y)] > EM
C

where C depends on S only. Then, for every B and every function f : S - B, for pairs

selected according to the same distribution,

EM(f)
Prob[f (x) > f (y)] ;> C.og(

C - log2|

Theorem 1 follows by combining part (1) of Theorem 3 and Theorem 4 with C = O(n-

log E|).

11

1.4 Organization

We start with some preliminaries in chapter 2. Chapter 3 analyzes the performance of

our algorithm for functions with binary alphabet E and range E. This chapter is intended

to give a smooth introduction of the techniques generalized in chapter 5 and to explain

additional techniques that we were not able to generalize. Chapter 3 is not required for

understanding the rest of the thesis. The algorithms for the case n = 1 (each corresponding

to a different distribution on pairs in E x E) are presented in chapter 4. In chapter 5 we show

how the analysis of our algorithm in the binary-range case for arbitrary n and E reduces to

the case n = 1 and prove Theorem 3. A general reduction from an arbitrary range to the

binary range and the proof of Theorem 4 appear in chapter 6. Chapters 4 - 6 can be read

independently, even though they reference each other to give a high-level picture. The final

chapter presents related open problems.

12

Chapter 2

Preliminaries

This chapter introduces notation used in the thesis and formally defines our monotonicity

test. As described in the introduction, we consider functions f : E' '-+ , where E and B

are totally ordered sets. We denote the natural partial order on equal-length strings over E

by-<.

For any pair of functions f, g : E" - B, we define the distance between f and g, denoted

dist(f, g), to be the fraction of instance strings in the domain on which f(x) $ g(x). As in

the introduction, we let EM(f) denote the minimum distance between f and any monotone

function g with the same domain and range. Let us formally define the algorithmic schema

studied in this thesis. The schema uses an arbitrary probability distribution p : E x E

[0, 1]. Without loss of generality, we assume that the support of p is restricted to pairs (k, f)

with k < . The function t, referred to below, depends on p.

ALGORITHMIC SCHEMA: Given parameters c, n, E, B, and oracle access to an arbitrary

function f : E"n'->, repeat the following local test up to t(cn, IE1, IE|) times:

1. Uniformly select dimension i E [n] {1, . . . , n}, prefix a E Ei-1, and suffix ,3 E -i.

2. Select (k, t) according to distribution p. Let x = a k /, y = a f 0.

3. If f(x) > f(y) (i.e., the pair (x, y) witnesses that f is not monotone), then reject.

If all iterations were completed without rejecting, then accept.

We focus on the analysis of a single iteration of the above local test. Such an iteration

is fully specified by the distribution, denoted D" : En x En + [0, 1], by which pairs (x, y)

13

are selected. That is, D"(x, y) = plk 4
T if x = a k# andy = a#, for some a,/3, and

Dn"(X, y) = 0 otherwise. Observe that D,"(x, y) > 0 only if x -a y. Let DETECT(f, Dn) be

the probability that a pair (x, y) selected according to Dwitnesses that f is not monotone;

that is,

D ETE CT(f, D'") =Prob(xy~of()>fy] (2.1)

(where the above definition can of course be applied to any distribution D on pairs x -

y). Our goal is to find distributions Dpn (determined by the distributions p) for which

DETECT(f, D,) is "well" lower-bounded as a function of eM(f). If Dp" is such that for any

f : E' - E with cM(f) > E we have that DETECT(f,D") ;> 6(En, IE1, E1), then setting

t(E, n, InI, II) = 8(1/6(c, n, IE1, IE)) yields a tester for monotonicity.

Thus, in the analysis of our distributions D, and corresponding tests, our goal is to

find a good lower bound on DETECT(f, D") in terms of EM(f), or equivalently, a good

upper bound on eM(f) in terms of DETECT(f, D1"). Chapters 3, 5, and 6 present particular

methods for transforming a function f into a monotone function and upper bound EM(f)

by the distance from f to that function.

THE PARTIAL ORDER GRAPH: It will be convenient to view the partial order over En as a

directed (acyclic) graph, denoted Gn. The vertices of Gn are the strings in E' and directed

edges correspond to comparable pairs (i.e. (x, y) is an edge iff x -< y). An edge (x, y) is

said to be violated by f if f(x) > f(y). We denote by VIOL(f) the set of violated edges of

f. We remark that most of the definitions in this section naturally extend to any partially

ordered set S in place of E'.

14

Chapter 3

Binary Alphabet and Range

This chapter covers monotonicity testing results for the special case when the alphabet E

and the range E are binary. This case is interesting in its own right, and we are going to use

it to demonstrate techniques generalized in chapter 5 for treating functions on strings over

general alphabets. For the case of the binary alphabet and range, we were able to obtain

absolutely tight (as opposed to asymptotically tight) analysis of our test. Even though we

were not able to generalize the technique that allowed us to get a tight constant factor in

the analysis, we think the technique can potentially be applied elsewhere.

Consider a subgraph of the partial order graph where each vertex is a point in the

domain (a binary string of length n) and an edge from x to y represents that x -< y and

x differs from y in exactly one coordinate. This graph is an n-dimensional hypercube, and

that is how we are going to refer to it. In this chapter, references to violated edges of

function f are references to violated edges of the corresponding hypercube.

Notice that our local test for this case simplifies to uniformly selecting an edge from the

hypercube and checking if it is violated. As before, the challenge is to analyze the probability

that one iteration of the local test finds a violated edge. As discussed in the preliminaries,

to analyze that probability, we show a particular method of transforming a function f into

a monotone function and upper bound EM(f) by the distance from f to that function. This

method allows us to alter f on at most one point in the domain for each repaired violated

edge. Section 3.1 defines and analyzes the core idea of this method, the shifting operator.

Section 3.2 improves this operator, studies the properties of the new shifting operator, and

applies it to the analysis of our algorithmic schema to prove Theorem 2.

15

3.1 Shifting Operator Si

If a hypercube does not contain violated edges, the corresponding function is monotone.

The main idea of the analysis is to transform a given boolean function to a monotone

function by repairing violated edges in one dimension at a time. To repair violated edges

in dimension i for 1 < i < n, we use the shifting operator Si, defined below, which swaps

values of f on endpoints of violated edges in dimension i and leaves f the same everywhere

else.

Definition 4 Let f : {0, 1}" -+ {0, 11, x E {0, 1}", y be obtained from x by flipping the

i'th bit, and x -< y. Then

S2[f](x) = f(y) = 0 and Sj[f](y) = f(x) =1 if f(x) > f(y),

Si[f](x) = f (x) and Si[f](y) = f (y) otherwise.

For i E [n], we call a function f monotone in dimension i if there are no violated edges in

that dimension. By definition, for each i E [n], Si[f] is monotone in dimension i. Let Vi(f)

denote the number of violated edges of f in dimension i, and V(f), the total number of

violated edges of f. In the next lemma we derive a simple property of the shifting operators.

Lemma 5 For every 1 < i # j 5 n and every function f : {0, 1}"n -+ {0, 1}, applying

the shifting operator Si does not increase the number of violated edges in dimension j, i.e.,

V(SfV]) V,(f).

Proof: The important observation is that the statement of the lemma is concerned

with only two dimensions, i and j. Ignoring edges in all other dimensions, we can view the

hypercube as 2 n-2 disconnected squares. Each of these squares represents a two-dimensional

boolean function, obtained from f by fixing all coordinates other than i and j. To prove the

lemma, it is enough to show that it holds for two-dimensional functions. It will demonstrate

that the shifting operator Si does not increase the number of violated edges in dimension

j in any of the squares, and hence does not increase the total number of violated edges in

dimension j.

We prove the lemma for two-dimensional functions by case analysis. We depict a two-

dimensional function f as shown. A directed edge between f(x) and f(y) indicates that x

and y differ in exactly one coordinate and x -< y.

16

f (01) f (11)

f (00) f (10)

Without loss of generality, let i = 1 and j = 2. Then the shifting operator swaps edges in

the horizontal dimension, and the goal is to prove that the number of violated edges in the

vertical dimension does not increase.

Case 1: f does not have violated edges in the horizontal dimension. Then f = Si[f],

and hence V(Si[f]) = Vj/(f).

Case 2: Both horizontal edges are violated in f. Then the vertical edges are swapped,

and Vj (Si[f]) = V/(f).

1 0 0 1

Si

1 0 0 1

Case 3: The upper edge is violated; the lower one is not. Consider two possibilities:

f (00) = f (10) and f (00) 5 f (10). If f (00) = f (10), then the vertical edges are swapped,

and V (Si[f]) = V (f). If not, then since the lower edge is not violated, f (00) = 0 and

f(10) = 1. In this case, the vertical violated edge is repaired.

1 0 0 1 1 0 0 1

Si Si,

c c c C 0 1 0 1

Case 4: The lower edge is violated; the upper one is not. This case is symmetrical to

Case 3. U

Corollary 6 For every i E [n], applying the shifting operator Si to any function f

{0, 11n '-+ {0, 1} does not increase the number of violated edges in dimensions other than i:

E V(S[f]) < V(f). M
jE[n]\{i} jE[n1\{i}

17

3.2 Improved Shifting Operator Sj

Consider two hypercubes into which the original hypercube is decomposed when all edges

in dimension i are removed. We say that all points with xi = 0 and edges connecting them

form the left sub-cube, and all points with xi = 1 and edges connecting them form the right

cub-cube. Edges in dimension i start at nodes of the left sub-cube and end at nodes of the

right sub-cube. Therefore, applying the shifting operator Si can only change the values of

f in two ways:

1. from one to zero on points in the left sub-cube,

2. from zero to one on points in the right sub-cube.

We know that changes of types (1) and (2) together do not increase the total number

of violated edges in dimensions other than i. Therefore, since changes (1) and (2) affect

only the sub-cube they are made in, either (1) or (2) does not increase the total number of

violated edges in dimensions other than i.

To be more precise, we define left and right shifting operators, Li and Ri, which make

the same changes in f as Si, but restricted to the left and right sub-cubes, respectively.

Then we define a new shifting operator Si, which is equal either to Li or Ri, depending on

the number of violated edges Li[f] and Ri[f] have.

Definition 5

Let Li[f](x)= I (ifx =0, Let Ri]()[f](x)
f (x) otherwise. f(x) otherwise.

Let Li[f] if V(Li[f]) <; V(Ri[f]),

Ri[f] otherwise.

Lemma 7 (Properties of Si) For any i E In], the following properties of the new shifting

operator S hold:

1. S4[f] is monotone in dimension i.

2. Applying the shifting operator Si to any function f does not increase the number of

18

violated edges in the dimensions other than i:

Ei V(S[f]) Z Vj(f).
jE[n]\{i} jE[n)\{i}

Proof:

1. Clearly, both Li and R, repair all violated edges in dimension i: V(Li[f]) = 0 and

Vi(Ri[f]) = 0. Since, by definition, Si is equal to Li or to Ri, it also repairs all violated

edges in dimension i.

2. By previous discussion, either V(Li[f]) 5 V(Si[f]) or V(Ri[f]) 5 V(Si[f]. By defini-

tion, Sj is equal to the operator that forces f to have fewer violated edges.

N

Set Di(f) to be the number of changes from f to Sj[f), namely,

Di(f) = I{, f(x) Sj(x)}|.

Observe, that Di(f) = Vi(f). Thus, we can repair all violated edges of f by changing f on

at most V(f) points, using the following algorithm.

ALGORITHM: Repeat until f is monotone:

1. Pick non-monotone dimension i.

2. Change f to Sj[f].

This proves the following lemma.

Lemma 8 EM(f) f for any f : {0, 1}" + {0, 1}.

Notice that the upper bound above is tight. For each natural number n, we can construct

f : {0, 1}" -+ {, 1} for which EM(f) = V(f)/24. Namely, let f be 1 on all points whose first

coordinate is zero and 0 on all points whose first coordinate is one. Then violated edges of

f are edges of the form (Ox, 1x) for all x E {0, 1}n-1, and hence V(f) = 2n-1. To make f

monotone, we have to change its value on at least one of the two endpoints of each violated

edge. Since all violated edges are disjoint, f has to be changed on at least 2n1 points. In

19

fact, f needs to be changed on exactly 2 -1 points: for example, making f zero everywhere

requires 2n~1 changes. Thus, EM(f) = 1/2 = V(f)/2'.

The main theorem of this chapter is an easy corollary of the previous lemma.

Proof of Theorem 2: Let f : {0, 1} -- {0, 1} and U be the uniform distribution over

the edges of the hypercube. By the previous lemma, V(f) > EM(f) - 2'. Since there are 2'

vertices and n2"-1 edges in an n-dimensional hypercube,

DETECT(f, U) V(f) 2 EM(f)
Dn2-1 n

20

Chapter 4

Testing Monotonicity on a Line

(the n = 1 case)

In this chapter, we design algorithms for the case n = 1, for any E and E. In accordance with

our algorithmic schema, the design of such algorithms amounts to the design of a probability

distribution p : E2 '-+ [0,1] (with support only on pairs (k, t) with k < f). Note that for

n = 1, we have D," = p. As discussed in chapter 2, any lower bound on DETECT(f,p),

implies an upper bound on the number of times t(n, c, IE1, E) that the basic iteration of

the algorithmic schema should be performed. We present three such distributions, denoted

P1, P2, and p3, and provide bounds on DETECT(f,pj), for each j.

4.1 Matching Lemma

The following lemmal, which relates iM(f) to VIOL(f), will be used in our analysis of

various algorithms. Recall that a matching of a graph is a collection of edges that share no

common endpoint.

Lemma 9 For any f : E - B the graph G' = (E,VIOL(f)) has a matching of size EM(f)-

|E|/2.

Proof: Recall that a vertex cover of a graph is a subset of vertices such that every edge

of the graph has at least one of its endpoints in the subset. We claim that a minimum

'While stated for a totally ordered set E, both the result and the proof hold for any partially ordered

set S.

21

vertex cover of G' has size at least eM (f) -IE1. The lemma directly follows as the size of a

maximum matching is at least 1/2 of the size of the minimum vertex cover. Let U C E be

any vertex cover of G'. We next show that by modifying the value of f only on points in

U, we obtain a monotone function, implying that jU| > cM(f) -|E|, as claimed.

Let T = E\U. By definition of U, there are no violated edges between pairs of vertices in

T. Consider the following iterative process, where in each step we modify the value of f on

a single y E U, remove y form U, and add it to T. We maintain the property (which holds

initially) that following each step there are no violated edges between vertices in T. The

process ends when U = 0 and T = E', so that the final function is monotone. To redefine the

value of f on y, we consider the following two subsets of T: Ti = {x E T : (x, y) E VIOL(f)}

and T 2 = {z E T : (y, z) E VIOL(f)). By transitivity of the partial order, and the fact

that there are no violated edges (x, z), for x, z E T, at most one of these subsets is non-

empty. If Ti is non-empty, then we let f (y) = maxxeT I{f (x)}, and if T2 is non-empty, then

f(y) = minzET 2{f(y}. In case both are empty (all violated edges incident to y have an

end-point in U), the value of y may remain unchanged.

We note that the size of the minimum vertex cover actually equals EM(f) -|E. Consider

any set U such that by modifying the value of f only on strings in U we can obtain a

monotone function g. Then U must be a vertex cover of G', as otherwise there remain

violated edges with respect to g. U

4.2 Simple Distribution p1

First we consider a very simple distribution p that only looks at neighboring pairs and show

that it gives a too low probability of detecting a violation of monotonicity.

DISTRIBUTION pi: This distribution is uniform over pairs (k, k + 1). That is,

pi(k, k +1) = 1/(d - 1), for k = 1,..., d- 1.

Proposition 10 For any E and f : E - B, DETECT(fUpi) >2i - CM(f).

The lower bound can be shown to be tight even for B = {O,1} (by considering the

function f defined by f(x) = 1 if x < d/2 and f(x) = 0 otherwise).

22

Proof: If eM(f) > 0, then there exists some k E {1, ... ,d - 1} so that f(k) > f(k + 1).

If there are at least two such k's, then we reject with probability at least 2/(d - 1) >

2eM(f)/(d - 1) as EM(f) < 1. Otherwise, there is a unique k that causes us to reject. In

this case, EM(f) 1/2 since we can change either all f(i) to f(k + 1) for i < k or all

f(i) to f(k) for i > k in order to make f monotone. Thus, we reject with probability

1/(d - 1) > 2eM(f)/(d - 1) in this case as well. U

4.3 Optimal Distribution P2

We see that the above test is too "short-sighted" since it only looks at the neighboring

pairs of vertices. We now design a distribution that spots the violated edges much better.

As noted before, an alternative distribution which meets the same bound was previously

suggested and analyzed in [6].

DISTRIBUTION p2: This distribution is uniform on a set P C E x E which is defined as

follows. The set P consists of pairs (k, f), where 0 < f - k < 2t and 2 t is the largest power

of 2 which divides either k or f. That is, let power 2 (i) E {0, 1..., log 2 i} denote the largest

power of 2 which divides i. Then,

P e {(k, f) E E x E : 0 < t - k < 2 max(power 2 (k),power2 ()) (4.1)

and p 2 (k, e) = 1 for every (k, f) E P, and is 0 otherwise.

I P1

Proposition 11 For any B and f : E E, DETECT(f,p 2) EM(f)

Proof: We first show that |P| = O(dlog d). This can be shown by charging each pair

(k, t) E P to the element divisible by the larger power of 2 (i.e., to k if power 2 (k) > power 2 ()

and to £ otherwise), and noting that the charge incurred on each element i is at most

2- 2 power 2(i). It follows that the total charge is at most XIq 1 2power2(i)+1 = E1092 d d .23+1 _

O(d log d).

Since P2 is uniform over P, the value of DETECT(f, P2) is the ratio between the number

of violated edges of f in P and the size of P. Thus, it remains to show that the former is

Q(EM(f) - d). In the following argument it will be convenient to view the indices 1, ... , d as

vertices of a graph and the pairs (k, i) E P as directed edges. We refer to this graph as Gp,

23

and note that it is a subgraph if G1.

Claim 11.1: For every two vertices k and f in Gp with k < f, there is a directed path of

length at most 2 from k to e in Gp.

Proof of Claim: Let r = [log d~, and consider the binary strings of length r representing

k and f. Let k = (xr-1, .- - , x0) and f = (Yr-1, ... ,yo). Let j be the highest index such

that xz = 0 and y3 = 1. Note that xi = y for j < i < r. We claim that the vertex

S = (xr-i, ... xt 1,1,0,.. .0) is on a path of length 2 from k to f. This follows from the

definition of P, since s is divided by 2j, while both s - k = 2i - Eje1 x2' < 2i and

f - s = E o yj2' < 2-. 0

We now apply Lemma 9 to obtain a matching M of size m 2 (cM(f) - d/2) consisting of

violated edges of f. By the above claim, there is path of length at most 2 in Gp between

every matched pair. Each edge e of Gp belongs to at most 2 such paths: on at most one

path it is the first edge, and on at most one it is the second edge (otherwise, M is not a

matching). Since for every (x, y) E M we have f(x) > f(y) (while x -< y), the length-2 path

between x and y must contain a violated edge. Thus, we obtain at least m/2 > (Em (f) d/4)

violated edges in Gp, and the proposition follows. N

ON THE OPTIMALITY OF DISTRIBUTION p2- We show that the result of Proposition 11 is

optimal (up to a constant factor), even for E = {0, 1}. The following argument is due to

Michael Krivilevich.

Proposition 12 For any distribution p : E x E -+ [0,1], with support only on pairs (k, f)

such that k < f, there exists a non-monotone f : E o {0, 1} so that

2
DETECT(f,p) < 2 CM(f)

log 2 d

Proof: Let p be a distribution on pairs as above. We define

def DETECT(f,p)
p = max

f:E1-o,01} sAt. 1EMWf>o EMUf)

Our aim is to show that p <; 2/log 2 d. The key observation is that for any consecutive

2a indices, p has to assign a probability mass of at least p - a/d to pairs (k, f) where k is

among the lowest a indices and f is among the higher a such indices. This observation is

24

proven as follows. Let L, H be the low and high parts of the interval in question; that is,

L = {s + 1, ..., s + a} and H = {s + a +1,... s + 2s}, for some s E {0,..., d - 2a}. Consider

the function f defined by f (i) = 1 if i E L U {s + 2a +1, ..., d} and f (i) = 0 otherwise. Then

EM(f) = a/d. On the other hand, the only pairs (k, R) with f(k) > f(f) are those satisfying

k E L and f E H. Thus, by definition of p, it must hold that p < Pr(kt)~p[k E L & f E

H]/(a/d), and the observation follows.

The rest of the argument is quite straightforward: Consider log 2 d partitions of the

interval [1, d], so that the ith partition is into consecutive segments of length 2'. For each

segment in the ith partition, probability p assign a probability mass of at least 22lp/d

to pairs where one element is in the low part of the segment and the other element is in

the high part. Since these segments are disjoint and their number is d/2', it follows that

p assigns a probability mass of at least p/2 to pairs among halves of segments in the ith

partition. These pairs are disjoint from pairs considered in the other partitions and so we

conclude that (log2 d) - 8 < 1. The proposition follows. U

4.4 Distribution P3 for Boolean Range

We now describe a distribution that works well for the boolean range.

DISTRIBUTION p3: This distribution is uniform over all pairs (k, f) such that k < R. That

is, p3 (k,) = 2/((d - 1)d) for 1 < k < f < d.

Proposition 13 For any f : E '-4 {0, 1}, DETECT(f,P 3) EM(f) 2/2.

A slightly more careful analysis (which we omit) can extend the bound to CM(f) 2 , which

is tight. For any integer e < d/2, consider the function f(x) = 0 if x E {2, 4, 6.. .2e}

and f(x) = 1 otherwise. Then EM(f) = e/d and IVIOL(f)| = 1 + ... + e ~ e2 /2. Thus,

DETECT(f,p 3) ~~ (e 2 /2)/(d 2 /2) = (e/d)2 = EM(f) 2 _

Proof: Let z be the number of zeroes in f and let 2e be the number of mismatches between

f and its sorted form. Then EM(f) < 2e/d as by swapping the 2e mismatches we make f

monotone. On the other hand, considering the e 1-entries in the z-prefix of f and the e

0-entries in the (d - z)-suffix, we lower bound the rejection probability by e2 /((d - 1)d/2) >

2(e/d)2 . Combining the two, we conclude that DETECT(f,P 3) > 2- (EM(f)/2)2 . U

25

We remark that the restriction to boolean range in Proposition 13 is important. For

any integer e < d/2, define f : E - E by f (2i) = 2i - 1, f (2i - 1) = 2i for i = 1... e, and

f(i) = i for i > 2e. Clearly, eM(f) = e/d, while f has only e violated edges: (2i - 1, 2i),

i = 1 ... e. Thus, DETECT(f,p 3) = e/(d(d - 1)/2) = 2eM(f)/(d - 1), which is much less

than eM(f) 2 if e is large.

26

Chapter 5

Dimension Reduction for Boolean

Functions

In this chapter we extend the analysis of the performance of our test for the case n = 1

(the "line") to boolean functions f : E" - {0, 1}. Without loss of generality, assume

E = {1,... , d}, so |EI = d. Recall that our algorithmic schema is fully specified by a

probability distribution D" : E" x E" - [0, 1] by which pairs (x, y) are selected. This

distribution, in turn, is determined by a probability distribution p on pairs (k, f) E E x E.

The main result of this chapter is Theorem 3 proved in section 5.3. It shows that

our monotonicity test performs well with distributions D" and D,,, induced by previ-

ously analyzed distributions for the line. For both distributions, the theorem lower bounds

DETECT(f, D,") in terms of em (f), ensuring that functions far from monotone can be readily

detected. The proof of this lower bound is facilitated by section 5.1, where the core idea of

the dimension reduction, the sorting operator, is introduced, and section 5.2, where the task

of obtaining a lower bound for functions with domain En is reduced to that of obtaining

such a lower bound for functions with domain E.

Consider a subgraph of the partial order graph where each vertex is a point in the

domain (a string of length n over alphabet E) and an edge from x to y represents that

x 4 y and x differs from y in exactly one coordinate. Nodes of this graph are vertices of

n dimensional hypergrid. For each line along the axes of the hypergrid, there is an edge

between each pair of points on the line. These are the only violated edges that can be

potentially detected by our algorithmic schema. We call this graph an n-dimensional thick

27

hypergrid or, for n = 2, simply a thick grid. In this chapter, references to violated edges of

function f are references to violated edges of the corresponding thick hypergrid.

5.1 Sorting Operator

If a thick hypergrid does not contain violated edges, the corresponding function is monotone.

As in section 3.1, the main idea of the analysis is to transform a given boolean function

to a monotone function by repairing violated edges in one dimension at a time. To repair

violated edges in dimension i for 1 < i < n, we use the sorting operator Si which is a

generalization of the shifting operator discussed in Chapter 3.

Before defining the sorting operator, we generalize the terms used in the analysis of

functions with binary domain and range. For any i E [n], we say that a function f is

monotone in dimension i if there are no violated edges in that dimension, i.e. if for every

a E Ei-1, 3 E E"-, and k, f E E such that k < e, f(a k3) f (a /3). For a set of

indices T C [n], we say that f is monotone in dimensions T, if for every i E T, the function

f is monotone in dimension i. In what follows we describe sorting operators by which any

boolean function over E" can be transformed into a monotone function (as we prove below).

Definition 6 For every i E [n], the function Si[f] : E" + {0, 1} is defined as follows: For

every a E Ei1 and every # E E"-i, we let Si[f](a1/),...,Si[f](ad0) be assigned the

values of f(a1#),..., f(a d), in sorted order.

By definition, for each i E [n], the function Si[f] is monotone in dimension {i}. For every

i E [n] and every pair (k, t) E E2 with k < e, we say that an edge is a (k, e)-edge in ith

dimension if the ith coordinates of its endpoints are k and t (all other coordinates are the

same for both endpoints). Let V,(k,e) (f) denote the number of violated (k, e)-edges of f in

ith dimension. Formally,

Vi,(k,e)(f) = {(x, y) E VIOL(f) (5.1)

3 a E E'- , 3 E E"- s.t. x = a k,3, y = a /#}|.

Thus, 'i,(k,f) V,(k,)(f) is the number of violated edges of f.

28

Lemma 14 For every 1 < i = j 5 n, function f : E" + {0,1}, and 1 < k < f < d,

applying the sorting operator Si does not increase the number of violated (k,e)-edges in

dimension j, i.e.

Vj,(k,1)(SiVfl) 5 V,(k,1)(f)-

Proof: As in the proof of Lemma 5, the important observation is that the statement of

the lemma is concerned with only two dimensions, i and j. Ignoring edges in all other

dimensions, we can view the n-dimensional thick hypergrid as many disconnected two-

dimensional thick grids. Each of these thick grids represents a two-dimensional boolean

function, obtained from f by fixing all coordinates other than i and j. To prove the lemma,

it is enough to show that it holds for all two-dimensional functions. It will demonstrate that

the sorting operator Si does not increase the number of violated (k, f)-edges in dimension j in

any of the thick grids, and hence does not increase the total number of violated (k, f)-edges

in dimension j.

Now we prove the lemma for two-dimensional functions. Without loss of generality, let

i = 1 and j = 2. Then the sorting operator sorts values along the horizontal dimension, and

the goal is to prove that the number of violated vertical (k, e)-edges does not increase. The

picture shows vertical (k, e)-edges and all horizontal edges between their endpoints.

f(k, 1) f (k, 2) f (k, 3) f(k, 4) ... f(k, d)

f(t, 1) f(e, 2) f(t, 3) f(i, 4) ... f(i, d)

The current claim amounts to saying that for any 2 x d zero-one matrix

f (k, 1) f (k, 2) -.. f (k, d)

f (R, 1) f (f, 2) -.-. f (f, d)

sorting the rows of the matrix does not increase the number of unsorted columns.

Let Q be any d-by-2 zero-one matrix, let 01 (respectively, 02) denote the number of ones

in the first (respectively, second) row of Q, and let Q' be the matrix resulting from sorting

the rows of Q. If 01 5 02, then Q' has no unsorted columns and we are done. Otherwise,

Q' has exactly (01 - 02) unsorted columns. But out of 01 columns of Q that have 1 in the

29

first row, at most 02 can be sorted, so Q should have at least (01 - 02) unsorted columns as

well. This proves the lemma. U

Corollary 15 If f is monotone in dimensions T C [n), then Si[f] is monotone in dimen-

sions T U {i}.

Proof: By the previous lemma, applying the sorting operator Si does not increase the

number of violated (k, f)-edges in dimension j for all k < f in [n] and all j in T. Hence, it

does not increase the total number of violated edges in dimensions T. U

5.2 Dimension Reduction

With Lemma 14 at our disposal, we are ready to state and prove that the analysis of the

algorithmic schema (for any n) reduces to its analysis for the special case n = 1. Let

A denote one iteration of the algorithmic schema, p be any distribution on pairs (k, £) E

E x E such that k < e, and D" be the corresponding distribution induced on edges of the

thick hypergrid. The dimension reduction lemma upper bounds EM(f) and lower bounds

DETECT(f, D,") by the corresponding quantities for n = 1.

Lemma 16 (Dimension Reduction for Boolean Functions) Let f : E -+ {0, 1}.

Then there exist functions fj,ap : E {0, 1}, for j E [n], a E {0, 1}3~1 and 3 E {0, 1} ,

so that the following holds (all expectations below are taken uniformly over j G [n], a E

{0, 1}j- 1 and3 E {0, 1}"-3):

1. EM(f) 2n -Ej,,p(cm(fj,,,)).

2. DETECT(f, D") > Ej,a,o(DETECT(fj,cp, p)).

Proof: For j = 1,... ,n + 1, we define fj = Sj._1 -. Si[f] and let fi = f. By Lemma 14,

we have that fn+1 is monotone. It follows that

EM(f) dist(fffn+1) Zdist(fj,fj+1). (5.2)
j=1

Next, for j = 1,... ,n, a E {0, 1}-1 and 3 C {0, 1}"~3, define the function fjao : E

{0, 1}, by fj,cp(x) = fj(a x#), for x E E. Throughout the proof, EZ p refers to summing

30

over all (a, r)'s in Ej-1 x E"~3, and E,p refers to expectation over uniformly distributed

(a, #) E Ei-1 x E" i. We claim that

dist(fj, fj+1) : 2- Ea,o(EM(fj,a,p)). (5.3)

This inequality is proven (below) by observing that fj+1 is obtained from fj by sorting,

separately, the elements in each fja,p. (The factor of 2 is due to the relationship between

the distance of a vector to its sorted form and its distance to monotone.) We have,

d" -dist(fj, fj+1) ZI E E : fj(a x3) 5 fj+1(a x 3)}I
a,/3

{ Z E E : fj,a,fl(x) 5 fj,a,()|

a,3

E2d - EM(fj,a,)
a,p

= 2d" - Ea,3(EM(fja0))1

where the inequality is justified as follows. Consider a vector v E {0, 1}d, and let S(v)

denote its sorted version. Then S(v) = 0 2 1 d-2, where z denotes the number of zeros in v.

Thus, for some e > 0, the vector v has e 1-entries within its z-prefix and e 0-entries in its

(d - z)-suffix. Therefore, the number of locations on which v and S(v) disagree is exactly

2e. On the other hand, consider an arbitrary perfect matching of the e 1-entries in the

prefix and the e 0-entries in the suffix. To make v monotone one must alter at least one

entry in each matched pair; thus, EM(v) e/d.

Combining Eq. (5.2) and (5.3), the first part of the lemma follows:

n n
EM(f) E dist(fj, fj+1) - 2 -Z Ea,p(EM(fpjip)) = 2n - Ej,a,p(eM(fj,a,p)).

j=1 j=1

In order to prove the second part, we use the definition of algorithm A. For any event

E, let X(E) = 1 if E holds and x(E) = 0 otherwise.

DETECT(f, D,")

31

1 n

n _ d- 1 Z Prob(k,f)~ [f (a k,3) > f (a t#)]

j=1 7 ,

n-d"-1 &pkt) -x[f (a k,) > f(at
j=1 a ,,# (k,f)

1

n- d"- 1 . p(k,e)
j=1 (k,f)

E x[f (a k3)
a ,#

1 n

n. d7--1 Z p(k,e) -V,(k,l)(f)
j=1 (k,e)

Using Lemma 14, we have

Vj,(k,f)(S1[VI) j,(k,)(Sj-1'' ... S1f) = Vj,(k,i)(fi)

Unwinding steps (5.4)-(5.7) with fj in place of f and recalling the definition of fj,,#, we

get

DETECT(f, D,) > - 1 n'

j=1 (k,e)

p(k, f) - Vj,(k,t)(fj)

1 n

ni' dn- 1 Z Prob(k,t)~p[fj(a k3)
j=1 C ,

=Ejl,,#(DETECT (fj,a,#,, p)),

and the second part of the lemma follows.

> fj(a L#)]

U

5.3 Proof of Theorem 3

In this section we combine Lemma 16 with the results for the case n = 1 provided in

section 4, and derive Theorem 3 (see section 4 for the definitions of distributions p2 and

P3).

Combining Lemma 16 and Proposition 11 (applied only to 0= {, 1}), we have

DETECT(f, D")) > Ej,e,#(DETECT(fj,a,0, P2))

> Ej,a,#(EM(fj,a,3)/O(log d))
> 2M(f) = Q(fc)

-2n.O(logd) nlod

[By Part 2 of the lemma]

[By the proposition]

[By Part 1 of the lemma]

which establishes the first part of the theorem.

32

> f (a R3)]

(5.4)

(5.5)

(5.6)

(5.7)

Vj,(k,l) (f)

Combining Lemma 16 and Proposition 13, we have

> Ej,a,Q(DETECT(fj,,,, P3))

> Ej,a,,(em(fj,a,#)2/2)

> [Ej,aO(cM (fj,a,#))]2/2

" (EM(f)/2r) 2 /2 = Q(EM(f) 2/ 2)

[By Part 2 of the lemma]

[By the proposition]

[as E(X 2) > [E(X)]2]

[By Part 1 of the lemma]

which establishes the second part of the theorem.

33

DETECT(f, D"))

Chapter 6

Testing Monotonicity over General

Ranges

We now reduce the problem of testing arbitrary-range functions to the simpler problem

of testing boolean-range functions, which was considered in the preceding chapter. This

reduction works not only for functions with domain E", but more generally when the domain

is any partially ordered set S. The reduction is characterized by Theorem 4, which states

that a certain type of monotonicity test for functions of the form f : S - {0, 1} also works

well for functions of the form f : S ' E. Here E is a finite totally ordered set of size r,

which we can regard as the integers in the interval [0, r - 1]. Furthermore, for simplicity,

we assume that r = 2' for some integer s. All references to "edges" are references to edges

of the partial order graph, whose vertices are strings in the domain S and directed edges

correspond to ordered comparable pairs (i.e. (x, y) is an edge iff x -< y).

To ensure that a function far from monotone can be readily detected by our test, we

lower bound DETECT(f, D) in terms of EM(f). Equivalently, we are looking for a good upper

bound on cM (f) in terms of DETECT(f, D). We reduce the task of obtaining an upper bound

for functions with an arbitrary range to that of obtaining such an upper bound for functions

with binary range.

The general idea of the reduction is to incrementally transform a function f into a

monotone function, while ensuring that for each repaired violated edge, the value of the

function is changed at only a few points. This transformation allows us to find a monotone

function close to f and to upper bound EM(f) by the distance from f to that function.

34

The transformation produces the following chain of functions: f 4 fi '-+ f2 '-+ f3, where

f3 is monotone. The distance between any two consecutive functions in the chain is equal

to the distance to monotone of some auxiliary function with a smaller range. Thus we

obtain an upper bound for EM(f) in terms of the distance to monotone of smaller-range

functions. In addition, edges violated by the auxiliary functions are also violated by f, and

DETECT(f, D) can be lower bounded by the corresponding probability for the smaller-range

auxiliary functions. Finally, we obtain an upper bound on EM(f) in terms of DETECT(f, D),

using an analogous bound for binary-range functions and the two bounds described above.

In Section 6.1 we describe and analyze operators SQUASH, MONO, and CLEAR later

used to define functions fi, f2, and f3 described above. In Section 6.2 we prove the range

reduction lemma which upper bounds EM(f) and lower bounds DETECT(f, D) by the cor-

responding quantities for smaller range functions. We conclude this chapter by Section 6.3

where we prove Theorem 4.

6.1 Operators SQUASH, MONO, and CLEAR

We start by defining operators that will be useful for obtaining functions fi, f2, and f3

related to f.

Definition 7 The operators SQUASH, MONO, and CLEAR each map a function f : S -

[0, r - 1] to a related function with the same domain and the same or smaller range. In

particular, MONO[f] is some arbitrary monotone function at distance EM(f) from the func-

tion f. The operators SQUASH and CLEAR are defined below; in these definitions a and b

are elements of [0, r - 1] and a < b.

a if f (x) <a

SQUASH[f, a, b](x) = b if f (x) > b

f (x) otherwise

MONO [SQUASH[f, a, b]]

CLEAR[f, a, b] (x) = if MONO[SQUASH[f, a, b]] (x) $ SQUASH[f, a, b] (x)

f(x) otherwise

35

SQUASH operator simply "squashes" the range of f to [a, b]. Notice that if an edge is

not violated by f, it is not violated by SQUASH[f, a, b].

Claim 17 VIOL(SQUASH[f, a, b]) C VIOL(f), i.e. SQUASH does not introduce any new vio-

lated edges. U

CLEAR operator first "squashes" the range to [a, b], then alters the resulting smaller-range

function at some points to obtain the closest monotone function, and finally "unsquashes"

the function at unaltered points to the original values. This leads to the following simple

claim:

Claim 18 dist(f, CLEAR[f, a, b]) = EM (SQUASH[f, a, b]).

Proof: By definitions of the CLEAR and MONO operators:

dist(f, CLEAR[f, a, b]) = dist(MONO[SQUASH[f, a, b]], SQUASH[f, a, b])

= EM(SQUASH[f, a, b]).

U

Define the interval of a violated edge (x, y) with respect to function f to be the interval

[f (y), f (x)] (since the edge is violated by f, f (x) > f (y)). We say that two intervals cross if

they intersect in more than one point. Intuitively, if we consider f (x) - f (y) as a measure of

how violated an edge (x, y) is, then we can say that CLEAR[f, a, b] partially repairs violated

edges of f whose intervals cross [a, b] without worsening other violated edges. The following

lemma formalizes important properties of CLEAR.

Lemma 19 The function CLEAR[f, a, b] has the following properties for all f : S '-+ [0, r- 1]

and all a, b E [0, r - 1] such that a < b:

1. VIOL(CLEAR[f, a, b]) g VIOL(f), i.e. CLEAR does not introduce any new violated

edges.

2. CLEAR[f,a,b] has no violated edges whose intervals cross [a,b].

3. The interval of a violated edge with respect to CLEAR[f, a, b] is contained in the interval

of this edge with respect to f.

36

Proof: For brevity, define g = MONO[SQUASH[f, a, b]] and h = CLEAR[f, a, b]. Let (x, y)

be an edge violated by h; that is, h(x) > h(y). By its definition, g is monotone and takes

values in [a, b]. Also notice that h(x) = f (x) if h(x) ([a, b], and h(x) = g(x) if h(x) E [a, b].

We consider four cases where each of h(x) and h(y) is either inside or outside the interval

[a, b].

" Case 1: h(x), h(y) E [a, b]. This case cannot occur: (x, y) cannot be violated by h

because h(x) = g(x), h(y) = g(y) and g is monotone.

" Case 2: h(x), h(y) V [a, b]. Since f and h agree on both x and y, it follows that (x, y)

is violated by f and [h(y), h(x)] = [f (y), f (x)]. This proves parts (1) and (3). To show

that [h(y), h(x)] does not cross [a, b], it remains to prove that the case when h(x) > b

and h(y) < a cannot happen. But in such a case we must have g(x) = b and g(y) = a

and that contradicts the monotonicity of g.

" Case 3: h(x) V [a, b], h(y) E [a, b]. Since (x, y) is violated, h(x) > b. Consequently,

f(x) = h(x) > b and, thus, g(x) = b. Since g is monotone, g(y) > g(x) = b, and

hence h(y) = g(y) = b. This proves that [h(y), h(x)] intersects [a, b] in at most one

point (b), establishing part 2. If f(y) = h(y) = b, then f and h agree on both x and

y, and parts (1) and (3) follow. If not, then b = g(y) 5 SQUASH[f, a, b](y). Thus,

SQUASH[f, a, b](y) < b, and hence f(y) < b = h(y). Since f (x) = h(x) > b, parts (1)

and (3) follow.

" Case 4: h(x) E [a, b], h(y) V [a, b]. This case is symmetrical to Case 3.

E

6.2 Range Reduction

We are now ready to define functions in the chain f -+ fi -+ f2 '-+ f3, as well as auxiliary

smaller-range functions f', f2, and f3. These functions and their properties are summarized

in the following lemma.

The transition from f to fi transforms violated edges with one endpoint in the lower

half of the range and the other endpoint in the upper half into edges with both endpoints

in the same half of the range. After that we repair violated edges with both endpoints in

the lower half of the range to obtain f2 and then, upper half of the range to obtain f3.

37

Lemma 20 (Range Reduction) Define six functions in terms of f : S '-+ [0, r - 1] as

follows.

= SQUASH[f, - 1,) fi = CLEAR[f, - 1,)

f = SQUASH[fi, 0, - 1] f2 = CLEAR[fi, 0, - 1]

f2 = SQUASH[f 2 , Er - 1 f3 = CLEAR[f 2, , r - 1]

These functions have the following properties, for every probability distribution D.

1. DETECT(f, D) DETECT(f', D)

2. DETECT(f, D) DETECT(f', D) + DETECT(f2, D)

3. Em(f) C(f ') + Em (f') + em (f2)

Proof: All references to "parts" are references to parts of Lemma 19.

(1) The SQUASH operator never adds new violated edges by Claim 17. Therefore, VIOL(f') C

VIOL(f), and the claim follows.

(2) We show that VIOL(f') and VIOL(f2) are disjoint subsets of VIOL(f), and the claim

follows. First, note that VIOL(f() and VIOL(f2) are subsets of VIOL(f), because ff and f2

are constructed from f using a sequence of CLEAR and SQUASH operators, which never add

new violated edges by Claim 17 and part (1).

All that remains is to prove that VIOL(f') and VIOL(f2) are disjoint. By part (2), there

is no edge violated by fi whose interval crosses [! - 1, f]. Therefore, the edges violated by

fi are partitioned into two disjoint subsets: "low" edges with intervals contained in [0, j -1]

and "high" edges with intervals contained in [L, r - 1]. The edges violated by f{ are a subset

of the low edges, because the SQUASH operation repairs all the high violated edges and adds

no new violated edges by Claim 17. The edges violated by f2 are a subset of the high edges,

because the CLEAR operation used to form f2 repairs all the low violated edges by parts (2)

and (3), and no new violated edges are added by Claim 17 and part (1).

(3) First, we show that f3 is monotone. Since the function f3 is constructed from f using a

sequence of three CLEAR operations, parts (2) and (3) imply that there is no edge violated

by f3 whose interval crosses any of the intervals [E - 1, L], [0, L - 1], or [L, r - 1]. Therefore,

f3 violates no edges at all and is monotone.

Now the distance from f to the set of monotone functions is at most the distance from

38

f to the particular monotone function f3, and we can reason as follows:

EM(f) dist(f,f 3)

< dist(f, fi) + dist(fi, f2) + dist(f 2, f3)

= EM(f) + EM(fi) + EM(f2)-

The last step uses Claim 18. U

6.3 Proof of Theorem 4

In this section we use the results of the preceding lemma to prove Theorem 4. The proof

is by induction on s with the inductive hypothesis that for every function f : S - where

|EJ = 28,

EM(f) C - DETECT(f, D) s.

In the base case where s = 1, the hypothesis holds by the assumption stated in the

theorem. Now assume that the hypothesis holds for s - 1 to prove that it holds for s. We

can reason as follows:

EM(f) EM(f) + CM(fi) + EM(f 2)

* C-DETECT(f'7D)

+ C - DETECT(fj, D) - (s - 1) + C - DETECT(f2, D) - (s -)

* C - (DETECT(f, D) + DETECT(f, D)(s - 1))

SC- DETECT(f, D) - s

The first inequality was proved in part (3) of Lemma 20. The second inequality uses

the induction hypothesis; recall that the range of f' has size 21, and the ranges of f' and

f2 have size r/2 = 2'-1. The third step uses parts (1) and (2) of Lemma 20, and the final

step is simplification. This completes the proof.

39

Chapter 7

Open Problems

There are two problems in testing monotonicity of functions that we were not able to

resolve so far. The first one is designing a gap tester for monotonicity whose complexity is

independent of the size of the range (or proving that one does not exist). The second one

is designing testers for monotonicity of functions defined on any partially ordered set.

It would also be interesting to see gap property testers for other properties and gap

property testing itself applied in various areas of computer science.

40

Bibliography

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and

intractability of approximation problems. JA CM, 45(3):501-555, 1998.

[2] S. Arora and S. Sudan. Improved low degree testing and its applications. In Proceedings

of STOC97, pages 485-495, 1997.

[3] M. Bellare, D. Coppersmith, J. Hi'stad, M. Kiwi, and M. Sudan. Linearity testing in

characteristic two. In Proceedings of FOCS95, pages 432-441, 1995.

[4] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable

proofs and applications to approximation. In Proceedings of STOC93, pages 294-304,

1993.

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to

numerical problems. JA CM, 47:549-595, 1993.

[6] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.

In Proceedings of STOC98, pages 259-268, 1998.

[7] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. In Proceedings of

STOC91, pages 32-42, 1991.

[8] 0. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing monotonicity. In

Proceedings of FOCS98, 1998.

[9] 0. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learn-

ing and approximation. JACM, 45(4):653-750, 1998. An extended abstract appeared

in the proceedings of FOCS96.

41

[10] 0. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings

of STOC97, pages 406-415, 1997.

[11] 0. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. In

Proceedings of STOC98, pages 289-298, 1998. To appear in Combinatorica, 1999.

[12] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In Proceedings of STOC97,

pages 475-484, 1997.

[13] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

42

