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ABSTRACT

GPS systems operated on aircraft can easily be subjected to jamming by ground-
based sources. To make matter worse, high-gain jamming signals often interact with the

airframe itself creating a near-field multi-path environment. Techniques of space-time

adaptive array processing are essentially the key in nulling of wide-band jammers while

preserving an acceptable capability for discerning differential delay among the GPS

signals. Experimental data are available for characterizing and investigating the effects
of multi-path. Various space-time adaptive array algorithms are evaluated for their
performances in face of these complications.
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1 Introduction

The Global Positioning System has become increasingly important as more

aircraft and ground vehicles start to rely on the GPS satellite signals to navigate. There is

no doubt that the GPS is creating many positive impacts on our everyday life as we enter

the 2 1"t century. Along with all the astounding aspects, yet, the GPS is not perfect. The

GPS signal from the satellites is a very weak signal in power, thus it is easily subjected to

jamming, either intentionally or unintentionally. As a result, this is a weakness of the

GPS, especially for critical missions such as operations of GPS-dependent military

aircraft. The good news is that the GPS signal is not totally ruined but recoverable,

provided that a much more complicated anti-jamming system is available. The degrees

of complexity of various anti-jamming algorithms depend on the number and types of

parameters involved.

In this study, the problem is concerned with adaptive array processing for nulling

wide-band jamming signals in GPS systems. Of particular interest is the case in which

both a direct-path jammer as well as its near-field multi-path scatterers are all present at

the array antenna mounted on an aircraft. An experiment has been conducted at Lincoln

Laboratory that provides the real data for analysis of this multi-path problem. The multi-

path characteristics are obtained from the real data and ultimately, will provide a better

and more accurate simulation of the jamming signals. The simulated data are then used

for testing several space-time adaptive array algorithms. The performance of these

algorithms will be evaluated through simulations. Theoretical analysis will also be

performed to obtain a better insight of the algorithm so that additional improvement can

be made.
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In this paper, the first section provides the readers with some background

knowledge about the GPS, especially about the GPS signal characteristics. This section

also includes a description of the jamming sources and signals. The significant

similarities and differences between the GPS signals and the jamming signals are pointed

out since these qualities are related to our ability to null out the jammers. The following

chapter describes the actual experiment that has been conducted at an antenna test site to

collect the data for later analysis. The objective is to show how the data have been

obtained and what pre-processing should be done with the real data. A major portion of

the thesis is devoted to such pre-processing, namely equalization on the real data due to

channel mismatch in the receiver system. A model for the channel mismatch is proposed.

Then, a method for digitally equalizing the channel is developed and evaluated for

various parameters. After presenting the simulated results, the focus is shifted to the

equalization of the real data. A discussion of the quality of equalization on the real data

will be given. The next chapter is one of the most important chapters: forming

covariance matrices out of the equalized inphase-quadrature data for each elevation angle

and azimuth and plotting their eigenvalues. This chapter will present some of the plots

and discuss their relationship to the multi-path effects. From the covariance matrices, it

is possible to generate simulated signals being received in a particular jamming

environment with multi-path effects. A discussion is devoted to showing how this is

carried out. The last and most important chapter is concerned with the Space-Time

Adaptive Array Algorithms for nulling wide-band jamming signals in aircraft GPS

systems. The mathematics will be presented. Further analysis and interpretations of

results will all be done in this final chapter.
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2 Signal & Jammer Characteristics

2.1 GPS Signal Spectrum

The signal of concern is the signal being transmitted from the satellites of the

Global Positioning System. In this section, the spectrum of the GPS signal will be briefly

described.

The GPS signal is made up of two components: a primary signal at a center

carrier frequency of 1575.42 MHz (L1), and a secondary signal at a center carrier

frequency of 1227.6 MHz (L2). The modulating signal at both Li and L2 is the 50 bps

binary data multiplied by either a 1.023 MHz or a 10.23 MHz pseudo-random sequence

of ±1. Accordingly, the power spectrum at each carrier frequency looks like a sinc2 (X)

function with a main-lobe width of either 2.046 MHz or 20.46 MHz. [1]

2.046 MHz

sin x

1227.6 MHz 1575.42 MIz f [Hz]

(L2) (L1)
4-20.46 MHz* 4-20.46 MHz*

Figure 2.1: Power Spectral Density of GPS Signals

2.2 GPS Signal Power

As regards to the signal strength, the GPS signal is rather weak. The thermal

white noise power substantially exceeds the signal power. For instance, a typical value

for the noise power density is about -205 dBW/Hz. In contrast, the GPS signal power

spectral density is only about -220 dBW/Hz for the 1.023 MHz code, and about -233
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dBW/Hz for the 10.23 MHz code. [1] Thus, in normal operations, a single GPS signal is

not even visible on a spectrum analyzer. For that reason, it is necessary to perform a

correlation operation in order to extract the GPS data. This is possible since the pseudo-

random sequence is assumed to be known and can be used as a reference signal for

correlating with the received signal.

2.3 Spread Spectrum Signaling

The whole process of correlating the received signal with a known reference

signal to extract the original binary data is feasible through spreading and de-spreading

the spectrum. The concept of spread spectrum signaling is provided here to clarify the

significance of the 10.23 MHz pseudo-random sequence. A block diagram showing the

essential steps is given below.

s(t) ~d cos(w0 t) n(t) Synchroniz
clock

d(t) Modulator s + Demodulator BPF d(t)+n"(t)

s'(t)+n(t) s(t)d(t)+n'(t) s2(t)d(t)+s(t)n'(t)

Transmitter Channel Receiver

Figure 2.2: Spread Spectrum Block Diagram

On the transmitter side of the diagram, d(t) is the binary signal of ±1 with a clock

rate of 50 Hz. It is given as the following:

+_~ ~ Sin "
d(t) = ID, -p(t - W-) <-> Sf (2.1)

-d
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where D, is the binary data sequence of ±1. p(t) is a rectangular pulse of duration -
fd

wherefd is the 50 Hz clock frequency of this signal d(t). This 50 bps signal has a rather

narrow sinc square spectrum Sd as shown below.

Sd(ff

f[Hz]
-fd fd

Figure 2.3: Spectrum of the Binary Data

s(t) is the spread signal with a wider bandwidth whose significance is to "spread"

the spectrum of d(t). Its expression is similar to (2.1):

(221sin f
s(t) = Sn -p(t - c Ss,(f )= -(2.2)

Here, S, is the binary pseudo-random sequence of ±1. The associated clock

frequency is much higher atfe of 10.23 MHz. Thus, its spectrum is still a sinc square but

has a much broader bandwidth.

C f [Hz]

Figure 2.4: Spectrum of the 10.23 MHz Pseudo-random Signal

The resulting product of d(t)s(t), if being multiplied synchronously, will have a

power density spectrum that is similar to the spectrum of s(t). The modulator then shifts

the spectrum to a higher carrier frequency of 1575.42 MHz for the L1 band or 1227.6
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MHz for the L2 band. In the diagram, Pd is the power of the carrier signal. Thermal

noise and receiver noise of flat spectrum are being modeled as white-noise n(t) and is

added to the signal. At the receiver side, the demodulator will appropriately band-pass

the signal and bring it back down to the base band. In time domain, the corresponding

signal is back to d(t)s(t) plus some band-limited white noise n(t). An identical s(t) is then

synchronously multiplied with d(t)s(t)+n(t). The result is s2(t)d(t)+s(t)n(t). Since s(t) is

a ±1 signal, its square is simply 1. Also, s(t)n(t) is still the same statistical noise n(t).

Consequently, the final output is d(t)+n(t). The binary data signal d(t) is retrieved along

with some noise n(t).

The timing in multiplying s(t) with d(t)s(t)+n(t) is very crucial. By sliding s(t)

back and forth and integrating over one period of d(t), the correlation peak will occur

when s(t) is perfectly aligned with the s(t) component in d(t)s(t)+n(t). In a GPS receiver,

there are typically four or more channels available to retrieve the data from four GPS

satellites. The four correlation operations will provide the relative peak times or relative

delays among the channels. Essentially, correlating the received signals with their

corresponding spread signal s(t) is the key in precision differential delay measurements.

To show how much noise power being reduced in the final discrete sequence of

data, let's suppose that the signal d(t)s(t)+n(t) is sampled at the Nyquist rate of

2-10.23MHz = 20.46 MHz. The correlation will be done in discrete method as shown

below.

Let y[n] be the sampled sequence of d(t)s(t)+n(t) and s[n] be the samples of s(t).

Also, assume that the integration duration is one period of d(t) which is 1/50 second.

This corresponds to summing N samples where N is (1/50) second x 20.46 million

11



samples / second = 0.4 million samples. The retrieved data sequence D'n is then defined

as follows:

D 1 (n+1)N

Dn =- y[m] -Sim]
N m=nN

(n+1)N

=- f (s[m]d[m]+n[m])-s[m]
N m=n-N

1 (n+1)N

= Dn +-- 1:(n[m]) (2.3)
N m=n-N

From (2.3), the expectation of the retrieved sequence D', is seen to be the same as

the original data sequence D. The variance of each sample is the original noise power

scaled down by N. This is because the average of N identically distributed uncorrelated

random variables has a variance that is 1/N of the variance of one of the random

variables. In this case, although the signal d(t)s(t) is about 30 dBW below thermal noise

level, the sequence D, can certainly be recovered with noise being reduced by

10-log(0.4e6) = 56 dB. Thus, there is still a 26 dB signal to noise ratio.

2.4 Jamming Signal Characteristics

The trouble begins when there is one or more additional signal sources in the

environment that emulate the GPS signal characteristics with an intent to jam the GPS

signal. These so-called jammers are designed to have the same carrier frequency and

bandwidth as that of the GPS. In addition, the power of those jammers is naturally

expected to be much larger, at least by many orders of magnitude. Consequently, regular

GPS receiver systems will fail to operate in such a hostile environment.

If the GPS signal were to be recovered in the presence of jammers, it would

certainly require additional signal processing. Techniques of adaptive antenna array
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processing are the keys to solving the proposed problem. Various types of general

adaptive array processing algorithms can be found in the literature. Each approach is

usually intended for a specific jamming problem, often involving trade-off between

different measures of performance. As more parameters are added to the model of the

problem, many general existing algorithms will no longer work effectively. New clever

techniques will need to be developed and tested to deal with those special circumstances.

In this project, the problem is concerned with not only nulling one or several direct-path

wide-band jammers but also their reflected multi-path replicas from the aircraft body.

The multi-path characteristics cannot be easily estimated because we are not certain about

what fraction of the jamming signals are reflected and from which parts of the plane.

Thus, in order to accurately evaluate the performance of the space-time adaptive array

algorithms in the presence of multi-path, it is necessary to carry out a real experiment to

study the multi-path effects. These will essentially be determined by the space-time

covariance matrices being formed out of the real data as will be described in a later

section. Based on the covariance matrices, data will be generated to simulate signals

received in a jamming environment with multi-path effects. Then, an adaptive array

algorithm that exploits both temporal and spatial degrees of freedom will be implemented

and tested on the simulated data. A thorough analysis will be done to study the problem

and possible solutions.
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3 Data Collection

This section describes the essential aspects of the experiment that has been

conducted to acquire the data for this study of the multi-path problem. The carrier

frequencies being transmitted are actual GPS frequencies at 1575.42 MHz (LI) and

1227.6 MHz (L2). The modulating signals are pseudo random sequences of 10 Mhz

broad-band spectrum. Thus, the transmitting signals have the exact frequencies and

spectrum as the actual GPS signals. In addition, these supposedly jamming signals have

a much higher power, namely about 40 to 50 dB above the thermal noise power.

However, the duration of the transmission is relatively short, lasting about 1 ms for each

data set, such that the transmitted signal would not actually jam out those real GPS

systems in the area during the data collection.

The transmitter is located about a mile away from the receiver. At the receiver

end, the main set up can be described as follows: a seven-element antenna is placed on

top of an F-16 fighter plane. A similar setup is done for the F-15 plane. The receiver and

other equipment are secured inside the plane. The plane is mounted on a revolving

pedestal on top of a tower. The plane can be tilted up or down at different elevation or

depression angles. At any elevation, it can also be rotated around 360 degrees. Thus, it

is possible to position the plane such that the jamming signal is effectively coming from

any desired direction with respect to the plane. This allows investigation of the multi-

path effects for various directions of arrival of the jamming signals. Data for the

following depression angles have been collected: 0, 5, 10, 15, 20, 22, 24, 26, 28, and 30

degrees for each carrier frequency. At each depression angle, the plane is rotated 360

14



degrees where data is collected at every quarter of a degree. The transmitter alternates

the signal between right-hand circular polarization and left-hand circular polarization.

Due to the channel mismatch in the entire receiver system, the gain and phase are

different from one channel to another. Moreover, the analog low-pass filters for the

channels are not identical. These imperfections result in the necessity for obtaining

calibration signals and performing channel equalization when processing the data. The

next section will show how to generate the equalization filters based on the calibration

data so that the effect of channel mismatch can be eliminated from the actual signals.

The procedure for taking the calibration data is as follows: every few degrees in azimuth,

the switches are toggled such that all channels receive the same calibration signal from a

single horn mounted at a fixed location in the open space near the pedestal. If the

receiver system was ideal, then the data from different channels would be identical.

Since the data are not identical, their variations from channel to channel allow the

construction of equalization filters which can be applied to the actual data received from

the antenna.

The signal path and the calibration path are illustrated in the following figure:

-7 dBB +30 dB -10 dB -- A dB -- 5 dB -- 10 dB

/Horn 4-way Pe-Amp 8-way Attenuator Cable 8-way ClbIAntenna Splitter Splitter & Other Splitter -WJ dB -or

p Q Losses Wi Signal

Attenuator

Antenna
Gain

Figure 3.1: Attenuation Paths
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Note that the attenuation settings denoted by A and WJ are different for each

depression angle cut. These settings were selected to maximize the signal-to-noise ratio

since the effective antenna gain is smaller at a deeper depression. Consequently, plotting

the signal power for each depression angle reveals the antenna pattern for that cut,

however, getting the absolute power level would require some computation based on the

attenuation settings.

The signals are low-passed to 10 MHz before being sampled at 25.6 MHz. The

data collected at each azimuth/depression angle pair consists of 8 by 4096 samples of

twos-complement 12 bit integers, which are later converted to 16 bit integers. Since there

are only 7 antenna elements, the row of data which corresponds to the terminated channel

is removed. The remaining rows of data are sorted in the order of the antenna element

numbers.
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4 Inphase-Quadrature Conversion

The receiver band-passes the spectrum at the Li or L2 radio frequency to a 10

MHz band-width. The spectrum is then shifted down to an intermediate frequency of 6.4

MHz before being sampled at 25.6 MHz. Since the discrete real data are still at the

intermediate frequency, it is necessary to convert the data down to the base-band in the

form of inphase and quadrature components. Equalization and space-time signal

processing are later performed on the inphase-quadrature data rather than directly on the

original real data. The following figure illustrates the steps in the IQ conversion.

i.f.=6.4 MHz

12.8 M

x[n]

-18
-12.8 MHz

-12.8 MHz

Down-sample y[n]

2

12.8 MHz

-M
~.8 M1-z

1 t
12.8 Mllz

LPF

-. 5r nSi

i1
12.8 Mlhz

Figure 4.1: Inphase Quadrature Conversion
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The received data are real, thus its spectrum is perfectly symmetric around 0. It

also looks symmetric around 0.5n - the if. frequency. The data are first multiplied by a

sequence of 1, -j, -1, j, etc. Equivalently, the spectrum is shifted left by 1[/2. A low-pass

filter with a cut-off frequency of i/2 is applied so that only one side of the original

spectrum remains, centered at zero frequency. Although the shape looks symmetric, the

spectrum may no longer be perfectly symmetric and thus, the data become complex. The

complex data can also be down-sampled by 2 to maintain its original data rate without

any aliasing.

By taking advantage of low-passing followed by down-sampling, reduction in

computation can be significantly achieved through polyphase implementation. In a direct

implementation following the block diagram as shown above, low-passing would require

M complex multiplication's with the complex data, where M is the length of the low-pass,

to generate one sample after the low-passing stage. Equivalently, it takes 2M real

multiplication's since the data is a complex sequence after being multiplied with eI(")n

while the low-pass is real. Then, in the down-sampling stage, every other sample is

thrown away. This means for each final output sample, it requires a total of 4M real

multiplication's plus the associated number of additions.

A more clever scheme that combines all three stages can reduce the number of

real multiplication's to M per final output sample. First, consider splitting the data stream

into its real and imaginary sequences and combine them later. This is possible since the

low-pass is real.

18



x[n]

Figure 4.2: Real/Imaginary Data Stream in IQ Conversion

Note that the real part of x[n]-e~j"2 " is simply [x[O],O,-x[2],0,x[4],O,-x[6],0.

and the imaginary part is simply {0,-x[]],O,x[3J,0,-x[5],0,x[7] ... }. In both data

streams, every other sample is 0, which will be useful when data streams are split further

into 2 sequences of even and odd indices.

Polyphase implementation of the low-passing and down-sampling stages can be

illustrated in the following figure:

d[n]

- 2 d jihe[n]

z ddnJ+ d'[n]

12 ho[n] P

Figure 4.3: Polyphase Implementation of Low-passing and Down-sampling

Instead of passing d[n] through a low-pass filter h[n] and then throwing away

every other sample, d[n] can be split into 2 sequences: one consisting of the even-index

samples of d[n] and the other consisting of the odd-index samples of d[n]. The even

19



sequence is convolved with the similarly-defined even-index samples of h[n]. The odd

sequence djn] is convolved with the odd sequence h[n]. Combining the two by

addition results in the equivalent output.

Now, applying the polyphase implementation back in Figure 4.3 and recognizing

that the odd sequence of the real part of x[nJ-eJ*2" and the even sequence of the

imaginary part of x[nJ -e1(A12)n are both zero sequences, a simplified IQ implementation is

derived.

-> 2 -xe[n] X he[n]

x[n]-

Z 2 xJn] X h,[n] x

Figure 4.4: A Simplified IQ Implementation

Note that for each output sample of y[n], it requires only a total of M

multiplication's with the odd and even samples of the low-pass filter since h,[n] and h[n]

each has a length of M/2 samples.

The next page shows two typical plots of the actual data spectrum before and after

being converted to the inphase-quadrature format.
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~30

7925

-1*pl to 1p

Figure 4.5: A Typical Power Density Spectrum of the Real Data

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1*pi to 1*pi

Figure 4.6: A Typical Power Density Spectrum of the Complex Data
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5 Channel Equalization

An important characteristic of adaptive array processing is the capability of

making use of the phase differences among the received signals from various antenna

elements. Ideally, any differences in phase or amplitude between two received signals

from two antenna elements are expected to attribute to the antenna array arrangement as

well as the arrival direction of the signal. However, in an actual receiver system, the

channels are not perfectly identical, thus additional mismatch in the received signals is

introduced. Such misalignment due to an imperfect receiver must be compensated so that

the differences in the received signals can truly be exploited as a result of the antenna

arrangement.

In the following sections, the system channel mismatch is carefully modeled. A

method for digitally equalizing the channels is also given. Next, the equalization method

is tested on simulated data and the results are presented. The last section in this chapter

discusses the performance of equalization on the actual data and its implications to space-

time adaptive processing.

5.1 Modeling Channel Mismatch

In a GPS multi-channel receiver, each channel has an analog low-pass filter for

limiting the bandwidth of the signals to 10 MHz before the conversion to digital data.

Since the low-pass filters are analog circuits, there exist variations from one low-pass to

another. In addition, the gain and phase are different from one channel to another. The

objective is to account for those variations by introducing the discrete equalizer as shown

below.
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Figure 5.1: Channel Mismatch and The Discrete Equalizer

The block diagram in Figure 5.1 shows that each channel has its own gain and

phase. These parameters are fairly constant and can all be accounted for in the equalizer.

The two low-pass filters are each made up of an identical low-pass ho plus some

unknown variation ni which is different for each channel. As a result, yi(t) is different

from y2 (t) and so are yi[n] and y2[n], besides the fact that they have different gain and

phase. The purpose of the equalizer is to calibrate the two channels so that the two output

signal zz[n] and z2[n] will have less discrepancy than the two equalizer inputs. These two

signal zi[n] and z2[n] should be as similar as possible since the inputs to the system are

tied to the same calibration signal x(t).

5.2 Computing Equalization Filter

The criteria for generating the equalizer is based on minimizing the mean-square-

error of the output signals.

Let the length of the filter W be (2d+1) and the length of the two sample

sequences yi[n] and y2[n] be N. The MSE solution for W is found to be of the following:
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W = (R- r, (5.1)

where the (2d+ 1)x(2d+1) Hermitian matrix RY2Y2 is defined as:

E2[n] -y* [n] E7 2 [n] - y*[n -1]} -- E72[n]- y*[n - 2d]}

R -E [n -1]- y*[n] Ey 2[n -1]- y*[n -1]} --- E 2[n -1] y*[n - 2d]1

Ey2[n-2d]-y*[n]} Ey 2[n-2d] -y[n-1]} --- E2[n-2d] -y*[n-2d ]}

(5.2)

with E denoting the expected value of the enclosed quantity. The (2d+1)x1 vector ry,,, is

likewise defined as:

Y2[n] E72[n]- y*[n - d]} 1
Y2 [n-1] . E2n]~ y*[n -(d -1)](5

rY, = E . -(y* [n - d]) =.(5.3)

_ 72[n-2d], E2[n]-*[n+d]l _

In computing the estimated RY2 2 and rY2Y 1, the data sequence is assumed to be

ergodic so that the expectation of a quantity is simply its time average. For example,

E7 2 [n]1[n - ]}l IY2[n] - *[n - m] (5.4)

As shown in the diagram, yi[n] is simply delayed by d samples since W is a d-

sample delayed non-causal FIR filter. Once the equalizer has been computed, the system

can be used to receive an actual incoming signal, which is different at each antenna

element. The previously computed equalizer can then be applied to the receiver's output

signals to compensate for the channel mismatch.

The same equalizer can be used for another signal received at a later time only if

the variations among the channels remain within an acceptable threshold. In practice,

those errors in the receiver drift over time especially as the system's temperature changes.
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Thus, the system is set in calibration mode frequently to acquire the calibration data so

that the equalizer can be updated.

5.3 Evaluating Equalization Method

The first test is concerned with determining the necessary number of taps for the

equalization filter in order to achieve a near optimal performance for a given number of

taps in the low-pass filter. The simulation set-up is shown in the Figure 5.2. The input

signal is a zero-mean Gaussian random sequence. It is band-limited before being fed to

two low-pass filters, both of which are made up of the same low-pass but are perturbed

by different error sources. The scale factor can be set to simulate the severity of the

mismatch in the low-passes. Then, there is the option of equalizing the original real

signals or converting the data to IQ prior to equalization. The differences between the

two options will be discussed later. The two signals xj and x2 are equalized for a range of

taps. The equalization performance is evaluated by computing the residual power before

and after the equalization process. The residual power indicates the normalized error

power between two signals si and s2 and is defined as follows:

'/ 1 N j;

RPslts2 =10'log1 to~ s _S -=810 g N [dB] (5.5)
Ei~~~si )Si )_ ,
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Figure 5.2: Residual Power Before and After Equalization

Several parameters can be set for various cases. First is the scaling factor for the

low-pass noise. This parameter affects the absolute residual power of the signals before

and after the equalization process. It however does not affect the relative improvement at

a particular number of taps for the low-pass and for the equalizer. Thus, in all examples

shown on the following pages, the scale is picked at 0.01. This number sets the residual

power of the signals before equalization to be about -20 dB. In the first two plots, the

real signals are considered. When the low-pass has 31 taps, the residual power of the

output signals does not improve much until the number of taps for the equalizer gets

beyond 31 taps. Similarly as in the second plot, when 51 taps are used for the low-pass,

more than 51 taps are required to observe a significant improvement. The same

parameters are used in the next two simulations, except that the signals are converted to

inphase-quadrature form before being equalized with a complex equalizer. By using

complex taps on the complex signals, an equivalent performance can be achieved with

only half the number of taps used in the case of real signals. In all cases, once the

number of equalization taps exceeds the "fall-off' point, only a very slow rate of
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improvement can be achieved for any additional taps. Thus, in equalizing the actual data,

this optimal number of equalization taps is determined to optimize the computation. As

mentioned earlier, the actual data are all converted to inphase-quadrature form for

equalization and processing. The advantage is most obvious when only a few taps is

used. Considering the case in which only one complex equalization tap is allowed: one

complex equalization tap is sufficient to adjust the gain and phase of the signal. In the

case of real signals, two real taps may not accomplish the same task with a similar

resulting residual power.
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Figure 5.3: Example 1 of Residual Power as a Function of Filter Length

length of s=1 000, length of hOh1,h2=51, scale=0.01
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Figure 5.4: Example 2 of Residual Power as a Function of Filter Length
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length of s=1000, length of hO,h1,h2=31, scale=0.01, complex equalizer
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Figure 5.5: Example 3 of Residual Power as a Function of Filter Length

length of s=1 000, length of hO,h1,h2=51, scale=0.01, complex equalizer
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Figure 5.6: Example 4 of Residual Power as a Function of Filter Length
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Picking the optimal number of taps for the equalization filter is important in

achieving a result near the theoretical limit but without sacrificing unnecessary

computation. Thus, the optimal length for the equalization filter is always used for all

cases in this next simulation. The simulation is now concerned with how signal-to-noise

ratios might limit the final residual power for several practical scenarios.

The following three figures describe the set-up for evaluating the equalization

performance as various SNR's are considered.

Zero-mean
Gaussian Scale h,

Figure 5.7: Simulation of Low-pass Filters with Varied Pass-band Ripples
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Figure 5.8: Simulation of Calibration Signals and Residual Signal
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Figure 5.9: Simulation of Received

BPF------> IQ ----s--

+ d

BPF --- > I
Ys2

Computing Residual Signal

Signals and Residual Signal

In Figure 5.7, the two low-pass filters h, and h2 are generated by adding

independent zero-mean Gaussian error to one common low-pass. The scale factor

determines how different the two low-pass filters are. To measure the degree of

mismatch, h2 is equalized to hi and the residual power is computed for these post-

equalized low-pass filters.
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In Figure 5.8, ci and c2 are the two calibration signals of signal-to-noise ratio

SNRe. These two signals are low-passed by hi and h2, and thus the two received

calibration signals xci and xc2 have a degraded quality due to the unequal hi and h2. The

second block in the same figure uses an equalization filter w such that after the

equalization, the two channels will have a minimal residual power. As shown in the

figure, the two received signals are first band-pass filtered and then converted to inphase-

quadrature form. The equalization block processes these two complex signals and

produces a filter w for equalizing the second channel to the first channel data. The

difference of the signals de can then be computed as a measurement for how well the two

channels can be equalized.

Figure 5.9 shows the simulation of the "actual" signals which have a different

signal-to-noise ratio but are low-passed by the same hi and h2. The two received signals

are band-passed and converted to IQ as in the calibration case. The two complex signals

are then equalized using the equalization filter generated earlier. This is what being done

in the actual experiment: the signals at different elements of the antenna array are not

supposed to be identical and thus, only the equalization filter generated from the

calibration signals are used to undo the effects caused by the unequal low-passes. Here,

because the simulated signals si and s2 come from one single source, the residual power

of the signals after being processed and equalized is an indication of how well the

equalization filter performs on the "actual" signals.

By setting the scale factor in the first figure and signal-to-noise ratios for the two

types of simulated signals, various cases can be simulated and observed.
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Case 1 Case 2 Case 3 Case 4 Case 5

Low-pass noise scale 0.0001 0.01 0.01 0.01 0.01

SNR of calibration signals 50 dB 50 dB 40 dB 80 dB 45 dB

SNR of actual signals 60 dB 60 dB 60 dB 60 dB 50 dB

Residual power of the -70 dB -35 dB -35 dB -35 dB -35 dB
equalized low-passes

Residual power of calibration -47 dB -24 dB -21 dB -23 dB -22 dB
signals before equalization

Residual power of calibration -47 dB -47 dB -37 dB -74 dB -42 dB
signals after equalization

Residual power of actual -57 dB -24 dB -24 dB -24 dB -23 dB
signals before equalization

Residual power of actual -57 dB -47 dB -44 dB -49 -45 dB
signals after equalization - dB

Table 5.1: Equalization Performance for Different SNR's

Case 1 is trivial: if the variation between the two low-passes is small such that the

filters can practically be considered identical, then equalization is not necessary. The

residual power before equalization is already optimal and is the same as after

equalization. The next few cases are more interesting and practical where the mismatch

in the low-pass does cause a problem. Case 2 shows that the calibration signals have a

SNR of 50 dB. Before equalization, the signals have a residual power of only -24 dB, but

after equalization, the residual power is down to -47 dB, which is 3 dB from its

theoretical limit. When the equalization filter generated from the calibration signals is

used to equalize the actual signals of 60 dB SNR, a similar improvement can be seen but

the residual power is not down to -57 dB. Thus, the residual power is limited not only by

the SNR of the signals to be equalized but also by the SNR of the calibration signals.

However, the limitation is not strictly the negative SNR of the calibration signals. As
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shown in Case 3 where there is a bigger difference in the SNR's, the actual signals can be

equalized down to -44 dB, although the calibration signals have only 40 dB of SNR. It

can be proven that the limit is really 2 times the negative SNR of the calibration signals,

but in practice, the result is far from this limit. Case 4 is about how much the residual

power can be improved if the SNR of the calibration signals is much greater than that of

the signals. Certainly, the residual power gets better, but not a lot better. The equalizer

computed from the calibration signals of a finite SNR is never a perfect equalizer. Thus,

the residual power of the signals in Case 4 after being equalized is only as low as -49 dB

and not -57 dB. The first four cases illustrate how the performance is affected by varying

certain parameters. In Case 5, more practical SNR's are used and the results are just what

is expected based on the given SNR's.

5.4 Equalization Performance on the Collected Data

In this section, the general results of equalization on the F-16 data are presented.

The table below shows the residual power in dB of a typical calibration data set after

being equalized with 31 complex taps. Note that each of the 7 rows corresponds to each

of the 7 possible channels to be used as the reference channel.
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If only one complex tap is used in the equalizer for adjusting the gain and phase

of the calibration signals, the resulting residual power would correspond to the residual

power of the signals before compensating for any mismatch in the low-pass filters. The

next table shows a typical result for a 1-tap equalizer.

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

Reference Ch. 1 -0 -29 -26 -24 -22 -30 -27

Reference Ch. 2 -29 -00 -25 -25 -19 -28 -24

Reference Ch. 3 -26 -25 -00 -32 -20 -25 -23

Reference Ch. 4 -24 -25 -32 -o -18 -23 -22

Reference Ch. 5 -22 -20 -20 -18 -00 -22 -26

Reference Ch. 6 -30 -28 -25 -23 -22 -00 -28

Reference Ch. 7 -27 -24 -23 -22 -27 -28 -c

Table 5.3: Typical Residual Power of Collected Data with Single Tap in Equalizer

Subtracting one table from the other results in a measure of how much the

equalization has compensated for the channel mismatch. The typical values are in the

range of -10 to -20 dB of improvement. By repeating the computations with different

numbers of taps, it is found that the residual power approaches the optimal values when

the number of taps in the equalizer is about 15 to 20 taps. In Table 5.2, the near-optimal

residual power implies that the calibration signals have a SNR of about 40 dB. This SNR

is less than desired for the space-time signal processing, but that is the best one could

achieve given real-world limitations on the GPS transmission power.

35



6 Multi-path Characterization

After the data have been converted to inphase-quadrature and equalized, space-

time covariance matrices are formed for each elevation and azimuth angle. Essentially,

these matrices are sufficient to characterize the effects of multi-path if one assumes that

the signals are zero-mean Gaussian samples whose auto-correlation or cross-correlation

functions have a finite duration. The relative magnitudes of the eigenvalues for each

covariance matrix indicate how uncorrelated the signals have become due to the multi-

path scattering. Thus, plotting their eigenvalues reveals the severity of the multi-path

phenomenon for any arrival angle of the jamming signal. This chapter elaborates on

forming the covariance matrices and their implications to multi-path. The next chapter

will provide a discussion on how simulated data can be generated based on these

covariance matrices for a single jamming signal as well as multiple jamming sources.

6.1 Space-Time Covariance Matrices

For each data set which corresponds to one direction of arrival of the jamming

signal, a space-only correlation matrix of the antenna elements can be computed as

follows:

kR -X [n] -z-[n] (6.1)
Q n=1

where iz [n] is a 7x] column vector representing the 7-channel received signal at time n

in the inphase-quadrature equivalence.
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To get the space-time correlation matrix for L taps, the similar definition is used:

R_ [n] -Z, [n] (6.2)

where WL [n] is arranged from the original data sequence z, [n] as given below:

zg[n]

i,. [n-i -1
ZyL[n] a[n (6.3)

L4,[-n -L +1]'

6.2 Eigenvalues and Eigenvectors of Covariance Matrices

Since all the matrices are Hermitian, they can equivalently be expressed in terms

of their eigenvalues ei's and eigenvectors vi's as shown.

TL

RL =Xe -v -vi (6.4)

Consider the spatial-only covariance matrix: if the signals are completely

correlated with one another, the matrix will have a rank of one. Consequently, there will

be one large eigenvalue equivalent to the signal power. The remaining eigenvalues will

be small with magnitudes equivalent to the noise power. In a multi-path environment, the

received signals are likely to be de-correlated due to the multi-path scatterers.

Correspondingly, some of the small eigenvalues will increase in magnitude. The more

uncorrelated the signals become, the bigger these eigenvalues get. At the other extreme,

where the signals are completely uncorrelated, the matrix will have full rank and the

eigenvalues will all have comparable magnitudes.
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For each space-time covariance matrix where L >1, the matrix can be partitioned

into LxL blocks with each block being a 7x7 correlation matrix. The general form is as

follows:

R6,L

R(0)
8,1

1 )H8,1

R (L-1)H
S6,1

R(1) (2) ...

Q(0) R(1) ..
i,1 j,1

Q(1)H R(0) ..

(L-2)H R(L-3)H
8,1 8,1

k(L-1)
8,1

(L-2)
8,1

iL-3)
19,1

QR(0 )6,1

The diagonal matrices are simply the spatial-only correlation matrices, which ai

same as R,. The small number in parenthesis denotes the number of samples

data set is being time-shifted relative to itself in forming the space-time matrix.

Specifically, it can be defined as:

(6.5)

e the

that the

-- .ig,[n]-i" [n-k ](6.6)

The off-diagonal matrices R with k > 0 provides the correlation among the signals not

only from one antenna element to another but also at k samples apart.

For a wide-band source with no multi-path scattering, the auto-correlation and

cross-correlation functions of the signals are simply a very narrow pulse. In other words,

the data samples are practically uncorrelated from one sample to any next sample.

Therefore, the off-diagonal matrices in the big space-time covariance matrix are all zero

matrices. Each of the diagonal matrices, as mentioned earlier, has a rank of at least one;

more if the signals are spatially decorrelated. Thus, the space-time covariance matrix has

a rank of at least L. The signals can become spatially decorrelated when the multi-path
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scattering is very severe or multiple jamming sources are present. In this case, the rank

of the space-time covariance matrix will be more than L.

Decomposing the matrices into eigenvalues and eigenvectors reveals that the

number of big eigenvalues for an L-tap space-time covariance matrix is typically L. The

next two pages show some plots of the eigenvalues in dB for all azimuth angles. The

plots are from one-tap, 3-tap, and 5-tap covariance matrices of the F- 16 data at a

depression angle of 10 degrees. Note that the top curve also corresponds to the power of

the signal as a function of azimuth.

It was estimated from the results of equalization that the SNR is as low as 35 dB.

Therefore, it is reasonable to say that those eigenvalues 35 dB or more below the peak

power are due to noise. The small eigenvalues above this cut-off are attributed to the

multi-path scattering. As mentioned earlier, for each depression angle, the attenuation

settings have been picked so that the peak power is as high as possible but without

saturating the A/D. Thus, all the peak power from different depression angles before

being scaled to its absolute level are about the same. As a general rule, all eigenvalues

having magnitudes less than 30 dB can be set to 0 (-o> dB) when reforming the

covariance matrix from the eigenvalues and eigenvectors.
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Plot of eigenvalues for F16L1DNIOA - RS 1 taps
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Figure 6.1: Plot of Eigenvalues - 1 tap

Plot of eigenvalues for F16L1DN10A - RS 3 taps
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Figure 6.2: Plot of Eigenvalues - 3 taps
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Plot of eigenvalues for F16L1DN10A - RS 5 tape
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Figure 6.3: Plot of Eigenvalues - 5 taps
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7 Simulating Jamming Signals

With all the space-time covariance matrices available, it is now possible to

simulate jamming signals that have the same space-time correlation as specified by the

matrices. The basic procedure involves the factorization of the Hermitian covariance

matrix. For example, to simulate a jamming signal coming from a particular azimuth and

depression, the corresponding matrix R is first selected for the desired number of taps

L. It can then be factored into B and B" as follows:

B-BH R (7.1)

The size of B is 7Lx7L which is the same as R . The matrix B is next multiplied

by a matrix M of independent zero-mean unit-variance Gaussian samples. A new matrix

is obtained as follows:

Y =B-M (7.2)

where M has a size of 7Lx(N/L) with N being the desired length of the final data

sequence. The matrix Y will, of course, have a size of 7Lx(N/L). If the correlation

matrix of the newly generated data Y is computed, it will be the following:

RY =Y-YH

= (B -M).-(B- M)H

= B -(M . M H). BH

(B -B H

= N, (7.3)
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The result is the same as the original covariance matrix which is the

characterization wanted in the generated data. Note that in the derivation, (M -M H ) =I,

the identity matrix, since M is composed of independent Gaussian samples.

For L > 1, Y is rearranged to become the simulated data X as a 7xN matrix. The

process is simply the reversal of that being described in Equation 6.2. It can be shown as

follows:

X = [Y.7._:7(,1> - Y 8 :14 ,l) Y(1:7 ,1) Y(7L-6:7L,2) - - (8 :14 ,2 ) Y1:7,2) -'-] (7.4)

To obtain the factor B as required in Equation 7.1, the matrix N, is first

decomposed into the following:

V -D-VH =R- (7.5)

where the columns of V are the eigenvectors of N, and the diagonal elements of the

diagonal matrix D are the corresponding eigenvalues. Equation 7.5 is really the matrix

form of what being introduced in Equation 6.3. It is important to note that the matrix V is

an orthonormal matrix. An orthonormal matrix is a square matrix that has the property of

VH-V = V-VH = I, the identity matrix. Although the eigenvectors are all complex, the

eigenvalues are all real. These essential properties of V and D enable finding a simple

expression of B in terms of V and D themselves.

Next, let's define D such that .1D H = D. The expression for 1D is

simply the square roots of the diagonal elements of D. That is,

0 --- 0

0 .i -- 0
D= .2 . .(7.6)

0 0 ---

43



where the Ai's are the eigenvalues on the diagonal of D. Note that because the Xi's are

real, lu is equal to -[DH

Now, RN can be rewritten in another form as follows:

Rd =V-D-VH

=V. (5 -ID H VH

=V -iD-VH -ViDH .V H

= -.D -V H). - D-.VH

(same as 7.5)

(using D - ,rDH =D)

(using H -V =I )

(by regrouping terms) (7.7)

Matching the expression in (7.7) with the expression in (7.1) reveals B to be:

B =V - D-V H (7.8)

The above analysis shows how to generate data having a pre-specified correlation

matrix R. . As a reminder, R is computed from the complex experimental data. In

practice, the desired correlation matrix is really a modified version of R.. The reason for

not using R. is that this matrix includes not only the multi-path characteristics but also

the effects of noise from the experimental data. In order to simulate a noise-free jamming

signal, 1. will have to be modified. Looking at Figure 6.1, 6.2, and 6.3, it is observed

that the small eigenvalues near the bottom are due to noise and the top ones are due to the

multi-path effects. As discussed in the end of the previous chapter, a good rule of thumb

based on the estimated SNR would be keeping only the eigenvalues above the 30 to 35

dB cut-off. The remaining eigenvalues are set to zero. In Equation 6.3, it is shown how a
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Hermitian covariance matrix can be expressed in terms of its eigenvalues and

eigenvectors. Here, the modified covariance matrix is formed in the same manner except

that some of the lowest eigenvalues are set to zeros. The modified matrix is simply the

following:

K

where [1,..,K} is the selected non-zero set of eigenvalues of descending magnitudes.

In matrix form, Rd is:

Rd =V -D -P -V H (7.10)

where P is a diagonal matrix with the first K diagonal elements being I's and the

remaining diagonal elements being O's.

With the additional term of P, it can still be shown similarly as in (7.7) that the

resulting B resembles (7.8) but includes P. Namely, the actual B being used is:

B =V - D -P VH (7.11)

The basic ideas have been presented for generating simulated jammers that

correspond to a particular angle of arrival using the covariance matrices from the

experimental data. The generated data X is then scaled appropriately according to the

chosen parameters such as the power of the jammer source and the distance between the

jammer and the receiver. Depending on the azimuth and depression of the simulated

jammer, the power of the data is also scaled by the antenna gain which is a function of

arrival angles. The antenna gain, with the antenna located on top of the aircraft, can be

computed from the experimental data. This information is incorporated for every

simulated jamming signal. As expected, the gains are much smaller at angles where the
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jamming signals can be blocked by the wings or the tails. In general, the gain is smaller

at a deeper depression angle. The next chapter will present the details for computing the

gain along with some plots of the results. To further simulate an environment of multiple

jammers, data obtained from different individual jammers are simply summed together to

form the data for this more interesting scenario. The procedure is considered appropriate

if one assumes that the jammers are practically uncorrelated with one another.
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8 Computing Antenna Gain

Computing the actual antenna gain is based on the same Figure 3.1, which is

shown here again.

::d: -7d dB +30 dB -10 dB - -A dB I- -5 dB -- 10 dB Clb

/Horn 4-way Pe-Amp 8-way Attenuator Cable 8-way ClbIAntenna Splitter Splitter & Other Splitter -WJ dB -or

p Losses Signal

7,W
Q 0 0 Attenuator

Antenna
Gain

Figure 8.1: Attenuation Paths

The calibration power is:

Pe = P0 +9-7+30 -10 - A -5-10 -WJ+X

=P -A+7-WJ+X [dB] (8.1)

Likewise, the signal power is:

P, =JPO +G-WJ+X [dB] (8.2)

where P0 is the same power for both the calibration and the signal; X is the constant

conversion factor from the analog signal power to the discrete signal power. Solving for

the antenna gain G results in the following expression:

G=(P,-P,)-A+7 [dB] (8.3)

The average antenna gain (average of 7 elements) is plotted on the next two pages for the

F-16 and F-15 data, at both Li and L2 frequencies.
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Antenna Gain for F-16, Li
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Figure 8.2: Antenna Gain for F-16, L1

Antenna Gain for F-16, L2

200
Azimuth

Figure 8.3: Antenna Gain for F-16, L2
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Antenna Gain for F-15, Li

200
Azimuth

Figure 8.4: Antenna Gain for F-15, L1

Antenna Gain for F-15, L2

0 50 100 150 200 250 300 350
Azimuth

Figure 8.5: Antenna Gain for F-15, L2
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9 Space-Time Adaptive Beamforming'

9.1 Overview

A near-field multi-path scatterer can be modeled as a scaled and delayed version

of the direct-path jammer, but with a different direction of arrival. Due to the delay, the

direct-path jammer and its single multi-path reflection are only partially correlated. As a

result, the covariance matrix for this simple case will have a rank of two. If more multi-

path scatterers are present, the rank of the covariance matrix will increase by the number

of additional scatterers. A conventional spatial beamformer might not have enough

degrees of freedom to deal with excessive multi-path scatterers. The spatial beamformer

allows only one complex weight per channel, thus the only freedom is to adjust the gain

and phase of each channel. For the simple case of no multi-path scattering, the signals

from different antenna elements are identical except for the gain and phase. A single

complex weight per channel is then sufficient for nulling the jamming signals while

preserving the desired GPS signal from a different direction. However, when multiple

delayed and attenuated replicas of the jammer show up from various directions in

addition to the direct jammer, the received signals become decorrelated from one channel

to another and appear more like noise. It is then difficult for the spatial beamformer to

select the weights such that the signals would add up destructively. The apparent

solution is to allow more than one time-tap per channel so that the signals can also be

delayed to cancel out its replicas.

'The derivations for the algorithms are based on the hand-written notes of Dr. Gary Hatke and his paper
titled "Adaptive Array Processing for Wide-band Nulling in GPS Systems."
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The space-time adaptive processor (STAP) is introduced to solve this partially

correlated multi-path problem. The idea is to use the tapped delay lines to provide

sufficient delay so that the multi-path component of received signal can easily be

correlated with the direct-path jammer. Consequently, they can be made to cancel each

other out with appropriately chosen weights. The diagram below illustrates the structure

of a space-time adaptive processor.

Xt T T ------- T

WK WK1 W(LI)K+2

tw2

Figure 9.1: The Space-Time Adaptive Processor

It is crucial to choose the number of delays (L-1) such that the total delay of one

tapped delay line must exceed the expected range of delays of the multi-path scatterers.

At the sampling rate of 25.6 MHz, each sampling period T is about 40 nano-seconds.

Thus with one additional complex tap, the direct jammer and its scatterer can be

correlated for a delay of up to 80 ns. An 80 ns delay would also translate into an extra

distance of roughly 80 feet that the replica signal has to travel. Given the physical size of

the aircraft, the additional path for the scatterers can be said to be no more than 80 feet.

Therefore, one tap spacing (i.e. L = 2 taps) is quite sufficient to cover the whole delay
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range. However, given the arbitrary delays of the scatterers, the processor must also be

able to approximate non-integer delays in a discrete system. Clearly, the more taps used

in the tapped delay line would provide the additional flexibility for a more effective

implementation. Yet, when a sufficient number of taps is used, the performance will

approach some asymptotic limit. The optimum number of taps must be determined to

minimize any unnecessary computation. In the actual evaluation of the algorithms, the

performance of the spatial-only processor (L = 1) is compared with that of the space-time

processor for cases with L = 3 and 5.

9.2 Computing the Optimal Weights

The optimum weights are computed such that the signal-to-interference-plus-

noise ratio (SINR) is maximized. The general form of the solution is based on the

Wiener-Hoft equation which is given as follows:

_ R _'- i ) (9.1)

where i, is the weight vector .W , R, is the LKxLK space-time covariance matrix of

_ LK_

the received interference plus noise signals, and i, (f) is the space-time cross-correlation

vector between the received signals and the desired signal from the /th satellite. The

space-time covariance matrix is defined similarly as in Equation 6.2. The cross-

correlation vector for a spatial-only processor is simply the array propagation vector as

follows:
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=j0= (9 .2 )

Lej'K J
where $2 . . Or are the phase delay with respect to the first array element. For a space-

time processor, the cross-relation vector i, (f) is made up of L copies of the same but

unequally scaled array propagation vectors. The general form of LKx1 is as follows:

LYLVIj

where yi . y are chosen specifically to meet certain constraints while SINR is being

maximized.

The need for constraints is due to the effect of having a tap delay line for each of

the channels. At the output of a space-time adaptive processor, the GPS signals would

have been not only spatially weighted, but also been filtered by an effective FIR. Thus,

the phase and delay of the GPS signals could have been significantly altered. Since the

relative phase and delay difference among the GPS signals are very important in

calculating user position, it is undesirable to corrupt these phases and introduce false

group delay. However, one can specify that all the beamformers steering toward the GPS

satellites must have the identical group delay in their effective FIR's. This specification

in effect guarantees that the differences in delay among the signals are unchanged by the

processors. To meet this requirement, three different constraints are proposed for three

different algorithms resulting in comparable performance. The three algorithms are

similar except that each constraint governs a different computation and selection of /s.
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A weight matrix W, are defined from the weights in Figure 9.1 following the same

arrangement:

1

_WK

WK+I

WK+
2

W 2 K

W(L-1)K+1

... W(L-1)K+2

WLK

(9.4)

Since the GPS signal has different propagation phase delay to other antenna

elements with respect to the first element, the effective FIR filter for the th satellite signal

is then the weight matrix W, multiplied with the propagation vector v, as follows:

(9.5)

Alternately, h, can be expressed in term of the weight vector 9, as:

(9.6)h, =V T.i- I*=V IT

where V, is defined as:

1LO

0 .-- U

.' .. . 0
0v .i

(9.7)

The equation for the weight vector can be rewritten in term of the Lx1 i vector as

follows:

[71 1

LYLVI

(9.8)=R -VI
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By substituting (9.8) into (9.6), an equivalent expression for the effective FIR can

be obtained:

yH =V .-(R' -V, )*

=(VH -R' -V,-)

(9.9)

where the Hermitian matrix M is defined as:

M =VH -R-| -V (9.10)

It is seen from (9.9) that by choosing ? appropriately, the effective FIR can be

constrained to having a particular desired property. The next three sections will elaborate

on the selections of ? .

9.2.1 The All-Pass Constraint

The all-pass constraint requires that the expression for h, from (9.9) be set to an

impulse so that its frequency response is an all-pass.

h, = (M -)* = I

0

1

0

(9.11)

Consequently, i,, is chosen to be:

fopt = M-
1

0

1

0

(9.12)

Once oPt is computed, the weight vector is found from Equation (9.8).
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9.2.2 The Fixed-Delay Constraint

The fixed-delay constraint only requires that all effective FIR's have the same

group delay, but not necessarily be an all-pass. By relaxing the constraint from the

previous case, some improvement in performance can be expected. The goal here is to

maximize the power of the GPS receiver correlation output at time D -AT delayed from

the true correlation peak subject to a fixed noise power.

The GPS signal component at the output of the processor is:

L

y(t) = Jh s(t - (i - 1).- AT)
1=1

(9.13)

where hi's are the FIR coefficients in h,.

The correlator output is then:

RS(u) = Ely* (t) -s(t -r)l

= E {h* - s*(t -(i -1)- AT). s(t -)}

By defining a new vector i(r) as:

s* (t). S(t-

i: (7) - E s*(t -AT) s(t -,r)

,s* (t - (L - 1)AT)- s(t - )

s * (t)- sAt -0 R,,()

E s*(t). s(t - (r - AT)) R, (r -AT)

S*(t)-s(t -(r -(L - 1)AT)) R, (r - (L - 1)AT)_

Equation (9.14) can be rewritten simply as:

RS(17) = N I" - i(r)

(9.14)

(9.15)

(9.16)
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The quantity being maximized is the power of the correlator output:

If R (r)1 is to be maximized at some delayro = D -AT , its partial derivative

with respect to x must be 0.

2
= - , - , -r i(1 + rH (r). - h -Hh =0 (9.18)

0

To satisfy the above equation, the following constraint is needed:

h - =i~' 0 (9.

Using the expression for h, from (9.9), the above equation becomes:

(M -f)T . - 0 (9.

Recognizing that M is Hermitian and i:(r) is real, (9.20) can be rearranged as:

or denoted by the following orthogonality:

?ii (9.

where ii is defined as:

ii= M - ( 0 )

A constrained optimization equation can now be set up for solving i

19)

2o)

z 1)

22)

(9.23)

. Recall that

the objective is to maximize the power of the correlator output while keeping a constant

interference noise power and having a fixed group delay.
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Rewritten using (9.9), the correlator output power from Equation (9.17) becomes:

R,(r )2 = ?H H H (ro) - M - ? (9.24)

The output of the space-time processor is the following:

(9.25)y[n] = w

1)]1

where i[n] is a vector of K values from K antenna elements at time n.

If the GPS signal power is much weaker compared to the interference plus noise

power, then the interference plus noise power is simply the output power:

E{y -y*J= - y[i] y* [i]

N

=W H R w (9.26)

In terms of i, (9.26) becomes:

E{y-y*=(R1 -V,-?)y -R, (R -VI-)

=H -V," R* -R R 1 -V-

-H

The signal to interference plus noise ratio (SINR) in terms of f can now be

obtained from (9.24) and (9.27). The problem is to solve for f such the SINR is

maximized, subject to the constraint specified by (9.22).

maxnI I

H - M H _ F()H ?

? HM .?

(9.27)

(9.28)
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In order to simplify the problem, the basis for ? which is the subspace being

orthogonal to ii is first determined to be the following:

P = I
5-H \
-H -- 
U . , e

eL-1I (9.29)

where I is an LXL identity matrix and 1 ... 'L-1 are the first L- 1 columns of I.

A new vector i of size (L-1)x1 is defined such that:

(9.30)

The expression of (9.30) can be substituted into (9.28) and the SINR can then be

freely optimized over y instead. Any solution found for 7 can be projected back to ?

via (9.30). The projection guarantees that ? is always in the orthogonal subspace of ii.

The new optimization expression is:

MaX
f-P" -M H Hi0- - -

ZH H
' *P *M.P.7

(9.31)

To put (9.31) into a Rayleigh Quotient form, the following definitions are used:

f(P H - M P 2. (9.32)

(9.33)

Expression (9.31) then becomes:

p H -(p" -M.-P).PH .MH -(o)fH (T)M-P-(P" -M -P) -f
H 2(pH.~~~ -Qp4 p.M. :,max

or

max # -.#

59

(9.34)

(9.35)



by defining:

AH _H ()Mp(pH .M. (9.36)
-

The maximum of (9.35) is A -A H by the definition of the norm of a matrix. In

this simple case where A is a column vector, A -A H has a value of A H -A. Thus, it

can be found by inspection that:

(9.37)o,, = A=(PH-M-P) 2 PH -MH. o)

Then,

f , (p H .M .P ) ~ - ,

(9.38)(P M-P) PH H

Finally,

O = Yopt

=P-(P" -M-P) .pH _MH ie) (9.39)

In evaluating the expression for f, two functions are needed: the auto-correlation

of the GPS signal and its derivative. If the flat spectrum of the GPS signal is low-passed

with a cut-off frequency of o,, the discrete auto-correlation function can be derived to be

the following:

R,,[k]= sin(coo -k)
(con -k)

(9.40)

And its derivative is then:

aR,,[k] cos(woe -k) sin(wo -k)

ak k O -k 2
(9.41)
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Plots of Equations (9.40) and (9.41) are shown below for cog = I- 7 . The

continuous waveforms are also included to show where the samples are taken from.

Samples of Rss

-8 -6 -4 -2 0
Discrete Index

2 4 6 8 10

Figure 9.2: GPS Auto-correlation Function

Samples of d(Rss)/dt

Continuous dR /dt
Samples of dRs5/dt

-8 -6 -4 -2 0
Discrete Index

2 4 6 8 10

Figure 9.3: Derivative of GPS Auto-correlation
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9.2.3 The Equalization Method

In this method, f can be freely selected when maximizing the SINR. Without

any constraint on 7, the group delay clearly will be different from one beam output to

another. The way to account for the random delay is to equalize the output signal with

the effective FIR's from all other beams. Effectively, the overall filter is identical for

every beam.

The set-up for solving 7 is the same as Equation (9.28), except that there is no

constraint on 7.

max
fH -MH - )-H 0 ( M

H. M -

(9.42)

Using the same approach as before, (9.42) can be rewritten as:

max
H . Hl

~H H
~~*M B -()F(r)B f

by defining:

-M2.?

and i=M 2- #

The solution to (9.43) is seen to be:

=M .F(C%)

(9.43)

(9.44)

(9.45)

(9.46)

It then follows that:

= M . M2i()

(9.47)
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The beam equalization is carried out by convolving each beam output with a filter

f. The four equalization filters for four beams are given as:

f, = 2 * 3 *4 (9.48)

2 = h * *h4 (9.49)

f3 =hl *h2 *4 (9.50)

f4 =hl *h2 * h3 (9.51)

As a result, all beams will have the identical overall filter as the following:

hff = * h2 *h3 * h 4  (9.52)

9.3 Simulation Results

The F- 15, L1 frequency IQ data are used in the following simulation. The

simulation is set up such that one GPS satellite is directly overhead and three other GPS

satellites are at 15 0 above the horizon, evenly spaced at 47 , 167 , and 2870 in azimuth.

Four broad-band jammers are located about 100 to 200 km away at 5 or 100 in

depression. Figure 9.4 shows the directions of the GPS signals and the locations of the

jammers with respect to the receiver at the origin.

Assuming a typical noise power density of -204 dBW/Hz, the noise power is

therefore -134 dBW for a 10 MHz bandwidth. The IQ data are scaled such that the noise

in the data corresponds to the thermal noise. Given that the IQ data have a SNR of about

35 dB, the effective source power of all four jammers are calculated to be roughly 50

dBW. The GPS signals from four satellites are then added to the IQ data. The power of

the GPS signals are assumed to be 10 dB below the noise power.
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The performance of the space-time adaptive processors is measured based on the

ratio of the SINR to the array-signal-to-noise-ratio (ASNR). The ASNR is simply 7

times the SNR for a 7-element array antenna. The SINR/ASNR will be 0 dB if there is

no jamming or the effect of jamming can be completely eliminated. In computing the

SINR, the array output is correlated with the original known sequence of ±1. The peak of

the correlation function, after being squared and appropriately scaled by the coherent

gain, is the output signal power. Figure 9.5 shows the resulting correlation functions for

the three algorithms with the peaks corresponding to the SINR/ASNR's.
Locations of Jaomers

300

200-

*J1 -10 OGPS1 15'

*J4 -10 185 km

100- 142 km

OGPS3 154

0 OGS4 90

*J3 -100
127 km *J2 -10

132 km
-100-

-200-

OGPS2 15

-300 .

-300 -200 -100 0 1 20 300

Figure 9.4: Jammers' Positions and GPS Signal Directions

-sinrfscr4eq -9.1731
-- sinrfsnr4do -8.3184
-sinrfscr4ap -8.0281

10 20 30 40 50 60

Figure 9.5: Correlation Peaks

64



The performance of a spatial-only structure (1 tap) is compared with the

performance of a space-time structure with a delay line of 3, 5 and 7 taps. Comparisons

are also made among the different algorithms as derived in Section 9.2. The following

four tables, each corresponding to one of the four beams, show the average results for

using different weight-constrained processors and varying number of taps.

GPS#1 - Equalized Delay All-Pass
15 0 Const.

Spatial -27.9 dB

3 taps -20.1 dB -19.4 dB -21.9 dB

5 taps -19.1 dB -18.2 dB -18.8 dB

7 taps -18.9 dB -17.4 dB -17.3 dB

Table 9.1: SINR/ASNR for Satellite #1

GPS#3 - Equalized Delay All-Pass
15 Const.

Spatial -22.6 dB

3 taps -21.5 dB -20.1 dB -21.0 dB

5 taps -19.8 dB -19.5 dB - 19.9 dB

7 taps -20.8 dB -19.1 dB - 19.3 dB

Table 9.3: SINR/ASNR for Satellite #3

GPS#2 - Equalized Delay All-Pass
15 0 Const.

Spatial -23.0 dB

3 taps -18.6 dB -16.9 dB -18.3 dB

5 taps -17.6 dB -16.6 dB -17.6 dB

7 taps -17.4 dB -16.4 dB -17.0 dB

Table 9.2: SINR/ASNR for Satellite #2

GPS#4 - Equalized Delay All-Pass
900 Const.

Spatial -20.3 dB

3 taps -16.4 dB -15.1 dB -15.8 dB

5 taps -15.2 dB -13.8 dB - 14.3 dB

7 taps -15.2 dB -13.8 dB - 14.0 dB

Table 9.4: SINR/ASNR for Satellite #4

The improvement going from a spatial-only processor to a 3-tap space-time

processor is quite significant. Depending on the beam direction, the improvement can

range from 3 to 8 dB for the given simulation set-up. The performance continues to get

better as the tapped delay line is increased to 5 taps. However, the improvement going

from 3-tap to 5-tap is only very small - about 1 to 2 dB typically. Going to a 7-tap

processor, the increase in performance is no longer significant. The asymptotic limit in

performance has been reached when the tapped delay line is about 5 taps.
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The performance of different algorithms can be compared from the SINR/ASNR

results. The equalization method shows the worst performance. The gain in

SINR/ASNR is expected when a longer tapped delay line is used. For the equalization

method, a longer tapped delay line would result in a longer equalization FIR filter for

each beam. Two undesirable effects from using a long FIR can be observed. Firstly, the

equalization FIR filter broadens the width of the correlation function as shown in Figure

9.5. Secondly, applying the FIR filter to the beam output may slightly corrupt the signal

reducing its correlation with the original GPS sequence. For those reasons, the SINR for

the equalization method is generally a couple dB's worse than the delay-constrained or

all-pass techniques. The all-pass method is expected to perform much more poorly than

the delay-constrained method due to the stricter requirement that the effective FIR must

be an all-pass at a fixed group delay. It is seen from the simulation results that the all-

pass SINR is actually only slightly inferior to the delay-constrained results. This

difference in performance between the two constraints is much less than what expected in

the theoretical analysis. Nevertheless, the delay-constrained algorithm is revealed to be

superior to the other two methods for any number of taps.
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10 Conclusion

In a jamming setting, a multi-element antenna array is used to form a beam

steering toward the desired GPS signals. As the jamming signals interact with the

airframe itself resulting in a near-field multi-path environment, space-time adaptive array

processing is proposed as a method for more effective nulling of wide-band jammers.

Using the actual experimental data, the multi-path phenomenon is characterized by

forming space-time covariance matrices for all directions with respect to the aircraft.

Based on those covariance matrices, simulated data can be generated for any number of

jammers, desired directions, and power levels. Space-time adaptive processing

techniques are then employed to recover the GPS signals embedded in the jamming data.

It is found that a space-time processor performs significantly better than a spatial-only

processor. This shows consistently with the eigenvalue spread that near-field multi-path

scatterers are always present. The performance of three different algorithms are

evaluated and compared with one another. The delay-constrained approach is seen to be

the most effective.

The space-time adaptive processor is not an ideal processor without limitations.

The seven-element array processor is only capable of dealing with up to 6 jammers. In a

more severe jamming environment, the processor will not have enough degrees of

freedom to null out all jammers simultaneously. For fewer jammers, the space-time

processor will also fail to operate effectively when the jamming sources radiate more

than 65 dBW within a 200 km radius. Other than those extreme conditions, the space-

time adaptive processor can perform reasonably well in a jamming surroundings.
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