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Abstract

A digital system showcasing two custom video processing chips was designed and imple-
mented. The custom chips perform a forward and inverse discrete cosine transform (DCT)
operation using only milliwatts of power. This work presents a hardware-based demon-
stration system for this chipset that captures and buffers full-motion video data, routes the
data through the DCT and inverse DCT devices, and displays the resulting video stream on
an LCD in real-time. This demonstration system is implemented with off-the-shelf com-
ponents, including an NTSC video decoder, RAM and ROM memories, programmable
logic devices, and a LCD. Control logic written in VHDL handles the flow of real-time
video data through the system, coefficient quantization, synchronization signals for the
LCD, and an I2C serial bus interface. The system is contained on a single printed circuit
board for simple, portable demonstrations. This system not only demonstrates the func-
tionality and low power consumption of the DCT chipset with arbitrary real-time video
data, but it also demonstrates direct, hardware-based applications of the most popular
design concepts from undergraduate Electrical Engineering and Compute Science courses,
including modularity and abstraction, top-down design, and facilitated testing and debug-
ging.
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Chapter 1

Introduction

1.1 Motivation for Low-Power Video Processing

Throughout the 1990s, multimedia and wireless communication have been two major

driving forces behind technology. As computing power and storage have kept pace with

Moore's Law, multimedia computers supporting high-quality digital video and sound have

become a reality. In response to the increasing popular demand for "anytime, anywhere"

communication, great advances have been made in wireless telephony and networking.

With these technologies firmly in place, the next step appears to be a combination of

wireless and multimedia technology. Potential applications could include the replacement

of the cellular telephone with a wireless video communicator, perhaps a product closely

resembling Dick Tracy's fanciful "two-way wrist communicator" which, until recently,

has been limited to the realm of science fiction.

The technology necessary for such a device is already in place. PCS cellular networks

currently implement digital communication on support small, lightweight handsets.

Mobile laptop computers can play movies and support videoconferences. However, the

biggest challenge, power consumption, is yet to be conquered. For battery-powered

devices, energy consumption can be as significant an issue as performance. Any cellular

telephone or laptop computer user will attest to this.

How difficult is the task of engineering a low-power "wireless multimedia communi-

cator"? Suppose that we were to implement such a communicator with a 1.8-volt, 233

MHz Pentium MMX processor, a common processor for laptop computers in early 1999.

Suppose further that size constraints required that the entire device be powered by a single
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"AA" battery, much like a pager. A high-capacity NiMH "AA" cell has a capacity of

1.25V * 1.45 AH * 3600 sec/H = 6500 Joules [1]. The processor, when fully utilized, dis-

sipates 5.3 Watts of power [2][3], and would run for about 20 minutes before requiring a

new battery. This estimate does not account for the power consumption of the display, as

well as the wireless transceiver, which is typically the largest power consumer in wireless

devices, would further reduce battery life.

Even if we were to replace the Pentium processor with a processor specially designed

for low power consumption, such as a StrongARM microprocessor, we would still not be

able to achieve days or weeks of continuous operation from a small, lightweight source of

power. Any general-purpose processor, even one designed for low power consumption, is

not sufficient. The ideal solution is a custom processor designed from scratch and opti-

mized specifically for low-power manipulation of video data. In general, whenever low

power consumption is a primary design goal, every component must be custom-designed

to minimize the energy used. After all, a system consumes as much power as all of its indi-

vidual components. A single, inefficient component will dominate the power consumption

of the whole system.

1.2 The Wireless Camera Project

The ultra-low power wireless camera project is a demonstration of recent advances in low-

power circuitry applied to a complete wireless video system [4]. The project is being

undertaken by the Microsystems Technology Laboratory (MTL) in the Department of

Electrical Engineering and Computer Science.

The low-power wireless camera collects video data and transmits the data to a base

station for further processing and display. The system can be conceptualized by the block

diagram in Figure 1.1. The transmitting section consists of the sensor, an analog-to-digital

(A/D) converter, a compression and coding section, and a transmitter. The image sensor
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captures an image in analog form. The A/D digitizes the analog image. Next, compression

logic reduces the data rate to satisfy the transmitter's requirements, and coding logic

encodes the data with an error correction scheme. Finally, the transmitter sends this binary

stream to a base station (a personal computer with additional hardware on an expansion

card), where the image data is decoded, decompressed, and displayed. Students and fac-

ulty within MTL are optimizing each "block" of the wireless camera for minimal power

consumption.

Compression Radio
Imager A/D DCT & Tx

Coding

Low-Power Wireless Camera

Radio Decomp.

Base Station Rx & IDCT Display
Decode

Figure 1.1: Block diagrams for the wireless camera project.

1.3 The Discrete-Cosine Transform and the DCT Chipset

Among the first devices to emerge from the wireless camera project are an ultra-low-

power discrete-cosine transform chipset. One device performs a forward discrete-cosine

transform; another performs the inverse operation. These devices can fill the DCT and

IDCT blocks in Figure 1.1. This chipset was designed by Thucydides Xanthopoulos.

The discrete-cosine transform operation performed by this chipset is one of many fre-

quency-domain transforms and resembles the well-known Fourier transform in this

respect. The DCT, however, uses a purely real cosine as its basis function rather than the
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complex eCJt. In video applications, the data is two-dimensional, and a two-dimensional

DCT is required. The forward DCT for an 8x8 block of pixels is defined as

X[u,v] = c[u]c[v] x[, j]cos((2i+ 1)u cos(22j v (1.1)X[' ] 4 1 ~, iCs 16 J 16
i=0j= 0

with c[u] = 2-1/2 for u = 0 and c[u] = 1 for all other u.

The corresponding inverse is defined as

7 7

x[i, j] = I c[u]c[v]x[u v]cos((2i+ 1)uxCOS((2j+ 1 )vn) (1.2)

u = 0v = 0

with c[u] defined in the same way as the forward DCT.

The DCT facilitates the compression of image data. When applied to a two-dimen-

sional block of pixels, the transform removes spatial redundancy by resolving the image

data into an orthogonal basis of cosines. The resulting block of decorrelated spatial coeffi-

cients is easier to quantize and compress, as seen in Figure 1.2. This property of the DCT

is the motivation for its use in the MPEG video compression standard [5][6], as well as the

data compression and decompression paths for the wireless camera project.

2-D Block of Pixels 2-D Array of DCT Coefficients

Figure 1.2: Block of pixels and its discrete-cosine transform.

This DCT chipset uses two general techniques to minimize power consumption [3].

The first is a set of novel data-dependent, power-aware algorithms. For instance, the algo-
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rithm performs varying amounts of computation for each pixel instead of "butterfly" mul-

tiplications on all the data. The processor analyzes the input data and dynamically reduces

the precision of computations on low-magnitude or highly correlated pixels to conserve

power. Furthermore, when power is limited, the processor limits the precision of the com-

putation so that image quality degrades gracefully as available power is reduced.

The second technique for minimizing power dissipation is voltage scaling. The chipset

is designed to run on the lowest voltage possible for the amount of computation required.

Since the energy consumed by a device is proportional to the square of the input voltage,

designing the chip to operate with lower voltage can provide a significant reduction in the

energy consumed.

The DCT processor consumes an average of 4.38 mW at 1.56V when run at 14 MHz,

and the IDCT consumes 4.65 mW at 1.32V and 14 MHz. A 233 MHz, 1.8 Volt Pentium

MMX processor running a DCT algorithm in software would consume at least two orders

of magnitude more power than this low-power processor.

1.4 A Demonstration System

This work is the first system-level proof-of-concept of the wireless camera project's core

datapath. Up to the present, the focus the project had been the design of the individual

low-power components. With the focus now moving toward system-level integration, a

complete demonstration is necessary.

This system is also the first real-world evaluation and demonstration of the low-power

DCT and IDCT processors, the first complete products of the wireless camera project.

Before this demonstration system was complete, the functionality and power consumption

levels of these processors had been evaluated through software simulations and with test

vectors downloaded to the chips from a PC. These tests used still-image data and were

performed separately on the DCT and IDCT devices, rather than as a complete system.
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This system demonstrates the transform, quantization, inverse transform, and display of

image data all at once, and in real-time. Furthermore, this system displays full-motion

video limited only by the images on a videotape, camera lens, or television broadcast, so

that the performance of the chipset can be evaluated in truly "real-world" situations.

Above all, this work is a challenge in real-time system design. Real-time data process-

ing requirements of this system adds a substantial degree of complexity to a design. The

successful design and implementation of this demonstration system requires careful

design and engineering methodologies to promote simplicity and robustness.

1.5 Implementation Overview

This demonstration system is intended to model the video processing datapath of the wire-

less camera as closely as possible. The focus of the demonstration is the DCT chipset, the

most recently completed components of the wireless camera project. The remaining

blocks in the diagram are replaced one-for-one with off-the-shelf devices. For this demon-

stration, a versatile and compelling demonstration of the completed low-power stages is

more important than the optimization of the entire system for power consumption. Rather

than focusing on the individual components, as others within MTL already are, this work

focuses on system integration.

NTSC NTSC
Input Decoder DCT IDCT Display

Device

Figure 1.3: Adaptation of LPE for this work.

The block diagram for the wireless camera can be adapted for this demonstration sys-

tem per Figure 1.3. In place of the sensor/camera, this system is designed for an arbitrary

NTSC video input. Adoption of the NTSC standard allows a variety of video input devices
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to serve as the image source. Any device capable of generating an NTSC signal-most

every TV, VCR, and video camera used in the United States-can provide a video input to

this demonstration. In place of the A/D converter is an off-the-shelf NTSC video decoder.

Video decoders are readily available and are common in devices such as multimedia cards

for personal computers. Compression requires two steps: a frequency-domain transform

followed by frequency-domain quantization and compression logic. Both are available on

the low-power DCT chip, so there is no need to add an off-the-shelf solution.

Radio transmission and reception are not implemented in this demonstration. This sys-

tem simply passes the compressed output of the DCT coder directly to the IDCT device.

This not only eliminates a tangential source of complexity but also allows the entire sys-

tem to be implemented on a single, portable printed circuit board.

Without a radio communication link, there is no need for a complete base station to

receive and process transmitted data. A video display is sufficient, and a commercial flat-

panel LCD display suits this purpose. As the display provides digital video inputs, it can

be driven directly by the system without any additional D/A conversion.

1.6 Design Requirements and Goals

Specifications for data rate and format are taken directly from the specifications for

wireless camera project. This system processes thirty non-interlaced frames of video per

second. Each frame consists of either 128x128 pixels or 256x256 pixels, with eight bits of

grayscale per pixel. Only the higher resolution is supported in this demonstration.

Because this system is a testbed for the LPE datapath and the DCT/IDCT chipset, the

usual goals of test and demonstration systems apply. Flexibility and versatility are essen-

tial; the system should be able to simulate different operating scenarios with a minimum

of effort and intervention. Portability is also a worthwhile goal. For portable demonstra-

tions, a small, stand-alone circuit board is preferred to a large board that requires a con-
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nection to a computer. Since a testing environment can place strenuous demands on the

components under evaluation, the design should be able to isolate and expose bugs and

problems. After all, debugging is a primary use of test systems.

As the demonstration system is not intended for large-scale production, common com-

mercial issues such as cost, the large-scale availability of components, and user interface

are secondary. The primary goal is a successful, working design that offers a compelling

demonstration of the DCT and IDCT devices in real-world operation.
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Chapter 2

The Video Data Path

This chapter introduces the components that form the main video datapath of the demon-

stration system. Beginning with a conceptual block diagram, off-the-shelf devices are

combined with the DCT chipset to realize each of the blocks. These devices are docu-

mented in this chapter. The clocking requirements for the datapath are also considered.

Reflecting on the chosen design, it becomes clear that modularity and abstraction are

essential for a successful, robust datapath.

2.1 High-Level Block Diagram

NTSC NTSC Frame Frame
Input Decoder Buffer DCT IDCT Buffer Display

Device

Figure 2.1: Block diagram of the real-time video datapath.

The full video data path consists of seven stages. An NTSC source generates an analog

video signal. A video digitizer converts the analog signal into a series of digital still

images, or frames. A ping-pong frame buffer stores and formats each frame for further

processing. The DCT coder transforms each frame into the frequency domain and option-

ally performs rudimentary quantization. The IDCT decoder then decodes the coefficients

and generates pixels. A second frame buffer re-assembles the frames, and a video display

presents the final frames in real time. All stages operate at 30 frames per second.
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Each of the "blocks" of the above diagram are implemented with one or two devices.

The NTSC decoder is realized by a Brooktree Bt829A video decoder, a single-chip device

that digitizes an NTSC video signal and provides a convenient digital output. Each frame

buffer is implemented by a pair of IDT7008 static RAM devices. The entire frame buffer

is capable of storing up to two full frames, one frame per IDT7008. The DCT and IDCT

stages are the ultra-low-power processors to be tested. The video display is a Sharp active-

matrix LCD. Figure 2.2 shows the new block diagram with the "blocks" replaced by the

selected components.

NTSC Bt829A SRAM Low- Low- SRAM Sharp
Input Video Frame Power Power Frame LCD

Device Decoder Buffer DCT IDCT Buffer Display

Figure 2.2: Block diagram with the chosen components.

2.2 The NTSC Decoder

The NTSC decoder receives an analog NTSC video signal and produces a digitized eight-

bit grayscale image that can be passed through the video datapath. As NTSC is an ubiqui-

tous standard for analog video in the United States, an NTSC interface allows for versatile

demonstrations with a variety of video input devices.

The NTSC analog signal is digitized with the Bt829A video decoder. The Bt829A is a

single-chip video digitizer produced by Rockwell Semiconductor [7]. The device supports

NTSC, PAL, and SECAM formats as input and provides a digital YCrCb output with eight

bits of luminance (brightness) and eight bits of chrominance (color) data. Image parame-
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Figure 2.3: The Bt829A video decoder.

ters such as scaling, frame rate, and contrast can be adjusted by programming the device

on startup. Table 2.1 describes the pins most relevant to this work.

Pin Mode Function

YIN analog analog composite input for NTSC

SCL, SDA I/O Clock and data lines for 12C serial bus for device pro-
wired gramming.
AND

I2CCS I LSB of 8-bit 12C device address for this chip.

RST I Resets device to default state.

XTOI I NTSC clock oscillator signal (28.636 MHz).

VD[15..8] 0 Digitized luminance output in 16-bit mode.

VD[7..O] 0 Digitized chrominance output in 16-bit mode.

DVALID 0 Data Valid. High when a valid data (image pixel or blank-
ing) data is being output. Low during blanking intervals
or when no pixel is output due to scaling.

ACTIVE 0 Active Video. High when an the active image area (as
opposed to a blanking interval) is being digitized.

VACTIVE 0 Vertical blanking. Low during active vertical lines.

FIELD 0 Odd/even field indicator. By default, "1" denotes that an
odd field is being digitized.

HRESET 0 Horizontal Reset. Falling edge denotes new horizontal
scan line.

Table 2.1: Bt829A pin descriptions
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Pin Mode Function

VRESET 0 Vertical Reset. Falling edge denotes a new field.

QCLK 0 "Qualified Clock." Gated such that edges occur only
when valid, active image pixels are being output.

CLKx1 0 14.31818 MHz clock output. All output signals are timed
with respect to this clock.

OE I Tri-state control for certain outputs. Effect of the pin can
be programmed through register OFORM.

Table 2.1: Bt829A pin descriptions

To decode an NTSC video signal, the Bt829A requires only two active inputs: a com-

posite analog NTSC signal at pin YIN, and a 28.636 MHz clock at XTOI. Using the clock

as a reference, the Bt829A samples the analog signal at YIN, recovers line, field, and

frame boundaries, and distinguishes between valid image data and supplementary data

(such as closed-caption information) included in the blanking intervals between each line

and field. Digitized pixels from each field are output on the 16-bit output VD. The eight

most significant bits represent luminance information. The eight least significant bits rep-

resent chrominance and can be ignored by this demonstration system.

The VD output is clocked at 14.318 MHz, half the input clock frequency. The Bt829A

provides a 14.318 MHz clock output on CLKx1 for synchronization with this output. Due

to blanking intervals, decimation, and other processes that reduce data throughput, a valid

pixel is not output at every clock. Hence, the Bt829A provides a variety of status signals,

including DVALID, ACTIVE, VACTIVE, and FIELD, to indicate what portion of the

NTSC video stream is currently being digitized. These signals are described fully in table

2.1. Figure 2.4 illustrates the output interface discussed here; the white VD blocks indicate

valid data

When the system is powered on, the Bt829A must be reset by asserting the RST line

low for at least four cycles. After reset, the Bt829A must be programmed with the desired
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VD15:01 /

DVAUD

ACTIVE

CLKx1
or

CLKx2

QCLK

Figure 2.4: Output timing for the Bt829A, reproduced from [7].

parameters for digitization, such as the output frame rate, size of the digitized image,

brightness and contrast, and impulse response lengths for the decimation filters. These

parameters are loaded into the device through the SCK and SDA lines, which operate

under the serial 12C (Inter-Integrated Circuit) bus protocol [8].

For this system, the Bt829A was initially programmed to produce a 256x256 image

with no temporal decimation and no image quality adjustments. The Bt829A would be

programmed to digitize both fields of every frame to form a 640x480 image at 30 frames

per second. The image would then be downsampled to 256x256 through decimation filters

in both dimensions. Unfortunately, using both the even and odd fields in this way caused

jagged horizontal lines with animated images.

An alternative approach, dropping the entire odd field in each frame, produced better

results. Dropping one field halves the number of vertical lines from the NTSC standard of

480 to 240, resulting in sixteen fewer lines than the 256 lines required by wireless camera.

It was decided that the better quality of the field-dropped 256x240 image was preferable to

the 256x256 specification, which would require data from both fields.
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2.3 The "Ping-Pong" Frame Buffer

Frame buffers provide flow control and data reordering between the video and coding

stages in the system. The video stages (the NTSC decoder and LCD screen) require raster-

ordered data: pixels are generated or received in left-to-right, top-to-bottom order. Further-

more, these devices are bursty; an NTSC signal, for instance, contains retrace periods

where no image data is being sent. As we will discuss below, the DCT and IDCT proces-

sors require a completely different pixel format, and they are best suited for processing

data at a constant throughput. Buffering pixels between such stages provides the system

with the space and time to perform these format conversions.

2.3.1 Design of a Dual-Port Frame Buffer

A buffer receives data from one stage of the system, stores it, and sends the data to the

following stage. Since the buffer is being read and written to simultaneously, it must func-

tion as a dual-port device. Since data must be reordered and moved at potentially different

rates, the two ports should be as independent as possible.

The most robust design is a frame buffer that is large enough to store two full 256x256

frames, or 2*28*28 = 217 bytes = 128 kilobytes. With two full frames of storage, the stage

that writes the buffer is guaranteed enough storage for a full frame of data, while the stage

that reads the buffer is guaranteed a full frame of valid data. The buffer is partitioned into

two halves of one frame each, and the reading and writing stages read alternate halves of

the buffer and swap in a ping-pong fashion at every frame. While more complicated

schemes can perform a similar function with less memory, they reduce the timing flexibil-

ity of the reading and writing stages.

This type of ping-pong buffer is readily implemented with off-the-shelf memory

devices. Two prominent issues arise in such a design. The first is the choice of static versus

dynamic RAM. A second is the choice of a dual-port memory versus a single-port mem-
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ory with additional control circuitry to simulate a second port. This design chooses dual-

port static RAMs, but we first discuss the alternatives and the reasons for their dismissal.

One possible implementation for the frame buffers is a dynamic RAM (DRAM)

instead of a static RAM. As DRAM is available in larger sizes than SRAM, a DRAM-

based frame buffer can easily be implemented by a single chip. DRAM is also less expen-

sive than SRAM. Unfortunately, DRAM requires additional refresh and addressing cir-

cuitry that would increase the complexity of the control logic. Additional logic requires

additional macrocells on a programmable logic device. The task of refreshing the DRAM

also adds more constraints on the timing requirements of incoming and outgoing data

because data can not be read or written while the memory is being refreshed. In a commer-

cial, high-volume product, the lower cost of DRAM would justify the additional control

circuitry required. For a prototype system such as this one, where logic complexity is a

greater enemy than cost, static RAM is the better choice.

Another design issue is single-port versus dual-port SRAM. If a single-port SRAM is

clocked at twice the frequency of the incoming or outgoing data, the memory can be read

and written on alternate cycles. The cost in additional control complexity is seemingly

small, and like DRAMs, single-port SRAMs are available in larger sizes and lower cost

than their dual-port cousins. However, two design issues make dual-port SRAM the more

favorable option.

First, the use of a single-port SRAM would require tri-state outputs on the device driv-

ing the SRAM, as well as an additional eight-bit register to latch the outgoing data from

the SRAM for the reading device. This circuit is illustrated in Figure 2.5. The IDCT

device, which writes the second frame buffer in this system, was not equipped with tri-

state outputs. Hence, a frame buffer based on single-port SRAM would require an addi-

tional tri-state driver for the IDCT, as well as the eight-bit latch. Compared to the single-
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DATA_- OUTH- D 0 --- DATA_ IN
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SRAM Driver Reg. SRAM
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Figure 2.5: Alternative buffer design with a single-port SRAM.

chip implementation of NTSC decoding, this heterogeneous three-chip solution seems sig-

nificantly less elegant.

Second, the clock rates of the two devices writing to and reading from the frame buffer

are likely to be different. A true dual-port static memory can support fully asynchronous

access to both ports. A scheme that simulates two ports through control logic would

require additional synchronization logic.

After considering the drawbacks of single-port memories or DRAM, dual-port static

RAM was deemed the best choice for implementing a frame buffer. The IDT7008 memory

is chosen for this design.

2.3.2 Application of the IDT7008 Static Ram

The IDT7008 was the largest single-chip, 8-bit wide, dual-port static RAM that could

be located at the time of this work [9]. The IDT7008 is a 216 byte memory, enough for a

single frame of 256x256, eight-bit video. Each frame buffer is implemented as two

IDT7008 devices operating in parallel to simulate 217 bytes of dual-port RAM.

The IDT7008 is an asynchronous device. Each port is equipped with a R/W line to

select whether the port is reading and writing data, an OE line for tri-stating the port, and
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Figure 2.6: A pair of IDT7008 static RAM devices.

two chip enables, CEO and CEI, that are internally ANDed together into a single enable

signal. The two chip enable lines allow several IDT7008 devices to act as a single, deeper

SRAM. Semaphore signalling between ports and arbitration logic are also provided, but

they are not necessary for this design.

Pin Mode Function

A[15..0] I 16-bit address

R/W I High to read SRAM, low to write SRAM

CEO, CE, I Chip selects. CE = (CEO AND CEI)

OE I Output enable. High to tri-state the port.

1I/O[7..0] 1/0 8-bit port. For SRAM reads, data appears here. For
SRAM writes, data should be driven here.

Table 2.2: IDT7008 pin descriptions for each of two ports.

Figures 2.7 and 2.8 illustrate the reading and writing interfaces for each port. A port is

read by driving both CE lines active, driving R/W high, and presenting a valid address on

the address lines. After the last of these conditions has been fulfilled, valid data appears on

the port after a brief delay. The memory is written by driving both CE lines active and

driving R/W low. After a brief delay, the data at the port is written into the desired address

in memory. The port's outputs are automatically disabled during a write cycle, but it is
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always a good idea to drive OE high any time a write is about to occur. For write opera-

tions, it is essential that the controller set-up and hold a valid address on the SRAM around

a write cycle so that spurious writes to unintended portions of the memory do not occur.

ADDR

OE

R/W

DATAouT

Figure 2.7: Read interface for the IDT7008, reproduced from [9].

Figure 2.8: Write interface for the IDT7008, reproduced from [9].

With the buffer realized by two distinct SRAM devices, a natural implementation of

the ping-pong scheme is for one SRAM to receive data from the previous stage while the

other SRAM sends data to the next stage. Each memory stores a full frame of data. When

both reading and writing transactions have completed, the two devices switch roles. The

presence of two chip select lines on each port greatly assists this procedure; the additional
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chip selects on each port can act as the high address bit and select which SRAM is active

for each stage.

In retrospect, the timing requirements for reading and writing an asynchronous SRAM

could have been avoided with a synchronous SRAM. The IDT70908, a 216 byte dual-port

synchronous memory, provides a clocked control interface than the IDT7008.

2.4 The DCT Processor

The low-power DCT processor receives two-dimensional blocks of pixels and outputs the

corresponding block of DCT spectral coefficients. Table 2.3 describes the functions of the

DCT's pins.

Figure 2.9: The DCT processor (left) and IDCT processor (right).

Pin Mode Function

DIN[7..O] I 8-bit pixel input

DOUT[11..0] 0 12-bit DCT spectral coefficient output

LPEout 0 Serial output for selected DCT coefficients. Output repre-
sents 8:1 compression of initial pixel data.

SBIN I Start Block In. Denotes that the input pixel is the first
pixel in a block of 64.

SBOUT 0 Start Block Out. Denotes that the output DCT coefficient
is the first in a series of 64.

Table 2.3: DCT coder pin descriptions.
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Pin Mode Function

RESET I Resets device to default, unprogrammed state.

TDI, TMS, I JTAG-compliant testing and programming pins.
TCK, TRST

Table 2.3: DCT coder pin descriptions.

The DCT processor receives blocks of 64 eight-bit pixels, one pixel per clock cycle.

The SBIN input must be pulsed high during the first pixel in each block to signify the start

of a new block. No pause is necessary between blocks; the first pixel of a new block may

immediately follow the last pixel of the previous block. Incoming pixel values are latched

on the falling edge of the clock.

After a latency of 97 cycles from the first pixel, sixty-four DCT spectral coefficients

begin to appear at the output. Coefficients are output in two ways, as a 12-bit wide output

as well as a serial compressed output. The 12-bit output operates analogously to the pixel

input. Like the input pixels, which are input over 64 consecutive clock cycles, DCT coeffi-

cients are output over 64 consecutive clock cycles. Like SBIN, the SBOUT signal is

pulsed high during the first coefficient to signify the start of a new group of coefficients.

A serial output is produced on the LPE pin. The purpose of this pin is to provide a

rudimentary form of 8:1 data compression. This output provides eight DCT coefficients

per pixel block, at a precision of eight bits per coefficient. Only coefficients 0, 1, 2, 8, 9,

10, 16 and 17 are output. Hence, over 64 clock cycles, the LPE pin delivers eight coeffi-

cients of eight bits each, for a total of 64 bits-a reduction of 8:1 from the 64 bytes of

input pixels.

On power-up, the DCT must be reset by asserting its RESET line high for several

clock cycles. Six registers on-board the DCT must also be programmed through a JTAG-

compliant interface. These registers determine parameters for the transform computation.
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2.5 The Inverse Discrete-Cosine Transform Processor

Since the DCT and IDCT processors were designed by the same student, it is not surpris-

ing that they have nearly identical interfaces. Table 2.4 summarizes the functions of the

relevant pins. Coefficients are received by the IDCT processor in groups of 64. The coeffi-

cient input is 12 bits wide; there is no serial input analogous to the DCT's serial output.

The SBIN signal must be pulsed high during the first coefficient. After a latency of 90

cycles from the first coefficient, a block of 64 pixels is produced on an 8-bit output. The

SBOUT signal is pulsed high on the first pixel of each block. The SBIN and DIN lines of

the IDCT are directly compatible with the corresponding outputs of the DCT. These two

devices may simply be connected together.

The IDCT processor must be reset by holding its RESET line high. No device pro-

gramming is required.

Pin Mode Function

DIN[1 1..0] I 12-bit DCT coefficient input

DOUT[9..0] 0 10-bit pixel output

SBIN I Start Block In. Denotes that the input coefficient is the
first in a series of 64.

SBOUT 0 Start Block Out. Denotes that the output pixel is the first
in a block of 64.

RESET I Resets device to default, unprogrammed state.

Table 2.4: IDCT decoder pin descriptions

2.6 The Video Display

The Sharp LQ14D412 is an active-matrix TFT liquid crystal display that supports

640x480 pixels in 24-bit color. Unlike conventional computer monitors which require a

partly analog interface, the synchronization, clock, and data signals for the Sharp LCD are

all received in the digital domain. A digital controller on-board the LCD processes these
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signals and drives the actual display. This level of separation between the display's inter-

face and its actual pixels results in a remarkably flexible interface. For instance, the num-

ber of pixels in a line or lines in a frame may vary without introducing jitter in the display,

and arbitrarily low refresh rates will not cause flicker. The latter property is excellent for a

30 frame per second video system, as computer monitors are driven well above 60 Hertz

for flicker-free images.

Figure 2.10: The Sharp LCD.

As summarized by table 2.5, the control interface is similar to standard VGA. Edges

on HSYNC and VSYNC delineate the start of a new line or frame of video. For its

640x480 display mode, in which every pixel on the LCD is being utilized, the LCD

requires roughly 800x550 clock cycles, maintaining a sort of backward compatibility with

analog displays which required a retrace interval between each line and frame. The data

enable signal ENAB indicates where valid pixel data begin on each horizontal line.
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Pin Mode Function

HSYNC I falling edge indicates start of horizontal scan line

VSYNC I falling edge indicates start of new 640x480 frame

ENAB I rising edge indicates start of valid pixel data in a line

RED[7:0] I eight-bit RGB pixel values
GREEN[7:0]
BLUE[7:0]

Table 2.5: Sharp LCD pin descriptions (signal polarities for 640x480 mode).

Since the frames passing through the system are 256x240 grayscale, this demonstra-

tion system does not require the full display area of this LCD. Additional control logic is

responsible for displaying a 256x240 grayscale image attractively on the LCD display.

The choice of the Sharp LCD was not without consideration. In its favor are a simple,

abstract digital interface with no minimum refresh rate, a crisp, clear image, and immedi-

ate availability at the time of design. However, there are two significant disadvantages-

this particular LCD screen is both large and somewhat non-standard. Its large size makes

portable demonstrations more cumbersome. The 640x480 pixel display is unnecessarily

large for display of a 256x240 pixel image; pixel doubling would only make the image

more grainy and detract from the demonstration. A non-standard interface port presents

two additional problems. First, it requires a custom adapter, which was fabricated as a

PCB for this work. Second, it precludes the use of other output devices, such as a com-

puter or television monitor, in contrast to the versatile NTSC video input.

There are several alternative display options. An NTSC encoder chip, analogous to the

Bt829A decoder, could drive any standard NTSC video display. Although the versatility of

this solution is appealing, the quality of NTSC displays, however, is generally lower than

their non-interlaced counterparts. The interlacing itself may also introduce undesirable

effects. A rather complex option is a VGA output. Such an interface opens the door to
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high-quality, non-interlaced displays, but adding a VGA driver interface would require at

least one additional block to the system-we are basically adding a video card to the sys-

tem!

2.7 Clocking Requirements

As suggested by Figure 2.11, the system can be divided into three distinctly different

clocking regimes, one each for the Bt829A, the DCT/IDCT chipset, and the LCD display.

NTSC Bt829A SRAM DCT IDCT SRAM Sharp
Input Video Fra e Coder Decoder Frame LCD

Device Decoder Buffer Buffer Display

analog 14.318 MHz| 3 MHz 12 MHz

Figure 2.11: Timing requirements for the real-time video datapath.

The Bt829A requires a 28.636 MHz clock to decode an NTSC video signal. Pixel data

are output at half this frequency, 14.318 MHz. These clocking requirements are fixed by

the Bt829A.

The LCD offers more clocking flexibility than the Bt829A. Documentation for the

LCD suggests a 25 MHz clock for a 60 frames/second rate, assuming about 750x520

clock cycles per frame. (Recall that the number of clocks per frame is higher than the

number of pixels on the screen to simulate some horizontal and vertical blanking time.)

Because this system is running at 30 frames/second, a clock rate close to 12.5 MHz would

be ideal. A rate of 12 MHz was chosen both for the ready availability of clock oscillators

and the ease of numeric computation.

The DCT and IDCT support a wide range of clock frequencies; they can operate at

tens of megahertz, or tens of kilohertz. Their clock should be chosen fast enough so that

36



the incoming pixel data can be processed in real-time without frame drops. Since the

frame rate is 30 frames per second at 256x256 = 216 pixels per frame, the chipset must

process 1,966,080 pixels per second. This is the minimum allowable clock rate for the

chipset. While a 2 MHz clock is sufficient, it would leave little idle time between frames,

imposing strict timing requirements on the surrounding stages. A more reasonable choice

is a 3 MHz clock, which provides a generous 50% margin of safety. Another compelling

reason for choosing a 3 MHz clock is that it is exactly one-fourth of 12 MHz, the clock

rate chosen for the LCD. The DCT chipset can now operate synchronously with the LCD

section and the intervening frame buffer.

2.8 A Design Lesson: Modularity and Abstraction

A modular design divides its functionality among a number of distinct units, or "mod-

ules," allowing each module to be designed and tested independently. Modular design is

evidenced by block diagrams, in which designers categorize functionality into distinct,

independent blocks. In a well-designed modular system, each module presents its func-

tionality through a simple input-output interface, and hides the low-level details of its

operation in a metaphorical "black box" [10]. Functionality is abstracted into modular

units.

As each block of this system is implemented by a single device (or pair of devices), the

actual hardware maintains the level of abstraction offered by a block diagram. The video

input and output, in particular, provide a tremendous amount of functionality through a

simple digital interface.

The Bt829A, for instance, carries out all NTSC decoding and digitizing on a single

device. Using the single-chip Bt829A eliminates the need to work with the lower-level ele-

ments that are required for video digitization, such as A/D converters, phase-locked loops,

and digital and analog filters. Most of these components are on-board the Bt829A and are
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hidden from the system; the five discrete analog components connected to the Bt829A

occupy little more than a square inch on the circuit board. Since the goal of this project is

to design a real-time video processing system, and not to design a better NTSC decoder,

the Bt829A provides a valuable abstraction of digital video input.

The Sharp LCD screen provides a similar abstraction for video output. Its versatile,

all-digital interface conceals the details of drawing and refreshing the display. Further-

more, as discussed in section 2.6, the LCD's built-in controller can withstand variations in

line length, number of vertical lines, and refresh rate. The LCD can be treated as a black

box for digital video output.

The clocking discussion of section 2.7 suggests that an even higher-level abstraction is

present in this design. There is a fundamental reason for the three different clocking

regimes: different sections of the system process data in different ways. The video input

and output stages require relatively high clock rates, since each of these stages process

480-line frames with long retrace intervals between frames. The DCT and IDCT proces-

sors process a smaller, 256x256 frame, and can operate on a slower clock. Furthermore,

these stages require different pixel formats. The video input and output stages work with

pixels in a raster-scan (left to right, top to bottom) order, while the DCT chipset works

with pixels in two-dimensional, 8x8 blocks.

It is evident that there are three high-level video functions in this system: digitization,

processing, and display. Furthermore, much of the complexity in this system arises from

the interconnection of these three elements. The solution employed in this system, the

dual-port frame buffer, isolates each of the three high-level functions. These buffers intro-

duce the necessary latency and memory to reorder pixels and alter their rate of flow, and to

allow each of these three major sections to operate asynchronously. In other words, the

frame buffers are physical abstraction barriers between each of the three high-level func-

tions in this system.
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Figure 2.12: Derivation of a higher-level, three-block abstraction.
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Chapter 3

The Control Subsystem

This chapter discusses the control logic for the demonstration system. Control logic is

implemented on Cypress programmable logic devices using VHDL. The devices realize a

series of small finite-state machines that control small segments of the system. The FSMs

control the interfaces of the video data path and device initialization. The wise use of pro-

grammable logic yields a design that is resilient to growth and change.

3.1 The Cypress CPLD

Control logic is stored in complex programmable logic devices (CPLDs). The particular

device chosen for this work is the Ultra37256, manufactured by Cypress Semiconductor

Corporation [11]. Ultra37256 devices consist of 256 macrocells arranged into 16 logic

blocks. The devices are "in-system reprogrammable," meaning that they can be repro-

grammed even after placement onto the circuit board. Logic is programmed in VHDL, a

high-level logic description language, and is compiled and simulated in Warp, a propri-

etary integrated development environment for Cypress programmable logic devices.

Figure 3.1: The Cypress Ultra37256 CPLD.
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The CPLD chosen for this work is a CY37256P160-154AC. The 160 denotes its 160-

pin package, and the 154 denotes its stated maximum operating frequency of 154 MHz.

Out of its 160 pins, 128 pins are available for use as input or output signals. 128 macro-

cells are associated with these 128 pins, one pin per macrocell. The remaining 128 macro-

cells are "buried," for their values are not accessible from a pin. These macrocells can be

used to hold state, intermediate logic, or other logic values that need not appear at the out-

puts.

Prior successes of other groups in MTL with this device family [12][13] greatly influ-

enced its selection. The 154 MHz version of the Ultra37256 was the fastest available when

the system was designed. Despite its higher cost over slower models, it was chosen to min-

imize propagation delay through the control logic.

As such a high-speed CPLD may seem excessive for a system whose fastest oscillator

is 28.6 MHz, a detailed discussion of CPLD speed ratings is worthwhile. The maximum

operating frequencies for CPLDs can be somewhat misleading; the actual maximum clock

speed for a CPLD in a real-world system is dependent on the complexity of the logic real-

ized within the system. The CY37256P160-154AC, though rated for 154 MHz, has a max-

imum propagation delay of tpD = 7.5 ns and a setup time of tS = 4.5 ns. Hence, for a simple

circuit that requires a CPLD output to be fed back into an input, we should operate the

device at no higher than 1/(7.5 ns + 4.5 ns) = 77 MHz, half the rated maximum frequency.

Perhaps the 154 MHz rating indicates that computation can be performed on both phases

of a 77 MHz clock with careful pipelining of the logic within the device.

Second, signals that pass through the CPLD's interconnect matrix n times incur n

times the propagation delay tPD. Signals that arise from particularly complex VHDL struc-

tures, such as highly-nested IF statements and asynchronous overrides of clocked logic,

tend to require more than one macrocell on the CPLD. Every time a signal moves from
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one macrocell to another for further processing, it incurs an additional propagation delay.

Hence, propagation delays for some signals can be double or triple the rated tPD-

Third, even if the device could support computation at a 154-MHz clock frequency, it

would be unwise to use such a CPLD in a system with a clock frequency anywhere near

154 MHz. Doing so would imply that the other devices that interact with the CPLD have

zero delay! The actual maximum operating frequency depends on the sums of all the setup

times, hold times, and propagation delays in any path. Suppose that n devices in a critical

path with the CPLD, and for simplicity assume that all n devices have similar timing

requirements as the CPLD. For this path, the actual maximum operating frequency is the

CPLD's rated maximum operating frequency divided by n. With devices operating on

clocks as high as 28.6 MHz, choosing the fastest available Ultra37256 device no longer

seems like an extravagant decision.

3.2 Real-Time Control for the Video Datapath

Control logic is essential for managing the interface between devices in the video datap-

ath. When data is produced by one device, control logic ensures that the next device is pre-

pared to receive and process it.

3.2.1 Overview

Each stage, be it a frame buffer, coding chip, or display, operates in basically the same

way. A stage remains idle until signalled by the previous stage that a new frame is ready

for output. The stage then reads the video data and process it appropriately. When the

stage is ready to pass the frame's data on to the next stage, it produces a "frame ready" sig-

nal of its own, and begins sending data. Figure 3.2 depicts this conceptual view.

The first stage, the video decoder, produces the initial "frame ready" signal as it digi-

tizes the NTSC signal. This signal propagates down the entire datapath. Hence, the system
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Figure 3.2: Conceptual view of stage interactions.

depends upon the frame boundaries of the analog NTSC signal to control the flow of

frames through the entire system.

Note that the propagation of control signals is entirely one-way. When a stage sends

data, it need only signal the next stage that data will be on the way shortly. The sender

does not wait for any acknowledgment. The receiver is completely responsible for being

prepared for each new incoming frame. Assuming that this condition can be met, this one-

way flow of control and data greatly simplifies the interfaces between stages of the video

datapath.

Table 3.1 introduces the five FSMs that control the video datapath. Each is responsible

for controlling data flow at the interface between two adjacent devices in the datapath. The

NTSC, DCT, IDCT, and LCD state machines each manage the transfer of data to or from a

frame buffer. The DCT and IDCT FSMs are further responsible for converting the raster-

order pixel data to and from the 8x8 pixel block format required by the DCT and IDCT

devices. The NTSC and IDCT FSMs, which operate the write (left) port of a dual-port

frame buffer, generate a "next frame ready" signal for the next FSM in the chain, for the

frame buffers, unlike the other stages in the datapath, are not capable of generating this

signal by themselves. The COMPRESS state machine binds the DCT output with the

IDCT input. It is responsible for converting the DCT's serial output, when active, to a par-

allel input for the IDCT.
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FSM Duties

NTSC Manage data transfer between video decoder and first frame buffer
Signal DCT state machine when a full frame has been loaded

DCT Manage data transfer between first frame buffer and DCT coder
Reorder pixels in frame buffer into 8x8 block format

COMPRESS Manage data transfer between DCT and IDCT devices
Perform serial-to-parallel conversion on DCT serial output

IDCT Manage data transfer between IDCT and second frame buffer
Reorder pixels in frame buffer into raster format
Signal LCD state machine when a full frame has been loaded

LCD Manage data transfer between second frame buffer and LCD
Generate LCD control signals

Table 3.1: FSMs that control the video datapath.

3.2.2 The NTSC State Machine

The NTSC state machine manages the flow of data between the Bt829A video decoder

and the write port of the frame buffer. This FSM toggles between one of two states. It is

waiting when idle, and loading when the Bt829A is digitizing an even field.

The waiting state is the FSM's idle state. The SRAM's port is disabled, and the address

counter is reset to zero. The FSM remains in the waiting state until the Bt829A signals the

arrival of an even field by driving both VRESET and ACTIVE to a logical zero. On the

clock edge following this condition, the FSM advances into the loading state and also tog-

gles WHICHRAM, the signal that selects which of the two SRAMs is being loaded by the

Bt829A. Toggling WHICHRAM also notifies the state machine that controls the DCT that

a new frame of data is available.

In the loading state, the FSM checks whether a valid pixel is being produced by the

Bt829A at every clock. If both DVALID and ACTIVE are high, the data byte that is output

by the Bt829A is a valid pixel of the digitized 256x240 image. In this case, the SRAM's
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port is enabled so that the pixel can be written, and the SRAM address counter is incre-

mented. If either DVALID or ACTIVE is low, the Bt829A data lines contain invalid data.

Hence, the port is disabled, and its address is held at its current value. Once 240 lines of

the image have been read, the FSM returns to the waiting state, where it remains until a

new even field is digitized.

(default transition) * waiting RAM addr <= OxOOO
RAM chip select <= disable

start of new even field?
(VRESET = ACTIVE = 'O' end of field?

and FIELD = 0) (RAM address = OxEFFF)

WHICHRAM <= WHICHRAM

if (DVALID = '1' and ACTIVE = '1') then:

loading RAM chip select <= enable
next RAM addr <= RAM addr + 0x0001

Figure 3.3: State transitions for the NTSC FSM.

3.2.3 The DCT State Machine

The DCT state machine manages the flow of data between the first frame buffer and

the DCT processor. Much like the NTSC state machine, it is implemented in two states,

waiting and loading. These states also serve analogous functions, except that data is read

from the frame buffer and to the DCT coder.

Figure 3.3 illustrates the state transitions for the DCT FSM. The FSM remains idle in

the waiting state and polls the WHICHRAM signal from the NTSC state machine. Recall

that this signal is toggled by the NTSC FSM to signify that a complete frame has been

written by the video digitizer. The DCT FSM synchronizes the WHICHRAM signal to its
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3 MHz clock and advances to the loading state once it detects that the synchronized signal

has changed polarity since the last clock.

In the loading state, the FSM sends data from the SRAM's right (read) port to the DCT

coder. Instead of counting sequentially through the address space, however, the FSM

counts the port address in such a way that the pixels are sent in 8x8 square blocks. (The

pixels within each block, as well as the blocks themselves, are sent in raster order.) The

addressing scheme can be conceptualized as the "crossing" of outputs of a sequential 16-

bit counter as shown in Figure 3.4. This is basically how the counter is implemented in

VHDL.

15 couMf5 cou1S 15 1

16-bit
counter
(on CPLD)

SRAM
address
lines

Figure 3.4: Addressing the frame buffer for raster-to-block conversion.

As the DCT coder requires a start-of-block signal at the beginning of every 64-pixel

block, the FSM generates such a signal in combinational logic. A pulse is sent to the

DCT's SBIN input whenever the SRAM's port address, modulo 64, is exactly zero.

The FSM returns to the idle waiting state once it has finished sending all 256x256 pix-

els in the frame to the DCT. Although the video decoder has actually provided only

256x240 pixels, this stage assumes a full 256x256 frame for maximum flexibility and pro-
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* waiting RAM addr <= OxOOO
SBIN <= '0'

incoming block from IDCT?
(SBOUT = '1') end of frame?

(RAM address = OxFFFF)

WHICHRAM <= WHICHRAM

next RAM addr <= RAM addr + OxOOi
loading if (RAM addr mod 64 = 0) then SBIN <= '1'

else SBIN <= '0'

Figure 3.5: State transitions for the DCT FSM.

cesses the sixteen extra lines as if they were a part of the image. The last sixteen lines are

cropped on the LCD.

3.2.4 The IDCT State Machine

The IDCT state machine connects the IDCT processor with the second frame buffer.

As seen in Figure 3.5, the structure and function are identical to the NTSC FSM. A

SBOUT (start of block) signal from the IDCT causes the FSM to transition from the wait-

ing state to the loading state. Like the NTSC FSM, this state machine also toggles a

WHICHRAM signal to access the other SRAM in the frame buffer and to notify the next

FSM in the chain that the previously loaded frame is ready. Since the DCT FSM guaran-

tees that each frame contains exactly 216 pixels, the IDCT state machine simply reverts to

the waiting state as soon as it completes writing the last pixel. This pixel should corre-

spond to the last pixel of the last block of each frame produced by the IDCT processor.

The IDCT state machine performs two additional functions. First, the FSM actually

buffers each incoming pixel from the IDCT chip for one clock cycle, effectively introduc-

ing a two-stage pipeline. This delay is introduced in case future expansion calls for high-
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latency processing of the data at this stage, before it is displayed on the LCD. Second, the

FSM hard-limits the 10-bit, two's complement pixel values into an unsigned 8-bit range.

Due to roundoff effects within the DCT and IDCT devices, the unsigned 8-bit input to the

DCT can result in a value slightly less than zero or slightly more than 255. Since only the

least significant eight bits are used by the LCD, the FSM's hard-limiting ensures that such

overflows and underflows will not cause, say, a black pixel to appear bright white on the

LCD display.

3.2.5 The LCD State Machine

The LCD state machine manages the flow of data between the second frame buffer and

the LCD screen. The LCD screen offers a display area of 640x480 pixels, but the dis-

played frames occupy only 256x240 pixels. In collaboration with a timing signal genera-

tor, the LCD FSM ensures that the 256x240 pixel frame appears in the center of the

display.

A timing signal generator, also in programmable logic, synthesizes HSYNC and

VSYNC synchronization signals for the display, based on a 12 MHz clock and counters

for each dimension. HSYNC and VSYNC scan the display in raster order, from left to

right and top to bottom. The LCD FSM reads these counters to track the raster scanning of

the LCD display.

This FSM operates similarly to the prior FSMs, with the addition of one additional

state. The FSM begins in the idle state, when the inactive top rows of the display are being

scanned. As soon as the timing signal generator reaches the intended location of the upper-

left hand corner of the image, the LCD FSM enters the lineDrive state. Data is driven from

the frame buffer's read port onto the LCD data lines. The port's address counter is also

incremented. 256 pixels later, the FSM enters the lineWait state, where it remains inactive

until the scanner counts to the intended left edge of the image on the next line, or returns
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to the idle state if the last line in the frame was sent to the display. Figure 3.6 tracks the

state transitions of the LCD FSM as a function of the screen location.

Blanking of the inactive regions of the LCD is achieved by setting the frame buffer

address to OxOOOO while the FSM is the idle or lineWait states. This location is always

loaded with the zero byte OxOO, which displays as black on the LCD.

LCD screen area
idle (640x480)

raster scan _

lineWait lineDrive lineWait

active display area
(256x240)

idle

Figure 3.6: States for the LCD FSM for each pixel on the LCD

3.2.6 The Compress State Machine

The Compress FSM controls the transfer of data between the DCT and IDCT devices.

It is so named because a quantization and compression unit typically follows the DCT in a

compression scheme such as MPEG.

As discussed in section 2.4, the DCT processor outputs data in both a 12-bit parallel

output and a compressed serial output. The parallel output is directly compatible with the

12-bit parallel input of the IDCT. However, no corresponding serial input exists for the

IDCT. The serial data must be converted into parallel form. This is the primary function of

the Compress FSM.

Based on a user input, either the serial or parallel DCT coefficient values are routed to

the IDCT. If the parallel source is selected, the FSM is inactive, and the DCT's SBOUT
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block synchronization signal and the parallel coefficient outputs are routed directly to the

corresponding IDCT inputs with a one-cycle delay. This delay reduces the critical path

length in case further combinational processing is added at a later time

If the serial source is selected, the Compress FSM works to convert and expand the

serial data stream to a parallel form. As the serial data arrive continuously, the solution is

conceptually similar to the "ping-pong" buffering scheme used for data format conversion

throughout this work. However, since valuable Ultra37256 macrocells are being used for

storage and no data rate conversion is necessary, this section is optimized for minimal

memory use.

Rather than a state diagram, the operation of the serial-to-parallel converter is shown

in a timeline form in table 3.2. Over the course of 64 clock cycles, t = 0 to t = 63, eight 8-

bit coefficients are read from the DCT's serial output. They are read in the order D7-DO.

The IDCT, however, requires that they appear in the order DO-D7. Furthermore, the coeffi-

cients must be placed in certain positions in a 64-coefficient block.
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Time Coefficients received from Coefficients sent to IDCT
(t = 0 is start of DCT (serial bit stream) (parallel output)

block)

t = 0...7 D7 DO, D1, D2 (prev. block)

t = 8... 15 D6 D3, D4, D5 (prev. block)

t = 16...23 D5 D6, D7 (prev. block)

t = 24...31 D4

t = 32...39 D3

t = 40...47 D2

t = 48...55 D1

t = 56...63 DO

t = 64...71 D7 (next block) DO, DI, D2

t = 72.. .79 D6 (next block) D3, D4, D5

t = 80.. .87 D5 (next block) D6, D7

Table 3.2: Timetable for serial-to-parallel conversion.

From the table, it is clear that more than 64 bits of storage are necessary. Storing D7-

DO from one block is not sufficient, for the next block immediately follows the current

block. Without additional memory, D7 and D6 from the next block would overwrite the

current D7 and D6 before they could be sent to the IDCT. D5-DO, however, could be over-

written safely by the next block, for they will have been sent to the IDCT before the next

D5-DO arrive from the DCT. Hence, 80 bits is the minimum amount of storage necessary

for this serial-to-parallel converter.

3.3 System Initialization

3.3.1 The Reset State Machine
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The Reset state machine is responsible for coordinating a complete system reset. The

FSM is activated when the user depresses a button on the circuit board. The Reset FSM

then asserts the proper RESET signals to other components and FSMs, manage the initial-

ization of the DCT and Bt829A devices, and signal the other FSMs once the system reset

is complete.

When the system's reset button is depressed, the Reset state machine transitions from

an idle state to a pause state, where it remains until the reset button is released. During this

and all following states, RESET signals are asserted for the Bt829A, DCT, IDCT, and all

state machines.

all FSM and component re-assert DCT's
RESET lines not asserted RESET line

idle delay

cycles?

reset button down? programming
complete?

reset button up?
*pause program

wait until reset button count on the address
is released lines of the DCT

programming ROM

Figure 3.7: State transitions for the Reset FSM.

Once the reset button is released by the user, the Reset FSM enters a program state.

The RESET signal for the DCT (and only the DCT) is released while the DCT is pro-

grammed. Once programming is complete, the FSM enters a second delay state, where the

RESET signal for the DCT is re-asserted. After 32 cycles, the Reset FSM reverts to its idle
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state and all RESET signals are released. The components and FSMs that control the sys-

tem are now in a known state and are prepared for operation.

During the program state, the Reset FSM interacts with an EEPROM which stores an

initialization program for the DCT. The Reset FSM addresses the EEPROM from address

0 and increments the address once per clock cycle. Since some of the EEPROM output

pins are connected to the DCT's programming lines, this process sends the stored program

to the DCT. At the end of the program stored in EEPROM, the high output bit changes

state, notifying the Reset FSM that it can leave the program state and proceed to the delay

state.

3.3.2 The 12C State Machine

The I2C state machine is responsible for programming the Bt829A after a system reset

has completed. Unlike the DCT, which can be programmed through an EEPROM, the

Bt829A requires the programming unit to process acknowledgments. The Bt829A is pro-

grammed through a serial 12C bus interface, which uses a two-way, send-and-acknowledge

protocol. A full FSM is required to implement the 12C bus protocol.

When the 12C FSM is reset, it delivers a program on the 12C bus connecting the FSM

to the Bt829A programming lines. The FSM is capable of handling re-send requests from

the Bt829A. As the 12C bus protocol is fairly complex and the 12C FSM does not interact

with any other elements in the video datapath, its detailed behavior is not discussed here.

Code for the 12C FSM, as well as the state machines above, is available in appendix B.

The 12C bus protocol is discussed in depth in [8].

3.4 Summary

With the addition of control logic to the video datapath, the complete system can now be

conceptualized as in Figure 3.8. This more detailed diagram shows the explicit flow of
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both control and data through the system.

DEVICE 12C Rat DCT
PROGRAMMING FSM RSet Prgram
STAGES EEPROM

NTSC

DATA signal Bt829A Dx DCT ip IDCT Frame > LCD
AGES oder Frae C er (Decoder) Buffer Screen

Buffer

CONTROL C Co s I LCD

STAGES S S SFM

Figure 3.8: Summary of control and data flow through the system.

3.5 Design Lessons: Growth and Change

Systems should be designed to accommodate growth and change. A system that sup-

ports change can be debugged and tweaked quickly. A system that supports growth can

withstand the addition of significant new features without the need for a complete rede-

sign-in this case, the redesign and re-fabrication of the printed circuit board. It is espe-

cially critical that the control logic, which underlies most of the system's functionality, be

designed for growth and change.

The Ultra37256 devices were chosen especially for their support of growth and

change. On the software side, the Warp development environment supports VHDL, a high-

level logic description language. Major changes to algorithms and state machines could be

made by rewriting just a few lines of code and recompiling the VHDL files. Just as com-

puter programs written in a high-level language are easier to modify than assembly-lan-
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guage programs, logic described by VHDL is easier to modify than lower-level

descriptions or hardware.

Hardware features of the Ultra37256 also support a flexible, expandable design. The

in-system reprogramming feature of the Ultra37256 devices allows recompiled logic to be

downloaded to the CPLDs in under a minute. Pin assignments for signals can be changed

even after the devices have been soldered onto the board, a boon for debugging ...or for

miswired signals.

The use of two Ultra37256 devices instead of one is a deliberate design decision,

rather than a necessity. With some optimization and off-chip, hardware realization of sim-

ple logic functions such as counters, one highly-utilized CPLD would have been suffi-

cient. Instead, two under-utilized CPLDs were chosen for the design. There were two rea-

sons for adding the complexity of a second programmable logic device. First, logic

realized on a CPLD is more flexible than logic realized by, say, a group of 7400-series

devices. Second, leaving the devices under-utilized allows room for the addition of signif-

icant amounts of new logic. In this design, the two CPLDs were 46% and 57% utilized.

Implementing the control logic with a careful eye toward growth and change proved

invaluable on one particular occasion. After the entire system had been almost completely

designed, it was realized that one component-an 12C bus driver chip-was unavailable at

the last minute. The solution was an emulation of this device in programmable logic

through the 12C state machine discussed in section 3.3.2 above. To the author's surprise,

this reasonably sophisticated state machine was coded in VHDL in a single day, and

within a minute of compilation, it was downloaded.onto the board. This last-minute modi-

fication could not have been possible without high-level logic descriptions, rapid device

reprogrammability, and enough free space on a device for major additions.
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Chapter 4

Implementation

After the video datapath was designed and the control logic described, the system was

realized on a printed circuit board. This board was designed with careful attention to

debugging and testing, and the board was functional soon after fabrication. This system

successfully verified the functionality of the DCT chipset.

4.1 Printed Circuit Board

The video data path and control logic (with the exception of the LCD screen itself) were

placed on a printed circuit board. The PCB was designed with a suite of tools from Accel

Technologies. A full circuit schematic was entered graphically into Accel Schematic, and

components were placed and signal lines routed with Accel PCB. Since portability is a

worthwhile goal for this demonstration system, the board is designed for minimum size.

The result is a 6.5" x 7" circuit board with a dense arrangement of components. An unpop-

ulated board is shown in Figure 4.1.

The board is composed of six layers. The four outermost layers are signal layers, and

the two innermost layers are the power and ground planes. With the sheer number of

power and ground connections required, the two power planes are a necessity. The planes

also provide some degree of bypassing. Since the Bt829A requires clean analog power and

ground connections for its analog section, the planes are notched at one corner of the

board to provide some isolation from digital noise. The analog section of the decoder,

which is not coincidentally concentrated on one corner of the chip, is placed within the

notched "sub-plane." The DCT and IDCT processors require a separate low-voltage power
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DCT Processor -

IDT7008 SRAMs

Cypress CPLDs

Bt829A Video Decoder -

NTSC In Jack -

-- IDCT Processor

-- LCD Out Port

Z3 IDT7008 SRAMs

- DCT Program ROM

Figure 4.1: The printed circuit board.
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supply for their DCT and IDCT cores. This power is provided on wide traces on an inter-

nal signal layer. These features can be seen 4.2 and 4.3.
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Figure 4.3: Signal layer 2. Wide trace is
the low-voltage power supply.

is the widest trace supported by PCB's auto-

12.5 mil or narrower grid is required to route

signals from the closely-spaced surface mount pads of the CPLDs. A narrower routing

grid or narrower traces would decrease clearances on the board, resulting in potentially

lower reliability and more challenging fabrication.

4.2 Debugging

Facilitating testing and debugging is a goal that was kept in mind throughout the design of

both the PCB and the control logic. The result was well worth the design effort; the entire

system was debugged and functional in only three days.

The PCB is designed with several on-board debugging aids. Most information-bearing

signals, such as RAM addresses, control signals, and video data between each stage of the
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system, are made available on header pins located along the outer edges of the PCB. This

arrangement of over 150 pins greatly expedited the observation of signals on an oscillo-

scope. With so many signals available on the headers, probing individual pins or vias was

almost never necessary. Probing vias is impractical on a board with a 6 mil trace width.

A bank of eight switches and eight light-emitting diodes on the board facilitate debug-

ging. Four of each are connected to each CPLD. The switches allow a variety of debug-

ging routines and test vectors to be stored in the VHDL code and to be called at the touch

of a button. The LEDs are convenient for observing the system's general condition and

state.

The control logic is also designed with debugging in mind. For example, hidden state,

such as FSM states and inter-FSM communication signals within a single CPLD, are

routed onto 1/0 pins on the CPLDs. Information such as FSM state transitions are very

useful for locating problems; exposing them reduces debugging time. All control logic

was simulated extensively using the CPLD simulator in the Warp development environ-

ment. Knowing the control logic's simulated response to test vectors reduced the types of

bugs that could be expected in the actual system.

4.3 Performance

The system was operational soon after fabrication. Though the system worked reliably,

frame latencies were higher than expected. The DCT chipset performed flawlessly with

real-world video input.

4.3.1 The System

Figure 4.4 shows the system in operation. Image quality is good; noise on the power

supplies did not seem to hinder the Bt829A's digitization circuitry. Every NTSC device

that has been with the system-three different cameras and a VCR-yielded a clean
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Figure 4.4: The working system. The photographer is displayed.

image. The datapath functions as designed; a full 30 frames per second of video are sup-

ported with no dropped frames.

Figure 4.5 shows the flow of the frame-start signal through the video datapath as

observed by a digitizing oscilloscope. The Bt829A generates a 30 Hz waveform to signal
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the beginnings of each even and odd field. On every even field (FIELD driven to logical

zero), the NTSC FSM toggles its start-of-frame line to effect the "ping-pong" swapping of

static RAM memories and to notify the next FSM in the datapath that a new frame can be

read. Once the entire frame has passed through the DCT and IDCT processors and has

been completely loaded into the second frame buffer, the IDCT FSM toggles its start-of-

frame signal. Since processing occurs at 3 MHz instead of the minimum 2 MHz, there is

indeed a (2 MHz/3 MHz)* 180 = 120 degree phase lag between the two start-of-block sig-

nals. Finally, generation of VSYNC for the LCD is coupled to the IDCT FSM's start-of-

block signal. Hence, about 1+2/3 frames of latency separate a new frame (VSYNC) at the

Bt829A and the corresponding VSYNC at the LCD.

Tek Run: 5.O0kS/s Sample
T

C1 Freq
FIELD 29.944 H2

from Bt829A Lo1 -a gnpaulfromBt82A '~amplitude

start-of-frame _T_

NTSC FSM 2-

start-of-frame
IDCT FSM 3-

C4 Freq
VSYNC 29 936 H2

Low signal
to LCD 4 amplitude

Ch3 5.00 V Bw Ch4 5.00 V

Figure 4.5: Control signal propagation through the video datapath.

Figure 4.6 provides a closer look at control signal propagation for the DCT and IDCT

processors. As soon as a frame-start signal is received from the NTSC FSM, the DCT

FSM begins to send SBIN block-start pulses to the DCT processor every 64 cycles, indi-
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Figure 4.6: Control signal propagation through the DCT chipset.

cating the block boundaries for incoming data. These start-of-block pulses propagate

through the DCT processor to its output, continue via control logic to the IDCT's input

(not shown), and finally arrive at the output of the IDCT. This final SBOUT signal is used

by the IDCT FSM to monitor data flow between the IDCT processor and the second frame

buffer.

The latency between input and output was higher than expected. The system is basi-

cally designed with a two-frame latency. Each frame buffer introduces about a full frame

delay, but the remaining stages contribute almost no latency. The NTSC decoder might

store a few lines for linear filtering, and the DCT and IDCT have latencies of under 100

pixels. In a demonstration, however, one spectator estimated a 1/8 second delay-about 4

frames-by oscillating his hands in front of the camera and approximately noting the fre-

quency of oscillation at which the on-screen display was 180 degrees out-of-phase with

his hand. This was an unexpected result.
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The most likely reason for this delay is additional latency in the camera and the LCD.

The camera used for that particular demonstration was CCD-based; these cameras typi-

cally sample and buffer a full frame in the digital domain before transmitting the frames in

NTSC. The LCD is also likely to contain a frame buffer to support its flexible clocking

requirements, bringing the total latency for the system to four frames. Latencies for the

camera and LCD could not be confirmed in the documentation, but they are reasonable

hypotheses.

4.3.2 The DCT Chipset

The DCT and IDCT processing cores in this system operate at voltages down to 1.2 V,

below which increasing numbers of blocks appeared corrupted on the display. At 1.2 V,

the two cores require 2.2 mA, for a total power consumption of 2.64 mW. From section

1.3, these devices together consume 4.38 mW + 4.65 mW = 9.03 mW at 14 MHz. Interpo-

lating this figure to 3 MHz yields 1.94 mW, which is not far from the actual power that

these processing cores consume in this system.

For comparison, the 5-volt components in the system draw 0.75 A of current for a net

power dissipation of 3.75 Watts. The CPLDs, operating in a low-power mode, will con-

sume 120 mA at 3.3 V [11], for 400 mW of power. The IDT7008 static memories used in

this system consume 5 mW on standby, but 750 mW when active [9]. With these figures in

mind, the low-power performance of the computation-intensive DCT chipset is impressive

indeed. One can only imagine the reduction in power consumption that will be brought

about by the low-power components of the wireless camera project!
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Chapter 5

Conclusion and Future Work

A number of suggestions for future work were offered and discussed during demonstra-

tions of this system. Three of these ideas are presented here. They promise more function-

ality, better performance, and an enhanced user interface.

Currently, no data quantization or compression is performed between the DCT and

IDCT processors. However, data is passed through a CPLD between these stages, and

there are many macrocells available in the CPLD further computation. These macrocells

can realize a quantizer for the DCT coefficients. The DCT's quantization scheme for its

serial output is a simple one that could certainly be improved upon. Potentially better

schemes can be tested in programmable logic.

The latency of the system can be reduced. Latency, while not a major concern in the

design process, turned out to be quite noticeable when a video camera was used for video

input and the observer could see himself on the LCD. Furthermore, the camera and LCD

both turned out to have higher latencies than expected (see section 4.3). The latency of the

system could be reduced by buffering less than a full frame of data at each buffer while

ensuring that no frames are dropped due to the stricter timing requirements.

User interface enhancements are another possibility. Currently, only 20% of the LCD's

screen area is utilized. Additional information could be displayed on the LCD alongside

the image: a title banner, the system's status and mode of operation, on-screen controls,

and so forth. The unused switches and buttons on the board could provide access to

parameters that are currently fixed, such as on-screen brightness and contrast.

It is worth noting that most of these improvements can be accommodated without

redesign and refabrication of the circuit board. As this system was designed from the start
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for expandability and growth, significant revisions can be made with cleverness and code,

rather than a soldering iron and PCB design tool.

This work is a demonstration of a low-power video coding chipset which requires a

challenging, real-time system design with video input, processing, and output capabilities.

These capabilities are attained by combining the low-power chipset with carefully chosen,

off-the-shelf parts, and arranging them into a seven-stage video datapath. The real-time

constraints are met with programmable control logic, and the constraints themselves are

relaxed through the judicious use of data buffering.

Good engineering design methodologies contributed heavily to the success of this

design. Modularity and abstraction are two fundamental principles. Examples of a modu-

lar design include components which serve as "black-boxes" of functionality, the isolation

of conceptually different parts of the system by buffering, and the use of many small

FSMs in the control logic. Successful designs also facilitate debugging, growth, and

change. These ideas are evident in the implementation of in-system reprogrammable con-

trol logic, larger-than-necessary CPLDs, and header pins placed around the board.

As the first system-level demonstration of the low-power DCT chipset and the wireless

camera's datapath, this system has provided a great deal of practical data and feedback.

The functionality of the DCT and IDCT processors, which had not previously been tested

with full-motion video, were thoroughly verified. As additional components for the wire-

less camera project are completed, the promise of a low-power wireless video system

draws nearer.

Most of all, the greatest beneficiary of this work is.the author. This work encompassed

video processing, real-time control, VHDL logic synthesis, and printed circuit board

design in a full-year design challenge. The background and methodologies gained through

the design and implementation of a complete system are valuable experiences for every

engineer.
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Appendix A

Circuit Schematics

This appendix consists of the complete schematics of the printed circuit board and its

components. All graphics were generated with Accel Schematic.

The remainder of this page is intentionally left blank. The first schematic plate begins

on the following page.

A.1 The Video Decoder
Figure A.1 below shows the Bt829A video digitizer, along with supporting analog cir-

cuitry, the 28.636 MHz clock oscillator, and a section of programmable logic which corre-

sponds to a portion of the NTSC state machine.
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BT1 BT829A

CYC2:B CY7C37256-P2

Figure A.1: Video datapath, Bt829A video decoder.

A.2 The First Frame Buffer
Figure A.2 below shows the pair of IDT7008 devices that make up the first frame buffer,

and sections of programmable logic which correspond to portions of the NTSC and DCT

state machines. The blocks to the upper-left and upper-right are header pins which carry

signals to the edges of the board for easy observation.
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Figure A.3: Video datapath, DCT and IDCT processors.

A.4 The Second Frame Buffer
Figure A.4 below shows the pair of IDT7008 devices that make up the second frame

buffer, and sections of programmable logic which correspond to portions of the IDCT and

LCD state machines.
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Figure A.4: Video datapath, second frame buffer and LCD inerface.

A.5 Miscellaneous Control

Figure A.5 below shows a variety of supporting structures. At the upper-right is the ROM

which programs the DCT on startup, along with a section of programmable logic. Below

are the two top-level interfaces of each CPLD on the board, with switch inputs and LED

outputs. Clock generation and buffering are represented along the bottom.
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Figure A.5: DCT programming ROM, switch/LED interface, and clock generation.

A.6 Electrical Support
Figure A.6 below shows the remaining components. On the upper-right are the connec-
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tions for the in-system reprogramming ports of the CPLDs, where new logic is down-

loaded to the devices. To their left is the wired-AND structure for the 12C bus which

connects to the Bt829A. Bypass capacitors, banana jacks for power, and mounting holes

complete the board.
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Figure A.6: 12C wired-AND, CPLD ISR pins, and circuit board miscellany.
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Appendix B

VHDL Implementation of the Control Logic

Control logic for this system is written in VHDL. This work requires nine VHDL files

whose code is distributed over two Cypress Ultra37256 programmable logic devices.

B.1 The NTSC State Machine

The following file ntsc.vhd generates the NTSC state machine, which controls the inter-

face between the Bt829A video decoder and the first frame buffer.

LIBRARY ieee;

USE ieee.stdlogic_1164.ALL;

USE work.std-arith.ALL;

entity ntsc-sramdrive is port

-- SRAM left side addresses

ntscAdr: buffer stdlogic-vector(15 downto 0);

whichRam: buffer stdulogic;

whichRamNot: buffer std-ulogic;

cs: out std-ulogic;

rw: out std-ulogic;

-- Brooktree 829A

dvalid, active, hreset, vreset, vactive: in std-ulogic;

field, qclk, clkxl: in stdulogic;
oe, rst, i2ccs, pwrdn: out std-ulogic;

-- misc. inputs

reset: in stdulogic

end entity ntsc-sram-drive;

architecture ntsc arch of ntscsramdrive is

type States is (waiting, loading);

signal state, nextState: States;

signal ntscAdrCount: stdlogic-vector(15 downto 0);

signal aboutToLoad: std-ulogic; -- pulses high on wait->load state transition

begin

-- placeholder for unused input signals
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stateMachine: process (state, nextState, vreset, field, ntscAdrCount)
begin

case state is
when waiting =>

-- wait for start of new (even) field
if (vReset = '0') and (active = '0') then

nextState <= loading;
aboutToLoad <= '1';

else
nextState <= waiting;
aboutToLoad <= '0';

end if;

when loading =>
aboutToLoad <= '0';

-- reset after receiving 240 lines
if (ntscAdrCount = "1110111111111111") then

nextState <= waiting;
else

nextState <= loading;

end if;
end case;

end process stateMachine;

cs <= '0' when (dvalid = '1') and (active = '1') and (clkxl = '0')
else '1';

ntscAdr <= ntscAdrCount;-- no fancy SRAM addressing required here
whichRamNot <= not whichRam;

i2ccs <= '0'; -- misc. Bt829A control signals

pwrdn <= '0';
rw <= '0';
oe <= '0';

clockUpdate: process (clkxl, reset)
begin

if (reset = '1') then

state <= waiting;

rst <= '0';
whichRam <= 10';-- not necessary; next FSM only reads transitions

elsif (clkxl'event) and (clkxl = '1') then
state <= nextState;

rst <= '1';

if (aboutToLoad = '1') then
whichRam <= not whichRam;

end if;

if (state = waiting) then
ntscAdrCount <= (others => '0');

elsif (dvalid = '1') and (active = '1') then
ntscAdrCount <= ntscAdrCount + 1;

end if;
end if;

end process clockUpdate;

end architecture ntsc arch;

LIBRARY ieee;
USE ieee.stdlogic_1164.ALL;
USE work.stdarith.ALL;
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package ntscpack is

component ntsc_sramndrive port

-- SRAM left side addresses

ntscAdr: buffer stdlogic-vector(15 downto 0);

whichRam: buffer std-ulogic;

whichRamNot: buffer stdulogic;
cs: out std-ulogic;

rw: out std-ulogic;

-- Brooktree 829A

dvalid, active, hreset, vreset, vactive: in std-ulogic;

field, qclk, clkxl: in stdulogic;

oe, rst, i2ccs, pwrdn: out std-ulogic;

-- misc. inputs

reset: in stdulogic

end component;

end package ntsc-pack;

B.2 The DCT State Machine

The following file dct.vhd generates the DCT state machine, which controls the interface

between the first frame buffer and the DCT processor.

LIBRARY ieee;

USE ieee.stdjlogic_ll64.ALL;

USE work.std arith.ALL;

entity dct-sramdrive is port

-- SRAM right side

dctAdr: buffer std-logic-vector(15 downto 0);

whichRam: in std-ulogic;

data: in std.logic-vector(7 downto 0);

cs, oe: out std-ulogic;

-- DCT chip

blockStart: out std-ulogic;

-- misc. inputs

clk3: in std-ulogic;

reset: in stdulogic;

-- misc. outputs

stateOut: buffer std-ulogic

end entity dctsramdrive;

architecture dctarch of dctsramdrive is

type States is (waiting, loading);

signal state, nextState: States;

signal dctAdrCount: stdlogic-vector(15 downto 0);

signal syncReg, whichRamSync, whichRamold: stdulogic;

signal aboutToLoad, aboutToWait: std-ulogic;
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begin

stateMachine: process (state, nextState, whichRamSync, whichRamOld, dctAdrCount)
begin

case state is
when waiting =>

-- wait for transition on synchronized WHICHRAM from NTSC FSM
aboutToWait <= '0';

if (whichRamSync = not whichRamold) then
aboutToLoad <= '1';

nextState <= loading;

else
aboutToLoad <= ';
nextState <= waiting;

end if;

when loading =>
-- send 256x256 pixels, then go back to waiting state
aboutToLoad <= '0';

if (dctAdrCount = "1111111111111111") then
aboutToWait <= '1';
nextState <= waiting;

else
aboutToWait <= '0';

nextState <= loading;

end if;
end case;

end process stateMachine;

cs <= '0 when (state = loading)

else '1';
dctAdr <=dctAdrCount(15 downto 11) &-- perform raster-to-block mapping

dctAdrCount(5 downto 3) &
dctAdrCount(10 downto 6) &
dctAdrCount(2 downto 0);

stateOut <= '1' when (state = loading) else '0';
oe <= '0';

clockUpdate: process (clk3, whichRamSync, reset)
begin

if (reset = '1') then
state <= waiting;

whichRamOld <= whichRamSync;
elsif (clk3'event) and (clk3 = '1') then

-- synchronize incoming whichRam signal (two registers)
syncReg <= whichRam;
whichRamSync <= syncReg;

state <= nextState;

-- blockStart assigned synchronously to prevent glitches
if ((state = waiting) and (aboutToLoad = '1')) or

((state = loading) and (aboutToWait = '0') and (dctAdrCount(5 downto 0) =
"111111)) then

blockStart <= 1';
else

blockStart <= '0';
end if;

if (state = loading) then
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whichRamOld <= whichRamSync;
end if;

if (state = waiting) then
dctAdrCount <= (others => '0');

else
dctAdrCount <= dctAdrCount + 1;

end if;
end if;

end process clockUpdate;

end architecture dctarch;

LIBRARY ieee;
USE ieee.stdlogicll64.ALL;
USE work.std-arith.ALL;

package dctpack is
component dct_sramdrive port

-- SRAM right side

dctAdr: buffer stdlogic-vector(15 downto 0);

whichRam: in stdulogic;
data: in stdlogic-vector(7 downto 0);

cs, oe: out stdulogic;

-- DCT chip

blockStart: out std-ulogic;

-- misc. inputs

clk3: in std-ulogic;
reset: in std-ulogic;

-- misc. outputs

stateOut: buffer std-ulogic

end component;
end package dct-pack;

B.3 The IDCT State Machine

The following file idct.vhd generates the IDCT state machine, which controls the interface

between the IDCT processor and the second frame buffer.

LIBRARY ieee;

USE ieee.stdlogicll64.ALL;

USE work.std-arith.ALL;

entity idctsramdrive id port

-- SRAM left side

idctAdr: buffer stdlogic-vector(15 downto 0);

whichRam: buffer std-ulogic;

whichRamNot: buffer std-ulogic;

cs, rw: out stdulogic;
dataLatch: buffer stdlogic-vector(7 downto 0);

-- IDCT chip

blockStart: in std-ulogic;
dataIn: in stdlogic-vector(9 downto 0);
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-- misc. inputs

clk3: in stdulogic;
reset: in stdulogic;

-- misc. outputs

stateOut: buffer std-ulogic

end entity idct sram drive;

architecture idctarch of idctsramdrive is

constant lastIdctAdr: stdlogic vector(15 downto 0) := "1111111111111111';

type States is (waiting, loading);

signal state, nextState: States;

signal idctAdrCount: stdlogic vector(15 downto 0);

signal aboutToLoad, aboutToWait: stdulogic;

begin

stateMachine: process (state, nextState, idctAdrCount, blockStart)

begin

case state is

when waiting =>
aboutToWait <= '0';
if (blockStart = '1') then

aboutToLoad <= '1';

nextState <= loading;
else

aboutToLoad <= '0';

nextState <= waiting;
end if;

when loading =>
aboutToLoad <= '0';

if (idctAdrCount = lastIdctAdr) then
aboutToWait <= '1';
nextState <= waiting;

else

aboutToWait <= '0';
nextState <= loading;

end if;

end case;

end process stateMachine;

cs <= clk3 when (state = loading)
else '1';

rw <= '0';

idctAdr <=idctAdrCount(15 downto 11) &-- perform block-to-raster mapping

idctAdrCount(5 downto 3) &

idctAdrCount(10 downto 6) &

idctAdrCount(2 downto 0);

stateOut <= '1' when (state = loading) else '0';
whichRamNot <= not whichRam;

clockUpdate: process (clk3, reset)

begin

if (reset = '1') then

dataLatch <= (others => '0');
state <= waiting;
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elsif (clk3'event) and (clk3 = '1') then

state <= nextState;

-- always assign zero to address zero (for blanking)
if (idctAdrCount = "0000000000000000") then

dataLatch <= (others => '0');
else

-- on 4/8 we discover why white pixels turn black and vice versa.
-- over/under flow! we implement a hard-limiter here to fix it.

if (dataIn(9) = 1') then-- lxxxxxxxxx = negative number.
dataLatch <= "00000000";

elsif (dataIn(8) = '1') then-- Olxxxxxxxx = overflow.
dataLatch <= "11111111";

else -- 00xxxxxxxx = within range.
dataLatch <= dataIn(7 downto 0);

end if;
end if;

if (idctAdrCount = lastIdctAdr) then
whichRam <= not whichRam;

end if;

-- outputBlockStart assigned synchronously to prevent glitches

if (state = waiting) then
idctAdrCount <= (others => '0');

else
idctAdrCount <= idctAdrCount + 1;

end if;
end if;

end process clockUpdate;

end architecture idct-arch;

LIBRARY ieee;
USE ieee.stdlogic_1164.ALL;
USE work.std-arith.ALL;

package idctpack is
component idctsramdrive port

-- SRAM left side

idctAdr: buffer stdlogic-vector(15 downto 0);
whichRam: buffer std-ulogic;
whichRamNot: buffer stdulogic;
cs, rw: out std_ulogic;
dataLatch: buffer stdlogic-vector(7 downto 0);

-- IDCT chip

blockStart: in std-ulogic;
dataIn: in stdlogicyvector(9 downto 0);

-- misc. inputs
clk3: in std-ulogic;
reset: in stdulogic;

-- misc. outputs

stateOut: buffer std-ulogic

end component;
end package idct-pack;
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B.4 The LCD State Machine
The following file lcd.vhd generates the LCD state machine, which controls the interface

between the second frame buffer and the LCD and generates timing signals for the LCD.

LIBRARY ieee;

USE ieee.stdlogic_1164.ALL;

USE work. stdarith.ALL;

entity lcdsramdrive is port

-- ce, rw always enabled in hardware

-- ENAB on LCD always held low; data starts at C48

clkl2: in std-ulogic;

reset: in std-ulogic;

-- SRAM right side

lcdAdr: buffer stdlogic-vector(15 downto 0);--

whichRam: in std-ulogic;

cs, oe: out std-ulogic;

LCD "column" data address, SRAM A

-- LCD screen

enab: out stdjlogic;

hsync, vsync: buffer stdulogic -- active low for 640x480; register these to

prevent glitches

end entity lcd sram drive;

architecture lcd arch of lcd-sram drive is

signal hCount: std-logic-vector(9 downto 0);

signal vCount: stdlogic-vector(8 downto 0);

signal nextlcdAdrCount: stdlogic-vector(15 downto 0);

constant hDataStart: integer := 320;-- LCD pixel position for first pixel.

HIGHER.
constant hDataEnd: integer := 575; -- LCD pixel position for last pixel
constant vDataStart: integer := 150;
constant vDataEnd: integer := 389;
constant hMax: integer 762; -- number of horizontal pixels, plus 48, p
constant vMax: integer := 525;
constant hsyncEnd: integer 80;-- must be at least 1 less than hMax
constant vsyncEnd: integer 30;-- must be at least 1 less than vMax

MUST BE 2 OR

lus hsync width

type vdstates is (idle, lineWait, lineDrive, advanceRow);
signal vd-state, vdnextState: vd-states;

signal lcdAdrCount: stdlogic-vector(15 downto 0);
signal oldWhichRam: stdulogic;
begin

vid drive: process (hCount, vCount, vd-state)

begin
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this line

clock!

this line?

state!

to next one

case vdstate is
when idle =>

if (vCount = vDataStart) then
vd-nextstate <= lineWait;

else
vdnextstate <= idle;

end if;

when lineWait =>-- count off hDataStart pixels before driving LCD on

if (hCount = hDataStart - 1) then-- start blasting data from next

vdnextstate <= lineDrive;
else

vdnextstate <= lineWait;
end if;

when lineDrive =>
if (hCount = hDataEnd) or (hCount = hMax) then-- no more data for

if (vCount = vDataEnd) then-- no more data for this FRAME?
vdnextstate <= idle;-- immediately jump to reset

else -- (end of LINE but not end of FRAME)

vdnextstate <= advanceRow;-- done with this row; move

end if; -- (vCount = vDataEnd)
else -- more data in this line (default case), so stay here.

vdnextstate <= lineDrive;
end if;

when advanceRow =>-- identical to lineWait, except this state triggers

an increment
-- in the high address. Hence, we

stay here only once cycle....
if (hCount = hDataStart - 1) then

vd_nextstate <= lineDrive;
else

vdnextstate <= lineWait;--- ...and then fall back to state

lineWait.
end if;

when others =>
vd-nextstate <= idle;

end case;

end process vid-drive;

cs <= '0';-- for now, always address device (raising CS causes floated pins)

enab <= '1';-- fix high so that LCD takes clk 48 as pixel 0

oe <= '0';

reader addrCount: process (lcdAdrCount, vd-state)

begin
case vd-state is

when idle =>-- reset counter
nextlcdAdrCount <= (others => '0');

when lineWait =>-- new scan line. reset low byte address only

nextlcdAdrCount(7 downto 0) <= (others => '0');

nextlcdAdrCount(15 downto 8) <= lcdAdrCount(15 downto 8);

when lineDrive =>-- advance 1 pixel. increment low byte of address

nextlcdAdrCount(7 downto 0) <= lcdAdrCount(7 downto 0) + 1;
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nextlcdAdrCount(15 downto 8) <= lcdAdrCount(15 downto 8);

when advanceRow =>-- advance 1 line. increment high byte; reset low byte
of addr

nextlcdAdrCount(15 downto 8) <= lcdAdrCount(15 downto 8) + 1;
nextlcdAdrCount(7 downto 0) <= (others => '0');

when others =>-- should never happen. reset all.

nextlcdAdrCount <= (others => '0');

end case;
end process readeraddrCount;

-- blank screen when address is 0. also blank last 16 lines.
lcdAdr <= lcdAdrCount when (vd state = lineDrive)

else (others => '0');

readerclock-update: process (clk12, reset)
begin

if (reset = '1') then
vdstate <= idle;

elsif (clkl2'event and clk12 = '1') then
lcdAdrCount <= nextlcdAdrCount;
vdstate <= vd-nextstate;

end if;

end process readerclock-update;

-- TIMING SIGNAL GENERATOR for LCD. Generates HSYNC and VSYNC scanning signals.

siggen: process (clkl2, reset, whichRam)
begin

if (reset = '1') then
hCount <= (others => '0');
vCount <= (others => 'O');
vsync <= '1';

hsync <= '1';

oldWhichRam <= whichRam;

elsif (clkl2'event and clkl2 = '1') then
if (hCount = hMax) then -- END OF LINE; assert hSync & reset hCount

hsync <= '0';-- assert...

hCount <= (others => '0');-- reset.

if (oldWhichRam = not whichRam) then
oldWhichRam <= whichRam;
vsync <= '0'; -- assert...

vCount <= (others => '0');-- reset.

else -- END OF LINE BUT NOT END OF FRAME
if (vCount = vSyncEnd) then

vsync <= '1'; -- deassert vSync after vSyncEnd lines

end if;
vCount <= vCount + 1;

end if;
else -- not end of line, not end of frame ("USUAL" CASE); increment

hCount

if (hCount = hsyncEnd) then
hsync <= '1'; -- deassert hSync after hSyncEnd pixels

end if;
hCount <= hCount + 1;
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end if; -- (if hCount = hMax]

end if; -- [if clk12 has rising edge]
end process sig-gen;

end architecture lcdarch;

LIBRARY ieee;
USE ieee.stdlogic_1164.ALL;
USE work.stdarith.ALL;

package lcdpack is
component lcdsramdrive port

-- ce, rw always enabled in hardware
-- ENAB on LCD always held low; data starts at clock 48 after HSYNC
clkl2: in std ulogic;
reset: in stdulogic;

-- SRAM right side

lcdAdr: buffer std logic vector(15 downto 0);-- LCD "column" data address, SRAM A
whichRam: in stdulogic;
cs, oe: out std_ulogic;

-- LCD screen

enab: out stdjlogic;
hsync, vsync: buffer std_ulogic -- active low for 640x480; register these to

prevent glitches (better technique?)

end component;
end package lcdPack;

B.5 The Compress State Machine
The following file compress.vhd generates the Compress state machine, which controls the

interface between the DCT and IDCT processors.

LIBRARY ieee;
USE ieee.stdlogicll64.ALL;
USE work.stdarith.ALL;

entity compressor is port
--- DCT chip
lpe: in std-ulogic;
coeffIn: in stdlogic-vector(11 downto 0);
blockStartIn: in std-ulogic;

--- IDCT chip
coeffOut: buffer stdlogic-vector(11 downto 0);
blockStartOut: buffer stdulogic;

--- other i/o
reset: in stdlogic;
clk3: in std-ulogic;
source: in stdulogic

end entity compressor;

architecture comp-arch of compressor is
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constant lowFourBytes: stdlogic-vector(3 downto 0) := "1010";

intPhase: integer(0 to 63);

blockStartBuf1, blockStartBuf2: stdulogic;

serialData: stdlogic-vector(63 downto 0);

serialoverflow: stdlogic-vector(63 downto 48);
lpeCoeff, parallelCoeff: stdlogic-vector(ll downto 0);

sourceSync: stdulogic;

loadSerialData:process
begin

wait until (clk3'event) and (clk3 = '1'); -- act on rising edge of clock
-- the following events happen AFTER the clock rising edge, to be ready
-- in time for the FOLLOWING edge:

serialData(intPhase) <= lpe;-- capture incoming bit from DCT
-- (if we're waiting in 63, we continuously overwrite)

if (reset = '1') then-- reset (active-low) asserted?
intPhase <= 63;-- reset counters to 63. we count DOWN 63 to 0

elsif (intPhase = 63) and (blockStartIn = '0') and (blockStartBufl = '0') then
-- keep on waiting for a blockStart.
sourceSync <= source;-- update coef. source only when idle

else

intPhase <= intPhase - 1;-- update counters: we count DOWN 63 to 0

if (intPhase = 32) then-- copy D6..D7 to serialOverflow buffer, or they'd get
smashed

serialoverflow(63 downto 48) <= serialData(63 downto 48);
end if;

end if;

end process loadSerialData;

outputserialData: process(intPhase, serialOverflow, serialData)

begin

case intPhase is

when 63 =>-- send

lpeCoeff <=
when 62 =>-- send

lpeCoeff <=
when 61 =>-- send

lpeCoeff <=
when 55 =>-- send

lpeCoeff <=
when 54 =>-- send

lpeCoeff <=
when 53 =>-- send

lpeCoeff <=
when 47 =>-- send

lpeCoeff <=
when 46 =>-- send

lpeCoeff <=
when others =>

lpeCoeff <=
end case;

data bit DO in block lx1

serialData(7 downto 0) &

data bit D1 in block 2x1

serialData(15 downto 8)

data bit D2 in block 3x1

serialData(23 downto 16)

data bit D3 in block 1x2

serialData(31 downto 24)

data bit D4 in block 2x2

serialData(39 downto 32)

data bit D5 in block 2x3
serialData(47 downto 40)

data bit D6 in block 3xl
serialOverflow(55 downtc
data bit D7 in block 3x2
serialOverflow(63 downtc

of 8x8

lowFourBytes;

of 8x8

& lowFourBytes;

of 8x8
& lowFourBytes;
of 8x8
& lowFourBytes;

of 8x8
& lowFourBytes;

of 8x8
& lowFourBytes;

of 8x8
48) & lowFourBytes;

of 8x8
56) & lowFourBytes;

(others => '0');

end process outputserialData;
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router: process(clk3, sourceSync)

begin

if (clk3'event) and (clk3 = '1') then

if (sourceSync = '0') then

coeffout <= coeffIn;
blockStartOut <= blockStartIn;-- load block start delay register

else

coeffOut <= lpeCoeff;

if (tempPhase = 63) then

blockStartBuf1 <= blockStartIn;
blockStartOut <= blockStartBufl;

else

blockStartout <= '0';

end if;
end if;

end if;
end process router;

end architecture comp-arch;

LIBRARY ieee;

USE ieee.stdlogic_1164.ALL;

USE work.std-arith.ALL;

package comp-pack is

component compressor port

--- DCT chip

lpe: in std-ulogic;

coeffIn: in stdlogic-vector(ll downto 0);

blockStartIn: in std-ulogic;

--- IDCT chip

coeffout: buffer stdlogic-vector(ll downto 0);

blockStartOut: buffer stdulogic;

--- other i/o

reset: in stdjlogic;

clk3: in std-ulogic;

source: in stdulogic

end component;

end package comp-pack;

B.6 The Reset State Machine

The following file reset2.vhd generates the Reset state machine, which coordinates a com-

plete system reset and drives the ROM that initializes the DCT processor.

LIBRARY ieee;

USE ieee.stdlogic_1164.ALL;
USE work.std-arith.ALL;

entity reset2 is port (

clk3: in std-ulogic;
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resetButton: in stdulogic;

romDone: in std-ulogic;

ntscresetCmd: out std-ulogic;
dctresetCmd: out std-ulogic;

masterReset: buffer std-ulogic;

romAddr: buffer stdlogic-vector(13 downto 0);

resetStateOut: buffer stdulogic

end entity reset2;

architecture reset2_arch of reset2 is

type RunStateType is (run, waitForRelease, programRom, resetHold);

signal resetState, nextState: RunStateType;

signal nextRomAddr: stdlogic-vector(13 downto 0);

signal resetHoldCount: stdlogic-vector(4 downto 0);

signal nextResetHoldCount: std logic vector(4 downto 0);

begin

resetStateOut <= '0' when (resetState = run) or (resetState = programRom) else
'1' when (resetState = waitForRelease) or (resetState = resetHold);

fsm: process (resetState, romAddr, romDone, resetButton, resetHoldCount)

begin

case resetState is

when run =>-- wait for reset button to go down

if (resetButton '0') then

nextState <= waitForRelease;
else

nextState <= run;
end if;

when waitForRelease =>-- wait for reset button to be released

if (resetButton = '1') then

nextState <= programRom;
else

nextState <= waitForRelease;
end if;

when programRom =>-- wait until DCT programming is done
if (romDone = 'l') and (romAddr(13) = '0') then

nextState <= resetHold;
else

nextState <= programRom;
end if;

when resetHold =>-- stall a bit to allow DCT to reset again

if (resetHoldCount = "11111") then

nextState <= run;

else

nextState <= resetHold;

end if;
end case;

end process fsm;

nextResetHoldCount <= (resetHoldCount + 1) when (resetState = resetHold)

else (others => '0');

nextRomAddr <= (romAddr + 1) when (resetState = programRom)
else (others => 'l'); -- default state is all-high!

-- for most sections, assert reset signal throughout the resetting procedure
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ntscresetCmd <= '0' when (resetState = run)
else '1';

masterReset <= '0' when (resetState = run)
else '1';

-- DCT reset is asserted before/after programming routine

dct-resetCmd <= '1' when (resetState = resetHold) or (resetState = waitForRelease)

else '0';

clockupdate: process (clk3)
begin

if (clk3'event) and (clk3 = '1') then

resetHoldCount <= nextResetHoldCount;
romAddr <= nextRomAddr;
resetState <= nextState;

end if;

end process clock-update;

end architecture reset2_arch;

LIBRARY ieee;

USE ieee.stdlogic_1164.ALL;

USE work.stdarith.ALL;

package reset2_pack is

component reset2 port

clk3: in stdulogic;

resetButton: in std-ulogic;

romDone: in stdulogic;

ntscresetCmd: out stdulogic;

dctresetCmd: out std-ulogic;

masterReset: buffer std-ulogic;

romAddr: buffer stdlogic-vector(13 downto 0);

resetStateOut: buffer stdulogic

end component;

end package reset2_pack;

B.7 The 12C State Machine

The following file i2c.vhd generates the 12C state machine, which initializes the Bt829A

decoder using the 12C serial bus protocol.

LIBRARY ieee;

USE ieee.stdjlogicll64.ALL;
USE work.stdarith.ALL;

entity i2c-drive is port
sclW, sdaW: out std-ulogic;
sclR-raw, sdaR: in std-ulogic;
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clk3: in std-ulogic;
reset: in std-ulogic

end entity i2cdrive;

architecture i2c arch of i2cdrive is

signal sclR: stdulogic;-- synchronized version of sclR_raw

type sclkStates is (low, high);

signal sclkState, next_sclkState: sclkStates;

constant maxPhase: integer 31;-- SCK changes phase every "maxPhase" cycles of clk3

constant midPhase: integer 15;-- phase where data changes, start/stop conditions are

sent, etc.

signal phase, nextphase: stdlogic-vector (4 downto 0);

signal sendGo: std-ulogic;

signal bitNum, nextbitNum: integer (0 to 7);-- 0 to 7 addresses bits in a byte

signal byteToSend: stdlogic vector(7 downto 0);

type sdaStates is (idle, startCond, sendByteO, getAckO, ackOPassed, sendBytel, getAckl,

acklPassed,

sendByte2, getAck2, success, ackFailed, stopCond);

signal sdaState, next_sdaState: sdaStates;

type sendStates is (sendCmd, waitForReply, done);

signal sendState, next_sendState: sendStates;

signal cmdNum, nextcmdNum: integer (0 to 15);

constant lastCmdNum: integer := 11;

signal oldReset: std-ulogic;

begin

sclkFsm: process(sclkState, phase, sclR)

begin

case sclkState is

when low =>-- drive SCL low for "phase" cycles of clk3
sclW <= '0';

if (phase = maxPhase) then-- time to flip SCL?

next-sclkState <= high;
next-phase <= (others => '0');

else

nextsclkState <= low;

next-phase <= phase + 1;

end if;
when high =>-- drive SCL high for "phase" cycles of clk3

sclW <= '1';
if (phase = maxPhase) then-- time to flip SCL?

nextsclkState <= low;

next-phase <= (others => '0');
else

nextsclkState <= high;
if (sclR = '0') then-- is Brooktree holding SCL line LOW?

next-phase <= (others => '0');-- wait for BT to release SCL
else

nextPhase <= phase + 1;

end if;
end if;

end case;

end process;
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sdaFsm: process (sdaState, phase, sclR, sdaR, byteToSend, sendGo, bitNum)

begin
case sdaState is
when idle =>-- wait until we are ready to generate a start condition

sdaW <= '1';
nextbitNum <= 7;

if (sendGo = '1') and (sclR = '1') and (phase = midPhase) then
nextsdaState <= startCond;-- drop SDA to signal a start condition

else
next-sdaState <= idle;

end if;

when startCond =>-- drop SDA now to signal start condition.

sdaW <= '0';

nextbitNum <= 7;

if (sclR = '0') and (phase = midPhase) then
next sdaState <= sendByte0;

else
next-sdaState <= startCond;

end if;

when sendByte0 =>
if (bitNum = 7) or (bitNum = 3) then-- send "10001000" to device

sdaW <= '1'; -- this initiates a write to the BT

else
sdaW <= '0';

end if;

if (sclR = '0') and (phase = midPhase) then
next bitNum <= bitNum - 1;

if (bitNum = 0) then
nextsdaState <= getAckO;-- if that was the last bit, switch

states
else

nextsdaState <= sendByteO;
end if;

else
next-sdaState <= sendByte0;
nextbitNum <= bitNum;

end if;

when getAckO =>
sdaW <= '1';-- drive high onto bus, so that BT can pull the

nextbitNum <= 7;-- set to 8 so that sendBytel will

if (sclR = '1') and (phase = midPhase) then

if (sdaR = '0') then

nextsdaState <= ackOPassed;-- successful ACK,

else

send another

else
nextsdaState <= ackFailed;-- no ACK. give up.

end if;

nextsdaState <= getAckO;

end if;

when ackOPassed =>-- wait

sdaW <= '1';
next bitNum <= 7;

if (sclR = '0') and

nextsdaState
else

for middle of SCK low before sending next bit

(phase = midPhase) then
<= sendBytel;

nextsdaState <= ackOPassed;

end if;
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when sendBytel =>
sdaW <= byteToSend(bitNum);-- drive bit "bitNum" onto the bus
if (sclR = '0') and (phase = midPhase) then

next bitNum <= bitNum - 1;

if (bitNum = 0) then

nextsdaState <= getAck1;-- if that was the last bit, switch
states

else
nextsdaState <= sendBytel;

end if;
else

next-sdaState <= sendBytel;
next-bitNum <= bitNum;

end if;

acknowledge

byte

when getAck1 =>
sdaW <= '1';-- drive high onto bus, so that BT can pull the line low to

next bitNum <= 7;

if (sclR = '1') and (phase = midPhase) then
if (sdaR = '0') then

nextsdaState <= acklPassed;-- successful ACK, send another

else

nextsdaState <= ackFailed;-- no ACK. give up.
end if;

else

next-sdaState <= getAckl;

end if;

when acklPassed =>-- wait for middle of SCK low before sending next bit
sdaW <= '1';

nextbitNum <= 7;

if (sclR = '0') and (phase = midPhase) then
next-sdaState <= sendByte2;

else

next-sdaState <= acklPassed;
end if;

when sendByte2 =>
sdaW <= byteToSend(bitNum);-- drive bit "bitNum" onto the bus
if (sclR = '0') and (phase = midPhase) then

next bitNum <= bitNum - 1;

if (bitNum = 0) then

next sdaState <= getAck2;-- if that was the last bit, switch
states

else
nextsdaState <= sendByte2;

end if;
else

next-sdaState <= sendByte2;
next-bitNum <= bitNum;

end if;

when getAck2 =>
sdaW <= '1';-- drive high onto bus, so that BT can pull the line low to

acknowledge

next-bitNum <= 7;
if (sclR = '1') and (phase = midPhase) then

if (sdaR = '0') then
next sdaState <= success;

else
next sdaState <= ackFailed;

end if;
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else
next-sdaState <= getAck2;

end if;

when success =>-- signal that we successfully completed a transaction

sdaW <= '1';
nextbitNum <= 7;

if (sclR = '0') and (phase = midPhase) then
next-sdaState <= stopCond;

else
next sdaState <= success;

end if;

when ackFailed =>-- signal that we could not complete the transaction

sdaW <= '1';

nextbitNum <= 7;

if (sclR = '0') and (phase = midPhase) then
nextsdaState <= stopCond;

else
nextsdaState <= ackFailed;

end if;

when stopCond =>
sdaW <= '0';-- pull line down during low SCK. returning to idle state

during
-- middle of SCK high pulls SDA up and generates stop

condition.
next bitNum <= 7;

if (sclR = '1') and (phase = midPhase) then
nextsdaState <= idle;

else
next-sdaState <= stopCond;

end if;

end case;
end process;

sendCommands: process(sendState, sdaState, cmdNum)

begin

case sendState is
when sendCmd =>-- tell process above that we wish to send data

if (sdaState = startCond) then-- has it kicked off yet?
next-sendState <= waitForReply;
next-cmdNum <= cmdNum;

else -- keep asserting our send request

next-sendState <= sendCmd;
next-cmdNum <= cmdNum;

end if;

when waitForReply =>
if (sdaState = success) then

if (cmdNum = lastCmdNum) then
nextsendState <= done;
nextcmdNum <= cmdNum;

else
nextsendState <= sendCmd;
nextcmdNum <= cmdNum + 1;

end if;
elsif (sdaState = ackFailed) then

next-sendState <= sendCmd;

next-cmdNum <= cmdNum;

else
next-sendState <= waitForReply;
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nextcmdNum <= cmdNum;

end if;

when done =>-- all done! don't ever execute this code again (until next reset)

nextsendState <= done;
nextcmdNum <= cmdNum;

end case;

end process;

sendGo <= '1' when (sendState = sendCmd) else '0';

btProgram: process(sdaState, cmdNum)

begin

if (sdaState = sendBytel) then-- BT register addresses
case cmdNum is

when 0 => byteToSend <= "00011111";-- software reset (SRESET)

when 1 => byteToSend <= "00000001";-- input format (IFORM)

when 2 => byteToSend <= "00000010";-- temporal decimation (TDEC)

when 3 => byteToSend <= "00000011";-- MSB cropping (CROP)

when 4 => byteToSend <= "00000100";-- vertical delay (VDELAY_LO)
when 5 => byteToSend <= "00000101";-- vertical active (VACTIVELO)

when 6 => byteToSend <= "00000110";-- horizontal delay (HDELAYLO)

when 7 => byteToSend <= "00000111";-- horizontal active (HACTIVELO)

when 8 => byteToSend <= "00001000";-- horizontal scale hi (HSCALEHI)

when 9 => byteToSend <= "00001001";-- horizontal scale lo (HSCALELO)

when 10 => byteToSend <= "00010011";-- vertical scale hi (VSCALE HI)
when 11 => byteToSend <= "00010100";-- vertical scale lo (VSCALELO)

when others => byteToSend <= "11110000";

end case;

elsif (sdaState = sendByte2) then -- command arguments

case cmdNum is

when 0 => byteToSend <= "00000000";-- don't care

when 1 => byteToSend <= "01001001";-- force NTSC mode
--when 2 => byteToSend <= "00000000";-- no decimation (both flds)
when 2 => byteToSend <= "10011110";-- TDEC = 9E (odd field only)

when 3 => byteToSend <= "00100001";-- VD VA HD HA
when 4 => byteToSend <= "00010110";-- VDELAY = 22 (Default)
when 5 => byteToSend <= "00000000"; -- VACTIVE = 512 (high bit in R3)
when 6 => byteToSend <= "01011000"; -- HDELAY = 32+24+32
when 7 => byteToSend <= "00000000"; -- HACTIVE = 256 (high bit in R3)
when 8 => byteToSend <= "00010101"; -- HSCALE HI = Ox15
when 9 => byteToSend <= "01010101"; -- HSCALE LO = Ox55
when 10 => byteToSend <= "00000000"; -- VSCALE HI = OxOO (odd fld

only)

-- when 10 => byteToSend <= "01111111"; -- VSCALE HI = Ox1F (both
flds)

when 11 => byteToSend <= "00000000"; -- VSCALE LO = OxOO
when others => byteToSend <= "11110000";

end case;

else

byteToSend <= (others => '0');

end if;
end process;

sclR <= sclW;-- enabled for simulation only

clockUpdate: process(clk3, sclRraw)

begin

sclR <= sclR raw;-- synchronize the incoming SCLK signal

if (clk3'event) and (clk3 = '1') then
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if (reset = '1') then
phase <= (others => '0');

sclkState <= low;

sdaState <= idle;
bitNum <= 7;

sendState <= sendCmd;
cmdNum <= 0;

else
phase <= nextphase;
sclkState <= nextsclkState;
sdaState <= nextsdaState;
bitNum <= nextbitNum;
sendState <= nextsendState;
cmdNum <= nextcmdNum;

end if;
end if;

end process;
end;

LIBRARY ieee;
USE ieee.stdjlogic_1l64.ALL;
USE work.std-arith.ALL;

package i2cpack is

component i2cdrive port
sclW, sdaW: out std ulogic;
sclR raw, sdaR: in std-ulogic;

clk3: in std-ulogic;

reset: in stdulogic

end component;
end package i2cpack;

B.8 CPLD Top-Level File #1

The following file top2.vhd assembles the code for the DCT, IDCT, LCD, and 12C state

machines for placement in a single CPLD. This file also contains logic for receiving and

dividing the signal from the 12 MHz clock oscillator.

LIBRARY ieee;
USE ieee.stdlogic_1164.ALL;
USE work.std arith.ALL;
USE work.dctpack.ALL;
USE work.idct-pack.ALL;
USE work.lcdpack.ALL;
USE work.i2cpack.ALL;

entity toplev2 is port

-- DCT DECLARATIONS
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-- control

btwhichRam: buffer std-ulogic;

-- SRAM right side

dctadr: buffer stdlogic-vector(15 downto 0);

dctcs, dctoe: out std-ulogic;

dctin: in stdlogic-vector(7 downto 0);-- access to raw video data

-- DCT chip

dctsbin: out stdulogic;

-- DCT misc

dctstateout: buffer std-ulogic;

-- IDCT DECLARATIONS

-- SRAM left side

idctadr: buffer stdlogic vector(15 downto 0);

idctwhichram: buffer std ulogic;

idctwhichramnot: buffer std_ulogic;

idct-cs, idct-rw: out std-ulogic;

idct-outpr: buffer stdlogic-vector(7 downto 0);

-- IDCT chip

idct-sbout: in std_ulogic;

idct-out: in stdlogic-vector(9 downto 0);

-- misc. outputs

idctstateout: buffer std-ulogic;

-- LCD DECLARATIONS

-- SRAM right side

lcdadr: buffer stdlogic vector(15 downto 0);-- LCD "column" data address, SRAM A
lcd-cs, lcd-oe: out std-ulogic;

-- LCD screen

lcd-enab: out stdulogic;

lcdIhsync, lcdvsync: buffer stdulogic; -- active low for 640x480; registered to
prevent glitches

-- 12C DECLARATIONS

i2cscldrive, i2csda_drive: out stdulogic;

i2csclread, i2c-sdaread: in std-ulogic;

-- STUFF FROM OTHER CPLD

dctresetCmd: in stdlogic;

genericresetcmd: in stdjlogic;

comm: in stdlogic-vector(3 downto 0); --reduced from 5 to
4/8

extend the IDCT output

--- other signals handled here

clkl2Raw: in stdulogic;-- clock signal from crystal oscillator
clkl2Out: out std-ulogic;-- all clocks exit before re-entering to minimize slew
clk30ut: buffer stdulogic;
clkl2, clk3: in std_ulogic;-- incoming clock signals

-- debugging switches

swRaw: in stdlogic-vector(4 downto 1);
led: out stdlogic-vector(4 downto 1)

98



end entity toplev2;

architecture top2_arch of toplev2 is

-- Signals used solely by modules here

constant clockDivideFactor: integer := 1;-- clk3 is clkl2 divided by 4

signal clockPhase: stdlogic-vector (2 downto 0);

signal sw: stdlogic-vector(4 downto 1);

begin

-- placeholder for currently unused i/o pins

led <= idct-out-pr(7 downto 6) & idct-outpr(l downto 0);

--comm(5 downto 0) <= "010101";

-- pass the 12 MHz oscillator signal through

clkl2Out <= clkl2Raw;

-- divide 12 MHz clock down to 3 MHz

clockDivider: process(clkl2Raw, clockPhase, clk3Out)

begin

if (clkl2Raw'event and clk12Raw = '1') then-- use raw clock to min. skew?

if (clockPhase < clockDivideFactor) then

clockPhase <= clockPhase + 1;

else

clk3Out <= not clk3Out;

clockPhase <= (others => '0');

end if;
end if;

end process clockDivider;

-- synchronize raw input signals. coming soon...debouncing!

syncTime: process (swRaw, clk3)

begin

if (clk3'event) and (clk3 = '1) then

sw <= swRaw;

end if;

end process syncTime;

-- VHDL convention is: partSignal => toplevelSignal

dctPart: dctsram_drive port map

-- SRAM right side

dctAdr => dct-adr,

whichRam => btwhichram,

data => dct-in,

cs => dct-cs,

oe => dct-oe,

-- DCT chip

blockStart => dctsbin,

-- misc. inputs

clk3 => clk3,

reset => dctresetCmd,

-- misc. outputs

stateOut => dctstateout
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idctPart: idctsramdrive port map
idctAdr => idct-adr,
whichRam => idct-whichram,
whichRamNot => idctwhichramnot,
cs => idct-cs,

rw => idct-rw,

dataLatch => idct-out-pr,

-- IDCT chip

blockstart => idct-sbout,
dataIn => idctout,

-- misc. inputs

clk3 => clk3,

reset => generic resetcmd,

-- misc. outputs

stateOut => idct-stateout

lcdPart: lcdsramdrive port map

-- ce, rw always enabled in hardware

-- ENAB on LCD always held low, data starts at C48
clkl2 => clk12,

reset => genericresetcmd,

-- SRAM right side

lcdadr => lcdadr,

whichRam => idct-whichram,
cs => lcd-cs,

oe => lcd-oe,

-- LCD screen

enab => lcd-enab,

hsync => lcd-hsync,

vsync => lcdvsync -- active low for 640x480, registered to prevent glitches

i2cPart: i2c-drive port map

sclW => i2c-scl-drive,
sdaW => i2c-sda-drive,
sclR raw => i2csclread,
sdaR => i2csda-read,
clk3 => clk3,

reset => generic-resetcmd

end architecture top2_arch;

B.9 CPLD Top-Level File #2
The following file topaux.vhd assembles the VHDL files for the Reset, Compress, and

NTSC state machines for placement in a single CPLD.

LIBRARY ieee;
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USE ieee.stdlogic-ll64.ALL;

USE work.std-arith.ALL;

USE work.reset2_pack.ALL;

USE work.comp-pack.ALL;

USE work.ntsc-pack.ALL;

entity toplev-aux is port

--- DCT chip

dctjlpe: in stdulogic;
dctout: in stdlogic-vector(11 downto 0);

dctsbout: in std-ulogic;

--- IDCT chip

idctin: buffer std-logic-vector(11 downto 0);

idct-sbin: buffer stdulogic;

--- other i/o

compreset: in stdjlogic;

clk3: in std-ulogic;

idctcoeffsrcraw: in std-ulogic;

-- NTSC DECLARATIONS (39 bits)

-- sram left side

btadr: buffer stdlogic-vector(15 downto 0);

btwhichram: buffer stdulogic;-- to other CPLD

btwhichramnot: buffer std-ulogic;

bt-cs: out std-ulogic;

btrw: out std-ulogic;

-- Brooktree 829A

btdvalid, bt-active, bt-hreset, bt-vreset, bt-vactive: in std-ulogic;

btfield, btqclk, btclkxl: in std-ulogic;

btoe, btrst, bti2ccs, btpwrdn: out std-ulogic;

--- RESET UNIT DECLARATIONS (15 bits)

rstromdone: in std-ulogic;

rstromaddr: buffer stdlogic-vector(13 downto 0);

rststateout: buffer std-ulogic;

rstgenreset: buffer std-ulogic;

dct-resetcmd: out std-ulogic;

--- other signals handled here

resetRaw: in stdulogic;-- unsynchronized reset button

swRaw: in stdlogic-vector(8 downto 5);

led: out stdlogic-vector(8 downto 5);

comm: in stdlogic-vector(5 downto 0)

end entity toplev-aux;

architecture topaux-arch of toplevaux is

signal ntsc resetcmd: stdulogic;

signal rst-buttonsync: stdulogic;

signal sw: stdlogic vector(8 downto 5);

signal idct-coeffsrc: stdulogic; -- synchronized version

begin

-- placeholders
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led <= sw or (sw(7) & sw(8) & sw(5) & sw(6)) or (bt-hreset & bt-vactive & bt-qclk &
sw(5));

comm(5 downto 0) <= idct-in(11 downto 9) & idct-in(2 downto 0);

syncTime: process (resetRaw, clk3)

begin

if (clk3'event) and (clk3 = '1') then

idctcoeffsrc <= idctcoeffsrcraw;
sw <= swRaw;

rst-buttonsync <= resetRaw;
end if;

end process syncTime;

compPart: compressor port map

--- DCT chip

lpe => dct_lpe,

coeffIn => dct-out,
blockStartIn => dctsbout,

--- IDCT chip

coeffout => idct-in,

blockstartout => idctsbin,

--- other i/o

reset => rst-genreset,
clk3 => clk3,

source => idctcoeffsrc

ntscPart: ntscsramdrive port map

ntscAdr => btadr,
whichRam => bt-whichram,
whichRamnot => btwhichramnot,
cs => bt-cs,
rw => bt-rw,

-- Brooktree 829A

dvalid => btdvalid,
active => btactive,
hreset => bthreset,
vreset => bt-vreset,
vactive => bt-vactive,
field => bt-field,
qclk => btqclk,
clkxl => btclkxl,
oe => bt-oe,

rst => bt-rst,

i2ccs => bti2ccs,
pwrdn => bt-pwrdn,

-- misc. inputs

reset => ntscresetcmd

resetPart: reset2 port map

clk3 => clk3,
resetButton => rst-buttonsync,

romDone => rstromdone,

ntscresetCmd => ntscresetCmd,
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dctresetCmd => dct-resetCmd,
masterReset => rst genreset,

romAddr => rst-romaddr,
resetStateOut => rst-stateout

end architecture;
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