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Abstract

Embedded systems exhibit reactive behaviors that can rapidly respond to stimuli, yet
must keep a long-term goal in sight. These requirements make software development
for such systems difficult because of the conflicting short-term and long-term goals.
The subsumption architecture attempts to solve this issue by presenting a system in
terms of a network of horizontally layered behaviors implemented using Augmented
Finite State Machines (AFSMs). The subsumption architecture works well but has
not found its way into widespread use; one possible reason is the mindshift required to
express behaviors in terms of a state machine. Another barrier is the traditional im-
plementation of subsumption architectures in hardware or specialized programming
languages. This thesis describes an attempt to address both issues using a subsump-
tion architecture implemented in Java as well as an encapsulation system designed
to allow fragments of robot behaviors coded using traditional methods that are to
be embedded in AFSMs. The approach allows a bottom-up incremental approach to
system implementation while encouraging an eventual reimplementation from the top
down. This was also introduced to contestants in the 1999 6.270 Autonomous Robot
Design Competition with some degree of success.
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Chapter 1

Introduction

This thesis describes an effort to make embedded system software development easier

and more intuitive called BotKit. BotKit was developed for use in the MIT 6.270 Au-

tonomous Robot Design Competition in conjunction with a new controller hardware

platform called the Robot Controller.

Chapter 1 gives a general background on the 6.270 contest and the challenges

that are commonly found in software development for embedded systems, particularly

the robots used in the contest. Chapter 2 describes the different possible software

models and introduces finite state machines as alternatives, where Chapter 3 goes

on to introduce the subsumption architecture and how it can help model embedded

systems. Chapter 4 goes over the implementation of BotKit and the Robot Controller

6.270 controller, and Chapter 5 presents results from deployment in the 1999 6.270

contest, and identifes areas for future work.

1.1 Embedded Systems

This section describes the basic ideas and challenges in designing and implementing

an embedded system.
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1.1.1 Introduction

An embedded system can be said to be a combination of hardware and software that

forms a larger system and which is expected to function without human intervention.

A typical embedded system consists of a single-board computer with software in

ROM or Flash memory. This system starts running some special purpose application

program as soon as it is turned on and does not stop until it is turned off.

Examples of embedded systems can be found in many home and industrial applica-

tions. Most control processes in industrial settings are run using embedded platforms

and special purpose hardware/software. Automobiles also have a number of em-

bedded processors controlling such things as engine ignition, fuel injection, anti-lock

brakes, etc. Even children's toys now have small inexpensive embedded computers in

them to enhance interactivity and flexibility.

These systems also tend to have unorthodox input/output ports, at least by desk-

top standards. Many of them do not have any of the normal peripherals such as

a keyboard, monitor, mass storage, or user interface software. Instead, they inter-

act with sensors and transducers that interface directly to the physical environment

around them. Some examples are potentiometers, temperature sensors, etc. Often,

the only recognizable connection to the desktop world is a serial interface used for

configuration and reprogramming.

1.1.2 Development Cycles

Developing code for an embedded system is quite different from the process used for

a desktop machine. Unlike a desktop machine, embedded controllers are normally

incapable of running the compilers and development environments on the systems

themselves. For example, a common embedded processor, the Intel 8051, has only

2KB of memory in it by default. A C compiler would be hard pressed to fit.

Therefore, most embedded development is done on other systems, normally desk-

tops or workstations. These "host PCs" run cross-compilers that generate code for

the embedded architecture, which is then downloaded to the target system via a serial
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link and burned into ROM. Debugging facilities tend to be limited because there are

typically not enough resources to load both the code and a debugging environment

at the same time. The development cycle is also a bit longer due to the time needed

to download a ROM image to Flash memory or transfer programs over a serial line

before execution. As embedded systems start to come equipped with more onboard

memory, co-resident debug stubs and monitors are more easily integrated into the

system, but there will always exist a case for extreme space optimization to reduce

cost that precludes use of onboard debuggers.

1.1.3 Real-Time Response/Reactive Control

Embedded system software has different constraints than desktop software. Some of

these constraints make embedded code somewhat harder to design and implement.

Since embedded systems are meant to operate in the background, users therefore

expect them to simply work without having to stop and consciously interact with

the system. Even when human interaction with an embedded system is required,

instantaneous or near-real-time feedback is expected, not just to the user but in the

system's response to the physical environment.

For example, a building thermostat has to continually poll sensors from various

locations in an attempt to make decisions about how to control the heating and

cooling systems to maintain a constant temperature. In addition to this long-range

planning, the system has to respond to temperature-change inputs from users and

immediately replan its heating/cooling strategy. Furthermore, the heating/cooling

systems and the building are analog in nature and so do not ramp up and down

instantaneously, so there is a feedback delay for changes the thermostat controller

makes to the outputs. Extrapolate this type of situation to that of an aircraft engine

controller that has to deal with turbines rotating at tens of thousands of rpm, and

the response-time requirements become much more stringent.

12



1.1.4 Code Reliability

Embedded code also has to be extremely robust; this is not to say that desktop

software can get away with extremely bad code, but the consequences of failures in

embedded software are often higher. If an elevator gets confused and sticks between

two floors, people will get annoyed. But if an airplane crashes because its engine con-

trols get wedged in an unforeseen state, that is simply unacceptable. Many embedded

systems operate under conditions in which failure is not an option, both literally and

figuratively.

This emphasis on code correctness and robustness in the face of unfamiliar sit-

uations necessitates a very conservative approach in code development. Embedded

systems in critical applications often are required by law to be certified line by line.

Even for simpler systems, the number of potential inputs and outputs are very large

due to their direct interface to the outside world. Something as simple as a VCR

has to deal with sudden inputs from users like repeated presses of the Pause/Play

buttons, ejecting a tape while playing, etc. Simply discovering all of the possible

states in such a system is very difficult.

1.2 Robotics and Embedded Software

Robots are perhaps the most obvious application of embedded systems. The robotics

field also presents embedded systems with some of its hardest problems. A completely

autonomous robot is faced with real-time response requirements from multiple sen-

sors, necessitating quick decision paths[11]. However, a higher-level thought process

also has to guide overall robot behavior and account for momentary changes in state

due to sensor readings. This makes software development for robots a particularly

difficult process.

However, robot control software is capable of demonstrating many lessons about

software engineering and design in a real-world environment. People who have been

through this process usually have a healthy respect for what it takes to get code to

survive in a demanding environment. At the Massachusetts Institute of Technology,
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one class has attempted to introduce successive generations of students to the issues

connected with robot control systems and embedded software development. This

class is the MIT Autonomous Robot Design Competition, or simply 6.2701.

1.3 Motivation: The MIT 6.270 Contest

6.270 is a month-long class in which students design and build a robot that will

compete in a competition at the end of the month. The goal is for the students

to design and build a machine out of LEGO 2 that can navigate the playing field,

manipulate game objects, and interact (or avoid interacting as the case may be)

with other opponents. 6.270 robots are completely autonomous and so must be

programmed to operate on their own after a round starts; a small embedded controller

and sensors are mounted to each robot to allow autonomous control. The kit is the

same for each team; the amount of LEGO and sensors per robot is held to a constant

maximum to encourage creativity and level the playing field.

The goal of 6.270 is to teach students about robotic design by giving them the

hardware, software, and information they need to design, build, and debug their

own robot. The class is very much a hands-on experience; students generally learn

everything they need to know from hacking on their robots and working with each

other. It is also the largest student-run event at MIT and attracts extremely large

audiences every January when the contest is held. The class has also spawned many

other classes and robotics organizations at other universities and schools around the

world.

It is important to note that 6.270's mission is first and foremost an educational

one. Besides providing contestants with a "real world" engineering problem and a

limited time frame and budget, the class' environment is unique in its mix of theory

and real-life practice placed in the context of a contest. Students also tend to find

the course extremely engaging despite its high time commitment and arguably learn

'Everything at MIT is commonly referred to by a number for brevity, including classes and

buildings.
2LEGO is a registered trademark of the LEGO Group.
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Figure 1-1: A photo from the 1999 6.270 competition

more about engineering than they would in a comparable classroom setting. It is

not uncommon to see students staying up through all hours of the night working on

their robots even though the class carries a negligible amount of academic credit.

This is made more compelling when one considers that 6.270 is held during MIT's

Independent Activities Period, which is a time generally reserved for fun and relaxing

activities between the fall and spring semesters.

1.3.1 Author's involvement

I first competed in the 6.270 contest in January 1995 of my freshman year at MIT.

My robot performed respectably, but a combination of hardware and software flaws

caused it to lose and be eliminated from the competition. Most notably, I made a

crucial mistake and assumed that a path in the code would always be followed before
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a certain turn. Changes in the light level falling on the table code this code path to

never execute during competition, so the robot never made the turn. If there had

been a timeout or some other way to skip this step and continue with the rest of

the routine, my robot would have probably done okay, but I failed to anticipate the

possibility of not making the turn.

My experience writing the code for my team's robot left an impression on me,

and the following year I convinced myself that I really wanted to learn how to design

robust computer systems. I ended up volunteering again as a Teaching Assistant for

6.270 in 1997, and I have been a Contest Organizer for 6.270 from 1998 to the present.

In my capacity as a Contest Organizer, I have worked with the other Organizers

on all aspects of the contest, ranging from running the entrance lottery to giving

lectures, building the contest table, and speaking on contest night. However, my

main interest has always been in the teaching and technology aspects of the contest.

6.270 provides students with an opportunity to interact with hardware and software

in ways that to date have not been available in official MIT courses. The technology

connected with the contest also has several characteristics that are not visible in other

courses, like the Interactive C environment, direct control motors and actuators from

a high-level programming language, and software interfaces to sophisticated sensors.

The programming problems inherent in writing code for robots also present a hard

educational problem in addition to a technical one.

1.3.2 Original 6.270 Controller History

The 6.270 contest first started as a completely simulated competition; robots faced off

against each other on a virtual battleground. It was only in 1990 when the contest first

featured fully autonomous robots running without any external help from computers

or power sources[19].

The first 6.270 controller board (shown in Figure 1-2) consisted of a Motorola

68HC11 microcontroller with 32 kilobytes of SRAM and assorted analog-to-digital

converter chips, motor drivers, and input/output ports. It was programmed using

assembly language; no doubt giving some contestants problems, to say the least. In
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fact, conversations with some contestants from that era have revealed that the reason

some of the robots that year looked and acted the same was that one team got their

assembly code working, and many teams just copied them and were too afraid to try

modifying it. Fortunately, the following year saw the introduction of a small inter-

preter that allowed robots to be programmed using a subset of the C programming

language. This environment was called Interactive C, and it made the contest much

more accessible to students. The combination of a small, readily available board with

an easy-to-use programming interface has made the 6.270 Controller Board, Rev. 2.21

C, one of the most popular controllers in use worldwide by hobbyists and educators.

Figure 1-2: The Old 6.270 Controller

In 1997, an attempt was made by the 6.270 organizer staff to redesign the con-

troller and take advantage of technological advances made since 1990. This effort

produced a good list of areas for improvement and some early concept designs, but

time constraints on staff prevented them from completing the design. In the Spring

17



of 1998, I decided to make a new 6.270 controller as a testbed for the ideas contained

in this thesis. This decision gave me a concrete target for my ideas and a way to

try out the BotKit concept in a real 6.270 contest. However, the amount of effort

required to engineer the hardware design and work on the BotKit framework seemed

prohibitive.

1.3.3 Compaq CRL Involvement

At this point, I presented the thesis proposal was taken to the Compaq Cambridge

Research Laboratory (CRL), since they were my 6A sponsors. It turned out that

CRL was interested in creating a small processor board for use in mobile computing

research. After some discussion, CRL decided to help sponsor 6.270 by designing and

fabricating controller boards for the 1999 competition. As a result, BotKit merged

with the CRL Personal Server3 project.

1.3.4 Development Software

6.270's sponsorship by Compaq CRL took care of the hardware design work. However,

the development software still needed some consideration. One of the reasons for

the great success of 6.270 has been its interactive programming environment. This

environment, called Interactive-C, makes development of code for robots accessible

to beginners and makes development easier for advanced users. Many of the lessons

learned from Interactive-C can be applied to embedded system software development

in general, and any replacement environment for the contest must provide some of

the benefits as well.

Interactive-C: Introduction

Fred Martin, one of the original organizers of the contest, spent some time analyzing

the elements that make 6.270 special in his PhD. dissertation and found that a number

of factors have contributed to its success. However, he noted that one of the major

3http://www.crl.research.digital.com/projects/personalserver
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factors that drives the entire contest is the lack of time[17]. Teams have only three

weeks to build and program a robot from scratch, and that introduces tremendous

pressure on the part of software developers to deliver working systems quickly.

Using traditional development tools, the compile-link-debug cycle takes far too

long in the 6.270 environment because the time spent downloading new code images to

the controller board significantly slows down the process of refinement. Additionally,

having to compile and link code just to run a few tests discourages experimentation

and tinkering. The IC environment was created to address these issues by running

a C interpreter on the target platform that integrated an interactive shell. Users

could then type in C code over the serial line and watch it execute immediately to

get feedback.

Advantages

This interactivity allows contestants to try out new algorithms and techniques with-

out the overhead of writing a test program just for that purpose. Nothing beats being

able to simply call a function with some test arguments by typing in the appropriate

C code and pressing "enter". For the majority of users, this is the single greatest

strength of the Interactive-C environment, for it allows them to rapidly try out differ-

ent parameters and test cases without resorting to writing test stubs just to exercise

those functions. This shortens the development cycle considerably. The screendump

in Figure 1-3 shows a session with IC.

Disadvantages

Unfortunately, one common complaint with IC is that it implements only a subset

of the C programming language. In its current incarnation, programmers cannot use

many C constructs that they take for granted like switch/case statements, typedefs,

or function prototypes. This is not really a fault against the concept of Interactive-

C itself, but against its status as a cult language. Development lags behind that

of bigger vendors because it does not have the scale of support that a widespread

development environment has. If there were a bigger user base for Interactive-C, this
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C> printf("Hello World!");

Downloaded 9 bytes (addresses C200-C208)

Hello World!

Returned <void>

C> arrprint_2d(a);
Downloaded 9 bytes (addresses C200-C208)

1 10

5 50
-5 -50
2 20

10 100

Returned <void>

C> arrsort_2d(a);

Downloaded 9 bytes (addresses C200-C208)

Returned <void>

C> arrprint_2d(a);
Downloaded 9 bytes (addresses C200-C208)

-5 -50
1 10

2 20

5 50
10 100

Returned <void>

Figure 1-3: An example Interactive-C session

concern could be alleviated.

Also, the implementation of Interactive-C is not very portable. The interpreter is

almost completely implemented in assembly language for the 68HC11 microcontroller

family. This makes moving the environment to new hardware somewhat difficult

unless the boards are also based on Motorola processors. With the new hardware

coming online for the contest, this was viewed as the worst disadvantage of Interactive-

C.
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1.3.5 Final Software Specifications

With this analysis of Interactive-C in mind, a set of requirements was set out for

the next generation development environment. Even though these requirements are

specific to the MIT 6.270 contest, they can be extrapolated or modified slightly to

encompass general embedded system requirements as well.

User Skill Level

The students taking 6.270 are generally MIT undergraduates in their freshman or

sophomore year. Juniors and seniors do take the course, but fewer do because of the

general increased academic workload by that time. As a result, 6.270 has traditionally

drawn its entrants from underclassmen. Given the short time frame of the contest,

one cannot expect the students to learn a completely new programming language

that has no analogue outside of the contest. Interactive-C succeeded because it was

at least somewhat like C. The replacement environment must continue this trend. In

fact, it must be even easier than Interactive C, because compared to ten years ago

when the contest first started a higher percentage of 6.270's entrants are not computer

science majors .

Also, the environment should support both usual procedural programming and

whatever new methods are introduced. Despite the advantages of state machine

networks, one cannot ignore the fact that most users still feel more comfortable with

procedural approaches. The goal of the environment is to make it possible to produce

good code no matter what paradigms are used, not force users to use a specific one.

Platform Independence

MIT 6.270 robots are programmed through a serial connection to a host PC that

runs custom terminal emulation software. This terminal software has been ported

to a number of platforms that contestants use, ranging from HP-UX workstations

to PC laptops running Linux or Windows 95. There is no easy way to standard-

ize the platform all contestants work from since there are insufficient resources to

21



give all contestants workstations of one type, so platform independence for any new

development system is a requirement.

1.4 Robot Controller Hardware/OS Requirements

The 6.270 organizers also decided that a replacement controller should be designed

for the contest. The base level of functionality was defined to be at least that of the

previous MIT 6.270 Controller Rev. 2.21. On top of that, it would have to fulfill

requirements set by CRL so it could be used to perform mobile computing research.

After some discussion, the key parts of the controller were as follows:

" Adequate processing power for advanced research applications. This included

needs for networking, speech/video processing, and the like.

" Commodity software support. By this, we did not necessarily mean a commer-

cial product like Windows CE, but we were trying to avoid having to write our

own operating system specifically for this controller. This contrasts with the

Interactive-C environment, which is narrowly targeted towards the Motorola

68HC11 family of processors.

" Expandability through industry-standard interfaces and connectors. The base

controller board was meant to be just a testbed, so expandability was very

important. We also intended to use standard 3rd-party expansion modules, so

we stayed away from custom interfaces.

All in all, Personal Server (the name of the controller) was meant to be a simple,

configurable computing platform.

1.4.1 Hardware

The core of the Robot Controller, the new 6.270 controller, is the Personal Server (see

Figure 1-4) computing platform. The Personal Server's specifications are as follows:
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* Intel StrongARM4 SA110 CPU @ 200 MHz

* 16 megabytes SDRAM

* 4 megabytes Flash Memory

* PCI bridge

* PCI to CardBus bridge and 2 PCMCIA sockets

* PCI to Universal Serial Bus (USB) controller and 2 USB connectors

Figure 1-4: The Personal Server motherboard (3.6 inches by 5.4 inches)

For the purposes of the 6.270 contest, a daughtercard was designed to attach

to Skiff as a USB peripheral and provide the I/O ports necessary for interfacing to

4 StrongARM is a registered trademark of Intel Corporation.
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motors, sensors, etc. This robot daughtercard (RoboDC, Figure 1-5) has the following

on it:

* AnchorChips EZUSB 8051+USB core, 8 KB onchip RAM

* 10 H-Bridge outputs for driving motors (20 half-bridges)

* 32 analog inputs read through an analog-digtal converter, 24 of which are ac-

cessible to the outside

* LCD connector and small LCD display

Figure 1-5: The RoboDC daughtercard

Together, the Personal Server and RoboDC are collectively called the RobotCon-

troller (Figure 1-6). They both operate off of a 6 volt battery that powers both motors

and the digital electronics.
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Figure 1-6: The assembled RobotController

1.4.2 OS and Support Software

The Robot Controller boots using a custom bootloader that takes care of initializing

the RAM, PCI bus, and other miscellaneous tasks. The bootloader also implements a

simple command line interface over the serial port that allows users to download new

images into flash, peek/poke memory locations, and perform other basic functions.

Once the bootloader is done running, it loads the NetBSD[18] kernel into memory

from the onboard flash ROM and jumps. We chose to port the NetBSD operating

system to the Personal Server because of its open source code, portable codebase,

and working USB support. We may consider other operating systems in the future,

but for now NetBSD satisfies our needs very well.
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The Kaffe Java Virtual Machine 5 (JVM) runs mostly unmodified on top of NetBSD.

This JVM has native methods with it to access the RoboDC daughtercard over the

USB connection. The native methods appear to users as part of a class library that

abstracts the actual hardware to users and presents a uniform interface.

The RoboDC daughtercard itself has an Intel 8051 CPU core on it, and we make

extensive use of it to offload time-intensive tasks from the main processor. In par-

ticular, sensor polling, motor/servo pulse-width-modulation, and LCD control are all

handled by the coprocessor. The firmware running on the daughtercard accepts com-

mands over the USB bus and configures the hardware accordingly. Again, this process

is transparent to the user; all the developer knows is how to call various methods in

the RobotController API.

'Information on Kaffe can be found at http: //www. transvirtual. com.
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Chapter 2

Models of Computation

In this chapter we present the common problems and difficulties faced in writing

robust code for embedded system and robots in particular. Then we compare the

traditional programming models used for such applications, and then introduce the

use of finite state machines. The advantages and disadvantages of each approach are

evaluated so as to understand the design choices made in the final solution proposed

in the following chapters.

Chapter 1 went over the basic challenges involved in designing and implementing

an embedded system. However, the topic of software design has been left to this

chapter because of its complexity. As previously mentioned, embedded system soft-

ware has to be robust and interactive; the systems interact with the outside world at

all times and must always respond. This stands in contrast to batch software which

has all parameters specified before runtime and runs until completion with the as-

sumption that parameters will not change until the run is complete. In an interactive

system, events may occur at any time to interrupt, change, or even terminate the

currently running code for various reasons, and the system must be capable of grace-

fully reacting to these arbitrary changes in inputs and make deterministic decisions

about what to do next.

It is difficult to structure code in such a way that eases the enumeration of all the

possible paths of execution easy to implement and handle is a difficult task. There

are several different ways to model this flow of control, each with its own advantages
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and disadvantages. In the 6.270 contest, many of these approaches can be seen being

implemented by various teams with different levels of expertise, so this chapter will

use 6.270 robot code as an example case.

2.1 The Line Follower

As an example, let us consider a robot that is driving along the playing field and is

trying to follow a black line painted onto the table. This line is for the most part

straight, but may have curves or even 90-degree turns in it. For the sake of realism,

let us also say that the purpose of following this line is to collect balls on the line's

path and score points.

The robot has two drive motors, one for each side (left and right). In this way,

it drives much like a tank - to turn left, just run the left motor at a slower speed

than the right motor, and vice versa for turning right. For sensors, the robot starts

with three light-sensitive detectors that can "see" a black or white surface. We can

assume for simplicity's sake that some preprocessing code takes the analog sensor

reading and turns it into a digital "white" or "black" reading with a fair degree of

accuracy. These sensors are placed in a row such that if the robot is centered over the

line, the sensors completely span the line as shown in the diagram (see Figure 2-1).

Let us assume that the robot starts centered on the line, i.e., the two outside

sensors report that they are on the white table, but the middle sensor is on the black

line. Now, the task is to follow the line for as long as possible and scoop up balls with

the aid of a vacuum-cleaner-like attachment to its front.

There are many possible ways to solve this problem, but the most common algo-

rithms are essentially feedback loops that correct the speeds of the motors on each

side of the robot to keep positioning the sensors on top of the line at all times. If the

left sensor falls off the line, a slight adjustment to the right is made, and so on. Of

course, in practice this problem is much more complex than it seems. In the following

sections, we will attempt to implement this algorithm using different methodologies

and expose the most common pitfalls for each.
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Line

Left Right
Drive Drive
Motor Motor

Figure 2-1: Note the position of the sensors such that the outside sensors are on the
white surface while the middle sensor is on the line.

2.2 Procedural Models

Most introductory programming classes start students off with basic concepts of pro-

gram flow. They show how to break complex tasks into procedures, and also in-

troduce concepts like loops, conditional statements, etc. Most software engineering

classes tend to teach students how to write batch-mode programs. In other words,

the programs normally assigned for homework are structured such that they read

in some input, operate on it, output the result, and exit. Dividing such a program

into procedures helps to reduce the apparent complexity of the code and increases

reusability.

This approach is easy to learn and works well for the majority of projects. Splitting

the pieces of a program into procedures and establishing a clear flow of data through

the program from procedure to procedure definitely makes for a legible diagram.

However, if the number of distinct code paths is high, the system can get confusing.

This increases the complexity of the implementation and the possibility for mistakes
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and necessitate more time spent in debugging the code.

2.2.1 Implementing the Line Follower

Using conventional methods, one might implement the line follower using the following

algorithm (Figure 2-2). A variant of this code snippet is introduced in the first lecture

of 6.270 every year as an introduction to feedback loops. It has been our experience

that most students can understand a piece of code like this within a fairly short span

of time, but more complex examples tend to make people miss the overall idea. Hence,

we start with this implementation.

2.2.2 Analysis

This algorithm revolves around a fixed feedback loop in the center that continually

checks the state of the sensors and makes adjustments to the drive motors based on

sensor results. Even in this naive form, the algorithm actually does work, and a robot

programmed in this manner is capable of following a reasonably straight line down a

table. The code is still fairly easy to understand as well.

However, throw in a more complex situation and the problem space exponentially

increases. For example, the above example has only one degree of correction - no

matter how far the robot is off the line, the code will only rotate the robot at a certain

rate. If the distance being traveled is large, that is acceptable, but for a short trip

this feedback parameter does not work. The robot will run out of room before it gets

back on the line. However, one cannot simply turn the feedback rate up, because then

the robot will likely over-correct for minor course deviations and proceed to oscillate

back and forth across the line.

The solution to this demands some sort of proportional feedback mechanism that

varies the amount of correction based on how far the robot is off course, and how

quickly it is traveling. The robot's speed is important because the rate of correction

is also heavily dependent on movement speed - steering input is amplified much more

at high speed.
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int linefollow(int timeout) {
int i;
int rsens, csens, lsens;
for(i=0;i<timeout;i++) {

/* Assumes sensor threshold is compatible
with a digital sensor's. */

rsens = digital(RSENS);
csens = digital(CSENS);
lsens = digital(LSENS);

if(csens && !rsens && !lsens) {
/* On Line */
drive(100, 100);

} else if(lsens) {
/* Turned to the right. Turn back left to correct */
drive(20, 80);

} else if(rsens) {
/* Turned to the left. Turn back right to correct */
drive (80, 20);

} else {
/* None of the sensors read a line. Return a 'lost' signal */
return 1;

}
} /* End for(i=0;...) */
return 0;

} /* End line-follow */

Figure 2-2: This fragment is presented to 6.270 contestants on the second day of
class every year. Thanks go to Robert Blau (robblaudmit.edu) for contributing this
version.

Implementing this improved feedback mechanism within the existing framework

is possible; the result is significantly more complex and harder to read, but the basic

flow of control is the same. However, this code still assumes that the robot is not

doing anything else while it is moving down the table, and furthermore, that following

the line is a goal to be pursued without caring about other external events that might

occur before the line ends.

In real life, that sort of idealized situation rarely happens. It could be that the

line is just a guide, and the robot is supposed to stop after a certain distance and
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turn off the line or do something else. The procedure could be modified to check the

distance traveled each time through the loop and return once that distance has been

traveled. But what if the robot never makes it there? It could get stuck, or the wheels

might spin on a slick surface, or any number of things. Hence, a timeout mechanism

is needed. Additionally, a 6.270 contest table is rarely that simple to navigate. Paths

on the table are often obstructed by blocks, lines are rarely perfectly straight, and the

sensors themselves are usually not optimal.1 More code is added to the main loop to

check for a time-elapsed function, and the list goes on...

The end result of all this is that the original line follower procedure has gained

so much complexity and extra functionality that it has become hard to follow. This

makes it harder for a developer to make additional modifications or debug the code,

and greatly increases the likelihood of unforeseen test cases.

Most 6.270 contest robots have been coded this way since the contest was started.

In our experience, this methodology is easy to learn at first and works well when

contestants are preoccupied with learning basic parts of robot control, but when

integration into a contest-ready piece of software occurs everything tends to break all

at once. It seems that the main problem here is the difficulty involved with controlling

multiple inputs and outputs on a robot with only a single flow of execution. Single-

threaded systems must by necessity visit many different sections of code one at a time

and take care of business before going on to the next procedure. However, this makes

the systems difficult to code and debug.

2.3 Multithreaded Procedural Code

One way to reduce the complexity of a big monolithic control loop is to split the

relevant sections into their own loops and run them simultaneously. This requires the

code to become multithreaded either preemptively or cooperatively. However, the

overall complexity of the system increases and requires higher effort to implement

'It probably would help if we did not have to buy them at the surplus store. If anyone reading

this thesis would like to help the contest, please send money so we can get better stuff.
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and debug, as is shown in following paragraphs.

Implementing this scheme helps by allowing multiple threads of execution to run

at once. There is no large "main loop" through which all execution flow has to pass,

and the individual loops that run by themselves are easier to code and understand.

In the case of the line follower example, the code controlling motor movement can

now run independently of the code that checks for collisions or monitors timeout

conditions.

This solution seems ideal at first, but in real life it has proven to be very prob-

lematic. Multithreaded programming is a very difficult task. This barrier has kept

many developers from taking advantage of this paradigm. Having to keep track of

what different threads are doing at the same time and coordinate interactions between

threads using primitives like message queues and spinlocks requires an extremely high

learning curve for most developers. This barrier to entry makes it impossible for most

6.270 contestants to use multithreaded code properly, especially since more and more

contestants are entering with no previous programming experience. Mistakes are com-

mon even for experienced developers, and bugs are sometimes almost impossible to

find because of the many intricate cases that may occur at any point during runtime

to crash a multithreaded program.

Anecdotal evidence of the problem with multithreaded code can be found in 6.270's

history. 6.270's Interactive C programming environment has had support for multi-

threaded functions since its debut. The default code for robots that the organizers

supply to contestants includes one thread routine to automatically shut the robot

down after 60 seconds. Many teams each year try to take advantage of even more

threads, but most of them revert back to single-threaded algorithms by the time they

submit their robot for final competition. A rough estimate gathered from the past

three years of contest code shows that of 150 teams, only about 40 ended up entering

multithreaded final contest code (excluding the built-in start/stop thread provided

by organizer staff).

Viewing a complex interactive system in terms of separate procedures generally

causes problems regardless of a single or multi-threaded implementation. The diffi-
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culty inherent with expressing embedded system behavior stems from the multiple

paths control may take through the same code. Accounting for all these paths and

expressing the flow of control in what is essentially still a single-path paradigm is

difficult because there is no clearly defined begin and end state in these systems.

2.4 Finite State Machines

One way to reduce the confusion is to outline the different code paths before im-

plementing them in code. A state diagram is one such method used to model a

system and compress multiple combinations of inputs and outputs into a succinct

representation. By presenting the different positions of the system in various combi-

nations and enumerating how the combinations can lead to each other via different

types/numbers of inputs, a table emerges that effectively captures all the possible

states of the system.

A formalized visualization of this concept leads to finite state machines or FSMs.

A FSM is most simply described as a set of input events, a set of output events, a

set of states, and a set of transitions. Consider the example shown in the following

Figure 2-3. This diagram shows an FSM with input events [a,b] and outputs [u,v].

Each node represents a state, and the connections (arcs) between states represent

transitions[10]. State machines have to start in some initial state, so the arc without

a source state pointing to the initial state does not actually represent a transition,

but is more of a pointer.

There must be a way to determine whether to take a transition or not. This

takes the form of a boolean expression over the input events that is attached to each

transition. The expression is called a guard. When the expression evaluates to be

true, that particular transition is taken, the current state shifts to the destination of

that arc. For some transitions, there is an action/output when they are taken. These

actions are attached to the guards.
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b/v

a/u
Figure 2-3: A simple finite state machine. This diagram comes from Girault, Lee,
and Lee's paper on hierarchical FSMs[13]

2.4.1 Advantages

The main advantage of a finite state machine is its ability to represent many possible

execution paths in a compact manner. Each state may have its own table of tran-

sitions, with their own trigger guards and actions, and this helps to encapsulate all

possible behavior in a specific realm of the problem space. By isolating the system

into a network of states, one can focus on a particular state and its relationship to

other states without having to worry about the others. In practice, this makes imple-

mentation much easier because it segments the system by states, and states can be

added or deleted from the system piecemeal without too much effort. All one must

do is follow all transitions coming into and leaving that state and modify the tables

in the connected states accordingly.

Most finite state machines are implemented by means of a core "event loop" that

continually reads the inputs and updates the current state accordingly. This core

loop is easy to understand, and more importantly, does not need to be modified a

new state is added to the system. All of the complexity in a finite state machine is

hidden in the initial setup, so understanding the flow of execution is easy once the

state diagram is drawn. This gives FSMs an advantage in development over the mess

of nested conditional statements that characterize procedural code.
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Going back to the line follower example, Figure 2-4 exemplifies how one might

convert the system into a state diagram. The inputs to this state machine are the

sensors, and the outputs are the commands sent to the drive motors. One can enu-

merate the possible states of this system through noting that staying on course means

trying to remain in the state where the sensors straddle the line. Starting from there,

the transitions which can occur (veering left or veering right) are easy to come up

with. For most people this diagram is much easier to understand than the raw code

or even flowcharts that the procedural methods produce.

Default State - Straddling line

Slightly off to the left
Common States

& 0Slightly off to the right

Lost (completely off line)

At an intersection or on the
line lengthwise

Uncommon States
Facing an intersection at a
45-degree angle

Figure 2-4: Some of the possible states the sensors can be in for the line follower.
Note that two of the states in the figure correspond to odd situations that would be
hard to catch otherwise if one were to just start writing the code without thinking
the problem though first.

2.4.2 Disadvantages

However, FSMs are not without their drawbacks. FSMs are easy to implement, but it

is not quite so easy to come up with the state diagrams in the first place. Reducing a

system down to a collection of states requires some thought and is somewhat difficult

to do for an inexperienced developer. Most computer science students are taught to
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break problems down into smaller pieces and solve them using procedural methods;

they have less experience breaking problems into state instead.

Experience with the MIT 6.270 competition has shown that finite state machines

work well in the classroom with pre-meditated examples and clearly articulated sys-

tems, but when contestants attempted to use the same principles in real robots the

state diagrams got extremely large and unwieldy. The problem is that for a single

task, state machines model the system extremely well. However, there can only be one

active state in a state machine at any given time. This makes modeling of multiple

concurrent tasks difficult; the FSM must rapidly transition between states relating to

the different tasks to keep them all moving at the same time. As a result, the FSM

methodology exhibits the same problem that single-threaded procedural code does,

even though the initial modeling step is easier.

2.5 Multiple Concurrent FSMs

The natural extension is to run multiple FSMs in parallel using separate threads of

execution. Running multiple FSMs allows the individual FSMs to be fairly simple;

yet, having the FSMs work in concert allows the system to express complex behavior

as if it were run using a single very big FSM. Keeping the pieces small and in separate

FSMs reduces the effort necessary for users to integrate various portions of their code

together and helps solve the concurrency issue raised by modeling multiple tasks.

Going back to the line follower example, let us now try adding more complex

behavior to the system. If we also want to track how far the robot has traveled

and take action based on that, more guards and actions could be added between

the existing states. However, this makes the input and output vectors get larger

and more complicated. Instead, a separate state machine that has only distance

measurements as inputs makes the picture much simpler (see the Figure 2-5). The

output of this second state machine then becomes an input to the first, linking the two

FSMs together. A network of FSMs now exists that exhibits more complex behavior

than the original, but the original FSM has not changed or gained complexity.
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Sensors Line Follower FSM
(bump, reflectance, etc.)

Motors

(left drive, right drive)

Collision Avoidance FSM

Figure 2-5: An example FSM network

Networks of FSMs have recently come to the fore as a promising new way to model

reactive systems[12]. A lot of recent work in this field has come out of the Ptolemy

Project[8] at the University of California, Berkeley. In particular, an in-depth look at

the combination of finite state machines with multithreaded environments produced

a working system that is capable of modeling complex real-time systems, particularly

in the field of digital signal processing[1]. Prior attempts to take advantages of FSM

networks are documented in papers on robotics, real-time operating systems, and

other applications.

However, running multiple FSMs concurrently raises the issue of complexity from

a different perspective. If all the different state machines operate independently of

each other and have no need to communicate, the implementation is simple - just set

up the different threads and let them run. But if the FSMs depend on each other,

some sort of inter-FSM communication mechanism is required. I attempt to address

this issue in Chapter 4.
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Chapter 3

The Subsumption Model

In the previous chapter, we went over various ways of breaking embedded systems

into manageable pieces and implementing robust control loops for them. In this

chapter we present the solution arrived at for use in BotKit, which makes use of the

subsumption architecture[7].

3.1 Introduction

Finite state machines ease the task of expressing multiple execution paths, but devel-

opers still face the task of deciding how to model a system. Real-world systems often

do not easily break down into networks of finite state machines because the states are

heavily obscured by minute details of interaction. A way of viewing a system that

encourages decomposition into smaller systems was needed so it could be applied to

the robot contest.

Rodney Brooks from the MIT Artificial Intelligence Laboratory ran into much

the same problem in the course of his own research in robotics during the early

1980s. Brooks chose to decompose systems based on observal external behaviors (see

Figure 3-1) [2]., Brooks chose to instead decompose the system based on its observable

external behaviors[2]. This results in a horizontal breakup of the system into layers

that completely span from raw sensor inputs to observable outputs, which stands in

contrast to traditional models that split the task vertically and insulate layers from
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Output
Level 3 Registers

Level 2 -

Level 1

Sensors Level 0 Actuators

Behaviors

Figure 3-1: Layers of control are stacked horizontally so that lower-level layers by
default have control unless higher-level layers take over. Output registers combine
inputs from the multiple layers and either sum or choose inputs to present what goes
to the outside actuators and motors. Note that one can take off the higher layers and
still have an operational system. This figure is taken from Brook's paper "A Robust
Layered Control System for a Mobile Robot" [2]

each other through abstraction barriers.

Brooks' contention was that breaking the systems up horizontally allows one to

concentrate on making a robot perform a specific behavior and do it well, then incre-

mentally add functionality in the form of more specialized behaviors. Additionally,

each higher level of behavior includes as a subset some or all of the lower levels. Since

higher levels include lower levels, the higher level behaviors can be seen as a top-down

enforcement of design constraints on the lower levels, providing an overall structure

to the program[15].

3.2 Advantages

This architecture emphasizes the independence of each behavior - developers create

each behavior and complete it before moving on to the next. By debugging lower-level

behaviors completely and then leaving them alone, higher-level behaviors are able to

assume some base level of functionality before modifying the observable outputs to

create more complex actions. In the event that higher-level behaviors are incorrect

or produce output at the wrong times, the higher-priority lower level behaviors will
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still produce mostly sensible results[4]. Essentially, the low-level behaviors step in for

the system states that are undefined or poorly handled by high-level constructs.

Returning to the line follower example, let us attempt to break this problem

down using behaviors (see Figure 3-2). The most obvious behavior in the system is

the robot's attempt to stay on the line. The inputs to this behavior are the light

sensors under the robot, and the outputs are the motors. This behavior is the default

one given normal operating conditions. But as previously noted, this system must be

capable of handling adverse conditions enroute to accomplishing the primary goal of

following the line.

Inter-FSM
communications

Override Connection

(top-level guidance)

Slightly higher
Distan Marker priorit Drive

Motors
Sensors ~Line Follower DfutPirt

Collision Avoidance"

Connection
Behaviors (emergency use)

Figure 3-2: Note that the base behavior just has the robot avoid hitting walls, and at
the top leve a path planner picks which lines to follow. Behaviors also communicate
directly with each other to exchange state and data.

The adverse cases can be controlled by other lower-level and high-level behaviors.

For example, a base behavior may want the robot to avoid getting hung up on walls,

so its response to bump sensors is to back away. Since this behavior is important

for robot safety, one may set the priority of this behavior somewhat higher than the

others. By having this behavior run concurrently with the line follower behavior,

a combination of the two behaviors is achieved with minimal effort to actually link

the two. Note that each of the two behaviors operates independently; the only link
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between them is the ability of one to override, or inhibit, the actions of the other when

push comes to shove. This sort of behavior layering leads to a more robust system

because developers can worry about high-level thinking at one level and safely assume

that base cases are still covered by lower-level behaviors[6].

Another positive side effect of modeling systems in this way is that sensor inputs

are exposed in their raw form to all levels of behaviors. This allows each behavior to

treat sensor data in a way that is useful to it without having to worry about other

behaviors' needs. This contrasts with the approach of encapsulating all sensor input

into one procedure that has to provide relevent interpretations of data to all layers

above it. Such an approach leads to an overly-general and non-optimal solution for

all the layers on top because no one solution can be perfect for all.

Additionally, each behavior layer has optional direct access to the system inputs

and outputs. For those outputs that need to be shared among different behaviors,

output registers can combine outputs from multiple FSMs and decide how to present

the results to the actuators. Furthermore, these registers need not be present at the

very end of the loop; they can be interspersed between different layers and handle

very specific situations. This solves the problem of implementing a generic signal

"combiner" at the end of the decision cycle needed in other schemes. With a vertical

separation of inputs/outputs away from other layers, the code needed to process

inputs for one layer must be fitted to also meet the requirements of other modules,

and this leads to overly general abstractions that are not useful. Using subsumption

allows the input/output processing to be tailored to each layer without worrying

about side effects on other layers. However, communication between layers is not

hindered, because the behaviors can still influence each other by connecting outputs

from some layers to inputs on other layers.
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3.3 Implementation

3.3.1 AFSMs

The initial implementations of the subsumption architecture were performed at the

MIT Artificial Intelligence Laboratory. In their mobile robot testbed they imple-

mented the different behaviors as finite state machines running on multiple small

processors connected through a network of wires. Inputs to the processors came

either from connections to other processors or directly from sensors[3].

One notable trait of this setup is that no global shared memory is needed between

nodes - whether the system was running as multiple threads on one processor or one

thread per processor is a moot point. This greatly eases implementation because

no means of explicit synchronization between nodes is assumed. Together, this col-

lection of processors, wires, and inhibition/override mechanisms has been termed an

Augmented Finite State Machine (AFSM)[6] by Brooks.

3.3.2 Alternatives to AFSMs

The subsumption architecture does not necessarily need to be implemented using

AFSMs, however. All the known implementations of the architecture do make use of

finite state machines and connections of some sort between them, but one can just

as easily imagine substituting a normal threaded procedure in place of a FSM and

having it interact with the rest of the behaviors in a subsumption-based system. After

all, one of the chief goals of subsumption is to not make behaviors depend on each

other or force them to know details of each other's implementation. Behaviors are

black boxes, and therefore finite state machines may or may not be used to implement

them. The BotKit framework takes advantage of this abstraction to allow procedural

code to interoperate and mix freely with pure AFSM implementations; details of this

are presented in Chapter 4.
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3.4 AFSM Disadvantages

3.4.1 Learning Curves

The main issue with subsumption, AFSMs, and alternative embedded programming

paradigms in general is inertia. Specifically, most programmers are already used to

the procedural development styles and are reluctant to change. The learning curve

associated with switching to finite state machines and subsumption is high for most

people because they have not had to think that way before. As a result, many users

find it difficult to get used to jump whole-heartedly into the FSM paradigms.

Part of this barrier cannot be helped; finite state machines emphasize a flow of

program execution that runs counter to most programmers' idea of programming as

a series of batch processes. Similar obstacles were faced with the introduction of

event-driven systems in modern graphical user interfaces like the X-Window system,

Microsoft Windows, and the Macintosh OS. One major goal of this thesis was to find

a way to ease the transition from a procedural-based paradigm to a behavior/state-

machine based one. The subsumption architecture is part of the answer.

3.4.2 Small Pieces

Lastly, for small systems, procedures are quick and easy to implement given the

programming languages in common use today. C, Java, and other mainstream lan-

guages have all evolved features and constructs that make it easy to quickly write

procedures. In contrast, small ideas that involve step-by-step sequences are generally

cumbersome to implement using state machines. For rapid prototyping and small

behaviors, a quick procedure to handle the small number of possible states is actually

faster to implement.

Given the abilities of contestants in the 6.270 contest, this distinction is important.

Most 6.270 robots are programmed incrementally - contestants learn to teach their

robots simple tasks from day to day and combine them to create intelligent routines

near the end. Each of these tasks by itself is simple, but combining them with a
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procedural approach is difficult because of the multiple code paths as outlined in

Chapter 2. Additionally, some systems have so many complex states that modeling

all possible inputs/outputs causes an exponential increase in the number of transitions

between states. Enumerating the table by hand becomes impractical, especially since

many of the possible input combinations are variants on the same topic. It would

be simpler to express these transitions in terms of short procedures that allow active

processing of inputs to be performed before choosing a destination state.

3.5 AFSM Wrappers for Procedures

One possible solution is to allow AFSMs and small procedures to be intermixed in

the same system. This is the premise behind BotKit - that a framework allowing

procedural code to interact with FSMs running in their own threads allows both

bottom-up incremental programming and top-down integrated design. This is done

by wrapping procedural code in a layer that provides the same input/output paths

as those used by AFSMs. For example, the special cases that make up the line

follower can be implemented as separate procedures that run in their own threads.

They effectively act as behaviors in their own right, and can manipulate, inhibit, and

process inputs and outputs from the other FSMs in the system just like any other

AFSM.

Now users have the ability to write short procedural code snippets to perform

very simple, small tasks, and they can reuse, and more importantly, combine them

later in networks to implement the subsumption architecture. High level behaviors

that are more complex can be better stated by a finite state machine, but they are

still capable of interacting with the smaller procedural pieces. This allows a working

system to be brought online very quickly, but does not create the impression of a

gross "hack". The procedural components can be left there or replaced with finite

state machines later on.
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3.6 Forming BotKit

With these piece in place, a framework was designed to take advantage of the sub-

sumption architecture and AFSMs, while retaining the ability to run standard pro-

cedural code inside. This framework ended up being called BotKit: The Robot Con-

struction Kit largely for historical reasons. The original project, which was started

three years ago to produce a replacement robot controller, had the goal of producing

a "kit" of interchangeable hardware and software robot component for 6.270 contes-

tants.
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Chapter 4

Implementation

The BotKit framework consists of a Java class library. These classes help botKit users

quickly construct AFSMs running in separate threads that communicate through

registers and combine behaviors. This section describes the choice of Java as the

implementation language and runs through example code to demonstrate how the

subsumption architecture and AFSMs are combined with procedural code fragments

to produce a robust embedded system. The deployment of the Robot Controller and

portions of the BotKit framework in the 1999 6.270 contest is also described.

4.1 Why Java

4.1.1 Drawbacks of C

The C language has been used in 6.270 for many years. More existing work would be

preserved if it were again used for the implementation of BotKit, but several factors

prevented C from being chosen. First, C lacked sufficient support for encapsulation

of the internals of FSMs. This lack of encapsulation failed to satisfy the ease of

use requirement. The idiosyncrasies of the C programming language are also fairly

difficult for beginners to master well in three weeks, and that was a heavy factor in

the decision.

BotKit makes heavy use of multithreaded code to implement the FSM networks.
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C has no language support for threads - it is all contained in libraries. Dealing with

C's add-on thread support threatened to delay the completion of the project, so a

language with better thread support was needed.

Lastly, writing the BotKit framework in C would require users to have C compilers

of their own on the host machines. Running a C interpreter on the target controller

was an option, but that was problematic due to the complexity involved in a writ-

ing and maintaining a C interpreter for years to come. The problems inherent to

Interactive-C (inability to provide all C features, subtle language differences) would

also be present. In the absence of an interpreter option, cross-compilers would have

to be ported to each supported architecture and maintained for users to develop with.

The maintenance headache this would cause was deemed unsatisfactory.

4.1.2 Portability

The Java programming platform attempts to solve many of these problems by using

a virtual machine to implement its services. First, the virtual machine allows the

code to be taken from platform to platform without recompiling. This is not such an

important advantage for an embedded system because these systems are generally not

meant to run code from other sources often, but it does open up many possibilities

in the realm of simulation. Running a virtual machine means that users can run an

emulated version of the system on their desktop system and test the code before they

bother downloading it to the target platform.

Additionally, Java implementations have been completed for most major platforms

in existence, and therefore the compiler support is already built-in. Using Java saved

much time in development of cross-platform tools and allowed the author to focus on

the AFSM libraries instead.

4.1.3 Stronger Typing and Garbage Collection

From an academic standpoint, Java is also much cleaner than the C programming

language. Java has stronger typing and therefore encourages developers to think
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more carefully about their code. The lack of untyped pointers also automatically

eliminates most common programming errors and lets users focus on the code at

hand instead of memory corruption. Thanks to Java's built-in garbage collection,

memory management is left to the environment, which greatly eases the task for

beginners.

However, Java does still retain much of the look and feel of C, and that is a major

advantage when teaching it to students who may have had experience with C but not

Java. In the years to come, the makeup of students coming in with experience with

either language will likely shift towards Java instead of C, so this factor will be less

of an issue.

Object-Oriented Programming

The object-oriented nature of Java also offers opportunities for a clean BotKit imple-

mentation compared to C. The BotKit implementation uses object-oriented features

to encapsulate the running of procedural code inside of finite state machines. Users

of the BotKit library also gain some measure of code reusability if they choose to use

the BotKit framework and extend its base classes. For example, a user may decide to

create a new type of FSM that sets up commonly used states for a specific applica-

tion. To do so, one only needs to inherit from the base FSM class and add required

functionality, and then this new "pre-built" FSM is available to the entire system.

Using an object-oriented language also allows useful abstraction of the hardware

interface layer away from users. This was used extensively in the the implementation

of BotKit for the Robot Controller controller board to hide implementation-specific

details from 6.270 contestants. In the future, hardware changes in the controller

platform should do little to affect the code running on top of them so long as the

wrapper classes are designed properly.
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4.1.4 Threads

Java's built-in support for threads is a major design win for the BotKit implemen-

tation. The language directly supports thread synchronization and exclusion, which

makes it much easier to implement support for BotKit's networks of FSMs. The

ability to easily mark regions of code as exclusive also made implementation and

debugging of the framework easier.

Users of the BotKit framework do not have to worry so much about multithreaded

programming issues since all aspects of inter-behavior or inter-FSM communication

are handled by the library. AFSMs are operate independently of each other and

do not block waiting on inputs since they are always in one state or another, so

deadlock issues are for the most part avoided. Another type of deadlock can possibly

occur where a FSM never transitions out of a certain state because there are no

outgoing connections to other states, but that design error is easier to catch than a

thread deadlock situation; a look at the state diagram will quickly show the lack of

outbound transitions.

Additionally, communication between the various FSMs in the network is allowed

only through unidirectional registers. These registers buffer data flow between FSMs

and have logic of their own to handle multiple inputs either autonomously or with

user-specified actions. At no time is there no output coming out of the register; the

default inputs may be overridden or inhibited by higher-priority FSMs, but there is

always some kind of output value exiting the register. It may be wrong from an end-

user perspective, but it should not put the system into a wedged state. Finally, the

registers are all clocked at the same time - the FSM network runs a continuous loop

that updates all register contents independent of AFSM execution. Having registers

update simultaneously gets rid of many potential timing issues that plague other

completely asynchronous systems.
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4.1.5 Procedural Code

Last but not least, the Java platform is not tied to the BotKit framework, FSMs, or

any other aspects of programming style. This allows users to safely ignore the BotKit

framework and directly access the hardware using native methods if they wish. One

objective of BotKit was not to lock users into a certain frame of reference but give

them a working alternative, and using Java helps with that goal. Of course, one would

hope that everyone will like using BotKit, but that is partly a subjective as well as

objective issue and will vary depending on individual preferences. It is important to

note that the using Java to implement BotKit specifically still allows users to go their

own way should they choose to do so.

4.2 BotKit

The BotKit framework is a collection of Java classes all under the BotKit.* hierarchy.

The framework can be roughly broken into three major pieces: AFSM classes imple-

ment the state machines and also encapsulate procedural code within FSM wrappers,

Register classes buffer inputs and outputs to AFSMs and outside sensors/actuators,

and the AFSMNetwork collection binds everything together into one coherent mass and

maintains global state amongst Registers, AFSMs, and encapsulated procedures.

4.2.1 Overview

BotKit was conceived as a software analogue to the hardware-based network used to

implement the first subsumption architectures. It thus resolves around the concept of

a network of finite state machines connected through register networks that convey

information from AFSMs to inputs, outputs, and each other. The AFSMs themselves

execute independently of each other in separate threads.
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AFSMState

AFSMs consist of a collection of states and transitions between them (Figure 4.2.1).

The states are themselves described by three class-specific methods: guard(), enter (),

and leave(.

public class State {

/* guard method. must return true before state will be transitioned

into */
boolean guard() { ... };

/* executed once upon entering the state *1
void entero { ... };

/* executed once upon leaving the state */
void leave( { ... };

}

Figure 4-1: The AFSMState class.

The guard method defined for each state sets out what conditions must be met

in order to enter this state. Each time it is called, it should return true if the

state's acceptance conditions are met, and false otherwise. The main FSM loop

(implemented in the parent class) continually checks the guard methods for every

state in the system to determine where to transition to next. By defining the entry

barrier to each state as a function, flexibility is granted to the user and the state

diagram can be constructed on the fly. A developer does not need to sit down and

enumerate the entire state table beforehand because he or she can put down guard

methods for the states that are known, and if turns out that staying in a particular

state is not a good representation of reality then more states with their own access

methods can be defined. If during the course of execution, more than one state's

guard function evaluates to true, the main FSM loop will randomly pick one to

execute. This allows for nondeterministic FSM behavior to be expressed. Of course,

this is not a desirable trait in most systems, but that sort of model checking is best
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left to other tools outside of the BotKit framework. Some of the future work detailed

in Chapter 5 explores the idea of checking FSM models for completeness.

It is also common for states to have identical enter methods but only execute

based on the previous state. For example, a robot that is backing up should execute

turns to avoid obstacles that are opposite directions of the turns made while moving

forward. At first glance, this seems hard to implement because the entry conditions for

a state do not explicitly include what the previous state was. However, implementing

enter as a method proves to be useful here. FSM classes maintain a private variable

during execution that points to the currently active state. The enter method for a

state can then be easily extended to check what the current state is in and add that

to its list of conditions that must be satisfied before returning true.

enter is executed once when the AFSM transitions into this state. Typically, this

method should be used to have the state perform actions associated with being in

the state. For example, the state associated with a robot being left of a line being

followed should take action to turn right towards the line here.

The leave method is executed once when the AFSM transitions out of that state

into another. It allows users to have states perform cleanup duties that might be

required.

AFSM

An AFSM in BotKit is defined to be a collection of states and the registers they draw

information from. AFSMs implement the Java Runnable interface, which allows them

to run as independent threads within the Java Virtual Machine. The main loop for

an AFSM continually checks the guard conditions for all states in the FSM and

determines what state the FSM should transition to next. Upon finding out what

state to transition to, it executes the leave method of the current state and the enter

method of the new state. An AFSM also has a default reset state which dictates what

state the FSM starts out in upon activation.

AFSMs are not supposed to directly manipulate outside sensors and actuators;

all communication outside of the AFSM goes through Registers. This rule is not
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public class AFSM extends Runnable {
Register[] registers;

State[] states[];

State resetState, currentState;

void addRegister(Register r) { ...

void addState (State s) { ...

void setInitialState(State s) {

resetState = s;

}
void reset() {

currentState. leave();

currentState = resetState;
}
void run() {

/* loop through all states, call guard() for each.

determine which state(s) should be transitioned to next. If no

states qualify, stay in current state. If the current state's

guard() returns true again, make a looped transition back to

the current state.

If a transition is made, call leave() method of current

state, then set currentState reference to new state.

Also call entero method of the new state.

}
}

Figure 4-2: The AFSM class.

strictly enforced by BotKit, but the framework does not take responsibility for code

that deliberately modifies hardware directly. The reasons for this suggestion are

twofold: first, buffering inputs and outputs through registers makes preprocessing

and postprocessing of data easier by allowing outside code to inspect and modify

data in situ, and second, the register network allows the BotKit framework to avoid

several potentially nasty problems that arise from multithreaded code.

54



Registers

BotKit Registers are responsible for managing the flow of data between AFSMs and

the outside world. They are modeled closely after the hardware registers used to

implement the first subsumption architectures in Brooks' robots. All BotKit registers

carry integer messages; future iterations may carry more complex data types, but for

now integers serve well. Also, certain special instantiations of Registers are responsible

for reading data from outside sensors and/or sending data outside of the system to

actuators and motors.

The most notable trait of a Register is its ability to integrate and combine inputs

from multiple sources to produce one output value. This makes BotKit Registers

more capable than their hardware counterparts. The default scheme is to take the

latest, highest-priority write, but users may override this behavior if they wish.

Registers also employ an atomic update scheme that only allows newly-written

values to overwrite the latched value when the global clock increments. This is es-

sential to having all registers appear to update on a regular timescale, as explained

in the next section. This scheme works by having the register keep a record of the

last latch time in clock. When the global clock is greater than the current clock

value, the register will latch the pending write value and update accordingly. If there

have been no writes since the last update cycle by the time the clock updates, it just

continues using the old value. There are special cases for when the register is first

initialized and such, but those are left out for clarity.

This scheme allows reads to take place while writes are occuring to the register

before the global clock updates. This way, it avoids the need for costly global update

procedures and defers computation of the updated value until the register is actually

read.

AFSM Networks

Systems implemented using BotKit must first inherit from the AFSMNetwork class.

This class (Figure 4-4) is responsible for controlling overall interactions between AF-
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SMs and their connected Registers. The central part of a AFSMNetwork instantiation

is the runOmethod - this function is responsible for running the system's main loop.

This loop continuously updates all registers and propagates their data throughout

the system to the resident AFSMs can read it.

The original AFSM/subsumption implementations by Brooks used a hardware

network of small microprocessors linked by wires. Since BotKit is a software imple-

mentation, a decision was made to emulate this network using multiple threads,one for

each AFSM in the system, and buffered registers to handle communications between

the threads and outside inputs/outputs.

In a hardware system with multiple functional units, registers are often used to

buffer connections between modules. These registers exist to account for differences

in propagation delay between modules; a piece of logic connected to another segment

can put the system into a metastable state if it rapidly oscillates between different

values and confuses a slower piece of hardware. These register networks are globally

clocked such that the clock period is longer than the longest propagation delay for any

one particular functional unit. This ensures that all logic has a chance to complete

execution on one set of input values and present that output to the next stage.

If all the modules in a system have more or less similar execution times, this

model works very well and balances a tradeoff between total computation latency

and complexity in implementation. A completely asynchronous clocked system can

in theory outperform a globally clocked system by operating all modules at peak

speed, but in practice, ensuring the correctness of such a network is very difficult.

However, if the modules in a system have widely varying propagation times, the time

wasted by faster modules while waiting for slower modules to finish can grow to be

quite considerable.

The same problem exists when taking this model to a software implementation.

The AFSMs in BotKit by all execute at different speeds because they are not ex-

ternally clocked. This design decision was purposefully made to allow time-sensitive

FSMs to run as fast as possible while letting slower AFSMs for tasks such as pathfind-

ing continue to operate at slower speeds. This makes a AFSMNetwork an asyn-
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chronous system.

BotKit attempts to partially solve this problem by forcing all registers in the sys-

tem to update according to a global clock. The run method in the AFSMNetwork

class is responsible for starting all FSMs and updating registers continuously. Reg-

isters are updated simultaneously through use of a global clock that registers watch.

While the clock is still, writes to the register do not actually modify the latched value,

but once it updates, the registers will update on the next call to read as previously

described.

Having all the registers update in sync with each other and the clock helps avoid

most classes of problems arising from multithreaded code. However, it does not com-

pletely eliminate all of them, because the ASFMs reading the registers may still end

up reading registers just before they get updated and use those values for calcula-

tions that are no longer valid. At this time, there is no easy way to solve this problem

short of putting the whole system on a global clock, but if some attention is paid

to constructing the AFSMs to execute quickly response times can still be kept to an

acceptable maximum.

4.2.2 Example Use

Line Follower FSM

As an example, let us try to implement the line-follower behavior using BotKit. The

code for the FSM itself looks like the skeleton in Figure 4-5.

Note that the various actions, guards, and transitions for the state leftOfLine

are implemented using Java anonymous local class definitions. Anonymous local class

definitions allow users to define the methods of a class at the instance of creation

without having to predefine all the code before instantiation.

The only code executed for a state occurs at the beginning and end of the transi-

tion. A state may choose to transition back to itself if it wants actions to repetitively

execute; to do that, the guardo method should return true as long as the conditions

required exist. Otherwise, the guardo method should make sure that the FSM is
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not already in the target state if the enter 0 method is only to be run once.

The code inside AFSMs can be used to do anything; for the purposes of the

contest, users were taught how to use the class hierarchy and embed their robot code

inside FSMs. However, the BotKit AFSM model is not tied to the Robot Controller

class library and can be used to model other systems not related to robotics.

Line-Follower Procedure

The mechanism for encapsulating procedural code in BotKit along with FSMs fol-

low much the same sequence as that for a real FSM. In the current implementation,

encapsulation is accomplished by wrapping a procedure or collection of procedures

inside a Java class that looks the same as a ASFM externally. It has wrapper func-

tions to expose register contents and manipulate output registers internally, so all

connections to this "pseudo-FSM" appear just as if it is another AFSM in the net-

work (see Figure 4-6). This fulfills the promise of allowing procedural code to coexist

with state machines in the subsumption architecture.

This LineFollower AFSM runs in its own thread of execution, and the sensors are

updated with each call to the reado method. This ensures that sensor reads are

only performed when the data is actually needed. For sensors that are read more

efficiently at regular intervals, the Sensor class can be be overridden to only sample

new data at certain times and cache the data returned by read0.

4.2.3 Line Follower + Distance Measurer

Of course, having an AFSM is not much better than running standard procedural

code unless the behavior is combined with another AFSM. In this example, another

AFSM that makes the robot only travel a certain distance before stopping is layered

on top of the line follower. Note that the code in this AFSM is not very complex - it

simply measures how far the wheels have turned and stops the motors if the wheels

have made a certain number of revolutions. For such a simple task, a procedure

implements the code (Figure 4-7) much more compactly than a FSM can, so this
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AFSM is implemented using an embedded procedure instead of a FSM.

Combining these two behaviors is done through setup routines that get called

before the system is initialized. The registers are connected to each other and other

AFSMs here. The inhibitory/combining relationships between relationships are also

set up, and this is what allows AFSMs to combine behaviors without having ex-

plicit communication between each other. The code in Figure 4-8) illustrates these

operations.

4.3 Implementation Notes

I worked in conjunction with a team of researchers and engineers from the Com-

paq Cambridge Research Laboratory to finish Robot Controller and get its software

working. The hardware design was a joint effort between the research staff and CRL's

Advanced Systems Engineering (ASE) group. I had input into the designs and spec-

ifications of the Personal Server, and supplied most of the design parameters for

RoboDC due to my 6.270 experience.

The hardware debug and software work was done by several people at CRL, in-

cluding myself. I was heavily involved in getting the first RoboDC daughtercards

working and wrote the first pass of the firmware, and also wrote the first bootloader

for the Personal Server motherboard. The NetBSD and Kaffe JVM ports were also

areas that I substantially contributed in. CRL helped complete the effort by mak-

ing contributions in all those areas and provided valuable expertise in designing the

USB protocols and C API libraries used to communicate between PersonalServer and

RoboDC.

Unfortunately, the actual port of the BotKit framework to the Robot Controller

controller was not completed in time for the 6.270 competition because so much effort

went into making the controller itself work. However, we were able to supply a base

Java development environment and Robot Controller class libraries to abstract the

hardware away from users. We did also provide some helper classes to encapsulate

Behaviors and at least provide some introduction to subsumption. These Behavior
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classes, coupled with helper Timer classes that would go off after a certain amount

of time, were deployed in time for the contest.

4.4 Time Frame

The time frame for the whole project spanned approximately nine months. Three

months were spent working on the BotKit framework and Java AFSM/encapsulation

classes during the Summer of 1998, and a software-only demonstration was given at

the end of August 1998. In August, hardware specification and design commenced

on the Robot Controller controller, and the first prototypes came back from the

fabrication facility in November 1998.

Most low-level software work was done between November 1998 and January 1999.

Due to the hard deadline involved, all work was stopped on the BotKit AFSM frame-

work and resources dedicated to the hardware/software debug on Robot Controller.

The NetBSD kernel first booted sometime in the beginning December, and Robot

Controller executed its first Java code on December 28, 1999. The first complete

Robot Controller system capable of driving motors and sampling sensors from Java

code was brought to life late during the night of January 3, 1999.

After much work, 55 Robot Controller systems were delivered to the MIT 6.270

contest on January 8, 1999.
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public class Register {
int pendingWriteValue; /* incoming writes */
int pendingWritePriority; /* incoming write priority */
int clock;

int latchedValue;

public synchronized void write(int value, int priority) {
/* examine the incoming value/priority pair and replace

pendingWriteValue/pendingWritePriority only if the priority is equal
to or higer than the current priority. */

if (AFSMNetwork.clock > clock) updateO;
if (priority >= pendingWritePriority) {

pendingWriteValue = value;
pendingWritePriority = priority;

}
}

public synchronized int read() {
if (AFSMNetwork.clock > clock) update(;
return latchedValue;

}

private void update() {
latchedValue = pendingWriteValue;
pendingWritePriority = 0;
clock = AFSMNetwork.clock;

}
}

}

Figure 4-3: The AFSMRegister class.
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public class AFSMNetwork {
public int clock;

AFSM[] fsms;
Register[] regs;

void addAFSM(AFSM fsm) { ...

void run() {

/* start all AFSMs */

clock = 0;

while (true) {

/* update clock at set interval */

/* keep track of error conditions, stuck FSMs, etc. */

}

}
}

Figure 4-4: The AFSMNetwork class definition
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class LineFollower extends AFSM {
Register leftSensor, rightSensor, middleSensor;
Register leftMotor, rightMotor;

State leftOfLine, onLine, rightOfLine,
offOfLine, onJunction, slantJunction;

LineFollower(Register ls,Register rs,Register ms) {
leftSensor = is;
leftOfLine = new State() {

public boolean guard() {
/* executed every time FSMchecks what state to

transition to next */

return (!leftSensor.read() && !middleSensor.read() && rightSensor);

}
public void enter() {

/* executed so long as FSM remains in this state --
run the left motor faster than the right motor to turn right.

leftMotor.write(100,1); rightMotor.write(70,1);

}
public void leave() {

/* executed before FSM switches to a new state */
}

}
[ etc.. repeated for other states ]
/* set up the FSM and add registers/states to the table */
addRegister(leftSensor); addRegister(rightSensor);

addRegister(middleSensor); addRegister(leftMotor);

addRegister(rightMotor);
addState(leftOfLine); addState(onLine); addState(rightOfLine);
addState(offOfLine); addState(onJunction); addState(slantJunction);
/* set the start state - the FSM will begin execution in this

state */

setInitialState(onLine);

/* start the main loop running. this loop will keep checking
entero for each state and transition as necessary. */

run();

}

};

Figure 4-5: The line follower as an AFSM
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class LineFollower extends AFSM {
Register leftSensor, rightSensor, middleSensor;

Register leftMotor, rightMotor;

LineFollower(Register is, Register rs, Register ms,

Register lm, Register rm) {
leftSensor = 1s; rightSensor = rs; middleSensor = ms;

leftMotor = lm, rightMotor = rm;

}
void drive(byte leftbyte right) {

leftMotor.write(left,1);
rightMotor.write(right,1);

}
void runO {

while (true) {
/* do processing here procedurally */

if(middleSensor.read() && !rightSensor.readO

&& !leftSensor.readO) {
/* On Line */
drive(100, 100);

} else if(leftSensor.readO) {
/* Turned to the right.

Turn back left to correct */
drive(20, 80);

} else if(rightSensor.readO) {
/* Turned to the left.

Turn back right to correct */

drive(80, 20);
} else {

/* None of the sensors read a line.

Do nothing - there is no line to follow */
continue;

}
}

}

Figure 4-6: The line follower as a procedure encapsulated in an AFSM
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class DistanceMeasurer extends AFSM {
Register leftEncoder, rightEncoder;
Register leftMotor, rightMotor;
int counter;

DistanceMeasurer(Register le,Register re,
Register lm,Register rm);

leftEncoder = le; rightEncoder = re;
leftMotor = lm; rightMotor = rm;
counter = 0;

}
void run() {

int distanceTraveled;
while (true) {

counter = (leftEncoder.read() + rightEncoder.reado)/2;
if (counter >= distance) {

leftMotor.write(0,2);
rightMotor.write(0,2);

signal.write(1,1);
} else {

/* this is an error condition. in a more fleshed

out implementation, this should write raise some

sort of error signal */

}
}

}
}

Figure 4-7: Distance Measurer AFSM Implementation
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public class robot extends AFSMNetwork {

static Register leftSensor,middleSensor, rightSensor,

leftEncoder, rightEncoder;

static Register leftMotor, rightMotor;

static DistanceMeasurer afsmDM;

static LineFollower afsmLF;

public void mainO {
leftSensor = new Register(new RoboSkiff.AnalogSensor(1));
middleSensor = new Register(new RoboSkiff.AnalogSensor(2));
[...]

rightEncoder = new Register(new RoboSkiff.AnalogSensor(5));

afsmDM = new DistanceMeasurer(leftEncoder ,rightEncoder,
leftMotor,,rightMotor);

afsmLF = new LineFollower(leftSensor,middleSensor,rightSensor,
leftMotor, rightMotor);

addAFSM(afsmDM);

addAFSM(afsmLF);

runo;

}

}

Figure 4-8: Example robot combining Line Follower and Distance Measurer behaviors
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Chapter 5

Results and Analysis

The month of January went by very quickly. Fortunately, the RoboSkiff boards

actually performed fairly well, except for some glitches with the hardware. However,

the software itself performed very well, and with some small exceptions, most users

were able to produce working robots with it.

Due to problems delivering the initial software images and power cables for the

controllers, 6.270 contestants were unable to start booting the controllers until the

second week of the class. However, the first week was primarily spent working with

LEGO@ and teaching students how to build mechanical structures, so the lost time

was not missed quite so badly. When the boot images did get released, all the boards

worked, which was a relief to the development team, and to me in particular.

Throughout the month, daily updates were made to the development software to

fix several small bugs and make changes to the class libraries. Constant feedback from

the contestants helped make the development system much better as a result. We were

fortunate in having a group of contestants who for the most part were excited about

getting the chance to work with new hardware for the first time. Some contestants

actually helped out tremendously by contributing code and hardware fixes back to

the development team.
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5.1 NetBSD/Kaffe combination

The base NetBSD operating system and Kaffe Java Virtual Machine performed very

well throughout the contest. No known errors or faults with either component were

reported. There was some initial confusion because the Kaffe JVM is not JDK 1.2

compliant, but an announcement to the contestant mailing list solved that issue very

quickly. All in all, using NetBSD on RoboSkiff proved to be one of the better decisions

the development team made.

The USB support under NetBSD proved to be quite robust and was able to handle

some rather adverse conditions, usually involving failure of RoboDC daughtercards

due to motor overloading. To the best of our knowledge, no USB-related errors were

reported throughout the contest.

5.2 Java

One major benefit of the Java development environment used for RoboSkiff showed

up immediately when a small group of contestants asked about Macintosh support.

We had not planned for this possibility, and under the old system it would be been

out of the question to attempt supporting a new platform during the contest. How-

ever, a download of the Apple Java Virtual Machine and Java Development Kit to

the Macintosh proved to work very well, and all RoboSkiff code compiled fine for

RoboSkiff on the Mac without a hitch. The same scenario was repeated many times

on other platforms like Linux, NetBSD, and even one AmigaOS user1 . The platform-

independence of the Java platform really helped our efforts in making RoboSkiff

development accessible to everyone.

The learning curve inherent to Java did cause problems for some people that were

used to C, but contestants new to programming in general actually found Java to be

reasonably accessible. I managed to publish quite a bit of example code throughout

'Note: After that experience, I can definitely say that running the Java VM on an Amiga is not

for the impatient.
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the contest to show how to perform basic tasks within the RoboSkiff and Behavior

frameworks, and many users found those examples to be helpful.

Overall, the responses of contestants after the contest generally indicated that

Java was a good thing. There were obviously some people who just found C to be

more natural due to their years of experience using it, but the cleaner syntax and

object-oriented features won quite a few contestants over to the Java camp. The

thread support also helped quite a bit for those teams implementing very complex

control systems. Incidentally, those were the teams who also used the Behavior classes

to good effect.

The general conclusion on the Java decision is that while it was a good one, more

work can definitely be done to lower the initial learning curve and also support higher-

end users. Better design of the class libraries and perhaps distribution of 3rd party

development tools with real Integrated Development Environments would also help

as well.

5.3 BotKit

Contest organizers are responsible for teaching recitations during the month of Jan-

uary. These recitations, with about eight to ten teams each, are meant to serve as

a place for further instruction and question-answer discussion regarding the progress

of teams' robots throughout the month. To test whether subsumption theory would

make an impact on contestants, I led two recitations with a total of nineteen teams

throughout the month and taught them what I knew about the subsumption archi-

tecture and FSM modeling of robot systems. In addition to teaching students how

to model systems using state machines, I also attempted to give examples of how to

use the Behavior classes to full advantage and use multithreading to layer behaviors

on top of each other. The other organizers generally taught standard procedural

techniques.

Three out of the top five teams in the contest came from my two recitations (there

were six recitations total). All three of these teams used state machines to model their
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robot behaviors, and they exhibited some very interesting behavior in the final rounds

against several robots with pre-planned strategies. This also illustrates an interesting

side-effect of the winners - the two robots who rounded out the top five won due to

mechanical advantages and not software reliability. Overall, twelve of the teams in

the contest used FSMs in some form (ten from my recitations, and two from other

recitations) for their final contest entries. However, only three teams of those twelve

actually modeled their robot using subsumption. Most teams chose to instead use

FSMs for modeling parts of their robot, like line navigation, and relied on procedural

code to manage top-level behavior by starting and stopping FSMs as necessary. How-

ever, the teams that used FSMs generally reported good results with them provided

the FSMs were specified correctly. Teams with limited programming experience in

particular found FSM modeling to be simpler than writing nested while/if loops to

manage feedback loops, proving the validity of this approach. Unfortunately, there

was rarely more than one FSM running at a time, which limited the robots to doing

roughly one thing at a time sequentially. The intricacies of multihreaded programming

proved to be too difficult for most teams to master without the register abstractions

provided by a full BotKit implementation.

The main argument heard against using only subsumption for all robot behavior

was that it seemed hard to write goal-oriented behavior layers. The subsumption

ideas held very true for repetitive feedback systems attempting to maintain a certain

stable state, but when series of goals were set down the layered approach proved

impractical. This illustrates the need for procedural encapsulation frameworks like

BotKit that allow both types of code to be used in the same system. One contestant

put this predicament fairly succinctly when he termed subsumption as a good idea

for "don't worry, be happy" robots - robots that can wander aimlessly around a room

and stay out of trouble, but do not do anything useful. Of course, with some work, a

subsumption-only approach can definitely be made to perform goal-based tasks, but

students with limited experienced definitely preferred the procedural approach.

The AFSM concepts were not accepted by everybody. Many teams attempted to

implement state machine networks in their robots, but had to give up after difficulties
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arose in breaking down systems into states. Without the BotKit framework to en-

capsulate procedural code within the networks, many teams gave up and started over

using purely procedural methods. The general opinion coming out of the contestants

in my classes was that state machines sounded extremely useful in recitations, many

teams just were not able to understand how to go about splitting systems into states.

The procedural view of the world is still very strong.

5.4 Future Work

Since the entire BotKit framework was not deployed this year, a high-priority goal

for next year is to improve it and deploy it under contest conditions next year. The

hardware platform for next year should be much more stable and so more time can be

devoted to actually working on the framework and improving it. Additionally, many

other areas remain open for research that might substantially improve the usefulness

of BotKit as a rapid prototyping tool for roboticists in the MIT 6.270 contest as well

as embedded system developers in general.

5.4.1 FSM description tools/languages

Networks of FSMs provide a powerful means to express and implement an embedded

system. However, there is still the issue of how to go about expressing these networks

in machine-executable form once they are designed. Many different approaches to

performing this task have been proposed, and active research is still ongoing in this

field. Some approaches have focused on making the act of constructing FSMs easy

through graphical tools or specialized programming languages. The Argos system is

one such example of graphical FSM design tools[16].

Several languages for specifying and compiling state machine descriptions to either

lower-level languages like C or even hardware descriptions also exist. One example in

somewhat widespread use is Esterel[9]. Esterel is actually more than just a language

for expressing FSMs - it encompasses an entire framework for specifying and imple-

menting synchronous reactive systems. The compiler is capable of generating both
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software and hardware implementations of finite state machine systems, optimizing,

and other useful things.

However, Esterel's language syntax is significantly different from mainstream lan-

guages. As previously stated, this poses problems to the target audience for BotKit

because they do not have the time to learn a new language from scratch. BotKit's

goal was to implement the subsumption/AFSM framework in a programming lan-

guage readily accessible to a large number of people.

5.4.2 FSM Verification

Some teams in the contest ran into problems with under-specified FSMs - they had

too few states to express all possible input combinations. While the systems did not

crash (as probably would happen in a procedural system), these problems proved to

be very difficult to find and fix. Much research has been put into the area of FSM

verification and simulation[14], and future work might include borrowing from that

research to help users construct robust AFSMs in BotKit

5.4.3 NetBSD/JVM work

The underlying NetBSD operating system for Skiff probably will not change beyond

updates to the mainline source tree, but some directions for the Kaffe JVM look

promising. In particular, this year's release of the RobotController software did noth-

ing to take advantage of Java's dynamic code loading ability. This made the RoboSkiff

development environment somewhat slower than Interactive-C because compile steps

were needed just to try out simple tasks. In the future, a Java "shell" for the con-

troller that is capable of loading compiled classes and directly calling methods would

go a long way towards making "Interactive-Java".
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5.5 Conclusion

The idea of encapsulating procedural code along with AFSMs in networks shows

promise, and preliminary results from the MIT 6.270 contest have shown that it is

possible to increase productivity and encourage more developers to write robust code

using FSMs. Much work remains to be done, but future 6.270 organizers will hopefully

pick up and continue teaching reactive control methods to future contestants.

BotKit marks an attempt to implement Brook's subsumption architecture in the

Java programming language, and enough work has been done to show that this combi-

nation can be useful even to developers with limited experience in either. Previously,

the subsumption ideas have been implemented using Lisp-like languages on networks

of multiple processors[5], and BotKit moves away from both of those norms. We

have shown that a subsumption architecture can be implemented in a mainstream

programming language. In addition, procedural code can be encapsulated and used

within that architecture, allowing users, especially beginners, to gradually adjust to

the FSM model and combine small specialized code fragments in a robust manner.
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