INST. N 1930

INVESTIGATION OF THE STRESSES IN A CONTINUOUS TWO-SPAN HIGHWAY BRIDGE.

5 kg 29

BY

CLARENCE C.T. LOO

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 27, 1929.

ACKNOWLEDGMENT

167433

May 27, 1929.

Professor A. L. Merrill, Secretary of the Faculty, Massachusetts Institute of Technology, Cambridge, Mass.

Dear Sir:

In accordance with the rules of the Faculty, I hereby submit a thesis entitled "Investigation of the Stresses in a Continuous Two-Span Highway Bridge" in partial fulfillment of the conditions required for the degree of Bachelor of Science.

Respectfully submitted,

TABLE OF CONTENTS

€ 3 7

Introductory - Object	Pages 1-2
Description of Bridge	3-6
Method used - Deviation of formulae	7-15
Results	15-18
Discussion	19 - 2/
Appendix - Calculations	21-53

Up to about a quarter of a century ago, structural engineers have looked upon continuous bridges with disfavor. Continuous structures were considered bad practice. But since that time, the prevailing attitude has changed, and continuous bridges are now being quite generally accepted as the full equivalent of other types where field requirements in erection, or where a saving in material, justifies their use.

Several factors are responsible for this changed attitude. In the first place, the uncertainties of analysis and the apprehension concerning the initial adjustment, have been both removed; the former by a more thorough grasp of structural relations, and the latter by increased constructive skill. Then too, practice has served to emphasize the proper economies of constrained types of structures; and this, coupled with the increased recognition given to rigidity in service, has helped greatly to remove the predjudice against continuous bridges.

Further, the popularizing of mechanical stress analysis for use where direct calculation has proven too complicated, has not only removed an obstacle to proper proportioning and practical design, but has also supplied engineers with an eye-picture of deformations, and thus bettered his conception of how movements at the supports or abutments may influence the stresses. -/-

Then again, the change from the use of pin-connections to that of riveted connections for bridge trusses has had its influence. In the old days when pin-connections were the rule, members subject to a reversal of stress had to be made so as to be adjustable, then in erection drawn up to initial tension of an unknown amount. The uncertainties attendant upon such an arrangement opposed its use for main members and so the continuous bridge, with its reversals of stress, was looked upon with disfavor. However, when riveted connections replaced pin connections, this objection was eliminated and so the prejudice could no longer exist.

Accordingly, although steel design still shows a leaning toward the simpler statically determined types of structures, the continuous structure is gradually coming into its own, and with the progressive weakening of what remains of the old influence, we may look forward to a more rapid extension of continuous structures.

It is then with this object in mind that the following thesis is presented: To illustrate the elastic load-deflection method of stress analysis for a continuous bridge. -2-

The bridge selected for investigation is a continuous two-span riveted Warren truss highway bridge now under construction. It is being built over the Missouri River at St. Joseph, Mo., about 1/4 mile south of the combined railway and highway bridge operated by the St. Joseph and Grand Island Railway.

Among the salient features in the design of this structure are the application of continuous trusses to relatively moderate span lengths, and the liberal use of silicon steel. A comparison of the continuous truss with two simple end-supported spans showed a saving of approximately \$25,000 or about 7% of the cost of the main bridge. The use of silicon steel wherever the size of the member justified its use resulted in a saving of \$37,000. A study of the relative advantages of simple paneling as compared with subdivided paneling was also made. This showed some distinct advantages in favor of the simple paneling, among which were:

- (1) Slight saving in cost.
- (2) Great simplicity in erection.
- (3) Lower secondary stresses.
- (4) Better appearance.

The bridge was designed according to the specifications of the American Association of State Highway Officials, 1925, with the modifications noted below. Live loads:-

Floor - 1 15-ton truck per panel on each of three traffic lanes spaced 9 ft., c. to C. -3-

Trusses - Uniform load of 562# per ft. per truss. Concentrated load of 26,300# per truss. Impact :-Floor - 30% of live loa d for all floor members. Trusses - I = (L 250)0.8 in which L = loaded 10L + 500length, and I should never exceed 30% Wind Pressure :--Transverse wind pressure - 30# per sq. ft. on the area of one floor, two trusses, and two handrails. Longitudinal wind pressure - 50% of transverse wind pressure per lineal foot of bridge. Temperature :-Normal temp. = 60° F. Maximum temp. = 120° F. Minimum temp. = -20° F (20° below 0) Unit Stresses :-Carbon steel - Tension - 16,000 #/in.² Compression - 15,000 - 501) maximum = 13.500Silicon steel - Tension - 24,000 $\#/in.^2$ Compression - 22,500 - 75 1 maximum = 18,750Combinations of loading :-(1)Dead + live + impact (2) Dead + 30-lb. wind)
(3) (1) + 15-lb. wind) Allowable unit stresses (4) (1) + temp.increased 25%. (4) + 15- $\bar{1}b.$ wind $\bar{1}$ (5) Allowable unit stresses (6) (2) + temp. increased 40%

The final design adopted shows an arrangement as follows:

The floor system consists of a $6\frac{1}{4}$ " slab of reinforced concrete carried on transverse members consisting of 8-inch I-beams curved to the desired crown. These beams, spaced three feet c. to c. were carried on two 24-inch and two 27-inch I beam stringers spaced eight feet between centers. The floor beams consisted of a 50" x 3/8" web with four - 6" x $3\frac{1}{2}$ " x 5/8" flange angles. A clear roadway of 27 feet with a crown of 2" was provided. 6" x 10" curbs were used, and 2" pipe handrails were installed, but no sidewalks were provided.

The design of the trusses is shown in the accompanying diagram:

see Plate I (next page)

-5-

LINE DIAGRAM OF TRUSS

Plain figures show area of members. Figures in parentheses show length of members.

Note:- Top and bottom lateral systems consist of two tension diagonals (each made up of two angles) in each panel. Bottom lateral system members are all silicon steel. Top lateral system - silicon steel, except in panels 9 and 10 and ½ of 8. For details of design (make-up of members, etc.) and further information, see Engig. News-Record Vol. 102, No. 3, Pages 100-102.

PLATE NO. I.

The method used in this investigation is known as the elastic load method. The deflection curve (or the elastic curve) is determined by the use of "elastic" loads, and from this curve the influence lines for the reactions may be obtained. Once the reactions are determined the stress analysis becomes a simple matter.

The method of computing the elastic loa ds used in the following computations is that proposed by H. Muller Breslau. The theory and the derivations of the formulae used are shown in the following quotation from Professor W. M. Fife's (M.I.T.) private translation of Mr. Breslau's work:

THE DEFLECTIONS OF THE JOINTS OF A TRUSS BY THE METHOD OF ELASTIC

WEIGHTS.

BAR CHAIN METHOD

1. If a series of bars are connected by frictionless joints so as to form a chain, it is possible to find the deflections of the joints due to stresses in the bars by drawing the funicular polygon for a series of imaginary loads placed at the joints whose deflection is desired. In determining the magnitude and direction of these imaginary loads, hereafter called "elastic loads", it is necessary to consider first certain relations between

-7-

a series of loads and the corresponding funicular polygon and then demonstrate that the funicular polygon drawn for a particular series of loads will have the same ordinates from some base line as the elastic curve has.

2. To find the loads corresponding to a particular funicular polygon. Fig. 1.

Fig. 1

By similar triangles:

$$\frac{\delta_m - \delta_{m-1}}{n_m} = \frac{ac}{n_{m+1}} = \frac{\delta_{m+1} - \delta_m + bc}{n_{m+1}}$$

also

$$\frac{b_c}{\lambda_{m+1}} = \frac{P_m}{H}$$

therefore

$$\frac{\delta_m - \delta_{m-1}}{\lambda_m} = \frac{\delta_{m+1} - \delta_m}{\lambda_{m+1}} + \frac{P_m}{H}$$

and

$$\frac{P_m}{H} = \frac{\delta_m - \delta_{m-1}}{\lambda_m} - \frac{\delta_{m+1} - \delta_m}{\lambda_{m+1}}$$

3.-

Consider any bar chain m-1, m, m 1,.... referred to a pair of co-ordinate axes so that the ordinate for any joint m is y_m . Let the length of the bar immediately to the left of joint m be s_m and let its inclination to the horizontal be ϕ_m the angle being positive when measured contra-clockwise from the horizontal. Let θ_m be the angle between bars (m-1)-(m) and (m)-(m 1) measured on the lower side of the bar chain.

Let the chain undergo stress so that the lengths of the barschange; their inclinations will change also and, consequently the ordinates y will increase or decrease. Let the change in the ordinate y_m be $\delta_{m\bar{n}}$, -9-

-10-

which, consequently, is the vertical deflection of joint m.

differentiating,

dividing by $s_m \cos \phi_m = \lambda_m$

$$\frac{\delta y_{m-1} - \delta y_m}{\lambda_m} = \frac{\delta s_m s_{1n} \phi_m}{s_m c_{05} \phi_m} + \delta \phi_m$$

similarly

$$\frac{\delta y_m - \delta y_{m+1}}{\lambda_{m+1}} = \frac{\delta s_{m+1}}{s_{m+1}} \frac{s_{1n}\phi_{m+1}}{s_{m+1}} + \delta \phi_{m+1}$$

Subtracting

$$\frac{\partial m - \delta m + i}{\lambda_{m+1}} - \frac{\delta m - i - \delta m}{\lambda_m} = \frac{\delta s_{m+1}}{s_{m+1}} + an\phi_{m+1} - \frac{\delta s_m}{s_m} + an\phi_m - \delta\phi_m + \delta\phi_{m+1}$$

or

$$\frac{\delta_{m}-\delta_{m-1}}{\lambda_{m}} = \frac{\delta_{m+1}-\delta_{m}}{\lambda_{m+1}} = \frac{f_{m}}{E} \tan \phi_{m} + \frac{f_{m+1}}{E} \tan \phi_{m+1} - \delta \phi_{m} + \delta \phi_{m+1}$$

where f_m is the stress intensity in bar (m-1)-(m) and is positive or negative according as the bar is in tension or compression.

Also $180^{\circ} - (\phi_m - \phi_{m+1}) = \theta_m$

consequently, by differentiating,

$$-\delta\phi_m + \delta\phi_{m+1} = \delta\theta_m$$

therefore,

$$\frac{\delta_m - \delta_{m-1}}{\lambda_m} - \frac{\delta_{m+1} - \delta_m}{\lambda_{m+1}} = \delta_m - \frac{f_m}{E} tan \phi_m + \frac{f_m t_1}{E} tan \phi_{m+1}$$

The left hand side of this equation is the same as the right hand side of the last equation in paragraph 1, consequently, if the elastic loads used are computed by the right hand side of the equation above, and the funicular polygon is drawn, using a unit pole distance, the ordinates of the joints of the funicular polygon from some base line will be the deflections of the joints. This base line is found from the consideration that at the points of support of the structure the deflections are zero.

If we examine the expression

$$\frac{\delta_{m-\delta_{m-1}}}{\lambda_m} - \frac{\delta_{m+1}-\delta_m}{\lambda_{m+1}} = \delta\theta_m - \frac{f_m}{E} \tan\phi_m + \frac{f_{m+1}}{E} \tan\phi_{m+1}$$

it may be seen that if either ϕ_m or ϕ_{m+1} is 90° the elastic load becomes infinite, consequently, the use of the above expression is limited to examples where none of the bars of the chain are vertical.

The funicular polygon may be drawn by graphic methods or its shape may be determined analytically. In the analytical method use is made of the following property of the funicular polygon: If a number of vertical loads are applied to a simple end-supported beam and the funicular polygon is drawn, the ordinates to the funicular polygon from the line joining the points where the outside strings of the funicular polygon cut the lines of action of the reactions for the simple beam, are the bending moments for the simple beam providing that the funicular polygon was drawn with a unit pole distance. Consequently, it is possible to find the shape of the funicular polygon which will be the deflection curve by imagining that the elastic loads are applied to a simple beam whose span is the length of the structure and drawing the bending moment curve. It is immaterial

whether the structure whose deflections are being investigated is simply end-supported or not; the deflection curve may always be obtained in this way. It is to be emphasized, however, that this procedure leads to the shape of the deflection curve only, and that the base line from which the deflections are to be measured is not necessarily the base line from which the bending moment ordinates are laid off: the base line from which the deflections are to be measured must be such as to show zero ordinates to the deflection curve at the points of support. In the case of a structure which is supported at one end only the funicular polygon is obtained by considering the elastic loads to be applied to a cantilever beam of the same length as the structure and supported in the same way, but the deflections are measured from a base line which is tangent to the elastic curve at the end opposite the support.

In the above expression for the elastic loads the first term is the change in the angle between adjacent bars of the chain. If it is desired to find the deflections of the joints of one chord of a truss, the bars of the chord may be considered as forming the bar chain. In such a case the changes of angle may be found from the changes of the angles of the triangles of the truss which meet at the joint in question. This involves the problem of finding the changes in the angles of a triangle due to changes in the lengths of its sides.

-12-

4. To find the changes in the angles of a triangle due to changes in the lengths of its sides. Consider the triangle in Fig. 3.

с = b.cosx + a cos p h = b.sinx = a sin p

Differentiating the expression for c.

 $\delta c = \delta b \cdot \cos \alpha + \delta a \cdot \cos \beta - b \cdot \sin \alpha \delta \alpha - a \cdot \sin \beta \delta \beta$ $= \delta b \cdot \cos \alpha + \delta a \cdot \cos \beta - h (\delta \alpha + \delta \beta)$

but

 $\alpha + \beta + \gamma = 180^{\circ}$

and

therefore

 $\delta c = \delta b \cdot cos \alpha + \delta a \cdot cos \beta + h \delta y$

Transposing and dividing by h = b.sin \ll = a.sin β

$$\delta y = \frac{\delta c}{h} - \frac{\delta b \cdot \cos \alpha}{b \sin \alpha} - \frac{\delta a \cdot \cos \beta}{a \cdot \sin \beta}$$

If the changes in the lengths of the sides of a triangle formed by the bars of a truss are the strains due to stresses f_a , f_b , and f_c (these being stress intensities)

$$\delta a = \frac{f_a}{E} a \qquad \delta b = \frac{f_b}{E} b \qquad \delta c = \frac{f_c}{E} c$$

and

$$\oint y = \frac{f_c}{E} \cdot \frac{c}{h} - \frac{f_b}{E} \cdot \frac{bcos}{bsin} - \frac{f_a}{E} \cdot \frac{acos}{asin}$$

$$\delta \gamma = \frac{f_c}{E} \left[\frac{a \cdot \cos \beta + b \cos \alpha}{h} \right] - \frac{f_b}{E} \cdot \frac{b \cdot \cos \alpha}{b \cdot \sin \alpha} - \frac{f_a}{E} \cdot \frac{a \cdot \cos \beta}{a \cdot \sin \beta}$$
$$= \frac{f_c}{E} \left[\frac{a \cdot \cos \beta}{a \cdot \sin \beta} + \frac{b \cdot \cos \alpha}{b \cdot \sin \alpha} \right] - \frac{f_b}{E} \cdot \frac{b \cdot \cos \alpha}{b \cdot \sin \alpha} - \frac{f_a}{E} \cdot \frac{a \cdot \cos \beta}{a \cdot \sin \beta}$$
$$= \frac{f_c - f_a}{E} \cot \beta + \frac{f_c - f_b}{E} \cot \alpha$$

similarly,

$$\delta \alpha = \frac{f_a - f_b}{E} \cot \gamma + \frac{f_a - f_c}{E} \cot \beta$$

$$d\rho = \frac{f_b - f_a}{E} \cot \gamma + \frac{f_b - f_c}{E} \cot \alpha$$

In the case under consideration - namely that of a continuous two-span highway bridge - there is one redundant reaction. The specific procedure in the investigation will be as follows:-

- (1) Compute areas, weight per foot, and length of all bars of the truss.
- (2) Replace the redundant reaction by a unit force acting downward and calculate the stress intensity in each bar caused by the unit load.
- (3) Using these stress intensities in the formula above, compute the elastic loads.
- (4) Compute the bending moments due to the elastic loads. The curve for the bending moments will be the same as the deflection curve, the latter being referred to a different base line.
- (5) In the case of a two-span structure, the application of Maxwell's Theorem will now give the influence line ordinates for the redundant reaction.
 (Maxwell's Theorem: If a force P at point A produces a deflection x at point B, then the same force P at point B will produce the same deflection x at point A).

- (6) Having the influence table for the redundant reaction, influence table for all the members of the truss may now be prepared.
- (7) Compute panel concentrations for dead load.
- (8) Compute dead stresses.
- (9) Compute live stresses and impact.
- (10) Compute reversals of stress.

The results of the investigation show a close agreement with the results of the design $\frac{e_{r}}{1 - e_{r}}$ as given in the Engineering News-Record.

	Influence line	for end reactions
<u>Pt.</u>	Values found by author	Values given in Eng. News-Record
0	1,000	1,000
i	0.909	0,910
ā	0.819	0.819
3	0.730	0.731
4	0.642	0.644
5	0.556	0.559
6	0.472	0.475
7	0.390	0.394
8	0.315	0.318
9	0.244	0.245
10	0.181	0.183
11	0.124	0.125
12	0.078	0.079
13	0.038	0.038
14	0.	0.
15	-0.033	-0.033
16	-0.064	-0.064
17	-0.090	-0.089
18	-0.104	-0.103
19	-0.113	-0.112
20	-0.113	-0.111
21	-0.109	-0.106
22	-0.099	-0.096
23	-0.086	-0.084
24	-0.072	-0.070
25	-0.056	-0.055
26	-0.038	-0.038
27	-0.020	-0.019
28	0.	0.

DEAD STRESS

Bar	Values found by author	Values given in Eng. News-Record.
$\begin{array}{l} L_{0} U_{1} \\ L_{2} U_{3} U_{3} \\ L_{2} U_{3} U_{5} \\ L_{4} U_{5} \\ U_{5} \\ U_{5} \\ U_{6} \\ U_{0} \\ U_{1} \\ U_{3} \\ U_{3} \\ U_{1} \\ U_{1} \\ U_{3} \\ U_{1} \\ U_{$	$\begin{array}{c} -450\\ 211\\ -100\\ 87\\ -1\\ -42\\ 127\\ -219\\ -302\\ -393\\ 479\\ -468\\ 534\\ 738\\ -466\\ -559\\ -535\\ -358\\ -11\\ 490\\ 1040\\ 309\\ 510\\ 556\\ -11\\ 490\\ 1040\\ 309\\ 510\\ 556\\ -11\\ 556\\ -9\\ 556\\ -9\\ 56\\ -9\\ 56\\ -9\\ 56\\ -9\\ 56\\ -9\\ 56\\ -9\\ 55\\ -10\\ 57\\ -11\\ 56\\ -9\\ 55\\ -10\\ 57\\ -11\\ 56\\ -9\\ 55\\ -10\\ 57\\ -11\\ 56\\ -9\\ 55\\ -10\\ 58\\ -23\\ \end{array}$	$\begin{array}{c} -457\\ 212\\ -100\\ 87\\ 2\\ -38\\ 129\\ -212\\ 298\\ -384\\ 473\\ -463\\ 533\\ -733\\ -472\\ -564\\ -543\\ -369\\ -14\\ 467\\ 1014\\ 314\\ 514\\ 562\\ 478\\ 217\\ -222\\ -694\end{array}$

Bar	Values found by author	Values given in Eng. News-Record
	-189 103	-190 104
LZUZ	- 75	- 7 5 78
L_4U_5	63	63
	- 59	- 70 - 84
L ₈ U7	-101	-101
т ⁹ 0д Тл Одд	-139	_139
	160 	159 154
L_{12011} L_{12013}	178	172
L14U13 U1U2	-218 -198	-218 -199
	-249	-250
U5U6 U7U8	-235	-238
	-151 174	-153 170
$U_{13}U_{14}$	293	293
LoLJ LoLJ	219	221
	258 257	259 560
L8L9	200	201
L10L11 L12L13	-155 -215	-212

Live Stress

No stress in bars U_2L_2 , U_4L_4 , U_6L_6 , U_8L_8 , $U_{10}L_{10}$, $U_{12}L_{12}$, and $U_{14}L_{14}$.

Stress in bars U_1L_1 , U_3L_3 , U_5L_5 , U_7L_7 , U_9L_9 , $U_{11}L_{11}$, and $U_{13}L_{13} = 44$.

Reversals :-

Uq U,o	 +128	+/22
L_6U_5	 + 18	+ 16
L4 U5	 - 62	- 60

As will be noted, the values of the ordinates for the influence line for the end reaction agree closely. The slight differences noted are probably due to a difference in the precision used as the writer made no attempt to carry any of his values beyond the fourth figure, (wherever a fifth figure is given in the computation which follows, it was done to keep the same number of decimal figures).

The dead stresses show the greatest discrepancy, but even here, the maximum error did not exceed $16000^{\#}$, an error of slightly more than 10%. The stresses found by the writer tended to be smaller than the designer's values near the ends of the truss, $(Lo-L_Q)$ and greater at the center of the truss (L_9-L_{14}) . The difference in the values of the influence line ordinates probably is partly responsible, but the chief source of error here very likely lies in the assumptions made in computing the dead weight. The total dead weight as found by the writer was $30000^{\#}$ greater than that given in the Engineering News Record. There was not sufficient data given to make possible a really accurate calculation of the weight of the top lateral system and the floor system. In the former case. the cross struts had to be calculated approximately whereas in the latter case, the weight of the I beams had to be guessed at since only the nominal size of beams were given.

-19-

The writer used the figure 22% for connections and details; the designer's figure was not known. However, on the whole, the differences are not serious and are about as small as can reasonably be expected under the circumstances.

The live stresses agree almost exactly in practi-The maximum difference is $4000^{\#}$ cally every instance. a variation of less 2-1/2%. After the computations had been made, the writer discovered an error in his results due to the fact that a mistake was made in applying the impact formula. The writer used one panel more than he should have (Loaded L_{14} as well as the other panel points) in computing the loaded length for use in the impact for-However, as the results were entirely satisfactory. mula. (the difference being practically negligible), no corrections were attempted. A check showed that in the majority of cases, if the correction were applied, the entire difference would be eliminated. This almost exact agreement between the live stresses is possible because no assumptions were necessary in the computations.

The reversals of stress also agree satisfactory. As is to be expected, the variations are not as great as in the case of dead stresses nor as small as in that of the live stresses. The reversals were relatively unimportant in this particular case, there being only three bars subject to a reversal of stress.

As a result of the investigation, the writer comesto the conclusion that the method of elastic loads is as good as any of the other methods of analyzing a statically indeterminate structure of the type considered. Personally, the writer would prefer this method (elastic loads) to any other since it eliminates the necessity for expressions for the stresses due to applied loads and does not involve the solution of simultaneous equations. The one drawback to its use is that greater precision is required in the calculations for the elastic loads.

The computations follow:

	Stress	with	unit lo	ad at	left r	reaction	7
Bar	Length	Area	Weight/ft.	Horiz. Comp.	Vert. Comp.	stress	Stress Intensity
LoU,	46.81	44.42	150.3	+0.946	+1,000	+1.377	+0.03091
LzU,	46.81	19.61	67.1	-0,605	-0.639	-0.879	-0.04482
Lz U3	58.62	21.86	74.7	+0.420	+0.639	+0.764	+0.03495
LAU3	58.62	19.61	67.1	-0.529	-0.806	-0.964	-0.04916
LAU5	62.86	21.86	74.7	+0.480	+0.806	+0.937	+0.04286
L6U5	62.86	21.85	74.7	-0.596	-1.000	-1.164	-0.05325
L6U7	62.86	19.61	67.1	+ 0.596	+1.000	+1.164	+0.05936
LBUT	62.86	24.75	84.4	-0.596	-1.000	-1.164	-0.04703
Le Ug	62.86	22.50	76.7	+0.596	+1.000	+1.164	+0.05173
LioUg	62.86	36.48	124.2	-0.596	-1.000	-1.164	-0.03191
$L_{io}U_{ii}$	62.86	33.36	113.8	+0.596	+1.000	+1.164	+0.03489
LIZUII	62.86	41.73	142.0	+0.119	+0.200	+0.233	+0.00558
L12 U13	73.42	36.50	124.4	-0.097	-0,200	-0.223	-0.00608
L14 U13	73.42	66.24	225.2	-0.487	-1.000	-1.112	-0.01679
U, U_2	33.03	38.36	130.8	+1.548	+0.361	+1.590	+0.04145
U3U4	3227	44.42	150.3	+2.496	+0.194	+2.504	+0.05637
USU6	32.17	44.42	150.3	+3.576		+ 3.576	+0.08050
Un UB	32.17	36.11	123.2	+4.767		+4.767	+0.13201
Uq UID	32.17	36.11	123.2	+5.960		+ 5.960	+0.16505
U1, U12	32.72	36.11	123.2	+6:433	+1.200	+6.544	+0.18122
U13U14	32.17	67.67	230.4	+6.823		+6.823	+0.10083
LoL,	32.17	37,50	127.7	-0.946		-0.946	-0.02523
L2 L3	32.17	38.18	130.0	-1.971	·	-1.971	-0.05162
LaL5	32.17	41.50	141.4	-2.980		-2.980	-0.07181
L6L7	32.17	38.18	130.0	-4.171		-4.171	-0.10925
LeLg	32.17	24.00	81.8	-5.363		-5.363	-0.22346
LioLi	32.17	26.50	90.3	-6.554		-6.554	-0.24732
L12 L13	32.17	50.84	172.1	-6.337		-6.337	-0.12465
U,L,	34.00	11.48	39.2				
U2L2	41.50	14.64	50.0				
U3L3	49.00	11.48	39.2				
Ufla	51.50	19.80	67.8				
Uslo	54.00	11.48	39.2				3 2
UGLG	54.00	19.80	67.8		، متعدد ا ۱۹۰۹ میں داری		
U_7L_7	54.00	11.48	39.2				
U8L8	54.00	19.80	67.8				
UqLq	54.00	11.48	39.2		ا محمد م ر ا		
UioLia	54.00	19.80	67.8		· · · · · · · · · · · · · · · · · · ·		
. U11L11	54.00	11.48	39.2	•	· · · · · · · · · · · · · · · · · · ·		
U12-412	60.00	38.80	62.8				
U1343	66.00	11.48	39.2				
UI4-LI4	66.00	40.06	67.1				

TABLE I so with unit load at left reaction

TABLE II - Computations for Exchange of Angles (Elastic Loads) Triangle $[(f_c) - (f_a)] \times cot \beta + [(f_c) - (f_b)] \times cot \alpha$ $L_0L, U, [(0.03091) - 0] \times \frac{34}{32.2} + [(0.03091) - (-0.02523)] \times \frac{32.2}{34} = +0.0858$ $U_1L_1L_2$ [(-0.04482) - 0] × $\frac{34}{32\cdot 2}$ + [(-0.04482) - (-0.02523)] × $\frac{32\cdot 2}{34}$ = -0.0659 +0.0199=E80, $U_1 L_2 L_1 \begin{bmatrix} 0 & -(-0.04482) \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & -(-0.04482) \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x \frac{34}{32.2} +$] × 0 = +0.0474 $U_2L_2U_1$ [(0.04145) - (-0.04482)] × 0.5875+ [(0.04145) - 0] × $\frac{7.5}{32.2}$ = +0.0604 $U_2 L_2 U_3 \left[(0.04/45) - (0.03495) \right] \times (0.054 + \left[(0.04/45) - 0 \right] \times (-\frac{7.5}{32.2}) = -0.0028$ $U_{3}L_{2}L_{3}[0 - (0.03495)] \times \frac{49}{32.2} + [$ $7 \times 0 = -0.0532$ +0.0518 = ESO, $U_{3}L_{3}L_{2}$ [(0.03495) - 0] × $\frac{49}{32.2}$ + [(0.03495) - (0.05/62)] × $\frac{32.2}{49}$ = +0./10/ $U_{3}L_{3}U_{4}[(-0.04916) - 0] \times \frac{49}{32.7} + [(-0.04916) - (-0.05162)] \times \frac{32.2}{49} = -0.0733$ $+0.0368 = E\delta \theta_{3}$ $U_{3}L_{4}L_{3}[0 - (-0.04916)] \times \frac{49}{32.2} + [$ $J \times O = +0.0749$ $U_4 L_4 U_3 \left[(0.05637) - (-0.04916) \right] \times 0.5539 + \left[(0.05637) - 0 \right] \times \frac{2.5}{32.7} = +0.0628$ $U_4 L_4 U_5 [(0.05637) - (0.04286)] \times 0.6072 + [(0.05637) - 0] \times (-\frac{2.5}{32.2}) + 0.0038$ $U_{5}L_{4}L_{5}[0 - (0.04286)] \times \frac{54}{32.2} + [$ 7 x 0 = -0.0720 +0.0695 = E & O4 $U_{5}L_{5}L_{4}$ [(0.04286) - 0] x $\frac{54}{32.2}$ + [(0.04286) - (0.07181)] x $\frac{32.2}{54}$ = +0.1403 $U_5 L_5 L_6 \left[(-0.05325) - 0 \right] \times \frac{54}{32.2} + \left[(-0.05325) - (-0.07/8/) \right] \times \frac{32.2}{54} = -0.0784$ +0.0619 = Ed05

ŝ

Triangle	[(fc)	- (fa	»] ×	cot p	+	[(fc)	-	(fb)]	xcota		
U5L6L5	[0	- (-0.05	325)] x	<u>54</u> 32.2	+			0		=	1008911
U666U5	[[0.08050]	- (-0.053	325)]×	32.2 54	+	•		0		-	+0.0797
U6 L6 U7	[CO.08050)	- (0.05	936)] x	32.2 54	+			0		-	+0.0126
U7 L6 L7	L o	- (0.05	936)] x	<u>54</u> 32·2	+		ć	0		-	-0.0997
											+ 0.0820 = ESO6
$U_7 L_7 L_6$	[(0.05936)	-	0] x	<u>54</u> 32.2	+	[(0.05936)	- (-0	,10925)]	x <u>32.2</u> 54	z	+0.2001
UnLyLe	[(-0,04703))	0] x	<u>54</u> 32.2	+	[(-0.04703)	- (-0	0,10925)]	x <u>32.2</u> 54	-	+0.0141
	· .			_ /							+0.2142 = ESO
Unlely	[0	- (-0.04	+703)] x	54 32.2	+			0		=	+0.0790
$U_8 L_8 U_7$	[(Q1 3201)	- (-0.04	·703)] x	<u>32.2</u> 54	+			0		3	+0.1066
Ug Lg Ug	[(0.13201)	- (0.05	(73)] x	32.2 54	+			0			+0.0478
Uq Lg Lg	[o	- (0.05	~/73)] x	<u>54</u> 32:2	+			0		:	-0.0869
· · ·				_ /				8			+0.1465 = ESO8
UgLgLB	[(0.05173)	-	o],	32.2	+	[[0.05173]	- (-	-0,22346	$7 \times \frac{32.2}{54}$	= -	+0.2508
Ug Lg Lio	[(-0.03191)	- (o 1 ×	<u>54</u> 32.2	+	[t 0.03191)	- (-	0.22346	$\int x \frac{32.2}{54}$	з,	+ 0. 0605
											+0.3113 = Ed 89

Triangle		· · · · · · · · · · · · · · · · · · ·
Ug Lio La [0 - (-0.03191)] x 54 +	•	• • • • • • • • • •
$(1)_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}$	0	= +0,0536
$(-0.03197) \times 37$	0	= +0.1173
$U_{10}L_{10}U_{11}[(0.16505) - (0.03489)] \times \frac{34}{54} +$	0	: +0.0775
$U_{11}L_{10}L_{11}L = 0 - (0.03489) \times \frac{54}{32.2} +$	0	= -0.0586
		+0.1898 = ESO,0
$U_{11}L_{11}L_{10}\left[(0.03489) - 0 \right] \times \frac{54}{32.2} + \left[(0.03489) \right] - 0$	$-(-0.24732)$ x $\frac{32.2}{54}$	= +0.2267
$U_{11}L_{12}L_{12}[(0.00558) - 0] \times \frac{54}{32.2} + [(0.00558) - 0]$	$(-0.24732) = \frac{32.2}{54}$	= +0.1601
		+0.3868 = ESO,,
$U_{11}L_{12}L_{11} \begin{bmatrix} 0 & -(0.00558) \end{bmatrix} \times \frac{54}{32.2} + \begin{bmatrix} 0 & -(0.00558) \end{bmatrix} \times \frac{54}{32.2} + \begin{bmatrix} 0 & 0 \end{bmatrix}$	1 × 0	= - 0.0094
U12L12U11 [(0.18122) - (0.00558)] × 0.3699 + [(0.18122) -	$0 7 \times \frac{6}{32.2}$	= +0.0988
U12L12U13 [(0.18122) - (-0.00608)]x 0.7440 + [(0.18122) -	$0 7 \times (-\frac{6}{32.2})$) = +0.0981
$U_{13}L_{12}L_{13} \begin{bmatrix} 0 & -(-0.00608) \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & -(-0.00608) \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X} \frac{66}{32.2} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{X}$	7 × 0	= +0.0125
	• • • • • • • • • • • • • • • • • • •	$+0.2000 = F \delta \theta_{10}$
$U_{13}L_{13}L_{12}[(-0.00608) - 0] \times \frac{66}{32.2} + [(-0.00608) - 0] \times $	$-(-0.12465)7 \times \frac{32.2}{5}$	= +0.01/53
$U_{13}L_{13}L_{12}\left[(-0.01679) - 0 7 \times \frac{66}{120} + \Gamma(-0.01679) - \right]$	(-0.12465) × $\frac{32.2}{32.2}$	= + 0 0 (8)
	66	+0.0101
$H_{\rm el}$ $L_{\rm e}$ $\int Q \left(2 2 (22) \right) \frac{1}{2} \frac{66}{2}$	ere et en en en	+0.0634 = E 0013
$\frac{-0.016}{9} \frac{1}{1} \times \frac{-1}{32.2} + \frac{-0.016}{9} \frac{1}{1} \times \frac{-1}{32.2} + \frac{-0.016}{9} \frac{1}{1} \times \frac{-0.016}{32.2} + \frac{-0.016}{9} \frac{1}{1} \times \frac{-0.016}{32.2} + \frac{-0.016}{9} \frac{1}{1} \times \frac{-0.016}{32.2} + \frac{-0.016}{9} \frac{1}{1} \times \frac{-0.016}{9} = \frac{-0.016}{9} \frac{1}{1} \times \frac{-0.016}{9} = \frac{-0.000}{9} \frac{1}{1} \times \frac{-0.000}{9} = \frac{-0.000}{9} \frac{1}{1} \times \frac{-0.000}{9} = \frac{-0.000}{9} \frac{1}{1} \times \frac{-0.000}{9} = \frac{-0.000}{9} = \frac{-0.000}{9} \times -0.00$	0	=+ 0.0345
$U_{14}L_{14}U_{13}[(0.10085) - (-0.0/6/4)] \times \frac{24.5}{66} + \frac{322}{322}$	0	= +0.0573
$\underbrace{U_{14}L_{14}U_{15}[(0.10083)] - (0.01679)] \times \frac{1}{6C} + \frac{1}{6C}$	0	= +0.0573
$U_{15}L_{14}L_{15}L = 0 - (-0.01679) x \frac{66}{32.2} +$	0	= + 0.0345
		+ 0.1836 = E 8014

-25-

Computations	for	Bending	Moment
' and	d De	flection	Curve

-

E30, = 0.0199	1.9257 × 32.2 = 61.95	61.95
ESO2 = 0.0518	0.0199	61.31
$Ed\theta_3 = 0.0368$	1.9058 × 32.2 = 61.31	123,26
ES 04 = 0.0695	0.0518	59.64
ESO5 = 0.0619	1.8540 × 32.2 = 59.64	182.90
ESO6 =0.0820	0.0368	58.46
ESO7 = 0.2142	1.8172 × 32.2 = 58.46	241.36
Eδθ8 =0,1465	0.0695	56.22
Ebog =0.3113	1.7477 × 32.2 = 56.22	297.58
Eδθιo =0,1898	0.0619	5423
ESO11=0.3868	1.6858 × 32.2 = 54.23	351.81
ESO12 = 0, 2000	0.0820	51.60
ESO13=0.0634	$\overline{1.6038} \times 32.2 = 51.60$	403.41
± ESO14=0.0918	0.2142	44.70
$R_{1}' = 1.9257$	1.3896 × 32.2 = 44.70	448.11
End Reaction under	0.1465	39.99
Elastic Loads	1.2431 × 32.2 = 39.99	488,10
(Structure consi-	0.3113	29.98
dered as end-sup-	0.9318 × 32.2 = 29.98	518.08
ported)	0.1898	23.87
/	0.7420 × 32.2 = 23.87	541.95
	0. 3868	11.43
	0.3552 × 32.2 = 11.43	553.38
	0.2000	4.99
	0.1552 × 32.2 = 4.99	558.37
	0.0634	2.95
	0.0918 × 32.2 = 2.95	561.32

PLATE I

TABLE II :- INFLUENCE TABLE FOR R,

D	(E)x Bending	(E) × Ordinates	; ;	Influence
Panel		to Base Line	(E) × Deflections	Line
Point	Moment	Deflections		Ordinates
Lo	0	+ 1122.6	+1122.6	+1.000
L,	62.0	+ 1082.5	+ 1020.5	+0.909
L_2	123.3	+ 1042,4	+ 919.1	+0.819
43	182.9	+ 1002.3	+ 819.4	+0.730
44	241.4	+ 962.2	+ 720.8	+0.642
15	297.6	+ 922.1	+624.5	40.556
46	351.8	+882.0	+530.2	+0.472
L7	403.4	+ 841.9	+438,5	+0.390
18	448.1	+ 801.8	+353.7	+0.315
Lg	488.1	+761.7	+273.6	+0.244
Lio	518.1	+721.6	+203.5	+0.181
L11	542.0	+ 681.6	+139.6	+0.124
L12	553.4	+641.5	+ 88.1	+ 0.078
413	558.4	+601.4	+43.0	+0-038
Lix	561.3	+561.3	0	0
45	558.4	+521.2	-37.2	-0.033
416	553.4	+481.1	-72.3	-0.064
Lij	542.0	+441.O	-101.0	-0.090
L18	518.1	+400. 9	-117.2	-0.104
Lig	488.1	+360.8	-127.3	-0.113
L20	448.1	+ 320.7	-127.4	-0.113
421	403.4	+280.6	-122.8	-0.109
L22	351.8	+240.6	-111.2	-0.099
L23	297.6	+200.5	-97.1	-0.086
L24	241.4	+160.4	- 81.0	-0.072
L25	182.9	+120.3	-62,6	-0.056
L26	123.3	+80.2	-43.1	-0.038
L27	62.0	+40.1	-21.9	-0.020
L28	0	0	0	0

Note :- Infl. line ordinate at "<u>n</u>" = $\frac{Deflection \ at "\underline{n}"}{Deflection \ at \ end}$

R, = end reaction. Downward Deflections considered positive.

PLATE II.

-29-

<i>T</i> /	ABLE IV	- Influ	ence Tal	bles for	- Top	Chord		
Pt.	Vert. Comp.	$-U_{1}U_{2}$	Vert. Com	pU3U4	5' -	U5 U6		
0	_(<u>1.000x2)-2</u> 5.53	= -0.	0			0		
/	$-\frac{(0.909 \times 2) - 1}{5.53}$	= -0.148	$-\frac{(0.90914)-3}{(19.6+1)}$	= -0.031	5 - (0.90	19x6)=-0.454		
2	<u>(0.8 19x2)</u> 5.53	= -0.296	$-\frac{(0.819 \times 4) - 2}{20.6}$	= -0.062	4 -(0.81	9×6) = -0.914		
3	- (0.730×2) 5.53	= -0.264	- (0.730×4)-1 20,6	= -0,093	3 -(0.73	0×6) = -1,380	e.	
4		-0.232	$-\frac{(0.642\times4)}{20.6}$	= -0.125	2 -(0.64	42 ×6) = -1 852		
5		-0.201	(0.556 × 4) 20.6	= -0.108	1 - (0.5	56 × 6) = -2,336		
6		-0.171		-0.092	-(0.4	$72 \times 6) = -2.832$		
7		-0.141		-0.076	-(0.39	ox6)=-2,340		
8		-0.114	~	-0.061		-1.890		
9		-0.088		-0.047		-1.464		×
10		-0.065		-0.035		-1.086		
11	-	-0.045		-0.024		-0.744		
12		-0.028		-0.015		-0.468	•	•
13		-0.014		-0.007		-0.228		
14	0		0			0		
15		t0.012		+0.006		+0.198		
16		+0.023		+0.012		+0.384		
17		+0.033	· · · · · · ·	+0.017		+0.540		
18		+0.038		+0.020		+0.624		
19		+0.041		+0.022		+0.678		
20		+0.041		+0.022		+0.678		
21		+0.039		+0.021		+0.654		
22		+0.036		+0.019		+0.594		
23		+0.03/		+0.017		+0.516		
24		+0.026		+0.014		+0.432		
25		+0.020		+0.011		+0.336		
26		+0.014		+0.007		+0.228		
27		+0.007		+0.004		+0.120		
28	0	10.341	0	1	0	i 		
101413	<u>-</u>	-1,807	P	+0,192 -0,776		+5,982 -17,988		
	Note :)tress = 5	5'x方; i.e.,	5'= Index	stress	${p = 54.2}{h = 54.0}$		

Tables 777 r

			a national and the second states and states		
Pt.	$5' - U_7 U_8$	$5' - U_9 U_{10}$	Vert. Comp $U_{11}U_{12}$	3"-0,30,4	
0	0	0	0	0	
1 7-	(0.909×8) = -0.272	- 0.090	$-\frac{(0.707 \times 1.3)^{-17}}{9 + 1} = +0.0092$	+0.304	
26-	(0.819×8) = -0.552	-0.190	$-\frac{(0.814 \times 12) - 10}{10} = +0.0172$	+0.534	
3_5-	(0,730 x 8) = -0.840	-0,300	$-\frac{(0.730\times12)-9}{10} = +0.0240$	+0.780	
4 4 -	(0,642×8) = -1.136	-0.420	$\frac{(0.642 \times 12 - 8)}{10} = +0.0296$	+1.012	
5 3-	(0.556x8) = -1.448	-0,560	$-\frac{(0.556\times12)-7}{10}=+0.0328$	+1.216	
6 2-	(0.472×8) = -1.776	-0.720	$-\frac{(0.472 \times 12)-6}{10} = +0.0336$	+1.392	
7 1-	(0.390×8) = -2,120	-0.900	$-\frac{(0.390 \times 12) - 5}{10} = +0.0320$	+1.540	
8 -	(0.315×8) = -2,520	-1.150	$-\frac{(0.315 \times 12)-4}{10} = +0.0220$	+1.590	
9 -	(0.244×8)=-1.952	-1.440	$-\frac{(0.244 \times 12) - 3}{10} = +0.0072$	+1,584	
10	-1.448	-1.810	$-\frac{(0.181\times12)-2}{10} = -0.0172$	+1.466	
11	-0.992	-1.240	$\frac{(0.124 \times 12)^{-1}}{10} = -0.0488$	+1.264	
12	-0.624	-0.780	$-(0.078 \times 12)$ = -0.0936	+0.908	
13	-0.304	-0.380	- 0,0038×12 = -0.0456	+0.468	
14	0	0	O	0	
15	+0.264	+0.330	+ 0.0396	+0.462	
16	+0.512	+0.640	+0.0768	+0.896	
17	+0.720	+0.900	+0.1080	+1.260	
18	+0.832	+1.040	+0.1248	+1.456	
19	+0.904	+1.130	+0.1356	+1.582	
20	+0.904	+1.130	+0.1356	+1.582	
21	+0.872	+1.090	+0.1308	+1. 526	
22	+0.792	+0.990	+0./188	+1.386	
23	+0.688	+0.860	+0.1032	+1.204	
24	+0.576	+0.720	+0.0864	+1.008	
25	+0.448	+0.560	+0.0672	+0.784	
26	+0.304	+0.380	+0.0451.	+0.537	
27	+0.160	+0.200	+0.0240	+0.280	
28	0	0	0	0	
Totals	+7.976	+9.970	+1.404	+28.016	
	-13.784	-1 200		6	

TABLE I

	Influ	ence	Tables	for	Vert.	Comp.	of Dia	agonals
Pt.	L_2U_1	L_2U_3	$L_4 U_3$	$L_4 U_5$	LOUS	LoUT	LgU7	Lo Uq
0	0	0	0	0	0	0	0	0
1	-0.239	+0.239	-0.122	+0.122	-0.091	+0.091	-0.091	+0.091
2	+0.523	+0.477	-0.243	+0.243	-0.181	+0.181	- 0.181	+0.181
3	+0.466	-0.466	-0.363	+0.363	-0.270	+0.270	- 0.270	+0.270
4	+0.410	-0.410	+0.517	+0.483	-0.358	+0.358	- 0.358	+0.358
5	+0.355	-0.355	+0.448	-0.448	-0.444	+0.444	-0.444	+0.444
6	+0.301	-0,301	+0.380	-0.380	+0.472	+0.528	-0.528	+0.528
.7	+0.249	- 0.249	+ 0.314	-0.314	+0.390	-0.390	+0.610	+0.610
8	+0.201	-0.201	+0.254	-0.254	+0.315	-0.315	+0.315	+ 0.685
9	+0.156	- 0.156	+0.197	-0.197	+0.244	-0.244	+0.244	-0.244
10	+0.116	-0.116	+0.146	- 0.146	+0.181	-0.181	+0.181	-0,181
11	+0.079	-0.079	+0.100	-0.100	+0.124	+0,124	+0.124	-0.124
12	+0.050	-0.050	+0.063	-0.063	+0.078	-0.078	+ 0.078	-0.078
13	+0.024	-0,024	+0.031	-0.031	+0.038	-0.038	+0.038	-0.038
14	0	0	0	0	0	0	0	0
15	-0.021	+0.021	-0.027	+0.027	- 0.033	+ 0.033	-0.033	+0.033
16	-0.041	+0.041	-0.052	+0.052	- 0.064	+0.064	-0.064	+0.064
17	-0.057	+0.057	-0.073	+0.073	-0.090	+0.090	-0.090	+0.090
18	-0.066	+0.066	-0.084	+0.084	-0.104	+0.104	-0.104	+0.104
19	-0.072	+0.072	-0.091	+0.091	-0.113	+0.113	-0.113	+0.113
20	-0.072	+0.072	-0.091	+0.091	-0.113	+0.113	-0.113	+0.113
21	-0.070	+0.070	-0.088	+0.088	- 0.109	+0.109	-0.109	+0.109
22	-0.063	+0.063	-0.080	+0.080	-0.099	+0.099	-0.099	+0.099
23	-0.055	+0.055	-0.069	+0.069	-0.086	10.086	-0.086	+0.086
24	-0.046	+0.046	-0.958	+0.058	-0.072	+0.072	-0.072	+0.072
25	-0.036	+0.036	-0.045	+0.045	-0.056	+0.056	-0.056	+0.056
26	-0.024	+0.024	-0.031	+0.031	-0.038	+0.038	-0.038	+0.038
27	-0.013	+0.013	-0.016	+0.016	-0.020	+0.020	-0.020	+0.020
28	0	0	0	0	0	0	0	0
Total	+ 2.9 30 -0.875	+1.352 -2.407	+2,450 -1,533	+2,016 -1.933	+1.842 -2.341	+2.869 -1.370	+0,980 -3,479	+4,164 -0.665

Note:- Computation is by method of shears. Influence table for LoU, is same as that for End Reaction with signs reversed.

Pt.	Lio Uq	L10 U11	L12 U11	L12 U13	L14 U13	
0	0	0	0	0	0	
1	-0,091	+0.091	-0.082	+0.082	-0.091	
2	-0.181	+0.181	-0.164	+0.164	-0.181	
3	-0.270	+ 0.270	-0.246	+0.246	-0.270	
4	-0.358	+ 0.358	-0.328	+0.328	-0.358	
5	-0.444	+0.444	-0.411	+0.411	-0.444	
6	-0.528	+0.528	-0.494	+0.494	-0.528	
7	-0.610	+0.610	-0.578	+0.578	- 0,610	
8	-0.685	+0.685	-0.663	+0.663	-0.685	
9	-0.756	+0.756	-0.749	+0.749	-0.756	•
10	+0.181	+0.819	-0.836	+0.836	-0.819	
11	+0.124	-0,124	-0.925	+0.925	-0.876	
12	+0.078	-0.078	-0.016	+1.016	-0.922	
13	+0.038	-0.038	-0.008	+0.008	-0.962	
14	0	0	0	0	0	
15	-0.033	+ 0.033	+0.007	-0.007	-0.033	
16	-0.064	+0.064	+0.013	-0.013	-0.064	
17	-0.090	+0.090	+0.018	-0.018	-0.090	
18	-0.104	+0.104	+0.021	-0.021	-0.104	
19	-0.113	+0.113	+0.023	-0.023	-0.113	
20	-0:113	+0.113	+0.023	-0.023	-0,113	
21	-0.109	+0.109	+ 0.022	-0.022	-0.109	
22	-0.099	+0.099	+0.020	-0.020	-0.099	
23	-0.086	+0.086	+0.017	-0.017	-0.086	
24	-0.072	+0.072	+0.014	-0.014	-0.072	
25	-0.056	+0.056	+0.011	-0.011	-0.056	
26	-0.038	+0.038	+0.008	-0.008	-0.038	
27	-0.020	+0.020	<i>40.004</i>	-0.004	-0.020	
28	0	0	0	0	0	
. Total	+ 0.421 - 4.920	+5.739 -0.240	+0.201 -5.500	+6.500 -0.201	+ 0 - 8,508	

.

-33-

. .

•

			IAB	LEYI		-	
	Influence	e Table	es for	- Bo	ttom	Cho	rd
P+.	$S_{i}' - L_{2}L_{3}$		S2-L4L5	S2-L6 L7	S'z-L8L9	5'2-L10 L11	5'3-L12L13
0	0		0	0	0	0	0
1	+(0.909×3) - 2	: +0.727	+0.545	+0.363	+0.181	0	-0.183
2	+ (0.819 x 3) -1	= +1.457	+1.095	+0.733	+0.371	+0.009	-0.353
3	+ (0.730 × 3)	= +2,190	+1.650	+1.110	+0.570	+0.030	-0.510
4	+(0.642×3)	= +1.926	+2.210	+1.494	+0.778	+0.062	-0.654
5	+(0.556×3)	: +1.668	+2.780	+1.892	+1.004	+0.116	-0,772
6	+(0,472×3)	= +1,416	+2.360	+2.304	+1.248	+0.192	-0.864
7	+(0.390 X3)	- +1.170	+1.950	+2.730	+1.510	+0,290	-0.930
8	+(0.315 x 3)	= + 0.945	+1.575	+2,205	+1.835	+0.465	-0.905
9	+(0.244x3)	= +0.732	+1.220	+1.708	+2.196	+0.684	-0.828
10	+ (0.181 x 3)	= +0.543	+0.905	+1.267	+1.629	+0.991	-0.647
11	+(0.124×3)	= +0.372	+0.620	+0.868	+1.116	+1.364	-0.388
12	+(0.078X3)	= +0.234	+0.390	+0.546	+0.702	+0.858	+0.014
13	+(0.038X3)	= +0.114	+0.190	+0.266	+0.342	+0.418	+0.494
14	0		0	0	0	0	0
15		-0.099	-0.165	-0.231	-0.297	-0,363	-0.429
16		-0.192	-0.320	-0.448	-0.576	-0.704	-0.832
.17		-0.270	-0.450	-0.630	-0.810	-0.990	-1.170
18		-0.312	-0.520	-0.728	-0.936	- 1.144	-1,352
19		-0.339	-0.565	-0.791	-1.017	-1.243	-1,469
20		-0.339	-0,565	-0.791	-1.017	-1.243	-1.469
21		-0.327	-0.545	-0.763	-0.981	-1.199	-1.417
22		-0.297	-0.495	-0.693	-0891	-1.089	-1.287
23		-0.258	-0.430	-0.602	-0.774	-0.946	-1.118
24		-0.216	-0.360	-0.504	-0.648	-0.792	-0.936
25		-0.168	-0.280	-0.392	-0.504	-0.616	-0.728
26		-0.114	-0.190	-0.266	-0.342	-0.418	-0.494
27		-0.60	-0.100	-0.140	-0.180	-0.220	-0.260
28	0		0	0	0	0	0
Total	/	+13.494 -2.991	+17.490 -4.985	+17.486 -6.979	+13.482 -8.973	+5.479 -10.967	+0,508 -19,995

Note :- Influence table for L_0L_1 is same as that for the end reaction. (h= 34.0) $5tress = 5' \times \frac{P}{h}$; p = 32.2 in every case $h_1 = 49.0$ $h_2 = 54.0$ $h_3 = 66.0$ -34-

PLATE I

PLATE I

36

Dead Load Concentrations at Panel Points:

Top Chord Panel Points

anel Point	U U L	u ₂	U ₃	^U 4	บ ₅	U ₆	U ₇
hord member hord member ertical iagonal jagonal ateral System	2.16 - 0.67 3.52 1.57 2.40	2.16 2.16 1.04 - 2.09	2.16 2.42 0.96 2.19 1.96 4.32	2.42 2.42 1.74 - 2.09	2.42 2.42 1.06 2.35 2.34 8.28	2.42 2.42 1.84 - 2.09	2.42 1.98 1.06 2.11 2.65 8.28
Total for Truss 22% details	10.32 2.27	7.45	14.04 3.09	8.67 1.72	18.87 4.15	8.77	18.50 4.07
Total	12.59	8.97	17.13	10.39	23.02	10.50	22

Panel Point	U8	.U ⁹	Ulo	Ull	ມາຣ	^U 13	^U 14
Chord member Chord member Vertical Diagonal Diagonal Lateral System	1.98 1.98 1.84 	1.98 1.98 1.06 2.41 3.90 8.28	1.98 1.98 1.84 	1.98 2.00 1.06 3.58 4.46 8.28	2.00 2.00 1.88 2.09	2.00 3.71 1.29 4.57 8.26 9.45	3.71 3.71 2.21 - 9.45
Total for Truss 22% details	7.89 1.53	19.61 4.31	7.89 1.53	21.36 4.70	7.97 1.75	29.28 6.44	19.08 4.20
Total	9.42	23.92	9.42	26.06	9.72	35.72	23.28

Note: Dead Loads at Lo and L₂₉ neglected since they do not affect the stresses in the truss members.

Dead Load Concentrations at Panel Points:

Bottom Chord Panel Points

Panel Point	L1	r5	Lz	L_4	L ₅	L ₆	L 7
Chord member Chord member Vertical Diagonal Diagonal Lateral System	2.06 2.05 0.67 - 0.77	2.06 2.09 1.04 1.57 2.19 0.70	2.09 2.09 0.96	2.09 2.27 1.74 1.96 2.35 0.64	2.27 2.28 1.06 - 0.64	2.27 2.09 1.84 2.34 2.11 0.64	2.09 2.09 1.06
Total for Truss 22% details Flooring, etc.	5.55 1.22 48.96	9.65 2.01 48.96	5.78 1.27 48.96	12.05 2.24 48.96	6.25 1.38 48.96	11.39 2.28 48.96	5.88 1.29 48.96
Total	55.73	60.62	56.01	63.25	56.59	62.53	56.13
Panel Point	L 8	r ð	r 10	L	r ¹ 15	L ₁₃	L ₁₄
Chord member Chord member Vertical Diagonal Diagonal Lateral System	2.09 1.32 1.84 2.65 2.41 0.64	1.32 1.31 1.06 - 0.70	1.32 1.45 1.84 3.90 3.58 0.77	1.45 1.45 1.06 - 0.77	1.45 2.77 1.89 4.46 4.57 0.85	2.77 2.77 1.29 - 0.92	2.77 2.77 2.21 8.26 8.26 0.92
Total for Truss 22% details Flooring, etc.	10.95 2.21 48.96	4.39 0.97 48.96	12.86 2.63 48.96	4.73 1.04 48.96	15.99 3.52 48.96	7.75 1.71 48.96	25.19 5.54 48.96
Total	62.12	54.32	64.45	54.73	68.47	58.42	79.69

Note: Dead Loads at Lo and L₂₉ neglected since they do not affect the stresses in the truss members.

Dead Load Concentrations at Panel Points:

Panel Point	1	2	3	4	5	6	7
Top load Bottom load	12.59 55.73	8.97 60.62	17.13 56.01	10.39 62.25	23.02 56.59	10.50 62.53	22.57 56.13
Total	68.32	69.59	73.14	72.64	79.61	73.03	78.70

Total Concentration at each Panel Point

Panel Point	8	9	10	11	12	13	14
Top load Bottom load	9.42 62.12	23.92 54.32	9.42 64.45	26.06 54.73	9.72 68.47	35.72 58.42	23 .28 79.69
Total	71.54	78.24	73.87	80.79	78.19	94.14	102.97

Note: Dead Loads at Lo and L₂₉ neglected since they do not affect the stresses in the truss members.

COMPUTATIONS FOR DEAD STRESSES

Panel	Dead	Bar Lou,		Bar L2U,		Bar L2 U3		Bar Lau3	
Points	Load	Influence Line Ordinates	Vert. Comp.	Influence Line Ordinates	Vert. Comp.	Influence Line Ordinates	Vert. Comp	Influence Line Ordinates	Vert. Comp.
1&27	68.3	(-0.909) + (0.020)	-60.7	(-0.239) + (-0.013) -17·2	(0,239)+(0.013)	+17.2	(-0.122) + (-0.016)	-9.4
2 8 26	69,6	(-0.819)+ (0.038)	-54.3	(40.523)+(-0.024)) +34.8	(0.477) + (0.024)	+ 34.9	(-0.243)+(-0.031)	-19.2
3 & 25	73.1	(-0.780) +(0.056)	-49.3	(0.466) + (-0.036)	+31.4	(-0.466) + (0.036)	-31,4	(-0.363) + (-0.045)	-29.8
4&24	72.6	(-0.642)+ (0.072)	-41.4	(0.410) + (-0.046)	+26.4	(-0.440) + (0.046)	-26.4	(0.517) +(-0.058)	+33.3
5&23	7 <i>9</i> .6	(-0,556)+(0.086)	-37,4	(0.355) +(-0.055)	+23.9	(-0.355)+(0.055)	-23,9	(0.448) + (-0.069)	+30.2
6 & 22	7 3 .0	(-0.472)+(0.099)	-27.2	(0.301) + (-0.063)	1+17.4	(-0.301) +(0.063)	-17.4	(0.380) +(-0.080)	+21.9
7821	78.7	(-0.390)+(0.109)	-22.1	(0.249)+(-0.070) +14.1	(-0,249)+(0,070)	-14.1	(0.314) + (-0.088)	+17.8
8 & 20	71.5	(-0,315)+(0.113)	-14,4	(0.201) +(-0.072)	+9.2	(-0.201)+(0.072)	-9.2	(0.254) + (-0.091)	+11.6
9&19	78.2	(-0.244)+(0.113)	-10.3	(0.156) +(-0.072)	+ 6,6	(-0,156)+(0,072)	- 6.6	(0.197) + (-0.091)	+8.3
10&18	73.9	(-0,181) + (0.104)	-5.7	(0.116) + (-0.066)	+3.7	(-0.116)+(0.066)	- 3.7	(0.146) + (-0.084)	+4.6
11 & 17	80.8	(-0.124) + (0.090)	-2.8	(0.079) + (-0.05 7)	+1.8	(-0.079)+(0.057)	-1.8	(0.100) + (-0.073)	+2.2
12&16	78.2	(-0.078)+(0.064)	-1.1	(0.050)+(-0.041)	+0.7	(-0.050) +(0.041)	-0.7	(0.063)+(-0.052)	+0.9
13 & 15	94.1	(-0.038)+(0.033)	-0.5	(0.024)+(-0.021)	+0.3	(-0.024)†(0.021)	-0.3	(0.031) +(-0.027)	+0.4
Total	991.8		-327.2		+153.1		-83.4		+72.8

6

Dead Reactions :-

 $R_1 = R_3 = 327.3$ $R_2 = 2(991.8 - 327.3) + 103.0 = 1432.0$

	C	COMP	UTA	TION	s F	OR	DEA	05	TRES	55£5	(cor	(5)			
0		La	U_{5}	L6	U_5	46	U7	L ₈	U7	Lg	Uq	Lio	Uq	Loc	<i>U</i> ₁ ,
Panel Point	Dead Load	Sum of Infl. Line Ord.	Vert. Comp.	Sum of Infl Line Ord.	Vert. Comp	Sum of Infl. Line Ord.	Yert. Comp.	Sum of Intl. Line Ord.	Vert. Comp	Sum ot Intl. Line Ord.	Vert. Comp.	Sam of Intl. Line Ord.	Vert. Comp	Sum of Infl. Line Ord.	Vert. Comp.
1827	68.3	+0.138	+9.4	-0.111	-7.6	+0.111	+7.6	-0.111	-7.6	+0.111	+7.6	-04/1	-7.6	+0.	47.6
28226	69.6	+0.274	+19.1	-0.219	-15.3	+0.219	t15.3	-0.219	-15.3	+0.219	+15.3	-0.219	-15.3	+0.219	+15.3
3 B- 25	73.1	+0.408	+29.8	-0.326	-23.8	t0.326	+23.8	- 0. 326	-23.8	+0.326	+23.8	-0.326	-23.8	+0 326	+23.8
4 8-24	72.6	10.541	+ 39.2	-0.430	- 31.2	+0.430	+31.2	-0.430	-31,2	+0.430	+31.2	-0.430	-31,2	+0.430	+31.2
5 B 23	79:6	-0.379	-30.2	-0.530	-42.2	+0.530	+42.2	-0.530	-42.2	+0.530	+42.2	-0.530	-42.2	+0.530	+42.2
68222	73.0	-0.300	-21.9	+0.373	+27.2	+0.627	+45.8	-0.627	-45.8	t0.627	+45.8	-0.627	-45.8	+0.627	+45.8
78-21	78.7	-0.226	-17.8	+0.281	+22.1	-0.281	- 22.1	-0.719	- 56.6	+0.719	+56.6	-0.719	-56.6	+0.719	+56.6
8 & 20	71,5	-0.163	-11.7	+0.202	+14.4	-0.202	- 14.4	+0.202	+14.4	+0.798	+ 57.0	-0.798	-57.0	+0.798	t57.0
9 & 19	78.2	-0.106	- 8.3	+0.131	+10.2	-0./3/	-10.2	+0.131	+10.2	-0.131	-10,2	-0.869	-67.9	+0.869	+67.9
108-18	73.9	-0.062	-4.6	+0.077	+ 5.7	-0.077	- 5.7	+ 0.077	+ 5.7	-0077	-5.7	+0.017	+5.7	+0.923	+68.3
11817	80.8	-0.027	-2.2	+0.034	+2.7	-0.034	-2.7	+0.034	+ 2.7	-0.034	-2.7	+0.034	+2.7	-0.034	-2.7
128-16	78.2	-0.011	-0.9	+0.014	+1.1	-0.014	-1.1	+0.014	+1.1	-0.014	- 1.1	+0.014	+1,1	-0.014	-1.1
138-15	94.1	-0.004	-0.4	+0.005	+0.5	-0.005	-0.5	+0.005	+0.5	-0.005	- 0, 5	+0.005	+0.5	-0.005	-0.5
Total	991.8		-0.5		-36.2		+109.2		-187.9		+259,3		-337.4		+411.4

£

	•	COMP	UTAT	TIONS	FO	R	DEAL	0 3	STRE:	55 E 5	(C	ONT.)			
0		Lis	Un	L12	U13	L14	U13	U,	U_{z}	U_3	U4	U_5	U_6	U_7	UB
Point	Deaa Load	Sum of Intl. Line Ord.	Vert. Comp.	Sum ot Intl. Line Ord.	Vert. Comp.	Sum ot Infl Line Ord.	. Vert. Comp.	Sum of Infl Line Ord	5' (V:C.)	* sum ot Intl. Line Ord.	5' (V.C.)	Sum of Infl. Line Ord.	<i>5</i> ′	Sum of Infl. Line Ord.	5'
& 27	68.3	-0.078	-5.4	+0.078	1 5.4	-0.111	-7.6	-0.141	-9.6	-0.027	-1.8	-0.334	-22.8	-0.112	-7.6
8-26	69.6	-0.156	-10.8	+0.156	+10.8	-0.219	-15.3	-0.282	-19,6	-0.055	-3.8	-0.686	-47,7	_0.248	-17.3
825	73.1	-0.235	-17.2	+0.235	417.Z	-0.326	-23.8	-0.244	-17,8	-0.082	-6.0	-1.024	-74.9	-0.392	-28.6
4 & 24	72.6	-0.314	-22.8	+0.314	+22.8	-0.430	-31.2	-0.206	-15.0	-0.11	-8.1	-1.420	-103.]	-0.560	-40.7
8 23	79.6	-0.394	-31.3	+0.394	+31.3	-0.530	-42.2	-0,170	-13.5	-0.091	-7,2	-1,820	-144.8	-0.760	-60.4
& 22	73.0	-0.474	-34.6	+0.474	+346	-0.627	-45.8	-0.135	-10.0	-0.073	-5.3	-2.238	-163.4	-0.984	-71.8
8 21	78.7	-0.556	-43.7	+0.556	+43.7	-0.719	-56.6	-0.102	- 8.0	-0.055	-4.3	-1.686	-132,5	-1.248	-98.2
& 20	71.5	-0.640	-45.8	+0.640	+45.8	-0.798	-57.0	-0.073	-5.2	-0.039	-2.8	-1.212	-86.7	-1,616	-115,6
& 19	78.2	-0726	-56.7	+0.726	+56.7	-0.869	-67.9	-0,047	-3.7	-0.025	-2.0	-0.78L	-61.9	-1.048	-82.0
818	73.9	-0.815	-60.3	+0.815	+60.3	-0.923	-68.3	-0.0 27	-2.0	-0.015	-1.1	-0.462	-34,2	-0,616	-45.5
1817	80.8	-0,907	-73.3	+0.907	+73.3	-0.966	-78.0	-0.012	-1.0	-0.007	-0.6	-0.204	-16.5	-0:272	-22,0
28-16	78.2	-0.003	-0.2	+1.003	+78.2	-0.986	-77.0	-0.005	-0,4	-0.003	-0.2	-0.084	-6.6	-0.112	- 8, 8
\$ & 15	94.1	-0.001	-0,1	+0.001	+0.1	-0.995	-93.6	-0,002	- 0.2	-0.001	-0,1	-0,030	-2.8	-0.040	-3.8
nta l	991.8		-402.2	<u>.</u>	+480,2		-664.3	с с с с с с 5	-106.0		-43,3		-897.9	•	-602.3

		Сом	PUT	ATIO	~5	FOR	e Da	EAD	STR	ESSI	55	(CON;	,)		
		Uq	U,o	U,,	U12	U ₁₃	3 U14	Lo	L,	L2	L3	L4	L5	L	L y
Panel Point	Dead Load	Sum ot Intl. Line Ord.	5'	Sum ot Intl. Line Ord.	 (۲.C.)	Sum ot Intl. Line Ord.	5'	Sum of Infl. Line Ord,	5'	Sum of Infl. Line Ord	5'	Sum of Intl. Line Ord.	5'	Sum of Infl. Line Ord.	వ ′
1 & 27	68.3	+0,110	+1.5	+0.033	+2.3	+0.584	+39.9	+0.889	+60.7	+0.667	+45.6	+0.445	+30.4	+0.223	+15.2
2 8-26	69.6	+0.190	+13.2	+0.063	+4,4	+1.066	+74.1	+0.781	+ 54,3	+1.343	+93.5	+0.905	+63.0	+0.467	+32.2
38.25	73.1	+0.260	+19.0	+0.09	+6.6	+1.564	+114.2	+0.674	+49.3	+2.022	+147.7	+1.370	+100,0	+0.718	+52.4
48:24	72.6	+0.300	+21.8	+ 0 ,116	+8.5	+2.020	+1468	+0.570	+41,4	+1.710	+124.1	+1.850	+134.3	+0.990	+71,8
58.23	79.6	+0.300	+23.8	+0.136	+10.8	+2,420	+192,6	+0.470	+37.4	+1,410	+112,1	+2.350	+186.9	+1.290	+102.7
68-22	73.0	+0.270	+19.7	+0,152	+11.1	+2.778	+2025	+0.373	+27,2	+1.119	+82.8	+1.865	+136.1	+1.611	+117.8
7821	78.7	+0,190	+15.0	+0.163	412,8	+3.066	+241.0	+0,281	+22.1	+0.843	+66.3	+1.405	+110,5	+1.967	+154.7
8 & 20	71.5	-0.020	_14.3	t0.158	+11.3	+3,172	+227.0	+0.202	+14.4	+0.606	+43.8	+1.010	+72.2	+1,414	+101·2
9 & 19	78.2	-0.310	-24.2	+0.143	+11.2	+3,166	+247.5	+0,131	+10.3	+0.393	+30.7	+0.655	+51,2	+0.917	+71,7.
10&18	73. <i>9</i>	-0.770	-56.0	+0.108	+8.0	+2922	+216.0	+0.077	+5.7	+0.231	+17.1	+0.385	+28.5	+ 0.539	+39.9
11817	80.8	-0.340	-27.5	+0.059	+4,8	+2,524	+204.0	+0.034	+2,8	+0.102	+ 8.2	+0.170	+13.7	+0.238	+19.2
128-16	78.2	-0.140	-10.9	-0.017	-1.3	+1.804	+141.1	+0.014	+1.1	+0.042	+23	+0.070	+5,5	+0.098	+7,7
138-15	94.1	-0.050	-4.7	-0.006	-0.6	+0.930	+87.4	+0.005	+0.5	+0,015	+1,4	+0.025	+2.4	+0035	+33
Total	991.8		-17,6		+89.9		+2134.1		+327,2		+776.6		+934.7		+789.8

-43-

- <i>i</i>	~ <i>,</i>	_8	Lq	LIO	L,,	412	L13
Panel Points	Dead Load	Sum of Infl. Line Ordinates	5′	ot Infl. Line Ordinates	5'	of Intl.Line Ordinates	5'
1 & 27	68.3	+0.001	+0.1	-0.220	-15,0	-0,443	-30,2
2 & 26	69,6	+0.029	+2.0	-0.409	-28,5	-0.847	- 58.9
3 8-25	73.1	+0.066	+4,8	-0.586	-42.8	-1.238	-90,5
4 8 24	72.6	+0.130	+9.4	-0.730	-53,0	-1.590	-115.4
5 8 23	79.6	+0.230	+18.3	-0.830	-66.0	-1.890	-150,2
6 8 22	73.0	+0.357	+26.1	-0.897	-65,5	-2.151	-157.0
7821	78.7	+0.529	+41.6	-0.909	-71.6	-2.347	-184.9
8 8 20	71.5	+0.818	+58.5	-0.778	- 55.6	-2.374	-169.9
9 8-19	78.2	+1.179	+92.3	-0.559	-43.7	-2.297	-179.2
10 8 18	73,9	+0,693	+51.2	-0.153	-11.3	-1.999	-148.0
118=17	80.8	+0.306	+24.7	+0.374	+30.2	-1.558	-125.9
12 8 16	78,2	+0.126	+ 9, 9	+0.154	+12.0	-0.818	-63.9
13815	94.1	+0.045	14.2	+0.055	+5.2	+ 0.065	+6.1
Fotal	991.8		+343.1		-405,6		-1467.9

CONP. FOR DEAD STRESS (CONT.)

.

Comi	P. FOR	DEAD	STRES	55 -
Bar	5'	Ra	+10	Stress
LoU,	-327.2	46.	· 8 4	-450
$L_2 U_1$	+153.1	44 3		+211
$L_2 U_3$	- 83.4	58	7, L 7	-100
L_4U_3	+72.8	5-14	8. C 79	+87
$L_4 U_5$	- 0,5	<u>62</u> 5	.86 U	-1
$L_6 U_5$	- 36.2	62 5	2.86 74	-42
LoUn	+109.2	6	2.86 54	+127
L& U7	-187.9	62	.86 54	-219
LgUg	+259.3	67	2.86 54	+302
LIO Uq	- 337.4	62	4	-393
LIOUI	+411.4	62	1.86 54	+479
Liz Ui,	-402.2	6	2. N. 54	-468
L12 U13	+480.2	23	5. ¥	+ 534
L14 U13	-664.3	23	3.4	-738
U_1U_2	-106.0	3	3.03	- 466
U_3U_4	-433	32	27	-559
U5 UG	- 897.9	32	2.2	- 535
U7 U8	-602.3	3	2.2	-358
UgUio	-17.6	<u>3</u> . 3	7.2	-11
$U_{11}U_{12}$	+89.9	3:	6	+490
U13414	+21 34.1	32	2, 2 6	+1040
LoL,	+327.2	3	22 34	+ 309
L2L3	+776.6	3	2.2 79	+ 510
L4L5	+934.7	3:	2.2	+556
LGL7	+789.8	<u>3</u>	2.2	+470
L8L9	+343.1	3	54	+204
LIOLI	-405,6	3	2.2	-242
L12L13	-1467.9	3	66	-715

Un.Ld. $\pm .562x32.2 \pm 18.08$ per panel Conc.Ld. ± 26.3 I $\pm \frac{0.8(L 250)}{10L 500}$ where L -loaded length

Bar	Lo U _l	$\mathbf{U}_1 \mathbf{U}_2 \& \mathbf{U}_2 \mathbf{U}_3$
Uniform Load over Concentrated load at	Lo - L ₁₄ inclusive L ₁	Lo - L L2 L2
Un. Ld. Conc.Ld.	-5.498 x 18.08 = -99.44 -0.909 x 26.3 = -23.91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Vertical Comp.or S'	-123.35	-40.45
Stress	$= 123.35 \times \frac{46.8}{34} = -170.22$	$-40.45 \times \frac{33.03}{7.5} = -178.14$
Impact	-170.22x(10x450) 500 = 19.06	$-178. \times 0.8 \times 700 = -19.95$
Total Live Stress	- 189.28	-198.09
Bar	$\mathbf{U_3} \mathbf{U_4} \overset{\otimes}{} \mathbf{U_4} \mathbf{U_5}$	υ ₅ ^υ _{6 &} υ ₆ υ ₇
Uniform Load over Concentrated load at	Lo - L ₁₄ inclusive L ₁	Lo - L ₁₄ inclusive L ₆
Un.Ld. Conc.Ld.	-0.776 x 18.08 =- 14.03 -0.125 x 26.3 =- 3.29	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Vertical Comp.or S!	- 17.32	-399.74
Stress	$-17.32 \times 2.5^{-17.32} \times 2.5^{-17.32} = -223.63$	$-397.74 \times \frac{32.2}{54} = -238.13$
Impact	$-223.63 x \frac{0.56}{5} = -25.06$	$-238.13 \times \frac{6.56}{5} = -26.67$
	249 60	-264.80

Total Live Stress

-46

length

Bar		⁹	^U 9 ^U 10 ^{& 1}	^U 10 ^U 11
Un.Load over Conc.Ld. at	Lo - L ₁₄ incl. L8		$L0 - L_{14} i$	ncl.
Un. Ld. Conc.Ld.	-15.984 x 18.08 - 2.52 x 26.3	= - 288.99 = - 66.28	-9.980 x 18.08 -1.810 x 26.3	= - 180.44 = - 47.60
Vertical Comp. orS		- 355.27		- 228.04
Stress	$-355.27 \times \frac{32.2}{54}$ 0.56	= - 211.74	$-228.04 \times \frac{32.2}{54}$	= - 135.91
Impact	-211.74 x 5	=		= 15.22
Total Live Stress		- 235.45		- 151.13
Bar	U ₁₁ U ₁₂ & U ₁₃	2 013	U ₁₃ U ₁₄	
Un.Load over Conc.Ld. at	Lo - L ₉ & L ₁₄ · L ₂₀	- L ₂₈	Lo - L ₂₈ L ₈	
Un.Ld. Conc.Ld.	1.404 x 18.08 0.1356x 26.3	= 25.38 = 3.57	28.06 x 18.08 1.59 x 3.57	506.53 41.82
Vertical Comp.orS'		28.95		548.35
Stress	28.95 x $\frac{32.72}{6}$	- 157.87	548.35 $x \frac{32.2}{66}$	= 267.05
Impact	$157.87 \times \frac{0.8(740 2)}{7400 500}$	50)= 15.79	$267.05 \times \frac{0.8(900 250)}{9000 500}$	= 25.86
	1	173 66		292,91

Total Live Stress

222.27

47-

Un.Ld. $\pm .562 \times 32.2 \pm 18.08$ per panel Conc.Ld. ± 26.3 I ± 10 500 where L = loaded length

Bar	L ₂ U ₁		L ₂ U	3
Uniform Ld.over Conc.Ld. at	^L 2 ^{- L} 14 L ₂		L3	L ₃ L ₁₄
Un. Ld. Conc. Ld.	2.93 x 18.08 0.523 x26.3	52.97 13.75	-2:407 x 18.08 -0:466 x 26:3	= :43:58
Vertical Comp.		66.72		-55.78
Stress	$66.72 \times \frac{46.81}{34}$	= 92.07	$-55.78 \times \frac{58.62}{49}$	<u>-</u> -66.94
Impact	92.07 x 3860 5	$\frac{2507}{500} = 10.77$	66.94 x 3540 500	- 8.01
Total Live Stress		102.84		-74.95
Bar	L ₄ U ₃		L4 U	5
Un. Ld. over Conc.Ld. at	$L_4 - L_{14}$ L_4		Lo-L4 & L4	L14-L28
Un. Ld. Conc. Ld.	2.450 x 18.08 0.517 x 26.3	= 44.30 = 13.60	2.016 x 18.08 0.483 x 2.63	= 36.45 = 12.70
Vertical Comp.		57.90		49.15
Stress	$57.9 \times \frac{52.62}{49}$ 0.8(322 2	= 69.48	49.15 x $\frac{62.86}{54}$ 0.8(580 25	= 57.21 0)
Impact	69.48x 3220 5	500 = 8.28	87.21 x 5800 500	= 6.00
Total Live Stress		77.76		63.21

48

Bar	L ₆ U ₅		L ₆ L ₇	
Un. Ld. over Conc.Ld. at	Lo-L ₅ & L ₁₄ -L ₂₈ L ₅		Lo - L ₆ & L ₁₄ - I	- '28
Un.Ld. Conc.Ld.	-2.341 x 18.08 -0.444 x 26.3	= - 42.33 = - 11.68	2.869 x 18.08 0.528 x 26.3	51.87 13.92
Vert. Comp.		54.01	•	65.79
Stress Impact	$\begin{array}{r} \underline{62.86} \\ -54.01 \times \underline{610} \\ -62.86 \times \underline{0.86} \\ 6100 \\ 500 \end{array}$	= - 62.86	$\begin{array}{r} 62.86\\65.79 \times 0.58\\76.58 \times 6400 500\end{array}$	76.58 7.90
Total		-69.41		84.48
Bar	L ₈ U ₇		L ₈ U ₉	
Un.Ld.over Conc.Ld. at	Lo-L7 & L ₁₄ - L ₂₈ L ₇		Lo $-L_8 \stackrel{\&}{}_{L_{14}} - L_{28}$	3
Un. Ld. Conc.Ld.	-3.479 x 18.08 -0.610 x 26.3	= - 62.90 = - 16.04	4.164 x 18.08 0.685 x 26.3	75.29 18.02
Vert. Comp.		- 78.94		93.31
Stress	-78.94×54	= - 91.89	$\begin{array}{r} 62.86\\ 93.31 \times 54 \end{array}$	108.51
Impact	-91.89 x 6750 500	= 9,37	$108.51 \frac{0.8(710 250)}{x 7100 500}$	10.95
Total		-101.16		119.46

-49

BAR L10 U9			L ₁₀ U ₁₁			
Un. Ld. over Conc.Ld. at	LO-L ₉ & L ₁₄ - L ₂₈ L ₉		Lo - L ₁₀ & L ₁₄ . L ₁₀	L ₂₈		
Un. Ld. Conc. Ld.	-4.920 x 18.08 -0.756 x 26.3	= -88.85 = -19.88	5.739 x 18.08 0.819 x 26.3	= 103.76 = 21.54		
Vert. Comp.		-108.83		125.30		
Stress	62.86 -108.83 x 54 0.8(740 2	= -126.68 50)	$125.3 \times \frac{62.86}{54} \\ 0.8(770 250)$	= 145.85		
Impact	-126.68 x 7400 50	0 - 12.67	145.85x 7700 500	= 14.59		
Total		-139.35		160.44		

BAR	L12 U11		L ₁₂ U ₁₃	
Un. Ld. over	Lo - L ₁₄		Lo -	L ₁₄
Conc.Id. at	L		L	2
Un. Ld. Conc. Ld.	-5.50 x 18.08 -0.925x 26.3	≚ - 99.44 ≘ - 24.33	6.50 x 18.08 1.016x 2.63	= 117.52 = 26.72
Vert. Comp.		-123.77		144.24
Stress	$-123.77 \times \frac{62.86}{54} \\ 0.8(450)$	= -144.07 250)	144.24 x $\frac{73.42}{66}$	<u>-</u> 160.39
Impact	-144.07 x 4500	500 = - 16.14	160.39 x .112	= 17.96
Total		-160.21		178.35

- 50-

Bar	^L 14 ^U 13		Lo L ₁ & L ₁	r ⁵	
Un. Ld. over	Lo - L ₂₈		Lo-L ₁₄		
Conc. Id. at	L14		L		
Un. Ld. Conc.Ld.	-8.508 x 18.08 -0.962 x 26.3	<u>-</u> -153.82 =- 25.30	5.498 x 18.08 0.909 x 26.3	-	99.44
S'	Vert. Comp	=-179.12			123.35
Stress	$-179.12 \times \frac{73.42}{-179.12}$	=-199.18	$123.35 \times \frac{32.2}{34}$	50)	116.69
Impact	-199.18 x 9000 50	00	116.7 $x \frac{0.8(430 \times 2)}{4500 500}$		13.07
Total		-218.48			129.76
Bar	L ₂ L ₃ &L ₃ L ₄		L ₄ L ₅ & L	5 L6	
Un. Ld. over	Lo - L_{14}		Lo - L ₁	4	
		~ / R	<u>15</u>		
Conc. Id. at	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	= 243.79 = 57.60	17.490 x 18.08 2.78 x 26.3	=	316.22 73.11
S'	Vert. Comp	≚ 300.57		ž	389.33
Stress	$300.6 \times \frac{32.2}{49}$	= 197.3 4	$\frac{32.2}{54}$		232.04
Impact	197.34x .112	= 22.10	232.04 x .112	=	25.99
Total	, , , , , , , , , , , , , , , , , , ,	219.44			258.03

Bar	L ₆ L ₇ & L ₇ L ₈	^L 8 ^L 9 & ^L 9 ^L 10
Un.Ld.over Conc.Ld.at	Lo-L ₁₄ L7	Lo-L L9
Un. Ld. Conc. Ld.	+17.486x18.08 = + 316.15 + 2.73 x26.3 = + 71.80	$+13.48^2 \times 18.08 \pm +243.75$ + 2.196 X 26.3 = 57.75
S'	+ 387.95	+301.50
Stress Impact	$+388x \frac{32.2}{54} = +231.25$ +231.25x0.112 = + 25.90	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Total	+ 257.15	+199.82
Bar	LIOLII & LIILIS	^L 12 ^L 13 ^{& L} 13 ^L 14
Un.Ld.over Conc.Ld. at	L14 ^{-L} 28 L20	Lo-L ₁₁ & L ₁₄ - L ₂₈ L ₂₀
Un. Ld. Conc.Ld.	$-10.967 \times 18.08 = -198.28$ - 1.243 x 26.3 = - 32.69	$-19.995 \times 18.08 = -361.60$ - 1.469 x 26.3 = 38.63
SI	-230.97	-400.23
Stress	$-230.97 \times \frac{32.2}{54} = -137.68$	$-400.2 \times \frac{32.2}{66} = -195.26$
Impact	$-137.7 \times .112 = -15.42$	$-195.3 \times \frac{0.8(805+250)}{8050+500} = -19.25$
Total	-153.10	-214.51

152-

Reversals:

_	^U 9 ^U 10	^L 6 ^U 5	L+ U5
Un.Ld.Over	^L 14 ^{-L} 28	L ₆ - L ₁₄	L5 -L14
Conc.Ld.at	^L 19		۲5
Un.Ld.	$+9.97 \times 18.08 \pm 180.26$	$+1.842 \times 18.08 = +33.30$	-1.933x18.08 = -34.95
			$-0.448 \times 20.5 = -11.78$
S1	+209.98	+45.71	-46.73
Stress	$+209.98 \times \frac{32.2}{54} = +125.10$	$+45.71x \frac{62.86}{54} = +53.21$	$-46.73x \frac{62.86}{54} = 54.39$
Impact	+125.10x $\frac{0.56}{5}$ =+ 14.01	+53.21x(260+250)0.8 7.00	-54.39x0.8(290+500)-6.96 2900+500
Total Dead Stress	+139.01 - 11.00	+60.21 -42.00	-61.35 1.00
Reversal	+128.00	+18.21	-62.35

53-