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Abstract

The temperature gradients found in all oceans are a source

of energy. Experiments have been made in an attempt to harness

this energy and convert it to electrical power. At the present

time, however, no Sea Thermal Energy plants have been deemed

successful, nor economically wise.

A new proposal is made for a Sea Thermal Energy plant at

a new location. Solutions to the inherent problems of the plant

structure are proposed and the economic soundness of such a project

is demonstrated.
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Introduction

The population of the world is expanding rapidly, Further-

more, the rate of growth is currently increasing. To accommodate

these new masses both food supplies and manufacturing must

increase. Civilization is rapidly pushing into the unpopulated

regions of the world. These expansions all demand an increase

in available energy supplies.

The energy production industry grows with population and

manufacturing. As the degree of civilization goes up the energy

production industry becomes more concentrated, there are less

and less individual energy producers, producing only for their

own consumption. Thus energy must be produced on a large scale

in large plants.

The energy production industries may be put in two

categories: first, fuel distribution industries, and second,

electricity producing installations. The two industrial

categories are not wholly independent, but serve each other. In

this thesis we are concerned only with the electrical energy

producing industry,

Currently there are two common means for large scale

production of electrical energy, and a third which is getting

major consideration. The first method of production is the

burning of fossil fuels, the most tommon being oil, natural gas,

and coal. The second method is hydroelectric power. The third

is nuclear energy.
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With increasing needs for electricity the electric power

industry is expanding. Eventually we will deplete our supplies

of coal, natural gas, and oil. While new deposits are being

found, the expense of obtaining the new supplies will rise as

the more easily accessible supplies are used up. Engineering

advances make it possible to use poorer grade deposits of fuel,

which were once uneconomical, but the expense of power pro-

duction from fossil fuels will inevitably increase. New hydro-

electric plants are being constructed, and old ones are being

enlarged for better utilization of the available energy, but

here again the expense goes up as water power supplies must be

tapped in the more inaccessible areas. Nuclear energy plants

are already in use, and billions of dollars in research and

practical plant developments are being spent because of the

feeling that this is the eventual way we must go to produce

the energy required by a demanding and increasing population.

There is much feeling that the currently used energy

sources will eventually be gone, and we must look for other

sources. There are many sources of energy around us. Some of

these are hydrogen fusion, tidal power, solar power, thermal

power from the seas, and power from the winds.

Most of these new sources of power are not economically

competitive with conventional methods for large scale energy

production. To apply a new source we must have:

1. The environmental conditions required by this new

method.
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2. Advantages over the other electrical energy producing

methods.

The environmental conditions are obvious, i.e., for solar

power we need abundant and predictable sunshine. The advantages

can be of many sorts - smaller, lighter, cheaper, more enduring,

needs less maintenance, etc., depending on what factor is most

important in the particular location where power is needed.

This thesis deals with one of these new energy sources,

"thermal energy from the sea". The purpose is to propose and

prove that the process of using the thermal energy of the sea

should be considered for application now. Thermal power from

the sea should no longer be thought of as a novelty. On a

price consideration it can be competitive with nuclear energy.
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Basic Theory

If we have two bodies, A. and B with different temperatures

TA AND TB respectively, with TA greater than TB we know that

there can be a flow of heat from A to B. If we insert some

form of heat engine between these two bodies we -can transform

some of this heat flow into useful work.

The amount of heat that flows from the hot to the cold

body, and consequently the amount of work obtained is dependent

upon the temperature difference between TA and TB and the heat

storage capacity of A and B. That is to say that the same

amount of work could be obtained from two low capacity heat

bodies at a high temperature difference as from two large

heat capacity bodies at a low temperature difference.

A dimensionless ratio commonly used for heat engines is
T -T

called the Carnot efficiency. This is e= A B where the T's
TA

are used in the absolute temperature scale. This is the ratio

of the work energy that can be converted to the total heat energy.

We can see that the greater the temperature difference and the

closer TB is to absolute zero the higher is the Carnot efficiency.

However, the Carnot efficiency makes no statement concerning the

ease with which heat can be transformed into work. It defines

only the greatest possible energy which can be transformed into

work, using two bodies at temperatures TA and T .

Large temperature diiferences exist in the oceans. The

surface layers are heated by the sun's radiation, but the sun's

rays penetrate no farther than 1200 feet deep. 2 The sunts thermal
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effect on the water is only noticeable within a few feet of

the surface. Generally speaking, in all areas of the oceans

where the depth is greater than the mixing layer thickness,

there is a temperature gradient.

The idea first proposed by Professor D'Arsonval, and

3
perfected by George Claude and P. Boucherot, was to use the

ocean's surface water as the hot body and thedeep cold water as

the cold body. The two bodies should be bridged by some sort of

heat engine so that work could be obtained. The Carnot

efficiency for such a system would not be high. For example,

if the surface water is at 80 degrees Fahrenheit= 5400 Rankine,

and the cold water is at 400F=500"OR, the Carnot efficiency is

540-500 - 7.4%. The temperature difference is small compared
540

to conventional work producing systems, but the immense and

practically unlimited size of these bodies makes the possibili-

ties look worthwhile.

The next problem is what kind of heat engine can be used.

to turn this available energy into actual work and electrical

energy. The conventional steam turbine electric generator

plants come to mind. It is interesting to note that for more

than 150 years the steam cycle was used for pumping water and

industrial power, and for locomotives- at efficiencies of from 2

to 6%, and these were considered quite practical and economically

sound until a relatively short time ago.

In the ordinary steam power plant water is heated to

boiling temperature. The steam is then sometimes superheated.

It is then expanded through a turbine where it produces work,
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and is finally rejected through a steam condenser. The heat

transferred to the condenser is rejected to the cold body,

usually in the form of available river water at perhaps 90F.

The condensed steam is either mixed with the condensing water

in the case of a mixing type of condenser, or pumped back into

the boiler to start the cycle over again in the case of a sur-

face type condenser.

In the usual steam power plant fuel is burned as the heat

source to boil the water. For a sea thermal energy (S.T.E.)

plants warm surface water becomes the hot temperature source.

At the very maximum the surface temperature may reach lOOF at

times. This will not boil at atmospheric pressure, since the

boiling temperature at atmospheric pressure is 212F. It would

appear that some other working fluid should be used!

Claude however had other ideas.4 He said that the sea

water should be used as the working fluid. The warm surface

water is brought into the system. The pressure is pulled below

atmospheric pressure with a vacuum pump far enough so that the

water boils at the available temperature of the warm surface

water. The steam is then expanded through a turbine to a con-

denser where the pressure is still lower than the boiler. The

pressure in the condenser is the saturation pressure of the steam

at the temperature of the deep cold water. The steam condenses.

Claude pointed out that in addition to producing power

from the rotating turbine, all the steam after condensing is

pure, fresh water. This water as well as the electricity generated

could be sold.
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History

In about 1900 Professor D'Arsonval expressed the possi-

bility of using the temperature gradients in the sea as a

source of energy. It wasn't until 1926 that George Claude

and P. Boucherot demonstrated the feasibility of this idea in

a plant at Ougree, Belgium. This plant produced about 60KW

gross power and 40KW after subtracting the power for the

auxilliary pumps and extractors.5 This was an experiment void

of the difficulties of a long cold water pipe since water from

the river Meuse at 660F was used.while the warm water was the

discharge from the Ougree-Maribaye Steel Company. Steam was

produced at 94.60 F.

Claude then proceeded to build a plant in Matanzas, Cuba

starting. 'in 1929. Here he used the same 60KW turbine but

planned to make a complete test of using the sea as the only

source of power. The main problem was to build and submerge

successfully a large cold water pipe to about 600 meters. After

2 failures on attempts to lay this pipe on the sea bottom, a

third attempt was partially successful. The plant operated for

eleven days on a reduced scale due to,a leak in the cold water

pipe.6

Claude experimented shortly with a floating plant from a

cargo ship "Tunisie". Here again he had trouble with the cold

water pipe. The wave action broke the pipe.

In 1941 the study was again taken up by the French under the
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joint initiative of the Ministere de la France d'Outremer and

of the Centre National de la Recherche Scientifique. A site

for a possible application of a Sea Thermal Energy (S.T.E.)

plant was seen to be at Abidjan, the Ivory Coast. In 1948 the

studies led to the formulation of the company "Energie des

Mers". This company was to undertake studies for a power

station at Abidjan.

Some of the problems and questions of a S. T. E. plant

were put under study. Professor Leon Nisolle at the Ecole

Centrale des Arts et Manufacturers, studied the evaporation

under vacuum at low temperatures and the hydrodynamics of

drawing water from the deep cold water region. Andre Nizery

worked on the mechanics of building a cold water pipe and the

methods of placing it on the ocean bottom. After successful

shallow water tests at Brest, France in 1947 operations were

moved to Abidjan for trials of laying a pipe in 300 meters of

water. Finally in 1956 the tests were completed and, successful.

Nizery used special antiwave floating devices which limited

the vertical and horizontal reaction on the pipe due to the wave

action. The pipe was carried out into the water horizontally and

lowered evenly with a minimum of bending using special floating

crane platforms which employed the antiwave design. The pipe

also was made with some flexibility due to rubber jointing

between some sections. Nizery also demonstrated how divers could

be used to connect and disconnect the pipe below the surface.

The construction of an S. T. E. plant was stopped however
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at Abidjan when it was decided the existing hydroelectric

apparatus could handle the demand for electricity. A new

possible site for applications was needed.

Guadaloupe was picked and the Abidjan study was applied.9

A plant of 3500KW net power was proposed. Including the sale

of fresh water, the cost per KWHR was estimated to be the same

as that for a fossil fuel burning plant. If the fresh water

would not be sold the cost per KWHR would be twice that of a

conventional plant. However, the big drawback was felt to be

the lack of engineering experience with all the S. T. E. plant

problems, especially the long cold water conduit. Thus, as of

10
1962, the plant was not built, and no S. T. E. plants are in

operation today.
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Selecting a Site

The first and most important thing to look for in select-

ing a site is the temperature gradient.

Temperature profiles of the North and South Atlantic

were examined. Those areas where a 150 to 200 Centigrade

temperature gradient occurred within 1000 meters of the sur-

face were noted. This was a rather arbitrary limit, however

it limited the regions to coastal areas. In general, the

isotherms curve upward as they approach the continentsa- They

follow the bottom topographic contours very roughly. Then at

many places cold water is available relatively close to shore.

At first glance, it seems obvious that the tropical

countries are ideally suited and indeed they are. However,

the tropics are not a geographical limitation. There are other

possible locations.

The Straits of Florida was found to be one of these lo-

cations where a severe temperature gradient exists. The Gulf

Stream is funneled northward between the Florida Keys, East

Coast of Florida and the Bahama Banks. The Gulf Stream is

noted for its volume flow of warm water.

The temperature across the Stream varies from 290C at the

surface to 50C at the bottom in many places. (See Fig 1) The

average seasonal surface temperatures were examinedil In the

winter the surface temperature drops but, the average minimum

is only 240C or about 750F while the bottom; temperature doesn't

change with the seasons. (See Fig 2)
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There are excellent temperature gradients all along the

Gulf Stream due to the flux of warm water northward. It re-

mains for us to pick a spot in the Gulf Stream off the coast of

Florida.

Since the temperature gradient question is answered, we

must now turn to the next criterion. Florida is a large and

growing consumer of electric power. Their manufacturing em-

ployment is growing faster than that of the United States.1 2

Florida Power and Light reports the total electric sales per

year show rapid increases. From 1952 to 1962 the total energy

sales per year have increased from 1,916,365,000 kwhr to

8,663,121,000 kwhr. The increase alone from 1961 to 1962 was

almost 1 billion kwhr sold. The number of electric custOmers

is increasing. In the same period, 1952 to 1962, the total

number of customers has increased from 390,946 to 822,103.

The increase from 1961 to 1962 was 41,682.13 All indicators

point to expanding electrical use.

Florida Power and Light Company which takes in most of the

Southern half of Florida plus the entire Eastern coast of Florida,

produces all of its power by fossil fuels. The fuel costs per

kilowatt hour fluctuate over the years but as of 1961 they were

at a low. (See Fig 3). The efficiency of the plants is improv-

ing such that the costs per kilowatt hour are decreasing, but

this trend can't go on indefinitely. The total U. S. electric

utility industry shows increasing efficiency. The result is a

14
very slightly decreasing overall cost of fuel per kwhr. Event-

ually, as oil and coal become more scarce, the fuel cost must

rise.
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The Miami area is one of the largest consumer areas in

Florida. The five electric plants for the Miami area had a

gross generating capacity of 1441 MW as of 1961. The growth

of this area is seen on the graph. (See Fig 4) Thus the

Miami area is a likely spot for needed increased generating

capacity. A thermal power plant placed in the Straits of

Florida off Miami would be at an ideal location. The temp-

erature gradients are available near a large and growing power

consumer market.

After a careful study of the depths and temperature

gradients abreast of Miami, the following area is thought to

be the most ideal location for a Sea Thermal Energy plant.

An area bounded on the north by the latitude 250 41'N and

bounded on the south by 250 31'N, on the west by longitude

79 0 45'W and on the east by 790 37'W. (See Fig 5) This area is

about 33 miles east south-east of Miami and is in the middle of

the Florida Current. It may be seen from the profiles that the

channel is over 800 meters deep. (See Fig 1)

In locating a plant we must also evaluate whether or not

there is sufficient cold water supply, that is, if there is a

large enough cold water layer so that no warm water will be

pulled down and into the cold water layer. The studies of

Nisolle were concerned with this vacuuming of the deep cold water

layer. The results of his studies are expressed in the follow-

ing relationship.

.187 
/EX . -L(.o*)"" x H
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E is the maximum thickness of the layer of cold water

vacuumed from the bottom. E. is the height of a theoretical

column of water which has a bottom layer density equal to twice

the surface layer density. The column has a density gradient

equal to the density gradient of the selected area. q is the

flow of cold water. As an example, take the density gradient

for the Abidjan location. For a 50,000kw plant using a flow

of q equal 80 cubic meters per sec. from a depth of 400 meters,

H is equal to 800,000. Then E, the thickness of the vacuumed

horizontal layer will be 80 meters. For a 2 meter diameter

pipe that is 39 meters above and 39 meters below the pipe

opening.15 Then the thickness of the cold layer would not seem

to be a crucial one for the Straits of Florida. 200 meters

of water less than 70 C lie in the channel. (See Fig 1)

It is obvious that the variation in surface temperature

with the seasons, as shown on Fig 2 will affect the available

power output of a plant, since the higher surface temperature

will produce an appreciably higher output of power. This,

however, is not as great a disadvantage as it might seem. A'

glance at the surface temperature graph shows that the temper-

ature is highest and the available power greatest when the

weather is also hottest.

Since one of the largest power loads in Florida is the

air conditioning load and this is greatest when the weather is

hottest, it will match the power capability cycle almost per-

factly. This is a fortunate situation, and will make the Sea

Thermal Plant fit requirements to capability very well indeed.
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The Florida Current provides a means for disgarding the

cold condenser water downstream preventing the possibility of

cooling our warm water supply. (See Fig 6)

- 15 -
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Engineering A Plant

George Claude had his major difficulties with the long

cold water pipe. In 1941 after the French had taken up the

studies again for application in Abidjan they realized that

the major problem blocking the effective application of thermal

power from the sea was the submerged pipe problem. This was the

reason for the work undertaken by Andre Nizery in Brest.

The problem was to carry a pipe out into the water and

lay it on the ocean bottom without having it break or damaged.

The vertical and horizontal wave forces and the uneven bottom

were the causes of breakage.

Nizery designed flexible rubber sections for the pipe so

that it could give and bend when submitted to stresses. He

also designed anti-wave floating devices which limited the rise

and fall of the floating platform. With 2 meter waves the plat-

16
form fluctuated only 30 centimeters. The continuation of the

work in Abidjan was to see if Nizery's whole conception could

be applied successfully to full scale operations in deep water.

The experiments at Abidjan were quite successful and proved

that the pipe with flexible connections could be layed along the

bottom. This work was all done on the assumption that the plant

would be built on shore, and the pipe layed along the bottom.

While the French had suggested the possibility of building a

floating plant, 17they seem to have done all their work on shore

based on plant designS.
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We would propose to build a floating plant, with a sus-

pended, semibuoyant cold water pipe. This has a number of

advantages:

1. The pipe will be much shorter and pumping power is

directly proportional to L/D ratio of the pipe. For example,

the French proposed a shore based plant where depth at intake

was 700 meters and the pipe length was 4200 meters, or 6 times

18the depth. This makes a serious difference in the pumping

power loss.

2. By making the plant structure quite deep, say 200

feet or more the pipe is connected at a point 'well below any

wave motion. Note that at 3/4 wave length depth the wave

forces have diminished to 1% of their value at the surface. 9

3. The plant structure can be made extremely stable by

making it, deep so that it is almost independent of wave and

storm forces. This has already been demonstrated by the ship

"Flip, 20 and the plant structure could be built on similar

principles.

4. The pipe laying problem can be maae very simple, as

shown in fig. 7 by dropping the pipe right through the plant

structure. This means the pipe would never be subjected to

heavy wave forces at this juncture, because the bottom of the

structure is almost immovable with repsect to the water.

5. By having the pipe suspended from the structure, it is

possible to use one large pipe for several turbines. Since the

physical size of the turbine is so large for a given power, this
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construction would be advisable, again to keep the cold water

pumping power to a minimum. For example, for a 5000 kw plant

with a 2 meter diameter pipe: By going to a 4.meter pipe

the capacity would go to 20,000kw., and it should easily be

possible to use an 8 meter diameter pipe with 80,000 kw capacity.

6. The floating plant requires practically no land invest-

ment. Shore land is very expensive in Florida, and with a

floating plant, only a cable terminal station, and perhaps a

maintenance dock would be required on shore.

7. The floating plant is almost independent of bottom

conditions. The French had to search for a steep, but not too

irregular bottom for a shore based plant. Since cable laying is

a long established science, this should be no great problem, so

that the floating plant, could have a location choice dictated

almost by water conditions-alone.

Since the major problem with the floating plant is the

cold water pipe construction and suspension, it becomes impor-

tant to show how it can be made. The pipe is made of corrugated

material so as to make it flexible, as shown in Fig 8. Eternal

to the corrugated pipe is a.-layer of plastic foam or polyurethane21

the thickness of which is determined as follows.

We want the pipe to hang in as nearly a straight line as

possible. This is necessary to prevent exessive bending stresses.

A unit length of pipe in the water has 2 forces acting upon it,

the drag of the current and the weight of the pipe in the water

at its particular depth (varies very gradually with depth). (See

Fig 8)
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Resolving the 2 forces we get a resultant force. If the

buoyancy of the pipe is controlled by varying the volume or

density of the wall of the pipe, we can vary the weight of the

pipe in the water. Then dependent upon the drag, if we vary

the weight we can keep the resultant force always along the

axis of the pipe.

We can vary the buoyancy by varying the thickness of the

layer of foam plastic. External to the foam is another corru-

gated pipe. Now we have concentric corrugated pipes sandwiching

a variable thickness of foam dependent upon the current drag.

It is not expected that the pipe will hang in a perfectly

straight line at a constant angle because the currents fluctuate

somewhat. Therefore the corrugated flexibility is built in and

is necessary. However, the variable density controlled pipe will

much lessen the bending upon the long conduit and allow it to hang

out from the platform suspended at a relatively constant slope.

The inner and outer surfaces of the pipe must be coated to

prevent corrosion. Rubber coatings and other protection cover-

ings have been used for many years on undersea pipes and cables,

so this should be no great problem.

The double wall pipe with foam inner lining accomplishes

two more objectives in the pipe construction;

1. It provides ring stiffness, so that the pipe will main-

tain a circular shape without collapsing, even if made in very

large sizes.

2. It takes care of the insulation problem, preventing

warming up of the cold water as it flows up through the warmer
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layers. This is not a great problem in large plants, but could

have been one in the rather small plant proposed by the French.

Another problem with the floating plant is that of keep-

ing it at a fixed position. This can be accomplished as shown

on fig. 7 by putting electric driven propellers or water jets

ar various depths on the plant. These can be controlled auto-

matically to keep the plant located. The position can be fixed

by radio or radar triangulation to two shore stations using an

antenna and receiver on the structure. The upper propellers or

jets can control the position of the structure, since the max-

imum wind, current, and wave forces are there. The lower thrust

unites can be controlled to keep the plant vertical in the water,

or to a prescribed slope to line up with the natural slope of the

pipe. The exit water from the condenser and evaporator may be

directed downstream to act as a large stabilizing water jet.

In order to reduce the stress at the junction of the pipe

and the structure, it may be advisable to put small pipes on the

outside of the cold water pipe. These can extend downward to

perhaps a hundred feet below the bottom of the structure. They

can have open jets at their ends directed radially outwards. By

pumping water through them, as dictated by stress sensing controls

on the pipe the bending in this part of the pipe can be kept

within a maximum allowable value. Below this point, the pipe

can hang at its natural slope as explained above.

The maintenance of the underwater part of the pipe and

structure is made possible by the many advances in underwater

diving technology.22
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To sum up the design problem, the floating plant seems to

be the logical one for the Florida Straits, and there do not

seem to be any insurmountable problems. The main difficulty

seems to be the huge size of the: turbines, and the removal of

dissolved gases. This will not be dealt with here, but the

French seem to have been satisfied with the possible solutions

to these problems.
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Economics

An economic analysis of the eledtric power production

industry is now required.

Much money is being spent on the engineering and pro-

motion of nuclear power plants. The average size of steam

23
generating plants is increasing. Pooling techniques are being

perfected and used almost universally. This makes larger and

larger plants practical and economical.

Costs estimates of these larger plants have been made for

the purpose of showing that nuclear plants become less expensive

than conventional steam plants as the size of the plants increase.

A plot of the costs of nuclear and conventional plants is made in

fig.J9. These optimization curves include the totals of con-

struction and fuel costs. They take into account the costs of

added reserves as the size of plant increases plus the dependence

of the capacity factor upon the installation of new plants.

The curves show that conventional plants have a minimum

production cost per kilowatt at about 600 MW while the nuclear

plants costs are still decreasing at 800 MW. While these very

large plant costs may be less per KW hr. than for smaller plants,

it should be noted that distribution costs will obviously go up,

when too large a plant for a local consumption area is built. We,

can expect that these cost estimates may change with time and with

more actual plants in service. However, for comparison these will

be used at present.

The cost of fuel in a sea thermal power plant is 0. Let us

see what we could afford to spend to build a sea thermal power
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plant to make it competitive with the nuclear plant costs from

the curve.

(mills/Kwhr) x (10-3) = dollars/KWhr.

(dollars/KWhr) x (hours/year) x ( .80) = dollars/KW year

load
factor

dollars/KW year = dollars/KW
.14/year

14A/year = carrying charge

For example at 600 MW size dollars/Kmhr = .00620

.00620 x 8760hours/year x .80 . $43.40/KW year.

$43.40/14 = $310/KW

Then for a 600 MW size plant we could afford to spend

$310/KW to be competitive with an equal size nuclear plant.

Note that even higher costs than this seem to have been justified

for hydroelectric plants. For example, a recently built plant at

Karibe Dam in Africa was built at a cost of $378 per KW. in a

600 MW plant.2 4

An S. T. E. plant proposed by U. S. Industries is estimated

to cost $310 to $375 per kilowatt for a 500OKW net plant.25 This is

much smaller than the nuclear plant sizes plotted in the cost com-

parison curves. The S. T. E. cost is plotted on the optimization

curve graph, Fig 9. Curves are projected from the upper and lower
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bounds of the U. S. Industry estimate. The S. T. E. plant

costs should decrease with increasing size just as nuclear or

conventional plants do. Just as an example for a cold water

pipe twice the diameter of another, the volume of water brought

up is 4 times that brought up in the first pipe. Also the

efficiency of pumping water rises with a larger pipe since the

resistance to flow per volume of water decreases with an in-

creasing diameter pipe.

'e --- A Reywozo's No. for a pipe of D

I - KINeMATC. Vase.os -y
V V . kl-C,oay

4 oJameren4

if ca 2 and \ VA

Re = .V
L.

Head loss = ha.

where-fis the friction factor

L = rv-mA cc vi.4AIO. a v ov GotAvIJr

If roughness, velocity, and the unit length are kept con-

stant but d changes from eli 0 to cf = 2. O

R. increases. This causes f to decrease (as long as flow is well

into turbulent region). Also from the head loss equation we see

that the increase in d directly decreases h by the factor of

increase in <4 . Thus it is much to our advantage to increase

the diameter of the pipe.
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Since pumping power is a head loss, any decrease in this

power is a direct gain in power output capability of a given size

turbine. This means that the cost per net kilowatt goes down as

the pipe size goes up. The cost of the floating structure per

kilowatt also obviously goes down as the size goes up. Therefore,

we can consider the down slope of the projected cost curve for

Sea Thermal slants as being very well adjusted.

The large nuclear plants proposed on the plot still have not

been realized. As of 1960 only five nuclear power plants the

largest of which is 60MW and 4 small ones of 2 to 6.5MW were in

operation. 16 other nuclear plants were in either construction

or repair status and expected to be in service in 1961 to 1963.

The largest of these is 275MW and the rest vary down to 3250KW.26

So we see that Nuclear Power plants have a lot of growing to

do. The S. T. E. proposal of a 500OKW plant is comparable in size

to quite a few of the present Nuclear Power plants.

We cannot escape the conclusion then that S. T. E. plants

should receive the same amount of research and engineering being

applied to Nuclear power. While nuclear plants may become econ-

omically feasible we should remember that the great problem of

disposal of radioactive waste is still an unsolved and expensive

problem. This problem doesn't exist with S. T. E., nor does any

operating or explosion hazard exist.
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It is seen that the Straits of Florida between Miami and

the island of Cat Cay provide an ideal location for a floating

S. T. E. plant. There is a growing need for power in the Miami

area.

A comparison of nuclear power plant costs and S. T. E. plant

costs indicates that they can be competitive dollar wise. Since

thermal energy from the sea has fuel costs of $0 and is potenti-

ally competitive and feasible, why should we not spend as much

money upon it as upon nuclear power?

It. has infinite potential for a permanent supply of power

from the sun, beyond our conceivable needs, and there is no

hazard involved. Perhaps it doesn't sound as glamorous as nuclear

power, but the feeding and living standard of the world's ex-

panding populations seems to me to be far more important.

- 26 -
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NOTES

1. Ref. 56

2. Ref. 25, page 49

3. Ref. 29, page 702

4. Ref. 38, page 1040

5. Ref. 42

6. Ref. 30, page 687

7. Ref. 29, page 704

8. Ref. 26, page 104

9. Ref. 33, page 4

10. Ref. 34, pages 3-4

11. Ref. 11 and 12

12. Ref. 49, page 14

13. Ref. 52

14. Ref. 43, page 47

15. Ref. 31, page 226 and Ref. 37, pages 796-808

16. Ref. 36, page 862

17. Ref. 33, page 8

18. Ref. 34

19. Ref. 55, page 43

20. Ref. 59

21. Polyurethane foam should be better than styrofoam as it is
tough, flexible and very resistant to attack. It can also
be made in almost any density, as low as 5 pounds per cubic
foot.

22. Ref. 58

23. Ref. 45, page IV

24. Ref. 57

25. Ref. 25

26. Ref. 45, page VII
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