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ABSTRACT

OBSERVATION AND MODELING OF PARAMAGNETIC

PARTICLE ENTRAPMENT IN A MAGNETIC FIELD

by

David Andrew Himmelblau

Submitted to the Department of Chemical Engineering

on June 25, 1973, in partial fulfillment of the

requirements for the degree of Master of Science.

A magnetic force may be extended to paramagnetic materials
by production of a high magnetic field gradient. The gradient
is produced by perturbing a uniform field in a solenoid with
ferromagnetic packing, normally stainless steel wool. Para-
magnetic particles can be filtered using the resulting mag-
netic force.

To determine how particles are trapped and how system
variables of a magnetic filter affect efficiency, a mathematical
model was developed for a single strand of packing material.
Concurrently, an experimental program was designed to observe
trapping at a single strand. The experimental results and the
mathematical model produce a correlation between the variables
at a constant particle size, R. The correlation expresses y/R
as a function of KHH/pVV and Reynolds number based on strand
diameter where y is an effective trapping length, K is the
susceptibility of the particle, H is the applied field strength,
p is the fluid density, and V is the fluid velocity.

Applying the correlation results to actual filter data,
the model predicts that all filtering occurs in a small zone.
However, the model does not account for particles already
trapped. The experimental results showed a small maximum
trapping volume per strand. Future work should incorporate
this result, and magnetic separators or filters should be
treated as adsorbers.

Thesis Supervisor: Gary J. Powers

Assistant Professor of Chemical EngineeringTitle:
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SUMMARY

Although paramagnetic particles when placed in a mag-

netic field may be only slightly magnetized, one can produce

a useable attractive force on a paramagnetic particle, since

the force per unit volume is equal to the magnetization

multiplied by the field gradient.

F = KH-VH (S-1)Mag

where KH is the magnetization of the paramagnetic material.

K is the susceptibility of the material and is much less than

one. H is the applied field. The high gradients are produced

by placing a ferromagnetic material in a uniform field,

causing perturbations in the field in the vicinity of the

ferromagnetic object. Common stainless steel wool is often

used.

With a magnetic force applicable to ordinary nonferro-

magnetic materials, one can use an electromagnet filled with

stainless steel wool as a filter to remove a material from a

fluid stream where a conventional filter is inapplicable.

Some practical possibilities include water purification and

ore benefication.

To date, studies of magnetic separators have been based

on material balances around a pilot machine or mathematical

models based on incomplete or inaccurate descriptions. The

purpose of this work was to develop an accurate description

of particle entrapment onto a single strand of steel wool

wire and visually confirm the model.
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Particle entrapment is dependent on two forces other than

gravity, magnetic force and fluid drag force. Gravitational

force is dependent on volume, i.e., particle radius R and

particle density p*. The magnetic force is a function of applied

field H, field gradient, particle volume, and susceptibility

K. The drag force depends on the relative velocity and

particle surface area. The local magnetic field description

depends on the shape of the ferromagnetic material placed in

the applied field; fluid velocity also depends on the shape

of the trapping material.

An infinitely long ferromagnetic cylinder of radius a

was used to describe the steel wool strand. Potential flow

was used to describe the fluid velocity, since the Reynolds

numbers of interest are too low to directly use boundary

layer theory and too high for the viscous flow approximation.

The magnetic field was originally modeled as a line of point

dipoles. However, this gave erroneous results because of

self-demagnetization of the cylinder. An assumption of

constant permeability was used to adopt an analytic solution

which deals with demagnetization through the boundary

conditions ( Stratton, 1941 ). The resulting magnetic force

was

-2SKHH ('
FM 3 s ~2 + cos26r - sin 2 6j (S-2)

r r

where

y -l 2
-= y 1 a (S-3)

PS+1
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S'= H L HsH 4_ H s(S-4)

= sH/H H > Hs (S-5)

H is the applied field necessary for apparent saturation of

the cylinder, y s is the intrinsic permeability of the ferro-

magnetic cylinder at saturation, 6 is the angle measured from

the second quadrant ( upstream side ), r is the radial distance

from the center of the cylinder along the major axis, and

a is the radius of the cylinder. The force is on a volume

basis.

The three forces were placed into a vector equation of

Newton's second law which produced four simultaneous scalar

first order differential equations. These were integrated

numerically by the fourth order Runge-Kutta method, given

initial particle velocity VO, and starting position. The

imaginary particles were started at a constant upstream x

distance and at variable y values above the x axis. For

given conditions of KH,Hsp* ( particle density ), R ( par-

ticle radius ), and a, the maximum y at which particles

could be trapped by the cylinder was determined.

The trajectories produced by the computer program cor-

responded well with the regions in which particles were trapped

experimentally. Most particles ( real or imaginary ) trapped

on the front or upstream side near the induced pole of the

cylinder ( figure Sl ).
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A high value of Hs (20,000 gauss) caused a temporary

drop in y with increasing H above H . This was due to the
S

H s/11 term in equation (S-2) decreasing rapidly when H first

rises above H . The drop in H /H causes the region of
s s

attractive force to decrease. A value of Hs (10,000 gauss)

was used in most cases to avoid this phenomenon. A lower

Hs value allowed the H s/H changes to occur at a much smaller

magnitude of magnetic force and without any noticeable

effect on y.

The effect of particle density on trapping length y

was found to be negligible. A dimensionless correlation

between all the remaining variables except particle size R

was found and is shown in Figure S-2. The plot is at constant

R. The results demonstrated that free stream velocity V0

and cylinder radius a could be paired, since changes in a

affected the velocity field and drag force much more than

it affected the magnetic force. Only at low fluid velocities

did the a effects in magnetic force appear. The group

on the abscissa relates the magnetic potential KH of a

particle to the kinetic energy of the fluid pfV ,2 that

must be overcome, if the particle is to be trapped.

The functionality of y with R was found to be complex

since the magnetic force is dependent on R while the drag

2
force is dependent on R or R . A plot of dimensionless

R/R was used to correlate R with the other variables

The mathematical model broke down at low values of R or

H at certain velocities. A test particle would colloid
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with the cylinder, but with a positive y velocity due to

the slip condition at the surface of the cylinder produced

by the potential flow description. A boundary layer is

necessary to get an accurate description.

The useable experimental data were confined to a single

material because of the range in particle sizes between

materials. CO 3 (PO4)2 2H20 gave good visual results, al-

though poor reproducibility which was probably due to

small particle size variations between samples. The

averaged experimental data, assuming constant R, could

be placed in a dimensionless correlation of the same form

and curve shape as the mathematical results.

The results of the mathematical model were extended

to a bed composed of cylinders. Assuming separation dis-

tances (perpendicular to the axes) between cylinders of

e and f, the trapping ability of a bed of cylinders of

length L could be expressed as

N = N0 (1 - exp[-2yyL/ef]) (S-6)

where y is the trapping length and y is the probability

that the particle is initially perpendicular to the wire

and parallel to the field. For actual separation data

(Oberteuffer, 1971), and y = 1, the required length neces-

sary to perform a real separation was found to be a bed

about two cylinders deep. This suggested that the bed
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should be analyzed as an adsorber column and that in reality

a maximum wedge or total volume trapped occurs.

The single cylinder model always assumed that the wire

was clean. Including a better description of the fluid

mechanics that includes a boundary layer, a model that

retains and accounts for all trapped material should be

developed to get a value for the maximum trapping volume

at given operating conditions. Alternatively, one could

try to obtain visual evidence or use breakthrough analysis.
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1. Magnetic Separation

1.1. Conventional Magnetic Separators

Magnetic separation is the practice of separating one solid

material from another by using a magnetic force. Most applica-

tions to date remove ferromagnetic materials, mainly iron and

iron compounds, from essentially neutral paramagnetic or diamag-

netic streams, using permanent magnets or electromagnets. The

stream to be processed is passed by the magnet which retains

the magnetic impurity. Typical industrial magnetic separators

are magnetic grates or screens (for cleaning grain), magnetic

pulleys (for materials transported on conveyer belts), and wet

drum separators (for ore benefication) which have magnets in

the rotating drum (Perry, 1963).

1.2. High Gradient Techniques

1.2.1. Magnetic Properties of Materials

Most current magnetic separations have been limited to large

sized ferromagnetic materials because of their favorable mag-

netic properties. Any material when placed in an external mag-

netic field will be affected or magnetized by the field to some

extent. The phenomena is best explained atomically by quantum

mechanics (Purcell, 1965). However, materials can be classified

according to their macroscopic behavior in an external field at

a given temperature. When the magnetization of a material is a

nonlinear function of the intensity of the field and a residual

magnetization (hysteris effect) remains if the external field is

removed, the material is considered ferromagnetic. The total

field around the material is equal to the superpositioning of
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the external field and the induced magnetization, both vectors.

B = H + R (1)

The proportionality between the applied field and the total

field is called the permeability.

y = B/H = f(H) (2)

and is a function of the applied external field for ferromagnetic

materials. Generally, the permeability of a ferromagnetic

material has a high initial value which rises to a maximum and

then falls off (Fig. 1). At a certain point called the satura-

tion magnetization, the material will saturate (no further in-

crease in magnetization) and dB/dH = 1. Note that the mag-

netization reaches a large value for a small applied field.

Since the magnetic force on a material in the vicinity of a

nonuniform field is given by

F = H-Va (3)

the force on a ferromagnetic material generally depends only

on the field gradient. With a large magnetization there is not

a critical need for a large gradient.

The magnetization of a paramagnetic material is a linear

function of the applied field; the permeability is a constant at

constant temperature and there is no hysteris effect. Generally,

the permeabilities are only slightly greater than 1 (the per-

meability of a vacuum). Another unit, susceptibility, is

generally used to describe paramagnetic magnetization.

K = M/H (4)
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The susceptibility is often given on a molar basis, XM

XM K (5)

where m = molecular weight.

The molar susceptibility is normally in the range of 10-6 to

-2
10-. The magnetization is then

MM 
(6)

m

The magnetization of diamagnetic materials is oriented opposite

to H, i.e. XM < 0. The magnetic force on a paramagnetic particle

in a magnetic field is given by

XMP
F = KH-VH -H-VH (7)

m

F has units dynes/cm3 when 1 is expressed in gauss (oersteds)

and P and m are in cgs units. To produce a force on a paramagnetic

particle, equivalent to the force needed to retain an equally

sized ferromagnetic particle, a higher field is necessary. Since

there is a very low upper limit on the amount of magnetization

practically producible, roughly XMP/m times 100 kilogauss, one

needs to produce high gradients.

1.2.2. Production of High Gradients

A high gradient can be produced by placing a ferromagnetic

object in a uniform field, increasing and distorting the field

in the vicinity of the object. The maximum gradient achievable

is limited by the saturation magnetization of the ferromagnetic

material and by the rate at which the total field of the object

falls off to the applied field, i.e. the geometry of the ob-

ject. The ideal object would be a point dipole from which the

field will fall off as r 3, r being the distance from the point.
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However, the amount of trapping or retaining area would be

infinitely small. Kolm,et al. (1971) have used stainless steel

wool as the gradient producing material. A strand of wool is

similar to a line of dipoles when magnetized and the field

2
falls off roughly with r2. Stainless steel is not ordinarily

ferromagnetic, but when it is cold worked, it becomes ferromag-

netic (Kinzel and Franks, 1940). Kaise4 et al. (1971) have

used carbon steel screening, iron powder, cobalt powder, and a

composite mixture. Gardini, Perona, and Sesini (1967) used a

metal "comb" with pin shaped teeth.

1.2.3. Applications

The generation of high gradients is relatively new. The

only current industrial use outside of more efficient removal of

small, unwanted iron particles is the removal of impurities

which discolor clay. Many possible applications are now under

investigation. Oil can be removed from water by attaching an

oil-soluble, strongly paramagnetic ferrofluid to the oil drop-

lets, forming a paramagnetic droplet which can be collected

when passed through a separator (Kaiser, et al. 1971). By a

similar process, oil may be ferromagnetically tagged for

pinpointing culpability for oil spills; the tagging material is

removed with a magnetic separator when the cargo has reached its

destination (Bean, 1971). Boiler scale which is ferromagnetic,

but only about one micron in size may be removed from boiler

water at the high boiler water temperatures (Gardini, Perona,

and Sesini, 1967). Bacteria and suspended solids can be removed

from water by adding Fe 3 04 to the flocculant and then removing



24

the floc magnetically (de Latour, 1973; Kelland et al., 1972).

A study has been made of the feasibility of removing ash and

pyritic sulfur from coal (Trindade, 1973). Finally, benefica-

tion of semi-taconite iron ores is under study at the National

Magnet Laboratory at the Massachusetts Institute of Technology.

Semi-taconite ores contain weakly magnetic iron particles

which when liberated by grinding are too small to be separated

by a conventional magnetic separator (Kelland, et al., 1972;

Kelland, 1973).

1.2.4. A Typical Separator

A typical high gradient magnetic separator (Fig. 2) is

operated as a batch operation analagously to a filter. The feed

to be separated is introduced into the bore of the magnet which

contains the ferromagnetic packing or matrix. The feed is

passed through the packing (filter) while the

magnet is on. When the packing is filled to capacity, the feed

is stopped, and the magnet is turned off, eliminating any

hysteresis effect in the matrix. The filter is then backwashed,

washing the trapped material out of the packing. The procedure

is then repeated. If the amount of material to be retained is

small relative to the volume processed, a large amount can be

dealt with between each backwashing. However, if the retained

material is a large fraction of the total stream, the down time

for backwashing will be considerable, possibly necessitating

one or more back up separators. To overcome this problem which

is inherent to batch operations, a continuous process with a

moving matrix is being developed at the National Magnet

Laboratory for benefication of taconite ores in which the iron
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Fig,re 2. A Typical Magnetic Senarator
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ore fraction which is to be retained is about 30-35% of the

feed (Kelland et al., 1972, Kelland, 1973).

1.2.5. Forces Involved in Separators

The entrapment of particles in a magnetic separator depends

on the forces acting on individual particles. There are three

forces to consider in describing the behavior of a particle in

the vicinity of a high gradient-producing object. Unless the

particle is very much smaller than the collecting object, London

or Van der Waal forces which are extremely short ranged need not

be considered. The primary force is the magnetic force. Its

characteristics depend on the trapping material used, the

particle's susceptibility, and the intensity of the external

field. The magnetic field gradient around the material which

is responsible for the magnetic force depends on the size and

shape of the material and its orientation relative to the

field. The external field intensity determines the magnetiza-

tion of the trapping material and the particle to be trapped,

given the susceptibility of the particle. There will be a

fluid drag force on the particle. The magnitude and direction

of the drag force are functions of the particle size and velocity

as well as the fluid velocity field around the trapping

material. The viscosity and density of the fluid must also be

considered. Finally, depending on the relative densities of

the fluid and particle, there will be a gravitational or

bouyant force.

The net force on the particle will produce an acceleration

of the particle, changing its velocity and position in the

force fields.
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1.2.6. Need for Microscopic Analysis

Before the macroscopic behavior of a magnetic separator can

be well understood, a description of the basic phenomena must

be available. A macroscopic model based on the material balances

made around a particular "black box" or separator cannot be

automatically extended to any other separator system without

some basic understanding about the principles which govern the

trapping of individual particles inside the magnetic separator.

While a direct correlation between the microscopic phenomena

and macroscopic behavior of a separator might be unreasonably

complex, a macroscopic model should reflect the microscopic

phenomena.

The purpose of this work is to develop mathematical models

for the trapping of individual paramagnetic particles on par-

ticular geometries of high magnetic gradient sources. Concurrently,

an experimental program will be designed to test the validity of

the models and to make general observations of the trapping

phenomena which may be enlightening to a macroscopic treatment

of magnetic separation.
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2. Prior Development of Paramagnetic Trapping Models

2.1. Magnetic Force Model of Gill and Malone

Gill and Malone (1963), while looking into the production

of high gradients for paramagnetic susceptibility measurements,

investigated the magnetic field of a ferromagnetic material when

placed in a uniform external field. As a model, they used

Stratton's (1941) analytic solution of the total magnetic field

B surrounding an infinite circular cylinder of radius a perpen-

dicular to the external field H.

(l + Aa /r )Hcos$k + (-1 + Aa /r )Hsin$$ (8)

where A = ( 1 - 2 )/( 1 + y12) (8a)

and r is the radial distance from the center of the cylinder,

yi and y2 are the permeabilities of the cylinder and the media,

respectively, * is the position angle measured from the first

quadrant, and r and 0 are polar unit vectors. They then calculated

the force field that results in taking the gradient of the total

magnetic field (5 replacing N in equation [7]) for the case of

A = 1 (p1 y2).

2Ia2 (a2A
FM 2K'H + cos2$ r + sin2*6 (9)

where K' is the relative susceptibility between the particle and

the media. Tracing the motion of polystyrene particles in the

vicinity of an iron cylinder, they experimentally determined the

force "lines of flow." Their data was more or less in agreement

with the analytic solution. However, in the derivation of the

analytic solution, the permeability y 1 of the cylinder was

assumed constant to make the problem linear. Unfortunately,
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ferromagnetic materials have varying permeabilities and the

solution is invalid near or beyond saturation when y tends to

one (and A tends to zero). Well below saturation, A is approx-

imately one only for materials of high and constant permeability,

since in the derivation of the model, p is the intrinsic

permeability of the cylinder.

2.2. Trapping Design of Gardini, Perona, and Sesini

To remove solid particles from boiler feed water at tem-

peratures above those permitted by conventional methods, Gardini,

Perona, and Sesini (1967) developed a magnetic filter utilizing

banks of ferromagnetic pins. They calculated equal force

(magnetic and fluid drag) surfaces for different pin geometries,

fluid velocities, and particle sizes for a given applied field.

They also calculated theoretical trapping efficiencies for a

given pin in terms of particle size, fluid velocity, and applied

field. However, no indications were given about the assumptions

of the design except that the magnetic fields were evidently

calculated for conditions well below saturation of the pins.

However, the plots of field strength are in the vicinity of

complete saturation. Although the experimental data "confirms

the trends" according to the authors, no quantitative correlation

is given. Also, because of the design of their experimental

filter, the collection reported experimentally could have occurred

on the pin supports instead of the pins.

2.3 Filter Model of Bean

Bean (1971) developed a filter model based on a microscopic

cross section of cylinders integrated over the length of the
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filter, L. The resulting form is expressed in terms of rejection,

R
Cou

R = 1  cut (10)
in

where Cout and C are particle outlet and inlet concentrations,

respectively.

Cout -4/3 Ms d2 K H
Cin 4 a 2. VOO

where M is saturation magnetization of the cylinder, q is the

viscosity of the fluid, d is the diameter of the particle, K is

the volume susceptibility, a is the radius of the cylinder, H

is the applied field, X is the volume fraction of packing

material, and V, is the fluid velocity. However, the model is

based on a high Reynolds number which is suspect, considering

that the model is for a packed bed. No experimental data is

given.

2.4 Capture Model of Oberteuffer, et al.

Using CuO in a laboratory scale magnetic separator,

Oberteuffer, et al. (1971) fit separator performance data to a

mathematical model which is briefly summarized below.

Assuming the matrix of a separator can be described as a

number of site absorbers per unit volume, n, each with cross

section a, the retention of feed or MAGS can be described by

MAGS = FEED (1 - e-naL) (11)

where L is the length of the separator. To specify a, a fixed

geometry of the steel wool packing was assumed such that the

longer strand width parameter was parallel to the field, and so
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that

MAGS = FEED(l - exp(-XL/d1d2) (12)

where d and d2 are separation distances between strands and X

is an effective impact parameter, i.e. any particle coming

within X (in the x direction) of the strand will be trapped.

The criteria for capture was chosen as

Vxm = C (V + V0 ) (13)

that the component of velocity induced by the magnetic force in

the x direction must be some fraction C of the total y direction

velocity (magnetic plus fluid) in order for the particle to

reach the strand. (Far from the strand, the particle is moving

in the y direction only. The applied field is also in the y

direction.)

Modeling the magnetic field as a line of point charges,

using Stokes law to describe the fluid drag force, and assuming

the capture criteria can always be applied along a 45* line from

the center of the strand.

b K HM a
= C PV 2 (14)

where b is the radius of the particle, p is the density of the

fluid. The other variables are defined by previous usage. The

constant C is a function of feed. Replacing and incorporating

Equation (14) into Equation (12)

FEED[1 xp(CL(bKHIMsa)]
MAGS =FEED 1 - exp (15)

T dd 2 eV2

The model predicted that the exponents of H and V f should be .5
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and 1.0 respectively. A fit of the data produced exponents of

.65 and 1.0 respectively. C was found to be 7.92 x 10-3

The model is a three parameter model, and the fit may be

somewhat artificial. The dynamics of capture have been neg-

lected (the impact parameter may be oversimplified), and the

exponential term of the fit is not dimensionally correct.

Unfortunately, the model has not been tested on other para-

magnetic materials or packing.

2.5. Absorber Model of Kaiser, et al.

In designing a separator to remove oil from water, Kaiser,

et al. (1971) developed an absorber model to analyze the data.

However, the only parameters dealt with were packing material,

applied field intensity, and flow rate through the filter, al-

though a great deal of care was taken in the design of the

experiment.

2.6. Static Model of Trindade

In an analysis of coal purification Trindade (1973)

developed a static model of particle capture. Given a

ferromagnetic circular cylinder perpendicular to an applied

field with uniform fluid flow and gravity parallel to the mag-

netic field, Trindade calculated the net force on a stationary

particle at variable distances downstream from and angles to the

cylinder. Other variables used were particle susceptibility,

density, size, fluid velocity, and applied field intensity.

Capture was defined by a net force towards the cylinder. How-

ever, the model used the improper formulation for field strength

around the cylinder (see section 2.1) and fluid velocity was not
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a function of position. The problem is not actually a static

problem, nor is backside capture preferable to capture at the

front.

2.7. Dynamic Models of Watson, Steckly and Tarr

Watson (1972) has developed a dynamic description of

particle capture. Watson's magnetic field equations are not

universally applicable. He also neglects inertial terms.

However, the trajectories produced from the model seem plausible.

Watson goes on to consider an absorber model and compares it

with Bean's results (see section 2.3). The paper, unfortunately,

is extremely brief and obtuse.

Steckly (1972) has formulated a dynamic model, again using

the constant permeability assumption in calculating the magnetic

field (see section 2.1). Inertial terms have been dropped. No

trajectories were available.

2.8. Electrostatic Dynamic Model of Zebel

For particle capture on a cylindrical fiber in an electric

field, Zebel (1965) has formulated a dynamic model. The electric

field and electric forces are analagous to those of the Stratton

solution and are thus not directly applicable (see section 2.1).

Zebel used both potential flow and Oseen flow in the model,

depending on the Reynolds number based on the cylinder. Gravity

and inertia are neglected, but their omission is justified by

order of magnitude analysis. Zebel goes on to describe a deposi-

tion coefficient or capture parameter and builds a macroscopic

model from integration of a single fiber layer. However, except

for the limiting case of a dielectric constant equal to 1 which
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corresponds to a permeability of 1 (H >> N or B H) only a few

capture coefficients were calculated.
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3. Paramagnetic Particle Trapping Models to be Investigated

3.1. Factors to be Investigated

3.1.1. Trapping Visualization

The first step in the program to investigate paramagnetic

particle entrapment is the creation of a flow chamber that will

enable one to actually view the trapping phenomenon (through a

microscope). This step is vital to assure that the mathematical

models have some basis in reality, as well as to eventually test

them.

Several factors must be considered for visualization. One

needs to provide a clear view for observation, yet the fluid

dynamics of the system should be readily describable. One must

also provide for a wide range of operating conditions so that

several variables may be easily adjusted. The major problem in

the visual experimentation lies in the design of a flow chamber.

With the exception of the trapping materials, paramagnetic par-

ticles, and field strengths available, the flow chamber will be

the limiting factor in any experimental program. The design and

actually experimental detail are described in section 3.2.

3.1.2. Mathematical Models

There are four basic orientations which should be

considered in the development of mathematical models for the

description of particle entrapment. Fluid flow may be parallel

or perpendicular to the long axis of the trapping material. The

applied magnetic field may also be parallel or perpendicular to

the long axis of the trapping material. Any other orientations

may be resolved vectorially. Spheres which obviously do not
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have a long axis are not considered for several reasons. First,

they would be hard to physically support in an experimental

chamber without disturbing the velocity or magnetic fields.

Second, they do not seem to offer any particular advantages over

other packing shapes in actual magnetic separators (Kaiser, 1971).

Third, in an actual bed, there would be little separation distance;

thus, studying a single sphere seems rather fruitless.

Of the four possible orientations of cylindrical objects,

two are of interest; magnetic field and flow direction either

both parallel or perpendicular to the long axis. The other two

may be neglected since magnetic field lines (and higher gradients)

tend to congregate near the poles of a magnetized material. A

cylindrical object parallel to the field would tend to draw

particles to the ends or poles (see figure 3a). This is not

conducive for creating a large trapping area if the flow is per-

pendicular to the long axis, since particles crossing the long

axis in the center region would be attracted to either end

simultaneously and slip past. Only particles near the ends should

trap, and the trapping surface is not oriented to acheive head

on trapping (there is no stagnation region). If the long axis

of the cylinder is perpendicular to the magnetic field and

parallel to the direction of flow (see figure 3b), there will

always be a considerable shear force on the particle, since there

is no shielding from the fluid velocity in stagnation regions.

The magnetic force can only operate perpendicular to the drag

force, requiring a large magnetic force to overcome the drag

force. Also, the possibility of buildup on the "sides" of the



Figrure 3. Variou- Orientations of a Wire

and Flow Direction

FLOW

FIELO
(CL)

to Magnetic Field

FLOWV AND FIELD

v . ++4

(b")
FL OWA

FLOW
FIELO

AND
FLOW
ANDO

FIELO

(d) A"- 8 -C

(e)

37

FIELD

lI

O~II~+~7)I-



38

long axis would make the problem more complex because of the

particles' effect on the boundary layer. These two orientations

(magnetic field perpendicular to flow direction) will be observed

visually, but not modelled, since they are not expected to con-

tribute greatly to any actual trapping.

The most preferred orientation of strands for particle

capture in a steel wool matrix seems to be perpendicular to both

the applied magnetic field and the flow direction (Oberteuffer,

et al., 1971). The steel wool strands used to produce high

gradients will be approximated by circular cylinders (see figure

3c). The wool strands are actually ribbons or parabolic cylinders.

In the limit, there is no fundamental difference in fluid flow

around a circular or parabolic cylinder, nor is the magnetic

field greatly changed. A circular cylinder model will be explored

for the cylinder perpendicular to both the magnetic and flow

direction (see section 3.3).

If the non axial dimensions of a ribbon shaped strand are

not the same order of magnitude, the strand may be considered

parallel to the magnetic field with respect to a secondary axis,

the longer width dimension (see figure 3d). Instead of a line

of point dipoles as in figure 3c, the leading edge may be modeled

as a line of point charges. However, this is not accurate (and

will not be modeled), since the true field configuration is

ellipsoidal and quite complicated (see Stratton, 1941).

Flow and field parallel to the major axis of a strand will

not be modeled. The end of a cylinder is blunt and would be

equivalent to the end of a solenoid, magnetically (see figure 3e).

A more intriguing end shape is a wedge or cylinder with a shar-
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pened tip, but the description of the induced magnetic field

around a wedge or tip depends strongly on the shape of the wedge,

thus a large number of models would be necessary to provide a

complete description. Additionally, a wedge or blunt end only

offers a small trapping area compared with a cylinder perpendicular

to both field and flow.

Finally, interactions between two objects must be considered

as a limiting case of macroscopic behavior. A model consisting

of two circular cylinders of equal radius will be developed and

tested for various spacings and compared with a single cylinder.

Only the case of cylinders being in a plane perpendicular to the

flow direction and applied field will be considered because of

the large number of possible staggered orientations (see section

3.3.5).
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3.1.3 Correlation Between the Models and Observed Phenomena

For each of the models a series of computer simulations will

be run to determine a trapping length or maximum distance (per-

pendicular to the flow direction) at which a particle can be

captured for the given conditions in the model. The results will

be reduced to correlations among a set of dimensionless groups

composed of the pertinent variables.

An experimental program will be undertaken to test the

correlations suggested by the mathematical models. The experimental

variables will be suggested by the models and the practicality of

actually manipulating them. The results of the experimental

program should be reducible to the same dimensionless groups

and a direct graphical comparison can be made. Since the data

that will be taken can only be considered semi-quantitative (see

section 3.2.2), no attempt will be made to establish a rigorous

comparison, and only similarities can be checked.

3.1.4. Correlation Between the Cylinder(s) Model and

Macroscopic Phenomena

An attempt will be made to scale up the cylindrical model

(taking into account the two cylinder model) by integrating a

cross section of one-deep cylinders over a given separator length

and calculating the total retention based on the correlations

derived for the model. The integrated model will be compared

with the parameters of previously developed macroscopic models

and the retention of an actual separator (Oberteuffer, et al.,1971).

An analysis of the validity of the integrated model will then be

made.
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3.2. Experimental Design and Methods

3.2.1. Equipment Used

The experimental equipment was basically a controlled

water flow passing through a viewing chamber (described in sec-

tion 3.2.2). The chamber was placed between the pole pieces of

a conventional water cooled electromagnet (see figure 4). The

electromagnet with coils wired in series, was powered by a controlled

current d.c. power supply capable of approximately 11 amperes at

40 volts (voltage limited). A maximum applied field of 5000 gauss

was attainable in the center of the gap between the pole pieces.

The tubing carrying the flow passed through holes drilled in the

pole pieces. A rotometer upstream of the chamber measured flow

rate; the controlling valve was placed downstream of the chamber.

A gravity feed was used, the reservoir having a large cross sec-

tion to provide a constant head over a period of several minutes.

Chlorine was added to the water in the form of NaOCl (approximately

1000 ppm) to prevent algae. Air bubbles due to dissolved air

were removed by first bringing any water added to the reservoir

to room temperature. Particles were added to the flow stream by

syringe injection at a septum covered tee upstream of the chamber.

Viewing was done through a Bausch and Lomb Stereo Zoom

microscopic capable of 20-140 power magnification. The microscope

was placed directly above the flow chamber. A camera with a

4"x5" Polaroid back could be attached to the microscope, leaving

one eyepiece free for viewing. The light source used was a 500

watt projector with a fiber optics tip, the tip placed next to

the chamber perpendicular to the viewing direction (reflected

light). The intensity of the light source was variable.
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Figure 4 Experimental Equipment

I
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Figure 4 Experimental Equipment
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Various insoluble (in water), low density, paramagnetic materials

were selected to assure neutrally bouyant particles. Figure 4a

gives the properties of the materials used.

Stainless steel wool and pure iron wire were used as

trapping material. The steel wool was assumed to

have a saturation permeability of 10. Nearly cylindrical

strands of uniform diameter were selected for use from a clump of

strands. The iron wire available was 500pm in diameter. The

iron was spray painted with a coat of black primer to avoid the

formation of Fe(OH) 2 and Fe 2 03 scum which formed on the iron when

it was placed in the liquid stream.

3.2.2. The Flow Chamber

Three basic concepts were incorporated into the design of

the chamber, consistency of flow patterns, ease of viewing, and

adaptability for different experiments. The pole pieces of the

magnet were drilled to allow a piece of tubing to pass through

them. The length of the entry tube to the actual chamber was

designed so that at the flow rates desired, the flow on entry to

the chamber proper would be laminar, regardless of the upstream

orientation of connecting tubing. The criteria used was

L > Re
~20 (16)

where L is the length of the entry tube, Dt is the tube diameter

and Re is the Reynolds number based on the tube. Rearranging,

V < 5HLn
v - p

where Vv is the volumetric flow rate and n and p are the viscosity

(17)



Figure 4a Properties of Paramagnetic Materials Used

Material

Molecular Weight

Co3 (PO4 ) 2 2H20

403

Cu(OH) 2 - CuO

Cu(OH) 2= 97.5

Al NiC 204

27 147

Molar Susceptibility
( cgs units x 10 )

table

measured

Measured Density

n.a. Cu(OH) 2= 1170

1800

2.6 gm/ cm3

pinkColor

Particle Diameter

brownish-
black

5 - 20 1 - 50 5 - 20

CuO

79.5

237

3.6

16.5

2.8

3200

2.2

239

5.4

grey green black

8 - 15 microns 5 - 40Range
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and density of the fluid, respectively. For 74" entry tube, the

maximum flow rate is about 3 cm 3/sec. This corresponds to a

maximum velocity of 6 cm/sec in the chamber.

The entry of the chamber widened from the tube diameter to

a square duct .7 cm in width. Aligned bronze 60 mesh screens

were placed at the beginning of the duct to create a flat velocity

profile (Grootenhuis, 1954), a flat profile preventing any fluid

phenomena being a function of position across the chamber. A gap

in the walls was designed so that various screen inserts could be

tested for creation of a flat velocity profile. Another gap

downstream of the screening was made for the insertion of a

holder for the wire shapes to be examined. The wire insert was

placed so that the flow profile would still be flat except very

near the walls, i.e. well before the establishment of laminar

flow.
Dt Re

L (<< 2 (18)
20

where Dt = .7 cm is the width of the duct. The inserts were made

to fit flush with the walls of the duct. The exit was similar to

the entry except without any screens. The chamber size was quite

small in order to minimize the gap between the pole pieces. The

entire chamber was constructed out of plexiglass with a removable

top plate polished for viewing. The chamber is illustrated in

figures 5 and 6.

The flow patterns produced by the screens (without a wire

insert) were investigated by two methods. A red recorder ink was

injected upstream at the septum. The colloidal particles of the

ink reflected green when exposed to white light (projected into
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Figure Five Flow Chamber
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Figure 6 Dimensions of Chamber
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the chamber perpendicular to viewing). The screens "blocked" the

flow creating dark streamlines indicating relative absence of dye

(no reflection). Any mixing downstream of the screens would

obliterate the observed streamlines. Pictures of the streamlines

at several flow rates were taken with a 35 mm camera equiped with

a close up lens and blown up to show detail (see figure 7).

Concurrently, hydrogen bubbles (Shraub, Kline, et al., 1964) and

particles were photographed at given shutter speeds, and track

lengths across the width of the chamber were observed for

nonuniformity. Except near the walls, the velocity profile

seemed quite flat. Over any small section in the vicinity of the

wire, the flow seemed uniform at any flow rate used.

3.2.3. Experimental Methods

Originally, actual photographs of particle trajectories were

to have been a major portion of the experimental program. These

would have allowed direct comparison with the computer simulated

trajectories. However, the depth of field was lost when the particles

were photographed. Also the amount of light necessary to get a

properly exposed particle track was enormous. The only available

method that worked was triggering a flash cube at approximately

two inches from the chamber. Finally, the percentage of particles

that trapped over a period of time was small, so the photographs,

being of short time durations, were a "hit or miss" proposition,

consisting almost entirely of misses. A high powered strobe was

needed as well as better optics.

Besides general observations, the experiments finally

performed, consisted of injecting a slurry of particles into the
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Figure 7 Flow Pattern in Chamber
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flow and photographing the layering that occured on the wire.

Pictures of this layering, for pulses large enough to allow an

equilibrium build up (no further net trapping), could be interpreted

with the aid of a projector as a thickness for a given length of

wire and considered a function of the variables of the system

similar to a capture length. However, capture length and layering

thickness are not equal. The former is based on a single particle,

the latter is based on a large number of particles and is a com-

posite result. Only if all particles in the flow system could be

described would they be equivalent.

The variables that could be altered experimentally were field

strength (current), fluid velocity, particle susceptibility, and

the geometry of the trapping object. Particle size was not

controlled. A slurry for injection was made by stirring an amount

of particles, then allowing the larger, heavier ones to settle,

leaving only those suspended which were almost neutrally bouyant.

Particle size was thenmainly a function of particle density.

Particle sizes trapped could be measured from the photographs.

Generally, there was little variation in size for a given material;

most variation was due to agglomeration. Care was taken to develop

a pulse volume containing enough particles so that the layering

could fully develop, and no more particles would trap to form further

layers regardless of the number available. The time between the

pulse and the photograph was extensive enough to allow the entire

pulse to pass the trapping object. The experimental data is then

semi-quantitative since not all variables were controlled nor were

initial conditions for each particle equal.
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3.3 Mathematical Models

3.3.1. Magnetic Field and Force Field about a Circular
Cylinder Perpendicular to an Applied Field

Assuming an infinitely long cylinder of radius a placed

perpendicular to an external field of intensity H has an in-

duced field of intensity BE=b-1)H (the permeability y may be a

function of H) inside the cylinder, the vector of the external

field, B', may be considered that due to a line of dipoles

(see figure 8a). Letting A be the magnetic vector potential,

A = 2 (19)
r

for a single magnetic dipole m , where r is the unit radial

vector from a point in space to the center of the dipole and

r is the actual distance. An implicit assumption is that the

distances r1 and r2 to the individual poles are approximately

equal (see figure 8b). By convention, the sign of a magnetic

field or dipole will be positive when from left to right (or

negative to positive).

m = (p - 1) Ha 2  (20)

(see appendix A). The contribution of a line of dipoles can

be found by integration.

r 2  mx r
A = m xr dr' (21)

Jr 2
r(r')

As in figure 8c, let r = r'cos#. Then changing the limits of

integration
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7T/2

A f

-T/2

x r c
2 r cos~pd

(22a)

(22b)
A A

A =2m x r
r

Taking the cross product, following figure 8d.

- 2 m~ Arlsin$,AA = r Zr

2
_ 2(y - 1)Ha sin$ ZA r

(23a)

(23b)

By definition B'= V x A. Then

2
- _ 2wa(ii-l)H Icosc~ + sin~OI
B' - 2 I I
A A

(24)

where e is the polar unit vector orthagonal to r and Z.

To the external field due solely to the magnetized ob-

ject, the applied field must be superimposed. In polar co-

ordinates, the applied field in figure 8e can be represented

by

H = H(cos~r - sin$6) (25)

Adding equation (25) to (24), the total field is

B = Hl + 2 ( l)a cosr + H -1 + 2w ry l sin$6

(26)

For a paramagnetic material, the force per unit volume

at a point due to the magnetic field is

FM = K'B - VB (27)

where K' is the relative volume susceptibility between the
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material and the media.

-- H 2\K' 1F M 3 2 + cos2q r + sin2$$ (28)

where 6 = 2ir (y - 1)a2. Transforming the angle measurement

from the first quadrant to the second quadrant (figure 8f).

cosO - cos(180 0 - 0) = - cos$ (29)

~ -H 2 28K' cFM 3 + cos2/ - sin2j# (30)
r (r

For clarity e has been replaced with $. This tranformation is

made to adhere to the convention of measuring fluid phenomena

from the leading edge (with flow from left to right).

To get a better understanding of the magnetic force, it

can be resolved into rectangular components

F = -F rcosO - F sine (31a)

F = F sin- F cos0 (31b)y r#

Then

+H 2K'FMx 3 2 + cos2) cosO - sin2esine (32a)
r r

-H 2 K'FMy 3 + cos2) sine + sin2ecose (32b)
Myr 3 r2

A typical resulting force is illustrated in figures 9, 10, and

11. One should keep in mind that the force at each point is

based on a volume.

3.3.2. Flow Field and Drag Forces About a Cylinder

Before selecting a description of the velocity field around

a circular cylinder perpendicular to the flow direction, one
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should first examine the alternatives to the complete Navier-

Stakes equation for incompressible fluids of constant viscosity,

T) .

3V - - = 2-
V V -Vp + nI V + pg (33a)

where p is pressure, t is time, g is acceleration due to gra-

vity, the only body force considered, p is density, and V is

the velocity vector. For steady state

pV - VV = p + nV 2 V + pg (33b)

The pg term may be incorporated into the pressure gradient.

pV - VV = - Vp + nV V (33c)

There are three standard simplifications, dropping of viscous

terms nV V, dropping of inertial terms pV - VV, and the boun-

dary layer approximation.

The boundary layer approximation is an order of magnitude

analysis in which a boundary layer thickness 6' is assumed to

be much less than the characteristic linear dimension L of

the submerged

6'<<L or 6 = 6'/L<<l (34)

body (Schlichting, 1968). In length 6, the velocity parallel

to the body goes from zero at the body to the free stream velo-

city. A direct assumption is that the Reynolds number, Re,

is very large or

1 - 0(62] _ , (35)
Re 2pLV

For the physical phenomena to be described, a typical Reynolds

number is 10(V = 5 cm/sec, a = L = .005 cm, p = 1 gm/cm , and

Tn = .01 gm/cm sec). Then
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= ~ .316 (36)L a

and the original assumption made for 6, equation (34), is not

particularly valid at such low Reynolds numbers. Therefore,

the boundary layer approximation will not be used.

Dropping the inertial terms may be justified for Re<<l,

resulting in the "creeping flow" equation.

Vp = rV 2- (37)

However, there is no analytic solution for the equation for

flow past a circular cylinder because of boundary condition

problems (Happel and Brenner, 1965). Partially taking into

account the inertial terms by perturbation techniques (Van

Dyke, 1964), several improvements have been made, notably the

original by Oseen in 1910 and more recently by Proudman and

Pearson (1957) that are valid for circular cylinders. However,

the complexity of the analytic forms are an obstacle to econo-

mic numerical solutions of particle motion in the velocity

field (see section 3.3.4).

Dropping the viscous terms or assuming irrotational flow

results in potential or ideal flow, expressed below for two

dimensions.

Vx- a = 0 (38)
Dy ax

Defining a stream function, $(x,y), where

Vx = (39a)
Vy

Vy - (39b)
Vy = ax
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equation (38) becomes the Laplace equation.

V29 = 0 (40)

A solution then can be found in terms of a complex potential

which satisfies the given geometry (Bird, Stewart, and Light-

foot, 1960). For constant upstream velocity perpendicular to

the long axis of a circular cylinder of radius a (figure 12)

2
Vx = V, 1 - cos26 (41a)

r

2
Vy = V*a2 sin2e (41b)

r

where e is measured from the second quadrant, r is radial dis-

tance from the center of the cylinder, and positive Vx is

from left to right. One should observe that there is a stag-

nation point at e = 0, r = a.

This form will be used mainly because of its simplicity.

However, it is an extremely valid description of the flow on

the upstream side of the cylinder except near the vicinity of

the surface where viscous terms become the same magnitude as

inertial terms. Although the boundary layer approximation is

not truely applicable, an estimate of this region (the boun-

dary thickness) can be obtained from boundary layer theory

(Kays, 1966).

6' = / .5 U5 a 2dx (42)
aU, 

where 6' is the boundary layer thickness over a body of re-

volution, v is the kinematic viscosity = nI/p, and UC is the
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Figure 12 Potential Flow Past a Circular Cylinder
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velocity parallel to surface outside the boundary layer.

Referring to figure (12a).

U = 2Vsine = 2V, x/a (43)

Then for a typical situation (V, = 5 cm/sec, v = .01 cm 2/sec,

a = .005 cm), 6' is about .001 cm or about 20% of the cylinder

radius.

On the downstream side of the cylinder, the streamlines,

in reality, are not symmetric with the upstream side. The phen-

omena of flow separation occurs, but the potential flow des-

cription is reasonably valid except at higher Reynolds num-

bers.

It should be mentioned that the full Navier-Stokes equa-

tions can be solved numerically, case by case, if not analy-

tically. This procedure is more exact when separation occurs.

A more detailed discussion of flow separation and numerical

solutions is given in appendix B.

Given the velocity field described by equations (41a)

and (41b), the fluid drag force acting on a spherical particle

in the stream may be given by (Perry, 1963)

2- -
CTR pV - V

F = r r(44)
D 2

where C is a dimensionless drag coefficient, p is the fluid

density, R is the particle radius, and Vr is the relative

fluid velocity.

Vr fluid -Vparticle (45)

For low Reynolds numbers (Re < .3)
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C 24 _ 12n
Re RVrp (46)

F = 6TrnRVr (47)

Equation (47) is Stoke's Law. For .3<Re<l000

C = 18.5 (48)
Re6

9.25R 2 V -V
F .r r (49)
D Re .6

There is an obvious discontinuity in FD versus Re as consti-

tuted. Solving equations (46) and (48) simultaneously, a smooth

transition between forms for C can be obtained at a Reynold's

number of about 1.92. This value for Reynolds number will

be used as the switching criterion.

3.3.3. Consideration of London and Gravitational Forces

Given the description of the magnetic force and fluid

drag force, one can calculate the relative size of these

forces and compare them with London and gravitational forces.

London forces can be described by (Spielman, 1970):

F = -2/3 Q 1 (50)
L R (r/R + 2) 2(r/R)j

where R is the particle radius, r the gap distance between the

particle and the collector and Q is a constant equal to 10-12

ergs. Assuming the particle center is 3/2 R from the collector's

surface, FL is approximately -4.3 x 10 10 dynes for a particle

of radius .0005 cm.
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At the same distance and using a spherical particle of

a -6the same radius, equation (30) with 6 = 0,K=19 xl0 , a = .005

cm, p = 6.4 and H = 5000 gauss gives a magnetic force of about

-0.09 dynes. The magnetic force, however, will decrease with

distance (see figures 9 and 10). A typical fluid drag force,

using equation (47) and assuming the same particle radius as

before, n = .01 gm/cm sec, and Vr of 5 cm/sec, is about

4.7 x 10~4 dynes.

The net gravitational force on a spherical particle of

the same size and a density of 6 gm/cm3 is about 2.25 x 10-6

dynes when the particle is in water.

The inertial force on the same particle of density

6 gm/cm 3, assuming a velocity change of .1 cm/sec/10-5 sec,

is about 3 x 10-5 dynes.

Thus, London forces and gravitational forces seem to be

sufficiently smaller than the drag force or magnetic force in

the region of interest and neglectable. The inertial force is

also smaller than the magnetic force or drag force but larger

than either gravitational or London forces. Since the inertial

term describes position changes of the particle, it will be

included in the model.

3.3.4. Dynamic Equations and Method of Solution

Given equations (32), (41), and (44) which express the

magnetic and drag forces as a function of position (x and y)

and system variables a, y, H, K', and V., a force balance around

a particle may be written. A major assumption is that the

particle is small enough to be considered a point in the
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magnetic force field. No such assumption is necessary to

describe the drag force, although the particle must be small

enough not to disturb the flow around the cylinder. The

point at which the magnetic force will be evaluated is at the

center of the particle. Then

rR FM + FD - 47R p* 4V (51)D dt

where dV/dt is the acceleration of the particle and p* is the

density of the particle.

Equation (51) is actually two simultaneous second order

scalar differential equations, since

V = xd+ y (52)djt Ydt

and e in equations (32) and (41) is determined by arctan (y/x).

Equation (51) may also be written as four first order differential

equations via equation (52).

The set of equations (51) were solved simultaneously by

the fourth order Runge-Kutta method of numerical integration to

find a trapping length, y. A working description of the

program will be given here; a more complete description may

be found in F.B. Hildebrand, Advanced Calculus for Applications

or Jenson and Jeffreys, Mathematical Methods in Chemical

Engineering.

Given the differential equation

= f(x,y) (53a)dx



fdy = ff(x,y)dx

the integration over a given region or step, Ax, is approximated by

Ay= [K + 2K + 2K + K6y .( 1 + 2 3 K4]

K 1= f(x 0 y 0 )Ax

K f= X+L-y+K)
2 0 + , y 0 +

K
K3 f(x + X, Y0 + )Ax

Kg = f(x 0 + Ax, y0 + K 3 )Ax

and x0 and y0 are initial values. Then the values of x and y at

at the end of step integration are

x 1= x 0 + Ax

Y, = YO + Ay

(55a)

(55b)

For a new step x1 and y1 become initial values and the process is

repeated.

Using the above procedure, equation set (51) with set values

H, VO, K' (including p*), a, and R becomes

dVx F Mx(x,y) F Dx x) d2
- -= , + x 3 * d 2p4/3rR p* dt2

(56a)

69

where

(53b)

(54a)

(54b)

(54c)

(54d)

(54e)

for
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= V (x,y,t) (56b)dt x

dV F (x) F D y(XYV) 2
-Y = Y - + Dy d y (56c)
dt 4/3R 3 p* dt2

dy = V (x,y,t) (56d)
dt y

Then for time step At and an initial position and velocity,

following the algorithm in figure 13a, one can calculate

intermediate velocities (V and V ) which in turn give a new
x y

intermediate position for each step of the Runge-Kutta method.

To terminate the integration, an algorithm is needed.

Since the problem is symmetric about y = 0 (figure 13b), only

the first and second quadrants need be considered. Downstream

of the cylinder, a value of x such that there is no net force

towards the cylinder should be a stopping criteria. A maximum

time limit should also be considered as well as limits on y

in case the integration "blows up." Finally, a definition of

entrapment is needed.

In the actual program, an extremely small step size was

necessary to prevent the integration from "blowing up" due to

a large derivative value. This step size ( 10-5 seconds

depending on particle size) corresponded to a position change

per step of about one tenth of a typical particle radius

(.0005 cm), assuming a velocity of 5 cm/sec. No noticeable

improvement in accuracy occurred with smaller step sizes. All

integrations were started at x = -0.05 and a value of y , the

trapping length,to find the maximum initial y at which trapping



71

Figure 13a Algorithm for Runge-Kutta Method

INPUT INITTA L
CONOTTONS

o0o, V)o, vyo N, TERMINATA ?
TIME STEP

SET PARTICLE CONDITION EVALUATE FINALTO rNITIAL CONoirTN 
\LOtuAT A NLVPX= V%0 y = X(0\/tCIT AN

vY Y= YO Po5I TION USING
Kk2, K3, AND k W

SA\VE I-NITIAL COND. EVALUATE KMXvPxo= \PA - 0=X <
vplO=VPY YO y AND 1(4j

EVALVATE DERIVATIVE CALCULATE NEw/
FUNCIONS fX, VELOCT r AMO)

Posi rior.

EVALUATE KIX AND EVALUATE 9BX

1.1Y KAX7 DVX *STEP AND K3Y
ate

CA LLULATE NEW EVALUATE DE.EVA-
VEtoCITIES ANID TIvE FUNCTIONS
PosI TION
Vpx= VPX0j + J<.X / .

X= XO +VPX * STEP

+ 4u STEPu a CALCuLATE NEW
7 Zt gv a ecV EtLOC IT4 AND

( SEE PRo GRAM Ma P S5 g T

EVALUTE PERIVA- EVALQATE K2X AID
TINE FuNCTIoNS kI



LIMI T

SYMME TRN
STAR'TING

LI :N E

STREA M LINE

MAGNETIC
FORCE ..

SVMME RN CoNTOUR-

/X t 1X LIMI T

Figure 13b Region of Interest for Numerical Integration
to



73

occurred for given values of H, Va, K', a, and R. All trajectories

were terminated when x > .05 at which point the net force in the

x direction was positive. The limit on y was not critical, and

y > 1.051 was used to terminate the integration. The maximum

time limit was .1/V. A collision occurred when

r = x2 + y 2 < R + a (57)

All collisions were considered inelastic (no bounce), but terminal

only if Vy at collision was negative for 6 < 90* or V was

negative for 90* e 0 1800. If neither condition was met,

the particle was placed at the surface (r = R+a) and a new

step was taken. A summary of terminating conditions is presented

in figure 13c. A listing of the final program may be found in

Appendix C.

Three final assumptions were made for the calculations.

Any effects due to the susceptibility of the media (water) were

neglected or considered incorporated in the inherent susceptibility

of the test particle. The density and viscosity of water were

taken as 1 gm/cm3 and .01 gm/cm sec, respectively, and assumed

constant.

3.3.5. The Two Cylinder Model

In an applied field, ignoring any interactions between

the cylinders, two cylinders are identical magnetically

except that they occupy different positions. The net magnetic

force is simply the superpositioning of the individual forces,

taking into account the different radial distances and angles

involved (figure 13d).
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Figure 13c Terminating Algorithm for Numerical Integration
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However, the potentials for flow past two cylinders cannot

be superimposed to get a proper result. If, for a single

cylinder the flow potential is (Robertson, 1965)

2= VOx + V0 a x 58)
2 2 (8

x + y

where a is the cylinder radius and V, is the free stream velocity,

two cylinders may be represented by

$1+2 1+ $2 (59)

Then

2 2

$1+2 = x + Vo 2a x 2 + V00 2a x 2 (60a)
x + y x + y 2

$ =V x + V a 2 x + x(60b)1+2 oo Vx Va 2 + y- d2 x2 + y +d)2

using the coordinate system in figure 13e with the cylinders

equidistant from the origin. Note that d = f(y). By the

definition of potential

V = = (61a)

V - - (61b)
y 3y - jx

where $ is the streamline function. Then

2 2
Vy 1 - 2 a d2~ a (62a)

x2 + (y - d)2 x 2 + (y + d)2
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2 2x 2 d 2lv =v+V Lx + - 2 [2 + - 2

+ V(ay2 1 2xd 2 (62b)CO d 2 !2 j2
(y + d) [x + (y + 2) 6

V (y>0) = -2Va xy + 2 2 (62c)
[x + (y-) ] [x + (y+d) ]

However, the surface of a cylinder is no longer defined

by * = 0. $ = 0 is now the x axis. Going further, let

y = d/2. Then

V = V - V a2[1 + 2222 ~ d2 (63a)

V (y>0) = -dV a2 + 2 122] (63b)

As separation distance d approaches infinity

V = V0 - V0 a2 /x 2  (64a)

V = -dVo a2 4 64b)

The expression for V is correct. However, V approaches

infinity with infinite separation along what corresponds to

the streamline $ = 0 for a single cylinder. The proper re-

sult at large values of d should be VY = 0 at y = d/2. Thus

superpositioning of fluid potential is not valid.

The fluid flow past the cylinder will be represented by

the potential flow past a single cylinder, although this
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approximation is not valid at small separation distances.

Then for a given separation distance, d, the model will be

solved using the fourth order Runge-Kutta method. The problem

is exactly as the single cylinder model except for an additional

magnetic force term. A listing of the computer program may be

found in Appendix C.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Predictions of Mathematical Models

4.1.1. Changes Required in Magnetic Description

The first result is a change in the description of the

magnetic field about the cylinder. With the magnetic field

description of section 3.3.1, the trajectories produced by the

computer program predicted entrapment near the top of the

cylinder (6 = 90*) in most cases (figure 14a). Experimental

observations (see section 4.2) detected almost no trapping in

this region; trapping occurs mainly on the upstream side of

the cylinder near 6 = 0* with a small amount of trapping

occuring on the downstream or backside. Even with a flow

rate of zero, trapping, although enhanced, does not occur near

the top (figure 14b). The trajectories predicted by the model

are explainable, since there is an attractive region near the

vicinity of the top of the cylinder of greater magnitude than

any drag force, depending on position and the variables of the

system. The repulsive region appears only at a large distance

from the cylinder.

The size of the magnetic force and the zones of attraction

and repulsion are directly related to the basic assumptions for

the model, that the cylinder can be treated as a line of point

dipoles. A result is the term 3 = 2Ha 2 (p-1) in two key places

in equation (28). Since the magnetic force will go to zero or

be repulsive at 6 = 90* only when:
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2

r _ 2ra ( - 1) < 1 (65)
r2 rz-

the change in the direction of the force occurs only when r,

the radial distance, is very large when expressed in terms of

a, since y > 1. The other effect is on the magnitude of the

magnetic force, since also appears as a multiplier. Since

S>> 1, the magnetic force is correspondingly amplified.

Since visual observations do not support the model, the

irregularities in the model need to be identified. The basic

fault is that no provision was made for what is known as self-

demagnetization. This can be determined somewhat empirically

by the use of magnetic lines of flux and flux loss (General

Electric,1963) or more properly by suitable boundary conditions

on the magnetic potential (Stratton, 1941). Intuitively, one

can imagine the field lines due only to a ferromagnetic

cylinder (Figure 15a) which travel opposite to the applied

field at the "top" and "bottom" of the cylinder cross section,

cancelling the applied field lines which cause the magnetization

and thus "demagnetizing" the cylinder. The final result,

regardless of the purity of the approach, is that an infinitely

long ferromagnetic cylinder whose long axis is perpendicular to

the applied field has a total external field at the surface of

only twice the applied field at any field strength below

saturation.

B = 2H = M +H (66a)

B' = M = H (66b)

where M is the magnetization of the cylinder.
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Figure 14b Actual Trapping on Cylinder at Zero Flow Rate
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Figure 15a Concept of Demagnetizing Field Lines

H
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This is also the result of the Stratton solution, equation

(8) for a large permeability. However, the permeability (dif-

ference between the cylinder and the media)used in the Stratton

solution is the inherent permeability. For a ferromagnetic

material, the permeability is not constant, although the apparent

permeability may be constant. In the Stratton solution,

constant permeability was assumed to simplify and linearize

the problem. The proper differential equations and boundary

conditions should be solvable for a permeability that is a

function of applied field. However, the procedure, if not the

results would be more complicated.

One can properly use the Stratton solution only if one

assumes a constant inherent permeability. This will be done

by the following expansion. Let

fH
B dHf (67a)
0 dH
H sH

B = B1  BH dH + H dH (67b)1 J d dH(6b
0 H s

where Hs is the apparent applied field necessary to saturate

the material. Then the total field may split into two com-

ponents. For H 4 Hs a constant permeability p, equal to the

inherent value of permeability at saturation will be used

(figure 15b). For H 4 Hs, then, one can utilize the Stratton

solution directly. For y2 = 1, and measuring $ from the first

quadrant
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Figure 15b Approximation of Constant Permeability
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H' H

0 L2

+ s r

For H > H ,the inherent permeability is one and d-B=

H

2 =f
H

S

(68)

1. Then

dH = (H - H ) cos $ r - (H - Hs) sin 0 e (69)

again employing the Stratton solution. For H!Hs, there is no

second term in the expansion. Since both terms are linear,

they may be superimposed.

- H [8iSH
s + HCos $ r + - H sin #6

2 -~r2
(70)

where I = Ps+1 a2(y- -

Following equations (27) and (29) in section 3.3.1, the

magnetic force becomes

-28H K' S
FM r 3 --- -- 2 + cos2$H r - Hsin2$6LL rj

rearranging, letting a' = SH /H

-20HH SK' ,

FM 3+ cos2 r - sin2$6]
rr

Fmx

2aHH K' '

=3 2 + cos2 6 cosO - sin26sin6
r I I

(71a)

(71b)

(71c)
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-28HH K' ,r'
Fy 3Hs + cos2I sin6 + sin26cosO (71d)
my r [r2

This formulation for magnetic force will be used henceforth.

For ys = 10, the resulting force contours are illustrated in

Figures 16 and 17. Again the fields are symmetric. Note that

a repelling region does occur at the top (e = 90*). Also, the

magnitude of the magnetic force is much smaller than with the

dipole model. The repelling regions for FMxconstruct a

funneling mechanism which aids in directing particles towards

the cylinder.

4.1.2. Implications of the Required Change

The major implication of the new model is that the effec-

tive available trapping area per cylinder decreases above the

saturation magnetization. The force per unit volume increases,

however, the regions of attractive magnetic force decrease in

size. The "lines of force" may be represented by

F Fr 1 10 (72a)

+ cos2e
-dr = r H < H (72b)r d6 sin2O b

+ cos28
l dr r H > H (72c)r dO sin26 s

When the magnetic force is zero, dr/dO = 0, and

2+ cos20 = 0 H < Hs (73a)
r
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2 + cos26 = 0 H > H (73b)
r

2 ,2 2
Since cos2O = (x - y )/r

yx + H < Hs (74a)

± 2
y = x + ' H > Hs (74b)

Similar expressions can be derived for F and F , separately.
x y

For a given value of x, as S' decreases with increasing H, the

corresponding value of y also decreases. In the limit as H

approaches infinity and ' approaches zero, y = x. The effect

is to make the cylinder appear more like an applied magnetic

field and less like a permanent magnet (Figure 18).

Another aspect of themodel change concerns the validity of

using dipole analogs to describe magnetic fields about ferro-

magnetic trapping objects. Unless boundary conditions are

taken into account, an improper result will occur as seen. A

dipole model may be used if the boundary effects are later

added as a model correction, but true magnetic field descriptions

are highly dependent on the geometry of the object in the ap-

plied field. Moreover, the more complex a geometry is, the

more difficult it becomes to accurately describe the field.

For example, the field about an ellipsoid is analytically

describable only in terms of an elliptical integral for each

point in the field.

Finally, a reassessment of force magnitudes needs to be

made. For the same conditions as in section 3.3.4, except

using a permeability of 10 and a radial distance of four cylinder
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radii, a, the magnetic force is only about 1.6 x 106 dynes in

size at this field strength and position. At this position,

the inertial terms may be approximately the same size as the

magnetic forces at low fields, and the drag force, much greater.

The gravitational force now is of the same magnitude as

the magnetic force and is added to equation (~51 )

and (56c) as a force in the y direction.

4 V4 3 F31
Tp*R - = FMy3R + FDy - 9 8 0 R (-P*- 1) (75)

4.1.3. Results of the New Single Cylinder Model and
Variable Correlations

With the model change described in section 4.4.1, the

trajectories are in much better agreement with the experimental

results. Typical trajectories are shown in Figures 19a, b, and

c. Almost all trapping occurs on the front or upstream side.

All case descriptions and resulting trapping lengths generated

by the computer program may be found in Appendix D.

Given Equations (71c) and (71d), one needs to determine

the effect different values of Hs have on the trapping length

y. For constant a, K (equivalent to K'), V0, p*, ps, and R; y

versus H was determined for Hs = 10,000 and 20,000 gauss

(Figure 20). The loss in magnetic attractive force due to

H s/H has a more pronounced effect when the material saturates

at a higher applied field, causing the decrease to occur at a

larger absolute magnetic force. The result is a temporary

decrease in trapping length. The decrease is only temporary,

since Hs/H soon approaches zero while HsH increases linearly
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with increasing H. The temporary decrease in y should macro-

scopically correspond to a drop in retained feed in actual

separators if the material saturates at about 20,000 gauss.

However, the phenomena has not been noticed. It may have been

overlooked, since it occurs in only a short range of field

strengths above Hs. Since the phenomena, whether real or not,

will only obfuscate matters, an H value of 10,000 gauss will

be used. This might actually be closer to the true saturation

magnetization of steel wool. Corresponding to this will be a

constant inherent saturation permeability ps of 10, i.e. in a

torroidal arrangement Ms = 10,000 gauss at H = 1000 gauss.

Although not the first variable inspected, the first

variable discarded is p*, the density of the particle.

Keeping K constant by varying XM, the molar susceptibility,

with p* (at constant VC, a, R, and H), p* was varied. The

results are illustrated in Figure 21. The effect of particle

density is almost negligible except for its effect on K, the

volume susceptibility. Gravitational forces are thus

unimportant. This may be better understood by calculating the

terminal settling velocity for a spherical particle in water.

Letting R = .0005 cm, p* = 12 gm/cm3, the terminal velocity is

only .15 cm/sec, or only 5% of a freestream velocity. The

density effect is only about this size.

Holding all other variables constant, the functionality

of y with H is shown in Figure 20. A logarithmic plot is

shown in Figure 22. A change in slope occurs at H = Hs= 10,000

gauss, when the magnetic force function changes. A third region
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Figure 22 Logarithmic Plot of Trapping Length versus
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might exist at H > 70,000 gauss.

For different field strengths, holding a, r, andK constant

y versus V. is shown in Figures 23a and 23b. The trapping

length is proportional to V -. 57 A more complex dependence

will be presented with the dimensionless analysis. At low

field strengths, depending on the velocity used, the model

breaks down and predicts a trapping length of zero. Particles

will hit the cylinder (Figure 24), but with a positive V and
y

do not stick. In the model the velocity at the surface of the

cylinder is zero only at y = 0, x = ±a. In reality, the fluid

velocity at the surface is zero. The drag force near the

surface is overestimated by the model.

The functionality of y with K, the particle susceptibility,

is shown in Figure 25 for different field strengths,

holding all other variables constant. Trapping length versus

a, the cylinder radius is shown in figures 26a and 26b for

constant H, V0, R, and K. Discussion of these two variables

will be postponed until the dimensionless analysis.

Trapping length versus R, the particle radius, is shown in

Figure. 27 The functionality is complex,

since there is an inflection in the

curve. At fields above 10,000 gauss for low R, the model pre-

dicts a lower or zero value for trapping length at intermediate

field strengths and certain a/R ratios (see cases 18 and 20 in

Appendix D). This is due to the lack of a no slip condition

(V = 0) at the surface of the cylinder. Also, upon reaching

the surface of the cylinder, a particle may roll along the
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Figure 27 Trapping Length versus Particle Radius
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surface carried by the oversized drag forces until a repulsive

region is reached. At this point (Figure 28) the particle

leaves the surface and accelerates down the backside of the

cylinder, not to be trapped. At the intermediate field strengths

above Hs, the repulsive regions increase in area and magnitude,

pushing the particle well away from the cylinder. At low fields

the particle may not be repulsed enough to avoid backside

capture. At high fields the particle will trap at the front

and not roll along the surface.

To describe the interactions between any two parameters,

a set of dimensionless correlations are needed. By using

Buckingham's Pi theorem, one can deduce that four dimensionless

groups are needed (Appendix E). By inspection, it was

found that KH2/ pfV2, y/R, 2aV p / i, and R/ R9 were

correlatable groups.

Figure 29 is a plot of y/R versus KH /VOi2 Pf = S (KHHs/ SPf

for H > H S) for values of 2aV p /n or Reynolds number based on

the cylinder, Re(a), all at constant R. Note that while y/R

increases with increasing Re(a), there is also an increase in

H necessary to keep S constant if V, is being changed. The

ability to change either V. or a in the Reynolds number is

demonstrated in Figure 30. The discrepancy at Re(a) = 2 is

probably due to the effect a has on the a or 1' term in the

magnetic force which may becomeincreasingly important at low

Reynolds numbers when compared with the a2 dependence in the

fluid velocity description. As a approaches zero, the fluid

behaves like the freestream and the repulsive force regions
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behave as if H s/H + 0 regardless of the field strength. At

higher Re(a) there is no discrepancy caused by varying a.

Figure 31 demonstrates the differences in Y/R due to changing

K or H. The differences are probably due to the function change

for magnetic force which is dependent only on H.

V, and R cannot be paired to produce a Reynolds number at

constant a (Figure 32). The dependence of magnetic force is

3 2 2with R while the drag force dependence is only R and VO

Decreasing R will have a greater effect on the y parameter

than an equivalent change in V.. V, and a seem to correlate

precisely because of the a2 dependence in fluid velocity and

the V2 term in drag force; changing a changes the fluid velocity

and then the drag force by the same power as the change in a.

Since Re(a) is used, a direct measure of trapping y/a

cannot be used, since a is not constant. Since R is held

constant in Figure 29, y/R becomes the third group by default.

Figure 33 is a logarithmic plot of Figure 29. The slope is

approximately 1/2, indicating a y/R dependence on /HHs at

constant R.

The fourth dimension of the correlation still must be

found. An obvious choice is Re(R) = 2 pfRVJ/n, but that would

cause the surfaces of constant Re(a) to intersect at various

values of y/R and Re(R) as in Figure 34. Since there is a

maximum value arbitrarily placed on R (.0005 cm) to avoid the

particle affecting the flow about the cylinder (10R<a), a

better, although more contrived group would be R/R where

R = .0005 cm. y/R versus R/R at constant S for various Re(a)

is shown in Figures 35a, 35b, and 35C. As stated earlier,
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Figure 34 Surfaces Produced by Reynolds Number Based

on Particle
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y/R as a function of R has an unusual dependence with H1 or S.

4.1.4. Results of the Two Cylinder Model

The effect on the trapping length y predicted by the

single cylinder model of an identical magnetic force source at

a point (O,d) above the origin is shown in Figure 36. Except

when y > d/2, the effect is small and decreases with increasing

d or decreasing applied field strength H. One would also ex-

pect only a small variation in y for any staggered orientation

if y < d/2. When the separation distance d is less than 2y,

the particle is attracted to the other source. In the model

the region of attraction towards the other source includes

some values of y less than d/2, but no fluid dynamic description

was assumed for the "other cylinder." This result is mis-

leading, since for fluid flow perpendicular to the plane of the

cylinders, the midline between the two cylinders is a stream-

line in the absence of rotational flow. One should assume

that with respect to the magnetic force, other cylinders do not

affect the trapping length unless y > d/2, or~if there are

magnetic interactions between the cylinders.
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4.2. Experimental Results and Correlation with Mathematical
Model

Experimental results for most materials were poor.

Tabulated values of molar susceptibility were found to be

quite different from measured values for some of the materials

used; trace impurities, decomposition, or hydration may all

affect material susceptibility. Particle size variations

between materials were large because of different densities

or agglomeration. Only CO 3 (PO4)2.2H20 gave satisfactory

results. Even for this material, the results seemed very

dependent on the sample injected. This is attributed to small

variations in particle size due to the difficulty in preparing

identical samples by a simple stirring and settling technique.

However, since the particles are about .001 cm in diameter,

the amount of effort necessary to get very uniform particles

would be tremendous.

The data for CO 3 (PO4)2-2H20 is presented in Figure 37

where y' is the thickness of the build-up or wedge on the

upstream side of the wire and amperes A are used instead of

applied field H (for the magnet used 10 amperes is approximately

5000 gauss and the relationship is linear). Almost all data

fall in the region (of S) where the mathematical model tended

to break down. The average values of y' were used in the

figure. Averaged data may be found in Appendix F. Example

photographs are shown in Figure 38. One should note the for-

mation of a build-up or wedge of particles on the upstream

side. The perception of depth is lost in the photograph, but

an example of the wedge shape is shown in Figure 39.
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Figure 38 Pictorial Experimental Results
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Figure 39 Shape of Particle Build-up on a Wire
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The experimental data confirm the validity of the derived

dimensionless correlation for constant particle size. The

lines of Reynolds numbers have the same forms with increasing

Re(a). The trapping layer or wedge thickness decreases with

increasing velocity, decreasing field strength, or decreasing

wire radius, although logarithmic plots do not yield the depen-

dence. This is partially due to the change in geometry as a

wedge builds up in front of the cylinder.

Note that y' increases with increasing wire size at

constant V and H, as does y with a in the dimensionless

correlation, Figure 29. This result suggests that the size of

the trapping material used can be optimized with respect to

volumetric trapping per cylinder and number of cylinders per

unit volume of separator for given operating conditions.

4.3. Other Visual Phenomena

At zero flow velocity and loading the chamber with a

large amount of CO3 (PO4 )2 -2H20, an applied field will cause

the particles to stick only near the vicinity of the poles

(Figures 14b and 40). A useful generalization one can make

is that particles tend to be attracted toward the induced

poles (ignoring drag forces). A particle will not always

procede to a pole because of other particles blocking the

way. The shape of the resulting wedge at zero flow indicates

where -FM r > FM .

At a Reynolds number of 10 - 15 with the large iron wire

(a = .026 cm), twin vortices were observable on the downstream

side of the cylinder as expected (see Appendix B). Normally,
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Figure 40 Shape of Build-up at Zero Flow
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several particles became entrained in the vortices due to the

streamlines in the vortex and the magnetic force (particles

were released by lowering the applied field). For magnetic

separations involving a low concentration of material to be

removed, instead of using high fields, one might try to

utilize the trapping ability of the vortex.

With applied field on, particles can be "blown" from the

front to the back or downstream side of the wire by increasing

the flow rate to cause turbulent flow in the chamber. Up to

50% could be transferred. While a poor method in that much is

lost or not captured at all, the total capacity of a bed of

wires might be increased by running at low flow rate, a

turbulent flow rate, then again a low flow rate and use recycle

to catch what was lost or didn't trap during the turbulent

phase. Also with iron wire, unless the wire is demagnetized

well, it is hard to remove all trapped material, since some

will just transfer from the upstream to the downstream side

with backwashing because of the large permanent magnetization.

Finally, trapping does not occur when flow is parallel to

the major axis of the trapping object except at an end. A

particle will not stick to a "flat plate" surface because the

perpendicular magnetic force (Figure 3b) is not large enough

to overcome the drag force except near the extremities. If

the long axis is parallel to the magnetic field, these ends

become induced poles, and the magnetic gradient and force is

quite large. This is illustrated in Figure 41 where both

field and flow are parallel to the long axis of the wire.
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Figure 41 Trapping for Wedge Form

Flow is from left to right
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This figure also suggests that a wire containing sharp

points, i.e. a barbed or nicked wire, directed in the flow

and field direction may be advantageous.

4.4. Macroscopic Predictions of the Cylinder Model and Implications

Assuming that each particle can be described as a point,

particles can be assumed to trap when they are within 2y,

the trapping length, of a cylinder of diameter 2a, if the

particles are initially moving perpendicular to the cylinder

and parallel to the applied field. For n cylinders per unit

volume arranged as in Figure 42a, the fraction of N particles

trapped per length dt is:

dN =-yn.dt (76)
N

where a is the effective cross section of the cylinder 2yg (g

in the length of the cylinder) and y is the joint probability

of the cylinder being aligned both perpendicular to the field

and perpendicular to the initial direction of the particle

(Figure 42b). If the probability of capture per length dk is

small, N does not change much and the expression may be

integrated over length L directly.

N(L) L

I N yn2ygdk (77)

N 0
0

Letting n where e and f are separation distances

between cylinders,

N(L) = N. exp [-2yLy/ef] (78)
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Figure 42 Diagrams for Macroscopic Model of Cylinders
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If N is the total feed, N(L) is equal to the number of

particles passing through the filter. Assuming uniform

particle size and density, N(L) and N could be expressed

in weight or mass.

Going directly to the experimental data of Oberteuffer,

et al. (1971) for a case where V. = 10 cm/sec, H = 60,000

gauss, K = 20xl0-6 , Re(a) = 10, and assuming a particle size

of .0005 cm, a from Figure 29 is equal to .026 cm 2/cm. Using

separation distances f = e = .04 cm,

N(L) = N exp[-16.25yL] (79)

If Y = 1 and L = 15 cm, for No = 50 gm, N(L) should be

approximately zero while N(L) is actually 10.5 gm. With

y = 1, L must be less than .1 cm or about 2 cylinders deep.

The fraction trapped per length di is not small, invalidating

equation (77).

If y is less than one, L will increase accordingly to

produce the actual experimental result, but if the model

correctly describes the workings of an actual separator, the

separator should be modeled as an adsorber column in which

trapping occurs in a series of small zones (Treybal, 1968)

until reaching the end of the column. The ease of trapping

in each zone is initially high, but falls off as the trapping

capacity is filled.

The model of a single particle approaching a cylinder

will not give any information about the total number of

particles that can be trapped at given operating conditions.
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Each particle sees a clean cylinder. To properly describe

bulk trapping at a cylinder, a model which adds trapped par-

ticles into the description would need to be developed, since

the effect of captured particles is to increase the minimum

distance at which the magnetic force can act and to change the

fluid velocity field. A better fluid description than

potential flow is needed, since the no slip condition at the

surface of the wedge becomes important.

One can make an estimate of the maximum amount (by volume)

that can be trapped under given conditions by looking at the

experimental data, although the pictures are only two dimen-

sional. For H = 5000 gauss and V = 2.5 cm/sec, the maximum

volume available for trapping is approximately 33% of the wire

volume. If 50 grams of steel wool has a density of 7.0 gm/cm 3

the trapping volume is about 2.3 cm3 . Using a density of 6.0

gm/cm3 for CuO, one would have a capacity of about 14 grams,

if y as defined before is equal to one. The actual amount

trapped in the separator (Oberteuffer, et al., 1971) was 52

grams. Some of the additional trapping may be due to mechanical

trapping caused by overlapping wires or wedges. One could

observe trapping on several wires to determine the magnitude

of this effect. However, since photographic evidence obscures

perception of depth, a better approach might be a conventional

breakthrough analysis for different bed lengths.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

On the basis of the mathematical model, one should model

a magnetic separator as an adsorber, since the model predicts

much more trapping per unit length of separator than what

actually occurs. The length of separator predicted by the model

that is required to meet experimental separator results is a

short zone. This leads one to expect that in reality, a single

cylinder reaches a maximum loading; this is confirmed by

experimental evidence. Since the model developed always

regards the cylinder as being unloaded, a model which accounts

for particles already trapped should be developed to accurately

model the maximum loading. The formulation of this model should

include a proper boundary layer description of flow and include

flow separation, since the current model overestimates drag

forces near the surface of the cylinder and neglects backside

loading caused by rotational flow. Possible mechanical trapping

due to wedge build-up or adjacent wires should be taken into

account. Alternatively or jointly, one could study the maximum

loading volume phenomena visually or by a breakthrough analysis

for different bed lengths.

The model also highlights the effects of variables on

trapping ability and suggests how they may be correlated for

an actual separator (section 4.1.3). The model predicts that

cylinder size can be coupled with fluid velocity to form a

Reynolds number, Re(a), indicating that the flow pattern about
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the cylinder is the controlling factor in the drag force that

must be overcome to hold a particle at the cylinder. The

magnetic potential energy (KH ) and the free stream kinetic

energy (p V 2) can be paired. The final correlation expresses

y/R in terms of KH /PfV ,2 for values of Re(a) at constant par-

ticle radius, R. The stipulation of constant R is necessary,

since the magnetic force is dependent on R3 while the drag

2
force is dependent on R . The trapping length y is highly

dependent on R.

The model also suggests that a small cylinder is not

necessarily better since y/R and the trapping volume per

cylinder increase, with Re(a) at constant V0 and H. However,

the volume occupied by the cylinder also increases, decreasing

the number of cylinders available. One should be able to

optimize the total trapping ability as a function of wire or

cylinder size for given operating conditions. One should also

be aware that trapping ability is enhanced around a sharp

point because of the high field gradient. The sharp point

may or may not be advantageous for increasing trapping volume.

Finally, a better description of the magnetic field and

magnetic force field about a cylinder has been developed and

tested. It predicts a temporary drop in efficiency just above

the applied field necessary for saturation for trapping

materials saturating at around 20,000 gauss (One should be able

to check this result with an actual separator if the saturation

properties of the packing are known). Experience gained in the

development of this model casts doubt on the use of dipole
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analogs to accurately describe magnetic forces. A magnetic

force is better described analytically, although the result

may be extremely complicated.
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NOMENCLATURE

A

A

a

B

B'

b

C

C.in

Cout

d

dl

d
2

Dt

e

FD

FG

FL

FM

FD

FM

FMx

FMy

g

g

- amperes

- magnetic potential vector

- cylinder radius

- magnitude of magnetic field

- magnetic field vector

- induced field = M

- particle radius

- friction coefficient

- inlet concentration

- outlet concentration

- particle diameter, distance b

- separation distance between c

- separation distance between c

- tube diameter

- separation distance between c

- magnitude of drag force

- magnitude of gravitational fo

- magnitude of London force

- magnitude of magnetic force

- drag force

- magnetic force

- magnetic force in x direction

- magnetic force in y direction

- length of cylinder

- acceleration due to gravity

rce

etween centers

ylinders

ylinders

ylinders
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H - magnitude of applied field

Hs - applied field necessary for saturation

H - applied field

K - volume susceptibility

K' - relative volume susceptibility

K1 , K2, K3 , K4 - constants for Runge-Kutta integration

L - total bed length

Z - differential bed length

M - magnitude of magnetization

M S - saturation magnetization

H - magnetization

m - molecular weight

m - magnetic dipole moment

N - number of particles per unit volume

N - initial number of particles per unit volume

n - number per unit volume

p - pressure

q - number of quantities

R - particle radius

Re - Reynolds number

r - radial distance

k - unit radial vector

S - dimensionless group, KH /V 2p

t - time

u - number of fundamental groups

V - magnitude of velocity

V0 - initial or freestream velocity
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V - volumetric flow rate
V

v - kinematic viscosity

w - vorticity

x - voids fraction

y - trapping length

y' - trapping thickness

a - effective cross section

=[(y - 1)/(U + 1)] a2

3' - (H /H

y - probability of proper alignment

6 - boundary layer thickness, dimensionless

6' - boundary layer thickness

6 - angle measured from second quadrant

o - angular polar unit vector

n - viscosity

x - impact parameter (distance)

y - magnetic permeability

PS - saturation permeability

p - density

p* - particle density

- angle measured from first quadrant

- polar angular unit vector

XM - molar susceptibility

- streamline function
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Appendix A

Definition of Magnetic Dipoles

The definition of a magnetic dipole ME is i = current times

area (enclosed by current). In the case of an induced dipole,

one must consider an imaginary induced current. For a dipole

induced into the cross section of a cylinder, the dipole has

the same direction as the inducing field. The imaginary cur-

rent induced by the field must be perpendicular to the inducing

field and the dipole. An imaginary circular current loop per-

pendicular to the circular cross section of the cylinder but of

the same area can be invented (figure A-1). This imaginary

current loop must carry current I equal to the induced field (p-l)H

to give rise to the proper strength dipole. Then

m = Iira2  (A-la)

- A-2M = (y-1) Hwa (A-lb)
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'4

Figure Al Imaginary Current Loop

I
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Appendix B

Numerical Solutions of the Navier-Stokes Equation

Flow separation is caused by a positive pressure gradient

along the flow path of streamline (Chang, 1970). At flows

with very small Reynolds numbers (creeping flow), the viscous

terms dominate the inertial terms and no separation occurs.

At higher Reynolds numbers the boundary layer widens, then

separates into two sheets, with reversing flow or vortices oc-

curing between the sheets (figures B-1 and B-2).

For a circular cylinder, at low Reynolds numbers the pres-

sure field satisfies the potential equation and there is no

pressure gradient (d' Alembert's paradox). At about at Rey-

nolds number of 10, depending on the proximity of the boun-

ding walls, reverse flow and vortices occur, the point of se-

paration being at e = 800-850 (figure B-3). At intermediate

Reynolds numbers there is a large boundary layer or stagnation

region on the downstream side. The twin vortices in figure

(B-a) will persist until a Reynolds number of about 100 is

reached when von Karmon vortex streets or shedding vortices

occur. Other wake forms occur at higher Reynolds numbers,

however, since the Reynolds number range of interest is from

about 1 to 20, only the case of twin eddy separation need be

considered.

Fluid velocity fields at Reynolds numbers above those at

which the potential equation holds can be calculated numerically
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from the Navier-Stokes equation when written in terms of vor-

ticity, w, transport and a stream function, $, (Schlichting,

1968). Let

V x = w = 1/2 - (B-1)

Then for two dimensional, steady flow equation (33c) becomes

9w w 92 w a2
Vx + Vy a = v -x + (B-2)

Introducing the stream function defined by equations (39a)

and (39b), the vorticity in (B-1) may be written as

w = -1/2V 2 (B-3)

Then (B-2) becomes

$ DV2$_ a$ 372 v 4$ (B-4)
li x lx 3y

The proper boundary conditions at the body surface are

= 0 (B-5)

The other boundary condition depends on the free stream con-

ditions.

This procedure was first introduced by Thom (1933) who

calculated vortex patterns numerically using finite difference

equations to form a grid network. With the advent of computers,

the calculations have become much quicker allowing for more

detailed grids. A recent compilation of numerical solutions

may be found in Physics of Fluids, 12, supplement II.
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APPENDIX C

Listing of Computer Programs



C SINGLE CYLINDER MODEL 149

C VARIABLES LISTED IN ORDER OF APPEARANCE

C STARTING WITH MAIN PROGRAM

C H IS THE APPLIED FIELD MAGNITUDE

C CHI IS THE MOLAR SUSCEPTIBILITY
C PERM IS THE PERMEABILITY
C DENS IS THE DENSITY OF THE PARTICLE
r C;MW IS THE MOLECULAR WEIGHT OF THE PARTCLE MATERIAL

c XLIM AND YLIM ARE TERMINATION LIMITS ON X AND Y POSITION

C TPRIN IS THE PRINTING INTERVAL, T=1 FOR PRINTING AT EVERY STEP

C A IS THE CYLINDER RADIUS

C R IS THE PARTICLE RADIUS
C VINF IS THE FREESTREAM VELOCITY
C XC AND YO ARE THE INITIAL COORDINATES OF THE PARTICLE

C V)O AND VYO ARE THE INITIAL X AND Y VELOCITIES

C STEP IS THE STEP SIZE FOR THE RUNGE-KUTTA METHOD

C HS IS THE APPLIED FIFLD NECESSARY FOR SATURATION

C RMASS IS THE MASS OF THE PARTICLE
C TSTOP IS A MAXIMUM TIME LIMIT

C DVX AND DVY ARE DERIVATIVE VALUES CALCULATED IN SUBROUTINE OUDAH

C VARIABLES IN SUBROUTINE DODAH
C RAD IS RADIAL DISTANCE

C THETA IS ANGLE MEASURED FROM SECOND QUADRANT IN RADIANS

C WTHET IS THETA IN DEGREES
C VY IS THE VELOCITY IN THE Y DIRECTION

C DIFVY IS THE RELATIVE Y VELOCITY

r REY IS THE FLUID REYNOLDS NUMBER FOR THE Y DIRECTION

L rDY IS THE DRAG FORCE IN THE Y DIRECTION
C :MY IS THF MAAGNFTIC FORCE IN THE Y DIRECTION

C OVY IS THE DERIVATIVE OF VY W.R.T. TIME
C VARIABLES SUFFIXED WITH X ARE THE SAME AS THOSE SUFFIXED WITH Y

C EXCEPT THEY APPLY FOR THE X DIRECTION

SUBROUTINE DODAH
C
C CALCULATION OF DERIVATIVE FUNCTIONS
C

COMMON DVXDVY,X,YDENS ,RMASS, BETACONSTVPXVPYVINF,A9R ,THETA

2 ,HSFHHCHEK
RAD=SQRT(X*X+Y*Y)
PI=3.1415926536
PEET=BETA*HS/H

C CALCULATION OF ANGLE FROM RECTANGULAR COORDINATES, ANGLE MEASURED

C FROM SECOND QUADRANT

IF (X) 18,15,18
15 IF (Y) 16,17o17
16 THFTA=1.5000*PI

GO TO 25
17 THFTA=.5000*PI

GO TO 25
XX=-X



IF(XX) 22,22,19
IF(Y) 21,21,20

20 THFTA=ATAN(Y/XX)
GO TO 25

21 THETA=ATAN(Y/XX) + 2.00*PI
GO TO 25
THETA=ATAN(Y/XX) +PI

25 WTHFT=THFTA/2./ PI *360.

C CALCULATION OF DPAG FORCE IN Y DIRECTION
C
26 VY=VINF*A*A/RAD)/RAD*SIN(2.*THETA)

DIFVY=ABS(VY-VPY)
31 REY=DIFVY*2.*R/.01

IF(REY-1.92) 32,33,33
32 FDY=6. *PI *.01*R*(VY-VPY)

GO TO 34
FDY=18.5*PI*R**2 *ABS(VY-VPY)*(VY-VPY)/REY**.6/2.

C CALCULATION OF MAGNETIC FORCE AND DERIVATIVE IN Y DIRECTION
r
'34 IF(HCHEK) 341,341,342
341 FMY=-CONST*2.*RETA/RAD**3*((BETA/R AD/RAD+COS(2.*THETA)

2 +SIN(2.*THFTA)*COS(THETA))
GO TO 343

342 FMIY=-CONST*2.*BE T A /RAD**3* ( (BEFT/R AD/RAD+COS (2.*THE TA)
2 +SIN(2.*THETA)*COS(THETA))

343 DVY=FMIY/DFNS+FDY /RMASS-980.*1. 333*3.14159*R**3* (DENS-1
C
C CALCULATION OF DRAG FORCE IN X DIRECTION

30 VX=VINF*(1.-A*A /RAD/RAD*COS( 2.*T HETA))
PFX=ABS(VX-VPX)*2.*R/.01
IF(RFX-1.92) 35,40,40

35 FDX=6.* PI *.01*R*(VX-VPX)
GO TO 43

40 FDX=18.5*PI*R**2*ABS(VX-VPX)*(VX-VPX) /REX**.6/2.
C
C CALCULATION
r.

)*SIN ( THE TA)

* S IN ( THE TA)

) /RMASS

OF MAGNETIC FORCF AND DFRIVATIVE IN X DIRECTION

,+3 IF(HCHEK) 44,44,45
44 FMX=CONST*2.*RETA/RAD**3*( (BETA/RAD/PAD+COS

2 SIN( 2.*THFTA)*SIN(THETA))
GO TO 46

45 FMX=CONST*2.*BETA/RAD**3*( (BEET/RPAD/RAD+COS
2 SIN( 2.*THETA)*SIPN( THE TA))

46 DVX=FMAX/DENS+FDX/RM1ASS
RETUPN
FND

C MAIN PROGR AM

(2.*THETA))*COS(THETA)-

(2.*THETA) )*COS(THETA)-

REAL K1XK2X,K3XK4X,K1YK2Y ,K3Y ,K4Y
COMM1ON DVX ,DVY,X ,Y ,DENS,RMAASS, BETACON2STVPXVPY,VINF ,AR,'THETA

150



,HSHHCHFEK

C INITIALIZATION OF VARIABLES
C
1 PEAD(5,1000) HCHIPFRM,DENS,GMWXLIM ,YLIMTPRI N
100 FORMAT (8F1. 5)

IF(H) 100,100,3
3 READ(5,1000) ARVINFXOYOVX0,VYOSTEP

WRITE ( 6,1001) H9 CHI , PERM,DENS 9,GI, A RV I NF

READ(5,1000) HS
WRITE(6,1009) HS
WRITE(6,1)002) X0,YO,VXOVYOSTEP

IF ( H-HS) 305,306,306
305 CONST=H*H *CHI *DENS/GMW!

HCHFK=0* 0
GO TO 4

306 CCNST=H*H S*CHI*D FENS/G.
H-ICHFK=1 .0

4 X=XO
Y=YO
nNMASS4./3.**3 .14 15926536*R**3*DENS
PETA=(PERM-1.) / (PERNA+1.)*A*A
TSTOP= (XLIM7-XO /VINF
TI E=0*0
P R I N = 0.0
CHECK= 0.0
VP X = V X C)
VPY=\/YO

5 VPXO=VPX
VPYO=VPY

(7
C FIRST R-K STFP

XO=X
Y0=Y
CALL DODAH
K1X=STEP*DVX
K1Y=STEP*DVY

SFCOND R-K STEP
C

\PX=VPXO+K1X/?.
VPY=VPYO+K1Y/2.
TIMF=TIME+STEP/2.
X=XO+VPX*STFP/2. + DVX*(STEP/2.)**2/2.
Y=YO+VPY*STEP/2. + DVY*(STEP/2.)**2/2.
CALL DODAH
K2X=STEP*DVX
K2Y=STEP*DVY

THIRD R-K STEP

VPX=VPXO+K2X/2.
VPY=VPYO+KY/2.
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X=XO+\/PX*STFP/2.
Y=YO+VPY*STEP/2.
CALL DODAH
K3X=STFP*D 'VX
K3Y=STEP*DVY

C FOURTH R-K STEP

+

+
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DVX*(STEP/2.)**2/2.
DVY* (STEP/2.)**2/2.

VPX=VPXO+K3X
VPY=VPYO+K3Y
TIME=TIME+STEP/2.
OR IN=PR IN+l.
X=XO+VPX*STEP+.5 *D\/X*STEP**2
Y=YO+VPY*STFP+.5 *DVY*STEP**2
CALL DODAH
K4X=STEP*DVX
K4Y=DVY*STFP
VPX=VPXO+(K1X+2. *K 2X+2.*K3X+K4X)/6.
VPY=VPYO+(K1Y+2.*K2Y+2.*K3Y+K4Y)/6.
X=XO+VPX*STEP*1.5
Y=YO+VPY*STEP*1.5

C
C CHECK FOR COLLISION WITH CYLINDER

IF((SQRT(X*X+Y*Y)-A)- R) 90,90,14

C 1ESET OF Y TO AVOID UNDERFLOW
C
14 IF( ABS(Y) -1.OF-20 ) 141,141,15
141 Y=0.0
15 IF(TPRIN-PRIN) 20,20,205
20 WRITF(6,1003)

PR I N=0 * 0
XYVPXVPYTIME

CHECK AGAINST REGION LIMITS

IF(XLIMl-X) ?5,25
IF(YLIM-AP>S(Y))

WRITE(6,1005) X,
GO TO 1

,21
25,25,35
YVPXVPYTI ME

CHECK AGAINST MAXIMUM TIME ALLOWE)

IF
W
GO
IF
WR F

(TINF-TSTOP
ITF(6,1006)
TO 1
(CHECK) 91

ITE(6,1004)

5 5,45
XYVPX

,91,92
X,Y,VPX

CHFCK=1.0
92 IF( THETA-.5*3.14159)
93 IF(VPY) 94,95,95
94 WRITF(6,1008) X,Y,VPX

GO TO 1
X=-(A+R)*COS(THETA)

,VPYgTIME

#VPYTIM!E

93,96,06

,VPYT ItF

C

205
2 1
25

C

35
/5



Y= (A+R )*S IiN ( THFTA)
PR IN=0 0
-0 TO 5

96 IF(VPX) 97,9595
97 WRITE(6,1007) XYVPXVPYTIMNE

GO TO 1
1001 FORMIAT( 1H1,6X, 'H CHI ' ,8X, 'PERM' 8X , 'DENS' ,8X

2 'A',7X,,' ,9X,'VINF'// E10.2,E12.4,E10.2,2E12.3,3E
1002 FOR M AT(6X,'XO' ,8X'YO',8X,'VXO' ,X,'VYO',8X,'STEP'

2 2F11.5,F12.6 ////6X,'X',9X, 'Y',9X,'VX',9X,'VY',9X
3 9X,'X' 14X,'Y',14X, 'VX',13X,'VY' //

1003 FORMAT(2FI0.5,2Fl1.5,F12.6,4F15.5)
1004 FORMAT(' PARTICLE AT CYLINDER' / 2F10.5,2Fll.5,F12
10C5 FORMAT(' PARTCLE PAST CYLINDER'/ 2F10.5,2Fll.5,F12.
106 FORMAT(' TIF LIMIT EXCFDrD' / 2F10.5,2Fl.5sF12.
1007 FORMAT(' BACKSIF CAPTURE'/ 2F10.5,2Fll.5,F12.6)
1000 FORIAT(' FRONTSIDF CAPTURE'/ 2F10.5,2Fll.5,F12.6)
7009 FORM'AT(' SATURATION MAGNETIZATION',E10.2 //)
100 CALL EXIT

END

153

'GMW' ~,8X ,

// 2F10.5,
'T I ME' 9

*6)
6)
6)



7 LISTING OF TWO CYLINDER PROGRAM 154

ALDITIONAL VARIABLES ARE
D= DISTANCE BETWWEN THE ACTUAL CYLINDER AND IMAGINARY CYLINDER
THE SUFFIX ONE INDICATES THE VARIABLE IS BEING MEASURED FROM THE
ACTUAL CYLINDER
THF SUFFIX 2 INDfICATES THE VARIABLE IS 'EASURED FROM THE ADDITICNAL
MAGNFTIC SOURCE
PROGRAM IS ESSENTIALLY THE SAME AS THE SINGLE CYLINDER MODEL

DIFFERENCES IN THE MAIN PROGRAM ARE INDICATED BY ***

C SUPROUTINE DEDAH IS TO FIND ANGLE THETA
C

SUBROUTINE DEDAH
COMMON DVXDVYXY

2 ,HSHHCHEKDPI
IF (X) 18,15,1A

15 IF (Y) 16,17,17
16 THFTA=1.5000*PI

GO TO 25
17 THFTA=.5000*PI

GO TO 25

,DENS,RMASS, BETAsCONST,VPXVPYVINFsAR ,THETA

1, XX=-X
IF(XX) 22,22,19

19 IF(Y) 21,21,920,
2n0 THETA=ATAN(Y/XX)

GO TO 25
21 THETA=ATAN(Y/XX)

GO TO 25
?2 THETA=ATAN(Y/XX)
25 vTHET=THETA/2./

RETURN
F ND

+ 2.00*PI

+PI
PI

SUBROUT INE DODA H

COMMON DVXDVYXY
2 ,HSH,HCHEIK,D,PI
RA 1=SORT ( X4*X+Y*Y)
PAD=RAD1

*360.

9 ,NIS fRM ASS BETA ,CONST ,VPX ,VPY sV I iKNF A ,R

'ADSQR T ( X*X+ ( D-Y ) **2)
PI=3.14159
PEFT=BFTA*HS/H
CALL DEDAH
THET 1=THETA
YKFEP=Y
Y=Y-D
CALL DFDAH
THFT2=THETA
Y=YKFEP
THFTA=THET1
VY=VINF*A*A/RA/RAD*SIN(2.*THET1)
!> IFVY=ABS(VY-VPY)

C

C

C
C
C

C
C
C7

c
,THETA



15531 PFY=DIFVY*2.**/*Ol
IF ( FY-1o.92) 32,*3333

32 FDY=6* *PI *s01*P*(VY-VPY)
C,0 TO0 3 4

33 FDY=18,5*PI*R**,2 *ARS(VY-VPY)*(VY-VPY)/F EY**.,,6/2#
3/ IF(HCHFK) 3/41,3410342

341 F M Y 1=.CNS T * 2BET A/ R A D 13 B E T A / RD1 / R A D 1+C S (2TH ET 1)

2 SIN\UTHIFT1 + SIN (2e*THFT1 )*COS( THFT1))T
FtIY2=.CONST*2*P-ETA/FAD2**3*,( (3FT'-A/AD12/PAD2+COS(2,* THET2) )*

2 SIN(THET?) + SIN(?.*THEiT2)*COS(THEL7Tr))
GO TO 343

342 FNIY1=-CONST-*?.*BFTA/fAD1**.*( ( FETF/AD/RA1+COS(2.*THETI) )*

2 SIN(THET1) + STr'\(2*THET1)*CO'S(THET1))
Fl Y?=-CONS';T*2 .*BFTA/RAD*3 ( ( BEFT /jRAD? /RAD2+COS ( 2 *THET2))*

2 SIN(THET2) + SlN(2s*THlET2)*COS(THET2))
343 OVY=F MY 1 D F NS+ F %1Y2 /D E NS+ F DY/RAS S -9 80 a 31 3 3 3P I Rp*3 D DFNs~

2 /PM~lA SS
\X\V F*(1 AA / RAD /RAD-*COS ( 2 o4'THE T 1

PEX=ABS (\/X-VPX )*2 * *9 / .01
IF(RFX-1.92) 359,0940

359 FDX=6** PI *.01nl\P*(vx-vpx)
(70 TO 43

40 FDX=18a5*P1*R?**2*ABS(vx-vx* VXPX/E*.62
43 IFW(H1CFK ) 44o44 ,45

4/4 FkN71 =CONST*?.*BETA/RAD1* *3*((BFTA/ RADl/lAD1+CS ( 2*THTT1)
2 COS ( THETI )-SI1N ( 2 *TH ET 1 ) *S I>N' ( THE T

F"'X2=CON'.ST*2.*(' FTA/F? AD2**i3*((PETA/RAD2
2 COS ( THFT? ) -S I N~C2 THET2 ) *S 11 ( THFT 2
G0 TO 46

45 F,1X=CON'\ST*2.*A\-FTA/PADI1*,*3,-( ((EFT/RAD1
2 COS( THET 1 I> 2 **THE-T1 ) *SIN'l ( THE Ti
Fl~lX?CONST*?.*0FRTA/9 AD2* '*3-( C BFET/RAD2
2 CC ( H T ) S N,(rslT FT ) l 'T E 2

46 V X FMX I/r"F NS+ FAX 2/ D FNS + F DX/ RMAS S

/R Ar)1 +CCS2XTIT))

/2A,2tCQS(2.THIE T2 )1

Q FT UR9N
F N

.
(7 V'AIN PROGRAMI

PEAL K iX K2X qK3X ,K4X ,K1Y K2Y ,K3Y ,K4Y

COV\,MQIN DvxDVYqX,)YDEfN IS,9MASS, BETA9,CON\STVP'KVP YVI'~iFARTH ETA
2 ,H'-SHHC.HFK, PI

. PEAD(591000)
I, 003 FOR\"AT C F1C *5)

IF(H) 100,100,3q
3 PFAD(5,1000) Atrtvlh,, rX0,YO')vXO')VY,STP

',%PITF(6q1001) H9,CH I PER,DENSC>1&AsRVINF

PEPJD(5,O0n0) HSD

,I T F(6,1009) Hs

~I TEF ( 6 911)



"PITF(6,1002) XO,YO,VXO,VYO,STEP
(.. ***156

IF ( H-HS) 305,306,306
0) 5 CONST=H*H*CHI *fDFNS/GMVV

HCHEK=0.0
00 TO 4

306 COST*HS*CHI*DES/GMID
HCH-EK =1 0

e. ***

13 X=XO
Y=YO

YMASS=4./3.*3.1415926536*R**3*FNS
PETA=(PFRM-1.) /( PRMf+1.)*A*A
TSTOP= (XL IM-XO) /VINF
T I ME=0 0
pR IN=0 .
CHFCK=0.0
V P X V XO
/ PY = V YO

5 VPXO=VPX
VPYO =VPY
XO=X
YO=Y
(ALL DODAH
K1X=STFP*DVX
KlY=STEP*DY\/Y
VPX=\/PXO+KlX/?.
VPY=VPYO+KlY/2.
T IMF= T IF+S T EP /?.
X=XO+VPX*STFP/2. + DVX*(STFP/2.)**2
Y=YO+VPY*STFP/2. + DVY*(STEP/2.)**2
CALL D)ODAH
K2X=STEP*DVX
K2Y=STEP)*DVY
VPX=\/PXO+K2X/2.

VPY=\PYO+KY/2.
X=XO+\/PX*STFP/2. + DVX*(STEP/2.)**2
Y=YO+VPY*STFP/2. + DVY*(STEP/2.)**2
CALL ,DODAH
K3X=STEP *DrVX
K 3Y=STFP*DVY
VPX=VPXO+K 3X
VPY=VPYO+K3Y
TINE=T IMF+STEP/2.
PR IN=PR IN+1.
X=XO+VPX*STFP+ * 5*DVX*STEP**2
Y=YO+VPY*STEP+.5*DCVY*' STEP **2
CALL DODAH
K.4X=STFP*DVX
K4Y=DVY*STEP
VPX=VPXO+(KlX+2.*K2X+2.*K3X+K4X)/6 .
VPY=VPYO+ ( KlY+2. *K2Y+2.*K3Y+K4Y) /6.
X=XO+VPX*STEP*1. 5
Y=Y+\/PY*STEP*1. 5

/2.
/2.

/2.
/2.



157IF((SQRT(X*X+Y*1Y)-A)- R) 90,9 ,14
14 rI ( APS(Y) -1. F-20 ) 141,141,15

Y=0.0
IF(TPR IN-PRI ) P 2,20,205
WfZITF(6,1003) XYVPXVPY,
PRFI N=0.*0
IF(XLIM-X) 25,25,21
IF(YLIM-ARS(Y)) 25,25,35

WRITF(6,1005)
G0 TO I

35 IF(TIME-TSTOP)

T I N'E

XYVPXVPY,.TI ME

5,5,45
45 WR IT F( 6,10 6) X,9YsV

G0 TO 1
n0 IF (CHECK) 91, 1,92

01 RITF(6,1004) X,Y,v
CHFCK= 1 0

92 IF( THETA-.5*3.1415
IF(VPY) 94,95,95

4 WITE(6,10 08) X,Y,V
00 TO 1

0C5 X=-(A+R)*COS(TH4ETA)
Y= ( A+ R) *S1 N ( THETA)
DRI N =0 .0
0O TO 5

96 IF(VPX)
97 IWRITF(6

G0 TO 1
1001 FORMIAT(

2 'A',7X
1002 FORMAT

97,95,95
,1007) X,

H , 6X *
( , ' X
(6X I 'o

Y ,V

PXVPYTIVE

PXVPY,TIP'4E

9) 93#96,96

PX VP Y, TIME

PXVPY,TIME

'VINE' /
VI yQ

',SX I,'yo
// / / 6 X2 2Fll.5,F12.6

CHI',
/ E10.2
',8X,'V
X' ,9X,

3 9X,'X',14X,'Y',14X,'VX' 13X,'VY'
S2003 FORMIAT(2F10.5,2Fll.5,F12.6,4E15.5)

X,'PERM',8X,'DENS',8X,' GMW, '
F12*4,El0*2,2E12.3,3El0.3//

XO' ,8 X, ' VYO' ,8'X,'STEP'// 2F1
'Y',9X,'VX',9Xo'VY't9X,'TIM E

//)

,SX

0.5,

',

FORMAT(
FOR'AT(

FORMAT
FORMAT(

FOR M AT
cORMAT( I
FORMAT(

' PARTICLE AT CYLINDER
PARTCLE PAST CYLINDER

TIME LIMIT EXCFEDlD'
BACKSIDE CAPTURE'/ 2F

FRONTSIDE CAPTURE'/
SATURAT ION MAGNET IZAT
SEPARATION

/ 2F10.5,2Fll.5,F12.6)
/ 2F10.5,2Fll.5,F12.6)
/ 2F10.5,2Fll.5,F12.6)

10.5,2Fll.5,F12.6)
2F10.5,2F11.5,F12.6)
IO=',E10o.2 //)

DISTANCE BETWEEN CYLINDERS=',E12.4
100 CALL EXIT

[ND

1

205
21

1004
1005
1006
1 007
100 P
1000
1010 //)

('
(

'I
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APPENDIX D

Results of Computer Cases

For all cases y 10., p* = 3.0

and Hs = 10,000 gauss ( except case 5

If parameters are not indicated, they

H (gauss)

5000

15,000

10,000

20,000

30,000

45,000

70,000

100,000

25,000

35,000

10,000

15,000

20,000

12,500

17,500

30,000

45,000

K x10 6

60

60

a (cm)

.005

.005

gm/ cm ( except case 9 ),

where H = 20,000 gauss ).

remain the same as last listed.

R (cm)

.0005

.0005

V00
(cm/sec)

4

4

y (cm)

± 2.5%

.003075

.0098

.00675

.01275

.01125

.01325

.01575

.0177

.01

.012

.00675

.00815

.00915

.00745

.00867

.011

.01325

Case

5A

5B

5C

5D

5E

5F

5G

5H

51

5J

8A

8B

8C

8D

8E

8F

8G



Case

llA

llB

1C

llD

llE

llF

11G

12A

12B

12C

12D

12E

13B

13C

13D

13E

13F

13G

14A

14B

14C

14D

H (gauss)

12,000

15,000

20,000

30,000

60,000

100,000

8,000

15,000

20,000

30,000

5,000

10,000

10,000

20,000

30,000

45,000

70,000

100,000

10,000

15,000

20,000

30,000

K x10 6

60

30

60

40

a (cm)

.005

.005

.005

.005

R (cm)

.0005

.0005

.0005

.0005

V

(cm/sec)

8

2

12

4

.0083

.0093

.01125

.00308

.00665

.00312

.0049

.00615

.00782

.00975

.01175

.00538

.00645

.0075

.0091

159

y (cm)

± 2.5%

.0047

.0053

.00625

.008

.01125

.01375

.003375



Case

14E

14F

14G

14H

141

15A

15B

15C

15D

16A

16B

16C

16D

16E

17A

17B

17C

17D

H (gauss)

10,000

15,000

20,000

30,000

40,000

5,000

10,000

20,000

30,000

5,000

10,000

20,000

30,000

50,000

4,000

10,000

20,000

30,000

160

K x10 6

20

60

60

60

a (cm)

.005

.005

.0025

.01

R (cm)

.0005

.00025

.0005

.0005

V

(cm/sec)

4

4

4

4

y (cm)

± 2.5%

.00371

-0042

.00492

.00635

.00732

none

.00307

.004

.00518

.00225

.00487

.00645

.00748

.00932

.00322

.00925

.0129

.01612
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Case H (gauss) K xlO6 a (cm) R (cm) V0 y (cm)

(cm/sec) ± 2.5%

18A 10,000 60 .01 .00025 4 .0042

18B 20,000 .00377

18C 30,000 .00587

19A 10,000 60 .0025 .00025 4 .00225

19B 20,000 .00322

19C 30,000 .00391

20A 10,000 60 .005 .00015 4 .00172

20B 20,000 none

20C 30,000 .00158

20D 10,000 60 .01 .00015 4 .00215

20E 20,000 .00215

20F 30,000 none

20G 10,000 60 .0025 .00015 4 .00125

20H 20,000 .00145

201 30,000 .00195

21A 3,000 15 .005 .0005 1 none

21B 5,000 .00368

21C 7,000 .0049

21D 10,000 .00705

21E 15,000 .0085



H = 10,000 gauss

K = 60 x

a = .005

y

2. 5%

.00705

.00685

.00685

R = .0005 cm

V = 4 cm/sec

cm

Case

9E

gm/cm3

4.0

9F 12.0

9G 8.0

y

+ 2.5%

.00685

.00735

.00705

.00685

H = 10,000 gauss

K = 60 x 10-6

R = .0005 cm

V = 4 cm/sec

a = .005 cm

Case

22A

22B

d (cm)

.03

.02

H = 20,000 gauss

K = 60 x 10-6

a = .005 cm

Casey (cm)

± 2.5 %

23B

R = .0005 cm

Vo= 4 cm/sec

d (cm)

.03

.0092 23C

CASE 9

162

Case

9A

9B

9C

9D

gm/cm3

6.0

3.0

2.0

1.0

CASE 22

y (cm)

+ 2.5%

.00685

.00685

.00615

CASE 23

Case d (6m)

00 .0092

y (cm)

± 2.5%

.0092

.02 to other23A .04



H = 45,000 gauss

K = 60 x 10-6

R = .0005 cm

VO= 4 cm/sec

a = .005 cm

Casey (cm)

± 2.5%

.01325

.01325

.01325

24C

24D

H = 100,000 gauss

K = 60 x 10-6

d (cm)

.03

.02

y (cm)

+ 2.5%

.01267

to other

cylinder

R = .0005 cm

v.= 4 cm/sec

a = .005 cm

Case

25C

d (cm)

.1

25 D .06

y (cm)
± 2.5%

.01825

.01825

. 01825

Case

25E

25F

d (cm)

.04

.03

y (cm)

± 2.5%

.01755

to other

cylinder

CASE 24

163

Case d (cm)

24A

24B

.06

.04

CASE 25
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Appendix E - Recognition of Dimensionless Groups

Buckingham's Pi theorem states "the functional relationship

among q quantities,whose units may be given in terms of u

fundamental units, may be written as a function of q - u

dimensionless groups (the F's)." Given 8 quantities (fluid

velocity V,, particle radius R, cylinder radius a, particle

susceptibility K, applied field H, fluid density pf , trapping

length y, and fluid viscosity n; ps is assumed constant but a

function of H, and the dependence of p*, the particle density,

is incorporated in K), and four fundamental units (the gener-

alized cgs 4 dimensional system) mass (M), length (L), time (T),

and electromagnetic unit of charge (B), one needs four dimen-

sionless groups. One can identify possible groupings by the

dimensions of the individual variables:

VOO (LT 1 ) Pf (ML)

K (MLT B ) n (ML T 1

a (L) y (L)

H (BL 1 ) R (L)

Since KH (or KHHs for H > Hs is an obvious couple, one

2
needs to find a group with similar dimensions, p fV,2. Another

group should be a length ratio, either y/R or y/a. There should

also be two Reynolds numbers 2Lpf/n where L is a characteristic

length, either R or a. The actual groupings are not predictable

from Buckingham's Pi theorem. They must be deduced from the

governing equations or the data.
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APPENDIX F

Averaged Experimental Data for Co3 (PO4 ) 2' 2H2 0

Flow Rate

cm/sec

.55

.55

.55

.55

2.9

2.9

2.9

2.9

5.2

5.2

5.2

5.2

Trapping

Thickness

cm

.0135

.0124

.0097

.035

.0116

.008

.0075

.0283

.0083

.0072

.0033

.020

Wire

Diameter

cm

.01

.01

.01

.052

.01

.01

.01

.052

.01

.01

.01

.052

Applied

Amperes

10

7

4

10

10

7

4

10

10

7

4

10

Field

Gauss

5000

3500

2000

5000

5000

3500

2000

5000

5000

3500

2000

5000


