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ABSTRACT

System modelling and identification techniques are
applied in developing a probabilistic mathematical model for
the load of an electric power system, for the purpose of short
term load forecasting.

The model assumes the load is given by the sum of
a periodic discrete time series with a period of 24 hours and
a residual term. The latter is characterized by the output
of a discrete time dynamical linear system driven by a white
random process and a deterministic input, u, which is deter-
mined by a non-linear static function of the actual and normal
temperatures.

System identification techniques are used to deter-
mine the model order and parameters which best fit the obser-
ved load behaviour for a wide range of conditions. These
techniques are also utilized in adapting the model to seasonal
variations.

Linear estimation and prediction is now used to deter-
mine load forecast curves for variable periods up to at least
one week. Each load forecast is accompanied by a measure of
its uncertainty in terms of its standard deviation. This
allows us to devise a simple quantitative test to detect other-
wise not-so-obvious-to-the-naged-eye abnormal behaviour.

The load forecast curve is updated once an hour as
new load and temperature data is read through an optimum linear
filter.

Tests are carried out with real load and temperature
data to validate the proposed model's capability to forecast
as suggested. The results are most satisfactory.

THESIS SUPERVISOR: Fred C. Schweppe
TITLE: Associate Professor of Electrical Engineering



-3-

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude

to my thesis supervisor Professor Fred C. Schweppe.

Working with him has been a great privilege and experience.

Below is a humble attempt to acknowledge his invaluable

help throughout the thesis work:

" Thank you, illustrious Schweppe.

With your patience and great wisdom,

The awaited end at last has come,

And happy Galianas cry out: Whoopeee!"

Sincere thanks are extended to Prof. Sanjoy

Mitter and Prof. Gerry Wilson for their helpful comments

and advice.

Valuable discussions were also carried out with

Dr. Duncan Glover and Martin Baughman whom I thank.

Special thanks are due to Mr. Thomas J. Kraynak

and David L. Rosa of the Cleveland Electric Illuminating

Company who very kindly supplied the load and temperature

data used in this study.

A mis padresFernando y Maria, que nunca dudaron

el resultado final y que me dieron coraje en momentos

dificiles, mil gracias.



-4-

Last but not least my deepest love and gratitude

go to my wife, Mimi, whose help was beyond words. Without

her typing, drawing, proofreading, advice, and constant

encouragement and trust, this would not have been possible.



-5.

TABLE OF CONTENTS
page

LIST OF FIGURES AND TABLES ... . . . . . . . . . . 8

I.0 INTRODUCTION & BACKGROUND. . . . . . . . . . 11

I.1 Introduction . . . . . . . . . . . . . . . . 11

1.2 Background . . . . . . . . . . . . . . . . . 13
1.2.1 General Description of an Electric

Power System . . . . . . . . . . . . . . . 13
1.2.2 Observed Load Behaviour. . . . . . . . . . 15
1.2.3 State of Field ... .. .. . . . . . . . . 25
1.2.4 Important Factors in Load Forecasting

Techniques . . .. * .. . .. .. .. .. 30

II.0 PROPOSED LOAD MODEL & FORECASTING TECHNIQUE 32

II.1 Preliminary Remarks ...... . ... ... .. 32

11.2 Load Modelling Concepts. . . . . . . . . . . 32

11.3 Load Model Structure . . . . . . .. . . . . 33

11.4 Periodic Component ... . . . . . . . . . .. 34

11.5 Residual Component . . . . . . . . . . . . . 38
11.5.1 The Effect of Temperature . . . . . . . . 39
11.5.2 Relation Between u and y. . . . . . . . . 45
11.5.3 Uncertainty in Residual Load Model. . . . 46

11.6 State Space Model Description. . . . . . . . 49

11.7 Corrective Load Prediction Scheme.. . . . . . 50
11.7.1 Prediction Scheme . . . . . . . . . . . . 52
11.7.2 Effect of Uncertainty in Weather Forecasts 55

11.8 Uncertainty in Model Parameters.. . . . . . . 58

11.9 Discussion of Proposed Model & Load
Forecasting Technique. . . . . . . . . . . . 64

III.0 IDENTIFICATION OF LOAD MODEL PARAMETERS. 70

III.1 Preliminary Discussion . . . . .. . . . . . 70

111.2 System Identification. . . . . . . . . . . . 71



-6-

page
111.3 Definition of Load Model Parameter

Identification Problem.. . . . . . . . . . . 72

111.4 Least Squares Identification . . . . . . .. 76
111.4.1 Statement of Least Squares Identification

Problem.. . . . . . . . . . . . . . . . . 77
TII.4.2 Solution of Least Squares Identification

Problem- Autoregressive Moving Average
(ARMA) Model.. . . . . . . . . . . . . . 78

111.5 Evaluation of dQdT from s and Re.. .. .. .. 85

111.6 Identification by Component Separation. . . 87
111.6.1 Data Prefiltering Approach . . . . . . . 87
111.6.2 Separate Component Identification

by an Iterative Approach.. . . . . . . . 95

111.7 Special Models.. . . . . . . . . . . . . . . 97
111.7.1 Solution to Special Problem . . . . .. 99

111.8 Maximum Likelihood Interpretation . . . . . 102

111.9 Estimation of Model Order . . . . . . . . . 105

III.10 Adaptive Model Parameter Identification. . 106

III.11 Detection of Anomalous Load Behaviour. . . 107

111.12 Summary of Load Model Identification. . . . 113

IV.0 EVALUATION OF LOAD MODELLING & FORECASTING
TECHNIQUES- REAL DATA . . . . . . . . . . . 114

IV.1 Background. ..... . ......... 114

IV.2 Weighted Least Squares Estimation of y & y 116

IV.3 Parameter Identification by Component
Separation- Evaluation of Technique . . . . 124

IV.3.1 Data Prefiltering Tests . . . . . . . . . 124
IV.3.2 Iterative Component Separation-Evaluation 126

IV.4 Parameter Identification via Fletcher-Powell -
Evaluation through Simulation . . . . . . 131

IV.4.1 Background . . . . . . . . . . . . . . 131
IV.4.2 Simulation Results . . . . . . . . . . 133



-7-

page
IV.5 On Line Forecasting and Updating

Evaluation via Simulation. . . . . . . . . 136
IV.5.1 Discussion . . . . . . . . . . . . . . . 136
IV.5.2 Prediction with Exact Simulation Model . 137
IV.5.3 Anomaly Detection and Self Adjustment. . 142
IV.5.4 Prediction with Initial State Uncertaintyl 4 2
IV.5.5 Prediction with Uncertainty in x-

Linear Estimation of x . .... . . . 145
IV.5.6 Prediction with Ident3iied Model

Parameters . . . . . . . . . . . . . . . 150

IV.6 Evaluation of Identification & Prediction
Techniques with Real Data. . . . . . . . . 156

IV.6.1 Preliminary Discussion . . . . . . . . . 156
IV.6.2 Estimation of Model Order. ..... .... 157
IV.6.3 Further Examples of Modelling and

Prediction Capabilities.. . . . . . . . . 172
IV.6.4 Weekend Models . . . . . . . . . . . . . 184
IV.6.5 Anomaly Detection-Real Data. . . . . . . 188

IV.7 Computer Requirements.. . . . . . . . . . . 190

IV.8 Summary of Results . . . . . . . . ... . 191

V.0 PRACTICAL IMPLEMENTATION OF PROPOSED
LOAD FORECASTING APPROACH-REAL DATA. . . . 193

V.1 Preliminary Discussion . . . . . . . . . . 193

V.2 Recommendations for Implementation . . . . 193
V.2.1 Off Line Study . . . . . . . . *.. .. .. 193
V.2.2 Guidelines for Type and Form of Data. . . 193
V.2.3 On Line Implementation. . I. .. . .. . . 194

VI.0 CONCLUSIONS & RECOMMENDATIONS. . . . . . . 200

VI.1 Conclusions . . . . . . . . . . . . . . . 200

VI.2 Recommendations.. . . . . . . . . . . . . . 204
VI.2.1 Data Recommendations . . . . . . . . . . 204
VI.2.2 Modelling Recommendations.. . . . . . . . 205
VI.2.3 System Identification Recommendations. . 206

Appendix A: SYSTEM IDENTIFICATION PROGRAM. . . . . 207

Appendix B: ESTIMATION-PREDICTION ALGORITHMS . . . 220

REFERENCES & BIBLIOGRAPHY. . . . . . . . . . . . .2 232



-8-

LIST OF FIGURES AND TABLES

FIGURES: page

1. Typical Weekday Load Behaviour.(CEI). . . . . . . . . 18

2. Typical Weekend Load Behaviour.(CEI). . . . . . . . . 19

3. Effect of Temperature on Load in Summer.(AEP) . . . . 22

4. Effect of Temperature in Winter. (AEP). . . . . . . . 23

5. Examples of Normal and Actual Daily Temperature
Curves, and Resulting Temperature Deviations, u.. . 41

6. Assumed Stochastic Load Model. . - - -.... .... . 53

7. Estimation of State - Deterministic Load Model. - 54

8. Display of Forecast Load at Time t plus Associated
Error Variance. .. ...... . . .. . . . .. . 56

9. Scheme for Testing Abnormal Load Behaviour Based
on 3 Most Recent Residuals.. ........... lli

10. Use of e(t) for Anomaly Detection. . . . . . . . . . 112

11. Weighted Least Squares Estimates of Periodic and
Residual Components - July 16th, 1969. . . . . . . . 120

12. Weighted Least Squares Estimate of Periodic and
Residual Components - July 17th, 1969. . . . . . . . 121

13. Weighted Least Squares Estimate of Periodic and
Residual Components - July 29th, 1969. , . ..... .122

14. Weighted Least Squares Estimate of Periodic and
Residual Components - July 31st, 1969. ....... 123

15. Test Filtering of Periodic Component (5 Harmonics)-. 125

16. Result of Prefiltering Load and Temperature
Deviation Data - July 9th, 1969. . . . . . . . . . 127

17. Prediction of Simulated Load - Assuming Model
Parameters Exactly Known, I. . . . . . . ... . . . 138

18. Prediction of Simulated Load - Assuming Model
Parameters Exactly Known, II. . . . . . . . . . .. 139



-9-
page

19. 24-Step Prediction Error for Simulated Load. .... 141

20. One-Step Prediction Error - Anomaly Detection -

Self-Correction - Parameters Exactly Known. .... 143

21. Linear Estimation of x - Propagation of Standard
Deviationoof t Compon~nts, x o and x -
Simulated Data. . . . . . . . . . . . . . . . . .. 147

22. Actual Error in X., and xpl from their True
Values - Simulated-Data. . . . . . . . . . . . . . . 148

23. One-Step Prediction Error with Large Initial
Uncertainty in x_ - Simulated Data. . . . . . . . . 149

24. Prediction of Simulated Load, Assuming Model
Parameters Uncertain - Before Steady State. .... 151

25. Prediction of Simulated Load, Assuming Model
Parameters Uncertain - In Steady State. .. .... 152

26. Prediction of Simulated Load, Using Identified
Model Parameters - Case I. . . .. . . .. . .. .. . 154

27. Prediction of Simulated Load, Using Identified
Model Parameters - Case II. . . . . . . . . . . . . 155

2&- August Load Forecast and Temperature Deviation -

Model np=5, n=m=l. ......... . . . . .... .... . 160

29. July Load Forecast Error and Temperature
Deviation - Model np=5, n=m=1. . ......... 161

30. July Load Forecast Error and Temperature
Deviation - Model np=5, n=m=2. . or. . .. .. .. . 164

31. July Residual Load Forecast and Temperature
Deviation - Model np=5, n=m=2. . ......... 166

32. July One-Step Prediction Error -

Model np=5, n=m=2. .. . . ... . . .. .. . 168

33. July Load Forecast Error and Temperature
Deviation - Model np=6, n=m=2. .... . . ....... 170

34. August Load Forecast and Prediction Error, I-
Model ng=7, n=m=2. ........... . .. ..... .... 176

35. August Residual Load Forecast and Temperature
Deviation, I - Model n =7, n=m=2. ............. .177



-10-

page
36. August Load Forecast and Prediction Error, II-

Model np=7, n=m=2. ...... . ........ 178

37. August Residual Load Forecast and Temperature
Deviation, II- Model np=7, nm2.. ......... 179

38. Effect of Temperature on Summer Load (CEI). . . . . 181

39. Effect of Temperature on Winter Load (CEI). . . . . 182

40. January Residual Load Forecast and Temperature
Deviation - Model ng=5, n=m=2. . a. .. . .... . 185

41. January Load Forecast and Prediction Error -
Model ng=5, n=m=2. .... .. . . . .. . . . .. .. 186

42. July One-Step Prediction Error - Anomaly
Detection & Self-Correction - Model np= 6 , n=m=2.. . 189

43. Block Diagram Implementation of Complete
Approach. . ...... ... . ........ 199

TABLES:

1. Definition of u(T, T) in terms of Actual and
Normal Temperatures. ..... . ........ 43

2. Examples of Calculation of Temperature Deviation. . . 45

3. Simulated Inputs and Corresponding OUtputs for
Testing of Identification Technique. . . . . . . . . 134



-11-

I.0 INTRODUCTION & BACKGROUND

I.1 Introduction:

We have two principal objectives in this study. The

primary aim is to study the problem of short term electric

load forecasting via the concepts of system modelling and

identification, and state estimation and prediction. The

second is to verify the extent of the validity of the availa-

ble theory of system identification and modelling as applied

to a real problem such as load forecasting, and if necessary

and possible extend its range.

We first hypothesize a general mathematical model

for the load of a power system based on physical reasoning

and observed load behaviour under varying conditions. The

main points of this model are the separation of load into

two components, periodic and residual. The first depends on

the time of the day and day of the week, while the reaidual

term is a random process defined as the output of a discrete

linear system driven by white noise and by a temperature devia-

tion variable. The latter is in turn defined by a non-linear

memoryless function of both actual and normal temperatures.

This is described in sections II.1 through 11.6.

The remaining sections of chapter II describe the

main forecasting algorithms, which are essentially the Kalman

filter-predictor equations (Ref. 11). The forecasting techni-

que is computationally simple, and provides the operator

with a number of possible interactions which can be used to
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complement each other and improve the reliability and effici-

ency of the operation of a power system. For example, the

operator may be given a load forecast for any future time he

requests, together with the expected error standard deviation.

Alternatively, he may wish to see a display of predicted load

values at discrete intervals with the corresponding statisti-

cal confidence level. This display may prove very valuable

in scheduling generation and power exchanges.

Another main asset of this approach is the capability

of detecting abnormal load behaviour otherwise not so easily

notiueable by the naked eye. Under these conditions the ope-

rator is warned of the abnormality, and may introduce personal

corrections to the forecast if necessary.

Chapter III describes a number of approaches for the

identification of the number and set of unknown model para-

meters from a past observed data record. A least squares or

maximum likelihood approach is used and a number of techniques

are described and analyzed. For reasons of convenience, we

choose one relying on the Fletcher-Powell algorithms for

minimizing functions.(Ref. 22).

Chapter IV describes a number of tests carried out

on both simulated and real data to evaluate the proposed model,

identification and forecasting techniques. The load data

was obtained from the Cleveland Electric Illuminating Company

while the weather data came from the U.S. Weather Bureau.
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The simulated data tests are described in sections

IV.1 through IV.5.

Results with real data were very successful and are

described in IV.6. Models are determined for the months of

July, August and January, each of which yields predictions

from one hour to one week compatible with the predicted error

standard deviation of from 1% to 2.5% of peak load. The mo-

del's ability to predict is particularly emphasized during

periods of large temperature deviations from normal, such as

heat waves. It must also be emphasized that actual tempera-

ture data was used in these predictions. Predicted weather

data together with its confidence level can be used, resul-

ting in worse load forecasts. The detection of anomalous

load behaviour is tested by artificially introducing small

disturbances into the load data and proves very successful.

Chapter V proposes a number of guidelines and recom-

mendations for the practical implementation of the proposed

technique in a real systeip.

Chapter VI summarizes the work done and makes a num-

ber of conclusions and recommendations for future research.

1.2 Background:

1.2.1 General Description of an Electric Power System:

The purpose of an electric power system is to genera-

te and distribute the necessary power demanded by its customers.

Furthermore, this must be done reliably and efficiently, that

is with a minimum number of power interruptions or distur-
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bances and least cost to the company and the customer.

The satisfaction of these conditions is a formida-

ble task which is receiving considerable attention. Load

forecasting is but one aspect of this problem, but it is

sufficiently challenging and important to merit separate

attention.

The electric load is defined as the real electric

power demanded by the customers of a power company. This

demand varies considerably over a period of 24 hours, so that

power generation must be adjusted over this period to follow

this variation as closely as possible. Small load changes,

those occuring in the order of a few minutes or fractions of,

can be tracked by small changes of generation by the units

already in operation. This is the so-called load-frequency

control problem whose main objective is to maintain the fre-

quency at 60 Hz, as well as the power flow to interconnected

companies constant (Ref.1, 2).

Larger load variations which occur over the period

of 24 hours cannot be tracked by the limited capacity genera-

tors already on-line. Instead, new blocks of generation must

be brought into the system, and be ready to supply additional

power when demanded. From an economic point of view it makes

sense not to start up and maintain unnecessary spinning reser-

ve. On the other hand, lack of spinning reserve would neces-

sitate shedding of load or some such more drastic undesirable

measures.



-15-

A compromise must thus be reached in scheduling gene-

ration to optimize operational costs as well as system relia-

bility. The satisfaction of this compromise is complicated

by a number of constraints. Some of these are, the delay of

from three to six hours to bring a block of generation up to

running speeds, that is 3600 rpm; relative costs of operating

different forms of generation in the system, e.g. steam, hydro,

nuclear; transmission failure contingency reserve, generation

failure contingency reserve, maintenance shutdowns, power

flow to interconnected companies and others.

It is clear that load forecasting plays an important

part in this aspect of a power system's operation. That is,

economical as well as reliable tracking of the load demanded

cannot be accomplished, in view of the above described delays,

and constraints, unless ample warning time of future load

behaviour is provided.

1.2.2 Observed Load Behaviour:

In this section we discuss load behaviour as it is

known from years of observation, as well as the behaviour of

the consumers under varying time and weather effects.

The load, z(t), is the power consumed at time t by

all industrial, commercial, public, domestic and agricultural

consumers supplied by the particular power system. Generally

these customers are distributed over a large area, e.g. a large

city, or a group of cities, towns and rural areas. The beha-

viour of z with time is therefore determined by the time
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variation of the myriad of power consuming devices in this

area.

It would then be an impossible task to attempt to

understand load behaviour from the point of view of its indi-

vidual constituents. A better possibility may be to monitor

chosen buses (network nodes) which serve mainly industrial,

residential, commercial or agricultftral loads and analyze the

behaviour of each such load. This monitoring is however not

available, and one could still have areas which do not fit

any of the above categories. Nevertheless such studies, toge-

ther with surveys in these areas as to the nature of the power

consumption in them, might be a significant approach in more

ambitious projects.

The load is fortunately a reasonably well behaved

time series and tends to follow recognizable patterns even

when the different types of loads discussed above are not

separated. This regularity is due to the large quantities of

power consuming devices and consumers which tend to smooth

out or average the total load, in addition to the regular

patterns of consumption by the customers and how they are affec-

ted by certain factors such as time and weather conditions.

Nevertheless, the load is an uncertain process in the sense

that its value at any time cahnot normally be exactly determi-

ned, except after it is observed, that is one cannot normally

exactly model or predict the load. The aim of load forecas-

ting is thus to model and predict the load, z, as closely as
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possible in the presence of this inherent uncertainty.

Short time load behaviour (up to 5 min.)

If we observe the load over the period of a few

seconds to minutes, under normal conditions, small random

fluctuations are clearly evident. In addition, we may have

larger longer lasting variations which are significant from

the point of view of load frequency control, that is variations

which can be followed by the on-line generators. Under normal

conditions load changes in this time interval are not large

enough to necessitate bringing additional generation into

line.

The small fast fluctuations are generally ig-

nored by the load frequency controller as they could not

be followed rapidly enough by the generation equipment

in addition to normally being sufficiently small to be

negligible when compared with the total load.

Daily load behaviour (5 min. to 24 hours)

The load behaviour over a 24 hour period acqui-

res considerable regularity. A typical sample over a 48

hour period is shown in Fig. 1.

The most obvious characteristic is that of near

periodicity over a 24 hour period. It generally rises very

rapidly in the early morning, breakfast time, stays approx-

imately constant over the morning hours and decays slowly

after supper time, approximately repeating this cycle

every 24 hour period. The reason for this behaviour is

quite evident, that is, consumption approximately follows
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the sleeping, working, resting cycles of its customers,

which fortunately are fairly regular.

Effect of weekday on load behaviour

This basic daily load behaviour may vary from

weekday to weekday to a small extent, given that all

conditions are equal, in a manner not attributable to

the random nature of the process. This is due to small

changes in power consumption habits from day to day,

e.g. from a Monday to a Friday. This difference is much

more pronounced during the weekend days or a holiday

period, for obvious reasons. See figure 2.

Given all other conditions equal, days separa-

ted by multiples of one week will show a behaviour approx-

imately equal, with larger differences appearing as this

interval increases.

Effect of seasons on load behaviour

The nature of the load changes considerably

over the seasons. This is due to variations in weather,

duration of day, and customers' consumption habits. Thus

dubing the winter we may make use of more electric heat-

ing or cooking devices. Days are shorter hence lighting

loads increase. During the summer, air conditioning and

refrigeration loads become significant, but lighting

loads may decrease. In addition consumers' habits change,

thus in summer we go to bed later, watch less television,
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and use less lighting.

This seasonal changes in the behaviour of the

daily load curve are fortunately slow and can be readily

identified. However, although slow, they tend to change

the daily load curve from week to week by a non-negli-

gible amount.

Effect of years on load

Superimposed on the daily and seasonal patterns

of load behaviour one has the inevitable growth factor

due to the rapid growth of power consuming devices availa-

ble.

Such dffects are however very slow and for the

purpose of short term load forecasting not very difficult

to take into account. For the purpose of long term plan-

ning of future power system needs this factor is significant.

Effect of weather on load

Analysis of daily load curves not too far apart in

the calendar, e.g. one week apart, shows that, for the same

weekday, weather plays a very significant role in the power

consumption as shown in Fig. 3, 4. The major weather effects

which influence the load behaviour are:

i) Temperature

ii) Light Intensity

iii) Humidity

iv) Wind Speed

v) Precipitation

The above factors are listed in approximately the order of
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decreasing significance to the load behaviour.

The qualitative reason as to the influence of weather

in load behaviour is quite clear. Our comfort, well-being

and habits are closely related to the weather conditions.

We surround ourselves with a number of electric devices which

we use to maintain these living conditions at comfortable

andAdesirable levels. Thus we have heating and cooling devi-

ces, refrigeration, cooking, cutting, washing, drying devices,

lighting, radios, televisions and many others. The use and

power consumption of all these is to some degree affected by

the nature of the weather, through the consumer.

Clearly some loads are unaffected by weather. These

are industrial and to some extent commercial loads. In these

cases we have considerable power consumption which is indepen-

dent of weather.

Random load behaviour

In spite of the load's regular behaviour with respect

to time and weather, at any instant of time its value is un-

certain to some degree. This behaviour is clear in view of

the nature of the load. That is, the summation of the power

consumed by literally thousands of devices, each of which is

independently controlled by human beings, introduces inherent

uncertainty in its value. However, because of the large num-

ber of devices involved, some regularity can be expected due

to a smoothing or averaging effect, more or less like that of

throwing a pair of dice a large number of times. In the case
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of the load the number of possible outcomes is infinite,

time varying and depends on a number of factors both deter-

ministic and uncertain.

This random behaviour may be of the type discussed

earlier, that is very fast and small fluctuations superimpo-

sed on slower larger changes, or it may consist of a large

discontinuity in the load as caused by the sudden gain or

loss of a large load, such as factory or building.

A second form of randomness in the load is due to

disturbances which although not well predictable in magnitude,

can be predicted in time. Examples are effects like the World

Series, Lunar landings, and election days. The worst cases

of random disturbances unpredictable in both time and magni-

tude are caused by events such as national or loaal emergen-

cies, assasinations of prominent figures, and natural disas-

ters such as earthquakes, tornadoes and hurricanes.

1.2.3 State of the Field:

Load forecasting is still considered more of an art

than a science. For this reason many power companies maintain

a number of load forecasters who base their forecasts on

experience and insight. Basically, they maintain records of

past load behaviour, together with past weather conditions,

industry strikes and any other factor which has been known to

influence the load. Based on this information, forecast

weather conditions for the area, and some other random effects,

a load prediction is made by comparing these conditions with
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those of a day with similar ones, whose load behaviour is

recorded in their files. Adding a fudge factor based on

insight, a forecast is made which, more often than not, is

sufficiently accurate.

The disadvantages here lie in the fact that large

amounts of data must be stored, only one or two forecasts are

made daily, and the method is highly subjective and therefore

liable to human errors and biases. Alternatively this type

of forecast may be advantageous, as the complexity of the

problem is such that human insight or intuition may be the

best way of arriving at a forecast when conditions deviate

from the normal.

Over the past years a serious attempt has been made

to develop mathematical models which could be implemented in

a computer for automatic load forecasting. Good surveys on

the subject have been written by Mattheuman and Nicholson,

and Gupta (Ref. 3, 4).

There are two basic approaches. One is to establish

a mathematical model based on the correlation between load

and weather, and the second is to base this model on the rela-

tioship between the present and past values of the load.

Arguments against weather-correlatidn models have

been raised since these req&ire weather data monitoring, as

well as accurate weather prediction, leading to the complaint

that companies do not have such monitoring facilities easily

available, and that erroneous weather forecasts would lead
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to doubling the load forecast error. Techniques that make

use of past load data only, have the advantage of being sim-

pler to implement in the sense that this data is more readily

available. Other arguments state that the response of the

load to weather effects tends to be relatively slow (of the

order of 24 hours) and therefore easily identifiable and

predictable in terms of the most recent past load data (Ref.

5). Weather effects with faster responses such as cloud

cover are difficult to predict and therefore are not included.

On the other hand ignoring this evident correlation

would seem to be a rejection of very significant information

abou the load behaviour. The use of past and present weather

would seem to be very significanttin arriving at better

load forecasts for lead times of 24 hours or more, than those

based only on past load data. The argument being that past

load data does not contain information about the present and

most recent weather effects. In addition sudden changes in

weather conditions could be incorporated into the load fore-

cast. Also some correlation exists between the most recent

weather and the present load, so that weather forecasts even

if inexact should yield better forecasts than if altogether

ignored. Finally, a weather dependent model can serve to

carry out contingency predictions for different weather

forecasts.
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Weather correlation techniques

Work on load models based on weather correlation has

been done by Dryar, Davies, and Heinemann (Ref. 6, 7, 8).

The basic approach is to find a deterministic relation between

the peak load and the average daily weather effects considered

significant. Davies utilizes average temperature, wind effects,

illumination index and precipitation index. Heinemann uses

a similar approach but introduces a "dynamic effect" due to

"heat build-up". In his model he considers a relation between

load peaks now and average weather effects for the past three

days. These effects are wet and dry bulb temperature as well

as relative humidity.

These techniques are limited to the modelling of

load at fixed points in time or to peak loads. Load variations

with time of day are not considered, neither do these techni-

qnes provide a measure of the uncertainty associated with

the prediction.

Load correlation techniques

This approach is favoured by some authors as discussed

earlier. The jist here is to make use of the most recent

load data to extrapolate in some sense into the future.

The more significant contribution along this line

is made by Farmer and Potton (Ref. 5), who also introduce a

probabilistic structure into the load model. Essentially,

load observations over a period of six weeks in the past are

used to estimate the value of the autocorrelation function of
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the load. A finite Karhoum-Loeve expansion based on the

found autocorrelation function eigenvalues and vectors is

then used to model the load. The parameters of the expansion

can be recursively updated to best fit the mosr recent

observations.

This approach provides the user with a continuous

forecast and error standard deviation rather than just fore-

casting a few values during the day. It is however limited

to the length of time it can accurately forecast by the fact

that it does not consider weather effects. In addition, under

varying weather conditions it is necessary to reevaluate the

model eigenvectors, a task of considerable complexity.

A similar approach is attempted by Christiaanse

(Ref. 9). He models the load behaviour at intervals of one

hour by a time series of periodic functions with a period

of one week. The free parameters are recursively updated by

new observations. The advantage of this technique lies in

its relative simplicity of implementation, however it contains

the inherent drawback of not describing the effect of weather

separately. Thus during fast changing weather conditions or

periods of heat or cold, the model weakens.

Toyoda et al. (Ref. 10) suggest a state space model

which incorporates both the effect of weather, temperature

and humidity, as well as the effect of the latest load obser-

vation. This approach is somewhat similar to the author's,

however we attempt to incorporate more complexity into the
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model and make considerable use of adaptive identification

techniques to estimate the parameters of the model dynamics

rather than assuming that these are apriori known. In

addition we verify the validity of the technique with real

data experimentation.

I.2.4 Important Factors in Load Forecasting Techniques:

Based on the results obtained by the various authors

it is possible to arrive at a set of significant objectives

one should aim for in designing a load forecasting technique.

The two primary aims are the accuracy and length of

the forecast and the complexity involved in evaluating the

forecast. Generally the industry leans toward techniques

which are readily implementable on-line, i.e. will not burden

the availabi& computer excessively. Accuracy of forecast

is a more obscure objective, exact numbers depending on the

particular company's operational objectives. This criterion

is also closely related to the length of the forecast.

Shorter prediction times result in better accuracy, but predic-

tion times of 24 hours or more can cause errors to deterio-

rate badly unless we go to more complex techniques.

As mentioned above techniques which collect and

process data on-line to update the forecast are desirable.

A technique, in addition to being accurate, should determine

the extent of the model's confidence in the forecast or an

estimate of the prediction error. This would provide us with

a quantitative criterion to decide if the model has failed,
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that is, to detect anomalous load behaviour.

Since exact models are a practical impossibility,

it is desirable to have a feedback type scheme for on-line

corrections of forecasts as new observations are made. This

will reduce the sensitivity of the forecast to modelling

errors.

Finally, the model should be adaptible to seasonal

variations in the load behaviour without drastic model changes,

by for example adjusting a number of parameters. This would

allow us to minimize the number of models which would have

to be stored to be used under varying conditions.
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II.0 PROPOSED LOAD MODEL & FORECASTING TECHNIQUE

II.1 Preliminary Remarks:

In this chapter we develop a mathematical model for

the load of a large power system. This modelling step is

based on the observed behaviour of a typical load curve under

varying conditions, the behaviour of the consumers under the

same conditions, as well as pure assumption. The modeliis

kept as simple as possible at the same time incorporating the

main hypothesized structure and different effects. A number

of free coefficients parameterize the model, their exact

value to be determined by model fitting techniques, that is

system identification.

In addition, we describe the estimation-prediction

algorithms which are used for on-line forecasting. This is

essentially a Kalman estimator-predictor scheme (Ref. 11).

11.2 Load Modelling Concepts:

We are dealing here with a time varying process which

is inherently uncertain. Its value at any one time is direc-

tly determined by the customers who turn 'switches on and off.

These are in turn influenced by a number of factors such as

weather conditions and living patterns to use electricity with

a certain regularity. Since we are dealing with a very large

ensemble of people it is expected that these various influen-

cing effects will be felt in the load in some systematic or

regular way. Indeed, observations show that such regularities

exist.
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We wish then to describe these regularities mathema-

tically as simply as possible, yet including as many effects

as considered significant.

The choice of a right model is very important if we

wish it to be valid for future times and forecast accurately.

There is however little more one can do at this stage except

justify the model structure based on the underlying basic

laws of the process, and experimentally verify its validity.

If it should not be accurate, the identification step would

give us an idea of how to alter the model, by suggesting that

additional variables or non-linearities may be needed.

11.3 Load Model Structure:

The hypothesis is made that the load, z, at any time

of the day, t, can be expressed as,

z(t) = yp(t) + y(t) (2.1)

where yp is a periodic component and y is a residual term.

The assumption is made that yp is dependent only on

the time of the day and the day of the week. We will also

assume that yp is a deterministic process, so that its exact

value is determinable from its model.

The residual term, y, is assumed to be an uncertain

process, time varying and correlated with itself over time as

well as with certain weather effects.

Again it should be emphasized that this is simply a

model which makes sense from the point of view of load and

customer behaviour, that is underlying influencing factors,



however other models or variations of this idea may very well

yield better results.. We stick to the concept of first trying

the simplest model form and work from there.

The existence and structure of yp and y are now jus-

tified and described respectively from a heuristic point of

view.

11.4 Periodic Component:

This component attempts to describe that part of the

load behaviour which depends only on the time of the day and

day of the week.

That this. component exists is justifiable in terms

of the total observed load behaviour. Thus the load daily

goes through a 24 hour near-periodic cycle which rises in the

early morning, reaches a peak at mid-morning, may dip and rise

again until the late afternoon drop, rising again during the

evening, finally dropping considerably at night.

This approximate behaviour is consistently repeated,

exhibiting similar rises and falls at approximately the same

hours. In addition the shape of this characteristic curve

is essentially unaffected by changes in weather conditions.

In the examples of Fig. 3 and 4, this behaviour is seen. That

is, for considerably large variations in temperature, the

magnitude of the load is affected but its structure with time

stays approximately the same.
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The behaviour of y p with the day of the week is also

observable. Distinct differences in the daily load behaviour

occur over the weekdays and in particular over weekends and

holidays. Slighter differences also occur between the same

weekdays separated by various week integers, especially over

the seasons.

The existence of this component can also be justified

from physical reasoning. The daily behaviour is clearly attri-

butable to the consumer habits of power consumption centered

abou their 24 hour cycles of sleep, eating, work and rest

periods. Thus in the morning residential, commercial and

industrial consumption pick up very rapidly. After noon time,

there may be a decrease due to smaller residential loads, and

as commercial and industrial loads decrease. A rise is again

encountered at supper time due to cooking, lighting and tele-

vision loads, which rapidly decgys as people turn in.

The webkday variations can also be explained on this

basis. Thus the cyclic daily consumption habits may be sligh-

tly different over the wetkdays, and certainly over the week-

ends and holidays when industrial and commercial loads are

mainly off.

The change in behaviour during longer time periods

is again due to small accumulated changes in consumption habits,

changes in eating and sleeping habits over the year. In parti-

cular during vacation periods, considerable changes in load

consumption may occur.
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The assumed independence of yp for short periods of

time with weather conditions is based on the reasoning that

the "normal" consumption habits which yp describes are not

affected by weather as suggested in Fig. 3 and 4. This is due

to the fact that when weather conditions deviate from normal

then the weather sensitive load is excited beyond a normal

level which is itself assumed unaffected.

Any deviation of the load from its normal level,

whether due to weather deviations from normal or due to random

effects, will be modelled by the residual term, y.

The periodic component of load, yp, is therefore a

hypothetical deterministic process which is justified on the

basis of observed load near-periodicity. The residual term,

y, is in turn another hypothetical process whose structure

will be discussed below. Their existence will be more defini-

tely justified after experimental testing of the model with

real data.

The structure of the periodic component, yp, can be

expressed as a time series,

n
Yp(t) = x + LTx' sin[2w1i/24]t+xnp+icos[2wi/24]t) (2.2)

i=1

which we can rewrite in vector form as,

yp(t) = *T(t) x (2.3)

where defining,

W = 2w/24 (2.4)
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then,

1

sin wot

f(t) = sin npWot (2.5)

Cos mot

cosn np Wt.

0
xP

xp (2.6)

x 2np
- p -

while t stands for the time of the day.

The vector p is assumed constant,however as sugges-

ted earlier small variations over the weekdays are possible.

These are particularly noticeable on Saturday and Sunday. In

this study we first consider three sets of x, one for Monday

through Friday, one for Saturday and one for Sunday, but later

experiments indicate that a separate Monday model may be

desirable.

Over the span of two or three weeks the value of xp

may remain constant for a given weekday, but since normal load

consumption does vary over the seasons we will expect that xP

should vary accordingly. For these reasons this parameter

will require periodic readjustment, for example once a week.
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The number of elements in the vector xP, 2np+1, is

presently uncertAin, its value to be determined by identifica-

tion techniques. However it will later be shown by experimen-

tation to lie between 9 and 15.

11.5 Residual Component, y:

Under "normal" conditions our model would say that

the load, z, should equal the periodic component, yP. These

inormal" conditions are however highly hypothetical since the

load is never exactly periodic. Thus even if all the weather

effects considered significant are at their normal level, it

is reasonable to expect a random variation around the perio-

dic behaviour. This random variation is provided by the

residual component, y, which we assume to be a random process

depending on the deviations of significant weather variables

from their normal level. More about this dependence will

follow.

The significant weather variables are those that

influence the behaviour of the load. These are in order of

significance (Ref. 12) temperatere, humidity, precipitation,

light intensity, and wind speed, respectively denoted by T,

H, P, L and S. These variables have different influences

depending on the region and power company.

Temperature is the single most important effect as

a great portion of the load is temperature sensitive, e.g.

refrigeration, heating and ait-conditioning. This is particu-

larly important in large urban areas. The basic influence
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of T is to increase the load with its increase, but this beha-

viour is reversed during the cold months. The remaining

variables have similar effects, all of considerably less impor-

tance, the exact value being difficult to establish, depending

very much on the specific company.

The problem with analyzing the effect of weather con-

ditions other than temperature is the difficulty in obtaining

significant data. For example, wind speed, precipitation and

light intensity may vary considerably over the area of the

power company affecting certain portions of the load more

than others. Such data is not presently available.

Temperature and humidity are much more uniformly

distributed over the load region and can be periodically moni-

tored without great problems. In addition this data is readi-

ly available from the weather bureau.

Intthis study we restrict ourselves to the effect of

temperature only for simplicity's sake, but its extension to

other weather effects could follow along similar lines in more

ambitious investigations.

11.5.1 The Effect of Temperature:

In this study we try to analyze the effect of the

temperature profile with time on the load, rather than that

of some average daily temperature. The reasoning being that

different temperatures duting the course of the day will cause

the load to behave differently even if the average daily tempe-

rature stays normal.



Now, since y , models the normal load behavinur while

y models deviations from normal, we should define the normal

temperature level. A possibility is to choose some constant

level, such as 650 F, or some normal average daily temperature.

This choice would however yield on the average a temperature

deviation profile which will be periodic, due to the warmer

temperatures during the day and cooler ones at night. Such

effects should however be describable by the term yp. Instead

we have chosen a normal daily temperature curve, T, as the

normal. This curve is averaged from weather bureau measure-

ments over a period of 10 years or more, yielding monthly

average daily temperatures at hourly intervals.. As shown in

Fig. 5 it is approximately periodic over a day and deviations

from this level are small and normally non-periodic. Inter-

polation allows us to calculate the normal daily temperature

curve for any day of the year.

Deviations of the actual temperature, T, from the

normal temperature, T, for every interval of the day chosen

(e.g. hours), are mhch smaller now, which gives us considerably

more confidence in hypothesizing linear models between y and

the temperature deviations. This assumption should make y

dependent on normal temperature levels, but since these are

very slowly varying as seen in Fig. 5, the corresponding

variations in y should be identifiable.

The inputs to our model of y, the residual load, will

then be the deviations in T from T, AT=T-T, for every chosen

interval of the day (e.g. hours). However some additional
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discussion on the inputs is needed before we propose a tempe-

rature dependent model.

Various possibilities come to mind. If the normal

temperature T is high, air conditioning and refrigeration

form the predominant temperature sensitive load so that we

would expect positive deviations in T from T to induce an

increase in load; alternativelynegative deviations will indu-

ce a decrease in load. At the other extreme, if T is low

then the heating load becomes dominant so that now negative

deviations from normal will- induce an increase in load while

positive ones the opposite.

How to separate the two regions? Studies on human

comfort zones with respect to temperature indicate that

between 60*F and 700 F most people will be comfortable (Ref. 13).

Above this region heat discomfort will predominate while below

it cold discomfort is most important.

Thus, depending on the value of T the effect of tem-

perature will be either to increase load with increasing T or

viceversa. In order to use only one model at a time for the

effect of temperature on load we then define the input to this

model by u(T, T), given by the following chart.



,ooling+Heatingi Cooling
[T-70]-[60-T] I u = T-70
u = T+T-130

Heating
u = -[60-T]

Heatin
u = -[T-T]

no effect
u =0

I Heating
I u =-[T-60]

Cooling
u = T -T

-- - - - - - - - - - - -

I Cooling
I u = 70 -T

-- - - - - - - - - - - -

i Cooling+Heating
I [70-t]-[T-60]

u = 130-T-T

60*F 704F T

Table 1: Definition of u(T, T) in terms of actual and normal

Temperatures.

The chart is self-explanatory but we will describe

a few cases:

A) T> 70*, T> 700. This is a purely cooling region. Positive

deviations in T from T will increase load

while negative ones will decrease it. The input to our

model is thus u=T-T. This will occur primarily in the summer.

B) T( 604, T -.6O. Here heating is predominant so that we

have the reverse of case A. We have

defined u=-[T-T] so that the same model as in part A may

be used to yi&ld the expected results. This is done in

case that during a given day, T and T vary between regions

A ahd B. Region B will however occur primarily during the

winter.

T

704F

60*F

A
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C) 60*,T570*, 60*T)T700 . In this region variations of T

from normal are considered negli-

gible. Thus u=O.

D) T:)70 0 , 6004470*. Here cooling is expected predominant,

however since T is in a "no effect"

region, only deviations above this region will be signi-

ficant. Thus u=T-70.

E) 604T$70 0 , Ts604. Here heating predominates. As tempera-

ture rises above T, load will decrease,

but only up to theoboundary of the no effect region, i.e.

600F. Thus u=-[60-T].

F) T,604, Te704. Such situations are unusual but may happen,

especially in the spring and fall. Since

the normal temperature T is above 70*F we would expect to

be in a cooling region. Cooling load will decrease with

T but only down to the boundary of the no effect region,

i.e. 700 F, hence the term [70-T]. While T is in the no

effect region no further cooling load decrease occurs, but be-

low 604F further decrease in temperature may increase hea-

ting load hence the term [60-T]. These two effects may

have to be weighted differently, but in this study we

weigh them equally.

It is quite clear that the relation between T and T,

and u, the weather variable influencing y, is highly non-

linear.



Examples: Consider some particular days when actual tempera-

ture and normal temperature profiles are as given below.

Hour

fOE
1 1 4 7 10 13 16 19 22

T 61 62 62 65 67 68 67 62

T 67 64 65 73 78 80 78 71

u u=0 u=0 u=0 u=70-t u=70-t u=70-t u=70-t u=70-t
=-3 =-8 =-10 =-8 =-l

T 78 78 75 81 75 79 80 75

T 68 66 66 75 80 82 80 73

u=T-70 u=T-70 u=T-70 u=T-T u=T-T u=T-T u=T-T u=T-T
U - 8 = 8 = 5 = 6 = -5 = -3 =0 = 2

Table 2: Examples of Calculation of Temperature Deviation.

11.5.2 Relation Between u and y:

In the previous section we argued the existence of

a variable u depending on both actual temperature, T, and

normal temperature, T, whose value describes deviations in

temperature from a normal level and is therefore related to

the residual load, y. Now we will propose a relation between

u and y.

Studies have shown that the effect of temperature on

load is not instantaneous (Ref. _8), but that time constants

of up to 48 hours may exist. This can be justified by the

heat storage property of buildings which may take some time to

cool off or warm up. This behaviour is thus clearly dynamical



in nature.

Finally since the excitation, u, is a small deviation

about a normal level we will hypothesize that y and u are the

output and input of a linear dynamical system. Since we are

dealing with discrete time processes we will then propose the

following relation,

y~)=n r 27
y(t) 11 aiy(t-i) + b u(t-j) (2.7)

i=l J=OJ

where ai and bj are constant coefficients. The dimensions of

the model, n and m, as well as the parameters are unknown at

this level, to be determined later by identification techniques.

This type of model, called an auto-regressive-moving-average

model, may include non-linear dynamical effects in u.

11.5.3 Uncertainty in Residual Load Model:

As mentioned earlier, the load behaviour is inheren-

tly uncertain, furthermore our assumptions are quite hypothe-

tical so that modelling errors are likely. In such cases it

would be naive to suggest a deterministic model. Instead we

hypothesize one with modelling uncertlinty. This means that

the mathematics will not yield an exact value of y, but an

uncertain measure of its value. This measure could be proba-

bilistic, or unknown but bounded. With such a model we lose

some knowledge of y, but get a more realistic description of

its behaviour and much more confidence in the result even though

uncertain. We may wish to view this uncertainty as the lumped

effect of all the variables which we are not considering in



our model, such as the weather variables H, S, L, P and other

influences, as well as higher than first order effects or

lack of sufficient parameters.

In this study we restrict ourselves to probabilistic

models as the unknown but bounded ones are more difficult to

identify and analyze (Ref. 14).

The simplest way to introduce uncertainty into the

model for y is to alter equation 2.7 slightly, that is,

n m
y(t) = aiy(t-i) + I b u(t-j) +c(t) (2.8)

i=1 J=O

where c(t) is a correlated process which has the following

first and second order statistical properties,

Efc(t)} = 0 ; V t (2.9)

E{c(t) c(T)} = Rc (t-T) ; V t, T (2.10)

where E stands for the expected value while,

RC(t-T) = 0 ; V It-T| > Tc (2.11)

Thus c is correlated with itself but only up to a certain

level, Tc'

It is convenient to express c as a moving average of

another white process, w, as below,

c(t) = dkw(t-k) (2.12)
k=1

The constant parameters dk, k=l, 2, ... , p, as well as p are

chosen so that together with the relations,

E [w(t)] = 0 (2.13)

plus,

E [w(t) w(T)] = 0 ; t / T
(2.14)

= Q ; t=
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both right and left sides of 2.12 have equal first and second

order statistical properties. If c and w happen to be Gaus-

sian then this implies that c and d kw(t-k) have equal pro-
k=l

bability distributions.

The equalities require that,

Re(t-T) did E {w(t-i) w(T-j)} (2.15)
i=l J=l

= Jdjdj+t-t Q 
(2.16)

We will then assume that the complete relation bet-

ween y and u will be,

n m
y(t) aiy(t-i) + b u(t-j) + dkw(t-k) (2.17)

i=1 J=O k=l

where the ai, bj and dk parameters as well as their numbers

are at this time unknown.

As with yp, we will assume that the parameters of the

model for y may be different over the weekdays. We will have

a set of parameters for the weekdays and two others for Satur-

day and Sunday respectively. As before also we may expect the-

se parameters to vary slowly with the seasons.

This model then describes the residual load, y, as

a random process, correlated with its previous values whose

mean value, y(t), depends on u and whose variance depends on

the modelling uncertainty process w.

The identification of the model parameters as well

as their number will be discussed in the next chapter. In the
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next section we assume that these are known and describe the

application of Kalman filtering to the complete model for

purposes of load prediction. First, however we express the

complete model in state space form which is convenient for

some of our objectives, e.g. computer applications.

11.6 State Space Model Description:

The complete load model can be written as a set of

first order equations in a number of ways. Here we present

but one,

x (t+l) = x (t) (2.18)

x(t+l) = A x(t) + b u(t) + d w(t) (2.19)

z(t) = OT(t) xP(t) + cTx(t) + b0u(t) (2.20)

where,

a, 1 0 . . . 0

a2 0 1 0 ..

A = . . . . (2.21)

1
an . . . 0

bI + alb 0

b 2 + a 2 b0

b - (2.22)

bn + anbO

d [ dI, d2 , --. , dn] T (2.23)

c = [ 1, 0, ... , 0 ]T (2.24)

The fact that we have different models for Monday,

Saturday, Sunday and the remaining weekdays can be interpreted

as having a time varying model whose system parameters A, b,
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d, c and Q change to a new constant value at the end of each

corresponding period.

The state of this load model is thus the vector x =

[ x, x]T. Its knowledge at any one time completely characte-

rizes its future behaviour and hence that of z, the load, given

all future inputs.

11.7 Corrective Load Prediction Scheme:

Since we have argued for and developed a probabilis-

tic model of the load, z, we may describe its behaviour in

terms of the first and second statistics, mean and standard

deviation. The mean gives us a deterministic measure of where

z will on the average be found, whereas the standard deviation

is a deterministic measure of how far from the mean will the

actual value deviate on the average. Clearly for a good

model this deviation should not be excessively large.

It is possible to develop a model for the propagation

with time of the apriori* mean and variance of the state of

the load model (Ref. 14) and hence of z, based on the apriori

statistics of the systemnnoise, w, that is Q, as well as some

apriori information about x~.

This is readily derived. From equation 2.18, 2.19,

2.20, taking expected values of both sides and letting,

E{x(t)} = R(t) (2.25)
and,

E{z(t)} = Z(t) (2.26)

* Also referred to later as open loop estimation.
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then we have for the mean values,

x p(t+l) = xP(t) (2.27)

_(t+1) = A _(t) + b u(t) (2.28)

T TZ(t) = (T(t) x (t) + c x(t) + bou(t) (2.29)

Defining now r, the state estimate error variance,

r(t) = E{ [x(t)-x(t)] [x(t)(t)]T} (2.30)

and rz, the load estimate error variance,

rz(t)= E {[z(t)-Z(t)]2} (2.31)

then it is easy to show that,

r(t+l) = A r(t) A + d Q dT (2.32)

and that,

rz(t) = cT r(t) c (2.33)

so that the model for ^(t) and rz(t) could be used for

modelling and prediction purposes.

This type of model does not however take full advan-

tage of all available information in estimating the present

state.

At all times we are observing the load z which contains

some information about the state through the relation,

z(t) T(t) x (t) + cTx(t) (2.34)

Instead of defining Z(t), the estimate of x(t), as its apriori

expected value, one can define it as,

x(t) = E {x(t) / z(n) ; ntt} (2.35)

This estimate uses all available past observations and it can

be shown (Ref. 14) that the corresponding error covariance,

P(t), is a minimum If the noise drive, w, is Gaussian. If the
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Gaussian assumption does not hold, as is normally the case in

practice, we can define x as, x(t) = best linear estimate of

x(t) given all z(n) ; n<t in the sense that F, the error

covariance matrix is minimized, where,

P(t) = E {[x(t)-"(t)] [x(t)-x(t)]T / z(n) ; n<t} (2.36)

It will be shown later that this yields a better state estima-

te than in the previous case and therefore that the resulting

prediction is correspondingly better.

The set of equations which deseibes the updating of

the state estimate with time as new observations are made,

plus the propagation of the error covariance matrix is common-

ly known as a Kalman filter, and isp well documented (Ref. 15).

These are,

4(t+l) = A ^(t) + b u(t) + E(t+l)[z(t+l)-z(t+l)] (2.37)

where,

z(t+l) = cT[A x^(t)+b u(t)]+bou(t+l)+ T (t+1)x (t+1) (2.38)

and,

z(t+l) = S(t+l) c [cTS(t+l)c]l (2.39)

S(t+l) = A P(t)AT + d Q dT (2.40)

P(t+l) = S(t+l)-S(t+l)c[EcTS(t+1)c]~lcTS(t+1) (2.41)

This set of equations is depicted in Fig. 6 and 7.

11.7.1 Prediction Scheme:

The above discussion describes a set of equations

which yield a best linear estimate of the state of the load

model from observed data. In addition we are provided with

a measure of theeuncertainty associated with this estimate.
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Fig. 6: Assumed Stochastic Load Model.
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Fig. 7: Estimation of State - Deterministic Load Model.
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This estimate of the stateat any time t, can now

be used to predict future states and hence future load values.

The equations here are given by, (Ref. 14),

x(t+n+l/t) = A x(t+n/t) + b u(t+n) (2.42)

with the initial condition,

x(t/t) = X(t) (2.43)

while the associated error variance,

E(t+n/t) = E{ [x(t+n)-x^(t+n/l[x(t+n)-x^(t+n/t)]T} (2.44)

is propagated by,

E(t+n#1/t) = A E(t+n/t) AT + d Q dT (2.145)

with initial condition,

E(t/t) = P(t) (2.46)

The predicted load for n units ahead of t, the present time,

is,

z(t+n/t) = T(t+n)x + cTx(t+n/t) + bou(t+n) (2.147)

while the forecast error variance is,

E{[z(t+n)-S"(t+n/t)]2} = cT E(t+n/t)c (2.148)

The above equations are depicted in Fig. 8.

11.7.2 Effect of Uncertainty in Weather Forecast:

The above set of equations are derived based on the

assumption that future weather, i.e. u, is perfectly known.

Now we discuss the very realistic possibility of prediction

uncertainty in u.

Suppose we are given by the weather bureau a set of

future values u such that,

ii(t) = u(t) + v(t) (2.49)



Fig. 8: Display of Forecast Load at Time t DisAscae Error V~iri.~nnp~
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where v is some error quantity and u is the true value. We

will assume a simple model for errors in the temperature

deviation forecast, v, although more or less complex ones can

also be treated. Suppose that,

v(t) = (t-to) vo (2.50)

where vo is a random variable with,

E{v 0 } = 0 (2.51)

E{vg} = R (2.52)

Suppose now that we are at time to. The present esti-

mate of the state, x(t0 ), and its covariance, P(to), are inde-

pendent of future values of u or of their uncertainty since

u is assumed perfectly known at the present time. Our stochas-

tic model for y, the residual load, says that for t>t0 ,

x(t+l) = A x(t) + b u(t) + d w(t) (2.53)

y(t+l) = cTx(t+l) + bou(t+l) (2.54)

Since,

u(t) = U(t) - v(t) (2.55)

= u(t) - (t-t0 ) vo (2.56)

we can write 2.53 and 2.54 as,

x(t+l) = A x(t) + b i(t) - [t-t 0 ]b vo + d w(t) (2.57)

y(t+1) = cTx(t+l) + b i(t+l) - [t+l-t0 ] b v0  (2.58)

Now the best linear prediction n steps ahead of to

for x and y, giVen observations of z up to time to, is given by,

x(tO+k+l/t0 ) = A x(t0 +k/t0 ) + b t.(t+k) ; k=0, 1,...n-1 (2.59)

with initial condition x(to), while the predicted load is,

z(t0 +n/to) = oT(t0 +n) x + cTx(t_+n/t0 ) + b u(ttn) (2.60)
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The confidence in this prediction is again given by the cova-

riance of the state prediction error. The corresponding equa-

tions are now (assuming w and v are independent),

Z(t0 +n+l/to) = A E(t0 +n/to) AT + d Q dT + bn2RbT (2.61)

with initial condition P(to).

We can see that equation 2.61 is similar to 2.45

except for the added term bn2RbT due to weather forecasting

errors. It can also be seen that due to our model for weather

forecasting errors, the load prediction uncertainty becomes

progressively worse.

11.8 Uncertainty in System Parameters:

The previous equations are derived under the assump-

tion that the system parameters xp, A, b, d and Q are known

quantities. In the next chapters we will discuss methods of

estimating these.

Note that the effect of uncertainty in the initial

estimate of x, x(O), is not assumed important. This is due

to the fact that the Kalman filter is asymptotically stable,

so that in steady state the effect of initial condition uncer-

tainty in x becomes negligible (Ref. 11).

Uncertainty in the parameters A, b_, d and Q is quite

important, however the feedback corrective nature of the filter

is such as to make the result relatively insensitive to small

deviations in these parameters (Ref. 15).

Throughout the earlier discussions we also assumed

that xP(t)=xP (O)Ex P is known, and correspondingly no
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corrections on that part of the state are made by the Kalman

filter.

In actuality we don't know the value of xP, perhaps

some initia- guess close to its true value. In the next

chapter we discuss various methods of getting at xp, however

here it is significant to show how this parameter could be

found using Kalman filtering techniques.

We will assume that A, b, d and Q are known and that

I is as described by equation 2.18, that is a constant, except

that its initial value is a random variable with a certain

covariance matrix (uncertainty) associated with its initial

guess or estimate. We will call the latter x (0), and the

former S (0).

Under this assumption we can estimate the entire sta-

te by a Kalman filter, as new data is observed,

x (t+l) = x(t) + gp(t+l) [z(t+l)-z(t+l)] (2.62)

£(t+l) = A x(t) + b u(t) + z(t+1) [z(t+1)-z(t+l)] (2.63)
I- (tlx E_~ l __ _ (2.6

2(t+l) = t 1p(t+l)+cT[Ax(t)+bUit}}+b u(t+l) (2.64)

Defining _ as the covariance matrix of the total error,

that is,

=(t) x 4(t), ip (t), x(t), x (t) 2.5= E -(2.65)

tht e w(t) x(t)

then we define,

P((t)

pl

[P (t),

l(t)
(2.66)
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and defining I as.,

V(t) = p* t ;-- t) (2.67)

Spl(t) S.1(t)

then the covariance equations become,

1(t), $T(t) ~~ )c
E(t) ef(t)-T(t)J [1T1t),cT 5(t) ~ [Tt,_]_t

~ 4(2 .68 )
with,

I 0_ I_ O' T 0
(t+1) = ( E(t) +

0 A 0 A. di

Now, we know (Ref. 15) that

the entire state, E(t), converges to

. Using this result we can show tha

limit error covariance for x, can be

linear estimation procedures.

Theorem: The estimate of xp, xp, and

Pp(t), as given by equations 2.62 and

satisfy,

rO T
Q I (2.69)

di

the covariance matrix for

a constant value as t-+.o,

t P , the corresponding

exactly determined vi&

its error covariance,

2.66 respectively,

lim tx(t) = x (2.70)

that is,

lim E ([x-x(t)][x -x_(t)]T = 0
t~e

or,
lim P (t) = 0

t+o-- ~

Proof: By multiplying both sides of 2.68 by

we get,

E(t) [ (t)

c I = 0 ; V t

(2.71)

(t )I
c

(2.72)
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Since 7(t) becomes a constant in steady state, say 1,

= =P1 3 (2.73)

then 2.72 implies that,

P 0(t) + P c = 0 ; V t (2.74)

and,

pl 0(t) + Pic = 0 ; V t (2.75)

Now we first want to show that the vectors p(t) for

all time, t, are either linearly independent or span 2n +1

space, where 2n p+1 is the dimension of 0(t).

We will assume that the number of observations made

on the load is at least 24 per day, i.e. hourly, and that

this number exceeds 2n +1. Actually the dimension of 0,

2n p+1, will never exceed 15 so that this assumption is valid.

Since I is periodic of period 24 hours, this requirement may

be viewed as an observality condition on x (requirement
-p

which is normally needed in these proofs).

A sufficient condition to show that the set of 4's,

{4(t), t=l, 2, ... , 24}, (for hourly observations) span 2np+1

space, is that the matrix M have an inverse, where,

24 T
M = 0 (t) (t) (2.76)

t=1

To show this consider an example with 2n +1=3. Exten-

sions to higher order cases are straightforward.
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In this case,

I(t) = ['1, sin 0 t, cosw 0 t] 
T

0i) = 2w/24

(1
24 24

M_ j (t) T(t)= Isino t
t=l t=1 0

coswot

sinwot coswo t

sin 2w t sin0 t-coswot
0 00

cosmet -sinwet cos 2 m0 tJ

Due to the 24 hour periodicity of the terms in M, it easily

follows that,

24 0 0 1
0 12 0

0 0 12.

(2.80)

which is clearly invertible. Thus the set of O's span 2n p+1.

It easily follows that,

24
M = ) (t)

t=l

I24

0

0

(2.81)

Consider now,2.74,

Pp (t) = - pl (2.82)

Multiplying both sides by * T(t) and adding we get,
LPM = c T
-p - ~ p- m_

Thus,

(2.83)

= - P C_ mT M~4p

where,

Thus.,

(2.77)

(2.78)

(2.79)

M

(2.84)
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Now if we can prove that P 1iis the zero vector we

will have reached our goal. To do this consider equations

2.68 and 2.69

P =P -
;;-p -p

and,

-p -Apl-

in steady state. These yield,

[Pp(t) + PAT][p 0(t) + plAT cT

A(t)

[P 1(t) + pA c][ T (t)1 A+cS]

A t)

where,

A(t) = [OT(t), cT] f(t) (2.87)

Now if A(t) is greater than zero then it follows

from 2.85 that,

[P(t )+LPAT ][Ppj(t )+ ATc]T =0

and hence that,

[P~p(t) + P ATC] = 0

Substituting 2.89 into 2.86 we get,

or,

Epl = 'pl AT

Ppl [I-AT] = 0

(2.88)

(2.89)

(2.90)

(2.91)

But since we assume that all the eigenvalues of A are less

than one, that is that part of the model corresponding to the

residual component is asymptotically stable, then [I-ATI-1

exists (Ref. 26) thus,

.pl =
0 (2.92)

which together with 2.84 yields,

P = 0

(2.85)

(2.86)

(2.93)
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that is,

lim E {[4-x (t)][x_-x (t)]T} = Q (2.94)

which proves our result.

Since A(t) is positive semidefinite then the only

other alternative is that it is equal to zero. But since

we assume that = is bounded, it then follows after some alge-

bra and boundedness arguments that even if A=0, equation 2.90

holds true, and thus our desired result.

Q.E.D.

A little calculation easily shows that part of the

gain matrix corresponding to x p in the steady state, that is

gg, equals 0, as expected.

Thus we can see from this result that x can be

obtained via linear filtering concepts.

11.9. Discussion of Proposed Model and Load Forecasting

Technique:

At this point it should be noted that the primary

contribution made thus far is the development of a load

model as a discrete time uncertain (probabilistic) process,

justifying its specific structure from previous experience,

observations, and hypothesis to a certain degree.

The description of this model in state space form

and the resulting estimation and prediction scheme is simply

a convenient way of making use of the model for prediction

purposes. If the original model is not valid then the use
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of state space concepts will not help. However, assuming

that the model is sufficiently valid, then the use of proba-

bilistic concepts as well as the estimation scheme has a

number of advantages which we now list:

1) The load is modelled as a discrete time process

instead of at only a few points.

2) This process is uncertain, a very realistic

assumption, due to inherent load uncertainty as well modelling

uncertainty. This makes the load values uncertain, but we

have more confidence in the model.

3) The state at time t, x(t),a'relatively small

small set of numbers, contains all past information about the

load and weather behaviour which may influence the future load

behaviour. Since x(t) cannot be exactly determined, as it is

a random variable, we recursively estimate its value by x(t).

This estimate contains an "optimum" amount of information

about x(t) and hence about the future load.

4) Past weather and load data need not be stored.

Only present observed load and weather data, as well as weather

forecasts are needed.

5) The state estimate, x(t), and hence the load

forecasts, are continuously being updated on-line as new load

and weather data is observed.

6) The estimation-prediction algorithms are compu-

tationally quite simple to implement as they consist of dis-

crete equations requiring only multiplications and additions.
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7) The state estimate, x(t), is "optimum" at all

times in the sense that the error covariance matrix,

P(t) = E {[x(t)-X(t)][x(t)-x(t)]T }

is minimum. This implies that the load forecast errors are

also optimum in the same sense.

8) Each state estimate, x(t), is accompanied by

its corresponding error covariance matrix, P(t), and similarly

for the load forecast. The evaluation of this state error

covariance and hence of the load forecast error variance can

also be done on-line via equation 2.45.

9) Load forecasts can be updated on-line as better

revised weather forecasts become available, by simply changing

the input sequence u(t+i), i=l, ?, ... , into the load forecas-

ting algorithm. It must be emphasized that the structure and

initial c6ndition, x(t), of the load forecasting algorithm

are both optimum, independent of whether the forecast weather

isiin error. That is, given the expected weather forecast,

the procedure used for predicting load is the best under the

circumstances. As shown earlier we can Make use of expected

weather forecast uncertainty to adjust the load forecast uncer-

tainty. Finally, contingency studies can be carried out by

trying different forecasted weather sequences.

10) Having the state estimate, f(t), the load fore-

casting algorithm allows Us to optimally estimate the load

for any future time through z(t+i/t). As indicated in Fig.8

we could have a display of z(t+i/t) for a series of points,
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i1=, 2, ... , up to say 24 hours in advance, or simply deter-

mine the forecast load for whatever time the operator requires.

11) The feedback corrective nature of the estima-

tion algorithm is such that the estimate is relatively insen-

sitive to modelling errors. It also has the ability to

return the prediction errors to normal after some anomaly

which had disturbed the scheme has died out.

12) The estimate of the load, z(t), could be used

to test for abnormal load behaviour. That is, behaviour

other than that expected from the hypothesized model. Such

behaviour could be detected by comparing the term [z(t)-z(t)] 2

with its expected variance, cTP(t) c, and verifying whether

there is a noticeable deviation for more than one value of t

(see Fig. 9).

The best approach during a major disturbance is to

revert to the purely subjective operator action and discon-

tinue use of the automatic forecasting mode. One of the rea-

sons for this procedure is that when power is restored to a

load block which was formerly cut-off, unusually high consump-

tion levels occur which are abnormal in nature and therefore

are not described by our model. The operator will carry out

the load forecasting operation until normality is reestablished

when the automatic mode will take over again. The value of

the state used to initiate the automatic mode will have been

updated in an open-loop manner during the disturbance by the

observed weather variables, u, and the last state estimate
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before the disturbance occured.

The capability of going from automatic to operator

mode during abnormal conditions is a very important characte-

ristic as it would be impractical and difficult to develop a

load model which would be applicable to all conditions and

replace the operator completely. In addition this capability

allows the operator to add to the forecast the effect of

predictable events which affect the load and are not included

in the model, such as the shut-down of a factory due to a

vacation period, the sale of power to other companies, major

sports and political events and unusually severe weather

conditions.

13) The technique proposed here is very much depen-

dent on a good knowledge of A, b, d, Q, and x p the model

parameters which we assume are approximately constant over a

period of abott 6iehweek, say. The determination of these

parameters is treated in the following chapter.

The slow time variations of the model parameters

are such that identification techniques (Ref. 16) will be

able to detect them and adjust the estimation-prediction

algorithms accordingly. Any errors in these parameters will

hopefully be small enough so that the corrective feedback

estimator will be insensitive to them.

Finally, something should be said about the possible

disadvantages of this approach.
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The primary objection would be to the relative

complexity of the technique. This is however the price we

havetto pay for the treatment of weather and uncertain effects.

Actually the filtering and prediction process is relatively

simple to implement on a small computer. The more complex

parameter ideitification technique, to be discussed later on,

needs to be done much less frequently, e.g. once a week,

so that we could carry out this operation at a time when the

main computer is net too busy.
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III.0 IDENTIFICATION OF LOAD MODEL PARAMETERS

III.1 Preliminary Discussion:

The aim of this chapter is to present a number of

techniques for the identification of the parameters of the

load model from real data. Although most of the results are

well known some adaptation to our specific model are made.

At this level modelling arguments are normally no

longer made, rather the model is presumed valid, and we simply

desire to find some set of parameters such that model respon-

se and actual response are close in some sense. There is

however some feedback from this step about the validity of

the model back to the modelling step. Thus we may decide from

the identification step that additional effects must be incor-

porated into our model.

In addition to evaluating a valid set of model para-

meters, identification techniques are used for adaptive reesti-

mation of these parameters with time. In particular in our

case, although the model attempts to describe in considerable

detail load behaviour, it is valid only for a certain period

of time to be determined by experimentation (approximately

one week). This is of course due to the slow seasonal varia-

tions in power consumption which are not considered in this

model.

111.2 System Identification:

A great deal of literature has been written on this

subject (Ref. 16, 17), but the basic idea is to minimize
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some criterion of the difference between model and actual

response by appropriately choosing the model parameters.

One of the major restrictions in the field is that the system

be time invariant at least over the range of data observa-

tions. This can however be modified to include so-called

"slowly time varying" systems. The theory has furthermore

speeialized to linear systems, with some specific exceptions,

in view of the inherent complexity as well as lack of under-

standing of non-linear systems. The treatment of model uncer-

tainty has received considerable attention in the literature

(Ref. 18, 19), having concentrated totally on probabilistic

uncertainty.

In this study we concentrate primarily on an identi-

fication technique which can be denoted under specific condi-

tions as Maximum Likelihood, or under looser conditions as

Least Squares.

This approach is to the author's knowledge the most

powerful one in the sense that given a certain amount of obser-

ved data it will provide us with the best parameter estimate

(Ref. 19). In addition it can be shown under certain condi-

tions that as more data is considered the parameter estimates

are progressively better (Ref. 20). Furthermore we can

consider with this technique the identification of models with

input uncertainty, necessary in this study, as well as provi-

ding us with a quantitative approach for determining the

order of the system.
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111.3 Definition of Load Model Parameter Identification

Problem:

The identification of the load model parameters can

be defined in terms of the stochastic load model, which is

here rewritten for ease of reference,

z(t) = yp(t) + y(t) (3.1)

where,

yp(t) = (t) xp (3.2)

OT(t) = [1, sin wot, sin 2wot, ... , sin npWot,

cos Wot, ... , cos npwot]

Wo = 2w/24 (3.4)

p = constant vector (3.5)

Also,
n m

y(t) = { aiy(t-i) + I bju(t-j) + c(t) (3.6)
i=1 j=O

where c is a coloured process with a constant mean, and a

stationary autocorrelation, Rc(T), such that,

Rc(T) = 0 ITI > n (3.7)

As shown in' section 11.3.2 this uncertain process can also

be described in terms of a moving average with equal first

and second statistics, that is,
n

c(t) = diw(t-i) (3.8)
i=1

where the di coefficients are constant and w is an uncorrela-

ted or white process with variance Q.
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The equivalency of these two processes implies that,
n-T

Rc(T) = di+TQ di ; V T = 0, 1, ... , n-l (3.9)
i=1

The moving average noise model is useful in expressing the

total model in state space form which is in turn useful in

the estimation-prediction scheme discussed in the previous

chapter. The autocorrelation function model for the system

noise, c, is in turn useful in the definition of the identifi-

cation of the entire system.

At this point we could define model identification

as the estimation of the parameters x , ai, i=1, 2,..., n,

bj, j=l, 2,..., m, and Rc(T), t=0, 1,'--, n-l.

From equation 3.9 we could get, given Rc(T), T =0,

1,..., n-1, a set of values of Q and di, although as can be

seen not uniquely. These parameters together with x , ai and

bj, V i and J, are then sufficient to apply the estimation-

prediction algorithms discussed in the previous chapter. The

non-uniqueness of Q and di is however unimportant if what we

wish to do with the model is estimate and predict. This is

easily seen in the case of Q and di. Referring back to esti-

mation equations 2.40 and 2.45 of the previous chapter, we

see that the only place where these parameters appear is in

the term dQdT so that for this purpose all we need to know are

the terms diQ 1/2, i=l, 2,..., n, which are determinable from

equation 3.-..
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Following the same line of thought we can arrive at

a definition of identification which is more appropriate for

the purpose we have in mind.

It can be shown that if the Kalman filter is allowed

to run a sufficiet length of time, a steady state will be

reached((Ref. II ). This means that both the filter gain, Z,

and the error covariance, P, will be constant. The filter in

steady state is given by,

1(t+l) = A *(t) + b u(t) + g e(t+l) (3.10)

e(t+l) = z(t+1) - Z(t+1) (3.11)

z(t+1) = OT(t+1) x + cT[A i(t)+bu(t)] + bou(t+l) (3.12)

The terms e(t) are called the filter residuals and can be shown

to be a white process (Ref. 21) with,

Efe(t)} = 0 (3.13)

and,

E{e(t)e(T)} = Re ; t=T (3.14)

0 ; V t/OT

where,

Re = cT [ A P AT + d Q dT ] c (3.15)

The prediction and predicted error variance equations

are given by,

x(t+n+1/t) = A i(t+n/t) + b u(t+n) (3.16)

z(t+n/t) = xT(t+n) x + cTi(t+n/t) + bou(t+n) (3.17)

with initial condition x(t/t)=i(t) and,

Ez(t+n/t) = E{ [z(t+n)-$(t+n/t)] 21 (3.18)

= CT E(t+n/t) c (3.19)
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with;

E(t+n+l/t) = A E(t+n/t) AT + d Q dT (3.20)

with initial condition E(t/t)=P, where P is the steady state

error covariance given by the steady state solution of equa-

tion 2.41.

We will show that it is possible to identify the pa-

rameters of the steady filter, that is,

2-p

ai, i= 1, 2, ,.., n
(3.21)

bj, J= 0, 1, ... , m

gi, i= 1, 2, ... , n

and the variance of the residuals Re. This set of parameters

isiin turn sufficient to define the desired filter and load

predictor as seen from equations 3.10, 3.11 and 3.12. In

order now to determine the prediction error variance we also

need to know the term dQdT, however it will be shown that

knowledge of the steady state gain, Z, and the residual vari-

ance Re is also sufficient to determine Rc(T),T = 0, 1, ... ,

n-l, which as shown before suffices to determine the desired

dQdT.

The definition of identification for our purposes is

thus to determine the parameters in 3.21 plus Re. We can

also include in our definition of identification the system

dimensions n, m and np.
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111.4 Least Squares Identification:

As discussed earlier the fundamental approach behind

the identification of the parameters of a system is to mini-

mize some criterion of the difference between the observed

output and the model output.

Since our model is probabilistic we could consider

z(t+l), the estimate of z(t+l) given z(i), i=t, t-1, ... , as

a possible model output. A reasonable criterion which would

describe the difference between the actual and model behaviour

is then,
N

J = 1/N [z(t)-2(t)]2 (3.22)
t=l

where N is some large number over which period the system

parameters are assumed stationary.

We can recognize 3.22 as the averaged sum of the

squares of the filter residuals. Assuming ergodicity it

follows that if N is large then,

J ~ Re (3.23)

where Re is the variance of the residuals. This will be true

if z(t/t-1) is generated by the true model parameters, but

will yield a larger value of J if the model parameters deviate

from their true value. Under general assumptions we can't

give a rigorous proof that minimizing J with respect to the

system parameters as defined in the previous section will

yield the true values of the parameters. This is however a

very reasonable engineering criterion which under more rigo-

rous conditions, as will be shown in the next sections, yields
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a consistent estimate of the system parameters, that is as

N+-o, the parameter estimates converge to their true values.

We also know that the residuals of the Kalman filter,

e(t)=z(t)-z(t/t-1), are a white process. This gives us an

additional test in deciding whether the model is a valid one,

that is one can calculate the autocorrelation function of e(t)

and check for whiteness (uncorrelation).

111.4.1 Statement of Least Squares Identification Problem:

Minimize the function,

N
J = 1/N I e2 (t) (3.24)

t=l

where,

e(t) = z(t) - z(t) (3.25)

subject to,

z(t) = T(t)x4+cT[A ^(t-l)+bu(t-1)]+bou(t) (3.26)

where,

x(t) = A x(t-1) + b u(t-1) + Se(t) (3.27)

with respect to the parameter vector 0,

0 = (3.28)
b

where x is a 2n +1 vector as defined in equation 2.6 and,
-p

a = [a1, a2, --- , an]T (3.29)

b = [b0, b1, ... , bn]T (3.30)

E= [g, g2 1 --- > gn]T (3.31)
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The minimum of J, J*, is such that,

J* R = E{e 2 (t)} (3.32)
e

Furthermore if the system dimensions n and np are

uncertain these must be included in the optimization. More

on this will be discussed in section 111.9.

This is an optimization problem constrained by

equations 3.25 through 3.27 with no general closed form solu-

tion. The most obvious approach to its solution is an itera-

tive one where one proceeds as follows,

i) Assume some value of 0, 0*.

ii) Run the filter equations 3.26 and 3.27 based on the

observed data z(t) to yield z(t) and hence e(t).

iii) Evaluate the new J and DJ/De. Calculate a new 0

along the direction of decreasing J.

111.4.2 Solution of Least Squares Identification Problem -

Autoregressive-Moving-Average (ARMA) Model of Filter:

Before discussing the solution of the problem

described in 111.4.1, we wish to express the estimation equa-

tions 3.25 through 3.27 in autoregressive-moving-average form

(ARMA). This is a more convenient form for identification

purposes.

We know that the ARMA model,

n n n
y(t) = aiy(t-i) + b u(t-j) + djw(t-J) (3.33)

i=l j=O J=l

can be put in state space form as,

x(t+l) = A x(t) + b u(t) + d w(t) (3.34)

y(t+l) = cTx(t+l) + bou(t+l) (3.35)
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and vice versa, where A, b, d and c are as defined in equa-

tions 2.21 through 2.24.

Now consider the steady state filter,

x(t+l) = A '(t) + b u(t) + & e(t+l) (3.36)

~(t+1) E CT[A x(t) + b u(t)] + beu(t+1) (3.37)

where,

e(t+l) = z(t+l) - z(t+l) (3.38)

= OT(t+1) x, + y(t+l) - OT(t+1) x - '(t+1) (3.39)

= y(t+l) - Y(t+1) (3.40)

Thus if we can express 3.36 and 3.37 in the same form

as 3.34 and 3.35, we can by the equivalence of the equations

obtain an ARMA model for y(t+l). Defining,

s(t) E A f(t-1) + b u(t-1) (3.41)

then,

s(t+l) = A '(t) + b u(t) (3.42)

= ACA i(t-l)+b u(t-l)+ge(t)]+bu(t) (3.43)

= A[s(t) + g e(t)) + b u(t) (3.44)

= A s(t) + A Z e(t) + b u(t) (3.45)

while from 3.37,

Y(t+l) = cTs(t+l)+bou(t+l) (3.46)

Defining,

(3.47)

92
(3.48)

En.
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and since,

A

a,

a
2

an

10.. .

0 1 0 1

. . 0 . 0 J
it follows that,

=

a1g + g2

a2g1 + g3

an- i+

ang I

We then get the ARMA model for y(t),

y(t) = ai(t-i) +
i=1l

b u(t-J) + Ije(t-j)
J=0 tj=1

with,

z(t) = *T(t) x + y(t) (3.52)

Equations 3.51 and 3.52 are thus an alternative way

of describing the filter equations previously written in state

space form.

A second useful way of writing 3.51 is as follows:

Subtracting 3.51 from 3.33 and using 3.40 we get,

n n n
e(t) = l aje(t-J) - I gje(t-j) + I diw(t-i)

j=1 j=1 i=1
(3.53)

n
[aj-gj]e(t-j) +

j=l

n
diw(t-i)

i=1

(3.49)

(3.50)

(3.51)

(3.54)

0



Bqt inee,

n n n
ildiw(t-i) = y(t) - i aiy(t-i) - I bju(t-j) (3.55)

ial i-1 j=0

then,
n n

e(t) = [aj-gj]e(t-j) + [y(t) - i ajy(t-i)
j1=1

(3.56)
n

- I bju(t-j)]
J=0

Now it can easily be shown from the definition of g

in equation 2.39 that g(l)=l, so that together with 3.50 it

follows that,

n-1 n n
e(t) = { gj+1 e(t-J) + [y(t)- i aiy(t-i)- I bju(t-j) (3.57)

j=1 1=j=

Since y(t) is not observed in our case but rather,

z(t) = (T(t) x + y(t) (3.58)

then substituting for y in 3.57 we get,

n-1 n n
e(t) = I gj+ 1e(t-j) + [z(t)- I aiz(t-i)- I bju(t-j)

J=l i=l j=0
(3.59)

n
+ {aioT(ti) xI - ,T(t) x ]
i=1

This equation can be used to recursively update the residuals

of the filter given the observed data, z and u, and the

system parameters, e. ,

We can now redefine the identification problem as

the minimization of,

N
J = 1/N I e2 (t) (3.60)

t=l
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with respect to the model parameters, 6, and subject to the

relations 3.59.

The solution to this problem without the term yp,

that is with x=0, has been obtained by Astro5m (Ref. 18) and

Kashyap (Ref. 19). Furthermore they show thatt-under Gaussian

assumptions for the system uncertainty there exists a unique

minimum for the above optimization problem which converges

to its true value as N, the amount of data, goes to infinity.

In our case, we can argue that a minimum clearly

exists because letting xp equal its true value results in the

Astr*m problem which has a minimum. In addition letting x,

diverge clearly would result from 3.59 in a diverging e(t)

and hence J.

What we can't prove (or haven't been able to) is that

there exists a unique minimum, 0*, which would approach the

true value of 0 as N+-. In a later section we will describe

a method of separating the problems of estimating xpand of

estimating a, b, E and Re which would remove this doubt. At

this stage we can however present a set of necessary condi-

tions which will yield the solution of the optimization

problem defined above. Since the criterion chosen is a

reasonable one from a practical point of view, finding its

minimum should yield a valid model.

Necessary Conditions for Parameter Estimation -

For ease of notation we now define,

1 [g2, 3 1 ... > gn]T (3.61)
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eC(t) 9 [e(t-1), e(t-2), ... , e(t-n+l)]T (3.62)

a = [a,, a 2 , ... , an]T (3.63)

z(t) E[z(t-1), z(t-2), ... , z(t-n)]T (3.64)

b [bo, b1 , b2 , *- bn]T (3.65)

u(t) [u(t), u(t-1), ... , u(t-n)]T (3.66)

C~t) E [O(t-1), 0(t-2)., .. , (t-n)]T (.7

so that 3,59 becomes,

e(t) = e(t)+[z(t)-aTz(t)-bTu(t)-xT(t)+aT(t)x (3.68)
-p

e_(t) + f(_, t) (3.69)

where f depends only on 6 and observed data, and t=n+l, n+2,

... , N.

Since we are dealing with a constrained optimization

problem we introduce a set of Lagrange multipliers, X(t),

tnn+l, n+2, ... , N, and consider the minimization of the

function H, where,

N N
H = 1/N I e2 (t)+l/N I X(t)[e(t)- Te(t)-f(e, t)] (3.70)

t=l tnn+l

The necessary conditions are,

i) 3H/AX(t) = 0 ; t=n+l, n+2, ... , N (3.71)

yielding,

e(t) = gTe(t) + f(6, t) ; t=n+l, n+2, ... , N (3.72)

ii) DH/3e(t) = 0 ; t=n+l, n+2, ... , N (3.73)

yielding,
n-l

X(t) = gi+X1 (t+i) -2e(t); t=n+l, n+2, ... , N (3.74)

with initial conditions,

X(N+i) = 0 ; i=1, 2, ... , n (3.75)
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We can now use 3.72 and 3.74 to calculate for any

value of e the gradient of J with respect to 0. This gradient

together with the value of J is sufficient to make use of

iterative solutions to the minimization problem here discussed.

The solution is df the form,

.k+1 * -k + Hk D3k (3.76)

where Hk depends on the type of iterative procedure. In this

study we make use of the Fletcher-Powell technique (Ref. 22)

which requires the value of J and 3J/36 for its implementation.

Now, the gradient of J subject to the constraint of

3.68 is equal to the unconstrained gradient of H, thus,

3J/ag = 9H/ag (3.77)

yielding,

= - 1 X(t) e(t) (3.78)
3g N t~n+1

t=n+l3 = 1 N

DJ 1 N
Db I (t)u(t) (3.80)

-p t=n+l

Thus from 3.72 and 3.74 we can get values of e(t) and X(t)

for all t, ruhning first 3.72 forward followed by 3.74 back-

wards in time. This then allows us to determine for any 6

the gtadient of J as given by 3.78 through 3.81, which

together with the value of J can be used in the Fletcher-

Powell algorithms for the iterative minimization of J.
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It should be noted that e(t) need not be generated

via equation 3.72; it may be computationally more convenient

to use the state space model equations 3.36 through 3.38.

The reason we have used the ARMA model here is for ease of

calculation of the gradient of J.

Similarly the equation for X(t) can be put in state

space form as follows,

g2 1 0 ... 0 g

gs 0 1 0 ...
= . . . p(t) - e(t) (3.82)

. .0.

n-1

gn 0 ..... gn

X(t) = p,(t) - 2e(t)

with initial condition,

g(N) = 0

(3.83)

(3.84)

111.5 Evaluation of dQdT from Z and Re:

In the past section we discuss the identification of

the system parameters a, b, and Re. We know these to be

sufficient to use the estimation and prediction algorithms

discussed earlier. Re is the variance of the residuals or

the one-step prediction error variance, however we wish to

determine the multi-step prediction error variance. To do

this we need to know the additional term dQdT or equivalently

diQl/2, i=l, 2, ... , n.
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We know that

n
aiy(t-i)

i=1l
+

j

n0
Ib

=0
u(t-j) +

n
I dgw(t-j)

j=1

and from 3.51,

n
aiy(t-i)

i=1

y(t) + y(t)

Sy(t)

+
n

bu(t-j)
j=0

+
n
Jg e(t-j)

j =1

- Y(t)

+ e(t)

Substituting 3.86 into 3.88 yields,

n
=~ ajy(t-i)
i=1l

+
n

bju(t-j)
J=0

n
+ I gje(t-J)
J=1

+ e(t)

or,

+
n

a [y(t-1)-e(t-1)]

n
+ g e(t-J)

j=1

n
Ib u(t-j)

j=0
(3.90)

+ e(t)

n
y(t) =

i=1l
aiy(t-i)+

j

n u
Ib u (t-I

=0 i

n-i

)+ gj+e(t-j)j=1
+ e(t) (3.91)

Now 3.91 is equivalent to 3.85 and we must then have

since gl=1,

n
I djw(t-j)

J=1

n-1
= e(t)+ 1 g

J=1
;j+ 1e(t-j)

at least within first and second order statistics. Since

both w and e are white processes we must have, equating their

variances,

y (t) (3.85)

y(t)

Thus,

y(t) =

(3.86)

y(t)

(3.87)

(3.88)

y(t)

(3.89)

n-1

= gj+=ej=0
(t-j) (3.92)
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n-T n-T
d dj+T Q 0 X gjgj+TRe ; T = 0, 1, 2, ... , n-i (3.93)

j=1 j=l

The n equations above can readily be solved for diQl/2,

i=l, 2, ... , n, in terms of the known gi, i=1, ... , n, and Re.

111.6 Identification by Component Separation:

In this section we consider the possibility of

solving the identification problem in two separate steps, first

the identification of the y model parameters, the residual

load, and second that of x by the linear estimation procedure

discussed in section II.3.4. Two approaches will be discussed:

i) Data prefiltering approach.

ii) Iterative approach.

111.6.1 Data Prefiltering Approach:

The idea here is to prefilter the observed data, z

and u, so that the effect of the periodic component becomes

negligible. The resulting filtered data is shown to satisfy

a system whose uncertain parameters are the same as those of

the residual load y, a. These parameters are identified in

the same manner as described in 111.4 with the exception

that the non-linear search is now restricted to a much lower

number of parameters. The search for xp can then be made

through the linear estimation technique of section 11.8

which is a much less complex and time consuming operation.

Furthermore each identification problem is such that

the corresponding search schemes converge to the true value

as discussed earlier.
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For ease of notation define the delay operator 'd'

as follows,

d x(t) x(t-l) (3 .94)

d 2x(t) x(t-2) (3.95)

and so on.

Using this notation we define,

A(d) = na di (3.96)

n
B(d) = I bidi (3.97)

1=0

D(d) = d di (3.98)
1=0

n
G(d) = gid (3.99)

With this notation, the ARMA load model becomes,

z(t) = y(t) + y p (t) (3.100)

y(t) = A(d)y(t) + B(d)u(t) + D(d)w(t) (3.101)

Data Prefiltering for Separation of y

Since yp is a periodic described by a finwte sum of

sinusoids with maximum frequency nPoV, w=2r/24, it follows

after some algebra that,

B (d) yp (t) = 0 ; V t > 2 np+1 (3.102)

where,
n p (2)d(.13

B (d) = (1-d) R (1-2d cos kw0+d 2 )3.103)
k=l

This then implies from 3.100 that,

B (d) z(t) = B (d) y(t) ; V t # 2 np+1 (3.104)



-89-

Data Prefilter

z(t) B (d) ZF(t) = B (d) z(t) (3.105)

u(t) By (d) uF(t) = Bp(d) u(t) (3.106)

Using the above definitions of zF and uF, the prefil-

tered data, then by multiplying both sides of 3.101 by Bp(d),

it follows that,

zF(t) = A(d) zF(t) + B(d) uF(t) + Bp(d) D(d) w(t) (3.107)

Thus the filtered data satisfies a similar equation

as y, u and w. The only difference is in the term operating

on w(t), the system noise. Part of that operator is B (d)

which is known. It then follows that the unknown parameters

in 3.107 are the same as in the equation relating y, u and w.

Consider now the Kalman filter generating the best

linear estimate of y(t) given all past values of z. In opera-

tor form this is,

y(t) = A(d) Y(t) + B(d) u(t) + O(d) e(t) (3.108)

where,

e(t) = z(t) - Z(t) = y(t) - y(t) (3.109)

Now since,

Z(t) = yp(t) + Y(t) (3.110)

then,

B p(d) z^(t ) = B p(d) y"(t) (3.111)
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But since multiplying by Bp is a linear operation then,

z F(t) B p(d) z(t) (3.112)

is the best linear estimate of zF, given all past z.

Multiplying both sides of 3.108 by B then yields,

zF(t) = A(d) zF(t) + B(d) uF(t) + G(d) eF(t) (3.113)

where,

eF(t) = zF(t) - zF(t)

= B (d) e(t)

We can now proceed as in 111.4 and obtain

equation for e(t) as,

Bp(d) e(t) = eF(t)

eF(t)=[A(d)-G(d)]eF t)+[z F(t)-A(d)zF(t)-B(d)uF(t)]

or,

eF(t) = G(d)eF(t) + zF(t) - A(d)zF(t) - B(d)uF(t)

where,
n-i

G(d) = { i+d

(3.114)

(3.115)

an iterative

(3.116)

(3.117)

(3.118)

(3.119)

The identification of the unknown parameters a =

[, a, b, Re] is now defined as the minimization of,

J = 1/N
N
I e2 (t)

t=l

as before, with respect to a which does not include x , and

subject to 3.116 and 3.118. Now 3.117 is an assymptotically

stable system so it does not matter what the initial conditions

are since their effect eventually decays to zero. Equation

3.116 has however all its poles on the unit circle so that in

order to prevent e(t) from having a sinusbidal behaviour

(3.120)
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(e(t) should be a white process) we will force the initial

state in 3.116 to be zero.

The solution of this problem is done aisbefore via

a Fletcher-Powell type of search. It must be noticed that

the search for x is bypassed here, however the evaluation of

e(t) and, as will be seen, of the Lagrange multipliers, X(t),

is more complicated. More on the merits and drawbacks of

this approach will be discussed later on.

Again we define an equivalent unconstrained minimi-

zation problem, that is the minimization of,
N N

H = 1/N I e2 (t) + 1/N I X(t)[eF(t)-G(d)eF(t)-F(et)]
t=l t=n

(3.121)
N

+ 1/N I y(t)[eF(t)-B p(d)e(t)]
t=ns

where,

F(6, t) = zF(t) - A(d)zF(t) - B(d)uF(t) (3.122)

and where (t) and (t) are Lagrange Multipliers. Also,

ns= n + 2np + 1 (3.123)

As before we must have,

i) DH/DX(t) = 0 (3.124)

yielding,

e F(t) = G(d)eF(t) + F(_, t) (3.125)

ii) aH/Dy(t) = 0 (3.126)

yielding,

eF(t) = B (d) e(t) (3.127)

with initial condition

e(i) = 0 ; i=l, 2, ... , 2n +1 (3.128)
p
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iii) DH/aeF(t) = 0 (3.129)

yielding,

X(t) = G(d-1 )X(t) - y(t) (3.130)

with terminal conditions,

X(N+i) = - y(N+i) ; i=1,.2,..., ns (3.131)

where d-1 is a forward operator such that,

d~ x(t) = x(t+1) (3.132)

iv) DH/De(t) = 0 (3.133)

yileding,

B (d 1 )y(t) = 2e(t) (3.134)
p

with terminal conditions,

y(N+i) = 0 ; i=l, 2, ... , ns (3.135)

The gradient of J with respect to the unknown para-

meters E, a and b becomes,
N

aJ/aa = aH/Da = 1/N I X(t) zWt) (3.136)
t=n s

N
DJ/3b = 9H/ab = 1/N I X(t) u (t) (3.137)

t=nS

N
DJ/3g = 3H/a.E = -1/N I A(t) -F(t) (3.138)

t=ns

Discussion on Prefiltering Approach

This approach has the advantage that the set of

parameters x need not be identified as part of the non-linear

estimation discussed in 111.4. This is of considerable signi-

ficance if the computer limitations are important as the

non-linear scheme is quite demanding. In our model the number

of parameters in y p could be as large as 15, while those
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in y as large as 9, so that the computing savings may be

considerable.

The major drawback is that prefiltering of z and u

is such that essentially it requires some high order differen-

cing operating, the equivalent of differentiating in conti-

nuous time, on observed data. This results in extremely large

values of zF and uF, in addition to the magnification of any

observation errors. This makes the resulting data untrust-

worthy.

To get around this problem, instead of defining the

prefilter by essentially an all zero system, we can modify it

so as to cancel out the differencing effect by adding some

poles to the system, that is,

AP(d) zF(t) = B p(d) z(t) (3.139)

Here B (d) is the same as defined before but A p(d) is such

that the resulting system is a pPw66tta&lky stable as well as

being of at least the same order as B . The first requirement

guarantees that the effect of initial conditions decays to

zero and the latter eliminates the differencing effect.

Suppose the input to this filter is yp and let the

output be ypF, then after 2n P+1 units of time, B P(d)y p(t)=0,

so that,

A (d)y pF(t) = 0 ; t > 2np+1 (3.140)

but since Ap is asymptotically stable then in the limit

YpF (t)=0.

Before we can use filtered data, zF and uF, and be

confident that the effect of yp has died down sufficiently,



we then have to wait a few time constants, thus reducing the

identification data record. On the other hand making the

prefilter too stable is such that the filtered data becomes

too small, causing numerical ill-conditioning.

A compromise thus must be made in designing the pre-

filter poles, primarily by experimentation.

Now we briefly describe how we could use this type

of prefilter in the identification approach discussed in this

section.

Filtering z we get,

A (d) z (t)= B (d) z(t) (3.141)

and in steady state (after a few time constants),

zF(t) = yF(t) (3.142)

where yF is the output of the prefilter driven by y only,

that is,

Ap(d) yF(t) = B p(d) y(t) (3.143)

Similarly filtering u we get uF given by,

Ap(d) uF(t) = B p(d) u(t) (3.144)

We can express the above operationally as,

yg(t) = [ B (d)/A p (d) ] y(t) (3.145)

and,

uF(t) = [ B (d)/A p(d) ] u(t) (3.146)

Now applying the prefilter to the estimation equa-

tion yields,

zF(t) = A(d)zF(t) + B(d)uF(t) + G(d)eF(t) (3.147)

where,

eF(t) = [ B (d)/A p(d) I e(t) (3.148)
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Everything now proceeds as in the case without poles

except that the relation between eF and e is slightly more

complicated.

111.6.2 Separate Component Identification by an Iterative

Approach:

The idea here is to again separate the identification

of x from the rest of the parameters and take advantage of

the computationally simpler linear estimation procedure in

section II.8.- to estimate the latter. In the previous section

wed discussed a prefiltering technique which does this in one

shot and has certain advantages and disadvantages as explai-

ned. In this section we skip the need to prefilter the obser-

ved data and attempt to iteratively solve the same problem.

We start with an estimate of x, say x , and call

the corresponding perigdicfunction y;.

This is then used to define a first estimate of the

residual term, yo, as shown below,

y*(t) = z(t) - y"(t) (3.14 9 )

= y(t) + [y (t)-y 0 (t)] (3.150)p p

y(t) + Ay"(t) (3.151)
p

W& 6an driside' Ay"(t) as a small observation error
p

in y and lump its effect, except for its mean value, into

the y model system noise. We then have a model for y" as fol-

lows,

n n n
y"(t) = n aiy*(t-1)+ Ibau(t-j)+ [dw(t-i)]+m (3.152)

i=l j=O i=l
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where iq is a white process with zero mean and m is the mean

level introduced by the constant term in Ay"

Since yo is known we can then fit the above model to

this data by the least squares technique of section III.4

without x naturally. This gives us a first set of yo model

parameters, a", b_0 , 0, R* and m.

We can now use linear estimation to reestimate x

x1 , and repeat the procedure a fixed set of times say, or un-

til no further improvement is achieved.

Description of Technique

The basic idea is that the zero mean effect of the

error term Ayi can be approximated by a zero mean movingp

average as in equation 3.152. The mean value m can be estima-

ted as part of the identification problem.

No guarantee of convergence is given, but to increase

our chances of success a good initial estimate of x0 is impor-
-:p

tant.

Basically what we are doing here is solving the

over-all identification problem by searching for a minimum in

specific directions, that is constant x first, followed by

constant a, b, Z and so on, whereas the main approach uses

the more powerful Fletcher-Powell search.

Evaluation of Initial

In general yp is considerably larger than y, particu-

larly if weather conditions do not deviate from normal by

much. Furthermore y taken over a large period of time
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oscillates between positive and negative values. To estimate

x we then make use of a weighted least squares approach which

weighs observed data more heavily if weather does not deviate

much from normal.

Since,

z(t) = *Tx + y(t) (3.153)
- -p

we then define the estimates of x, x, as that value of

which minimizes,

N
J = t [z(t)-T(t)x]2 W(t) (3.154)

t=l

where W(t) is a positive weighting factor with the properties

discussed above. Its exact value being picked by engineering

judgement and trial and error.

Differentiating J with respect to xp and equating to

zero yields,
N N

= [j(t)W(t) T (t)]} I(t)W(t)z(t) (3.155)
t=l t=l

111.7 Special Models:

In this section we discuss a much simpler version of

the model so far discussed. It is simpler in the sense that

it makes the mathematics much more tracktable, in particular

the search for a minimum in the identifiaation problem.

The primary assumption is that the system uncertainty

c(t), is no longer a correlated process but it is white, that

is,

c(t) = w(t-1) (3.156)

where w is white.
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The model structure and advantages remain the same

except that a smaller number of parameters are used in fitting

the model. In any case this type of model is normally tried

before going to more complicated ones.

The noise assumption means that the residual load

model is now of the form,
n n

y(t) = aiy(t-i) + I bju(t-j) + w(t-1) (3.157)
i=1 j=0

while y, the best linear estimate of y given z (knowing xp),

is,
n n

y(t) = a y(t-i) + I bju(t-j) (3.158)
1=1 j=0

so that,

e(t) = y(t) - y(t) = w(t-1) (3.159)

or,
n n

e(t) = y(t) - aiy(t-i) - Ib u(t-j) (3.160)
i=l j=0

But from 3.59 we know that,

n-l n n
e(t) = I gj+ 1e(t-j)+[y(t)- a y(t-i)- Ib u(t-j)] (3.161)

j =1 i=1 j=0

which implies that,

gj+ 1 = 0 ; V j = 1, 2, ... , n-l (3.162)

We thus see that the number of parameters we must

search for has been drastically reduced.

The function we try to minimize here is still,
N

J = 1/N [ e 2 (t) (3.163)
t=l

N
= 1/N I [y(t)-aTy(t)-bTu(t)]2 (3.164)

t=l
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or in terms of the observed z and x

N
J = 1/N t [z(t )-T(t)x -aTz(t)-bTu(t)+aTj(t)x ]2 (3.165)

t=l p--

Thus no longer do we have to search for E and in

addition the minimization is not constrained, a much simpler

problem.

111.7.1 Solutions to Special Problem:

The solutions discussed in the previous section can

equally be applied to the special problem.

A) Fletcher-Powell

Here the value of J and its gradient can be deter-

mined directly from observed data. J is obtained from 3.165

and the gradient as below,
N T

3 = 1/N 1 2e(t)[* (t)a-O(t)] (3.166)
t=l

N
DJ/_ = 1/N 1 2e(t)[(t)x-z(t)] (3.167)

t=l

N
3J/3b = 1/N I 2e(t)[-u(t)] (3.168)

t=l

B) Component Separation

i) Prefiltering

The same results apply. After prefiltering the observed data

we have,

ZF(t) = A(d)zF (t) + B(d)uF(t) + B p(d)w(t-1) (3.169)

which we can use as shown in 111.6 to estimate a, b and Re.

Note that we don't have to search over or x but that we

still have a constrained optimization problem due to the term

B P(d)w.
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ii) Iterative Approach

The technique goes through again without major improvements,

unless we make the assumption that the effect of Ayk isp

negligible. Then we have for the kth iteration,

yk(t) = aT yk(t) + bTu(t) + m + w(t-l) (3.170)

which can be expressed as,

Yk(t) [4(t), uT(t), 1] b + w(t-l) (3.171)

Tm

S hT(t) b + v(t) (3.172)
-k

so that the values of a, b and m can be estimated via linear

estimation techniques.

If we collect all the k iteration observations into

one large vector Yk, we have,

T
hyk(1) h_(l) v(1)

yk(2)1 h (2) v(2)
lk= .b + (3.173)

yk (N) h_4(N) v(N),

-ik 2k + Vk (3.174)

The best linear estimate of is then,

k [bH k I!k 1 Hk -k (3.175)

m

an easy calculation to make.
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C) Linearization

Here we take advantage of the simple form of the

model to discuss an alternative method of estimating its

parameters. Since,

z(t) = IT(t) x + y(t) (3.176)

= OT(t) x + aTy(t) + bTu(t) + w(t-1) (3.177)

then,

z(t) = ,T(t) x + aTz(t) + b u(t) - aT *(t)x+w(t-1) (3.178)

F(e, t) + w(t-1) (3.179)

Rather than considering the estimation of the para-

meters assuming these to be totally unknown as we have been

doing, let us linearize about some initial guess of x and
~p

a and consider a linear estimation problem. Let,

x = x0  + 6x0  (3.180)

a = a0  + 6a" (3.181)

Then ignoring higher order effects we have,

z(t) = 0T(t) 0+,T(t) 6 O+aTz(t)+6a Tz(t)+bTu_(t)
- 1 4(3.182)

-aoTi(t)x*-a OTi(t)6x p oT-(t)x*+w(t-1)

so that,

z(t) *z(t) - 0 T(t)x" [ao]Tz(t) + [aO]TiP(t)o (3.183)

[z(t)-(t)x ] 'T -a- 3

S u (t) b + w(t-1) (3.184)

[0(t)-* T al] 6x

= h(t) 6e + v(t) (3.185)

whose solution by linear estimation techniques as discussed

in part B is readily obtained. Having an estimate of 660
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we can then reestimate 8 by adding this correction, linear-

izing again and so on.

This is basically the same result as for part B(ii)

except that there we don't assume an initial guess of a.

A reasonable starting value for the value of a could

be such that the time constants of the system are within

those expected, e.g. a few hours to two days, and that the

system be asymptotically stable.

111.8 Maximum Likelihood Interpretation:

So far the criterion used for shoosing a set of system

parameters has been a least squares criterion,

N
J = 1/N [z(t)-z(t)] (3.186)

t=l

Essentially, by minimizing the above we want the

variance of the error between observed and model behaviour to

be a minimum. Since this is a very reasonable engineering

criterion we expect reasonable results.

It is very satisfying though to know that under some

additional assumptions this criterion is optimum in a more

general form, that is maximum likelihood, (Ref. 14).

This criterion is defined as follows:

Define z as the vector of all observations up to time k,

zk = [z(l), z(2), ... , z(k)] (3.187)

Consider the propability density function of EN, the whole

set of observed data vector, as a function of the unknown

system parameters, _, or xp, a, b, d and Q, i.e. p(EN, e).
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Then the maximum likelihood estimate (MLE) of e,

6*, is that value of 0 which maximizes p(zN, ).

In order to solve this problem we must then define

p(EN, e) as a function of 0. To do this consider the use 6f

Bayes' rule,

p(EN, 0) = p( z(N)/EN-l, 0 p(EN-l, 0) (3.188)

which applied N times yields,
N

p(-N, 0) = II p(z(k)/zk-1, 6) (3.189)
k=1

Now if in our model we assume that the system input

uncertainty w is Gaussian then z will also be Gaussian by

linearity. This then implies that p(z(k)/Ek-1) will be a

normal distribution with mean,

z(k) = E {z(k) / k (3.190)

and variance,

Re(k) = E{ [z(k)-z(k)]2} (3.191)

Now z(k) under Gaussian assumption is the output of

the Kalman filter discussed in the earlier sections while

Re(k) is the error variance which for large N approaches a

constant value which we will call Re. Since p(z(k)/z k-1) is

a Gaussian density function then,

p(z(k)/zk-) = [1/12iR'] exp{- [z(k) -2(k)] 2  (3.192)

Thus, consider the density function p(z-N, 6),

N

p(EN, ) = exp -l [z(k)-z(k)] 2 1 (3.193)

[21rRe]N 12Rek=1
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Its maximum and the MLE of 0 can be found by maximizing,

N
ln p(zN, 6) = -N ln(21R e) - 1 [z(k)-z(k)] 2  (3.194)

2Re k=l

Maximizing first with respect to Re yields,

N 1 N

e k [z(k)-z(k)] 2  = 0 (3.195)
e e k=l

that is,
N

Re = 1/N I [z(k)-z(k)]2 (3.196)
k=1

where Re is the estimate of Re.

Substituting Re back into 3.194 we reduce the problem

to minimizing,
N

J = 1/N [z(k)-2(k)] (3.197)
k=1

Under mild assumptions it is shown in references 18,

19 and 20 that the model estimates thus found are sufficient

and consistent. Essentially this means that as more data is

considered, i.e. N-'a, one can't do better than this estimate

and that this estimate converges to its true value.

Although in practice the Gaussian assumption is not

exactly met and our data record is not infinite, we do approx-

imate these conditions, increasing our confidence in the

criterion.
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111.9 Estimation of Model Order:

The basic idea behind tests to determine the model

order is to compare the value of J for different values of

the system dimensions and test whether this quantity has

decreased "significantly".

Since we are working with a finite data sample, the

more parameters we include in the model, the better the fit.

Continuously increasing the number of parameters how-

ever results in fitting not the predictable or correlated

portion of the model, but the noisy part which cannot be model-

led or predicted. Clearly using such a model to predict

under different conditions would result in erroneous results.

The principle used in this study is: start with the

simplest model; identify the parameters, then predict; next

test the one-step prediction errors for whiteness and check

the ability of the model to predict within reasonable bounds.

If this is approximately satisfied we stop increasing the

model's complexity. Real data illustrations of this approach

are discussed in section IV.6.2.

If the model structure is exactly as hypothesized,

then more rigorous statistical tests for estimating the

model order are available (Ref. 18). The basic physical

idea is however as described above.
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III.10 Adaptive Model Parameter Identification:

In the previous sections we have discussed methods

for evaluating the load model parameters from observed data.

The general requirement we desired was that a large data

sample be used in making this determination. We implicitly

assumed that if the sample were sufficiently large, the model

input would vary over a wide spectrum and excite all the

system modes. This is a necessary condition to be able to

identify the system parameters.

We are however limited to the length of the data

sample that can be used by the slow time variation of the

load behaviour and our requirement that this sample be approxi-

mately stationary. For this reason a sample length of 3

weeks was considered for the weekdays, that is 15 days or

360 samples of z and an equal amount of u. Over this period

the variations in u are very likely to be considerable and

the time variation of the parameters relatively small.

The model thus obtained is considered valid for some

time in the future, e.g. one week (later verified by experi-

mentation), and can therefore be used for prediction purposes

over that period.

Adaptive reestimation of the model parameters is now

done periodically to track their slow variations with time.

This can be done once a week at a time when the main computer

is not needed for other important tasks.
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When this step is carried out the new data is added

to the top of the sample throwing out an equal amount of data

at the bottom of the sample. This is called a finite memory

identifier. Alternatively a longer or infinite memory iden-

tifier could be used by using weighting factors which weigh

the most recent data most heavily and progressively reduce

this weight for less recent data. Although the exact weights

and data record should be determined experimentally, depen-

ding on the particular power company, the changing nature of

the load behaviour with seasons is such that very large

samples (i.e. greater than 6 weeks) might not give good results

with this model even if weighting is used. The argument is

that this model depends considerably on the normal temperature

curve for a whole year, that is x and the y model parameters

vary with T, a variable that changes little over 2 or 3 weeks,

but whose change is quite significant for longer samples.

Furthermore, more variables then just T may be involved in the

seasonal variation of load behaviour making the use of large

samples unreliable for identification.

III.11 Detection of Anomalous Load Behaviour:

One of the advantages of using a probabilistic load

model is that each forecast value has an associated measure

of its error in terms of the standard deviation.

On the average, prediction errors will not deviate

much from the standard deviation, with larger variations beco-

ming less and less likely. For prediction purposes one could
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add one or two standard deviations of the prediction error

to the actual prediction and expect actual deviations from

this forecast to be very unlikely.

A second important use of this model property is that

deviations in load behavinur from that expected by the model

can be quantitatively analyzed to test for anomalous load

behaviour. By anomalous behaviour we loosely mean load

patterns deviating excessively from those predicted by the

model. This could be caused by a number of reasons, unusually

severe weather conditions, factory strikes, school closings,

etc. The detection of the effect of these events on the load

behaviour is important in order to give advance warning to

generating stations in case additional power is needed. In

addition this detection is necessary to discontinue updating

the state and forecasts with abnormal data, as well as to

eliminate this data from the identification record. This must

be done as the model we use to forecast and which we periodi-

cally reidentify describes normal load behaviour only.

Discontinuing the use of abnormal data to update the

state and load forecagtag does not mean however that we should

discontinue predicting normal behaviour. We can still do this

via the apriori or open loop model given by equations 2.27

through 2.29, 2.32 and 2.33.

The scheme for detecting abnormal load behaviour can

take many variations but we will give here one which is intui-

tively obvious.

i
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Consider the error in the one-step prediction, e(t),

e(t) = z(t) - z(t) (3.200)

We know this to be a zero mean white process with constant

variance Re, provided z is generated by the assumed model,

that is, z is normal.

Under the additional assumption that e is approxima-

tely Gaussian the mean and variance are sufficient to describe

the probability density of e.

Defining now the standard deviation a,

a = f (3.201)
e

we can associate probabilities with events |el exceeding a,

2a, 3a, etc., but in addition since e is white and Gaussian,

the variables e(t) and e(T) are statistically independent for

all t/T, so that we can talk abou the probability of more than

one residual, e, in succession, exceeding so many standard

deviations.

Consider the probability of the following events

(for N(O,d) ),

Pr{At} EPr{ 2a >|e(t)|> a} = 0.27 H PA (3.202)

Pr{Bt} =Pr{ 3a ;Je(t)|> 2a}= 0.04 F pB (3.203)

Pr{Ct} EPr{ le(t)l o 3a } = 0.01 E pC (3.204)

for all t.

From this we can calculate the probability of combi-

nations of events occuving, for example,

Pr{At and Bt+l= pAPB = 0.01 (3.205)

Pr{At and C t+.1 = PAPC = 0.003 (3.206)
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P{At and Ct+1 and Bt+ 21 ~ PAPCPB 0.0001 (3.207)

where the subscript t describes the time at which the event

occurs.

We now suggest the following scheme for detecting ano-

malous load behaviour, described in Fig. 9. A similar scheme

can be programmed to detect the return to normal of load

behaviour. This can be done by allowing the closed loop

predictor to run during the disturbance.. When this subsides,

the one-step prediction errors return to norma-1 and a statis-

tical test similar to the above could then be used to detect

such an event.

The scheme suggested for the detection of anomalous

behaviour is by no means the only or best approach. It has

a memory of 3 steps and decides whether the combined proba-

bilitgeone, two or three residuals in succession being

excessively high is small. If it is small, it first warns

the operator that there is a certain probability of anomalous

behaviour. If high residuals persist then the probability of

this happening will become smaller than some arbitrarily cho-

sen minimum level, pmin, which will determine anomalous beha-

viour. When a warning is given, no action will be taken unless

the operator intervenes, and if the residuals return inside

one standard deviation the warning will be remotted. If anoma-

lous behaviour does occur, updating will be discontinued, swit-

ching then to open loop prediction updating, i.e. using only

the observed and predicted inputs, but no outputs.
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Do le(t)|,e(t-l)|
|e(t-2), lie
inside one
standard

deviation?

1-pmin chance
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observed z(t)
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Fig. 9: Scheme for Testing Abnormal Load Behaviour Based on

3 Most Recent Residuals.
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Fig. 10: Use of e(t) for Anomaly Detection.
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A possible set of events may occur as shown in Fig. 10.

111.12 Summary of Load Model Identification:

In this chapter we have presented two main identi-

fication techniques:

A - Component Separation

B - Simultaneous Identification

A - The former consists of two methods each of which solves

the tot&l problem by the separate identification of the yp

and y model parameters. One by a prefiltering scheme which

wipes out the effect of yp, the other by an iterative scheme

which alternatively searches over the y and y parameters.

Although these approaches appear to reduce the computational

complexity of the problem, in particular the prefiltering

approach, more work is needed both theoretical and experimen-

tal before we can confidently use them.

B - The simultaneous identification of the y and y parameters

makes use Of the Fletcher-Powell algorithm for function

minimization. This is a powerful technique and the question

might be raised as to whether this is necessary to solve our

particular problem. Nevertheless, until the previous techni-

ques could be optimized, we decided to make use of it in our

load forecasting study.



-114-

IV.0 EVALUATION OF LOAD MODELLING & FORECASTING TECHNIQUES

IV.1 Background:

In this chapter we describe the computer simulations

and real data espetimentation which have been carried out in

the testing of the proposed forecasting technique. The various

approaches suggested in the previous chapters are evaluated

analytically and experimentally.

Specific load behaviour studies have been carried

out primarily with load data from the Cleveland Electric Illu-

minating Company in Cleveland, Ohio. Additional information

on more general load behaviour has also been obtained from

the American Electric Power Service Corporation, New England

glectric Co. and Detroit Edison Company (Ref. 23).

In addition to load data, weather data for the same

period was obtained from the United States Weather Bureau at

the Cleveland Hopkins Airport.

The load data is in hourly megawatthour values for

the years 1968 and 1969, that is measurements of the average

power consumed each hour. The technique is however not

limited to hourly measurements, and similar studies could be

particularly useful in anomaly detection and short term

economic dispatch.

The weather data of interest here is dry bulb tempe-

rature in degrees Farenheit. Weather bureau measurements at

tri-hourly intervals were available for the same period.

These 8 daily values together with the maximum and minimum for



-115-

the day were used to interpolate for the hourly temperatures

(Ref. 24).

A normal temperature curve for the Hopkins Airport

weather bureau averaged over a ten year period was also obtai-

ned. Average hourly values for each month of the year were

provided, from which weekly levels were then interpolated.

The first attempt at testing the hypothesized model

was a simple weighted least squares fit of a finite sum of

sinusoids, that is the periodic component. This was done with

real data and the results are discussed in IV.2.

This study was encouraging, and we next proceeded to

test the identification techniques previously described.

First, identification by component separation. The prefilte-

ring technique was tested with simulated and real data.

Linear identification was also tested, used in conjunction

with the iterative search for yp and y. These results are

discussed in IV.3.

It appeared at this point that although the above

identification procedures were very useful, their numerical

refinement in order to use them with confidence were taking

us beyond the main thesis objective of load forecasting.

We thus next proceeded to the more powerful simulta-

neous identification of the parameters of the y and y models

by a Fletcher-Powell minimization scheme. This is discussed

in iv.4.
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This approach proved very successful so we proceeded

to test the model primarily in this manner. First however,

the estimation-prediction algorithms of chapter II were tested

and programmed for a simulated load. This is discussed in

section IV.5.

Section IV.6 discusses the identification of the

model parameters with real data. Various models are tried

and their forecasting capabilities are compared and evaluated.

This is tried for various times of the year thus tebtint -he

ability of the model to adapt to seasonal variations. The

detection of anomalous behaviour is also tested. In all cases

the results are very good.

Section IV.7 discusses the computer requirements of

the overall method. Section IV.8 summarizes the results of

this chapter and the capabilities of the model based on real

data results.

IV.2 Weighted Least Squares Estimation of yP and y:

The theory behind this study is described in 111.6.2

under the heading "Evaluation of initial x4 ", with equation

3.150 giving the estimated value of x and hence y . The

difference from actual load is the estimate of y.

N N T - N
x = {(t)W(t) (t)}1 I 0(t)W(t)z(t) (3.150)

t=1 t=l

The dimension of xp, 2n p+1, found to describe the

most significant periodic effects lies between 9 and 15, that

is 4 to 7 harmonics of the fundamental frequency wo=2w/24.
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The lower numbers fitted the periodic behaviour faithfully

most of the day, but weakened slightly during peak periods,

particularly during the twilight hours, around 9 PM, when

lighting load suddenly comes on.

The weighting function W was chosen to be a constant

for each day of the 12 weekdays considered. The 12th day was

assumed to have maximum weight, whereas all earlier days were

less heavily weighted. This tried to put less weight on data

far in the past. In addition we weighted each day according

to the average temperature deviation for that day and the

previous one from the normal level. This was a "crude" way

of demanding that xN should describe only "normal" days, as
-p

well as introducing a memory effect into the weight.

The specific relation for W was as follows,

W1 { + C ATi + C2 ATi_1 } 6i (4.1)

where:

The subscript i stands for the particular day, i=1, ...

12, to the last day.

$ is an arbitrary constant, greater than one, picked in

this study as 1.05, although different values were tried. If

a is too small then the estimator "remembers" too far back;

ifa is too large then the memory is too short. The best value

can be found by trial and error.

ATi and ATi- stand for the deviations in daily average

temperature from the daily normal level for the ith and (i-1)th

day.
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C1 and C2 are arbitrary weighting constants. We picked

C1=2 and C2=0',4.

This approach can easily be programmed for daily

updating of.

H

Defining,

where the subscript i stands for the particular day, we then

have ,

zi = H x +

and the *eighted least squares criterion to be minimized is,

N
J= [E1-H Ep]T Wi [zi-H x4] (4.6)

where N (=12) is the number of days being considered. The

estimate of x N is,

N N
= [ W HTHH HT

1=1~ i=1

T(1)

T (2)
(4.2)

(4.3)

(4.4)

z(1)

z(2)

z(24)

y(l)

y(2)

y(24)

(4.5)

N
x (4.7)
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N [HTHl H T N N
N ~ HT Wii / Wi(.8)

which can readily be expressed in recursive form as,

N+l [{HTH}-lHT N+l (4.9)
S WN+1 N+1W '

i=1

Acttally if we define,

[N+1 HTH- HTN+1 (4.10)

we can recognize this as the minimum weighted least squares

th
estimate of x given only the (N+l) day's data. Thus this

approach is on-line in the sense that we don't have to operate

on data from previous days to update x, but simply use,
N+l

xN+ .N + WN+l [N (4.11)

where ^N+1 is given by .4.10.

Some of the results are described in Fig. 11 through

14. These clearly indicate the dependence of actual load on

temperature. On the relatively hot days indicated in Fig. 11

and 12, the estimate of y, y, is highly positive, slowly decay-

ing as temperature drops. During the second day, the drop

in y can be attributed to a sudden temperature drop which

weather records indicate were due to a sudden rainstorm. As

can be seen during a cool day (Fig. 13), y is negative, whereas

for a typical day (Fig. 14), y is relatively small.

There is a possibility of using this approach to

estimate Y, and then use the resulting estimate of y as data

to identify the parameters of the y model. However no use is

made of the assumed structure of the y model in separating
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these effects and intnlitively we have less confidence

in the technique. Nevertheless the computational simpli-

city of this approach is something to be considered in

future studies.

It should finally be noted that the value of

the x estimate here obtained is used in later schemes

as an initial estimate.

IV.3 Parameter Identification by Component Separation:

Evaluation of Technqe

Considerable time was spent in developing

techniques for model identification by component sepa-

ration. Although insufficient confidence was obtained to

apply these techniques to real data some of the results

will be discussed, since computational savings may occur

using this identification approach.

IV.3.1 Data Prefiltering Tests:

The prefilter was designed as described in the

previous chapter, both with and without poles. The first

case results in an extremely high sensitivity to obser-

vation errors. The prefilter poles were then designed to

minimize this sensitivity, and an application of a simu-

lated periodic function of the type hypothesized to such

a filter is shown in Fig. 15. We can see that the response

is relatively smooth, that is, after a while, no sharp

peaks occur in the filtered data. Since theinput to the
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to the prefilter is a periodic function made up of a

finite sum of sinusoids, then the steady state output

should be zero. As can be seen, a definite attenuation

is present, but 48 or more data points are needed be-

fore we can confidently say that the filter output is

close to zero. This naturally cuts down on the amount

of data we can use for identification. However, the

reduced problem, that i9, the identification of the

parameters of the filtered data model is much simpler,

especially if we assume the system noise in the ARMA

model to be white.

In Fig. 16 we show the effect of applying

this filter to real load and temperature data. Here

we can see one of the main drawbacks in this approach,

which is the fact that whereas the unfiltered data

shows obvious physical correlation between AT and z,

the filtered data loses physical significance, making

it more difficult to analyze the response from an

engineering point of view.

More investigation with simulated data is

needed before a concrete evaluation of this approach

can be made.

IV.3.2 Iterative Cqmponent Separation-Evaluation:

The theory behind this approach is described

in II.6.2. The basic idea is to search for the m>nimum
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of the likelihood function, J, in specific directions.

First along x0 as determined from IV.2, which yields an
ip

estimate of the y model parameters, call it6 0 ., as

discussed in 111.6.2 and 111.7.1. Using 00 and the results

of chapter II on the linear estimation of x , we get a

new estimate of x,, x1 . The procedure is repeated a
-p

number of times or until no further improvement is made.

If we use the special model of 111.7, that is with

white system noise, then x, can be estimated in one shot gi-

ven 6 , where i stands for the ith estimate of the y model

parameters. The (i+1)th estimate of xp, xi+l is then that

xp which minimizes,

N
J = 1/N )T(t)aiuT(t)bxT(t)+xT(t)ai ]2 (4.12)

t=1

This clearly has a minimum given by,

xi+1 = { it-T(t)ai][g~t)- T(t)a ITi -l1

t=1
(4.13)

N
[zt)zT(t)a'-uT (t)b ]it)-Tta]

t=1

This equation is computationally simpler and numerically more

accurate than the iterative scheme discussed in chapter II,

however it is only valid for the special model.*

The results of 111.7.1, part B(ii), are the same as

minimizing 4.12 with xS fixed with respect to a and b.

* The iterative approach is not limited to the special

problem though.
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It is clear at least for the special model, that

this iterative approach results in a minimum for J, since for

each iteration we find a minimum along the fixed direction.

This is so, since fixing x , or a and b, makes J a convex

function of the other parameters.

Now since the i+l iteration is made along the direc-

tion defined by the previous minimum then Ji+1 1, where i

stands for the ith iteration, and since J is bounded below,

a minimum must be reached.

The question in using this approach is just how fast

can this minimum be reached, that is how many iterations are

needed, and whether there are various minima.

In this study we restricted ourselves to a simple

test of the iterative approach with simulated data. The

reasons are similar. Much work was needed to perfect the

iterative approach, which would deviate our attention exces-

sively from the load forecasting problem.

This approach is, however, quite promising in that

considerable computationalsavings may be made. As will be

discussed later the Fletcher-Powell approach, although more

reliable, requires considerable computer time, making long

term off-line testing of the model quite expensive.*

The model simulated was of the form,

z(t) = 1500+100sin(2wt/24)+loocos(2wt/24)+y(t) (4.14)

* Although the cost of on-line implementation is minimal.
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where.,

y(t) = 1. 4y(t-l)-0. 49y(t-2)+3u(t)+u(t-l)+w(t-1) (4.15)

We started with an initial guess of x, as obtained,

for example, from a weighted least squares estimation, given

below,

1400

xo 90
-p

90

The results of 111.7.1, part B(ii), are now applied, or equi-

valently we minimize J with respect to a and b with x fixed

at the given value.

It was found by experimentation that 0 in 3.170 is

best solved for by a one shot solution rather than recursively.

The latter approach resulting in greater numerical errors.

The one shot solution can easily be determined by solving the

system of equations,

Hk k = HT Yk (4.16)

where Hk and Yk are as defined in 111.7.1. Simulations show

this approach to be most accurate.

Solution of 4.16 for our particular example using

96 data points (4 days' data) yields,

a, = 1.69 (1.4)

a 2  = -0.72 (-0.49)
(4.17)

b = 4.73 (3.0)

61 = -2.85 (1.0)

with the true values in parentheses.
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This first estimate of a is not bad. That of b is

worse, but as it turns out this- is the least sensitive set

of parameters.

The next step would be to substitute the estimated

values in 4.17 into 4.13 to obtain a new estimate of x.

This approach was not pursued further as we turned

to the more powerful, more general, more reliable and readily

available in computer program form, Fletcher-Powell method

for minimizing J.

IV.4 Parameter Identification via Fletcher-Powell -

Evaluation through Simulation:

IV.4.1 Background:

In the previous chapter we defined the parameter

identification problem, and showed thattreasonable solution

could be found by solving a minimization problem. We argued

that we could save considerable effort by not treating it as

a general minimization problem, but taking advantage of the

particular structure, to separate the identification of the

model parameters in yp and y. The two approaches proposed,

data prefiltering and the iterative approach, are carefully

described, but their numerical refinement was not pursued for

lack of time and our desire to tackle the main problem of

load forecasting.

The Fletcher-Powell approach (Ref. 22) is a set of

recursive algorithms for the minimization of a function of

many variables given the function value and derivative for any
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argument. The basic scheme is of the form,

+1 - + Gk 3J/3-O (4.18)

where Ok is the kth iteration estimate of the argument for

which the fuzntion J is a minimum, WJ/92k is the corresponding

gradient and Gk is the Fletcher-Powell gain which is chosen

according to the algorithm.

Basically 2k is such that. at first it starts sear-

ching in the direction of steepest descent, progressively

changing to a Newton-Raphson scheme as it gets closer to the

minimum.

This scheme is particularly powerful when dealing

with functions which have sharp ravines in given directions,

smoother ones in others.

It is difficult to apriori estimate the nature of

our function in the general case. However in the special

case of white noise only, we see from equation 3.160 that J

is a fourth order analytic functioniiof e. J can thus be well

approximated by a quadratic near its minima, making the

Newton-Raphson type search near the end of the iteration most

desirable. Furthermore higher sensitivity is expected along

the directions of a and x, than along b, making steep ravines

quite possible, a condition for which the Fletcher-Powell

method is well suited.

This approach also had the marked advantage that it

was well tested, documented and programmed. In particular,

we made use of an SSP subroutine, DFMFP (Ref. 25), in
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conjunction with our main identification program, as discussed

in Appendix A.

In this section we discuss the identification of a

simulated load model using the Fletcher-Powell algorithm in

minimizing the function J.

It must finally be reemphasized that this approach

may be too pwerful for this particular problem, but until

further investigation is carried out on the methods discussed

earlier, we will make use of this technique only.

IV.4.2 Simulation Results - Fletcher-Powell:

The model tested was of the form,

z(t) = yp(t) + y(t) (4.19)

where,

yp(t) = 1500 + 100 sin(2wt/24) + 100 cos(2wt/24) (4.20)

and,

y(t) = 1.4y(t-l)-0. 4 9y(t-2)+3u(t)+u(t-l)+w(t-1) (4.21)

where w is a white Gaussian process generated by the SSP

subroutine Gauss. Its mean value and variance are given by,

E{w(t)} = 0 (4.22)

E{w 2 (t)} = 25 (4.23)

The input u is tabulated in Table 3 and is chosen to approxi-

mately resemble a typical sequence of temperature deviations

as defined in chapter II. Ad can be seen the actual values

of z are in the typical load value neighbourhood.
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I JJ I__I________
-4
-5
-3
-3
-3
-3
-3
-2
-1
0
1
2
2
3
5
3
3
3
2
0

-2
-3
-4
-5
-5
-7
-8
-9
-8
-6
-4
-2
1
3
5
7
8

10
7
5
4
4
3
3
2
2
2
2

1599
1585
1562
1535
1509
1488
1453
1419
1379
1351
1337
1332
1339
1360
1388
1424
1458
1496
1529
1565
1586
1599
1598
1581
1558
1527
1483
1433
1382
1341
1306
1287
1278
1283
1304
1346
1405
1471
1539
1591
1623
1646
1665
1690
1704
1717
1744
1766

2
1

-1
2
2
2
2
6
10
12
13
14
15
16
14
11
11
11
11
10
9
8
7
6
5
4
5
5
6
7
8
10
12
15
16
17
18
19
20
19
18
17
16
14
11
9
7
5

Table 3: Simulated Inputs and Corresponding Outputs for Testing
of Identification Technique.

1785
1787
1772
1750
1733
1710
1684
1659
1652
1662
1686
1724
1766
1813
1856
1886
1908
1928
1955
1979
1992
2004
2012
2015
2011
1994
1975
1947
1919
1893
1873
1856
1851
1853
1863
1884
1912
1948
2003
2053
2108
2148
2177
2197
2205
2204
2196
2172, , ,
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The initial guess at the values of the system para-

meters was as follows,

a = 0.9 (1.4)

a2 = -0.2 (-0.49)

b = 0.8 (3.0)

b1 = 0.8 (1.0) (4.24)

Apo = 900 (1500)

Spy = 90 (100)

Zp2 = 90 (100)

the numbers in parehthesebsbeinguttheir true values.

Since w(t) is white, we make use of the identification

solution for the special model described in the previous chap-

ter. This solution was programmed and is described in Appen-

dix A. Actually, as section IV.6 will show, the special model

yields quite reasonable results, thus, unless further refine-

ments are desired, the special model may prove sufficient.

After about 50 iterations a minimum of J is achieved.

The estimated parameters are,

a, = 1.32 (1.40)

a2  = -0.44 (-0.49)

b = 2.1 (3.0)

bi = 2.9 (1.0) (4.25)

Zpo = 1503 (1500)

Xpl = 106 (100)

xp2 = 97 (100)

Q = 23 (25)

with the true values in parentheses.
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We can see that aI and a2 are within 10% of the true

values, and the x estimates are within 6%, bo is about 30%

off, while bi is about 60% in error. The reason for this lar-

ge error in b is in the fact that information about b can best

be extracted by large and fast deviations in u. Since u is a

relatively smooth time function, the estimation of b becomes

difficult. For better estimates a larger data sample should

be tried. As will be shown this error will not greatly affect

the prediction capability of the identified model.

In all cases the Fletcher-Powell estimates are consi-

derably better than the ones found from the iterative approach

discussed in the previous section. In order to more accurately

compare the two results, the iterative approach should be tes-

ted more thoroughly though.

In the next section we compare the performance in pre-

dicting of the model here identified, against the one given the

true system parameters.

IV.5 On-Line Forecasting and Updating - Ev&luation via

Simulation:

IV.5.1 Discussion:

In this section we shall test the capabilities of the

forecasting technique via simulations.

A model of the form hypothesized for the load is simu-

lated as in the previous section. The on-line prediction and

updating scheme described in chapter II is tested with data

from the simulated model, assuming first that the model
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parameters are exactly known, and second, using the same data,

but the parameters as identified by the Fletcher-Powell algo-

rithm. This will give us an indication of how well the iden-

tified model predicts, and what the sensitivity df the predic-

tion performance is with respect to parameter errors.

In each case we show typical 24 hour predictions with

the associated standard deviation. The effect of closed loop

updating is illustrated and discussed. Anomaly detection is

tested together with the capability of the scheme to correct

itself after the anomaly if allowed to run in closed loop

configuration.

The effect of initial state and xp uncertainty is

also discussed.

The estimation-prediction algorithms described in

chapter II and used throughout are programmed as listed in

Appendix B.

IV.5.2 Prediction with Exact Simulated Model:

The model used to simulate data is the same as descri-

bed in the- previous section IV.4, by equations 4.19 through

4.23.

Typical prediction curves are shown for different

times together with the actual error and the predicted standard

deviation (see Fig. 17, 18). Of particular interest is the

error curve between predicted and actual siiulated load data

and the standard deviation envelope around the error. The

standard deviation is smallest at the one-hour prediction, with
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the value of 5. The uncertainty rises as we predict farther

into the future, reaching a steady state of 16.8. Figure 18

depicts the probabilistic nature of the model. Although in

this case the error exceeds the one standard deviation band

considerably, this is entirely possible, although unlikely.

Closer analysis shows that the particular noise sequence used

in simulating the load data for that particular time period,

is unusually large, thus explaining the result. Figure 17

shows a more likely prediction error curve.

In the closed loop configuration, after every hour,

a new observation is made which updates the forecast. In the

example of Fig. 17 and 18, this means that the standard devia-

tion curve would be shifted to the right by one hour, leaving

the prediction uncertainty from the particular hour the same

as before.

If we discontinued updating then the standard devia-

tion curve would remain fixed at that point. Eventually we

would reach the steady state portion of the curve. In this

case the prediction error would have a standard deviation of

16.8 for all prediction times.

In Fig. 19 we have shown the propagation of the 24-

hour prediction error with time. As expected, this is not a

white process, since a little calculation of the prediction

equations show that this error is the result of passing w

through the y model without the u input. On the average though

the standard deviation is as predicted.
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IV.5.3 Anomaly Detection and Self-Adjustment:

As discussed in III.11, anomaly detection is effected

by observing the one-hour prediction and testing for statisti-

cally unlikely deviations.

Fig. 20 shows a plot vs time of one-step prediction

errors in the closed loop configuration. A large disturbance

is artificially introduced into the actual data , drastically

disturbing the error process. The duration of the disturbance

is 5 hours and as shown in the figure, normality returns two

hours later. This is so since in our case the state of the

model can be exactly determined from the estimation equations

in two iterations, given error-free observations.*

The anomaly can quickly be detected from the graph,

after one or two steps, depending on the decision level chosen,

as discussed in III.11. Of considerable importance here too

is the ability of the closed loop scheme to correct itself

after the disturbance has died down.

IV.5.4 Prediction with Initial State Uncertainty:

Due to the fact that the y model is asymptotically

stable, the effect of errors in the initial guess of the state

of this system, X(o), is rapidly attenuated with time. In general

* In the more general case of coloured w in the model or obser-

vation noise, we can't estimate the state perfectly and the

effect of the disturbance would only disappear according to the

filter time constant decay.
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this attenuation depends on the time constants of the system.

For the special model, as we have simulated here, this effect

disappears after two steps (the order of the system). An

example of this is seen in the previous section where a distur-

bance is introduced which essentially creates an error in the

system state estimate, therefore disturbing the ability of

the model to predict. This disappears two steps after the dis-

turbance ends.

In the case of initial state errors we can introduce

a measure of the confidence in this estimate into the covariance

equations. This measure is defined by the S(l) matrix in our

covariance equations of chapter II. Propagation through time

together with the value of Q defines the confidence levels in

the predictions. At first, if the lack of confidence in the

initial state is large, we make S(l) correspondingly large.

This effect makes the initial uncertainty in the prediction

quite large as it should be. As new observations are made the

effect of errors in the initial state are attenuated and

corrected, so that more confidence in the predictions should

be present. This is indeed the case as the effect of S(l) in

the covariance equations dies down, leaving only that effect

introduced by the system noise, Q.

In the special model being considered, the variance

of the one-step error starts at 109 and at the next step, i.e.

after two observations, equals 25=Q. This is as expected, for

in our special case two observations are sufficient to exactly
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determine the state. The one-step prediction uncertainty is

thus that introduced by w only.

For the case of coloured noise or when i :s considered

uncertain, the confidence levels decay to their steady state

much more slowly.

IV.5.5 Prediction with Uncertainty in xp - Linear Estimation

of xP:

In chapter II we showed that the value of x could

be theoretically determined by linear estimation, i.e. by

assuming that x is part of the state to be estimated.

In this subsection we consider the same simulated

model as before. We assume that x is not exactly known, but

that the remaining model parameters are. The estimation-pre-

diction algorithms are run with an initial estimate of xp as

given below,

1450'

W(0) = 95 (4.26)

t 951

where actually,

1500)

x= =100 (4.27)

100

We make the assumption that this initial estimate is

subject to some uncertainty, as it should be.



That is,

Sp(0) = E {[x-x(0)][xx_(0)]T} (4.28)

Spl 0 0

0 Sp 2  0 (4.29)

0 0 Sp3-

where different values of Spi were considered. Consider the

case where,

Spi = Sp2 = Sp3 1 i6 (4.30)

We now present a number of graphs which describe the

capability of identifying xp by linear estimation, in addition

to testing the prediction scheme when x is uncertain and is

being simultaneously identified. Only simulated data is used

here.

From Fig. 21 we see that the uncertainty for the S,

parameters shown decays very fast at first, settling down to

a very slow asymptotic decay, approximately of the order of

1/n, where n is the number of observations from time zero.

Figure 22 presents the actual propagation of the error

in x. Comparison with Fig. 21 shows this error to be compa-

tible with the standard deviation. Near the end of the esti-

mation curve, the error reduces very slowly as more data is

observed. This however implies that the ability of the model

to predict and model is relatively insensitive to this error

as is indicated in Fig. 23, 24 and 25.

In Fig. 23 we see the one-step prediction error pro-

pagated with time. At the start this error is quite large, but
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always compatible with its standard deviation. With time

both the error and the standard deviation decay to much smaller

values. In particular the standard deviation appears to reach

a steady state of 5 which is the same value as in the case

where x_ is exactly known. This is why we say that even though

is in error, this error does not greatly affect the model

response.

Figure 24 shows a typical prediction eUrve when the

error in ^_ is large enough to significantly affect the ability

of the model to predict as accurately as in the case when xSP

is exactly known. The important point to notice is that even

then, the prediction error is compatible with the standard

deviation, that is our confidence in the prediction.

Figure 25 is an equivalent case of a prediction curve,

except that xp is now near its true value, and we have for

practical purposes reached steady state. The standard devia-

tion is much smaller now and the load prediction error curve

well within the expected levels.

IV.5.6 Prediction with Identified Model Parameters:

So far we have discussed and evaluated with simulated

data the ability to predict load with exact parameter knowledge,

detect anomalous behaviour, estimate x,, as well as predict

load and simultaneously estimate xp when it is uncertain.

Now we discuss the case where the model used for

prediction is that found from the identification scheme. This

model will have errors not only in x, but also in the parame-

ters of the y model.
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We can proceed exactly as before, but modt of the

results would be quite similar. Here we simply consider the

case where the parameter values obtained in section IV.4.2 by

the Fletcher-Powell algorithms are assumed free of uncertainty,

and run some prediction tests with them. Uncertainty in x
-p

could be treated as in IV.5.5 by artificially assuming an

initial x uncertainty. Uncertainty in the y model parameters

cannot be easily taken into account as these parameters appear

non-linearly in the model.

As can be seen from Fig. 26 and 27, the identified

model predicts quite well. The prediction error in Fig. 27 is

a bit too large, but this can be attributed to two things

primarily. First, the identified Q was lower than the true

value, thus decreasing the prediction standard deviation, and

second, as explained for Fig. 18, the noise sequence for that

particular period is unusually although possibly high.

Nevertheless prediction tests made throughout a 4

day simulated data period as exemplified in Fig. 26 and 27 give

us sufficient confidence in the ability of the identified

model to predict.

Anomaly detection tests based on the one-hour predic-

tion errors were carried out as in the case with the exact

parameters yielding very similar result$.
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IV.6 Evaluation of Identification & Prediction Techniques

with Real Data:

IV.6.1 Preliminary Discussion:

In this section we discuss the tests carried out with

realdata-to verify the hypothesized model's capability to

predict load. Since no apriori knowledge of the value of the

model parameters is available, the main test as to the validity

of the model is whether it can predict load under varying

conditions, in compatibility with the associated standard de-

viation. In other words, we want to predict future loads

based on future inputs using a model evaluated from past loads

and past inputs.

In addition to the parameter values we are also uncer-

tain as to the dimension of the model. From section IV.2 we

can estimate the number of parameters in x , that is 2n +1,

however the order of the y model cannot be so easily estimated.

The data considered in this section is still from the

Cleveland Electric Illuminating Company, for the year 1969.

Tests (both modelling and prediction) are carried out

for the months of July and August, considered warm months, and

January, considered a cold month. These tests hopefully show

the ability of the proposed model to perform as suggested, and

provides a sufficient basis to carry out more detailed and

specific studies.
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IV.6.2 Estimation of Model Order:

The number of harmonics, ng, in the component y can

be estimated from the shape and duration of some of the reoc-

curing load peaks. More reliable estimates can be obtained

from the least squares study described in section IV.2. On

this this basis we decided on a value of n of at least 5.

The next step was the estimation of the order of the

y model. Here we have various dimensions we can play with,

the number of ai parameters, n, the number of bi parameters,

m, and the number of di parameters.

In this study we only consider the special model with

white noise describing the model uncertainty. We need not thus

concern ourselves with the number or values of di. This assump-

tion, as will be seen later on, is not critical in getting a

good model.

In estimating the values of n and m we tended toward

values as small as possible. That is if a low order model

performed within reasonable levels, this was preferred. The

reasons were manyfold. First, higher order models require

more computer time to identify. Second, due to our data record

limitations, the identification of many parameters becomes

more difficult. Thirdly, the physical process we are trying

to model, y, is basically a simple one, which should be descri-

bable by a relatively low number of parameters. Finally, if

we can describe load behaviour with accuracy with a simple

model, then don't complicate life more than necessary.
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Keeping in mind the above recommendations, we first

fixed ny at 5 and attempted the identification of various models

with different values of n and m. The data considered in this

preliminary study was chosen from the month of July, as condi-

tions in this month are probably more stationary than during

the spring and fall when load behaviour varies more rapidly

over the weeks.

The load data used was provided by the Cleveland Elec-

tric Illuminating Company, as described in IV.l. The input

data, u, is determined from hourly values of recorded actual

and normal temperatures in degrees Farenheit, as explained in

chapter II.

We are interested in obtaining 3 models, one for the

weekdays and one each for Saturday and Sunday. For the week-

day model we considered a data record of 3 weeks from Monday,

July 14th, 1969, to Friday, August lst, 1969, excluding weekends.

The record length consisted therefore of 15 days. More on

this choice will be discussed later on.

The first attempt was to fit a model with n=m=l and

np =5. The behaviour of this model would tell us whether the

dynamic behaviour hypothesized is indeed needed. Thus if a

simpler static model were sufficient we would expect the iden-

tified value of a, to be near zero.

Identification using the Fletcher-Powell algorithm

as discussed yields the following set of parameter estimates,
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a = 0.99

b = 0.77

1931
- 279
- 128

-16
= - 13 (4.31)

- 15
- 362

85
23

- 49
- 18

Q = 1016

The first conclusion to be made here is that there

is a very strong support for a dynamical model. The parameter

a1 is, in this case, the time constant of the model. Since this

is equal to 0.99 the memory of this model is quite long.

In Fig. 28 we have shown the result of using the model

evaluated above to estimate and predict. Mereawebhaverpredie-

ted into the first week of August. It can be seen that the

standard deviation of the prediction error starts at approxima-

tely 32, the square root of Q=1016. This is a reasonable

confidence level, however, due to the large memory of the sys-

tem, the steady state standard deviation is almost 225, or

about 12% of the peak load. This is clearly a very uncertain

prediction.

It is interesting to note that the prediction error

is well within the standard deviation throughout the 4 days

prediction time. In particular, for the first two days the

error is very reasonable, deviating only near the end. This
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seems to imply that for the first two days when the system

inputs, u, are relatively small and random, i.e. average days,

the prediction is primarily determined by the periodic compo-

nent. However when the inputs deviate from normal, the errors

become much more significant although still compatible with the

standard deviation.

To further dramatize this effect we have shown in

Fig. 29, again using the same model, the prediction into the

last 4 days of the last week in July, where temperature devia-

tions are quite significant. We can see that when u deviates

from zero, the prediction error becomes quite significant.

The above results indicate that perhaps a more complex

temperature dependent model is needed to eliminate the high

sensitivity of prediction errors to large inputs, u. Following

our hypothesized model, we increase the order of the y system

to n=m=2 and still kpep.np=5.

The data record used to identify this model was taken

to be the 3 weeks in July starting Monday July 7th. Two of these

weeks overlap with those of the previous example so we have a

good basis for comparison. Running the identification program

resulted in the following model,

al = 0.65

a 2 = 0.27 (4.32)

60 = 4.2

61 = -1.4
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1709
- 284
- 127
- 14
- 12

xP = - 17 (4..32)
- 350 cont'd

84
21

- 48
- 17.

Q = 889

We can easily calculate the characteristic roots of

this system to be 0.93 and -0.28. Both are less than one in

magnitude making the y model asymptotically stable as expected.

No oscillatory behaviour is provided by y, a desirable result

since we want y to take care of this. The larger time constant

0.93, gives an idea of the time it would take the y system

response to go to zero. In 24 hours the response would decay

to less than 0.1 of the original value. This behaviour is

quite within the expected response of the load to temperature

effects.

In Fig. 30 we show the result of predicting with the

model obtained above. This prediction is made during the week

after the three weeks used to evaluate the model, as would be

done in real time.

The actual prediction error is plotted vs future time,

together with the associated standard deviation. On the same

graph we have shown a plot of the prediction error had we not

included the predicted value of y in the total load model.

This shows the effect on the model behaviour of the temperature
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dependent uncertain component, y. Below we have included the

temperature deviation inputs, u, used in this prediction. We

notice that when u is large (unusually cool), the effect of y

is to bring the error curve within the standard deviation, where-

as when u is not unusually large, the effect of y is less

significant, as expected.

We should also emphasize the fact that the steady sta-

te standard deviation of the prediction error is now only 75

or about 3.5% of the peak load, considerably better than the

first order y model in Fig. 29 (n=m=l).

In Fig. 31 we have shown a plot of the predicted resi-

dual load, y, vs future time for the same period as in Fig. 30.

This points out the dependence of y on temperature deviations.

It also presents a more explicit quantitative measure of the

value of y. When |ul is persistently large as in the first

part of the graph, so is y, reaching a value of 10% of the to-

tal peak load. The dynamical behaviour is also clearly evident.

So far the behaviour of this model was quite good,

the prediction compatible with the predicted standard deviation,

the effect of y very significant in making the prediction valid

when u was large, the predicted load errors up to 96 hours in

the future and their standard deviation a very reasonable 3.5%

of peak load in steady state. The next test consisted of

checking the one-step prediction errors for whiteness. As dis-

cassed in chapter III, this is not only a check for the model's

validity, but its verification would allow the detection of

anomalous load behaviour.
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Since the prediction updating was carried out for the

24 hours of Monday, we have shown in Fig. 32 the one-step

prediction errors for each of these 24 hours, and their expec-

ted standard deviation. Except for the first 5 or 6 hours, the

results are quite "whitish". ',Thbeinitial discrepancy can be

attributed to the fact that althoggh the behaviour of the load

for Monday is "similar" to that of the other weekdays, during

the early hours from Sunday midnight to 6 AM Monday, the load

behaviour is quite different, still following the low consump-

tion pattern of the previous Sunday. This fact led us later

on to the introduction of a fourth model for Monday, together

with one each for Saturday and Sunday, and for the remaining

four weekdays.

Now going back to Fig. 30 which shows the load predic-

tion errors, we notice that a periodic peak occurs at approxi-

mately 2100 hours, or 9 PM, of each day. This is due to the

lighting load which appears as a sharp increase in the daily

load curve. The obvious step taken in accordance with our

model was to go to a higher n value. We then considered for

the same data record as before, the model with dimensions n=m=2,

np=6.

Identification yields the following set of parameter

values,

a, = 0.62

a 2 = 0.30
(4.33)

b = 4.3

b = -1.5
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1716
- 284
- 127
- 13
- 12
- 17

x = 10
-350 (4.33)

84 cont'd
21

- 48
- 18

3

Q = 782

The system's characteristic roots here are 0.93 and

-0.30, almost identical to the model with n=m=2, np=5.

Comparison of 4.33 with 4.32 shows the parameters of

the y model practically unchanged. The parameters are

unchanged except for xpo and of course the additional xp6 and

Xpl3. The latter are respectively 10 and 3, whereas the change

in xpo is 7.

Not much improvement was expected from these added

parameters. The prediction results plotted in Fig. 33 confirm

this conclusion. Although the lighting load error peaks are

slightly decreased, the overall error stays approximately the

same. A perhaps more significant change is that the steady

state standard deviation is now only 62, or about 2.5% of the

peak load, with the actual errors still compatible with this

confidence level.

At this point we were generally satisfied with the

performance of the model with n=m=2, np=5 or 6, however we

investigated the performance of a model with n=8, m=l, np=6.



error with Standard Deviation

Time, hours

2%o7 ekla
-100 -

\ error without y(t)

-15011 1

Time of Prediction: 12 PM, Monday, July 28th, 1969
5 u(T, T), *F

6 12 18 4 618 4 6 12 24 6 12 1

-5 
Time, hours

-10

Fig. 33: July Load Forecast Error and Temperature Deviation - Model ng=6, n=m=2.

Mwh

A

-5
' I

A,-.tv



-171-

The main change here is that due to n=3, that is increasing

the number of system time constants. The fact that m=l is

less significant since the criterion J is relatively insensi-

tive to b1 .

Identification with the same data

a = 0.46

a 2 = 0.09

as = 0.36

b = 3.6

1708
- 282
- 128
- 15
- 12
- 18

x = 9
- 346

83
23

- 48
- 18
- 3

record again yielded,

(4.34)

Q = 700

Comparison of 4.34 with 4.33 shows relatively little

improvement in the minimum value of J, i.e. 700 against 782.

In addition the relatively small value of a2 sUggests that the

previous model may be sufficient. Evaluation of the characte-

ristic roots of the system yields the values of 0.95, and -0.24

±0.55j. Thus although the dominant time constant has not chan-

ged much at 0.95, we now have a pair of complex roots. This is

undesirable since it means that the y model is fitting some of

the periodic behaviour. Further calculation shows that the
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complex roots introduce an oscillatory component whose frequen-

cy is approximately that which would be provided by a seventh

harmonic. This is very reasonable since we still have some

small periodic peaks which are not modelled as well.

We attempted to predict with this model as before,

yielding consistently poorer results, especially when the sys-

tem inputs have been large. This indicated that further impro-

vement of the prediction errors would probably not be possible

by higher order models, but by introducing other effects as

discussed in the Conclusions and Recommendations. This result

is consistent with more sophisticated tests for estimating the

order of the system. Although the value of J found from the

identification scheme is less than for the case with n=2, this

does not mean that for other conditions the model fit will be

better. In fact it is worse. This could be detected from the

small decrease in J (or not significant), when n is increased

to 3.

IV.6.3 Further Examples of Modelling and Prediction Capabilities:

In this section we extend the analysis of the above

subsection to different seasons of the year.

Preliminary studies showed that load sensitivity to

temperature is highest during the warm months.* This fact is

illustrated by considering the following two cases:

* For the Cleveland Electric Illuminating Company data. See
Fig. 38 and 39.



-173-

A) August., 1969 -

We first attempted to reidentify the model analyzed

in the previous section by eliminating the oldest of the 3 weeks

in the data record, and adding the last week of July. The data

record was then from Monday, July 14th, to Friday, August 1st,

1969, excluding the weekends. A model with n=m=2 and n =5

was attempted. The parameter estimates were,

a = 0.61

a 2 = 0.23

b = 3.40

b = 0.61

1736
- 288
- 130 (4.35)
- 17
- 10

= - 15
- 343

82
22

- 49
- 19

= 846

Comparison with 4.32, the model parameters based on

the previous 3 weeks, shows that the values of 4.35 are quite

similar. This is reasonable as load behaviour is not expected

to change very rapidly at this time of the year.

This model was used to predict into the first week

of August with very similar results to those of Fig. 30. Since

this particular week has relatively small temperature deviations,

the importance of the y component is less evident than in the



July model previously discussed. Nevertheless the prediction

is compatible with the expected error.

We next considered a different model still in the

month of August, to emphasize the ability to predict during

prolonged heat spells.

Here we implemented the recommendation that a diffe-

rent model be used for Monday due to its early morning low

power sonsumption. We thus considered the identification of

the weekday model for Tuesday, Wednesday, Thursday and Friday,

based on three weeks' observations, that is 12 days' data. The

exact dates were Tuesday, August 5th, to Friday, August 22nd,

1969, excluding as explained Mondays, and weekends. The order

of the model identified was given by n=m=2, ng=7 and the resul-

ting parameter values were given by,

a, = 0.52

a2  0.40

b = 3.1

b1 = -1.0

1690
- 284
- 131
- 20
- 9 (4.36)
- 8

13
p= 5

- 347
76
17

- 51
- 21
- 1

5J

= 437

-174-
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The characteristic roots here are 0.94 and -0.42.

We attempted to increase the order of n from 6 to 7 in this

example to try and fit the sharp periodic lighting load peaks.

In Fig. 34 and 35 we have shown the application of the

model to predict into the week following the three used for

its identification again as wuuld be done on-line. The results

are very satisfactory.

In Fig. 34 we show a 3-day prediction curve at 9 AM

of Tuesday, August 26th, 1969. The actual and predicted load

are shown together with the prediction error and standard devia-

tion. The latter two are quite compatible with each other and

the top graph shows the relatively small error between actual

and predicted load.

In Fig. 35 we show the effect of temperature devia-

tions on the predicted value of y. The horizontal line descri-

bes the steady state standard deviation of the prediction error

and is put there to indicate the importance of the y component.

As can be seen at the beginning of the prediction we have very

warm weather (in the 90's) making the value of y corresponding-

ly high. The following lower temperature deviations result

in a decay of the large value of y due to the previous day's

heat wave. In the latter part of the prediction it warms up

again creating a new increase in y.

In Fig. 36 and 37 we have shown similar graphs for a

3-day prediction again made later on in the day, that is at 8

PM, after hourly updating throughout the in-between hours.



Load,
Mwh

Tuesday
8/26/59

200C

180C

160

1400

1200

100C

Thursday
8/28/69

4 z(t), prediction
- - - z(t), actual

Friday
8/29/69

12 18 24 6 12 18 24 6 12 18 24 6 12
Time, hours

Time of Prediction: 9 AM, Tuesday, August 26th, 1969.
e(t), Mwh

Standard Deviation A
- ................

6' 1. 18 '24 6 12
Time, hours

2.2% of total peak load

Fig. 34: August Load Forecast and Prediction Error, I - Model n,=7, nzm=2.

\' Wednesday
8/27/69

cm

41



y (t), Mwh
200

160

120

80

40

0
12 18 24 6 12 18 24 6 12 18 24 6 12

Time, hours

10 ji4T, T),

5

0

-5

Time of Prediction: 9 AM, Tuesday, August 26th, 1969

24 6 12 24 6 12 18 24 6
Time,, hours

Fig. 35: August Residual Load Forecast and Temperature Deviation, I - Model n=7,
n=m=2 .

load

I-I



A0*-
I,-

Load, Mwh
2000..

1800.

1600

1400

1200

1000.

100
80

60
40

20

0

-20

-40
-60

Wednesday
8/27/69

Thursday
8/28/69

t
Friday

8/29/69

24 6 12 18 4 6 12 8 24 6 12 f8 4
Time, hours

Time of Prediction: 8 PM, Tuesday,

e(t), Mwh

Standard Deviation -

August 26th, 1969

August Load Forecast and Prediction Error, - Model np=7, n=m=2.

predi
actua

CO

Fig. 36:

I



y(t), Mwh

120

2.2% of total peak load

a I I _ I.

24 '6 l'2 18 '4 '6 l2 8 24 '6 l'8 2'4
Time, hours

Time of Prediction: 8 PM, Tuesday, August 26th, 1969

u(T, 'i'), *F

Time, hours

August Residual Load Forecast and Temperature Deviation, II - Model np=7,
n=m=2.

80

40

0

10

8
6
4
2
0

-2
_4

I
"

Fig. 37:

-/-



The prediction errors are again compatible with the standard

deviation, the largest error occuring at 1 PM of the 3rd day,

being approximately 2.5 standard deviations. It must be em-

phasized that for shorter prediction times the standard devia-

tion is considerably less than in the steady state as seen

from Fig. 34 and 36.

The use of n =7 instead of 5 or 6, as before, improves

the fit of the sharp lighting peaks around 8 PM, however it

may have fitted noise as well, resulting in a very low value

of Q. This was responsible for the lower than usual predic-

tion error standard deviation. It is the author's opinion that

a lower value of n (e.g. 6) with the corresponding higher

error standard deviation is a more trustworthy model in the

sense that less of the uncertain or random load behaviour is

fitted to the deterministic part of the model.

B) January, 1969 -

In Fig. 38 and 39 we have illustrated the sensitivity

of load to temperature. Fig. 38 shows three Thursdays in July

and August relatively close together in the calendar, for a warm,

average and cool day. The extremes differ from each other by

about 200 Mwh whereas their average temperatures differ by 14 0F.

In Fig. 39 we show an equivalent case in the month of January.

Here the load curves differ by about 100 Mwh while the extreme

average temperatures differ by about 321F. Apparently, in this

particular system, electric heat has not been emphasized as

much as in other areas of the country (see Fig. 4).
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We thus expected the effect of temperature on the

winter load model to be relatively minor.

We considered first a model structure with n=m=2 and

n p=5. The data record considered was from Tuesday, January 7th

to Friday, January 24th, 1969, that is 12 days excluding Mon-

days and weekends. This period contained both extremes of

cold and warm temperatures for that time of the year, so that

sufficient information was available to identify the model.

The identified parameters were,

al = 0.37

a 2 = 0.11

b = 0.68

b1 = 0.76

1653
- 321
- 167

25
2 (4.37)

x = - 25
- 241

65
- 4
- 35

15.

Q= 830

The characteristic roots are now 0.56 and -0.19, indicating

considerably less memory than during the summer time.

The model was used to predict 4 days ahead and update

the prediction hourly during the Monday after the last week

used in the identification of the parameters, again as would

be done on-line.
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In Fig. 40 we show the predicted value of y with the

standard deviation of the total predicted load error denoted

by the horizontal line. In the lower part of the figure we

have shown the corresponding inputs which vary from very cold

at first to very warm. The temperature sensitive component,

y, however remains close to the standard deviation of the error

indicatingas expected, the relative load insensitivity to

temperature during the cold months.

In Fig. 41 we have shown the actual and predicted

load for the same case on the top with the actual prediction

error and predicted standard deviation in the bottom. The

error is clearly compatible with its level of confidence, i.e.

2% of the peak load approximately.

We also considered the case with n=m=l and n =5.

Using the same data record, here we come up with,

al= 0.43

b = 1.57 (4.38)

Q = 839

and identical to the previous model with n=m=2. Prediction

with this model yields almost identical results to those of

Fig. 40 and 41. This ia again expected since the increase in

Q in going from a second to a first order model is not signi-

ficant.

IV.6.4 Weekend Models:

Weekend Models were briefly investigated. For this

we considered a four week period and the corresponding data

for each Saturday and Sunday. The data record length was thus
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four days for each model. Model parameters were evaluated for

each case with the identification program yielding as expected

a drastically different periodic model with only a slighter

variation in the y model.

We considered four weekends in July, 1969, to fit a

model with np=5, n=m=2. The results for the Saturday model -

were,

a1  = 0.48

a 2 = 0.40

b = 2.36

b = -1.52

1296
- 236
- 100
- 7
- 29

xp = - 10
-198

68
2

- 21
- 14

Q = 354

while the Sunday model was given by,

al = 0.71

a 2  = 0.23

bo =1.15

-= -0.24

(4.39)

(4.40)



1115
- 199
- 56
- 22
- 31

= - 6
- 1

72 (4.40)
- 15 cont 'd
- 5
- 8

Q = 528

The characteristic roots for the Saturday and Sunday

models are , respectively, [0.93, -0.42] and [0.95, -0.48].

It is interesting to note that the characteristic roots do not

change drastically from weekdays to weekends. The main diffe-

rence lies in the b coefficients and the periodic component.

This implies that the actual size of the load has little effect

on the ability to "remember".

IV.6.5 Anomaly Detection - Real Data:

Anomaly detection is an important characteristic of

our model. The theory is discussed in III.11, while a simula-

ted example is presented in IV.5.3. In this section we have

used real load and weather data, however since no real anomalies

were known to have occured during the period of validity of the

identified model, we introduced, artificially, two disturbances

which would not be easily detected from the observed load beha-

viour.

The results are presented in Fig. 42, where the one-

step prediction errors are plotted vs time together with the

load disturbance. The first anomaly of 100 Mwh lasts only

one hour and as seen in the top graph results in two successive
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unusually large* errors which our scheme detects as an anomaly.

The second anomaly has a seven hour duration and appears more

gradually so that it is not detected until five observations

later.

It is important to notice that the prediction scheme

automatically corrects itself after the disturbance has died

down, a most significant property.

IV.7 Computer Requirements:

The computer requirements of the proposed identifi-

cation scheme are the most demanding. Identification of the

weekday parameters using 12 days' data used about 128 K of

computer space (IBM 360/65) for about 25 to 30 minutes using

the double precision option. This program however was not

optimized for minimum storage and time requirements. In addi-

tion this identification need only be carried out once a week,

at a time and day when this computer is not needed for other

important tasks.

The estimation-prediction scheme requires minimal

storage and computing time. We must only store the system para-

meters, the state of the system, and the steady state prediction

error standard deviations which can be calculated apriori once

a week. The input data needed to update the system state is

the present and previous input, u, as well as the present load,

z. The operations needed are restricted to three matrix multi-

plications and additions. The prediction requires similar

* Greater then 2 standard deviations.
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operations, but forecasted inputs must be fed in to evaluate

the forecast load. However the predicted inputs need not be

stored in this computer, but merely fed in one at a time. The

anomaly detection scheme is a simple program with a 3 hour

memory logic.

The estimation-prediction part of the scheme can there-

fore be programmed on-line in a small computer such as a PDP-8.

IV.8 Summary of Results:

In this chapter we have presented in a somewhat chro-

no-logical order the experimantal work done with simulated and

real data.

Section IV.2 discusses a crude weighted least squares

approach of testing the validity of the proposed model.

Results indicated that the separation of the load into per-

iodic and temperature sensitive components was very reason-

able indeed.

Section IV.3 discusses tests carried out to eva-

luate the possible separation of the two load components

and model each separately. This would reduce the computa-

tional requirements of the identification process. Although

the theory here was well developed, considerably more ex-

perimental work would be required to perfect it , so we

proceeded to a more complex but more reliable and readily

available Fletcher-Powell approach.
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In section IV.4 we discuss the identification

problem via the Fletcher-Powell scheme using simulated

data. This was very successful, so we next tested in IV.5

the various characteristics of the on line prediction-

updating scheme, again with simulated data. Here we also

test the ability of the identified model to predict, as

is done with real data. Anomaly detection is also tested.

Section IV.6 evaluates the techniques discussed

in IV.4 and IV.5 with real data. We started by estimating

the best model order. This was done following the guide-

lines of 111.9 and a model with n=m=2, n =6 was found to

give reasonable results.

We tested the ability of the identified model to

predict and presented arguments that indicated the impor-

tance of the temperature sensitive component in predicting

load, especially for large deviations in temperature.

Various models were evaluated for different times of the

year. We showed the ability to predict during long hot

spells, as well as during the, winter time. The ability of

the scheme to detect anomalous load behaviour and to

correct itself after the disturbance is also shown.
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V.0 PRACTICAL IMPLEMENTATION OF PROPOSED LOAD FORECASTING APPROACH

V.1 Preliminary Discussion

In this chapter we discuss a number of guide-

lines and prodedures to be followed when implementing the

proposed load forecasting approach in a real system.

Naturally only general rules can be given since each

particular system has its peculiarities and specific.

objectives.

V.2 Recommendations for Im lementation

V.2.1 Off-Line Study:

The first recommendation is that an off-line study

similar to the one carried out here be made with the parti-

cular system's observed data. This would provide anoestimate

of the model's order, and indicate whether additional complex-

ity is needed for the particular system.

The study should, if possible, be carried out for

an entire year's data, including holidays and weekends,

simulating on-line operation. This would give us more confi-

dence when implementing the technique on-line. Additional

recommendations on the off-line study are described in the

next chapter.

V.2.2 Guidelines for Type and Form of Data

A) When carrying out the off-line study the data

being used should be screened for abnormal behaviour, since

its use would disturb the normal behaviour model.

B) The data used should be such that facilities

for their on-line measurements be available. There is no



great difficulty in obtaining load data in this form, as

most central control units have load telemetering facilities.

As far as temperature data is concerned, telemetering from

one or more weather stations should provide hourly tempe-

rature measurements as well as the forecast temperature

profile and its confidence level at that time.

Close contact with the local weather bureau should

be madeto determine when forecasts are updated, what their

length is, and what their confidence level is.

C) Certain power systems are widely distributed

over a large geographical area. For such systems, a possible

approach would be to separate the system into two or more

regions, each of which has approximately uniform weather

effects. Alternatively, data weighting according to the

region, could be used to evaluate one average model.

V.2.3 On-Line Implementation

Only after considerable off-line study with

observed data does the author recommend the on-line

implementation of the technique. After sufficient confi-

dence has been gained in the model and its capabilities

by the off-line study then on-line implementation could

be carried out.

In this section we discuss as completely as

possible at this level the steps necessary to implement

the on-line prediction technique. These are as follows:
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A) Model Identification and Adaptation

B) On-Line Forecasting and Updating of Forecast

A) Model Identification and Adaptation -

This step is carried out much less frequently than

step B. The exact frequency depends on the time of year, and

how fast conditions are varying. In our study we considered

updating the modelooncet a week, but more or less frequent

reestimations may be needed.

The computer requirements of the identification step

are quite demanding as discussed in IV.7, however since this

needs to be carried out quite infrequently, that is once a week

approximately, relatively little computer time is taken up

by this step.

If four models are used, i.e. one each for Saturday,

Sunday, Monday and the remaining weekdays, then four such

identification steps would be carried out. The data record

used to identify each model must be kept in storage continuously

new data replacing the oldest one as new observations are made.

The length of this data record could vary, but as discussed

in III.11, it should not exceed six weeks. Note that for

prediction purposes we don't have to operate on this entire

data record but a much simpler operation is performed. This

data is used only to identify the model's parameters which are

then used for prediction purposes. The maximum number of days

that should be stored is six weeks x 7 days = 42 days.
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The identifi6ation program needed in this step is

described in Appendix A together with the instructions for its

use.

B) On-Line Forecasting and Updating of Forecasting -

In this study load forecasts are made once every hour.

The length of the forecast is variable and has been shown to

be compatible with the model at least up to one week.*

The computer requirements for this step are relatively

small, as discussed in IV.7, a small digital computer with A/D

lines and converters being sufficient. Alternatively, the

scheme could be programmed on a time-sharing basis in a larger

computer.

A display console or some type of output mode would

be desirable for the operator to observe load predictions when

required. A set of controls should be available to the opera-

tor to manipulate things like the length of the forecast,

personal corrections or interventions, and contingency load

predictions. The latter would allow the operator to consider

the effect of possible weather variations on the load behaviour,

which may be important in unit commitment, power exchanges, and

maintenance planning.

If a known load disturbance is expected, operator

intervention can be made possible by for example, correcting

the y component for the time of the disturbance. This correc-

tion could be done automatically when the operator feeds in

* This figure may depend on the particular power system and time
of year.
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the approximate shape and duration of the disturbance. A

fitting routine could then be used to alter the xp parameters

accordingly. This would allow automatic updating to continue.

If the abnormality affects the weather sensitive load, y, such

as that due to a known load shedding, or due to a severe loss

of power, then automatic updating and prediction should proba-

bly be discontinued altogether, and we should revert to the

human operator completely.

The output display should also indicate whether

anomalous load behaviour has occured as discussed in III.11.

This could be indicated as a written message and/or by some

visual or audio indicator. The program should be set up, as

discussed in III.11, so that when an anomaly is detected, closed

loop updating is discontinued, however closed loop updating can

continue in order to detect the return of the load to normal

levels. This could again be indicated by a written message or

by discontinuing the warning signal. Normal load prediction

can also continue via the open loop predictor.

To allow for continuous operation throughout the week,

the four load models suggested must be stored in the computer,

together with the present state estimate of the system. This

can be incorporated into the prediction program by having a

counter which automatically changes the model parameters at the

end of each period, e.g. from a Sunday to a Monday model. The

state estimate is kept at its last Valud. In addition storage

for predicted temperatures must be available.
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Generally no data from the previous years should be

stored, but for some minor exceptions like school vacations,

switch to Daylight Saving Time, Christmas lighting, and other

regular seasonal effects. This could however be incorporated

into the y component by the operator as discussed above when

the time comes.

In Fig. 43 we have presented in pictorial form the

entire operation here described.
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VI.0 CONCLUSIONS & RECOMMENDATIONS

VI.1 Conclusions:

A mathematical model for the load of a power system

was developed with the main purpose of short term load forecas-

ting. The prediction times investigated ranged from hours to

one week. The main characteristics of the model were:

A) Load is modelltd as a discrete time process.

Hourly intervals were used, but we are not rigidly restricted

to this period. This provides more information about load

behaviour than models which describe only a small number of

load values.

B) A structure is hypothesized, justified physically,

and verified by experimentation, which separates load behaviour

into periodic and temperature dependent components.

C) The temperature dependent component is described

by a non-linear memoryless transformation between actual tempe-

rature and normal temperature in cascade with a linear dynamical

system.

D) Modelling uncertainty is included in the load

model as an additional white noise input to the above mentioned

linear dynamical system. This term models all the effects that

have not been explicitly described, whether they be due to

inherent uncertainty, omitted non-linearities or other weather

effects.

E) The model has a number of parameters in both the

periodic and weather depdndent trandom components which are
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later on adjusted Uia identification techniques to fit the

model to the particular load behaviour. These parameters are

reidentified approximately once a week.

F) Four models are suggested, one each for Monday,

Saturday, Sunday, and the remaining weekdays.

A number of system identification techniques are

presented and analyzed. We concluded based on experimentation

that the best approadh in terms of expediency, but not necessa-

rily the least complex, was one based on the Fletcher-Powell

algorithm to minimize the identification criterion.

Linear filtering and prediction algorithms are used

in the implementation of the load forecasting scheme. This

provides us with a computationally efficient and simple scheme

of on-line prediction and updating as new data is observed.

In addition it allows us to automatically detect anomalous load

behaviour. A number of advantages and disadvantages due to

this prediction scheme are discussed in II.9.

A large number of tests are carried out on the proposed

schemes, both with simulated and real data, the latter from the

Cleveland Electric Illuminating Company.

The real data studies are done for various times of

the year to test the model's adaptibiliy to seasonal variations.

First, however, some effort is spent in determining a valid

model order. For the summer months, a model with np 6, n=m=2,

was shown to yield quite good results, while for the winter
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months, np=5, n=m=l was sufficient. However these figures will

vary from company to company.

Further studies were performed to test the length of

the data record needed in the identification program. Here

we are limited as to its length, on the upper side by the slow

time variations of load behaviour over the seasons to not more

than six weeks (less during spring and fall), and on the lower

side by the numerical efficiency of the identification scheme

to at least three or four days. For the weekdays' model we

picked a period of three weeks, or twelve days, which yielded

good results.

We investigated models for the months of July, August,

and January, which included unusually cold and warm conditions

in both summer and winter. In all cases the prediction error

varied from about 1% of peak load for a one hour prediction,

to about 2.5% of peak load for a one week forecast, assuming

perfect knowledge of the future weather. This was always

compatible with the predicted error standard deviations.

Weather prediction uncertainty can also be incorporated into

the load forecast uncertainty as discussed 11.7.2.

The temperature dependent component during summer was

found to be very important whenever temperature deviations were

large. During periods of relatively small temperature deviations

from normal the effect of this component was less significant,

as expected.
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It was found, for the particular power system consi-

dered, that the sensitivity of load to temperature during winter

was quite small, so that the model obtained did not depend as

heavily on temperature deviations.

Anomaly detection was tested by introducing artificial

disturbances into the actual data. These disturbances were of

finite duration and less than 5% of peak load, so that their

detection with the naked eye could not be easily done. The

anomaly detection scheme detects these disturbances, and when

they end, the closed loop prediction-updating scheme returns

the prediction to normal.

Finally, in chapter V, a number of guidelines and

recommendations are given for the implementation of the propo-

sed techniques. Implementation into a real system is certainly

recommended, provided a thorough study,like the one described

above, of the specific behaviour of the particular system is

first carried out.

Interaction between operator and machine is an impor-

tant characteristic of this approach. The scheme here propo4

sed does not have the replacement of the load forecasting-sche-

duling operator as its objective. Instead, a complementary

action is all that is planned. Thus, the proposed forecastor

would automatically predict under normal conditions, warning

the operator whenever anomalous load behaviour is detected.

This would free the operator, under normal conditions, to perform

other important tasks. Further interaction is also possible.



Known disturbances, such as those due to special national or

local events, factory strikes, school shutdowns, holidays,

Christmas lighting, time shifts, etc., may be incorporated

into the prediction by the operator to a fitting routine, given

the estimated shape and duration of the disturbance.

Theoretically the operator need not understand the

mathematics or structure of the model, however, this ability

would prove very valuable in making full use of the combined

capabilities of the operator-predictor operation, and it is

highly recommended. The basic structure of the model and its

operation are relatively simple and do not require knowledge

of advanced mtamattestbo uriderstarid.

VI.2 Recommendations:

VI.2.1 Data Recommendations:

A) The possibility of taking load data observations

at shorter time intervals should be considered. This may

be useful in detecting anomalous load behaviour more quickly.

. B) Temperature data was only available for this

study in tri-hourly form, so that interpolations had to be

made. This could have introduced some errors. Future studies

may consider more frequent weather observations.

C) Further studies could be carried out under varying

weather conditions and different times of the year.

D) Data from companies that emphasize winter electric

heat could be tried to test the model's capability under these

conditions.
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VT.2.2 Modelling Recommendations :

A) Instead of modelling the periodic component as a

sum of sinusoids, we could investigate its modelling by a

polynomial time series. This may allow us to describe the

sharp load curve peaks without as many parameters as are

now required.

B) Certain seasonal variations in the load behaviour

could be stored as a correction term to be added to the perio-

dic component when the time comes. Such variations could be

due to events like Christmas holidays, time shifts, school

holidays, etc. This would improve the model's performance

during these periods. Alternatively, we could rely on the

operator's personal estimate of such effects which he would

incorporate into the model as suggested in chapter V.

C) The no-effect region, (600,700), in the nonlinear

relation between u,T and t, may very well vary over the

seasons, or may depend on the power company. For example, it

is possible that in summer time no heating load will appear

even if the temperature falls below 600F. Alternatively in

winter, no more decrease in heating load could occur if the

temperature exceeds 500F, say. A number of possibilities

arise, which should be tested by experimentation. In this

study the structure chosen was sufficiently valid, so that

unless results indicate more complicated models between u,T

and T may be needed, we don't recommend any changes.
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D) Different temperature sensitive models may be

needed in some power systems for the working and rest hours.

However, again, this study does not indicate that this com-

plexity should be added, as prediction errors are already

quite reasonable.

E) In some systems it may be necessary to include

other weather effects such as humidity and light intensity.

These can be treated as additional inputs to the weather

dependent linear system. Again, in this study no need for

additional weather effects was found necessary. It should

be noted that light intensity may vary drastically over

the load area, and may be difficult to forecast. The author's

opinion is that unless a significant contribution to the

total load is made by light intensity, it should be treated as

part of the model uncertainty.

VI.2.3 System Identification Recommendations:

A) The separation algorithms described in chapter III

should be investigated more thoroughly to check for possi-

ble savings in the computer requirements of the identification

scheme.

B) Inclusion of coloured noise in the ARMA tempe-

rature dependent model was not found necessary here since the

residual errors are essentially white. It is however possible

that -the coloured noise assumption may yield better results

for data from a different system.
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Appendix A: SYSTEM IDENTIFICATION PROGRAM

This appendix describes a computer program,

written in FORTRAN language, which solves the identifi-

cation of the special load model (111.7) by the Fletcher-

Powell method.

We make use of the double precision subroutine

DFMFP which applies the Fletcher-Powell algorithm for

the minimization of the identification criterion J.

Equation 3.160 is used to define J while 3.161,

3.162,3.163 define the gradient of J with respect to the

unknown parameters.

The program is thus essentially to read load and

temperature deviations for the data record being considered,

and to define the function J and its gradient for any

given value of the unknown system parameters by the above

equations. Subroutine DFMFP is then called to minimize J.



C
C MAIN PROGRAM, TO IDENTIFY THE PARAMETERS JF A LINEAR DISCRETE
C TIME SYSTEM DRIVEN BY A DETERMINISTIC INPUT U, AND WHITE NOISE
C FLETCHER POWELL METHOD
C

DOUBLE PRECISION ZU, ARGGRADHFQ
DIMENSION Z(400)tU(4DD) ,ARG(26),GRAD(26),H(429)
EXTERNAL FUNCT
COMON NSMSNPNDAYNWK
COMMON/DATA/ZU

C
C TO DEFINE SYSTEM DIMENSIONS
C

NS-l
MSal
mPa5
NP3=2*NP+l
NV*NS+MS+NP3
NS1=NS+1
NM=NS+MS 0o
NM1uNM+l

C
C NUMBER OF NON LINEAR ITERATIONS
C

LIMIT=100
C
C T3 READ NO. OF DAYS DATA BEING USED IN IDENTIFICATION PER WEEK
C

READ 5,NDAY
C
C NUMBER OF WEEKS BEING CONSIDERED IN DATA RECORD

NWK=3
C

5 FORMAT(13)
NDAS=NWK*NDAY
NHOUR S=NDAS*24



ND=NDAY*24
NDT=ND-NS
NDT*NDT*NWK
PRINT 1,NDASNHOURS

1 FORMAT('NUMBER OF DAYS AND DATA POINTS =9, 159,',15)
C
C ESTIMATE OF MINIMUM LIKELIHOOD FUCNTION
C

EST=1000
C
C TO READ LOAD AND TEMPERATURE DATA
C

6 READ 157, (Z(I),I=1,NHOURS)
157 FORMAT(20X,12D5.0)
15 FORMAT(8D10.2)

READ 15,(U(I),I*1,NHOURS)
DO 2 I=1,NHOURS
PRINT 3, Z(I),U(I)

3 FORMAT(2D14.5)
2 CONTINUE

C
C TO READ INITIAL ESTIMATE OF PARAMETER VALUES
C
C
C FIRST NS ARE A VECTOR, SECOND MS ARE B VECTOR, THIRD NP3 ARE XP
C

READ 16, (ARG(I),Ia1,NV)
16 FORMAT(8010.5)

PRINT 4, (ARG(I),I1,NV)
4 FORMAT($ ARG =',9013.5/6X,9013.5)

C
C TO CALL OFMFP SUBROUTINE
C

EPS=0 .lE-15
CALL DFMFP(FUNCTNVARG,F,GRAOESTEPS,LIMITIERH)

C



C TO PRINT OUTPUT
C
C
C SYSTEM PARAMETERS
C

PRINT 19,IER
19 FORMAT1* IER =*,12)

PRINT 20,(ARG(I),I1,NS)
20 FORMAT(1H09' A VECTOR =*,15F8.4)

PRINT 21,(ARG(I),I=NS1,NM)
21 FORMAT(1W,' 8 VECTOR =*,15F8.3)

PRINT 22,(ARG(l),I=NM1,NV)
22 FORMAT(1HO,' XP VECTOR=9,15F8.3)

PRINT 23,F
23 FORMATf(1Hn'Q ESTIMAT =',D11.4)

PRINT 24, LIMIT
24 FORMAT(1WH0'NO OF ITER =0,13)

C
GO TO 6

T CALL EXIT
C

END



SUBROUTINE FUNCT(NVARGVALGRAD)
C
C THIS ROUTINE DEFINES VALUE OF J AND GRADIENT F3R A4Y GIVE4 PARAME-
C TER VECTOR VALUE
C

DOUBLE PRECISION ARGVAL1 GRAD,ZITZITVUITVA,8,XPPHIPSI,F,GRADS
DOUBLE PRECISION CK
DIMENSION ARG(26),ZITV(5),UITV(6),A(5),8(5),XP(15),PHI(15),
1PSI(5,15),GRADS(26),GRAD(26)
COMMON NSMSNPNDAYNWK
COMMON/ERROR/ZITZITV,UITV
COMMON/AGO/A,8,XP

C
C TO DEFINE VALUE OF FUCNTION, VAL
C

VAL*D.
NS1=NS+1
NP3=2*NP+1
NV*NS+MS+NP3
CK=I.O/DFLOAT(NWK*(NDAY*24-NS))
00 5 I=1,NV

5 GRAD(I1=D.
CALL SEPAR(ARG)
DO 30 IWEEK=1,NWK
JDAY=(IWEEK-i)*NDAY+1
DO 10 IT=NS1,24
CALL ZU(ITJDAY)
CALL ERRORS(IT,F,GRADS)
VAL =VAL+F**2
CALL SMPY(GRADS,2.0,GRADSNV,1,0)

10 CALL GMADD(GRAD,GRADSGRADNV,1)
IF(NDAY.EQ.1) GO TO 3n,
KDAY=JDAY+NDAY-1
JDAY=JDAY+1
DO 15 IDAY=JDAY,KDAY
DD 20 IT=1,24



CALL ZU(ITIDAY)
CALL ERRORS(IT,F,GRADS)
VAL=VAL+F**2
CALL SMPY(GRADS,2.0,GRADSNV,1,C)
CALL GMADD(GRADGRADS,GRADNVl)

20 CONTINUE
15 CONTINUE
30 CONTINUE

VAL*CK*VAL
CALL SMPY(GRADCKGRADNV,1,0)
PRINT 25, VAL

25 FORMAT(1tHO,' FUNCTION =,0D13.5)
PRINT 26,(ARG(I),I=1,NV)

26 FORMAT(1H ,* ARGUM = *,9D13.5/8X,9013.5/8X,9013.5)
PRINT 27,(GRAD(I),I=1,NV)

27 FORMAT(' GRAD=U,9D13.5/6X,9D13.5/6X,9013.5)
RETURN
END



SUBROUTINE ZU(IT,IDAY)
C
C THIS ROUTINE CALCULATES Y OF T , U OF T AND THE
C CORRESPONDING VECTORS GIVEN THE TIME OF DAY AND THE SYSTEM DIMENS
C

DOUBLE PRECISION ZUZITZITVUITV
DIMENSION ZITV(5),UITV(6),Z(403),U(403)
COMMON/DATA/ Z,U
COMMON/ERROR/ZlIT,ZITVUITV
COMMON NSMSNPNDAYNWK

C
C TO DEFINE ZIT AND UIT
C

IN=IT+24*(IDAY-1)
ZIT=Z( IN)

C
C TO DEFINE ZITV AND UITV
C

DO 10 I=1,NS
10 ZITV(I)*Z(IN-I1

DO 20 I=1.MS
20 UITV(I)=U(IN-I+11

RETURN
END



SUBROUTINE PSISUB(ITPSII
C
C THIS ROUTINE DEFINES PSI MATRIX AS A FUNCTION OF T*E HOUR OF DAY
C

DOUBLE PRECISION PHIPSIPI
DIMENSION PSII5,151,PHI(15)
COMMON NSMSNP.ND-AY,NWK
NP3=2*NP+1
DO 15 IzlNS
ITI=IT-I
IF(ITI.LE.01 ITI=24+ITI
CALL PHISUB(ITI,PHI)
DO 20 J=1,NP3

20 PSY(IJ)=PHI(J)
15 CO.NTINUE

RETURN
END



SUBROUTINE PHISUB(ITPHI)
C
C THIS DEFINES PHI MATRIX AS FUNCTION OF HOJR OF DAY
C

DOUBLE PRECISION PHI,PI
DIMENSION PHIl15)
COMMON NSMSNPNDAYNWK
NP1=NP+1
NP2=NP+2
NP3=2*NP+1
PI=3.14159265359

C
C TO DEFINE PHI
C

PHI1 )=l.
DO 10 1=2,NP1

10 PHI(I)=DSIN(2.*PI*DFLOAT(IT*(I-1))/24.)
DO 20 I=NP2,NP3

20 PHI(I)*DCOS(2.*PI*DFLOAT(IT*(I-NP1)/24.)
RETURN
END



SUBRJUTINE GRADO(F4,UITF,G1,GRADS)
C
C THIS DEFINES GRADS FROM COMPONENTS
C

DOUBLE PRECISION F4,GlUITFGRADS
DIMENSION F4l5),Gl(15),UITF(6),GRADS(26)
COMMON NS,MSNPNDAYNWK
NS1=NS+1
NM=NS+MS
NM1=NM+1
NP3=2*NP+1
NV=NS+MS+NP3
DO 10 I=1,NS

10 GRADS(ID=F4(I)
DO 15 I=NS1,NM

15 GRADS(I)*-UITF(I-NS)
DO 20 I=NM1,NV

20 GRADS(IIG1(I-NM)N
RE TUR N
END



SUBROUTINE SEPARIARG)
C
C THIS SEPARATES ARG INTO ABAND XP
C

DOUBLE PRECISION ARG*A,XP
DIMENSION ARG426),A(5),B(6),XP(15)
COMMON NSMSNPNDAYNWK
COMMON/ AGO/A, 8,XP
NS1=NS+1
NM=NS+MS
NMINM+1
NP3=2*NP+1
NVuNS+MS+NP3
DO 10 I*1,NS

10 A(I)=ARG(Il
DO 15 I=NS1,NM
J=I-NS

15 B(J)*ARG(I)
DO 20 I=NM1,NV
JmI-NM

20 XP(J)*ARG(I)
RETURN
END



SUBROUTINE ERRORS( ITFGRADS)
C
C THIS CALCULATES ERRORZ(T)-ZHAT(T) FOR ANY GIVEN TIME IT
C

DOUBLE PRECISION ZITZITVUITV,ABXPPSIPHI, F,F1,F2,F3,F4,
1F5,GRADSGlUITF

DOUBLE PRECISION D.,pPHIXPSIX
DIMENSION D(15,15) ,PHIX(15),PSIX(5,15)
DIMENSION ZITV(5) UITV(6),PSI(5,15),PHI(15) ,A(5),8(6) ,XP(15),

lFI(I),F2(l),F3(1),F4(5),F5(1),GRADS(26), G1(15),UITF(6)
COMMON/ERROR/ZITZITVUITV
COMMON/ AGO/A, 8,XP
COMMON NSMSNPNDAYNWK
NP3*2*NP+l

C
C DEFINE XP VECTOR SCALING MATRIX 0
C

03 5 I=1,NP3
DO 5 J=1,NP3

5 D(1,J)=0. 00
D(1,1)1000.0
0(2,2)=100.
D(3,3)=100.
0(4,4)=10
D( 5,5)10
0(6,6)=10
D( 7,7 )10m
D(8,8 1=100
0(9,9)=IC
D(10,10)=10
D( 11,11 )=10

C
C 0 IS DEFINEO HERE FOR NP=5
C

CALL ARRAY(2,NP3,NP3,15,15,0,0)
CALL GTPRD(A,ZITV,F1,NS,1,1)



CALL GTPRD(BUITVF2,MS,1,1)
CALL PHISUB(ITPHIX)
CALL GMPRD( D,PHIXPHINP3,NP3,1)
CALL GTPRD(XPPHI,F3,NP3,1,1)
CALL PSISUB(ITPSIX)
CALL ARRAY(2,NSNP3,5,15,PSIXPSIX)
CALL GMPRD(PSIX,0,-PSI,NS,NP3,NP3)
CALL GMPRD(PSIXPF4,NSNP3,1I
CALL GTPRD(AF4,F5,NS,1,1)
F=ZIT-F1(1)-F2(l)-F3(1)+F5il)

C
C TO DEFINE GRAD
C

CALL GMSUB(F4,ZITVF4,NS,1)
CALL GTPRD(PSIAG1,NSNP3,1)
CALL GMSUB(GIPHIG1,NP3,1)
CALL SMPY(F4,FF4,NS,1,D)
CALL SMPY(UITVF,UITFvMS,1,0)
CALL SMPY(G1,F,G1,NP3,1,01
CALL GRADO(F4,UITF,G1,GRADS)
RETURN
END

C
C A NUMBER OF DOUBLE PRECISION MATRIX 3PERATING SUBROUTINES
C HAVE NOT BEEN LISTED HERE SINCE THESE ARE SSP ROUTINES
C WHOSE ONLY MODIFICATION IS AN ADDITIONAL DOUBLE PRECISION
C STATEMENT. THESE ARE GMPRD,ARRAYSMPY,GTPRD,GMADDAND GMSUB,
C
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Appendix B: ESTIMATION PREDICTION ALGORITHMS

This program,also written in FORTRAN, solves the

estimation-prediction equations used in forecasting load

and its standard deviation as well as updating these quan-

tities in a recursive fashion.

The equations programmed are as depicted in Figs.

7 and 8.

The system parameters read by the program,B,D,

and X, assume that the model is in state space form as

given by equations 2.19 through 2.25 with the total state

defined by[p]. The parameters AS stand for the a in the

ARMA model. BO stands for bo in the same model.



MAIN PROGRAM - LOAD STATE ESTIMATION AND PREDICTI4

DOUBLE PRECISION SQPYV
DOUBLE PRECISION Z,UAS,8,D,S,X,Q,R,BZVEVERR,JV,C,P,G,A
DOUBLE PRECISION ZI,UI,U1
DOUBLE PRECISION Y
DIMENSION YP(96),EYP(96)
DIMENSION SQP(20),YV(96)
DIMENSION Z(480),U(48D),AS(5),8(25),D(25),S(25,25),X(25),0(1),R(1)
1,ZV(96),ERR(96),UV(9T),C(20),P(20,23),G(23),A(20#,0) ,EV196)

TO DEFINE SYSTEM DIMENSIONS

NS=1
NP-5
NP 1=2*NP+ 1
NP2=NP1+1
N=NP1 +NS
NP3=NP+2

TO DEFINE SYSTEM PARAMETERS

Q(1)=839
R(1)=o0

10 FORMAT(8D
READ 10,1
READ 10,
READ 10,
READ 10,(

AND INITIAL STATE

10.3)
AS(I),=12,NS)
(B8(I),I=1,N),80
(D(I),I=1,N)
X( I),I=1,4)

OEFINE INITIAL COVARIANCE MATRIX

DO 15 I=1,N
DO 15 J=1,N
S{I,J)=c.0

15 S(I,I)=0.1D+10

C
C

C
C
C

C
C
C

C
C
C

I



D0 17 I=1,NP1
17 S(I,)=0.0

CALL ARRAY(2,N,N,25,25,S,S)
C
C DEFINE A MATRIX
C

CALL DEFINE(ASNSNPA)
CALL ARRAY(2,N,N,20,20,A,A)

C
C READ INPUT DATA
C

NDATA=120
READ 11,(Z(I),I=1,NDATA)

11 FORMAT(20X,1205.0)
READ 10,(U( I),I=1,NDATA)

C
C MAXIMUM PREDICTION TIME=NTP<96, ESTIMATE THUS UP TO MAX NMAX=NDATA
C - NMAX
C r)

NTP=96
NMAX=NDATA-NTP

C
C TO ESTIMATEPREDICT NTP AHEAD FROM TIME = 1,NMAX
C

DO 20 1=2,NMAX
IT=MOD( 1,24)

C
C DEFINE C MATRIX
C

CALL CIT(ITNSNPC)
PRINT 42,IT,(C(K),K=1,N)

42 FORMAT(1HO,' C(',12,')=',9013.5/8X,9D13.5)
C
C TO DEFINE G AND P, THE GAIN AND COVARIANCE MATRICES
C

CALL SIGMA( N,1,A,C,Q,D,R,S,P,G)



PRINT 40,(G(K),KmIN)
41 FORMAT(IHO,' GAIN **,9013.5/8X,9D13.5)

D3 47 JK=1,N
CALL ARRAYv(1,NN,2020(,PP)
SQP(JK)*DSQRT(P(JKJK))
CALL ARRAY(2,N,N,20,20,P,P)

47 CONTINUE
PRINT 48, (SQP(K) ,K=1,N)

48 FORMAT(IHO,' VAR **,9D13.5/8X,9D13.5)
C
C UPDATE STATE
C

ZI=Z(I)
UIZUMI
UI=U( FI)
Ul=U(I-1)
CALL STATES(X,A,B,8OCGNZIU1,UI)
PRINT 41,(X(K),Kz1,N)

41 FORMAT(1Hn,' XP EST*,9013.5/8X,9013.5)
PRINT 50, U(I)

50 FORMAT(lHO,' TEMP DEVIAT = ', F8.2)
C
C PREDICT LOAD NTP HOURS AHEAD
C
C FIRST DEFINE FUTURE INPUT VECTOR UV
C

NTPlZNTP+1
DO 25 K=1,NTPI
J=I+K-1

25 UV(K)=U(J)
C

CALL PREDIC(NNSNPIT,NTP,X,P,A,8BO,D,QJVZV,EVYV)
PRINT 31

31 FORMAT(1HO,5X,' TIME',5X,'PREDICTION',5X,'ACTUAL',5X, ERR)R VAR
1*,5X,'ACTUAL ERROR',3X,'PRED OTEMP',3XOPRED RES LOAD',3X,'PER LOA
ID*,5X,*Z-YP')

C



C DEFINE ACTUAL PREDICTION ERROR
C

DO 30 Km1,NTP
J=I+K
ERR(K)=Z(J)-ZV(K)
YP (K)=ZV(K)-YV(K)
EY P (K)= Z (J) -Y P ( K)

TO PRINT OUTPUT DATA

Kl=K+l
L=MOD (J, 24)
PRINT 32,LZV(K),Z(J),EV(K),ERR(K)

32 FDRMAT(6XI2,6XF8.1,5XF8.1,6XFlO.
1F8.1, 3XtF 8.1)

30 CONTINUE
20 CONTINUE

END

,JV(K),YV(K),YP(K),EYP(K)
1,5XF8.1,13XF5.0,8XF8.1,5X,

C
C
C

I
r"i



SUBROUTINE STATES(X,A,8,BO,C,G,N,ZTUTUTI)
C
C THIS ROUTINE ESTIMATES THE STATE OF A LINEAR SYSTE4 DRIVEN BY
C WHITE NOISE GIVEN THE PREVIOUS STATE ESTIMATE, THE SYSTEM
C MATRICES AB, AND C, THE GAIN G, THE SYSTEM DIMENSION N, AND THE
C PRESENT OUTPUT AND INPUT ZT AND UT. NEW STATE IS X.
C

DOUBLE PRECISION XA,8,BCGZTUTZTIXlAXET1,UTi
DIMENSION X(1),A(1),8(1),C(1),G(IIXlf2o),AX(23),ZT(1)

C
C TO DEFINE ONE STEP PREDICTION OF X AND ZT
C

CALL GMPRD(A,X,AX,NN,1)
CALL SMPY(8,UTX1,N,1,O)
CALL GMADDIAX,X1,Xl,N,1)
CALL GTPRD(C,X1,ZT1,N,1,1)

C
C TO UPDATE STATE
C

ET1=ZT-ZT1 (I)-BO*UT1
CALL SMPY(GETL,G,N,1,O)
CALL GMADD(X1,G,X,N,l)

C
RETURN
END



SUBROUTINE PREDIC(NNSNPITNTP,X,P,A,B,B0,D,Q,tUVZVEVYV)
C
C THIS ROUTIN PREDICTS NTP HOURS IN ADVANCE( MAX. OF 96) AND
C CALCULATES THE EXPECTED ERROR IN EACH PREDICTION

DOUBLE PRECISION X,P,A,B,80,D,QUVZV,EVDTATPPCPC, BUAX,C,
1CX

DOUBLE PRECISION APAPAQDPC
DOUBLE PRECISION XP#UVIYV
DIMENSION X(1) ,P(),A(1),8(1),D(1),UV(1),ZV(1),EV(1),DT(2"),AT(20,
1201,PP(204,20),CPC(1) ,BU(20),AX(20),C(20),CX(1)
DIMENSION QD(20,23),AP(20,20),APA(20,20),PC(20)
DIMENSION XP(20),Q(11,YV(1)
NP2=2*NP+2

C
C TO GENERATE ESTIMATE OF PREDIVTION ERROR
C

CALL GMTRAID,DT,N,1)
CALL GMTRA(AAT,N,N)
CALL GMPRD(DDT,QD,N,1,N)
CALL SMPY(QDQ(1),QDNN,0)
DO 5 Isl,NTP
IF( IGT.1) GO TO 10
CALL GMPRD(APAPNNN)
GO TO 11

10 CALL GMPRD(APPAP,N,N,N)
11 CALL GMPRD(APATAPANNN)

CALL GMADD(APA,QDPPNN)
C
C TO CALCULATE PREDICTED ERROR
C

J=I+IT
K=MOD(J,24)
CALL CIT(KNSNPC)
CALL GMPRD(PP,C,PCNN,1)
CALL GTPRD(CPCCPC,N,1,1)

5 EV(I)=DSQRT(CPC(l))



C
C TO GENERATE PREDICTED OUTPUT
C

DO 20 1=1,NTP
UVI=UV(I)
CALL SMPY(BUVIBU,N,1,O)
IF(I.GT.1) GO TO 21
CALL GMPRD(A,X,AX,N,N,1)
GO TO 22

21 CALL GMPRD(AXPAXNN,1)
22 CALL GMADD(AXBUXP,N,1)

J=I+I T
K=PMOD(J, 24)
CALL CIT(K*NSNPC)
CALL GTPRD(CXPCX,N,1,1)
ZV(I)=CX(1)+80*UV(1+1)
YV(I)=XP(NP2)+BO*UV(I+1)

20 CONTINUE
RETURN
END



SUBROUTINE CIT(IT,NS,NPCl
C
C THIS DEFINES C GIVEN TIME OF DAY
C

DJUBLE PRECISION CPI
DIMENSION C11)
PI=3.14159265359
C(1)=1.
D 5 I11,NP
J= I+ 1
C( J)=DSIN( PI*DFLOAT (I*IT )/12.)
K=NP+I+i

5 ClK)=DCOS(PI*DFLOAT(I*IT)/12.)
NPI=2*NP+1
NP2=NP1+1
N=NP1+NS
DO 10 I=NP2,N

10 C(I)=o.
C(NP2)*1.0
RETURN
END



SUBRJUTINE DEFINE(ASNSNPA)
DOUBLE PRECISION AAS
DIMENSION A(20,20),AS(1)

C
C THIS DEFINES A FROM AS PARAMETERS
C

NP1=2*NP+1
NP2=NP1+1
N=NP1+NS
DO 5 I=1,N
DO 5 JmlN

5 A(IJ)=.0
00 12 I=1,NP1

10 A(II)=1.o
DO 15 I=NP2,N
A(I,NP2)=AS(I-NPI)
IF(I.EQ.N) GO TO 15
I1=I+1
Al I,I1)=1.O

15 CONTINUE
RETURN
END



SUBROUTINE SIGMA(N,M,A,C,Q,D,R,S,P,G)
C
C THIS ROUTINE IS VALID FOR ONLY ONE OBSERVSTION , I.E. M=l, HOWEVER
C IT COULD EASILY BE ADAPTED TO MORE THAN ONE OBSERVATION USING
C SUBROUTINE MINV AND A FEW OTHER MINOR CHANGES
C

DOUBLE PRECISION A,C,Q,D,R,S,P,G,SCCTSCSUM,SCTSSCTAT,DT,APAPA
1,O,DQD
DIMENSION A(),C(1),Q(1),D(1),R(1),S(1),P(1),G(1),SC(2n),CTSC(1)
lSUM(1)SCT(20),GSCT20,2C0,AT(20,20)DT(20),AP(20.,2n),APA(20,20),
100(20),0D(20,20)

C
C TO REDEFINE P, NEW COVARIANCE MATRIX
C

CALL GMPRD(S,C,SC,N,N,1)
CALL GTPRD(CSCCTSC,N,1,1)
CALL GMADD(CTSC,R,SUM,1,1)
SUM(1)=1./SUM(11)
CALL SMPY(SCSUM(1),G,N,1,c)
CALL GMTRA(SCSCTN,1)
CALL GMPRD(GSCTGSCT,N,1,N)
CALL GMSUB(SGSCT,P,N,N)

C
C TO REDEFINE S, NEW ONE STEP PREDICTED CDVARIANCE MATRIX
C

CALL GMTRA(AATNN)
CALL GMTRA(DDT,N,1)
CALL GMPRD(A,P,AP,N,N,N)
CALL GMPRD(APATAPA,N,N,N)
CALL SMPY(DQ(1),DQ,N,1,O)
CALL GMPRD(DQ,DTDQD,N,1,N)
CALL GMADD(APA,DQD,S,N,N,N)
RETURN
END

C
C A NUMBER OF DOUBLE PRECISION MATRIX OPERATING SUBROUTINES



C HAVE NOT BEEN LISTED HERE SINCE THESE ARE SSP ROUTINES
C WHOSE ONLY MODIFICATION IS AN ADDITIONAL DOUBLE PRECISION
C STATEMENT. THESE ARE GMPROARRAYSMPYGTPRDGMADD,AND GMSUB.
C
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